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Editorial on the Research Topic

Editorial: Genomics-Enabled Triticeae Improvement

INTRODUCTION

Triticeae, an important tribe in the grass family Poaceae, includes several staple food crops, such
as wheat, barley, rye and triticale. Although plant breeding has improved the performance of these
crops steadily in agricultural traits, continued improvement is becoming more challenging due to
increasing pressure from biotic and abiotic stresses as a result of climate change.

Further advance in structural and functional genomics of the Triticeae crops is essential for
accelerating cycles of crop improvement and increasing genetic gain of breeding selection. Marker-
assisted selection has proven to be useful for tracking alleles of major genes of many traits of
agricultural importance. More recently, genomic selection has also shown potential for simplifying
the selection of genome-wide minor alleles by modeling with or without pre-knowledge of the
target traits. However, it has been noted that almost all Triticeae breeding programs still rely largely
on conventional breeding selection made from replicated, time-consuming field trials.

With the recent advancements on reference sequences of the major Triticeae species and high-
throughput genotyping platforms, we envision that more feasible genomic tools can be developed
rapidly andmore germplasm resources can be characterized precisely, thus, increasing the certainty
of higher genetic gain through breeding. Therefore, this Research Topic aims to promote genomics-
enabled Triticeae improvement by collecting original research articles, especially involving use of
the most recent genomic resources in Triticeae crops.

We are honored to receive submissions of a large number of manuscripts addressing various
subject areas across major Triticeae crops. After vigorous reviewing and revising, 14 of them were
collected in this Research Topic, covering reports on yield components, grain quality traits, and
tolerance to biotic/abiotic stresses in wheat, barley and rye.

Overall, quantitative trait loci (QTL) mapping remains a large area in this Research Topic
for developing molecular breeding tools. We were also glad to receive contributions on genomic
prediction modeling, especially involving multivariate prediction models covering multi-traits
and multi-environments with various cross-validation schemes. These studies used different
types of experimental populations such as biparental, multi-parent advanced generation inter-
crosses (MAGIC) or genome-wide association study (GWAS) populations. In addition, the current
Research Topic also included novel genomic resources, such as alien chromosome introgression or
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substitution lines. The studies characterized novel favorable
alleles that are important for wheat improvement. Furthermore, a
few studies reported molecular characterization of transcription
factors and transporters associated with plant development
and response to diverse growing conditions. These articles are
highlighted below according to major traits being studied.

AGRONOMIC TRAITS

The improvement of Triticeae crops has been continuously
benefited from genetic introgression of wild relatives, which
provide a great potential to broaden the availability of favorable
genetic alleles that are otherwise not available in the primary
gene pools of the crops. In this Research Topic, Nyine et
al. assessed the impact of the introgression from 21 diverse
accessions of Aegilops tauschii, the diploid ancestor of the wheat
D genome. Using whole-genome sequencing of parental lines
and the sequence-based genotyping of an BC1F3 : 5 introgression
population together with phenotyping data collected from field
trials, they revealed some introgression lines that could increase
grain yield. They also identified SNPs and haplotypes that
were significantly associated with yield component traits and
genes regulating plant development. The study provided valuable
germplasm with characterized haplotypes of Ae. tauschii for
wheat improvement.

Advancing molecular breeding tools has been a continuous
task facilitating crop development. Xiong et al. located QTL
associated with important agronomic traits in hexaploid wheat
and developed diagnostic kompetitive allele-specific PCR (KASP)
markers for the traits to facilitate wheat breeding.

In this Research Topic, agronomic traits were also mapped in
rye, which is the only cross-pollinating Triticeae crop species.
Siekmann et al. reported the first GWAS of agronomic traits
evaluated from experimental hybrids of rye, and located cross-
validated SNPs in protein-coding genes associated with plant
height, heading date, grain quality and yield.

Besides QTL mapping, this Research Topic also covered
genomic predication studies in wheat and barley. The winter
wheat study by Gill et al. used multivariate genomic prediction
models to predict several agronomic traits using advanced
and elite breeding lines evaluated in multiple environments.
They evaluated prediction accuracy of a multi-trait model
with two cross-validation schemes and a multi-trait multi-
environment model that integrates the analysis of multiple traits.
Results showed that multivariate genomic selection models
have great potential in implementing genomic selection in
breeding programs.

In barley, genomic prediction for grain yield was modeled
by Puglisi et al. using a MAGIC population derived
from eight founders. Predictive abilities were evaluated
for single-environment genomic prediction and multi
environment genomic prediction models with various
cross-validation schemes. The study concluded, in general,
multi-environment models that explicitly split marker effects
in main and environmental-specific effects outperform simpler
multi-environment models.

GRAIN QUALITY TRAITS

The Research Topic also includes studies on improving grain
quality traits. Tian et al. mapped QTL for sodium dodecyl
sulfate (SDS)-sedimentation volume (SSV), an important index
for gluten strength of common wheat. Notably, environmentally
stable QTL were detected and additive effect of two closely linked
QTL on chromosome 1A was illustrated. They also characterized
favorable loci for improving SSV, and proposed an ideal target for
positional cloning.

In addition, Li L. et al. located QTL underneath wheat
preharvest sprouting (PHS), which significantly reduces grain
yield and quality. The research not only provided genetic
resources for PHS resistance but also developed KASP markers
tightly linked to germination index for marker-assisted breeding.

Furthermore, Halstead-Nussloch et al. revealed a novel
Gli-2 sublocus using 11 recently published chromosome-scale
assemblies of hexaploid wheat. The research analyzed genomic
variation in α-gliadins and unexpectedly found that the Gli-B2
locus comprises two subloci. The research also confirmed
variation of celiac disease epitopes in duplicated α-gliadin genes.
The analysis yielded a new pass for improving grain quality
through wheat breeding.

BIOTIC STRESS

Exploiting resistant resources from wild relatives has played
critical roles in coping with various stresses in cereal crops.
Enclosed in this Research Topic, Li J. et al. characterized wheat–
Leymus mollis Trin. and wheat–Psathyrostachys huashanica Keng
3Ns (3D) substitution lines. The characterization generated new
genetic resources for disease resistance and high-yield breeding
with characterized substitution lines showing superior resistance
to powdery mildew or Fusarium head blight.

Advancement in stripe rust resistance was also reported in
this Research Topic. Using synthetic-derived wheats, Mahmood
et al. located a large number of quantitative trait nucleotides,
including some novel loci and haplotypes from Ae. tauschii. They
also evaluated different models for genomic prediction of stripe
rust resistance, and reported encouraging prediction accuracy for
adult-plant resistance to stripe rust.

ABIOTIC STRESS

Abiotic stress is an increasing challenge in cereal production.
Heat stress at booting stage causes significant losses to floret
fertility (grain set) and hence yield in wheat. Erena et
al. identified a major-effect heat tolerance locus on wheat
chromosome 2B. The locus offsets between 44 and 65% of
the losses in grain set due to heat, suggesting that it offers
significant value for marker-assisted wheat breeding against
heat stress.

In an effort to address wheat cold stress, Xu et al.
identified genome-wide actin depolymerizing factor (ADF)
genes, and characterized them using transgenic analysis.
The effort generated fundamental information about the
wheat ADF genes, their potential regulatory effects of the
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encoded proteins on plant development and responses to low-
temperature stress.

In addition, Li S. et al. investigated the wheat ZIP
(Zn-regulated, iron-regulated transporter-like protein)
transporter, which plays an important role in regulating
the uptake, transport, and accumulation of microelements
in plants. The investigation searched ZIP genes against
the wheat reference genome and then systematically
analyzed the gene structure, expression profiles, regulatory
network, and biological function regulating stress responses
to microelements.

Abiotic stress was also investigated in barley. Li T. et
al. studied plant mitochondrial transcription termination
factor (mTERF) family, which regulates organellar
gene expression. Expression analysis suggested that
some members of the mTERF family were significantly
induced by various abiotic stresses or phytohormone
treatment, suggesting their important roles in regulating
stress responses.

Altogether, the range of research in this topic
clearly illustrates diverse efforts on improving Triticeae
crops although the articles in this Research Topic
are still very limited. The topic also highlighted the
importance of public genomic resources given the
fact that most of the studies involved usage of public
reference genomes.
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Genetic Mapping by Integration of
55K SNP Array and KASP Markers
Reveals Candidate Genes for
Important Agronomic Traits in
Hexaploid Wheat
Hongchun Xiong†, Yuting Li†, Huijun Guo†, Yongdun Xie, Linshu Zhao, Jiayu Gu,
Shirong Zhao, Yuping Ding and Luxiang Liu*

National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop
Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China

Agronomic traits such as heading date (HD), plant height (PH), thousand grain weight
(TGW), and spike length (SL) are important factors affecting wheat yield. In this study, we
constructed a high-density genetic linkage map using the Wheat55K SNP Array to map
quantitative trait loci (QTLs) for these traits in 207 recombinant inbred lines (RILs). A total
of 37 QTLs were identified, including 9 QTLs for HD, 7 QTLs for PH, 12 QTLs for TGW,
and 9 QTLs for SL, which explained 3.0–48.8% of the phenotypic variation. Kompetitive
Allele Specific PCR (KASP) markers were developed based on sequencing data and
used for validation of the stably detected QTLs on chromosomes 3A, 4B and 6A using
400 RILs. A QTL cluster on chromosome 4B for PH and TGW was delimited to a 0.8 Mb
physical interval explaining 12.2–22.8% of the phenotypic variation. Gene annotations
and analyses of SNP effects suggested that a gene encoding protein Photosynthesis
Affected Mutant 68, which is essential for photosystem II assembly, is a candidate gene
affecting PH and TGW. In addition, the QTL for HD on chromosome 3A was narrowed
down to a 2.5 Mb interval, and a gene encoding an R3H domain-containing protein was
speculated to be the causal gene influencing HD. The linked KASP markers developed
in this study will be useful for marker-assisted selection in wheat breeding, and the
candidate genes provide new insight into genetic study for those traits in wheat.

Keywords: QTL, heading date, plant height, thousand grain weight, spike length, wheat

INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important cereal crops worldwide, providing a food
source for 30% of the human population (Mayer et al., 2014). Improving the yield potential of wheat
is of great significance for meeting the food demand from an increasing population (Tshikunde
et al., 2019). Agronomic traits such as heading date (HD), plant height (PH), thousand grain weight
(TGW), and spike length (SL) are important factors affecting yield and always targeted by wheat
breeders (Tshikunde et al., 2019). Recent advances in wheat genomics have accelerated the genetic
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dissection of important agronomic traits, and a large number of
quantitative trait loci (QTLs) for these traits have been identified
(Rasheed and Xia, 2019).

Heading date is crucial for adaptation to different
environments and yield stability in wheat (Snape et al.,
2001). Over a hundred QTLs for HD located across all wheat
chromosomes have been detected (Milec et al., 2014; Kiseleva
and Salina, 2018). The cloned genes affecting HD or flowering
in wheat are mainly classified into three groups: vernalization
(VRN), photoperiod (Ppd), and earliness per se (Eps) genes
(Snape et al., 2001). Four VRN genes (VRN1, VRN2, VRN3, and
VRN4) located on chromosome 5 or 7 of the A/B/D genomes,
have been identified by map-based cloning (Yan et al., 2003,
2004, 2006; Kippes et al., 2015; Xie et al., 2019). The Ppd genes
for photoperiod responses in wheat are mainly located on
chromosomes 2A, 2B, and 2D (Beales et al., 2007). The Eps genes
were identified on chromosome 1Am in Triticum monococcum
(Alvarez et al., 2016) and on long arm of chromosome 1D in
hexaploid wheat (Zikhali et al., 2014).

Plant height is another important factor affecting yield
potential in wheat (Flintham et al., 1997). Twenty-five reduced
height genes (Rht), Rht1 to Rht25, have been identified in
wheat (Mo et al., 2018). According to the distinct responses to
exogenous gibberellic acid (GA), these Rht genes were classified
into GA-sensitive or GA-insensitive categories (Lou et al., 2016).
The “green revolution” genes Rht-B1b (Rht1) and Rht-D1b
(Rht2) located on chromosome 4B and 4D, respectively, encode
truncated DELLA proteins, which are involved in the gibberellin
signaling pathway (Peng et al., 1999). Rht4, Rht5, Rht7, Rht8,
Rht9, Rht12, Rht13, Rht22, and Rht23 are located on 2B, 3B, 2A,
2D, 7B, 5A, 7B, 7A, and 5D, respectively (Peng et al., 1999; Ellis
et al., 2005; Asplund et al., 2012; Chen et al., 2015; Vikhe et al.,
2017). Rht24 is located on 6AL (Tian et al., 2017; Wurschum et al.,
2017) while Rht14, Rht16, Rht18, and Rht25 are located on 6AS
(Haque et al., 2011; Grant et al., 2018; Mo et al., 2018).

TGW is one of the three essential components of grain yield.
Most of the cloned genes associated with TGW in wheat were
identified using a homology-based strategy (Chen et al., 2020).
The wheat TaGL3-5A gene has been cloned, and a SNP in the 11th
exon of TaGL3-5A is associated with variation in grain length and
TGW (Yang et al., 2019). In addition, the TaGW2 gene in wheat
is well studied for its function in regulating grain weight (Su
et al., 2011; Bednarek et al., 2012; Jaiswal et al., 2015; Simmonds
et al., 2016; Zhai et al., 2018; Zhang et al., 2018). Through
genetic linkage analyses, stable QTLs explaining over 10% of the
phenotypic variance for TGW were identified on chromosomes
1A (Varshney et al., 2000), 1B (Mir et al., 2012), 2D (Ma et al.,
2019), 3A (Cui et al., 2014a), 3D (Cui et al., 2014a; Kumar et al.,
2016), 4A (Araki et al., 1999), 4B (Kumar et al., 2016; Guan et al.,
2018; Xu et al., 2019; Chen et al., 2020), 5A (Börner et al., 2002;
Cuthbert et al., 2008; Mir et al., 2012; Kumar et al., 2016), 5B
(Yang et al., 2020), 5D (Li et al., 2018), 6A (Mir et al., 2012), 6D
(Cui et al., 2014a), 7A (Kumar et al., 2006, 2016; Mir et al., 2012),
and 7D (Chen et al., 2020).

Spike architecture traits such as spike length (SL) are tightly
related to grain production in wheat (Yao et al., 2019). A number
of studies have identified stable QTLs for SL on chromosomes

1A, 1B, 2D, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 6D, 7A, 7B, and 7D (Li
et al., 2002, 2018; Marza et al., 2006; Deng et al., 2011; Cui et al.,
2012a; Liu et al., 2018a; Cao et al., 2019; Chai et al., 2019; Wolde
et al., 2019; Yao et al., 2019; Hu et al., 2020). It has been reported
that the Q gene on chromosome 5A, which encodes an AP2
transcription factor, affects SL in wheat (Kawaura et al., 2009).

To obtain the genetic basis for HD, PH, TGW, and SL, we
conducted QTL mapping based on a RIL population in the
present study. In our previous study we used Bulked Segregant
Analysis (BSA) and identified VRN-B1 as the gene responsible
for HD variation in the RIL population (Li et al., 2020). In
this study, we used the Wheat55K SNP Array to map QTLs
for HD, PH, TGW, and SL in this RIL population. Moreover,
we validated the major QTLs on chromosomes 3A, 4B, and 6A
by developing Kompetitive Allele Specific PCR (KASP) markers
based on sequencing data and predicted candidate genes for
PH, TGW, and HD according to gene annotation and SNP
effects analysis.

MATERIALS AND METHODS

Plant Materials and Phenotype
Evaluation
As previously described (Li et al., 2020), a RIL population (400
lines) derived from a cross between an early heading mutant
(eh1) and Lunxuan987 (LX987) was used for genetic mapping;
generations F6 to F8 of the RIL population were included
in this study. The RIL and parent lines were planted at the
Zhongpuchang field station of the Institute of Crop Sciences,
Chinese Academy of Agricultural Sciences (Beijing, China)
during the 2015–2016, 2016–2017, and 2017–2018 cropping
seasons. For each year, the experiment was conducted once and
we selected three representative plants for phenotypic collection.
A total of 15 plants for each line were planted in a row of 1
m, and the field conditions were managed according to local
standard practices.

For HD, when more than half of the spikes had emerged
from two thirds of the plants in a line, the date for that
line was recorded (Li et al., 2020). At agronomic harvest
maturity, three representative plants from the middle of each
row showing uniform growth status were used for PH, TGW,
and SL evaluation and the mean values from these three plants
were used for QTL mapping. PH from each representative plant
was measured from the ground to the tip of the spike excluding
awns. After drying, the grain weight from each representative
plant was measured and the number of grains was counted. TGW
was calculated as the plant grain weight divided by the number of
grains per plant multiplied by 1,000. SL from main stem of each
representative plant was measured from the base of the rachis to
the tip of the terminal spikelet excluding awns. The HD, PH, and
TGW data were collected in 2016, 2017, and 2018, and the SL data
were collected in 2016 and 2018. Analyses of variance, correlation
coefficients, and broad sense heritability were performed using
the ANOVA analysis tools of the QTL IciMapping v4.1 program1.

1http://www.isbreeding.net/
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Genotyping
Genomic DNA of each RIL and parent line was extracted
as previously described (Li et al., 2020). After assessment of
DNA integrity and quantity, the DNA from 207 lines that
were also used for KASP assay, along with the parent DNA
samples were hybridized to the Wheat55K SNP Array containing
53,063 markers. The genotyping was performed by China Golden
Marker (Beijing) Biotech Co. Ltd2.

Genetic Map Construction and QTL
Analysis
High quality genotyping data were obtained by filtering with
a Dish QC threshold of >0.82 and a Call-Rate threshold of
>95%. The BIN function of IciMapping 4.1 was used to remove
redundant markers from poly-high-resolution (PHR) SNPs, and
the SNPs with >25% missing data were filtered out. The genetic
map was constructed by randomly selecting only one marker
from each bin using the MAP function of IciMapping 4.1. The
threshold of the logarithm of odds (LOD) score was set to 2.5, and
the Kosambi map function was used to calculate the map distance
from recombination frequencies. Composite interval mapping
(ICIM) in IciMapping 4.1 was selected to identify QTLs for HD,
PH, TGW, and SL. The mean values of phenotypic traits for each
line in each cropping season were used for QTL analysis. QTL
region was determined by the positions of left and right markers
identified by IciMapping 4.1, and physical positions of markers
on the wheat reference genome v1.0 are shown in Supplementary
Table 1. QTLs for the same traits identified in 2 or 3 years
were considered to be stable. Multi-Environment Traits (MET)
analysis of QTL IciMapping v4.1 was used for assessment of
QTL × environment interactions (Li et al., 2015).

Development of KASP Markers and QTL
Validation
According to the SNPs between eh1 and LX987 identified by
RNA sequencing (RNA-seq) (Li et al., 2020), KASP markers
around or in the region of stable QTLs specific for different
subgenomes were designed using the polyploid primer design
pipeline PolyMarker3. After evaluation of the polymorphisms
between two parent lines, the developed KASP markers were used
for genotyping the entire mapping population. The successfully
developed KASP markers are listed in Supplementary Table 2.
A total of 400 RILs were genotyped with KASP markers on
chromosomes 3A, 4B, and 6A. The reaction volume and PCR
procedures for the KASP assay were as previously described
(Li et al., 2020), and the CFX 96 Real-Time System (Bio Rad,
Hercules, CA, United States) was used for PCR and data analysis.
QTL analysis was conducted using IciMapping 4.1.

Analysis of SNP Effects and Prediction of
Candidate Genes
Based on RNA-seq data, which was collected from young spikes of
eh1 and LX987 when eh1 was beginning to head (Li et al., 2020),

2http://www.cgmb.com.cn/
3http://polymarker.tgac.ac.uk/

the SNPs between eh1 and LX987 covering the intervals of
flanking markers from QTL validation were obtained for SNP
effects analysis. SNP effects were analyzed by Python4 according
to the example and scripts from the website5. A score for missense
variation is generated that reflects the predicted effect of the
SNP on gene function. The more negative a score, the larger the
effects on gene function. The SNPs with larger effects on gene
function were speculated to be located in the candidate genes.
Gene functions were predicted by searching for homologous
genes in rice (Oryza sativa) and Arabidopsis thaliana using the
Triticeae Multi-omics Center website6.

RESULTS

Phenotypic Variation in the RIL
Population
Our previous study showed that there is variation in HD in
a RIL population of 400 lines derived from a cross between
the early heading mutant eh1 and LX987 (Li et al., 2020).
In addition to HD, we also found that PH, TGW, and SL
differed between eh1 and LX987; the values of these traits
were significantly lower in eh1 than in LX987 from 2016–2018
(Table 1). Therefore, phenotypic investigation of PH, TGW, and
SL in the RIL population was also conducted from 2016–2018. In
the RIL population, the percent variation in PH, TGW, and SL
ranged from 9.1% to 14.4% from 2016–2018, and all three traits
showed moderate h2 values ranging from 0.77 to 0.82 (Table 1).

4https://www.python.org/
5https://github.com/pinbo/gene_manual_annotation
6http://202.194.139.32/searchtools/

TABLE 1 | Summary statistics for heading date, plant height, thousand grain
weight, and spike length for the two parents and the RIL population in 2016–2018.

Trait Year Parent RIL population

eh1 LX987 Average Min Max CV% h2

Heading date
(d)

2016 202.4 208.2 205.8 202.0 210.0 0.8 0.8

2017 198.1 206.7 202.7 197.0 210.0 1.4

2018 208.8 212.3 210.6 206.0 215.0 0.7

Plant height
(cm)

2016 67.9 86.8 75.2 48.8 100.0 14.4 0.82

2017 76.4 86.7 82.2 63.7 106.0 9.5

2018 66.9 80.9 76.5 54.0 95.8 9.1

Thousand
grain weight
(g)

2016 39.9 52.4 44.8 28.4 60.0 11.4 0.77

2017 36.4 48.5 41.8 24.6 58.1 13.4

2018 33.3 44.9 38.5 24.8 53.6 13.0

Spike length
(cm)

2016 7.5 8.6 8.1 5.0 11.7 12.8 0.79

2018 7.7 9.2 8.5 6.0 11.3 11.2

Min and Max represent minimum and maximum of the corresponding traits among
the RIL population. CV is coefficients of variation and h2 is broad sense heritability.
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In addition, PH, TGW, and SL from 2016–2018 followed a
normal distribution and strong transgressive segregation was
observed in the RIL population (Figure 1). Analysis of variance
of PH, TGW, and SL for the multiple environment trials in
the RIL population indicated that these traits were affected by
environmental conditions (Supplementary Table 3).

Analysis of the pairwise correlations between HD, PH, TGW,
and SL suggested that TGW and SL were significantly positively
correlated with PH while SL was significantly negatively
correlated with HD (Table 2). However, the correlations between
SL and PH, SL and HD were weak (Table 2).

Genetic Map Construction
Among the 400 RILs, 207 lines were randomly selected for
genotyping using a Wheat55K SNP Array with 53,063 tags
selected from the Wheat660K SNP Array (Ren et al., 2018).
Since PHR SNPs are recommended for polyploid species
and have the highest reliability, only PHR SNP probes were
kept. SNPs with the same genotype in both parents were
removed. Finally, 6505 SNP markers were obtained for genetic
map construction (Table 3). These markers were divided
into 1097 unique loci with the number distributed on each
chromosome ranging from 10 to 96 (Table 3). The genetic

FIGURE 1 | Phenotypic of distribution of plant height (PH), thousand grain weight (TGW), and spike length (SL) in the RIL population from 2016 to 2018. Phenotypic
values of the two parents were marked by vertical arrows.
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TABLE 2 | Correlation coefficient analyses among heading date (HD), plant height
(PH), thousand grain weight (TGW), and spike length (SL) in the RIL population.

Traits HD PH TGW SL

HD 1

PH 0.0356ns 1

TGW 0.0799ns 0.5570*** 1

SL −0.2311*** 0.1568** 0.0124ns 1

Three lines from each year were used, and the correlations are the average
values of the three years. nsmeans no significant correlation detected by
statistical analysis. *** and ** indicate significance at p ≤ 0.001 and
p ≤ 0.01, respectively.

TABLE 3 | Distribution of markers on 21 chromosomes in the constructed genetic
map.

Chromosomes No. of markers
with poly high

resolution

No. of unique
loci

Length
(cM)

cM/loci

1A 293 53 185.5 3.5

1B 164 55 110.3 2.0

1D 38 18 141.3 7.9

2A 1106 56 91.7 1.6

2B 328 80 123.5 1.5

2D 37 20 192.8 9.6

3A 392 84 243.7 2.9

3B 432 68 104.1 1.5

3D 36 14 145.2 10.4

4A 842 89 222.9 2.5

4B 277 47 86.0 1.8

4D 16 10 131.7 13.2

5A 535 95 215.9 2.3

5B 543 96 156.6 1.6

5D 50 22 264.7 12.0

6A 139 35 168.6 4.8

6B 345 49 119.2 2.4

6D 24 15 159.6 10.6

7A 458 84 254.0 3.0

7B 426 90 157.8 1.8

7D 24 17 221.3 13.0

Total 6505 1097 3496.1 5.2

map spanned 3496.1 cM in length with an average density of
5.2 cM/locus (Table 3).

QTL Mapping Analysis
A total of 37 QTLs for HD, PH, and TGW from 2016–
2018, and SL from 2016 and 2018, were identified by QTL
mapping analysis (Table 4 and Figure 2). These QTLs with
LOD values ranging from 2.8 to 38.9 were distributed on
15 chromosomes and explained 3.0–48.8% of the phenotypic
variation (Table 4 and Figure 2). There were 9, 7, 12, and 9
QTLs detected for HD, PH, TGW, and SL, respectively (Table 4
and Figure 2).

QTLs for HD were detected on chromosomes 1B (2), 2B (2),
3A (2), 4A (1), 5B (1), and 6B (1) (Table 4 and Figure 2). Notably,
qHD5B and qHD6Bwere detected in all 3 years. qHD5B explained

18.4–48.8% of the phenotypic variation while qHD6B accounted
for 3.3–11.6% of the phenotypic variation (Table 4). qHD3A.1
was located close to qHD3A.2, and qHD2B.1 was located close to
qHD2B.2. qHD2B.1 was detected in 2018 and explained 3.6% of
the phenotypic variation, and qHD2B.2 was detected in 2017 and
explained 3.1% of the phenotypic variation (Table 4). For all of
the QTLs except qHD6B the allele increasing HD was contributed
by LX987 (Table 4).

For PH, 7 QTLs were identified on chromosomes 2A (1),
4A (1), 4B (2), and 6B (3) (Table 4 and Figure 2). qPH4B.1
was identified in 2017 and 2018 (Table 4 and Figure 2), with
LOD scores of 15.0 and 17.9 and explaining 31.5% and 34.4%
of the phenotypic variation, respectively (Table 4). Three co-
located QTLs were identified on chromosome 6B from 2016–
2018, which explained 4.4%–8.8% of the variation in PH (Table 4
and Figure 2). For all of the QTLs except qPH4A the allele
increasing PH was contributed by LX987 (Table 4).

For TGW, 12 QTLs were detected on chromosomes 3A (1),
3B (3), 3D (1), 4B (2), 5D (1), 6A (2), 7A (1), and 7D (1)
(Table 4 and Figure 2). qTGW4B.1 was detected in 2017 and
2018, explaining 9.6% and 22.5% of the variation in TGW,
respectively (Table 4). qTGW4B.2, which was located close to
qTGW4B.1, was detected in 2016 and explained 20.6% of the
phenotypic variation (Table 4). In addition, the QTLs qTGW3B.1
and qTGW3B.2 were located close to each other and explained
5.5% and 13.1% of phenotypic variation in 2018 and 2017,
respectively (Table 4). For all of the QTLs except qTGW7A
and qTGW3A, the allele increasing TGW was contributed by
LX987 (Table 4).

For SL, 9 QTLs were identified on chromosomes 3A (1), 4A
(1), 5B (3), 6A (1), 6B (1), and 7D (2). qSL6A was detected
in 2016 and 2018, explaining 9.5% and 22.0% of phenotypic
variation, respectively (Table 4). qSL5B.2 and qSL5B.3 showed
high contributions to phenotypic variation, 11.6% and 9.6%,
respectively (Table 4). For qSL7D.1, qSL5B.2, qSL5B.3, and
qSL7D.2, the negative alleles were contributed by LX987 while
for the other QTLs the allele increasing SL was contributed by
LX987 (Table 4).

Four QTL clusters were identified on chromosomes 3A, 4B,
5B, and 6B (Table 5). For the QTL cluster on chromosome 3A,
qHD3A.1 and qHD3A.2 were co-localized with qTGW3A and
qSL3A in a region ranging from 70.28 cM to 88.01 cM. On
chromosome 4B, qPH4B.1 for PH was clustered with two QTLs
for TGW, with the alleles from LX987 increasing PH and TGW.
For the QTL cluster on chromosome 5B, qHD5B, which was
detected in all 3 years, was clustered with qSL5B.3 (Tables 4, 5);
however, the positive alleles for these QTLs were derived from
opposite parents (Table 4). Three QTLs for PH on chromosome
6B were clustered with qHD6B and qSL6B, with the alleles from
LX987 increasing PH and SL (Tables 4, 5).

To evaluate the QTL × environment interactions, Multi-
Environment Traits (MET) analysis was employed by using
QTL IciMapping v4.1 (Li et al., 2015). Similarly, 33 QTLs
were identified by MET analysis (Supplementary Table 4).
Among them, 10 QTLs showed significant interactions with
environment, including the major QTLs qHD5B, qPH4B.1,
and qTGW4B.1.
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TABLE 4 | QTLs for heading date (HD), plant height (PH), thousand grain weight (TGW), and spike length (SL) in 2016, 2017, and 2018 identified by IciMapping 4.1.

Trait and year QTL Position Left marker Right marker LODa PVE (%)b Addc

HD2018 qHD2B.1 59 AX-110960849 AX-110972149 2.8 3.6 0.3

qHD3A.1 81 AX-109580196 AX-110551014 4.1 4.6 0.4

qHD5B 88 AX-111538681 AX-109870696 13.6 18.4 0.7

qHD6B 117 AX-86183685 AX-110689596 9.0 11.6 −0.6

HD2017 qHD2B.2 68 AX-110983186 AX-111716247 3.3 3.1 0.5

qHD3A.2 78 AX-109103063 AX-108814864 4.3 3.5 0.6

qHD4A 149 AX-108917261 AX-108763710 4.1 3.2 0.6

qHD5B 88 AX-111538681 AX-109870696 38.9 48.8 2.2

qHD6B 114 AX-86183685 AX-110689596 3.9 3.3 −0.6

HD2016 qHD1B.1 2 AX-110448009 AX-109817665 3.3 3.3 0.3

qHD1B.2 110 AX-109622448 AX-109490479 5.9 6.0 0.5

qHD5B 88 AX-111538681 AX-109870696 32.3 39.8 1.3

qHD6B 116 AX-86183685 AX-110689596 6.8 6.4 −0.5

PH2018 qPH2A 65 AX-108805248 AX-110671547 3.8 6.2 1.9

qPH4A 133 AX-111567358 AX-109398960 4.5 6.0 −1.8

qPH4B.1 51 AX-111542943 AX-86175614 17.9 34.4 4.1

qPH6B.1 118 AX-86183685 AX-110689596 3.1 4.4 1.5

PH2017 qPH4B.1 51 AX-111542943 AX-86175614 15.0 31.5 4.0

qPH6B.2 102 AX-110122533 AX-111092305 3.0 5.6 1.7

PH2016 qPH4B.2 36 AX-109458638 AX-111074167 3.7 8.3 3.4

qPH6B.3 111 AX-111092305 AX-86183685 4.0 8.8 3.6

TGW2018 qTGW3B.1 34 AX-109536560 AX-111059512 3.9 5.5 1.1

qTGW3D 51 AX-110234451 AX-94739884 4.9 8.5 1.4

qTGW4B.1 50 AX-109637078 AX-111542943 15.2 22.5 2.3

qTGW6A.1 109 AX-110937386 AX-111013769 3.6 5.5 1.1

qTGW7A 138 AX-108759584 AX-111680717 4.0 5.8 −1.2

qTGW7D 0 AX-108815937 AX-111379517 4.3 6.2 1.2

TGW2017 qTGW3B.2 37 AX-110971226 AX-110375013 5.4 13.1 2.1

qTGW4B.1 50 AX-109637078 AX-111542943 4.5 9.6 1.9

qTGW5D 12 AX-111577847 AX-95658716 4.0 9.4 1.8

qTGW6A.2 168 AX-109868276 AX-109392684 3.2 7.5 1.6

TGW2016 qTGW3A 75 AX-89583101 AX-111611367 3.6 5.8 −1.2

qTGW3B.3 24 AX-109418825 AX-108890155 5.5 9.5 1.5

qTGW4B.2 52 AX-108892921 AX-108871853 12.0 20.6 2.4

SL2018 qSL4A 126 AX-111124943 AX-108829087 3.5 3.8 0.2

qSL6A 29 AX-109505625 AX-111507391 18.4 22.0 0.5

qSL7D.1 165 AX-110975128 AX-111014383 5.4 6.0 −0.2

SL2016 qSL3A 88 AX-109584650 AX-109983808 4.2 3.0 0.2

qSL5B.1 11 AX-109329070 AX-110531191 7.1 5.4 0.3

qSL5B.2 25 AX-109431199 AX-108985377 14.2 11.6 −0.4

qSL5B.3 86 AX-108872409 AX-109581384 11.9 9.6 −0.4

qSL6A 30 AX-109505625 AX-111507391 11.1 9.5 0.4

qSL6B 110 AX-110122533 AX-111092305 12.4 10.1 0.4

qSL7D.2 1 AX-108815937 AX-111379517 6.7 5.1 −0.3

The QTLs written in bold font were detected in more than 1 year. aLOD values of detected QTL. bPhenotypic variation explained by the corresponding QTL. cAdditive
effect of the corresponding QTL. Positive values indicate the alleles from LX987 increase the trait values, and negative values indicate the alleles from eh1 increase the
corresponding trait values.

QTL Validation by Mapping With
Molecular Markers
The QTLs on chromosomes 3A (qHD3A), 4B (qPH4B.1 and
qTGW4B.1), 5B (qHD5B), and 6A (qSL6A) were stably detected
in different years. We selected these QTLs for validation using

KASP markers developed based on RNA-seq data (Li et al., 2020).
In a recent study we reported that the VRN-B1 gene located
on chromosome 5B around the qHD5B region was responsible
for HD variation in the RIL population (Li et al., 2020). For
the validation of qHD3A, we successfully developed seven KASP
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markers around or in the 55K SNP array-mapped region, and
delimited the QTL to a genetic interval of 1.29 cM between
markers 3A128b and 3A16, spanning approximately 2.5 Mb
(Figure 3A). The LOD scores of this QTL were 5.7 and 7.5,

explaining 6.0% and 8.0% of the variation of HD, in 2017 and
2018, respectively (Table 6). For the QTLs on chromosome 4B,
nine KASP markers were successfully developed, and the QTLs
for PH were narrowed down to a genetic interval of 1.11 cM

FIGURE 2 | Continued
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flanked by markers 4B271b and 4B288b, corresponding to an
approximately 0.8 Mb physical region (Figure 3B). This QTL was
detected in 2017 and 2018, with LOD scores of 22.1 and 19.8, and
explaining 22.8% and 20.5% of the variation in PH, respectively

(Table 6). Consistent with this, the QTL for TGW identified
in 2016 and 2018 was mapped between markers 4B271b and
4B288b with LOD scores of 11.1 and 16.8 and explaining 12.2%
and 17.8% of the variation in TGW, respectively (Figure 3B and

FIGURE 2 | Continued
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FIGURE 2 | Chromosomal locations of the identified QTLs for HD, PH, TGW, and SL in 2016, 2017, and 2018. Triangles, circles, squares, and stars represent HD,
PH, TGW, and SL, respectively. The colors green, blue, and red indicate data from 2016, 2017, and 2018, respectively.

Table 6). For the validation of qSL6A, we successfully developed
10 KASP markers for genetic mapping. In 2016 and 2018, a
major QTL for SL with LOD scores of 12.6 and 23.5 and

explaining 13.1% and 22.5% of phenotypic variation, respectively,
was detected between markers 6A51 and 6A419 within a genetic
interval of 31.8 cM (Figure 3C and Table 6). Due to the large
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TABLE 5 | QTL clusters affecting two or more traits. QTLs from each year located within 10 cM and affected two or more traits were identified as a QTL cluster.

Chromosome QTL Marker interval Position (cM)

3A qHD3A.1, qHD3A.2, qTGW3A, qSL3A AX-89583101–AX-109983808 70.28–88.01

4B qPH4B.1, qTGW4B.1, qTGW4B.2 AX-109637078–AX-108871853 49.40–52.19

5B qHD5B, qSL5B.3 AX-108872409–AX-109870696 85.99–100.84

6B qHD6B, qPH6B.1, qPH6B.2, qPH6B.3, qSL6B AX-110122533–AX-110689596 101.44–119.21

FIGURE 3 | QTL validation using KASP markers developed based on RNA-seq data. (A) QTLs for HD on chromosome 3A. The green and red curves represent LOD
scores from 2017 and 2018, respectively. (B) QTLs for PH and TGW on chromosome 4B. The red and green curves represent LOD scores for PH from 2017 and
2018, respectively. The light blue and blue curves represent LOD scores for TGW from 2016 and 2018, respectively. (C) QTLs for SL on chromosome 6A. The red
and green curves represent LOD scores from 2016 and 2018, respectively. The marker name and genetic position of each marker are indicated on the left side of
each chromosome.
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TABLE 6 | Details of the genetic map for QTL validation generated using KASP
markers.

Trait
name

Chromosome Position Left
marker

Right
marker

LOD PVE
(%)

Add

HD2018 3A 3 3A128b 3A16 7.5 8.0 0.4

HD2017 3A 3 3A128b 3A16 5.7 6.0 0.8

PH2017 4B 3 4B271b 4B288b 22.1 22.8 3.7

PH2018 4B 3 4B271b 4B288b 19.8 20.5 3.2

TGW2016 4B 3 4B271b 4B288b 11.1 12.2 1.8

TGW2018 4B 3 4B271b 4B288b 16.8 17.8 2.1

SL2016 6A 164 6A51 6A419 12.6 13.1 0.4

SL2018 6A 164 6A51 6A419 23.5 22.5 0.5

The 400 RILs were used for QTL validation.

region for this QTL, we did not conduct further analysis of the
candidate genes.

Gene Annotations and Effects of SNPS in
the Validated QTL Regions on
Chromosome 4B and 3A
Since qPH4B.1 and qTGW4B.1 were delimited to a physical
interval of 0.8 Mb between markers 4B271b and 4B288b
by genetic mapping with KASP markers, we analyzed gene
models and annotations in this region according to the
Chinese Spring (CS) reference genome v1.0 (International
Wheat Genome Sequencing Consortium, 2018). In this
region, seven high-confidence genes were annotated.
Based on BLASTP searches for rice and Arabidopsis
homologous genes7, these genes are predicted to encode
40S ribosomal protein S27 (TraesCS4B01G280800), Beta-
galactosidase (TraesCS4B01G280900), a Histidine-containing
phosphotransfer protein (TraesCS4B01G281000), 60S
ribosomal protein L5 (TraesCS4B01G281100), Protein
PAM68 (TraesCS4B01G281200), Tribbles homolog 3
(TraesCS4B01G281300), and a Ubiquitin carboxyl-
terminal hydrolase family protein (TraesCS4B01G281400)
(Supplementary Table 5). We also analyzed sequence variation
between LX987 and eh1 in this region based on RNA-seq data.
A total of 18 SNPs with each parent homozygous for different
alleles were identified (Supplementary Table 6). Analysis of
SNP effects suggested that three SNPs were missense mutations.
One SNP in TraesCS4B02G281200 located at the 189th position
caused a change in the amino acid Leu in LX987 to Trp in eh1
and was predicted to have the largest effect on gene function.
Multiple alignment of amino acid sequences of protein PAM68
from grasses indicated that this region is conserved among
Brachypodium distachyon, Sorghum bicolor, Zea mays and rice
(Supplementary Figure 2).

For the HD QTL on chromosome 3A between markers
3A128b and 3A16, we found that 38 high-confidence genes were
annotated in the mapped interval (Supplementary Table 7). In
this region, nine homozygous SNPs with genotypes differing
between the two parent lines were found based on RNA-seq

7http://202.194.139.32/searchtools/

data. One SNP in TraesCS3A01G086400, which encodes an R3H
domain-containing protein, that caused a change from Ser to
Pro at the 267th position had the largest effect on gene function
(Supplementary Table 8).

DISCUSSION

QTL Mapping Using the WHEAT55K SNP
Array
SNP arrays are a powerful and effective approach for QTL
mapping (Rasheed et al., 2017). The tags of the Wheat55K Array
(Affymetrix R© Axiom R© Wheat55) were carefully selected from
the Wheat660K Array, and all tags were uniformly distributed
on 21 chromosomes. Therefore, the 55K Array is suitable for
genotyping in QTL studies (Ren et al., 2018). The Wheat55K
SNP Array has been utilized for QTL mapping of productive tiller
number (Liu et al., 2018b), temporal expression of tiller number
(Ren et al., 2018), and leaf rust and stripe rust resistance (Huang
et al., 2019; Zhang et al., 2019) in wheat. In this study, we used
the Wheat55K SNP Array to genotype 207 RILs and constructed
a genetic map containing 6,505 PHR SNP markers (Table 3). PHR
SNPs are of high quality and possess better cluster resolution than
other SNPs (Marrano et al., 2019), which improves the accuracy
of genotyping. The genetic map spanned 3496.1 cM across the
21 chromosomes, which is similar to the total length of genetic
maps for 199 wheat RILs constructed by Liu et al. (2018b) and
186 RILs constructed by Huang et al. (2019). We detected a total
of 37 QTLs for HD, PH, TGW, and SL by mapping using the
55K SNP array (Table 4 and Figure 2). Among these QTLs, those
on chromosomes 3A (qHD3A), 4B (qPH4B.1 and qTGW4B.1),
5B (qHD5B) (Li et al., 2020), and 6A (qSL6A) that were stably
detected in different years, were validated using KASP markers
(Figure 3). High LOD values ranging from 5.7 to 23.5 were
observed for the QTLs that were validated with KASP markers
(Table 6), indicating that the QTLs detected using the 55K SNP
array data are reliable.

Comparison of the Mapped QTLS With
Those Identified in Previous Studies
A total of nine QTLs for HD were mapped on chromosomes 1B,
2B, 3A, 4A, 5B, and 6B (Table 4 and Figure 2). Consistent with
these findings, in our previous study we also identified QTLs for
HD on chromosomes 2B, 3A, and 5B using BSA of the same RIL
population (Li et al., 2020). In addition, qHD1B.1 and qHD4A
were mapped to genetic regions similar to those reported by
Zhao et al. (2019). qHD2B.2 was mapped to a genetic position
similar to that of HD QTLs reported by Hu et al. (2020) and Li
et al. (2018). The analysis of the physical positions of the flanking
markers in the wheat reference genome indicated that qHD2B.2
is probably the Ppd-B1 gene. The two adjacent QTLs qHD3A.1
and qHD3A.2 are located at a genetic position similar to that of
an HD QTL reported by Li et al. (2018). The QTL qHD5B, which
was stably detected in different years (Table 4 and Figure 2), is
located around gene VRN-B1, and our previous results suggested
that the VRN-B1 gene is responsible for HD variation in this
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RIL population (Li et al., 2020). In addition, the stably detected
QTL qHD6B was found at a position similar to that of HD QTLs
reported by Perez-Lara et al. (2016) and Li et al. (2018).

Regarding PH, we identified two and three QTLs on
chromosomes 4B and 6B, respectively (Table 4 and Figure 2).
Consistent with these results, previous studies also reported
several PH QTLs on chromosomes 4B and 6B (Gao et al.,
2016; Li et al., 2018; Jahani et al., 2019). qPH4B.2, qPH6B.1,
qPH6B.2, and qPH6B.3 were mapped to similar genetic positions
on chromosomes 4B and 6B as PH QTLs reported by Gao et al.
(2015); Li et al. (2018), and Hu et al. (2020). BLAST searches
of flanking markers for qPH4B.2 against the wheat reference
genome indicated that this region harbors the reported RhtB1b
gene (Peng et al., 1999). However, using KASP markers for Rht1
(Rasheed et al., 2016) we found that both of the parent lines,
eh1 and LX987, had the same RhtB1b genotype (Supplementary
Figure 1), indicating that the detection of qPH4B.2 is not due to
RhtB1b. It is possible that there is other variation in the Rht1 gene
that causes differences in PH between the parent lines. qPH2A is
located at a similar genetic position as a QTL reported by Li et al.
(2018), and the qPH4A region overlaps with the physical region
reported by Chen et al. (2020). It has been reported that the semi-
dominant dwarfing gene Rht-NM9 is located in a region from
178.9 Mb to 187.2 Mb on 2AS (Lu et al., 2015). We performed
a BLAST search using the flanking markers for qPH2A and found
that this QTL is located in a 143–148 Mb interval according to the
CS reference genome. Therefore, we speculate that qPH2A does
not harbor the Rht-NM9 gene.

The stably detected QTL qTGW4B.1 co-localized with
qTGW4B.2 (Table 4 and Figure 2). These QTLs are located
within 49.4–52.19 cM. Guan et al. (2018) reported stable QTLs for
TGW located within 22.3–95.8 cM on chromosome 4B. qTGW3A
is located at a genetic position similar to that reported in Cui
et al. (2014a). qTGW3D is located at positions similar to those
reported in Cui et al. (2014b) and Gao et al. (2015). The QTLs
qTGW3B.1, qTGW3B.2, qTGW3B.3, qTGW5D, and qTGW7A
are located at positions similar to those reported by Li et al.
(2018), and qTGW6A.1 is located close to a stable yield and
TGW QTL reported by Simmonds et al. (2014). In addition,
the QTLs qTGW7A and qTGW7D are located at similar genetic
positions as those reported by Cui et al. (2014a) and Guan et al.
(2018), respectively.

qSL4A is located at a genetic position similar to that reported
by Cui et al. (2012b) and Gao et al. (2015). qSL5B.2 is located at
a position similar to that in Cui et al. (2012b). In addition, qSL6B
is located at a genetic position similar to that reported by Li et al.
(2018) and Hu et al. (2020). To the best of our knowledge, the
stably detected QTL qSL6A with a LOD value ranging from 11.1
to 18.4 is likely to be a new QTL (Table 4 and Figure 2).

Pleiotropic QTLS for HD, PH, TGW, and
SL
Among the QTLs for HD, PH, TGW, and SL detected in
this study, four regions controlled two or more of these traits
(Table 5). In addition to Rht1, a previous study identified a
“QTL-hotspot” region for yield-related traits on chromosome
4B (Guan et al., 2018). This is consistent with the QTL cluster

detected in our study (Table 5). Consistent with the positive
correlation between PH and TGW (Table 2 and Supplementary
Table 9), the superior alleles of the co-localized QTLs qPH4B.1,
qTGW4B.1, and qTGW4B.2 were derived from the same parent
line (Table 4). A QTL cluster for HD, PH, and SL that mapped
to the interval 101.44–119.21 cM on chromosome 6B (Table 5)
is likely the same or similar to a QTL cluster for yield-related
traits reported by Li et al. (2018). qHD6B co-localized with qSL6B,
with favorable alleles derived from opposite parents (Tables 4, 5).
This is consistent with the negative correlation between HD and
SL (Table 2).

Candidate Genes Affecting PH, TGW, and
HD
Using KASP markers, we delimited the QTL regions for PH
and TGW on chromosome 4B to a 0.8 Mb physical region
(Figure 3B and Table 6). A recent study identified a QTL
cluster for TGW linked to Rht-B1 on chromosome 4B using
near-isogenic lines (Guan et al., 2020). This region includes
the physical interval identified in our study. According to
gene annotation and analysis of the effects of SNPs in the
mapped region (Supplementary Table 6), a mutation in
TraesCS4B02G281200 encoding a PAM68 protein showed the
largest effect on gene function. The PAM68 protein is essential
for efficient D1 biogenesis and photosystem II assembly in
Arabidopsis (Armbruster et al., 2010, 2013). Split-ubiquitin
assays suggested that the C terminus of Arabidopsis PAM68 is
required for interaction with the PSII core proteins D1 and CP43
(Armbruster et al., 2010). The variation in the PAM68 protein
between LX987 and eh1 is located at the C terminus, and this
region is conserved in grasses (Supplementary Figure 2). This
indicates that the mutation in PAM68 may affect gene function.
Photosynthesis plays an important role in yield improvement
(Zhu et al., 2010). It has been reported that mutation of the
photosystem 1-F subunit (OsPS1-F) results in reduction of
PH and grain yield in rice (Ramamoorthy et al., 2018). Taken
together, our results and previous findings suggest that PAM68
is a candidate gene for the PH and TGW QTLs. We found
genes TraesCS4B01G281000 and TraesCS4B01G281300 in the
QTL region were not expressed in the RNA-seq data, which
may due to that the RNA-seq data was collected from spikes in
the HD (Li et al., 2020). Therefore, we could not exclude these
two genes as candidate genes from the sequences of RNA and
the predicted effects of SNP. However, TraesCS4B01G281000
and TraesCS4B01G281300 encode Histidine-containing
phosphotransfer protein and Tribbles homolog 3, respectively,
which have not been reported for involving in PH and TGW. In
this respect, the possibility for these two candidate genes is low.

We also confirmed and narrowed down the QTL region for
HD on chromosome 3A to a 2.5 Mb interval (Figure 3A and
Table 6). Analysis of SNP effects suggested that a mutation
in TraesCS3A01G086400 has a large effect on gene function
(Supplementary Table 8), suggesting that this gene may affect
HD in the RIL population. TraesCS3A01G086400 encodes an
R3H domain-containing protein, which functions in binding
polynucleotides, including DNA, RNA, and single-stranded DNA
(Grishin, 1998). Studies on R3H-containing proteins in maize
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(Saleh et al., 2006) and Arabidopsis (Wang et al., 2019) have
suggested that these proteins are involved in stress responses.
Whether the R3H domain-containing protein contributes to HD
variation need to be further studied.

CONCLUSION

We identified 37 QTLs for HD, PH, TGW, and SL in a RIL
population using the Wheat55K SNP Array, and validated the
stably detected QTLs on chromosome 3A, 4B, and 6A using KASP
markers. The QTLs on chromosomes 4B and 3A were delimited
to a physical interval of 0.8 Mb and 2.5 Mb, respectively.
Moreover, the candidate genes affecting PH, TGW, and HD were
predicted based on gene annotation and analysis of SNP effects.
The linked KASP markers developed in this study will facilitate
breeding for yield improvement in wheat.
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The actin depolymerizing factor (ADF) gene family, which is conserved in eukaryotes, is
important for plant development, growth, and stress responses. Cold stress restricts
wheat growth, development, and distribution. However, genome-wide identification
and functional analysis of the ADF family in wheat is limited. Further, because of the
promising role of ADF genes in cold response, there is need for an understanding of the
function of this family on wheat under cold stress. In this study, 25 ADF genes (TaADFs)
were identified in the wheat genome and they are distributed on 15 chromosomes.
The TaADF gene structures, duplication events, encoded conversed motifs, and cis-
acting elements were investigated. Expression profiles derived from RNA-seq data and
real-time quantitative PCR analysis revealed the tissue- and temporal-specific TaADF
expression patterns. In addition, the expression levels of TaADF13/16/17/18/20/21/22
were significantly affected by cold acclimation or freezing conditions. Overexpression of
TaADF16 increased the freezing tolerance of transgenic Arabidopsis, possibly because
of enhanced ROS scavenging and changes to the osmotic regulation in cells. The
expression levels of seven cold-responsive genes were up-regulated in the transgenic
Arabidopsis plants, regardless of whether the plants were exposed to low temperature.
These findings provide fundamental information about the wheat ADF genes and may
help to elucidate the regulatory effects of the encoded proteins on plant development
and responses to low-temperature stress.

Keywords: actin depolymerizing factor, wheat (Triticum aestivum L.), low temperature, genome-wide
identification, transgenic Arabidopsis

INTRODUCTION

Actin depolymerizing factor (ADF), which is a conserved protein family with a low molecular
weight (15–22 kDa) (Staiger et al., 1997) in eukaryotic cells, is crucial for regulating the
reorganization and rearrangement of the actin cytoskeleton (Maciver and Hussey, 2002). This
protein was first identified in chick embryo brains (Bamburg et al., 1980), but it has since been
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detected in various plants (Gungabissoon et al., 1998; Smertenko
et al., 1998; Dong et al., 2001; Wang et al., 2009; Fu et al., 2014). As
a member of the actin-binding protein family, ADF remodels the
actin cytoskeleton via the transition between F-actin and G-actin
states (Du et al., 2016). The actin cytoskeleton influences cellular
architecture as well as diverse processes, including the expression
of cell polarity, cell expansion and division, intracellular
transport, pathogen perception, abiotic stress responses, and
signal transduction (Fowler and Quatrano, 1997; Drobak et al.,
2004; Porter and Day, 2016; Allard et al., 2020).

Because of the various actin cytoskeleton functions affecting
plant development and responses to stimuli, ADF proteins
in higher plants are important for various cellular activities.
For example, ADFs are involved in pollen development and
pollen tube growth in Arabidopsis (Daher and Geitmann, 2012;
Zheng et al., 2013), maize (Lopez et al., 1996), and tobacco
(Chen et al., 2002). Previous studies revealed that a lack of
AtADF9 results in early flowering (Burgos-Rivera et al., 2008)
and knockout of AtADF4 increases the length of hypocotyls
and epidermal cells (Henty et al., 2011). In cotton, GhADF1 is
involved in fiber elongation and secondary cell wall formation
(Wang et al., 2009). Additionally, the expression patterns of
ADF genes appear to be tissue-specific. Earlier research indicated
that OsADF2/4/5 are expressed in roots, stems, blades, sheaths,
spikelets and seeds persistently, whereas OsADF9 expression
is specific to spikelets at the heading stage in rice (Huang
et al., 2012). The GhADF6/8 genes are preferentially expressed
in petals, while GhADF7 is highly expressed in anthers of
cotton (Li et al., 2010). Moreover, ADF proteins reportedly
have a vital role in responses to abiotic and biotic stresses in
Arabidopsis, wheat, rice, and other species (Ouellet et al., 2001;
Huang et al., 2012; Fu et al., 2014; Sengupta et al., 2019).
The overexpression of OsADF3 enhances the drought tolerance
of transgenic Arabidopsis seedlings (Huang et al., 2012). The
expression of wheat TaADF4 is induced by heat, but down-
regulated by low temperatures or salt stress (Zhang et al., 2017).
In contrast, TaADF3 expression is significantly up-regulated
under cold conditions and water deficiency treatment, but is
relatively un-affected by wounding or salt stress (Tang et al.,
2016). Both TaADF4 and TaADF7 enhance the resistance of
wheat plants to a Puccinia striiformis f. sp. tritici (Pst) infection,
whereas TaADF3 has the opposite effect (Fu et al., 2014; Tang
et al., 2016; Zhang et al., 2017).

Low-temperature stress is a key factor influencing the growth,
yield, and distribution of wheat plants (Song et al., 2017).
An exposure to low but nonfreezing temperatures (i.e., cold
acclimation) is crucial for the freezing tolerance of over-
wintering plants (Thomashow, 2001; Sung and Amasino, 2005).
Although there are relatively few reports describing ADFs
in wheat exposed to abiotic stress, two earlier investigations
proved that ADF production is induced at low temperatures
(Danyluk et al., 1996; Ouellet et al., 2001). During the cold
acclimation process, the depolymerization of microtubules and
actin filaments increases the fluidity of the plasma membrane
(Danyluk et al., 1996). However, the molecular mechanism
regulating the depolymerization of microtubules and actin
filaments under cold conditions remains unknown. Thus,

clarifying the relationship between ADF proteins and freezing
tolerance response is warranted.

The development and application of genome sequencing
technology has led to the identification of ADF genes in
the genomes of several plant species, including rice, maize,
tomato, and Arabidopsis (Feng et al., 2006; Khatun et al.,
2016; Huang et al., 2020). The availability of a sequenced
‘Chinese Spring’ genome has helped to facilitate the genome-
wide analysis of gene families in wheat (Hu et al., 2018;
International Wheat Genome Sequencing Consortium (IWGSC),
2014; Liu et al., 2019; Zhou et al., 2019). However, to the best
of our knowledge, there are no reports regarding the genome-
wide identification and characterization of wheat ADF genes
or the wheat ADF gene expression profiles in various tissues
and in response to low-temperature stress. In this study, we
identified 25 wheat ADF genes using the ‘Chinese Spring’ genome
sequences (IWGSC, RefSeq V1.1), after which we analyzed
the ADF gene structures and the encoded conserved motifs,
determined the genomic locations and duplication events of
the ADF genes, and predicted the putative cis-acting elements.
Additionally, ADFs in Triticum dicoccoides, Hordeum vulgare,
Triticum turgidum, Triticum urartu, and Aegilops tauschii, were
identified and used along with the wheat ADFs to construct
a phylogenetic tree. To further investigate the function of
ADF in wheat, we analyzed the expression profiles of these
genes in different tissues, as well as in response to cold
stress. Furthermore, we examined the effects of TaADF16
overexpression on the freezing tolerance of Arabidopsis. The
results of this study will enhance our understanding of the wheat
ADF gene family and provide the basis for future investigations
of ADFs in wheat.

MATERIALS AND METHODS

Identification of ADF Genes in Wheat
The genome and protein sequences data of wheat were
downloaded from Ensembl Plants database1. The actin-
depolymerizing factor homology domain (ADF-H domain,
with Pfam: PF00241) obtained from PFAM database2 was
employed as a query for Hidden Markov Model (HMM)
search using HMMER3.0 with a pre-defined threshold of E
value ≤ 1e−10. The results obtained were used to construct a
wheat-specific ADF HMM profile by hmm-build program, and
the second HMM search was used to remove the redundant
sequences among the identified ADF proteins with an E
value ≤ 1e−10. After manual corrections applied as needed,
the NCBI-CDD web server3, SMART database4 and Pfam
database (see foot note 2) were used to further confirm the
ADF_H domain in the putative ADF protein sequences.
The biochemical parameters of TaADF proteins, such as
isoelectric points (pI), molecular weights (MW), instability

1http://plants.ensembl.org/index.html
2http://pfam.xfam.org/
3https://www.ncbi.nlm.nih.gov/cdd/
4http://smart.embl-heidelberg.de/

Frontiers in Plant Science | www.frontiersin.org 2 February 2021 | Volume 12 | Article 61898425

http://plants.ensembl.org/index.html
http://pfam.xfam.org/
https://www.ncbi.nlm.nih.gov/cdd/
http://smart.embl-heidelberg.de/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-618984 February 18, 2021 Time: 21:51 # 3

Xu et al. Genome-Wide Analysis of TaADFs Family

index (II), aliphatic index (AI) and calculated grand average of
hydropathy index (GRAVY) of the putative ADF proteins were
calculated using the ExPASy online protParam tool5 (Artimo
et al., 2012). The prediction of subcellular location of the
identified TaADFs were performed using Plant-mPLoc6 (Chou
and Shen, 2010). Alignment analysis of TaADF proteins was
performed using MEGA 7.0, and visualized by Jalview v2.11.1.3
(Waterhouse et al., 2009).

Phylogenetic Tree Construction of Wheat
and Other Eight Species
The phylogenetic tree was performed using the neighbor joining
(NJ) method in MEGA 7.0, with 1,000 bootstrap replicates.
Sequences of ADF proteins from select species were identified
based on the corresponding genome (Supplementary Table 1) as
described above. The accuracy of identified ADF was confirmed
with Ensembl Plants1 and Uniport database7.

Gene Structure, Motif Analysis and
Cis-Acting Elements of TaADF Gene
Family
The exon/intron structures of TaADFs were constructed by
gene structure display server (GSDS) program8 using the
CDS and corresponding genomic sequences retrieved from the
Ensemble plants database. Conserved motifs of TaADF discover
were predicted using the Multiple Expectation Maximization
for Motif Elication (MEME) 4.12.09, with the following
parameters: maximum number of 20 motifs and optimum
motif widths of 6-100 residues. The 1500 bp upstream of the
transcription start site (−1) of all identified TaADF transcripts
was extracted as promoter to predict cis-acting elements using
Plant CARE10.

Chromosomal Localization, Gene
Duplication and Calculating Ka/ks Values
of TaADF
All the TaADF genes were mapped to wheat chromosomes
based on physical location information from the database of
wheat genome. The gene duplication in the wheat genome were
analyzed with Multiple Collinearity Scan toolkit (MCScanX)
(Wang et al., 2012) and visualized with Circos tool (Krzywinski
et al., 2009). The calculation of ka and ks substitution of each
duplicated TaADF genes were performed using KaKs_Calculator
2.0 (Wang et al., 2010). The syntenic maps between wheat and
other species were constructed using the python version of
MCScanX11.

5https://web.expasy.org/protparam/
6http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
7https://www.uniprot.org/
8http://gsds.cbi.pku.edu.cn/
9http://meme-suite.org/
10http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
11https://github.com/tanghaibao/jcvi/wiki/MCscan-(Python-version)

Expression Pattern of TaADF Genes in
Different Tissues and Development
Stages
The expression patterns of identified TaADF genes in different
tissues and development stages were analyzed based on the
publicly available wheat RNA-Seq datasets obtained from wheat
eFP Browser12 (Ramírez-González et al., 2018). The expression
levels were summarized as transcripts per million (TPM), and
a heatmap of TaADF tissues-specific expression were conducted
with R packages (Pheatmap and Stats).

Plant Materials and Growth Conditions
of Wheat
For expression analysis of TaADFs of different tissues, seeds
of wheat ‘Chinese Spring’ were grown under 20◦C with a
12/12 h photoperiod/dark in glass dish for 15 day (three-leaf
stage). Roots and leaves were collected from five seedlings.
For low temperature treatment, the wheat seedlings of
‘Jing 411’ were cultivated in the incubator at 20◦C with a
12/12 h photoperiod/dark period for 15 days until three-leaf
stage (TL), which was followed with different temperature
treatments: 4◦C for cold acclimation (CA), 20◦C for un-
cold acclimation (UCA). After 28 days, the CA and UCA
seedlings were exposed to −5◦C for 1 day (cold acclimation
and freezing, CAF; un-cold acclimation and freezing,
UCAF). All the samples were immediately frozen in liquid
nitrogen and stored at −80◦C. Three biological replications
were performed.

RNA Extraction, RNA-Seq and RT-PCR
Validation
The samples were subjected to total RNA extraction using a
Trizol Reagent (Invitrogen, Carlsbad, CA, United States). The
analysis of RNA-seq for low temperature treatment was based
on our previous study (Zhao et al., 2019b), we re-analyzed the
data based on reference genome of ‘Chinese Spring’ genome
(IWGSC: RefSeq V1.1). Sampled crowns from TL, CA, UCA,
CAF, and UCAF were used for RNA-seq analysis. Using the
DESeq R package, the differently expressed genes (DEGs, | log2
(fold change)| > 1 and p < 0.05) were analyzed.

cDNA products were subjected to RT-PCR analysis, in
which, TaGAPDH and TaTEF1-α were used as double internal
reference genes for wheat. RT-PCR was performed with BCS
Wiz SYBR Green RT-PCR Master Mix and the QuantStudio
5 Real-time PCR system (Applied Biosystems, Malham, MA,
United States). The following amplification protocol was used:
first step, 95◦C for 30 s; second step, 40 cycles of 95◦C
for 5 s and 60◦C for 30 s; final step, 95◦C for 15 s,
60◦C for 1 min, 95◦C for 15 s, and 50◦C for 30 s. The
relative expression were calculated with 2−11Ct method.
Three biological replications were performed (each biological
replication for three technical). Specific primers used in this study
are shown in Supplementary Table 2.

12http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi
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Subcellular Localization of TaADFs
The coding sequence (CDS) of TaADF11, TaADF14, TaADF15,
and TaADF16 was cloned into the pBWA(V)HS-ccdb-
GLosgfp vector containing the cauliflower mosaic virus
35S (CaMV 35S) promoter, respectively. Subsequently,
the control plasmid and fusion plasmids were transiently
expressed in A. thaliana protoplasts. Then, the transformed
protoplasts were incubated for 24 h at 22◦C darkness.
Finally, green fluorescent protein (GFP) fluorescence
signals were observed using Nikon C2-ER confocal laser
scanning confocal microscope. The specific primers
containing the restriction site are shown in Supplementary
Table 2.

Overexpression of TaADF16 Genes in
Arabidopsis and Freezing Tolerance
Assay
The CDS of TaADF16 (Gene id: TraesCS5A02G478500),
was amplified by PCR with gene-specific primer (F: 5′-GG
AGAGGACACGCTCGAGATGACTTTATCTCGCCGACATG-
3′ and R 5′-TTAAAGCAGGACTCTAGATTAGGTGGTGTAGT
CCTTGAGGAT-3′) and then cloned into the pART-
CAM vector controlled by the CaMV 35S promoter.
The 35S:TaADF16 plasmid were transformed into
Agrobacterium tumefaciens GV3101 and then transformed
into Arabidopsis. Seeds of T0 transgenic plants were
selected on MS medium containing 100 µg/ml kanamycin
and further confirmed by PCR. T3 homozygous of
Arabidopsis transgenic plants was used for freezing
tolerance assay.

For freezing tolerance analysis in WT and OE lines, all
the seeds were planted in plastic pots filled nutrient soil for
three weeks, with 14/10 h photoperiod and temperature at
22◦C. Three weeks old seedlings were transfered to −5◦C
for 4 h for freezing stress and ion leakage was determined.
For recovery treatment, the plants after freezing were placed
in the dark at 4◦C for 12 h followed by 4 day at 22◦C
and the survival rates was determined. Photos were taken
to record the growth phenotype before treatment and after
recovery. Leaves of plants after 4◦C for 24 h were collected
for analysis of POD and SOD activities, MDA and soluble
sugar content as described by Li et al. (2000). Seven cold
responsive genes were selected for RT-PCR assay. AtTUB2 and
AtUBQ10 of Arabidopsis was used as double internal reference
gene. Three biological replications were carried out for each
sample. The primers of the genes for RT-PCR are listed in
Supplementary Table 2.

Statistical Analysis
Data were statistically processed by the SPSS 25.0 and Graphpad
Prism 8 software. The mean value ± standard deviation (SD)
of at least three replicates for each sample are presented.
Statistical significance was assessed by Student’s t-test between
control and treatment.

RESULTS

Identification of ADF Gene Family
Members in Wheat
A total of 25, 18, 8, 5, 12, and 11 non-redundant putative
ADF genes were identified in wheat (TaADF1–TaADF25),
T. dicoccoides (TdADF1–TdADF18), Ae. tauschii (AetADF1–
AetADF8), T. urartu (TuADF1–TuADF5), T. turgidum (TtADF1–
TtADF 12), and barley (HvADF1–HvADF11), respectively
(Table 1 and Supplementary Table 3). Of the encoded TaADF
proteins, TaADF4/8 and TaADF22 were, respectively, revealed as
the shortest (132 amino acids) and longest (235 amino acids).
The molecular weights (MW) of the TaADF proteins ranged from
15.30 to 25.91 kDa and the isoelectric points (pI) ranged from
4.39 to 8.74. The GRAVY values (<0) reflected the hydrophilicity
of the TaADF proteins. An analysis of the instability index
suggested that 16 proteins (64%) may be unstable (instability
index > 40) and nine proteins (36%) are probably stable
(instability index ranging from 30.91 to 38.53). The aliphatic
index, which ranged from 62.52 to 79.72, indicated the thermal
stability of TaADF proteins.

Analysis of the Chromosomal Locations
and Duplication of TaADF Genes
The results of the chromosomal localization and collinear
analysis revealed that the TaADF genes are unevenly distributed
on 15 chromosomes, with the number of TaADF genes on each
chromosome ranging from 1 (1A, 1B, 1D, 4A, 4B, 4D, 6A, 6B, and
6D) to 4 (5A and 5D) (Figure 1A). Nine, seven, and nine TaADF
genes were detected in the A, B, and D sub-genomes, respectively,
implying some of the TaADF genes in the B sub-genome may
be lost during evolution. These lost ADF genes in 5B may have
a redundant function with the ADF genes on 5A or 5D, with a
low purifying selection, they were finally lost during evolution.
We found 7 homologous gene groups with a copy on each of A,
B and D sub-genomes, and 2 gene pairs had two homologous
genes on A and D sub-genomes. In addition, the homologous
TaADF genes shared high protein sequence similarity, with
a range of 92.5% (TaADF16-5A, TaADF18-5B, TaADF22-5D)
to 100% (TaADF15-5A and TaADF19-5D) (Supplementary
Table 4). Gene duplication events affected the TaADF genes on
15 chromosomes. Thirty-one segmental duplications (Figure 1B)
and one tandem duplication (Figure 1A) were detected. The
rates of non-synonymous (Ka) and synonymous (Ks) nucleotide
substitutions were calculated to evaluate the selection pressure on
the TaADF gene duplication events (Supplementary Table 5).
The Ka/Ks ratios for the 32 duplicated pairs were less than
1.00, implying the wheat ADF genes evolved under strong
purifying selection.

Systematic Evolutionary Relationships
Among ADF Members in Wheat and
Eight Other Plant Species
To investigate the evolutionary relationships and characteristics
of the ADF genes, 117 ADF proteins from wheat and other
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TABLE 1 | Description of actin depolymerizing factor (ADF) genes identified from the wheat database.

Gene name Gene ID Physical Position Information of Proteins

Chr Start Position End Position ProteinLength MW (Da) pI Instability Index Aliphatic Index GRAVY Subcelluar Location

TaADF1 TraesCS1A02G183100 1A 331517066 331518825 150 17310.45 5.08 42.61 72.73 −0.48 Cytoplasm

TaADF2 TraesCS1B02G197600 1B 355155044 355157167 150 17368.48 4.97 42.11 72.73 −0.50 Cytoplasm

TaADF3 TraesCS1D02G186600 1D 257474295 257475731 151 17493.70 4.97 40.05 76.75 −0.44 Cytoplasm

TaADF4 TraesCS2A02G410700 2A 668242515 668243490 132 15318.39 5.57 42.26 67.95 −0.47 Cytoplasm

TaADF5 TraesCS2A02G227300 2A 239381406 239386945 139 16142.22 5.75 38.25 62.52 −0.58 Cytoplasm

TaADF6 TraesCS2B02G255200 2B 290519507 290523695 139 16112.19 5.75 37.03 62.52 −0.58 Cytoplasm

TaADF7 TraesCS2B02G429500 2B 616934383 616935480 139 15918.01 5.87 37.09 65.25 −0.45 Cytoplasm

TaADF8 TraesCS2D02G408100 2D 523028514 523029011 132 15304.36 5.57 47.62 67.95 −0.47 Cytoplasm

TaADF9 TraesCS2D02G235200 2D 220670605 220675415 139 16168.30 5.75 42.80 65.32 −0.55 Cytoplasm

TaADF10 TraesCS4A02G071400 4A 68688963 68691716 143 16529.07 8.74 53.59 73.64 −0.35 Cytoplasm

TaADF11 TraesCS4B02G227300 4B 475810763 475813477 143 16529.07 8.74 53.59 73.64 −0.345 Cytoplasm

TaADF12 TraesCS4D02G228100 4D 387441390 387445034 143 16543.10 8.74 53.69 73.64 −0.35 Cytoplasm

TaADF13 TraesCS5A02G478800 5A 651858719 651859682 147 15800.62 4.48 35.58 79.05 −0.15 Cytoplasm

TaADF14 TraesCS5A02G416100 5A 605100341 605103635 145 16748.06 5.45 43.99 71.31 −0.42 Cytoplasm

TaADF15 TraesCS5A02G478900 5A 651982952 651984951 138 16084.13 5.65 38.53 63.62 −0.66 Cytoplasm

TaADF16 TraesCS5A02G478500 5A 651826274 651827210 200 22273.65 5.03 53.11 67.30 −0.56 Cytoplasm

TaADF17 TraesCS5B02G491800 5B 659983832 659984917 147 15824.67 4.60 34.84 79.05 −0.19 Cytoplasm

TaADF18 TraesCS5B02G491500 5B 659769899 659770854 142 15751.54 4.39 46.02 79.72 −0.32 Cytoplasm

TaADF19 TraesCS5D02G492400 5D 525658928 525661018 138 16084.13 5.65 38.53 63.62 −0.66 Cytoplasm

TaADF20 TraesCS5D02G423800 5D 483645409 483648797 145 16802.05 5.26 44.77 71.31 −0.46 Cytoplasm

TaADF21 TraesCS5D02G492300 5D 525602262 525603227 147 15886.80 4.78 30.91 75.71 −0.21 Cytoplasm

TaADF22 TraesCS5D02G491900 5D 525471415 525472578 235 25906.92 5.43 58.10 68.51 −0.50 Cytoplasm. Nucleus.

TaADF23 TraesCS6A02G247000 6A 457685808 457687435 139 15979.21 6.33 41.02 68.71 −0.43 Cytoplasm

TaADF24 TraesCS6B02G277600 6B 502483095 502484438 145 16584.01 6.33 37.25 68.55 −0.36 Cytoplasm

TaADF25 TraesCS6D02G229200 6D 320228058 320229328 139 15997.29 5.59 47.70 69.42 −0.38 Cytoplasm

Chr, Chromosome; MW, Molecular weight (Da); pI, Isoelectric point; GRAVY, Grand average of hydropathicity.
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FIGURE 1 | Chromosomal location and duplication events of ADF in wheat. (A) Chromosomal location of ADF genes in wheat. Red line between genes indicate
tandem duplication of TaADF genes. (B) Segmental duplication in wheat genome. Gray lines indicate all synteny blocks in the wheat genome, and the different
colors represent seven homeologous group of wheat chromosomes. Homologous genes of each group are linked by lines with corresponding color.

species were used to construct a phylogenetic tree (Figure 2 and
Supplementary Table 3). The evolutionary relationships between
wheat and eight other species were determined (Figure 2A).
The phylogenetic tree revealed that the ADF genes can be
classified into four main groups, with each clade consisting of
15–56 members (Figure 2B and Supplementary Table 6). More
specifically, 3, 5, 6, and 11 TaADF are clustered in Groups I, II,
III, and IV, respectively.

To more thoroughly determine the phylogenetic mechanisms
of TaADF genes, we examined the synteny between wheat
and other four gramineous species, including Ae. tauschii,
T. dicoccoides, barley, and rice. A total of 16, 26, 18, and 22
orthologous gene pairs between hexaploid wheat (T. aestivum)
and other species (Ae. tauschii, T. dicoccoides, barley, and rice)
were identified (Figure 3 and Supplementary Table 7). Some
collinear pairs (with eight TaADF genes) were identified in all
of the four syntenic maps, suggesting that these orthologous
pairs were relatively well conserved during the evolution of
gramineous species. Each of ADF genes in 2A, 2B, 4A, 4B of
tetraploid wheat showed synteny to several ones in hexaploid
wheat. However, some orthologous gene pairs were only
identified between chromosome 5A (or 5B) of T. dicoccoides and
5A of hexaploid wheat, but not 5B of hexaploid wheat, which
may be due either to the quality of the genome assembly or the
gene deletion or chromosomal recombination during evolution
and polyploidization.

Structural Characterization of TaADF
Genes in Wheat
The TaADF amino acid sequences were aligned and a
phylogenetic tree was constructed using the MEGA 7.0 program
(Figure 4A). A structural analysis of the TaADF genes indicated

that 19 TaADF genes have three exons, whereas the remaining
genes have two exons (Figure 4B). Additionally, 19 TaADF
genes consist of a 150-bp exon at the C-terminus and a
second exon comprising 247–289 bp. Thus, the exon lengths
and positions appear to be highly conserved in wheat TaADF
genes. A total of 14 conversed motifs were identified (motifs
1–14) (Figures 4C,D). Motifs 1, 2, and 5 are three conserved
regions that form the ADF-H domain in all TaADF proteins,
whereas motif 3 is present in the N-terminus of 23 TaADF
proteins (Figure 4C). Alignment of the predicted TaADFs
revealed that the ADF-H domain position and actin binding
sites were conserved in all of the ADFs (Supplementary
Figure 1). Additionally, our analysis indicated that closely related
homologous TaADF genes in the A, B, or D sub-genomes are
usually similar regarding their structures and encoded motifs,
suggesting wheat TaADF genes were conserved during evolution.

Analysis of Cis-Elements of TaADF
Genes in Wheat
The cis-acting elements in the 1,500-bp upstream promoter
region of the identified TaADF genes were predicted using
the PlantCARE online program. Fifty-seven cis-acting elements
related to cell cycle regulation, plant development, hormone
responses, stress responses, and transcription are presented
in Supplementary Figure 2. Many cis-acting elements were
associated with responses to various hormones, including abscisic
acid (ABRE), methyl jasmonate (CGTCA-motif and TGACG-
motif), auxin (TGA-element and AuxRR-core), and gibberellin
(P-box and GARE-motif). Some of the identified cis-acting
elements may regulate the development of specific tissues
such as the endosperm (GCN4-motif), seed (RY-element), and
meristem (CAT-box). The promoters of 16 and 13 TaADF
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FIGURE 2 | Systematic evolutionary relationships of ADF in wheat and eight other species. (A) Evolution relationship among the nine species; (B) Phylogenetic tree
of ADF family members in wheat and eight other species. ADF proteins in Triticum aestivum. L., Oryza sativa, Arabidopsis thaliana, Zea mays, Hordeum vulgare,
Triticum turgidum, Triticum urartu, Triticum dicoccoides and Aegilops tauschii are prefixed by Ta, Os, At, Zm, Hv, Tt, Tu, Td, and Aet, respectively. ADF proteins in
wheat and Arabidopsis are marked in red and blue, respectively. The chromosome locations of ADF in Triticum aestivum. L, Triticum turgidum, and Aegilops tauschii
were provided in the bracket followed with each gene name.

genes included cis-acting elements responsive to drought (MBS)
and low temperature (LTR), respectively. The presence of
multiple cis-acting elements in the TaADF promoters may be
indicative of the diversity in the biological functions of the
encoded proteins.

Expression Profiles of TaADF Genes in
Various Wheat Tissues
To gain insights into the TaADF expression patterns in diverse
wheat tissues, the available RNA-seq data for various wheat
tissues across different developmental stages were obtained from
the Wheat eFP database (Figure 5A). The TaADF expression
levels varied among tissues at the same growth stage. At the
flag leaf stage, the TPM of TaADF15 was 113.68, 248.09, and
302.91 in the leaf blade, root, and shoot axis, respectively. Nine
genes (TaADF4/5/6/7/8/9/23/24/25), located on chromosome 2
or 6, were highly expressed in the anther (TPM: 239.41–823.54),
but were expressed at low or undetectable levels (TPM < 1)
in the leaf blade, root apical meristem, root, shoot axis, and
grain. Additionally, the expression of most TaADF genes in
specific tissues varied substantially at different growth stages.
For example, TaADF15/16/19/18/22 expression levels in the root
apical meristem and root were higher at the tillering stage
than at the three-leaf stage. During the four examined grain

developmental stages, the expression levels of these genes were
highest and lowest at the milk grain stage and ripening stage,
respectively. The tissue- and temporal-specific expression of
TaADFs may help to clarify the complex functions of TaADF in
various cellular processes.

The expression pattern of TaADFs were examined by RT-PCR
in leaf and root at three-leaf stage (Supplementary Figure 3). The
expression of homologous genes TaADF15-5A and TaADF19-
5D were extremely high in both leaf and root, while the
homologous genes TaADF10-4A, TaADF11-4B, and TaADF12-
4D, showed significantly lower expression abundances. These
results indicated that homologous TaADF genes in closely related
clades appear to be expressed in different tissues similarity,
implying they may be functionally similar.

Expression Profiles of TaADF Genes
Under Cold Conditions
To further evaluate the potential functions of ADFs in response
to low temperatures, the ADF gene expression patterns under
cold acclimation and freezing conditions were analyzed based on
the fragment per kilobase of transcript per million reads mapped
(FPKM). Results showed that TaADFs had differential expression
under different temperature treatment. The expression of
TaADF13/16/17/18/21/22 was induced by the cold acclimation
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FIGURE 3 | Synteny analysis of ADF genes between wheat and other four species. Gray lines in the background and red lines between different species indicate the
collinear blocks and syntenic ADF pairs between wheat and other species, respectively.

FIGURE 4 | Phylogenetic relationship, exon-intron structures and motif composition of TaADFs. (A) Phylogenetic relationship of TaADFs. (B) Exon-intron structures of
TaADF genes. Exons-intron are indicated by wide color bar and black line, respectively. (C) Distribution of conserved motifs of TaADFs predicted by MEME tool. (D)
Conserved motifs in TaADFs. The motifs, numbered 1–14, are displayed in different colored boxes. Motifs correspond to the ADF-H domain region are shown in red.

and freezing treatments, while the expression of TaADF14/20
were decreased (Figure 5B). In total, seven DEGs were identified
in three comparison (CA vs. UCA, CAF vs. CA and UCAF
vs. UCA) (Supplementary Table 8). With the exception of
TaADF20, the expression levels of all DEGs were up-regulated
under the cold acclimation or freezing conditions. Significant
changes to TaADF13/20 expression were detected only in the
CA vs. UCA. Up-regulated TaADF17 expression was detected
only in the CAF vs. CA. The TaADF16/18 expression levels
were up-regulated after the CA and UCA samples when exposed

to freezing stress (CAF vs. CA and UCAF vs. UCA), with
a greater change in expression in the samples that did not
undergo the cold acclimation process. These results suggest that
TaADF16/17/18 contribute to the freezing tolerance of wheat
plants acclimated to the cold.

To verify the TaADF expression patterns induced by
the cold acclimation and freezing conditions, the expression
levels of 10 TaADF genes were analyzed by RT-PCR. The
consistency between the RT-PCR data and the RNA-seq data
was reflected by the calculated correlation coefficient (R2 = 0.83)
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FIGURE 5 | Expression patterns of 25 TaADFs in wheat. (A) Expression patterns of TaADFs in different tissues and growth stages. (B) Expression patterns of
TaADFs under low temperature. Expression is scaled across genes (z score). CA: cold acclimation at 4◦C for 28 days; UCA: un-cold acclimation at 20◦C for 28 days;
UCAF: UCA followed with −5◦C for 1 day; CAF: CA followed with −5◦C for 1 day.

(Supplementary Figure 4). These results confirmed the accuracy
of the RNA-seq results.

Subcellular Localization of TaADFs
Based on the predicted subcellular localizations, all the TaADFs
are cytoplasmic proteins, whereas TaADF22 is present in the
cytoplasm and nucleus (Table 1). To further confirm the
prediction of subcellular localization of TaADFs, we constructed
a fusion vector, which was transformed into A. thaliana
protoplasts and observed by laser scanning confocal microscope
(Figure 6). All the four proteins (TaADF11, TaADF14, TaADF15,
and TaADF16) have strong fluorescence signal in transformed
A. thaliana protoplasts, the four protein are localized in the
cytoplasm and nucleus.

Overexpression of TaADF16 Enhanced
the Freezing Tolerance of Arabidopsis
Among the TaADF genes, TaADF16 was the most highly
expressed (FPKM: CA 684.5, CAF 1837.33, UCAF 932.94) and
up-regulated gene (CA vs. UCA 3.72-folds, CAF vs. CA, 1.56-
folds, UCAF vs. UCA, 4.12-folds) under cold acclimation
or freezing treatment (Figure 5B and Supplementary
Table 8). Therefore, it was functionally characterized using
transgenic Arabidopsis plants. Three transgenic lines with

high TaADF16 expression levels were selected for further
analyses (Figures 7A,B). Before the freezing treatment, there
were no obvious differences between the wild-type (WT) and
TaADF16-overexpressing (OE) plants. Morphological changes
consistent with freezing damage were detected in the WT
and OE lines, but the damage was more severe in the WT
plants (Figure 7C). The survival rate (%) of WT was 16.67%,
whereas the survival rate of OE8, OE9, and OE11 lines were
obviously higher (75.83%, 71.67, and 74.87%, respectively)
after recovery (Figure 7D). The electrolyte leakage after the
freezing treatment was significantly greater in the WT (70.65%)
plants than in the OE lines (OE8 43.78%, OE9 42.28%, and
OE11 44.87%) (Figure 7E), suggesting the cell membranes
were more severely damaged in the WT plants than in the
transgenic lines.

The activity of POD and SOD, as well as the soluble sugar
content of the OE lines were similar to those in the WT
before cold treatment, but the OE lines had higher POD and
SOD activities and accumulated more soluble sugar than the
WT plants after a 24-h incubation at 4◦C (Supplementary
Figures 5A–C). Following the cold treatment, the MDA
content increased in both WT and OE lines, but MDA was
significantly less abundant in the OE lines (OE8 3.38 µmol/g,
OE9 2.80 µmol/g, and OE11 2.83 µmol/g) than in the WT
plants (4.40 µmol/g) (Supplementary Figure 5D). Therefore, the
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FIGURE 6 | Subcellular location of TaADF11, TaADF14, TaADF15, and
TaADF16 in A. thaliana protoplasts. Scale bars = 10 µm. 35S::GFP was used
as a negative control.

overexpression of TaADF16 appeared to enhance the freezing
tolerance of Arabidopsis by modulating the scavenging of ROS
and by altering the osmotic regulation.

To further investigate the regulatory effects of TaADF16 in
response to low-temperature stress, seven cold-responsive genes
(CBF1, CBF2, CBF3, COR15A, COR15B, COR47, and RD22) were
selected for a RT-PCR analysis. The basal and cold-induced
expression levels of these genes were higher in the OE lines
than in the WT plants (Supplementary Figure 6). These results
suggest that TaADF16 overexpression induces the expression
of cold-responsive genes, thus enhancing the cold resistance of
transgenic plants.

DISCUSSION

The ADF gene family is relatively small in higher plants, with
only 12, 12, 13, 11, and 14 members in rice, Arabidopsis,
maize, tomato and poplar, respectively (Feng et al., 2006; Roy-
Zokan et al., 2015; Khatun et al., 2016; Huang et al., 2020).
In this study, we identified 25, 18, 12, 11, 8, and 5 ADF
genes in the wheat, T. dicoccoides, T. turgidum, barley, Ae.
Tauschii, and T. urartu genomes. The fact that more ADF
genes were detected in wheat than in the other species may be
attributed to the two rounds of polyploidization that occurred
during wheat evolution (Marcussen et al., 2014). The presence
of only a few ADF genes in the genomes of wheat relatives
indicates that TaADF genes evolved after naturally occurring
genomic hybridizations and fusions. The ADF gene family
is believed to be structurally and functionally conserved in

FIGURE 7 | Overexpression of TaADF16 enhances freezing tolerance in Arabidopsis. Detection of TaADF16 mRNA in transgenic Arabidopsis using (A)
Semi-quantitative RT-PCR and (B) RT-PCR. (C) Freezing tolerance of the transgenic Arabidopsis. Line bar: 2 cm. (D) Survival rate (%) and (E) Ion leakage (%) of WT
and OE lines. Before freezing: three-week-old Arabidopsis seedlings under control; after freezing: three-week-old Arabidopsis seedlings under −5◦C for 4 h and
recovery at 22 ◦C for 4 days. Error bar indicated SD among at least three independent replicates. **P < 0.01 (Student’s t-test).
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plants (McCurdy et al., 2001). Analyses of the phylogenetic
relationships, gene structures, and encoded motifs indicated that
closely related TaADF homologous in the A, B, or D sub-
genomes have similar exon–intron structures and encode the
same conserved motifs, which is consistent with the results
of an earlier study (Feng et al., 2006). Our phylogenetic tree
revealed that the ADF genes in the examined monocots are
clustered in four main groups, with the ADF genes in the
eudicot Arabidopsis distributed in subgroups I, II, and V. The
phylogenetic relationships among the ADF genes from selected
species were consistent with those described in published reports
(Khatun et al., 2016; Huang et al., 2020). Accordingly, the ADF
genes in the analyzed flowering plants likely evolved from a
common ancestor.

Tandem and segmental duplications are considered to be the
major driving force of gene family expansions during evolution
(Cannon et al., 2004). Segmental duplications were revealed in
this study as the main events responsible for the evolution of the
TaADF gene family (Figure 1B). Similar events likely occurred
in maize and tomato (Khatun et al., 2016; Huang et al., 2020).
Therefore, we speculate that the ADF gene families in higher
plants expanded primarily because of segmental duplications.
The homologous ADF genes at the branch ends of each clade
of sub-genome A, B, or D are likely the putative homoalleles
of genes that evolved in Ae. tauschii, T. dicoccoides, and bread
wheat (Figure 2B).

Tissue- and temporal-specific expression patterns of genes in
growing plants usually reflect the differences in the biological
functions of gene family members as well as the cross-
talk among the associated pathways (Hu et al., 2018; Zhao
et al., 2019a). Nine TaADF genes (TaADF4/5/6/7/8/9/23/24/25)
were highly expressed in the anther, stigma, and ovary, but
were expressed at low levels in the other examined tissues
(Figure 5A). Similar results were reported for PhADF1/2 in
petunia (Mun et al., 2000), SlADF1/2/10/11 in tomato (Khatun
et al., 2016), and ZmADF1/2/7/12/13 in maize (Huang et al.,
2020). The actin genes in the Arabidopsis genome have been
divided into the vegetative class (expressed predominantly
in the leaves, roots, stems, petals, and sepals) and the
reproductive class (highly expressed in pollen) (Meagher et al.,
1999). Because ADF proteins interact with actin, researchers
also classified the ADF genes into vegetative and pollen-
specific groups (Mun et al., 2000). We predict that the
TaADF4/5/6/7/8/9/23/24/25 genes clustered in subgroup IV
belong to the reproductive class, whereas the other TaADF genes
are grouped in the vegetative class. The TaADF14/15/19/20 genes
were more highly expressed than the other TaADF genes in the
vegetative class, implying these four TaADF genes are important
for wheat growth.

In this study, we detected dynamic changes to TaADF
expression levels during various plant growth and developmental
stages. In tomato, SlADF1/5/7/9 are highly expressed in
immature fruit, whereas SlADF3/11 expression levels peak in
the mature fruit stage (Khatun et al., 2016). In the current
study, in developing wheat grains, the expression of most
TaADF genes peaked in the milk grain stage, markedly
decreased in the ripening stage, and then increased in the

soft dough and hard dough stages. These findings suggest the
encoded TaADF proteins have similar regulatory effects on actin
filaments in wheat plants. However, there were no obvious
expression-level trends common to all TaADF genes during the
development of other tissues (e.g., leaf, root apical meristem,
root, and shoot axis). These observations have compelled us to
investigate the complex ADF regulatory mechanisms underlying
wheat growth.

Previous studies confirmed that the expression of ADF gene
is induced in plants exposed to low temperatures (Kerr and
Carter, 1990; Danyluk et al., 1996; Ouellet et al., 2001; Tang
et al., 2016). The reorganization regulated by ADFs may influence
various cytoskeletal-associated cell processes. In response to low-
temperature stress, microtubules are more easily depolymerized
in cold-acclimated rye root tip cells than in non-acclimated cells,
and this depolymerization enhances the freezing tolerance of
the root tips (Kerr and Carter, 1990). We identified six TaADF
genes (TaADF13/16/17/18/21/22) with significantly up-regulated
expression under cold acclimation or freezing conditions, which
is consistent with the cold-induced changes in SlADF2/11
expression in tomato (Khatun et al., 2016). However, TaADF20
expression was down-regulated by cold stress. This phenomenon
might be explained by the antagonistic relationships among
ADFs. For example, in Arabidopsis, AtADF9 adversely affects
AtADF1 by regulating its ability to depolymerize actin, whereas
the opposite effect is observed when AtADF9 and AtADF1 are
ectopically expressed in tobacco cells (Tholl et al., 2011). Notably,
TaADF16/18/22 expression levels were low during all examined
wheat growth stages, but were highly up-regulated by low-
temperature stress. Accordingly, to cope with cold conditions,
TaADF gene expression is induced in wheat plants, thereby
increasing the remodeling of actin. These findings reveal the
complexity of the TaADF regulatory mechanism under cold
conditions. Osmotic and ROS homoeostasis is essential for
plant cold tolerance (Zuo et al., 2019). In our study, the
overexpression of TaADF16 increased the freezing tolerance
of Arabidopsis plants, likely because of the positive effects
on ROS scavenging and osmotic regulation (Supplementary
Figure 5). Furthermore, the expression of cold-responsive genes
was induced in the transgenic Arabidopsis (Supplementary
Figure 6), suggesting that TaADF16 may regulate cold tolerance
by interacting with ICE-CBF-related genes. However, to more
comprehensively characterize the relationship between the
remodeling of the actin cytoskeleton and wheat responses to
cold stress, additional ADF genes may need to be identified and
functionally annotated.

CONCLUSION

In this study, we identified 25 ADF genes in wheat. Based
on the protein sequence alignment, 117 ADFs from wheat
and the other analyzed species were clustered into four main
groups. Segmental duplications during evolution were important
for the expansion of the TaADF gene family. Analyses of
the phylogenetic relationships, gene structures, and encoded
motifs suggested that TaADF were conserved during evolution.
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The tissue- and temporal-specific expression patterns of TaADF
genes were revealed in this study. Nine genes preferentially
expressed in the anther (TaADF4/5/6/7/8/9/23/24/25) are
likely associated with pollen development. Additionally, we
identified seven differentially expressed TaADF genes after
low-temperature treatments. Specifically, the expression of
homologous genes TaADF16/18/22 were considerably induced
by cold stress, implying these genes are critical for the
freezing tolerance of wheat. Overexpression of TaADF16
substantially increased the tolerance of transgenic plants to
freezing stress because of the associated effects on the cell
membrane and ROS homeostasis, as well as the CBF/DREB
pathway genes. These results provide new insights into the
regulatory functions of TaADF proteins related to wheat
responses to low temperature, and provides candidate gene
resources for breeding new wheat varieties with enhanced
freezing tolerance.
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Heat stress at booting stage causes significant losses to floret fertility (grain set)
and hence yield in wheat (Triticum aestivum L.); however, there is a lack of well-
characterized sources of tolerance to this type of stress. Here, we describe the genetic
analysis of booting stage heat tolerance in a cross between the Australian cultivars
Drysdale (intolerant) and Waagan (tolerant), leading to the definition of a major-effect
tolerance locus on the short arm of chromosome 2B, Wheat thermosensitive male
sterile Drysdale/Waagan (WtmsDW). WtmsDW offsets between 44 and 65% of the
losses in grain set due to heat, suggesting that it offers significant value for marker-
assisted tolerance breeding. In lines lacking the WtmsDW tolerance allele, peaks in
sensitivity were defined with reference to auricle distance, for various floret positions
along the spike. Other (relatively minor) floret fertility response effects, including at the
Rht-D1 dwarfing locus, were considered likely escape artifacts, due to their association
with height and flowering time effects that might interfere with correct staging of stems
for heat treatment. Heat stress increased grain set at distal floret positions in spikelets
located at the top of the spike and increased the size of spikelets at the base of the
spike, but these effects were offset by greater reductions in grain set at other floret
positions. Potentially orthologous loci on chromosomes 1A and 1B were identified for
heat response of flowering time. The potential significance of these findings for tolerance
breeding and further tolerance screening is discussed.

Keywords: wheat, heat tolerance, male sterility, floret sterility, auricle distance, QTL

INTRODUCTION

Heat stress reduces yields of wheat in most global production environments, and the situation is
worsening with climate change (Asseng et al., 2015).

Elevated temperatures accelerate development, senescence, and water use, reducing the
opportunity to accumulate biomass and therefore yield (Asseng et al., 2011; Hunt et al., 2018).
Heat waves (> 30◦C for one to several days) during sensitive reproductive development stages
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also impact directly on grain set (floret fertility) and grain
development. Wheat has two periods of sensitivity to the floret
sterility effects: during booting (flag leaf sheath extending,
1–2 weeks before anthesis), and 2–3 days before anthesis (Saini
and Aspinall, 1982; Tashiro and Wardlaw, 1990a; Craufurd et al.,
2013; Prasad and Djanaguiraman, 2014; Barber et al., 2017). Heat
stress during early grain filling reduces the weight of individual
grains (Tashiro and Wardlaw, 1990b; Stone and Nicolas, 1995).
Grain filling heat stress can also affect grain physical and
biochemical traits determining processing characteristics and
end-use quality (Stone and Nicolas, 1998; Wrigley, 2007).

Modeling has indicated that every further degree Celsius
rise in mean global temperature would result in a 6% loss in
wheat yields worldwide (Asseng et al., 2015). In Australia, it
was estimated that heat shocks during reproductive development
reduced grain number and individual grain weight by 3.6 and
18.1%, respectively, translating to a yield loss of 20.8%, in the
mid-maturing wheat cultivar Janz, over the period 1985–2017
(Ababaei and Chenu, 2020).

To help limit these yield losses, tolerant wheat cultivars able
to withstand heat waves during reproductive development could
be grown. However, breeder’s efforts to identify heat tolerance
in the field are hampered by the unpredictable timing and
intensity of natural heat events and the narrow developmental
windows of sensitivity. Selection using molecular markers would
be more convenient than phenotypic selection. However, this
strategy would firstly require identification of loci controlling
major variation for heat tolerance.

Various efforts have been made to identify grain filling
heat tolerance quantitative trait loci (QTL) in hexaploid wheat,
involving transfers of potted plants into a growth chamber set at
high temperatures, at 7–10 days after anthesis (Mohammadi et al.,
2008; Mason et al., 2010, 2011; Shirdelmoghanloo et al., 2016;
Guo et al., 2020; Lu et al., 2020). However, relatively few studies
have targeted floret fertility responses to heat stress applied at
booting or at around anthesis (Barber et al., 2017). Barber et al.
(2017) identified one weak tolerance QTL for booting stage,
plus two tolerance QTL for anthesis stage that were associated
with a locus for dwarfing (Rht-D1) and flowering time (Ppd-
D1), respectively.

Accordingly, in the current study, we performed QTL analysis
on floret fertility responses to heat stress applied at booting,
in a cross between the Australian wheat cultivars Drysdale
and Waagan. An initial study indicated Drysdale was relatively
sensitive to heat stress at this stage and Waagan tolerant (Erena,
2018). We have also used this population to identify grain
filling heat tolerance QTL (Shirdelmoghanloo et al., 2016),
providing the opportunity to compare tolerance QTL for the two
developmental stages.

MATERIALS AND METHODS

Plant Genetic Materials and Markers
An initial experiment was undertaken to discover QTL for heat
responsiveness of traits in a Drysdale × Waagan F1-derived
doubled haploid (DH) population, by applying a brief heat stress

at booting stage (“DH QTL experiment”). The population of 144
lines, and the genetic map of 551 nonredundant marker loci, has
previously been described (Shirdelmoghanloo et al., 2016).

After identifying a strong floret fertility heat tolerance locus
on chromosome 2B (WtmsDW), KASPTM assays were utilized
to map this region in more detail and develop WtmsDW near-
isogenic lines. KASPTM assays were run using an automated
SNPLine system and KrakenTM software (DNA LGC Limited,
London, United Kingdom). In addition to using a pre-existing
KASP assay for the Ppd-B1 gene, three other KASP markers
in the region were developed, including one based on the SNP
wsnp_JD_c3732_4781170 from the wheat 9k Illumina iSelect
SNP array (Cavanagh et al., 2013) and AHW_DW_001 and
AHW_DW_014 based on SNPs between Drysdale and Chinese
Spring identified using the DAWN genomics tool (Watson-
Haigh et al., 2018; Supplementary Table 1). KASP markers
were scored on the DH lines to confirm their locations
(Supplementary Figure 1).

A Drysdale × Waagan recombinant inbred line (RIL)
population was made for developing WtmsDW near-isogenic
lines. The RIL population was derived by single-seed descent
from F2 plants of a Drysdale × Waagan cross. The four
KASP markers were used to identify an F6 RIL plant that was
heterozygous for the WtmsDW region. This was then used to
derive a WtmsDW-heterozygous F8 plant by two further rounds
of single-seed descent with marker selection. The progeny of this
single plant were screened to identify three plants homozygous
for each allele type. These were then allowed to self-pollinate to
establish seed stocks of the six near-isogenic lines (NILs): NIL-T-
1, NIL-T-2, and NIL-T-3 (Waagan allele, tolerant) and NIL-I-1,
NIL-I-2, and NIL-I-3 (Drysdale allele, intolerant). Four progeny
of the same WtmsDW-heterozygous F8 plant (sibs of the selected
NILs), together with the Drysdale and Waagan parents, had been
subjected to genomic profiling using DArTSeqTM. These data
were used to identify the chromosome segments segregating in
this material and hence differing between the NILs. Genomic
locations of the DArTSeq markers in the wheat IWGSC v1.0,
Chinese Spring reference genome sequence had been determined
using BLAST searches.

Greenhouse Conditions, Heat Treatment,
and Data Collection
To phenotype the Drysdale × Waagan DH population in
the DH QTL experiment, plants were grown in the Plant
Accelerator facility at the Waite Campus of the University of
Adelaide, using procedures similar to Shirdelmoghanloo et al.
(2016). Plants were sown on 16th March 2014 and grown in
a naturally lit evaporatively cooled greenhouse compartment,
where max-day/min-night temperatures averaged 20/17◦C and
day/night relative humidity averaged 68/76% throughout growth.
The greenhouse temperature reached 27.2◦C once during
the treatment period due to high outside temperatures. The
experiment was arranged in three sections of the greenhouse.
Each section comprised a rectangular array of pots, each of them
indexed by its row and column. The experiment was designed
in a split plot layout with four blocks (replicates). Genotypes
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(DH lines and parents) were randomly allocated to main plots
comprising pairs of adjacent pots in rows and treatments (control
and heat) to subplots comprising the two pots within main plots.
Each plant was heat treated when the main stem reached a
certain growth stage, defined by the distance between the auricles
(collars) of the flag leaf and the next leaf down (auricle distance,
AD; Jagadish et al., 2014). Treatments began on the day the AD
on the main stem was closest to 3 cm (for replicates 1 and 3) or
9 cm (for replicates 2 and 4), i.e., during mid-booting (growth
stages Z41–Z46; Zadoks et al., 1974). AD was also measured to
the nearest 0.5 cm on the day of heat treatment, on both the
main stem and the most advanced tiller, and these two stems were
marked with different color tags. Plants were moved to a walk-in
growth chamber (Conviron BDW120) set at 14 h day-length and
37/27◦C day/night temperature. Maximum temperature was held
for 8 h, with 3-h ramping periods either side (Supplementary
Figure 2A). Day/night relative humidity was around 60/80% in
the chamber. While in the chamber, pots sat in trays containing
∼2 cm of water to minimize drought stress. Plant movement
in and out of the chambers each day was done at the start of
the night cycle. After 3 days, plants were moved back to the
greenhouse to complete their development. Traits (Table 1) were

TABLE 1 | Traits measured in the DH QTL experiment.

Trait abbreviation Description

Day.AD No. days from sowing to targeted auricle distance
(pre-heat)

Day.Anth No. days from sowing to first anthesis (extrusion of first
anther) on the main stem

Day.ADtoAnth Trait “Day.Anth” minus trait “Day.AD”

AwnEm.PreH Length of emerged awns at targeted auricle distance
(pre-heat; cm)

AD.Mat Auricle distance at maturity (cm)

Ht.Mat Plant height at maturity, soil level to bottom of spike (cm)

SpkL.Mat Spike length at maturity, to glumes of terminal spikelet
(cm)

AwnL.Mat Length of awns above terminal spikelet at maturity (cm)

UndvSplt.Spk No. of basal under-developed spikelets per spike at
maturity. Under-developed spikelets were defined as
those with awn length < 50% that of the spikelets from
the middle of the spike.

NoSplt.Spk Total spikelet no. per spike at maturity

GrNoSplt.1&2.Top Grains per developed spikelet, floret positions 1 and 2,
top third of spike

GrNoSplt.1&2.Mid Grains per developed spikelet, floret positions 1 and 2,
middle third of spike

GrNoSplt.1&2.Bot Grains per developed spikelet, floret positions 1 and 2,
bottom third of spike

GrNoSplt.>2.Top Grains per developed spikelet, floret positions > 2, top
third of spike

GrNoSplt.>2.Mid Grains per developed spikelet, floret positions > 2,
middle third of spike

GrNoSplt.>2.Bot Grains per developed spikelet, floret positions > 2,
bottom third of spike

GrNoSplt.Spk Grain number per developed spikelet, across all floret and
spike positions

Day.AD, Day.Anth, and Day.ADtoAnth were only scored in main stems.

scored on the tagged stems. The AD of the tagged advanced
tiller averaged 1.6 and 6.5 cm when the main stem AD was 3
and 9 cm, respectively. Thus, four developmental stages of the
measured stems were defined for analysis of heat responses: 1.6,
3, 6.5 and 9 cm AD.

Transfer of the Drysdale × Waagan DH lines to the
growth chamber involved a change in day length (10.3 h in
the greenhouse vs. 14 h in the growth chamber) as well as
temperature. To clarify which environmental factor was relevant
to WtmsDW, a second experiment was performed using the
WtmsDW NILs (“WtmsDW validation experiment”). Plants were
sown on 22nd July 2020 in the greenhouse, with a natural
day length of 11.5 h at booting. Reach-in chambers (Conviron
PGC20) containing a mixture of halogen incandescent lamps
and fluorescent tubes were used to apply four treatments in
which heat stress and day length were varied (Supplementary
Figures 2A–D). As only two chambers were available, the earliest
developing plants were used for the two treatments involving
heat, and the slightly later plants were then used for the two
treatments involving no heat. For the former, the main stem
was tagged and used for data collection, while in the latter,
either a main stem or advanced tiller was used. Each plant was
treated when AD on the tagged stem was 6 cm. Treatment
duration was 2 or 3 days, for treatments with and without
heat stress, respectively. After treatment, plants were moved
back to the greenhouse to complete their development. Plant
arrangement in the greenhouse was a completely randomized
design, with 19 to 41 plants (replicates) ultimately being treated
per allele/treatment combination.

Phenotypic Modeling for DH QTL
Experiment
Each trait in each stem was analyzed using the following linear
mixed model:

y = Xτ+ Zgg+ Zbub + Zmum + e (1)

where y is the vector of observations, τ is the vector of fixed
effects containing the terms to capture the treatment by genotype
effects (DH or check lines) with associated design matrix X, g
is the vector of random genetic effects with design matrix Zg ,
ub is the vector of random block effects with design matrix Zb,
um is the vector of random main plot effects with design matrix
Zm, and e is the residual error.

The joint distribution of
(
g, ub, um, e

)
was assumed to be

Gaussian with zero mean and variance covariance matrix:
Gg(γg) 0 0 0

0 σ2
bIb 0 0

0 0 σ2
mIm 0

0 0 0 R(φ)


where γg, σ

2
b, σ

2
m, and φ are unknown variance parameters

associated with the genetic effects, block variance, main plot
variance, and residual error, respectively. The I matrix denotes
the identity matrix. Pots in the greenhouse were divided in
three sections so R(φ) was assumed to be the direct sum of
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⊕3
s=1σ

2
s 6(ρcs)⊗6(ρrs). The parameter σ2

s denotes the error
variance and 6(ρrs)⊗6(ρcs) refers to an autoregressive process
of order one in the column and row directions in section s.
This is a plausible model to account for the correlation between
errors due to the neighboring pots within each section. Most
importantly, Gg(γg) represents the variance covariance matrix
of the genetic effects for the DH lines only. There were three
treatments so g was partitioned into gc, g3, and g9 for the control,
heat applied at the AD closest to 3 and 9 cm genetic effects,
respectively. The variance matrix Gg(γg) was then assumed to be: σ2

c σc3 σc9
σc3 σ2

3 σ39
σc9 σ39 σ2

9

⊗ Ig

For all traits measured, tolerance genetic effects at the targeted
development stages were derived based on the conditional
distribution of the heat genetic effects given the control genetic
effects (Lemerle et al., 2006). For instance, the tolerance genetic
effects obtained from the application of the heat treatment at the
AD closest to 3 cm, gt3, is distributed as follows:

gt3 = g3 | gc ∼ N(E
(
g3 − β3gc

)
= 0, σ2

t3Ig) (2)

where β3 = ρc3
σ3
σc

, ρc3 = σc3/
√

(σ
2
c σ

2
3) and σ2

t3 = σ2
3(1− ρ 2

c3).
Following (2), gt3 can be viewed as residuals from a random

regression of g3 against gc with intercept zero and slope
β3. Genotypes with large positive residuals have higher tolerance
to heat stress than an average genotype while large negative
residuals suggest poor tolerance. A similar derivation can be
used to obtain tolerance effects for the application of the heat
treatment at the AD closest to 9 cm, i.e., gt9.

Benefits of defining tolerance effects in this way are that
the effects are reported in the original unit of measurement
and are independent of the control genetic effects. This avoids
the problem inherent in some other commonly used response
indexes, such as the Heat Susceptibility Index (Mason et al.,
2010) that tend to be influenced by control per se performance.
Tolerance effects defined in this way were also used by McDonald
et al. (2015) and Mahjourimajd et al. (2016).

All models (1) were diagnostically assessed to ensure that the
assumptions of normality and homoscedasticity of errors were
satisfied and, where appropriate, traits were transformed. The
methods described in Gilmour et al. (1997) were used to account
for possible spatial trends across the experimental layout in the
glasshouse. Where appropriate, the linear mixed model (1) was
adapted to include linear row and column terms in the fixed part
of the model or random row or column effects. The significance
of the correlations of the error section terms was also assessed.

The method of residual maximum likelihood (REML)
was used for variance parameter estimation (Patterson and
Thompson, 1971). The best linear unbiased predictions (eBLUPs)
for each line at each treatment were extracted from the model,
and the tolerance effects were derived as residuals from the
random regressions using the REML estimates. All analyses were
conducted in the R environment (R Core Team, 2020) using the
ASReml-R software (Butler et al., 2017).

QTL Mapping
For each of the traits, the eBLUPs for the DH lines under
control and the two different heat conditions, as well as the
eBLUPs for heat tolerance calculated from (2), were used to
conduct QTL analysis. QTL mapping was performed using the
approach of Shirdelmoghanloo et al. (2016). Following simple
interval mapping, candidate QTL were used as co-factors for
composite interval mapping (CIM), setting the minimum co-
factor proximity to 30 cM and maximum step size to 10 cM.
Putative QTL were considered significant if they exceeded a
genome-wide LOD threshold of 1.8 calculated using the adjusted
Bonferroni-corrected p value with significance level α=0.05
(Li and Ji, 2005). To assist interpretation, QTL effects linked
within ∼30 cM were grouped to the same numbered QTL
locus. All QTL analyses were conducted using the statistical
computing environment GenStat version 16 (Payne, 2009; VSN
International, 2020). Markers in four genomic locations showed
segregation distortion (on linkage groups 2B1, 3B1, 5A2, and 6B2;
χ2 test, p< 0.01), but these were not located at any of the QTL
reported in the current study.

Relationship of Treatment Stage to
Heat-Induced Sterility and Its Interaction
With Stem Type, Floret Position, and
Genotype at WtmsDW and Rht Loci
The markers most closely associated with WtmsDW effects
(Ppd-B1, wsnp_Ex_c5412_9565527, wsnp_JD_c3732_4781170,
wsnp_RFL_Contig4483_5312236) were used to infer the
WtmsDW allele (Drysdale or Waagan) carried by each DH
line (marker recombinants being excluded). Rht-B1 and Rht-
D1 alleles carried by DH lines were known from scores of
diagnostic KASP markers for these genes (Shirdelmoghanloo
et al., 2016). Fertility was plotted against AD length on the day
of treatment and 3rd-order polynomial trend curves fitted using
Microsoft Excel.

Relationships to Other Fertility Loci
Other fertility loci responsive to temperature and other
environmental factors were considered for their potential
relationships to WtmsDW. These included loci described in
wheat (Kuchel et al., 2007; Mason et al., 2010, 2011, 2013; Pinto
et al., 2010; Zheng et al., 2010; Pandey et al., 2014; Sharma et al.,
2016; Shirdelmoghanloo et al., 2016; Barber et al., 2017; Bhusal
et al., 2017; Pradhan et al., 2019; Guo et al., 2020; Lu et al., 2020;
Selva et al., 2020 and references therein), durum (Triticum durum
Desf.) (El Hassouni et al., 2019), barley (Hordeum vulgare L.)
(Romagosa et al., 1999; Malosetti et al., 2004), and rice (Oryza
sativa L.) (Yu et al., 2017; Zhu et al., 2017; Fan and Zhang, 2018
and references therein; Khlaimongkhon et al., 2019; Cao et al.,
2020; Nubankoh et al., 2020). Marker sequences were accessed
from Cavanagh et al. (2013), GrainGenes1, Gramene2, NCBI3, and

1https://wheat.pw.usda.gov/GG3/
2http://gramene.org/
3https://www.ncbi.nlm.nih.gov/
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Diversity Arrays Technology4. Marker sequences were located
in the wheat IWGSC v1.0, Chinese Spring reference genome
sequence using an in house BLAST tool, or in the rice Nipponbare
IRGSP Reference sequence 1.0 by BLAST search at the Rice
Genome Program site5. To establish further wheat-rice genomic
interval relationships, gene sequences were accessed through the
Rice Genome Program site and the DAWN tool, and homologues
located in the respective genomes by BLAST search.

RESULTS

Trait Responses
In the DH QTL experiment, all traits measured after heat
treatment responded to heat in the DH lines, except for number
of spikelets per spike (Figure 1). Heat decreased the number
of spikelets at the bottom of the spike that were classified as
underdeveloped (UndvSplt.Spk), by up to 28%. Heat consistently
decreased grain set in the lowest two floret positions in the
spikelets (GrNoSplt.1&2), but it increased grain set in the upper
floret positions (GrNoSplt.>2) for stems treated at the earlier
developmental stages (1.6 and 3 cm AD). However, the overall
effect of heat at these early stages on grain set (GrNoSplt.Spk;
Figure 1A) was still negative because the > 2 positions produced
far fewer seeds than the lower two floret positions (e.g., 0.15
vs. 0.94 grains per spikelet, in the top third of the spike,
under heat). Heat accelerated the time from sowing to first
anthesis (Day.Anth), by up to 5% (3.1 days). It increased
final spike length (SpkL.Mat) in stems exposed to heat at the
earlier stages, by up to 7.3%, but decreased it by 0.6% for the
stems exposed at the latest stage. This was due to responses
in rachis internode length because total spikelet number per
spike was unaffected. Heat decreased auricle distance and height
at maturity (AD.Mat and Ht.Mat), with the effects being the
greatest for the stems exposed to heat at later stages. Heat
decreased awn length at maturity (AwnL.Mat), with the effects
being the greatest for the stems exposed to heat at the earlier
stages (Figure 1B).

Quantitative Trait Loci
Overall, 221 QTL effects were defined for per se traits (in
control or heat) and 54 QTL effects defined for heat tolerance
effects (responses) (Supplementary Table 1). The QTL effects
were grouped into 33 genomic locations (QTLx designations).
Of these, 16 coincided with loci previously identified in this
population (Shirdelmoghanloo et al., 2016), while 17 were new
(QTL30 to QTL45). As previously reported, this population
segregated for major height effects at the Rht-D1 and Rht-B1 loci
but was relatively uniform for flowering time (largest effect 2.9
days at QTL18 on chromosome 4B).

Six loci were defined for heat responses of floret fertility
(Table 2). QTL36 on the short arm of chromosome 2B had the
strongest tolerance effect, controlling up to 43% of the variation,
with tolerance deriving from the tolerant parent Waagan. Its

4https://www.diversityarrays.com/
5http://rice.plantbiology.msu.edu/analyses_search_blast.shtml

per se fertility effects were almost exclusively observed under
heat. It was also the most consistently expressed fertility response
locus, showing an effect for 18 out of the 24 tested floret
position and treatment-stage combinations (Supplementary
Table 2). QTL36 also showed an effect for awn length per se.
QTL36 effects were found to arise from sterility in the male
reproductive organs (data not shown). Accordingly, we named
this major QTL36 heat tolerance locus wheat thermosensitive male
sterile Drysdale/Waagan (WtmsDW). Additional greenhouse
experiments to characterize WtmsDW effects on pollen and
anther development will be described in a separate paper.

The other five loci for floret fertility response (QTL18, 19,
32, 39 and 43) were weaker and less consistently expressed than
WtmsDW (Table 2 and Supplementary Table 2). They were
associated with various developmental traits (Supplementary
Table 2), suggesting these fertility effects may have been
developmental artifacts rather than due to genuine tolerance (see
section “Discussion”).

For other (non floret fertility) traits, heat-response effects were
observed at 13 loci (Table 3).

Interactions of WtmsDW Heat Tolerance
Expression With Treatment Stage, Stem
Type, Floret Position, and Rht Genotype
Sterility in main stems and tillers of DH mapping lines showed
similar response curves, to heat applied at the various stem
developmental stages, either in the lines carrying the Drysdale
or Waagan alleles at WtmsDW (Supplementary Figure 3).
Therefore, data from main stem and tillers were combined for
subsequent analysis.

Doubled haploid lines carrying different allele combinations
at the Rht-B1 and Rht-D1 height loci were also compared
(Supplementary Figure 4). The two semi-dwarf types and the
talls showed similar response patterns, while intolerance in the
double-dwarf types peaked at a shorter AD. Therefore, the
double-dwarfs were excluded from the analysis to compare floret
positions (Figure 2 and Supplementary Figure 5).

In the lowest two floret positions in the spikelets (positions
1 and 2), intolerance peaked at AD ∼5.5 cm in the middle of
the spike, while at the top and bottom of the spike, intolerance
peaked later, at around 6 and 8 cm, respectively (Figure 2A).
Floret positions > 2 in the spikelets peaked in intolerance at
approximately 11, 11, and 12.5 cm AD, in the top, middle, and
bottom of the spike, respectively (Figure 2B).

The DH lines carrying the Waagan WtmsDW allele
maintained high levels of fertility across all stages where
heat stress was applied (Supplementary Figures 5C,D). Thus, it
was unlikely that WtmsDW exerted its fertility effects by merely
altering the AD vs. spike developmental stage relationship,
resulting in escape.

Further Mapping in the WtmsDW Region
and Relationships to Other Fertility Loci
Based on DH lines that were nonrecombinant for markers
spanning the WtmsDW region (33.7–93.9 cM), heat tolerance
genetic effects proved to be a good predictor of WtmsDW
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FIGURE 1 | Average trait heat responses (%) of Drysdale × Waagan DH lines, relative to controls. All responses were significant at p< 0.01 unless indicated. nd, not
determined; ns, not significant. (A) Fertility-related traits. (B) Growth and development traits. See Table 1 for trait key.

TABLE 2 | Loci for heat responses of floret fertility identified in the DH QTL experiment.

Locus Linkage group Position (cM) Peak markers Tolerance allelea LOD R2 Additive effect

QTL32 1B 66.1 wsnp_Ex_c58292_59652859 D 3.8 8.6 0.01

QTL36b (WtmsDW) 2B1 74.3–84.8 Ppd-B1; wsnp_JD_c3732_4781170;
wsnp_RFL_Contig4483_5312236

W 18 43 0.37

QTL39b 3B2 80.9–105.9 wsnp_Ex_c9594_15882022;
wsnp_Ex_rep_c101457_86818160

W 5.0 15 0.11

QTL18 4B 127.5 wsnp_Ku_c11570_18860306 D 4.3 9.3 0.01

QTL19b (Rht-D1) 4D 0.0–2.9 Rht-D1; wsnp_CAP11_c356_280910 D or W 6.8 12 0.18

QTL43b 7A2 43.2–67.0 wsnp_Ex_c2268_4251636;
wsnp_Ex_c12102_19361467

W 4.0 6.6 0.14

aD, Drysdale; W, Waagan.
bFloret fertility tolerance effects were observed at these loci for multiple floret type/treatment timing combinations; figures in the last three columns are for the
strongest effect.

allele type. For 68 out of the 81 nonrecombinants, positive and
negative values correctly indicated the presence of the Waagan
and Drysdale alleles, respectively. Inconsistencies were not
clearly associated with any particular Rht-B1/Rht-D1 genotype
combination (Supplementary Figure 1). Accordingly, WtmsDW
genotype was inferred for the remaining (recombinant) DH lines,
which then allowed WtmsDW to be mapped as a single point
locus. It was located to a 5.3-cM marker interval (Figure 3),
corresponding to the physical interval 76.82 to 95.76 Mb on
chromosome 2B in the IWGSC v1.0, Chinese Spring reference
genome sequence (Supplementary Figure 1).

The DH line WW28450 carried a spontaneous deletion on
chromosome 2B from 104.24 Mb upwards (Supplementary
Figure 1), essentially covering the whole of the short arm,
including the WtmsDW locus (Figure 3). This line was
phenotypically intolerant to heat stress but fully fertile under
control conditions (Supplementary Figure 1).

Previously described loci on wheat chromosome 2B
influencing fertility responses to environmental factors were
considered for their potential relationships to WtmsDW. Mason
et al. (2010) reported a QTL for response (Heat Susceptibility
Index (HSI)) of kernel number per main spike to post-anthesis
heat stress, between markers gwm148 and barc200, which is in

the vicinity of WtmsDW (Figure 3). Zheng et al. (2010) described
interactions of kernel number per square meter with several
environmental covariates including cumulative degree-days
during the 6 days around meiosis, associated with the markers
gwm429 and gwm374, which is also close to WtmsDW (Figure 3).
Barber et al. (2017) reported a relatively weak QTL affecting
interaction of heat stress during early booting with floret
fertility, associated with the marker gwm120. However, gwm120
is ∼40 cM from WtmsDW on the long arm of chromosome
2B (Figure 3). Sharma et al. (2016) described a HSI effect of
grain number per spike, associated with markers 1161184 and
1097543, calculated by comparing late vs. timely sown field trials.
However, these markers are > 40 cM from WtmsDW on the long
arm (Figure 3).

The Wtms1, TmsBS20T, and Wptms2 male sterility loci on
chromosome 2B have been defined in the context of hybrid
breeding research. The Wtms1 and TmsBS20T loci are expressed
if it is colder than 10◦C during spike development. These
loci have been mapped 4.8 and 4.5 cM from marker gwm374,
respectively (Xing et al., 2003; Ru et al., 2015), which places
them at least ∼10 cM from WtmsDW (Figure 3). The Wptms2
locus expressed sterility in late sowings (Guo et al., 2006a,b), thus
requiring long days and/or high temperature for expression. It
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TABLE 3 | Heat-response QTL effects for traits other than floret fertility identified in the DH QTL experiment.

Locus Trait Linkage group Position (cM) Tolerance allelea Treatment stage (AD)b LOD R2 Additive effect

QTL30 Day.Anth 1A1 97.0 W 3 3.5 10.0 0.16

QTL33 Day.Anth 1B 135.2 D 9 3.5 8.9 0.74

QTL29 Day.ADtoAnth 7B 56.9 D 3 6.9 18.8 0.79

QTL15 AD.Mat 4A2 41.6 D 1.6 and 9 4.3 1.5 0.01

QTL15 Ht.Mat 4A2 41.6 D 1.6 4.1 2.1 0.01

QTL17 (Rht-B1) AD.Mat 4B 83.9 W 9 47.0 44.5 0.01

QTL17 (Rht-B1) Ht.Mat 4B 83.9 W 1.6 37.5 41.2 0.01

QTL18 AD.Mat 4B 141.3 W 9 4.9 1.8 0.01

QTL19 (Rht-D1) AD.Mat 4D 0.0 D 9 46.0 41.9 0.01

QTL19 (Rht-D1) Ht.Mat 4D 0.0 D 1.6 39.3 44.8 0.01

QTL28 AD.Mat 7A2 33.7 W 9 5.8 3.0 0.01

QTL34 Ht.Mat 2A 147.0–160.2 D 3 and 6.5 4.3 12.1 1.56

QTL29 AwnL.Mat 7B 45.8 D 6.5 3.7 9.4 0.05

QTL41 AwnL.Mat 5D2 40.2 W 3 3.5 11.3 0.01

QTL9 SpkL.Mat 2D4 7.6 D 1.6 3.6 9.2 0.01

QTL17 (Rht-B1) UndvSplt.Spk 4B 83.9 D 3 and 9 16.9 26.3 0.01

QTL18 UndvSplt.Spk 4B 135.5 D 3 and 9 8.7 11.6 0.01

QTL19 (Rht-D1) UndvSplt.Spk 4D 0.0 W 3 and 9 10.5 13.4 0.01

QTL25 UndvSplt.Spk 6A 74.7 D 3 and 9 4.1 4.5 0.07

QTL5.2 UndvSplt.Spk 2A 93.6 D 1.6 and 6.5 3.7 9.6 0.09

Effects are grouped by trait type: anthesis-related, height-related, awn or spike length-related, and underdeveloped lower spikelets. See Table 1 for trait key.
aW, Waagan; D, Drysdale.
bTreatments giving QTL effects, based on auricle distance (AD, cm) at time of heat treatment. Where QTL effects were detected at two treatment times, figures in the last
three columns are for the strongest effect.

FIGURE 2 | Floret fertility response curves (polynomial regression, order-3) in Drysdale × Waagan DH lines that had been heat treated at different stem
developmental stages as defined by auricle distance, in the top, middle, and bottom third of the spike. Only lines carrying the Drysdale (intolerance) allele at
WtmsDW are represented. (A) Floret positions 1 and 2 in the spikelets. (B) Floret positions > 2 in the spikelets. Average fertility in control plants C are represented by
the lines to the right of the plots.

was mapped 6.9 cM below gwm374 (Guo et al., 2006a), placing it
∼20 cM from WtmsDW (Figure 3).

In rice, BLAST searches with gene sequences established that
there were two genomic regions related to the WtmsDW
interval of wheat: on chromosome 3 (11.13–12.71 Mb;
Nipponbare IRGSP Reference sequence 1.0) and chromosome 7
(12.33–22.39 Mb). The qHTB3-2 QTL influencing floret fertility

responses to heat stress at booting (Zhu et al., 2017) overlapped
with the chromosome 3 interval. However, the reported rice QTL
interval was relatively large (∼10 Mb; 12.33–22.39 Mb) and only
overlapped for ∼400 kb of the ∼1.58 Mb, corresponding to the
WtmsDW interval.

A grain yield locus responsive to temperature during heading
in barley (Romagosa et al., 1999; Malosetti et al., 2004) was
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FIGURE 3 | Drysdale × Waagan DH genetic map predominantly for the short
arm of wheat chromosome 2B. Mbp locations of markers in the IWGSC v1.0,
Chinese Spring reference genome sequence are shown to the left. The
centromere position is from Alonge et al. (2020). Positions of
temperature-responsive fertility QTL from four other studies are shown on the
right. Temperature and/or photoperiod-responsive male-sterility loci Wtms1,
TmsBS20T, and Wptms2 studied for hybrid breeding research are also shown
(Xing et al., 2003; Guo et al., 2006a; Ru et al., 2015). Positions of the loci from
other studies were located approximately, based on position of markers from
the respective studies in the genomic sequence.

located between markers Rbc2 and ABG002 on chromosome 2H.
This corresponded to 44.36–55.88 Mb on wheat chromosome 2B,
which is distal of WtmsDW.

WtmsDW Validation Experiment
The three NILs selected for each WtmsDW allele type behaved
similarly (not shown), so were regarded as one for the purposes
of data presentation: “NIL-I” with the intolerance allele from
Drysdale, and “NIL-T” with the tolerance allele from Waagan,
respectively. In the absence of heat stress, fertility was unaffected
by day length (9 h vs. 14 h) in either of the NILs (Figure 4).
Heat treatment reduced fertility in both NILs, but more so in
NIL-I than in NIL-T. Heat stress reduced fertility more in both
NILs under short days than under long days, although the relative

FIGURE 4 | Floret fertility (floret positions 1 and 2; means ± SE) in WtmsDW
near-isogenic lines, NIL-I (Drysdale allele, intolerant) and NIL-T (Waagan allele,
tolerant). All means were significantly different at p< 0.001 except among the
“No heat” means.

difference between the NILs remained similar (Figure 4). In other
words, while fertility may have responded to day-length, this
response was independent of WtmsDW. These results validated
WtmsDW as a floret fertility heat tolerance locus and showed that
its effects were not day-length dependent.

DArTSeqTM genomic profiling indicated that the NIL lines
were 96% identical, differing only for a segment of chromosome
2B carrying WtmsDW (64.23–247.52 Mb) and small segments on
chromosomes 1A and 3D which did not carry any of the other
reported floret fertility heat-response QTL listed in Table 2. These
data further supported the assertion that floret fertility effects
observed in the validation experiment were due to WtmsDW.

DISCUSSION

WtmsDW Significance and Potential
Applications
WtmsDW is a locus controlling major natural variation for
male sterility in response to high temperatures at booting
stage in wheat. Variation between the two Australian wheat
cultivars Drysdale and Waagan was used to define WtmsDW.
Drysdale (Hartog∗3/Quarrion) was released in 2002, and Waagan
(Janz/24IBWSN-244) was released in 2007, both in NSW. The
WtmsDW alleles present in Drysdale (intolerant) and Waagan
(tolerant) were inherited from Hartog and Janz, respectively
(marker data not shown). Hartog and Janz have been particularly
popular cultivars and (in addition to Drysdale) have been
used extensively as parents in Australian wheat breeding.
This suggests good potential for WtmsDW closest flanking
KASP markers wsnp_JD_c3732_4781170 and AHW_DW_014
(Supplementary Table 1) to be used in current Australian
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breeding programs, either to select for heat tolerance or
against intolerance. In the validation experiment using WtmsDW
NIL lines, the tolerance allele offset 44–65% of the losses in
grain set due to heat stress otherwise experienced in lines
carrying the intolerance allele (Figure 4), suggesting that the
use of these KASP markers could lead to substantial yield
benefits. However, WtmsDW tolerance would need to be
evaluated in a number of genetic backgrounds and multiple field
environments over a number of years to understand its true
value for breeding.

Heat tolerance QTL were previously described in the
WtmsDW region of chromosome 2B (Figure 3). Mason et al.
(2010) identified a QTL in this region for heat response (Heat
Susceptibility Index) of grain number per spike, in a cross
between the Australian spring cultivar Halberd and the winter
wheat Cutter, for heat treatments commencing 10 days after
anthesis. However, in our experience, heat treatments applied
at this stage in a range of genetic material has not affected
grain number (Shirdelmoghanloo et al., 2016, and unpublished
data). Zheng et al. (2010) identified a QTL for grain number
per square meter that interacted with several environmental
variables, including cumulative degree-days over 25◦C in the
6 days around meiosis, across 12 field environments, in the winter
wheat cross Arche × Récital. Meiosis occurs in stems with an
AD around 0–5 cm (Browne et al., 2018), which is around when
WtmsDW effects were expressed (Supplementary Figure 5).
Although further work will be needed to confirm whether these
loci are equivalent to WtmsDW, these other studies hint that
WtmsDW selection might be applicable across a wide range of
breeding programs.

The Drysdale × Waagan DH population has also been
screened for responses to a 3-day heat stress applied at
10 days after anthesis (Shirdelmoghanloo et al., 2016). Loci on
chromosomes 3B and 6B influenced the ability to maintain both
higher grain weight and flag leaf chlorophyll content under
heat, suggesting that grain filling heat tolerance may have a
mechanism relating to lower rates of heat-enhanced senescence
in both the leaves and grains. By contrast, WtmsDW was located
on chromosome 2B at a location that was not associated with
any chlorophyll QTL effect. Independent genetic control of
booting and grain filling stage heat tolerance concurs with the
findings of Wardlaw et al. (1989), in which the most tolerant
cultivars at the former stage were among the least tolerant at
the latter stage. Different developmental stages are sensitive to
the floret fertility and grain size responses to heat (booting or
anthesis vs. early grain filling, respectively). Therefore, different
genes/mechanisms control heat responses of grain weight and
number, and breeders need to select the two types of tolerance
separately, whether by using markers or phenotyping.

Loci for male sterility that is dependent on particular
conditions of day length and/or temperature have been of interest
in rice and wheat due to their potential utility in hybrid breeding
(reviewed by Fan and Zhang, 2018 and Selva et al., 2020). The
Wtms1, TmsBS20T, and Wptms2 loci on wheat chromosome 2B
are examples. These appeared to be separated from WtmsDW
on the basis of map position (Figure 3). However, further work
will be needed to confirm the separate location of WtmsDW,

due to potential problems associated with comparing maps from
different studies. Wtms1 and TmsBS20T differ from WtmsDW
in expressing sterility under cold conditions (< 10◦C, during
spikelet differentiation stage; Xing et al., 2003; Li et al., 2006;
Ru et al., 2015) rather than heat, which further supports the
proposal that they are different to WtmsDW. It was not resolved
whether it was long days and/or high temperatures during head
development that was required for sterility expression by Wptms2
(Guo et al., 2006a,b). Sterility sources considered for hybrid
breeding are often described as mutant variants (e.g., Wtms1
and TmsBS20T; Xing et al., 2003; Ru et al., 2015) and provide
near-total sterility. By contrast, WtmsDW is defined by variation
between two wheat cultivars. Lines carrying the intolerance allele
maintained some fertility under rather severe heat conditions
(Figure 4). These initial data suggest WtmsDW may not be
suitable for use in hybrid wheat breeding.

The DH line WW28450 carried a deletion of the whole
of the short arm of chromosome 2B and was heat intolerant.
This suggested that tolerance from 2BS derives from positive
gene function(s) (as opposed to absence/reduction of a tolerance
suppressor), which is missing/reduced in the intolerance allele.
However, 2BS carries additional male fertility loci, including
Wptms2 that conditions sterility under high temperatures and/or
long days (Figure 3; Guo et al., 2006a), so the implications for
WtmsDW are not entirely clear.

Effect of Heat Stress and Heat Stress
Timing on Spikelet Fertility
In wheat, floret differentiation usually begins in the middle of
the spike and proceeds outwards, and within each spikelet, it
begins at the basal most florets and proceeds upwards. The
developmental timing differs by up to 5 days across the whole
spike (Evans et al., 1972; Tashiro and Wardlaw, 1990b). In the
intolerant DH lines carrying the Drysdale WtmsDW allele, the
various floret positions peaked in heat susceptibility (Figure 2) at
times that were broadly consistent with their expected sequence
of development. The florets that were the first to develop (i.e.,
no. 1 and 2 in spikelets from the middle of the spike), peaked
in sensitivity at around 5.5 cm AD (Figure 2A), which was
8.6 days (heat) or 11.7 days (control) before anthesis in these
florets (based on average timing for 3 and 9 cm AD). In these
floret positions and at this AD, anthers were found to be at
the meiosis to young microspore stage, depending on the wheat
cultivar (Browne et al., 2018; Fernández-Gómez et al., 2020).
Our results were in general agreement with other wheat studies
that showed a peak in sensitivity to the floret sterility effects of
heat stress at 18 days before mid-anthesis (Barber et al., 2017),
6–8 days before anthesis (Prasad and Djanaguiraman, 2014),
during meiosis to young microspore stages of pollen development
(Saini and Aspinall, 1982), or during premeiotic interphase to late
leptotene stage of meiosis (Draeger and Moore, 2017). A similar
stage is most sensitive to the fertility responses to drought
stress (young microspore stage, at AD 4–6 cm; Ji et al., 2010),
suggesting that the same developmental process may be sensitive
to both heat and drought. It should be emphasized that our heat
treatments did not cover the period 2–3 days before anthesis,
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which is another stage where wheat can be sensitive to floret
fertility effects of heat (Tashiro and Wardlaw, 1990a; Prasad and
Djanaguiraman, 2014; Barber et al., 2017).

In floret positions >2, heat stress caused most sterility
when it was applied at the latest stages of stem development
(6.5 and 9 cm AD), which was consistent with the fact
that these florets differentiate after floret positions 1 and 2
(Figure 1A). Unexpectedly, heat exposure at the earliest stage
of stem development (1.6 and 3.0 cm AD) enhanced fertility
in floret positions >2, particularly in the top third of the spike
(Figure 1A). The biological basis for this enhanced fertility is
unknown. However, for practical purposes, it had little impact on
yield, because even under heat conditions, these floret positions
contributed only a small proportion (< 5%) of the grains.

Floret Fertility Effects Potentially Arising
by Escape
In studies of fertility responses to abiotic stresses, AD has
often been used as a measure of stem development to time
treatments (e.g., Ji et al., 2010; Jagadish et al., 2014). However, any
genetic effect that alters the relationship between AD and spike
developmental stage could potentially give escape artifacts. The
two major dwarfing loci Rht-B1 and Rht-D1 appeared to have
had such an effect in the Drysdale × Waagan DH population.
This population segregated at both loci (Shirdelmoghanloo et al.,
2016), and hence included lines that were double-dwarf, semi-
dwarf, or tall (carrying dwarfing alleles at both, one or neither
of these loci, respectively). Peak sensitivity to the effects of
heat on floret sterility occurred at shorter ADs in the double-
dwarfs than in the other two classes (Supplementary Figure 4),
presumably because double-dwarfs had shorter AD at each of
the corresponding pollen developmental stages, owing to their
overall shorter AD. Similarly, tall alleles at both Rht loci (Rht-B1a
and Rht-D1a) increased the time interval between reaching target
AD and anthesis (Supplementary Table 2), indicating that the
spike had further to develop at the target AD in the tall genotypes,
as compared with the short genotypes. The Rht-D1 locus also
showed QTL effects for floret fertility responses, with the Waagan
(tall) allele providing “tolerance” for stems that were heat exposed
at the shortest AD (1.6 cm) and the Drysdale (short) allele
providing tolerance for stems exposed at the longest AD (9 cm)
(Supplementary Table 2). This was consistent with a potential
escape mechanism in which spikes were relatively immature at
a given AD in plants with potential to be tall (favoring heat
exposure prior to the sensitive floret stage), and relatively mature
at a given AD in plants with potential to be short (favoring
heat exposure after the sensitive stage). This interpretation is
supported by the results of Browne et al. (2018) and Fernández-
Gómez et al. (2020). They found pollen development stage to
be further advanced at a given AD in the semi-dwarf wheats
Cranbrook, Young, and Wyalkatchem as compared with the tall
cultivars Cadenza and Halberd (Rht genotype of these cultivars
based on Pearce et al. (2011); and our own unpublished data).
For example, an AD of 5.5 cm corresponded to meiosis in the
tall cultivars but to post-meiosis (young microspore stage) in the
semi-dwarf cultivars, in the most advanced florets of the spike.
In the Drysdale ×Waagan population, there was a floret fertility

response QTL effect on chromosome 4B (QTL18), but this was
located∼48 cM from Rht-B1. Why there was no fertility response
(potential escape) effect observed at Rht-B1 is unknown.

Other studies found that Rht genes influenced responses
of floret fertility to heat at booting, although there were
inconsistencies, with reported effects ranging from positive to
negative, or neutral (Alghabari et al., 2014 and references therein;
Barber et al., 2017). The aforementioned issues around staging
may at least partly explain these inconsistencies. However, Barber
et al. (2017) reported that Rht-D1 and the flowering time locus
Ppd-D1 affected responses to heat at around anthesis, which is
not readily explained by staging artifacts, since anthesis in wheat
occurs out of the boot and can usually be observed directly.
On this basis, dwarfing/flowering time genes may be capable of
genuinely affecting heat tolerance, at least at the anthesis stage.

We established that WtmsDW is a genuine heat tolerance
locus, as it was not associated with any other trait that indicated
the possibility of escape. Awn length at maturity was the only
other trait ascribed to this QTL region (Supplementary Table 2).
The flowering time locus Ppd-B1 was mapped 7.2 cM distal of
WtmsDW using a KASP marker in the Ppd-B1 gene sequence
(Figure 3; Supplementary Figure 1). There was no evidence that
the Drysdale×Waagan DH population segregated for functional
differences at Ppd-B1, at least under these growth conditions,
because there were no flowering time QTL effects detected at
this location. The closest flowering time effect was located at
26.1 cM (current study) or 5.4 cM (Shirdelmoghanloo et al.,
2016) on chromosome 2B (0.7 to 1.5 day effect, with the Drysdale
allele conferring lateness), which is well above both Ppd-B1 (at
74.3 cM) and WtmsDW (at 81.5 cM). We have also separated
WtmsDW from the Ppd-B1 marker in additional fine mapping
work (manuscript in preparation), confirming the independent
nature of these loci. There was also no indication that DH lines
with the WtmsDW tolerance (Waagan) allele had a sensitive
stage peaking at just beyond the AD range when treatments were
applied (i.e., might have escaped); these lines maintained high
levels of fertility for heat treatments across the AD range of 1 to
12 cm (Supplementary Figures 5C,D).

Some fertility per se QTL effects were detected at WtmsDW
under control conditions, but compared with per se effects
under heat, these were ∼3–10 times weaker in additive
effect for comparable floret types and detected less frequently
(Supplementary Table 2). The occasional effects observed for
control conditions may have been due to a moderately hot
day of 27.2◦C experienced in the greenhouse during booting.
Expression of WtmsDW floret fertility effects therefore seemed
largely limited to heat stress conditions.

Evidence more or less suggested the remaining four
(weaker) fertility response QTL could have been due to escape
(Supplementary Table 2). This evidence seemed weakest for
QTL43 and QTL32. QTL43 (43.2 to 67 cM on linkage group
7A2) showed fertility responses and fertility per se effects under
heat stress and had no developmental effects co-locating with
it (Supplementary Table 2). However, height effects mapped
nearby (at 24.3 to 33.7 cM in the QTL28 region). The floret
fertility response effect at QTL32 (66.1 cM on chromosome 1B)
also mapped close to floret fertility per se effects under heat (at
26.2 cM in the QTL31 region). However, the QTL32 region also
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influenced the degree of awn emergence in tillers on the day
that AD on main stems reached 9 cm, implying that it may have
affected the relationship between spike stage and AD. Additional
work would be needed to validate QTL43 and QTL32 fertility
tolerance effects, including ruling out potential escape artifacts.
However, given the relatively weak effects of these loci (Table 2),
they may not be worth the effort.

The fertility tolerance effects at QTL18 and QTL39 were
much more likely to be due to escape. QTL18 on chromosome
4B affected multiple aspects of development (Supplementary
Table 2; Shirdelmoghanloo et al., 2016). These included flowering
time, time to reach target AD, and AD at maturity, which were
strong indicators of an escape artifact. Likewise, QTL39 was
associated with plant height.

Heat-Response QTL for Other Traits
Elevated temperature cannot only accelerate organ expansion
but also shorten phases of development and enhance senescence
(Parent et al., 2010; Asseng et al., 2011; Hunt et al., 2018). Heat
stress decreased AD and plant height at maturity (Figure 1),
perhaps by truncating the later stage of growth of these organs.
For these two traits, QTL for tolerance genetic effects were
observed at six loci, including Rht-B1 and Rht-D1 (Table 3).
However (except at QTL34), the tolerance alleles were associated
with lower per se value under control (and heat), consistent
with escape, i.e., genotypes with potential for shorter height or
AD had completed more of their potential growth at the time
of reaching the target AD for heat treatment, and hence had
less opportunity to be affected by the heat stress. QTL34 on
chromosome 2A showed a tolerance effect for height but no per
se height effect, raising the possibility that it may have been a
genuine tolerance effect.

Heat stress enhanced spike length at maturity by increasing
rachis internode length but decreased awn length (as measured
from the last glume). QTL9 and QTL29 affected heat responses
of spike length and awn length, respectively, with positive alleles
for heat tolerance effects (conditioning greater positive response
and smaller negative response, respectively) also being positive
for greater length per se of these organs. Elevated temperature
therefore appeared to enhance further the tendency of these
alleles to promote organ length, perhaps because these organs
would have been in a phase of rapid growth during the treatments
(based on comparing target ADs with the data of Browne et al.,
2018). The QTL41 awn length response effect was not associated
with any other trait but was relatively weak.

Typically, a small number of spikelets at the bottom of
the wheat spike are relatively underdeveloped and do not set
grain. Five loci (QTL5.2, 18, 25, and both Rht loci) affected
the tendency of heat treatment to convert such spikelets to a
“developed” state (defined in this study as awns longer than half
the length of those from the middle of the spike; Table 3). Except
at QTL5.2, the alleles that favored this conversion conferred
higher per se numbers of underdeveloped spikelets, probably
reflecting the fact that genotypes with the potential to have higher
numbers of underdeveloped spikelets had more such spikelets
to convert. These loci also affected plant height and/or AD at
maturity, with tall alleles being associated with a lower per se
number of underdeveloped spikelets, suggesting a physiological

link between plant height and the ability of these basal spikelets
to develop further.

QTL29 affected the time interval from target AD to anthesis,
without affecting AD at maturity or flowering time. Heat
magnified the genetic effect, as the Drysdale allele was positive
for both the per se trait in control and heat tolerance effect. It
was surprising that QTL29 showed no fertility response (escape)
effect, as the findings implied it affected the relationship between
spike developmental stage and AD.

QTL30 on chromosome 1A and QTL33 on chromosome
1B only affected heat responses of flowering time. These loci
may represent functionally orthologous genes, since these two
chromosomes are related (orthologous), and the corresponding
positions of the loci were only 25–30 cM apart on the
respective maps, based on BLAST searches with the peak markers
(data not shown).

CONCLUSION

The WtmsDW locus on the short arm of wheat chromosome 2B
defines a major natural variation for responses of male fertility
to heat stress at booting, suggesting WtmsDW-linked markers
may have substantial value in heat tolerance breeding. In lines
carrying the WtmsDW intolerance allele, peaks in sensitivity of
the various different floret positions were defined in relation to
auricle distance. Mapping of height and flowering time traits
proved very useful in identifying when floret fertility response
QTL were likely to be due to escape artifacts. These insights
should be valuable for guiding future efforts to screen for booting
stage heat tolerance in wheat.
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Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) and Leymus mollis Trin.
(2n = 4x = 28, NsNsXmXm) are valuable resources for wheat breeding improvement
as they share the Ns genome, which contains diverse resistance genes. To explore the
behaviors and traits of Ns chromosomes from the two species in wheat background, a
series of wheat–P. huashanica and wheat–L. mollis substitution lines were developed.
In the present study, line DH109 (F7 progeny of wheat–P. huashanica heptaploid line
H8911 × durum wheat Trs-372) and line DM131 (F8 progeny of wheat–L. mollis
octoploid line M842 × durum wheat Trs-372) were selected. Cytological observation
combined with genomic in situ hybridization experiments showed that DH109 and
DM131 each had 20 pairs of wheat chromosomes plus a pair of alien chromosomes (Ns
chromosome), and the pair of alien chromosomes showed stable inheritance. Multiple
molecular markers and wheat 55K SNP array demonstrated that a pair of wheat 3D
chromosome in DH109 and in DM131 was substituted by a pair of P. huashanica 3Ns
chromosome and a pair of L. mollis 3Ns chromosome, respectively. Fluorescence in situ
hybridization (FISH) analysis confirmed that wheat 3D chromosomes were absent from
DH109 and DM131, and chromosomal FISH karyotypes of wheat 3D, P. huashanica
3Ns, and L. mollis 3Ns were different. Moreover, the two lines had many differences
in agronomic traits. Comparing with their wheat parents, DH109 expressed superior
resistance to powdery mildew and fusarium head blight, whereas DM131 had powdery
mildew resistance, longer spike, and more tiller number. Therefore, Ns genome from
P. huashanica and L. mollis might have some different effects. The two novel wheat–alien
substitution lines provide new ideas and resources for disease resistance and high-yield
breeding on further utilization of 3Ns chromosomes of P. huashanica or L. mollis.

Keywords: wheat, Psathyrostachys huashanica, Leymus mollis, Ns genome chromosome, substitution lines
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INTRODUCTION

As one of the three major cereals in the world, common
wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD)
makes tremendous contributions to the development of human
civilizations. The origin of common wheat was the result of
natural distant hybridization between Triticum and Aegilops
(Chantret et al., 2005). It is widely believed that wild relative
species of wheat possess numerous excellent traits, i.e., disease
resistance, stress tolerance, and high productivity, which are
what common wheat needs. Because Barelle did the first
artificial interspecific hybridization in wheat in the early 19th
century and found that offspring had improved adaption
to different environments (Ciferri, 1955), interspecific and
intergeneric hybridization of common wheat were always
important directions for breeders. So far, nearly 90 species
from 14 relative genera of wheat have successfully crossed
with common wheat, and a series of wheat-related species
germplasm resources with outstanding agronomic traits have
been developed (Pauk, 2016). For example, wheat–Secale
cereale 1BL/1RS translocation, 1B (R) substitution, and 4R
addition lines had high productivity and resistance to stripe
rust (Rabinovich, 1998; An et al., 2013); wheat–Haynaldia
villosa 6VS/6AL and 4VS/4DL translocation lines conferred
resistance to wheat powdery mildew and streak mosaic virus,
respectively (Chen et al., 1995; Zhang et al., 2005); wheat–
Thinopyrum ponticum 7Jst (7B) and 1st (1B) + 4St-4Jst (4B)
substitution lines exhibited resistance to wheat stripe rust
(Li et al., 2015; Zhu et al., 2017); and wheat–Agropyron
cristatum 6P addition and 2P translocation lines had high
resistance to wheat powdery mildew (Han et al., 2014;
Jiang et al., 2018).

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs)
belongs to Psathyrostachys Nevski, which is diploid perennial
plant containing approximately 10 species possessing Ns genome
(Baden, 1991; Wang et al., 1994). P. huashanica occurred
only on the stony slopes of Huashan Mountains, Shaanxi
Province, China, and owned numerous excellent traits, such as
resistance to wheat disease (rust, take-all, scab, and powdery
mildew), tolerance to abiotic stress (salinity, alkalinity, and
cold), and early maturation (Baden, 1991; Jing et al., 1999;
Wang and Shang, 2000; Song et al., 2013). The first distant
hybridization between common wheat and P. huashanica was
conducted successfully in our laboratory by Chen (1991) using
embryos culture method. The F1 hybrid H811 (2n = 6x = 28,
ABDNs) as female parent backcrossed with common wheat line
7,182 to generate heptaploid hybrid H8911 (2n = 7x = 49,
AABBDDNs), which was used to self-cross or cross with
other wheat cultivars to develop several wheat–P. huashanica–
derived lines.

Leymus mollis Trin. (2n = 4x = 28, NsNsXmXm) is a
cross-pollinated heterotetraploid perennial species of Leymus
Hochst., and it grows mostly on the coastal beaches. L. mollis
was regarded as a suitable exogenous germplasm for wheat
improvement because of its outstanding traits including long
spikes, full-spikelet, strong stems, immunity to diseases caused
by bacteria and fungi, and high tolerance to saline–alkali soil

(Mujeeb-Kazi and Rodriguez, 1981; Kishii et al., 2003). Distant
hybridization between Leymus and common wheat could date
back to late 1960s (Tsitsin, 1965). Later, the wheat–L. mollis
octoploid derivative line M842–12 (2n = 8x = 56, AABBDDNsNs)
and M842–13 (2n = 8x = 56, AABBDDXmXm) were created
by Fu et al. (1993) via embryo rescue and colchicine treatment.
Subsequently, a series of wheat–L. mollis–derived germplasms
were obtained mainly by using octoploid Tritileymus M842-12 to
cross with wheat cultivars.

The original studies suggested that the genome of Leymus
was from two genera: Thinopyrum Löve (E genome) and
Psathyrostachys Nevski (Ns genome) based on its rhizomatous
growth habit and saline habitat (Dewey, 1984; Löve, 1984). The
existence of Ns genome has been verified using cytogenetic
molecular methods (Wang and Hsiao, 1984; Sun et al., 1995).
But, Zhang and Dvořák (1991) raised question about the presence
of E genome, and they were supported by subsequent studies
from other researchers (Ørgaard and Heslop-Harrison, 1994;
Wang and Jensen, 1994). As the other genome was unknown, the
genome of Leymus was assigned as NsNsXmXm (Xm meaning
the unknown genome) (Wang et al., 1994). However, up to now,
which species of Psathyrostachys Nevski donates the Ns genome
is still unclear.

In the present study, two novel wheat-alien–derived lines were
developed to judge whether P. huashanica was a donator of
Ns genome to Leymus and whether Ns genome chromosomes
from the same homoeology but different genera would express
the same agronomic traits in wheat background. The objectives
of the research were to (a) develop wheat–P. huashanica and
wheat–L. mollis substitution lines, (b) identify inherent stability
and homoeologous group of alien chromosomes in wheat
background, and (c) investigate agronomic and morphologic
traits of two lines.

MATERIALS AND METHODS

Development of Plant Materials
The plant materials used in this study included P. huashanica
Keng (2n = 14, NsNs), L. mollis pilger (2n = 28, NsNsXmXm),
common wheat (2n = 42, AABBDD) lines 7,182, Mingxian169
(MX169), Chinese Spring (CS) and Huixianhong (HXH),
Triticum durum (2n = 28, AABB) line Trs-372, wheat–
P. huashanica disomic substitution line DH109, and wheat–
L. mollis disomic substitution line DM131. DH109 was obtained
from the F7 progeny of wheat–P. huashanica heptaploid
line H8911 × line Trs-372. The hexaploid hybrid H8911
(2n = 49, AABBDDNs) was generated from the cross between
common wheat line 7,182 and P. huashanica. DM131 was
obtained from the F8 progeny of wheat–L. mollis octoploid line
M842 × line Trs-372. The octoploid hybrid M842 (2n = 56,
AABBDDNsNs) was generated from the cross between common
wheat line 7,182 and L. mollis. MX169, CS, and HXH were
susceptible controls in the disease resistance testing. All materials
were deposited at the College of Agronomy, Northwest A&F
University, China. Total genomic DNA was extracted using the
standard CTAB method.
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Cytological Observation
The roots and young spikes were sampled at appropriate stages,
when the lengths of roots and panicles were 1–2 and 5–6 cm,
respectively. Samples were pretreated in an ice–water bath for
24 h before transfer to Carnoy’s fixative fluid I (ethanol: glacial
acetic acid mixture at 3:1, vol/vol) for 24 h and finally to 70%
ethanol and stored at −20◦C. After treatment with 1% cellulase
(Yakult, Japan) and 2% pectinase (Yakult, Japan) at 37◦C for
1 h, the root tips were cleaved into signal cell to facilitate the
observation of chromosomal number and morphology. Anthers
were taken from the middle to both sides of the spike until
target stages and the microsporocytes were stained with 1%
acetocarmine before cytological observations. The slides with
good split phases were dried and marked for the following
experiments. These slides’ preparation for fluorescence in situ
hybridization (FISH) and genomic in situ hybridization (GISH)
analysis was through UV crosslinking (1,250 mj/cm2, 3 min)
which make chromosomes attached on slides. In this process,
the root and spikes were numbered to ensure derivation from
the same one seed. Twelve plants of each line were randomly
selected for cytological screen and in situ hybridization analysis
for 5 consecutive years.

GISH Analysis
In GISH experiment, genomic DNA from alien donor
P. huashanica and L. mollis labeled with DIG-11-dUTP were used
as probes for GISH analysis. After more than 16-h hybridization
in a dark and moist box at 37◦C, anti-digoxigenin fluorescein kit
(Roche, Germany) was used to visualize the combinative zone
of probes, and Vectashield H-1300 (VECTOR, United States)
was used to counterstain the chromosomes. Detailed procedures
could be seen in an article by Zhao et al. (2013). Fluorescent
signals were observed with a microscope (ZEISS Imager M2,
Germany) and imaged (ZEISS ICc5, Germany).

DNA Marker Analysis
Two hundred six pairs of simple sequence repeat (SSR) primers
from each wheat chromosome were selected to determine
the chromosomal composition of DH109 and DM131. SSR
markers included GWM series developed by Röder et al.
(1998), GDM series developed by Pestsova et al. (2000), and
CFA and CFD series developed by Sourdille et al. (2004).
One hundred twenty-four pairs of expressed sequence tag–
sequence tag site (EST-STS) primers1 distributed among seven
wheat homoeologous groups with corresponding chromosomes
of Ns genome were employed to determine the homoeology of
the introduced alien chromosomes in two lines. In addition,
nine pairs of P. huashanica Ns genome–specific sequence
characterized amplified region (SCAR) markers (Chen et al.,
2010; Wang et al., 2014; Su et al., 2015) located in the
1Ns, 3Ns, and 5Ns chromosomes were used for additional
chromosomes verification.

The products of EST-STS and SSR markers experiments
were electrophoresed on 8% non-denaturing polyacrylamide gel
(constant voltage 165 V, 2.5 h) and stained with alkaline-silver

1https://wheat.pw.usda.gov/SNP/new/pcr_primers.shtml

method. The products of SCAR markers were separated on
1% agarose gels (150 V, 0.5 h) and observed using BIO-RAD
chemiDoc XRS+ (ImageLab system, United States). The specific
and parallel bands amplified from the two lines and alien parents
by EST-STS markers were sequenced by Sangon, China, and
aligned using DNAMAN V6.0.3 (Lynnon Biosoft, United States)
and BLAST tool on NCBI2 and URGI3.

FISH and Sequential GISH
In FISH experiment, a pair of fluorescent-modified probes
comprising oligo-pSc119.2 (6-FAM-5′) and oligo-pTa535-1
(TAMRA-5′) (Danilova et al., 2012; Tang et al., 2014) was
used to identify the chromosomal compositions of DH109
and DM131. Homoeologous group of each wheat chromosome
could be distinguished according to fluorescent spots spread on
chromosomal arm. The chromosomal FISH signals of the two
materials were compared with karyotype of Chinese Spring and
Mianyang 11 provided by Tang et al. (2014). Oligo-primers were
dissolved in 1× TE solution to 20 ng/µL. Each slide with mixture
(3 µL pSc119.2, 2 µL pTa535-1, and 5 µL 1 × TE) was put
in a moisturizing black box at 55◦C for more than 3 h. Then,
slides were immersed in a 2 × SSC solution to make coverslip
slip. Vectashield H-1200 (VECTOR, United States) was used to
counterstain the chromosomes. For the sequential GISH, the
slides photographed were soaked in 75% alcohol for 5 min and
exposed to light for 24 h. The protocol of sequential GISH was
the same as provided in GISH analysis. Fluorescent signals were
observed with a microscope (ZEISS Imager M2, Germany) and
imaged (ZEISS ICc5, Germany).

Wheat 55K SNP Array Analysis
Purifying genomic DNA of materials was hybridized to wheat
55K SNP genotyping arrays, and Illumina Bead Array technology
was used for scanning in China Golden Marker Biotechnology
Company (Beijing, China). The wheat 55K SNP array contained
49,078 SNPs, which were distributed across 21 pairs of wheat
chromosomes. The total valid number of markers divided by the
marker number that had the same genotype in a chromosome
between two lines was calculated as the percentage of the
same markers on each chromosome. Excel 2016 (Microsoft,
United States) was used for statistics and analysis of data. Row
picture and chromosome map used SigmaPlot V12.5 (SYSTAT
software, Inc., United States) and MapChart V2.32 (Wageningen
University & Research, Netherlands), respectively.

Evaluation of Disease Resistance and
Agronomic Traits of Materials
Resistance to wheat common diseases [stripe rust, powdery
mildew, and fusarium head blight (FHB)] and agronomic traits
of materials were evaluated for 3 consecutive years (2018–2020)
in Yangling, China. In the field condition, the materials were
arranged separately in a completely randomized block design,
and each material had two rows with 12-cm interval of each plant.
In the incubator, all materials were separated planted in one plug,

2https://blast.ncbi.nlm.nih.gov/Blast.cgi
3https://urgi.versailles.inrae.fr/blast/
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and the controls were in the center and four corners for better
infection. Meanwhile, five plants of each material were arranged
with three replications. For the evaluation of disease resistance, 12
plants of each material were investigated in the same way every
year. For the evaluation of agronomic traits, the average data
based on five samples and three repeats of every year to ensure
that accurate results were obtained.

Six morphological traits comprising the plant height,
tiller number, spike length, spikelet number, kernel number,
and thousand-kernel weight were investigated. Grain quality
indicators of materials, including the kernel protein content,
gluten protein content, starch content, subsidence value, volume
weight, dough stability time, and flour field, were tested by Perten
DA 7250 NIR analyzer (Sweden). Significant analyses between
different materials were conducted using the SPSS Statistics 20
software program (IBM Corp., Armonk, NY, United States).

To access the adult plant resistance to stripe rust of two lines,
three different races of Puccinia striiformis f. sp. tritici (CYR32,
33, 34) were used for artificial inoculation at an appropriate
period. Mixed races were smeared onto the wheat flag leaves of
every experimental material after a drizzle of early spring for
better infection. The susceptible cultivar was Mingxian 169, and
the infection types (ITs) to stripe rust were graded according
to the method provided by Ma et al. (1995). IT was rated on a
scale from 0 to 4, in which 0 and 0 indicate immune and nearly
immune, 1 and 2 denote high resistance and moderate resistance,
and 3 and 4 indicate moderately susceptible and susceptible,
respectively. Each type can be appended with “+” or “−” to
indicate that it is heavier or lighter.

The evaluation of resistance to powdery mildew was
conducted at the seeding stage in a growth chamber. The
Blumeria graminis f. sp. tritici isolate E09 was used for inoculation
when materials were at two-leaf stage, and Huixianhong was
susceptible control. Pathogen spores with high activity were
dusted onto the leaves, and plants were incubated at 22◦C and
70% humidity for 15 days. The ITs to powdery mildew were
scored using the method of Sheng (1988) on five grades, which
were IT = 0 and 0 indicating immune and nearly immune,
IT = 1 and 2 denoting high resistance and moderate resistance,
and 3 and 4 meaning moderately susceptible and susceptible,
respectively. Each type can be appended with “+” or “−” to
indicate that it is heavier or lighter.

The type II resistance to FHB was evaluated at field using
the method of single floret inoculation described by Bai et al.
(1999; 2000). In brief, 10 randomly selected spikes at flowering
period were injected 10 µL of conidial spore suspension into the
floral cavity between the lemma and palea of a single floret in the
middle of one spike. Fusarium graminearum Schwabe strain PH1
was expanded and diluted to 100 spores µL−1 in mung beans
liquid medium. Each inoculated spike was covered with a moist
plastic bag for 2 days, and total spikelets and infected spikelets
were counted at 21 days after injection (Bai, 1996). The infected
grades basing on symptomatic spikelet of entire spike were 1 to 5,
where 1 indicates no extension to cob and 5 means symptomatic
spikelet more than three-fourths of the whole spike. Intermediate
infection grades of spike were represented by 2 (less than 1/4),
3 (1/4 to 1/2), and 4 (1/2 to 3/4). Reaction index (RI, 1–5) and

infected spikelet rate (ISR,%) of materials to FHB were according
to Yang et al. (1998) as follows: RI = 6 (number of spikes at
each infected grade× correspond infected grade)/number of total
spikes, where RI = 1.1–2.0 denotes resistance, 2.1–3.0 denotes
moderate resistance, 3.1–4.0 denotes moderately susceptible, and
4.1–5.0 denotes susceptible); ISR = 6 (infected spikelets/total
spikelets)/number of total spikes.

RESULTS

Observation of Cytogenetics of DH109
and DM131
Part division phases of root tip cells (RTCs) and pollen mother
cells (PMCs) were observed to clarify chromosomal numbers and
pairing. The mitosis metaphase observations indicated that RTCs
of line DH109 (Figure 1A) and line DM131 (Figure 1B) both
had a chromosome number of 42. PMCs in meiotic metaphase
I showed that the DH109 had a chromosome configuration of
21 bivalents without a trivalent or quadrivalent (Figure 1C)
and so had DM131 (Figure 1D). Meiotic anaphase I of PMC
could exhibit segregation of homoeologous chromosomes. In
PMCs of line DH109 (Figure 1E) and line DM131 (Figure 1F),
chromosomes segregated and moved to the cell poles normally
at meiotic anaphase I. These results indicated that DH109 and
DM131 were cytological stable lines with regular chromosome
number and cell division.

GISH Analyses of DH109 and DM131
Genomic in situ hybridization analyses were using the whole
genomic DNA from P. huashanica for DH109 and L. mollis for
DM131 as the probe and common wheat parent as the block to
identify number of alien chromosome in the derived line. The
results of RTCs GISH analysis showed that line DH109 had two
chromosomes from P. huashanica (Figure 2A), and line DM131
had two chromosomes from L. mollis (Figure 2B). GISH analysis
of PMCs in meiotic metaphase I showed that a rod bivalent
with yellow–green signals in DH109 (Figure 2C) and a ring
bivalent with hybridization signal in DM131 (Figure 2D). In
meiotic telophase II, each of the four sperms carried an alien
chromosome in DH109 and DM131 according to Figures 2E,F,
respectively. Mitotic correlative results demonstrated that the two
lines were both disomic substitution lines in which two wheat
chromosomes were substituted by Ns chromosomes, and the
alien chromosomes in DH109 were from P. huashanica and were
from L. mollis in DM131. PMCs’ GISH analysis indicated that the
two substitution lines were cytogenetically stable wheat-alien–
derived lines for the alien chromosomes could pair, segregate, and
inherit normally.

Multiple Molecular Markers Analysis of
DH109 and DM131
Among the 206 pairs of SSR markers spread on 21 pairs of
wheat chromosomes, eight pairs of markers, including barc135,
xcfd64, cxfd223, xgwm52, xgwm314, xgwm456, xgwm497, and
xgwm645 related to wheat 3D chromosomes could amplify wheat
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FIGURE 1 | Cytological observation of root tip cells (RTCs) and pollen mother cells (PMCs). (A) Mitotic metaphase of DH109, 2n = 42. (B) Mitotic metaphase of
DM131, 2n = 42. (C) Meiotic metaphase I of DH109, 2n = 21 II. (D) Meiotic metaphase I of DM131, 2n = 21 II. (E) Meiotic anaphase I of DH109, 2n = 21 + 21.
(F) Meiotic anaphase I of DM131, 2n = 21 + 21. Scale bar, 10 µm.

FIGURE 2 | Genomic in situ hybridization (GISH) analysis of line DH109 and line DM131. GISH analysis of RTCs in the mitotic metaphase. (A) In DH109, two
chromosomes with yellow–green signals were detected as alien chromosomes from P. huashanica. (B) In DM131, two chromosomes with yellow–green signals were
detected as alien chromosomes from L. mollis. GISH analysis of PMCs in the mitotic metaphase. (C) Alien chromosomes formed a rod bivalent with fluorescent
signal in DH109. (D) Alien chromosomes formed a ring bivalent with fluorescent signal in DM131. GISH analysis of gametes in the meiosis telophase II. (E) Each of
the four progeny cells had a fluorescent signal in DH109. (F) Each of the four progeny cells had a fluorescent signal in DM131. Chromosomes were counterstained
with propidium iodide (red). Scale bar, 10 µm.

D genome–specific bands in common wheat 7,182, but not in
durum wheat Trs-372 and two derived lines (Figure 3 and
Table 1). The results indicated that both DH109 and DM131 lost
their wheat 3D chromosomes.

EST-STS markers and SCAR markers could be used to
identify alien chromosomal homoeology in wheat background.
We selected 124 pairs of EST-STS markers that distributed
among seven homoeologous groups. Ten pairs of STS primers
all belonging to the 3rd homoeologous group could amplify

Ns genome–specific bands in two derived lines and alien
parents, whereas these bands could not be amplified in wheat
parents (Figure 4 and Table 1). Among the 10 pairs of
markers, three markers were applicative for P. huashanica
Ns genome, two markers were applicative for L. mollis Ns
genome, and four markers were universal. The polymerase
chain reaction (PCR) results of SCAR markers showed that two
P. huashanica 3Ns genome–specific SCAR markers, i.e., S3-113
and S3-125, amplified unique and clear bands in DH109 and
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FIGURE 3 | Simple sequence repeat (SSR) markers analysis to genotypes
DH109 and DM131. Among 206 pairs of SSR markers, eight pairs of markers
comprising barc135, xcfd64, xcfd223, xgwm52, xgwm314, xgwm456,
xgwm497, and xgwm645 on the wheat 3D chromosomes did not amplify 3D
genome–specific bands in durum wheat Trs-372, DH109, and DM131. Lane
M, DL2000 marker; lane 1, common wheat 7182; lane 2, Trs-372; lane 3,
DH109; lane 4, DM131. Arrows indicate the missing D genome–specific
bands.

P. huashanica (Figure 5 and Table 1), but not in other materials.
These results demonstrated that although 3Ns chromosomes
were introduced into both derived lines, DH109 possessed

P. huashanica 3Ns chromosomes, and DM131 had L. mollis
3Ns chromosomes.

Ns genome–specific bands indicated with arrows in Figure 4
amplified in the two lines and their alien parents by EST-STS
markers BF200774, BF429203, and BM137713 were sequenced.
The results showed that DH109 had identical nucleotide
sequences with P. huashanica, and DM131 was identical
to L. mollis. Sequences from 3Ns chromosome between
P. huashanica and L. mollis have high similarity. Compared
with wheat 21 pairs of chromosomes, these sequences of specific
bands from 3Ns chromosomes only matched with the wheat 3rd
homoeologous group chromosomes (Table 2).

FISH and Sequential GISH Analysis of
DH109 and DM131
Fluorescence in situ hybridization analysis used oligo-primer
pSc119.2 and pTa535-1 (Table 1) to distinguish the substituted
wheat chromosomes in DH109 and DM131 when compared
FISH fluorescent karyotype of the two lines with standard
patterns of common wheat Chinese Spring (Annamaria et al.,
2003; Tang et al., 2014). In line DH109, a pair of chromosomes
with no fluorescent signal replaced wheat 3D chromosomes,
which should have red and green signals (Figure 6A, arrows).
Sequential GISH analysis was conducted in the slide and
indicated that the pair of no-signal chromosomes belonged
to P. huashanica chromosomes (Figure 6B, arrows). In
line DM131, a pair of 3D chromosomes was absent, and
another pair of chromosomes with entirely new karyotype
appeared in wheat background (Figure 6C, arrows). In
sequential GISH experiment, the pair of chromosomes exhibited

TABLE 1 | Molecular markers and FISH oligo-primers used in this study to analyze the chromosomal composition of DH109 and DM131.

Marker Type Primer (5′–3′) Tm (◦C) Location

BE605103 STS F: ACCGACATCACCCATGTCTT, R: CGGCATAGACGGATAGGCT 60 3AL 3BL 3DL

BE637806 STS F: TCGCAGATCTTCGTTGTTTG, R: GGGAATGTGTGGATATTCGG 60 3AS 3BS 3DS

BF291730 STS F: TTAAGAACCCAACCCACAGC, R: AGCAGCGCACGGTATTTACT 60 3AL 3B 3DL

CD452402 STS F: ACATACACCCTCTTGCCGTC, R: GCTTCTTCAAAAGGGCAGTG 60 3AL 3BL 3DL

CD454575 STS F: AAGGGGTACCCGCATAATTC, R: TCTGAGATACCAGGGATGGC 60 3BS 3DS

BF200774 STS F: AGTTCTTCAGCGTGTGCCTT, R: AATGTGGTGTTCATGGGGAT 60 3AL 3BL 3DL

BF429203 STS F: CTTCGTAGCCTCCTCACTGG, R: AGATTATGTGCGTGCTGTGC 60 3AL 3BL 3DL

BM137713 STS F: CTGTCCTTGTAATGGTCCCTG, R: AGGTAAAAGCCGGTTCGGT 60 3AL 3BL 3DL

BG263365 STS F: AACTATCGATGAGATGCGGG, R: GAAGCCTTGGAGACCTCCTT 60 3AL 3BL 3DL

CD454086 STS F: CTCTGTGTGTGGCACTCCAT, R: ATTGCTCGAGATGATGGGTC 60 3AL 3BL 3DL

barc135 SSR F: ATCGCCATCTCCTCTACCA, R: GCGAACCCATGTGCTAAGT 52 3DS

xcfd64 SSR F: ACAGTGTTGTTGCCCCTTTC, R: CCCATGTTACAGCTTTGGGT 60 3DL

xcfd223 SSR F: AAGAGCTACAATGACCAGCAGA, R: GCAGTGTATGTCAGGAGAAGCA 60 3DS

xgwm52 SSR F: CTATGAGGCGGAGGTTGAAG, R: TGCGGTGCTCTTCCATTT 60 3DL

xgwm314 SSR F: AGGAGCTCCTCTGTGCCAC, R: TTCGGGACTCTCTTCCCTG 55 3DS

xgwm456 SSR F: TCTGAACATTACACAACCCTGA, R: TGCTCTCTCTGAACCTGAAGC 55 3DL

xgwm497 SSR F: GTAGTGAAGACAAGGGCATT, R: CCGAAAGTTGGGTGATATAC 55 3DS

Xgwm645 SSR F: TGACCGGAAAAGGGCAGA, R: GCCCCTGCAGGAGTTTAAGT 55 3DL

S3-113 SCAR F: CGAATTGGATTGGCAGAGGGA, R: ACGATCTCCCTACGAATTGCA 60 5Ns

S3-125 SCAR F: GGTGACGAGGGTGTTGGATG, R: AGTGAACCGCATGGGTCTTT 58 5Ns

pSc119.2 Oligo-probe 6-FAM-CCGTTTTGTGGACTATTACTCACCGCTTTGGGGTCCCATAGCTAT 55 –

pTa535-1 Oligo-probe Tamra-AAAAACTTGACGCACGTCACGTACAAATTGGACAAACTCT TTCGG AGTAT CAGGGTTTC 55 –
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FIGURE 4 | Expressed sequence tag–sequence tagged site (EST-STS) markers analysis of DH109 and DM131. Ten pairs of markers all belonging to the 3rd
homoeologous group could amplify Ns genome–specific bands in two derived lines and their alien parents. Among them, marker BE605103, BE637806, and
BF291730 amplified P. huashanica Ns genome–specific bands only in DH109, marker CD452402 and CD454575 amplified L. mollis Ns genome–specific bands only
in DM131 and marker BF200774, BF429203, BM137713, BG263365, and CD454086 amplified Ns genome–specific bands simultaneously in DH109 and DM131.
Lane M, DL2000 marker; lane 1, common wheat 7182; lane 2, Trs-372; lane 3, DH109; lane 4, DM131; lane 5, P. huashanica; lane 6, L. mollis. Arrows indicate the
additional Ns genome–specific bands. P meant P. huashanica Ns genome–specific bands and L meant L. mollis Ns genome–specific bands.

FIGURE 5 | Sequence characterized amplified region (SCAR) markers analysis of DH109 and DM131. SCAR marker S3-113 and S3-125 designed base on
sequences of P. huashanica 3Ns chromosome only amplified bands in DH109 and P. huashanica but not in DM131 and L. mollis. Lane M, DL2000 marker; lane 1,
common wheat 7182; lane 2, Trs-372; lane 3, DH109; lane 4, DM131; lane 5, P. huashanica; lane 6, L. mollis. Arrows indicate the P. huashanica 3Ns
chromosome–specific bands.

hybridization signals, which meant they were chromosomes from
L. mollis (Figure 6D, arrows). Combining with the results of
molecular markers, wheat 3D chromosomes were replaced by

P. huashanica 3Ns chromosomes in DH109 and by L. mollis
3Ns chromosomes in DM131. Therefore, line DH109 was
a wheat–P. huashanica 3Ns (3D) disomic substitution line,
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TABLE 2 | Analysis of the Ns genome–specific bands amplified in DH109 and DM131 by three EST-STS markers.

Adopted markers Chromosomal source
of products

Size of products (bp) GenBank accession
number

Best match with
sequences in wheat

chr (percentage)

Alignment of the two
genomes

BF200774 P. huashanica 3Ns 856 MW114947 3D (87%) 86%

L. mollis 3Ns 864 MW114948 3B (90%)

BF429203 P. huashanica 3Ns 674 MW114949 3A (76%) 74%

L. mollis 3Ns 671 MW114950 3D (83%)

BM137713 P. huashanica 3Ns 464 MW114951 3D (87%) 92%

L. mollis 3Ns 456 MW114952 3D (87%)

Each marker amplified similar-size bands in different genomes.

and line DM131 was a wheat–L. mollis 3Ns (3D) disomic
substitution line.

Wheat 55K SNP Array Analysis of Two
Lines
The wheat 55K SNP arrays were used for comparison of
fingerprints. When compared with their parents, DH109
exhibited higher similarity with shared wheat parent line 7,182
than DM131 in terms of percentage of same SNP loci in 21-pair
chromosomes, and both derived lines showed low similarity with
their respective alien parents (Table 3). There was an obvious
commonality that cross points were in 3D chromosomes in
which two lines had minimum probeset loci allele with wheat
parent but had most of the same allele as their respective alien
parents at corresponding position (Figures 7A,B). To make
comparisons objective, the valid SNPs were arranged in 3D
chromosome basing their physical position (Figures 7C,D). The
results showed that these SNPs distributed evenly on the entire
3D chromosome, and both derived lines expressed more same
alleles in the same positions as their respective alien parents
rather than wheat parent 7,182.

Differences in Diseases Resistance and
Agronomic Traits of DH109 and DM131
The response of materials to wheat stripe rust at adult stage
was tested in the field and all materials grown under the same
condition to ensure the accuracy of results. The ITs of the
seven materials were as follows: susceptible control Mingxian
169 (IT = 4), line 7,182 (IT = 3), Trs-372 (IT = 2), DH109
(IT = 1), DM131 (IT = 2), L. mollis (IT = 0), and P. huashanica
(IT = 0) (Figure 8A). This indicated that the introduced alien
chromosomes did not make the two lines exhibit great resistance
to mixed Pst races (CYR32, 33, 34).

Resistance to powdery mildew was evaluated in growth
chamber in the seedling age and infected using Bst isolate E09.
The ITs of seven materials were as follows: susceptible control
Huixianhong (IT = 4), line 7182 (IT = 3+), Trs-372 (IT = 3),
DH109 (IT = 0), DM131 (IT = 0), L. mollis (IT = 0), and
P. huashanica (IT = 0) (Figure 8B). It is obvious that DH109 and
DM131 were almost immune to inoculated Bst isolate, indicating
that both lines acquired powdery mildew resistance genes from
their alien parent.

The spikelets that kraurotic or covered with mycelium were
considered infected after injection. Among them, only DH109
expressed high FHB resistance (RI = 1.57, ISR = 9.86%);
susceptible control and other materials all had severe symptoms:
CS (RI = 4.87, ISR = 93.87%), 7182 (RI = 4.4, ISR = 70.58%),
Trs-372 (RI = 4.64, ISR = 76.74%), and DM131 (RI = 4.37,
ISR = 80.25%) (Figure 8C). In response to FHB strain PH1,
DH109 and DM131 expressed visible difference that DH109 was
superior to DM131.

The morphological traits of the two substitution lines and their
wheat parents (7182 and Trs-372) could be seen in Figures 8D–F
and Table 4. DH109 and DM131 both exhibited shorter plant
compared with their wheat parents 7182 and Trs-372, but
DH109 had bigger kernels, and DM131 had longer spikes, more
kernels per spike, and tiller number (at p = 0.05 and p = 0.01).
However, grain quality indicators showed that the two lines fell
in between common wheat 7182 and durum wheat Trs-372,
meaning grain quality of DH109 and DM131 had no significant
improvement (Table 5).

DISCUSSION

The most common way to utilize the genome of relative species of
wheat is to create wheat-alien–derived lines, including addition
lines, substitution lines, translocation lines, and introgression
lines, and then cross plus multiple backcross with wheat varieties
to obtain new wheat germplasms containing objective traits of
alien species (Li et al., 2008). The Ns genome consists of seven
homoeologous groups (1–7Ns) that all have been testified useful
for wheat breeding improvement because of many beneficial
genes: leaf rust resistance genes located in 1Ns, 3Ns, and 7Ns
(Du et al., 2012, 2014c; Pang et al., 2014); stripe rust resistance
genes located in 2Ns, 3Ns, 4Ns, 5Ns, and 7Ns (Du et al., 2012,
2014a,b,c; Li J. C. et al., 2019; Li et al., 2020a); powdery mildew
resistance genes located in 1Ns and 5Ns (Han et al., 2020; Li
et al., 2020b); spike characters–related genes located in 4Ns and
6Ns (Du et al., 2013, 2014a); and gluten synthesis–related genes
located in 1Ns, 5Ns, and 6Ns (Zhao et al., 2010; Du et al., 2013;
Li J. C. et al., 2019). Years of research and numerous evidences,
i.e., chromosomal pairing in meiotic stage, molecular markers
studies, southern hybridization, and GISH analysis, all show
that Leymus share the same Ns genome from Psathyrostachys,
whereas Ns genome in Leymus ought to be a mutational version
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FIGURE 6 | Fluorescence in situ hybridization (FISH) and sequential GISH analysis of DH109 and DM131. Oligo-probes pSc119.2 and pTa535-1 were used during
metaphase in RTCs to make the chromosomal composition visible. (A) FISH karyotype of DH109. (B) Two P. huashanica chromosomes with yellow–green signals
were detected by sequential GISH at the same slide. (C) FISH karyotype of DM131. (D) Two L. mollis chromosomes with yellow–green signals were detected by
sequential GISH at the same slide. Chromosomes were counterstained with DAPI (blue) in FISH and PI (red) in GISH. The arrows indicate the introduced alien
chromosomes in the two derived lines. Scale bar, 10 µm.

(Wang et al., 2006; Yen et al., 2009). In the long course
of evolution, variation in genetic material is inevitably large,
which makes species from different genera appear to be closer
than they are within the same genus in the cluster analysis
of the Psathyrostachys–Leymus group according to the results
of restriction fragment length polymorphism (Anamthawat-
Jonsson and Bodvarsdottir, 2001). In this case, are there big
differences in agronomic traits if Ns genome chromosomes
from the same homoeology but different genera are separately

introduced to wheat background? Therefore, wheat alien–derived
lines with the same homoeologous chromosomes were created
for such comparison. In the current study, we developed and
identified two novel wheat–alien substitution lines, which one
carried a pair of P. huashanica 3Ns chromosomes and one
carried a pair of L. mollis 3Ns chromosomes. Both pairs of the
Ns chromosomes are stable and inheritable and caused obvious
changes of their wheat receptor parent in agronomic traits and
disease resistance.
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TABLE 3 | Comparison of wheat 55K SNP array data between the two derived lines and their wheat parent 7182.

Chromosome Number of
valid markers

Number of
same markers

(7182 vs.
DH109)

Percentage of
same markers

(7182 vs.
DH109)

Number of
same markers

(DH109 vs.
P. h.)

Percentage of
same markers

(DH109 vs.
P. h.)

Number of
same markers

(7182 vs.
DM131)

Percentage of
same markers

(7182 vs.
DM131)

Number of
same markers

(DM131 vs.
L. m.)

Percentage of
same markers

(DM131 vs.
L. m.)

1A 2,624 1,521 58.0% 509 19.4% 1,217 46.4% 497 18.9%

1B 2,595 2,138 82.4% 460 17.7% 1,355 52.2% 470 18.1%

1D 2,138 1,839 86.0% 399 18.7% 1,937 90.6% 378 17.7%

2A 2,622 2,259 86.2% 442 16.9% 2,410 91.9% 419 16.0%

2B 2,600 1,775 68.3% 484 18.6% 1,506 57.9% 442 17.0%

2D 2,247 1,397 62.2% 580 25.8% 1,718 76.5% 377 16.8%

3A 2,174 1,444 66.4% 400 18.4% 1,273 58.6% 391 18.0%

3B 2,595 2,213 85.3% 473 18.2% 1,150 44.3% 496 19.1%

3D 1,693 254 15.0% 599 35.4% 241 14.2% 584 34.5%

4A 2,592 1,650 63.7% 493 19.0% 1,561 60.2% 455 17.6%

4B 2,556 2,242 87.7% 454 17.8% 1,036 40.5% 430 16.8%

4D 1,420 955 67.3% 345 24.3% 1,298 91.4% 323 22.7%

5A 2,611 1,900 72.8% 438 16.8% 1,041 39.9% 473 18.1%

5B 2,586 1,266 49.0% 558 21.6% 1,620 62.6% 468 18.1%

5D 1,737 1,499 86.3% 263 15.1% 1,118 64.4% 278 16.0%

6A 2,623 1,342 51.2% 518 19.7% 1,115 42.5% 475 18.1%

6B 2,547 1,290 50.6% 582 22.9% 1,354 53.2% 492 19.3%

6D 1,728 1,120 64.8% 356 20.6% 990 57.3% 303 17.5%

7A 2,579 1,640 63.6% 515 20.0% 1,396 54.1% 520 20.2%

7B 2,487 1,294 52.0% 465 18.7% 1,432 57.6% 531 21.4%

7D 2,305 1,806 78.4% 426 18.5% 1,533 66.5% 426 18.5%

A genome 17,825 11,756 66.0% 3,315 18.6% 10,013 56.2% 3,230 18.1%

B genome 17,966 12,218 68.0% 3,476 19.3% 9,453 52.6% 3,329 18.5%

D genome 13,268 8,870 66.9% 2,968 22.4% 8,835 66.6% 2,669 20.1%

Total 49,059 32,844 66.9% 9,759 19.9% 28,301 57.7% 9,228 6.7%

Classical cytogenetics is a necessary way to give an insight
into chromosomal composition and transmission of materials.
When wheat-alien–derived lines have consistent traits in several
successive years, the compositions and behaviors in their RTCs
and PMCs need to be observed (Cifuentes and Benavente, 2009).
In this study, observations showed that DH109 and DM131 both
had 42 chromosomes in somatic cells, and they could pair up
to form 21 bivalents in meiotic metaphase I. Subsequently, half
of the chromosomes, respectively, moved to cell pole without
lagging in anaphase I. GISH technology was first applied to
identify alien chromosome(s) in wheat in 1989 and improved
by Le et al. (1989) and Mukai and Gill (1991). Since then, the
content and behavior of alien chromosome in wheat background
could be visualized. GISH analysis suggested that DH109 had 40
wheat chromosomes plus two P. huashanica chromosomes, and
the two chromosomes were from one homoeology because of
their behaviors in pairing, segregation, and transmitting. Same as
in DH109, two L. mollis chromosomes in DM131 were from one
homoeology and stably inherited.

We only knew that a pair of wheat chromosomes was
substituted by a pair of alien chromosomes in the two
lines through GISH experiments; therefore, genome-specific
molecular markers were adopted to determine homoeology of
these alien chromosomes and the lost wheat chromosomes.

A wheat–L. mollis 2Ns, 3Ns (2D, 3D) double substitution
line and a wheat–P. huashanica 5Ns (5D) substitution line
were identified by Li J. C. et al. (2019) and Zhao et al.
(2019) using SSR, EST-STS, and SCAR markers. SSR markers
located at a specific position of wheat chromosome could
be regarded as tags for the presence of chromosomes (arms)
(Röder et al., 1998). EST-STS markers were designed from
coding DNA and were generally highly conserved, so they
could be used for comparative genomic studies between distant
species (Kamaluddin et al., 2017). In this study, we found
that SSRs on 3D chromosomes amplified D genome-specific
bands in wheat parent 7182, but not in lines DH109 and
DM131. EST-STSs on the third homoeologous group amplified
Ns genome-specific bands in DH109, DM131, and alien species.
SCARs were designed based on sequences of P. huashanica–
amplified bands only in materials containing P. huashanica
3Ns chromosomes. So, it could be preliminarily determined
that DH109 was a wheat–P. huashanica 3Ns (3D) substitution
line, and DM131 was a wheat–L. mollis 3Ns (3D) substitution
line. It was worth noticing that although EST-STSs and SCARs
from third homoeologous group could be used to identify 3Ns
chromosomes, the target bands might be different in different
species, e.g., P. huashanica and L. mollis, which showed the
same homoeologous chromosomes containing different genetic
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FIGURE 7 | Chromosomal compositions of DH109 and DM131 using wheat 55K SNP array. (A) An obvious crossing point in the position of 3D chromosome
according to percentages of the same SNP loci between DH109 and its parents. (B) Physical positions of the same SNP loci in the 3D chromosome according to
genotype of DH109 with its parents. (C) An obvious crossing point in the position of 3D chromosome according to percentages of the same SNP loci between
DM131 and its parents. (D) Physical positions of the same SNP loci in the 3D chromosome according to genotype of DM131 with its parents.

materials in different genera. Parallel bands sequencing results
indicated that 3rd homoeologous group chromosomes from the
three genera had high homoeology, which mainly showed up
as dispersedly multiple-bases differences rather than continuous
differences in long segments.

Fluorescence in situ hybridization analysis was an efficient
and reliable way to detect structural rearrangements and
replacements of wheat chromosomes because appropriate match
of FISH oligo-probers could distinguish 21 pairs of wheat
chromosomes according to the standard FISH karyotypes
(Huang et al., 2018). The most commonly used FISH probers
were oligo-GAA (A and B genome), oligo-pSc119.2 (B genome),
oligo-pTa535 (A and D genome), and oligo-pAs1 (A and
D genome) (Danilova et al., 2012; Tang et al., 2014). In
today’s study, matching of pSc119.2 and pTa535 was employed,
and the results showed that DH109 and DM131 both lost
their 3D chromosomes but possessed a pair of chromosomes
whose FISH karyotypes were brand new. Therefore, sequential
GISH was conducted to further characterize these exceptional
chromosomes in the same slide. With the results of molecular
markers, the chromosomes with novel karyotypes in DH109
were P. huashanica 3Ns chromosomes and in DM131 were
L. mollis 3Ns chromosomes. Comparing oligo-probe pSc119.2
and pTa535-1 FISH pattern and ideogram of third homoeologous
chromosomes from different genera, big differences could be

seen in Figure 9. It was clear that the terminal part of
chromosome arms exhibited red and green fluorescent signals
in wheat 3D chromosome and red fluorescent signals in
L. mollis 3Ns chromosome. However, none of the signals were
in P. huashanica 3Ns chromosomes. Repetitive sequences have
been estimated to be between 16 and 45% in cereal genome,
which are helpful in differentiating closely related species,
detecting interspecific hybrids and introgressions (Anamthawat-
Jónsson and Heslop-Harrison, 1993). Therefore, the results
demonstrated that the relationship between L. mollis and
Triticum was closer than P. huashanica, and L. mollis had distant
phylogenetic relationship with P. huashanica, which supported
the inferences (i.e., donor species of Ns genome to Leymus was
not P. huashanica) of Bodvarsdottir and Anamthawat-Jonsson
(2003) and Wang et al. (2006) based on their studies of SSR
markers and Southern blot.

Molecular marker-assisted selection has three main categories
comprising markers based on molecular hybridization, e.g.,
restriction fragment length polymorphism and variable number
of tandem repeat; markers based on PCR technology, e.g.,
random amplified polymorphism DNA and SSR; and markers
based on high-throughput DNA sequence, e.g., SNP arrays and
specific-locus amplified fragment sequencing (SLAF-seq) (He
et al., 2003; Varshney et al., 2005; Kamaluddin et al., 2017).
Among them, SNP arrays are likely to be the most important
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FIGURE 8 | Diseases resistance and agronomic traits of DH109 and DM131, their wheat parents, and controls. (A) Symptoms in response to inoculation with a
mixture of Pst races in the adult stage. (B) Symptoms in response to inoculation with a mixture of Bgt isolate E09 in the seeding stage. (C) Spike symptoms after
injection with Fusarium graminearum. (D) Plants of materials. (E) kernels of materials. (F) Spikes of materials. The materials in the Figure are 1, L. mollis; 2,
P. huashanica; 3, control Mingxian 169; 4, control Huixianhong; 5, common wheat 7182; 6, durum wheat Trs-372; 7, line DH109; 8, line DM131.
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TABLE 4 | Morphological traits of common wheat 7182, durum wheat Trs-372, DH109, and DM131.

Material Plant height (cm) Tiller number Spike length (cm) Spikelets per spike Kernels per spike Thousand kernel weight (g)

7182 79.9 ± 3.3Aa 12 ± 2BCbc 9.04 ± 0.59Bb 18 ± 2Bb 55 ± 4Bb 37.78 ± 0.82Bb

Trs-372 70.7 ± 2.6Bb 11 ± 2Cc 6.87 ± 0.4Cc 14 ± 3Cc 39 ± 3Cc 32.18 ± 0.94Cc

DH109 62.3 ± 2.1Cd 14 ± 2Bb 8.5 ± 0.62Bb 17 ± 2BCb 55 ± 3Bb 43.66 ± 0.61Aa

DM131 65.7 ± 1.9Cc 28 ± 2Aa 16.46 ± 1.01Aa 24 ± 3Aa 71 ± 3Aa 38.25 ± 0.82Bb

Different uppercase and lowercase letters indicate significant differences at p < 0.01 and p < 0.05, respectively, between the two substitution lines and their parents.

TABLE 5 | Grain quality results of DH109, DM131, and their wheat parents.

Material Crude protein content Gluten protein content Starch content Subsidence value Volume–weight Dough stability time Flour field

7182 13.04 ± 0.26Cc 25.33 ± 1.01Cc 56.49 ± 0.765Bb 24.41 ± 1.13Cc 788.5 ± 6Aa 2.2 ± 0.7Bc 72 ± 2ABb

Trs-372 16.67 ± 0.45Aa 34.44 ± 0.99Aa 63.79 ± 1.42Aa 41.19 ± 1.07Aa 786 ± 2Aa 6.8 ± 1.6Aa 76 ± 2Aa

DH109 14.47 ± 0.32Bb 34.25 ± 0.57Aa 62.73 ± 0.98Aa 34.85 ± 1.53Bb 754.5 ± 4Bb 4.9 ± 0.3Ab 66 ± 1Cd

DM131 14.3 ± 0.54BCb 30.47 ± 0.61Bb 58.36 ± 0.91Bb 24.695 ± 1.77Cc 757 ± 2Bb 1.4 ± 0.7Bc 68.5 ± 1BCc

Different uppercase and lowercase letters indicate significant differences at p < 0.01 and p < 0.05, respectively, between the two substitution lines and their parents.

FIGURE 9 | FISH karyotype of third homoeologous chromosomes from common wheat 7182, P. huashanica, and L. mollis. (A) FISH karyotype of common wheat
7182 during metaphase and the arrows indicate the wheat 3D chromosomes. (B) FISH karyotypes and idiograms of wheat 3D, P. huashanica 3Ns, and L. mollis 3Ns
chromosomes. Gradation of color indicates the intensity of the fluorescence signal. Scale bar, 10 µm.

tool in gene mapping and study the relationship of species
(Zhou et al., 2018; Zhao et al., 2019). Wheat SNP arrays were
first applied in identification of wheat-alien–derived line by
Li J. C. et al. (2019) and Li et al. (2020b) and successfully
verified two derived lines. In the present study, we compared
the genotype of DH109 with its parents and DM131 with
its parents in each locus of wheat 55K SNPs that spread on
21 chromosomes, respectively. It was consistent with results
from molecular markers and FISH analysis, which showed
DH109 was a wheat–P. huashanica 3Ns (3D) substitution line
and DM131 was a wheat–L. mollis 3Ns (3D) substitution line.
Compared with the results of previous articles of 15K SNP
array in this section, it can be obviously found that low-density
SNP array got higher resolution in substitution-occurred or
translocation-occurred homoeologous group. Therefore, in the
identification of exogenous substances, it might be more efficient
and cheaper to use 15K or 35K SNP arrays rather than 90K or
660K SNP arrays.

The introduction and replacement of alien chromosome(s) or
segment(s), except for B-chromosomes, usually cause changes

in the traits of recipient plant (Camacho et al., 2000;
Jones et al., 2008). In wheat, these changes might be obvious in
morphologic traits, such as plant height (Wang S. W. et al.,
2019) and kernel size (Zhang et al., 2016); they also might
be invisible in resistance or grain quality (He et al., 2017; Li
X.Y. et al., 2019). Unfortunately, not all alien chromosomes
were beneficial to wheat because they might result in worse
agronomic traits, e.g., small spike and less tiller (Wang J.
et al., 2019), and decreased processing quality (Liu et al.,
2004). Therefore, return to breeding requirement, the most
important criterion to access value of one wheat-alien–derived
line, was its agronomic trait. In this study, two substitution
lines DH109 and DM131 both expressed high resistance to
powdery mildew in their seeding age. Moreover, DH109 also
had high FHB resistance and bigger kernels, and DM131 had
longer spike and more tiller number, which were outstanding
agronomic traits for wheat improvement. Although the two
derived lines both possessed a pair of alien chromosomes
that belonged to the 3rd homoeology and named 3Ns, they
had obviously different agronomic traits because DH109 had
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P. huashanica 3Ns chromosomes, and DM131 had L. mollis
3Ns chromosomes. The chromosomal recombination and
crossing with durum wheat Trs-372 might cause individual
difference even in the same generation; for example, DH109
was more like common wheat 7182 in plant type, and
DM131 was more like durum wheat Trs-372 in grain quality.
However, enhanced/increased disease resistance and some
excellent traits are most likely caused by introduction of alien
chromosomes. Relatively large differences in agronomic traits
between DH109 and DM131 supported that there were many
different genes in Ns genome between P. huashanica and
L. mollis.

CONCLUSION

In this study, a novel wheat–P. huashanica disomic substitution
line named DH109 and a novel wheat–L. mollis disomic
substitution line named DM131 were identified by using
molecular and cytogenetic methods. Although both two lines
were developed because of the substitution of exogenetic
3Ns chromosomes and wheat 3D chromosomes, they were
obviously different in bands of molecular markers, FISH
karyotype and agronomic traits. Thus, Ns genome from
P. huashanica and L. mollis had big differences. Furthermore,
after multiple generation advancement, the two lines have
been stable in morphology and genetics. Line DH109
expressed superior resistance to powdery mildew and FHB,
and line DM131 had powdery mildew resistance, longer
spike, and more tiller number. Therefore, the two lines could
have different preferences toward wheat breeding and Ns
genome research.
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Multi-parent Advanced Generation Inter-crosses (MAGIC) lines have mosaic genomes
that are generated shuffling the genetic material of the founder parents following pre-
defined crossing schemes. In cereal crops, these experimental populations have been
extensively used to investigate the genetic bases of several traits and dissect the genetic
bases of epistasis. In plants, genomic prediction models are usually fitted using either
diverse panels of mostly unrelated accessions or individuals of biparental families and
several empirical analyses have been conducted to evaluate the predictive ability of
models fitted to these populations using different traits. In this paper, we constructed,
genotyped and evaluated a barley MAGIC population of 352 individuals developed with
a diverse set of eight founder parents showing contrasting phenotypes for grain yield.
We combined phenotypic and genotypic information of this MAGIC population to fit
several genomic prediction models which were cross-validated to conduct empirical
analyses aimed at examining the predictive ability of these models varying the sizes
of training populations. Moreover, several methods to optimize the composition of the
training population were also applied to this MAGIC population and cross-validated to
estimate the resulting predictive ability. Finally, extensive phenotypic data generated in
field trials organized across an ample range of water regimes and climatic conditions
in the Mediterranean were used to fit and cross-validate multi-environment genomic
prediction models including G×E interaction, using both genomic best linear unbiased
prediction and reproducing kernel Hilbert space along with a non-linear Gaussian Kernel.
Overall, our empirical analyses showed that genomic prediction models trained with a
limited number of MAGIC lines can be used to predict grain yield with values of predictive
ability that vary from 0.25 to 0.60 and that beyond QTL mapping and analysis of epistatic
effects, MAGIC population might be used to successfully fit genomic prediction models.
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We concluded that for grain yield, the single-environment genomic prediction models
examined in this study are equivalent in terms of predictive ability while, in general,
multi-environment models that explicitly split marker effects in main and environmental-
specific effects outperform simpler multi-environment models.

Keywords: genomic prediction, MAGIC, barley, GBLUP, genotype x environment interaction

INTRODUCTION

The experimental design that underlies Multi-parent Advanced
Generation Intercrosses (MAGIC) populations traces its origins
to the advanced inter-cross lines, which were originally developed
in animal model species (Yalcin et al., 2005). MAGIC populations
are developed crossing multiple inbred parents or founders,
which are subsequently inter-mated several times following pre-
defined crossing schemes to shuffle founder genomes in each
single line (Huang et al., 2015). In plants, MAGIC populations
have been explicitly developed for genetic research purposes as
they allow to increase power and precision for detecting and
mapping quantitative trait loci (QTLs) (Cavanagh et al., 2008;
Huang et al., 2015; Scott et al., 2020). Theoretically, MAGIC
populations have the potential to dissect the genetic bases of
complex traits at sub-centimorgan scale, allowing to overcome
common issues related to the use of biparental families for QTL
mapping and detection such as low-resolution power, low genetic
diversity of parents and limited number of recombination events
(Valdar et al., 2006). In cereal crops, MAGIC populations have
been developed and established for rice (Bandillo et al., 2013;
Ponce et al., 2018), bread wheat (Mackay et al., 2014; Sannemann
et al., 2018; Stadlmeier et al., 2018), maize (Dell’Acqua et al., 2015;
Jiménez-Galindo et al., 2019) and barley (Mathew et al., 2018)
and to date they have been deployed for unraveling the genetic
bases of biotic and abiotic stresses, grain yield (GY) and seed
quality traits. Beyond the aforementioned applications, barley
MAGIC populations have been recently exploited to disentangle
the effect of epistasis on flowering time (Mathew et al., 2018;
Sannemann et al., 2018; Afsharyan et al., 2020).

Similarly to MAGIC, the theory underlying genomic
prediction (GP) was originally developed and deployed in
animal species. The pivotal component of GP is a population
of individuals having phenotypic and genotypic information,
which is known as training population (TP) and is used to
regress genome-wide single nucleotide polymorphisms (SNPs)
or other types of DNA markers on phenotypes to simultaneously
predict their effects (Meuwissen et al., 2001), that is for training
GP models. Trained GP models are subsequently used in
combination with the genotypic information of candidate
individuals that must be selected for computing their genomic

Abbreviations: DH, Days-to Heading; PH, Plant Height; GY, Grain Yield;
MAGIC, Multi-parent Advanced Generation Inter-crosses; TP, Training
Population; BP, Breeding Population; GP, Genomic Prediction; GBLUP, Genomic
Best Linear Unbiased Prediction; RKHS, Reproducing Kernel Hilbert Space;
GK, Gaussian Kernel; LD, Linkage Disequilibrium; PCA, Principal Component
Analysis; QTL, Quantitative Trait Locus; GEBV, Genomic Estimated Breeding
Value; SNP, Single Nucleotide Polymorphism; SE-GP, Single Environment
Genomic Prediction; ME-GP, Multi Environment Genomic Prediction.

estimated breeding values (GEBVs) and ranking them to apply
truncation selection (Meuwissen et al., 2001; Heffner et al.,
2009). This latter population of candidate individuals having
only genotypic information is known as breeding population
(BP) (Meuwissen et al., 2001; Heffner et al., 2009). To date,
GP has been largely applied for crop improvement fitting GP
models trained with individuals from either biparental families
or diversity panels of mostly unrelated accessions. As the
genetic relatedness of TP and BP affects the prediction ability
of GP models (Ben Hassen et al., 2018; Norman et al., 2018),
these two approaches have profound differences in terms of
versatility as DNA marker effects estimated on diversity panels
have the potential of a broader applicability and might be used
in different breeding programs (Bassi et al., 2015), while GP
models trained with individuals of biparental families can allow
to accurately predict the performance of offspring produced
within the same cross.

Typically, GP models require to regress a number of predictors
(DNA markers) that greatly exceeds the number of observations
or phenotypes and several parametric and non-parametric
models have been proposed to deal with overfitting and the
“large p, small n” problem (Meuwissen et al., 2001; Jannink et al.,
2010; Pérez and de los Campos, 2014) as in these conditions
the estimation of marker effects using ordinary least squares
method is not practicable. A commonly used solution is to
estimate marker effects jointly using the Least Absolute Shrinkage
and Selection Operator (LASSO) method (Tishbirani, 1996) and
its Bayesian counterpart (Bayesian Lasso or BL), which uses
a penalizing or regularization parameter (λ) that denotes the
amount of shrinkage for regressing markers (De Los Campos
et al., 2009). Other popular whole genome regression methods
based on Bayesian theory are BayesA and BayesB (Meuwissen
et al., 2001), which relax the assumption of common variance
across marker effects adopted in other models (e.g., ridge
regression) and allow each marker to have its own variance.
Differently to BayesA, BayesB allows having markers with no
effects in the model and theoretically assumes more realistic
conditions as it is plausible that a large fraction of genome-
wide markers does not contribute to explaining the observed
phenotypic variance. Beyond these methods, whole genome
regression based on reproducing kernel Hilbert space (RKHS) has
been proposed and applied to implement GP models (Gianola
and Van Kaam, 2008; Gota and Gianola, 2014). In the RKHS
regression, a reproducing kernel, that is any positive definite
function for mapping from pairs of points in input space to other
pairs of points, is used to transform DNA markers of individuals
in square distance matrix that are used in a linear model (Gota
and Gianola, 2014). The Gaussian Kernel (GK) is one of the
most common function used as reproducing kernel and depends
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on the bandwidth (or smoothing) parameter h that controls
the decay rate of the kernel as two points step away. Several
studies have shown that the use of GK in combination with
RKHS improves the prediction of genetic values if the bandwidth
parameter h is correctly chosen (Pérez-Elizalde et al., 2015).
Moreover as RKHS regression does not assume linearity, this
model might allow to better capture non-additive effects without
explicitly including epistatic interactions and dominance in GP
models (Gianola and Van Kaam, 2008). Differently from methods
based on whole genome regression of markers, the genomic
best linear unbiased prediction (GBLUP) method treats genomic
values of individuals as random effects in a linear mixed model
and uses a genomic relationship matrix based on DNA marker
data to compute GEBVs (VanRaden, 2008; Wang et al., 2018).
Notably, the use of RKHS along with the genomic relationship
matrix is equivalent to the mixed linear model of GBLUP, that
is GBLUP method represents a special case of RKHS regression
(Gota and Gianola, 2014).

The effectiveness of GP depends, among other factors, on the
degree of correlation between GEBVs and true genetic values
that is the predictive ability of the model. In practice, the
predictive ability is evaluated using the Pearson’s correlation
coefficient between GEBVs and the realized phenotypes or other
estimators (e.g., adjusted means). To date several empirical
studies have been conducted for fitting GP models on biparental
populations and panels of mostly unrelated accessions across
different species and traits, which point out that, depending
on the genetic architecture of the trait, each statistical model
has its own advantages and disadvantages in term of predictive
ability and estimation of marker effects (Heslot et al., 2012; Ben
Hassen et al., 2018). Other factors that strongly influence the
predictive ability are the size of the TP, its structure, and its
relatedness with the BP (Desta and Ortiz, 2014). Several targeted
and untargeted methods have been developed to optimize the
composition of TP for maximizing the predictive ability for a
given set of individuals (Rincent et al., 2012; Akdemir et al., 2015).
Nevertheless, these methods generally generate trait-dependent
TPs which might hamper the implementation of these procedures
in real breeding programs.

The first objective of the present study was to create a
new barley MAGIC population using a diverse founder set
of old and new 6-rowed, winter cultivars showing contrasting
GY, which was examined across an ample range of site-by-
season combinations characterized by different temperature
and precipitation patterns. The second objective of this
study was to combine data collected across these field trials
with genotypic information to fit different single-environment
genomic prediction (SE-GP) and multi environment genomic
prediction (ME-GP) models for empirically assessing the
predictive ability in multi-parent populations. Moreover, we
applied different untargeted optimization methods to this
MAGIC population for assembling and benchmarking the
performance of optimized TPs. Fitting SE-GP and ME-GP
models to MAGIC lines, we aimed at broadening the use of
these experimental populations beyond classical QTL mapping
and analysis of epistatic effects for sustaining and accelerating
barley breeding.

MATERIALS AND METHODS

Development of the Barley MAGIC
Population
The MAGIC population used in this study was developed using
a founder set of eight 6-rowed barley genotypes with a winter
growth habit, which were selected on the basis of their pedigrees
and similarity in days-to-heading (DH) (Table 1). At the first
stage of MAGIC development, four F1 populations were created
crossing one of the four old 6-rowed barley varieties (Hatif
de Grignon, Dea, Robur and Athene) with one of the four 6-
rowed modern barley varieties (Ponente, Ketos, Aldebaran and
Fridericus). At the second stage of MAGIC development, half-
diallel crosses of these four F1 individuals were carried out to
generate six sets of plants. Finally, these six sets of genotypes,
each of which contained the alleles of four out eight founder
parents, were appropriately crossed in predefined funnel schemes
to combine the genome of the eight founders in single lines.
Differently from the original crossing schemes developed for
constructing MAGIC populations (Cavanagh et al., 2008), instead
of recursively self-fertilizing these plants for several generations,
seeds of the eight-way inter-crosses were sent to an external lab
(SAATEN-UNION GmbH, Germany) to generate 352 inbred
MAGIC lines using doubled haploid technology.

Field Trials and Plant Phenotyping
The MAGIC population of 352 inbred individuals and the
eight founder parents (Table 1) were sown during the fall of
two consecutive growing seasons (2015–2016 and 2016–2017)
in Fiorenzuola d’Arda (Italy) at CREA-Centro di Genomica e
Bioinformatica (44◦55′39.0"N 9◦53′40.6"E, 78 m above sea level),
using an alpha-lattice design with two-replicates. The whole set
of MAGIC and the founder parents were also sown during the
fall of 2015–2016 growing season in Marchouch (Morocco) at the
Experimental station (33◦36′43.5" N 6◦42′53.0"W, 390 m above
sea level) of the “International Center for Agricultural Research
in the Dry Areas” using the same experimental design. Similarly,
the subset of 82 MAGIC lines included in the optimized TP (TP-
Diverse) and the eight founder parents were sown during the
fall in 2017–2018 and 2018–2019 growing seasons in Fiorenzuola
d’Arda under two different levels of nitrogen fertilization using
alpha lattice experimental designs with two replicates. Trials
conducted under ideal nitrogen conditions were fertilized with
100 kg/ha of nitrogen applied in two doses: 50 kg/ha were used
at the sowing and 50 kg/ha were applied at the stem elongation
stage. Field trials conducted under low nitrogen conditions
received 50 kg/ha of nitrogen, 25 of which were applied at
sowing while the remaining amount was applied at the stem
elongation stage. In the growing season 2018–2019, other two
field trials were conducted in Konya (Turkey) (37◦53′37.9"N
32◦37′26.0"E, 1,005 m above sea level) and in Adana (Turkey)
(36◦59′52.9"N 35◦20′28.0"E, 24 m above sea level) to phenotype
the optimized TP (TP-Diverse) using the same experimental
design. For each trial considered in this study, plots of three
square meters and a sowing density of 350 seeds per square meter
were adopted, respectively. Local check cultivars were included
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TABLE 1 | Founder set of barley varieties that were intermated for creating the barley MAGIC population.

Genotype Year of release Country of release Pedigree DH (days) PH (cm) GY (t/ha)

Hatif de Grignon 1937 France Selection from French
landraces

208.3 95.9 4.1

Dea 1953 Germany [(Ragusa x Peragis12) × (Heils
Franken × Frw.Berg)] x
[(Ragusa × Mahnd.Viktoria)
(Ragusa × Bolivia)]

212.1 95.3 6.0

Robur 1973 France Ager × (Hatif de
Grignon × Ares)

208.3 78.8 6.3

Athene 1977 Germany (Herfodia × Hord.sp.nigrum
H204) × (Madru x
Weissenhaus-Stamm)

211.5 94.0 6.0

Ponente 2001 Italy (Vetulkio × Arma) × Express 209.7 85.0 6.3

Ketos 2002 France (Gotic x
Orblonde) × (12813 × 91H595)

208.6 81.9 6.8

Aldebaran 2003 Italy Rebelle × Jaidor 208.5 83.0 7.2

Fridericus 2006 Germany Carola × LP 6–564 211.6 89.3 7.3

For each genotype of the founder set, the adjusted means of days to heading (DH), plant height (PH) and grain yield (GY) scored in eight different trials were reported
along with available pedigree information.

as internal checks in all experiments to compare phenotypes with
trait observations collected in past seasons. Common protocols
were adopted for each trial to phenotype plant genotypes for GY
and DH. Phenotyping of MAGIC lines for GY was conducted as
follows: from each plot grains were collected using a combine
harvester and the total grain weight recorded in each plot was
converted in tons per hectare. DH was measured as the number
of days between sowing date and the date of heading stage,
which was defined when 50% of the plants in a plot were at
Zadoks’ 55 growth stage (Zadoks et al., 1974). For each trial,
phenotypic data of GY used in GP models were centered by
subtracting the overall mean and standardized dividing by the
sample standard deviation.

Statistical Models for Computing the
Adjusted Means of GY
The adjusted means of GY were computed in each site-by-season
combination and across environments including DH as fixed
covariate using the approach described in Emrich et al., 2008.
The resulting model for computing the adjusted means of GY
collected in field trials organized according to alpha-lattice design
was:

yijk = 1µ+ Repi + Blockj(Repi)+ Genk + DHk + eijk (1)

where yijk is the response variable, that is the raw GY, µ is the
general mean, Repi is the effect of the ith replicate, Blockj(Repi)
is the effect of the jth incomplete block within the ith replicate,
Genk is the random effect of the kth genotype and DH is the
effect of “Days-to-heading” covariate measured in each plot.
In this model it is supposed that the random effects of Genk
follow a normal distribution with mean 0 and variance σ2

g , that

is Genk ∼ NIID
(

0, σ2
g

)
, and similarly, the residual terms eijk

are normally distributed with mean 0 and variance equals to
σ2, that is eijk ∼ NIID(0, σ2). The adjusted GY values obtained
predicting the random terms Genk from the aforementioned

model were used as phenotypes for training GP models. The
linear mixed model reported in Equation 1 was fitted for each
site-by-season combination using R 3.6.2 statistical environment
and lme4 package (Bates et al., 2015) and variance components
of fitted models were used to compute broad sense heritability
(H2) of GY.

Genotyping of Genetic Materials
DNA was extracted from plant leaves using the Macherey
Nagel Plant II extraction kit (Macherey Nagel, Dueren,
Germany) and analyzed using gel electrophoresis and Quant-
iTTM PicoGreenTM dsDNA Assay Kit (ThermoFisher, Grand
Island, NY, United States) following manufacturer’s instructions
to assess quality and concentration, respectively. DNA samples
were shipped to a propel-certified service provider (Trait
Genetics GmbH, Gatersleben, Germany) and fingerprinted using
the Illumina Infinium technology along with the Barley 50 k
iSelect SNP Array (Bayer et al., 2017). To update the physical
positions of SNP markers interrogated with the Barley 50 k
iSelect SNP Array, probe sets used to design this array were
mapped against the new reference sequence of barley (Monat
et al., 2019). The raw genotyping table was imported in R
software using “synbreed” package (Wimmer et al., 2012) to
filter out markers with more than 10% of missing data and
impute remaining missing data using Beagle 4.1 (Browning
and Browning, 2016). 20 random leaf samples from field trials
organized in Adana and Marchouch were genotyped using
Illumina Infinium technology and Barley 50 k iSelect SNP Array
to assess whether mislabelling of genotypes occurred during
phenotyping operations and data collection.

Clustering and Linkage Disequilibrium
Analyses of the MAGIC Population
Principal component analysis was used to assess the diversity of
the whole MAGIC population and was carried on imputed SNP
data of the 352 MAGIC lines and the eight founders using ade4
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package along with R version 3.6.2 (Thioulouse et al., 2018; R
Core Team, 2019)., 2018). The first two principal components
were used to visualize the dispersion of MAGIC lines in a graph.
Linkage disequilibrium between pairs of markers was measured
using r2 (Hill and Robertson, 2008) in the subset of MAGIC
genotypes included in the optimized TP and computed using
Plink 1.9 software (Purcell et al., 2007; Chang et al., 2015).r2

values showing p-values above 0.001 were filtered out, while the
remaining pairwise r2 values were imported and examined with
a custom script developed for R 3.6.2 (R Core Team, 2019) to
compute the mean r2 in 100 kb windows, which was plotted in R
3.6.2 using ggplot2 package (Wickham, 2016).

Statistical Models Used for Fitting SE-GP
SE-GP models were fitted using BayesA, BayesB and BL models
(Tishbirani, 1996; Meuwissen et al., 2001; Park and Casella,
2008). Moreover, RKHS regression models were fitted using
a linear GBLUP kernel (GB) and a non-linear GK (Gianola
and Van Kaam, 2008; Gota and Gianola, 2014). For the GK,
that is K

(
xi, x

′

i

)
= e−(h∗d

2
ii
′), where d2

ii
′ points out the squared

Euclidean distance between individuals i and i
′

, the rate of decay
imposed by the bandwidth parameter h, was estimated using
an empirical Bayesian methodology (Pérez-Elizalde et al., 2015)
modifying published R codes (Cuevas et al., 2016).

Statistical Models Used for Fitting
ME-GP
Beyond SE-GP models, the adjusted means of GY computed
across different site-by-season combinations were fitted to three
previously described ME-GP models. Following the model
nomenclature reported in Bandeira e Sousa et al. (2017), these
three models were indicated in this study as “multi-environment,
main genotypic effect” (MM) model (Jarquín et al., 2014;
López-Cruz et al., 2015; Bandeira e Sousa et al., 2017), “multi-
environment, single variance G×E deviation model” (MDs)
(Jarquín et al., 2014; Bandeira e Sousa et al., 2017) and the “multi-
environment, environment-specific variance G×E deviation
model” (MDe) (López-Cruz et al., 2015; Bandeira e Sousa
et al., 2017). Site-by-season combinations were considered as
environments in MM, MDs and MDe regression models, which
are briefly defined and summarized as follows. In the MM model,
environments were considered as fixed effects while the random
genetic effects were considered constant across all environments
without modeling marker x environment interactions. Following
matrix notation, the MM regression model is defined as follows:

y = 1µ+ Zeβe + Zuu+ ε (2)

where y is the vector of observations collected in all
environments, is the overall mean, Ze is the incidence matrix
that connects observed phenotypes to the environments in
which they were measured, βe is the vector of environmental
fixed effects that must be estimated, Zu is an incidence matrix
connecting genotypes with phenotypes for each environment,
u is the vector of random genetic effects that must be predicted
while ε is a vector of model residuals. In this model, marker

genetic effects are assumed as u ∼ N
(

0, σ2
µ0K

)
, that is, they

follow a multivariate normal distribution with mean and
variance-covariance matrix equal to zero and σ2

µ0K, respectively.
The term σ2

µ0 of the variance-covariance matrix is the variance
of additive genetic effects across environments, while K can be
either a genomic relationship matrix (VanRaden, 2008) or a
kernel function as discussed below. Model residuals of the vector
are assumed to be independent and normally distributed with
null mean and variance equal toσ2

e , that isε ∼ N
(
0, Iσ2

e
)
, where I

points out the identity matrix. Overall, the MM regression model
estimates marker effects across all environments and does not
split them in main marker effects and in environmental-specific
effects as in MDs and MDe models. As already substantiated in
López-Cruz et al. (2015), for balanced field trial designs, MM is
equivalent to fitting a genomic regression model using the average
performance of each line across environments as phenotype.

Differently from the MM model, the MDe model allows
markers to assume different effects in each jth environment
(López-Cruz et al., 2015; Bandeira e Sousa et al., 2017), and
consequently allows to account for marker x environment
interactions. This model assumes that the effects of the jth
environments, and the effects of markers are separated into
two components, which are the main effect of markers for all
environments, names as b0k, and the peculiar random effect bik,
of the markers in each jth environment, that is the effects of
marker x environment interactions (López-Cruz et al., 2015).
Consequently, in MDe models, the effect of the kth marker on the
jth environment (βjk) is described as the sum of an effect common
to all environments (b0k), plus a random deviation (bik) peculiar
to the jth environment, that is βjk = b0k + bik.

Following matrix notation, the MDe regression model is
defined as follows:

y = 1µ+ Zeβe + Zuuo + uE + ε (3)

where, Ze, e have the same meaning of the MM regression model,
uo represents the main effect of markers across all environments
with a variance–covariance structure similar to MM model, that
is, uN(0,σ2

µ0K). As pointed out by López-Cruz et al. (2015) σ2
µ0 is

common to all environments, and the borrowing of information
among environments is generated through the kernel matrix
K. uE points out the specific effects of marker x environment
interactions, which follow a multi-variate normal distribution
with null mean and a variance–covariance matrix KE, that is,
uEN(0,KE). For j environments, the variance-covariance matrix
KE is defined as follows:

Ke =



σ2
µE1K1 · · · 0 · · · 0

...
. . .

...
. . .

...

0 · · · σ2
µEmKm · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · σ2
µEjKj


As explained in Bandeira e Sousa et al. (2017), KE can be
discomposed as a sum of j matrices, one for each j environment.
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Consequently, the interaction term uE can be decomposed in j
environmental specific effects to transform equation 3 as follows:

y = 1µ+ Zeβe + Zuu0 + uE1 + uE2 + uE3

+...+ uEj + ε (4)

where each interaction effect uEj has a normal distribution with
null mean and a variance-covariance structure σ2

µ EjKj.
Starting from the MM regression model, the MDs model

adds the random interaction effect of the environments with the
genetic information of the lines pointed out with ue. Following
matrix notation, the MDs modes is described as follows:

y = 1µ+ Zeβe + Zuu+ ue+ ε (5)

where, Ze, βe, Zu, u and ε have the same meaning of the
MM regression model. As substantiated in Jarquín et al.
(2014) the interaction term ue has a multi-variate normal
distribution with null mean and variance-covariance matrix
equal to

[
ZuKZ

′

u

]◦ [
ZEZ

′

e

]
, where the Haddamar product

operator denotes the element to element product between the two
matrices in the same order.

In the present study, MM, MDs and MDe regression models
were fitted using either the linear GB kernel method (VanRaden,
2008) or the non-linear GK method (Bandeira e Sousa et al.,
2017). For the linear GB kernel method, the matrix K of the
aforementioned models was the genomic relationship matrix
and was computed as K =

(
XX
′

p

)
(VanRaden, 2008), where

X is the standardized matrix of molecular markers for the
individuals, of order n by p; where n and p are the number
of observations and the number of markers, respectively. For
GK method, the matrix K of MM, MDs and MDe regression
models was computed as Kj

(
xij, x

′

ij

)
= e−(hj∗d

2
ii
′) where d2

ii
′

is the squared Euclidean distance of the markers genotypes
in individuals i and i′’ for the jth environment. Similarly to
SE-GP models, the bandwidth parameter h was computed
using an empirical Bayes method (Pérez-Elizalde et al., 2015;
Cuevas et al., 2016).

MM, MDs and MDe regression models used in this study
were fitted using BGLR package 1.08 (Pérez and de los Campos,
2014) in R 3.6.2 statistical environment, adapting scripts provided
in the framework of other studies (Bandeira e Sousa et al.,
2017). For each model implemented in this study, predictions
were based on 500,000 iterations collected after discarding
10,000 iterations for burn-in period-and using a thinning
interval of five iterations. Trace plots for each of the variance
parameters were created to assess whether the number of burn-in
iterations was sufficient.

Optimization of the TPs
In this study three different untargeted optimization criteria
based on coefficient of determination (Laloe, 1993), predictive
error variance (Rincent et al., 2012) and rScore (Ou and
Liao, 2019) were used to assemble three corresponding TPs,

each of which groups a set of 90 MAGIC individuals. The R
package TSDFGS (Ou and Liao, 2019) was used to assemble
these three optimized TPs using the aforementioned criteria.
A fourth empirical untargeted optimization criterion was
adopted for assembling another TP from the whole MAGIC
population and aimed at maximizing the average distance
between each selected accession and the closest other line
using the modified Roger’s distance (Thachuk et al., 2009).
This criterion was implemented in R 3.6.2 using the heuristic
algorithm implemented in the package Core Hunter3 (De
Beukelaer et al., 2018) and was used to select a subset of
82 out 352 MAGIC individuals along with the eight MAGIC
founder parents.

Cross Validation Schemes
In this study several cross-validation (CV) schemes were
adopted for estimating the predictive ability of GP models
along with their standard errors (Burgueño et al., 2012;
Gianola and Schon, 2016). For estimating the predictive
ability of SE-GP models implemented with BayesA, BayesB,
Bayesian Lasso, GB and RKHS with GK, cross validation
was carried out using 100 repeated random partitioning of
MAGIC population into training and validation sets. Using
increasingly larger TPs of 80, 90, 100, 110, 120, 130, 140,
150, and 160 individuals, CV schemes were applied to
compute mean and standard deviation of predictive ability
for each TP size. Totally 4,500 models were fitted to carry
out this CV experiment, combining the five statistical models
with the aforementioned dimensions of the TP and 100
repeated random partitioning of MAGIC in training and
validation sets.

Cross-validation of SE-GP models fitted using optimized
TPs was carried out using the standard leave-one-out (LOO)
strategy to estimate their predictive ability (Gianola and
Schon, 2016). Basically, using LOO strategy, N GP models
are fitted using N-1 individuals excluding recursively one
individual from the TP and the GEBV of the excluded line
is predicted from a model trained using all other lines. In
our LOO experiment, this was carried out separately for each
group of 90 lines included in the optimized TPs, and the
accuracy of these predictions was calculated as the Pearson’s
correlation coefficient between GEBVs and the corresponding
adjusted means of GY.

The predictive ability of ME-GP models was assessed
using cross-validation 1 (CV1) and cross-validation 2 (CV2)
schemes (Burgueño et al., 2012), assigning 90% of lines to
the training set and the remaining 10% to the validation set.
In both CV schemes, all the parameters of the MM, MDs
and MDe regression models were recursively re-estimated in
each of 100 random partitions. For each random partitioning,
models were fitted using genotypes included in the training
sets and the predictive ability was computed as the Pearson’s
correlation coefficient between GEBVs and the corresponding
adjusted means of GY. Overall, 100 Pearson’s correlations were
computed for each model and the mean and standard deviation
of these values were computed to estimate the predictive
ability of GP models.
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RESULTS

Development of the Barley MAGIC
Population
The barley genotypes included in the founder set of MAGIC
were examined in field trials organized in height site-by-season
combinations in Italy, Germany and Scotland (Xu et al., 2018) for
assessing the diversity of European cultivars for GY, plant height
and DH. These field trials showed that the founder set, which
includes four elite and four old barley varieties with different
genetic background, exhibits limited variation of DH values
(Table 1). Following a modified version of the standard crossing
design (Huang et al., 2015), this founder set was intermated to
create an eight-way MAGIC population of 352 individuals, which
were subsequently genotyped to assess the contribution of each
founder parent to the mosaic genome of each line.

Estimating the Predictive Ability of GP
Models as a Function of TP Size
In GP models, the variation of predictive ability as a function
of the TP size has been empirically investigated on segregating
families and in collections of mostly unrelated accessions
(Norman et al., 2018). Here, we investigated the relationship
between TP size and the predictive ability of different GP
statistical models fitted to the barley MAGIC population. To
carry out this analysis, the whole panel of 352 MAGIC lines
and the founder parents were genotyped using the Barley 50 k
iSelect SNP Array (Bayer et al., 2017). SNPs with more than
10% of missing data were discarded, while the remaining missing
genotypes were imputed using the algorithm implemented in
BEAGLE (Browning and Browning, 2016). This procedure
allowed to identify 19,723 polymorphic SNPs, which were
combined to the adjusted means (BLUPs) of GY computed in
three site-by-season combinations (Table 2) to fit and cross-
validate SE-GP models. Overall, five different whole genome
regression methods based on BayesA, BayesB, BL, GB and RKHS
fitted with the non-linear GK (Gianola and Van Kaam, 2008;
Gota and Gianola, 2014; Cuevas et al., 2016; Crossa et al.,
2017) were compared.

These aforementioned SE-GP models were fitted to the
MAGIC population and cross-validated for estimating the trend
of predictive ability as a function of TP size (Figure 1).
Specifically, CV was implemented randomly partitioning 100
times the whole panel of MAGIC lines in a TP and in a validating
population (VP). Overall, nine different CV experiments were
carried out, using TP sizes of 80, 90, 100, 110, 120, 130, 140,
150, and 160 MAGIC lines and the remaining genotypes as VPs
(Figure 1). The CV of these GP models points out that in the
three site-by-season combinations (Table 2), GB, GK, BayesA,
BayesB and BL show comparable predictive abilities across the
entire range of TP sizes considered (Figure 1). Moreover, these
CV experiments point out that in temperate locations (Fio16IN,
Fio17IN, Table 2), the predictive ability of SE-GP models exceeds
0.50 even using TPs of 80 or 90 individuals (Figure 1), while in the
harsh and pre-desertic environment of Mar16IN (Table 2), it does
not exceed 0.25 and shows larger standard deviation. Varying the

size of TPs from 80 to 160 individuals slightly increases the values
of predictive ability for GY in the remaining individuals of the
MAGIC population (Figure 1 and Supplementary Table 1) as
already substantiated in other GP models fitted using collection
of mostly unrelated genotypes (Norman et al., 2018). Overall, this
empirical analysis shows that 80 or 90 MAGIC individuals are
sufficient to fit SE-GP models yielding high values of predictive
ability and that larger TPs do not significantly improve the
predictive ability of GP models either in temperate or stressful
environments (Figure 1 and Supplementary Table 1).

Designing Optimized TPs of MAGIC
The predictive ability of GP models fitted in collection of mostly
unrelated accessions and in biparental populations depends
on the size of TP, the genome distribution and number of
molecular markers used for whole genome regression, the genetic
composition of TP and its genetic relationship with the BP
(Heffner et al., 2009; Jannink et al., 2010; Desta and Ortiz,
2014; Berro et al., 2019). Particularly, it was assessed that using
a large reference panel of accessions, the predictive ability of
GP models can be improved increasing the diversity of the
TPs (Norman et al., 2018). Along with these empirical findings,
several statistical criteria and algorithms have been proposed to
optimize TPs for maximizing predictive ability using reference
panels of accessions or sets of advanced lines (Akdemir et al.,
2015; Berro et al., 2019; Ou and Liao, 2019).

Here, we examined three different untargeted optimization
criteria based on the coefficient of determination (CD_mean)
(Laloe, 1993), prediction error variance (PEV) (Rincent et al.,
2012) and rScore (Ou and Liao, 2019) and benchmarked them
against a method that samples a diverse TP from the whole
MAGIC population using SNP markers (Figure 2). The rationale
of this latter method is to maximize the average distance,
computed using the modified Roger’s method, between each
selected accession and the closest other genotype (Thachuk
et al., 2009). This criterion, named entry-to-nearest entry
was maximized with a heuristic algorithm to construct a
highly diverse TP in which all MAGIC lines are maximally
different (De Beukelaer et al., 2018). The TP assembled
with this latter untargeted optimization criterion, named “TP-
Diverse” (Figure 2), was constructed using the panel of 19,723
polymorphic SNPs detected in the whole MAGIC population,
and was subsequently used as optimized TP and benchmarked
to TPs assembled using CD_mean, PEV and rScore optimization
methods (Figure 2).

Following this “TP-Diverse” optimization, our procedure led
to identify a set of 82 MAGIC lines as the smallest population
subset fulfilling the aforementioned criterion, which was used as
TP along with the eight founder parents. Overall, when applied
to MAGIC populations, the four optimized TPs spawned similar
predictive abilities across the three site-by-season combinations
(Figure 2) and consequently the genetic makeup of this TP
was further investigated. The genetic relationships between TP-
Diverse and the remaining MAGIC lines was assessed conducting
a principal component analysis (PCA) on genetic data, which
pointed out that the first two principal components explain
22.3 and 5.5 percent of the total genetic variability of the
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FIGURE 1 | CV of different SE-GP models fitted to GY measured in the MAGIC population. Bars report the values of predictive ability for GY computed in
(A) Fio16IN, (B) Fio17IN, and (C) Mar16IN. Bars of different colors point out values of predictive ability computed using GB, GK, BayesA, BayesB and BL models as
a function of TP sizes, while the error bars point out the standard deviation of predictive ability values.

TABLE 2 | Field trials carried out for phenotyping the whole MAGIC population and the founder set for GY.

Acronym Site Country Growing season Populations Traits

Fio16IN Fiorenzuola d’Arda Italy 2015–2016 352 MAGIC and the founder set DH, GY

Fio17IN Fiorenzuola d’Arda Italy 2016–2017 352 MAGIC and the founder set DH, GY

Mar16IN Marchouch Morocco 2015–2016 352 MAGIC and founder set DH, GY

MAGIC population, respectively (Figure 3). PCA shows three
main clusters of MAGIC lines and corroborates that individuals
included in the TP-Diverse are representative of the whole
diversity of MAGIC lines (red points).

In segregating families and collections of mostly unrelated
accessions, a large number of molecular markers is often needed
to capture the effects of all QTLs or alternatively, strong linkage
disequilibrium (LD) between markers and causative variants that
control the traits of interest is desirable to achieve high values of
predictive ability in GP (Lorenzana and Bernardo, 2009; Heffner
et al., 2011; Norman et al., 2018). Consequently, the extent of LD
was investigated in TP-Diverse to assess its correlation with the
predictive ability values of GP models. Firstly, SNP markers of
the barley 50 K SNP chip used to fingerprint the whole MAGIC
population were lifted over to the new barley reference sequence
(Monat et al., 2019) and secondly, the average extent of r2 was
computed for each barley chromosome. Overall, a large fraction
of the 44,040 SNPs of the barley 50 k SNP chip were lifted
over and 18,248 out 19,723 polymorphic SNPs unambiguously
mapped to the reference sequence of barley (Supplementary
Table 2) were used to estimate the decay of average LD computed
in bins of 100 kb (Figure 4). This analysis indicated that across

the seven barley chromosomes r2 decays relatively slowly as
SNPs mapped more than 10 Mbp apart show r2 values of circa
0.2, while the average r2 values of markers within 1 MB or
less exceed 0.4 (Figure 4). Considering the average number of
markers per chromosome (Supplementary Table 2), the levels
of LD measured in TP-Diverse are sufficiently high and higher
marker densities might not significantly increase the predictive
ability of GP models fitted in our MAGIC population of barley
as empirically observed in other crops (Norman et al., 2018).
Overall, the predictive ability values obtained with GP models
fitted with the three optimization methods are substantially
equivalent to the prediction accuracy obtained with TP-Diverse
(Figure 2) and consequently this latter TP was chosen for fitting
further single- and multi-environment GP models.

Using the Optimized TP for Fitting SE-GP
and ME-GP Models
Field trials of TP-Diverse were organized in nine site-by-
season combinations and phenotypic data for GY and DH
were collected using common phenotyping protocols, while the
remaining set of MAGIC lines were used in Fio16IN, Fio17IN

Frontiers in Plant Science | www.frontiersin.org 8 May 2021 | Volume 12 | Article 66414875

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-664148 May 19, 2021 Time: 18:24 # 9

Puglisi et al. Genomic Prediction in MAGIC Populations

FIGURE 2 | Benchmarking of different methods for optimizing TPs of MAGIC. Bars of different colors report the values of predictive ability obtained with GP models
fitted using CD_mean (CD), prediction error variance (PEV), rScore and Diverse optimization criteria. The error bars of each plot point out the standard deviation of
the predictive ability values.

FIGURE 3 | Principal component analysis (PCA) of the MAGIC population based on 19,723 SNPs. The first two axes of PCA explain 22.3 and 5.5% of the total
variability, respectively. Red points represent the subset of MAGIC lines included in TP-Diverse, while green points represent the remaining MAGIC lines.

and Mar16IN as VP (Table 3). Alpha-lattice experimental
designs were adopted for all field trials and mixed linear
models were used to compute adjusted means of GY and
broad sense heritability (H2) for each site-by-season combination
considering genotypes as random variables (BLUPs) (Table 3).
This analysis indicated that H2 varies significantly across the
nine field trials and spans from 0.805 in Kon19IN to 0.122
in Mar16IN (Table 3). The adjusted means of GY were
subsequently used as phenotypes for fitting GP models along with
genotypic information.

To assess the performance of MAGIC lines included in
TP-Diverse, across different locations and years, a pairwise
correlation analysis of the adjusted means of GY computed
in the nine site-by-season combinations considered in this

study was carried out (Figure 5). The correlations of GY
across environments spanned from −0.030 to 0.553 and, as
expected, values were higher between field trials carried out
in the same environments but in different years, while lower
values were observed among Mar16IN and other site-by-season
combinations, corroborating the hypothesis that the climatic
peculiarity of this environment imposes higher levels of stress to
MAGIC lines (Figure 5). Similarly, the adjusted means of GY
computed in Fio18LN exhibited lower correlation values with
other site-by-season combinations (Figure 5). These adjusted
means of GY were used to train SE-GP and ME-GP models using
“TP-Diverse.” For each site-by-season combination, phenotypic
and genotypic data were standardized, and nine different SE-GP
models were fitted using GB and GK statistical models (Table 4).
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FIGURE 4 | Extent of the average linkage disequilibrium in TP-Diverse. For each barley chromosome, each point shows the average r2 computed in 100 kb
windows as a function of marker distance.

TABLE 3 | Summary of field trials carried out for phenotyping TP and VP for GY.

Acronym Site Country Growing season Populations H2

Fio16IN Fiorenzuola d’Arda Italy 2015–2016 TP and VP 0.660

Fio17IN Fiorenzuola d’Arda Italy 2016–2017 TP and VP 0.472

Fio18IN Fiorenzuola d’Arda Italy 2017–2018 TP 0.532

Fio18LN Fiorenzuola d’Arda–Low Nitrogen Italy 2017–2018 TP 0.395

Fio19IN Fiorenzuola d’Arda Italy 2018–2019 TP 0.652

Fio19LN Fiorenzuola d’Arda–Low Nitrogen Italy 2018–2019 TP 0.663

Mar16IN Marchouch Morocco 2015–2016 TP and VP 0.122

Ada19IN Adana Turkey 2018–2019 TP 0.737

Kon19IN Konya Turkey 2018–2019 TP 0.805

For each site-by-season combination, the estimates of broad sense heritability (H2) of GY were reported. H2 was computed for the whole panel of MAGIC lines for
Fio16IN, Fio17IN and Mar16IN.

As expected after standardization, for models fitted using GB, the
summation of variance components was circa 1 (Table 4), while
the distribution of the residuals after fitting all GP models to
the nine site-by-season combinations was approximately normal.
The analysis of variance components of SE-GP models showed
that the values of error variance in GK models are lower than
those obtained for the corresponding GB models (Table 4), and
similarly in GK models the values of genetic component variance

are always higher than the corresponding quantities computed
for GB models (Table 4).

The adjusted means of GY computed at the nine site-by-
season combinations were used to fit ME-GP, particularly three
models were fitted, which were named “Multi-environment,
main genotypic effect” (MM), “Multi-environment, single
variance GxE deviation” (MDs) (Jarquín et al., 2014) and “Multi-
environment, environment specific variance GxE deviation”
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FIGURE 5 | Pairwise correlations of GY obtained in the nine site-by-season combinations for TP and VP. Numbers reported in black, red, and blue on the upper
graph show pairwise Pearson correlations computed between adjusted means of GY for the whole set of lines tested, TP and VP, respectively. The lower graph
shows scatter plots of GY adjusted means computed in pairs of site-by-season combinations.

TABLE 4 | Variance components of SE-GP models fitted using GBLUP (GB) and GK statistical model.

Site-by-season combination GB GK

Genetic effect variance Residual variance Genetic effect variance Residual variance

Kon19IN 0.586 (0.010) 0.557 (0.045) 0.660 (0.016) 0.489 (0.068)

Mar16IN 0.467 (0.089) 0.719 (0.067) 0.590 (0.013) 0.588 (0.078)

Fio18IN 0.491 (0.059) 0.560 (0.029) 0.632 (0.086) 0.455 (0.043)

Fio18LN 0.412 (0.048) 0.752 (0.050) 0.544 (0.000) 0.611 (0.069)

Fio17IN 0.537 (0.072) 0.480 (0.016) 0.655 (0.084) 0.417 (0.041)

Fio16IN 0.618 (0.066) 0.336 (0.094) 0.680 (0.065) 0.348 (0.011)

Ada19IN 0.561 (0.086) 0.543 (0.036) 0.654 (0.019) 0.498 (0.070)

Fio19IN 0.480 (0.079) 0.651 (0.049) 0.659 (0.005) 0.469 (0.054)

Fio19LN 0.479 (0.058) 0.566 (0.024) 0.632 (0.083) 0.446 (0.041)

For each site-by-season combination, the estimated variance components of genetic effects and residuals fitted with GB and GK models are reported, while bracketed
numbers point out the corresponding standard deviation.

(MDe) (López-Cruz et al., 2015) following recent model
nomenclature (Bandeira e Sousa et al., 2017). Similarly to SE-
GP models, MM, MDs, and MDe models were fitted using GB
and GK methods and totally six model method combinations
were used to fit multi-environment predictions. The analysis
of variance components showed that for all three models
(MM, MDs, and MDe), GK methods exhibit lower values of
the estimated residual variances pointing out a better model
fitting (Table 5). Moreover, model comparisons showed that
the inclusion of the interaction term (GxE) in MDe model
induces a reduction in the estimated residual variance for GY
compared to MM models either using GB or GK methods, but

MDs models fitted better the data compared to MDe. For the
MDe models, the residual variance components of MDe-GK
were smaller than those of the MDe-GB, whereas the estimated
variance components for the genetic main effect and genetic
environment specific effect variances were higher for the GK than
for the GB (Table 5).

Predictive Ability of ME-GP Models With
GB and GK Methods
The predictive ability of MM, MDs, and MDe models
implemented using GB and GK methods was estimated
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with cross-validation 1 (CV1) and cross-validation 2 (CV2)
schemes using 100 random partitions. For each of the six
multi-environment model-method combinations, the values of
predictive ability for CV1 and CV2 schemes were obtained for
the set of 100 random partitions, which were used to compute the
average predictive ability and the associated standard deviation.
Overall, CV2 showed that in four site-by-season combinations
(Fio16IN, Fio17IN, Fio19IN, and Fio19LN) the predictive ability
is generally higher and exceed 0.70 for certain ME-GP models,
while for Mar16IN the six model-method combinations exhibit,
on average, the lowest values of predictive ability as for this
site-by-season combination the lowest values of 0.161 and 0.236
were observed for MM-GB and MDs-GK models, respectively
(Figure 6 and Supplementary Table 3).

As in most of the case, the standard deviations associated to
the values of predictive ability were overlapping (Figures 6, 7),
Welch’s t-tests were applied to determine whether pairwise
comparisons of predictive ability values obtained with ME-GP
models were statistically different (Supplementary Figures 1, 2).
CV2 experiments showed that in Fio17IN the values of predictive
ability computed with the six-model method combinations were
comparable except for MM-GB, which was significantly lower
than the predictive ability of MDs-GK, while in Fio16IN the

TABLE 5 | Variance components of ME-GP models fitted using GBLUP (GB) and
RKHS along with the Gaussian Kernel (GK) methods.

Component Environment GB GK

Multi-environment, main genotypic effect (MM) model

Residual (σ2
e ) – 0.758 (0.047) 0.746 (0.045)

Genetic main effect
(σ2

µ0)
– 0.249 (0.069) 0.373 (0.088)

Multi-environment, single variance GxE deviation (MDs) model

Residual (σ2
e ) – 0.516 (0.056) 0.389 (0.071)

Genetic main effect
(σ2

u0)
– 0.281 (0.077) 0.374 (0.089)

Genetic interaction
effect (σ2

ue)
– 0.247 (0.066) 0.589 (0.140)

Multi-environment, environment specific variance GxE deviation

(MDe) model

Residual (σ2
e ) – 0.602 (0.016) 0.592 (0.018)

Genetic main effect
(σ2

u0)
– 0.292 (0.026) 0.402 (0.031)

Genetic environment
specific effect (σ2

uEj )
Ada19IN 0.251 (0.054) 0.353 (0.083)

Fio16IN 0.035 (0.027) 0.054 (0.046)

Fio17IN 0.010 (0.066) 0.024 (0.023)

Fio18LN 0.062 (0.054) 0.116 (0.085)

Fio18IN 0.007 (0.006) 0.018 (0.015)

Mar16IN 0.549 (0.085) 0.873 (0.122)

Kon19IN 0.217 (0.050) 0.312 (0.079)

Fio19LN 0.008 (0.007) 0.053 (0.018)

Fio19IN 0.004 (0.003) 0.055 (0.011)

For each of the three regression models (MM, MDs and MDe), the estimated
variance components fitted with GB and GK methods are reported, while
bracketed numbers point out the corresponding standard deviation of variance
component estimates.

predictive ability of MM-GK was significantly lower than the
predictive ability obtained with the remaining model-method
combinations (Figure 6 and Supplementary Figure 2). In
Fio16IN, CV2 showed that MDe-GB and MDe-GK have similar
performance and significantly higher values of predictive ability
compared to MM models, either implemented with GB or
GK statistical methods (Figure 6, Supplementary Table 3,
and Supplementary Figure 2). In Ada19IN the best model
predictive ability using CV2 scheme was obtained with MDe-
GB, while for Fio18LN the best values of predictive ability
were obtained with MDe-GB and MDs-GB models. Overall,
CV2 experiments indicated that in four out nine site-by-season
combinations (Fio16IN, Fio17IN, Fio18IN, and Mar16IN) MDe-
GB and MDe-GK models have higher values of predictive ability
compared to MM models, either implemented with GB or
GK statistical methods (Figure 6, Supplementary Table 3, and
Supplementary Figure 2). Differently, Fio19IN, Fio19LN, and
Kon19IN deviate from this trend as for these site-by-season
combinations the values of predictive ability for MM models
were higher (Supplementary Table 3). In Fio19IN, MM-GB and
MM-GK had the higher predictive ability values along with MDe-
GK, while for Fio19LN the higher value of predictive ability was
found for MM-GB.

The values of predictive ability obtained for random CV1
decreased (Figure 7 and Supplementary Table 4) as compared
with those computed for CV2 for all models. Similarly to the
results obtained for CV2, CV1 experiments indicated that in
four site-by-season combinations (Fio16IN, Fio17IN, Fio18IN,
and Fio19LN) the predictive ability of GP-ME models is
generally higher than the values of predictive ability observed
in other site-by-season combinations for all models. MDs-GB
and MD-GK yielded the higher values of predictive ability
in Ada19IN, Fio16IN, and Fio17IN, respectively. In Fio18IN,
Fio18LN, Mar16IN, and Fio19LN, the higher predictive ability
values were found for MM-GK, although in this latter site-by-
season combination the accuracy of MDe-GK does not differ
significantly (Supplementary Figure 1). In Fio19IN, the highest
values of predictive ability were obtained for MDe-GB and MD-
GK models (Figure 7 and Supplementary Figure 1).

DISCUSSION

Broadening the Use of MAGIC
Populations for Plant Breeding
Multi-parent Advanced Generation Intercrosses populations
were conceived to improve precision and efficiency of QTL
mapping in plants and animals as they allow overcoming
limitations of biparental populations and association mapping
panels (Huang et al., 2015). In cereal crops, these experimental
populations have been extensively used for research purpose and
contributed to dissecting the genetic bases of several traits among
which biotic stress resistance (Stadlmeier et al., 2018; Jiménez-
Galindo et al., 2019; Riaz et al., 2020), GY, grain quality (Zaw et al.,
2019) and DH (Afsharyan et al., 2020). Recently, these genomic
resources have been established in barley to investigate the effects
of epistasis and environmental interactions on flowering time
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FIGURE 6 | Bar plots of the predictive ability values obtained with CV2. Bar plots show the mean correlation between observed and predicted values of GY obtained
with 100 random CV2 partitions for MM, MDs and MDe models implemented with GBLUP (GB) and Gaussian Kernel (GK) methods. Error bars point out the
standard deviation of predictive ability values.

(Mathew et al., 2018; Afsharyan et al., 2020), further broadening
the original scope for which they were devised.

In the present study, we constructed a new MAGIC
population shuffling alleles of winter 6-rowed barley varieties,
and demonstrated that, along with biparental populations
and collections of mostly unrelated accessions, these genomic
resources might be used to train GP models with high predictive
ability and might speed up barley breeding. Under this point
of view, the large number of MAGIC populations developed
in the last years in several crops (Kover et al., 2009; Rebetzke
et al., 2014; Mathew et al., 2018; Stadlmeier et al., 2018) can
be considered as untapped resources that would contribute to
further strengthening and stimulating the application of GP
in plant breeding. On the other side, de novo creation of
MAGIC populations to train GP models for actual breeding
purposes is hampered because of their time consuming and
costly development, which requires to intermate and self-fertilize
the founder parents for several cycles. The results presented
in this study show that these limitations might be softened
using doubled haploid technology, which allows to short self-
fertilization stages to obtain fully homozygous lines. Similarly,

speed breeding might contribute to accelerating the development
of new MAGIC populations (Watson et al., 2018).

To examine the genetic relationship between the whole
set of MAGIC and the subset of lines included in the “TP-
Diverse,” a PCA was carried out using 19,723 SNPs, which
detected genetic structure in the MAGIC population and three
main clusters of individuals. The nature of these clusters is
unclear, but it is plausible that they might reflect subgroups
of individuals showing segregation distortion for one or more
founders. In our eight-way MAGIC population, the expected
segregation rate of the eight founder haplotypes is 1:1:1:1:1:1:1:1,
but the haplotypes of some founders (e.g., Dea) deviate from
the expected ratio (Data not shown). Segregation distortion is
a common phenomenon that occurs in MAGIC populations as
pointed out in other studies (Sannemann et al., 2018). Although
this did not hamper our ability to train GP models with this
population, this phenomenon might explain the genetic structure
pointed out with PCA.

Overall, the use of SE-GP and ME-GP models trained with
MAGIC populations might find effective applications when the
diversity of BPs originates from the same parents included in
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FIGURE 7 | Bar plots of the predictive ability values obtained with CV1. Bar plots show the mean correlation between observed and predicted values of GY obtained
with 100 random CV1 partitions for MM, MDs, and MDe models implemented with GBLUP (GB) and Gaussian Kernel (GK) methods. Error bars point out the
standard deviation of predictive ability values.

the founder set. In this case, GP models based on MAGIC
populations might be applied to select the best offspring from
crosses obtained with the MAGIC founders.

Benchmarking of Different TPs to
Improve the Predictive Ability of GP
Models
The composition of TPs and their genetic relationship with
BPs affect the predictive ability of GP models as pointed
out in several studies (Desta and Ortiz, 2014; Norman et al.,
2018; Edwards et al., 2019) and to date several algorithms for
optimizing TPs have been developed to increase the predictive
ability of GP models (Akdemir et al., 2015). Untargeted and
targeted optimization criteria based on GBLUP have been so
far developed and tested in biparental populations and panel
of mostly unrelated accessions. Nevertheless, the use of these
optimization methods in actual breeding programs is hampered
as the optimization process can lead to different optimized TP
per each trait of interest. These optimization algorithms require
a priori information (knowledge of the BP genotypes and traits

for which GP models must be developed) and output trait-
dependent TPs (Akdemir et al., 2015). Moreover, in real breeding
programs, BPs change over time and it might be difficult to
implement these optimization procedures. Previous studies have
shown that the relatedness between TPs and BPs has a large
impact on the predictive ability of GP models, which can be
improved increasing the genetic diversity of TPs (Norman et al.,
2018). In fact, when the TP exhibits a narrow genetic diversity,
low values of the predictive ability are often obtained in GP
as it becomes impossible to predict all the marker effects that
contribute to determining the phenotypic variations (Norman
et al., 2018). Following these empirical findings, in this study we
assembled a TP of 90 barley genotypes, which was named “TP-
Diverse,” maximizing the genetic diversity among MAGIC lines
and assessing its predictive ability using random CV schemes.
Surprisingly, the predictive ability obtained with TP-Diverse was
comparable with the predictive ability of GP models trained with
the other three optimized TPs used in this study (Figure 2).
One of the main advantages of using this approach is that the
criterion adopted to assemble “TP-Diverse” depends only on
genetic data and does not generate trait-dependent TPs. On the
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other side, in this study we have not developed mathematical
models to demonstrate or justify the rationale of this empirical
criterion and consequently its validity should be further validated
in other studies.

Fitting SE-GP and ME-GP Models Using
the MAGIC Population of Barley
Several empirical analyses have been conducted to benchmark
the predictive ability of different GP models in barley, maize
and wheat panels of mostly unrelated accessions, biparental
populations of A. thaliana and diallel crosses of maize and
wheat to predict GY and other traits (Heslot et al., 2012).
In this study, we presented another empirical analysis to
assess the most promising GP models for MAGIC populations,
implementing CV schemes for estimating the standard deviation
of predictive ability values.

Three out five models fitted in this study (BayesA, BayesB,
and BL) belong to the group of so called “Bayesian alphabet,”
which denotes Bayesian linear regressions that differ in their
prior density distribution (Gianola, 2013). In these Bayesian
regression models, the prior density distribution assigned to
marker effects controls the shrinkage of estimates and then
different priors induce different types of shrinkage of marker
effects. In the original description both BayesA and BayesB
were introduced as hierarchical structures (Meuwissen et al.,
2001) and it was later demonstrated that BayesA adopts a scaled
t-distribution prior, while BayesB adopts priors that are mixtures
of a peak in the vicinity of zero and of a continuous density
priors (e.g., t, or normal density distribution) (Gianola et al.,
2009). BL adopts a double exponential prior density distribution,
which behaves similar to that of BayesA as both priors used
in these models do not allow marker effects to be equal to
zero and shrink estimates of the remaining marker effects.
While the priors adopted in BL and BayesA prevent to have
marker effects equal to zero, the prior used in BayesB allows
to have null marker effects. The rationale of this prior is that
in GP many markers might have a null contribution to the
observed phenotypic variation. Although marker effects might
be estimated differently, the predictive ability of the Bayesian
models fitted in this study does not differ significantly (Figure 1).
Moreover, our empirical analysis shows that the predictive ability
of Bayesian models fitted to MAGIC populations is comparable
with that of GB and GK models (Figure 1). Several empirical
analyses have been carried out in cereal crops to highlight
advantages and limits of different whole genome regression
methods. In rice, SE-GP models fitted with BayesA, GB, and
GK for three traits were compared using a reference panel of
284 accessions under different linkage disequilibrium scenarios
(Ben Hassen et al., 2018). These results showed that under high
linkage disequilibrium scenarios GK models slightly outperform
GB in terms of prediction ability. Differently, when a subset
of rice reference panel was used to predict the performance
of 97 advanced lined derived from biparental crosses, GK and
GB prediction ability showed comparable results for the three
traits considered (Ben Hassen et al., 2018). Anyway, the results
obtained in this study are limited to one (complex) trait and it

might plausible that for simpler traits GP models fitted in MAGIC
might have different trend of the predictive ability.

Beyond SE-GP models, in this study we used the MAGIC
population of barley to fit three different ME-GP models, two of
which (MDs and MDe models) include terms for incorporating
GxE interaction. In plant breeding, multi-environment field
trials are routinely carried out to evaluate and exploit GxE
interaction as it contributes to creating high-yielding genotypes.
Consequently, modeling GxE interaction in GP has the potential
to differentiate marker effects. MDe models used in this study
(López-Cruz et al., 2015; Bandeira e Sousa et al., 2017) partition
marker effects in main effects, that is effects that are stable
across environments and environment-specific effects, that is
interaction effects between markers and specific genotypes. As
pointed out in other studies, MDe models are known to be more
efficient when used along with sets of environments that have
positive correlations. This limit arises as the pairwise correlation
between environments is represented by the variance of the main
marker effects, which in turn forces the co-variance between a
pair of environments to be positive (López-Cruz et al., 2015;
Bandeira e Sousa et al., 2017). This requirement is not trivial
and might not allow to fit correctly MDe models. In our study,
the adjusted means of GY in Mar16IN showed low or negative
correlation with the other site-by-season combinations tested in
this study and this might be the reason for which we have found
that MDs models fit better the data, particularly when used in
combination with the non-linear GK.

GP models based on reproducing kernel Hilbert Space along
with the non-linear GK have the potential to capture non-
additive genetic effects and potentially might outperform GB
in terms of model fitting and predictive ability. In maize and
wheat, comparison between the same GP models fitted with
GB and the nonlinear GK for GY, unveiled that the latter
method outperforms GB in terms of predictive ability in both
single environment and multi-environment models (Cuevas
et al., 2016; Bandeira e Sousa et al., 2017). In cereal crops, GY
is a complex trait controlled by nonlinearity effects between
genotypes and phenotypes owing to epistasis, environmental
interactions (Bandeira e Sousa et al., 2017; Cuevas et al., 2018)
and other interactions that are not considered in standard
quantitative genetic models (Gianola et al., 2006). GK models
have the potential to capture small and complex interactions,
which are more evident in quantitative traits and this can
explain the higher prediction ability of GK for GY. The empirical
analysis presented in this study using barley MAGIC population
corroborates that, for complex traits like GY, the predictive
ability of GK outperforms that of GB. Overall, considering the
number of models and methods fitted and the extensive field trials
carried out across the Mediterranean, this study has delivered the
most comprehensive empirical analysis of GP models fitted with
MAGIC populations.
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Plant mitochondrial transcription termination factor (mTERF) family regulates organellar

gene expression (OGE) and is functionally characterized in diverse species. However,

limited data are available about its functions in the agriculturally important cereal

barley (Hordeum vulgare L.). In this study, we identified 60 mTERFs in the barley

genome (HvmTERFs) through a comprehensive search against the most updated

barley reference genome, Morex V2. Then, phylogenetic analysis categorized these

genes into nine subfamilies, with approximately half of the HvmTERFs belonging to

subfamily IX. Members within the same subfamily generally possessed conserved

motif composition and exon-intron structure. Both segmental and tandem duplication

contributed to the expansion of HvmTERFs, and the duplicated gene pairs were

subjected to strong purifying selection. Expression analysis suggested that many

HvmTERFs may play important roles in barley development (e.g., seedlings, leaves,

and developing inflorescences) and abiotic stresses (e.g., cold, salt, and metal ion),

and HvmTERF21 and HvmTERF23 were significant induced by various abiotic stresses

and/or phytohormone treatment. Finally, the nucleotide diversity was decreased by only

4.5% for HvmTERFs during the process of barley domestication. Collectively, this is the

first report to characterize HvmTERFs, which will not only provide important insights into

further evolutionary studies but also contribute to a better understanding of the potential

functions of HvmTERFs and ultimately will be useful in future gene functional studies.

Keywords: barley, mTERF gene family, duplication, expression profile, qRT-PCR, genetic variation

INTRODUCTION

One of the major differences between eukaryotes and prokaryotes is that the former has
organelles, while the latter does not (Quesada, 2016). Due to endosymbiotic evolution from their
cyanobacterial ancestors, most of the organellar genes within chloroplasts and mitochondria have
been either lost or transferred to the nucleus (Gray, 2012). Current chloroplast and mitochondrial
genomes retain only a tiny fraction of the genes, which are required for photosynthesis, gene
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expression, and electron transport chains (Lang et al., 1999;
Yagi and Shiina, 2012; Robles and Quesada, 2021). Nevertheless,
thousands of proteins have been predicted to be localized in
plant mitochondria and chloroplasts according to bioinformatics
analysis, most of which are encoded by the nuclear genome
(Binder and Brennicke, 2003; Huang et al., 2013; Lee et al.,
2013). Thus, the organellar gene expression (OGE) apparatus is
a precisely coordinated system that largely depends on a great
many of proteins encoded by nuclear genes (Pfannschmidt et al.,
2015; Quesada, 2016). In the mitochondria and chloroplasts
of higher plants, several transcriptional components of the
functional OGE system have been reported. Three different
polymerases involved in the transcriptional machinery have
been demonstrated, including a multi-subunit plastid-encoded
RNA polymerase (PEP) and two single-subunit nucleus-encoded
RNA polymerases (NEPs) (Pfannschmidt et al., 2015). However,
currently known auxiliary factors can only partially explain the
transcriptional machinery, suggesting the existence of additional
unidentified regulatory factors that are required for organellar
gene transcription (Kühn et al., 2007; Liere et al., 2011).

Among the nucleus-encoded OGE factors, a novel
protein family has received increasing concerns, namely, the
mitochondrial transcription termination factor (mTERF) family.
mTERF proteins, firstly characterized in animal mitochondria,
were involved in mitochondrial transcription, translation, and
DNA replication (Quesada, 2016). These proteins possess a
variable number of ∼30 amino acid “mTERF” motifs and
comprise three leucine zipper-like elements separated by loops
(Roberti et al., 2006), which are believed to confer the ability to
recognize and bind to the typical mTERFmotif on mitochondrial
genome (Roberti et al., 2009). To date, four members, mTERF1
to mTERF4, have been described in vertebrates (Linder et al.,
2005; Roberti et al., 2009). mTERF1, the founding member of
this family, was originally considered to promote transcription
termination of the heavy strand genes tRNA-Ler and 16S
rRNA (Kruse et al., 1989). However, more recent studies
proposed that mTERF1 only partially terminated heavy strand

Abbreviations: ABA, abscisic acid; ABRE, ABA-responsive elements; Aux/IAA,

auxin/indole-3-acetic acid; BLAST, basic local alignment search tool; C3H,

cysteine3histidine; CDD, conserved domains database; CDS, coding sequence;

EST, expressed sequence tag; FDR, false discovery rate; FPKM, fragments per

kilobase per million; ERE, estrogen response element; Fst, Wright’s F-statistic;

GCN4, general control non-repressible-4; GO, gene ontology; GRAVY, grand

average of hydropathicity; GRF, growth-regulating factor; GSDS, Gene Structure

Display Sever; GTF, Gene Transfer Format; HMM, hidden Markov model; HSP,

heat shock protein; Ka, non-synonymous substitution rate; Ks, synonymous

substitution rate; LTP, lipid transfer protein; LTR, long terminal repeat; MBS,

myeloblastosis binding site; MDA1, mTERF DEFECTIVE IN Arabidopsis1;

MeJA, methyl jasmonate; MEME, Multiple Em for Motif Elicitation; MSA-like,

mitosis-specific activator; MW, molecular weight; MYB, myeloblastosis; NCBI,

National Coalition Building Institute; NEP, nucleus-encoded RNA polymerase;

NJ, neighbor-joining; OGE, organellar gene expression; PAML, Phylogenetic

Analysis by Maximum Likelihood; PCA, principal component analysis; PEP,

plastid-encoded RNA polymerase; pI, theoretical isoelectric point; qRT-PCR,

Quantitative Real-time PCR; ROS, reactive oxygen species; SA, salicylic acid;

SHOT1, SUPPRESSOR OF HOT1-4 1; SL1, SEEDLING LETHAL 1; SMART,

simple modular architecture research tool; SNP, single nucleotide polymorphism;

SOLDAT10, SINGLET OXYGEN-LINKED DEATH ACTIVATOR10; SRA,

sequence read archive; Ts, transition; Tv, transversion; WGCNA, weighted gene

co-expression network analysis.

transcription, whereas its major function was to completely
block transcriptional interference at the opposite light strand
of the ribosomal RNA genes from which they originated
(Terzioglu et al., 2013). Although mTERF2 is a non-specific
mitochondrial DNA binding protein and works as a negative
regulator of mitochondrial gene expression, the function of
mTERF2 is largely unknown (Pellegrini et al., 2009; Huang
et al., 2011). Similarly, mTERF3 has been demonstrated as a
specific repressor of mammalian mitochondrial transcription
initiation, and therefore slowing down cell metabolism (Park
et al., 2007). Meanwhile, other studies also revealed that
mTERF3 was essential for ribosome biogenesis, mitochondrial
protein transcription, and translation (Andersson et al., 2011;
Wredenberg et al., 2013). mTERF4 can directly regulate
mitochondrial ribosomal biogenesis and protein translation by
targeting to the ribosomal RNA methyltransferase NSUN4 (a
5-methylcytosine RNA methyltransferase) (Cámara et al., 2011;
Spåhr et al., 2012; Yakubovskaya et al., 2012).

By contrast, the mTERF gene family has expanded to
approximately 30 members during the evolutionary process
of land plants (Quesada, 2016; Leister and Kleine, 2020). For
example, there are 35 mTERFs in Arabidopsis thaliana, 33 in
rice (Oryza sativa) (Kleine, 2012), 31 in maize (Zea mays)
(Zhao et al., 2014), 25 in grape (Vitis vinifera) (Yin et al.,
2021), and 35 in Capsicum annuum (Tang et al., 2019). The
substantial expansion in the number of mTERF genes was
accompanied by their increased involvement in diverse RNA
metabolism processes, with the majority being involved in rRNA
maturation and intron splicing in organelles (Méteignier et al.,
2020). For instance, Arabidopsis mTERF8 mediates preferential
transcription termination of the chloroplast gene psbJ by

preferentially binding to the 3
′
-terminus (Xiong et al., 2020).

Arabidopsis mTERF15 acts as an RNA binding protein that is
required for mitochondrial nad2 intron 3 splicing and functional
complex I activity, which is indispensable for plant growth and
development (Hsu et al., 2014). mTERF6 is required for the
maturation of the chloroplast Ile transfer RNA gene trnI.2 and
regulates transcription termination of the PEP core subunit rpoA
poly-cistron, thus further demonstrating the essential roles of
mTERFs in leaf organogenesis and patterning in Arabidopsis
(Romani et al., 2015; Robles et al., 2018b; Zhang et al., 2018).
A more recent study reported that mTERF2 is implicated
in the splicing of the group IIB introns of ycf3 (intron 1)
and rps12 in Arabidopsis. Knock-down mTERF2 resulted in
delayed flowering time and knock-out mTERF2 mutants were
embryo lethal (Lee et al., 2021). In maize, ZmmTERF4 is
involved in plastid ribosome accumulation and promote group
II intron splicing of trnI.2, trnA, rpl2, atpF, and ycf3-2 in
chloroplasts (Hammani and Barkan, 2014). Zmsmk3 affects
complex I assembly by modulating nad4 intron 1 and nad1
intron 4 splicing, seedling growth, and kernel development (Pan
et al., 2019). Moreover, recent studies have also proposed the
importance of mTERF genes associated with a variety of abiotic
stress responses, including heat, salt, and osmotic stresses. For
instance, Arabidopsis SHOT1 (SUPPRESSOR OF HOT1-4 1) can
indirectly increase thermotolerance by reducing reactive oxygen
species (ROS) accumulation and increasing the expression of
heat shock proteins (HSPs), particularly those localized to
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mitochondria (Kim et al., 2012). mTERF5/MDA1 (mTERF
DEFECTIVE IN Arabidopsis1) not only has a dual function
in the transcription and stabilization of specific chloroplast
transcripts but also responds to salt, osmotic, and sugar stresses
through perturbed abscisic acid (ABA) retrograde signaling
during seedling establishment in Arabidopsis (Robles et al.,
2012; Ding et al., 2019; Méteignier et al., 2020). Arabidopsis
mTERF9 regulates chloroplast gene expression and development
and responds to sugar, ABA, salt, and osmotic stresses (Robles
et al., 2015). Similar tomTERF5 andmTERF9, loss of Arabidopsis
mTREF27 resulted in mitochondria developmental defects and
altered response to salt stress (Jiang et al., 2021). Arabidopsis
mTERF10 and mTERF11 are involved in the response to
salt stress, possibly through the ABA-mediated pathway (Xu
et al., 2017). Recently, a new role was demonstrated for
mTERF6 in response to adverse environmental stresses, such
as ABA, ionic, and osmotic stresses (Robles et al., 2018a).
Arabidopsis SOLDAT10 (SINGLET OXYGEN-LINKED DEATH
ACTIVATOR10) controls plastid-specific rRNA expression and
protein synthesis in plastids and is well known for its roles in
the response to mild photooxidative stress (Meskauskiene et al.,
2009). Collectively, mTERFs are essential for the regulation of
OGE and play crucial roles in plant growth and development
and in response to diverse abiotic stresses, at least in Arabidopsis
and possibly in other higher plants. Nevertheless, detailed
information about the molecular mechanisms of mTERFs is
still rather limited in diverse plants, especially crop plants
(Zhao et al., 2014).

As one of the earliest domesticated crops of ancient
civilizations, barley (Hordeum vulgare L.) currently ranks as
the fourth most abundant crop in terms of both area and
tonnage harvested (Mayer et al., 2012). Barley is more adaptable
to a wide range of agroclimatic conditions than its relative
wheat and, as a result, is of high importance for human food,
animal feed, and malt brewing (Jayakodi et al., 2020). The
first draft sequence assembly of barley (Mayer et al., 2012)
and its subsequent improved versions (Mascher et al., 2017;
Monat et al., 2019) lay the foundation for the comprehensive
identification and characterization of gene families at the
genome-wide level. Here, the protein sequences of barley
mTERFs were identified through a comprehensive search. The
physicochemical properties, phylogenetic relationships, exon-
intron gene structure, conserved motifs, expression profiles, and
preliminary functions were systematically analyzed. Moreover,
the single-nucleotide polymorphism (SNP) variation atlas of
mTERFs for wild and landrace barley accessions was profiled.
This study will not only shed light on the evolutionary
mechanism of barley mTERFs, but also pave the way for their
functional characterization in barley and beyond.

MATERIALS AND METHODS

Identification of mTERF Gene Family
Members in Barley
The protein sequences of barley Morex V2 were downloaded
from the IPK database (https://doi.org/10.5447/ipk/2019/8),

and the hidden Markov model (HMM) file of the mTERF
domain (PF02536) was retrieved from the Pfam database.
HMMER v2.41.1 was employed to search for the mTERF
domain against the barley genome with the default inclusion
threshold. The candidate sequences were further confirmed by
using the NCBI-CDD (National Coalition Building Institute,
Conserved Domains Database) (https://www.ncbi.nlm.nih.gov/
cdd/), SMART (Simple Modular Architecture Research Tool)
(http://smart.embl-heidelberg.de/), HMMER (https://www.
ebi.ac.uk/Tools/hmmer/), and InterPro (http://www.ebi.ac.uk/
interpro/search/sequence/) online tools. Subsequently, a BLAST
(Basic Local Alignment Search Tool) search against barley ESTs
(Expressed Sequence Tag) was conducted to determine the
existence of putativemTERF genes. The molecular weight (MW),
number of amino acids, theoretical isoelectric point (pI), and
grand average of hydropathicity (GRAVY) were evaluated using
the online tool ExPASy (http://web.expasy.org/protparam/). The
subcellular localization was predicted using the TargetP online
tools (http://www.cbs.dtu.dk/services/TargetP/).

Phylogenetic Relationship, Gene Structure,
and Conserved Motif Analysis
Multiple sequence alignment of full-length proteins ofHvmTERF
genes was performed using the Clustal X program. An unrooted
neighbor-joining (NJ) phylogenetic tree was constructed using
MEGA X with 1,000 bootstrap replicates. The exon-intron
gene structure was visualized using the Gene Structure Display
Sever (GSDS) (http://gsds.cbi.pku.edu.cn/) based on the gene
annotation GTF (Gene Transfer Format) file. The conserved
protein motifs were obtained using online MEME (Multiple Em
for Motif Elicitation) tools (https://meme-suite.org/meme/) with
the following parameters: themaximumnumber ofmotifs was set
to 10, any number of repetitions was allowed, and the optimum
width ranged from 6 to 250. The 1.5 kb genomic sequences
upstream of the coding regions were extracted and submitted
to the PlantCARE database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/) to identify the putative cis-acting
regulatory elements in the promoter region. The transcripts of
HvmTERFs were extracted and submitted to the psRNATarget
online server (http://plantgrn.noble.org/psRNATarget/) to detect
the candidate miRNA targets with the following parameters:
published miRNAs from Brachypodium, barley, and wheat were
chosen, with a maximum expectation= 4.

Gene Duplication and Comparative
Genomics Analysis of Barley, Arabidopsis,
Brachypodium, Rice, Grape, and Maize
mTERFs
To reveal the duplication events of HvmTERF during barley
evolution, an integrated method was employed to identify the
duplicated pairs. First, MCScanX software was used to detect
duplication events. Second, the following criteria were used
as described by Chen et al. (1) the alignment of shorter
genes covered ≥70% of longer genes; (2) the aligned region
possessed an identity ≥70%; and (3) only one duplication event
was counted for tightly linked genes (Gu et al., 2002; Chen
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et al., 2012). The duplicated events were manually combined
into a non-redundant dataset to determine the orthologous
relationships between barley and other species. The orthologs of
mTERF genes in A. thaliana, Brachypodium distachyon,O. sativa,
V. vinifera, and Z. mays were identified using InParanoid V4.1.
The syntenic blocks within and among species were detected by
MCscanX. To evaluate the evolutionary rate of the duplicated
and syntenic genes, PAML (Phylogenetic Analysis by Maximum
Likelihood) v4.3 software was utilized to calculate the non-
synonymous (Ka) and synonymous (Ks) substitution ratios. The
duplicated pairs were visualized using Circos v0.67 software.

Expression Analysis of HvmTERF Genes
To estimate the gene expression profile of HvmTERFs, RNA-seq
samples from different tissues and developmental stages as well
as plants responding to various biotic and abiotic stresses were
retrieved from the NCBI Sequence Read Archive (SRA) database
(https://www.ncbi.nlm.nih.gov/). The sample information and
accession numbers are shown in Supplementary Table 1. The
Hisat2 v2.1.0 and StringTie v1.3.5 pipelines were employed to
calculate the fragments per kilobase of transcript per million
fragments mapped (FPKM) value. The R package Ballgown
was used to identify the differentially expressed genes. The
differentially expressed genes were identified as having a false
discovery rate (FDR) ≤0.05 and fold change ≥2. The heatmap
and hierarchical clustering were generated using the pheatmap
package embedded in R with the log2 transformed FPKM
values. To determine the co-expressed genes with HvmTERFs,
a co-expression network was constructed by weighted gene co-
expression network analysis (WGCNA) in R. Here, a convenient
one-step method was employed for network construction,
and genes with the top 5% weighted values associated with
HvmTERFs were categorized for further analysis. A BLAST
search against Arabidopsis and rice proteins was performed
to determine the potential functions of the co-expressed
genes. Cytoscape v3.8.0 was implemented to display the co-
expression networks.

Plant Materials, Treatment, and qRT-PCR
Analysis
Seeds of the barley cultivarMorex were sterilized with 5% sodium
hypochlorite for 10min, rinsed with distilled water, and then
germinated on wet filter paper at 25◦C for 5 days. The germinated
seeds were hydroponically cultured in a greenhouse under the
following conditions: 20◦C day/15◦C night, 16 h light/8 h dark
cycle, and 50% relative humidity. Three-leaf-stage seedlings were
exposed to 150mM NaCl, 20% PEG, 4◦C, or 100µM ABA
for 0, 1, 6, 12, 24, and 48 h. Seedlings without any treatment
at the same time point were used as the control. Leaves and
roots were collected from three plants at each time point and
promptly frozen in liquid nitrogen for RNA extraction with three
biological replicates.

To further investigate the possible functions of HvmTERFs,
a total of 25 HvmTERFs were randomly selected to detect their
expression patterns through qRT-PCR (Quantitative Real-time
PCR) analysis. The primers used in this study are listed in
Supplementary Table 2. Total RNA was isolated using a Plant

RNA extraction kit (Omega Biotek, USA), and cDNA was
synthesized using 5X All-in-one RT MasterMix (ABM, Canada)
following the manufacturer’s instructions. HvACTIN2 (GenBank
accession no. AY145451.1) was used as the internal control. The
TB-Green R© Premix Ex TaqTM II kit (Takara, Dalian, China) was
used for qRT-PCR amplification in a QuantStudioTM Real-Time
PCR system (Thermo Fisher, USA). The reaction protocol was
as follows: 95◦C for 30 s, followed by 40 cycles at 95◦C for 3 s
and 60◦C for 30 s. The relative expression levels of candidate
genes were calculated using the 2−11CT method. Three technical
replicates were applied for each treatment (Livak and Schmittgen,
2001). Student’s t-test was employed for statistical analysis by R
software. The histogram was drawn using the ggplot package in
R software. One asterisk (∗) and double asterisk (∗∗) indicate 0.05
and 0.01 significance level, respectively.

Nucleotide Variation, Population Structure,
and Haplotype Analysis of HvmTERFs
To acquire the candidate HvmTERFs, a total of 220 barley
resequencing samples were downloaded from the SRA database
(Russell et al., 2016). The geographic distribution is presented
in Supplementary Figure 1. The detailed material information is
listed in Supplementary Table 3. BWA-MEM v0.7.13r1126 was
used to map the clean reads against the barley reference genome.
The PICARD-GATK pipeline was employed to generate single
nucleotide polymorphisms (SNPs) with default parameters.
The genomic distribution and potential function of the SNPs
were annotated by SnpEFF v4.3. The SNPs located within
the HvmTERF genes were retained for subsequent analysis.
To further reveal the population structure of barley samples
based on HvmTERF sequences, population structure analysis,
phylogenetic tree analysis, and principal component analysis
(PCA) were performed. ADMIXTURE v1.3.0 was used to infer
the population structure with predefined K-values ranging from
2 to 5. The phylogenetic tree was constructed using Treebest
v1.9.2. The Smartpca toolkit implemented in EIGENSOFT v4.2
was employed to conduct the PCA. Median-joining haplotype
networks were constructed using the software programs DnaSP
v5.10.01, Alignment v1.3.1.1, and Network v4.6.1.1. The
network was visualized using Cytoscape v3.8.0. The nucleotide
diversity (π) and Wright’s F-statistic (Fst) were calculated using
vcftools v0.1.16.

RESULTS

Identification of mTERF Gene Family
Members in Barley
The updated reference genome of barley, Morex v2, provided
invaluable resources for HvmTERF identification, and a total of
60 mTERF genes were identified in barley using a combined
method (Supplementary Tables 4, 5). Since there was no
standard nomenclature, the barley mTERFs were designated
as HvmTERF1 to HvmTERF60 according to their chromosome
numbers and physical positions. The physicochemical properties
of the HvmTERFs were further characterized. In detail, the
mTERFs encoded proteins ranging from 105 (HvmTERF41) to
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632 (HvmTERF59) amino acids in length, with pIs ranging
from 5.41 (HvmTERF2) to 10.78 (HvmTERF10), and MWs
ranging from 12.01 (HvmTERF41) to 71.82 kDa (HvmTERF59).
The GRAVY values ranged from 0.259 (HvmTERF25) to
−0.502 (HvmTERF7), with an average of −1.005. Most
(61.67%) of the HvmTERFs displayed positive GRAVY values,
suggesting hydrophobic characteristics. Subcellular location
prediction revealed that most (78.33%) HvmTERFs were

localized to mitochondria (39 HvmTERFs, 65%) or chloroplasts
(8 HvmTERFs, 13.3%), and the remaining 13 HvmTERFs
were targeted to other locations. To confirm the existence of
HvmTERFs, a BLAST search against barley ESTs was performed.
In total, 48 members of the HvmTERF gene family had EST
records, whereas the remaining 12mTERFs had no EST support,
suggesting their stage- or tissue-specific expression profile or
undetectable expression level.

FIGURE 1 | Phylogenetic analysis of mTERF proteins from Arabidopsis, rice, and barley. The phylogenetic tree was constructed using the Neighbor-joining method

with 1,000 bootstrap replications. The nine subfamilies are marked with different colors.
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Phylogenetic and Structural Domain
Analysis of HvmTERFs
We examined the amino acid sequence features of the
mTERF domain by multiple sequence alignment. The conserved
mTERF motifs spanned approximately 30 amino acids in
length, have been characterized in other plants and are
believed to act as DNA-binding modules (Zhao et al.,
2014) (Supplementary Figure 2; Supplementary Table 6). The
sequence conservation percentages for each amino acid residue
were calculated, and 15 amino acid sites were highly conserved
with a consensus sequence percentage >60%. Consistent with
previous studies (Zhao et al., 2014), three repeats of the leucine
zipper-like heptad X3LX3 were identified in barley mTERF
motifs, of which the conservation percentages were 62.71, 46.67,
and 36.67% for Leu-8, Leu-16, and Leu-23, respectively. These
results revealed that HvmTERFs possessed well-characterized

mTERFmotifs with conserved leucine residues like those in other
plants, indicating the conserved evolutionary process of plant
mTERF proteins. Surprisingly, the conservation percentages
of Ile-1 and Tyr-20 in barley were significantly higher than
those in Arabidopsis, rice, and maize, suggesting that these
residues may play essential roles in the evolutionary history
of HvmTERFs.

To further elucidate the evolutionary relationship of
HvmTERFs, we constructed a phylogenetic tree based on the
alignment of 128 mTERF protein sequences from Arabidopsis
(35), rice (33), and barley (60) (Figure 1). These mTERF proteins
were divided into nine monophyletic clades according to the
classification given by Zhao (Zhao et al., 2014). The number of

proteins assigned to different subfamilies varied greatly, of which

subfamily IX contained 39 members, whereas subfamilies I, III,
V, and VII possessed only one member.

FIGURE 2 | Phylogenetic tree, conserved motifs, and exon-intron structure analysis of HvmTERFs. (A) Phylogenetic tree for each subfamily. (B) Gene structure of

HvmTERF genes. Exons are indicated as orange boxes. Black lines represent introns. (C) The motif composition of HvmTERFs. Motifs are designated as 1–10 and

represented by different colors.
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The exon–intron structure not only provides additional
evidence to support the phylogenetic topology but also increases
the understanding of the functional diversification within a gene
family. Therefore, the exon-intron structure of HvmTERFs was
analyzed to obtain their evolutionary relationships (Figure 2). A
solid correlation between gene structures and their phylogeny
was observed. Genes clustered within the same subfamily
displayed a similar exon-intron structure. Indeed, HvmTERFs
within subfamilies II, VI, and VIII showed nearly identical exon
lengths and tended to be intron-less. Nonetheless, we pinpointed
the exon/intron gain/loss event within several clusters. For
example, 37 out of 39 HvmTERFs within subfamily IX possessed
only 1 exon, whereas HvmTERF29 and HvmTERF44 had 2 and 3
exons, indicating that they may have acquired additional exons
during the evolutionary history of themTERF gene family.

To further gain insight into the evolutionary relationships
and functional regions among the HvmTERFs, the distribution
pattern of the conserved motifs was also visualized (Figure 2).
We identified 10 motifs and designated them as motif 1 to
motif 10. Notably, no motif was identified within HvmTERFs
1, 4, 13, 16, 24, 45, and 59, possibly because the consensus
sequence failed to reach the threshold in theMEME software. The
HvmTERFs within the same clade showed similar motif numbers
and distribution patterns. Motif 3 was shared by 44 members,
ranking as the most abundant motif, followed by motif 4 (36) and
motif 5 (36). Except for motifs 2, 5, 6, 7, and 9, the remaining
motifs were specific to subfamily IX. We also observed a certain
order of the identified motifs. For example, motif 2 tended to be
tightly connect with motif 7, motif 5 was linked to motif 8, motif
6 was linked to motif 9, and motifs 1, 3, and 4 were linked.

Duplication Events and Orthologous
Analysis of HvmTERFs
The HvmTERFs were unevenly located across the seven barley
chromosomes in accordance with the barley genome annotation,
of which 27 HvmTERFs were located on chromosome 6, ranking
as the most populated chromosome, whereas the other six
chromosomes had only 9 (chromosome 7H) to 3 (chromosome
3H) HvmTERF genes (Supplementary Figure 3). Interestingly,
there was no positive correlation between chromosome length
and the number ofHvmTERFs (Pearson correlation r=−0.2994,
p-value = 0.5141), indicating that longer chromosomes do not
necessarily contain more HvmTERF genes.

In order to elucidate the expansion mechanism ofHvmTERFs,
tandem, and segmental duplication event analyses were
performed using an integrated method (Figure 3). The results
showed that 10 HvmTERFs (HvmTERFs 25 and 26, HvmTERFs
29 and 32, HvmTERFs 49 and 50, and HvmTERFs 36, 37,
38, and 39) were clustered into four tandemly duplicated
regions on chromosome 6, indicating a gene distribution
hot spot of HvmTERFs. It is noteworthy that all tandemly
duplicated genes belonged to subfamily IX. Generally, it is
difficult to segregate this kind of tightly linked gene arrangement
through recombination in breeding or research. Furthermore,
seven duplicated pairs composed of 13 HvmTERF genes were
identified as segmental duplications. Except for HvmTERF1 and

HvmTERF13, the remaining duplicated genes were clustered
in subfamily IX. Remarkably, six segmentally duplicated gene
pairs were associated with chromosome 6. Taken together, both
tandem and segmental duplication events contributed to the
expansion of HvmTERFs, mainly in subfamily IX.

The non-synonymous (Ka) vs. synonymous (Ks) substitution
ratios for duplicated gene pairs were further calculated to
estimate the evolutionary constraints acting on HvmTERFs.
Ka/Ks >1, =1, and <1 indicate positive, neutral and purifying
selection, respectively (Lynch and Conery, 2000). In this study,
the Ka/Ks ratio for duplicated gene pairs ranged from 0.1516 to
0.5662, with an average value of 0.3845, suggesting that these gene
pairs have experienced strong purifying selective pressure during
their expansion process (Supplementary Table 7).

To further infer the evolutionary mechanisms of HvmTERFs,
we conducted comparative ortholog analysis with five
representative species, including two dicots (A. thaliana
and V. vinifera) and three monocots (B. distachyon, O. sativa,
and Z. mays) (Figure 4). The ortholog analysis resulted in 16,
18, 39, 22, and 20 gene pairs between barley and the other
five species (A. thaliana, V. vinifera, B. distachyon, O. sativa,
and Z. mays), respectively. A total of 29 HvmTERF genes
held orthologous relationships with those in B. distachyon,
followed by O. sativa (22), Z. mays (19), V. vinifera (18),
and A. thaliana (16). Nine HvmTERFs (HvmTERFs 2, 3, 5,
8, 14, 16, 46, 58, and 59) were found to possess one-to-one
relationships among the five representative species. We thus
proposed that these evolutionarily conserved genes may have
essential roles during plant evolution. Interestingly, 21 gene
pairs composed of 12 HvmTERFs were only identified between
barley and B. distachyon, O. sativa, and Z. mays, suggesting that
these orthologous pairs formed after the divergence between
monocotyledonous and dicotyledonous plants. The Ka/Ks ratios
of the mTERF gene pairs were also calculated. All orthologous
mTERF gene pairs showed Ka/Ks < 1, suggesting that these
HvmTERFs might have been subjected to extensive purifying
selective pressure (Supplementary Table 8).

Analysis of cis-elements and miRNA Target
Sites of HvmTERFs
Cis-elements play vital roles in the transcriptional regulation
of genes during plant growth and development as well as
the plant response to biotic and abiotic stresses. By searching
the PlantCARE database, a total of 40 cis-elements were
identified and further classified into four categories. As shown
in Supplementary Table 9, a total of 12 kinds of light-
responsive elements were observed, accounting for the majority
of the putative cis-elements. There were 10 hormone-responsive
regulatory elements present in the HvmTERF promoters, such
as ABRE (ABA-Responsive Elements), CGTCA-motif/TGACG-
motif, TGA-element, ERE (Estrogen Response Element), and
TCA-element, which were associated with ABA, methyl MeJA
(Methyl Jasmonate), auxin, ethylene, and SA (Salicylic Acid),
respectively. We also identified several organogenesis-related
cis-elements, such as MSA-like (Mitosis-Specific Activator)
(cell cycle regulation, 4 genes), GCN4 (General Control
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FIGURE 3 | Chromosomal location and gene duplication of HvmTERFs. Tandemly duplicated gene pairs are highlighted with black boxes.

Non-repressible-4) (endosperm expression, 3 genes), CAT-box
(meristem expression, 32 genes), AC-I/II (xylem expression, 2
genes), and circadian (circadian control, 11 genes). Notably,
five kinds of biotic and abiotic stress-related regulatory
elements, including MBS (Myeloblastosis Binding Site), GC-
motif, ARE (Anaerobic Response Element), LTR (Long Terminal
Repeat), and Wun-motif, which responded to drought, anoxic-
specific inducibility, anaerobic induction, low temperature,
and wound damage, respectively, were identified in the
HvmTERF promoter regions. Therefore, the variety and quantity
of regulatory elements were present in distinct HvmTERF
promoters, suggesting their potential functions in diverse

signal transduction pathways and various stress adaptations
in barley.

To obtain preliminary insight into the miRNA-mediated
posttranscriptional regulatory mechanisms, the CDSs (Coding
Sequence) of HvmTERFs were extracted to search for miRNA
target sites. The results showed that a total of 12 mTERF-
miRNA pairs were identified, referring to five miRNAs
targeting 10 HvmTERFs (Supplementary Table 10). Most of
the miRNAs controlled the expression of HvmTERFs by
guiding mRNA cleavage, whereas HvmTERF34 and HvmTERF35
were regulated by translation inhibition. HvmTERF22 and
HvmTERF46 were targeted by miRNA6192 upstream of the
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FIGURE 4 | Orthologous analysis of HvmTERFs between barley and other five representative plant species. (A) Brachypodium distachyon, (B) Zea mays, (C) Oryza
sativa, (D) Arabidopsis thaliana, (E) Vitis vinifera.

mTERF domain, whereas a total of six HvmTERFs were targeted
by miRNA9662a-3p within the mTERF domain. miRNA7717b-
5p and miRNA9962a-3p both targeted HvmTERF19 through
transcript cleavage. Our findings suggested that miRNA was
involved in the posttranscriptional regulation of HvmTERF, but
the actual regulatory mechanism should be validated in future
molecular biology experiments.

Expression Profile Analysis of HvmTERF

Genes
To obtain preliminary insight into tissue- and stage-specific
expression profiles and elucidate the potential roles of
mTERFs in tissue development, the transcript abundances
of HvmTERFs in 16 different tissues or stages were obtained
using Illumina RNA-seq data. As shown in Figure 5, HvmTERFs
were expressed in all barley RNA-seq samples studied. The
mTERFs were highly expressed in seedlings, leaves and
developing inflorescences. HvmTERFs 2, 7, 8, 16, 24, 45, 46,
and 58 exhibited relatively high expression levels in most of
the studied tissues and stages, suggesting these genes may
play an important role in barley growth and development.
It is noteworthy that HvmTERF24 ranked the most highly
expressed gene with an average FPKM value of 28.58. We also

identified tissue- and stage-specific HvmTERFs. HvmTERF3,
HvmTERF5, HvmTERF30, HvmTERF35, and HvmTERF50
exhibited preferential expression in young inflorescences,
senescing leaves, epidermis, lodicules, and senescing leaves,
respectively. HvmTERF20 was predominantly expressed in
seedlings and senescing leaves, whereas HvmTERF21 was mostly
expressed in the epidermis and senescing leaves, suggesting
that these genes were involved in tissue- or stage-specific

development in barley. Interestingly, four HvmTERF genes
(HvmTERFs 6, 26, 40, and 54) in subfamily IX exhibited almost
no expression in any of the tissues and stages.

To gain comprehensive information about the functions
of HvmTERFs in response to abiotic stresses, the expression
profiles of HvmTERFs under cold, salt, and metal ion stresses
were further investigated. The results revealed that HvmTERFs
15, 23, and 33 were found to be upregulated under cold
treatment, whereas seven HvmTERF genes were downregulated
(Figure 6A). Notably, the tissue-specific gene HvmTERF16
(mTERF3/SL1, SEEDLING LETHAL 1) was downregulated with
2.65-fold change compared with the control. Since limited
studies have been conducted on mTERF genes (Jiang et al.,
2020), the biological function of HvmTERFs still need more
experimental verification.
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FIGURE 5 | The expression profile of HvmTERF genes at different tissues or stage of barley. FPKM values were normalized by log2(FPKM+1) transform to represent

color scores. CAR15/CAR5, developing grain (15/5 day after pollination); EMB, embryonic tissue (4 days); EPI, epidermal strips (4 weeks after pollination); ETI,

etiolated seedling with 10 days old after planting; INF1, Young developing inflorescences with 5mm; INF2, developing inflorescences with 1 cm; LEA, 10 cm shoots

from seedlings; LEM, inflorescences, lemma(6 weeks after pollination); LOD, inflorescences, lodicule (6 weeks after pollination); NOD, developing tillers at third stem

internode (6 weeks after pollination); PAL, dissected inflorescences, palea (6 weeks after pollination); RAC, inflorescences, rachis (5 weeks after pollination); ROO,

roots from the seedlings with 17 and 28 days old after planting; ROO2, roots (4 weeks after pollination); SEN, senescing leaves (8 weeks after pollination).

The expression patterns of HvmTERFs under salt treatment
were further analyzed. A total of 5, 2, and 15 HvmTERF genes
were differentially expressed in the root meristematic zone,
elongation zone, and maturation zone, respectively (Figure 6B).
Consistent with the expression pattern under cold treatment,
most (72.72%) of the differentially expressed genes, including
1 in the meristematic zone and 15 in the maturation zone,

were downregulated. Furthermore,HvmTERF50was upregulated
in the meristematic zone and downregulated in the mature
zone. HvmTERF10 was upregulated in the elongation zone
and downregulated in the mature zone. Notably, HvmTERF21
was upregulated in both the meristematic zone (3.49-fold) and
elongation zone (4.01-fold) and downregulated in thematuration
zone (2.95-fold).
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FIGURE 6 | Expression profiles of mTERF genes under five stress conditions. (A) cold stress; (B) salt stress; (C) zinc, copper, and cadmium stress.

We finally analyzed the expression profiles of HvmTERFs
under metal ion toxicity stress. Among them, 4, 5, and 2
upregulated HvmTERFs were found to be zinc-, copper-
and cadmium toxicity-responsive genes, and 2, 1, and
9 downregulated genes were also identified (Figure 6C).
Remarkably, the expression levels of HvmTERF19 under zinc
and copper treatment were 4.14- and 2.45-fold higher than those
of the control. HvmTERF35 was significantly upregulated under
zinc and copper treatment and downregulated under cadmium
treatment. However, HvmTERF50 was upregulated under zinc
treatment and downregulated under copper and cadmium
treatment. HvmTERF21 was upregulated under cadmium
treatment and downregulated under zinc treatment.

Co-expression Network Analysis Between
HvmTERFs and Other Genes in Barley
Co-expression analysis has become an effective methodology for
gene functional annotation (Wei and Chen, 2018). By using
a large dataset of 148 RNA-seq samples, we attempted to
construct a co-expression network of mTERF genes. A total
of 162,373 interactions, composed of 27 HvmTERFs and 778

other co-expressed genes, were detected (Figure 7). In detail,
595 (76.48%), 260 (33.42%), 178 (22.88%), and 167 (21.47%)
genes were predicted to be co-expressed with HvmTERF57,
HvmTERF3, HvmTERF15, and HvmTERF33, respectively. The
results suggested that these HvmTERFs may play central
regulatory roles in the co-expression network. Interestingly,
nine HvmTERFs were co-expressed with multiple transcription
factors. For instance, 5 B3, 4 GRF (Growth-Regulating Factor),
3 C3H (Cysteine3Histidine), and 3 MYB (Myeloblastosis) family
genes were co-expressed with 4, 4, 7, and 3 HvmTERFs.
Transcription factors are essential regulators to repress or
activate the expression of their target genes by binding to
specific upstream elements (Jin et al., 2017). These results
suggested that multiple transcription factors may interact with
HvmTERFs, and further to control multitudinous growth and
development processes, and response to environmental stressors
in barley. Furthermore, 11 HvmTERFs were predicted to
be co-expressed with SPLICEOSOME-ASSOCIATED PROTEIN
130 (SAP130a), a key gene that is required for specific
spatiotemporal events during reproduction in Arabidopsis (Aki
et al., 2011).
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FIGURE 7 | The co-expression network analysis of HvmTERFs with other barley genes. Only annotated genes are represented.

Gene Ontology (GO) enrichment analysis was further
performed to determine the potential function of the
mTERF co-expressed genes. The mTERF co-expressed
genes were enriched in 155 GO terms (FDR < 0.05),
including 66 biological processes, 41 cellular components,
and 48 molecular functions (Supplementary Figures 4–6;
Supplementary Table 11). In the molecular function
category, microtubule binding (GO:0008017), nucleoside-
triphosphatase activity (GO:0017111), and tubulin binding
(GO:0015631) ranked as the top three enriched terms, whereas
intracellular non-membrane-bound organelle (GO:0043232),
non-membrane-bound organelle (GO:0043228), and nucleus
(GO:0005634) were the most common terms in the cellular
components category. In the biological process category,
the mTERF co-expressed genes were implicated not only in
various biological functions (e.g., GO:0006260 DNA replication
metabolic process; GO:0006259 DNA metabolic process;
GO:0042254 ribosome biogenesis) but also in response to
diverse stresses (e.g., GO:0033554 cellular response to stress;
GO:0006974 cellular response to DNA damage stimulus).

Expression of HvmTERF Genes in
Response to Salt, Drought, Cold, and ABA
Treatment via qRT-PCR
Although differentially expressed HvmTERFs under different
stresses were obtained based on RNA-seq data, comprehensive
expression patterns of HvmTERFs in response to various
stresses and phytohormones have not been reported. To better
understand the expression patterns in response to diverse stress
treatments (cold, salt, heat, and ABA), 25 HvmTERFs were
randomly selected for qRT-PCR analysis. Under salt stress, all
the candidate HvmTERFs were downregulated after 1, 3, and
12 h of treatment. HvmTERF23 was the most downregulated
gene at the 1 h (5.93-fold), 3 h (12.89-fold), and 12 h (6.63-fold)
time points (Supplementary Figure 7). Under 6 h salt treatment,
nine HvmTERFs were found to be upregulated. Among them,

the expression level of HvmTERF46 was dramatically increased
with a 2.28-fold change value. Moreover, three upregulated
HvmTERF genes were found at 24 h. Notably, HvmTERF21
exhibited significantly upregulated expression levels at 6 and 24 h.

Under drought treatment, a total of 1, 1, 5, and 5
HvmTERF genes were upregulated at 3, 6, 12, and 24 h
(Supplementary Figure 8). Among them, HvmTERF21 showed
1.21-, 1.36-, 1.24-, and 2.58-fold changes at the 3, 6, 12, and 24 h
time points, whereas HvmTERF52 displayed 1.99- and 2.00-fold
changes at the 12 and 24 h time points, respectively. TheMBS cis-
acting element involved in drought inducibility was also detected
within the promoter regions of these genes (Urao et al., 1993).
For example, HvmTERFs52 possessed 2 MBS cis-acting elements.
There were some exceptions, however, no MBS-acting element
was detected in the promoter regions of HvmTERF21, implying
this gene may have unknown elements acting in response to
drought stress. Furthermore, HvmTERFs 2, 8, 19, 29, 43, and 49
were downregulated after drought treatment at all-time points.

Under cold treatment, we identified more upregulated
HvmTERFs than those identified in response to salt and
drought treatment, with 17, 19, 18, 17, and 20 upregulated
genes after 1, 3, 6, 12, and 24 h of treatment, respectively
(Supplementary Figure 9). Notably,HvmTERFs 9, 16, 21, 24, 25,
45, 49, and 51 were upregulated at all treated time points. The
expression level of HvmTERFs dramatically decreased over time.
The average fold change was 4.40 after 1 h of cold treatment,
whereas it decreased to 1.24 after 48 h of stress, suggesting
that HvmTERFs may mainly function in the initial response to
cold injury.

The plant hormone ABA has been demonstrated to play
important roles in improving the tolerance of plants to
diverse stresses (Shinozaki and Yamaguchi-Shinozaki, 1997).
qRT-PCR was also carried out to analyze the expression
profiles of the 25 selected HvmTERFs after ABA treatment
(Supplementary Figure 10). The heatmap revealed that
HvmTERFs 9, 16, 21, 24, 28, and 29 exhibited upregulated
expression patterns at all time points. Meanwhile, abundant
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ABRE cis-acting elements, the major cis-element for ABA-
responsive gene expression, were identified in the promoter
regions, such as five ABRE cis-element forHvmTERF28, three for
HvmTERF16, and three for HvmTERF24. The expression level of
HvmTERF46 displayed upregulated expression with a 10.16-fold
change after 6 h of treatment, whereasHvmTERF53 showed 3.89-
and 3.84-fold changes after 1 and 6 h of treatment, respectively.

Nucleotide Variation, Population Structure,
and Haplotype Analysis of HvmTERF

Genes
To reveal the variation landscape of HvmTERFs, public
resequencing data of barley were employed to detect HvmTERF-
related SNPs. The SNP calling pipeline yielded a total of

481 HvmTERF-related SNPs or approximately 8.01 SNPs per
gene, representing the most comprehensive variation dataset
of HvmTERFs to date (Supplementary Table 12). The majority
of HvmTERF-related SNPs (70.68%) were located in the
genic region, including 159 synonymous, 133 missense, 44
intron, 3 splice region, and 1 stop-gain variant (HvmTERF42)
(Supplementary Table 13). The overall transition/transversion
(Ts/Tv) ratio was 2.317, with A/G (35.55%) and C/T (34.30%)

ranking as the most popular allelic substitution patterns. These
results indicated that there was fewer purine to purine or

pyrimidine to pyrimidine mutation than there was pyrimidine to

purine or purine to pyrimidine mutations.
To further investigate the genetic relationship between wild

and landrace barley populations, the PCA was conducted

FIGURE 8 | Population structure of wild barley accessions and landraces based on HvmTERF-related SNPs. (A) Principal component analysis PC1 vs. PC2,

(B) Principal component analysis PC1 vs. PC3, (C) The NJ phylogenetic tree, (D) Population structure with K ranging from 2 to 5.
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using HvmTERF-related SNPs. The first eigenvector explained
23.11% of the total genetic variance and captured the biological
differentiation that separated wild barley from landrace barley.
The second and third eigenvectors explained 12.16 and 11.10%
of the variance, respectively, and distinguished the accessions
geographically (Figures 8A,B; Supplementary Table 14). The
same population affinities were recovered in the phylogenetic tree
with a precise accession relationship (Figure 8C). ADMIXTURE
analysis also recapitulated these findings (Figure 8D). When K =

2, a clear separation was observed in accordance with biological
differentiation between wild and landrace barley. As K increased
to 5, a definite separation was presented in accordance with the
geographical source. Remarkably, a certain proportion of genetic
admixture between wild and landrace barley was observed,
suggesting the potential domestication origin of cultivated barley
and ongoing gene flow between wild and landrace barley.

Population-based nucleotide diversity (π) was estimated
based on HvmTERF-related SNPs. The nucleotide diversity
decreased only 4.5% from wild barley (0.2491) to landrace
barley (0.2380), indicating that this gene family suffered
a weak genetic bottleneck in the process of domestication
(Supplementary Figure 11). Wright’s F-statistic is an
informative indicator that measures population differentiation
and gene flow intensity (Wright, 1951). Populations with Fst

values >0.25 are considered highly differentiated (Fong et al.,
2016). A relatively low Fst index (0.1310) was obtained between
wild and landrace barley in accordance with the HvmTERF-
related SNPs, indicating that this gene family was not subjected
to strong selective pressure during barley domestication.

Haplotype dissection and comparison provide invaluable
resources for understanding the evolutionary and domestication
processes of important traits (Jan et al., 2019). To acquire a more
precise depiction of the haplotype network, we constructed the
complete haplotypes for the 220 accessions using HvmTERF-
related SNPs. The median-joining method network generated a
total of 481 HvmTERF haplotypes (one haplotype per accession)
consisting of distinct wild and landrace groups (Figure 9). No
shared haplotype between wild and landrace barley was observed
in the network. The highly diverse wild accessions displayed
geographical clustering patterns in terms of the Southern Levant
(such as Israel and Jordan), Northern Levant (such as Syria and
Turkey), and East of Levant (such as Iraq, Iran, and Central Asian
counties). For landrace haplotypes, a geographical clustering
pattern was obtained. However, a certain portion of accessions
displayed no geographical clustering of haplotypes; for example,
many shared haplotypes from Central Asia and Europe were
observed in the median-joining network, suggesting a complex
domestication process of HvmTERF in barley.

FIGURE 9 | Median-Joining network analysis of wild barley accessions and landraces based on HvmTERF-related SNPs. Wild barley accessions were divided into

Southern Levant, Northern Levant, and East of Levant groups. Landraces were divided into Asia, Europe, and Africa groups.
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DISCUSSION

Characterization of the mTERF Gene
Family in Barley
The mTERF family, firstly identified in vertebrate mitochondria,
is implicated in the regulation of organellar transcription,

translation, and DNA replication (Quesada, 2016; Xiong et al.,
2020). With the accomplishment of various whole genome

sequencing projects, the identification and characterization of
mTERF genes have been widely conducted in diverse plant
species (Tang et al., 2019). As an inbreeding, diploid and

temperate cereal crop, barley is well-studied in terms of cytology,
genetics and molecular biology. However, its large genome size
and high transposon content have long hindered barley genome
assembly projects (Schulte et al., 2009). In recent years, the
first physical sequence assembly for barley and its subsequent
chromosome-scale reference sequence assembly (Morex V1),
as well as the improved annotated reference genome assembly
(Morex V2), have formed the basis for the identification and
characterization of related gene families (Jayakodi et al., 2020).
In this study, we carried out a comprehensive search for putative
HvmTERFs, and a total of 60 HvmTERFs were identified in the
barley Morex V2 genome assembly. Compared with its previous
versions, the numbers of identified HvmTERFs were only 40 and
51 for the barley physical sequence assembly and Morex V1
assembly, respectively (Supplementary Table 15). In addition, in
the Morex V1 assembly, two HvmTERF members named HOR
VU0Hr1G013680 and HORVU0Hr1G017090 were not mapped
to the reference genome. However, they were anchored to
chromosome 5 (HORVU.MOREX.r2.5HG0420050,HvmTERF2
0) and chromosome 6 (HORVU.MOREX.r2.6HG0509710,Hvm
TERF49) in the Morex V2 assembly. Each of the HvmTERFs
contains the notable conserved mTERF domain. No premature
termination codon was found in the coding region of HvmTERF
genes, andmost of themwere supported by barley ESTs, ensuring
the authenticity of gene family identification. Thus, this is the
first gene family identification using the Morex V2 assembly
at the whole genome-wide level, and the most updated and
comprehensive information on the mTERF gene family in barley
has been obtained to date.

The improved genome assembly also provided the definite
physical locations of HvmTERFs. The HvmTERFs were
distributed unevenly across seven chromosomes. The maximum
number of HvmTERFs was located on the long arm end of
chromosome 6, with a total of 19 HvmTERFs. Most of the
HvmTERFs were located at the distal ends of the chromosome,
but they were absent from the short arm of chromosome 3 and
the long arm of chromosome 5. Similar findings were reported
in other barley gene families, such as the non-specific lipid
transfer protein (LTP) gene family and auxin/indole-3-acetic
acid (Aux/IAA) gene family (Zhang et al., 2019; Shi et al., 2020).
A possible cause might be that the distal and proximal ends of
chromosomes are more gene-rich than the middle regions of
chromosomes in barley (Mayer et al., 2012). In cereals, meiotic
homologous chromosome recombination is skewed toward
the distal regions of the chromosomes, leading to the biased
distribution of genes that are concentrated in the distal regions

(Higgins et al., 2012). The uneven distribution of recombination-
rich regions ensures that there is abundant genetic diversity
available to respond to various stressful conditions and dynamic
environmental changes (Zhang et al., 2019).

In metazoans, the mTERF gene family contains four to five
members (Roberti et al., 2009). In contrast, the mTERF gene
family has expanded to approximately 30 members in land
plants (Quesada, 2016). For example, there are 35 mTERFs in
Arabidopsis, 33 in rice, 31 in maize, and 25 in grape. In this
study, a total of 60 HvmTERF genes were identified in the barley
reference genome, approximately two times as many as other
higher plants. Given the complicated regulation of organellar
genome transcription in land plants, the expansion of themTERF
gene family in barley could be induced by a complex mechanism.
To gain insights into the evolutionary relationship within the
mTERF gene family, we first constructed a phylogenetic tree
using the mTERF proteins from barley, rice, and Arabidopsis.
The mTERF proteins were categorized into nine subfamilies
based on the classification set forth by Zhao (Zhao et al., 2014).
Within the same subfamily, the gene structure and protein motif
organization were highly conserved, supporting the phylogenetic
analysis, and classification results. The phylogenetic tree further
showed that eight subfamilies (subfamilies I–VIII) contained
the mTERF proteins from these three species (barley, rice, and
Arabidopsis), suggesting that these mTERF proteins evolved from
common ancestors and then expanded independently in each
species. Most of the subfamilies possessed comparable numbers
of mTERF proteins, whereas monocot-specific subfamily IX does
not contain any mTERF proteins from Arabidopsis, suggesting
that subfamily IX formed after the divergence of monocots and
dicots (Zhao et al., 2014). Furthermore, only 13 rice mTERF
proteins were clustered in Group IX. In contrast, 39 mTERF
proteins, more than half of the total mTERFs in barley, were
assigned to this subfamily. Thus, we speculated that HvmTERFs
within subfamily IX may have experienced noticeable expansion.

Gene duplication contributes to the expansion and evolution
of gene families (Shi et al., 2020). To reveal the expansion
mechanism of HvmTERFs, segmental and tandem duplication
events were investigated. Fourteen pairs of HvmTERFs
underwent gene duplication, including seven segmental and
seven tandem duplication events. Remarkably, 17 mTERF genes
consisting of 13 duplicated pairs contributed to the expansion
of subfamily IX. Collectively, both segmental and tandem
duplication contributed to the expansion of the HvmTERF gene
family, mainly in subfamily IX, and further led to twice as many
mTERF genes in barley as in other species. Moreover, the Ka/Ks
values of all the paralogous gene pairs were <1, suggesting that
they all underwent purifying selection.

HvmTERF Genes May Play Important
Roles During Plant Growth, Abiotic Stress,
and Phytohormone Responses
To obtain preliminary insight into the biological function
of mTERFs, we checked the cis-elements in the promoter
regions of HvmTERFs. The promoter regions contained various
cis-elements associated with development/tissue specificity,
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promoter/enhancer elements, light responses, circadian
control rhythms, and external stimuli and hormone responses,
suggesting that HvmTERFs are involved in multiple biological
processes. Since cis-element prediction was carried out based on
a bioinformatics approach, further experimental validation is
also required.

In vertebrates, the biological function of mTERFs in the
regulation of mitochondrial transcription, replication, and
translation has been well-documented (Castillo et al., 2019).
Although land plants possess more mTERFs than mammals, the
functions of mTERFs in plants are rather limited (Kleine and
Leister, 2015; Quesada, 2016). Based on their loss-of-function
phenotypes, which havemainly been characterized inArabidopsis
and maize, mTERFs in land plants are required for OGE and
play essential roles in plant growth and development (Ding
et al., 2019). In this study, the specific spatiotemporal expression
of HvmTERFs in different developmental stages and tissues
suggested that HvmTERFs might potentially play a vital role in
various plant growth and developmental processes. HvmTERF2,
HvmTERF16, and HvmTERF58 (orthologous to RUGOSA2,
SL1/mTERF3, and mTERF6 in Arabidopsis, respectively)
displayed high expression levels in the studied tissues and
stages. In Arabidopsis, these orthologous genes are essential
for plant photosynthesis, mitochondrial, and chloroplastic
gene expression and development, and leaf patterning and
organogenesis (Quesada et al., 2011; Jiang et al., 2020).
HvmTERF24 was the most highly expressed gene in different
organs. However, there is rather limited information on the
functions of its orthologous gene in Arabidopsis (AtmTERF12).
Recent research has only demonstrated that AtmTERF12 is
not involved in the response to salt stress (Xu et al., 2017).
Several tissue- and stage-specific genes were also identified. For
instance, HvmTERF14 showed preferential expression in young
inflorescences, whereas its ortholog mTERF15 is required for the
cis-splicing of mitochondrial nad2 intron 3 in both Arabidopsis
and maize and further regulates the small kernel phenotype
in maize, implying that HvmTERF14 may achieve different
functions in barley compared with other species (Hsu et al.,
2014; Yang et al., 2020). Homologous analysis might provide
information on the role of HvmTERFs. However, to ascertain
HvmTERF function still requires further detailed and extensive
experimental work (Yin et al., 2021).

In contrast to animals, plants are sessile organisms that
are continuously exposed to and cannot escape environmental
stresses. During evolution, the expansion and diversification of
gene families played important roles in plant adaptation or
tolerance to environmental extremes (Xu et al., 2017). A wide
range of mechanisms have evolved in plants to cope with adverse
environmental stresses at the molecular level. Compared with
the control, a total of three and four upregulated genes were
identified under cold and salt treatment, whereas under metal
poisoning stresses, a total of four zinc, five copper, and two
cadmium toxicity stress-relatedHvmTERFs were identified. Since
similar studies are rather scarce, further experimental validation
is required. Therefore, the expression patterns of HvmTERFs
in response to various stresses were further investigated by

qRT-PCR. Most of the qRT-PCR results were consistent with
the RNA-seq results. For example, both the RNA-seq and
qRT-PCR results demonstrated that HvmTERFs 19, 23, and
58 were downregulated in response to salt stress. By contrast,
several upregulated HvmTERFs were also detected in response
to various stresses. For instance, HvmTERF21 was upregulated
under salt and cold stress based on RNA-seq, while this gene
was significantly upregulated by cold, salt, drought and ABA
stress via qRT-PCR analysis. Homology analysis revealed the
involvement of its orthologous geneAtmTERF10 in salt tolerance,
possibly through an ABA-mediated mechanism (Xu et al.,
2017). Nonetheless, certain inconsistent expression patterns were
also observed. RNA-seq data revealed that HvmTERF7 and
HvmTERF46 were not induced by salt stress at the three root
zones, while qRT-PCR analysis showed that these genes were
significantly downregulated at 1, 3, 12, and 24 h and significantly
upregulated at 6 h under salt treatment. Previous studies reported
that mTERF9 (orthologous to HvmTERF7) and MAD1/mTERF5
(orthologous to HvmTERF46) contributed to salt tolerance in
Arabidopsis (Robles et al., 2012, 2015; Núñez-Delegido et al.,
2020). The inconsistent results between RNA-seq and qRT-PCR
may be due to several putative reasons. First, the different barley
varieties were used in the two experiments. The barley cultivar
Clipper was used in RNA-seq, whereas the cultivarMorex was the
experimental materials in qRT-PCR. Second, the plant materials
were not exactly the same. The materials for qRT-PCR were
roots, whereas the materials for RNA-seq were both roots and
leaves. Third, the expression level of qRT-PCR was calculated
based on the 2−11CT method, and the expression level of RNA-
seq was estimated by FPKM. These two different calculation
methods could not ensure that all the results are consistent.
In brief, these results provide candidates for further functional
investigation of mTERF genes in barley as well as in other
cereal crops.

In addition, there was no correlation between expression
patterns and phylogenetic relationships. The fate of HvmTERF
genes from the same gene family could be described as
neofunctionalization during expansion. For example, in
subfamily IV, HvmTERFs 2, 8, and 46 showed relatively high
expression in various tissues and developmental stages, whereas
HvmTERF20 exhibited preferential expression in developing
inflorescences and senescing leaves, and HvmTERF51 was not
expressed in most of the developmental stages and tissues.
Highly diverse expression patterns were also observed in
subfamily IX, the most expanded subfamily. In addition,
a divergent expression profile was investigated even for
duplicated gene pairs. The duplicated genes HvmTERF9 and
34 showed divergent spatiotemporal expression patterns.
HvmTERF34 was induced by copper, whereas its paralog,
HvmTERF9, was significantly upregulated in the root
meristematic zone under salt treatment. Similar patterns
were also observed in other phylogenetic groups. These
results suggested that close phylogenetic relationships are not
essential for similar expression profiles, which was consistent
with previous reports on other barley gene families (Li et al.,
2019).
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Nucleotide Diversity Analysis Indicated
That HvmTERF Genes Experienced a Weak
Bottleneck During Barley Domestication
Domestication is a plant-animal coevolution process that
occurs when wild species are exposed to new selective
environments associated with human cultivation and use,
leading to morphological and physical changes that distinguish
domesticated taxa from their wild ancestors (Purugganan
and Fuller, 2009; Purugganan, 2019). Cultivated barley,
domesticated from its progenitor wild barley (Hordeum vulgare
ssp. spontaneum), has experienced a series of genetic changes
that have caused differences in plant architecture and growth
habits, collectively called the domestication syndrome (Hammer,
1984; Doebley et al., 2006). Domestication of barley resulted in
a concomitant bottleneck that reduced nucleotide diversity in
alleles (Haas et al., 2020). However, little is known about the
changes in mTERFs resulting from domestication in barley. In
this study, 481 SNPs were identified from 60 HvmTERF genes
across 220 wild and landrace barley accessions. The SNPs were
distributed unevenly along the genomic sequence, including a
total of 292 exon and 44 intron variations, which was consistent
with a previous study showing higher polymorphism of SNPs
in exon regions than in intron regions (Lu et al., 2019) but
opposite to observations in other studies (Uçarli et al., 2016; Xia
et al., 2017). The PCA, admixture, and phylogenetic analyses
clearly divided all the accessions into landraces and wild barley
accessions and further distinguished them geographically.
We further examined the geographical distribution of these
haplotypes and found that the wild barley populations from
the Northern Levant and East of Levant regions appeared to
contribute most directly to the genetic composition of Asian
landraces, while Southern Levant barley populations made a
great contribution to African and European landraces. The
genetic constitution of barley landraces indicated multiple
origins from wild progenitor populations that resulted in
the initial domestication and subsequent migration of early
agriculturalists along the axes of the Afro-Eurasian world
(Poets et al., 2015). Although multiple wild populations
provided the basis for the genetic constitution of landraces,
the broad geographic range of landraces also showed various
regional correlations.

Domestication also resulted in a concomitant bottleneck that
reduced sequence diversity across many genes (Haas et al.,
2020). The nucleotide diversity of wild accessions was relatively
higher than that of landrace accessions, with a total decrease
of ∼4.5%. Compared with the previous study, the average
reduction in nucleotide diversity was 27% from wild barley
accessions to landraces across the genome (Russell et al., 2016).
The significantly lower nucleotide diversity loss passing from
wild barley accessions to landraces in this study indicated
that the HvmTERF gene family might have suffered simple
bottleneck effects, rather than selection, in the process of barley
domestication. This result was also verified by the relatively low
Fst index. No significant divergence occurred betweenwild barley
accessions and landraces regarding HvmTERFs. One plausible
reason is that the hitchhiking effect reduced the nucleotide

diversity of the linked loci associated with domestication (Kilian
et al., 2006).

As in other plants,mTERFs are characterized as evolutionarily
conserved and fundamentally universal signaling pathways.
However, the comprehensive characterization of barley mTERF
gene family remains to be elucidated in detail. Our data on
the physicochemical properties, phylogenetic relationships, gene
structures, conserved motifs, expansion patterns, expression
profiles, and genetic variations will provide essential clues for
investigating the biological functions and evolutionary history of
mTERF gene family in barley.

CONCLUSION

In this study, a total of 60 mTERF genes were identified
in barley, about two times as many as those in Arabidopsis
and rice. Phylogenetic analysis categorized these genes into
nine subfamilies, with approximately half of them assigned to
subfamily IX, which was supported by exon-intron structure
and conserved motif analyses. Both segmental and tandem
duplications contributed significantly to the expansion of
HvmTERFs, mainly in subfamily IX. Cis-acting regulatory
element, expression profile and co-expression network analyses
suggested thatHvmTERFs might be involved in the development
process, tolerance to diverse stresses and response to plant
hormones. qRT-PCR analysis also revealed that HvmTERF21
and HvmTERF23 were significant induced by several abiotic
stresses and/or phytohormone treatment, and these genes could
be considered candidates for further functional studies. Finally,
genetic variation analysis demonstrated that HvmTERFs may
have experienced a weak genetic bottleneck, rather than selection,
during the domestication process from wild to landrace barley.
Taken together, our findings will not only provide a solid
foundation for further evolutionary analysis but also facilitate
the functional study of HvmTERFs and the molecular breeding
of barley.
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The introgression from wild relatives have a great potential to broaden the availability of

beneficial allelic diversity for crop improvement in breeding programs. Here, we assessed

the impact of the introgression from 21 diverse accessions of Aegilops tauschii, the

diploid ancestor of the wheat D genome, into 6 hard red winter wheat cultivars on yield

and yield component traits. We used 5.2 million imputed D genome SNPs identified by

the whole-genome sequencing of parental lines and the sequence-based genotyping of

introgression population, including 351 BC1F3 : 5 lines. Phenotyping data collected from

the irrigated and non-irrigated field trials revealed that up to 23% of the introgression

lines (ILs) produce more grain than the parents and check cultivars. Based on 16 yield

stability statistics, the yield of 12 ILs (3.4%) was stable across treatments, years, and

locations; 5 of these lines were also high yielding lines, producing 9.8% more grain

than the average yield of check cultivars. The most significant SNP- and haplotype-trait

associations were identified on chromosome arms 2DS and 6DL for the spikelet number

per spike (SNS), on chromosome arms 2DS, 3DS, 5DS, and 7DS for grain length

(GL) and on chromosome arms 1DL, 2DS, 6DL, and 7DS for grain width (GW). The

introgression of haplotypes from A. tauschii parents was associated with an increase in

SNS, which was positively correlated with a heading date (HD), whereas the haplotypes

from hexaploid wheat parents were associated with an increase in GW. We show that

the haplotypes on 2DS associated with an increase in the spikelet number and HD

are linked with multiple introgressed alleles of Ppd-D1 identified by the whole-genome

sequencing of A. tauschii parents. Meanwhile, some introgressed haplotypes exhibited

significant pleiotropic effects with the direction of effects on the yield component traits

being largely consistent with the previously reported trade-offs, there were haplotype

combinations associated with the positive trends in yield. The characterized repertoire
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of the introgressed haplotypes derived from A. tauschii accessions with the combined

positive effects on yield and yield component traits in elite germplasm provides a

valuable source of alleles for improving the productivity of winter wheat by optimizing

the contribution of component traits to yield.

Keywords: wheat, Aegilops tauschii, wild relative introgression, whole genome sequencing, haplotypes, genotype

imputation, grain yield, yield component traits

INTRODUCTION

The gap between population expansion and food production is
increasing due to marginal improvements in crop yield, which
is attributed to a decline in soil fertility, pests and diseases, and
climate change (Bailey-Serres et al., 2019).Wild relatives of wheat
are a rich source of novel underutilized allelic diversity with a
great potential to improve cultivated wheat through introgression
(Placido et al., 2013; Zhang et al., 2017; Hao et al., 2020). The
introgression from wild relatives into elite wheat cultivars was
reported to increase pest and disease resistance (Periyannan
et al., 2013; Saintenac et al., 2013), improve resilience toward
environmental stress (Peleg et al., 2005; Placido et al., 2013),
and increase yield (Pasquariello et al., 2020). The success of
introgression breeding, however, could be affected by the negative
epistasis between multiple alleles of wild and cultivated wheat
(Nyine et al., 2020), especially in the low recombination regions
of chromosomes, where the linkage with the negatively selected
alleles could reduce the efficiency of selection for beneficial
variants (Hill and Robertson, 1966).

Introgression could exhibit pleotropic effects, affecting
multiple, often unrelated traits not directly targeted by selection.
For example, the introgression from Aegilops ventricosa into the
chromosome 7D of wheat was associated with an increase in
grain protein content and resistance to eyespot at the expense
of reduced yield (Pasquariello et al., 2020). In durum wheat, the
introgression of the GNI-A1 gene from wild emmer increased
grain weight by suppressing the fertility of distal florets, resulting
in a negative correlation between grain number (GN) and grain
weight (Golan et al., 2019). The introgression from Agropyron
elongatum into the 7DL chromosome arm of wheat that is known
to confer leaf rust resistance (Lr19) (Wang and Zhang, 1996) also
influences root development, resulting in an improved adaption
to water stress (Placido et al., 2013) and salinity (Dvorák et al.,
1988), and increased biomass (BM) and yield (Reynolds et al.,
2001).

Crop yield is a complex trait determined by many component
traits, such as 1,000 grain weight (TGW), GN per spike, spikes
per unit area, grain width (GW), area, length, etc. (Del Moral
et al., 2003; Zhang et al., 2018; Du et al., 2020). Previous
studies have shown that the introgression from wild and close
relatives improve the yield of hexaploid wheat by changing yield
component traits through the pleotropic interaction between
introgressed and background alleles of the hexaploid wheat
(Jones et al., 2020). Significant trade-offs between yield, yield
components, and yield stability have been reported in wheat.
A study by Pennacchi et al. (2019) showed that yield and

yield stability have a negative linear relationship in most cases.
Other factors such as HD, plant height (PH), and BM influence
the source-sink ratio, which in turn affects the harvest index
leading to a variation in yield and yield stability (Reynolds et al.,
2001, 2020). Balancing the trade-off between yield components
is therefore necessary to improve yield, maximize the yield
potential, and improve the yield stability in wheat.

Sequence-based genotyping generates high-density SNP
marker data that could be used to accurately detect the
boundaries of genomic segments introgressed from wild relatives
(Kuzay et al., 2019; Nyine et al., 2020), providing a unique
opportunity to investigate the effect of introgression on trade-
off between the traits affecting total yield. Even though whole-
genome sequencing became less expensive, it is still not within the
cost range that would allowwheat breeding programs to sequence
large populations. Sequencing of founder lines at a high coverage
depth and using these genotypes as a reference panel to impute
missing and ungenotyped markers in the progeny characterized
by low-coverage skim sequencing is a cost-effective alternative.
The existing imputation algorithms (Browning and Browning,
2013; Swarts et al., 2014; Davies et al., 2016) provide a highly
accurate whole-genome prediction of missing genotypes and
were shown to increase the power of genome-wide association
(GWAS) scans, thus enabling the identification of SNPs or
haplotypes associated with the traits of interest (Li et al., 2010;
Nyine et al., 2019). One of the advantages of the increasedmarker
density provided by whole-genome sequencing is the ability
to perform association mapping using haplotype information,
which improves the detection of quantitative trait loci that would
otherwise be missed when using single SNPs (Zhang et al., 2002;
Lorenz et al., 2010).

Here, we investigated the impact of the introgression from
A. tauschii into hard red winter wheat lines on yield and
yield component traits and how haplotypes from A. tauschii
at different genomic loci affect the component traits and total
yield. For this purpose, we assessed the phenotypic variability of
yield and the component traits, BM, and tenacious glume (Tg)
traits in an introgression population derived from A. tauschii and
hexaploid winter wheat phenotyped under irrigated and rainfed
conditions. We applied the SNP diversity data generated by the
whole-genome shotgun sequencing at 10× coverage level of the
parental lines to impute genotypes in this population (Nyine
et al., 2020). This strategy resulted in 5.2 million SNPs that
enabled us to identify the introgressed A. tauschii haplotypes
and assess their effects on the trait variation through the GWAS
mapping and haplotype block effect analysis. This introgression
population along with high-density SNP genotype data provides
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a valuable resource for the effective deployment of A. tauschii
haplotypes in winter wheat improvement programs.

MATERIALS AND METHODS

Plant Materials
The study population was described in detail by Nyine et al.
(2020). In brief, the population was developed by crossing
synthetic A. tauschii-wheat octoploid lines with recurrent
hexaploid winter wheat lines. The octoploid lines were developed
by crossing 5 hexaploid winter wheat lines with 21 diverse A.
tauschii accessions. The resulting F1 hybrid plants regenerated
from the rescued embryos were treated with colchicine to
produce synthetic octoploids (Dale et al., 2017). The octoploids
were backcrossed once to the respective hexaploid wheat parents
or to another wheat line. The BC1F1 plants (hexaploid) were self-
pollinated and advanced by a single seed descent to the BC1F3
generation. Seeds from individual BC1F3 plants were bulked and
grown in single rows in the field at the Kansas State University,
Ashland Research Farm near Manhattan, KS, USA in 2016–
2017 growing season. A total of 351 lines were selected from
the entire population based on the ability to produce sufficient
seeds to allow for yield testing, general fitness, threshability, and
phenology corresponding to the adapted wheat cultivars.

Field Phenotyping
The population was phenotyped in 2018 and 2019 at Colby
(Manhattan, KS, USA), and in 2020 at (Manhattan, KS, USA).
In both locations and years, an augmented design was used to
establish the trials. Plots were planted using a New Holland six-
row wheat drill. Plot dimensions were 2.5m long by 0.5m wide
and consisted of three rows with 18 cm row spacing. Starter
fertilizer was applied with the seed at planting using granular
18-46-0 diammonium phosphate (DAP) at a rate of 168.1 kg/ha.
Additional nitrogen was applied as a topdress in the spring
using liquid 28-0-0 urea ammonium nitrate (UAN) at a rate
of 67.3 kg/ha. A lateral irrigation system was used at Colby
to ensure uniform germination and emergence as well as to
provide additional water throughout the growing season in the
irrigated treatment. Three hexaploid winter wheat lines well-
adapted to Kansas environments (checks) and the hexaploid
wheat parents were used as controls with at least three biological
replications per block. In 2018 and 2019, two complete blocks
were established and one block was irrigated (COI18 and COI19,
respectively), whereas the other was rainfed/non-irrigated (CO18
and CO19, respectively), simulating optimal and farmer-field
growth conditions. In 2020, only one block was grown under
rainfed conditions (AS20).

The population was phenotyped for yield and yield
components traits, BM traits, and Tg. Agrobase software
(Mulitze, 1990) was used to adjust the grain yield (GY) (bushels
per acre (BPA)], for spatial variability. The MARVIN seed
imaging system [GTA Sensorik GmbH, Neubrandenburg,
Germany) was used to assess the grain morphometric traits
such as GN per sample, TGW, grain area (GA), GW, and grain
length (GL) from the two technical replicates in 2018, and one
measurement in 2019 and 2020. In 2019 and 2020, data were

collected for the number of spikes per square foot (SPSF) from
two random points within a plot. The 1 × 1 ft square frame was
dropped over two rows at least one foot away from the plot edges
to avoid the border effect. In 2019, only one row within a frame
was cut above the ground level for BM determination, whereas in
2020, both rows were sampled. Biomass samples were collected
in paper bags and dried for at least 3 weeks at 32◦C (90◦F) before
processing. We collected data on aboveground dry BMmeasured
as the total weight of the dry sample without the bag, the number
of spikes per sample (SPB), the average spikelet number per spike
(SNS) from 10 random spikes, and grain weight after threshing
[grain sample weight (GSW)]. During threshing, we scored
samples for the presence and absence of the Tg trait depending
on the threshability. Harvest index (HI) was calculated as the
percentage of GSW relative to BM.

In 2020, data for HD were collected from each plot when
approximately 50% of the spikes had emerged from the flag
leaves. The number of days to heading were calculated as the
difference between the heading and planting dates. After all the
plots had completed heading, PH, in centimeters was measured
on the same day from two random but representative main tillers
per plot for the whole field. PHwasmeasured as the distance from
the ground surface to the first spikelet of the spike.

Genotyping
Whole-Genome Shotgun Sequencing of Parental

Lines
Genomic DNA of 21 A. tauschii accessions and 6 hexaploid
parents used to create the introgression population was extracted
from the leaf tissues of 2-week-old seedlings grown in a
greenhouse using the DNeasy Plant Mini Kit (Qiagen, Hilden,
Germany) following the protocol of the manufacturer. The
quality and concentration of the DNA were assessed by using
the PicoGreen dsDNA Assay Kit (Life Technologies, Carlsbad,
CA, USA).

Genomic libraries for Illumina sequencing were constructed
from ∼2 µg of genomic DNA using the PCR-free Illumina
protocol at the K-State Integrated Genomics Facility (IGF). The
libraries were subjected to size selection using the Pippin Prep
system (Sage Scientific, Beverly, MA, USA) to enrich for 400–
600 bp fragments. The pooled barcoded libraries were sequenced
using the NovaSeq instrument (2 × 150 bp run, S4 flow cell) at
Kansas University Medical Center and NextSeq 500 (2 × 150 bp
run) at IGF. The PCR-free whole-genome shotgun sequencing
libraries generated from 27 parental lines ranged between 200
and 700 bp with an average of 450 bp (Supplementary Figure 1).
Approximately 14 billion paired-end reads (150 bp long) were
generated from the libraries with an average of 0.54 billion reads
per sample (data are available at NCBI SRA database BioProject
ID: PRJNA745927). The average number of reads per wheat
line corresponded to ∼10× genome coverage of parental lines.
The raw reads with the Phred quality score <15, minimum
length <50 bp, and adaptor sequencies were filtered out using
Trimmomatic v0.38-Java-1.8. The remaining filtered paired-end
reads were mapped to the Chinese Spring (CS) RefSeq v1.0
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(International Wheat Genome Sequencing Consortium, 2018)
using the BWA-mem software v0.7.17. A total of 7.1 billion reads
were aligned uniquely to the CS RefSeq v1.0.

The sam files generated by BWA-mem were converted to
bam files using the SAMtools v1.10. The Picard Toolkit (http://
broadinstitute.github.io/picard) was used to merge bam files
from different lanes and sequencers into one bam file per
sample. Reads that were aligned to multiple locations within
the genome were identified and removed by SAMtools v1.10.
The Picard Toolkit was used to prepare the merged unique
aligned read bam files for GATK (McKenna et al., 2010) analysis.
The preparatory steps included sorting, adding read groups,
marking, and removing duplicate reads. The output deduplicated
bam files were realigned around INDELs using GATK v3.7 and
recalibrated with 90K SNPs (Wang et al., 2014) mapped to CS
RefSeq v1.0 as the reference coordinates. The bam files were split
into chromosome parts and indexed to reduce the memory and
time required to process the files. GATK v3.7 was used to generate
the genome variant call format (gvcf) files for each chromosome
part. The gvcf files were split into 100Mb chromosome windows
and stored as genomicsDB using the genomicsDBImport tool in
GATK v4.0. Joint genotyping of variants from each database was
done using GATK v4.0 HaplotypeCaller. The flag <-allow-old-
rms-mapping-quality-annotation-data> was set to enable the
processing of gvcf files generated by GATK v3.7. All vcf files
corresponding to the A, B, and D genomes were concatenated
with concat, a Perl-based utility in vcftools v0.1.13. A custom Perl
script was used to convert the CS RefSeq v1.0 part coordinates
in the concatenated vcf to full coordinates after which vcf-filter
tools v0.1.13 were used to remove INDELs, multi-allelic loci, sites
with missing data and minor allele frequency (MAF) below 0.05.
The filtered SNPs were phased using the Beagle software v4.1
(Browning and Browning, 2013).

The GATK v4.0 HaplotypeCaller identified ∼99 million
variants including SNPs and INDELs from reads uniquely
aligned to the D genome of CS RefSeq v1.0. After excluding
INDELs, multi-allelic loci, sites with missing data, and MAF
<0.05, 20 million SNPs were retained. These were used to
impute missing and ungenotyped SNPs in the D genome of the
introgression population.

Genotype Imputation
Sequence-based genotyping of the introgression population
was performed previously by Nyine et al. (2020). SNPs with
MAF <0.01 were excluded from the raw vcf file using vcf-
filter tools v0.1.13. The program conform-gt (https://faculty.
washington.edu/ browning/conform-gt.html) was used to check
the concordance of D genome SNP positions between the
introgression population and the SNPs from the parental lines
genotyped by whole-genome shotgun sequencing. Missing and
ungenotyped SNPs in the D genome of the introgression
population were imputed from the parental lines using Beagle
v.5.0. A custom Perl script was used to filter out the imputed
SNPs with genotype probability below 0.7 andMAF<0.05, which
resulted in 5.2 million SNPs. The filtered SNPs were used in the
downstream analyses such as GWAS mapping and identification
of the introgressed haplotype blocks.

Introgressed Haplotype Detection
Genetic divergence between the parental lines affects the
probability of an accurate detection of the introgressed segments
from wild relatives. We used two introgression families, one
created by crossing hexaploid wheat with A. tauschii ssp.
strangulata (KanMark x TA1642, aka FAM93) and another one
created by crossing hexaploid wheat with A. tauschii ssp. tauschii
(Danby × TA2388, aka FAM97) to identify the introgressed
haplotype blocks. FAM93 had 21 introgression lines (ILs),
whereas FAM97 had 23 ILs. The R package HaploBlocker (Pook
et al., 2019) was used to infer haplotype blocks from 5.2 million
SNP sites. Recombinant inbred lines from each family were
analyzed together with 21 A. tauschii and 6 hexaploid parents.
The HaploBlocker parameters used in block calculation were
node_min = 2 (default is 5), overlap_remove = TRUE, bp_map,
and equal_remove=TRUE. The parameter node_min was used
to control the number of haplotypes per node during a cluster-
merging step of the block calculation function of HaploBlocker.
The reduction in node_min was necessary to account for the
low number of haplotype variants within these families. To
maintain the SNP position in the haplotype block library, a
vector of SNPs was provided via the parameter bp_map and
prior to block calculation, SNPs in perfect linkage disequilibrium
were removed by setting the parameter equal_remove = TRUE.
Overlapping haplotypes were removed by setting parameter
overlap_remove=TRUE. CustomR and Perl scripts were used to
calculate the haplotype block length using the information from
haplotype block start and end coordinates. All monomorphic
haplotypes between the two parental lines were excluded from
a haplotype matrix before calculating the frequency of the
introgressed haplotypes per chromosome.

Phenotype Data Analysis
Trait Stability and Heritability
Yield stability is an important trait, which reflects the
productivity of the crop under various growth conditions. No
single statistic, however, is accurate enough to predict it due
to a high variability of genotype and genotype by environment
interaction effects. In this study, we used 16 different statistics,
including parametric [such asmean variance component (θ i), GE
variance component [θ(i)], Wricke’s ecovalence (W2

i ), regression
coefficient (∗bi), deviation from regression (S2di), Shukla’s stability

variance (σ 2
i ), coefficient of variance (CVi), and Kang’s rank-sum

(Kang or KR)] and non-parametric [such as Huhn’s and Nassar
and Huhn’s (S(1), S(2), S(3), S(4), S(5), and S(6)), and the methods of
Thennarasu (NP(1), NP(2), NP(3), and NP(4))] to rank the ILs for
yield stability based on their performance across years, locations,
and treatments. The description and properties of the statistics
are documented at the website: https://manzik.com/stabilitysoft/.
The analysis was implemented in R using a script from Pour-
Aboughadareh et al. (2019), which is available at: https://github.
com/pour-aboughadareh/stabilitysoft. The most stable and/or
high yielding lines were identified by sorting them according to
their rankings.

Broad sense heritability (H2) and best linear unbiased
predictions (BLUPs) for yield and the component traits were
calculated from the 2018 and 2019 data. A mixed linear model
with restricted maximum likelihood implemented in R package
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lme4 was used to generate the variance components (var) that
were used to calculate H2 as follows:

Model = lmer(Trait ∼ Trt

+ (1|Genotype) + (1|Genotype :Trt), data = trait_data)

H2 = var(Genotype)/[var(Genotype) + var(Genotype:Trt)/No.
of Trt + var(Residual)/No. of Trt)] where Trt refers to irrigated
and non-irrigated treatments. BLUPs were extracted from the
linear mixed model as the random effects of genotypes.

Multiple comparisons for the effect of treatment on yield
and yield components traits in the introgression population
relative to the controls were performed using least squares (LS)
means with “Tukey” adjustment method and α = 0.05. To
further assess the impact of introgressed haplotypes on the traits,
lines were sorted in a descending order for each treatment and
location/year. The percentage of the ILs that performed better
than the best parental lines and checks [percentage of top-
performing lines (PTPL)] was calculated for each trait. Similarly,
ILs that produced more grains than both parents and checks
were identified based on the mean spatial adjusted yield. The
percentage increase in yield was calculated as follows:

1ȳij = 100 ×
ȳi − ȳj

ȳj

where 1ȳij is the percentage change in mean yield, ȳi is the mean
yield for the high yielding ILs, and ȳj is the mean yield for the
controls (parents and checks).

Trade-Off Between Traits
The relationship between yield, yield components, and BM traits
were assessed by calculating the Pearson’s correlation coefficients.
We compared the trend of correlations from different treatments
(irrigated/non-irrigated) and years to determine the extent of
trade-off between traits within the introgression population and
how the environment influenced them.

GWAS Mapping
The genome-wide association analysis was used to identify the
genomic regions with SNPs and haplotypes that have a significant
association with the traits. We tested the association of 5.2
million SNPs from the D genome with the traits phenotyped
in different treatments and years. A total of 15,967 haplotype
block windows were identified from 5.2 million SNPs using
the R package HaploBlocker v1.5.2 (Pook et al., 2019). Default
parameters for HaploBlocker were used except node_min, which
were reduced to two (default is five) as most genomic intervals in
our data set had <5 haplotype variants. Overlapping haplotypes
were removed using the parameter overlap_remove = TRUE,
and the SNP coordinates were included in the haplotype library
via the parameter bp_map. Haplotype blocks were split into
windows by setting the parameter return_dataset = TRUE in
the block_windowdataset() function. The haplotype variants
within a given chromosome interval were recorded as 0, 1,
2, or 3 depending on the total number of haplotype variants
present within the interval. In both cases, a mixed linear

model implemented in the R package GAPIT was used to
detect the associations. To control for a population structure
in SNP-based analyses, 100,000 randomly selected markers were
used to calculate the principal components. In haplotype-block-
based GWAS, all haplotype blocks were used to calculate the
principal components. In both cases, only the first three principal
components were used to control the population structure. Two
threshold options were used to identify significant associations
including a more stringent Bonferroni correction and a less
stringent Benjamini and Hochberg (1995) false discovery rate
(FDR) at 5% significance level. To control for the effect of
treatment and year, GWAS based on BLUPs was also performed,
and significant associations were reported only when there were
SNP- or haplotype-trait association in at least two independent
trials or in the BLUP-based analysis.

SNP- and Haplotype-Trait Effects
Haplotype variation at loci with significant SNPs and their
effects on traits in the introgression population were analyzed.
The R package HaploBlocker v1.5.2 (Pook et al., 2019) was
used to infer haplotypes at the genomic loci with significant
SNP-trait associations. Heatmap.2 function provided in the R
package gplots was used to visualize the variation in haplotypes
from hexaploid wheat and A. tauschii. However, at the Ppd-D1
locus, a visual comparison of the SNPs from the parental lines
was done, and the SNPs were annotated using the snpEff v4.3
software to resolve haplotype variants in the A. tauschii lines
that could not be clearly distinguished by HaploBlocker. SNPs
significant at FDR ≤ 0.05 and their estimated allelic effects were
selected from the association mapping results and used to verify
if the haplotype effect corresponded to the observed phenotype
in the introgression population. The mean and the SD of the
phenotype were calculated for each group of lines carrying a
similar haplotype, and the difference between the means was
compared using Tukey’s honestly significant difference and the
Student’s t-test.

RESULTS

Trait Variation in the Introgression
Population
Broad sense H2 of GY was 0.7 in 2018 and 0.64 in 2019,
whereas for the yield component traits such as TGW, GA, GW,
and GL, H2 values were 0.85, 0.89, 0.83, and 0.95, respectively.
The agronomic performance of the ILs relative to the controls
(parent/checks) was assessed by comparing their yield and
yield component traits under different treatments. The effect of
treatment on yield was significant in 2018 (p < 2.2e-16), but not
in 2019 (p = 0.24) at 95% confidence level. The latter is partially
associated with more abundant rainfall in 2019 that reduced
the difference in the water availability stress levels between
the irrigated and non-irrigated field trials in Colby, KS, USA.
Based on the LS means, significant differences in yield between
controls and ILs was observed in 2019 and 2020, but not in 2018
(Table 1). The yield data collected from irrigated and rainfed
(non-irrigated) field trials conducted between 2018 and 2020
revealed that up to 23% of the lines with introgressions produce
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TABLE 1 | Comparison of grain yield (GY) between introgression lines (ILs; progeny) and controls (checks/hexaploid parents) per treatment within a year using least

squares (LS) means.

Year Treatment Group LSmean SE df Lower.CL Upper.CL Group

2018 Irrigated Progeny 68.6 0.77 410 66.8 70.5 a

2018 Irrigated Check 72.1 7.64 410 53.8 90.4 a

2018 Irrigated Parent 75.7 3.6 410 67.1 84.3 a

2018 Non-Irrigated Progeny 50.1 6.43 395 34.6 65.5 a

2018 Non-Irrigated Check 51.6 0.66 395 50 53.2 a

2018 Non-Irrigated Parent 57.1 2.95 395 50 64.2 a

2019 Irrigated Progeny 103 0.82 379 100.6 105 a

2019 Irrigated Parent 119 3.8 379 109.5 128 b

2019 Irrigated Check 121 9.05 379 99.3 143 ab

2019 Non-Irrigated Progeny 101 0.86 382 99.2 103 a

2019 Non-Irrigated Parent 116 3.85 382 106.3 125 b

2019 Non-Irrigated Check 116 9.44 382 93.5 139 ab

2020 Non-Irrigated Progeny 47.1 0.43 385 46 48.1 a

2020 Non-Irrigated Parent 55.3 2.01 385 50.5 60.1 b

2020 Non-Irrigated Check 59.3 4.79 385 47.8 70.8 b

The 2018 and 2019 trials were conducted at Colby, whereas the 2020 trial was conducted at Ashland, Manhattan, KS, USA. Groups with similar letters are not significantly different at

95% confidence level.

more grain than the controls (Supplementary Figure 2). In 2018,
however, 3.2 and 48% of the ILs produced more grain than the
parental lines and checks, respectively, in the non-irrigated trial
(CO18), suggesting that the check cultivars were more sensitive
to drought stress than the parental lines.

The proportion of ILs outperforming the checks and parental
lines for the measured traits varied between treatments and years
with a minimum of 0.8% for BM in the non-irrigated trial in
2019 (CO19) and a maximum of 73% for TGW in the 2018
irrigated trial (COI18). The percentage increase in yield for the
ILs that outperformed both checks and parent varied from 11
to 57%, whereas the number of lines that produced more grains
varied from 6 to 94 (Table 2). Under drought stress conditions
in 2018 (CO18), the mean yield of top-performing ILs was 1.6-
and 1.4-folds higher than the checks and parents, respectively
(Figure 1). These results suggest that some ILs carry the alleles
that confer drought tolerance, thus ensuring high productivity
under stressful conditions. The highest yield potential of both
ILs and controls was observed in 2019. The mean of the top
yielding ILs reached 134 BPA, whereas that of the parental lines
and checks reached 119 and 121 BPA, respectively (Table 2).

The yield stability analyses were performed to identify ILs that
are both high yielding and stable under various environmental
conditions. Ranking by mean yield showed that 6% of the lines
carrying introgression produced more grains than most parental
lines, except Larry (Supplementary File 1). The yield of these
lines ranged from 84.4 to 92.7 BPA. The average rank (AR) of 16
stability statistics revealed 12 lines with introgressions showing
high yield stability. Five of these lines were both stable and high
yielding according to KR when compared to the controls. The
yield of these five ILs (KS15SGDCB110-11, KS15SGDCB098-1,
KS15SGDCB103-6, KS15SGDCB098-14, and KS15SGDCB111-
1) varied between 82 and 93 BPA. The yield of the most stable
and high yielding IL (92.7 BPA) was 9.8% higher than the average

TABLE 2 | Percentage of mean yield difference between top-performing ILs and

controls (parents and checks) per treatment in each year and location.

Group ID No. of IL Mean yield IL Mean yield

controls

% yield diff.

AS20_ILP 6 68.6 55.2 24.3

AS20_ILC 6 68.6 59.3 15.8

CO18_ILP 21 78.7 57.1 37.8

CO18_ILC 21 78.7 50.1 57.1

COI18_ILP 94 86.9 75.7 14.8

COI18_ILC 94 86.9 72.1 20.6

CO19_ILP 11 130.5 115.5 13.0

CO19_ILC 11 130.5 116.1 12.4

COI19_ILP 6 134.2 119.2 12.6

COI19_ILC 6 134.2 121.0 10.9

AS, Ashland non-irrigated trial; CO, Colby non-irrigated trial; COI, Colby irrigated trial;

ILP, introgression lines by parents’ GY comparison; ILC, introgression lines by checks

GY comparison.

yield of the controls (84.4 BPA). These results indicate that novel
alleles from A. tauschii have the potential to increase the adaptive
potential of hard red winter wheat to different environmental
conditions. In addition, the stability statistics could help to
prioritize ILs for deployment in different agroecological zones
depending on their ranking in stability and yield. Lines that are
moderately high yielding but show good yield stability could be
deployed in marginal environments, whereas less stable but high
yielding lines could be deployed in less stressful environments to
achieve high productivity.

Harvest index, a measure of source-sink capacity, was also
assessed for stability in irrigated and rainfed trials. About 92 ILs
showed a higher average HI (47.4–52.8) than the best parental
line KS061406LN-26 (47.3). The AR based on the 16 stability
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FIGURE 1 | Boxplots comparing the mean grain yield (GY) between the top-performing introgression lines (ILs) and the controls (parents and checks) across

treatments, years, and locations. AS20 refers to Ashland rainfed trial in 2020, CO18 is Colby rainfed trial in 2018, COI18 is Colby irrigated trial in 2018, CO19 is Colby

rainfed trial in 2019, and COI19 is Colby irrigated trial in 2019.

statistics placed 11 out of 92 lines in the top 20 most stable lines
(Supplementary File 2). Line KS15SGDCB111-1, which is high
yielding and stable, also ranked in the top five lines with a stable
and high average HI.

Trade-Off Between Yield and Yield
Component Traits
Pearson’s correlation coefficients between the average yield and
yield stability based on AR of the 16 stability statistics was −0.44
(p < 0.001; Supplementary File 1). However, the correlation
between yield and KR was −0.71 (p < 0.001), indicating that
the most stable ILs were not necessarily the highest grain
yielders although there were some exceptions. Similarly, the
correlation between average HI and AR was −0.42 (p < 2.2e-
16), whereas the correlation between HI and KR was −0.73
(p < 2.2e-16; Supplementary File 2).

The trade-off between yield and yield components was
influenced by the treatment, year, and location as evidenced by
a variation in the levels of correlations (Supplementary File 3).
Higher positive correlations were observed among grain
morphometric traits such as TGW, GA, GW, and GL, ranging
from 0.13 (between GW and GL) to 0.96 (between TGW and
GA) (Figure 2). HI and GSW positively correlated with GY,
whereas the correlation between GY and GN was positive
but nonsignificant in all trials, except for the Colby irrigated
trial in 2019 (COI19) (Supplementary File 3). BM correlated
negatively with HI but showed a positive correlation with GSW

(Supplementary File 3). In some cases, an increase in the SNS
resulted in a reduction in the TGW, GA, GW, or GL, which was
consistent with the previously observed trade-off between these
traits (Kuzay et al., 2019). In contrast, HD positively correlated
with the SNS and PH, which is in agreement with the previous
findings (Shaw et al., 2013; Muqaddasi et al., 2019).

To further understand the contribution of different yield
components to the final yield, we compared the phenotypes
of the top yielding ILs to those of the controls across all
treatments (Supplementary File 4). In the CO18 trial under non-
irrigated conditions, the ILs that outperformed the controls
in yield had the highest TGW, GA, and GL, whereas under
irrigated conditions (COI18), all yield component traits showed
the highest levels of expression in the top yielding ILs. The top
yielding ILs in the CO19 trial had the highest HI, GW, SNS,
and BM while TGW and GA were comparable to those of the
parental lines. In the COI19 trial, the TGW, GA, and GW traits
contributed more toward the final yield compared to the GL, HI,
and BM traits. In the AS20 trial, high levels of heterogeneity were
observed among the top yielding lines for the TGW, GA, GW,
and GL traits. However, these lines showed a higher BM than the
controls, resulting in a reduced HI.

Previously, it was suggested that the introgression from
wild relatives might have a negative impact on agronomic
traits due to a negative epistasis between the alleles of wild
and cultivated wheat (Nyine et al., 2020). We investigated
the relationship between the total size of the introgressed
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FIGURE 2 | Pearson’s correlation coefficients between yield and yield component traits at Colby in 2018 rainfed trial (A) and Ashland in 2020 rainfed trial (B). Where

HD, heading date; PH, plant height; BM, aboveground dry biomass; SPSF, spikes per square foot; SPB, spikes per bag; SNS, spikelet number per spike; GSW, grain

sample weight; HI, harvest index; GN, grain number; TGW, 1,000 grain weight; GA, grain area; GW, grain width; GL, grain length; GY, grain yield.

genomic segments and phenotype. We found a positive linear
relationship between GA, GL, SNS, and the total size of the
introgressed segments (Figure 3, Supplementary File 5). For the
TGW, however, a positive linear relationship was only observed
under drought stress conditions indicating that some wheat lines
with large introgressions are efficient in utilizing the limited
soil moisture and nutrients during grain filling. There was a
negative relationship between GY, HI, GW, TGW under irrigated
conditions, and the size of introgression.

Genotyping and Imputation
To identify A. tauschii haplotypes in the D genome of
introgression population, we generated high-density SNP data.
By the whole-genome sequencing of 6 hexaploid parental lines
and 21 A. tauschii accessions used for generating octoploid
parents, we identified about 20 million high-quality SNP variants
(MAF ≥ 0.05) and used them for genotype imputation in
the introgression population genotyped by complexity-reduced
sequencing. The total number of D genome SNPs retained after
filtering out SNPs with genotype probability below 0.7 and MAF
< 0.05 was 5.2 million.

Haplotypic Variation Between ssp.
strangulata and ssp. tauschii Families
Using HaploBlocker v1.5.2, we identified 4,764 and 6,429
non-overlapping haplotype blocks in the A. tauschii ssp.
strangulata (FAM93) and A. tauschii ssp. tauschii (FAM97)
families, respectively. After filtering out the monomorphic
haplotypes between the parental lines, 869 (18%) and 3,020
(47%) segregating haplotypes were retained in FAM93 and
FAM97, respectively (Table 3, Supplementary File 6). The low
proportion of segregating haplotypes between hexaploid wheat
and ssp. strangulata D genomes is in agreement with the finding
that A. tauschii ssp. strangulata was the donor of the D genome

of hexaploid wheat (Wang et al., 2013). These results also
suggest that the high similarity between the genome of ssp.
strangulata and the D genome of hexaploid wheat could result
in the underestimation of the proportion of the introgressed
haplotypes. The average genome-wide haplotype block length
in FAM93 was higher (2Mb) than that in the FAM97 (1Mb)
(Supplementary File 6). There was a significant difference in the
introgressed haplotype length between the lines in FAM93 and
FAM97 based on the t-test (p = 3.1e-16). The longest haplotype
introgressed in all lines from FAM93 was 44Mb on chromosome
arm 3DL, whereas in FAM97 only four lines had a haplotype
>32Mb on chromosome arm 7DL. The number of segregating
haplotypes in FAM93 varies from 32 (3D) to 336 (2D), whereas
in FAM97 the number of segregating haplotypes varies from 173
(3D) to 617 (5D) (Table 3). In FAM93 and FAM97, the average
frequency of each haplotype from A. tauschii parents in the ILs
was 11 and 4, respectively (Supplementary File 6).

SNP- and Haplotype-Based GWAS
Mapping
Genome-wide association study was performed in the A. tauschii
introgression population to assess the effects of introgression
into the D genome on the variance of traits related to BM,
yield and yield components, and Tg. The marker-trait association
analyses were based on both individual SNPs and haplotype
blocks identified by HaploBlocker from the 5.2 million imputed
variants. We report only those associations that are replicated
in at least two independent field trials and show a significant
association with both SNPs and haplotypes at FDR 0.05
(Supplementary Table 1). Several genomic loci with significant
associations distributed on the D genome chromosomes were
detected for GL, GW, and SNS. For other traits such as GY, TGW,
GN, GA, HI, BM, GSW, and SPSF, no consistent associations
replicated in independent trials were detected.
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FIGURE 3 | Relationship between SNS (A,B), GL (C,D), GY (E,F), and the proportion of introgression under non-irrigated conditions at Colby in 2019 (CO19) and

Ashland in 2020 (AS20). Here, r is the correlation coefficient and P is the significance of the correlation between introgression size and observed trait phenotype.

TABLE 3 | Variation of introgressed haplotypes between Aegilops tauschii ssp. strangulata (FAM93) and A. tauschii ssp. tauschii (FAM97) families.

Family Pedigree Subspecies Chrom NH MHL (bp) MHF Range (bp)

FAM93 KanMark × TA1642 strangulata chr1D 105 1,896,815 4.6 1,788–8,639,976

FAM93 KanMark × TA1642 strangulata chr2D 336 1,326,620 20.0 813–30,656,640

FAM93 KanMark × TA1642 strangulata chr3D 32 6,653,571 4.9 2,525–44,264,371

FAM93 KanMark × TA1642 strangulata chr4D 143 1,865,609 4.3 2,942–12,070,089

FAM93 KanMark × TA1642 strangulata chr5D 138 2,302,767 7.1 556–15,103,840

FAM93 KanMark × TA1642 strangulata chr6D 65 2,519,945 3.0 3,455–13,483,300

FAM93 KanMark × TA1642 strangulata chr7D 50 2,667,416 2.04 1,627–11,349,447

FAM97 Danby × TA2388 tauschii chr1D 495 829,609 3.1 762–9,169,049

FAM97 Danby × TA2388 tauschii chr2D 352 1,305,439 1.8 813–15,991,790

FAM97 Danby × TA2388 tauschii chr3D 173 2,968,356 3.0 884–27,225,468

FAM97 Danby × TA2388 tauschii chr4D 540 750,352 0.8 1,982–20,010,593

FAM97 Danby × TA2388 tauschii chr5D 617 770,483 10.1 1,243–15,396,133

FAM97 Danby × TA2388 tauschii chr6D 373 830,168 3.8 764–23,208,199

FAM97 Danby × TA2388 tauschii chr7D 465 1,000,899 3.7 1,397–32,547,936

NH, Number of haplotype blocks; MHL, Mean haplotype block length; MHF, Mean haplotype frequency.

We identified multiple significant SNP- and haplotype-
trait associations from all trials on chromosome arms 2DS
and 7DS for GL (Figure 4). The most significant SNPs were
located in haplotype block windows 22,262,355–22,289,017,
30,582,113–30,595,115, and 80,864,297–81,398,316 bp on
chromosome arm 2DS, and 11,024,311–11,374,767 bp on
chromosome arm 7DS (Supplementary Table 1). Association
analysis based on BLUPs confirmed the results obtained

from individual trials for GL on these two chromosomes.
Other significant associations detected in at least two
trials were identified on chromosome arms 3DS and 5DS
(Supplementary File 7).

We identified haplotypes with significant SNPs associated
with GW on 1DL, 2DS, 6DL, and 7DS from at least
two independent trials that were confirmed by BLUP-based
analysis (Supplementary File 7). Haplotype block windows
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FIGURE 4 | Manhattan plots showing the D genome loci with SNPs and haplotypes that are significantly associated with SNS at Ashland in 2020 (AS20) under

rainfed conditions (A,B) and GL at Colby in 2018 (COI18) under irrigated conditions (C,D) in the Aegilops tauschii introgression population. The horizontal solid black

line shows a threshold of 0.05 significance level for Bonferroni correction, the black arrowheads indicate the SNPs, and haplotypes above the threshold.

65,964,778–66,124,103 and 66,265,325–66,266,089 bp showed
the most significant association on 2DS.

At 95% confidence level, the most significant SNP-trait
associations were identified on chromosome arms 2DS and
6DL for SNS from the three independent trials (COI19,
CO19, and AS20), (Figure 4, Supplementary File 7). The most
significant associations are located at 16.5 and 463.8Mb on
2DS and 6DL, respectively. Haplotype-trait analysis confirmed
the association on 2DS for SNS at the 16.5Mb locus located
within the haplotype block window 16,497,666–16,548,006 bp.
At FDR < 0.05, there was no haplotype block window
on 6DL locus that overlapped with a significant SNP-
trait association.

Previous studies have shown that SNS is linked to HD (Shaw
et al., 2013; Muqaddasi et al., 2019). In the current study,
we detected significant associations with SNS on chromosome
arms 2DS and 6DL. We had 1 year data for HD and PH
collected from Ashland in 2020, which provided us a good
opportunity to validate this link in the A. tauschii introgression
population. GWAS mapping detected significant associations
with HD on chromosome arms 2DS and 4DL, whereas all D
genome chromosomes showed a significant association with
PH but the strongest signals were observed on 1DS, 3DS, and
6DL. The haplotype block window 16,548,753–16,639,561 bp
on 2DS with the most significant SNPs for HD overlapped
the locus showing a significant association with SNS, which is
in proximity to another haplotype block overlapping with the
most significant SNPs for SNS (16,497,666–16,548,006 bp). These
results suggest that the expression of these two traits could
be co-regulated.

For HD, the haplotype block windows on chromosome arm
4DL 442,735,095–442,751,954 bp and 459,271,685–459,290,731

bp had the most significant SNP-trait associations. The three
traits (SNS, HD, and PH) are known to be affected by the
Rht8 and Ppd-D1 genes on 2DS, in addition to Rht1 on 4D,
which control PH and flowering time (Borojevic and Borojevic,
2005; Chen et al., 2018). Due to the lack of SNPs located near
the Ppd-D1 gene locus at ∼34Mb (33,961,438–33,951,651 bp
interval in CS RefSeq v1.0), we could not directly validate its
association with these traits. However, significant associations
for SNS were detected at ∼3Mb next to the Ppd-D1 locus in
the CO19 and AS20 trials on haplotype blocks 2D: 30,192,335–
30,264,745 bp and 2D: 28,829,778–28,937,705 bp, respectively.
In the parental lines with high-density SNPs (∼20 million), the
Ppd-D1 locus had SNPs, which allowed us to precisely map
the haplotypes from A. tauschii and hexaploid wheat lines. The
results obtained from HaploBlocker showed that all hexaploid
parents carry an identical haplotype, which is distinct from that
of A. tauschii accessions.

By using SNPs identified by the whole-genome sequencing of
parental lines, we characterized a haplotypic diversity at the Ppd-
D1 locus (Figure 5A). All hexaploid wheat lines carried the same
Ppd-D1 haplotype (Hap1) while seven haplotypes of the Ppd-D1
gene (Hap2–Hap8) were identified in A. tauschii. The whole-
genome sequencing of 21 A. tauschii revealed a broader range
of Ppd-D1 diversity compared to a previous study (Guo et al.,
2009), which identified only three Ppd-D1 haplotypes. The A.
tauschii ssp. strangulata accessions carried the haplotypes that
were identical to hexaploid wheat, except for Hap2 in TA1642,
which had one SNP at position 33,952,131 bp (Figure 5A). The
Ppd-D1 genic region in A. tauschii ssp. tauschii accessions has
one synonymous (SN), three intronic (IN), and one missense
(MS) SNPs. The MS variant at position 33,955,614 bp results
in His16Asn change, which is predicted to have a moderate
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FIGURE 5 | Effect of haplotypes introgressed from Ae. tauschii into the chromosome arms 2DS and 4DL of hexaploid wheat on the spikelet number per spike (SNS)

and heading date (HD) of the introgression lines and the possible link to Ppd-D1 gene located on 2DS. (A) SNP table showing the haplotype variants at the Ppd-D1

gene locus in winter wheat accessions (top six) and the 21 Ae. tauschii lines. The black rectangle shows SNPs within the coding region of the gene where SN is a

synonymous SNP, IN is an intronic SNP and MS is a missense SNP (His16Asn) as reported by snpEff v4.3 software. (B) Unique haplotypes in the introgression

population tagging the Ppd-D1 locus and GWAS signal for SNS and HD on chromosome arm 2D, and the associated phenotype. Hap_HW is present in introgression

lines that have Hap1 from hexaploid wheat at the Ppd-D1 locus, Hap_AeT includes lines that have Hap3–6 and 8 while Hap_AeT* includes lines that have Hap2 and

Hap7 at the Ppd-D1 locus in Ae. tauschii parents. The TT and CA alleles at the GWAS signal have reducing and increasing effects, respectively, on SNS and HD.

Phenotype means with the same superscript letters are not significantly different at α = 0.05. (C) Boxplot showing the impact of introgression from Ae. tauschii in

chromosome arms 2DS and 4DL on SNS. (D) Boxplot showing the impact of introgression from Ae. tauschii in chromosome arms 2DS and 4DL on HD. (E) A Venn

diagram showing the number of introgression lines in the 90th percentile for SNS and HD. Lines in the intersection have the increasing alleles on both 2DS and 4DL

loci associated with SNS and HD. *** indicates significant difference between groups with p < 0.001 while NS indicates a nonsignificant difference based on t-test

statistics.

functional impact, and only present in the lines with haplotype
Hap5 (Figure 5A). Next, we inferred the parental haplotypes of
the Ppd-D1 locus in the introgression population by using SNPs
within the∼1–2Mb region surrounding the Ppd-D1 locus. About
82% of the ILs carried haplotype Hap1.

Further, we evaluated the linkage of Ppd-D1 haplotypes
with SNP alleles showing a significant association with a
variation in SNS and HD. For this purpose, we used two SNP
sites, 2D_33786967 and 2D_35558454, which flank the Ppd-D1
locus on both sides and have genotyping information in the
introgression population. We compared them to SNP alleles that
were significantly associated with SNS and HD in a haplotype
block window 2D: 16,548,753–16,639,561 bp (2D_16574050 and
2D_16574159), spanning∼17Mb region (Figure 5B). We found
that the GWAS alleles associated with an increase in SNS and
HD in the introgression population are also linked with two

A. tauschii haplotypes (Hap_AeT∗ and Hap_AeT), whereas the
GWAS alleles associated with decreasing effects were in LD
with Hap_HW contributed by the hexaploid wheat parents. The
Hap_AeT∗ group of haplotypes was contributed by theA. tauschii
parents having Hap2 and Hap7 at the Ppd-D1 locus.

The Phenotypic Effects of Haplotype Block
Variants
Average SNS and HD
Significant haplotype-trait associations were identified on
chromosome arms 2DS and 4DL that influence SNS and HD.
Chromosome 2DS had multiple introgressed haplotypes that are
significantly associated with a variation in SNS and HD, with
the most significant haplotypes located at 16,497,666–16,548,006
and 16,548,753–16,639,561 bp for SNS and HD, respectively.
The haplotype variants with the increasing effect at these loci
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TABLE 4 | ANOVA for the effect of Ppd-D1 haplotype variants from hexaploid

wheat and A. tauschii on the spikelet number per spike (SNS) in three

experimental trials of the introgression population.

Haplotype Estimate Std. error t-value Pr(>|t|)

Hexaploid wheat (HW) 13.38 0.13 −3.41 0.000677***

A. tauschii (AeT) 13.83 0.12 115.84 <2e-16***

HW_Hap1 13.38 0.84 1.79 0.07317

AeT_Hap2 13.79 0.94 2.05 0.04092*

AeT_Hap3 13.74 0.91 2.06 0.03958*

AeT_Hap4 13.50 1.19 1.37 0.17002

AeT_Hap5 13.53 0.92 1.80 0.07190

AeT_Hap6 13.69 0.93 1.96 0.05069

AeT_Hap7 14.62 0.92 2.99 0.00288**

AeT_Hap8 13.77 1.19 1.60 0.11051

*** = 0.001, ** = 0.01, and * = 0.05.

Bold values indicate the haplotype that shows the highest significant increase in the

spikelet number.

were from A. tauschii parents, whereas those with a reducing
effect were from the hexaploid wheat lines (Figures 5C,D). The
verification of GWAS results for an allelic effect at 2DS locus
associated with SNS and HD supports the abovementioned
observation (Supplementary File 8). We observed a positive
Pearson’s correlation coefficient between SNS and HD; and
lines having haplotypes from either parent showed significant
differences in the phenotype based on a t-test (r= 0.23, p= 3.31e-
07) at 95% confidence level. Haplotypes on 4DL had a smaller
effect on SNS compared to HD. Among 35 and 66 ILs having SNS
andHD trait values above the 90th percentile of trait distribution,
respectively, 13 lines had the increasing alleles from A. tauschii
at both 2DS and 4DL loci associated with SNS and HD traits
(Figure 5E).

Initially, we did not detect a significant GWAS signal directly
associated with SNPs within the Ppd-D1 gene due to the lack
of high-quality imputed SNPs in this region. Further analysis
of parental haplotypes identified SNP variants linked with both
the Ppd-D1 haplotypes and haplotypes at 28 and 30Mb region,
showing a significant haplotype-trait association in two trials.
These haplotypes were within ∼3Mb from the Ppd-D1 locus
and likely overlap with Ppd-D1. We performed the ANOVA to
determine the effect of different haplotype variants identified
in the parental accessions on the SNS in the introgression
population using data from the three experimental trials (COI19,
CO19, and AS20) (Table 4). The results show that both hexaploid
and A. tauschii haplotypes have a significant effect on SNS (p
< 0.001; Table 4, Figure 5B). Among the A. tauschii haplotypes,
Hap7 had the highest impact on SNS (p = 0.003) followed by
Hap2 (p = 0041) and Hap3 (p = 0.040). In contrast, Hap5 with
the His16Asn MS mutation had a negative effect on SNS and was
not significantly different from Hap1 present in hexaploid wheat
lines (p = 0.072). Consistent with previous studies, these results
showed that the Ppd-D1 gene located at ∼34Mb (33,961,438–
33,951,651 bp interval in CS RefSeq v.1.0), which plays a role in
flowering time regulation in wheat, also has a strong effect on the
variation in the SNS (Beales et al., 2007; Guo et al., 2009).

TABLE 5 | Chromosome 2D haplotypes variants associated with the spikelet

number and HD and how they influence other traits in the introgression population.

Trait Haplotype Loc1 Freq. chr2D:16548753–16639561 SD

HD Hap_HW 53 199b 2.28*

HD Hap_AeT 156 202a 2.86
†

HD Hap_HW/AeT 142 200c 2.29‡

PH Hap_HW 53 68.27ab 6.79

PH Hap_AeT 156 70.82a 6.97

PH Hap_HW/AeT 142 65.9b 8.68

BM Hap_HW 53 155.18a 28.21

BM Hap_AeT 156 156.26a 31.01

BM Hap_HW/AeT 142 157.52a 35.82

SNS Hap_HW 53 14.72b 1.2

SNS Hap_AeT 156 15.27a 1.12

SNS Hap_HW/AeT 142 14.05c 1.03

GSW Hap_HW 53 66.84a 14.71

GSW Hap_AeT 156 65.82a 13.67

GSW Hap_HW/AeT 142 66.47a 13.57

HI Hap_HW 53 42.85a 4.35

HI Hap_AeT 156 42.23a 4.24

HI Hap_HW/AeT 142 42.89a 6.28

*Haplotype with a reducing effect,
†
Haplotype with an increasing effect, ‡Haplotype with

an intermediate effect, Loc1= chr2D: 16,575,276–16,635,669 bp; Loc1 Freq.= Number

of introgression lines having the haplotype; HD is a heading date, PH is an average plant

height, BM is the aboveground total dry biomass, SNS is a spikelet number per spike,

GSW is the grain sample weight from a biomass sample, and HI is the harvest index.

Means with the same superscript letters are not statistically significant for each trait based

on Tukey’s honestly significant difference at 95% confidence level.

Bold values indicate the haplotype that shows the highest increase in both the SNS

and HD.

Pleiotropic Effects of Haplotypes on Yield

Component Traits
We also evaluated the effects of distinct haplotypes associated
with HD on other traits. Haplotype Hap_AeT from chromosome
2D located at 16,548,753–16,639,561 bp is associated with a
significant increase in the days to heading and SNS without any
significant impact on BM, HI, and GSW (Table 5).

We compared the effects of two haplotypes associated with
GW on 2DS (2D: 65,964,778–66,124,103 bp and 2D: 66,265,325–
66,266,089 bp), where Hap_HW from hexaploid parents and
Hap_AeT_st from A. tauschii ssp. strangulata increase GW,
and Hap_AeT_ta from the A. tauschii ssp. tauschii parents
reduces GW (Table 6). In Colby 2018 non-irrigated trial data,
the haplotype at the 2D: 65,964,778–66,124,103 bp locus that
was associated with an increase in GW and GL was also linked
with an increase in GA and a decrease in GN. Meanwhile, both
Hap_AeT_st and Hap_AeT_ta haplotypes at 2D: 65,964,778–
66,124,103 bp were associated with an increase in GL, only
Hap_AeT_ta was linked with a significant increase in GN
(Table 6). The Hap_AeT_ta haplotype at the 2D: 66,265,325–
66,266,089 bp haplotype block had similar effects on GN
although the observed difference was not significant.

Similarly, haplotype block 6D: 463,775,852–463,809,722
bp associated with PH and SNS has three variants
(Supplementary File 7). Haplotype variant Hap1_HW&AeT is
associated with an increase in SNS, PH, BM, and GY. It showed
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TABLE 6 | Chromosome 2D haplotypes variants associated with the grain width (GW) in Colby 2018 rainfed trial and their effects on other traits in the introgression

population.

Trait Haplotype Haploblock chr2D:65964778–66124103 Haploblock chr2D:66265325–66266089

Freq. Trait mean Trait SD Freq. Trait mean Trait SD

GN Hap_AeT_st 5 475.50b 27.86 20 504.15a 55.28

GN Hap_HW 140 499.04b 44.3 304 502.97a 41.6

GN Hap_AeT_ta 202 510.94a 43.38 27 540.37a 47.94

TGW Hap_AeT_st 5 32.74a 2.15 20 31.54a 2.74

TGW Hap_HW 140 31.40a 2.2 304 31.30a 2

TGW Hap_AeT_ta 202 31.01a 1.98 27 29.54a 1.76

GA Hap_AeT_st 5 14.38a 1.18 20 13.89a 1.03

GA Hap_HW 140 13.50b 0.69 304 13.53a 0.66

GA Hap_AeT_ta 202 13.53b 0.66 27 13.28a 0.61

GW Hap_AeT_st 5 3.14a 0.05 20 3.09ab 0.081

GW Hap_HW 140 3.13a 0.09 304 3.09a 0.091

GW Hap_AeT_ta 202 3.06b 0.08 27 3.00b 0.07#

GL Hap_AeT_st 5 6.25a 0.51 20 6.11a 0.4

GL Hap_HW 140 5.85b 0.22 304 5.93b 0.24

GL Hap_AeT_ta 202 6.00a 0.24 27 6.01a 0.22

GY Hap_AeT_st 5 59.19a 14.46 20 58.76a 14.77

GY Hap_HW 140 60.51a 12.04 304 61.26a 12.03

GY Hap_AeT_ta 202 61.28a 12.54 27 59.55a 13.41

1haplotype that increases GW, # haplotype that reduces GW. Means with the same superscript letters are not statistically significant for each trait based on Tukey’s honestly significant

difference at 95% confidence level.

no association with HD and grain traits, except GN where an
intermediate effect was observed. This haplotype variant is
present in two A. tauschii lines (TA2389 and TA2398) and the
hexaploid parents excluding KanMark and KS061862M-17.
Haplotype variant Hap0_HW&AeT, which is found in KanMark
and KS061862M-17 and two ssp. strangulata accessions (TA1642
and TA2378), has an intermediate effect on GY, reducing it by
two bushels compared to Hap1_HW&AeT. The third haplotype
variant (Hap_AeT) is present only in the A. tauschii lines.

The haplotype Hap_AeT contributed by A. tauschii at
haplotype block 7D: 14,185.651–14,596,748 bp, was associated
with a significant increase in SNS compared to haplotypes
present in winter wheat (Supplementary Table 2). This increase
was associated with a significant decrease in GL and had no
significant effect on GY. At 7D: 14,722,457–14,817,138 bp, the
Hap_AeT haplotype contributed by A. tauschii was also linked
with a significant increase in SNS compared to Hap1_HW&AeT
detected in both hexaploid wheat and A. tauschii parents.
However, an increase in SNS for this haplotype was connected
with a decrease in both GL and GY. At this haplotype block
(7D: 14,722,457–14,817,138 bp), the most significant increase in
GY was observed for lines carrying haplotype Hap0_HW&AeT,
which was associated with a moderate increase in both SNS and
GL (Supplementary Table 2).

DISCUSSION

Here, we performed the sequence-based analysis of haplotypes
in the wild-relative introgression population developed by
crossing a diverse panel of A. tauschii accessions with winter
wheat cultivars. Our results demonstrate that the whole-
genome sequencing of wild and cultivated wheat founder

lines in combination with the complexity-reduced sequencing
of a derived introgression population provides an effective
framework for SNP imputation. Because most breeding
populations are based on a limited number of founders,
often including 10–30 lines, their whole-genome sequencing
is feasible in crops even with large genomes such as wheat,
and provides a comprehensive description of allelic diversity
present in a breeding population. The latter makes sequenced
founders an ideal reference panel for imputing genotypes
in a breeding population genotyped using low-coverage or
complexity-reduced sequencing. This was recently demonstrated
by imputing genotypes in the wheat MAGIC population
genotyped by low-coverage sequencing (Scott et al., 2021).
The composition of our introgression population, including
multiple biparental cross families (Nyine et al., 2020), also
shifts the population allele frequency toward more common
variants, which could be imputed with a higher accuracy
than rare variants (Huang et al., 2015). In addition, the high
levels of LD in the introgression population should increase
the length of haplotype blocks and facilitate the detection
of matching haplotypes in the reference panel of founders
using even sparse genotyping data generated by low-coverage
or complexity-reducing sequencing. Consistent with these
assumptions, an imputation algorithm implemented in Beagle
(Browning and Browning, 2013) allowed us to impute nearly
5.2 million SNPs in the introgression population with high
genotype call probabilities above 0.7 using SNPs generated by
complexity-reduced sequencing of this population and nearly
20 million variants identified in 27 founders. This high-density
SNP marker data permitted a detailed characterization of the
introgressed haplotypes (Pook et al., 2019) and assessing their
effects on productivity traits.
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Our results demonstrate that wild-relative introgressions into
the D genome of wheat, the least diverse amongst the three
subgenomes (Chao et al., 2010; Jordan et al., 2015; Singh et al.,
2019), is associated with the increased levels of variation in yield
and yield component traits. The analysis of data from several
years and locations under irrigated and non-irrigated conditions
revealed many superior ILs that produce more grains or show
higher yield stability than the control cultivars. The yield increase
in top-performing ILs was driven by a combination of yield
component traits, and in many cases, it was associated with
increased grain size, grain weight, and BM or improved harvest
index. These results suggest that wild-relative introgression has
the potential to positively affect source-sink balance, which was
suggested to be one of the important factors contributing to yield
potential (Reynolds et al., 2017). Many of these high yielding
lines (∼23%) were also among the top lines showing the highest
levels of yield stability, indicating that the introgression from
A. tauschii likely improves the adaptive potential of hard red
winter wheat in different environmental conditions. Consistent
with this conclusion, the highest impact of introgression on yield
was found in a non-irrigated trial, indicating that alleles from
A. tauschii likely improve the adaption of hexaploid wheat to
water-limiting conditions. The A. tasuchii accessions used to
generate the introgression population represent both L1 and
L2 lineages (Wang et al., 2013) and originate from a broad
range of geographical locations with variable climatic conditions,
likely capturing adaptive haplotypes from the regions prone to
drought stress.

Heading date is one of the key agronomic traits linked
with wheat adaptation to different geographical locations and
improvement in yield (Jung andMüller, 2009). In our population,
a positive correlation was observed between HD and the SNS,
with some lines showing up to 2-week delay in HD. Several
haplotype blocks on chromosome arms 2DS and 4DL were
significantly associated with a variation in spikelet number
and HD. The haplotypes with increasing effects at both loci
were derived from A. tauschii, indicating their potential for
modulating both traits in bread wheat. Chromosome 2DS is
known to harbor the Ppd-D1 and Rht8 genes that control
flowering time and PH, respectively, and also could affect the
spikelet number (Shaw et al., 2013; Muqaddasi et al., 2019).
The overlapping haplotype blocks associated with the spikelet
number and HD were identified on 2DS, confirming that the
two traits co-segregating in the population have a common
genetic basis. We demonstrated that these 2DS haplotypes are
associated with the different allelic variants of the Ppd-D1 gene
from A. tauschii. Consistent with the earlier studies, these results
demonstrated that the different alleles of the Ppd-D1 gene have
distinct effects on HD and SNS (Beales et al., 2007, Guo et al.,
2009). These effects were correlated with the relative expression
levels of each Ppd-D1 allele (Guo et al., 2009), suggesting that
functional mutations within the Ppd-D1 coding region and the
modifier mutations in the regulatory region of the gene likely to
account for a variation in these traits in the A. tauschii winter
wheat introgression population. The developmental plasticity
modulated by Ppd-D1 is mediated by the changes in the
expression of flowering time genes (Gol et al., 2021). It was

shown that the Ppd-H1 from wild barley is capable of integrating
environmental signals to control HD and minimize the negative
impact of transient drought stress on spikelet number (Gol et al.,
2021). Consistent with this observation, in the current study, ILs
that have a high proportion of A. tauschii segments produced
more grain under drought stress in the Colby 2018 trial, raising
the possibility that the A. tauschii alleles of Ppd-D1 also have the
potential to protect wheat from the physiological effects of stress
that lead to low yield.

Our study reveals that some haplotypes associated with the
productivity trait variation in the introgression population also
exhibit significant pleiotropic effects. Meanwhile, the direction of
effects on various traits was largely consistent with the previously
reported trade-offs among component traits (Griffiths et al.,
2015; Reynolds et al., 2017; Quintero et al., 2018), the combined
effects of some introgressed haplotypes were associated with the
positive trends in yield. For example, a haplotype contributed
by A. tauschii ssp. tauschii at the chromosome 2D haplotype
block at 65,964,778–66,124,103 bp was associated with an
increase in GL, size, and number with a moderate positive
effect on GY. At the haplotype block on chromosome 7D
located between 14,722,457–14,817,138 bp, the Hap0_HW&AeT
haplotype shared between hexaploid wheat and A. tauschii
parents and associated with a moderate increase in both SNS and
GL was also associated with the most significant increase in GY.
Analyses of the pleotropic effects of the introgressed haplotypes
suggest that these haplotypes on chromosomes 2D and 7D could
be utilized in breeding programs to improve yield component
traits without negative effects on other productivity traits.

CONCLUSIONS

The imputation of markers from whole-genome-sequenced
reference panels into skim-sequenced inference populations is
increasingly becoming a common practice in plant breeding
program due to its cost-effectiveness (Happ et al., 2019; Jensen
et al., 2020). Our study demonstrates the utility of this strategy
for detecting introgression in the wheat genome and contributes
to developing genomic resources for deploying wild-relative
diversity in wheat breeding programs. We show that the
haplotype-based analysis of trait variation in this population has
the potential to improve our knowledge on the genetic effects of
the introgressed diversity on productivity traits and identify novel
haplotypes for improving yield potential in wheat.
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Genomic prediction is a promising approach for accelerating the genetic gain of

complex traits in wheat breeding. However, increasing the prediction accuracy (PA) of

genomic prediction (GP) models remains a challenge in the successful implementation

of this approach. Multivariate models have shown promise when evaluated using

diverse panels of unrelated accessions; however, limited information is available on

their performance in advanced breeding trials. Here, we used multivariate GP models

to predict multiple agronomic traits using 314 advanced and elite breeding lines of

winter wheat evaluated in 10 site-year environments. We evaluated a multi-trait (MT)

model with two cross-validation schemes representing different breeding scenarios (CV1,

prediction of completely unphenotyped lines; and CV2, prediction of partially phenotyped

lines for correlated traits). Moreover, extensive data from multi-environment trials (METs)

were used to cross-validate a Bayesian multi-trait multi-environment (MTME) model that

integrates the analysis of multiple-traits, such as G × E interaction. The MT-CV2 model

outperformed all the other models for predicting grain yield with significant improvement

in PA over the single-trait (ST-CV1) model. The MTME model performed better for all

traits, with average improvement over the ST-CV1 reaching up to 19, 71, 17, 48, and

51% for grain yield, grain protein content, test weight, plant height, and days to heading,

respectively. Overall, the empirical analyses elucidate the potential of both the MT-CV2

and MTME models when advanced breeding lines are used as a training population to

predict related preliminary breeding lines. Further, we evaluated the practical application

of the MTME model in the breeding program to reduce phenotyping cost using a

sparse testing design. This showed that complementing METs with GP can substantially

enhance resource efficiency. Our results demonstrate that multivariate GS models have

a great potential in implementing GS in breeding programs.

Keywords: BMTME, GBS, genomic prediction, genomic selection, G × E, multi-trait multi-environment genomic

prediction, wheat breeding
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INTRODUCTION

Global wheat production needs to be increased by 60% to meet
the demand of a projected population of 9 billion by 2050

(Tester and Langridge, 2010; Fischer et al., 2014). In the past
few decades, wheat breeding successfully achieved a significant

increase in grain yield owing to significantly improved genetic
resources, implementation of modern agronomic practices,
accurate experimental designs, and other improved technology
packages (Tadesse et al., 2019), which translates into an annual
increase of 1% in terms of genetic gain in grain yield. However,
this increase is still far from the expected yearly growth of 1.7%
to meet the future wheat demand (Oury et al., 2012; Tadesse
et al., 2019). Thus, new and innovative breeding technologies
are essential to achieve a 2-fold increase in annual yield to avoid
potential food crises in the coming decades.

Traditional wheat breeding involves creating novel genetic
variation with different methods, followed by extensive selection
and advancement of generations. The selection of progeny with
desirable agronomic and end-use quality traits is a resource-
intensive process and could take up to 10–15 years to develop
a new cultivar (Haile et al., 2020). Further, in traits with
complex genetic architecture such as grain yield, genotype-by-
environment interactions play a paramount role and impose
additional challenges in selection. In recent years, the deployment
of molecular markers for marker-assisted selection (MAS) has
been used to increase the selection accuracy and accelerate
genetic gain (Randhawa et al., 2013). Although MAS has shown
a good potential in wheat breeding for the deployment of
qualitative trait loci (QTLs) with large effects, its application has
been limited to improve complex traits governed by many QTLs
with small effects (Heffner et al., 2009).

Genomic selection (GS) is a recent approach that utilizes
genome-wide marker data to select individuals superior for
complex traits in the early breeding cycle to increase the genetic
gain per unit of time (Meuwissen et al., 2001; Heffner et al., 2009).
Unlike MAS, GS does not require prior identification of QTLs
for traits of interest; instead, it employs all available markers
across the genome to predict breeding values of individuals
(Bassi et al., 2015). Briefly, GS requires a training population
(TP), which is genotyped with genome-wide markers and for
a given trait(s) of interest. GS involves the calibration of a
prediction model using the TP to estimate marker effects and
evaluate the predictive ability of the model through cross-
validation. Finally, the developed model is used to calculate
genome-estimated breeding values (GEBVs) and rank the lines
from a breeding or testing population (BP) that consists of
lines with only genotypic information. Thus, the early selection
or culling of individuals based on GEBVs permits greater
genetic gain per breeding cycle, facilitating an increase in
the efficacy of breeding programs and resulting in reduced
varietal development costs. Several studies have reported the
successful implementation of GS in different crops resulting in
an accelerated rate of genetic gain compared with traditional
breeding (Bassi et al., 2015; Battenfield et al., 2016; Bhat et al.,
2016). Moreover, GS has shown to be particularly useful in traits
where phenotyping is cumbersome, such as quality traits and

complex resistance to diseases (Battenfield et al., 2016; Dong
et al., 2018).

The widespread availability of genome-wide markers
attributed to low-cost genotyping technologies has facilitated the
adaptability of GS in wheat breeding programs (Poland et al.,
2012b; Bhat et al., 2016). Thus, in recent years, there has been
a growing interest to complement phenotyping selection and
genomic selection in wheat breeding. GS has been evaluated for
many complex traits in wheat, including but not limited to grain
yield and yield-related traits (Rutkoski et al., 2016; Ward et al.,
2019; Guo et al., 2020; Haile et al., 2020; Juliana et al., 2020),
wheat resistance to rusts (Rutkoski et al., 2014; Juliana et al.,
2017), Fusarium head blight (Rutkoski et al., 2012; Arruda et al.,
2015; Dong et al., 2018), and end-use quality traits (Battenfield
et al., 2016; Lado et al., 2018; Ibba et al., 2020). Despite the
successful evaluations of GS in wheat breeding programs, there is
a continuous scope to improve the prediction accuracy/ability of
GS models for quantitative traits to achieve higher genetic gains
that will lead to the routine implementation of GS in various
wheat breeding schemes.

The predictive ability of the genomic selection model refers
to the correlation between estimated genome-estimated breeding
values and the actual phenotypic values of individuals in a
validation set and is generally calculated through a cross-
validation approach. Along with TP size, extent of linkage
disequilibrium (LD), and heritability of traits, predictive ability
also depends on the choice and optimization of statistical models
(de los Campos et al., 2013; Rutkoski et al., 2016; Guo et al.,
2020). In most studies, penalized genomic prediction models,
such as ridge-regression best linear unbiased prediction (rrBLUP)
and genomic best linear unbiased prediction (GBLUP), have
been standard GS approaches (VanRaden et al., 2009; Endelman,
2011). In addition, several Bayesian methods with different
prior distributions and relying on Markov-Chain Monte Carlo
(MCMC) for estimation of parameters have proven useful for
genomic prediction (Habier et al., 2011; Wang et al., 2018).
However, most of these models implement a univariate linear
mixed model and are helpful in predicting only one variable at
a time.

In recent years, multi-trait genomic prediction models have
been suggested to improve the PA for a primary trait when
secondary traits correlated to the primary trait are available
(Jia and Jannink, 2012). The use of genetically correlated traits
is of particular importance when the primary trait is difficult
or expensive to phenotype and has low heritability. Several
empirical studies have successfully evaluated multi-trait (MT)
approaches for different agronomic traits in wheat breeding
(Rutkoski et al., 2012; Hayes et al., 2017; Lado et al., 2018).
An improvement of 70% in PA for grain yield was observed by
including canopy temperature (CT) and normalized difference
vegetation index as secondary traits using the MT approach
(Rutkoski et al., 2016; Sun et al., 2017). Similarly, Hayes et al.
(2017) and Lado et al. (2018) observed an increase in PA using
multivariate approaches (MT) over single trait (ST) models in
end-use quality traits.

For complex traits, genotype-by-environment (G × E)
interactions necessitate the evaluation of breeding lines for
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multiple traits over multiple environments. Thus, the extension
of MT approaches to account for a G × E interaction
could improve the model for genomic prediction accuracy in
breeding programs. Montesinos-López et al. (2016) proposed a
Bayesian multi-trait and multi-environment (BMTME) model
that integrates the analysis of multi-traits recorded over multi-
environments in a unified approach. Recently, an improved
BMTME model has been introduced that estimates the variance-
covariance structure among traits, genotypes, and environments
to predict multiple traits evaluated in various environments
(Montesinos-López et al., 2019). Some studies using simulated
and empirical data found that the BMTME model outperforms
ST models in agronomic and end-use quality traits in wheat
(Montesinos-López et al., 2016; Guo et al., 2020; Ibba et al., 2020).
The better performance of multivariate GS approaches stimulates
us to evaluate these models in an actual breeding pipeline, where
several traits are evaluated over diverse environments.

Although different GS approaches have been tested for
predicting complex traits in wheat breeding programs, only few
studies have reported the application of GS in actual yield trials
where lines are evaluated over several environments (Belamkar
et al., 2018). GS has a great potential in the early selection or
culling in preliminary trials using information from advanced
trials and accelerates genetic improvement. Furthermore, GS
can complement phenotypic selection in practical scenarios
such as loss of complete/partial trials due to weather extremes.
In this study, we focused on the use of advanced breeding
lines evaluated over multiple environments as training sets to
predict untested genotypes using univariate and multivariate
GS approaches. The specific objectives of this study were to
(1) estimate the PA of various agronomic traits in advanced
breeding lines using univariate and multivariate GP models
and different cross-validation schemes, (2) assess the reliability
of multivariate GP models in predicting complex traits over
different years and locations, and (3) investigate the application
of multi-trait multi-environment GP models in sparse testing of
breeding lines.

MATERIALS AND METHODS

Plant Materials
The experiment was conducted for two growing seasons (2018–
19 and 2019–20) using a total of 314 winter wheat genotypes.
The genotypes included breeding lines from 2018 to 2019 and
2019 to 2020 wheat advanced yield trials (AYTs) and elite yield
trials (EYTs) from the South Dakota State University (SDSU)
winter wheat breeding program andwell-adapted check cultivars.
Most of the genotypes were either F4 : 7 or F4 : 8 filial generation.
Of the 314 genotypes, 157 were evaluated in the growing
season of 2019 and another 157 in that of 2020. Forty-four
genotypes were shared between the two sets of wheat materials,
leaving 270 unique genotypes in the study. We removed seven
genotypes from genomic prediction analyses because of low-
quality genotypic data. Thus, 151 and 156 genotypes were
used for further analyses in the 2018–19 and 2019–20 growing
seasons, respectively.

Experimental Design and Trait

Measurement
The experimental plots were planted under a no-till system at
five locations in South Dakota (Supplementary Table 1) in both
seasons. The experimental unit at each of the five locations
consisted of 1.5-m wide and 4-m long plots with seven rows
spaced 20 cm apart. The seeding rate for plots was 300 seeds
m−2 at all the locations. Recommended agronomic practices were
followed for proper growth and yield.

Five agronomic traits were measured in this study, namely,
grain yield (YLD) (bushels acre−1), grain protein content (PROT)
(%), test weight (TW) (kg hL−1), plant height (HT) (cm), and
days to heading (HDs) (Julian days). YLD was determined after
harvesting the plots upon maturity using a plot combine (Zurn,
Westernhausen Germany). PROT, TW, and moisture content
were measured using InfratecTM 1241 Grain Analyzer (FOSS
North America, Eden Prairie, MN, United States). YLD from plot
and PROT were adjusted to 13% moisture content equivalence.
HT was recorded as the distance from the soil surface to the tip of
the fully emerged spike, excluding any awns if present. HDs were
recorded as the Julian days required for 50% of heads to emerge
from the boot in each plot.

Phenotypic Data Analysis
The phenotypic data for all the five agronomic traits were
analyzed using best linear unbiased estimates (BLUEs) for
individual environments. The model used for estimation of the
genotypic BLUEs for individual environments was as follows:

yij = µ + Ri + Gj + eij (1)

where yij is the trait of interest, µ is the overall mean, Ri is the

effect of the ith replicate, Gj is the effect of the j
th genotype, and eij

is the residual error effect associated with the ith replication and
jth genotype. The replicates correspond to the complete blocks.

For the across environment estimation of best linear unbiased
estimates (BLUEs) and best linear unbiased predictions (BLUPs),
the statistical model was modified, as shown below:

yijk = µ + Ei + Rj(i) + Gk + GEik + eijk (2)

where yijk is the trait of interest, µ is the overall mean,

Ei is the effect of the ith environment, R j(i) is the effect of

the jth replicate nested within the ith environment, Gk is the
effect of the kth genotype, GEik is the effect of the genotype
× environment (G × E) interaction, and eijk is the residual

error effect associated with the ith replication and jth genotype.
The environment corresponds to the individual locations and
replicates correspond to the complete blocks. The genotype was
assumed as a fixed effect, whereas the environment and block
nested within the environment were assumed as random effects.

The broad-sense heritability (H2) of a trait of interest in an
independent environment was assessed as follows:

H2 =
σ
2
g

σ 2
g + σ 2

e / nRep
(3)
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where σ
2
g and σ

2
e are the genotype and error variance

components, respectively. The BLUEs and variance components
were estimated using META-R (Alvarado et al., 2020), which
employs the LME4 R-package (Bates et al., 2015) for linear
mixed model analysis. The Pearson correlations among traits
and environments were estimated based on the BLUEs and
BLUPs using the “psych” package in the R environment (R Core
Team, 2018). The genetic correlations between the five traits were
estimated for individual years using the “BMTME” R package
(Montesinos-López et al., 2019).

SNP Genotyping
Fresh leaf tissues were collected from each line for DNA isolation
using the hexadecyltrimethylammonium bromide (CTAB)
method (Doyle and Doyle, 1987). Genotyping-by-sequencing
(GBS) was performed following double digestion with HF-
PstI and MspI restriction enzymes for library preparation
(Poland et al., 2012a). GBS libraries were sequenced using an
IonProton sequencer (Thermo Fisher Scientific, Waltham, MA,
United States) at the USDA Central Small Grain Genotyping
Lab, Manhattan, KS, United States. TASSEL v5.0 was used to
call single-nucleotide polymorphisms (SNPs) using the GBS v2.0
discovery pipeline (Bradbury et al., 2007). The reads were aligned
to the Chinese Spring wheat genome reference RefSeq v1.1
(IWGSC, 2018) using the default settings of Burrows–Wheeler
Aligner v0.6.1. For quality control, SNPs with more than 20%
missing data points and minor allele frequency (MAF) of
<0.05 were removed. Finally, we obtained 10,290 high-quality
SNPs after removing the SNPs that were unmapped on any
wheat chromosome. The missing data points in the selected
SNP set were imputed using BEAGLE v4.1 (Browning and
Browning, 2007). The additive relationship matrix for GP
models was estimated using the A.mat function in the “rrBLUP”
package in R (Endelman, 2011). The Kinship (K)-based marker
matrix was estimated using the Centered IBS (identity by state)
method (Endelman and Jannink, 2012) implemented through
Genomic Association and Prediction Integrated Tool (GAPIT)
(Tang et al., 2016).

Genomic Prediction Models and

Cross-Validation
We evaluated one univariate and two multivariate GP models
for predicting five agronomic traits. Different cross-validation
schemes that mimic actual scenarios in a breeding program
were used to estimate the PA of these traits and compare the
performance of different models.

Single-Trait Model
Ridge regression best linear unbiased prediction (Endelman,
2011) is the commonly used GS model in plant breeding. Similar
to the genomic best linear unbiased prediction (GBLUP) model,
rrBLUP assumes the normal distribution of marker effects with
equal variance. We used rrBLUP as a baseline GS model for all
the traits to evaluate the performance of multivariate models. The
within-environment trait BLUEs were calculated and then used
as input to perform rrBLUP within each environment. A linear

mixed model was implemented using the following model:

y = 1µ + Zu+ ε (4)

where y is the vector (n × 1) of adjusted means (BLUEs)
from n genotypes for a given trait; µ is the overall mean; Z is
the design matrix (n × p) with known values of p markers for
n genotypes; u is a genotypic predictor with u ∼ N(0, Gnxnσ

2
g ),

where G is positive semi-definite matrix, obtained from markers
using “A.mat,” which is an additive relation matrix function
and σ

2
g is the additive genetic variance; ε is the residual error

with e∼ N(0, σ 2
e ).

Multi-Trait Model
A Bayesian Multivariate Gaussian model with an unstructured
variance-covariance matrix was used for the multi-trait model
(MT) (Lado et al., 2018). The MT model can be described as

y = 1µ + Zu+ ε (5)

where y is the vector with a length of n × t (n genotypes
and t traits); µ is the means vector; Z represents the incidence
matrix of order [(n × t)p]; u[(n×t)p] is a genotypic predictor for
all individuals and traits with u ∼ N(0,

∑
⊗ G). The matrix

G represents the positive semi-definite matrix obtained from
markers. The residuals of the MT model are represented by
the vector ε, with ε ∼ N(0, R ⊗ I). The matrices

∑
and R

are the variance-covariance matrices for depicting the genetic
and residual effects, respectively, for each individual in all traits,
estimated with the Gibbs sampler with 5,000 burn-in and 25,000
iterations in R package “MTM” (de los Campos and Grüneberg,
2016). The

∑
was estimated as an unstructured matrix and R as

a diagonal matrix following Lado et al. (2018).

Bayesian Multi-Trait Multi-Environment Model
The Bayesian multi-trait multi-environment model for genomic
predictions (Montesinos-López et al., 2016, 2019) can be briefly
described as

y = Xβ + Z1b1 + Z2b2 + ε (6)

where y is the response matrix of order j × t (where t is the
number of traits and j= n × l, where n denotes the number
of genotypes and l denotes number of environments); X is the
design matrix for environmental effects of order n × l, whereas
β is the matrix of beta coefficients of order l × t. Z1 is the
incidence matrix of genotypes of order j × n, and b1 is the
matrix of genotypic random effects of order n × t. Z2 is the
incidencematrix of genotype× environment interaction of order
j × ln and b2 is the random effect of genotype × environment
× traits of order ln × t. We assume that b1 is distributed
under a matrix variate normal distribution as b1 ∼ MN(0, G,∑

t), where G is of order n × n, obtained from SNP markers
using “A.mat,” which is an additive relation matrix function in
rrBLUP, and

∑
t is the unstructured variance-covariance matrix

of traits of order t × t. The b2 is assumed to be distributed
under a matrix variate normal distribution as b2 ∼ MN(0,∑

E⊗G,
∑

t), where ⊗ denotes a Kronecker product and
∑

E
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is the unstructured variance-covariance matrix of l × l. The
matrix ε is the matrix of residuals of order j × t distributed
as ε ∼ MN(0, lj, Re). A detailed account of this model and
prior distributions can be found in Montesinos-López et al.
(2019). Model simulations were carried out using the R package
“BMTME” (Montesinos-López et al., 2019) with 5,000 burn-in
and 25,000 iterations.

Assessment of Prediction Ability
Predictive ability was estimated as Pearson correlation coefficient
between genome-estimated breeding values and observed
phenotypes for the testing set of breeding lines. The PA for
the rrBLUP model was estimated using cross-validation scheme
1 (CV1), where the population was equally divided into five
subpopulations, with four subpopulations (80%) as the training
population (phenotyped and genotyped) to train the model and
one subpopulation (20%) as the testing population (genotyped
only) for prediction. The single-trait model with cross-validation
scheme 1 (designated as ST-CV1 hereafter) was implemented in
the “rrBLUP” R package (Endelman, 2011) for one trait at a time.
The cross-validation process was repeated 1,000 times, and each
iteration included different lines in the training and testing sets.

The prediction accuracy (PA) of the MT model was estimated
using two cross-validation schemes, as described in Lado
et al. (2018) (Supplementary Figure 1). Similar to the ST-CV1
scheme, the first cross-validation scheme (MT-CV1) used a
random set of lines (80%) as a training set and the remaining lines
(20%) as a testing set. The model was trained using genotypic
and phenotypic data of these lines in the training set, and only
genotypic data were used to predict the performance of the
testing set lines based on the model built from the training set.
This process of splitting the data into training and testing sets
was repeated 50 times. Hence, a different set of lines were selected
into the training and testing datasets for each iteration. The
CV1 scheme mocks the breeding situation where a set of lines
that are evaluated for given traits could be used to predict an
unphenotyped set of lines that only have genotypic information.
In the second cross-validation scheme (MT-CV2), the lines were
randomly split into a training set (80%) and a testing set (20%).
To train themodel, MT-CV2 used genotypic data and phenotypic
data of secondary traits from both the training and testing sets,
but the phenotypic data of the target trait (primary trait) only
from the training set. The BMTMEmodel used a cross-validation
scheme similar to MT-CV1 to estimate the PA of the model by
randomly splitting the lines into an 80% training set and a 20%
testing set. Since the BMTME model employs a Gibbs sampler
with multiple iterations and is computationally expensive, the
cross-validation scheme was repeated only 25 times.

Application of MTME Genomic Prediction

in the Breeding Program
As the multi-trait multi-environment model showed a potential
in predicting different agronomic traits the using cross-validation
approach, we evaluated the possible application of this method
in the breeding program to reduce phenotyping efforts and per
plot costs. As discussed earlier, we evaluated ∼40 elite lines and
∼110 advanced lines each year in multiple environments. Per

plot costs and phenotyping efforts could be reduced if we can
successfully determine the genomic estimation of breeding values
(GEBVs) of the advanced lines in fewer locations rather than
testing these lines in all available locations. TheMTMEmodel can
estimate the environmental effect based on elite lines evaluated in
all locations and the genotypic effect of advanced lines from fewer
locations. To test this, we used the MTMEmodel in an allocation
design where we used the phenotypic data of elite lines from five
testing environments; however, we used phenotypic records of
advanced lines from three environments only. We predicted five
traits in the remaining two environments in both the growing
seasons. The model was fitted using the R package “BMTME”
(Montesinos-López et al., 2016, 2019) with 5,000 burn-in and
15,000 iterations. The observed phenotypic records from the
remaining two environments were used to assess the predictive
accuracy of the design.

RESULTS

Descriptive Statistics
The phenotypic BLUEs for grain yield, grain protein content,
test weight, plant height, and days to heading varied significantly
among the different environments (Table 1). HYS produced
the highest mean grain yield in both years, where BRK and
WIN produced the lowest grain yield in 2018–19 and 2019–20,
respectively. Broad-sense heritability (H2) was estimated for
all the five agronomic traits in each environment (Table 1).
Differences in heritability estimates (0.63–0.96) describe
the different genetic architecture of traits and contrasting
environmental effects. Among the five traits evaluated in the
study, TW, HT, and HDs had moderate to high heritability
values in most of the environments and over both years.
Relatively, YLD (0.64–0.84) and PROT (0.63–0.96) had
comparatively lower heritability than other traits. Among the
five environments, the heritability for all the traits was high in
both the experimental years in DL. For YLD heritability, HYS
(2019–20) had the highest (0.84), whereas BRK (2019–20) had the
lowest (Table 1).

Pearson correlations among agronomic traits were
calculated using BLUEs by combining phenotypic data from all
environments in each of the two growing seasons (Figure 1).
As expected, significant negative correlation values (−0.28 and
−0.54) were observed between YLD and PROT in both years.
YLD was also negatively correlated with HDs (in both years)
and HT (2019–20) (Figure 1). Similarly, TW was positively
correlated with PROT and HT in both growing seasons.
Overall, higher correlation values were observed between the
agronomic traits in the 2019–20 growing season than in 2018–19
(Supplementary Figures 2, 3). Furthermore, genetic correlations
among the five traits are estimated by fitting the BMTME
model for individual growing seasons and are presented in
Supplementary Tables 2, 3. Similar to the phenotypic correlation
estimates, we observed a higher genetic correlation in 2019–20
as compared to 2018–19.

We further estimated the Pearson correlations among the
five environments in 2018–19 and 2019–20 using the data
of all the five agronomic traits (Supplementary Figure 4).
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TABLE 1 | Trait descriptive statistics and broad-sense heritability estimate for individual site-year environments of lines grown over five locations (Env) in 2018–19 and

2019–20 growing seasons.

Year Enva Yield

(bu ac−1)

Protein content

(%)

Test weight

(kg hL−1)

Plant height

(cm)

Days to heading

(julian days)

GMb CV H2 GM CV H2 GM CV H2 GM CV H2 GM CV H2

2018-19 BRK 64.69 8.96 0.80 12.16 5.45 0.69 72.51 1.42 0.91 94.78 4.25 0.89 163.22 0.48 0.92

DL 77.44 6.48 0.77 14.25 1.55 0.94 77.09 1.35 0.78 86.06 3.99 0.89 164.65 0.76 0.92

HYS 81.98 6.46 0.73 12.04 3.66 0.72 76.55 1.06 0.92 99.12 3.18 0.90 163.84 0.70 0.74

OND 71.21 7.27 0.76 13.25 3.30 0.85 78.21 1.27 0.82 89.91 3.62 0.91 168.73 0.65 0.87

WIN 81.27 5.89 0.79 13.17 4.27 0.63 79.12 1.00 0.88 93.63 2.90 0.95 164.19 0.80 0.89

2019-20 BRK 84.26 6.25 0.64 12.49 3.65 0.80 77.39 0.90 0.89 86.67 4.42 0.75 156.18 0.63 0.89

DL 93.31 4.14 0.78 13.55 1.40 0.96 79.10 0.64 0.95 85.80 3.45 0.83 155.74 0.40 0.94

HYS 96.64 4.66 0.84 13.87 2.02 0.90 77.26 1.30 0.91 102.8 3.95 0.82 159.36 0.51 0.85

OND 92.21 4.40 0.81 11.99 4.97 0.59 78.65 1.08 0.87 92.53 3.59 0.85 157.09 0.63 0.87

WIN 84.16 4.73 0.80 13.24 2.99 0.84 78.24 0.90 0.89 92.70 3.47 0.85 158.75 0.63 0.91

BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.
aEnv, refers to different trial location. BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.
bGM, general mean for respective trait; CV, coefficient of variation; H2, broad sense heritability.

FIGURE 1 | Scatter plot matrix with phenotypic distributions and Pearson correlations between agronomic traits using best linear unbiased predictions (BLUPs) by

combining five experimental sites (BRK, DL, HYS, OND, and WIN) (A) from the growing season of 2018–19 and (B) from the growing season of 2019–20. YLD, grain

yield; PROT, grain protein content; TW, test weight; HT, plant height; and HD, days to heading. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.

Significantly higher correlation values were observed for YLD
among the five environments in 2019–20 than those in
2018–19. A similar trend was observed for PROT, TW, and
HDs; however, correlations were comparable for HT between
the two growing seasons (Supplementary Figure 4). Moreover,
the principal component analysis (PCA) on YLD validated
strong correlations among the testing locations, in particular

between HYS and OND and between DL and WIN, in the
2019–20 growing season (Figure 2). However, only a weak
correlation was observed between DL and BRK in the 2018–19
growing season. The varying degrees of correlation among the
locations in different growing seasons provide an opportunity
to compare the performance of the MTME model in different
growing environments.
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FIGURE 2 | Principal component analysis to determine the association of the observed grain yield among five different experimental sites in the (A) 2018–19 growing

season and the (B) 2019–20 growing season. BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.

Genetic Relationship Among Lines
The kinship-based marker relationship matrix was derived
using 10,290 SNPs from 151 lines evaluated in the 2018–19
growing season and 156 lines evaluated in the 2019–20 growing
season (Supplementary Figure 5). The positive values of the
relationship matrix signify an increased likelihood of the allele
from one line being detected in other lines. The heatmaps of
both the relationship matrices elucidate several small groups of
closely related individuals over both the growing seasons. Most
of the lines seem genetically related to several others. However,
the heatmaps did not reveal any large genetically structured
sub-populations in either set of 151 or 156 lines, respectively.
Thus, the absence of a strong structure suggests no advantage
of performing stratified sampling for cross-validation schemes
to estimate PA. Furthermore, the density of heatmaps revealed
a closer relationship among the 156 lines evaluated in 2019–20
(Supplementary Figure 5A) than among the 151 lines evaluated
in 2018–19 (Supplementary Figure 5B).

Genomic Prediction Using 2018–19 and

2019–20 Datasets
We compared the predicted performance of five traits among
four different approaches using two data sets (2018–19 and 2019–
20). The PA of various models for the five traits is presented
in Supplementary Tables 4, 5. ST-CV1 was used as a baseline
model to compare the performance of different multivariate
models. In 2018–19, the mean PA using ST-CV1 was 0.31,
0.35, 0.36, 0.35, and 0.36 for YLD, PROT, TW, HT, and HDs
(Figure 3). Slightly better performance was observed in 2019–
20 where ST-CV1 yielded an average PA of 0.36, 0.35, 0.54,
0.33, and 0.35 for these traits, respectively. The multi-trait model

was tested using two prediction scenarios, MT-CV1 and MT-
CV2. The MT-CV1 model did not show improvement in the PA
over ST-CV1 for any of the five traits in either growing season
(Supplementary Tables 4, 5).

The multi-trait model MT-CV2, which includes phenotypic
data for secondary agronomic traits from individuals to be
predicted, showed an overall higher prediction accuracy for
YLD in both growing seasons. In 2018–19, the PA for
YLD using the MT-CV2 model ranged from 0.15 to 0.56,
outperforming the single-trait (ST-CV1) model by an average
of 26% (Supplementary Tables 4, 5). Similarly, the mean PA
for YLD in 2019–20 using MT-CV2 was 0.59, showing 63%
improvement over the ST-CV1 model. The best PA for YLD in
2019–20 was observed in HYS (0.71), followed by WIN (0.67)
and DL (0.57). The improvement in PA over ST-CV1 reached up
to 148% in WIN and 80% in BRK in 2019–20.

Likewise, we observed a marginal to moderate improvement
in PA for other agronomic traits using MT-CV2 model in both of

the growing seasons (Figures 3, 4 and Supplementary Tables 4,
5). In 2018–19, the mean PA using MT-CV2 was 0.4, 0.42,

0.34, and 0.38 for PROT, TW, HT, and HDs, exhibiting an

improvement of 14, 19, 36, and 8%, respectively. In comparison,
the PA using MT-CV2 was higher in 2019–20, with an average

PA of 0.54, 0.59, 0.43, and 0.38 for PROT, TW, HT, and HDs with
an improvement of 54, 9, 30, and 8%, respectively. Overall, the

better performance of theMT-CV2model can be attributed to the
higher genetic correlation among the traits evaluated in 2019–20
over the 2018–19 season (Supplementary Tables 2, 3).

The multi-trait multi-environment MTME model generalizes
the multi-trait model to consider the correlation among the
environments on top of the genetic correlation between the
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FIGURE 3 | Prediction accuracy (PA) for five agronomic traits evaluated in five environments in the growing season of 2018–19. Boxplots compare the PA using a

single-trait prediction model with one cross-validation scheme (ST-CV1), a multi-trait prediction model with two cross-validation schemes (MT-CV1 and MT-CV2), and

a Bayesian multi-trait multi-environment prediction model (MTME). Traits include YLD, grain yield; PROT, grain protein content; TW, test weight; HT, plant height; and

HD, days to heading.
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FIGURE 4 | Prediction accuracy (PA) for five agronomic traits evaluated in five environments in the growing season of 2019–20. Boxplots compare the PA using a

single-trait prediction model with one cross-validation scheme (ST-CV1), a multi-trait prediction model with two cross-validation schemes (MT-CV1 and MT-CV2), and

a Bayesian multi-trait multi-environment prediction model (MTME). Traits include YLD, grain yield; PROT, grain protein content; TW, test weight; HT, plant height; and

HD, days to heading.

Frontiers in Plant Science | www.frontiersin.org 9 August 2021 | Volume 12 | Article 709545130

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gill et al. Genomic Prediction in Winter Wheat

traits. In 2018–19, the MTME model did not show a significantly
different PA over the ST-CV1 model for YLD (0.18–0.36) and
PROT (0.13–0.46). The performance of the MTME model for
these two traits likely relates to the lower genetic trait correlations
and lower correlation among the environments for these traits
in 2018–19 (Supplementary Figure 4). Analogous to YLD and
PROT, theMTMEmodel resulted in a higher prediction accuracy
than the ST-CV1 model for TW, HT, and HDs in 2018–19
(Figure 3). For instance, the average PA using MTME for TW,
HT, and HDs was 0.42, 0.42, and 0.36, respectively, which
translates to an improvement of 19, 68, and 12%, respectively.
Furthermore, the PA using the MTMEmodel outstripped the ST-
CV1 model in all the five environments for TW (0.32–0.52) and
HT (0.41–0.54), and in four environments for HDs (Figure 3).

In contrast to 2018–19, we observed higher genetic
correlations among the five traits and higher environmental
correlations in 2019–20 (Supplementary Tables 2, 3 and
Supplementary Figure 4). As a result of high correlation values,
we observed a consistent improvement in the PA of MTME
in all the environments for all the five traits (Figure 4 and
Supplementary Table 4). For YLD, the MTME model also
performed better than the single-trait model in most of the
environments, except HYS. The average PA for YLD using
the MTME model was 0.43, which was 22% better than the
ST-CV1 model. Furthermore, the MTME model appeared
to be superior for predicting PROT and TW (Figure 4). For
PROT, the MTME model performed best in all the locations,
with a PA ranging from 0.52 to 0.67 (Supplementary Table 5).
We achieved an improvement in PA of up to 100% (OND)
using the MTME model (0.52) over the single-trait model
(0.26) with 71% improvement on average. The PA for TW
was higher using the MTME model than the other models,
ranging from 0.53 to 0.67, with a mean improvement of 17%
over the ST-CV1 model (Supplementary Table 5). Similarly,
the average PA of the MTME model was the highest for HT
(0.49) and HDs (0.53), which outstrips the ST-CV1 model by
48 and 51%, respectively.

Application of MTME Model in the

Breeding Program
Based on the cross-validation results, we evaluated the efficacy
of the MTME model in reducing phenotypic efforts in the
breeding program. We used the MTME model to estimate
the GEBV of advanced lines in environments where only
elite lines are evaluated. In the tested allocation design, we
used phenotypic data of EYTs from five environments and
AYTs from three environments to predict GEBVs of AYTs
in remaining environments (Figure 5). Two environments,
OND and WIN, were used as testing environments for
predicting AYTs. For 2018–19, we predicted the performance
of 96 AYT lines, whereas 2019–20 comprised a prediction
of 114 AYT lines in two environments. Table 2 elucidates
the predictive ability for the five agronomic traits using
MTME in an independent prediction scenario. Moderate
PA was observed for all the traits in both environments
except for WIN in 2019–20. For OND, the results showed

FIGURE 5 | Testing design for the independent prediction of agronomic traits

using the MTME model. Each year, a set of elite and advanced lines is

evaluated over multiple locations. The sparse testing design proposes

phenotyping of elite lines in all the environments (five in this scenario) and

advanced lines in fewer environments (three in this scenario). For independent

prediction, the dataset from 2018–19 comprised 55 elite lines with checks and

96 advanced lines. The 2019–20 dataset comprised 42 elite lines with checks

and 114 advanced lines. Five environments: BRK, Brookings; DL, Dakota

Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.

a better prediction accuracy than WIN for YLD and TW.
Overall, the results suggest that the MTME model could be
used by evaluating an overlapping set of lines over multiple
environments and lines in early testing could be tested in
fewer environments.

DISCUSSION

In recent years, genomic prediction has been intensively

evaluated in wheat breeding programs to select and advance lines

for several traits of interest (Rutkoski et al., 2014, 2016; Haile
et al., 2020; Juliana et al., 2020). However, improving the PA of

complex traits remains a challenge for successfully implementing

GS in breeding programs. The choice and optimization of
statistical models are crucial to improve the performance of
GS. Most plant breeding programs currently rely on univariate
genomic prediction models to target a single trait at a time. An
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TABLE 2 | Predictive ability for the independent prediction of advanced breeding lines (AYTs) in new environments using the MTME model.

Year Enva Predictive abilityb

Grain yield Grain protein Test weight Plant height Days to heading

2018–19 OND 0.44 0.37 0.43 0.49 0.27

WIN 0.30 0.25 0.38 0.30 0.46

2019–20 OND 0.36 0.27 0.44 0.22 0.41

WIN 0.15 0.32 0.25 0.18 0.24

Tables shows Pearson correlation between the observed and predictive values of agronomic traits in the AYTs in two different environments over two growing seasons.
aEnv refers to different trial location. BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner.
bThe predictive ability for five agronomic traits using the MTME model in independent prediction of advanced lines. Refer to Figure 5 for the design of the prediction scheme.

advantage of multivariate prediction approaches over single-trait
models that have been demonstrated in some recent studies is
utilizing correlations between multiple traits and environments
(Jia and Jannink, 2012; Sun et al., 2017; Lado et al., 2018;
Ward et al., 2019; Ibba et al., 2020). This study evaluated
the application of multi-trait and multi-environment prediction
models to predict five key traits of varying genetic architecture
across diverse environments in a breeding program.

The ridge-regression best linear unbiased prediction (rrBLUP)
is one of the most often used single-trait prediction models. The
rrBLUP has an advantage over Bayesian models in predicting
complex traits governed by several loci with small effects (Lorenz
et al., 2011). We used rrBLUP as a baseline model (ST-CV1)
for comparison with different multivariate approaches. The PA
for agronomic traits using ST-CV1 was comparable with other
studies using the same model (Pérez-Rodríguez et al., 2012;
Charmet et al., 2014; He et al., 2016; Maulana et al., 2021). For
instance, the PA for YLD was between 0.13 and 0.43 for 2018–19
and 0.27 and 0.5 for 2019–20. The PA for TW in both growing
seasons was higher than the PA for other traits because of the
highly heritable nature of this trait (Figures 3, 4).

We evaluated the multi-trait model using two cross-validation
schemes. The first scheme (MT-CV1) conducts multi-trait
prediction for new un-phenotyped individuals, and the testing
set has not been phenotyped for any of the traits. In the second
cross-validation scheme (MT-CV2), phenotype information for
the predicted trait is missing, whereas phenotype information
for the secondary traits is available in the testing set (Lado
et al., 2018; Bhatta et al., 2020). In this study, the PA of
the MT-CV1 model was found similar to that of the ST-CV1
model for most of the trait-environment combinations in both
growing seasons (Supplementary Tables 4, 5). Several studies
have reportedmarginal or no improvement withMT-CV1, where
information from secondary traits is limited to the training set
(Calus and Veerkamp, 2011; Lado et al., 2018; Schulthess et al.,
2018; Arojju et al., 2020; Bhatta et al., 2020). However, other
studies reported an improvement in GP when the MT-CV1
model included secondary traits with moderate-high heritability
(Jia and Jannink, 2012; Rutkoski et al., 2012; Guo et al., 2014). Jia
and Jannink, 2012 suggested that theMT-CV1 approachmight be
more useful when the primary trait has very low heritability (H2

< 0.2). In this study, the similarity in performance of the MT-
CV1 and ST-CV1 models might be contributed by the moderate

to high heritability estimated for most of the traits and the small
size of the training population.

In contrast to MT-CV1, the MT-CV2 model significantly
improved the PA for all agronomic traits in all the environments,
suggesting that the inclusion of secondary traits in the training
and testing sets improves the predictive performance of complex
traits (Supplementary Tables 4, 5). Several studies have reported
a similar improvement in prediction using the MT-CV2 model
for agronomic and end-use quality traits in wheat (Rutkoski
et al., 2016; Sun et al., 2017; Lado et al., 2018), rice (Wang et al.,
2017), barley (Bhatta et al., 2020), sorghum (Fernandes et al.,
2018), and ryegrass (Arojju et al., 2020). The MT-CV2 model
outperformed the single-trait model for YLD prediction in all
environments. However, the extent of improvement using the
MT-CV2 model varied with traits and environments tested. As
multi-trait models rely on the genetic correlation between traits
(Calus and Veerkamp, 2011; Jia and Jannink, 2012), differences
in prediction improvements due to the MT-CV2 model can
be attributed to the varying degrees of genetic correlations
observed in different environments. We observed a high genetic
correlation among the traits in 2019–20 that resulted in a higher
prediction accuracy for the different traits in this growing season
(Figure 1 and Supplementary Tables 2, 3). The results suggest
that MT-CV2 could likely be very useful if we can include
data for HT, HDs, and other spectral indices recorded using
a high throughput method for predicting YLD. In addition,
the MT-CV2 approach could be really useful to predict hard-
to-phenotype end-use quality traits by the inclusion of already
available agronomic data for the testing set.

We also evaluated the BMTME model (referred to as MTME)
that generalizes a multi-trait model to consider the correlations
among multiple environments. Recently, two studies reported
an increase in the PA of agronomic and end-use quality traits
in wheat using the BMTME approach (Guo et al., 2020; Ibba
et al., 2020). Because of the different training process, we
did not directly compare the MTME model with the MT-
CV2 model but compared both with the ST-CV1 model. In
2018–19, the MTME model proved to be better than the
ST-CV1 and MT-CV1 models for all the traits except YLD
and PROT. However, the MTME model outperformed the
ST-CV1 and MT-CV1 models in 2019–20 for all the traits
in all the environments (Supplementary Table 5). The mean
improvement in PA (across five environments) using MTME
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model over the ST-CV1 reached up to 19, 71, 17, 48, and 51%
for YLD, PROT, TW, HT, and HDs, respectively. The differences
in performance of the MTME model in 2019–20 compared with
2018–19 relate to the observed genetic correlations among the
traits as well as among the environments in these growing seasons
(Supplementary Figure 2A). As discussed earlier, the genetic
correlations between traits and correlation among environments
were higher in 2019–20 compared with those in 2018-19
Thus, a higher PA was observed for the traits showing a high
correlation among the different environments. For example, the
five environments were highly correlated for PROT (0.56–0.76)
compared with YLD (0.23–0.65) (Supplementary Figures 3, 4),
explaining the difference in the improvement of PA for these
traits. Overall, the results suggest that the MTME model could
be successfully applied in a program if there is a moderate to high
correlation for a trait between environments and overcome the
effect of a small training population.

Apart from the statistical model, the heritability (H2) of
a trait is another crucial factor for improving PA (Lorenz
et al., 2011; Combs and Bernardo, 2013). Several studies have
found that low heritability often results in lower prediction
accuracy in single-trait genomic prediction (Heffner et al., 2009;
Jannink et al., 2010). The application of multi-trait models can
improve the PA of low-heritability traits using the information
from correlated traits with high heritability (Jia and Jannink,
2012; Jiang et al., 2015; Lado et al., 2018; Bhatta et al., 2020).
The heritability estimates for most of the traits in different
environments were moderate to high in this study, with few
exceptions. The use of theMT-CV2model significantly improved
the predictive ability for PROT in WIN (0.15 to 0.29) and TW
in DL (0.23 to 0.39), where highly heritable and moderately
correlated traits were included in the model. In contrast, the MT-
CV2 model did not improve the PA for HDs in HYS (0.23 to
0.25), as the primary trait was weakly correlated to the highly
heritable secondary traits in the model. The results suggest
that the inclusion of highly heritable but weakly correlated
secondary traits in the multi-trait model may not improve
the PA.

Genomic prediction has been suggested to implement sparse
testing in multi-environment trials and reduce the resources
involved in phenotyping (Jarquin et al., 2020). Based on the
promising cross-validation results using MTME models, we
evaluated the application of this model in the breeding program
to reduce phenotyping resources. At the SDSU winter wheat
breeding program, we evaluate a set of elite (EYTs) and advanced
(AYTs) lines each year in multiple environments. However, the
results suggest that GP models developed using phenotypic data
from all locations of EYTs and limited locations of AYTs can
predict AYTs in remaining environments (Table 2). This strategy
could be useful as we evaluate ∼40 EYTs and ∼110 AYTs each
year in replicated nurseries and testing the AYT plots at two/three
locations instead of five can save substantial resources. Though
we used this strategy to predict AYTs at two locations, further
improved GP models assisted with environics data can help to
predict more environments with better accuracy. Moreover, this
strategy can be expanded to predict preliminary breeding lines at
earlier testing stages.

In conclusion, this study evaluated the PA of univariate and
multivariate GP models for five agronomic traits in advanced
winter wheat breeding lines. We compared two different
cross-validation strategies mocking practical breeding scenarios.
Overall, the results supported the practical implementation of
multivariate GS models in predicting complex traits. We found
a significant advantage of using MT and MTME models when
correlated traits and/or environments are included in the models.
The results suggest that the inclusion of correlated traits and
environments in prediction models can offset the limitation of a
small training population, allowing the use of advanced breeding
lines to predict preliminary breeding lines in the same year or
the following one. It will be interesting to further study the
inclusion of different combinations of secondary traits in the
MT model to increase the PA of YLD. We envision that the
evaluation of secondary traits such as plant height, tillers/m2,
spike length, and spike density that have high correlations
with YLD using an unmanned aerial system (UAS) in winter
wheat yield trials could help predict YLD. This would permit
trials on a large number of locations (e.g., >10) but harvesting
only in a limited number (e.g., 2–3) of locations. Similarly,
evaluating secondary traits (grain protein, flour protein, water
absorption, gluten content, and quality) could facilitate the
prediction of other complex traits such as end-use quality.
Finally, GS holds a tremendous potential for improving the
selection accuracy of complex traits in wheat breeding; however,
we believe GEBVs will complement phenotyping efforts rather
than replacing them. Future breeding strategies should focus on
increasing the efficiency of breeding programs by maximizing
genetic gain.
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The seed protein α-gliadin is a major component of wheat flour and causes gluten-
related diseases. However, due to the complexity of this multigene family with a genome
structure composed of dozens of copies derived from tandem and genome duplications,
little was known about the variation between accessions, and thus little effort has been
made to explicitly target α-gliadin for bread wheat breeding. Here, we analyzed genomic
variation in α-gliadins across 11 recently published chromosome-scale assemblies of
hexaploid wheat, with validation using long-read data. We unexpectedly found that the
Gli-B2 locus is not a single contiguous locus but is composed of two subloci, suggesting
the possibility of recombination between the two during breeding. We confirmed that the
number of immunogenic epitopes among 11 accessions varied. The D subgenome of a
European spelt line also contained epitopes, in agreement with its hybridization history.
Evolutionary analysis identified amino acid sites under diversifying selection, suggesting
their functional importance. The analysis opens the way for improved grain quality and
safety through wheat breeding.

Keywords: α-gliadin, celiac disease epitopes, copy number variation, Gli-2 loci, wheat (Triticum aestivum L.)

INTRODUCTION

Since its origin by allopolyploidization, bread wheat (Triticum aestivum L.) has become a staple
crop, providing ∼20% of the calories consumed globally (Shiferaw et al., 2013). Concentrated
breeding efforts have increased yield such that the production of bread wheat reached 766 million
tons in 2019 (FAOSTAT, 2021). Further selection has made wheat more palatable and increased the
quality of desired end-use traits.
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Wheat grains are typically processed into flour to make various
breads and noodles. Much of the rheological quality of these
products relies on gluten formation. Gluten is a complex of
two protein families, glutenins and gliadins, which are storage
proteins in wheat endosperm. Gliadins are classified into three
groups, α-, γ-, and ω-gliadins, based on their electrophoretic
mobility (Shewry and Halford, 2002). α-Gliadins are the most
abundant gliadins and represent 15–30% of the wheat seed
protein (Gu et al., 2004). Genes encoding α-gliadins are tandemly
duplicated and form clusters within each Gli-2 locus. They are
located on the short arm of homoeologous chromosome group
6 in Triticum species (Qi et al., 2013; Ozuna et al., 2015).
Because T. aestivum is allohexaploid (AABBDD), it contains
three Gli-2 loci called Gli-A2, Gli-B2, and Gli-D2 (Payne, 1987).
High allelic diversity, copy number variation, and expression
differences in α-gliadins in bread wheat have been attributed
to the combination of tandem and whole genome duplications
(Salentijn et al., 2009; Noma et al., 2016; Huo et al., 2018).
Although allelic diversity, gene copy number variation and
other differences in α-gliadins may be linked to the phenotypic
differences for the wheat flour qualities among the cultivars,
little is known about precise genomic information for the Gli-
2 loci to provide a basis for comparison between cultivars. For
example, the general function of α-gliadins in the breadmaking
quality is well understood, but the role of individual α-gliadin
genes is not entirely clear (Branlard et al., 2001; Brennan,
2009; Metakovsky et al., 2018). α-Gliadins are also the most
common proteins that trigger an immune response in patients
with celiac disease (CD), one of the widespread wheat-related
health disorders (Scherf et al., 2016). The CD reaction is caused
by the presence of a variety of peptide sequences called epitopes
(Sollid et al., 2012; Juhász et al., 2018). The repetitive domain
includes the DQ2.5-glia-α1, DQ2.5-glia-α2, and DQ2.5-glia-α3
epitopes (Ozuna et al., 2015), and sometimes, these epitopes
overlap to create a 33-mer peptide that is highly immunotoxic to
celiac patients (Shan et al., 2002; Huo et al., 2018; Juhász et al.,
2018). The immunotoxicity of the 33-mer region was verified
by genome-editing (Sánchez-León et al., 2018). Although the
three-dimensional structure of a short CD epitope bound to
human HLA has been reported (Kim et al., 2004; Petersen et al.,
2014, 2016), little is known about the higher-order structure of
gliadin proteins because they aggregate in solutions (Urade et al.,
2018). Sequence-based characterization of α-gliadin variation
within modern hexaploid wheat cultivars will aid in breeding
efforts to incorporate both desired end-use quality and lower
reactivity for consumers.

Allopolyploidization and tandem duplication have made
regions such as Gli-2 difficult to characterize in terms of the
genomic organization of and variation within multigene families
found in bread wheat. Thus, most variation within α-gliadin
gene sequences of different wheat accessions and related species
has been detected using bacterial artificial chromosome (BAC)
clones, transcriptome analysis, or low-coverage shotgun genome
sequencing (Kawaura et al., 2012; Noma et al., 2016; Juhász
et al., 2018). High resolution of the structure of homoeologous
Gli-2 loci has been described using long-read sequences, but
in only one cultivar, Chinese Spring (CS; Huo et al., 2018).

Recently, advances in polyploid genomics enabled the high-
quality genome assembly and polymorphism analysis of tandem
duplications (Paape et al., 2016, 2018; Avni et al., 2017). Here,
using chromosome-level assemblies for 11 accessions including
elite bread wheat cultivars and a spelt wheat line in the framework
of the “10+ Wheat Genomes Project” (Walkowiak et al., 2020),
we began to address the question of global variation in both
the structure of and polymorphism within Gli-2 loci among
multiple cultivars.

MATERIALS AND METHODS

Sequence Resources
Reference-quality genome assemblies for 9 bread wheat
accessions, ArinaLrFor, CDC Landmark, CDC Stanley, Jagger,
Julius, LongReach Lancer, Mace, Norin 61, SY Mattis and
one spelt accession, PI190962, released by the “10+ Wheat
Genomes Project” (Walkowiak et al., 2020), were accessed
through IPK, Germany.1 We also used the RefSeq v1.0 assembly
of CS (International Wheat Genome Sequencing Consortium
(IWGSC) et al., 2018), which is available at INRAE, France.2

Identification of Gli-2 Loci and α-Gliadin
Sequences
To identify the location of the Gli-2 loci, BLAST searches were
conducted against chromosome assemblies for homoeologous
group 6 of the eleven accessions using the α-gliadin gene
sequences AS2 and AS7 (for chromosome 6A); AS3, AS4, AS5
and AS6 (for 6B); and AS1, AS8, AS9, AS10, and AS11 (for
6D) as queries (Noma et al., 2016). From the BLAST results,
regions with an e-value = 0 and composed of a single exon
were selected as candidates for α-gliadin gene copies. The
regions were translated into amino acid sequences. Sequences
not starting with a methionine residue were discarded as
incomplete gene fragments. Sequences that were too diverged
based on the sequence alignment or phylogenetic tree were
also omitted. Finally, we constructed a codon-based alignment
of gliadin gene copies using MUSCLE in MEGA (Kumar
et al., 2018). Hi-C data and the alignments of CDC Landmark
Oxford Nanopore Technologies (ONT) long-read data were
obtained from Walkowiak et al. (2020). The gene coverage
values of the long-read alignments were obtained with SAMtools
v1.0 (Li et al., 2009) and BEDtools v2.29.0 (Quinlan and
Hall, 2010). Read alignments were visualized with IGV v2.8.2
(Robinson et al., 2017).

The evolutionary history of the gene family was inferred from
the 429 α-gliadin sequences identified above. Codon positions
included were 1st + 2nd + 3rd + Non-coding. All positions
containing gaps and missing data were eliminated (complete
deletion option). The final dataset contained a total of 524
positions. The tree was estimated using the neighbor-joining
method (Saitou and Nei, 1987), and evolutionary distances were
computed using the Kimura 2-parameter method (Kimura, 1980)

1https://wheat.ipk-gatersleben.de/
2https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies
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and expressed as the number of base substitutions per site.
The rate variation among sites was modeled with a gamma
distribution (shape parameter = 2.25). Support for the tree
topology was estimated using the bootstrap test with 1,000
replicates and was calculated as the percentage of replicate trees in
which the associated taxa clustered together (Felsenstein, 1985).
The tree was drawn to scale, with the units for branch lengths
being the same as those of the evolutionary distances used to infer
the phylogenetic tree.

Celiac Disease Epitope Search and Site
Selection Analysis
Using the amino acid sequences of α-gliadin copies without the
last stop codon, we searched all sequences for the presence of
nine canonical amino acid epitopes previously shown to induce
an immunogenic reaction (Sollid et al., 2012; Ozuna et al., 2015).

To test for amino acid sites likely to be under positive
selection in the α-gliadin gene family, only full-length sequences
were considered for a conservative analysis. Gaps present
at the same position in all three Gli-2 loci and sequences
containing premature stop codons were discarded. Sequences
were also removed if they had no terminal stop codon or
were not composed of multiples of three nucleotides, implying
frameshifts. Last, sites in regions that were difficult to align (the
polyglutamine regions) were not considered, as the uncertain
alignments may produce false positive signals. For the selection
analysis, a phylogenetic method was applied. First, the most likely
phylogenetic tree was estimated using nucleotide alignment and
a general time reversible (GTR) + invariant + gamma model
in MrBayes (Ronquist et al., 2012). Then, the likelihood of that
tree was calculated under different codon substitution models by
estimating the non-synonymous and synonymous substitution
rate ratios (ω = dN/dS) for each codon within the alignment.
The value of ω indicates the type of selection: ω < 1 indicates
negative selection, ω = 0 indicates neutral evolution, and ω > 1
indicates positive selection. A likelihood ratio test (LRT) was run
between two nested codon substitution models, a null and an
alternative model, to determine whether the alternative model of
positive selection was supported. The null model (M7) did not
allow for sites under positive selection while the alternative model
(M8) did allow for positive selection (Yang et al., 2000). Last,
the posterior probability of a specific site being under positive
selection was estimated using Bayesian empirical Bayes (BEB)
(Yang et al., 2005). Sites with a probability> 95% were considered
significant. The likelihoods of the codon substitution models
and posterior probability calculations were implemented in the
CODEML program of the software package PAML4 (Yang, 2007).

RESULTS

Location and Validation of Gli-2 Loci in
Accessions
We identified α-gliadin gene copies within 11 wheat assemblies:
the 10 reference-quality pseudomolecule assemblies (Walkowiak
et al., 2020) plus CS RefSeq v1.0 (International Wheat

Genome Sequencing Consortium (IWGSC) et al., 2018). We
first examined the chromosomal positions of the α-gliadin
copies. Copies that mapped to chromosome 6A in the 11
wheat accessions were assigned as Gli-A2 and were located
in single region on the short arm, as expected (Table 1 and
Supplementary Table 1). The only exception was Gli-A2 of
CDC Landmark, which was split into 2 subloci 7 Mb apart
from each other. Similarly, sequences in Gli-D2 mapped to the
expected region on chromosome 6D in nine reference-quality
assemblies. In LongReach Lancer and CS, we could not identify
α-gliadin copies on chromosome 6D; however, those found in
scaffolds that were not anchored to a chromosome (chrUn)
were assigned to Gli-D2 following the suggestion of Juhász
et al. (2018). Surprisingly, the copies found on chromosome 6B
showed that the Gli-B2 locus was clearly split into 2 subloci
in all accessions. We called them Gli-B2-1 and Gli-B2-2, and
they were 12–21 Mb apart from each other on chromosome 6B
(Table 1 and Supplementary Table 1). The uniformity of the Hi-
C signal along the whole Gli-B2 region and its flanking regions
further supported that the bipartite structure of Gli-B2 was not
an assembly artifact (Supplementary Figure 1) (Shimizu et al.,
2020; Walkowiak et al., 2020). The position of this second locus
relative to the well-described locus at ∼43 Mb on chromosome
6B in CS has not been described before, although previous studies
mention two sequences that mapped outside that region (Huo
et al., 2018; Juhász et al., 2018). The consistency in the Hi-
C maps observed among all assemblies supports that Gli-B2 is
composed of two parts and opens the possibility of exploiting
genetic recombination for breeding purposes.

Although some assemblies showed the subdivision or
translocation of several α-gliadin genes compared to those of
other accessions, we interpreted them with caution. In Jagger,
α-gliadin sequences mapped to a third region (Gli-B2-3) located
at the end of the long arm of chromosome 6B. We also found
that the sublocus Gli-B2-1 of LongReach Lancer and CDC
Landmark was further split into two parts. However, the Hi-
C signal of intra- and interchromosomal interactions for these
accessions suggested potential misassembly within these regions
(Supplementary Figures 1, 2). We note that the 20 Mb regions
flanking Gli-B2-1 in CDC Landmark were highly concordant
with those in CS, but they were not concordant with those
in LongReach Lancer (Supplementary Figure 3). Because the
assembly structure and orientation of CS was also supported by
additional evidence (International Wheat Genome Sequencing
Consortium (IWGSC) et al., 2018), this suggested that the
rearrangement in CDC Landmark may represent true biological
variation. The location and orientation of these subloci remain
interesting cases for further validation to distinguish biological
rearrangement from assembly errors.

Next, we checked the accuracy of the assemblies around
each single α-gliadin gene copy. We utilized the long-read
sequence data from ONT for CDC Landmark that was
previously used to validate the assembly (Walkowiak et al.,
2020). Though often flanked by assembly gaps, the sequence
at and immediately adjacent to each α-gliadin gene copy was
supported by continuous alignments of several long reads
(Supplementary Figure 4), implying a gene-level correctness
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TABLE 1 | Genomic positions of Gli-2 loci in 11 wheat accessions.

Accession Gli-A2 Gli-B2 Gli-D2

Positions* Copy no.** Gli-B2-1* Copy no.** Gli-B2-2* Copy no.** Gli-B2-3* Copy no.** Positions* Copy no.**

ArinaLrFor 25.5–27.7 30 (14) 44.5–45.1 6 (4) 63.0 2 (1) 28.1–28.5 9 (5)

CDC
Landmark

25.8–26.4
and
33.0–33.1

11 (9) 43.4–43.6
and
49.5–49.7

12 (6) 63.2 2 (1) 27.1–27.5 9 (5)

CDC Stanley 26.1–27.0 11 (9) 45.3–46.0 12 (7) 65.2 2 (1) 28.2–28.7 10 (6)

Jagger 24.7–25.6 11 (9) 43.6–44.4 9 (3) 65.0 2 (1) 654.9–655.2 6 (4) 26.7–26.8 3 (1)

Julius 24.7–25.5 10 (8) 46.6–47.1 6 (3) 64.7 2 (0) 27.0–27.4 9 (5)

LongReach
Lancer

24.6–25.4 11 (9) 35.5–35.7
and
45.7–46.0

14 (6) 58.2 2 (1) chrUn 11 (8)

Mace 24.8–25.6 11 (9) 43.5–44.3 13 (7) 63.8 2 (1) 26.8–27.3 11 (7)

Norin 61 25.8–28.2 33 (15) 42.3–43.0 14 (8) 61.2 2 (1) 26.7–27.2 11 (6)

SY Mattis 24.0–25.9 23 (8) 44.6–45.2 6 (2) 61.8 2 (0) 26.6–27.1 9 (5)

PI190962
(spelt)

25.8–28.2 25 (10) 41.3–41.7 5 (2) 60.4 2 (1) 26.4–26.9 11 (6)

Chinese
Spring

24.9–25.6 9 (7) 43.4–44.1 8 (3) 62.7 2 (1) chrUn 18 (12)

Genomic positions (in Mb) and copy number of α-gliadin genes that mapped within chromosome 6A, 6B, or 6D of each accession were assigned to Gli-A2, Gli-B2, and Gli-
D2, respectively. Within LongReach Lancer and Chinese Spring, copies that mapped to chrUn were assigned to Gli-D2. *Genomic positions (Mb) in the pseudomolecules
of the corresponding chromosomes. **The number of intact genes encoded in this region is shown in parentheses.

of each model. The different coverage seen among copies,
including those in close proximity, hinted at potential collapses of
paralogous copies into a single gene (Supplementary Figure 4B)
or the separate assembly of allelic heterozygous copies. To
address this possibility, we compared the coverage of the ONT
alignments for each α-gliadin gene in the assembly to the median
genome-wide gene coverage (32.23 genome equivalents). Of the
34 copies that we manually annotated in CDC Landmark, seven
(20.5%) had a mean coverage that clearly deviated from that
of other copies. As a comparison, the coverage of the three
ADH homoeologs (chosen as a single-copy gene reference) was
well within the genome-wide value (Supplementary Table 1).
While the three α-gliadin copies at high coverage likely represent
collapsed paralogs, the four genes at lower coverage may be
haplotype-specific assemblies of heterozygous allelic copies. The
long-read data suggested that the assembled α-gliadin sequences
were correctly identified, although the exact copy number of
∼20% of them may be different.

The number of assembled α-gliadin genes within each Gli-2
locus is reported in Table 1. While most accessions possessed
approximately 11 α-gliadin copies in Gli-A2, the accessions
ArinaLrFor, Norin 61, SY Mattis, and PI190962 had two to three
times as many copies (Table 1). We identified 13–17 copies in
Gli-B2 in most accessions, while ArinaLrFor, Julius, SY Mattis
and the European spelt PI190962 had only half the number of
copies compared to the other accessions (Table 1). For Gli-D2,
there were approximately 10 copies in most accessions (Table 1).
An extremely high or low copy number for Gli-B2 and Gli-
D2 in Jagger, respectively, was possibly an assembly error, as
described above. Subsequent analyses in this paper will use
the assignment to a particular Gli-2 locus based on previously
published assemblies for consistency.

Phylogenetic Analysis of α-Gliadin
Copies
We then assessed the relationship between all α-gliadin copies
identified in the 11 accessions using phylogenetic analysis.
According to the clustering pattern, α-gliadin copies were
classified into three main clades named 1, 2, and 3 (Figure 1).
Clades 1 and 3 showed a compact structure and included copies
mostly from Gli-A2 to Gli-D2, respectively. In Gli-D2, unlike
other subgenome loci, there was little difference in copy number
between accessions and the genetic distances between branches
were shorter. Limited allelic diversity at the Gli-D2 locus is
consistent with the lower diversity of the coding sequences in
the D subgenome (International Wheat Genome Sequencing
Consortium (IWGSC), 2014; Jordan et al., 2015; Walkowiak et al.,
2020). Clade 2 mostly contained copies from Gli-B2 but also
included sub-clades of Gli-A2 and Gli-D2, although with weak
branch support (Figure 1). As mentioned above, we found 2
subloci in Gli-B2, i.e., Gli-B2-1 and Gli-B2-2 (Table 1). In the
phylogenetic tree (Figure 1), the two gliadin sequences encoded
in Gli-B2-2 formed subclades distinct from other sequences in
Gli-B2-1, indicating that the split of Gli-B2 was shared among
all wheat accessions and that the genes in the two subloci
experienced different histories. These data further support the
bipartite structure of Gli-B2.

The α-gliadin copies that mapped to Jagger Gli-B2-3 clustered
in clade 3, which is composed of Gli-D2 copies (Figure 1,
blue arrows). This is consistent with the possible misassembly
from Gli-D2 to the end of chromosome 6BL in this cultivar
(see also the previous section; Supplementary Figure 2). If
we reassign these sequences as a part of Gli-D2, the copy
numbers of Gli-B2 and Gli-D2 in Jagger are closer to the
average copy number found within the other accessions. In the
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FIGURE 1 | Phylogenetic relationship of α-gliadin copies in 11 wheat accessions, including spelt. The 429 α-gliadin copies showed clustering based on subgenome
assignment. The evolutionary tree is largely divided into three clades. Each subclade is indicated by the arcs and colored according to the corresponding Gli-2 loci.
Numbers at branch splits are bootstrap percentages. Copies assigned to loci to which they do not cluster are indicated by arrows: Gli-B2-3 in Jagger are in blue,
and Gli-D2 in CS and LongReach Lancer are in orange. Spelt copies are highlighted in light purple. The red curve in clade 3 highlights the seven sequences
containing the immunotoxic 33-mer.

case of LongReach Lancer and CS, we assigned all α-gliadin
copies in chrUn as copies of Gli-D2 following the suggestion
of Juhász et al. (2018). However, we found that several copies
clustered with those assigned to Gli-A2 or Gli-B2 in the other
accessions (Figure 1, orange arrows). Despite these potential
misclassifications, we were able to show that there were clear
variations among accessions.

Among the accessions with the largest differences in copy
numbers, we observed distinct clustering patterns. Branches from
accessions with the highest copy number for Gli-A2, such as
ArinaLrFor, Norin 61, SY Mattis and PI190962, were clearly
separated from the branches of the other seven accessions.
Similarly, we found distinct clusters containing copies of Gli-
B2-1 from ArinaLrFor, Julius, and SY Mattis. These three
accessions, in addition to PI190962, contained the lowest copy
number within this locus. These examples highlight potential
differences in evolutionary and/or breeding history between

accessions and that the gene duplications or losses in some
cultivars did not originate independently but were likely from a
common ancestor.

Focusing on the spelt wheat, PI190962, we observed no clear
association with the other accessions for Gli-A2 and Gli-B2-
1. Rather, most of the copies in PI190962 formed their own
branches or small clusters. This was not the case for Gli-D2,
where the PI190962 copies were positioned on the same branches
as those for other bread wheats. Interestingly, the α-gliadin
copies in Gli-B2-2 in PI190962 also clustered with those of
the other accessions (Figure 1, purple highlight). The spelt
accession, PI190962, used in this study is a Central European
spelt, which has been suggested to have originated from the
introgression of a hulled tetraploid emmer wheat into bread
wheat during the migration of bread wheat from the Fertile
Crescent to Europe. Therefore, the A and B subgenomes between
bread wheat and European spelt had higher sequence divergence,
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FIGURE 2 | Celiac disease (CD) epitope quantification within α-gliadin copies. The frequency of canonical CD epitopes varies between accessions and
homoeologous chromosomes.

while the D subgenome showed greater sequence similarity
(Blatter et al., 2004; Dvorak et al., 2012). Our observation of the
separation of α-gliadin sequences in PI190962 from those of other
bread wheats in Gli-A2 and Gli-B2-1 supports that this Central
European spelt accession had an introgressed origin with a
tetraploid emmer wheat, which was recently shown to be distinct
from the origins of Iberian spelt (Abrouk et al., 2021). This result
also indicates that the introgressed loci from chromosome 6B of
emmer wheat may be confined to the region encoding Gli-B2-
1, further supporting a different evolutionary history for the two
Gli-B2 loci identified in this study.

Celiac Disease Epitope Copy Number
and Positive Selection in α-Gliadins
Specific epitopes found in α-gliadins can induce reactions in
patients with CD and gluten intolerance. Therefore, the search
for new alleles and/or copy number variations that may cause
weaker or no reaction is beneficial in breeding programs. Among
the amino acid sequences produced by α-gliadin genes from the
11 wheat accessions, we found polymorphic sites within three
major immunogenic regions, p31-43, the 33-mer, and the DQ2.5-
glia-α3 peptide, using the established nomenclature (Sollid et al.,
2012; Ozuna et al., 2015). The presence of epitope sequences

showed a subgenome-specific pattern within the 11 accessions
(Figure 2), and the count of CD epitopes in each accession
mirrored the total α-gliadin copy number present in each locus
(Table 1). Gli-A2 contained mostly DQ2.5-glia-α1b, DQ2.5-glia-
α3 and p31-43-LG epitopes. Variants of the latter two epitopes
were also present, but at low frequency, in four accessions. The B
subgenome encoded the fewest epitopes, the highest proportion
of which were p31-43-PG. Among all accessions, the largest
variety of CD epitopes was present in Gli-D2 and included several
that overlapped in a single gene copy. The toxic 33-mer sequence
that contains six epitopes (33-mer 1.3-6) was found in the Gli-
D2 sequence of 5 accessions, including once in PI190962 and
twice each in CS and LongReach Lancer (Figure 1, red curve and
Figure 2).

In general, a single known epitope sequence was not found
in the genes of all three subgenomes and sequences with
multiple overlapping epitopes were restricted to Gli-D2. For
example, DQ2.5glia-α1a was present in both Gli-A2 and Gli-
D2. The sequence encoding both DQ2.5glia-α1a and DQ2.5glia-
α2 (PFPQPQLPYPQ) was found only in Gli-D2 due to a P
to S substitution (PFPQPQLPYSQ) in Gli-A2. No DQ2.5-glia-
α-type epitopes were present in Gli-B2, except for the potential
misassembly or translocation of regions from chromosomes 6D
to 6B in Jagger. The patterns we observed reflected those of
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FIGURE 3 | Sites under positive selection in α-gliadin. Amino acids under selection were detected by estimating the ratio of non-synonymous (dN) to synonymous
substitutions (dS) in each codon in the α-gliadin alignment for each subgenome. The panels show the Bayesian posterior probability of an amino acid site being
under positive selection for the gliadin genes of each subgenome separately and the alignment of all three together (ABD). Highlighted in blue are the sites with a
posterior probability > 95%. The different conserved domains (from Noma et al., 2016) are marked at the top of the panels. Sites that were difficult to align in the
polyglutamine domains are excluded.

previous studies reporting the presence of specific epitopes in
the subgenomes of hexaploid wheat (van Herpen et al., 2006;
Salentijn et al., 2009; Sollid et al., 2012; Ozuna et al., 2015; Noma
et al., 2016; Juhász et al., 2018).

Global prevalence of CD has increased (Singh et al., 2018)
and this has been attributed, by some, to modern breeding
practices. Due to its hybridization history, spelt wheats contain
different gliadin and glutenin contents and has been subject
to less intensive selection than modern bread wheats (Dubois
et al., 2016; Escarnot et al., 2018), prompting the idea it could

be less reactive for consumers. We observed that the numbers
and distribution patterns of the immunogenic epitopes in the
particular spelt accession, PI190962, were similar to those of
other bread wheat accessions (Figure 2), including one copy
of the 33-mer peptide that was identified in Gli-D2. Although
the study of Asian and other spelts (Blatter et al., 2004; Dvorak
et al., 2012) would be necessary to draw conclusions about spelt
diversity, the data from this single accession of spelt did not
support the claim that spelt (as a species) could produce weaker
reactions in people with CD, in agreement with previous genetic
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studies (Ozuna et al., 2015; Dubois et al., 2016; Ruiz-Carnicer
et al., 2019). Recent studies investigating overall protein and
gluten content of both modern and old hexaploid wheat as
well as “ancient” varieties including spelt, emmer, and einkorn
showed no conclusive role of modern breeding techniques in the
increased prevalence of CD. Rather, they exemplified the high
variability of gluten content between all varieties, new and old,
and reiterate the importance of environmental factors in overall
protein content of wheat and its relatives (Escarnot et al., 2018;
Geisslitz et al., 2019; Call et al., 2020; Pronin et al., 2021). Our
results on the genetic variability are in line with these protein-
based studies and, taken together, show the tools to identify low
immunoreactive varieties are well developed. These studies not
only proposed suitable varieties for further breeding already but
also motivate a more comprehensive characterization of wheat
and its relatives to tap into existing variability for breeding
(Shewry, 2018).

We used a method to identify selection on amino acid-
changing substitutions (PAML; Yang, 2007). This method
estimates the ratio of amino-acid replacement mutations (non-
synonymous substitutions, dN) compared with synonymous
substitutions (dS). When the dN:dS ratio is greater than 1,
it indicates positive or diversifying selection. Many positions
showed a posterior probability higher than 0.75. Among them,
in Gli-B2, we found two codon positions that were above the 95%
significance level: one in unique domain I and another in unique
domain II (Figure 3). When all Gli-2 loci were analyzed together,
the position in unique domain I remained significant (Figure 3
and Supplementary Table 2). The other amino acid position that
was significant in Gli-B2 domain II was just below the threshold
when A, B and D were analyzed together (Figure 3).

DISCUSSION

The importance of bread wheat in human nutrition and its role
in disease warrant the characterization of genetic and structural
variation within the gene family encoding gliadin, which forms
the gluten protein structure together with glutenin. However,
this research has been challenging due to the complexity of the
loci caused by tandem and homoeologous duplications. Here,
we characterized the diversity of α-gliadin gene copies and their
organization within Gli-2 loci in chromosome-scale assemblies of
11 globally distributed bread and spelt wheat accessions. Long-
read data supported that the assembled gliadin coding regions
were correct, and 80% of them were assembled as a single
copy with high confidence. The remaining 20% may possibly be
collapsed, highly similar paralogs or independently assembled
alleles of a gene copy. Unexpectedly, we found a bipartite
structure of the Gli-B2 loci in all assemblies, which was supported
by Hi-C data and evolutionarily supported by phylogenetic
analysis. This suggests that further expansion of the variation at
the gliadin locus through chromosomal recombination using the
segregation of these subloci may be applicable for future wheat
breeding. Using the PAML method, we detected amino acid
positions that were under diversifying selection, suggesting that
polymorphisms at these positions may be relevant for functional

differences, such as those involved in interactions with glutenins
(Li et al., 2014). This warrants further functional validation via
amino acid substitution experiments.

Previous reports describe the subgenome specificity of
sequences with CD epitopes, and those that cause the strongest
immune cell reactions occur mostly in the A and D subgenomes
and their respective progenitors. On the other hand, the wheat
B subgenome, barley and several other Triticeae species contain
epitopes that produce relatively weak responses from their
α-gliadin and related proteins (van Herpen et al., 2006; Juhász
et al., 2018). Our results not only reflect this subgenome
specificity but also show that epitopes causing gluten-related
reactions are unevenly distributed among accessions covering
a wide range of wheat diversity (Walkowiak et al., 2020). The
D subgenome is the only identified source of the toxic 33-mer
epitope within bread wheat, and its presence has been detected
at low frequency in the germplasm of the D progenitor Aegilops
tauschii (Schaart et al., 2021). Current efforts to incorporate this
knowledge into breeding safer varieties include the generation
of synthetics and Gli-D2 deletion lines (Camerlengo et al., 2017;
Li et al., 2018), the development of probes to quickly confirm
the presence of reactive epitopes (Dubois et al., 2017), and the
genome-editing to reduce the immunotoxic 33-mer (Sánchez-
León et al., 2018). Our study can inform these efforts. Our
results show the reduced frequency of reactive epitopes in some
accessions but also show that reactive epitopes are present in
spelt, which is consistent with a previous study (Escarnot et al.,
2018), indicating that detailed cultivar-specific analysis is needed.
While the immunogenic effects of many of the polymorphic
epitopes have not been directly tested, our main findings indicate
that resources for breeding less reactive wheat are already present
in elite germplasm.
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Supplementary Figure 1 | Large-scale chromosome organization around the
Gli-B2 loci in 11 accessions. Hi-C contact matrices of chromosome 6B at
0–100 Mb show a strong signal on the diagonal and a relatively even gradient

perpendicular to the diagonal, indicating that the large-scale structure of
assemblies is correct. Dashed lines represent the position of each sub locus
identified in Gli-B2.

Supplementary Figure 2 | Interchromosomal interactions between
chromosomes 6B and 6D for each accession. Interactions between these
chromosomes are weak apart from small regions that show dark vertical lines
(e.g., in Jagger, Landmark, Mace), representing evidence of possible misassembly.

Supplementary Figure 3 | Alignment of LongReach Lancer and CDC Landmark
chromosome 6B to that of Chinese Spring (CS). In the region from 0 to 100 Mb on
6B, LongReach Lancer may have inversions compared with CS. On the other
hand, though interrupted by assembly gaps and indels, the region is assembled in
CDC Landmark with the same orientation as that in CS.

Supplementary Figure 4 | Validation of the Gli-2 loci with long-read data. Oxford
Nanopore Technologies long reads of CDC Landmark were aligned to the short
read-based assembly of the same variety (Walkowiak et al., 2020). Alignments at
the Gli-2 loci were inspected for overall structure [(A), Gli-A2a on chr6A
25.7–26.5 Mb] and at the single-gene scale [(B) Gli-B2-1a on chr6B]. Despite the
presence of assembly gaps, the sequence of the coding regions was well
supported by multiple reads.

Supplementary Table 1 | Gene copy name, chromosome with start and stop
position, gene annotation (if available) from Walkowiak et al. (2020), and number of
amino acids (if full length) information for all copies identified within
the 11 accessions.

Supplementary Table 2 | Posterior probabilities and estimated omega (ω) values
for all amino acid sites in gliadin alignments for each subgenome analyzed
separately and together.
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Preharvest sprouting (PHS) significantly reduces grain yield and quality. Identification

of genetic loci for PHS resistance will facilitate breeding sprouting-resistant

wheat cultivars. In this study, we constructed a genetic map comprising 1,702

non-redundant markers in a recombinant inbred line (RIL) population derived from cross

Yangxiaomai/Zhongyou9507 using the wheat 15K single-nucleotide polymorphism

(SNP) assay. Four quantitative trait loci (QTL) for germination index (GI), a major

indicator of PHS, were identified, explaining 4.6–18.5% of the phenotypic variances.

Resistance alleles of Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-7BL were from

Yangxiaomai, and Zhongyou9507 contributed a resistance allele in Qphs.caas-4AL.

No epistatic effects were detected among the QTL, and combined resistance alleles

significantly increased PHS resistance. Sequencing and linkage mapping showed that

Qphs.caas-3AL and Qphs.caas-3DL corresponded to grain color genes Tamyb10-A

and Tamyb10-D, respectively, whereas Qphs.caas-4AL and Qphs.caas-7BL were

probably new QTL for PHS. We further developed cost-effective, high-throughput

kompetitive allele-specific PCR (KASP) markers tightly linked to Qphs.caas-4AL and

Qphs.caas-7BL and validated their association with GI in a test panel of cultivars. The

resistance alleles at the Qphs.caas-4AL and Qphs.caas-7BL loci were present in 72.2

and 16.5% cultivars, respectively, suggesting that the former might be subjected to

positive selection in wheat breeding. The findings provide not only genetic resources for

PHS resistance but also breeding tools for marker-assisted selection.
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INTRODUCTION

Preharvest sprouting (PHS) refers to the germination of
physiologically mature grains in spikes before harvest under
rainy weather or humid environment (Groos et al., 2002). PHS
is a major problem in cereal production and causes losses in
seed vitality, yield, and quality (Xu et al., 2019). Wheat (Triticum
aestivum L.) is one of the most important staple crops. The
average annual loss of wheat caused by PHS exceeds $1 billion
worldwide (Shao et al., 2018). Identification of genetic loci for
PHS should be helpful for breeding resistant wheat cultivars.

Preharvest sprouting is a complex trait influenced by genetic
and environmental factors (Barrero et al., 2015; Wang et al.,
2019). Seed dormancy, an adaptive trait that prevents seeds
from germinating, even under favorable conditions, is a major
genetic factor for PHS (Née et al., 2017). Germination index
(GI) is a common parameter to quantify genetic mechanisms
underlying seed dormancy and PHS (Barrero et al., 2015). Some
non-dormancy factors, such as spike erectness, spike and awn
structure, and openness of florets, are also associated with PHS
(Zhu et al., 2019).

Molecular markers have an important role in determining the
genetic basis of agronomic traits in wheat (Collard and Mackill,
2008). Markers tightly linked with genes for PHS resistance
can be used in marker-assisted selection (MAS). Using diverse
mapping populations, many quantitative trait loci (QTL) for PHS
resistance or seed dormancy on all 21 wheat chromosomes have
been reported (Cao et al., 2016; Lin et al., 2016; Yang et al.,
2019; Zhu et al., 2019; Tai et al., 2021). Among them, QTL on
group 3 chromosomes and chromosome 4AL have major effects
on PHS (Mori et al., 2005; Chen et al., 2008; Ogbonnaya et al.,
2008; Shao et al., 2018; Vetch et al., 2019). A few genes for PHS
in wheat were also isolated by map-based cloning. For example,
TaPHS1, anMFT homolog, is the causal gene in Qphs.pseru-3AS
(Liu et al., 2013; Jiang et al., 2018; Wang et al., 2020); Tamyb10
genes at the R loci on chromosomes 3A, 3B, and 3D control
grain coat color by regulating the accumulation of anthocyanins
(Himi and Noda, 2005; Wang et al., 2016; Mares and Himi,
2021); Mitogen-activated protein kinase kinase 3 (MKK3) is the
causal gene of Phs1-4AL for seed dormancy in wheat (Torada
et al., 2016; Martinez et al., 2020); and tandem duplicated
plasma membrane protein genes (PM19) have been validated
as candidates for a major dormancy QTL on chromosome 4AL
through transcriptome analysis (Barrero et al., 2015; Shorinola
et al., 2016). Homology-based cloning approaches were also used
to identify PHS-related genes, such as TaSdr (Zhang et al., 2014,
2017), Vp-1 (McCarty et al., 1991; Yang et al., 2007, 2013; Feng
et al., 2017; Zhou et al., 2017),Qsd1 (Sato et al., 2016; Onishi et al.,
2017), andDOG1 (Ashikawa et al., 2010; Nakabayashi et al., 2012;
Rikiishi and Maekawa, 2014; Nishimura et al., 2018).

Yangxiaomai, a red-seeded Chinese landrace, has a high
level of PHS resistance, whereas white-seeded Zhongyou9507
with good processing quality is susceptible to PHS. The
objectives of this study are to mine QTL for PHS resistance
in a recombinant inbred line (RIL) population derived from
a Yangxiaomai/Zhongyou9507 cross and to develop breeding-
friendly markers for selection of PHS-resistant varieties.

MATERIALS AND METHODS

Plant Materials and Field Trials
The parents Yangxiaomai and Zhongyou9507 and 194 F6 RILs
were planted at Beijing and Shijiazhuang (Hebei Province) in the
2011–2012 cropping season and at Gaoyi (Hebei Province) and
Xinxiang (Henan Province) in the 2019–2020 cropping season.
Field experiments were arranged in randomized complete blocks
with three replications. Each plot was 1m single row in which
30 seeds were sown. A panel of 101 wheat cultivars (Zhang
et al., 2017) was used to determine the genetic effects of the QTL
of interest.

Evaluation of PHS Resistance
The GI was used as an indicator of PHS. Five spikes were
harvested from each plot at physiological maturity characterized
by loss of green color from the spike (Liu et al., 2013). The
harvested spikes were air-dried for 2 days at room temperature,
hand-threshed to avoid damage to embryos, and then stored in a
refrigerator at −20◦C to maintain dormancy until phenotyping
(Zhang et al., 2017). Seeds were sterilized with 1% (V/V)
of NaClO for 20min, followed by three rinses with sterile
water. Notably, 100 healthy seeds of each line were incubated
in a 90mm Petri dish containing a filter paper and 8ml of
distilled water at 20◦C for 7 days. Germinated seeds were
counted every day and removed. GI was calculated according
to the following formula (Walker-Simmons, 1988): GI =
7 × n1 + 6 × n2 + 5 × n3 + 4 × n4 +...+ 1 × n7

7×total grains ×100, where n1, n2, . . . ,

n7 are the number of seeds germinated on the first, second, and
subsequent days until the seventh day.

Statistical Analyses
Phenotypic correlation coefficients among environments, the
best linear unbiased prediction (BLUP) values, ANOVA, and
t-tests were carried out using SAS 9.4 software (SAS Institute
Inc., Cary, NC, USA). Broad-sense heritability (H2) for PHS
was calculated using the following formula: H2 = σ

2
g /(σ

2
g +

σ
2
ge/e+ σ

2
ε
/re), where σ

2
g , σ

2
ge, and σ

2
ε

are the variances of
genotype, genotype-environment interaction, and residual error,
respectively, r is the number of replicates, and e is the number of
environments (Nyquist and Baker, 1991).

Genotyping and Linkage Map Construction
The 194 RILs and parents were genotyped with the wheat 15K
single-nucleotide polymorphism (SNP) chips containing 13,947
SNP markers at China Golden Marker (Beijing) Biotech Co., Ltd.
(http://www.cgmb.com.cn/). To reduce the impact of low-quality
SNPs onmapping results, SNP data were processed as follows: (1)
Heterozygous loci were treated asmissing data, and (2) SNPs with
low minor allele frequencies (<0.3) and missing values (>0.2)
were excluded using Tassel version 5.0 (Bradbury et al., 2007).
Redundant markers were eliminated by the BIN function in QTL
IciMapping version 4.2 (Meng et al., 2015). Joinmap version
4.0 was used for linkage map construction (Stam, 1993), and
genetic distances between markers were calculated according to
the Kosambi mapping function (Kosambi, 1943).

Frontiers in Plant Science | www.frontiersin.org 2 October 2021 | Volume 12 | Article 749206148

http://www.cgmb.com.cn/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. Mapping of Wheat Preharvest Sprouting

QTL Analysis
Composite interval mapping (CIM) was used to search QTL
of phenotypic traits from each environment and BLUP value
by Windows QTL Cartographer version 2.5 (Zeng, 1994; Wang
et al., 2012). Significant QTLs were identified if the logarithm of
odds (LOD) values weremore than the threshold of 2.5 (Yan et al.,
2006). According to International Wheat Genome Sequencing
Consortium (IWGSC) RefSeq 1.0 [(InternationalWheat Genome
Sequencing Consortium (IWGSC), 2018) http://plants.ensembl.
org/index.html], the physical positions of QTL were figured out
by the closely linked flanking markers. The genetic maps of QTL
were drawn using MapChart version 2.3 (Voorrips, 2002). The
analysis of epistatic effects among the QTL was performed using
IciMapping version 4.2.

KASP Marker Development and Validation
Kompetitive allele-specific PCR primers
(Supplementary Table 5) were designed using PolyMarker
(Ramirez-Gonzalez et al., 2015). Primer mixture was prepared
with 46 µl of H2O, 30 µl of common primer (100µM), and
12 µl of each tailed primer (100µM). PCR was performed in a
384-well plate, and each reaction of ∼3 µl comprising 20–30 ng
of genomic DNA, 1.5 µl of 2× KASP master mix (V4.0, LGC
Genomics, Hoddesdon, UK), 0.0336 µl of primer mixture, and
1.5 µl of H2O. Thermal cycling profile of PCR consisted of hot
start at 95◦C for 15min, 10 touchdown cycles (95◦C for 20 s and
touchdown at 65 and −1◦C per cycle for 25 s), and followed
by 35 additional cycles (95◦C for 20 s and 57◦C for 60 s). The
384-well optically clear plates were read on PHERAstarplus SNP
(BMG Labtech GmbH, Ortenberg, Germany), and data analysis
was carried out using KlusterCaller (LGC, Hoddesdon, UK).

RESULTS

Phenotypic Evaluation
The parents Yangxiaomai and Zhongyou9507 and RILs were
evaluated for PHS resistance in four environments. The
phenotypes of seed germination in parents Yangxiaomai and
Zhongyou9507 were depicted in Supplementary Figure 1.
Yangxiaomai had a significantly lower GI (4.3%)
than Zhongyou9507 (72.3%) across environments
(Supplementary Figure 2). GI for the RIL population
showed continuous variation, indicating polygenic inheritance
(Supplementary Figure 2). The GI frequencies were skewed
toward resistance, suggesting the presence of major genetic
loci. GI was significantly correlated among environments with
correlation coefficients of 0.53–0.73 (Supplementary Table 1).
ANOVA indicated that genotypes and environments, as
well as their interactions, had significant effects on GI
(Supplementary Table 2). The broad-sense heritability of
GI was high (0.88) across environments, denoting that GI
variation was mainly determined by genotypes.

Linkage Map Construction and QTL

Analysis
The RIL population was genotyped by 15K SNP chips,
and 4,515 polymorphic markers were used to construct a

genetic map with 1,702 bin markers, spanning 2,630.9 cM
on 21 wheat chromosomes (Supplementary Table 3 and
Supplementary Figure 3). The average linkage group
was 125.3 cM with an average marker interval of 1.6 cM.
Overall, 1,743 (38.6%), 1,750 (38.8%), and 1,022 (22.6%)
markers were mapped to the A, B, and D sub-genomes with
average marker densities of 1.5, 1.2, and 2.2 cM, respectively
(Supplementary Table 3 and Supplementary Figure 3).

Four QTLs for PHS were detected by CIM on the
linkage groups 3AL (Qphs.caas-3AL), 3DL (Qphs.caas-3DL),
4AL (Qphs.caas-4AL), and 7BL (Qphs.caas-7BL) (Table 1 and
Figure 1). Alleles for resistance to PHS on chromosome arms
3AL, 3DL, and 7BL loci were from Yangxiaomai, whereas the
resistance allele on 4AL was contributed by Zhongyou9507.
Qphs.caas-3DL was identified across all four environments and
explained 8.9–18.5% of the phenotypic variances; Qphs.caas-3AL
and Qphs.caas-4AL were detected in three of four environments,
explaining 10.5–13.5 and 4.6–10.6% of the phenotypic variances,
respectively; and Qphs.caas-7BL accounting for 5.0–6.7% of the
phenotypic variances was detected in two environments.

Combinational Effects of the Stable QTL

for PHS Resistance
Quantitative trait loci for a given trait detected in more than
one-half of tested environments can be considered stable genetic
loci (Cao et al., 2020). The QTL Qphs.caas-3AL, Qphs.caas-
3DL, and Qphs.caas-4AL fulfilled that criterion. To confirm
their genetic effects on PHS, the population was classified into
eight groups based on the closest flanking SNPs for each QTL
(Supplementary Table 4). Qphs.caas-3AL, Qphs.caas-3DL, and
Qphs.caas-4AL were temporarily designated as the loci 1, 2,
and 3, respectively, and R and S represented resistance and
susceptible alleles, respectively. The GI values of eight groups
(i.e., 1R2R3R, 1R2R3S, 1R2S3R, 1S2R3R, 1R2S3S, 1S2R3S, 1S2S3R,
and 1S2S3S) were compared across four environments (Figure 2
and Supplementary Table 4).

The eight groups were ranked according to the GI in four
environments and BLUP values. In general, more resistance
alleles conferred lower GI, demonstrating cumulative effects
of resistance alleles at the three loci (Figure 2). RILs with
genotype 1R2R3R had the lowest GI, and those with 1S2S3S

exhibited the highest GI across all environments. However, the
GI of RILs with 1R2R3S were higher than those with 1S2R3S

in Beijing 2012, suggesting that the genetic effect of locus 1,
Qphs.caas-3AL, was significantly affected by the environment
in some cases. No epistatic effects were detected among the
QTL. Regression analysis also showed that the lines carrying
more resistance alleles had higher PHS resistance in individual
environments and the BLUP data (Supplementary Figure 4).
Thus, the pyramiding of resistance alleles was effective in
improving PHS resistance.

Relationship of Qphs.caas-3AL and

Qphs.caas-3DL With Tamyb10
According to IWGSC RefSeq 1.0, Qphs.caas-3AL and Qphs.caas-
3DL were delimited in the intervals of 700.4–709.2Mb and
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TABLE 1 | QTL for GI detected in the Yangxiaomai/Zhongyou9507 RIL population.

QTL Environment Flanking marker Physical interval (Mb) LODa PVE (%)b Addc

Qphs.caas-3AL 2020 XX AX-109932282-AX-109340230 700.4–702.5 6.3 10.5 4.7

2020GY AX-108762191-AX-109466225 703.9–709.2 7.5 13.5 6.7

2012 SJZ AX-109932282-AX-109340230 700.4–702.5 6.5 11.2 5.4

BLUP AX-109932282-AX-109340230 700.4–702.5 6.8 10.6 3.6

Qphs.caas-3DL 2020 XX AX-110772653-AX-110398452 570.2–575.1 7.1 12.2 5.1

2020GY AX-110772653-AX-110398452 570.2–575.1 10.8 18.5 7.9

2012 SJZ AX-110772653-AX-110398452 570.2–575.1 7.3 13.4 6.1

2012 BJ AX-110772653-AX-110398452 570.2–575.1 4.9 8.9 6.6

BLUP AX-110772653-AX-110398452 570.2–575.1 8.7 14.4 4.2

Qphs.caas-4AL 2020 XX AX-89597750-AX- 111624503 489.1–532.2 3.3 5.2 −3.3

2020GY AX-89597750-AX- 111624503 489.1–532.2 3.0 4.6 −3.8

2012 BJ AX-89597750-AX- 111624503 489.1–532.2 6.1 10.6 −7.1

BLUP AX-89597750-AX- 111624503 489.1–532.2 5.4 8.2 −3.2

Qphs.caas-7BL 2020GY AX-110009756-AX-110585364 522.6–529.7 3.7 5.7 4.3

2012 BJ AX-110009756-AX-110585364 522.6–529.7 3.5 6.1 5.4

BLUP AX-110009756-AX-110585364 522.6–529.7 3.2 5.0 2.4

aA LOD threshold of 2.5 was used for the declaration of QTL.
bPercentage of phenotypic variances explained by QTL.
cPositive and negative additive effects indicated increasing effects from Yangxiaomai and Zhongyou9507, respectively.

QTL, quantitative trait loci; GI, germination index; RIL, recombinant inbred line; XX, Xinxiang; GY, Gaoyi; SJZ, Shijiazhuang; BJ, Beijing; LOD, logarithm of odds.

FIGURE 1 | Genetic mapping of Qphs.caas-3AL, Qphs.caas-3DL, Qphs.caas-4AL, and Qphs.caas-7BL in the Yangxiaomai/Zhongyou9507 recombinant inbred line

(RIL) population. Target regions of the quantitative trait loci (QTL) are indicated as red bars; gene-specific markers are shown in blue script; and flanking markers are

shown in bold.
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FIGURE 2 | Distributions of germination index (GI) among eight genotypic combinations of Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-4AL grown in four

environments. The x-axis shows the genotypic groups, and the y-axis indicates GI (%). The numbers 1, 2, and 3 represent Qphs.caas-3AL, Qphs.caas-3DL, and

Qphs.caas-4AL, respectively; the superscript letters R and S represent resistance and susceptible alleles, respectively. Genotypes with different letters indicate

significant differences (P < 0.05) in GI, and those with the same letters show no significant differences (P > 0.05). Error bar, standard error of each group mean.

570.2–575.1Mb, respectively, based on their flanking markers.
This placed PHS-related genes Tamyb10-A1 (∼703.9Mb)
and Tamyb10-D1 (∼570.8Mb), in the regions of Qphs.caas-
3AL and Qphs.caas-3DL, respectively (Himi et al., 2011).
To confirm the genetic relationship of the two genes with
Qphs.caas-3AL and Qphs.caas-3DL, we re-genotyped the
Yangxiaomai/Zhongyou9507 RIL population using a KASP
marker for Tamyb10-A1 and an STS marker for Tamyb10-D1
(Supplementary Table 5) (Himi et al., 2011; Wang et al.,
2016). In these analyses, Tamyb10-A1 and Tamyb10-D1
were mapped to the genetic regions of Qphs.caas-3AL and
Qphs.caas-3DL, respectively (Figure 1). Thus, Tamyb10-A1 and
Tamyb10-D1 were likely causal genes in Qphs.caas-3AL and
Qphs.caas-3DL, respectively.

Relationship Between Qphs.caas-4AL and

Reported PHS Resistance Genes on

Chromosome 4AL
TaMKK3-A was reported as a major gene controlling seed
dormancy on chromosome 4AL (Torada et al., 2016). Based
on the IWGSC RefSeq 1.0, TaMKK3-A is located at the
site of ∼609.1Mb (GenBank accession number: LC091368.1)
(Liton et al., 2021). Qphs.caas-4AL spans the interval of 489.1–
532.2Mb according to flanking markers AX-89597750 and AX-
111624503, suggesting that TaMKK3-A is not in the target
region of Qphs.caas-4AL. We sequenced the TaMKK3-A gene
in Yangxiaomai and Zhongyou9507 to confirm the relationship
between TaMKK3-A and Qphs.caas-4AL. Sequence analysis
showed that TaMKK3-A had no polymorphic sites between
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TABLE 2 | The effects of Qphs.caas-4AL and Qphs.caas-7BL on GI in a natural population.

QTL Genotype Number GI (%) P-value

Qphs.caas-4AL AA 70 31.82 0.03*

BB 27 40.95

Qphs.caas-7BL AA 81 36.73 0.008**

BB 16 23.47

*P < 0.05; **P < 0.01.

The wheat lines in the natural population are listed in Supplementary Table 8.

GI, germination index; QTL, quantitative trait loci; AA, the allele from Zhongyou9507; BB, the allele fromYangxiaomai.

two parents in all exons, but three SNPs were detected in
the introns (Supplementary Figure 5). A KASP marker KASP-
6464 was developed for TaMKK3-A. Linkage mapping showed
that KASP-6464 was out of the target region of Qphs.caas-4AL
(Figure 1). Association analysis also indicated that TaMKK3-
A had no significant effect on GI in three environments
(Supplementary Table 6). Therefore, TaMKK3-A was not a
candidate gene in Qphs.caas-4AL.

PM19-A1 is a second PHS-related gene in chromosome
4AL. However, it is positioned at ∼604.1Mb, which is far
from Qphs.caas-4AL (489.1–532.2Mb) according to the IWGSC
RefSeq 1.0. We also compared the sequences of PM19-
A1 between Yangxiaomai and Zhongyou9507 and found no
polymorphic sites in the open reading frame and the previously
reported 18 bp indel in the promoter (Barrero et al., 2015;
Shorinola et al., 2016, 2017). Therefore, PM19-A1 was not the
causal gene in Qphs.caas-4AL.

No genes related to PHS were isolated on 7B so far, so
no candidate genes could be used to perform sequencing
and genetic mapping analyses for Qphs.caas-7BL. Qphs.caas-
7BL is defined in the interval of 522.6–529.7Mb based on its
flanking markers according to IWGSC RefSeq 1.0. QTL related
to PHS, which have been reported on 7B, were summarized
in Supplementary Table 7. The location of Qphs.caas-7BL is
different from those of the previously reported QTL based on
their flanking markers.

Genetic Effects of Qphs.caas-4AL and

Qphs.caas-7BL on GI in a Panel of Cultivars
The causal genes of Qphs.caas-4AL and Qphs.caas-7BL remained
unknown although they could explain 4.6–10.6% of the
phenotypic variances. To further decipher the importance of
Qphs.caas-4AL andQphs.caas-7BL, we attempted to identify their
genetic effects in a panel of cultivars. An SNP AX-89597750
closely linked with Qphs.caas-4AL was converted to a KASP
marker. The KASP marker was mapped at the position of
AX-89597750, indicating that it could act as a closely linked
marker of Qphs.caas-4AL. We detected the genetic effect of
Qphs.caas-4AL onGI using the KASPmarker in the cultivar panel
(Supplementary Table 8). Genotypes with the resistance allele
had significantly lower GI than those with the susceptible allele
(Table 2). Moreover, a majority of genotypes (72.2%) possessed
the resistance allele of Qphs.caas-4AL, suggesting that it had

been subjected to selection in wheat breeding (Table 2). Another
KASP marker was developed based on SNP AX-9496498 closely
linked to Qphs.caas-7BL. The KASP marker was mapped to the
target region of Qphs.caas-7BL in the mapping population. Like
Qphs.caas-4AL, Qphs.caas-7BL was also significantly associated
with PHS resistance (Table 2), but only 16.5% of cultivars carried
the resistance allele.

DISCUSSION

Grain Color Is a Major Factor Modulating

PHS
The red-grain Yangxiaomai and white-grain Zhongyou9507 have
a relatively low and higher GI, respectively. In this study, we
confirmed that Qphs.caas-3AL and Qphs.caas-3DL co-localized
with Tamyb10-A1 and Tamyb10-D1, respectively, at the R loci
for grain color (Himi et al., 2011; Lang et al., 2021; Mares and
Himi, 2021). Wang et al. (2016) also observed that Tamyb10-
D1 was significantly (P < 0.001) associated with GI in a
natural population. Thus, grain color is probably regulated by
Tamyb10 alleles in Qphs.caas-3AL and Qphs.caas-3DL, which
also cause significant differences in GI between Yangxiaomai
and Zhongyou9507. Pleiotropic QTL for grain color and PHS
resistance on chromosomes 3AL and 3DL were identified in a
genome-wide association study conducted by Lin et al. (2016).
These findings also confirm that grain color has a great effect on
PHS resistance in wheat breeding.

Qphs.caas-4AL Has Potential Value for

Wheat Breeding
Qphs.caas-4AL, as a stable QTL, accounted for 4.6–10.6% of the
phenotypic variances. Although quite a few QTL for wheat PHS
resistance on chromosome 4A have also been reported (Kato
et al., 2001; Mares et al., 2005; Torada et al., 2005; Imtiaz et al.,
2008; Rasul et al., 2009; Singh et al., 2010; Kulwal et al., 2012;
Cabral et al., 2014; Jiang et al., 2015; Cao et al., 2016; Zhou
et al., 2017; Martinez et al., 2018; Zuo et al., 2019; Liton et al.,
2021), Qphs.caas-4AL appears to be unique based on genetic
mapping and physical locations of the flanking SNPs according to
IWGSC RefSeq 1.0 (Supplementary Table 9). QTL pyramiding
plays an important role in breeding, and resistance allele
combinations of QTL for PHS have been reported previously
(Imtiaz et al., 2008; Shao et al., 2018; Liton et al., 2021). In
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this study, we identified that the RILs combining resistance
alleles in Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-4AL
had the lowest GI (Figure 2). Qphs.caas-4AL also improved
resistance to PHS in the absence of the alleles for red-grain
color (Figure 2 and Supplementary Table 4). This indicated that
Qphs.caas-4AL could function independently of grain color. We
converted an SNP tightly linked to Qphs.caas-4AL into a KASP
marker. Genotyping by the KASP marker showed that most of
the cultivars (72.2%) carried the resistance allele in Qphs.caas-
4AL in the test panel (Table 2), indicating that the resistance
allele of Qphs.caas-4AL might undergo positive selection in
breeding programs.Qphs.caas-4AL is also significantly associated
with GI (Table 2). Thus, the KASP marker will be useful for
MAS to improve PHS tolerance in wheat. Grain color is an
important parameter for wheat appearance quality. Red-grain
wheat usually has high resistance to PHS but is adverse to make
Chinese traditional food, such as steamed bread and noodles
(Fakthongphan et al., 2016; Shao et al., 2018). Thus, Qphs.caas-
4AL is a better choice for improvement of PHS than Qphs.caas-
3AL and Qphs.caas-3DL at least in Chinese wheat breeding.
Overall, these findings indicate that Qphs.caas-4AL is a valuable
genetic locus for PHS in wheat breeding.
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Rye is the only cross-pollinating Triticeae crop species. Knowledge of rye

genes controlling complex-inherited traits is scarce, which, currently, largely disables the

genomics assisted introgression of untapped genetic variation from self-incompatible

germplasm collections in elite inbred lines for hybrid breeding. We report on the first

genome-wide association study (GWAS) in rye based on the phenotypic evaluation

of 526 experimental hybrids for plant height, heading date, grain quality, and yield

in 2 years and up to 19 environments. We established a cross-validated NIRS

calibration model as a fast, effective, and robust analytical method to determine

grain quality parameters. We observed phenotypic plasticity in plant height and tiller

number as a resource use strategy of rye under drought and identified increased

grain arabinoxylan content as a striking phenotype in osmotically stressed rye. We

used DArTseqTM as a genotyping-by-sequencing technology to reduce the complexity

of the rye genome. We established a novel high-density genetic linkage map that

describes the position of almost 19k markers and that allowed us to estimate a

low genome-wide LD based on the assessed genetic diversity in elite germplasm.

We analyzed the relationship between plant height, heading date, agronomic, as

well as grain quality traits, and genotype based on 20k novel single-nucleotide

polymorphism markers. In addition, we integrated the DArTseqTM markers in the

recently established ‘Lo7’ reference genome assembly. We identified cross-validated

SNPs in ‘Lo7’ protein-coding genes associated with all traits studied. These include

associations of the WUSCHEL-related homeobox transcription factor DWT1 and grain

yield, the DELLA protein gene SLR1 and heading date, the Ethylene overproducer

1-like protein gene ETOL1 and thousand-grain weight, protein and starch content,

as well as the Lectin receptor kinase SIT2 and plant height. A Leucine-rich repeat

receptor protein kinase and a Xyloglucan alpha-1,6-xylosyltransferase count among

the cross-validated genes associated with water-extractable arabinoxylan content. This

study demonstrates the power of GWAS, hybrid breeding, and the reference genome
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sequence in rye genetics research to dissect and identify the function of genes shaping

genetic diversity in agronomic and grain quality traits of rye. The described links

between genetic causes and phenotypic variation will accelerate genomics-enabled

rye improvement.

Keywords: phenotyping, drought stress, DNA profiling, SNP, tiller number, SMART breeding, WOX transcription

factor, arabinoxylan (AX)

INTRODUCTION

Rye (Secale cereale L.) is the only allogamous crop in the
Triticeae tribe of the grasses. Natural genetic diversity in
outbreeding rye enabled to achieve a series of technological
advances that ultimately facilitated the establishment of hybrid
breeding (Hackauf et al., 2021), a key technology for increasing
and securing cereal production on finite arable land without
increasing water and fertilizer use (Whitford et al., 2013). Hybrid
breeding resulted in a strong response to the selection of
favorable alleles for grain and quality traits in rye (Laidig et al.,
2017) and contributed to keeping this orphan crop competitive
inmodern agricultural production systems. ‘Petkus’ and ‘Carsten’
represent two major germplasm pools exploited in hybrid rye
breeding (Geiger and Miedaner, 2009). Beyond heterotic groups
and just like in maize (White et al., 2020), the structure of
commercial hybrid rye breeding is characterized by the largely
isolated and unique sub-heterotic patterns of major breeding
programs (Bauer et al., 2017; Vendelbo et al., 2020). As elite
germplasm utilization across programs is impossible, capture
and management of genetic diversity from germplasm resources
are of outstanding importance for the long-term success
of commercial hybrid rye breeding programs. However, the
targeted identification of novel genetic variation in agronomically
important genes, especially superior alleles occurring with low
frequencies in self-incompatible rye germplasm collections, is
currently largely disabled. This accounts for the fact that
comparable progress in gene discovery like in barley (Pasam
et al., 2012; Hill et al., 2021; Li M. et al., 2021) or wheat
(Liu et al., 2017; Gao et al., 2021) has yet not been achieved
in rye. With the recent release of two high-quality genome
assemblies (Li G. et al., 2021; Rabanus-Wallace et al., 2021), rye
has finally reached the genome era, enabling the integration and
advancement of fundamental and applied breeding and research
to understand how the genome builds, maintains, and operates
rye. In order to accelerate the transition from merely phenotypic
to haplotype-based breeding (Bevan et al., 2017; Brinton et al.,
2020) and to substantially increase the efficiency, precision,
and flexibility of rye breeding, further progress in rye genomic
research is necessary to associate genome sequence information
with phenotypes related to rye growth and development. This is
particularly relevant to grain quality parameters, as the versatile
uses of rye in the production of bread or mixed animal feeds
have, so far, been considered to require highly divergent breeding
goals (Kobylyansky et al., 2019). An efficient selection of grain
quality parameters, particularly with respect to the content of
arabinoxylans as the predominant dietary fiber in the rye grain, is
currently a limiting factor in rye breeding.

Grain quality, as well as agronomic important traits
controlling plant height, heading date, thousand-grain weight,
or yield, reveal a continuous phenotypic variation and are
genetically controlled by a network of multiple and interacting
loci (Mackay et al., 2009). In rice, cloning of these quantitative
trait loci (QTL) for grain yield components and other agronomic
important traits (Yonemaru et al., 2010; Yamamoto et al., 2012; Li
et al., 2018) has a significant impact on the genetic improvement
of this important staple food (Xing and Zhang, 2010; Wang and
Li, 2019). In contrast, comprehensive QTL analysis in interpool
rye hybrids with a high heterosis level currently refers to a single
biparental mapping population from the ‘Carsten’ gene pool
crossed to a CMS tester from the ‘Petkus’ gene pool (Hackauf
et al., 2017a; Miedaner et al., 2018). Compared to QTL mapping
with biparental populations, genome-wide association studies
(GWAS) offer a sampling of greater levels of genetic diversity
and higher resolution of QTL positions using already existing
breeding lines and genetic stocks (Jamann et al., 2015). In rye,
GWAS have been reported for the traits leaf rust resistance, pre-
harvest sprouting resistance, and α-amylase activity (Rakoczy-
Trojanowska et al., 2017), Tan spot resistance (Sidhu et al., 2019),
Fusarium head blight resistance (Gaikpa et al., 2020), and stem
rust resistance (Gruner et al., 2021).

Here, we describe the first comprehensive GWAS for plant
architecture, grain quality, and yield in rye. We aimed to (i)
assess the genetic variation for plant height, heading date, tiller
number, grain yield, grain weight, grain protein, and starch, as
well as total and water-extractable arabinoxylan content in rye,
(ii) identify QTL for these traits by GWA mapping and estimate
their effects, (iii) investigate the co-localization between QTL for
grain yield and yield parameters, as well as between grain quality
parameters. Furthermore, we used the recently released ‘Lo7’
genome assembly (Rabanus-Wallace et al., 2021) to describe the
genetic architecture of the assessed traits.

MATERIALS AND METHODS

Plant Materials
The genetic materials analyzed in this study encompass two
data sets of advanced-cycle inbred lines of a commercial hybrid
rye breeding program. The two data sets represented a gametic
sample of both heterotic gene pools and comprised a total of
126 S5-lines of the ‘Petkus’ and 15 restorer synthetics of the
‘Carsten’ gene pool. Male-sterile BC2-analogs of S5-lines from
the ‘Petkus’ pool have been developed by backcrossing into the
CMS-inducing Pampa (P) cytoplasm (Geiger and Schnell, 1970).
We have used the line x tester mating design of Kempthorne
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(1956) to develop two large multiple-hybrid populations using
the male-sterile BC2-analogs as females to be tested and the
restorer synthetics as testers. A total of 298 top cross hybrids
were obtained in the first data set by pollinating 79 BC2-analogs
from the ‘Petkus’ pool with 12 synthetics from the ‘Carsten’
pool. In the second data set, 305 top cross hybrids originated
from 84 BC2-analogs from the ‘Petkus’ pool pollinated by 11
synthetics from the ‘Carsten’ pool. Both data sets were connected
by 77 common experimental hybrids. These plant materials are
proprietary to HYBRO Saatzucht GmbH & Co. KG. The released
hybrid varieties ‘Rasant’, ‘Askari’, ‘Minello’, ‘Brasetto’, ‘Palazzo’,
‘Visello’, as well as ‘SU Mephisto’, ‘Palazzo’, ‘Visello’, ‘Brasetto’,
‘SU Allawi’, and ‘Minello’, were used as checks in 2011 and
2012, respectively.

Phenotypic Data Analyses
Experimental hybrids of data set 1 were evaluated in 2011 at 10
locations, representing target environments of rye cultivation in
Germany and Poland. Soils with different qualities in agricultural
terms enabled to define two locations each at the sites Kleptow
and Wulfsode as measured on a scale of soil value of arable
land (German: Bodenwertzahl), which is determined from soil
sampling data and that ranges from 0 (very low) to 100 (very
high). The soil type at Kleptow is a loam, partly with loess
covering (soil value 60), while Kleptow-Sand is a heavy-to-
clayey loam (soil value 45), just like at Wulfsode (soil value
38). The soil at Wulfsode-Sand is a sandy loam (soil value
25). Thus, the locations comprise (1) Kleptow (KLE) N53.4◦,
E13.9◦, (2) Kleptow-Sand (KLS) N53.4◦, E13.9◦, (3) Wulfsode
(WUL) N53◦, E10.2◦, (4) Wulfsode-Sand (WLS) N53◦, E10.2◦

(5) Cappeln (WES) N52.8◦, E8◦, (6) Bornhof (BOH) N53.5◦,
E12.9◦, (7) Granskevitz (GKV) N54.5◦, E13.2◦, (8) Sulejów (SUL)
N51.4◦, E19.8◦, (9) Poznań (POZ) N52.4◦, E16.6◦, and (10)
Uhnin (UHN) N51.6◦, E23◦. In 2012, the location WLS was not
included. The location × year combinations are subsequently
referred to as environments. The year 2011 and, in particular, the
period from January toMay was characterized by natural drought
stress in Europe with many areas receiving <40% of long-term
mean annual precipitation [DWD (Deutscher Wetterdienst),
2012]. In contrast, no precipitation anomalies in relation to
the long-term mean for 1951–2000 have been recorded for
the hydrological period from November 2011 until May 2012
in the North German Plain and Poland [DWD (Deutscher
Wetterdienst), 2012]. Entries were allocated to trials laid out as
α-lattice designs with two replicates on 5 to 6 m2 plots, connected
by elite hybrid checks. Test cross performance was evaluated for
grain yield (GYD, Mg ha−1), plant height (PHT, cm), thousand-
grain weight (TGW, g), heading date (HDT, 1 = late – 9 =

early), tiller number (TIN), grain protein (GPC, g/kg), and starch
(STC, g/kg), as well as total arabinoxylan (TAX, g/kg), and
water-extractable arabinoxylan (WAX, g/kg) content. For TGW
data across 10 environments (KLE2011, KLS2011, BOH2011,
WLS2011, POZ2011, KLE2012, KLS2012, BOH2012, WUL2012,
and WES2012) were recorded. GPC, STC, TAX, and WAX were
assessed in eight environments (KLE2011, KLS2011, BOH2011,
WLS2011, POZ2011, KLS2012, KLE2012, and WUL2012), while
TIN was assessed in three environments (KLE2011, KLS2011,

and KLE2012). Grain yield was adjusted to a moisture content
of 140 g H2O kg−1. We have used a near-infrared spectroscopy
(NIRS) calibration (Agelet and Hurburgh, 2010) to predict
grain quality parameters in experimental rye hybrids. This NIRS
calibration was adjusted in both data sets by grain samples
selected from the experimental hybrids of both years. Subsequent
to non-destructive NIRS scans, the content of GPC, TAX, as well
as WAX, was assayed as recently described (Jürgens et al., 2012).
Native starch content was determined according to the Ewers
polarimetric method (ISO 10520) using a Polartronic universal
polarimeter (Schmidt+Haensch, Berlin, Germany).

For each data set, best linear unbiased estimators (BLUEs)
of the experimental hybrids were calculated over locations
according to model Equation (1):

yijkl = µ + gi + αj + δij + βjk + ϕjkl + εijkl (1)

where yijkl is the phenotypic observation of the ith hybrid at the
jth location in the lth in complete block of the kth replication; µ,
the intercept; gi, the genetic effect of the ith hybrid; αj, the effect
of the jth location; δij, the genotype-by-environment interaction;
βjk, the effect of the kth replicate at the jth location; ϕjkl, the
effect of the lth incomplete block of the kth replication at the jth
location; and εijkl, the residual.µ and gi were regarded as fixed, all
other effects as random. For estimation of variance components,
gi was defined as random. Broad-sense (entry-mean) heritability
(H2) was estimated based on Equation (2):

H2 =
σ
2
G

σ
2
G +

σ
2
G x E
E +

σ 2
e

ER

(2)

with σ
2
G, σ

2
GxE, and σ

2
e being the variances of genotype, genotype-

by-environment interaction, and residual plot error, respectively.
E denotes the number of environments and R the number
of replications per environment. Analysis of phenotypic data
was performed using package lme4 in R (R Core Team, 2017).
Estimation of variance components was conducted using the
REML procedure in R. Pearson’s correlation coefficients between
phenotypic traits were calculated based on BLUEs with R package
metan and visualized using package pheatmap in R.

Genotyping and Linkage Map Construction
DNA profiles were established for a panel of 180 ‘Petkus’ and 34
‘Carsten’ genotypes as well as 91 plants of the RIL-population
L2039-N x DH (Martis et al., 2013; Hackauf et al., 2017a).
DNA samples were genotyped using DArTTM and DArTseqTM-
technology as previously described (Bolibok-Bragoszewska et al.,
2009; Targońska-Karasek et al., 2017) at Diversity Arrays
Technology Pty. Ltd., Yarralumla ACT, Australia. Marker
genotypes of the single cross hybrids were inferred from the
parental genotypes. For genetic map construction, markers with
more than 10% missing values and more than 5% heterozygote
genotypes were excluded from the analysis. Perfectly identical
marker loci were identified in JoinMap 4 (Van Ooijen, 2006)
and removed from the core data set to reduce calculation efforts.
Markers with a maximum of 1% missing values were used to
establish a framework map, defining the number, joint genotype,

Frontiers in Plant Science | www.frontiersin.org 3 October 2021 | Volume 12 | Article 718081158

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Siekmann et al. GWAS in Hybrid Rye

and position of genomic bins. Grouping of DArTseqTM markers,
together with DArTTM, single-nucleotide polymorphism (SNP),
and SSR markers, from the L2039-N x DH map (Martis et al.,
2013) was conducted using QTL IciMapping 3.2 (Meng et al.,
2015). The high-density linkage map was constructed using
the locus-ordering algorithm RECORD (Van Os et al., 2005).
Map quality was evaluated by computing the sum of adjacent
recombination fractions (SARF) with a window size of 5.
DArTseqTM SNP tags were integrated into the ‘Lo7’ genome
assembly (Rabanus-Wallace et al., 2021) by using the Basic
Local Alignment Search Tool (BLAST) (Altschul et al., 1990). A
significance threshold with more than 98% identity of at least 65
bp was used. Cloned and functionally characterized rice genes
(Yonemaru et al., 2010) were queried by BLASTP against the
‘Lo7’ peptide sequences (Rabanus-Wallace et al., 2021) with an
E-value < 1e-20 as a significance threshold. BLASTN sequence
similarity searches were conducted as described (Hackauf et al.,
2009) to integrate first-generation DArTTM as well as EST-derived
markers flanking previously identified QTL (Hackauf et al.,
2017a; Miedaner et al., 2018) in the ‘Lo7’ genome assembly.

Analysis of Genetic Diversity, Linkage
Disequilibrium, Kinship, Principal
Coordinates, and Population Structure
For the molecular characterization of elite rye inbred lines, SNPs
with a call rate > 0.8 and a minor allele frequency (MAF) >

0.05 were selected using the R package snpReady. The basic
population genetic statistics observed heterozygosity (Hobs), gene
diversity (expected heterozygosity, Ĥ, Nei, 1987), inbreeding
coefficient (FIS), as well as the Analysis of Molecular Variance
(AMOVA, Excoffier et al., 1992), were calculated using the R
package hierfstat. A Cavalli-Sforza and Edwards (1967) chord
distance matrix was calculated with the R package hierfstat and
analyzed in a Principal Coordinates Analysis (PCoA) as well as
hierarchical clustering using the Unweighted Pair GroupMethod
with Arithmetic mean (UPGMA) algorithm using the R packages
ape and stats, respectively. The genetic differentiation between
both heterotic gene pools was inferred based on the pairwise
FST estimator proposed by (Weir and Cockerham, 1984). For
evaluation of linkage disequilibrium (LD) in the two phenotypic
data sets, mapped SNP markers with MAF > 5% were used to
calculate squared allele frequency correlation (r2vs) values with
the R package LDcorSV. To correct the estimation of LD for
relatedness between the single hybrids, kinship coefficients were
calculated with dominant DArTTM and SilicoDArTTM markers
according to Hardy (2003) using the software SPAGeDi (Hardy
and Vekemans, 2002). To eliminate negative kinship values while
keeping variation, all coefficients were adjusted for the lowest
value instead of setting all negative coefficients to zero. For
analysis of population structure, five independent runs were
performed for K = 1–9 using 1,523 dominant DArTTM markers
in data set 1 and 4,000 randomly chosen SilicoDArTTM markers
in data set 2, with the software Structure v2.2.3 Pritchard et al.
(2000), with a burn-in of 100,000 and 200,000 iterations. The
probable number of populations was determined according to
Evanno et al. (2005). Both factors, kinship and population

structure, were taken into account during the calculation of r2vs
values. Non-linear regression was used to analyze the decay
of LD with genetic distance for each chromosome separately
(Remington et al., 2001). A critical value for the determination
of LD decay was calculated in R from the distribution of
square root-transformed r2vs values of the unlinked loci. The
95th percentile of that distribution served as the threshold value,
beyond which LD was likely to be caused by genetic linkage.
Visualization of LD calculation results was done with the R
package LDheatmap. For PCoA in the two sets of experimental
hybrids, polymorphic SilicoDArTTM markers with a call rate >

0.95 were used to calculate Cavalli-Sforza and Edwards (1967)
chord distance matrices. All visualizations were done with the
packages ggplot2 and ggtree in R.

Genome-Wide Association Mapping
Single-nucleotide polymorphism markers were filtered for MAF
> 5% and a call rate > 0.2 in TASSEL 3 (Bradbury et al., 2007) to
identify marker/trait associations in the two data sets. Taking the
cofactors kinship and population structure into account, a mixed
linear model approach according to model Equation (3) was used
in combination with the P3D algorithm (“population parameters
previously determined”) to determine significant associations
in TASSEL:

y = Xβ + Zu+ e (3)

where y is the vector of observations; β represents an unknown
vector containing fixed effects, including genetic marker and
population structure; u is an unknown vector of random
additive genetic effects from multiple-background QTL for
individuals; X and Z are the known design matrices; and e is
the unobserved vector of random residual. Vector u and e are
assumed to be normally distributed with null mean and variance

of Var
u
e
=

(
G 0
0 R

)

, where G = σ
2
aK with σ

2
a as additive genetic

variance and K as kinship matrix. R is the residual effect with R
= Iσ 2

e , where σ
2
e is the residual variance.

To adjust raw p-values for multiple hypotheses testing, the
false discovery rate was controlled according to Benjamini and
Hochberg (1995) using the R package multtest. The localization
of associated SNPs was illustrated using MapChart (Voorrips,
2002). Phenotypic variances (R2) explained by individual SNPs
were plotted using ggplot2 in R.

RESULTS

Elite Rye Germplasm Reveals Pronounced
Genetic Variation in Agronomic and Quality
Traits
Analysis of variance (ANOVA) revealed that genotypic effects
were statistically significant (p < 0.05) for all traits except TIN
in 2011 (Table 1). All traits but GPC, STC, WAX, and TAX in
2012 as well as TIN showed significant (p < 0.05) genotype x
environment (GxE) interaction variances. The GxE interaction
variances of GYD in both years, as well as of WAX in 2011 and
HDT in 2012, were larger than the variances of the genotype
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TABLE 1 | First and second order statistics of experimental rye hybrids.

Year 2011 2012

Trait µ ± s xmin-xmax σ
2
G σ

2
GxE σ

2
e H2

µ ± s xmin-xmax σ
2
G σ

2
GxE σ

2
e H2

GYD [Mg/ha] 8.56 ± 0.28 7.82–9.4 0.05* 0.13* 0.18 0.69 9.31 ± 0.35 8.35–10.16 0.09* 0.23* 0.16 0.71

PHT [cm] 126.9 ± 4.9 114.1–138.4 22.03* 7.14* 13.92 0.94 137.5 ± 4.8 126.8–149.1 21.65* 5.23* 13.9 0.94

HDT [1–9] 6.03 ± 0.51 4.65–7.4 0.22* 0.18* 0.32 0.87 6.23 ± 0.4 4.69–7.14 0.11* 0.26* 0.3 0.72

TIN [spikes/m2 ] 526.64 ± 35.6 423.5–630.2 339.4 0 2926.8 0.32 637.63 ± 60.5 446.8–806.8 898.3* NA 3734.6 0.33

TGW [g] 39.1 ± 1.6 35.7–43.3 2.19* 0.87* 1.22 0.88 32.55 ± 1.96 27.3–38.6 3.47* 0.96* 1.42 0.91

GPC [g/kg] 89.4 ± 3.48 80.1–100.6 10.1* 2.04* 10.3 0.88 88.96 ± 3.1 79.6–98.2 6.2* 1.2 11.3 0.73

STC [g/kg] 576.7 ± 4.86 562.2–589.2 20.2* 5.07* 20.2 0.87 570.7 ± 7.3 546.9–589 31.1* 1.8 99.6 0.64

WAX [g/kg] 23.9 ± 1 20.9–27 0.73* 0.81* 0.79 0.75 16.3 ± 1.2 12.5–20 0.87* 0 2.7 0.66

TAX [g/kg] 109.1 ± 3.7 98–119.1 12.1 * 4.2* 6.8 0.89 87.1 ± 3.9 76.7–96.5 12.2* 1.8 12.2 0.82

Means and standard deviation (µ ± s), minimum and maximum (xmin-xmax ), estimates of variance components (genotype, σ2G; genotype x environment interaction, σ
2
GxE ; error, σ

2
e ), and

entry-mean heritabilities (H2) for agronomic and quality traits evaluated across 3–19 environments in 2011 and 2012. GYD, grain yield; PHT, plant height; HDT, heading date; TIN, tiller

number; TGW, thousand-grain weight; GPC, grain protein content; STC, starch content; TAX, total arabinoxylan content; WAX, water-extractable arabinoxylan content. *p = 0.05.

(Table 1). The average performance in grain yield (−8%), TIN
(−17%), and PHT (−8%) was lower in 2011 as compared with
2012. In contrast, the average TGW (+20%), as well as the
content of TAX (+25%) and WAX (+47%), was higher in 2011
as compared with 2012. High heritability estimates depict a
low error variance and a high genetic variance for all traits
with the exception of TIN (H2 = 0.3). Q-Q plots are fairly
straight and indicate that normal distribution is a reasonably
good approximation for all traits (Figure 1).

The pattern of phenotypic correlation coefficients is illustrated
in Figure 2. Most significant (p < 0.001) and consistent
correlations were found between STC and PHT, STC and GPC,
STC and TAX, as well as between TAX andWAX. The significant
(p < 0.01) correlations between GYD and STC as well as GPC
are in opposite directions in both years. GYD, TGW, and HDT,
as well as TGW, STC, GPC, TIN, and PHT, revealed significant
(p < 0.001) correlations in 2012 only. Similarly, the correlation
between STC and WAX was significant (p < 0.001) in 2012 only.
Plant height was significantly (p< 0.001) correlated with TGW in
2012 and starch content in both years but neither correlated with
GYD in 2011 nor in 2012. A very strong negative correlation (r=
−0.9) could be observed between GPC and STC in 2011 only.
No moderate correlations were found except the correlations
previously mentioned (Figure 2).

Significant Molecular Differentiation of
Elite Rye Germplasm
A total of 2,965 SNPs were successfully called with high quality
in 214 seed and pollen parent lines. In total, 2,006 of these
SNPs (67.7%) could be mapped in the ‘Lo7’ reference genome
sequence and revealed an equal distribution on the seven ‘Lo7’
pseudomolecules. The average PIC of these SNPs was 0.258,
ranging from 0.09 to 0.38. A detailed list of these informative
SNP loci, including physical map position in the ‘Lo7’ genome
assembly, base change, MAF, heterozygosity, gene diversity,
and PIC, is provided in Supplementary Table 1. The average
heterozygosity of each ‘Petkus’ line was 6%, while, for the
‘Carsten’ genotypes, an average heterozygosity of 29% (Table 2)

was determined. Analysis of Molecular Variance (AMOVA)
results revealed that molecular variation was mainly (57.1%)
found among individuals within populations as expected for
cross-pollinated species, whereas variation observed among
populations within groups explained 18.5% of the total genetic
variability (Table 3). The calculated fixation index FST= 0.185
of Weir and Cockerham (1984) emphasized a significant
differentiation between both heterotic populations. Cavalli-
Sforza and Edwards (1967) chord genetic distances between
pairwise comparisons of all the 214 lines ranged from 0.012 to
0.487, and the overall average distance was 0.356. The UPGMA
tree clustered this population into two major groups, perfectly
in line with the well-known heterotic groups in rye (Figure 3).
The major group was composed solely of ‘Petkus’ lines and
was divided into five clades comprising 18–84 lines each. In
the second monophyletic branch, all ‘Carsten’ lines are grouped
(Figure 3). PCoA on the entire set of 214 lines (Figure 4) showed
a clear separation of the two groups identified in the cluster
analysis. The first two principal coordinates (PCos) from PCoA
explained 22.3% of the total SNP variation among the samples.

Family Substructure and Rapid Decay of
LD in Experimental Rye Hybrids
Based on Evanno’s DeltaK method, we determined k = 4 as
the most probable number of groups in each of the two sets
of experimental hybrids (Figure 5). The principal coordinates
analysis confirmed this major population substructure and
revealed that the first two principal coordinates explained 42.3
and 42.8% of the genetic variation within the 298 and 305
rye hybrids (Figure 6). The grouping of experimental hybrids
into subpopulations referred mainly to the individual pollen
parent genotypes. We have integrated 13,337 SilicoDArTTM and
3,711 novel SNP markers in the genetic linkage map for the
RIL-population L2039-N x DH. The advanced map covered
1946.4 cM of the rye genome with map length of the seven rye
chromosomes varying between 227 cM of chromosome 3R and
340 cM of chromosome 4R (Supplementary Table 2). The 3,711
novel SNP markers were equally distributed across the genome
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FIGURE 1 | Frequency distribution histograms (A) and Quantile-Quantile (Q-Q)

plots (B) of nine agronomic and quality traits evaluated for 298 and 305 single

cross rye hybrids in 2011 and 2012. The vertical axes in the histograms

indicate the frequency of hybrids per trait (GYD, grain yield; TIN, tiller number;

TGW, thousand-grain weight; PHT, plant height; HDT, heading date; GPC,

grain protein content; WAX, water extractable arabinoxylan content; TAX, total

arabinoxylan content; STC, starch content) and the horizontal axes indicate

the different trait classes.

with SNP numbers varying between 402 on chromosome 3R
to 577 on chromosome 4R (Supplementary Table 2). We have
used this high-density map to investigate the LD in the analyzed
experimental hybrids. Visual inspection of intra-chromosomal
heatmaps from all segregating markers depicts no noticeable
differences in the LD structure between both germplasm
collections (Figure 7). In the distal region of chromosome 6RS,
a small distinct LD block was observed in both populations.
Mean r2vs of individual chromosomes ranged from 0.07 for 1R in
2011 to 0.087 for 4R in 2011 (Table 4). In the collection of 298
single cross hybrids 2011, the critical value of r2vs (basal LD) is
r2vs = 0.2467. Similarly, in the cohort of 305 single cross hybrids
2012, the critical value is r2vs = 0.2208. Based on these critical
values, the intrachromosomal LD decayed between 1.51 (2R in
2011) and 4.6 cM (6R in 2012) for the individual chromosomes
in the germplasm collection (Table 4). The mean LD decay over
the whole genome was calculated as 2.2 cM (2011) and 2.77
cM (2012).

GWAS of Agronomic and Quality Traits
Out of 20,232 DArTseqTM-derived SNP tags, 228
(1.1%) are covered by the Rye 600k genotyping array
(Supplementary Table 3) and 10,712 (52.9%) mapped to
the ‘Lo7’ pseudomolecules (Supplementary Table 2). Map
positions could be determined for 10,171 (94.9%) of these SNP
tags with 1,302 located on chromosome 1R, 1,534 on 2R, 1,388
on 3R, 1,498 on 4R, 1,474 on 5R, 1,464 on 6R, and 1,520 on 7R
(Supplementary Table 2). About 3,901 SNPs (36.4%) represent
predicted coding sequences in the ‘Lo7’ genome assembly.
Comparison between 2,149 (21.1%) genetically mapped SNPs
revealed almost perfect collinearity to the physical map. GWAS
revealed that between 25 of these SNPs on chromosome
1R and 278 on chromosome 6R were significantly (padj <

0.05) associated with PHT, HDT, and the studied agronomic
traits (Supplementary Table 4). We identified between 34 on
chromosome 1R and 186 on chromosome 7R significantly (padj <
0.05) associated SNPs for quality traits (Supplementary Table 4).
For GYD, 38 SNP loci showed significant association (padj <

0.05) in both years. For all remaining traits, this value ranged
between 15 and 132 significant SNPs (Table 5, Figure 8, and
Supplementary Table 4). The explained phenotypic variance
(R2) of the individual QTL ranged from 1.4 to 29.9% for GYD,
1.3 to 31.3% for PHT, 1.4 to 31.6% for HDT, 1.4 to 26.3% for
TIN, 1.4 to 42.7% for TGW, 1.4 to 27.3% for GPC, 1.4 to 24.7%
for STC, 1.3 to 38.8% for TAX, and 1.4 to 30.1% for WAX
(Figure 9, Supplementary Table 4). In total, between 100 and
566 of the associated SNPs represent predicted protein-coding
genes of the ‘Lo7’ assembly (Supplementary Table 4). Between
9 and 35 marker-trait associations (MTA) in protein-coding
sequences could be cross-validated in both datasets (Table 5,
Figure 8). Nine of the cross-validated MTA for PHT are located
within the QPh3-7R interval, including SECCE7Rv1G0469090,
SECCE7Rv1G0471520, and SECCE7Rv1G0472410, respectively.
SECCE6Rv1G0401900 ranks among two MTA for HDT located
within QHdt-6R. Among the MTA for TGW, we identified
the polyubiquitin-encoding gene SECCE5Rv1G0370510
residing within QTgw-5R. SECCE6Rv1G0382730, encoding an
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FIGURE 2 | Heatmaps of Pearson’s correlation coefficients for nine agronomic and quality traits in rye. Blue color indicates positive correlation and red color indicates

negative correlation among different traits, with color intensity variance depicting the strength of correlation. GYD, grain yield; TIN, tiller number; TGW, thousand-grain

weight; PHT, plant height; HDT, heading date; GPC, grain protein content; WAX, water extractable arabinoxylan content; TAX, total arabinoxylan content; STC, starch

content. Categorization: 0.25 ≤ r < 0.45 weak, 0.45 ≤ r < 0.65 moderate, 0.65 ≤ r < 0.85 strong, 0.85 ≤ r very strong. *p < 0.05, **p < 0.01, ***p < 0.001, blank

for non-significant.

TABLE 2 | Genetic diversity of elite rye inbred lines representing the heterotic

gene pools ‘Petkus’ and ‘Carsten’.

Population name Breeding level Individuals Ap Hobs H FIS

‘Petkus’ Elite seed parent 180 247 0.06 0.30 0.77

‘Carsten’ Elite pollen parent 34 26 0.29 0.31 0.07

The level of genetic diversity of each population was estimated based on 2,965 SNP

markers and described with the parameters number of private alleles (Ap ), observed

heterozygosity (Hobs), gene diversity (expected heterozygosity, H), and inbreeding

coefficient (FIS ).

Embryo-defective protein, mapped to QTgw-6R. We illustrate
the identification of putative causal genes associated with
variation in target traits of rye breeding using plant height,
thousand-grain weight, and yield, as well as arabinoxylan
content as examples.

Candidate Genes for Plant Height
We observed 483 SNPs associated with PHT in ‘Lo7’
protein-coding genes (Supplementary Table 4). Fifteen
(3.1%) of these genes are orthologs of cloned rice QTL,
including the Gibberellin-insensitive dwarfing gene SLR1,
the epigenetic regulator Decrease in DNA Methylation 1
(DDM1), the lectin receptor-like kinase SIT2, the phosphate
transporter PT8, and the transmembrane ABC transporter

TABLE 3 | Analysis of molecular variance (AMOVA) for the total breeding

population.

Source of variation Variance component Proportion of explained

variation

Among populations 203.26 0.185

Within populations 627.30 0.571

Within individuals 268.33 0.244

Total 1098.89

STAR2 (Supplementary Table 5). SIT2 turned out to be
associated in both years. Altogether, 35 SNPs in ‘Lo7’ gene
models were associated in both years (Table 5). The SNP in
SECCE1Rv1G0063100 encoding a putative translation initiation
factor IF-2 explains more than 10% of the phenotypic variance in
both years.

Candidate Genes for Thousand-Grain
Weight
We detected 685 SNPs associated with TGW in ‘Lo7’
protein-coding genes (Supplementary Table 4). Fourteen
(2%) of the ‘Lo7’ protein-coding genes are orthologs of
cloned rice QTL, including the zinc finger protein gene
ZFP179, a cytochrome P450 protein-encoding gene, and
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FIGURE 3 | UPGMA-based dendrogram showing the genetic relationship

among the 214 elite seed and pollen parent lines based on 2,965 SNP

markers. Samples are colored according to the heterotic gene pools ‘Petkus’

(seed parent pool) and ‘Carsten’ (pollen parent pool).

an ETHYLENE OVERPRODUCER 1-like gene (OsETOL1)
(Supplementary Table 5). The OsETOL1 ortholog of
SECCE7Rv1G0479810 affects TIN, GPC, and STC in rye
as well. Contrasting effects on TIN and STC as compared
with TGW and GPC could be observed for the A547G SNP
in SECCE7Rv1G0479810 (Figure 10). The experimental
hybrids evaluated in 2012 represented three SNP genotypes,
while, in 2011, only two genotype classes could be detected.
Major effects (R2

> 10%) on TGW could be observed for
9 of the 525 SNPs (1.7%) associated in 2011, including
the predicted sucrose transporter SECCE7Rv1G0456720
and for 535 of the 1,465 (36.5%) SNPs associated in 2012
(Supplementary Table 4). The cross-validated effects of 132
SNPs on thousand-grain weight explained between 1.4 and
30.3% of the phenotypic variance. The protein-coding sequences
represented by these SNPs include SECCE1Rv1G0038830,
a nitrate/peptide transporter; SECCE1Rv1G0052830,
encoding a methyltransferase, the invertase inhibitor
SECCE3Rv1G0153090; SECCE5Rv1G0376740, encoding a
basic helix-loop-helix (bHLH) DNA-binding superfamily
protein; SECCE6Rv1G0427440, encoding a jasmonate O-
methyltransferase; and SECCE7Rv1G0479810, encoding an
ethylene-overproduction protein.

Candidate Genes for Grain Yield
We identified 19 (3.8%) out of 500 SNPs associated with GYD
in protein-coding genes of the ‘Lo7’ assembly as orthologs
of cloned rice QTL (Supplementary Table 5). These included
the WUSCHEL—related homeobox transcription factor DWT1,
the Zinc-finger transcription factor YABBY1, the gene DTH2
promoting heading under long-day conditions, the cellulose
synthase bc6, the soluble starch synthase IIa, the Cytochrome

FIGURE 4 | Principal coordinates analysis (PCoA) of 214 elite seed and pollen

parent lines. Scatter plot of the first two principal coordinates based on

genotyping data of 2,965 SNP markers. The horizontal and vertical

coordinates represent PCo1 and PCo2. Each dot represents a line. Samples

are colored according to the heterotic gene pools ‘Petkus’ (seed parent pool)

and ‘Carsten’ (pollen parent pool).

P450CYP96B4, the metal-nicotianamine transporter YSL2, the
amino acid transporter AAP6, the ATP-binding cassette protein,
encoding gene ABCB14, the putative potassium efflux antiporter
Albino midrib 1 (AM1), the Zinc finger family protein encoding
gene sor1, and the transmembrane ABC transporter STAR2.
While the SNP representing the DWT1-ortholog in rye was
associated in both years, the SNPs in the rye orthologs of
YABBY1 and ABCB14 were associated in 2011 and the remaining
SNPs in 2012. Among the 337 SNPs associated in 2011,
eight (2.4%) explained more than 10% of the phenotypic
variance. Three of these SNPs represent genes encoding
a cytochrome P450 protein, a putative late embryogenesis
abundant (LEA) hydroxyproline-rich glycoprotein, as well as
an ARM repeat superfamily protein. Likewise, 101 (20.2%)
among the 500 SNPs in protein-coding sequences associated
in 2012 had major effects (R2

> 10%) on GYD. Except for
6, the 38 SNPs associated in both years had minor effects
(R2

< 10%) on grain yield. The genes represented by these
major effect SNPs include SECCE3Rv1G0183650 encoding,
a WUSCHEL homeobox protein, SECCE5Rv1G0323860.1, a
HAESA-like LRR receptor protein kinase, SECCE6Rv1G0412350,
a flavonol synthase, SECCE6Rv1G0416090, a putative Snf1-
related kinase interactor, SECCE7Rv1G0469060, a Gibberellin
2-beta-dioxygenase, and SECCEUnv1G0531960, a BEL1-like
homeobox protein.

Candidate Genes for Arabinoxylan Content
We discovered 416 and 433 SNPs associated with TAX
and WAX, respectively, in ‘Lo7’ protein-coding genes
(Supplementary Table 4). Eleven (2.6%) and nine (2.1%)
of the ‘Lo7’ protein-coding genes are orthologs of
cloned rice QTL, including the cZ-O-glucosyltransferase
cZOGT1, an embryo and endosperm development-involved
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FIGURE 5 | Population structure based on genotyping data of 1,523 and 4,000 SilicoDArTTM markers for 298 and 305 single cross rye hybrids in 2011 and 2012,

respectively. Each genotype is represented by a thin vertical line, which is partitioned into k = 4 colored segments that represent the genotype’s estimated

membership fractions shown on the y-axis in k clusters. Genotypes were sorted according to populations along the x-axis. Determination of the most probable

number of k-groups according to Evanno et al. (2005) is displayed in the upper part of the graph.

FIGURE 6 | Principal coordinates analysis (PCoA) of the 298 and 305 single cross rye hybrids in 2011 and 2012. Scatter plots of the first two principal coordinates

based on genotyping data of 593 and 663 SilicoDArTTM markers, respectively. The horizontal and vertical coordinates represent PCo1 and PCo2. Each dot represents

an accession. The samples are clearly stratified by ancestry. Samples are colored according to group assignment of the structure analysis.

cyclin and the transmembrane ABC transporter STAR2
(Supplementary Table 5). Major effects (R2

> 10%) on TAX and
WAX in 2011 were observed for 17 and 23 SNPs, respectively.
Corresponding protein-coding sequences represented, among
others, the receptor protein kinases SECCE2Rv1G0135820
and SECCE4Rv1G0223400, and the hexosyltransferase
SECCE5Rv1G0328330. In 2012, 249 and 202 SNPs revealedmajor
effects (R2

> 10%) on TAX and WAX. These SNPs described,
among others, the α-glucosidase SECCE3Rv1G0149680 and
the xyloglucan α-1,6-xylosyltransferase SECCE6Rv1G0407620.

Major effects (R2
> 10%) on TAX were observed for SNPs in

the Glycosyltransferase-encoding genes SECCE3Rv1G0197970
and SECCE7Rv1G0456850, and minor effects (R2

< 10%) on
TAX and WAX for SNPs in six further Glycosyltransferase-
encoding genes (Supplementary Table 4). The predicted
glycosyltransferase SECCE3Rv1G0150570 revealed a significant
association with TAX and WAX content. Across eight
environments, we detected 31 and 15 cross-validated SNPs
in protein-coding genes associated with TAX and WAX,
respectively (Table 5, Supplementary Table 4).
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FIGURE 7 | Heatmaps of squared allele frequency correlation values (r2vs)

corrected by relatedness of genotyped individuals and the structure of the

sample to display intra-chromosomal linkage disequilibrium (LD) for both

germplasm collections. r2vs in experimental hybrid rye genotypes based on

2,563 and 2,790 polymorphic SNP markers identified by DArTseqTM. The color

legend for r2vs values is given on the right side.

TABLE 4 | Estimates of LD as well as distances at which LD decays below

background LD for single cross hybrids in 2011 and 2012.

Year 2011 2012

Chromosome Mean r2vs LD decay Mean r2vs LD decay

1R 0.070 1.75 0.082 3.55

2R 0.077 1.51 0.072 1.81

3R 0.079 1.7 0.078 2.01

4R 0.087 2.17 0.08 2.52

5R 0.079 3.34 0.079 4.3

6R 0.081 3.35 0.078 4.6

7R 0.074 1.71 0.077 2.45

Whole genome 0.078 2.2 0.078 2.77

Co-Localization of QTL
We identified 34 cross-validated SNPs in 33 protein-
coding sequences associated with more than one trait
(Supplementary Table 6). The number of cross-validated
MTA ranged from four (GYD) to 16 (TGW). On average, each of
the seven ‘Lo7’ pseudomolecules carry 4.6 of these gene models,
35.3% of the predicted rye genes mapped to chromosome
7R. Three protein-coding sequences were associated with
four traits: next to the already described associations for
SECCE7Rv1G0479810 (Figure 10), SECCE5Rv1G0347130,
encoding a putative transmembrane protein, was associated
with HDT, STC, TAX, and WAX, and SECCE7Rv1G0477980,
encoding a cysteine-rich receptor-kinase-like protein, with
PHT, TIN, STC, and TAX. Likewise, SECCE1Rv1G0052830
and SECCE7Rv1G0484030, encoding a methyltransferase
and a cytochrome P450 family protein, were associated with
TGW, GPC, and STC, while the predicted chitinase-encoding
gene SECCE7Rv1G0521190 was associated with TGW, HDT,
and WAX.

DISCUSSION

To fully exploit the recently published reference genome
sequence data for rye (Li G. et al., 2021; Rabanus-Wallace et al.,
2021), a systematic approach for the discovery of gene function
is required. Genome-wide association mapping was hailed as
the key gene discovery paradigm to translate the expectations
connected to high-quality genome sequences into practice,
providing the insights needed to develop better diagnostic,
prognostic, and preventive strategies for different traits (Liu
and Yan, 2019; Loos, 2020). Indeed, GWAS has become a
central approach to studying the natural variation and mapping
quantitative traits of cereals (Alqudah et al., 2019). However, in
contrast to wheat and barley, target genotypes in outbreeding
rye are highly heterozygous. This results in decreasing genotypic
correlation between the line per se and test cross performance
with the increasing complexity of a trait (Sprague and Tatum,
1942; Miedaner et al., 2014). We have, thus, studied two large
multiple-hybrid populations to dissect the genetic architecture of
important agronomic and quality traits in rye.

Frontiers in Plant Science | www.frontiersin.org 10 October 2021 | Volume 12 | Article 718081165

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Siekmann et al. GWAS in Hybrid Rye

TABLE 5 | Survey on cross-validated marker/trait-associations for agronomic

traits, plant height, heading date and grain quality traits mapped in the ‘Lo7’

genome assembly.

Lo7 PHT HDT GYD TIN TGW GPC STC TAX WAX

0R 3 7 10 3 7 4 4 4 6

1R 13 16 1 1 17 2 6 19 7

2R 28 13 3 1 11 6 15 8 4

3R 11 9 5 1 14 1 10 18 7

4R 14 8 3 2 5 2 1 8 11

5R 16 14 4 1 7 6 8 15 3

6R 11 31 11 0 18 9 6 2 9

7R 20 9 1 6 53 15 37 12 3

Σ 116 107 38 15 132 45 87 86 50

cds 35 31 13 9 32 13 27 31 15

GYD, grain yield; PHT, plant height; HDT, heading date; TIN, tiller number; TGW, thousand-

grain weight; GPC, grain protein content; STC, starch content; TAX, total arabinoxylan

content; WAX, water-extractable arabinoxylan content. 0R: unknown pseudomolecule;

cds: protein coding sequence.

Prospects and Limits of Field Phenotyping
in Rye
The rich genetic diversity in random mating rye populations
has been depicted using DNA marker technologies (Hagenblad
et al., 2016; Schreiber et al., 2018; Sidhu et al., 2019; Hawliczek
et al., 2020). In the present study, we observed significant
genotype variation (p < 0.05) for major target traits in a rye
improvement program. The observed significant correlations
reveal that complex target traits of rye breeding do not evolve
independently. However, as weak and moderate correlations
between traits dominate, the substitution of an inexpensive
measurement for a correlated expensive phenotype in variety
development is no constructive option. The strong to moderate
negative correlation (r = −0.9 and r = −0.39) between GPC
and STC in both data sets is well-known from studies in wheat
(Muqaddasi et al., 2020; Yang et al., 2020). In contrast to
previous research in biparental populations (Miedaner et al.,
2012), the observed correlation between GPC and STC could
be explained by the co-localization of QTL in our populations.
The intermediate to high trait heritabilities (H2) for GYD, PHT,
and TGW compare well with previously published heritability
estimates in biparental (Miedaner et al., 2012, 2018; Hackauf
et al., 2017a) and multiple-hybrid populations (Auinger et al.,
2016) of rye. This applies to STC (Miedaner et al., 2012) andHDT
(Hackauf et al., 2017a) as well. The high heritability estimates
for GPC, TAX, and WAX refer to high genetic variance and low
error variance that is sufficiently powerful to detect additive gene
variants even with minor effects. Heritability estimates of TIN
compare well with data from wheat (Bilgrami et al., 2020) and
uncovered a phenotyping bottleneck in our study. As we have
studied TIN in both years in a large biparental population as well
(Hackauf et al., 2017a) and due to a low throughput in assessing
this trait (Wu et al., 2019; Reynolds et al., 2020), we were able
to phenotype TIN in three environments only. At this point,
the present study emphasizes that automated, nondestructive
methods of phenotyping tiller traits at a high spatial resolution

and high throughput for large-scale assessment of small grain
cereal accessions are urgently needed (Wu et al., 2019). The
relevance of this conclusion is supported by previous research
that identified genetic gains achieved in ear density, i.e., the
number of effective tillers, as the main factor responsible for the
progress in grain yield of hybrid rye cultivars (Laidig et al., 2017).

Novel Insights in Rye’s Adaptation to
Drought Stress
The atypical extreme climatic conditions in 2018 demonstrated
that environmental impact is becoming increasingly relevant
to agricultural production in Europe (Beillouin et al., 2020).
Europe accounts for around 20% of the global cereal production
(Schils et al., 2018) and is the main rye-producing area
globally (FAOSTAT, 2020). Among the small grain winter cereals
produced in Europe, rye revealed the lowest yield reduction
compared to wheat, barley, and triticale when rainfall was fully
excluded by means of rain-out shelters from tillering until
harvest (Schittenhelm et al., 2014). The main driver enabling
the performance of rye on light soils with low fertility and
low water capacity is its highly developed root system. The
entire root system of a single rye plant consisted of 13,815,672
branches, with a total length of 622 km, a surface area of
401 m2, and a total root hair length of 11,000 km (Dittmer,
1937), which facilitates a very efficient uptake of water and
nutrients (Paponov et al., 1999; Yeo et al., 2014). Irrespective
of the powerful root system, average drought-induced grain
yield reduction of 23.8% has been reported for hybrid rye in
non-irrigated compared with the irrigated regime under natural
drought stress conditions (Hübner et al., 2013), while up to 57%
grain yield reduction was observed in controlled environments
under different drought regimes (Kottmann et al., 2016). Notably,
knowledge of physiological mechanisms of drought tolerance in
rye is scarce (Hübner et al., 2013). As demonstrated on a large
scale in the present study, natural drought stress conditions in
Europe were detrimental in 2011 to grain yield of rye as compared
with less-osmotic stress conditions in 2012. Our comprehensive
phenotyping identified morphological adjustment of plant height
and tiller number as drought stress responses of rye. Supported by
a significant (p < 0.001) negative correlation between PHT and
STC, the higher sink activity of grains under drought suggests
a mobilization and reallocation of stem reserves to the grain, as
has been observed in Sorghum (Blum et al., 1997). Interestingly,
neither STC nor GPC was correlated with TGW under drought.

The significant opposite correlations between GYD and STC
as well as PHT and STC in 2011 demonstrate that the large
stem reserve storage in modern hybrid cultivars represents an
adaptation strategy of rye for stable grain filling under osmotic
stress. This protective measure needs to be considered when
using the gibberellin (GA)-sensitive dwarfing geneDdw1 (Börner
and Melz, 1988) as a breeder’s option to improve plant height
and lodging resistance in hybrid rye (Braun et al., 2019) and
asks to search for an optimum in plant height of semi-dwarf rye
hybrids. However, the significant negative correlations between
PHT and STC in both years distinguish the potential of further
improvements in PHT as a viable option to tap currently
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FIGURE 8 | Physical position of cross-validated SNPs in protein coding

sequences of the ‘Lo7’ genome assembly detected in the GWAS for grain

yield, thousand-grain weight, plant height, tiller number and heading date.

(Continued)

FIGURE 8 | The positions of both self-incompatibility loci, S and Z, the
restorer-of-fertility locus Rfp1 depicting the rye’s unique reproduction biology,

and the GA-sensitive dwarfing gene Ddw1 are given as well. For ‘Lo7’

orthologs of cloned rice QTL the corresponding rice gene symbols were

adapted to rye. The positions of the markers in the ‘Lo7’ physical map are

given in Mbp. The horizontal bars and QTL symbols indicate the position of

grain yield (QGyd-2R), heading date (QHdt), thousand-grain weight (QTgw),

plant height (QPh), and spikes per squaremeter (QSsm).

FIGURE 9 | Box plots illustrating the phenotypic variances (R2) explained by

individual associated SNPs. GYD, grain yield; TGW, thousand-grain weight;

PHT, plant height; HDT, heading date; TIN, tiller number; GPC, grain protein

content; STC, starch content; TAX, total arabinoxylan content; WAX, water

extractable arabinoxylan content.

unused potential for optimized dry matter allocation to the rye
grain. Indeed, as no correlation between GYD and PHT was
found in both years, this approach is not compromised by a
relationship between grain yield and tall plant stature, as has
been reported in a biparental population in rye (Miedaner et al.,
2012). Significant (p < 0.01) positive correlations with PHT in
both years indicate that HDTmight be involved as a confounding
variable. Although early heading date and a shorter vegetative
phase were significantly (p < 0.001) correlated with grain yield
under less-osmotic stress conditions in 2012, drought escape
through earlier heading could not be identified as an adaptive
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mechanism of rye in 2011, as indicated by a correlation coefficient
between GYD andHDT of almost zero. Further research directed
to the collection of drought tolerance traits that are not easy
to measure under field conditions, and the assessment of rye
using state-of-the-art phenotyping in controlled environments
(Langstroff et al., 2021) is necessary to consolidate the relevance
of our conclusion. The substantially increased grain arabinoxylan
content in osmotically stressed rye is a striking phenotype that
will subsequently be discussed.

High Levels of Genetic Diversity in Elite
Rye Germplasm
The accessibility of distinct heterotic gene pools is the central
pillar for the breeding of hybrid cultivars (Labroo et al., 2021).
We investigated the extent of genetic differentiation, population
clustering, and patterns of relationship among a diverse set of
elite rye inbred lines based on SNP markers. All multivariate
methods revealed the presence of two major groups, which was
in perfect agreement with pedigree information, as all lines with
similar pedigree clustered into the same group. The observed
differences between inbred lines from the ‘Petkus’ and ‘Carsten’
pool concerning the average heterozygosity reflected that line
development in the ‘Carsten’ pool is currently not going for
complete homozygosity since a genetically broader synthetic
composed of two less inbred lines is a more secure pollinator
due to a longer pollen-shedding period (Geiger and Miedaner,
2009). We observed a high pairwise differentiation (FST) among
the ‘Petkus’ and ‘Carsten’ populations, which coincides with the
identified heterotic pattern in rye (Hepting, 1978) and indicates
that these groups obviously followed different domestication
and/or artificial selection paths. Our results generally agree
with previous studies (Bauer et al., 2017; Vendelbo et al.,
2020) that reported high genetic differentiation between parental
populations of two other hybrid rye breeding programs as
well. It is worth noting that the FST between elite ‘Petkus’ and
‘Carsten’ rye inbred lines estimated in the present study is higher
than the differentiation (FST = 0.10) estimated from single
nucleotide polymorphisms between elite and exotic wheat lines
(Boeven et al., 2020). As the genetic diversity described in the
analyzed rye germplasm has successfully been used to exploit
commercial heterosis (Bundessortenamt, 2013), data presented
in the present study may illustrate the (i.) sought genetic diversity
and (ii.) command variable for marker-assisted management
of elite germplasm pools in wheat hybrid breeding programs.
Although comprehensive analyses have recently reported the
genetic distance between parental populations as a crucial
parameter to maximize the exploitation of heterosis for rye
(Vendelbo et al., 2020) and wheat improvement (Boeven et al.,
2020), it needs to be considered that heterotic response between
genetically divergent groups cannot be predicted from genetic
distances based on DNA markers but must be evaluated
in field trials (Melchinger, 1999). Irrespective of that, SNP
markers with high polymorphism information content (PIC)
and Nei’s gene diversity across ‘Lo7’ pseudomolecules may be
useful to develop a subset of SNPs for routine studies where
only a small to moderate number of SNPs are needed, as

is the case in mapping, marker-assisted recurrent selection,
marker-assisted backcrossing, and quality control applications
in rye.

Rapid Decay of LD in Elite Rye Germplasm
Almost 99% of the SNP tags described in the present study are
not represented by the Rye 600k SNP array (Bauer et al., 2017).
The novel high-density map further extends previous versions
established for the L2039-N x DH mapping population based on
gene-based SNPs (Martis et al., 2013), as well as first-generation
DArTTM markers (Hackauf et al., 2017a). The markers are evenly
distributed through the ‘Lo7’ genome sequence, and the length of
the linkage map is in the same order as other genetic maps in rye
(Martis et al., 2013; Milczarski et al., 2016; Borzecka et al., 2018).

We observed low levels of LD extend across the entire genome
in elite rye germplasm and in a similar order as most recently
estimated for wheat (Liu et al., 2020). A rapid decline of LD fits
to the expectation for an outcrossing species with low ancestral
LD (Auinger et al., 2016). More recently, a higher mean genome-
wide LD with several distinct blocks of strong LD has been
observed in another rye germplasm (Vendelbo et al., 2020). This
unexpected attribute refers to the use of the Gülzow (G) male-
sterility system (Melz et al., 2003) as a hybridization system
that obviously constitutes a population-determining parameter.
Indeed, the G cytoplasm belongs to a plasmotype that is common
in the Central European rye gene pool (Stojałowski et al., 2008).
The spread in random-mating populations of cereal rye indicates
that this plasmotype obviously provides a fitness advantage in
female function [see Rieseberg and Blackman (2010) for review]
that, in turn, resulted in a high frequency of restorer alleles
(Łapiński and Stojałowski, 2003). This has a strong impact
on practical applications. The unusual high LD reported by
Vendelbo et al. (2020) demonstrates that, due to a low frequency
of reliable maintainer genotypes, the development of male sterile
seed parent lines for breeding of G-type CMS hybrid rye is a
challenging task. In contrast, the CMS-inducing P cytoplasm
used in the present study is easy to maintain and enables an
unbiased capture andmanagement of genetic diversity in the seed
parent pool. The rapid rate of LD decay in P-type CMS hybrids
promises a high resolution in GWAS and suggests to advance
research on rye as a complement to barley, the model for the
genetics and genomics of the Triticeae tribe (Han et al., 2020;
Jayakodi et al., 2020) that features a comparatively higher mean
LD (Malysheva-Otto et al., 2004; Comadran et al., 2009; Rode
et al., 2012; Bellucci et al., 2017). As LD has been reported to
decay rapidly within ∼520 bp on average in rye (Li et al., 2011),
follow-up experiments based on a higher SNP density than in
the present study will enable to accurately predict LD beyond
genetic maps.

Bridging the Genotype-Phenotype Gap
in Rye
We integrated the novel SNP markers in the L2039-N x DH
genetic map and the recently established rye reference genome.
We obtained both genetic and physical positions for markers
representing genetic diversity that is managed in the elite
germplasm of a hybrid rye breeding program. The DArTTM
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FIGURE 10 | Box plots depicting the effect of SNP genotypes of the ETHYLENE OVERPRODUCER 1-like gene SECCE7Rv1G0479810 on TGW, TIN, GPC and STC

in rye. Dots represent outliers. TGW, thousand-grain weight; TIN, tiller number; GPC, grain protein content; STC, starch content.

genetic map enabled the confident chromosomal localization
of 90 SNP markers of unknown physical position in the ‘Lo7’
genome assembly to genome-specific regions and provides
map position of 23 protein-coding genes. Both, the ‘Lo7’
reference genome sequence as well as the high-density map
as a complement, will support marker development, marker-
assisted selection (MAS), gene discovery and isolation, and,
as demonstrated in the present study, GWAS. Furthermore,
functional markers can explain a large part of the genetic
variance, which may improve the predictive ability of genomic
selectionmodels in plant breeding programs (Liu et al., 2019).We
ascertainedGWAQTL that overlapped with previously identified
QTL for plant height and agronomic traits, including grain yield
(Hackauf et al., 2017a; Miedaner et al., 2018), by integrating
the latter into the ‘Lo7’ assembly. Except for QTL residing on
chromosome 4R, the physical distance covered by the QTL is
low. It is currently unclear whether the QTL on chromosome 4R
resides in a rarely recombining region, as has been demonstrated
for the GA-insensitive dwarfing gene compactum1 (ct1) mapping
to a region with a high ratio of physical to a genetic distance
of 122.4 Mbp/cM on chromosome 7R (Hackauf et al., 2021).
Alternatively, the observation may owe to the many inversions
and large structural rearrangements that have been observed
among non-‘Lo7’ Secale genotypes relative to ‘Lo7’ (Rabanus-
Wallace et al., 2021). Likewise, the large 4R intervals may be
attributed to copy number variation for the QTL markers in the
biparental mapping population that is not mirrored in the ‘Lo7’
genome assembly.

Anchoring the SNPs to the ‘Lo7’ reference genome is in
the same order of magnitude as recently reported for the
alignment of SNPs and SilicoDArTTM markers to the hexaploid
wheat RefSeq v1.0 reference genome (Sansaloni et al., 2020).
The ‘Weining’ genome assembly (Li G. et al., 2021) offers a
further resource to anchor additional rye DArTseqTM SNP tags
with locations in physical space. Alignment of (i) DArTseqTM

SNP tags representing protein-coding genes, as well as (ii)
the corresponding protein-coding genes in rye and wheat, will
support the identification of diversity that is associated with
important agronomic and quality traits but that may be missing

in current wheat-improvement programs. As expected, 60–70%
of the SNP markers were in intergenic regions, reflecting that
genic regions are evolutionarily more conserved compared with
intergenic regions, which evolve faster and accumulate higher
levels of polymorphism. However, part of these SNPs may
reside in promoters and regulatory elements and may represent
functional markers as well.

The random-mating populations ‘Halo’ and ‘Carokurz’ as
well as the two inbred lines ‘Lo7’ and ‘Lo225,’ represent
the heterotic gene pools ‘Petkus’ and ‘Carsten,’ respectively,
and revealed significant differences in monoploid genome
size (Rabanus-Wallace et al., 2021). This striking observation
suggests the occurrence of structural variants (SVs) in the rye
genome. Indeed, Hi-C asymmetry plots revealed SVs between
the genomes of ‘Lo7’ and representatives of the genus Secale,
including the inbred line ‘Lo225’ (Rabanus-Wallace et al.,
2021). In the present study, DArTseqTM detected more than
27k SVs in the analyzed rye germplasm markers that could
be mapped to the ‘Lo7’ genome assembly (data not shown).
The impact of these SilicoDArTTM on rye phenotypes deserves
further research.

Controlling the Rate of False Discoveries
Control of the false discovery rate (FDR) in genetic association
studies has become an increasingly appealing and accepted
target for multiple-comparison adjustment (Brzyski et al., 2017).
In order to control the false positive rate in multiple testing
procedures, we have adjusted the level of statistical significance
(p-value) of a single test so that the overall false control is
still at a low level. While correction methods based on the
family-wise error rate provide the most stringent control of false
positives, we applied the FDR standard method according to
Benjamini and Hochberg (1995) to better balance the false and
hit and increase the power of GWAS (Zheng and Zhuo, 2017),
as recently adopted in wheat (Ladejobi et al., 2019). In addition,
we counterbalanced potential false positive associations due to
statistical inferences (Liu and Yan, 2019) and other unaccounted
factors, such as low-accuracy genotype calling at some loci
(Browning and Yu, 2009) or small population size (Finno et al.,
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2014) by cross-population and cross-species validation. The
successful validation of candidate genes in the two different sets
of experimental hybrids renders true associations more likely.
This approach enabled to achieve high power in our rye GWAS
to detect associations between SNPs and traits. The identified
marker-trait associations reflect an appropriate sample size and
substantial genetic diversity that determined the phenotypic
variance of target traits in the studied elite germplasm. The
rapid LD decay and rich genetic diversity of outbreeding species
like rye are known to increase power in GWAS as compared
with self-fertilizing species (Huang and Han, 2014). The GWAS
reported in the present study serves as a foundation experiment
by providing insights into the genetic architecture of important
traits for rye improvement, allowing the targeted choice of
parents for subsequent experiments, like candidate gene knock-
out, over-expression, or genetic complementation, that are, in
any case, indispensable to validate genes underlying the analyzed
traits. Hybrid rye breeding offers a further and pragmatic cross-
validation strategy of a single genomic locus with possible
influence on the phenotype. The high-quality genome sequences
of rye (Li G. et al., 2021; Rabanus-Wallace et al., 2021) enable the
extension of sequence information for an efficient transformation
of DArTseqTM-based SNPs to single-plex Kompetitive Allele-
Specific PCR (KASP) (Semagn et al., 2014) assays. These KASP
markers will be used in progenies segregating for the superior
(S) or inferior (I) SNP alleles to select and establish near-isogenic
genotype bulks (NIB) of homozygous F3 lines, which will serve
as pollinators in crosses with male-sterile single-cross testers
between isolation walls (Supplementary Figure 1). The genetic
makeup of these hybrids enables to precisely estimate phenotypic
effects, recorded in target environments of rye production, as the
difference (1S-I) between the means of individual NIB partners,
which either carry the S or the I allele at the candidate gene. This
approach can, henceforth, take on central importance in ongoing
efforts to isolate and characterize specific loci and bridge the
genotype-phenotype gap for precision breeding in rye. However,
it needs to be considered that the correlation between variants
at a locus due to LD in experimental hybrids that have been
established based on elite inbred lines further challenges the
identification of causal variants, just as it is hard to find true signal
overlaps between a GWAS and a QTL signal. Approaching target
genes in gametes captured from random-mating rye populations
with rapid decay of LD (Li et al., 2011) offers to overcome this
challenge as well.

To conclude, the SNP catalog published with this paper can
assist scientists to discover and use functional diversity in rye
and related Triticeae species that may be essential for meeting
the compulsions to act in modern agriculture under the directive
of the multiple challenges concerning global food security (Lal,
2016; Liu et al., 2020).

An Extended View on the Genetic Basis of
Variation for Complex Traits in Rye
Knowledge of genomic regions controlling complex traits is
the key to our understanding of mechanisms behind trait
architecture and for using them in marker-assisted crop

improvement programs. In the present study, both progeny sets
of experimental rye hybrids from controlled crosses resulted
in adequate statistical power to detect QTL, including those
with small effects, and precisely map them in the ‘Lo7’ genome
assembly. For all traits studied, a substantial proportion of the
phenotypic variation can be explained with few loci of large
effect, with the remainder due to numerous loci with small effect.
QTL with large effects accounting for substantial proportions of
phenotypic variance is well-known (Remington and Purugganan,
2003; Mackay, 2004; Roff, 2007) and has been identified in
biparental rye mapping populations as well (Miedaner et al.,
2012; Hackauf et al., 2017a). The large-effect QTL observed
in the present study fit the model developed by Orr (1998),
which suggests that natural selection validates mutations with
large effects at the beginning of an adaptation process with
a maximum of adaptive space, while, later on, in the process
when the organism has essentially reached its optimum state,
the space is narrowed and successful mutations must have
smaller effects. In rye, an impressive selection gain for TGW
from initially 19 g up to 57 g in a random mating population
within two decades of breeding (Dill, 1983, 1989) supports the
assumption that major genes controlling grain phenotypes exist.
This conclusion is in line with high-heritability estimates and
a preponderance of additive inheritance reported early on for
TGW in rye (Wolski et al., 1972). Subsequently, major genes
responsible for a substantial part of the heritable variance of
grain weight in rye have been identified (Wricke, 2002; Skoryk
et al., 2010). While the two complementary acting genes Kernel
weight 5 (KW5) and KW7 have been genetically (Wricke, 2002)
and physically (Hackauf et al., 2021) mapped on chromosomes
5R and 7R, respectively, map positions of the genes lg (large
grain) and tg (thick grain) identified by Skoryk et al. (2010) are
unknown. It is worth noting in this context that there are seven
major QTLs identified in the present study on chromosomes 2R,
4R, and 6R, each explaining more than 30% of the phenotypic
variance for TGW. Interestingly, one of these QTL explaining
42.7% of the phenotypic variance is located just 3,443 bp
upstream of the amino acid transporter SECCE4Rv1G0251940
on chromosome 4R. Most recently, overexpression of the amino
acid transporter TaAAP13 in wheat has significantly increased
grain size, grain nitrogen concentration, and thousand-grain
weight, indicating that the sink strength for nitrogen transport
was increased by manipulation of amino acid transporters (Wan
et al., 2021). The large-effect QTL, like those described for TGW
and identified for GYD, HDT, GPC, STC, TAX, and WAX, are
promising targets for successful marker-assisted selection in rye-
improvement programs. Likewise, DNA markers derived from
functionally characterized sequence motifs explaining part of
the genetic variance have been shown to improve the predictive
ability of genomic selection models in plant breeding (Spindel
et al., 2016; Bian and Holland, 2017; Liu et al., 2019; Rice
and Lipka, 2019). The present study reports SNP markers in
candidate regions and genes for nine agronomic and quality traits
of rye identified by GWAS methods. The distribution of the
cross-validated SNPs indicates no accumulation of SNPs within
short Mbp ranges, except for few loci governing TGW on 7R or
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PHT on 2R. This observation is in line with the expectation for a
cross-fertilizing species with a fast decline of LD.

We dissected trait correlations at the gene level and
identified a subset of cross-validated SNP on protein-coding
sequences associated with more than one trait. Genetic
trait correlations might result either from pleiotropy or
linkage disequilibrium. The predominant genetic basis of trait
correlations is controversial and comprehensively reviewed
by Chen and Lübberstedt (2010). The genetic diversity in
the protein-coding sequences of the ‘Lo7’ genome assembly
described in the present study provides candidate genes to
further dissect the associated trait correlations based on dedicated
genetic and genomic approaches.

Conserved Genetic Architecture for
Complex Traits in Rye and Rice
Rice was the first sequenced crop genome, paving the way
for the sequencing of additional and more complex genomes
within the grass family (Jackson, 2016). Along with large-
scale high-throughput genome-sequencing projects (Wang et al.,
2018), rice genomics advanced our understanding of molecular
mechanisms-controlling agronomic traits (Li et al., 2018; Song
et al., 2018; Yao et al., 2018) and pioneered the direct transfer
of basic research to field applications (Wang and Li, 2019;
Wang et al., 2021). The common evolutionary origin of the
grasses (Pont et al., 2019) served to make use of the rice
genome sequence as a blueprint for marker development in rye
(Hackauf and Wehling, 2005; Hackauf et al., 2012, 2017b). High-
throughput transcriptmapping, chromosome survey sequencing,
and integration of conserved synteny information of model grass
genomes identified 17 conserved syntenic linkage blocks, making
up the rye genome in comparison to model grass genomes,
including rice (Martis et al., 2013). In wheat and barley, yield-
related genes have been identified based on their orthologous
genes in rice [cv. Nadolska-Orczyk et al. (2017) for review].
Most recently, 237 orthologs of cloned rice QTL have been
reported as candidate genes for yield and yield-related traits
in a Meta-QTL (MQTL) analysis in bread wheat (Yang et al.,
2021). BLASTP sequence similarity searches revealed that neither
of the 237 wheat genes correspond to any of the ‘Lo7’ gene
models associated with yield and yield-related traits in rye. This
observation may be attributed to the relatively long linkage
disequilibrium decay distance of wheat and a considered co-
localization of associated markers obtained from GWAS and
an MQTL within a 5-Mb physical region (Yang et al., 2021).
The relevance of rice as a model crop for agronomic important
traits in grasses is further emphasized by comparative genomic
analyses that identified ortho-MQTL at co-linear regions between
rice, barley, and maize, respectively (Khahani et al., 2020).
The comparative analysis between rye and rice for similar or
homologous traits conducted in the present study identified a
conserved genetic architecture for agronomic traits that served as
cross-species validation of individual MTAs. As a consequence,
the commonality between the quantitative trait physiology and
the biochemical function of a gene improves our understanding
of the molecular nature of QTL in rye and extends our

knowledge about causal quantitative trait gene(s) (QTGs) in
complex cereal genomes. Given a close evolutionary relationship
among grass genomes (Pont et al., 2019), the genomic resources
that have been developed for rye (Bauer et al., 2017; Li G.
et al., 2021; Rabanus-Wallace et al., 2021) in combination with
options of sophisticated experimental designs offered by hybrid
rye breeding (Supplementary Figure 1) enable a systematic
evaluation of the rich genetic diversity of rye in orthologs of
cloned rice QTL for the discovery of gene function to further
advance genomics-assisted Triticeae improvement.

SMART Breeding for Ergot Defense in Rye
The GWAS described in the present study offers novel options
for the selection with markers and advanced reproductive
technology (SMART) breeding (Davis et al., 1997) to promote
the genetic improvement of rye in terms of high yield
potential and minimized risk of ergot infestation. Because
of the toxicity of ergot sclerotia for humans and animals,
the European Commission (EC) Regulation (EU) 2021/1399
amending Regulation (EC) No. 1881/2006 further lowers
maximum levels of ergot sclerotia and ergot alkaloids in rye
and rye-milling products to 0.2 g/kg as from 1.7.2024. The
inclusion of ergot reaction in the German national listing trials
is attributed to the genetic diversity of winter rye cultivars
in their susceptibility to ergot (Miedaner et al., 2010) and
motivated the development of cultivars with improved ergot
defense. CMS-based hybrids with an unsatisfactory restoration
level and reduced pollen shedding are notably susceptible to ergot
as the fungal spores have no competitors during the infection of
the stigmatic tissue (Hackauf et al., 2012, 2017b). Restorer-of-
fertility (Rf ) genes are of central importance for cereal hybrid
breeding, both for minimizing ergot infestation (Miedaner et al.,
2010), as well as achieving maximum seed setting (Whitford
et al., 2013). Indeed, P-type rye hybrids carrying an effective
Rfp gene suffer from a significant reduction in grain yield
(Miedaner et al., 2017). As a consequence of the high yield
penalty, a restricted integration of restorer genes like Rfp1
from weedy rye (Hackauf et al., 2012) in the pollinator gene
pool, gaining a restorer index of ∼50%, is considered as a
feasible practice (Miedaner et al., 2017). However, it needs to
be considered that rainy weather at a flowering time reduces
pollen shedding and pollenmovement. As wet pollen agglutinates
and distributes over short distances only, a restorer index of
∼50% may result in insufficient quantities of pollen to combat
the fungus adequately. In order to comprehensively reduce
the risk of ergot infection in hybrid rye, varieties should be
developed with a restorer index of 100%, i.e., restoration of
male fertility in every single plant of hybrid rye. This strategy
is the key to support short-distance pollen distribution, as
hybrid rye is able to set seeds upon self-pollination, just like
wheat or barley. The associations between genetic causes of
phenotypic variation in yield and yield components identified
in ‘Lo7’ gene models in the present study enhance marker-
assisted approaches to improve the ergot defense of rye that is
currently solely focused on quick and accurate tracking of Rfp
genes (Hackauf et al., 2012, 2017b). Knowledge of major QTL-
controlling TGW like that residing in close proximity of the
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amino acid-transporter SECCE4Rv1G0251940 offers a chance
to precisely assess natural genetic diversity and counterbalance
linkage drag effects of effective Rfp genes, as TGW counts among
the traits negatively affected by Rfp genes (Miedaner et al., 2017).
SNPs identified in ‘Lo7’ gene models-encoding proteins with a
crucial role in plant development like SECCE3Rv1G0201750 or
SECCE7Rv1G0479810 provide valuable means for this purpose
as well. A particularly attractive target to counterbalance fitness
costs of Rfp genes measurable as inferior performance in GYD is
SECCE3Rv1G0183650. SECCE3Rv1G0183650 is the ortholog of
OsDWT1, a WUSCHEL-related homeobox (WOX) transcription
factor that promotes tiller growth downstream of SLR1 in rice
(Wang et al., 2014). The number of tillers produced per plant
is controlled by the environment during the period of tiller
development from the three-leaf stage to jointing and the amount
of tiller mortality that occurs from jointing to anthesis (Shaaf
et al., 2019; Tilley et al., 2019). Recently, empirical data have
expanded our understanding of the physiological mechanisms
underpinning the yield response to plant density. While a high
tillering potential reduces the agronomic optimum plant density
in both high and low yield environments, at per-plant scale, a
compensation between heads per plant and kernels per head
was the main factor contributing to yield with different tillering
potentials under varying yield environments (Bastos et al., 2020).
Knowledge of genes like SECCE3Rv1G0183650 and the cross-
validation strategy described before (Supplementary Figure 1)
further advances our knowledge of this critical yield component
in order to develop rye varieties with an optimal and
environmentally stable tillering potential.

Advancing Rye to an Authentic
High-Performance Crop With Diverse
End-Use
Arabinoxylans are non-starch polysaccharides and the
predominant components within the endosperm cell walls in
rye and, to a lesser degree, in wheat (Buksa et al., 2016; Freeman
et al., 2016; Oest et al., 2020). High AX content increases the
falling number, dough yield, bread volume, and bread shelf
life (Buksa et al., 2010; Oest et al., 2020). Current methods of
rye breeding and the growth under severe drought conditions
in a changing climate are thought to negatively influence
bread qualities, which demands improved understanding of
the mechanisms by which proteins, starch, and AX—the most
prominent hemicelluloses—might interact (Oest et al., 2020). To
increase the value of rye as livestock feed, a low-WAX content is
currently considered as a desired grain phenotype (Kobylyansky
et al., 2019), in sharp contrast to the optimal needs for bread
making (Buksa et al., 2010; Oest et al., 2020). Interestingly,
recent research has provided a novel momentum concerning
the value of rye AXs for pig feeding. Indeed, beneficial changes
in the physicochemical characteristics of digesta of young pigs
due to increased rye levels in the diet have been attributed to
the very high content of AXs as the predominant “dietary fiber”
content of rye, which is beneficial for improving “gut health,” an
important parameter in terms of animal health, animal welfare,
and food safety (Wilke et al., 2021). In any case, the evaluation of

end-use quality parameters likeWAX asks for molecular markers
that are currently not available for large-scale genotyping of
WAX in rye. Our cross-species validation did neither for TAX
nor WAX result in the identification of obvious candidate genes.
This observation might refer to higher selection pressure on
genes controlling these grain-quality parameters in rye or a lack
of synteny in rye and rice. However, cross-population validation
identified 31 and 15 protein-coding genes, respectively, that
deserve a more detailed examination. Remarkably, more than
30% of the cross-validated protein-coding genes associated
with WAX are predicted to encode protein kinases, including
receptor protein kinases. Receptor protein kinases are discussed
to sense cell-wall perturbations originating from osmotic stress
(Zhu, 2016). Stress upregulates the expression of expansins
and xyloglucan-modifying enzymes that can remodel cell
walls (Tenhaken, 2015). Notably, we identified an association
of SECCE6Rv1G0407620, encoding a Xyloglucan alpha-1,6-
xylosyltransferase and WAX. Most interestingly, we identified
major effects (R2

> 10%) of a SNP in the receptor protein
kinase-like gene model SECCE4Rv1G0223400 on WAX.
This observation supports previous research highlighting the
impact of receptor protein kinases function in stress responses
(Marshall et al., 2012). Further studies will demonstrate if
SECCE4Rv1G0223400 is the supposed key regulator of WAX
that contributes to improving performance of rye under drought
stress. Likewise, in-depth analysis of SECCE4Rv1G0223400
for functional SNPs controlling WAX content depicts an
innovative example for SMART breeding of high-quality feed
rye varieties with stable contents of WAX. The identification
of natural genetic diversity controlling these grain quality traits
is particularly important for commercial rye breeding, as the
ability to substantially increase TAX and WAX appears a crucial
adaptation strategy to drought stress in rye. The knowledge
gained in the present study is consistent with previous research
in wheat, reporting on increased concentration of AX upon
drought stress (Hong et al., 1989; Coles et al., 1997; Gebruers
et al., 2010; Rakszegi et al., 2014). AXs are the dominant non-
cellulosic polysaccharides in the thick aleurone cell walls in
cereal grains, and the second most abundant component in the
starchy endosperm cell walls after (1,3;1,4)-β-glucan (Rosicka-
Kaczmarek et al., 2016; Hassan et al., 2017). The increase in
the dietary fiber AX in rye and wheat under drought stress
conditions contributes to remodeling the cell wall composition
as a strategy in response to abiotic stress (Tenhaken, 2015). In
barley and wheat, AX constitutes 4.2–9.6% and 4.1–9% of grain
dry matter, respectively (Martinant et al., 1999; Izydorczyk and
Dexter, 2008; Andersson et al., 2009). The effective tolerance of
rye toward drought stress (Schittenhelm et al., 2014) is mirrored
by the largest amounts of grain AX among cultivated Triticeae
species, ranging from 8 to 12.1% (Rosicka-Kaczmarek et al.,
2016). As efficient responses to purifying selection as well as
significant genetic gains in agronomic traits were feasible not
before hybrid breeding started 50 years ago (Laidig et al., 2017),
high AX content of rye grains could evolve due to long-lasting
natural selection of random mating rye populations in harsh
European environments north of the alps on poor, podsolic
soils. The significant (p < 0.001) negative correlation between
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GYD and WAX in 2011 refers to a changed carbon allocation
and metabolism that resulted in energy dissipation in terms of
declined yield. Recent progress in developing random mating
feeding rye with low content of WAX (Kobylyansky et al., 2019)
has demonstrated that this relationship can be overcome by
breeding. For the selection of genotypes with low content of
WAX in Central European rye breeding programs, line per
se performance in well-defined drought stress conditions of
rain-out shelters appears a promising strategy due to lower costs
of seed production, the higher selection intensity, and the larger
proportion of additive genetic variance exploited in inbred lines
as compared to hybrids (Miedaner et al., 2014). The significant
but weak phenotypic correlation rP = 0.25–0.28 between line
per se and testcross performance reported for WAX (Miedaner
et al., 2014) probably refers to the different environmental
conditions of field experiments conducted by Miedaner and
co-workers in 2010 and 2011 and should, thus, not compromise
the proposed selection strategy. Levels of precipitation were
higher, and average temperature was lower in 2010 as compared
to the long-term mean [DWD (Deutscher Wetterdienst), 2010]
and the already described natural drought stress in 2011. The
cross-validated SNP markers identified in the present study
provide essential targets for further research to overcome the
strong impact of the environment on TAX and WAX by an
efficient and accurate selection of suitable genotypes for the
development of rye with certified grain qualities.

Conclusions
Despite formidable achievements, major challenges in rye
production remain. Breeding of cultivars with high yield
potential, strong ergot defense, and tailor-made grain qualities
is inevitable to further advance rye from an all-rounder to an
authentic high-performance crop with different and certified
types of end-use. For this purpose, further progress in rye
phenomics and functional genomics research is necessary
to associate genome sequence information with phenotypes
related to rye growth and development. The present study
reports candidate regions and genes in the recently published
‘Lo7’ high-quality genome assembly (Rabanus-Wallace et al.,
2021) for nine agronomic and quality traits of rye identified
by GWAS methods as a crucial step to make previously
hidden genetic variation accessible to genetic studies and
breeding of rye. The observed rich genetic diversity of elite
rye germplasm, together with a bulked segregant phenotyping
strategy of testcross performance in multi-environmental field
trials, supports previous arguments (Hackauf et al., 2017a)
for a stronger utilization of rye in research directed to the
identification of valuable alleles for Triticeae improvement
programs. To conclude, the genomic data generated in this
study improve our understanding of the allelic variation in
rye germplasm collections and will facilitate the advancing
of genomics-assisted rye breeding for variety improvement
as well.
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State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China

The ZIP (Zn-regulated, iron-regulated transporter-like protein) transporter plays an 
important role in regulating the uptake, transport, and accumulation of microelements 
in plants. Although some studies have identified ZIP genes in wheat, the significance 
of this family is not well understood, particularly its involvement under Fe and Zn 
stresses. In this study, we comprehensively characterized the wheat ZIP family at the 
genomic level and performed functional verification of three TaZIP genes by yeast 
complementary analysis and of TaZIP13-B by transgenic Arabidopsis. Totally, 58 TaZIP 
genes were identified based on the genome-wide search against the latest wheat 
reference (IWGSC_V1.1). They were then classified into three groups, based on 
phylogenetic analysis, and the members within the same group shared the similar 
exon-intron structures and conserved motif compositions. Expression pattern analysis 
revealed that the most of TaZIP genes were highly expressed in the roots, and nine 
TaZIP genes displayed high expression at grain filling stage. When exposed to ZnSO4 
and FeCl3 solutions, the TaZIP genes showed differential expression patterns. 
Additionally, six ZIP genes responded to zinc-iron deficiency. A total of 57 miRNA-
TaZIP interactions were constructed based on the target relationship, and three 
miRNAs were downregulated when exposed to the ZnSO4 and FeCl3 stresses. Yeast 
complementation analysis proved that TaZIP14-B, TaZIP13-B, and TaIRT2-A could 
transport Zn and Fe. Finally, overexpression of TaZIP13-B in Arabidopsis showed that 
the transgenic plants displayed better tolerance to Fe/Zn stresses and could enrich 
more metallic elements in their seeds than wild-type Arabidopsis. This study 
systematically analyzed the genomic organization, gene structure, expression profiles, 
regulatory network, and the biological function of the ZIP family in wheat, providing 
better understanding of the regulatory roles of TaZIPs and contributing to improve 
nutrient quality in wheat crops.

Keywords: wheat, ZIP gene family, expression profiles, yeast complementation, Zn/Fe stress, transgenic 
Arabidopsis, micro elements
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INTRODUCTION

Zinc (Zn) and iron (Fe), both essential in biochemical activities, 
are required for plant growth and development. Zn is an 
essential component for the metabolic enzymes that regulate 
enzymatic activity (Maret, 2004; Welch and Graham, 2004). 
Iron is also important for many enzymes, including cytochrome 
oxidase, peroxisome, and catalase, all of which play an important 
role in respiratory electron transport (Sadeghzadeh, 2013; Pinson 
et  al., 2015). During photosynthesis, Zn is linked with 
carbohydrate inversion and is involved in chlorophyll synthesis. 
Fe is an essential for some chlorophyll protein complexes in 
chloroplasts (Palmgren et  al., 2008). Although plant growth 
and development requires Zn and Fe, excessive amounts of 
Zn and Fe are harmful to the plant’s biological processes (Briat 
and Lebrun, 1999). As a result, plant cells have evolved multiform 
transport networks to balance the absorption, utilization, and 
storage of these metal trace elements (Kambe et  al., 2004; 
Taylor et al., 2004). These systems include the ZIP (Zn-regulated, 
iron-regulated transporter-like protein), CDF (Cation-Diffusion 
Facilitator), and HMA (Heavy Metal ATPase) proteins (Colangelo 
and Guerinot, 2006; Ajeesh Krishna et  al., 2020).

In plant, ZIP transporters are involved in transporting iron 
and metallic ions. Most ZIPs are composed of 326–425 amino 
acid residues. The number of transmembrane domains (TM) 
in ZIP transporters ranged from 7 to 8, while the TM length 
between III and IV varies and contains multiple histidine 
residues (Guerinot, 2000), that ZIP transporters combine metal 
ions to form octahedral, tetrahedral, and plane structures 
(Kavitha et  al., 2015). The first ZIP gene was reported in 
Arabidopsis, and many ZIP genes have been identified in recent 
years (Eide et  al., 1996; Guerinot, 2000; Pence et  al., 2000; 
Tiong et  al., 2015). The proteins of these genes can transport 
various divalent cations, including Fe2+, Zn2+, Mn2+, and Cd2+. 
Sixteen ZIP genes have been found in rice and Arabidopsis 
(Mäser et  al., 2001; Chen et  al., 2008).

The first ZIP gene identified was AtIRT1 in Arabidopsis, 
which primarily transports iron and is expressed in the roots. 
AtIRT1 was upregulated under iron-deficient conditions and 
is upregulated when exposed to a nickel solution (Eide et  al., 
1996). AtIRT1 was proven to transport Fe and Zn by yeast 
complementation assays. Further research demonstrated the 
irt1 mutant leaves were severely etiolate, with the leaf iron 
content decreased by 70% compared to the wild type (WT; 
Vert et  al., 2002). As the AtIRT1 transformed into irt1 mutant, 
the etiolation phenotype was alleviated (Krämer et  al., 2007). 
AtIRT2 is another IRT gene in Arabidopsis that has a similar 
function to AtIRT1, it can restore the ability to transport iron 
in yeast mutants (Vert et  al., 2001). AtZIP1 and AtZIP2 are 
two genes that primarily transport Zn. AtZIP1 is primarily 
expressed in the root and leaf vein, while AtZIP2 is highly 
expressed in the root column (Milner et  al., 2013). Subcellular 
localization analysis revealed that the protein of AtZIP1 is 
located on the vacuole membrane and the protein of AtZIP2 
is located on the plasma membrane. This difference in protein 
localization implies that AtZIP1 and AtZIP2 function keep 
differently. Functional validation revealed that AtZIP1 plays a 

key role in the reactivation of metal ions transported from 
the vacuoles to the root cytoplasm, whereas AtZIP2 is involved 
in Mn and Zn absorption from the roots. Both genes are 
crucial for a plant to absorb Mn and Zn through its root and 
transport them from the roots to the leaves (Milner et  al., 
2013). Previous studies have demonstrated that certain ZIP 
genes are involved in the response to Zn-deficiency in Arabidopsis 
(Grotz and Guerinot, 2006; Lee et  al., 2010b).

OsIRT1 and OsIRT2 are the primary transporters of Fe in 
rice (Ishimaru et  al., 2006; Li et  al., 2019a). These two genes 
are mainly expressed in the roots and are significantly upregulated 
when rice is exposed to Fe-deficient conditions (Ishimaru et al., 
2006; Itai et al., 2013). Overexpression of OsIRT1 in rice causes 
rice sensitivity to Zn and Cd, while also increase resistance 
to Fe-deficient stress (Ishimaru et  al., 2007; Nakanishi et  al., 
2010). At the seedling stage, there is no significant difference 
between the phenotype of the overexpression and the wild-
type varieties; however, at the adult stage, the overexpression 
variety had shorter and fewer tillers and lower yields compared 
to the wild type, while the Fe and Zn contents in the grains 
increased (Lee and An, 2009; Lee et  al., 2010b). OsIRT2 was 
similar to OsIRT1 in that the transport capability of Mn is 
less than OsIRT1 (Nakanishi et  al., 2010). Previous studies 
have revealed that the family members OsZIP3, OsZIP4, OsZIP5, 
and OsZIP8 also transported Zn in rice (Ramesh et  al., 2003; 
Lee and An, 2009; Lee et  al., 2010a,b; Kavitha et  al., 2015; 
Sasaki et  al., 2015). Nine ZIP genes were identified in maize 
and were located on the plasma membrane and endomembrane 
system. Yeast complementation demonstrated that all ZmZIP 
proteins can restore the iron transporter mutant fet3fet4, and 
that ZmIRT1 showed the strongest propagation under both 
Zn- and Fe-limited conditions (Li et  al., 2013).

ZIP proteins have been widely investigated in model plants 
such as rice, maize, and Arabidopsis (Eide et  al., 1996; Vert 
et al., 2001, 2002; Ishimaru et al., 2006; Li et al., 2013). However, 
few ZIP genes have been reported in wheat plants.

Sixteen ZIP genes have been identified in the wheat genome, 
though few studies have performed the expression analysis on 
these genomes (Tiong et  al., 2015; Evens et  al., 2017). Five 
ZIP genes in wheat were demonstrated to transport zinc and 
iron, these five ZIP genes were selected for analysis using 
yeast complementation since their sequence was similar to 
Zn-transporting ZIPs from Arabidopsis, rice, and barley (Tiong 
et  al., 2014, 2015; Evens et  al., 2017).

Wheat is a worldwide staple crop, feeding approximately 
35% of the world’s population (Peng et  al., 2011). As breeding 
technology and cultivation programs have increased, the 
production of wheat has risen. However, its nutritional quality 
has not improved: the Fe and Zn contents in wheat cannot 
meet human needs. Approximately two billion people suffer 
from Zn and Fe deficiency in South Asia and Sub-Saharan 
Africa. This deficiency has been called “hidden hunger,” and 
makes induces weight loss, cognitive impairment, anti-spasmodic 
decline, and often occurs in pregnant women, infants, and 
adolescents (Morgounov et  al., 2007). Genetic engineering is 
the most convenient, effective, and durable method of increasing 
the Zn and Fe content in wheat grain. Therefore, it is critical 
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to identify the genes involved in the uptake, transport, and 
enrichment of Zn and Fe in wheat. In this study, the ZIP 
genes in wheat were analyzed at the genomic level, three TaZIP 
genes were functionally validated by yeast complementation, 
and TaZIP13-B function was further verified by transgenic 
Arabidopsis. This research aims to uncover new candidate genes 
to improve the nutritional quality of wheat.

MATERIALS AND METHODS

Plant Materials
Two wheat varieties (ZhongMai175 and Xiaobaimai) and one 
rice variety (Oryza sativa L. japonica. cv. Nipponbare) were 
utilized in this research. ZhongMai175 is a high Zn wheat 
variety that allowing for analysis of the expression of TaZIP 
genes in wheat (He et  al., 2015). This line was planted at the 
experimental station of Northwest A&F University, Yangling, 
China (34°20'N, 108°24'E). Each row was 1 m wide with four 
duplicates, while the row spacing was 0.25 m and the plant 
spacing in each row was 0.05 m. At the 7 days after flowering 
stage (7 DAF), we  collected grain sample from one plant in 
each row which was mixed with liquid nitrogen. One week 
later, the second sample was obtained (14 DAF). Four samples 
were collected in this study; there are 7, 14, 21, and 28 DAF.

Xiaobaimai is a landrace, drought-tolerant wheat variety 
found in PingYao city (ShanXi Province, China). This variety 
contained low zinc and iron in grain. Culturing in a glass 
petri dish with two layers of filter paper containing 1/4 Hoagland 
solution and place at climate chambers (RXZ-500D-LED, Ning 
Bo) at a light/dark cycle of 16/8 h at 24°C for 10 days (Seedling 
two leaf). Then for analyzed the expression under Fe and Zn 
stress, wheat treated with Hoagland medium containing different 
concentrations of ZnSO4 and FeCl3 solutions for 1 h. In this 
study, the concentration of ZnSO4 and FeCl3 solutions was 
0.05, 0.5, 50 μmol/L. For investigated the expression under 
Zn- and Fe- deficient conditions, we  treated it with Hoagland 
medium lacking ZnSO4 (Zn-deficient), Fe (III)-EDTA 
(Fe-deficient).

Identification and Bioinformatics Analyses 
of TaZIP Genes
The sequence of the wheat proteins was downloaded from the 
Ensembl Plant database,1 after which the HMM profile for the 
ZIP DNA-binding domain (PF02535) was downloaded from 
the Pfam v31.0 database2 to search against the plant protein 
sequences using a threshold of E < 1e−5 (Finn et  al., 2016). 
Blast and manual corrections were then performed to remove 
alternative events and redundancy. The OsZIP genes were 
downloaded from the NCBI database,3 according to the methods 
used by Chen and Tiong (Chen et al., 2008; Tiong et al., 2014). 
The NJ phylogenetic tree was constructed with MEGA 7 and 

1 http://plants.ensembl.org/index.html
2 http://pfam.xfam.org/
3 https://www.ncbi.nlm.nih.gov/

EvolView4 based on the wheat and rice protein sequences, with 
1,000 bootstrap replicates. Putative TMHs of TaZIPs were 
predicted using the TMHMM Server v.2.0 (Krogh et  al., 2001). 
Subcellular location was predicted by the WoLF PSORT.5

Gene Structure and Conserved Motif 
Analyses
Gene structure was analyzed by GSDS.6 Protein conserved 
motifs were predicted using the MEME Suite web server,7 with 
the number of motifs set to 10, at a width range from 5 to 
200 amino acids.

TaZIP Genes and miRNA Co-expression 
Networks Construction
The miRNA target to the TaZIP genes was searched using the 
psRNATarget tool (Dai and Zhao, 2011), and the TaZIP cascade 
transcript was submitted in the miRBase. The cytoscape tool8 
was used to visualize the regulatory network of the-miRNA 
and TaZIP genes.

RNA and miRNA Isolate and Expression 
Pattern Analysis
For wheat tissue expression pattern analysis, the expression 
pattern data were downloaded from the RNA-seq database.9 
For the expression pattern at grain filling stage and under Zn 
and Fe stress assay, RT-qPCR was used. Total RNA was isolated 
from the wheat grains and wheat, rice leaves using an RNAprep 
Pure Plant Kit (Tiangen, Beijing, China) and from the seedlings 
with TRIZOL (Takara, Dalian, China). cDNA synthesis was 
performed in a 20 μl reaction mixture containing 1 μg of total 
RNA and a mixture of TIANscript RT Kit (Tiangen, Beijing, 
China). The real-time PCR mixture contained 1 μl cDNA, 1 μl 
forward and reverse primers, and 17 μl SYBR Green (Tiangen, 
Beijing, China). Real-time qPCR was performed in an ABI7300 
(Thermo Fisher Scientific, United  States) Real-TimeThermal 
Cycler and repeated three times. The actin of the wheat genes 
(Gene ID: AB181991) was used as a control. The 2−∆∆Ct method 
was used for fluorescence quantitative data analysis (Livak and 
Schmittgen, 2001).

The miRNAs of the wheat seedling under ZnSO4 and FeCl3 
stresses were extracted using a miRcute miRNA Isolation Kit 
(Tiangen KR211, Beijing, China). miRNA-cDNA synthesis was 
performed with miRcute and miRNA First-Strand cDNA Kit 
(Tiangen KR211, Beijing, China). The real-time reaction mixture 
was performed with miRcute Plus miRNA qPCR Kit (SYBR 
Green; Tiangen FP411, Beijing, China) with three biological 
replicates. The qPCR reaction conditions were 95°C for 15 min, 
followed by 45 cycles of 94°C for 20 s, and 58–60°C for 34 s. 
Data of miRNA-qPCR were analyzed using the 2−∆∆Ct method.

4 https://www.evolgenius.info/evolview/#login
5 https://wolfpsort.hgc.jp/
6 http://gsds.cbi.pku.edu.cn/
7 http://meme-suite.org/
8 http://www.cytoscape.org/
9 http://www.wheat-expression.com/

181

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://plants.ensembl.org/index.html
http://pfam.xfam.org/
https://www.ncbi.nlm.nih.gov/
https://www.evolgenius.info/evolview/#login
https://wolfpsort.hgc.jp/
http://gsds.cbi.pku.edu.cn/
http://meme-suite.org/
http://www.cytoscape.org/
http://www.wheat-expression.com/


Li et al. Identification of Wheat ZIP Gene

Frontiers in Plant Science | www.frontiersin.org 4 November 2021 | Volume 12 | Article 748146

Cloning of TaZIP and OsZIP Genes
The CDS and ORF sequences were obtained from the Wheat 
Sequence database.10 The primers were designed with  
Oligo 7, with three genes cloned. In this step, the RNA of 
Xiaobaimai and Oryza sativa L. seedling was used for cDNA 
synthesis. The PCR reaction solution was 50 μl and contained 
the following: 5 μl cDNA as an amplification templet, 2.5 μl 
forward and reverse primers, 25 μl 2 × master Mix, and 15 μl 
Nuclease free water (NEB, United States). The reaction solution 
was performed on a DNA amplification machine (Thermo 
Fisher Scientific, United  States). PCR amplification procedures 
were as follows: initial denaturation at 98°C for 30 s, followed 
by 35 cycles of denaturation at 98°C for 10 s, annealing at 
60°C for 20 s, extension at 72°C for 30 s, while the final extension 
was at 72°C for 2 min. After amplification, we added 7 μl purple 
2-Log Ladder (NEB, United  States) to the PCR products and 
separated them on 1.5% agarose gel for 30 min at 120 V. After 
they were separated, the PCR products were purified using a 
Universal DNA Purification Kit (Tiangen, Beijing, China) and 
connected to the cloning vector pLB (Tiangen, Beijing, China), 
and sequenced.

Yeast Complementation
Specific primers were designed for PCR amplification and 
constructing the expression vector. The PCR procedure is the 
same as above, except for the annealing, which took place at 
70°C for 20 s. The PCR products were spread on agarose gel 
and linked to the BamH I site of the yeast expression vector 
pDR195 (PLASMID, China). They were subsequently sequenced 
and transformed into yeast competent cells. The yeast competent 
cells were prepared according to the methods used by Gietz 
and Schiestl (1995). Three yeast strains were used in this 
experiment: DY1455 (MATa ade6 can1 his3 leu2 trp1 ura3), 
fet3fet4 DEY1453 (MATa/MATa ade2/+ can1/can1 his3/his3 
leu2/leu2 trp1/trp1 ura3/ura3 fet3-2::HIS3/fet3-2::HIS3 fet4-
1::LEU2/fet4-1::LEU2), and zrt1zrt2 ZHY3 (MATa ade6 can1 
his3 leu2 trp1 ura3 zrt1::LEU2 zrt2::HIS3; Li et  al., 2013). 
The pDR195-TaZIPs were converted to DEY1453 and ZHY3 
with the lithium acetate conversion method used by Gietz 
and Schiestl (1995). To verity the experiment was performed 
properly, OsIRT1, OsZIP3, and OsZIP5 as well as converted 
to yeast competent cells as positive controls, the wild-type 
strain DY1455 harboring pDR195 was also used as a positive 
control. The empty vector pDR195 was used as a negative 
control converted to two yeast mutants. Transformed cells 
were coated on the selective SD-URA solid medium without 
corresponding amino acids. To verify the gene function, 
we  diluted the yeast liquid OD600 to 1, 0.1, 0.01, 0.001, and 
dropped 10 μl yeast liquid onto a different medium. The yeast 
strain of zrt1zrt2 ZHY3 was grown on an SD/–ura medium 
(pH 4.4) supplemented with 0.4 mM EDTA or 300 μM ZnSO4. 
The yeast strain of fet3fet4 DEY1453 was grown on SD/–ura 
medium (pH 5.8) containing 50 mM 2-(4-Morpholino) 
ethanesulfonic acid (MES) supplemented or 200 μM FeCl3.

10 https://wheat-urgi.versailles.inra.fr/Tools

Phonotype Analysis in Arabidopsis
Specific primers were used for vector construction, the expression 
vector PCAMBIA1302 and the Nco I site were used for gene 
construction. After sequencing, the overexpression plasmid of 
PCAMBIA1302-TaZIP13 was transferred into the GV3101 
(Agrobacterium tumefaciens) strain and transformed into 
Arabidopsis. The transgenic lines were cultured in a light 
temperature incubator until they were propagated for the third 
generation. The homozygous plants of the T3 progeny and 
WT were used for further study.

For the germination assays, the seeds of wild type and 
transgenic lines were surface sterilized and kept at 4°C 
for 72 h in the dark before germination. About 25 seeds 
of every genotype were sown on the same plate containing 
different concentration of FeCl3 and ZnSO4 solution MS 
medium at 22/20°C (day/night) with a photoperiod of 16/8 h 
(day/night) for 7 days. Each day germinated seeds with 
protruded radicles were counted. The concentration of FeCl3 
and ZnSO4 solution was 0, 50, 200, 300 μmol/L. After 
germinated seeding were counted, four Arabidopsis lines 
were cultured until they were at six leaf stage, then the 
root length of 30 seedings from each line was measured 
and photographed. On the other hand, four lines from 
MS medium were transplanted into soil and treated with 
different concentrations of FeCl3 and ZnSO4 to analyze the 
tolerance. In this study, the concentration of ZnSO4 and 
FeCl3 was 200, 300, 400 μmol/L. After 2 weeks, a 0.15 g of 
each sample leaf was collected and determine the chlorophyll 
content according to the methods used by Richardson et  al. 
(2010). And three leaves of each line were collected and 
taken the midsection epidermis of the leaves to observe 
the stomas.

Seeds of Light Microscopy, and Root 
Length, Fe and Zn Contents
Four lines were treated with water until maturity. Then seeds 
from the siliques located in the basis of a major inflorescence 
were selected for observation. Seeds from WT and transgenic 
lines were randomly selected, then photographed using 
stereomicroscope (Olympus mzx7) and a test instrument (WAN 
SHENG, HiCC-A). For the Zn and Fe content assays, 0.15 g 
plant shoots, roots, and seeds of Arabidopsis were collected 
and digested in 2 ml HNO3 overnight, then 2 ml H2O2 was 
added and completed the digestion by microwave treatment, 
after which the digests were diluted with Millipore-purified 
water and filtered. The volume was then adjusted to 25 ml, 
was ICP-OES analyses using an ICAP 6000 Series spectrometer 
(Thermo-Fisher; Hansen et  al., 2013). For metal content 
measurements, three samples were conducted for each line. 
Each sample (shoots, roots, and seeds, respectively) was a mix 
of 15 plants.

Statistical Analysis
The length of roots, length and width of seeds were counted 
by ImageJ software (Rueden et  al., 2017). Data were analyzed 
and graphs were drawn using Excel 2019 (Microsoft Corporation, 
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United  States). In all graphs, error bars indicate standard 
deviation, and significant differences are indicated with *p < 0.05 
or **p < 0.01.

RESULTS

Identification and Classification of ZIP 
Genes in Wheat
A total of 58 ZIP genes were identified using a whole-genome 
search (Figure  1; Supplementary Table S1; Supplementary 
Figures S1, S2), of which 44 wheat ZIP genes were found to 
share an orthologous relationship with rice. These were named 
according to rice-related nomenclature (Figure 1). The remaining 
genes were named from TaZIP17 to TaZIP30, based on their 
location on the chromosome, from 1A to 7D (Supplementary 
Figure S2). Our results demonstrated that the TaZIPs were 

unevenly distributed on the chromosomes, and no ZIP genes 
located on the fifth chromosome group. The length of the 
TaZIP amino acids ranged from 185 to 577 and contained 
between 3 and 13 transmembrane domains. Most contained 
between 7 and 9 TM, while the length between TM-3 and 
TM-4 varied. Subcellular localization of the TaZIP genes was 
found to be  on the plasma membrane and nucleus 
(Supplementary Table S1).

We constructed the phylogenetic relationship of the 
wheat ZIPs with rice, maize, and Arabidopsis ZIP proteins 
(Figure  1 and Supplementary Tables S1 and S2). The 
results revealed that these ZIP proteins were classified into 
three groups. Group ZIPI and group ZIPIII included all 
species proteins, suggesting that these ZIP proteins have 
a conserved function in monocots and dicots. Only three 
monocot species were included in group ZIPII, including 
Arabidopsis, suggesting that these proteins are unique to 

FIGURE 1 | Phylogenetic tree of ZIP (Zn-regulated, iron-regulated transporter-like protein) proteins based on the full-length protein sequences using the neighbor-
joining method. The three different groups are indicated by different colors. The proteins of rice, Arabidopsis, and maize are indicated by different shapes.
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monocot. The wheat proteins are consistent with those of 
rice and maize, except for ZmZIP5 and ZmZIP1. Six wheat 
ZIP genes showed a close relationship with OsIRT1, OsIRT2, 
AtIRT1, and AtIRT2, suggesting that these six TaZIPs shared 
a similar function with OsIRT1, OsIRT2, AtIRT1, and 
AtIRT2, all of which are involved in Fe transport in wheat. 
The wheat proteins are evenly distributed on three  
branches.

Gene Structure and Conserved Motifs of 
TaZIP Genes
To comprehensively understand the function of TaZIPs, 
we analyzed their gene structure and conserved motifs (Figure 2). 
ZIP size ranged from 836 to 14,494 bp (Supplementary Table S1). 
Of these, the TaZIP28 gene was the shortest and the TaZIP27 
gene was the longest. The number of introns varied from 0 
to 11, and the number of exons ranged from 1 to 12. TaZIP27 

A B C

FIGURE 2 | Gene structures and conserved motifs of these identified 58 TaZIP proteins. (A) Phylogenetic relationship of these 58 TaZIP genes; (B) exon-intron 
structures of these TaZIP genes. Blue boxes represent UTRs, gray boxes represent exons, and gray lines represent introns; (C) conserved protein motifs of these 
TaZIP proteins. The boxes in different colors represent different motifs, and the gray lines represent non-conserved sequences.
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had the largest size, TaZIP16-A, B, D and TaZIP13-A, B, D 
had the most exons (up to 12). In addition, TaZIP28 has only 
one exon. Genes sharing a closer phylogenetic relationship 
had a more similar gene structure.

Using the MEME tool, 10 conserved motifs were identified 
in the wheat ZIPs (Figure  2 and Supplementary Table S3). 
The conserved motifs of the same group were similarly organized. 
Almost all TaZIP proteins possess motif 3 because it contains 
a histidine residue that binds to metal ions for transmembrane 
transport. All TaZIP proteins in group ZIPI had motif 1 through 
motif 7, except for four truncated genes that lacked some of 
these motifs (TaZIP5-A, TaIRT1-D, TaZIP27, and TaZIP28). 
In group ZIPII, three TaZIP proteins (TaZIP14-A, B, D) only 
had motif 3, while other members have the same motif. In 
group ZIPIII, motif 8 was detected in TaZIP11-A, B, D, and 
motif 5 was only detected in TaZIP16-A, B, D. Group ZIPI 
had the most motifs, while group ZIPII and ZIPIII had different 
quantities of motifs.

Network Construction of TaZIP Cascade 
Genes
The putative miRNA-targeted TaZIP genes were analyzed to 
assess the network of miRNA and TaZIP genes. Our results 
demonstrated that 20 miRNAs were predicted to target 30 

TaZIP genes, while 28 TaZIP genes were not targeted by miRNA. 
This could be  due to the current limitations on wheat miRNA 
(Supplementary Table S4). Based on the target relationship, 
57 miRNA-TaZIP interactions were constructed (Figure  3). 
The wheat ZIP genes were inhibited by miRNA via translation 
(57.89%), while the rest of the genes were inhibited via cleavage 
(42.11%). Additionally, the miRNAs are primarily targeted in 
the CDS region but ahead of the ZIP domain of the TaZIP 
genes, silencing gene expression.

Furthermore, we  constructed the co-expression regulatory 
network to detect the interaction between the TaZIP genes 
and miRNAs using a dataset of 173 RNA-seq, based on the 
weighted correlation of their expression.11 tae-miR164 and 
tae-miR5384-3p had major target genes, 10 and 6, respectively, 
while the TaZIP25 and TaZIP27 genes were targeted by the 
greatest number of tae-miRNAs (five tae-miRNAs; Figure  3 
and Supplementary Table S4). Other genes targeted by a major 
number of tae-miRNAs were TaZIP20 (targeted by four 
tae-miRNAs), TaIRT2-D, TaZIP13-A, and TaZIP14-D (targeted 
by three tae-miRNAs). Three genes of TaIRT2-A, TaZIP14-B, 
and TaZIP13-B were targeted by two tae-miRNAs. Figure  3 

11 http://www.mirbase.org/

FIGURE 3 | Co-expression network of TaZIP cascade genes in wheat. Blue box: TaZIP gene in wheat; pink box: miRNAs found in wheat.
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demonstrates that miRNA164 targeted TaIRT2-A, miRNA9660-5p 
targeted TaZIP13-A, and tae-miR5084 targeted TaZIP14-B.

Expression Patterns of TaZIP Genes in 
Four Tissue and Grain Filling Stage
Overexpression of some ZIP genes may enhance zinc and iron 
content, thus enhancing grain and fruit quality. RNA-Seq data 
were downloaded for analyzed the tissue expression pattern. 
To investigate the expression pattern of the TaZIP genes in 
wheat grain, we  designed 39 primers for the fluorescence 
quantification of wheat ZIP genes (Supplementary Table S5). 
In total, 39 ZIP genes are expressed in wheat four tissues. 
Most were highly expressed in the roots but less in the grain 
(Figure 4A and Supplementary Table S6). Four genes (TaZIP4-
B, TaZIP4-A, TaZIP6-D, and TaZIP14-B) were highly expressed 
in the stem and three genes (TaZIP19, TaZIP6-A, and TaZIP2-A) 
were highly expressed in the leaves. Except for TaZIP16-A 

and TaZIP16-B, group ZIPIII was highly expressed in four 
tissues, particularly in the grain (Figure  4). There were also 
differential expressions pattern between homoeologs genes: 
TaIRT2-A and TaIRT2-B displayed high expression in wheat 
grain, while TaIRT1-D displayed low expression in wheat grain 
(Figure  4A and Supplementary Table S6).

We utilized gene expression levels at seven DAF as a control 
to better understand the expression pattern of TaZIP genes 
during the grain filling stage. The results showed that TaZIPs 
have significantly different expression levels (Figure  4B and 
Supplementary Table S6). Thirty-one TaZIP genes displayed 
downregulated expression, with the lowest expression levels at 
28 DAF. Eight TaZIP genes were highly expressed, but the 
expression trend was diverse, TaZTP7-B had highest expression 
in 28 DAF. At the grain filling stage, TaIRT2-A, D were also 
highly expressed. TaZIP14-B and TaZIP14-A were unique genes 
in that their expression was upregulated at the grain filling 
stage. The expression level of TaZIP14-B greatly increased, 

A B

FIGURE 4 | Expression profiles of TaZIP genes in different tissues (A) and at different grain filling stages (B). (A) RNA-seq data of roots, leaves, stems, and grains 
of the genotype Chinese Spring were download for the URGI database and used for expression profiles analysis. The expression level was determined by the 
fragments per kilobase per million (FPKM) calculated by StringTie v2.1.2 tool and log2 transformation was used for normalization. (B) The grain of genotype 
ZhongMai175 at different grain filling stages were collected and then used for qRT-PCR. The expression level was calculated according to the 2−∆∆Ct method. 
Relative mRNA abundance of each gene was normalized with TaActin gene. DAF means day after flowering. The error bars indicate standard deviations. Three 
genes highlighted in yellow were used for cloned for downstream study.
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while TaZIP14-A was expressed moderately. Both TaZIP13-B 
and TaZIP13-D were highly expressed, but their expression 
patterns were different. The expression levels of TaZIP13-D 
increased rapidly while TaZIP13-B displayed moderate expression 
(Figure  4B and Supplementary Table S6).

Expression Profiles of TaZIP Genes Under 
Zn and Fe Stress
We then analyzed the expression patterns of ZIP genes under 
different concentrations of ZnSO4 and FeCl3 solutions. Under 
low concentrations of ZnSO4 stress, almost all ZIP genes were 
upregulated, but their expression trends differed. Sixteen ZIP 
genes were highly expressed (value more than 1) under 
0.05 μmol/L ZnSO4 and decreased under 0.5 and 50 μmol/L 
conditions (Figure  5A). The expression of these genes was 
suppressed when Zn concentration increased. Eighteen genes 
were highly upregulated under the concentration of 0.50 μmol/L 
ZnSO4. Moreover, the expression of nine ZIP genes (TaZIP21, 

-TaZIP5-D, TaZIP5-B, TaZIP8-B, TaIRT1-D, TaIRT2-D, TaIRT2-A, 
TaZIP10-B, and TaZIP10-A) increased in 50 μmol/L ZnSO4. 
Especially TaZIP14-B, which displayed high levels of expression 
in the 0.5 μmol/L solution, but low expressed in the 50 μmol/L 
ZnSO4 solution. The TaZIP13-B gene was moderately expressed 
in the 0.05 μmol/L solution, while it was upregulated in other 
concentrations of ZnSO4 solution (Figure  5A and 
Supplementary Table S6).

The expression pattern of TaZIPs in FeCl3 was similar to 
ZnSO4. At low concentrations of FeCl3 solution, the expression 
of all ZIP genes was increased, but of which 16 genes were 
further suppressed or moderately upregulated under 0.5 and 
50 μmol/L FeCl3 treatment (Figure  5B and 
Supplementary Table S6). Furthermore, nine genes were highly 
expressed in the 0.05 and 0.5 μmol/L FeCl3 solutions. Eleven 
genes were highly expressed under 0.05 and 0.5 μmol/L of 
FeCl3 treatment. The genes TaZIP14-B, TaZIP13-B, and TaZIP7-A, 
B, D were all upregulated under high concentrations of FeCl3 
solution. The TaIRT1-D gene is key to transporting iron ions; 

A B

FIGURE 5 | Expression profiles of TaZIP genes under Zn or Fe stress through qRT-PCR analysis. The wheat seedling at two leaf stage of genotype Xiaobaimai were 
treated under standard nutrient condition (CK), 0.05, 0.5, 50 ZnSO4 (A) and FeCl3 (B) and the samples were harvested at 1 h after treatment. Data from qRT-PCR 
were analyzed according to the 2−∆∆Ct method. Relative mRNA abundance of each gene was normalized with TaActin gene. The error bars indicate standard 
deviations.
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however, its expression level under FeCl3 treatment is lower 
than under ZnSO4 treatment. Additionally, the expression pattern 
of TaIRT2-A, D was similar to that of TaIRT1-D (Figure  5B 
and Supplementary Table S6). We  also performed Fe and Zn 
starvation treatment that wheat seedlings at two leaf stage 
were treated with Hoagland nutrient solution as CK and 
Hoagland medium lacking ZnSO4 (Zn-deficient) or Fe (III)-
EDTA (Fe-deficient). After treated by 6 and 12 h, six genes 
were upregulated in roots and shoots and mainly expressed 
in roots (Supplementary Figure S3). TaIRT2-A, D were 
upregulated slightly under Zn-deficiency while highly expressed 
under Fe-deficiency. TaZIP13-B, D and TaZIP14-A, B were 
highly expressed under Zn-deficiency condition.

Expression Pattern of miRNA Under Zn 
and Fe Stress
To investigate whether miRNA degraded the ZIP genes, 
we analyzed the expression pattern of three miRNAs in wheat 
under ZnSO4 and FeCl3 solutions. These three miRNAs 
target TaIRT2-A, TaZIP14-B, and TaZIP13-B 
(Supplementary Tables S4 and S5).

Three miRNAs were slightly downregulated under 0.05 and 
0.5 μmol/L of the ZnSO4 solution compared with the control 
(Figure  6). tae-miR164 was also slightly downregulated in 
50 μmol/L ZnSO4 solution, while tae-miR5084miR5084 and 
tae-miR395a were slightly upregulated under 50 μmol/L of the 
ZnSO4 solution.

tae-miR164 displayed low levels of expression in the FeCl3 
solution compared with control, with the lowest expressed in 
0.5 μmol/L FeCl3 solutions. tae-miR395a and tae-miR5084 had 
similar expression patterns in the FeCl3 solution. These two 
miRNAs were downregulated in the 0.05 and 0.5 μmol/L FeCl3 
solutions, with the lowest expression in the 0.05 μmol/l FeCl3 
solution. However, under 50 μmol/L of FeCl3, these two miRNAs 
were upregulated slightly and did not differ from the control 
(Figure  6). The expression pattern of miRNAs contrary to the 
targeted genes.

Functional Analysis of Three TaZIPs by 
Complementation in Yeast Cells
After demonstrating that the three genes were upregulated 
when exposed to Zn and Fe stress, we  also revealed the 
biological function of three ZIP genes (TaZIP14-B, TaZIP13-B, 
and TaIRT2-A) by yeast complementation analysis 
(Supplementary Table S5). OsZIP3, OsZIP5, and OsIRT1 were 
chosen as positive controls, all of which have been demonstrated 
to be  involved in Zn and Fe transport in rice (Chen et  al., 
2008; Tiong et  al., 2014).

Three yeast strains wild-type DY1455, the Saccharomyces 
eviscerate zrt1zrt2 mutant (ZHY3), and the fet3fet4 mutant 
(DEY1453) were used, to verify that the three wheat TaZIP 
genes were capable of restoring the ability to transport zinc 
and iron in the mutant yeast. The full-length cDNA of both 
the wheat and rice genes were inserted and expressed in the 
two mutants. The transformed ZHY3 with TaZIP genes were 
grown on an SD medium with 0.4 mM EDTA and the transformed 

DEY 1453 were grown on a SD medium with 50 mM MES. 
The results demonstrated that the growth of the ZHY3 yeast 
with pDR195 was inhibited under zinc-deficient conditions in 
a normal SD-Ura medium, while the mutant with TaZIP genes 
and rice genes successfully recovered from the growth defect 
(Figure  7A). The TaZIP13-B gene reversed the growth defect. 
When the ZHY3 yeast was exposed to a 200 μM ZnSO4 medium, 
the growth of ZHY3 was not inhibited. The growth of DEY1453 
was similar to ZHY3 (Figure 7B). Under Fe-deficient conditions, 
the growth of DEY1453 containing a vector was severely 
inhibited, while the growth was reversed during the expression 
of TaZIP and rice genes. Once a sufficient amount of FeCl3 
was supplied, growth recovered. TaZIP13-B demonstrated the 
strongest propagation under Fe-deficient conditions. These 
results revealed that TaZIP14-B, TaZIP13-B, and TaIRT2-A 
could effectively complement the zinc transporter mutant zrt1zrt2 
and the iron transporter mutant fet3fet4, suggesting they could 
successfully transport Zn and Fe.

Gene Functional Analyzed by Arabidopsis 
thaliana
The TaZIP13-B gene was upregulated both at the grain filling 
stage and under Fe/Zn stress. The yeast complementation 
experiment proves that TaZIP13-B can transport Fe and Zn 
in a yeast mutant. Therefore, TaZIP13-B was transformed into 
Arabidopsis to verify this gene function. We selected lines OE-1, 
OE-2, and OE-3 with high expression levels for further analyses 
(Figure  8A).

On the MS, MS-Zn, and MS-Fe medium, the germination 
rate of the transgenic lines OE1, OE2, OE3, and WT approached 
100%, with no significant difference between transgenic lines 
and WT (Figures  8B,C). When treated with 50 μmol/L of Zn 
and Fe, the germination rate of four lines decreased, and no 
significant difference was observed between them (Figures 8B,C). 
When exposed to 200 μmol/L of Zn and Fe MS medium, the 
germinations of the OE1-3 line were significantly higher than 
the WT line. The germination rate of OE1 was 85.3%, while 
that of OE2 was 82.7%, OE3 was 93.3%, and WT was 46.7% 
in 200 μmol/L Fe MS medium. In 200 μmol/L Zn MS, the 
germination rates of OE1-3 were 89.3, 90.7, and 85.3%, 
respectively, while that of WT was 74.7%. Compared with 
OE1 and OE3, the transgenic line OE2 had the highest 
germination on 300 μmol/L Fe MS (up to 58.7%), while WT 
had a germination rate of only 22.7%. All three transgenic 
lines had significantly higher germination rates than WT line 
(Figures  8B,C).

Root length is another index used to evaluate plant tolerance 
to Zn and Fe stresses. We  found no significant difference in 
root length between the three transgenic lines and WT on 
MS, Zn-, Fe-, and 50 μmol/L Zn/Fe MS medium (Figures 8D,E); 
however, the number of roots in Zn-, Fe-, and 50 μmol/L Zn/
Fe MS medium increased. When transgenic lines and the WT 
line were placed on 200 μmol/L Fe MS medium, the root 
lengths were significantly inhibited, but the root lengths of 
the three transgenic lines were significantly longer than WT 
line. The root length of OE2 was 1.78 cm, which was the 
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longest root length on the 200 μmol/L Fe MS medium. On 
the 200 μmol/L Zn MS medium, the three transgenic lines 
were significantly longer than the WT line. On the 300 μmol/L 
Fe MS, the root lengths were further inhibited compared to 
the 200 Fe MS medium, and the root lengths of the three 
transgenic lines were significantly longer than the WT line. 
The root lengths were also inhibited in 300 MS Zn MS, though 
the root lengths of the three transgenic lines were significantly 
longer than that of the WT line (Figures  8D,E).

To further evaluate the tolerance of the three transgenic 
lines and WT to Zn and Fe stress, we  treated the transgenic 

and WT lines with different concentrations of a ZnSO4 and 
FeCl3 solution. Under 200 μmol/L FeCl3, the WT leaves wilted 
and yellowish-brown spots appeared on a few leaves, though 
this did not occur on the OE1, OE2, and OE3 lines (Figure 8F). 
Under 300 and 400 μmol/L of the FeCl3 solution, most WT 
leaves were brown while transgenic lines were normal. Almost 
all of the WT petiole browned, particularly under 400 μmol/L 
FeCl3 solution treatment (Figure  8E). We  then measured the 
chlorophyll content of four lines. As the concentration of the 
FeCl3 solution increased, the chlorophyll content of the four 
lines decreased (Figures 8G,H). However, the chlorophyll content 

FIGURE 6 | Expression patterns of three tae-miRNAs under Zn and Fe stress through qRT-PCR analysis. The expression level was calculated according to the 
2−∆∆Ct method. Relative miRNA abundance of each gene was normalized with the expression of 0 h. Error bars indicate the standard deviations, and different letters 
are significantly different.
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in the three transgenic lines was significantly higher than in 
the WT line. The three transgenic lines exhibit greater FeCl3 
resistance than the WT line, according to observations of the 
stomata in all four lines (Figure  8I). The stomata opened on 
all four lines when treated with water. Under 200 FeCl3 μmol/L 

treatment, the stomata of the WT line closed slightly, while 
the stomata of the three overexpression lines opened. When 
treating the four lines with 300 μmol/L FeCl3 solutions, the 
stomata of the WT closed while OE1, OE2, and OE3 remained 
open (Figure 8I). Under 400 μmol/L FeCl3 solution, the stomata 

A

B

FIGURE 7 | Functional complementation of yeast Zn and Fe transport mutants by TaZIPs under different pH conditions. (A) The Zn transport mutant zrt1zrt2 (pH 
4.4); (B) the Fe transport mutant fet3fet4 (pH 5.5–5.8). Mutant transformed with the expression vector pDR195 carrying TaIRT2-A, TaZIP14-B, or TaZIP13-B or a 
functionally characterized ZIP gene, OsZIP5, OsZIP8, or OsIRT1. The wild-type (WT) strain DY1455 transformed with pDR195 was used as a positive control, and 
the yeast zrt1zrt2 or fet3fet4 mutant transformed with the empty vector pDR195 was used as a negative control. The transformed yeast cells were grown under 
different metal conditions as indicated, and the transformed fet3fet4 was grown on medium with pH 5.8. Cell concentration was adjusted to OD600 = 1 and serial 
dilutions (1.0, 0.1, 0.01, and 0.001) were made. For assay, 5 μl of each dilution was spotted on plates and grown for 6 days at 30°C.
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of all lines closed, and the stomata of the WT died. When 
treated with 200 μmol/L ZnSO4 solution, the leaves of the WT 
line turned gray, while the leaves of the three transgenic lines 
remained green (Figure  8G). The results were similar to the 
200 μmol/L ZnSO4 treatment when they were treated with the 
300 and 400 μmol/L ZnSO4 solution. However, when treated 
with the 300 and 400 μmol/L ZnSO4 solutions, part leaves in 
the transgenic lines turned gray and wilted (Figure  8G). The 
chlorophyll content of both of the transgenic and WT plants 
was analyzed. Under treatment with three different concentrations 
of ZnSO4 solution, the chlorophyll content in the WT line 
was significantly lower than in the transgenic lines (Figure 8H). 
The stomata phenotype of all lines under the ZnSO4 treatment 
was similar to that of the FeCl3 treatment (Figure  8I).

Zn is important to photosynthesis in plants, and photosynthesis 
is related to crop yield. Therefore, we  analyzed whether the 
TaZIP genes affect seed size. When the four lines were treated 
with water, the seed width and length of the three transgenic 
lines were longer than that of the WT line (Figures  8I,J). 
When treated with 200 mol/L FeCl3 and ZnSO4 solution, all 
lines’ seed size shrank, but the three transgenic lines’ seed 

breadth and length remained somewhat longer than the WT 
line (Figures  8J,K). Our results indicate that transferring the 
wheat TaZIP13-B gene into Arabidopsis increases seed size and 
might increase production.

We used 0.15 g samples of the roots, shoots, and seeds to 
measure the metal contents of tissues in this study. Compared 
with the WT, the three overexpression lines accumulated more 
Fe (23.6–38% higher) and Zn (7.5–33% higher) in the roots, 
while overexpression lines also accumulated more Fe (17.3–20.3%) 
and Zn (10.3–26.0%) in the shoots than the WT line. Compared 
with the WT, the seeds of the transgenic lines have a higher 
Fe content and a higher Zn content (Figure  8L). These results 
indicate that transgenic lines can absorb more Fe and Zn 
from the soil, enriching the Fe and Zn in seeds.

DISCUSSION

Zinc and iron are two microelements that are essential for 
plant development. Inadequate zinc and iron can result in 
etiolation, wilting, and even death (Vert et  al., 2001). The 

A
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FIGURE 8 | Comparison of the phenotypic performance of three TaZIP13-B overexpression Arabidopsis lines and wild type. (A) The expression level of TaZIP13-B 
in T3 transgenic Arabidopsis lines. Bars indicate standard deviations of three biological replicates; (B,C) seed germination rate with different treatment; (D,E) root 
length of WT and three transgenic lines (bar = 1 cm); (F,G) phenotypic identification of Arabidopsis treated with ZnSO4 and FeCl3 solution, respectively (concentration: 
200, 300, 400 μmol/L); (H) chlorophyll content; (I) phenotype of stomata; (J,K) seed width and length (bar = 1 mm, n > 30); (L) the content of Zn and Fe in roots, 
shoots and seeds. Statistically significant differences are indicated: *p < 0.05; **p < 0.01 (Student’s t-test).
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primary reason for zinc deficiency in plants is soil with low 
levels of Zn and Fe (Almendros et  al., 2013). Approximately 
30% of the world’s agricultural area is Zn-deficient, which 
affects both grain yield and the Zn concentration in grains 
(Paul, 2015). To achieve sustained Zn uptake from the 
environment, plants have a dual-transporter system that includes 
high- and low-affinity Zn transporters called ZIPs (transporter-
like protein; Eide, 2006). This protein family has been reported 
in many species, including Arabidopsis, rice, barley, maize, 
and wheat (Bughio et  al., 2002; Pedas et  al., 2008; Li et  al., 
2013; Tiong et  al., 2015; Evens et  al., 2017). Previous studies 
have identified 42 ZIP genes in wheat, while many ZIP genes 
have not yet been identified (Tiong et  al., 2015; Evens et  al., 
2017). In this study, we  identified 58 ZIP genes in wheat, 
which includes 42 previously identified ZIP genes. Additionally, 
we  analyzed the expression pattern both of specific tissues 
and under ZnSO4/FeCl3 treatment. We  also analyzed the ZIP 
gene structure and the motifs of the TaZIPs. These genes 
were distributed on all chromosomes, except for chromosome 
5. The localization of the ZIP genes was uneven, which could 
be due to the specific retention and dispersal of TaZIPs during 
polyploidization. The sequence length of wheat ZIP genes 
varied significantly, while the transmembrane domain between 
III and IV can be  changed (Guerinot, 2000). The subcellular 
localization of the most TaZIPs proteins was predicted to 
be  located on the membrane. Our results were consistent 
with those of ZmZIPs, AtZIPs, and HvZIPs (Lin et  al., 2009; 
Li et  al., 2013; Tiong et  al., 2014). The plasma membrane 
is an important region for Zn and Fe transport since plant 
proteins located on the plasma membrane can quickly assimilate 
Zn and Fe from the environment (Schneider, 1983). Other 
ZIP proteins are located on the vacuolar membrane, including 
AtZIP1 and OsZIP6. miRNA is a regulatory factor that plays 
an important role in regulating the expression level of plant 
proteins after transcription (Vaucheret, 2006). Therefore, 
we  constructed the network of miRNAs and target genes 
and found that tae-miR164 and tae-miR5084 had the most 
targeted genes. These two miRNAs were targeted to TaIRT 
genes, in particular, tae-miR164 was targeted to TaIRT1-A 
and TaIRT2-A, B, D. This suggests that tae-miR164 and 
tae-miR5084 could each play an important role in the uptake 
and enrichment of Fe from the environment.

Most TaZIP genes are primarily expressed in the roots, 
while others are expressed in the leaves or stems. Our results 
demonstrate that the expression of most TaZIP genes in the 
roots helps absorb and transport Zn and Fe. Several studies 
have revealed that Zn and Fe were primarily absorbed by the 
roots and delivered to different tissues through the phloem-
tropic mode (Yamaji and Ma, 2014). The Zn and Fe contents 
in grain is one of the most important indexes measuring wheat 
quality (Ziaeian and Malakouti, 2001). Zn and Fe accumulation 
typically occurs in the grain during the grain-filling stage 
(Tavarez et  al., 2015). Some studies have demonstrated that 
mineral deficiency can induce the overexpression of ZIP genes 
(Li et  al., 2013). Other studies have reported the relationship 
between the Zn and Fe content the overexpression of ZIP 
genes in cereal (Lee and An, 2009; Tiong et  al., 2014). This 

study found that nine genes were upregulated at the grain-
filling stage, indicating that these genes are likely involved in 
Zn and Fe accumulation in grain. TaIRT2 expression levels 
were upregulated and TaIRT1 expression levels were 
downregulated, which is similar to OsIRT1 and OsIRT2 (Nakanishi 
et  al., 2010). In most plants, IRT1 and IRT2 have different 
transport substrates and different expression patterns during 
the plant growth stage (Vert et  al., 2001; Pedas et  al., 2008).

Most ZIP genes are upregulated under Zn- and Fe- deficient 
conditions (Mäser et  al., 2001; Mizuno et  al., 2008; Tiong 
et  al., 2015; Evens et  al., 2017). In Arabidopsis, AtZIP1-5, 
AtZIP9-12, and AtIRT3 were induced by Zn-deficiency 
treatment; in rice, OsIRT1 and OsIRT2 were induced by 
Fe-deficiency treatment; and in wheat, TaZIP3,-5,-7, and -13 
were induced by Zn-deficiency treatment (Evens et  al., 2017). 
The ZIP transporter is a dual-transporter system, which 
includes high-affinity and low-affinity Zn transporters 
(Sillanpaeae and AGL, 1982; Mizuno et  al., 2008). The high-
affinity system is saturated at approximately 0.1 μmol/L, while 
the low-affinity system shows a linear relationship that varies 
from concentrations of 0.5 to 50 μmol/L (Lee et  al., 2010a,b). 
The Zn uptake system is a dual system in wheat (Reid et  al., 
1996). Our study demonstrated that approximately half of 
the TaZIP genes were highly expressed in the 0.05 μmol/L 
ZnSO4 treatment, while others were highly expressed in the 
0.5 μmol/L ZnSO4 treatment. The TaZIP genes displayed a 
similar expression pattern in FeCl3 solution. Nineteen TaZIPs 
were highly expressed under 0.05 μmol/L FeCl3 and 23 TaZIPs 
were highly expressed in 0.5 μmol/L FeCl3. A previous study 
found that expression patterns of ZIP genes differed under 
different concentrations of Zn and Fe treatment. Based on 
Zn affinity, we considered the 16 TaZIP genes with the highest 
expression in the 0.05 μmol/L ZnSO4 treatment to be  high-
affinity Zn transporters, while other TaZIP genes were considered 
low-affinity Zn transporters. In this study, we  also found that 
four TaZIPs (TaZIP18, TaZIP4-B, TaZIP29, and TaIRT2-A) 
were upregulated under the 0.05 and 0.5 μmol/L ZnSO4 
treatments. We also prove that six ZIP genes were upregulated 
under Zn and Fe deficient conditions.

The regulatory role of miRNA inhibiting the expression of 
target genes, meaning that miRNAs and target genes have 
opposing expression patterns (Zamore et  al., 2000; Bernstein 
et al., 2001). However, recent research has showed that miRNA 
also can activate gene transcription (Xiao et  al., 2017). In this 
study, we  analyzed the expression of three miRNAs under Zn 
and Fe stress. Our results demonstrated that three miRNAs 
could downregulated under low concentrations of ZnSO4 and 
FeCl3. However, tae-miR5084 and tae-miR395a were upregulated 
in 50 μmol/L of ZnSO4 and FeCl3. Absorbing excessive Fe and 
Zn is toxic to plants, meaning that wheat may upregulate 
miRNA to inhibit TaZIP gene expression. The overexpression 
of tae-miR399-A1 could inhibit the expression of the TaPHO2-
A1, B1, D1 genes in a high-phosphorus aqueous solution, but 
wheat accumulates more Pi in its leaves (Ouyang et  al., 2016). 
In this study, tae-miR5084 and tae-miR395a were both 
upregulated in 50 μmol/L ZnSO4 and FeCl3, inhibiting the 
expression of targeted genes.
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In yeast, the high-affinity transporter gene (Zrt1) is responsible 
for the uptake of Zn in a Zn-deficient medium. When Zn is 
abundant, Zrt1 is repressed and the low-affinity transporter 
(Zrt2) mediates Zn uptake (Eide, 2006). ZHY3 is a yeast mutant 
that lack the zrt1 and zrt2 genes and unable grow on SD 
media without ZnSO4. fet3fet4 DEY1453 is another mutant 
that cannot normally grow on the SD media without FeCl3. 
This growth deficiency may be reversed by inserting a functioning 
gene into these mutants. Yeast complementation has been used 
to demonstrate that ZIP genes can reverse growth defects in 
the zrt1zrt2 and fet3fet4 double mutant (Mäser et  al., 2001). 
In this study, TaZIP14-B, TaIRT2-A, and TaZIP13-B inserted 
into the yeast mutant, and yeast complementation assays 
demonstrated that these genes could reverse the growth defect. 
Our results demonstrated that these three genes could effectively 
transport Zn and Fe. While some wheat ZIP genes have been 
studied, none of these three genes have been tested (Evens 
et  al., 2017; Supplementary Figure S1).

Plants have evolved two methods of avoiding toxic metals. 
The first is to exclude metal from the plant, and the second 
is to enrich the metal elements in a particular organelle. In 
plants, the roots are responsible for the uptake of metal 
elements, while the vacuoles are responsible for their exclusion 
and enrichment. This process involves YSL genes, CDF genes, 
and ZIP genes (Colangelo and Guerinot, 2006). Aside from 
transporting zinc and iron, ZIP transporters also transport 
other metals, including Cd, Ni, and Mn. Most ZIP transporters 
enhance Zn and Fe at the root when they are expressed, 
however ZIP gene expression may also enrich Zn and Fe in 
the stem and leaves (Salt et al., 1995). Fe and Zn are dynamically 
balanced in plants. Exposing a plant to high concentrations 
of metal elements destroys the balance between the production 
and scavenging of free radicals in its cells, which produces 
a large number of reactive oxygen radicals and induces the 
peroxidation of unsaturated fatty acids in the membrane. It 
also causes heavy metal poisoning in plants (Bernstein et  al., 
2001; Breusegem and Dat, 2006; Zhao, 2007). In this study, 
we  treated three TaZIP13-B transgenic lines and one WT 
line with different concentrations of FeCl3 solutions and found 
that the leaves of the WT developed brown spots and most 
petioles died. Under ZnSO4 treatment, the WT leaves turned 
gray and the three overexpression lines remained normal. 
Heavy metals are primarily toxic to plants because they inhibit 
chlorophyll synthesis, affecting photosynthesis and inducing 
chlorosis of the leaves (Breusegem and Dat, 2006). OsIRT1 
overexpression also results in less chlorosis in transgenic 
plants under Fe-deficient conditions (Lee and An, 2009). In 
this study, the chlorophyll content in the WT line was 
significantly lower than in the transgenic lines when exposed 
to Fe and Zn solutions.

The hormone indole-3-acetic acid (IAA) is related to lateral 
root formation. Previous studies found that IAA levels increased 
under Cu and Cd stress but there was no significant change 
in the roots compared with the control. Zn stress caused 
significant increases in root branching (Sofo et  al., 2013). In 
this study, the root branch increased under 50 μmol/L Zn/Fe 
stress due to increases in the IAA concentration, resulting in 

lateral formation. Under MS Zn-/Fe- conditions, the number 
of lateral roots also increased. Previous studies found that the 
lateral root of Arabidopsis increased under Pi- and Fe-deficient 
conditions (Rai et  al., 2015), while there is no evidence to 
prove that Zn- or Fe-deficiency promotes the development of 
lateral roots in Arabidopsis. Arabidopsis generated different 
patterns of root system architecture when subjected to different 
combinations of Pi, nitrate (N), potassium (K), and sulfate (S) 
deficiencies (Kellermeier et  al., 2014). This indicates that 
Arabidopsis has an innate ability to integrate and translate 
multiple nutrient deficiencies into a complex root 
developmental program.

Zn and Fe are vital for plant growth and are related to 
dry matter accumulation in plants, when plants reach the 
reproductive stage, their photosynthetic products accumulate 
in the grain. Therefore, the size of the seed is related to the 
accumulation of dry matter in the early stage of plants (Cock 
and Yosiida, 1972; Yoshida, 1972; Hirose et al., 2008). However, 
this increase in seed size is due to overexpression in the plant 
body, not by seed-restricted expression. This indicates that seed 
enlargement is due to overexpression in vegetative organs such 
as the leaves (Hakata et  al., 2012). In this study, the seeds of 
three overexpression lines of Arabidopsis were larger than the 
WT line, indicating that the chlorophyll content in transgenic 
lines is higher than in WT lines.

We also detected the Fe and Zn content in plant tissues. 
Previous studies found that the Zn and Fe content in seeds 
improved when ZmZIP7, ZmZIP3 and ZmZIP5 and ZmIRT1 
were transferred to wild Arabidopsis and maize (Li et al., 2013, 
2016, 2019b). Our results demonstrated that the Fe and Zn 
contents in the roots and shoots were more enriched in 
overexpression lines than in the WT line and that Fe content 
was particularly increased in the seeds. This study indicated 
that TaZIP13-B can enrich and transport Fe and Zn in transgenic 
lines and improve Fe and Zn content in seeds.
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Supplementary Figure S1 | Phylogenetic relationship and homoeologs of 
the 58 TaZIP proteins. The gene that ends with S and L was identified by 
previous study. Genes highlighted in green were used for yeast 
complementation. Genes highlighted in yellow were used in this study by 
yeast complementation.

Supplementary Figure S2 | Chromosome locations of these 58 
TaZIP genes.

Supplementary Figure S3 | Expression patterns of three ZIP genes under 
Zn- and Fe-deficient conditions. Seedling two leaf of Xiaobaimai shoots 
(S) and roots (R), under standard nutrient condition (CK), Zn-, Fe-deficiency 
treated, were harvested, respectively, at 0, 6, and 12 h, after treatment. 
(A) Treat with Zn-deficiency; (B) treat with Fe-deficiency. Data from real-time 
RT-PCR experiments were analyzed according to the 2−∆∆Ct method. Relative 
mRNA abundance of each gene was normalized with TaActin gene. The error 
bars indicate standard deviations.
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Sodium dodecyl sulfate-sedimentation volume is an important index to evaluate the
gluten strength of common wheat and is closely related to baking quality. In this study, a
total of 15 quantitative trait locus (QTL) for sodium dodecyl sulfate (SDS)-sedimentation
volume (SSV) were identified by using a high-density genetic map including 2,474
single-nucleotide polymorphism (SNP) markers, which was constructed with a doubled
haploid (DH) population derived from the cross between Non-gda3753 (ND3753) and
Liangxing99 (LX99). Importantly, four environmentally stable QTLs were detected on
chromosomes 1A, 2D, and 5D, respectively. Among them, the one with the largest
effect was identified on chromosome 1A (designated as QSsv.cau-1A.1) explaining up
to 39.67% of the phenotypic variance. Subsequently, QSsv.cau-1A.1 was dissected
into two QTLs named as QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2 by saturating the
genetic linkage map of the chromosome 1A. Interestedly, favorable alleles of these
two loci were from different parents. Due to the favorable allele of QSsv.cau-1A.1.1
was from the high-value parents ND3753 and revealed higher genetic effect, which
explained 25.07% of the phenotypic variation, mapping of this locus was conducted by
using BC3F1 and BC3F2 populations. By comparing the CS reference sequence, the
physical interval of QSsv.cau-1A.1.1 was delimited into 14.9 Mb, with 89 putative high-
confidence annotated genes. SSVs of different recombinants between QSsv.cau-1A.1.1
and QSsv.cau-1A.1 detected from DH and BC3F2 populations showed that these two
loci had an obvious additive effect, of which the combination of two favorable loci had
the high SSV, whereas recombinants with unfavorable loci had the lowest. These results
provide further insight into the genetic basis of SSV and QSsv.cau-1A.1.1 will be an ideal
target for positional cloning and wheat breeding programs.
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INTRODUCTION

Common wheat is one of the most widely cultivated food crops
in the world and one of the important sources of carbohydrates
and proteins for human beings (Osinowo, 2011). For a long time,
breeders of common wheat (Triticum aestivum L.) have mainly
committed to improving wheat yield and disease resistance
(Curtis and Halford, 2014). However, high-quality wheat has
been demanded by consumers and industries, and wheat quality
improvement has attracted increasing attention among breeders
(Guzman et al., 2016). Gluten strength has a considerable
influence on the end-use quality of wheat (Rubenthaler et al.,
1990; Addo et al., 1991; Slade and Levine, 1994; Kweon et al.,
2011; Liu et al., 2017b), which can be measured by various
tests such as sodium dodecyl sulfate (SDS)-sedimentation volume
(SSV), extensograph, farinograph, alveograph, and gluten index
(Huang et al., 2006; Elangovan et al., 2008; Li et al., 2009;
Kerfal et al., 2010; Tsilo et al., 2011). The SSV test is well
correlated with gluten strength and bread-making quality of
wheat (Axford et al., 1979; He et al., 2004; Ozturk et al., 2008), and
exhibits advantages such as simplicity, low cost, small sample size
requirement, and high efficiency. Therefore, it has been widely
used for evaluating the content and quality of gluten protein and
for fast screening desired cultivars in wheat breeding programs
(Clarke et al., 2000).

Some recent studies have found that the quantitative nature
of SSV is closely correlated to multiple genes encoding glutenins
and gliadins, such as Glu-1, Glu-A3, Glu-B3, and Gli-B1 (Payne
and Lawrence, 1983; Payne et al., 1984; Shewry et al., 2003;
Maucher et al., 2009; Reif et al., 2011; Deng et al., 2015; Guo et al.,
2020). Glutenins and gliadins are not only the most important
storage proteins of wheat but also the main components of gluten
protein (Gianibelli et al., 2001; Kerfal et al., 2010). Glutenins are
related to the extensibility of gluten, while gliadins are associated
with the elasticity of gluten (MacRitchie, 1995; Veraverbeke and
Delcour, 2002; Van Der Borght et al., 2005; Rasheed et al., 2014).
The content and ratio of glutenins and gliadins are the main
factors that determine the wheat processing quality (Yang et al.,
2014). In addition, puroindolines are a component of wheat grain
protein and are closely related to grain hardness. Puroindoline
b (Pinb-D1) gene was found to be related to the variation of
SSV in recent studies (Park et al., 2010, 2012; Ahn et al., 2014;
Würschum et al., 2016).

Sodium dodecyl sulfate (SDS)-sedimentation volume (SSV)
is a complex quantitative trait affected by both environmental
and genetic factors. Quantitative trait locus (QTL) analysis is an
effective approach for examining the genetic basis of quantitative
traits (Doerge, 2002). Many studies have analyzed QTLs for
SSV. To date, QTLs for SSV have been detected on almost all
chromosomes, explained 2.2–41.4% of the phenotypic variation
(Li et al., 2009; Kerfal et al., 2010; Reif et al., 2011; Deng et al.,
2015; Würschum et al., 2016; Liu et al., 2017a; Mir Drikvand
et al., 2018; Goel et al., 2019; Guo et al., 2020; Yang et al., 2020).
However, most of the previously identified QTLs were detected
only in one or two environments and could not be detected in
multiple genetic backgrounds, which were not ideal targets for
fine mapping and map-based cloning.

Here, to understand the genetic basis underlying SSV and
provide molecular markers linked to QTL for wheat quality
breeding, a doubled haploid (DH) population derived from a
cross between Non-gda3753 (ND3753) and Liangxing99 (LX99)
was employed to detect the QTLs associated with SSV variation.
The genetic effect of two major SSV QTLs was validated.

MATERIALS AND METHODS

Plant Materials
The DH population consisting of 123 individuals was developed
through in vitro anther culture (De Buyser and Henry, 1980) of
the F1 hybrids from a cross between ND3753 and LX99. The
DH population and two parents were used for genome-wide
identification of QTLs related to SSV.

For mapping of the possible QTL, ND3753 that carried
the positive allele of the QTL in the confidence interval was
crossed with LX99. F1 plants were backcrossed with LX99 for
three generations with insertion-deletion (InDel) marker-assisted
selection to generate a BC3F1 population containing 418 plants.
Subsequently, 126 heterozygotes lines at the QTL-anchored
region were self-pollinated to BC3F2 containing 1,081 plants.
This population with LX99 background is presented as BC3F2-L
in the present paper.

In addition, in order to evaluate the effects of two QTL,
LX99 was crossed with recurrent parent ND3753 and 64 BC3F1
heterozygotes lines at the QTL-anchored region were self-
pollinated to construct another BC3F2 population containing 387
plants with marker-assisted selection. This population with the
background of ND3753 is presented as BC3F2-N.

Field Trials
The DH population and two parents were planted in seven
environments during the wheat-growing seasons of 2016,
2017, and 2018 in Beijing (BJ) (40◦08′N, 116◦10′E), Linfen
(LF) (36◦04′N, 111◦31′ E), Xi’an (XA) (34◦16′N, 108◦55′E),
and Cangzhou (CZ) (38◦18′N, 116◦49′E), China. The seven
environments, namely 2016BJ, 2017BJ, 2017LF, 2017XA, 2018BJ,
2018LF, and 2018CZ were presented in this study as E1,
E2, E3, E4, E5, E6, and E7, respectively. The field trials
were conducted following a complete random block design
with three biological replicates. However, only one biological
duplication was harvested in E7 due to an accident of field
management. Then 60 seeds for each of the lines and two
parents were planted in two rows of 1.5 long and the row space
was 20 cm.

The BC3F1, BC3F2-L, and BC3F2-N populations were all
planted in Beijing. The BC3F1 population was planted in the
wheat-growing seasons of 2018, while the BC3F2-L and BC3F2-
N populations were planted in 2019. All of these backcross
populations were sown in rows of 1.5 m long and 30 cm row space
with a sowing density of 20 seeds per row. The BC populations
were all planted in one trial and designed as a single replicate.
During the whole growing season, the local standard field
management methodologies were adopted for plant cultivation.
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Evaluation of Traits
For DHs, 80 plants were harvested in each line of the seven
environments and wheat flour of each line planted in E1 was
obtained with a CD1 Quadrumat Junior laboratory mill (Chopin
Technology, Paris, France), while the whole wheat flour of each
line in the other six environments was produced by an XF-
98B experimental mill (Zhenxing Electromechanical Instrument
Factory, Cangzhou, China). SSV was determined according to
a modified protocol of Axford et al. (1979) and Preston et al.
(1982) using 2 g of samples. The specific procedure of the SSV
test was similar to that described by Li et al. (2009). In particular,
SSVs of each DH line with only one biological duplication
harvesting from E7 were measured. SSV of the BC3F1, BC3F2-L,
and BC3F2-N populations was measured with whole wheat flour
from a single plant.

In addition, 300 g of grains of 30 randomly selected DH
lines based on the minimum sample required for the Pearson’s
correlation coefficient calculated according to the formula
provided by Mangard et al. (2007) and Chen et al. (2011) in
E5 were ground into flour with a flour yield of approximately
60% in all samples. Their farinograph parameters (GB/ICC) were
recorded by a Farinograph (DongFu JiuHeng, Beijing, China) to
evaluate the correlation with SSV (Chicago, IL, United States)
(ICC, 1996; Luo et al., 2018).

Genetic Map Construction
Deoxyribonucleic acid (DNA) was extracted from fresh leaves of
individual DH lines and two parents using the hexadecyltrimethy
ammonium bromide (CTAB) method (Allen et al., 2006). The
15 K Axiom R© Wheat Breeder single-nucleotide polymorphism
(SNP) Genotyping Array (China Golden Marker Co., Beijing,
China) containing 13,947 SNP markers was used to genotype
the DH population and parents. SNP markers with a missing
data rate > 20% were removed, and the remaining polymorphic
markers were used to construct a wheat genetic map based on
the inclusive composite interval mapping (ICIM) method using
IciMapping v4.1 (Chinese Academy of Agricultural Sciences,
China) and MapChart v2.32 (Plant Research International,
P.O. Box 16, 6700 AA Wageningen) (Voorrips, 2002). The
physical locations of unique SNP markers were obtained
from the International Wheat Genome Sequencing Consortium
(Appels et al., 2018).

Quantitative Trait Locus Mapping
The average value of SSV in each environment and the BLUP
were employed for QTL analysis using inclusive composite
interval mapping (ICIM1) method in software IciMapping v4.1
(Meng et al., 2015). A QTL with LOD ≥ 2.5 was defined as
a significant QTL. The confidence intervals (±2 LOD away
from the peaks of likelihood ratios) of several QTLs were
coincident, which were preliminarily considered as the same
QTL. In this study, the QTL that can be detected in three or more
environments is defined as an environmentally stable QTL.

1http://www.isbreeding.net/software/?type=detail&id%20=18

Re-sequencing and InDel Markers
Development
High-quality genomic DNA of ND3753 and LX99 was extracted
to construct paired-end-sequencing libraries. According to the
procedures described by Li et al. (2020), the parents were re-
sequenced with an average sequencing depth of 6 × and paired-
end reads of length 150 bp for two parents using the Illumina
HiSeq X Ten platform (Illumina, California, United States),
and the re-sequencing data were processed. The InDels were
identified using the HaplotypeCaller module of the Genome
Analysis Toolkit (GATK). The InDel markers were developed
based on the sequence difference between the parents around
the target region. Primer3 version 0.4.02 was used to design the
sequences of InDel primers.

Deoxyribonucleic acid (DNA) amplification was programmed
for an initial 5 min at 94◦C, then followed by 35 cycles of 30 s
at 94◦C, 30 s at 56◦C, and 30 s at 72◦C, and finally 5 min
at 72◦C. A 10 µL PCR reaction system was used, containing
5 µL of 2 × Taq PCR StarMix (GenStar, Beijing, China) (for
PAGE), 1.5 µL of DNA template (about 50–100 ng), 1.5 µL of
each InDel primer, and double-distilled H2O. The PCR products
were analyzed on 8% non-denaturing polyacrylamide gels with
silver staining.

Validation and Mapping and Annotation
of Putative Genes
Insertion-deletion (InDel) markers tightly linked to QSsv.cau-
1A.1.1 and QSsv.cau-1A.1.2 were used to genotype DH, BC3F1,
BC3F2-L, and BC3F2-N populations. The putatively annotated
high confidence (HC) genes located between the flanking markers
of QSsv.cau-1A.1.1 were acquired based on the reference genome
of T. aestivum cv. Chinese Spring3.

Statistical Analysis
To conduct phenotypic statistical analysis and calculate
correlation coefficients between SSV and farinograph parameters,
IBM SPSS Statistics 21.0 (SPSS, Chicago, United States)
was used. R software v3.6.24 was used to perform the
Shapiro-Wilk test across seven environments and the best
linear unbiased prediction (BLUP), as well as to estimate
the broad-sense heritability (h2 B) following the formula:
h2
B = σ2

g/(σ
2
g + σ2

ge/n+ σ2/nr), as described by Liu et al. (2014).

RESULTS

Phenotypic Analysis
Descriptive statistics for SSV of two parents and the DH
population in the seven environments are shown in Table 1.
SSV of ND3753 was significantly higher than that of LX99
in all environments. SSV showed bi-directional transgressive

2http://bioinfo.ut.ee/primer3-0.4.0/
3https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/
v1.0/
4https://www.r-project.org/
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TABLE 1 | Descriptive statistics of two parents and DH population for SDS-sedimentation volume (SSV) under seven environments.

Trait Environmenta Parents DH population

ND3753 LX99 Range Mean SDb h2 Bc

SSV (mL) E1 23.8 ± 0.9 20.0 ± 1.6 15.6–26.3 21.6 2.5 0.86

E2 23.4 ± 2.6 19.4 ± 0.5 15.3–25.8 21.2 2.3 0.91

E3 20.6 ± 0.8 15.8 ± 0.4 13.2–24.7 18.2 2.1 0.80

E4 23.1 ± 1.4 16.4 ± 1.9 15.0–26.1 19.8 2.2 0.88

E5 20.9 ± 3.3 17.2 ± 1.1 13.6–24.5 18.5 2.3 0.86

E6 21.0 ± 0.4 14.2 ± 0.8 12.0–25.3 17.5 2.5 0.86

E7 22.4 17.0 13.7–24.4 19.3 2.4 –

aE1, 2016–2017 (Beijing); E2, 2017–2018 (Beijing); E3, 2017–2018 (Linfen); E4, 2017–2018 (Xi’an); E5, 2018–2019 (Beijing); E6, 2018–2019 (Linfen); E7, 2018–
2019 (Cangzhou).
bSD, standard deviation.
ch2 B, Broad sense heritability based on a family mean basis was estimated under individual environments.

FIGURE 1 | Histograms of the ND3753/LX99 DH population for SDS-sedimentation volume (SSV) under BLUP data. The Y-axis represents the density (the ratio of
frequency to group distance) of each trait and the X-axis represents the phenotypic data.

segregation, suggesting that both parents have increasing
alleles for SSV. The broad-sense heritability values in all
environments were greater than 0.8, indicating that SSV
was mainly controlled by genetic factors. The result of
the Shapiro-Wilk test displayed that SSV exhibited normal
distribution under six environments and BLUP value, indicating
SSV was determined by many genes (Figure 1). Pearson’s
correlation coefficient analysis was carried out between
farinograph parameters and SSVs of 30 DH lines planted in E5
which indicated a significant positive correlation between the
two (Table 2).

Linkage Map Construction
A total of 2,523 SNP markers showed polymorphisms between
the two parents. Finally, 2,474 SNP markers participated
in the map construction and were mapped to 21 linkage
groups, covering the 21 chromosomes of common wheat
(Supplementary Table 1). The total length of the map was
7,349.01 cm, and the average interval distance between two
adjacent markers was 7.24 cm (Supplementary Table 1). The
A genome contained the most SNP markers (963), followed by
the B genome (902), while the D genome had the least (609)
(Supplementary Table 1). The total length of chromosome 7D
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TABLE 2 | Pearson’s correlation analysis among SDS-sedimentation volume
(SSV), dough stability time (DST), dough developing time (DDT), and water
absorption (WA) in E5/2018–2019 (Beijing).

Trait SSV DST DDT WA

SSV 1

DST 0.614** 1

DDT 0.595** 0.918** 1

WA 0.536** 0.103 0.234 1

**Correlation is significant at the.01 level (2-tailed).

was the largest (619.02 cm), while that of chromosome 4B was
the smallest (180.86 cm) (Supplementary Table 1). Chromosome
5A harbored the most SNP markers (236), while chromosome 6D
contained the least (42) (Supplementary Table 1).

Quantitative Trait Locus Analysis
A total of 15 QTLs were detected on 11 chromosomes
(1A, 1B, 1D, 2A, 2D, 4B, 4D, 5A, 5D, 6B, and 6D) in
the seven environments (Table 3 and Supplementary
Table 2). Four environmentally stable QTLs (QSsv.cau-1A.1,
QSsv.cau-1A.2, QSsv.cau-2D and QSsv.cau-5D.1) were identified
on chromosomes 1A, 1A, 2D, and 5D, respectively (Table 3).
The favorable allele of QSsv.cau-2D came from LX99, while
the superior alleles of the other three QTLs were contributed
by ND3753. The major QTL QSsv.cau-1A.1 was repeatedly
detected in five environments and the BLUP data, explaining
39.67% of the phenotypic variation in the BLUP analysis
(Table 3). QSsv.cau-2D and QSsv.cau-5D.1 contributed 3.17
and 4.82% of the phenotypic variation in the BLUP analysis,
respectively. QSsv.cau-1A.2 explained 8.17–18.62% of the

phenotypic variation. The remaining 11 were putative QTLs
(Supplementary Table 2).

Verification of QSsv.cau-1A.1
Considering its stability and the genetic effect, QSsv.cau-1A.1
was chosen to saturate the positioning interval. Then 15 InDel
markers near this region were developed according to the re-
sequencing results of two parents (Table 3 and Supplementary
Table 3) and a new genetic linkage map of 1A long arm was
constructed. QTL remapping detected an additional QTL located
next to the original interval. These two QTLs were named
QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2 (Figure 2).

QSsv.cau-1A.1.1 was detected in six environments and BLUP,
explaining 17.21–26.47% of the phenotypic variation, and the
favorable allele was from ND3753. The confidence interval
was between the markers 1A248 and 1A332 corresponding CS
physical position of 386,222,224–463,923,653 bp (Appels et al.,
2018; Figure 2 and Supplementary Table 5). QSsv.cau-1A.1.2
was repeatedly detected in three environments as well as BLUP
data, contributing 7.02–12.13% of the phenotypic variation and
LX99 contributed the favorable allele. The physical position
of QSsv.cau-1A.1.2 located on 462,634,655–492,004,197 bp by
comparing flanking markers 1A36 and 1A215 to CS RefSeqv1.0
(Appels et al., 2018; Figure 2 and Supplementary Table 5).

Effects of QSsv-cau-1A.1.1 and
QSsv-cau-1A.1.2 in Different Genetic
Backgrounds
The flanking markers 1A248, 1A332 and 1A36, 1A215 delimiting
confidence intervals of QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2
(Figure 2) separately were used to detect genotypes in the DH

TABLE 3 | The QTL regions harboring environmentally stable QTLs for SSV in the ND3753/LX99 DH population.

QTL Environment Flanking marker Position (cM) Interval (cM) LOD PVEa (%) Additiveb

QSsv.cau-1A.1 E3 AX-109863151 and AX-110089093 164.0 163.1–166.1 6.15 13.69 0.83

E4 AX-109863151 and AX-110089093 164.0 163.1–166.1 4.15 15.94 0.81

E5 AX-109863151 and AX-110089093 164.0 163.1–166.1 7.40 19.70 0.88

E6 AX-109863151 and AX-110089093 164.0 163.1–166.1 3.37 9.78 0.74

E7 AX-109863151 and AX-110089093 164.0 163.1–166.1 4.99 12.14 0.77

BLUPc AX-109863151 and AX-110089093 164.0 163.1–165.1 23.65 39.67 1.32

QSsv.cau-1A.2 E1 AX-109863129 and AX-111450961 220.0 211.1–229.1 3.94 18.62 0.92

E2 AX-109863129 and AX-111450961 218.0 213.1–224.1 8.42 21.03 1.01

E5 AX-110673287 and AX-111688135 231.0 223.1–232.1 3.43 8.17 0.56

QSsv.cau-2D E2 AX-110872666 and AX-110773527 143.0 142.9–143.9 3.19 7.15 −0.57

E5 AX-111430851 and AX-110773527 144.0 143.9–148.9 4.87 12.20 −0.68

E7 AX-110773527 and AX-109246010 153.0 151.9–155.9 5.79 13.75 −0.81

E6 AX-110773527 and AX-109246010 155.0 151.9–155.9 4.74 13.56 −0.86

BLUP AX-110872666 and AX-110773527 143.0 142.9–143.9 2.91 3.17 −0.37

QSsv.cau-5D.1 E2 AX-89753391 and AX-109174882 501.0 495.9–506.9 7.30 18.31 0.92

E4 AX-89753391 and AX-109174882 502.0 494.9–505.9 3.48 12.91 0.74

E7 AX-89753391 and AX-109174882 501.0 490.9–509.9 3.18 7.40 0.60

BLUP AX-89753391 and AX-109174882 502.0 493.9–505.9 4.32 4.82 0.46

aPVE, Phenotypic variation explained by the stable QTLs.
bAdditive, the additive effect of a QTL, positive values: a favorable allele from ND3753; negative values: a favorable allele from LX99.
cBLUP, phenotype values based on best linear unbiased prediction.
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FIGURE 2 | Genetic and physical locations of QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2. (A) QTL mapping for SSV in seven individual environments (E1–E7) and BLUP
using a saturated genetic map of chromosome arm 1AL. (B) Saturated genetic map of chromosome arm 1AL with newly integrated InDel markers in the DH
population. The black and red rectangles indicate QTLs with positive alleles from the parent ND3753 and the parent LX99, respectively. The black horizontal lines
and bars above the genetic map represent the confidence interval of the two QTLs. (C) Corresponding physical positions according to the Chinese Spring IWGSC
RefSeq v1.0 sequence.

and BC3F2-N populations. AA and aa represented genotypes with
homozygous favorable and unfavorable alleles of QSsv.cau-1A.1.1
from ND3753, respectively, whereas BB and bb were symbols of
that of QSsv.cau-1A.1.2 from LX99.

DH lines could be grouped into three genotypes which
included two parental genotypes AAbb, aaBB, and one
recombined genotype aabb, and each contained 51, 59, and
13 lines. The reason for the absence of genotype AABB remained
unknown. The average SSV values in BLUP of genotype AAbb,
aaBB, and aabb were 21.2, 19.9, and 17.8 mL, respectively,
of which AAbb was significantly higher than aaBB and both
were significantly higher than that of aabb (Figure 3A). This
suggested that QSsv.cau-1A.1.1 had a stronger effect on SSV than
QSsv.cau-1A.1.2, which was consistent with their contribution
rates of phenotypic variation and additive effects in QTL analysis.

In BC3F2-N population four allele combinations AaBB, AAbb,
aaBB, and aabb were identified, which had SSV average values
of 20.4, 17.5, 17.9, and 15.8 mL from 2, 23, 20, and 19 plants,
respectively. Similarly, the SSV values of genotypes AaBB, AAbb,

and aaBB were significantly higher than that of aabb (Figure 3B).
However, although genotype AaBB had the distinct highest
value, three genotypes with favorable alleles had no significant
difference. This was possibly due to the too-small sample number
of genotypes AaBB. Nevertheless, all results above could still
prove that the favorable allele has positive effects.

This study did not find the combination type of AABB but
found the type AaBB in the BC3F2-N population. In summary,
the combination of two favorable loci had the high SSV, whereas
recombinants with unfavorable loci had the lowest. In future
research, the homozygous lines of the BC3F2-N population will
be extracted to develop the corresponding NIL pairs to further
verify their effects and examine their genetic effect on some wheat
qualities, such as gluten content, extensograph, farinograph,
alveograph, and gluten index.

Mapping of QSsv-cau-1A.1.1
In order to further verify and narrow down the confidence
interval of QSsv.cau-1A.1.1, the BC3F1 population in the
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FIGURE 3 | The phenotypic effect of QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2 in the DH and BC3F2-N populations according to the BLUP value for SSV and the
means of SSVs of different types, respectively. (A) DH population; (B) BC3F2-N population; *, **, and *** indicate significant differences at the.05, 0.01, and.001
levels, respectively (Student’s t-test). aabb: QSsv.cau-1A.1.1 carrying homozygous alleles from LX99 and QSsv.cau-1A.1.2 carrying homozygous alleles from
ND3753; aaBB: QSsv.cau-1A.1.1 carrying homozygous alleles from LX99 and QSsv.cau-1A.1.2 carrying homozygous alleles from LX99; AAbb: QSsv.cau-1A.1.1
carrying homozygous alleles from ND3753 and QSsv.cau-1A.1.2 carrying homozygous alleles from ND3753; AaBB: QSsv.cau-1A.1.1 carrying heterozygous alleles
and QSsv.cau-1A.1.2 carrying homozygous alleles from LX99. The numbers in parentheses indicate sample size.

background of LX99 was genotyped using six InDel markers,
and four recombinant types were obtained (Figure 4B). The
SSV values of types 3 and 4 were similar and were significantly
lower than that of types 1 and 2, indicating that QSsv.cau-
1A.1.1 was delimited to the interval between markers 1A1
and 1A366.

The BC3F1 individuals with heterozygous genotypes between
markers 1A1 and 1A39 were selected to generate the BC3F2-
L population. The six markers between 1A1 and 1A39 were
used to genotype the BC3F2-L population, and six recombinant
types were obtained (Figure 4C). The SSV value of type 6 was
similar to that of types 4 and 5 but was significantly lower
than that of the other types (Figure 4D). These results once
again proved the effectiveness of QSsv.cau-1A.1.1 and further
confirmed that its location was between markers 1A1 and 1A366
(Figure 4C). There was no significant phenotypic difference
between the heterozygous genotype and the ND3753 genotype,
which implied that the ND3753 genotype was dominant. The
corresponding physical interval of CS between these two markers
was 14.9 Mb, with 89 putative high-confidence annotated genes
(Supplementary Table 6). In addition, further fine mapping of
QSsv-cau-1A.1.1 is under research.

DISCUSSION

Correlation of Sodium Dodecyl
Sulfate-Sedimentation Volume and
Farinograph Parameters
Sodium dodecyl sulfate (SDS)-sedimentation volume (SSV) is a
comprehensive indicator for indirectly testing wheat quality and
one of the important tests to evaluate the gluten strength of flour
and is closely related to the processing and baking quality of flour
(Axford et al., 1978; Peña-Bautista, 2002; He et al., 2004). SSV
is well correlated with other quality traits, such as grain protein
content, gluten index, wet gluten content, bread volume, and
farinograph parameters (Cubadda et al., 1992).

Our results showed that SSV was significantly positively
correlated with stability time, formation time, and water
absorption of dough, which is consistent with previous studies
(Table 2; Cubadda et al., 1992). This confirms that SSV can
be used as a suitable substitute for farinograph indicators that
require a great number of samples to evaluate the rheological
properties of wheat dough, thereby indirectly measuring the
baking and processing quality of wheat flour.
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FIGURE 4 | Mapping of QSsv-cau-1A.1.1. (A) Genetic location of the region of interest on chromosome arm 1AL. Graphical illustration of recombinant genotypes
from (B) the BC3F1 population and (C) the BC3F2 population in the LX99 background. (D) SSV values (mean ± SD). Black, gray, and white bars represent the
ND3753 genotype, heterozygous genotype, and the LX99 genotype, respectively. The arrow indicates the 14.9-Mb mapping interval. Significant differences by
comparing with the ND3753 genotype are indicated by * (p < 0.05), and ** (p < 0.05) (Student’s t-test). The numbers in and outside the parentheses indicate sample
size and recombinant types, respectively.

Novel Quantitative Trait Locus for
Sodium Dodecyl Sulfate-Sedimentation
Volume
We compared the physical locations of QTLs for SSV reported
in previous studies and those revealed in this study (Li et al.,
2009; Reif et al., 2011; Deng et al., 2015; Würschum et al.,
2016; Yang et al., 2020). The physical position of QSsv.cau-1A.2
was agreed with that of a previously reported QTL controlling
SSV (Yang et al., 2020). SSV was found to be affected by allelic
variations at Glu-A1 (508,726,618–508,725,448 bp, RefSeqv1.0)
and Glu-A3 (4,203,001–4,202,275 bp, RefSeqv1.0) loci in several
previous studies (Li et al., 2009; Reif et al., 2011; Deng et al., 2015;
Würschum et al., 2016). Some QTLs associated with SSV was
reported on chromosome 1A. For instance, Yang et al. (2020)
identified a QTL (540,660,000–544,610,000 bp, RefSeqv1.0) for
SSV that is located on chromosome 1A by genome-wide
association study (GWAS). However, the physical position of
QSsv.cau-1A.1.1 (371,573,909–386,426,688 bp, RefSeqv1.0) and
QSsv.cau-1A.1.2 (419,490,584–492,004,197 bp, RefSeqv1.0) did
not overlap with those of the above-mentioned QTLs/genes,
suggesting these two QTLs may be novel. Li et al. (2009)
identified a QTL (470,230,000–570,420,000 bp, RefSeqv1.0) for
SSV on chromosome 2D using a recombinant inbred line
population. Four QTLs (16,340,000, 59,102,000, 615,470,000,
646,600,000 bp, RefSeqv1.0) controlling SSV were reported to
be located on chromosome 2D by multi-locus GWAS (Yang
et al., 2020). However, the physical position of these QTLs and
that of QSsv.cau-2D (140,759,212–467,689,413 bp, RefSeqv1.0)
were not consistent, indicating that QSsv.cau-2D may also

be a novel QTL. Li et al. (2009) identified a QTL for SSV
on chromosome 5DS. SSV was found to be affected by the
allelic variation at the Pinb-D1 locus on chromosome 5DS in
some previous studies (Li et al., 2009; Reif et al., 2011; Deng
et al., 2015; Würschum et al., 2016). However, the physical
locations of these QTLs/genes and QSsv.cau-5D.1 does not
match, implying that QSsv.cau-5D.1 on chromosome 5DL may be
a novel QTL.

Sodium dodecyl sulfate (SDS)-sedimentation volume (SSV) is
a quantitative trait affected by both environmental and genetic
factors; thus, some QTLs can only be detected in specific
environments (Supplementary Table 2). We found 11 such QTLs
located on chromosomes 1B, 1D, 2A, 4B, 4D, 5A, 5D, 6B, and
6D, which is consistent with previous results (Li et al., 2009;
Kerfal et al., 2010; Reif et al., 2011; Deng et al., 2015; Würschum
et al., 2016; Liu et al., 2017a; Mir Drikvand et al., 2018; Goel
et al., 2019; Guo et al., 2020; Yang et al., 2020). The Glu-D1
gene, which is located in the interval of QSsv.cau-1D, may be
a candidate gene for QSsv.cau-1D. QSsv.cau-4B.1 and QSsv.cau-
4D was located next to the dwarf genes Rht-B1 and Rht-D1,
respectively. Previous studies have also revealed QTL-enrichment
areas near Rht-B1 and Rht-D1, which are associated with kernel
size, kernel hardness, kernel protein, pasting properties, and
mixing properties (Shanhong et al., 2001; Li et al., 2006; Wang
et al., 2012, 2017; Patil et al., 2013; Zhang et al., 2013; Jin et al.,
2016; Liu et al., 2017b).

However, there is not enough evidence to support the
correlation between Rht-B1/D1 and SSV, and the gene that
controls SSV near Rht-B1 and Rht-D1 has not been cloned. We
hypothesized: (1) there may be other genes affecting quality traits
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near Rht-B1 and Rht-D1; (2) allelic variations between Rht-B1
and Rht-D1 may also regulate certain quality traits, such as SSV.
However, these hypotheses need to be further tested. The co-
localization of dwarf genes and QTLs related to quality traits may
also remind breeders to consider the selection of plant height and
grain quality in the wheat breeding program.

Genetic Effects and Putative Annotated
Genes of the Major Quantitative Trait
Locus
In recent years, a large number of QTLs for SSV have been
identified and characterized through GWAS and linkage analysis,
and some of these QTLs are related to allelic variants of Glu-
1, Glu-A3, Glu-B3, Gli-B1, and Pina-D1 (Ahn et al., 2014; Deng
et al., 2015; Guo et al., 2020). However, most of the other QTLs
have not been further verified or fine mapped. SSV is a typical
quantitative trait with a complex genetic mechanism. The lack
of information on the authenticity and genetic effects of these
QTLs for SSV not only hinders the exploration of their genetic
and molecular mechanisms but also fails to provide breeders
with sufficient new high-quality genetic resources for wheat
quality improvement. In this study, we verified the effects of
QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2 on SSV and the interaction
between the two QTLs in the DH and BC3F2-N populations.
Therefore, the InDel markers are closely linked to QSsv.cau-
1A.1.1 and QSsv.cau-1A.1.2 developed in this study can be
used by breeders to aggregate high-quality genes for wheat
quality improvement.

In particular, QSsv.cau-1A.1.1 was delimited to an
approximate 14.9 Mb between markers 1A1 and 1A366
(Figure 4). We conduct an orthologous analysis for the candidate
region to predict HC genes in QSsv.cau-1A.1.1, but no ones are
associated with SSV in Oryza sativa and Arabidopsis thaliana
(Supplementary Table 6). This may be because Oryza sativa and
Arabidopsis thaliana do not have gluten, and SSV is related to
gluten strength in the common wheat.
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Stripe rust caused by Puccnina striiformis (Pst) is an economically important disease
attacking wheat all over the world. Identifying and deploying new genes for Pst
resistance is an economical and long-term strategy for controlling Pst. A genome-
wide association study (GWAS) using single nucleotide polymorphisms (SNPs) and
functional haplotypes were used to identify loci associated with stripe rust resistance in
synthetic-derived (SYN-DER) wheats in four environments. In total, 92 quantitative trait
nucleotides (QTNs) distributed over 65 different loci were associated with resistance
to Pst at seedling and adult plant stages. Nine additional loci were discovered by
the linkage disequilibrium-based haplotype-GWAS approach. The durable rust-resistant
gene Lr34/Yr18 provided resistance in all four environments, and against all the five
Pst races used in this study. The analysis identified several SYN-DER accessions that
carried major genes: either Yr24/Yr26 or Yr32. New loci were also identified on chr2B,
chr5B, and chr7D, and 14 QTNs and three haplotypes identified on the D-genome
possibly carry new alleles of the known genes contributed by the Ae. tauschii founders.
We also evaluated eleven different models for genomic prediction of Pst resistance, and
a prediction accuracy up to 0.85 was achieved for an adult plant resistance, however,
genomic prediction for seedling resistance remained very low. A meta-analysis based
on a large number of existing GWAS would enhance the identification of new genes and
loci for stripe rust resistance in wheat. The genetic framework elucidated here for stripe
rust resistance in SYN-DER identified the novel loci for resistance to Pst assembled in
adapted genetic backgrounds.

Keywords: GWAS, GBS, stripe rust (Puccinia striiformis Westend), synthetic hexaploid derived wheat, haplotype
GWAS

Frontiers in Plant Science | www.frontiersin.org 1 February 2022 | Volume 13 | Article 788593208

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.788593
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.788593
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.788593&domain=pdf&date_stamp=2022-02-24
https://www.frontiersin.org/articles/10.3389/fpls.2022.788593/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-788593 February 19, 2022 Time: 15:33 # 2

Mahmood et al. GWAS for Stripe Rust Resistance in Wheat

INTRODUCTION

Stripe or yellow rust caused by an obligate pathogen Puccinia
striiformis tritici (Pst) is a major threat to wheat production
and grain quality. Wheat yield losses in different regions of
the world up to 25% have been reported and this can climb
to 80% when infections occur early in the crop season (Solh
et al., 2012). Recently, stripe rust epidemics have damaged
wheat production in many wheat growing countries and regions
including Australia, Ethiopia, China, United States, Europe,
South Africa, and South Asia (Milus et al., 2006; Chen, 2007;
Wellings, 2011). Since Airborne Pst urediniospores can migrate
to other regions of the world using the climatic system termed the
“Western Disturbance,” thus, spreading new races. The Western
Disturbance caused the spread of the (Pst) Yr9 virulent race in the
Indian Subcontinent and Nepal from the East African highlands
between 1985 and 1997. In the past decade, virulence for Yr27
caused epidemics in Pakistan and India on the commonly
growing mega cultivars, Inqlab-91, and PBW-343, respectively
(Duveiller et al., 2007).

Rust resistance, like other fungal diseases, can be controlled
by fungicide and resistant cultivars. However, the use of a
fungicide is associated with a high cost and is hazardous to
the environment. Therefore, deploying resistant cultivars is
environmentally friendly and particularly inexpensive for wheat
growers. To date, more than 83 Pst resistance genes (Yr1–Yr83)
have been catalogued in wheat and its wild relatives (Maccaferri
et al., 2015; McIntosh et al., 2016). These are predominantly race-
specific major genes, which interact with the pathogen according
to the gene-for-gene model and produce hypersensitive reactions.
This type of resistance is usually short lived when deployed in
large areas; the evolution of new pathotypes of the pathogen
population leads to a resistance breakdown. Virulence on Yr2,
Yr6, Yr7, Yr8, Yr9, Yr17, and Yr27 are examples of major gene
resistance breakdown. It is essential that new sources of resistance
are found and deployed to keep ahead of pathogen changes.
However, minor genes or adult plant resistance (APR) genes
are an alternative for major genes and provide a quantitative
resistance that is often race non-specific and durable against
various pathotypes.

Wheat breeders often rely on current or old varieties as
a source of resistance, however, wheat wild relatives can also
provide a useful source by direct recombination, bridge crosses,
or including the development of synthetic wheats (Ogbonnaya
et al., 2013). Within the wheat primary gene pool, considerable
genetic variation exists in Aegilops tauschii and T. turgidum for
resistance to both biotic and abiotic stresses (Halloran et al.,
2008). The introgression of this genetic diversity through the
development of synthetic hexaploid wheat (SHW) that can be
directly crossed to adapted hexaploid wheat is one such strategy.
Hexaploid wheat (SHWs) are known as primary synthetics and
are generally obtained by artificially crossing of durum wheat
(T. turgidum) and Ae. tauschii. These SHWs have been shown
to carry genetic variation for resistance to numerous biotic and
abiotic stresses (Mujeeb-Kazi et al., 1996; Ogbonnaya et al., 2013).
The yellow, leaf, and stem rust resistance genes Yr28, Lr21, Lr22,
Lr32, Lr39, Lr41, Sr33, Sr45, and Sr46 were derived from Ae.

tauschii, and the Sr genes were subsequently shown to be resistant
to the highly virulent Ug99 race (Cox et al., 1995; Zegeye et al.,
2014; McIntosh et al., 2016).

Genome-wide association studies (GWAS) are used to
associate the genetic loci with phenotypic diversity (Huang
and Han, 2014). This method combines a comparatively large
portion of natural diversity in a species and localizes marker-
trait associations to much shorter genomic regions because these
diversity panels incorporate many more historical recombination
events than classical recombinant inbred lines and doubled
haploid populations (Nordborg and Weigel, 2008). The GWAS
has proven to be a powerful tool for genetic analysis in wheat.
It has been successful in identifying the genomic regions and
markers for resistance to stripe rust in synthetic hexaploid
wheat (Zegeye et al., 2014; Bhatta et al., 2019), global landraces
collections (Jordan et al., 2015), Ethiopian durum wheats (Liu
et al., 2017c), advanced lines derived from exotic crosses
(Ledesma-Ramírez et al., 2019), Chinese wheat landraces (Long
et al., 2019), global spring wheat collection (Maccaferri et al.,
2015), global winter wheat collection (Bulli et al., 2016), US
Pacific Northwest winter wheat (Naruoka et al., 2015; Liu et al.,
2018), spring wheat (Muleta et al., 2017a), CIMMYT nurseries
(Juliana et al., 2017), Afghan wheat landraces (Manickavelu et al.,
2016), Ethiopian bead wheat (Muleta et al., 2017b), emmer wheat
(Liu et al., 2017b), North American elite spring wheat (Godoy
et al., 2017), elite ICARDA wheats (Jighly et al., 2015), diverse
spring wheat (Kankwatsa et al., 2017), global landraces collection
(Pasam et al., 2017), and elite durum wheat (Liu et al., 2017a).

Genome-wide prediction also referred to as genomic selection
or genomic prediction is a technique to improve the selection
accuracy and has the potential to reduce the cost of phenotyping
and breeding cycles (Meuwissen et al., 2001) can help increase
the rate of genetic gain especially in the case of quantitative
traits. In the first step, genomic estimated breeding values
(GEBVs) are estimated using a training set and different
prediction models, and best prediction models are then used
to select new germplasm developed by hybridization prior to
field evaluation. The application of genomic prediction depends
on the population size, marker density, model performance,
heritability of the trait, training population size, and breeding
population relatedness (Daetwyler et al., 2008; Bassi et al., 2016).
In wheat, genomic prediction studies have been reported to
predict rust resistance in diverse wheat landraces (Daetwyler
et al., 2014; Crossa et al., 2016), landraces from Afghanistan
(Tehseen et al., 2021), tetraploid wheat (Azizinia et al., 2020), and
improved wheat germplasm (Ornella et al., 2012; Rutkoski et al.,
2014; Bassi et al., 2016; Juliana et al., 2017).

This study was designed for: (i) evaluating the diversity for
stripe rust resistance in 193 SYN-DERs against prevailing Pst
races in Pakistan; (ii) conducting a GWAS analysis in SYN-DERs
for resistance loci to the prevailing Pst races and identifying the
linked SNP markers that could be deployed in marker-assisted
selection (MAS); (iii) comparing genomic prediction accuracies
for stripe rust resistance at seedling and adult plant stages
using different models with two genotyping platforms, and (iv)
determining whether some derivatives carry un-characterized
genes for Pst resistance.
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TABLE 1 | Virulence profile of Pst races used in this study.

Pathotype Virulence on genes Avirulence on genes

3.Pst.140202 Yr6, Yr7, Yr27, and YrExp2 Yr1, Yr5, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr32, Yr43, Yr44, YrSp, YrTr1, and YrTye

5.Pst.173262 Yr6, Yr7, Yr8, Yr9, Yr15, Yr17, Yr27, Yr43, Yr44, and YrExp2 Yr1, Yr5, Yr10, Yr24, Yr32, YrSP, YrTr1, and YrTye

1.Pst.571242 Yr1, Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, and YrExp2 Yr5, Yr10, Yr15, Yr24, Yr32, Yr44, YrSP, YrTr1, and YrTye

4.Pst.571243 Yr1, Yr6, Yr7, Yr8, Yr9, Yr17, Yr43, YrExp2, and YrTye Yr5, Yr10, Yr15, Yr24, Yr32, Yr44, YrSP, and YrTr1

2.Pst.571262 Yr1, Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, Yr44, and YrExp2 Yr5, Yr10, Yr15, Yr24, Yr32, YrSP, YrTr1, and YrTye

TABLE 2 | Mean response to Puccinia striiformis f. sp. tritici infection, estimates of variance components, and heritability.

Parameters Islamabad (ISB) Nowshera (NWS) Across Locations

IT (0–9) Severity (%) IT (0–9) Severity (%) IT (0–9) Severity (%)

Minimum 0.0 0.0 0.0 0.0 0.0 0.0

Mean 3.1 15.7 2.8 11.8 2.9 13.8

Maximum 8.5 90 8.5 80 8.5 85

σ2g 2.9*** 278.6*** 4.9*** 247.7*** 3.7*** 255.8**

σ2e 0.9** 127.3* 1.9** 114.7** 1.5** 129.6**

σ2ge 3.8ns 406.0ns 6.8* 362.5ns 5.3* 385.4ns

σ2
e 1.92 1.80 1.80 1.92 1.92 1.92

Heritability 0.75 0.68 0.71 0.68 0.72 0.66

σ2g, estimate of genotypic variance; σ2e, estimate of environmental variance; σ2ge, estimate of genotype x environment variance; σ2
e, estimate of residual variance; H2,

heritability; IT, infection type; DS, disease severity; ns, not significant; *P < 0.05; **P < 0.01; and ***P < 0.001.

A B

C D

FIGURE 1 | Histogram showing frequency distribution for the average coefficient of infection (ACI) at four locations, viz. Islamabad-2015 (ISB.15), Islamabad-2016
(ISB.16), Nowshera-2015 (NWS.15), and Nowshera-2016 (NWS.16), and disease severity (0–9 scale) against five Pst isolates (A), boxplots for ACI at four locations
(B), and disease severity against five Pst isolates (C), and coefficient of correlation across isolates and locations (D).
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FIGURE 2 | SNP density and distribution in all 21 wheat chromosomes using 90K SNP array and GBS characterized in SYN-DERs, (A) in 90K SNP array, (B) in
GBS, (C) haplotype density using 90K SNP array, and (D) haplotype density using GBS platform.

MATERIALS AND METHODS

Plant Materials and Experimental Sites
A panel containing 193 SYN-DERs were evaluated in this study
(Supplementary Table 1). The details of the germplasm have
been described earlier (Afzal et al., 2019). Briefly, the SYN-
DERs were developed by crossing elite cultivars and advanced
lines of spring wheat with synthetic hexaploidy wheats in several
combinations (refer to a pedigree for details of primary synthetic
hexaploid wheat accessions numbers). The field experiments
were conducted at the National Agricultural Research Centre
(NARC), Islamabad (33◦ 0′N, 73◦ 4′E) and Cereal Crop
Research Institute (CCRI), Nowshera (34◦ 1′N, 72◦ 2′E) Khyber
Pakhtunkhwa, Pakistan, in the winter field seasons of 2015–
2016 and 2016–2017.

Seedling Stage Phenotyping
Seedling screening against stripe rust was performed at the
Crop Disease Research Institute (CDRI), Murree, Pakistan under
controlled conditions. Small plastic pots (8 cm × 10 cm) were
filled with standard potting mix (soil and nursery substrate, 3:1),
and were used to grow 5–6 plants of each accession including the
susceptible wheat check cv. Morocco. The plants were grown in
a glasshouse maintained at 50% humidity and 20◦C. Genotypes
were assessed for infection type responses to five Pst races:
Pst.571242, Pst.571262, Pst.140202, Pst.571243, and Pst.173262

coded as Wang et al. (2016) and maintained at CDRI, Murree
laboratory. These stripe rust races are frequently found in the
yellow rust prone areas of Pakistan. The virulence and avirulence
formulas for the isolates are provided in Table 1. The Pst isolates
maintained at −80◦C were heat shocked in a water bath at
42◦C for 5 min. The mixture of petroleum ether (Merck Cat #
1.01775.2500) and paraffin oil (Merck Cat # 1.07162.1000) in a
ratio of 4:1 was used to suspend the rust spores for inoculation on
10-day-old seedlings, at the two-leaf growth stage. The inoculum
was applied using a fine mist atomizer. After inoculation, the
mineral oil was allowed to evaporate, and the seedlings were
then placed in a tray and watered. The Pst inoculated plant trays
were shifted to a dark dew chamber at 100% relative humidity,
10◦C temperature, and a light regime of 16 h light and 8 h dark
for 24 h. Plants were then moved to a clean glasshouse under
controlled temperature conditions of 15–18◦C and 50% relative
humidity. The same light/dark regime was continued during the
rust evaluation. Water was non-limiting and recommended doses
of liquid fertilizer were applied. Seedlings were treated with a
growth inhibitor (Maleic Hydrazide) to slow plant development
thus ensuring even disease infection and development. Notes on
rust infection types were taken using a 0–9 scale (McNeal et al.,
1971) on the 20th day of inoculation when susceptible genotype
Morocco exhibited maximum infection. Seedling infection types
(ITs) were classified as resistant with 0–4 (R), moderately resistant
with score 5–6 (MR), and moderately to highly susceptible with
score 7–9 (MS).

Frontiers in Plant Science | www.frontiersin.org 4 February 2022 | Volume 13 | Article 788593211

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-788593 February 19, 2022 Time: 15:33 # 5

Mahmood et al. GWAS for Stripe Rust Resistance in Wheat

TABLE 3 | Haplotype blocks on wheat chromosomes, their number, block size, and number of SNPs per block using 90K SNP array and
genotyping-by-sequencing (GBS) platform.

90K SNP array GBS

N Block size (kb) SNPs N Block size (kb) SNPs

Chr Range Mean Range Mean Range Mean Range Mean

1A 203 3–99871 10339 2–8 2.76 177 2–19011 99093 2–8 2.76

1B 302 8–98626 7957 2–11 3.03 232 2–17887 98552 2–7 2.68

1D 137 9–85350 7191 2–8 2.69 52 3–16674 98478 2–5 2.65

2A 205 8–96300 7101 2–9 2.79 238 2–15837 99436 2–8 2.6

2B 304 2–99707 8066 2–14 3.06 335 2–18030 99593 2–14 2.8

2D 120 9–99556 6590 2–8 2.72 54 18–16323 97876 2–5 2.41

3A 157 12–95781 9254 2–8 3.05 185 2–18778 99440 2–8 2.84

3B 204 4–95726 8039 2–12 3.14 342 2–19638 99474 2–11 2.76

3D 41 5–91287 11581 2–9 2.88 72 6–14033 97701 2–8 2.39

4A 136 11–78450 5730 2–14 2.84 181 2–20901 99366 2–8 2.91

4B 117 6–90285 7816 2–8 2.84 138 2–12206 98672 2–7 2.38

4D 10 13–91196 15167 2–5 2.8 23 3–11454 92585 2–6 2.43

5A 202 3–99690 8305 2–11 2.99 186 3–15977 97276 2–8 2.65

5B 283 8–95328 10391 2–13 3.2 271 2–20623 99815 2–7 2.82

5D 67 7–99753 10919 2–11 2.87 16 7–19401 91446 2–5 2.56

6A 179 4–92210 11380 2–10 3.02 190 2–14164 98516 2–11 2.65

6B 206 2–98128 6607 2–10 2.8 329 2–16501 99871 2–9 2.68

6D 62 10–93126 7480 2–6 2.68 46 3–15001 98599 2–6 2.52

7A 182 3–89043 8119 2–13 3.04 292 2–18888 99514 2–9 2.8

7B 169 6–95920 8702 2–19 3.24 364 2–17576 99805 2–10 2.64

7D 39 37–48011 5530 2–6 2.41 79 2–15770 99555 2–7 2.59

Adult Plant Disease Phenotyping
The diversity panel and a susceptible check (Morocco) were
planted in 4 rows of 30 cm spacing and 2 m of length at
NARC, Islamabad, and CCRI, Nowshera in 2015–2016 for
screening for adult plant stripe rust resistance. The stripe rust
susceptible cultivar Morocco was planted every 20th row to assist
the spread of the rust epidemic. Inoculation was carried out
using the Pst inoculum consisting of races used in this study.
The inoculum was prepared by mixing rust spores mixture in
liquefied petroleum ether (Merck Cat#1.01775.2500) and paraffin
oil (Merck Cat # 1.07162.1000) in a ratio of 4:1 (V/V). The
inoculum was sprayed with the help of a ULV sprayer on the
rust spreader cultivar Morocco at the booting stage in both
years at both field locations because this stage coincides with the
favorable climatic conditions for rust spread. Rust infection and
severity percentages were recorded when the genotype Morocco
reached 70–80% severity. Rust scores were recorded three times
each season at 1-week intervals to avoid disease escape. Wheat
response to infection [infection types (IT)] was recorded using a
0–9 scale (Line and Qayoum, 1992). Yellow rust disease severity
(DS) was noted as % infected leaf area of the host genotypes.

Analyses of Variance, Heritability, and
Correlation
Analyses of variance of yellow rust infection types and disease
severity from adult plant field evaluation were done across years

and environments using a linear mixed model to test for additive
variance between genotypes, environments, and the interactions
between genotypes by environments. In the mixed linear model,
genotypes, and environments were used as fixed and years as
random factors. Broad-sense heritability (H2) was calculated
using an ANOVA model to estimate variance components on a
genotype mean basis.

H2
=

σ2
g

σ2
g +

σ2
ge
y +

σ2
e
yr

where, σ2
g is the genotypic variance, σ2

e is the environment
variance, σ2

ge σ 2
gxe is the genotype by environment interaction

variance, and σ2
e error is the residual error variance, y is the

number of years, and r is the number of replications within
each experimental site. Pearson correlation coefficients (r) among
experimental sites and cropping seasons were estimated to
examine the consistency of infection types and disease severity
across the environments. Statistical analyses of the present study
were performed using R Statistical Software.

DNA Extraction, and SNP Marker
Genotyping
For genomic DNA extraction, five seeds of each SYN-DER
accession were grown in 7 cm diameter disposable pots in a
growth room. After 16–18 days of growth fresh leaf samples
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TABLE 4 | Quantitative trait nucleotides (QTNs) associated with resistance to Pst races at seedling stage in SYN-DER panel using 90K and GBS markers.

Race SNP Allelesa Chr Pos QTN effectb LOD score −log10(p) r2 (%)c MAFd

Pst.571243 IWB72742 G/A 1B 300.6 −0.74 4.58 5.36 15.39 0.21

Pst.571243 1B_338552631 T/G 1B 338.6 1.05 3.74 4.48 9.18 0.06

Pst.571243 IWB73197 T/G 2B 152.2 −0.61 3.72 4.45 10.76 0.24

Pst.140202 2D_82307885 G/A 2D 82.3 0.86 4.18 4.94 10.9 0.1

Pst.140202 3A_701489529 C/T 3A 701.5 −0.65 3.48 4.21 5.29 0.08

Pst.140202 3B_180646490 T/C 3B 180.6 −0.57 3.67 4.41 9.98 0.23

Pst.140202 IWB26725 G/A 3D 367.4 0.48 3.29 4.01 6.09 0.15

Pst.571262 IWB1577 T/C 3D 439.7 −0.45 5.01 5.81 8.53 0.5

Pst.571242 IWB24288 A/G 3D 447.1 0.4 4.57 5.35 8.95 0.39

Pst.571243 4A_659618327 T/C 4A 659.6 0.55 3.61 4.35 11.3 0.42

Pst.571242 4B_11905357 G/A 4B 11.9 0.48 6.88 7.74 11.93 0.3

Pst.571242 IWB5827 T/C 4B 603.1 −0.39 3.91 4.66 9.15 0.44

Pst.571243 4B_609362872 A/C 4B 609.4 −0.49 4.93 5.72 9.26 0.48

Pst.571242 5A_363980539 A/G 5A 364.0 −0.32 3.43 4.15 5.3 0.31

Pst.571242 5A_590355732 C/T 5A 590.4 −0.36 3.49 4.21 7.91 0.48

Pst.571242 IWB28556 A/G 5A 620.6 −0.37 3.61 4.35 7.13 0.31

Pst.140202 IWB27708 A/G 5B 2.3 −0.22 3.39 4.11 2.34 0.32

Pst.571242 IWA3089 C/T 5B 580.4 0.43 3.29 4.01 10.6 0.47

Pst.571242 5B_580647907 T/C 5B 580.6 −0.75 7.24 8.11 10.52 0.08

Pst.571243 5B_580647907 T/C 5B 580.6 −0.77 4.19 4.96 7.19 0.09

Pst.571243 IWB35933 C/T 5D 521.4 −0.62 3.4 4.12 8.94 0.22

Pst.173262 7A_529833812 G/C 7A 529.8 −0.2 3.06 3.76 7.6 0.16

Pst.571262 7A_696929784 G/T 7A 696.9 −0.84 3.44 4.17 6.95 0.06

aResistance allele is underlined.
bQTN effect is negative if minor allele is increasing phenotype and positive if major allele is increasing phenotype value.
cPhenotypic variation explained by the QTN.
dMinor allele frequency.

were taken to perform DNA extraction (Dreisigacker et al., 2013).
Aliquant part of 50 µl DNA (50–100 ng/µl) for each sample
was shipped in a 96-well plate arrangement for genotyping with
high-density SNP markers, using the Wheat 90K SNP array
(Wang et al., 2014), at the Department of Primary Industries,
Victoria, Australia. The KASP marker for Lr34/Yr18 was used
to identify the durable rust resistance gene in SYN-DERs
(Rasheed et al., 2016).

Genome-Wide Association Analyses
Using SNPs and Haplotypes
The GWAS for stripe rust responses recorded in seedling and
field experiments was performed by the multi-locus GWAS
methods. The population structure was inferred from the
principal component analysis (PCA), and PC scores from the
first five principal components were used as a Q matrix. The
kinship matrix (K) was calculated from the TASSEL version 5.0.
Quantitative trait nucleotides (QTNs) were identified by meMLM
(Wang et al., 2016) and FASTmrMLM (Tamba and Zhang, 2018)
methods, which are included in the R-package mrMLM v 3.1.1

For each trait, P-values were extracted from the TASSEL results.
Manhattan and quantile-quantile (QQ; observed P values plotted
against expected P values) were plotted using R package qqman
(Turner, 2014).

1https://cran.r-project.org/web/packages/mrMLM/index.html

The SNP linkage disequilibrium blocks (SNPLDBs) were
constructed to identify the multiple alleles to fit the property
of multiple alleles per locus in the SYN-DERs. The SNPLDB
was constructed using RTM-GWAS software v1.2, which is
publicly available at https://github.com/njau-sri/rtm-gwas (He
et al., 2017). The output vcf from RTM-GWAS was used as a
marker dataset for association analysis in TASSEL version 5.0.

Genomic Prediction Models
This study used 11 marker-based prediction models to assess
predictability (i.e., the correlation between predicted and
observed trait values) of unobserved phenotypes. All prediction
models differed from each other with respect to assumptions
regarding estimation of markers effects. Among the parametric
models included, an MLM-based prediction model, a genomic
best linear unbiased prediction (GBLUP), was computed using
the “BGLR” function of R package Bayesian generalized linear
regression (BGLR) version 1.0.8 (Pérez and De, 2014). The
GBLUP prediction model utilizes a realized genomic relation
matrix (G) to model correlation among individuals (Vanraden,
2008; Habier et al., 2013). In addition, the Bayesian linear
prediction models, i.e., Bayesian Ridge Regression (BRR),
Bayesian least absolute shrinkage, and selection operator (BL),
BayesA, BayesB, BayesC, and reproducing kernel Hilbert spaces
regression (RKHS) were also used in prediction analysis. These
Bayesian prediction models were also used with the function
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TABLE 5 | Quantitative trait nucleotides (QTNs) associated with resistance to Pst at adult plant stages in four environments in SYN-DER panel using 90K
and GBS markers.

Environment SNP Allelesa Chr Pos (Mb) QTN effectb LOD score −log10(p) r2 (%)c MAFd

ISB.15 IWB7628 T/C 1A 3.1 2.3 6.34 7.19 6.83 0.47

ISB.16 1A_3878168 G/T 1A 3.9 2.18 6.71 7.57 6.95 0.3

NWS.15 IWB4201 G/A 1A 4.0 −2.96 3.95 4.7 5.72 0.1

NWS.16 IWB21700 T/C 1A 534.3 −7.22 3.53 4.26 8.13 0.29

NWS.15 1A_560487941 G/A 1A 560.5 −2.35 4.52 5.29 5.98 0.17

NWS.15 IWB10188 G/A 1A 581.5 −3.08 5.11 5.91 9.09 0.15

ISB.15 1B_8591698 C/T 1B 8.6 −2.92 3.4 4.12 5.97 0.1

NWS.16 IWB64963 G/A 1B 86.8 7.81 5.69 6.51 11.1 0.48

ISB.15 IWB2120 A/C 1B 106.8 2.92 3.84 4.58 6.85 0.15

ISB.16 IWB49173 T/C 1B 327.8 3.11 5.19 6 10.57 0.19

ISB.15 1B_633336851 C/A 1B 633.3 2.65 3.74 4.48 3.26 0.09

ISB.15 1B_683306760 G/A 1B 683.3 −2.58 6.16 7 8.16 0.36

NWS.16 2A_566856454 G/T 2A 566.9 11.57 4.08 4.83 9.06 0.12

NWS.16 2B_163977776 G/A 2B 164.0 −9.38 5.72 6.55 8.33 0.18

NWS.16 2B_360129171 G/A 2B 360.1 −13.81 7.83 8.72 6.89 0.06

NWS.15 IWB35566 G/A 2B 783.2 −2.85 4.6 5.38 5.11 0.1

NWS.15 3A_130776756 C/T 3A 130.8 3.81 5.81 6.64 6.5 0.06

NWS.15 3A_503145562 A/G 3A 503.1 2.12 3.75 4.49 3.88 0.13

NWS.15 3A_736945971 A/T 3A 736.9 −2 5.46 6.28 7.22 0.41

ISB.15 IWA747 G/A 3B 55.5 −3.21 5.65 6.47 9.26 0.21

ISB.15 3B_55514953 T/C 3B 55.5 −6.08 14.26 15.27 29.31 0.18

NWS.16 3B_65339336 G/A 3B 65.3 −15.82 5.7 6.52 14.21 0.1

ISB.16 3B_470866042 A/G 3B 470.9 −2.83 4.72 5.51 4.71 0.09

ISB.16 3D_2620724 C/T 3D 2.6 −2.17 5.95 6.78 8.2 0.5

NWS.15 3D_355163225 T/C 3D 355.2 −1.94 3.36 4.08 3.69 0.16

ISB.16 3D_551073224 T/C 3D 551.1 −2.34 5.45 6.27 6.64 0.23

NWS.16 4A_438964494 C/T 4A 439.0 5.83 5.54 6.36 5.45 0.48

NWS.16 IWB68805 C/T 4A 733.6 4.91 3.35 4.07 3.75 0.3

ISB.16 4D_156687029 G/A 4D 156.7 −6.08 10.39 11.34 13.35 0.06

NWS.15 IWB33444 C/T 5A 481.9 −2.41 10.85 11.81 9.01 0.5

ISB.16 IWA4223 C/T 5A 670.4 −1.72 3.09 3.79 4.71 0.46

ISB.15 IWB7864 G/A 5B 2.6 −2.29 4.23 4.99 6.14 0.32

NWS.16 IWB65690 G/A 5B 10.8 8.23 6.46 7.31 12.44 0.49

NWS.15 IWB8592 G/A 5B 64.7 2.79 9.55 10.47 8.81 0.24

NWS.16 5B_207483057 G/A 5B 207.5 6.74 4 4.75 3.31 0.13

ISB.16 5B_471381890 A/G 5B 471.4 2.81 4.58 5.36 6.28 0.13

NWS.16 IWA2062 G/A 5B 542.6 −9.99 3.94 4.69 6.48 0.07

NWS.15 IWB65055 T/C 5B 692.6 −2.58 4.62 5.4 8.44 0.26

NWS.15 IWB14489 G/A 5D 133.5 −3.85 6.99 7.85 6.04 0.06

ISB.16 IWB9144 G/A 5D 487.6 −1.73 3.15 3.85 4.52 0.41

ISB.15 IWB30735 T/C 6A 297.7 −2.8 4.14 4.9 8.9 0.33

NWS.15 IWB66163 T/C 6A 415.9 −2.18 3.61 4.34 3.82 0.14

ISB.16 IWB40151 A/G 6A 546.6 −1.89 3.14 3.85 5.44 0.37

ISB.16 6A_595332866 T/C 6A 595.3 −2.64 3.94 4.69 4.1 0.09

ISB.16 IWB37028 T/C 6B 4.4 −5.97 11.61 12.58 14.01 0.06

NWS.16 6B_22858086 A/G 6B 22.9 −12.25 7.15 8.02 9.36 0.11

NWS.15 6B_31867138 C/T 6B 31.9 −4.97 9.13 10.05 10.2 0.06

ISB.15 6B_231490683 G/A 6B 231.5 2.46 4.29 5.06 5.98 0.25

NWS.16 6B_361469100 C/T 6B 361.5 −9.57 4.24 5.01 3.59 0.07

ISB.15 6B_419133836 G/A 6B 419.1 −3.17 6.3 7.14 6.62 0.15

NWS.15 6B_618067850 G/C 6B 618.1 −4.03 5.93 6.76 6.71 0.06

(Continued)
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TABLE 5 | (Continued)

Environment SNP Allelesa Chr Pos (Mb) QTN effectb LOD score −log10(p) r2 (%)c MAFd

NWS.15 6D_436810635 G/A 6D 436.8 −3.16 5.47 6.29 10.85 0.17

ISB.16 IWB74161 C/T 7A 47.0 −1.79 3.34 4.06 5.05 0.43

NWS.16 7A_234640959 C/T 7A 234.6 5.9 4.71 5.49 5.49 0.43

ISB.16 IWB21762 C/T 7A 506.1 −2.21 4.53 5.3 6.44 0.28

ISB.16 7A_588284942 G/A 7A 588.3 1.78 3.86 4.61 4.34 0.3

NWS.16 7A_675526339 G/C 7A 675.5 −7.26 5.11 5.91 4.86 0.17

NWS.15 7A_676996750 G/A 7A 677.0 −3.29 5.28 6.08 7.02 0.09

ISB.16 IWB26214 C/T 7B 59.6 −3.19 6.87 7.73 8.24 0.14

NWS.15 IWA5939 T/C 7B 582.3 4.04 12.21 13.19 11.9 0.15

ISB.15 IWB13912 T/C 7B 692.6 −3.28 5.45 6.26 7.47 0.12

NWS.16 IWB48256 T/C 7B 711.5 −6.84 3.59 4.32 7.87 0.35

ISB.16 IWB12163 G/A 7B 727.5 −2.06 5.62 6.44 6.45 0.4

ISB.16 7B_746448232 A/G 7B 746.4 −1.87 3.49 4.22 3.87 0.2

NWS.16 IWB42068 A/G 7D 11.4 −5.84 3.69 4.43 6.05 0.4

ISB.15 IWB74163 A/C 7D 44.5 −3.07 9.65 10.58 12.08 0.41

ISB.15 IWB59266 A/G 7D 58.7 −3.11 4.95 5.74 7.59 0.14

ISB.16 7D_96173227 G/T 7D 96.2 1.82 4 4.75 3.25 0.17

aResistance allele is underlined.
bQTN effect is negative if the minor allele is increasing phenotype and positive if the major allele is increasing phenotype value.
cPhenotypic variation explained by the QTN.
dMinor allele frequency.

“BGLR” in the R package “BGLR.” For the ridge regression
BLUP (rrBLUP) model, we used the “mixed.solve” function from
rrBLUP R package version 4.6 (Endelman, 2011). To implement
the elastic net (EN), we used the “glmnet” function implemented
in the glmnet R package version 2.0–18 (Friedman et al., 2010).
To compute EN, the value of alpha.5 was used. The EN
model is a combination of ridge regression and LASSO. In
addition, non-parametric models, i.e., relevance vector machines
(RVM) and Gaussian Processes (GP), were used to build a
GS prediction model. The “rmv” and “gausspr” functions from
kernlab R package version 0.9–27 (Karatzoglou et al., 2007) were
used for RVM and GP modeling. To verify the predictability
of the 11 models in the SYN-DER population, we evaluated
the prediction accuracy by 10-fold cross-validation using a
training set randomly apportioned into each fold. The data
were partitioned into training population (90%) and validation
population (10%) sets.

RESULTS

Phenotypic Variations for Stripe Rust
Resistance in the SYN_DER Population
The response of the 193 SYN-DERs and check cultivars to Pst
was assessed in four environments (two locations × 2 years)
under high disease pressure. ANOVA showed highly significant
(P < 0.001 and P < 0.01) differences among genotypes both
for specific locations (Islamabad and Nowshera) and across
locations (combined data) (Table 2). The variance components
for environments were significant (P < 0.01 and P < 0.05).
Similarly, genotypes by environment interactions for IT were

significant (P < 0.05) at Nowshera and across locations buts
non-significant for ISB.

The frequency distribution of ITs displayed by the SYN_DERs
in response to the five Pst races is presented in Figures 1A,B. Of
the lines tested, 78% (152), 63% (122), 79% (153), 38% (75), and
80% (156) of accessions showed seedling resistance to Pst.571242,
Pst.571262, Pst.140202, Pst.571243, and Pst.173262, respectively.
Notably, 18 (9%) of the genotypes showed seedling resistant
infection types to all five Pst races.

The population showed a wide range of ITs across the
environments. At Nowshera, 12% of accessions (24 genotypes)
were highly resistant, 21% (41 genotypes) were showed resistant
reactions, and 3 genotypes (1.5%) were highly susceptible. At
ISB, 3% (6 genotypes) were highly resistant, 12% (24 genotypes)
were resistant, and 1% (2 accessions) showed highly susceptible
reactions (Figure 1). Eighteen (9%) of accessions were resistant
in both cropping seasons at both experimental locations. Broad
sense heritability (H2) for IT and disease severity ranged from
0.66 to 0.75% (Table 2).

Pearson correlation coefficients between stripe rust IT and
disease severity between Islamabad and Nowshera in both years
are presented in Figure 1E. Correlations were 0.51 and 0.59
for ITs, and 0.38 and 0.61 for disease severity at Islamabad
and Nowshera, respectively. The correlations between Islamabad
and Nowshera for ITs in 2015 and 2016 were 0.65 and 0.40,
respectively. The respective disease severity correlations were
0.63 and 0.30. All five Pst races evaluated for ITs were significantly
and positively correlated to each other and values ranged from
0.34 to 0.61 (Figure 1D). Seedling infection types and disease
severity of Pst.140202 and Pst.173262 were positively and were
significantly correlated with adult plant ITs and disease severity
in Islamabad in 2016.
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FIGURE 3 | Manhattan plots showing distribution of p-value on –log(10) scale for SNPs associated with an average coefficient of infection (ACI) at Nowshera-2016
(NWS.16) using 90K SNP array (A) and GBS markers (B). The allelic effects of SNPs on chr7B (C), chr6B (D), chr4D (E), and chr6B (F) are shown as boxplots. Each
boxplot shows the distribution of the average coefficient of infection (ACI) in a relevant environment for both allelic states of the SNP marker.

SNP and Haplotype Variations in the
Synthetic-Derived Diversity Panel
Two genotyping platforms, 90K SNP array and GBS, were
used for GWAS. For the 90K SNP array, 29,632 SNP markers
were retained after removing SNPs with missing data of >10%
and minor allele frequency of <0.05. Figure 2A shows SNP
marker density on each wheat chromosome. For GBS, out
of 236,327 SNPs identified, 47,122 were finally used after
removing SNPs with >10% missing data, and <5% minor allele
frequency (Figure 2B).

Haplotype blocks were constructed using both genotyping
platforms using the block partitioning approach with CIs
based on genome-wide LD (D/) patterns (Gabriel et al., 2002),
and implemented in RTM-GWAS (He et al., 2017). Table 3
describes the number of haplotype blocks, the range and
average size of blocks in terms of kb, and the range and
average number of SNPs comprising each haplotype block on
each chromosome. In the 90K SNP array, 19,070 LD blocks
were constructed (Figure 2C), out of which 3,325 blocks
contained more than two haplotype (alleles) (Table 3). The
maximum number of haplotypes (n = 304) were constructed
on chr2B, while the minimum was on chr4D (n = 10). On
an average, the haplotype block size ranged from 5.5 Mb
(chr7D) to 11.5 Mb (chr3D). The number of SNPs in each

haplotype block was minimum 2 and maximum 14. In GBS,
the number of blocks ranged from 16 (chr5D) to 364 (chr7B)
(Figure 2D). The haplotype block size ranged from 2 to
19.6 Mb (chr3B), while SNPs/block ranged from 2 to 11
(chr3B and chr6A).

Association Analysis for Seedling
Resistance to Puccnina striiformis in
Synthetic-Deriveds
In total, 23 QTNs were identified for seedling resistance against
five races in the SYN-DERs populations (Table 4). Eight QTNs
were associated with seedling resistance against Pst.571242, of
these the QTN on chr5B at 580.6 Mb was identified by both
90K SNP array and GBS and accounted for 10.5% of the
total phenotypic variation. Only two QTNs were identified for
resistance against Pst.571262 on chr3D and 7A, and explained
8.5 and 6.9% of the total variation, respectively. Five QTNs were
detected against Pst.140202: these explained 2.3 to 10.9% of the
total variation and were distributed on chr2D, chr3A, chr3B,
chr3D, and chr5B. Seven QTNs were identified for resistance
against Pst.571243 and accounted for 7.9 to 15.3% of the total
variation. Only one QTN was identified for resistance against
Pst.173262 on chr7A and explained 7.6% of the total variation.
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FIGURE 4 | The allelic effect of SNP 7A_675526339 on chr7A associated with the average coefficient of infection at Nowshera (NWS) in both years 2015 and 2016
(A,B). The allelic effects of IWB7628 on chr1A, and IWB12163 on chr7B on the ACI at Islamabad-2015 (C), and Islamabad-2016 (D), respectively. Each boxplot
shows the distribution of the average coefficient of infection (ACI) in a relevant environment for both allelic states of the SNP marker.

Association Analysis for Adult Plant
Resistance to Puccnina striiformis
In total 68 QTNs were identified for adult plant resistance against
Pst in SYN-DERs (Table 5). Fourteen QTNs were identified for
ISB.15, 19 for ISB.16, 18 for NWS.15, and 17 for NWS.2016.
These QTNs were detected on all chromosomes except chr1D,
chr2D, and chr4B. Figure 3 shows Manhattan plots for significant
SNPs associated with resistance to Pst at NWS.16 using a 90K
SNP array (Figure 3A) and GBS (Figure 3B). The allelic effects
of associated SNPs are shown as box plots (Figures 3C–F).
The phenotypic variation explained by the QTNs ranged from
3.2% (96.1 Mb at chr7D) to 29.3% (55.5 Mb at chr3B). Some
QTNs were identified by both genotyping platforms, i.e., at
55.5 Mb on chr3B for resistance to Pst at ISB.15, and 560.4 Mb
at chr1A for NWS.15. A QTN at 53.4–58.1 Mb on chr1A
associated with NWS.15 and NWS.16, and another on chr7A at
675–676 Mb associated with NWS.15 and 16 (Figures 4A,B).
Similarly, QTN on chr7B at 711–727 Mb was associated with
resistance to Pst at NWS.16 and ISB.16 (Figure 4C). Some QTNs
were associated with resistance to Pst at multiple environments
including QTN at 3.1–3.9 Mb on chr1A associated with ISB.15,
ISB.16, and NWS.15 (Figures 4C,D). Interestingly some QTNs
were associated with both seedling and adult plant resistance,

i.e., the QTN on chr1B at 300–327 Mb was associated with
Pst.571243 at ISB.16 (Figure 5A), and the QTN at 152–163 Mb
on chr2B associated with Pst.571243 at NWS.16. Similarly, a
QTN at 355–367 Mb on chr3D was associated with Pst.140202
at NWS.15 (Figure 5B). The QTNs of chr4A, chr2D, and chr4B
were associated with Pst.571243, Pst.140202, and Pst.571242,
respectively (Figures 5C–E). A QTN on chr7A at 675–696 Mb
identified in NWS.15 and 16 was also associated with Pst.571262
(Figure 5F). The allelic effects were also determined for the
durable rust resistance gene Yr18, and the resistance allele
was significantly associated with resistance to Pst in all four
environments, i.e., ISB.16 (Figure 6A), NWS.16 (Figure 6B),
ISB.15 (Figure 6C), and NWS.15 (Figure 6D).

Haplotype Blocks Associated With
Resistance to Puccnina striiformis at
Seedling and Adult Plant Stages
In total, three haplotype blocks were associated with seedling
resistance against Pst.571242, Pst.140202, and Pst.173262 on
chr1A, chr3B, and 7D, respectively (Table 6). The haplotype
block on chr1A identified with the 90K SNP array was present
at 575.2 Mb and contained six haplotypes, whose frequency
ranged from 1.03 to 59% (Figures 7A,B). The effect of all three
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FIGURE 5 | Box plots showing allelic effects of SNPs associated with resistance against stripe rust with highest phenotypic effect at seedling stage against race
Pst.571242 (A), Pst.571262 (B), Pst.571243 (C), Pst.140202 (D), Pst.571243 (E), and Pst.173262 (F). Each boxplot shows the distribution of the average
coefficient of infection (ACI) in a relevant environment for both allelic states of the SNP marker.

haplotypes of chr1A LD block is shown in Figure 7C. A haplotype
block on chr3B by (GBS markers) was positioned at 125.8 Mb
and had four haplotypes with a frequency of 67 to 1%. Similarly,
the haplotype block on chr7D was present at 627.3Mb and
contained five variants with a frequency between 1.5 to 79.2%.
This haploblock is likely a homolog of the QTN identified on
chr7A for resistance against the same race.

In total, 11 haplotype blocks (two identified with GBS and
nine with 90K SNP array) were associated with Pst resistance
at the adult plant stage. Two haplotype blocks on chr5A and
chr1A were associated with resistance to Pst at ISB.16, with

three and six haplotype variants observed, respectively. The
haplotype block on chr6B was associated with resistance to Pst at
NWS.16 and consisted of three haplotypes (Figures 8A,B), where
the Hap-II (CCG) significantly reduce the ACI (Figure 8C).
Similarly, haplotype block on chr1A consisted of four haplotypes
(Figures 8D,E), and Hap-II (CATTCTTCA) was associated with
resistance to Pst at NWS.15 (Figure 8F). A haplotype block at
488 Mb on chr1D was associated with resistance to Pst at ISB.15
and NWS.15, while another haplotype block on chr5A at 465 Mb
was associated with Pst resistance at ISB.16 and NWS.15. This
haplotype block is likely the QTN at 481 Mb which was associated
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FIGURE 6 | The allelic effects of the durable rust resistance gene Lr34/Yr18 on the average coefficient of infection (ACI) in four environments at adult plant stage in
ISB.15 (A), ISB.16 (B), NWS.15 (C), and NWS.16 (D). Each boxplot shows the distribution of the average coefficient of infection (ACI) in a relevant environment for
both allelic states of the SNP marker.

with APR at NWS.15. Five haplotype blocks were associated with
Pst resistance at NWS.15 and these were distributed across chr1D
(2), chr2B, chr5A, and chr6A. For the haplotype block on chr2B
(6.2 Mb), 13 different haplotype variants were identified with a
frequency ranging between 1.03 and 43%.

Genomic Prediction for Resistance
Against Puccnina striiformis
Genomic-prediction analysis was conducted using a fivefold
validation for Pst resistance at four locations and five Pst races
using 11 different prediction models (Table 7). In the case
of APR, prediction accuracies ranged from 0.23 (RKHS for
ISB.15) to 0.511 (BL for NWS.15) using 90K markers, while
prediction accuracies were relatively lower for GBS. Among
the prediction models, BRR, BL, and GBLUP showed higher
prediction accuracies compared to other models. Prediction
accuracies were low for Pst.173262 and Pst.140202 using both
GBS and 90K markers. The hierarchical clustering was used to
classify the prediction models, which indicated that EN-based
prediction accuracies were quite different than other models both
for 90K and GBS markers (Figures 9A,B). Based on the 90K
platform, all Bayes model (A, B, and C) and BL were quite similar

in the prediction of reaction against Pst. BRR, GP, and GBLUP
were quite similar in the case of the GBS platform (Figure 9A),
while BRR was a bit different compared to GP and GBLUP in the
case of 90K markers (Figure 9B).

DISCUSSION

Stripe Rust Resistance in
Synthetic-Deriveds at Seedling and Adult
Plant Stages
The deployment of new, effective, and durable sources of
resistance against Pst is required to reduce the risk of epidemics.
Seven SYN-DERs were found to possess a high level of resistance
against three Pst races, while six were resistant against all five
races. It is likely that these SYN-DERs (SD37, SD38, SD73, SD85,
SD104, SD172, and SD173) carry major stripe rust resistance
genes. All five races used in the evaluation were avirulent to
Yr24/Yr26, which was identified in synthetic hexaploid wheats
and has been deployed in China and elsewhere (McIntosh et al.,
2018). Most Pst races are avirulent to the Yr24/Yr26 gene,
however, races virulent to Yr10 were also virulent to Yr24/Yr26,
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e.g., Australian Pst race 150 E16A + and Chinese Pst races V26-
CH42, and V26-Gui22 (McIntosh et al., 2018). Since SYN-DER
wheats are not extensively deployed in Pakistan and the races
used in this study were the most virulent available races, it is
likely that virulence to Yr24/Yr26 is not common in the pathogen
population in Pakistan. Therefore, the eight SYN-DERs could be
an excellent source of resistance against Pst in Pakistan and other
countries where virulence to this gene combination is not present.

At the adult plant stage, more than 110 SYN-DERs showed
moderate to resistant responses against Pst. The field screening
was carried out in ‘hot-spot’ areas of Pst incidence, thus, this APR
in SYN-DER could be usefully deployed against Pst races in the
region. These results are in accordance with previous findings
that APR occurs at a high frequency in synthetic hexaploid wheat
(Zegeye et al., 2014; Bhatta et al., 2019). This is partly attributable
to the fact that the A and B genomes of durum wheat are present
completely in synthetic hexaploid wheat and partially in SYN-
DERs. Previous studies indicate that Pst isolates from bread wheat
are often avirulent on durum wheat (Aoun et al., 2021). Among
the APR SYN-DERs, 68 carried the Lr34/Yr18 gene, which is
known to provide a partial resistance against all Pst races. The
results also suggested the presence of Lr34/Yr18 reduced overall
incidence of Pst in all four environments against all five isolates.
However, none of the SYN-DERs carried Lr67/Yr46, which was
expected because this gene evolved after polyploidization and
is mostly present in landraces from Pakistan and India (Riaz
et al., 2016), while synthetic hexaploid wheats and parents used
in SYN-DER did not have any introgression from Pakistan or
Indian landraces.

Quantitative Trait Nucleotides and
Haplotypes Associated With Puccnina
striiformis Resistance in
Synthetic-Deriveds
Both platforms, i.e., GBS and 90K SNP array, effectively
identified the loci associated with resistance to Pst, and some
QTNs were common to both platforms. We have collected
information for stripe rust resistance loci from 35 different
studies (Supplementary Table 2) and compared our QTNs with
previous findings. Among the Yr resistance genes, Yr24/Yr26
is derived from synthetic wheats and widely deployed in
synthetic wheat-based commercial cultivars in China (Zeng et al.,
2014). Previously, GWAS identified several Yr resistance loci
co-localized with known Yr genes including Yr24/Yr26/Yr28
on chromosome 1B, Yr48 on chromosome 5AL, Yr32 on
chromosome 2A, and Yr19 on chromosome 5BL (Zegeye et al.,
2014). Apart from Yr24/Yr26, it was expected that several
of the SYN-DERs could carry Yr32 because all five races
are avirulent to this gene. One QTN and one haplotype
were associated with resistance to Pst on chr2A at 566 and
30.8 Mb, respectively. The QTN at ∼566 Mb was likely to
be Yr32; previously, the SNP AX-108752496 (similar position)
was reported to be associated with Pst resistance (Wu et al.,
2021). However, the minor allele provided resistance and its
frequency at this QTN was 12% (n = 23), fourteen out of
23 SYN-DERs also possessed the durable rust resistance gene

Lr34/Yr18. Therefore, these 14 accessions could carry both major
and minor genes, thus, provide valuable donor sources for
breeding programs.

Among the 32 seedlings and 68 APR QTNs, 18 had a
phenotypic effect exceeding 10%. The largest effect QTN on
chr3B at ∼55.4 Mb explained 29.3% of the variation was
identified by both platforms in two environments. However, the
phenotypic variation explained was relatively lower in ISB.16
(14.2%). Yao et al. (2020) previously identified a QTN at a similar
position in Chinese wheat landraces (designated QYr.nafu.3BS).
Since the major allele provided resistance at this QTN, it is likely
that this locus was responsible for the high frequency of the
resistant SYN-DERs.

Previous studies identified QTNs for resistance to Pst on
chromosomes 2A, 3B, 6A, and 7B in an association mapping
panel of 181 SHWs (Zegeye et al., 2014). The QTNs and
haplotypes identified on the D genome showed the potential
of SYN-DERs for improving the Pst resistance in modern
wheat cultivars. The same loci associated with seedling and
APR to Pst on chr1B (∼300 Mb), chrr7A (∼506 Mb), chr2B
(∼150 Mb), chr3A (∼701 Mb), chr3D (∼355 Mb), and chr5B
(∼2.2 Mb). These loci could be used to discover potentially
novel alleles of major stripe rust resistance genes. The genes
Yr18, Yr29, Yr30, and Yr78 have been widely used in wheat
breeding (Wu et al., 2021). However, in our study, no SNP
association was found in the vicinity of Yr78 and Yr30. The
QTN on chr1B at 683 Mb was likely to be Yr29, and a QTL
QYr.nwafu-1BL was also identified in close proximity (Wu
et al., 2021). The QTN on chr3A was identified as effective
against Pst.140202, and a major gene Yr75 is located nearby
at ∼675 Mb, while the stem rust resistance gene Sr15 was
identified at the same position (Babiker et al., 2015). However,
several loci identified in this study could not be compared
with the previous studies due to the absence of a meta-analysis
of stripe rust resistance loci in wheat. The establishment of
such a framework would greatly enhance the validation and
identification of loci associated with stripe rust resistance,
particularly in GWAS studies.

Our study applied an LD based haplotype approach to
discover loci associated with resistance to Pst. Until now, only
one haplotype-based GWAS for stripe rust resistance has been
reported (Wu et al., 2021). Previously, we used a haplotype-
GWAS approach in SYN-DERs to identify the loci associated with
drought adaptability (Afzal et al., 2019). The results confirmed
that haplotype-GWAS was an effective strategy to increase the
power of GWAS experiments. Here, we showed that haplotype-
GWAS identified 9 out of 13 trait-associated loci where individual
SNPs were ineffective. This was because haplotypes containing
a group of closely linked SNP markers can increase the level of
polymorphisms and overcome the limitation of using single SNP
markers by creating more combinations (haplotypes). Several
haplotypes associated with phenotypes in our study were not
identified by SNP-GWAS and this could be due to many factors,
including patterns of LD in the population, marker density, and
the genetic architecture of the trait. The haplotype on chr6B
(Figures 7A–C) associated with ARP was also identified by SNP-
GWAS and is likely to be a new locus. Similarly, a haplotype
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TABLE 6 | Haplotypes associated with resistance to Pst at seedling and adult plant stages in SYN-DER wheats using 90K and GBS markers.

Genotype (Frequency)

Trait Haplotype ID Chr Position SNPs/
block

−log10(p) Hap-I Hap-II Hap-III

ISB.16 LDB_1_25490035_25490120 1A 25490035 2 1.45E-06 GA (0.68) AG (0.30) GG (0.019)

Pst.571242 LDB_1_575215721_575228785 1A 575215721 2 1.00E-08 GG (0.59) AA (0.18) AG (0.15)

NWS.15 LDB_3_19112718_19129042 1D 19112718 2 1.19E-06 AA (0.74) TG (0.25)

ISB.15 LDB_3_488576303_488577792 1D 488576303 4 4.00E-07 ATGT (0.55) GGAC:0.37 GGGT (0.02)

NWS.15 LDB_3_488576303_488577792 1D 488576303 4 1.00E-08 ATGT (0.55) GGAC:0.37 GGGT (0.02)

ISB.15 LDB_4_30830742_30831056 2A 30830742 2 7.00E-08 CA (0.92) TG:0.06 CG (0.01)

NWS.15 LDB_5_6258683_6338084 2B 6258683 9 3.00E-12 CATTCTTCA (0.43) CACCCTTCA (0.18) TGTTCCTCG (0.14)

Pst.140202 LDB_8_125880000_125930410 3B 125880000 4 6.91E-06 GACT (0.67) GGTC (0.15) AGTC (0.15)

NWS.16 LDB_10_111292188_111292941 4A 111292188 2 2.00E-09 GC (0.47) AT (0.44) GT (0.046)

NWS.15 LDB_13_465541110_465541233 5A 465541110 2 5.00E-07 CG (0.58) TA (0.35) TG (0.02)

ISB.16 LDB_13_465541110_465541233 5A 465541110 2 1.00E-08 CG (0.58) TA (0.35) TG (0.02)

NWS.15 LDB_16_584678556_584680439 6A 584678556 2 8.00E-06 GT (0.60) TG (0.31) GG (0.025

NWS.16 LDB_17_15781175_15781777 6B 15781175 3 1.00E-07 CCG (0.34) CTG (0.31) TCT (0.25)

Pst.173262 LDB_21_627325333_627325482 7D 627325333 2 6.00E-07 GC (0.79) AT (0.103) GT (0.06)

*Bold haplotype blocks are the loci also identified by SNP-GWAS. Only the top three most frequent haplotypes in each LD block are mentioned, and the values in
parentheses are the frequencies of the relevant haplotypes in the diversity panel.

A B

C

FIGURE 7 | LD haplotype block with SNP positions (A), variants of haplotype block (B), and allelic effect of different haplotypes on resistance against Pst.571242 in
the block for LBD_1_575215721_575228785 on chr1A (C). Each boxplot shows the distribution of the average coefficient of infection (ACI) in a relevant environment
for all allelic states of the SNP marker.

consisting of nine SNPs on chr2B at 6.2 Mb (Figures 7D–F) was
not identified by SNP-GWAS, and Hap-II, which provided a high
level of APR was present in 83 accessions. Several genes and QTL
have been identified on chr2B including Yr32, Yr43, Yr44, Yr53,
Yr72, Qyr.cim.2BS2,3, and many more (Supplementary Table 3).

However, none of these genes or QTL were located at the position
of the haploblock as identified in this study, thus, it could be a
new locus. Another haplotype on chr1A was in the proximity of
QTL Qyr.nwafu-1AL at∼587 Mb, which was previously reported
using 90K and 660K markers. However, no major gene has been
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FIGURE 8 | LD haplotype block with SNP positions, variants of haplotype block and allelic effect of different haplotypes in the block for
LBD_17_15781175_15781777 on chr6B (A–C), and LBD_5_6258683_6338084 on chr2B (D–F). Each boxplot shows the distribution of the average coefficient of
infection (ACI) in a relevant environment for all allelic states of the SNP marker.

identified in this region. In conclusion, haplotype-GWAS proved
to be a useful approach in combination with SNP-GWAS to
improve the discovery of resistance loci.

Genomic Prediction for Stripe Rust
Resistance
The transition from phenotypic selection to marker-assisted
selection, and now genome-wide selection, will allow breeders to
improve the selection decision during the early filial generations.
However, the success of genomic selection depends on several
factors such as the heritability of the trait, phenotypic variation
explained by markers, and appropriate genomic prediction
models (Ali et al., 2020). Genomic prediction resulted in an
accuracy of up to 85% for APR at ISB.16, although predictions
at other locations were less accurate. Prediction accuracies
were low to moderate for the three other environments
using the 90K SNP array but higher for GBS markers. The
reason for low prediction accuracies can be attributed to
smaller population sizes and unrelated genotypes. Recently,
the prediction accuracy for stripe rust resistance in wheat
landraces from Afghanistan was observed to be between 0.33

to 0.38 (Tehseen et al., 2021). Among the prediction models
used, GBLUP and BayesB were the most effective, while EN
was the least. The results in this study supported previous
genomic prediction studies, where GBLUP and similar models
predicted the disease resistance more accurately than other
models (Avni et al., 2017; Juliana et al., 2017; Tehseen et al.,
2021).

CONCLUSION

There is an ongoing need to identify new sources of resistance
to Pst. The SYN-DERs provide valuable genetic resources for
wheat improvement because they have high breeding value and
are derived from primary synthetic hexaploidy wheats with
D-genome contribution from Ae. Tauschii. Thus, SYN-DERs can
be used to enhance the diversity of the D-genome in modern
bread wheat but also the diversity of the A and B genomes because
the synthetic wheats carry introgressions from durum wheat.
More than 65 loci were identified in this study, which represent
potentially important genes for race-specific and broad-spectrum
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TABLE 7 | Genomic prediction accuracy using 11 different models for stripe rust resistance at four locations, and against five isolates at seedling stage using 90K SNP
array and genotyping-by-sequencing (GBS) platform.

Markers NWS.15 ISB.15 NWS.16 ISB.16 Pst.571242 Pst.571262 Pst.140202 Pst.571243

90K BayesA 0.506 (0.052) 0.405 (0.053) 0.482 (0.07) 0.506 (0.038) 0.279 (0.113) 0.219 (0.074) 0.11 (0.05) 0.426 (0.059)

BayesB 0.489 (0.055) 0.407 (0.05) 0.486 (0.07) 0.51 (0.044) 0.286 (0.111) 0.228 (0.079) 0.101 (0.051) 0.414 (0.062)

BayesC 0.491 (0.061) 0.413 (0.052) 0.477 (0.077) 0.5 (0.044) 0.29 (0.104) 0.236 (0.076) 0.107 (0.055) 0.434 (0.061)

BRR 0.488 (0.055) 0.395 (0.056) 0.502 (0.061) 0.498 (0.044) 0.264 (0.102) 0.236 (0.079) 0.139 (0.041) 0.413 (0.06)

BL 0.511 (0.053) 0.392 (0.047) 0.47 (0.078) 0.493 (0.043) 0.275 (0.101) 0.24 (0.073) 0.102 (0.05) 0.42 (0.059)

GBLUP 0.468 (0.058) 0.393 (0.048) 0.472 (0.069) 0.494 (0.044) 0.259 (0.103) 0.241 (0.077) 0.106 (0.038) 0.396 (0.059)

RKHS 0.354 (0.054) 0.235 (0.054) 0.39 (0.081) 0.386 (0.062) 0.205 (0.094) 0.221 (0.064) 0.061 (0.049) 0.226 (0.084)

EN 0.48 (0.062) 0.413 (0.06) 0.482 (0.069) 0.491 (0.043) 0.227 (0.104) 0.214 (0.085) 0.117 (0.033) 0.402 (0.056)

RVM 0.505 (0.067) 0.396 (0.072) 0.486 (0.069) 0.466 (0.049) 0.245 (0.108) 0.212 (0.06) 0.131 (0.043) 0.34 (0.054)

GP 0.476 (0.058) 0.392 (0.06) 0.5 (0.058) 0.498 (0.048) 0.258 (0.107) 0.25 (0.076) 0.088 (0.038) 0.408 (0.057)

RRBLUP 0.481 (0.057) 0.406 (0.052) 0.486 (0.069) 0.501 (0.042) 0.228 (0.099) 0.222 (0.078) 0.139 (0.035) 0.405 (0.058)

GBS BayesA 0.449 (0.108) 0.442 (0.077) 0.391 (0.061) 0.399 (0.089) 0.168 (0.047) 0.102 (0.07) 0.079 (0.053) 0.23 (0.051)

BayesB 0.421 (0.118) 0.432 (0.083) 0.386 (0.06) 0.405 (0.086) 0.146 (0.046) 0.117 (0.067) 0.067 (0.056) 0.227 (0.048)

BayesC 0.421 (0.114) 0.412 (0.084) 0.395 (0.061) 0.396 (0.084) 0.157 (0.053) 0.122 (0.07) 0.097 (0.053) 0.236 (0.044)

BRR 0.407 (0.114) 0.426 (0.079) 0.398 (0.061) 0.428 (0.084) 0.146 (0.05) 0.106 (0.067) 0.062 (0.059) 0.229 (0.048)

BL 0.428 (0.111) 0.399 (0.087) 0.38 (0.062) 0.391 (0.093) 0.15 (0.05) 0.109 (0.071) 0.054 (0.056) 0.241 (0.048)

GBLUP 0.417 (0.111) 0.435 (0.081) 0.366 (0.069) 0.388 (0.086) 0.151 (0.051) 0.117 (0.069) 0.013 (0.054) 0.225 (0.05)

RKHS 0.403 (0.115) 0.424 (0.082) 0.36 (0.064) 0.407 (0.09) 0.104 (0.043) 0.107 (0.07) 0.039 (0.052) 0.228 (0.052)

EN 0.26 (0.086) 0.33 (0.109) 0.17 (0.104) 0.379 (0.066) 0.256 (0.049) 0.002 (0.087) −0.01 (0.07) 0.084 (0.065)

RVM 0.486 (0.106) 0.381 (0.08) 0.346 (0.072) 0.439 (0.084) 0.06 (0.04) 0.038 (0.071) 0.171 (0.06) 0.224 (0.083)

GP 0.413 (0.114) 0.427 (0.087) 0.372 (0.069) 0.466 (0.084) 0.139 (0.049) 0.133 (0.071) 0.048 (0.066) 0.246 (0.056)

RRBLUP 0.398 (0.109) 0.421 (0.082) 0.388 (0.061) 0.385 (0.087) 0.079 (0.056) 0.104 (0.07) 0.001 (0.053) 0.213 (0.055)

Genomic prediction models: BayesA, BayesB, and BayesC. BRR, Bayesian ridge regression; BL, Bayesian least absolute shrinkage and selector operator; GBLUP,
genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert spaces regression; EN, elastic net; RVM, relevance vector machine; GP, Gaussian processor;
rrBLUP, ridge regression best linear unbiased prediction. The values in the parentheses are SDs of the prediction accuracies.

A B

FIGURE 9 | Ward’s hierarchical clustering on the prediction genomic values derived from the stripe rust infection types using 90K (A) and GBS (B) marker platforms.
Genomic prediction models: BayesA, BayesB, BayesC, Bayesian ridge regression (BRR), Bayesian least absolute shrinkage and selector operator (BL), genomic
best linear unbiased prediction (GBLUP), reproducing kernel Hilbert spaces regression (RKHS), elastic net (EN), relevance vector machine (RVM), Gaussian
processor (GP), and ridge regression best linear unbiased prediction (rrBLUP).

resistance to stripe rust. Haplotype-GWAS should be a routine
GWAS analytical approach to extend the discovery of genetic loci
associated with phenotypes. The novel loci for resistance to stripe

rust identified by SNP, and haplotype GWAS provide an arsenal
of new alleles for resistance breeding. The SNP markers with large
phenotypic effects for both all-stage resistance and APR can be
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converted to KASP or STARP markers for use in marker-assisted
pre-breeding and breeding programs.
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