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Editorial on the Research Topic

The Clinical Application of Neoantigens

To a large extent, the specificity of cancer immunotherapy is dependent on the recognition of
specific tumor antigens, especially neoantigens. Neoantigens are newly formed antigens that have
not been previously recognized by the immune system. Neoantigens can arise from altered tumor
proteins formed as a result of tumor mutations or from viral proteins. They are highly restricted to
tumor cells, with minimally established immune tolerance. Neoantigens used in vaccines and other
types of immunotherapies are being studied in the treatment of many types of cancer. Furthermore,
a growing body of evidence indicates that neoantigen-specific T cells underlie the success of the
recent surge in immune checkpoint blockades (ICB). Although the origin of neoantigens has been
discussed extensively in published literature, the identification of neoantigens and their influence in
clinical practice are largely ignored.

The application of neoantigens is rapidly becoming more widespread in clinical settings, not only
just related to the development of tumor vaccine or adoptive cell therapy but also in the monitoring
of clinical response in ICB and other therapies as well. The present Research Topic titled “The
Clinical Application of Neoantigens” features 10 articles that reflect the clinical application of
neoantigens and develop novel strategies for cancer therapy. This Research Topic includes mostly
review articles about neoantigen-identified tools or methods, neoantigens as a basis for
immunotherapies, and work using The Cancer Genome Atlas (TCGA), Gene Expression
Omnibus (GEO) or own researchers collected datasets to identify novel biomarkers.

Hao et al. proposed a deep convolutional neural network named APPM (antigen presentation
prediction model) to predict antigen presentation in the context of human leukocyte antigen (HLA)
class I alleles. APPM is trained on large mass spectrometry (MS) HLA-peptides datasets and
evaluated with an independent MS benchmark. Finally, they identified 16,000 putative neoantigens
with the hallmarks of ‘drivers’. Generally, this study is only based on MS datasets, however, Next-
Generation Sequencing (NGS) including RNA-sequencing (RNA-seq), whole-genome sequencing
(WGS), and whole-exome sequencing (WES) is more frequently used for neoantigens. One has to
additionally take into consideration already previously published work that proposed five major
types of neoantigen with NGS, such alternative mRNA splicing (AS), chimeric RNAs (or fusion
transcripts), circular RNAs (circRNAs), RNA editing, transposable elements (TEs), and human
org March 2022 | Volume 13 | Article 84263314
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endogenous retroviruses (HERV) (1). Generally, numerous work
about various bioinformatics pipelines and tools in this regard
have been performed. Prof. Griffith, e.g., already outlined each
step in the neoantigen workflow to predict high-quality
immunogenic neoantigens (2).

Six review articles in the special issue focus on neoantigens as
a basis for immunotherapies. Hereby, Dr. Zhong (Zhang et al.)
summarized the latest advances in the classification of
immunotherapy and the process of classification, identification,
and synthesis of tumor-specific neoantigens, as well as their role
in current cancer immunotherapy. Furthermore, prospects and
Frontiers in Immunology | www.frontiersin.org 25
existing problems of neoantigens are discussed, as is the long
development cycle of neoantigen vaccine that is recognized as a
primary obstacle to the application of vaccine, and the challenge
of preparation and delivery of vaccines. Yu et al. introduced
pyroptosis and ferroptosis as recently discovered types of
programmed cell death (PCD) that are different from
apoptosis, necrosis, and autophagy. They highlight that tumor
cell neoantigens target tumor cells and cause pyroptosis or
ferroptosis which might be an additional strategy for the
future. Arnaud et al. provided an overview of the main
strategies for T cell receptor (TCR)-engineering, described the
FIGURE 1 | Neoantigens as potential biomarkers for cancer patients treated with immunotherapies and/or conventional therapies. Neoantigens are mostly
derived from mutations in tumor cells. The candidate neoantigen can be identified from tumor tissue and blood samples with bioinformatics analysis ①. Next-
Generation Sequencing (NGS), including RNA-sequencing (RNA-seq), whole-genome sequencing (WGS), and whole-exome sequencing (WES); ②. Liquid
chromatography-mass spectrometry (LC-MS). They can serve as three major potential biomarkers. First, as a prognostic biomarker which indicates an
increased (or decreased) likelihood of a future clinical event, disease recurrence, or progression in an identified population. Predictive biomarkers are used to
identify individuals who are more likely than similar individuals without the biomarker to experience a favorable or unfavorable effect from exposure to a
medical product or an environmental agent. Safety biomarkers are measured before or after an exposure to a medical product or an environmental agent to
indicate the likelihood, presence, or extent of toxicity as an adverse effect. Figure modified with text, markings (stars), and annotation after adapted from
Servier Medical Art by Servier, licensed under a Creative Commons Attribution 3.0 Unported License. Original photo adapted from https://smart.servier.com/
smart_image.
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selection and expansion of optimal carrier cells for TCR-adoptive
T cell transfer (ACT) and discussed the next-generation methods
for rapid identification of relevant TCR candidates for gene
transfer therapy. Particularly CRISPR-Cas9 technology was
recommended to verify TCR candidates for clinical practice.
Zhu and Liu outlined the challenges of targeting neoantigens for
cancer treatment. It is warranted to explore the combinatorial
approaches with other immunotherapies, including checkpoint
blockade therapies or conventional treatments, including
chemoradiotherapies, kinase inhibitors, and anti-angiogenesis
therapies. Gu et al. provided a clear picture of the clinical
application of neoantigens in esophageal cancer (EC) from
tumor-specific cancer vaccines and adoptive T cells to
combination therapies. Liao and Zhang reported about
neoantigen vaccines that were identified in preclinical and
clinical trials and summarized the safety and efficacy of
personalized cancer vaccines combined with ICBs in several
cancer types. Most of the clinical trials are phase I or IB; only
three phase II studies are recruiting.

Tumor antigens may be recognized by the immune system as
non-self and elicit an immune response. Tumors with high TMB
and/or MSI-H/dMMR may lead to an increase in neoantigens.
Wang et al. therefore reviewed the potential application of tumor
neoantigen burden (TNB) as a biomarker. The impact of high
TNB and increased number of infiltrating immune cells on the
efficacy of immunotherapies is discussed. Zou et al. summarized
neoantigen load (NAL) which is similar to TNB, as a biomarker
for predicting the anti-tumor effects of ICB. When NAL alone is
insufficient to predict efficacy, its combination with other
indicators can improve prediction efficiency. Liu et al. found
that overexpression of ERO1L was associated with poor
prognoses in patients with Lung Adenocarcinoma (LUAD).
Overexpression of ERO1L was indicative of a hypoxia-induced
immune-suppressive TIME, which was shown to confer
resistance to immunotherapy in patients with LUAD.

In summary, this Research Topic highlights that tumor
neoantigens play an essential role in antitumor immunity and
successful cancer immunotherapies regardless of cancer vaccine
alone or combinations with ICB. With the development of
bioinformatics pipelines and tools, more novel neoantigens
Frontiers in Immunology | www.frontiersin.org 36
including circRNA, AS, fusion, and TE, are identified. Thereby,
neoantigen-based tailored therapies can be widely performed in
various cancers soon. Neoantigens could serve as potential
biomarkers for cancer patients treated with immunotherapies.
In the next decades, we still need to investigate more and more
novel neoantigens as potential prognostic, predictive, and safety
biomarkers for cancer patients treated with immunotherapies
alone and/or conventional therapies such as RT and CT
(Figure 1). Let’s go ahead with translational research of
neoantigens for cancer!
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Immunotherapy has significantly improved the clinical outcome of patients with cancer.
However, the immune response rate varies greatly, possibly due to lack of effective
biomarkers that can be used to distinguish responders from non-responders. Recently,
clinical studies have associated high tumor neoantigen burden (TNB) with improved
outcomes in patients treated with immunotherapy. Therefore, TNB has emerged as a
biomarker for immunotherapy and other types of therapy. In the present review, the
potential application of TNB as a biomarker was evaluated. The methods of neoantigen
prediction were summarized and the mechanisms involved in TNB were investigated. The
impact of high TNB and increased number of infiltrating immune cells on the efficacy of
immunotherapy was also addressed. Finally, the future challenges of TNB
were discussed.

Keywords: tumor neoantigen burden, biomarker, immunotherapy, immune response, tumor mutation burden
INTRODUCTION

Tumor immunotherapy aims to control tumor development by activating the immune system to
attack tumor cells. By selecting appropriate antigens, notably neoantigens produced by tumor-
specific mutations, an effective tumor-specific immune response can be mounted, and immune
tolerance can be minimized (1). Non-synonymous somatic mutations will produce altered peptides,
among which, some are processed and presented by the major histocompatibility complex (MHC)
in order to generate neoantigens. These molecules are the key factors required for successful
immunotherapy, including immune checkpoint inhibitors (ICIs), personalized tumor vaccines and
adoptive T cell transfer immunotherapy (2–4). These strategies have shown promise in the
treatment of solid tumors (5–7).

A higher number of DNA mutations are associated with higher number of candidate peptides,
and results in an increased probability of successfully presented neoantigens (8). The response to
immunotherapy correlates with tumor mutation burden (TMB) and mainly with the number of
mutations in the coding region of the genome (exome) of the tumor cells. It is usually reported as
the number of mutations present in a megabase of the genomic region by whole-exome sequencing
or large-scale next-generation sequencing (9–12). Similarly, the tumor neoantigen burden (TNB) is
defined by the number of neoantigens per megabase in the genome region (13, 14). Notably, TMB
April 2021 | Volume 11 | Article 67267717
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has become a biomarker for immunotherapy, assuming that
higher TMB will increase the probability of tumor neoantigens
and specific T-cell responses (15).

However, the role of TMB in immunotherapy remains
controversial (16–18), since not all mutations produce
neoantigens. Only a limited number of mutations can be
properly processed, presented on the surface of the MHC
complex and recognized by T cells (19). The TMB noted in
pediatric tumors is considerably low (20). However, in certain
tumors, such as pediatric medulloblastoma or acute
lymphoblastic leukemia, which exhibit minimal mutational
burden, a strong anti-tumor immune response can be induced
by high-quality neoantigens (21, 22).

TMB generates neoantigens and causes tumor immunogenicity.
This biomarker can be used as a valuable estimate of TNB to a
certain extent. A positive correlation has been noted between TMB
and TNB. However, TNB is directly used for neoantigen evaluation
andmay be considered an improved biomarker for immunotherapy
compared with TMB (23–25). High TNB was associated with
durable progression-free survival (PFS) in patients with non-small
cell lung cancer (NSCLC) treated with programmed death 1 (PD-1)
inhibitors (26). In addition, TNB correlated with clinical benefit in
patients with metastatic melanoma treated with cytotoxic T-
lymphocyte-associated protein 4 (CTLA4) inhibitors (27).
Similarly, a phase I/II trial performed in patients with stage IV
melanoma demonstrated that their clinical benefit was associated
with a proposed immune activation signatures score. Among the
score items, high TMB and predicted TNB were significantly
associated with improved PFS and overall survival (28). The
present review investigated the application of TNB as a biomarker
in immunotherapy and other therapies and provided an in-depth
discussion of the mechanisms, clinical application and challenges of
this biomarker.
NEOANTIGEN PREDICTION

In general, in silico analysis on genome sequencing can aid the
selection of immunogenic neoantigen peptides. Neoantigen
prediction is usually performed prior to selecting immunogenic
neoantigens to reduce the burden of immunogenicity testing by
decreasing the number of candidate peptides. This is a necessary
step in developing personalized immunotherapy. Several
important steps are involved in neoantigen selection, including
intracellular processing and transportation, the stability and
affinity of peptide-MHC complex binding, the diversity of T
cell receptors (TCR) and the recognition by TCR. In addition, the
difference between the prediction algorithms is also important.
Neopepsee is a neoantigen prediction algorithm that
automatically extracts mutated peptide sequences and
expression levels, and combines multiple immunogenic
features to construct a machine-learning classifier (29). The
application of deep learning to the determination of large
human leukocyte antigen (HLA) peptides and genomic data
sets from various tumors can aid the development of a
computational model for neoantigen prediction (30). An
Frontiers in Oncology | www.frontiersin.org 28
additional prediction algorithm can determine the priority of
neoantigens and discover immune characteristics in cancer
immunotherapy by the classification of human neoantigen/
neopeptide data into three categories based on different
mutation positions (anchor mutation, MHC-contacting
position and TCR-contacting position) (31).

Several computational pipelines have been developed for
neoantigen prediction. However, the majority of them are
based on peptide affinity with MHC (32–34). Furthermore,
neoantigen prediction can be performed by prioritizing
predicted peptides based on mutant allele expression, mutation
clonality, MHC presentation, and T cell recognition, either alone
or in combination (35–38). A Cauchy-Schwarz index of
neoantigens score was proposed and the effects of both
clonality and MHC binding affinity were included in order to
accurately determine the concentration of neoantigens in truncal
mutations (39). An additional prediction model was developed
by integrating peptide presentation and recognition into
antigenic determinant immunogenicity via the use of
specific parameters.

To establish a global neoantigen prediction algorithm
standard, several institutions established the tumor epitope
selection alliance, which is a bioinformatics consortium with
scientists from well-respected neoantigen research groups. These
institutions independently mine the open database of tumor
sequencing, predict potential neoantigens and rank candidate
peptides. Different predictions may be collected and cross-
matched to reach a final optimized consensus. This integration
incorporates aspects of binding affinity, tumor abundance,
stability and peptide identification in addition to antigen
presentation. Therefore, higher precision would be expected (40).
THE MECHANISMS OF TNB FORMATION

Any form of genomic instability, including single -nucleotide
variation (SNV), frameshift mutations, splicing variations or
chromosome rearrangement, may result in TNB. The genomic
instability can result from abnormalities in either DNA
replication or mismatch repair (MMR) (41). The high-fidelity
process of DNA replication requires replicative DNA
polymerases, exonucleolytic proofreading and MMR.
Abnormalities that may occur in any of these parts contribute
to genetic instability. Inactivation of DNA polymerase leads to
excessive mutations, such as ultra-hypermutated phenotype.
Defective MMR (dMMR) leads to microsatellite instability
(MSI), which is an ultra-hypervariable phenotype of short
repetitive DNA sequences and SNV. Following exposure to
either exogenous (smoking, ultraviolet radiation, chemicals,
ionizing radiation) or endogenous (reactive oxygen species,
endocrine abnormalities) mutagens, dMMR/MSI facilitates
carcinogenicity and paradoxically increases TNB, which in
turn enhances immunogenicity (42–46).

Although TNB is a biomarker of immunotherapy, current
knowledge regarding its function is limited. Primarily, TNB
analysis was performed on SNV (47). However, other genetic
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aberrations may produce comparable or even more
immunogenic neoantigens (23). For example, neoantigens were
found from a data set of gene fusion-positive tumors (48). Splice
variants are also sources of neoantigens. High expression of PD-1
and programmed death-ligand 1 (PD-L1) were observed in
tumors with splice variants (49). In addition, a new class of
neoantigens was discovered, which was derived from intra- or
inter-chromosomal rearrangements (50).

Various studies have analyzed the frequency of specific
somatic mutations in multiple types of cancers, which
demonstrated that the frequency of non-synonymous
mutations varied greatly, ranging from ~0.001/Mb to higher
than 400/Mb. The mutation frequency was very prominent in
melanoma and lung cancer (20, 51). Notably, Samra Turajlic
et al. analyzed and compared the counts of Insertion-and-
deletion-derived tumor-specific neoantigens in pan-cancer,
both SNV-derived neoantigens and frameshift indel-derived
neoantigens in the study showed that melanoma, lung cancer,
bladder cancer, colon cancer, and head and neck cancer with
high TNB (47). Mutations in lung cancers can be attributed to
direct DNA damage from cigarette smoke carcinogens. A
significant dose-response association of smoking history with
genetic alterations has been noted in advanced non-small-cell
lung adenocarcinoma with regards to cancer-associated
pathways and their corresponding mutant antigens (52, 53).
Ultraviolet stimulation is the main factor leading to high TNB
in melanoma (54). In other common cancer types, such as
colorectal or endometrial cancer, which harbor DNA
polymerase epsilon mutations, increased TNB is attributed to
endogenous mutations (55, 56). However, in certain tumors,
such as bladder cancer, the mechanisms underlying the
formation of TNB are complex, including the apolipoprotein B
mRNA editing enzyme catalytic polypeptide family, smoking,
viral infection and genetic fusions (57).

A previous study dissected the genetic heterogeneity during
the evolution of a primary osteosarcoma tumor to its metastatic
variant. Metastases exhibited higher TNB compared with
primary tumors, possibly due to the accumulating mutations in
DNA damage response genes (58). Different mutational
landscapes exist between the primary and metastatic sites and
in the subclones noted inside different regions of a tumor (intra-
tumoral heterogeneity; ITH). The presence of ITH suggests that
the tumor cannot elicit equal immunity. Patients with tumors
exhibiting high TNB and low ITH are more likely to benefit from
immunotherapy (59, 60).
TNB CORRELATES WITH TUMOR-
INFILTRATING LYMPHOCYTES

Neoantigens alone are not sufficient to mount an effective
immune response and tumor-infiltrating lymphocytes (TILs)
are also required for this process (61, 62). High TNB can
promote the recognition and activation of T cells, which in
turn increase TILs and improve the immune response of cancer
patients to cancer cells (Figure 1). Colorectal tumors with
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dMMR exhibit neoantigen-stimulated lymphocyte infiltration
and increased levels of inflammatory cytokines. In the absence
of high TMB, high TNB alone correlates with the inflammatory
microenvironment (63). Moreover, lung adenocarcinoma
patients with high TMB presented with enhanced infiltration
of activated CD4+ and CD8+ T cells, while the mutations
detected could accurately predict the increased TNB and T cell
infiltration. In addition, TNB was significantly associated with
the expression levels of M1 polarized macrophage genes, namely
PD-1, PD-L1, interferon-g (IFNg), Granzyme B FAS ligand and
other immune-associated genes (64). The correlation between
TNB and TILs has been verified in multiple studies (64–66).

High TNB correlates with the abundance of TCR clonality
and the infiltration of activated CD4+ and CD8+ T cells (50, 67).
This may be mediated by the elevated expression of chemokines
induced by IFN-g, such as chemokine (C-X-C motif) ligand
(CXCL) 9, and by the recruitment of T cells or myeloid dendritic
cells (45, 68, 69). In the majority of the cases, high TNB can
predict inflammatory microenvironment and optimal immune
response. The infiltration of different immune cell subgroups is
commonly noted in a special spatial compartment termed
tertiary lymphoid structure (TLS). The mechanism by which
TLS responds to the tumor microenvironment is actively studied.
A previous report indicated that transforming growth factor b1
induced co-expression of CXCL13 and CD103 in CD8+ T cells,
providing a potential link between CD8+ T cell activation and B
cell migration (70, 71).
THE ROLE OF TNB IN TUMOR
IMMUNOTHERAPY AND OTHER
THERAPIES

Tumor Vaccine and T Cell Therapy
The use of individualized neoantigen vaccines and neoantigen-
specific T cell therapy is actively explored. This topic has been
well described in previous review articles (72–76) and will not be
covered in the present review. It should be noted that
individualized vaccines against a single neoantigen
demonstrated limited efficacy. The use of a complete tumor
lysate vaccine or a personalized vaccine containing multiple
neoantigens can improve patient outcomes (6, 77). The
dendritic cells were pulsed with oxidized autologous whole-
tumor cell lysate, which was proved as an effective vaccine in
patients with ovarian cancer. This vaccine amplified T cell
responses against recognized neoepitopes and elicited de novo
responses for previously unrecognized neoepitopes (78). An
additional study tested the efficacy of an adenoviral vaccine
consisting of multiple neoantigens. This vaccine facilitated T
cell infiltration and expanded the breadth and efficacy of the TCR
repertoire following ICI treatment (79). Tumor cell lysates differ
in their efficiency as vaccines. A direct comparison of 2
autologous tumor cell lysate (with different TMB) vaccines
demonstrated that the lysates with lower TMB inhibited tumor
growth more efficiently. Thus, it may be considered that the
neoantigen quality outranked the quantity (80).
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Radiotherapy and Chemotherapy
Radiotherapy or chemotherapy can facilitate immunotherapy
and is possibly attributed to increased exposure of neoantigens
(81) (Figure 1). In addition to direct tumoricidal effects,
radiotherapy converts the irradiated tumor cells into an in situ
vaccine (82, 83). In locally advanced rectal cancer, neoadjuvant
chemoradiotherapy induced new neoantigen epitopes and
altered the immune function of the hosts (84). Similarly,
patients with relapsed anal squamous cell carcinoma exhibited
high TNB following radiochemotherapy and indicated objective
responses to PD-1 inhibitors (85). In bladder cancer, dual poly
(ADP-ribose) polymerase and PD/PD-L1 inhibition is used to
improve disease prognosis (86). The standard treatment for
high-grade serous ovarian carcinoma is surgery and/or
chemotherapy. However, only dismal results are obtained,
whereas in a subgroup of patients harboring high TNB, an
improved prognosis was achieved. Moreover, an additional
study demonstrated that TNB could be used to determine the
prognosis of patients with clear cell renal cell carcinoma who
received either surgery alone or surgery combined with adjuvant
therapies (87–89).

The more important aspect is that pediatric tumors exhibit
low TMB at diagnosis, whereas the levels of this biomarker
increase when the tumor is exposed to chemoradiotherapy,
resulting in neoantigen targets (90, 91). The majority of the
pediatric tumors have less TIL and low MHC expression. In
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addition, the immune system of the children is immature.
Consequently, the current immunotherapy alone is not
sufficient to treat pediatric tumors efficiently. The combination
of immunotherapy with conventional radio- and chemotherapy
can achieve an improved survival benefit (92, 93).

TNB and Responses to ICIs
High TNB produces neoantigens, contributing to an
inflammatory microenvironment, which ultimately leads to
improved outcomes following ICI therapy (Figure 1). A
previous study performed in patients with NSCLC, who
exhibited high TMB or genetic defects in the DNA repair
pathway, demonstrated that they benefited from ICI treatment.
At least in one responder, neoantigen-specific CD8+ T cell
responses paralleled with tumor regression (26). It has also
been shown that patients with melanoma, who are treated with
CTLA4 inhibitors, demonstrated a significant association of
TMB, TNB and cytolytic marker expression with clinical
benefit (27). Recently, a model of immunotherapy score (ITS)
mutation was proposed for predicting the response of patients
with melanoma to ICI treatment. Patients with high TMB and
TNB exhibited higher ITS scores and immunotherapy sensitive
features (94).

A scoring system based on neoantigen concentration
combined with clonality and MHC binding affinity predicted
responses to ICIs and the prognosis of patients with melanoma,
FIGURE 1 | The use of TNB in personalized immunotherapy for patients with cancer. Tumor tissues from patients with cancer were obtained for DNA sequencing
and bioinformatics prediction of TNB. Subsequently, the TCR-T, CAR-T and the cancer vaccines were designed based on TNB for personalized treatment. Finally,
the patients exhibited an immune response to cancer cells. In addition, high TMB in patients with cancer can produce high TNB, which will promote T cell activation
and immune cell infiltration, thereby causing an immune response in these patients. It is interesting to note that chemotherapy, radiotherapy or targeted therapy can
promote the release of cancer antigens in patients with high TNB, which in turn can enhance the therapeutic effects of ICI-based treatment. This type of treatment
will activate T cells, increase immune infiltration and produce immune responses. TNB, tumor neoantigen burden; TCR-T, neoantigen-specific T cell receptor
engineered-T cell; CAR-T, chimeric antigen receptor-T cell; ICI, immune checkpoint inhibitor.
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lung and kidney cancers (39). Neoantigen concentration levels
were prognostic factors for patients with melanoma and chronic
lymphocytic leukemia treated with ICIs (29). However,
paradoxical results were reported, indicating inferior PFS with
high TNB in patients with multiple myeloma. The possible
explanation for these findings was that the disease progression
caused reduced efficiency of T cell recruitment (24).

The diversity and clonality of neoantigen-responsive TCR are
also potential biomarkers for immunotherapy (95, 96).
Additional research studies in this topic will aid the successful
application of immunotherapy.
CHALLENGES AND PERSPECTIVES

The rapid development of immunology and bioinformatics has
enabled the successful prediction of neoantigens. However, the
standard pipeline for neoantigen prediction and the optimized
cut-off value for TNB are unknown, since it is an emerging
biomarker. In addition, the presence of specific mutations
causing ITH should be taken into consideration (97).
Heterogeneity exists not only locally but also between primary
lesions and their successive metastases (98). Neoantigen
prediction is currently hindered by the difficulty in exploring
the entire tumor through a partial biopsy (99).

Several obstacles hinder the patient immune response, such as
the loss of HLA (100–103). Failure of successful HLA
presentation renders the candidate neoantigens ineffective in
Frontiers in Oncology | www.frontiersin.org 511
vivo. Therefore, TNB alone cannot accurately predict the
immune response. Currently, the personalized detection of
circulating tumor DNA is considered a powerful tool for the
dynamic monitoring of TNB (16, 80, 104). However, the clinical
application of TNB is still limited. Previous evidence has shown
that the quality of neoantigens may be more important, since
high-quality neoantigens can confer higher immunogenicity
(105). According to our opinion, the real-time status of the
high-quality neoantigen burden can monitor the treatment
response more effectively. The construction of a neoantigen
vaccine library and a neoantigen-responsive T cell receptor
repertoire can provide a more comprehensive and personalized
antitumor treatment. Future studies should focus on assessing
the quality of TNB.
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Accurate prediction of neoantigens and the subsequent elicited protective anti-tumor
response are particularly important for the development of cancer vaccine and adoptive
T-cell therapy. However, current algorithms for predicting neoantigens are limited by
in vitro binding affinity data and algorithmic constraints, inevitably resulting in high false
positives. In this study, we proposed a deep convolutional neural network named APPM
(antigen presentation prediction model) to predict antigen presentation in the context of
human leukocyte antigen (HLA) class I alleles. APPM is trained on large mass
spectrometry (MS) HLA-peptides datasets and evaluated with an independent MS
benchmark. Results show that APPM outperforms the methods recommended by the
immune epitope database (IEDB) in terms of positive predictive value (PPV) (0.40 vs. 0.22),
which will further increase after combining these two approaches (PPV = 0.51). We further
applied our model to the prediction of neoantigens from consensus driver mutations and
identified 16,000 putative neoantigens with hallmarks of ‘drivers’.

Keywords: neoantigen, CNN, HLA, driver mutation, prediction
INTRODUCTION

Cancer develops as a result of the accumulation of tumor-specific somatic mutations (1–3), where
non-silent mutations in the coding region could be recognized as beacons of “foreign” by the immune
system, named neoantigen (4, 5). They can elicit a protective anti-tumor response when presented on
the surface of cancer cells by the major histocompatibility complex (MHC) [also called human
leukocyte antigen (HLA)]. Neoantigens have long been regarded as ideal targets in immunotherapy
because they are restrictedly expressed by tumor cells and not subjected to central or peripheral
tolerance (6). Neoantigen-based immunotherapy has achieved great success in recent years (7–11),
further highlighting the importance of accurate prediction of neoantigens for the development of
cancer vaccines and adoptive T-cell therapy (12–15). However, the current prediction approaches and
algorithms to identifying immunogenic neoantigens from mutant peptides are far from satisfactory.
Low precision is a major obstruction to their identification scheme (16), partially because they
primarily rely on the HLA-peptide binding affinity (17). The binding affinity produced by in vitro
org May 2021 | Volume 12 | Article 682103115
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binding experiments neglects other biological steps involved in the
peptide delivery process, which results in a substantial fraction of
false positives. Only ~1–5% of predicted bound peptides using
HLA binding-affinity predictions have been experimentally
validated (18). One way to solve this problem is to train the
prediction algorithm with peptides eluted fromHLA complexes of
mono-allelic or mixed-allelic cancer cell lines and identified by
mass spectrometry (MS) analysis (19). The MS datasets profile the
peptides naturally presented on the cell surface, which has already
gone through antigen processing and transporting steps (20, 21).
Another reason for low precision may be that the recognition
features, such as amino acid properties and spatial structure were
not taken into consideration (22, 23). Compared with other
artificial neural networks used in MHCflurry, NetMHC-4.0 and
NetMHCpan-4.0 (24–26), the convolutional neural network
(CNN) preserves local spatial features (27) and is more suitable
for studying peptides where spatial locations of the amino acids
are critical for binding (28).

In this study, we proposed an antigen presentation prediction
model (APPM), a CNN algorithm trained to accurately predict
the likelihood of a peptide presented by HLA-I molecules. APPM
outperformed the approach recommended by IEDB (2020.04
netMHCpan EL 4.0) in terms of specificity and positive
predictive value among 20 high-frequency HLA alleles. Besides,
we predicted the neoantigens derived from the TCGA driver
mutations, the preparation of which can be used in off-the-shelf
immunotherapies to save the time from detecting mutations to
personalized vaccine injection.

METHODS

Data Collection
More than 1,900,000 published HLA-peptides MS data of mono-
allelic or mixed-allelic cell lines which collectively expressed 20
high-frequency HLA-A and HLA-B allotypes are collected (16,
19, 29, 30). All these data are labeled in binary notation. Label=1
denotes MS-identified peptides (hits), whereas label=0 denotes
peptides from the reference proteome (SwissProt) that were not
detected via mass spectrometry.

Data Encoding
The training datasets are peptides with the length from 8-mer to 11-
mer, which are represented by a one-letter amino acid alphabet (a
total of 20 distinct amino acids, namely ‘ACDEFGHIKLMN
PQRSTVWY’). Such length range captures ~95% of all HLA class
I-restricted peptides. To implement machine learning, the peptide
sequences are vectorized by a one-hot encoding scheme. Peptides
with multiple lengths (8-mer to 11-mer) were represented as fixed-
length vectors by using a padded character ‘Z’. Each amino acid and
the padded ‘Z’ are encoded as a one-hot vector (see Figure S1 for
details). As a result, peptides are encoded as the fixed matrix of 11
rows (maximum length) by 21 columns (20 distinct amino acid
alphabets and the padded character ‘Z’).

Imbalanced Distribution of Training Datasets
The collection of MS datasets shows a severe class imbalance.
Overall, the total number of 0-labeled data is 1,866,484 which is
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39 times as many as the 1-labeled counterparts. An extreme case
can be found in HLA-A*02:07 datasets where the negative-
labeled records are 72 times more than 1-labeled records. Such
extreme imbalance influences the prediction of the machine
learning model, inclined to show a better performance on the
0-labeled peptides (the majority) and a worse on the 1-labeled
ones (the minority) (31). Thus, the class balance is adjusted via
over-sampling and under-sampling procedures in preprocessing
the training datasets. Briefly speaking, the under-sampling goes
by removing the 0-labeled training data points at random,
whereas the over-sampling duplicates the 1-labeled data points.
Table 1 shows the proportions of over-sampling and under-
sampling on different HLA alleles.

Convolutional Neural Network (CNN)
Usually, the Convolutional Neural Network (CNN) consists of
convolutional layers, pooling layers and fully connected (dense)
layers. In this study, an advanced CNN which is inspired by the
inception module from GoogLeNet is used (32, 33). Three parallel
convolutional sections with eight two-dimensional convolutional
kernels for each were constructed to maximize the feature
extraction (see Figure S2 for details). The output of three
convolutional layers connects to a flattened matrix and is delivered
to the fully-connected layers which contain 100 hidden nodes. The
output layer displays the results of binary classification by two nodes
where a tested peptide is classified as binding or not binding toHLA.

The model is implemented with Tensorflow (v. 1.14.0) and
trained by Adam optimization algorithm with standard parameters
on an NVIDIA GeForce RTX 2080 Ti GPU. Instead of the
frequently-used activation function Rectified Linear Unit (ReLU),
the advance function of Leaky ReLU (a=0.2) is applied to activate
the model and the “drop-out” and “early stopping” schemes are
introduced to avoid overfitting.

Data Splitting
The peptides of the MS dataset are randomly split into training sets,
validation sets and test sets, and all three sets have approximately
the same distribution of 1-labeled and 0-labeled peptides. The
validation sets are used only for early stopping. The training sets
are used to perform feed-forward and backpropagation and the test
sets are used to evaluate performance via AUC.

Independent Validation Dataset
To benchmark the APPM and other HLA-peptide predictors, we
collected HLA-bound peptides MS datasets from other studies
that use cell lines to express a single HLA allele (34, 35). From
these MS-identified peptides (hits), we generated non-binders
(decoy sets) by sampling unobserved peptides from the same
proteins through the Uniprot human reference proteome
(UP000005640_9606) as previously described (36). For each
MS-identified peptide, we randomly selected 99-time decoy
peptides of four different lengths (8, 9, 10, 11), and the number
of each length is the same. The rationale for the 99-fold bias is
that for a sample of peptide fragments from an organism, it is
commonly considered that approximately 1%∼2% of the
fragments will bind to MHC receptors (37). After removing
the peptides appearing in the model training data and the
May 2021 | Volume 12 | Article 682103
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duplicate sampled from different proteins, we obtained a mono-
allelic benchmark dataset.

Predictive Performance Metric Calculation
Sensitivity, also called recall, was calculated as:

correctly   predicted   positive   peptides
all   positive   peptides

Specificity was calculated as:

correctly   predicted   negative   peptides
all   negative   peptides

Positive predictive value, also called precision, was calculated as:

correctly   predicted   positive   peptides
all   peptides   predicted   to   be   positive

The Cancer Genome Atlas (TCGA)
Driver Mutations
To obtain a consensus driver mutations list, we download the
driver-mutations dataset processed and compiled by TCGA
MC3 and driver working group (https://gdc.cancer.gov/about-
data/publications/pancan-driver) (38, 39). The driver-discovery
dataset was derived from a compiled MAF file of 9079 TCGA
samples across 33 different cancer types (syn7824274, https://
gdc.cancer.gov/about-data/publications/mc3-2017). Based on
sequencing and structure analyses, we ultimately selected 3,437
cancer driver mutations as the consensus list were identified
by ≥ 2 approaches from CTAT-population, CTAT-cancer, or
structural clustering (see Supplementary File 4).

Candidate Peptides From Driver Mutations
For each driver mutation, we extract 8-11mers candidate peptides
that contain the driver specific mutant amino acid for neoantigen
Frontiers in Immunology | www.frontiersin.org 317
screening. For instance, the extracting procedure of 9-mer candidate
peptides is described as follows (Figure S3). Firstly, we extracted a
17-mer peptide from the protein sequences, where the mutant
amino acid was placed in the center with eight upstream and
downstream wild amino acids as flanks. Secondly, by using the
sliding window protocol, a 9 amino acid size window was slid N (N
= 9) times to obtain 9-mer peptides. Briefly speaking, the mutant
amino acid serves as the end point of the first 9-mer peptide. This 9-
mer sliding window moves along the 17-mer fragment until the
mutated point becomes the starting point of the 9-mer. Peptides
with other lengths are treated in the same way.
RESULTS

Development of APPM
We aimed to improve the precision and specificity of the HLA-
peptide prediction approaches through a novel tool that has been
trained on improved training data and a new supervised machine
learning model. HLA-Peptides of MS data were eluted by
immunoprecipitation of HLA molecules and then identified by
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
(40, 41). Compared with in vitro binding affinity assays, MS data
directly profiles peptides that are actively presented by cells or
tissues (42). We collected publicly available HLA-peptides MS
data from 16 mono-allelic HLA-A and HLA-B cell lines
genetically engineered to express a single HLA allele and from
B lymphocytes or cancer cell lines expressing multiple HLA
complex alleles (16, 19, 29, 30, 43). These MS data consist of 20
high-frequency HLA-I alleles. We split the datasets into three
sets: training, validation and testing sets (Methods). Owing to so
many negative peptides (from reference proteome), we apply the
over-sampling and under-sampling scheme, which neutralizes
the substantial fraction of the imbalance issue.
TABLE 1 | The Training Detail on different HLA alleles.

Alleles Label = 1 Label = 0 Train Test Under-sampling Over-sampling

A*01:01 3398 48700 45498 6600 1 2
A*02:01 6779 165342 160921 11200 0.8 3
A*02:03 1780 116299 107879 10200 0.8 3
A*02:07 3206 232783 225389 10600 0.7 5
A*03:01 5419 83117 77536 11000 1 3
A*11:01 2114 123143 114857 10400 0.8 3
A*24:02 5189 142382 136571 11000 0.7 3
A*29:02 1149 54125 49074 6200 1 5
A*31:01 1879 45918 41597 6200 1 4
A*32:01 584 40401 34885 6100 1 5
A*68:02 1516 92678 83994 10200 0.8 3
B*07:02 3162 201778 194340 10600 0.6 3
B*15:01 1684 106482 97966 10200 0.8 3
B*35:01 1019 53819 48638 6200 1 4
B*40:01 1321 80192 71313 10200 0.9 3
B*44:02 1525 44760 40085 6200 1 4
B*44:03 1487 39482 34769 6200 1 4
B*51:01 2597 77898 70095 10400 1 4
B*54:01 969 65623 56412 10180 1 3
B*57:01 1599 51562 46961 6200 1 4
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Using these public HLA-peptides MS data, we build a
convolutional neural network (CNN) framework to predict
HLA-I presentation, a form of deep learning that excels at
handling general sequence data such as amino acid sequences
(Figure 1) (28). The model has three parallel convolutional
modules, each consisting of eight two-dimensional convolutional
layers, which preserved HLA class I-peptide binding features.

Predictive performance of APPM
To estimate the predictive performance of APPM, we first
compared the prediction results of APPM with the IEDB
recommended method (2020.04) (NetMHCpan4 EL (44), the
state-of-the-art class I binding predictors available at http://tools.
iedb.org/mhci/) in terms of PPV. We compiled a benchmark
using published MS data from cell lines genetically engineered to
express a single HLA-I allele. In this mono-allelic benchmark, the
MS-identified peptides are true positives where length-matched
amino acid fragments from the same protein as negative peptides
(decoys). For each paired HLA allele and peptide, NetMHCpan4
EL produced a binding score and percentile ranks. Using the
recommended threshold of the percentile rank (top 2% ranks
are considered binders), we obtained the average specificity
and positive predictive value (PPV) of 0.97 and 0.22 for
NetMHCpan4 EL (Supplementary File 1).

When tested on the same data, APPM outperformed
NetMHCpan4 EL with the specificity of 0.99 and PPV of 0.40.
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The improvement in reducing false positives rates was
substantial, with an average of 80% increase in PPV (Figure
2A). For the 20 frequent haplotypes of HLA class I, APPM only
exhibited a slightly lower PPV than NetMHCpan4 EL on HLA-
A*02:01, but presented higher PPV for the rest of 19 HLA
haplotypes, particularly with more than one fold of increase
for HLA-A*02:03, HLA-A*29:02, HLA-A*32:01 and HLA-
B*40:01 (Figure 2B), suggesting the advantage of our algorithm.

Combining Algorithms Improves
Prediction Performance
Interestingly, a low overlap rate (19%) is observed between
APPM and NetMHCpan4 EL for the false-positive peptides
(Figure 3A), probably due to the different prediction
mechanisms. In this case, we hypothesized that the prediction
performance could be improved by combining these two
predictive approaches. We redefined the predictive results: only
peptides identified positively in both methods are regarded as
positives. Using the combined predictions, we obtained the PPV
of 0.51 (Figure 3B), which is significantly higher than that of
both APPM and NetMHCpan4 EL (Figure 3C, p = 0.013, t-test
and Figure 3D, p < 0.001, t-test), without significant decrease of
sensitivity (Figure 3E, p = 0.1, ANOVA). These results suggested
that the combined predictions from different algorithms can
improve the positive rate for neoantigen selection, which is
consistent with previous studies (45, 46).
FIGURE 1 | The framework of our study includes the collection of training data and the deep learning model built based on the convolutional neural network.
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Alleles-Specific Presentation Motif
To illustrate the binding characteristics of HLA-I alleles with
peptides, we draw allele-specific presentation motifs for 20 HLA-
I alleles (see Supplementary File 2 for motifs of all alleles).
Consistent with previous studies (17, 19, 47), these motifs
revealed the dependence of HLA presentation on each
sequence position for peptides of multiple lengths 8-11 (Figure
4A). For example, the anchor residues of 9mer are amino acid at
position 2 (refer as P2, a similar abbreviation for other positions)
and P9, while 11mer at P2 and P11.

In contrast to previous work (48), some distinct HLA alleles
have similar presentation motifs. For instance, HLA-A*02:01 and
HLA-A*02:03 have the same binding specificity, meaning the
pockets preferentially bind to bind the peptides with leucine at
P2 and valine/leucine at the last position. Likewise, HLA-A*03:01
and HLA-A*11:01 presented lysine at the last position, while
HLA-B*40:01, HLA-B*44:02, and HLA-B*44:03 prefer to deliver
peptides with glutamate at P2 (Figure 4B).

Moreover, we analyzed the amino acid properties of anchor
residues of 20 HLA alleles and refined their binding character:
these binding peptides enriched in hydrophobic amino acids at
anchor residues. It is consistent with the known preference of
HLA-I binding and presentation (23, 49). We also explored the
whole preference of amino acid properties among HLA-A and
HLA-B molecules on anchor residues (Figure 4C). Besides the
common preference of hydrophobic amino acids, HLA-A alleles
Frontiers in Immunology | www.frontiersin.org 519
prefer to bind basic and polar amino acids, while the HLA-B
alleles prefer acidic amino acids.

Neoantigens From Driver Mutations
It is considered that the quality rather than the quantity of
neoantigens may lead to a robust and durable response to
immunotherapy (50). Most of the putative neoantigens are
considered as the product of passenger rather than driver
mutations, and their loss through chromosomal instability
during tumor evolution may be readily tolerated. Therefore,
targeting driver-mutation-neoantigens could manifest durable
anti-tumor responses and may reduce the resistance to
neoantigen therapies.

We applied the combining approach of APPM and
NetMHCpan4 to predict neoantigens derived from oncogenic
driver mutations. The consensus driver-mutation list was
compiled and discovered by The Cancer Genome Atlas (TCGA)
Multi-Center Mutation Calling in Multiple Cancers (MC3)
working group and driver working group among 9079 samples
across 33 cancer types (38, 39). For a total of 3,437 missense driver
mutations, we identified ~ 16,000 putative neoantigens in the
context of 20 high-frequency HLA alleles (Supplementary File 3).

Among these driver mutations, only 15% (513/3437) do not
yield putative neoantigens, while the products of the other could
be bound and presented by these HLA alleles. We identified 36
high-frequent shared putative neoantigens derived from eight
A

B

FIGURE 2 | Validation performance of IEDB recommended approach and APPM (A) The mean PPV accuracy on the mono-allelic MS benchmarks for APPM and
NetMHCpan4 EL. (B) The PPV values of two predictors at different HLA alleles.
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oncogenic driver mutations with more than 1% coverage of
multiple cancer patients in the 9079 TCGA cohort (Table S1),
e.g. HLA-A*03:01_KIGDFGLATEK from BRAF_p.V600E with
5.60% (508/9079) in Pan-Cancer. Besides, we also found tumor-
specific shared potential neoantigens with over 10% frequency in
a given cancer type (Table S2). For example, HLA-
B*15:01_IIIGCHAY from IDH1_p.R132C with 11.76% (4/34)
Frontiers in Immunology | www.frontiersin.org 620
in CHOL. Importantly, the immunogenicity of some shared
putative neoantigens we identified has been confirmed
experimentally (Table 2) (51). For instance, VVVGAGDVGK
from KRAS_p.G13D has been shown to be immunogenic in the
context of the HLA-A*03:01 allele. Overall, these putative shared
driver-mutation-neoantigen pools provide a potential list of
targets for off-the-shelf immunotherapy.
A B

D

E

C

FIGURE 3 | Algorithms Combination Improves Prediction Performance. (A) The false-positive peptides of APPM and NetMHCpan4 EL. These peptides are decoy
peptides of mono-allelic MS benchmarks that are incorrectly predicted to be bindings. (B) The mean PPV accuracy on the mono-allelic MS benchmarks for APPM,
NetMHCpan4 EL and combination. (C) The significant improvement of predictive performance in the term of PPV on the mono-allelic MS benchmarks. The left is
APPM and the right is the combination of APPM and NetMHCpan4 EL. **p < 0.05. (D) The significant improvement of predictive performance in the term of PPV on
the mono-allelic MS benchmarks. The left is NetMHCpan4 EL and the right is the combination of APPM and NetMHCpan4 EL. ***p < 0.01. (E) The mean sensitivity
on the mono-allelic MS benchmarks for APPM, NetMHCpan4 EL and combination. NS, no significance.
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A

B

C

FIGURE 4 | The motif of HLA alleles (A) The learned dependence of HLA presentation on each sequence position for peptides of lengths 8–11. The red, blue, black,
purple, and green lines represent the acidic, basic, hydrophobic, neutral and polar amino acids respectively. (B) Some similar motifs are depicted in this graph. (C) The
radar view is a deformation of the percentage graph illustrating the motifs of HLA-A and HLA-B at the overall level. Different colors represent varied HLA class I molecules.
Alleles defined by DNA sequencing are named to identify the gene, followed by an asterisk, numbers representing the allele group.
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DISCUSSION

Neoantigen is the foreign protein that arises as a consequence of
tumor-specific DNA alterations and could be presented on the
surface of tumor cells byMHCmolecules.When recognized by TCR
specifically, it will elicit anti-tumor immune responses. In the current
clinical application of targeting neoantigens immunotherapies, the
accurate identification of relevant neoantigens has become a central
challenge (46). Current prediction algorithms are insufficiently
precise due to the limitation of in vitro binding affinity training
data and algorithmic constraints, therefore resulting in high false
positives (16, 19, 41). One of the solutions is to train a novel
prediction algorithm by using MS-identified peptides from mono-
allelic or mixed-allelic cell lines (19, 52).

In this study,webuildhighPPVneoantigenpredictionalgorithms
by training models on in vitro MS data and CNN deep learning
model. Based on the mono-allelic benchmark, we demonstrate that
our model, APPM, outperforms netMHCpan4 EL among 19 high-
frequency HLA alleles in precision. Moreover, the combination of
APPMandNetMHCpan4 EL improves the prediction performance,
suggesting that the combined strategy can identify potential
neoantigens in clinical practices with more precision. However, the
mass spectrometry assay itself has a technological limitation: not all
possible eluted ligands canbedetected,which inevitably generates the
false negative peptides (53–55).

An important limitation of this work is that we apply MS
datasets to train and evaluate our predictor. Using MS-identified
peptides to reflect the factor of gene expression, protease
cleavage, transportation and presentation might bring the MS
bias in our prediction. Our work also neglects T cell recognition
of presented epitopes. Many putative neoantigens identified by
our predictor will not induce CD8+ T cell responses when used
in cancer patients. This limitation is consistent with the previous
study that presentation of antigens is essential but not sufficient
for induction of robust anti-tumor responses (56).

Besides, neoantigens derived from driver mutations are
particularly important for neoantigen-targeting immunotherapy.
Firstly, driver-mutation-neoantigens are a source of “high-quality
neoantigens” that may reduce the likelihood of resistance to
neoantigen therapy. Secondly, driver mutations were shared
between patients of the same cancer type with relatively high
frequencies (57–61), as well as between primary tumors and
metastases (62). A limited number of high-frequent driver
Frontiers in Immunology | www.frontiersin.org 822
mutations may generate shared neoantigens that could be widely
applied to multiple tumor patients and may be ideal targets for off-
the-shelf immunotherapy (63). However, whether the shared
putative neoantigens are immunogenic in different cancer
patients remains to be determined. Nevertheless, prioritizing
such neoantigens whenever possible is important, as constructing
a library for storage of these shared neoantigens can significantly
save time from detecting mutations to the preparation of the
personalized vaccine and increase the efficiency of neoantigen-
based immunotherapies.
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Supplementary Figure 1 | Example of the peptide sequence ‘ARHSLLQTL’
using one-hot encoding scheme.

Supplementary Figure 2 | The full CNN model structure. Purple, yellow and
green represent three parallel convolutional layers. The black box represents the
convolution kernel of each layer.

Supplementary Figure 3 | The extracting procedure of candidate peptides. The
blue points represent the wild amino acids and the red points refer to the driver
mutant amino acids.
TABLE 2 | Validated immunogenic neoantigens derived from driver mutations.

Driver
Mutation

pmhc CancerTypes Frequency

KRAS_p.G12D HLA-
A*03:01_VVGADGVGK

Pan-Cancer 1.78% (162/
9079)

KRAS_p.G13D HLA-
A*03:01_VVVGAGDVGK

COAD 8.77% (20/228)

KRAS_p.G13D HLA-
A*03:01_VVGAGDVGK

COAD 8.77% (20/228)

KRAS_p.Q61H HLA-A*01:01_ILDTAGHEEY PAAD 3.87% (6/155)
KRAS_p.Q61L HLA-A*01:01_ILDTAGLEEY TGCT 1.55% (2/129)
KRAS_p.Q61R HLA-A*01:01_ILDTAGREEY COAD 1.32% (3/228)
IDH2_p.R140Q HLA-B*07:02_SPNGTIQNIL LAML 4.35% (6/138)
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Neoantigens are tumor-specific antigens (TSAs) that are only expressed in tumor cells.
They are ideal targets enabling T cells to recognize tumor cells and stimulate a potent
antitumor immune response. Pyroptosis and ferroptosis are newly discovered types of
programmed cell death (PCD) that are different from apoptosis, cell necrosis, and
autophagy. Studies of ferroptosis and pyroptosis of cancer cells are increasing, and
strategies to modify the tumor microenvironment (TME) through ferroptosis to inhibit the
occurrence and development of cancer, improve prognosis, and increase the survival rate
are popular research topics. In addition, adoptive T cell therapy (ACT), including chimeric
antigen receptor T cell (CAR-T) technology and T cell receptor engineered T cell (TCR-T)
technology, and checkpoint blocking tumor immunotherapies (such as anti-PD- 1 and
anti-PD-L1 agents), tumor vaccines and other therapeutic technologies that rely on tumor
neoantigens are rapidly being developed. In this article, the relationship between
neoantigens and pyroptosis and ferroptosis as well as the clinical role of neoantigens
is reviewed.

Keywords: neoantigens, pyroptosis, ferroptosis, chimeric antigen receptor T cell (CAR-T), T cell receptor
engineered T cell (TCR-T), PD-1/PD-L1, tumor vaccine
INTRODUCTION

Tumors are a major threat to human life and health. Tumor antigens can be divided into tumor-
associated antigens (TAAs) and tumor-specific antigens (TSAs). The majority of tumor antigens are
TAA-specific embryonic antigens. Different antigens have different levels of immunogenicity, not
only low immunogenicity, and it is difficult to induce a long-lasting specific immune response. In
addition, TAA-targeted therapy may break immune tolerance, resulting in activation of immune
cells and attack of cells expressing self-TAAs in normal tissues, causing autoimmune responses and
autoimmune disease. TSAs are generated by nonsynonymous point mutations, deletion and/or
insertions, gene fusions, and frameshift mutations that generate neoantigens. Neoantigens are only
expressed in tumor cells, not normal tissue cells. They are ideal targets enabling T cells to recognize
cancer cells. They can stimulate a strong antitumor immune response and are a major factor in
clinical immunotherapy. Neoantigens can serve as biomarkers in cancer immunotherapy (1). The
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prerequisite for all treatments based on tumor neoantigens is the
screening and identification of neoantigens (2). Therefore,
identifying new antigens has become a top priority. The
screening methods used to identify tumor neoantigens
currently mainly include target gene sequencing (3), exome
sequencing (4, 5), antigen ligandomics and mass spectrometry
combination technology (4, 6, 7), and tandem micro gene
sequencing methods (8, 9)(as shown in Figure 1).

Pyroptosis is a kind of programmed cell death (PCD)
characterized by proinflammatory and lytic properties, and it is
also an important immune defense response of cells. Pyroptosis
is mainly divided into the classical pathway, which depends on
caspase-1 (cysteine aspartase-1) to mediate pyroptosis, the
nonclassical pathway, which depends on caspase-4/5/11 to
induce pyroptosis, and a pathway by which activation of tumor
drugs induces caspase-3-mediated cleavage of GSDME into
GSDME-N, which leads to pyroptosis. There are three
pathways (10). It is now generally accepted that GSDMD is the
executor of pyroptosis. GSDMD-N forms tiny pores of 1.0-2.4
mm in the cell membrane, which makes the ion gradient inside
and outside the cell unbalanced. Water continuously pours into
the cell until the cell ruptures, and inflammatory effectors flow
out (IL-18/IL-1b), further enhancing the inflammatory response
and ultimately leading to cell pyroptosis (11–13). The
morphology of cells undergoing pyroptosis includes a
cytoplasm that is preferentially located towards the surface, a
centered nucleus, and a flattened shape that looks similar to
cabbage or a fried egg (14). The specific mechanisms of
pyroptosis are as follows (15, 16) (Figure 2): (I) Bacteria,
viruses, and inflammatory factors can activate NOD-like
receptors (NLRs), absentin melanoma2 (AIM2) or pyrin
domains (PYD) through pathogen-associated molecular
patterns (PAMPs) or noninfectious stimulation-associated
damage-associated patterns (DAMPs). Such activity caspase-1,
and then cleavage GSDMD to perform the occurrence of
pyroptosis for GSDMD-N, and meanwhile activate nod-like
Abbreviations: ACT, adoptive T cell therapy; AIM2, absent in melanoma; ART,
artemisinin; ASC, apoptosis-associated speck-like protein containing Acard;
CARD, Caspase activation and recruitment domain; Caspase, caspase family of
proteins; CRT-T/TCR-T, chimeric antigen receptor T cell technology/T cell
receptor engineering T cell technology; DAMPs, damage-associated molecular
patterns (noninfectious stimuli); DMT1, divalent metal ion transporter; FPN,
Membranotransferrin; GD2, disialoganglioside; GPX4, glutathione peroxidase 4;
GSDME or E, Gasdermin E or D; GSH, glutathione; GSSG, oxidized glutathione;
GVHD, graft and host disease; H-FIRE, High-frequency irreversible
electroporation; IFN-g, interferon-g; IHC, immunohistochemistry; IIS, PD-1 or
PDL-1 blockers; IL, interleukin; L-OH, the hydroxyl group of L-amino acids;
LOOH, the carboxyl group of L-amino acids; LPS, lipopolysaccharide (gram-
negative bacteria cell wall component); ASC, apoptosis-associated speck-like
protein containing a CARD; MHC, histocompatibility complex; NLRP3, NOD-
like receptor protein 3; NK-CAR, CAR-engineered NK; NK-TCR, TCR-
engineered NK; PAMPs, pathogen-associated molecular patterns; PD-1/PD-L1,
programmed death receptor/programmed death protein receptor ligand; pLNMS,
pathological lymph node metastases; pMHC, peptide-major histocompatibility
complex; PRR, pattern recognition receptor; PSMA, prostate-specific membrane
antigen; PYD, pyrin domain; RIG-1, Retinoic acid-inducible gene I; ROS, reactive
oxygen species; STING, stimulator of interferon genes; SystemXc-, cystine/
glutamate reverse transporter system; TEM, tumor microenvironment; XCT,
Cystine/glutamate antiporter; ZIP, Zinc transporter.
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receptor protein 3 (NLRP3). Apoptosis associated speck-like
protein containing aCARD (ASC) further activates caspase-1.
(II) Lipopolysaccharide (LPS) could directly activate caspase-4/5/
11, mediate the activation of GSDMD, activate NLRP3
inflammasome, and maturation and release of IL-1b and IL-18.
(III) Chemotherapy drugs induce caspase-3 to cleave gasdermin
E into GSDME-N and punch holes in the cell membrane to turn
apoptosis into pyroptosis. It is worth mentioning that caspase-1
promotes the maturation of inflammatory cytokines IL-1b and
IL-18, and the GSDMD-N terminal releases inflammatory
substances and induces pyroptosis. So these two proteins are
crucial in pyroptosis. It has been shown that the expression of
pro-death could be inhibited by the ROS scavenging agent N-
acetylcysteine (17). And melatonin, which has a strong anti-
inflammatory effect, could also prevent endothelial cell
pyroptosis by down-regulating gene expression related to
pyroptosis through the lncRNA-MEG3/miR-223/NLRP3
signaling pathway (18). Dolma (19) and others identified
ferroptosis as a new form of PCD, and ferroptosis has become
a research hot spot. Ferroptosis, mainly caused by the balance
between the generation and degradation of reactive oxygen
species in lipids, is an iron-dependent form of cell death
caused by metabolic dysfunction of lipid oxides in cells under
the action of divalent iron or ester oxygenase. High expression
of unsaturated fatty acids on cell membranes and accumulation
of lipid reactive oxygen (ROS) species result in an imbalance of
intracellular redox. Studies have shown that inflammation is
closely related to ferroptosis and has been shown to play an
important role in the pathogenesis of aseptic inflammation (e.g.,
ischemia-reperfusion injury, stroke, and non-alcoholic hepatitis)
as well as microbial infectious diseases (20–23). It is mostly in the
following ways (24–26): 1. Glutamine (Gln) enters the cytoplasm
through SLC38A1 and SLC1A5 of the cystine/glutamate
antiporter system (system Xc-) and is then converted into
glutamate (Glu). Free Glu also enters the cytoplasm through
SLC7A11 and SLC3A2. Under the action of selenocysteine, Glu
and cysteine work together to produce reduced glutathione
(GSH). Then, oxidized glutathione (GSSG) is generated
through the action of glutathione peroxidase 4 (GPX4). More
importantly, under the action of glutathione peroxidase 4
(GPX4), L-OOH is deoxygenated to L-OH. This process leads
to the accumulation of lipid ROS, which leads to ferroptosis. 2.
The conversion of Fe2+ to Fe3+ and the direct conversion of free
Fe3+ to Fe2+ can be accomplished under the action of ferroportin
(FPN). Fe3+ can also enter cells through transferrin receptor 1
(TFR-1). Then, in the prostate, under the action of six-
transmembrane epithelial antigen of prostate 3 (STEAP3), Fe3+

is reduced to Fe2+. Fe2+ is transported in cells by zinc transporter
8/14 (ZIP8/14) and divalent metal transporter 1 (DMT1). The
resulting Fe2+ undergoes the Fenton reaction to induce the
accumulation of lipid ROS, which leads to ferroptosis
(Figure 3). Ferroptosis has unique characteristics in terms of
cell morphology, genetics, and biochemistry. In terms of
morphology, mitochondria become smaller in size, the
membrane density increases, and cristae appear blurred or
even reduced, and morphological changes in the nucleus are
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not obvious as major characteristics (27). In addition, in terms of
biochemistry, the content of iron increases, ROS are produced in
excess, and the expression levels of GSH and GPX4 are
decreased. Furthermore, there are changes in some
Frontiers in Oncology | www.frontiersin.org 327
characteristics of genes (28). Studies show that iron chelating
agents and antioxidants can inhibit the occurrence of ferroptosis,
which can be induced by systemXc- inhibitors, GPXs inhibitors,
and other compounds. The inductive mechanisms of ferroptosis
FIGURE 2 | Schematic diagram of the three main pyroptosis pathways: Classical pathways that rely on caspase-1/NLRP3/GSDMD; Independent of caspase-1,
through the nonclassical pathway caspase-4/5/11; (1). Bacteria, viruses, and inflammatory factors can activate NOD-like receptors (NLRs), absentin melanoma2
(AIM2) or pyrin domains (PYD) through pathogen-associated molecular patterns (PAMPs) or noninfectious stimulation-associated damage-associated patterns
(DAMPs). (2). Lipopolysaccharide (LPS) could directly activate caspase-4/5/11, mediate the activation of GSDMD, activate NLRP3 inflammasome, and maturation
and release of IL-1b and IL-18. (3). Chemotherapy drugs induce caspase-3 to cleave gasdermin E into GSDME-N and punch holes in the cell membrane to turn
apoptosis into pyroptosis. Chemotherapy-induced caspase-3/GSDME specific pathways. DAMPs, damage-associated molecular patterns (noninfectious stimuli);
PAMPs, pathogen-associated molecular patterns; LPS, lipopolysaccharide (gram-negative bacteria cell wall component); ASC, apoptosis-associated speck-
like protein containing a CARD; IL, interleukin; NLRP3, NOD-like receptor protein 3; caspase, caspase family of proteins; GSDMD, gasdermin D.
FIGURE 1 | Screening methods of neoantigen identification and their advantages and disadvantages. The advantages and disadvantages of four methods, including
serological analysis of recombinant expression cDNA clones, exome combined transcriptome sequencing method, LC-MS/MS method, and tandem microgenre
method, are discussed.
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in tumor cells can be divided into two parts. One is to induce
ferroptosis by inhibiting the Xct/GSH/GPX-4 pathway axis,
leading to the accumulation of lipid reactive oxygen species,
and the other is to directly or indirectly induce ferroptosis
around iron metabolism and mitochondria (27, 29).

With the advantage that neoantigens are specific to tumor
cells, it is possible to cause tumor cells to undergo pyroptosis and
ferroptosis or to change the tumor microenvironment and cause
tumor cell death by targeting genetic mutations. Controlling and
intervening in ferroptosis can delay or stifle the occurrence and
development of tumors, improve the prognosis of patients with
tumors and prolong survival, suggesting the value of
relevant studies.
TUMOR NEOANTIGENS
AND PYROPTOSIS

Pyroptosis plays an important role in many diseases, and it also
has a certain role in the treatment of cancer. Recently, there have
been few studies in related areas, but studies promoting or
inhibiting the occurrence of pyroptosis to prevent the
occurrence and development of tumors are warranted.

The emergence of high-frequency irreversible electroporation
(H-FIRE) provides a new method for the treatment of tumors
(30). H-FIRE can effectively ablate the primary tumor and
induce the pro-inflammatory metastasis of the tumor
microenvironment (31). The most important thing is, H-FIRE
can produce tumor neoantigens; for example, H-FIRE produces
4T1 neoantigens in the treatment of breast cancer, which
activates the adaptive immune system and significantly reduces
tumor progression (31). H-FIRE induces acute inflammatory
Frontiers in Oncology | www.frontiersin.org 428
response through various pathways, an essential mechanism of
antitumor immunity (32). Some studies show that in treating
pancreatic cancer, H-FIRE combined with PD-1/PD-L1 shows
that H-FIRE ablation is superior to thermal ablation and
cryoablation in inducing T cell immunity, suggesting that H-
FIRE ablation combined with immunotherapy may play a
synergistic role. H-fire could directly punch holes in cells to
induce K + outflow and induce pyroptosis (32). It is also found
that even if a small number of tumor cells pyroptosis after
treatment, they could chemotactic CD8+ T lymphocytes to
accumulate in the tumor, thus effectively inhibiting tumor
metastasis. Besides the stress state, the cells could induce
pyroptosis through different signaling pathways (33, 34).
Studies have found that in vivo and in vitro, the neoantigens
produced by H-FIRE can interact with necrosis and pyroptosis-
related cell death mechanisms through damage-related
molecular signaling to kill tumor cells. Among these
mechanisms, the pyroptosis of tumor cells may be due to the
activation of NOD-like receptor (NLRS), absent in melanoma 2
(AIM2), etc., by noninfectious stimuli such as damage-associated
molecular patterns (DAMPs). These events activate caspase-1,
convert GSDMD to GSDMD-N, and promote the maturation
and release of IL-1b and IL-18, causing pyroptosis to occur (35,
36). Studies show that STING (stimulator of interferon genes)
agonists can activate NLRP3 by the caspase-1 pathway, thereby
promoting the occurrence of pyroptosis and inhibit tumor
progression in the Lewis mouse lung cancer model with
neoantigen (37, 38). Therefore, it is speculated that STING
agonists may inhibit the tumor by promoting pyroptosis of
Lewis lung cancer cells with neoantigen.

In addition, a study found that retinoic acid can induce
pyroptosis when activated by retinoic acid-inducible gene I
FIGURE 3 | Schematic diagram of ferroptosis pathway. Glutamate and glutamine enter the cell body through system-xc, while Fe2+ enters the cytoplasm through FPN.
Their accumulation would break the balance in the cells, and the lipid ROS is generated by GPx4 and Fenton reaction, resulting in ferroptosis. Glu, glutamate; Gln,
glutamine; Cys, cysteine; GSH, reduced glutathione; GSSH, oxidized glutathione; GPX4, glutathione peroxidase 4; ROS, reactive oxygen species; FPN, ferroportin;
TFR-1, transferrin receptor-1; STEAP3, six-transmembrane epithelial antigen of prostate 3; DMTI, divalent metal transporter; ZIP8/14, zinc transporter 8/14.
May 2021 | Volume 11 | Article 685377

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. Neoantigen Based on Pyroptosis/Ferroptosis
(RIG-1) (39). RIG-1 is a receptor that recognizes abnormal viral
mRNA in cells and is a member of the DexD/H box RNA
helicase family (40). The C-terminus of RIG-1 contains the
unwinding domain, which can interact with artificially
synthesized double-stranded RNA and viral double-stranded
RNA and unwind it in an ATPase-dependent manner. The N-
terminus contains two sequential caspase activation and
recruitment domains (CARDs). Once RIG-1 is activated, it can
exchange its CARD for the CARD of the inflammatory molecule,
causing the cell to rupture and activating the key molecule
caspase-1, which in turn can cause maturation of the
proinflammatory factors IL-1b and IL-18. The cleavage of the
executor protein GSDMD, which also activates pyroptosis, into
GSDMD-N leads to the occurrence of pyroptosis (41–43). Some
studies have shown that in the cancer environment, RIG-1
signaling in tumor cells can affect the complexity of the TME
(44); RIG-1 activation can provide many benefits for the
treatment of tumors: 1, directly killing tumor cells; 2. activating
innate immune effectors such as macrophages and natural killer
cells through cytokines; and 3. enhancing the activity of
professional antigen-presenting cells (APCs), such as dendritic
cells (DCs) or macrophages by making the microenvironment
rich in cytokines and increasing adaptive immunity by recruiting
relevant cells (such as CD8+ T lymphocytes). Therefore, research
on RIG-1 agonists is of extraordinary significance for the
treatment of various cancers (45–48).

In summary, promoting pyroptosis could further activate the
innate immune system, inhibit the development of tumor cells by
changing the TME, and even directly kill tumor cells. Study
shows that medical chemotherapy can activate the pyrodeath
signal and induce pyroptosis. Furthermore, chemotherapy drugs
can activate GSDME, a tumor candidate, to promote pyroptosis.
This study provides a theoretical basis for chemotherapy
combined with immune checkpoint therapy (16). Therefore,
pyroptosis is a promising potential target for the treatment
of cancer.
TUMOR NEOANTIGENS
AND FERROPTOSIS

Ferroptosis is known to lead to the accumulation of ROS. In
normal cells, the high accumulation of ROS is detrimental to the
cell. However, tumor cells are a unique case. Studies have shown
that intracellular ROS accumulation has both advantages and
disadvantages for tumor progression (49). Compared with
normal cells, tumor cells show significant upregulation of ROS.
Therefore, to maintain REDOX homeostasis, tumor cells have
evolved a powerful ROS scavenging system. This dynamic
mechanism to ensure homeostasis enables ROS to act as
promoters for tumor development and progression. Therefore,
ROS induction therapy or antioxidant inhibitor therapy can
modify ROS levels to induce tumor cell killing, which is a new
strategy for the effective and selective killing of cancer cells (50).

Research shows that some tumor cells undergoing drug-
induced death are very sensitive to ferroptosis, so ferroptosis
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has become a popular topic in tumor therapy research in recent
years. For example, dihydroartemisinin can induce ferroptosis in
head and neck squamous cell carcinoma cells (51), artemisinin
(ART) can induce ferroptosis in pancreatic cancer cells by
specifically inducing ROS production (52), and siramesine and
lapatinib can induce ferroptosis in breast cancer cells (53).
Therefore, inducing ferroptosis of tumor cells to inhibit tumor
proliferation and metastasis may become a new strategy for
tumor therapy in the future. A study showed that the cystine/
glutamate antiporter SLC7A11 (commonly known as XCT),
which is overexpressed in a variety of human cancers, could be
used for GSH biosynthesis and antioxidant defense. By inhibiting
cell ferroptosis, the overexpression of SLC7A11 promotes tumor
growth. However, tumor cells with high SLC7A11 expression
also undergo metabolic reprogramming associated with
SLC7A11 overexpression, leading to the dependence of
SLC7A11-overexpressing cancer cells on glucose and Gln,
which provides a potential metabolic target for the therapeutic
targeting of SLC7A11 in cancer (54). Erastin is a compound that
has a strong inhibitory effect on cancers that express the RAS
gene, and it can mediate ferroptosis (7). Therefore, developing
strategies that can improve the content, solubility and potency of
erastin is of great significance for cancer treatment (55–57).
Nanoparticle-induced ferroptosis has also been demonstrated in
xenotransplantation studies (58). It was confirmed as early as 15
years ago that the tumor suppressor gene p53 can inhibit
SLC7A11 and, in some cases, can also induce ferroptosis (59).
In addition, studies have confirmed that the nuclear
transcription factor NRF2 can inhibit the occurrence of
ferroptosis in tumor cells by regulating the transcription of
SLC7A11, and inhibiting the expression of NRF2 can enhance
cell ferroptosis (60). More interestingly, CD8+ cells that can
recognize specific tumor antigens (neoantigens) and are involved
in antitumor activities can secrete high levels of interferon-g
(IFN-g), which is a cytokine that is important for CD8+ T cells to
complete their immune killing function (61). Studies show that
tumor neoantigens promote tumor cell killing by CD8+ cells
(62). In addition, IFN-g can downregulate the expression of two
Glu-cystine antiporter subunits, recombinant solute carrier
family 3, member 2 (SLC3A2) and SLC7A11, on the surface of
tumor cells. Therefore, IFN-g inhibits the uptake of cystine by
tumor cells, reduces the synthesis of GSH in the cell, and
ultimately leads to the insufficient synthesis of GPX4 in the
cell, thus preventing the effective removal of lipid peroxides. Ion-
dependent conditions lead to ferroptosis of cells (27, 63, 64). As
mentioned above, tumor-specific therapy can stimulate CD8+
cells to release IFN-g to induce ferroptosis of tumor cells without
causing injury to normal cells.

In addi t ion, molecules re lated to the NF2/YAP
(neurofibromin 2/Yes-associated protein 1) signaling pathway,
which are often malignant mutations in cancer, have also been
found to play an important role in the regulation of ferroptosis.
Therefore, malignant mutation events in molecules involved in
the NF2/YAP signaling pathway could predict the sensitivity of
cancer cells to iron-induced death therapy (65). Malignant
mutations related to the NF2/YAP signaling pathway could
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also express related neoantigens on tumor cells. Therefore, in the
future, it would apply the iron-chelating agents and antioxidants
or SystemXC-inhibitors and GPXS inhibitors to regulate
ferroptosis of tumor cells for malignant mutations related to
the NF2/YAP signaling pathway. NF2/YAP signaling may be a
potential target for the treatment of tumor cells.
APPLICATION OF TUMOR NEOANTIGENS

Advances in gene sequencing technology have enabledmore tumor-
specific immune targets to be discovered. In addition, tumor
neoantigens that are only expressed in tumor cells can be
recognized by the immune system, indicating that tumor
neoantigens have a unique and important role in immunotherapy
and warranting further development. Neoantigen-targeted tumor
immunotherapy has already been actively attempted in the clinic.

The CAR-T and TCR-T technology
Tumor neoantigen-based immunotherapy has enabled precise
cellular immunotherapy for human tumors (66) and suggests the
possibility of individualized treatment of cancer patients. T cells
are lymphocytes that mainly mediate antitumor immunity, so
strategies using T cells to specifically recognize tumor
neoantigens to kill tumor cells are rational. Chimeric antigen
receptor T cell (CAR-T) technology is an individual
immunotherapy technology based on neoantigens. It is a
tumor therapy strategy in which patients T cells are extracted
and T cells with chimeric antigen receptors (CARs) with strong
affinity for tumor cells are selected, ultimately enabling binding
and killing of tumor cells. CAR-T cells are currently mainly used
for hematological cancers. At present, CAR-T cells have been
approved for the treatment of various CD19-positive
hematological malignancies (67). The extraction of T cells
from patients for CAR-T development is the component that
makes CAR-T technology expensive. If allogeneic CAR-T cell
treatment can be realized, it will have extraordinary significance
for the treatment of solid tumors. Such treatment can overcome
the challenge related to the release of excessive proinflammatory
factors by T cells during tumor cell killing. Allogeneic CAR-T
technologies are already in clinical trials, including CRISPR-
based strategies to edit T cells. If the utility of allogeneic CAR-T
treatment can be clinically verified, modified CAR-T can be
produced on a large scale, which may reduce costs. However,
studies have found that CAR-T therapy also exhibits “off-target”
effects. In the treatment of colon cancer patients, the targeting of
V-erb-b2 avian erythroblastic leukemia viral onco-gene homolog
2 (ErbB2) by CAR-T technology unexpectedly led to a large
number of CAR-T cells in the lungs of patients, which resulted in
cytokine release syndrome (CRS) and multiple organ failure
(MOF) (68). The preparation of CAR-T targeting tumor-
specific neoantigens may solve the problem of “off-target”
effects. For now, clinical trials of CAR-T cells targeting ErbB2,
disialoganglioside (GD2), and prostate-specific membrane
antigen (PSMA) as new targets are also underway (69).
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The T cell antigen receptor (TCR) is a marker of all T cells
and can be used to identify histocompatibility complex (MHC)
molecules and antigen peptide complexes carried by antigen-
presenting cells (70). At present, the TCR is the only known
molecule that can sensitively recognize epitopes on the surface of
target cells. This unique ability also establishes the pivotal role of
the TCR in T cell transfection technologies.

It has been found that modified TCRs have several advantages
compared with CARs. CARs can recognize antigens in the molar
range, and the target density required for the reaction needs to
reach >103 moles of antigen/cell. However, CARs can recognize
peptides from the surface and intracellular proteins. They can
also identify antigens in the micromolar range, and the target
density required for the reaction only needs 1-50 moles of
antigen/cell (71). Studies have shown that less than 25% of
human proteins are membrane bound, and the proportion
of amino acid sequences available on the cell surface
(perhaps <10%) is low. Therefore, the number of antigens
suitable for TCR targeting is much higher than that for CAR
targeting (72, 73). CARs include a specificity determining region
antibody fragment (single-chain antibody scFv variable region)
that binds to specific antigens, a transmembrane domain (hinge/
spacer domain, mostly from CD8) and multiple signal
transduction elements (such as sequences from CD28, 4-1BB/
OX40, CD3z and other important T cell molecules) (74–76);
these domains determine the specificity of the CAR: surface
proteins, glycoproteins, glycolipids, carbohydrates, or other
antigens. However, the TCR recognizes the peptide-major
histocompatibility complex (pMHC) complex inside and
outside the cell. Therefore, these advantages are particularly
important for the treatment of solid tumors. TCR targeting of
tumor cells is an important strategy.

After the efficacy of CAR-T and TCR-T in treating
hematologic malignancies, attention has shifted to CAR-
engineered NK (CAR-NK) and TCR-engineered NK (NK-
TCR) engineering. NK is a natural killer cell that has a
strongly antitumor ability in the immune system. NK-TCR
could improve the responsiveness and recognition specificity of
NK cells to tumor cells (77). And CAR-NK has better safety and
multiple mechanisms to activate cytotoxicity. NK cells also have
a low risk of graft and host disease (GVHD) to be prepared in
advance for use in multiple patients. CAR-NK cells can be
designed to target multiple antigens, enhance proliferation and
in vivo persistence, increase invasion of solid tumors, overcome
drug-resistant tumor microenvironments, and ultimately achieve
an effective antitumor response (78).

In summary, CAR-T and TCR-T technologies have
similarities in the treatment of malignant tumors and are
rapidly advancing, but ACT is the most promising treatment.
The most important goal that must be accomplished for CAR-T
or TCR-T technology to cure malignant tumors is identifying
suitable target antigens. Although NK-CAR and NK-TCR
technologies are not immature and have some technical and
clinical challenges, their emergence offers more options and
broad therapeutic prospects for cancer treatment.
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Anti-PD-1/PD-L1 Antibody Therapy
The programmed death receptor (PD-1) and its programmed
death protein receptor-ligand (PD-L1) are called immune
checkpoints, and they are important proteins for immune
regulation. One study found that agents blocking cytotoxic T
cell antigen 4 (CTLA-4) in combination with PD-1/PDL-1
blockade induced tumor regression in a portion of patients
(79). This method is mainly aimed at activating the adaptive
immune system in tumors with restricted checkpoint inhibition
(80). Tumors with more mutations are likely to produce more
new epitopes. These epitopes can be recognized by tumor-
infiltrating T cells, but antibodies that block the checkpoint
lead to tumor-infiltrating T cell activation and cause tumors to
regress, so highly mutated tumors such as melanoma and lung
cancer are more sensitive to anti-PD-1/PD-L1 antibody therapy
(81, 82).

The first and most studied biomarker is PD-L1 protein
expression. It is a potential biomarker of anti-PD-1/PD-L1
drug response. The clinical utility of immunohistochemistry
(IHC) for detecting the expression of PD-L1 on tumor cells
and/or tumor-infiltrating immune cells was confirmed initially in
the first clinical study of the anti-PD-1 drug nivolumab and
subsequently in other studies. The mechanisms of PD-L1 have
been deeply studied (83).

The expression of PD-L1 is also closely related to prognosis.
Some studies have collected information about PD-L1
overexpression in patients with gastric cancer, hepatocellular
carcinoma, esophageal cancer, pancreatic cancer, ovarian cancer,
and bladder cancer. PD-L1 expression has been shown to have an
impact on prognosis in breast cancer and Merkel cell carcinoma
patients, but the prognostic implications of PD-L1 expression are
controversial for patients with lung cancer, colon cancer, and
melanoma (84). For example, in kidney cancer, studies have
found that the higher the expression of PD-L1 is, the more
advanced the tumor stage and the worse the prognosis (85).
Similarly, high expression of PD-L1 has a negative relationship
with the survival rate of patients with non-small-cell lung cancer,
but this idea has not been supported by clear evidence (86).

Cancer Vaccines
The ideal tumor vaccine can efficiently induce humoral
immunity and cellular immunity. While it is important to
induce the proliferation and activation of specific T cells to
enhance the killing of tumor cells in vivo, it is also necessary
to prevent tumor vaccines from inducing recognition of TAAs
that would trigger an autoimmune response. New antigen
vaccines mainly include DC vaccines, peptide vaccines, DNA/
RNA vaccines, antibody tumor vaccines, etc.

Because DCs are professional APCs, they can be used as
effective inducers of tumor-specific immune responses (87). DC
vaccines activate the immune functions of CD8 and CD4 T
lymphocytes by loading tumor peptides and eliminate tumor
cells. It was found that DCs can not only activate T cells but also
maintain a balance between immune activation, suppression, and
memory (88, 89). It is well known that DCs also recognize
pathogen-related molecular patterns (PAMPs) and DAMPs
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through pattern recognition receptors (PRRs) (88), and
pyroptosis is also induced by these molecular patterns.
Strategies to inhibit the occurrence of DC pyroptosis, which
could increase the number and quality of DCs to further kill and
eliminate cancer cells, are worth considering.

Antigen polypeptides eluted from the surface of tumor cells
can be used to generate polypeptide vaccines, which direct
immune cells to target abnormally expressed proteins inside
tumor cells with strong specificity and safety. At the same time,
further modification of amino acid residues or preparation of
heat shock protein-peptide complexes can not only effectively
improve the specificity of polypeptide antigens but also avoid
autoimmunity directed at host cells. Studies have found that
tumor peptide vaccines can control perihepatic tumor lymph
node metastases (pLNMs), improve cancer prognosis, and
increase the survival rate. The literature shows that
combination of peptide vaccines with immune checkpoint
inhibitor therapy may induce a synergistic effect to further
improve the effects of peptide vaccines in clinical treatment
(90) (Figure 4).

For example, tumor vaccine strategies have advanced, and
tumor vaccines can be made according to individual differences.
The development of such tumor vaccines has laid the foundation
for individualized tumor treatment. DNA sequencing technology
can be used to identify tumor-specific mutations. The sequence
of a new antigen can be quickly inferred to make a vaccine. Once
the cancer vaccine induces activation of specific T cells, anti-PD-
1/PD-L1 antibodies can be used to enhance these immune
responses against cancer cells (91). However, there are still
many technical problems to be solved regarding tumor
vaccines. For example, the vaccine preparation cycle is too
long. In addition, it is necessary to sequence the genome of the
patient’s tumor cells to identify relevant sequences to prepare the
vaccine. Such a cycle may be too long for some advanced tumor
patients. In addition, the cost makes this technology impractical.
DISCUSSION

As mentioned above, pyroptosis and ferroptosis have many
effects on the occurrence, development, treatment, and survival
of tumors. Pyroptosis and ferroptosis can kill tumor cells
through different mechanisms. Therefore, these methods of
PCD inhibit the occurrence and development of tumors and
improve the survival rate of patients. Pyroptosis can also modify
the anti-inflammatory tumor microenvironment in situ in a
variety of ways to inhibit the growth and survival of tumor
cells and can enhance the ability of APCs such as DCs and
macrophages to activate the innate and adaptive immune
systems. Pyroptosis can also enhance the recruitment of CD8+
T lymphocytes. The exchange of CARDs between RIG-1 and
inflammatory molecules leads to the occurrence of tumor cell
pyroptosis and delays the development of tumors. Research on
the role of ferroptosis in the treatment of tumors has become
more extensive. Studies have found that, on the one hand, tumor
cell ferroptosis can be controlled, for example, by combined
May 2021 | Volume 11 | Article 685377

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. Neoantigen Based on Pyroptosis/Ferroptosis
application of ROS inducers to regulate the level of ROS to treat
pancreatic cell carcinoma (92). On the other hand, many drugs
are able to induce ferroptosis of tumor cells.

Although the mechanism is not clear, they are likely to become
new agents for future tumor treatments. However, the research on
pyroptosis and ferroptosis in tumors is still not sufficient, and
clinical applications are lacking, especially strategies including the
combined targeting of pyroptosis, ferroptosis and tumor
neoantigens for the treatment of cancer; such strategies are
worthy of further investigation. For example, STING agonists
could trigger pyroptosis, especially in Lewis mouse lung cancer
cells with neoantigens. It may be due to the activation of caspase-1/
NLRP3/GSDMD related pathway molecules by sting agonists.
Simultaneously, the tumor cells of the Lewis mouse lung cancer
model are more sensitive to sting agonists, leading to tumor
pyroptosis. We can take advantage of this feature. It can make
lung cancer cells pyroptosis and inhibit tumor progression.

Meanwhile, NF2/YAP is an essential molecular signal that
regulates ferroptosis and is also a gene responsible for malignant
mutations found in cancer. It is inferred that neoantigens produced
by NF2/YAP mutated cancer cells can be identified by serological
analysis techniques of recombinant expression cDNA clones, total
exon sequencing (WES) combined with RNA sequencing (RNA-
seq) and epitope prediction methods, and LC-MS/MS methods. To
regulate NF2/YAP molecular signal to promote cancer cell
ferroptosis, thereby inhibiting tumor occurrence and development
Frontiers in Oncology | www.frontiersin.org 832
and improving survival rate is possible. So using tumor cell
neoantigens to target tumor cells and cause pyroptosis or
ferroptosis is an important strategy for the future.

The accuracy of neoantigen screening methods needs to be
improved, and the techniques need to be simplified to enable the
development of neoantigen-based immunotherapies. Of course,
reducing costs is also very important. Immunotherapy strategies
related to neoantigens are rapidly being developed. The
individualization of cancer treatment, prevention of treatment
side effects, timeliness of treatment, and reduction of treatment
costs are remaining challenges.
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Cancer immunotherapy can induce sustained responses in patients with cancers in a
broad range of tissues, however, these treatments require the optimized combined
therapeutic strategies. Despite immune checkpoint inhibitors (ICIs) have lasting clinical
benefit, researchers are trying to combine them with other treatment modalities, and
among them the combination with personalized cancer vaccines is attractive.
Neoantigens, arising from mutations in cancer cells, can elicit strong immune response
without central tolerance and out-target effects, which is a truly personalized method.
Growing studies show that the combination can elevate the antitumor efficacy with
acceptable safety and minimal additional toxicity compared with single agent vaccine or
ICI. Herein, we have searched these preclinical and clinical trials and summarized safety
and efficacy of personalized cancer vaccines combined with ICIs in several malignancies.
Meanwhile, we discuss the rationale of the combination and future challenges.

Keywords: personalized cancer vaccine, immune checkpoint inhibitor, combination therapy, neoantigen, immunotherapy
INTRODUCTION

Neoantigen, an abnormal protein stemming from “non-synonymous mutation”, is specific to tumor
cells (1). Neoantigens are non-self-peptides without central tolerance and off-target immune-
toxicity, which are the main barriers of previous cancer vaccines and the primary obstacles in the
development of personalized cancer therapy (2–4). Therefore, they are “perfect” targets with strong
immunogenicity to elicit effective antitumor activity. Currently, a lot of preclinical and clinical trials
have proven that neoantigen vaccines are personalized therapy and can activate hosts’ immune
systems which then promote redirected T cells to kill tumor cells. However, the single use of
neoantigen vaccines has a limited efficacy.

In 2013, immune therapy of cancer was regarded as the most breakthrough in Science. From then,
immunotherapy became amajor focus in cancer therapy, of which immune checkpoint inhibitors are the
Abbreviations: CRT, calreticulin; ATP, adenosine triphosphate; HMGB1, High Mobility Group Box 1; HSPs, heat shock
proteins; LN, lymph node; DCs, dendritic cells; CTLs, cytotoxic T lymphocytes; IDO, indoleamine 2,3-dioxygenase; mAb,
monoclonal antibody; LAG3, Lymphocyte activation gene 3; BTLA, B and T lymphocyte associated gene.
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most promising and concerned topic (5). Immune checkpoint
inhibitors such as anti-PD-1 and anti-CTLA-4 monoclonal
antibodies, improve antitumor efficacy and prolong overall
survival time in patients with many solid tumors, including lung
cancer, melanoma, gastrointestinal cancer and so on (6–9). Though
immune checkpoint inhibitors mark the arrival of a new era of
cancer immunotherapy, using them alone has limited effect, for
many patients encounter primary resistance or initial responses but
eventually becoming resistant (10–12). Therefore, there is an urgent
need to combine other treatments with ICIs to improve the
therapeutic efficacy and prolong overall survival.

Immune checkpoint inhibitors produce antitumor effects
through eliminating immune inhibition, recovering or even
enhancing hosts’ immunity. The process of immune responses
includes capturing, presenting, recognizing targets on tumor cells
and finally killing tumor cells. Among so many targets on tumor
cells, neoantigens are ideal ones to activate the immune system.
Moreover, the neoantigen-specific CD8+ T cell reactivity plays a
core role in immunotherapy (13). With observations that the
absence of pre-existing immunity or the inhibition of tumor
microenvironment may lead to invalidation of both methods (10,
14, 15), there is a strong rationale for combining ICIs with
neoantigen vaccines (16). On one hand, adding neoantigen
vaccine to ICIs can improve response rates of “hot” tumors
through broadening cytotoxic T cell repertoire, as well as turn
“cold” tumors to “hot” ones, therefore widening the scope of
population who can benefit from immunotherapy (17–26). On
the other hand, ICIs can unleash immunity to facilitate the
efficacy of neoantigen vaccine. In this review, we focus on the
safety and efficacy of personalized cancer vaccines combined
with ICIs for the treatment of several malignancies. We highlight
the recent development, challenges and possible improvements
of personalized cancer vaccines in combination with ICIs, and
hope to provide theoretical foundations for the development and
application of personalized cancer vaccines in clinical settings.
RATIONALE FOR COMBINATION
IMMUNOTHERAPY

To better understand the mechanism of combination
immunotherapy, it is necessary to learn the dynamics of anti-
tumor immune responses. Researchers propose a concept called
‘‘Cancer-Immunity Cycle’’, which illustrate crucial points during
anti-tumor response and consist of seven steps (27). First step,
dying tumor cells release tumor antigens such as CRT, HSPs,
HMGB1 and ATP. Insufficient tumor antigens release may
hamper the proceeding of this cycle. Second step, immature
dendritic cells (DC) capture these antigens via signals such as
CD92, TLR4 and P2RX7, which can bind to CRT, HMGB1 and
ATP, respectively. Then the DCs maturate and migrate to
draining lymph nodes. Inadequate activation of DCs may halt
the process. Third step, DCs will process the captured tumor
antigens and present them to prime and activate effector T cells.
In this process, captured antigens with MHC class I and II
molecules and DC co-stimulatory signals are required to
Frontiers in Oncology | www.frontiersin.org 237
stimulate T cells. However, some factors may affect T cell
priming and activation, including defective expression of MHC
molecules in tumors, over-expression of inhibitory signals
(CTLA4/CD80, 86, PD-1/PD-L1), limited T cell repertoire
(central tolerance), suppressive cells such as regulatory T cells
(Tregs). Fourth and fifth steps, the activated effector T cells traffic
to and infiltrate into tumors. Sixth and final steps, these cytotoxic
T lymphocytes recognize viaMHC/peptide complexes on the cell
surface and kill their target cells. Many inhibitory mechanisms
are active within tumor microenvironment, such as lack of MHC
molecules in tumors, increased inhibitory signals (PD-1/PD-L1,
Tim-3/phospholipids, BTLA, LAG3, IDO, Arginase), Tregs,
myeloid-derived suppressor cells, M2 macrophages and
hypoxia. When eventually killing tumor cells, they also release
additional tumor antigens to provoke further Cancer-Immunity
Cycle. This secondary immunity increasing the repertoire of
tumor antigens is recognized as “antigen spreading” with
increased breadth and depth of anti-tumor immunity (28).
However, tumors are clever, which can take various strategies
to attenuate the efficiency of anti-tumor immunity, resulting in
incompetent immunity in a process designated as “cancer
immune-editing” (29, 30). Therefore, the Cancer-Immunity
Cycle is broken. Given the complicated immunity network, it
is reasonable to combine appropriate immunotherapeutic
strategies to pave the way and promote the Cancer-Immunity
Cycle forward. For instance, neoantigen vaccines can bypass the
first two steps and directly initiate an immune cycle. Immune
checkpoint inhibitors can help overcome immune-suppression
in steps 3 and 6. On the basis of cancer immunity cycle and
recent studies (25, 31–38), we conclude the main mechanisms for
combination immunotherapy are as follows.

Improve Sensitivity and Efficacy of
Immune Checkpoint Inhibitors
Many patients with cancer initially do not response to anti-PD-1
inhibitors, possibly because of “cold” tumors, which are with no
or few immune cells in tumor tissues and insensitive to ICIs (10,
39–41). In these tumors, tumor antigen cannot effectively prime
and activate T cells, and further lead to the cycle halting at step 1
or 2. Vaccination with neoantigens bypassing initial two steps
can produce many neoepitope-specific T cells which can traffic to
tumor microenvironment and destroy tumor cells expressing
these antigens. For instance, neoantigen-specific T cells were
found in periphery blood after vaccination (10, 42–44).
Furthermore, this strategy produces CD8+ neoantigen-specific
T cells and memory T cells, and broadens the TCR repertoire of
T cells, intensifying steps 3 and 4, which can further lead to
tumor regression (16). Meanwhile, other studies have shown that
clonally expanding neoantigen-reactive cells within tumor
infiltrating lymphocytes (TILs) expressed PD-1 orPD-L1,
suggesting that neoantigen vaccines could create a proper
setting for ICIs and lay a foundation for the combination (31,
45). In conclusion, a potent personalized cancer vaccine with
strong immunogenicity, can diversify the tumor-specific T cell
repertoire, activate immune systems, activate robust effective T
cells responses, and enhance the efficacy of ICIs.
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Overcome Acquired Resistance of
Immune Checkpoint Inhibitors
Effective ICIs result in immune-editing, which will result in
subpopulation change, depletion of neoantigens, T cells
expansion constraint and finally resistance to ICIs (46–49).
Neoantigen repertoire variation can also lead to acquired
resistance to ICIs (50). Immune-editing and variation of
neoantigen repertoire are involved in many steps of the
immunity cycle. In a study, patients with non-small cell lung
cancer, who became resistant to ICIs after initial response,
experienced the evolution of tumor neoantigens. Neoantigens,
which were targets of initial response to ICIs, were eliminated in
this process (50). Meanwhile, another study showed that loss of
neoantigens could deter the specific T cells expansion (51).
However, in the study, two patients with recurrent tumor
lesions and resistant to ipilimumab, had tumor regression after
injecting neoantigen vaccines (52). Researchers have tried to
explore the influence of neoantigen cancer vaccines on
neoantigen-specific T cell receptor repertoire, and they found
that vaccination with neoantigens could elevate TCR-b
clonotypes (52). What’s more, neoantigen vaccines, which can
provide strong immunogenicity to activate immune system
based on the neoantigen variation spectrum, eventually
overcome the acquired resistance (50). Therefore, identifying
neoantigens in the tumor evolution and listing them as targets of
personalized cancer vaccines can improve antitumor efficacy of
ICIs in patient with resistance. Neoantigen vaccines not only
speed the proceeding of the immunity cycle, but also augment
some crucial points in the activity such as steps 3 and 4.

Immune Checkpoint Inhibitors Overcome
Suppressive Microenvironment
The suppression of tumor immune microenvironment is the
main reason for the failure of neoantigen vaccine alone to control
tumor. Some researchers found that after the neoantigen vaccine
was applied, the expression of PD-1 on neoantigen-specific T
cells and PD-L1 on tumor cells increased. Meanwhile, compared
to CD8+ TILs, neoantigen-specific TILs displayed a more
exhausted-like phenotype, which indicated that neoantigen
vaccines could contribute to the inhibitory immune
microenvironment (1, 13, 53–55). Both conditions weaken the
potency of steps 3, 6 and 7. Some researchers tried to investigate
the effectiveness of ICIs to overcome the immune-suppression
and prove that ICIs could diminish the suppression of immune
system and help induce strong T cells targeting at neoantigen
epitopes (18). Schumacher and colleagues conducted some
studies and indicated that adding ICIs to the treatment of
neoantigen vaccine could elevate neoantigen T-cell response
(18). In another study, in one out of three melanoma patients
who have a relapse and distant metastasis after vaccination with
neoantigens, a complete response was observed by subsequent
pembrolizumab treatment (53). ICIs can mitigate the impact of
inhibitory factors such as PD-1, PD-L1 and CTLA-4 to the
Cancer-Immunity Cycle. The general hypothesis is that ICIs may
unleash neoantigens with less immunogenicity or reactivate T
cells with exhausting phenotypes to enhance antitumor effects
Frontiers in Oncology | www.frontiersin.org 338
(13, 24, 56–59). Increasing studies certify that ICIs can relieve
immune inhibition in neoantigen vaccine, and have a promising
prospect (50, 60).
PRECLINICAL AND CLINICAL TRIALS
AND RECENT DEVELOPMENT

A personalized cancer vaccine, when combined with the ICIs, has
shown efficacy in many preclinical trials. Meanwhile, there are
many finished and on-going clinical trials trying to further prove
the efficacy of the combination in real world.

Recent Preclinical Trials of the
Combinatory Modality
In the aggressive glioblastoma CT2A murine model, researchers
generated the neoantigen vaccine comprising 27-mer peptides
targeting the mutant Plin2G332R, Pomgnt1R497L, and
Epb4H471L neoepitopes, as well as poly-ICLC adjuvant. Mice
treated either with vaccine or anti-PD-L1 alone exhibited a
median overall survival of 17.5 and 25 days, respectively. In
contrast, 60% of mice treated with vaccine and anti-PD-L1
blockade demonstrated long-term survival. What’s more,
tumor-infiltrating neoepitope-specific CD8 T cells increased in
the combinatory condition (25). In five murine colon carcinoma
models, researchers investigated the clinical efficacy of the
combining a peptide or DNA vaccine with anti-PD-1/L1 and
anti-CTLA-4. The neoantigen vaccines combined with immune
checkpoint inhibitors can potentiate neoantigen-specific
immunity, elicit robust and long-lived T-cell response with a
more diversified TCR repertoire and potentially inhibit even
eradicate tumors without re-challenge (16, 49, 61–63).
Furthermore, three studies have initially proven the central
role of CD8+ T cells in the combination regimen by depletion
of CD8+ T cells, CD4+ T cells and natural killer 1.1, respectively
(16, 49, 63). Besides, vaccines with nanocomplexes markedly
improve Ag/adjuvant co-delivery to lymphoid organs and
sustain Ag presentation on dendritic cells (61–64). In two
highly aggressive and poorly immunogenic murine models of
B16F10 melanoma, researchers obtain the similar result that
neoantigen vaccine combined with ICIs can initiate potent anti-
tumor efficacy (62, 64). Additionally, Kuai et al., also reported
vaccines administered via the subcutaneous (SC) or
intramuscular (IM) routes were well tolerated in mice without
any significant systemic or local toxicity, whereas SC could more
efficiently deliver vaccines and intensify neoantigen-specific T
cells responses (64). Finally, Panc02 cells models provide proof of
concept that triple therapy with PancVAX (a personalized cancer
vaccine), anti-PD-1, and agonist OX40 induces vaccine-specific
TILs, lower the threshold for T cell activation, and reducing TIL
exhaustion markers such as LAG3 and PD-1. In KPC mice (with
KRAS and p53 mutations, pancreatic ductal adenocarcinoma), a
“cold” tumor, combination treatment can also elicit objective
tumor responses and prolonged survival. More importantly, this
study shows that sequential combination treatment, neoantigen
vaccine prior to anti-PD-1 antibodies significantly increased
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INF-g expression and cure rates compared to single regimen or
in combination with anti-PD-1 blockadeconcurrently (65, 66).
What’s more, in a hepatic cell cancer model, similar results are
reported (67). These preclinical trials are displayed in Table 1.

Recent Completed and Ongoing
Clinical Trials
The first open-label phase IB clinical trial (NCT02897765) of a
personalized neoantigen-based vaccine, NEO-PV-01, in
combination with PD-1 blockade, included 82 patients with
advanced solid tumors. Analyzing 82 patients, the median
progress free survival (PFS) among vaccinated patients was
23.5, 8.5, and 5.8 months in the melanoma, NSCLC, and
bladder cancer cohorts, respectively. The median OS for
vaccinated patients was not reached in the melanoma and
NSCLC cohorts, while for the bladder cancer cohort, the
median OS was 20.7 months. The primary objective of the
study was to evaluate the safety and tolerability of NEO-PV-01
in combination with nivolumab. The most common adverse
events in vaccinated patients were injection-site reactions and
influenza-like illness (52 and 35% of the patients, respectively).
No treatment-related serious adverse events were observed.
These data support the safety and immunity of this regimen in
patients with advanced solid tumors (68).

A phase IB study (NCT03289962) evaluated RO7198457, an
individualized neoantigen-specific Immunotherapy (iNeST), in
combination with atezolizumab in 144 patients with locally
advanced or metastatic solid tumors. RO7198457 is a kind of
mRNA vaccine including up to 20 neoantigens. In 108 analyzable
patients, nine patients responded to the therapy (ORR 8%)
including one complete response (CR) and 54 patients (49%)
Frontiers in Oncology | www.frontiersin.org 439
experienced stable disease (SD). The vaccine induced
neoantigen-specific T cell response in 77% patients. The
combination was well tolerated, and most adverse events were
infusion-related reaction, fatigue, cytokine release syndrome,
nausea, pyrexia in over 10% patients, classified as grade 1 or 2.
No increase in immune-mediated AEs compared with anti-PD-1
alone. Results prove that the combination of RO7198457and
atezolizumab is safe and effective, which can induce significant
neoantigen-specific immune response (69).

Another phase I multicenter study (NCT03313778) is to assess
the safety, tolerability, and immunogenicity of mRNA-4157 alone in
13 patients with resected solid tumors and in combination with
pembrolizumab in 20 patients with unresectable solid tumors.
Indications include melanoma, NSCLC, MSI-high CRC,
metastatic cutaneous squamous cell cancer, bladder cancer and so
on. mRNA-4157, is a lipid-encapsulated RNA-based neoantigen-
based vaccine. Of the 13 patients, 12 patients remain disease free on
study with median follow-up of 8 months. While in another 20
patients, researchers observed one CR, two partial responses (PR),
five SD, five progressive diseases (PD), two introduced immune
unconfirmed progressive disease, and one patient non-evaluable for
response. No dose of limited toxicity (DLT) and no drug related
SAEs or AEs ≥ grade 3were reported, and treatment related AEs
have generally been of low grade and reversible. These results also
demonstrate the antitumor efficacy and safety of the combination
with pembrolizumab and neoantigen-specific T cells, proceeding
mRNA-4157 to phase2 (70, 71).

ADXS-NEO-02 is an ongoing Phase 1 trial (NCT03265080),
which preliminarily investigates the safety and efficacy of
ADXSNEO alone and in combination with anti-PD-1 antibody
therapy in solid tumors. ADXS-NEO is composed of the
TABLE 1 | Preclinical trials of neoantigen vaccines combined with immune checkpoint inhibitors.

Type of
neoantigen
vaccine

Formulation Type of tumor Immune
checkpoint
inhibitor

Antitumor effects comparing to
vaccine or ICIs alone

Route of
vaccination

Ref

Peptide Albumin/AlbiAdpgk
nanocomplexes

Colon cancer(MC38 tumor) Anti-PD-1 More effective SC
(61)

Peptide sHDL-Adpgk and
adjuvants

Colon cancer and melanoma (MC-
38 and B16F10 tumors)

Anti-PD-1,
anti-CTLA-4

More effective SC
(62)

Peptide sHDL-Adpgk/CpG Advanced B16F10 melanoma
tumors

Anti-PD-1,
anti-CTLA-4

More effective SC or IM
(64)

Peptide PancVAX Pancreatic adenocarcinoma (Panc02
cells)

Anti–PD-1 More effective SC
(65)

DNA poly-neoantigen DNA
vaccine

Colorectal tumor MC38 Anti-PD-1 More effective Intradermal injection
(49)

DNA/mRNA GAdCT26-31/GAd-
MC38-7

Colon carcinoma (CT26 cell line,
MC38 cell line)

Anti-PD1, anti-
PDL1

More effective SC
(16)

Peptide Lm-ANXA2 Pancreatic carcinoma Anti-PD1 More effective Injection directly
through the spleen (66)

Peptide Adpgk with adjuvants
(banNVs)

Colorectal cancer Anti-PD-1 More effective SC
(63)

Peptide Multivalent neoantigen
vaccine

Glioblastoma (CT2A GBM model) Anti–PD-L1 More effective None
(25)

Peptide Thiolated nano-
vaccine

Hepatocellular carcinoma(H22 cells) Anti–PD-1 More effective SC
(67)
May 2021 |
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SC, subcutaneous; IM, intramuscular; GAdCT26-31/GAd-MC38-7, vaccines of great ape adenovirus encoding multiple neoantigens; Lm-ANXA2m listeria-based, ANXA2-targeting
vaccines; Adpgk, ADP dependent glucokinase; CpG, cytidine-phosphate-guanosine; sHDL, synthetic high-density lipoprotein; PancVAX, neoantigen-targeted vaccine.
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listeriolysin O(tLLO) and personalized tumor antigens with 20–
21mer peptides. This initial result reveals the optimal dose of
ADXS-NEO with safety and efficacy. Only mild/moderate,
controlled, and reversible events (e.g., chills, fever, tachycardia)
were observed at this level. Efficient and rapid priming of
substantial CD8+ T cells against most neoantigens and
increased secretion of chemokines consistent with T-cell
trafficking into tumor microenvironment also existed. Further
investigation results about the combination of ADXS-NEO +
anti-PD-1 antibody therapy are waiting (72).

Another ongoing phase I/IIA study (NCT03633110), is
exploring the tolerability and antitumor activity of GEN-009
combined with anti-PD-1/L1 in multiple advanced tumors.
GEN-009 is a personalized neoantigen-based vaccine
comprising 4–20 synthetic long peptides formulated with poly-
ICLC. The preliminary study of GEN-009 alone in solid tumors
displayed that neoantigen provoked sustained peripheral
neoantigen-specific CD4+ T cell and CD8+responses in all
eight patients. Besides, repeated dosing has been well tolerated
with mild local discomfort and no DLT. Further data from this
trial about the vaccine in combination with PD-1 inhibitors in
patients with advanced tumors, are awaited (71, 73).

Another open-label, phase IB study (NCT03380871) of NEO-
PV-01 with pembrolizumab plus chemotherapy in patients with
advanced or metastatic non-squamous non-small cell lung
cancer is completed, and the results are expected. More clinical
trials combining personalized vaccines with immune checkpoint
inhibitors are listed in Table 2.
SAFETY AND TOXICITY ASSOCIATED
WITH THE COMBINATION MODALITY

The application of ICI therapy comes with the possibility of
occurring immune related adverse events (IRAE). IRAE are
regarded as an “over-activation” of the immune system leading to
autoimmune inflammatory events affecting virtually any organ,
most commonly the skin, gastrointestinal tract, liver, endocrine
system and lung (74–76). In this review, we have highlighted the
combination of neoantigen vaccine with ICI. Neoantigen vaccine
and ICI both effect via provoking the immune system.
Consequently, there is a relevant concern that the combination
may lead to excessive toxicity. Overall, clinical experience with the
combination strategies discussed in this review is limited. However,
in a phase I trial (NCT02897765 n = 82) evaluating the safety and
tolerability of NEO-PV-01 in combination with nivolumab,
injection-site reactions (52%) and influenza-like illness (35%) are
most common. Injection site reactions such as warmth and
erythema, were often reversible and mild (Common Terminology
Criteria for Adverse Events [CTCAE] grade 1), except one patient
with a grade 2 injection site erythema. Drug-related events of grade
≥3 severity appeared in two patients. One patient with grade 2
gastritis discontinued the treatment. There is no treatment-related
serious adverse events (68). In another phase Ib study
(NCT03289962 n=142) to assess RO7198457 in combination with
atezolizumab, immune-mediated adverse events (AEs) in
Frontiers in Oncology | www.frontiersin.org 540
atezolizumab alone were similar to those of the combination in
>10% of patients include infusion-related reaction (60%), cytokine
release syndrome (15%), influenza-like illness (10%), fatigue (30%),
nausea (22%), pyrexia (15%), diarrhea (19%), decreased appetite
(15%), vomiting (14%), headache (12%), cough (15%), dyspnea
(15%), arthralgia (10%), constipation (15%),anemia (12%).
Individual signs and symptoms of systemic reaction in more than
five patients involve pyrexia, chills, nausea, tachycardia, headache,
vomiting, hypertension, myalgia, back pain, fatigue, and hypoxia.
1% patients had grade 3 infusion-related reactions, anemia, fatigue,
dyspnea, vomiting, nausea, pyrexia, diarrhea, headache, respectively.
Most AEs are grade 1 or 2, and systemic reactions were transient
and generally manageable in the outpatient setting. No grade 4 or
5 AE was observed (69). InmRNA-4157 trial, there was also no
serious treatment related AEs, with only low grade and reversible
reactions. Generally speaking, initial results of studies prove the
treatment regimen of neoantigen vaccine combined with ICIs
efficient and safe. Whereas, the actual risk for severe adverse
events with combinations and potential factors influencing safety
such as dose, delivery platforms, ways of administration, adjuvant,
personal status, will be required to more and larger
randomized studies.
MAIN CONSIDERATIONS RELATING TO
THERAPEUTIC COMBINATORY REGIMEN

Various factors may affect the anti-tumor efficacy in the
combinatory modality. For neoantigen vaccine, neoantigen
selection is critical, which will determine the production of
antigen-specific T cells and eventually influence the anti-tumor
response. The pipeline for neoantigen identification includes five
main steps, and details have been extensively reviewed in other
reviews (77–79). Unfortunately, there is no perfect method to
predict appropriate neoantigen without bias and negatively
positive. What’s more, the selection of proper delivery
platforms is also crucial. Seven kinds of vectors are explored,
including synthetic peptides, messenger RNA, DNA plasmids,
viral vectors (adenoviral and vaccinia), engineered attenuated
bacterial vectors (Salmonella, Listeria), ex vivo antigen-loaded
DCs, and nanodiscs. Their advantages and disadvantages have
been listed in detail in previous reviews (80, 81). The central
problems are the delivery efficacy and manufacturing time,
which play an important role in initiating enhanced T cell
responses to inhibitor tumors. The sequence of manufacturing
time from shorter to long is approximately tumor lysate-pulsed
DCs, DNA/RNA, peptide, neoantigen-pulsed DC (71). For both
peptide and mRNA vaccine platforms, time less than 4 weeks is
expected (80). Additional variables include the route of
administration of the vaccine, total number of doses, and
induction (priming) and booster (maintenance) intervals. In a
preclinical trial, Rui Kuai et al. declared that subcutaneous
injection, comparing with intramuscular way, have stronger
capability to deliver vaccines and provoke neoantigen-specific
T cells responses (64). With the dose increasing, the immune
response is intensified and the occurrence of immune related
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TABLE 2 | Recent clinical trials combining neoantigen vaccines with immune checkpoint inhibitors.

ClinicalTrial.gov
identifier

Phase Enrollment
status

Cancer
Type

Neoantigen
Formulation

Additional
intervention

Delivery Dose and Schedule

NCT04397003 II Not yet
recruiting

ES-SCLC Neoantigen DNA Anti-PD-L1
(durvalumabMEDI4736)

Intramuscular
by
electroporation

Not specified, six q4w cycles

NCT03897881 II Recruiting M Neoantigen mRNA-
4157

Anti-PD-1(pembrolizumab) None 1,000 mg nine q3w cycles

NCT04267237 II Withdrawn NSCLC Neoantigen mRNA
(RO7198457)

Anti- PD-L1(atezolizumab) Intravenous
infusion

Not specified, 12 q4w cycles

NCT03815058 II Recruiting Advanced
M

Neoantigen mRNA
(RO7198457)

Anti-PD-1(pembrolizumab) None Not specified; qw priming and booster

NCT03606967 II Recruiting Metastatic
TNBC

poly-ICLC+
Neoanitgen synthetic
long peptides

Anti-PD-L1
(durvalumabMEDI4736)

Subcutaneous None

NCT03598816 II Withdrawn RCC Neoantigen DNA anti-PD-L1 (durvalumab])
anti-CTLA-4
(tremelimumab)

Intramuscular six doses

NCT03953235 I, II Recruiting NSCLC,
CRC, PC,
other solid
tumors

Neoantigen Peptides
(GRT-C903 and GRT-
R904)

anti-PD-1(Nivolumab)and
anti-CTLA-4(ipilimumab)

None None

NCT03639714 I, II Recruiting NSCLC,
MSSCRC,
EC, BC

Neoantigen
adenovirus vector +
self-amplifying mRNA
(GRT-C901 and GRT-
R902)

anti-PD-1(nivolumab) and
anti-CTLA-4(ipilimumab)

Intramuscular
via viral vector

30–300 mg, Priming and booster

NCT04251117 I/IIA Recruiting HCC Neoantigen DNA
vaccine (GNOS-
PV02)

Anti-PD-1
(pembrolizumabMK-3475)

Intradermal
injection and
electroporation

None

NCT03164772 I, II Active, not
recruiting

NSCLC mRNA Vaccine (BI
1361849, CV9202)

anti-PD-L1 (durvalumab) +
anti-CTLA-4
(tremelimumab)

None None

NCT04024878 I Recruiting OC Poly-ICLC
+Neoantigen peptide
(NeoVax)

Anti-PD-1(nivolumab) Injection
underneath
the skin

Not specified; priming and booster

NCT02897765 I Completed UBC, BT,
T CCB,
MM, M,
SC, NSCL

Neoantigen peptides
(NEO-PV-01)

Anti-PD-1(nivolumab) Subcutaneous Not specified

NCT03289962 I Recruiting Solid
Cancers

Neoantigen mRNA
(RO7198457)

Anti-PD-L1(atezolizumab) Intravenous
infusion RNA-
lipoplex,

25–100 mg qw priming and boosters

NCT03568058 I Active, not
recruiting

Advanced
Cancer

Neoantigen peptide Anti-PD-1(pembrolizumab) None None

NCT04266730 I Not yet
recruiting

NSCLC,
SCCHN

Neoantigen peptide
vaccine (PANDA-
VAC) + Poly-ICLC

Anti-PD-1(pembrolizumab) Subcutaneous 1,800 ug, 2,400 ug, priming and
booster

NCT04161755 I Recruiting PC Neoantigen mRNA
(RO7198457)

Anti-PD-L1(atezolizumab) None None

NCT04072900 I Recruiting M (Skin) Neoantigen peptide Anti-PD-1(toripalimab) None 4 × 3 mg all the peptides given by seven
times

NCT03597282 I terminated Metastatic
M

Poly-ICLC +
neoantigen peptides
(NEO-PV-01)

Anti-PD-1(nivolumab), Subcutaneous None

NCT02287428 I Recruiting GB Neoanitgen peptide
(NeoVax)

Anti-PD-1(pembrolizumab) None Not specific, priming and boost phases.

NCT04799431 I Not yet
recruiting

PC,MCRC Neoantigen Vaccine +
Poly-ICLC

Anti-PD-1(retifanlimab) Subcutaneous 0.3 mg per peptide vaccine

NCT04248569 I Recruiting FLC Neoanitgen peptide
(DNAJB1-PRKACA
fusion kinase)

Anti-PD-1(nivolumab)and
anti-CTLA-4(ipilimumab)

None Not specifically, Priming and booster

NCT03219450 I Not yet
recruiting

LL Neoanitgen peptide
(NeoVax)+ Poly-ICLC

Anti-PD-1(pembrolizumab) None Not specifically, priming and booster

(Continued)
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adverse events also elevate. The key point is to find the balance
between efficacy and safety (82–87). Owing to lack of more
clinical data, further studies about dose and administrating route
are urgently required (64). When it comes to the combination, a
vital problem emerges, the sequence of administration of
neoantigen vaccines and ICIs. Pre-vaccination promote
baseline immunity, significantly increase expression of INF-g,
Fms-related tyrosine kinase 3 ligand (FLT3L) and granulocyte–
macrophage colony-stimulating factor(GM-CSF), and help
“cold” tumor, such as glioblastoma and pancreatic ductal
carcinoma, respond to ICIs (65, 66, 71). Additionally,
administration of ICIs at vaccination or post-vaccination can
boost vaccine-induced immune response. Unfortunately, limited
data is presented, so further endeavors are necessary to explore
the proper sequence of administration. To monitoring antitumor
efficacy, applications of gene sequencing and single-cell
sequencing technologies might find why resistance appear and
discover the alternative neoantigens.
CHALLENGES AND IMPROVEMENTS

Though the combination of neoantigen vaccines and ICIs is
promising in personalized treatment, there are still
many problems.
Frontiers in Oncology | www.frontiersin.org 742
Selection of Population Who May
Potentially Benefit From the Combination
ICIs and neoantigen vaccines alone can only benefit a fraction of
patients, efforts to find out the most proper population to receive
the combination therapy are urgently required (88).

Recent studies have shown that somatic mutation, neoantigen
burden and neoantigen density associated with long-term benefit
from immune checkpoint inhibitors in several solid tumors, which
indicated that more mutation-associated neoantigens may enhance
the immunogenicity and improve immune responses of ICIs (19,
44, 89). The possible explanation is that higher mutational burden
provides a base to generate more immunogenic neoantigens.
Furthermore, researchers have found there were neoantigen-
specific T cells in the peripheral blood in patients with tumor
regression, and this also demonstrated that some neoantigens
indeed could activate T cell which had an antitumor effect (19,
44, 88, 90). Therefore, neoantigen burden may be a significant
predictor for combinational immunotherapy to distinguishing
responders from non-responders.

However, some studies also revealed that responders to ICIs
were not restricted to patients with high neoantigen burden, which
demonstrated that not only the quantity of neoantigens is
significant, rather their “quality” is vital as well (91, 92). For
example, in melanoma, an effective antitumor CD8+ T cells
response can be produced by a few epitopes, which have affinity
TABLE 2 | Continued

ClinicalTrial.gov
identifier

Phase Enrollment
status

Cancer
Type

Neoantigen
Formulation

Additional
intervention

Delivery Dose and Schedule

NCT03121677 I Recruiting FL Personalized tumor
vaccine+ Poly-ICLC

Anti-PD-1(Nivolumab) Subcutaneous Not specifically

NCT03166254 I Withdrawn NSCLC Neoantigen peptides
(NEO-PV-01)+ Poly-
ICLC

Anti-PD-1(pembrolizumab) None Not specifically, priming and booster

NCT03199040 I Recruiting TNBC Neoantigen DNA Anti-PD-L1 (durvalumab) None None
NCT03532217 I Active, not

recruiting
MHSPC Neoantigen DNA Anti-PD-1(nivolumab)and

anti-CTLA-4(ipilimumab)
Intramuscular 4 mg, priming and booster

NCT03380871 I b Completed Advanced
or
metastatic
NSCLC

Neoantigen peptides
(NEO-PV-01)+ Poly-
ICLC

Anti-PD-1(pembrolizumab) Subcutaneous None

NCT02950766 I Recruiting High-risk
RCC

Neoanitgen peptide
(NeoVax)+ Poly-ICLC

Anti-CTLA-4(ipilimumab) Subcutaneous Not specifically, priming and booster

NCT03359239 I Recruiting UC/BC Neoanitgen peptide
(PGV001) + Poly-
ICLC

Anti-PD-L1(atezolizumab) None Up to ten synthetic peptides—100 mg
(0.01 ml, 10 mg/ml) per peptide. One
tetanus helper peptide—100 mg
(0.01 ml, 10 mg/ml),up to ten total
doses

NCT03422094 I Terminated GBM Neoanitgen peptide
(NeoVax)+ Poly-ICLC

Anti-PD-1(nivolumab)and
anti-CTLA-4(ipilimumab)

Subcutaneous Not specifically, priming and booster

NCT03929029 Ib Recruiting M Neoanitgen peptide
(NeoVax)+ Poly-ICLC
+ Montanide

Anti-PD-1(nivolumab)and
anti-CTLA-4(ipilimumab)

None None

NCT04117087 I Recruiting CRC, PC KRAS peptide+ Poly-
ICLC

Anti-PD-1(nivolumab)and
anti-CTLA-4(ipilimumab)

None 1.8 mg, priming and booster
ES-SCLC, extensive stage small cell lung cancer; NSCLC, non-small cell lung cancer; MCRC, metastatic colorectal cancer; CRC, colorectal cancer; MSSCR, microsatellite state colorectal
cancer; UBC, urinary bladder Cancer; UC/BC, urinary/bladder carcinoma; BT, bladder tumors; TCCB, transitional cell carcinoma of the bladder; MM, malignant melanoma; M, melanoma;
SC, skin cancer; SCCHN, squamous cell carcinoma of head and neck; HCC, hepatic cell cancer; TNBC, triple negative breast neoplasms; RCC, renal cell carcinoma; LL, lymphocytic
leukemia; FL, follicular lymphoma; PC, pancreatic carcinoma; MHSPC, metastatic hormone-sensitive prostate cancer; FLC, fibrolamellar hepatocellular carcinoma; OC, ovarian cancer;
GBM, glioblastoma; Poly-ICLC, polyinosinic–polycytidylic acid-poly-l-lysine carboxymethylcellulose.
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to TCRs (26, 43). Another instance, renal cell carcinoma (RCC) has
only a moderate to low mutation rate; however, it is universally
known that RCC has a good response to immunotherapy (93).
Researchers tried to explain this phenomenon and discovered that
RCC possess the highest level of insertion and deletion type (indel)
mutations, which are regarded to frequently create a new open
reading frame and a higher proportion of neoantigens (94).
Considering the quality of mutation into the prediction is
also significant.

What’s more, lower neoantigen intra-tumor heterogeneity (ITH)
is correlated with significantly longer progression-free survival.
Neoantigen heterogeneity has a high variable rate with an average
of 44% neoantigens found heterogeneously, in a subset of tumor
regions (range of 10 to 78%) (55). Researchers have observed that
lower hazard ratios when considering both neoantigen burden and
ITH compared with the use of neoantigen burden alone to screen
the potential population (55). Additionally, tumors with low ITH
had an elevated PD-L1 expression (55). Thus, combining
heterogeneity selecting a proper threshold with neoantigen
burden is critical to find out the population who may benefit
from ICIs and neoantigen vaccines.

Effectively controlling tumors with personalized vaccines and
ICIs, is associated with neoantigen-specific T cells, which can exist
in peripheral blood and show a phenotype different from patients
without a response. Further studies to investigate characterization of
neoantigen-specific T cells in responder patients, showed that there
was relatively high expression of the activation markers CD161,
TIGIT, 2B4 and KLRG1,low level of expression of inhibition
markers CD27, CD28 and CD127, and a high level of co-
inhibitory molecules, including PD-1 (95, 96). These results
indicate that identification and characterization of neoantigen-
specific T cells may contribute to predict who will response to the
combination therapy.

Neoantigens Heterogeneity and Dynamic
Variation of Neoantigen Landscape
Neoantigens arise from tumor-specific mutations, and they are
variable in different tumors or patients. ITH has a significant
impact on the response to immunotherapies. In addition, in
patients who initially respond to ICIs, tumors could experience
an evolution of epitopes, which will alter the neoantigen
landscape and lead to sequential resistance. More importantly,
mechanisms of ITH and the dynamic variation of neoantigens
landscape are unclear for now (13, 97, 98). We just observed that
high heterogeneity may lead to a poorer response to both
vaccination and ICIs. For this problem, researchers provide
that designing a neoantigen vaccine with multiple targets and
based on the variation landscape may help overcome ITH and
the dynamic alteration (55).

Identification of Potential Neoantigens
Exact identification of the neoantigens is capable of producing
potent epitopes which can be recognized specifically by TCRs and
induce strong immune response. However, this is difficult to achieve
in current silico predicting systems (49). Some studies showed that
in predicted neoantigens, only a fraction (20%) had
Frontiers in Oncology | www.frontiersin.org 843
immunogenicity, demonstrating the low accuracy of current
neoantigens prediction algorithms (99, 100). For now, there is no
single method providing an accurate and reliable prediction and
identification of neoantigens. The possible solutions for this
problem are as following. One method is designing multi-epitope
vaccines. Using of a platform which can accommodate a large
number of neoantigens, may help overcome limits of the prediction
algorithms. In a study, combing treatment with the adenoviral
vaccine targeting 31 neoantigens increased the number of mice with
complete regression (~50%), which may be due to the increasing
specific T-cell clones (8). These findings demonstrate that multi-
epitope vaccines may be a solution for inaccuracy of the
bioinformatics tools for predicting neoantigens (8). Another
option is to broaden our analysis of potential neoantigens to
include other types of potentially immunogenic alterations, for
current predicted neoantigens are mainly resulting from missense
mutations (2). For example, chromosomal insertions, inversions,
and translocations can lead to fusion transcripts, which exist in
certain cancers, such as chronic myelogenous leukemia, lung cancer,
bladder cancer, and ovarian cancer (101, 102).

Faster and Cost-Effective Vaccine
Production
Currently, although the emergence of NGS, WES and other
techniques improve the identification and production of
neoantigen vaccines, verifying neoantigens and vaccines
generation are still time-consuming and expensive, and usually
3–5 months are required to prepare vaccines from tumor
samples (26, 43). Additionally, problems that the identification
of neoantigens needs lots of tumor tissues, while the yield of
usable epitopes or neoantigens is very low, and it is difficult to
solve for technical limits (103). These obstacles have been largely
hampering the development of neoantigen vaccines in clinical
settings. There is an urgent need to develop better neoantigen
prediction algorithms and manufacturing technologies which
can decrease the price and shorten the time (4, 104). Efforts for
this work are going on, and Anna have established a fast process
assembling 60 unique patient mutanome-specific neoantigens
and producing personalized adenoviral vaccines within 6 weeks
from the time of patient biopsy (16).

Safe and Efficient Delivery System
To generate a potent neoantigen vaccine, a safe and efficient delivery
system is needed, which can help induce strong immune response.
Effector T cells can be induced by the specific antigens or epitopes
within the tumor cells and neoantigen-specific T cells clonal
expansion in tumors symbols the effective antitumor response.
Neoantigen vaccines based on virus could be the proper
candidates to produce potent antitumor immunity. Many studies
have proven adenoviruses were powerful genetic vaccine platforms
with unique feature encoding for large antigen to activate effective
CD8+ and CD4+ T-cell responses safely (105–107). In a preclinical
study, a adenoviral vaccine encoding 31 neoantigens, the largest
number used so far for neoantigen-based vaccines, selected from the
murine CT26 colon carcinoma cell line, produced potent antitumor
immune responses, and more than 1,000 antigen-specific IFN-g
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secreting lymphocytes/million splenocytes, CD8+ and CD4+ T
lymphocytes were generated (16).

Low Efficacy of Neoantigen Vaccines
In preclinical trials, researchers did not detect neoantigen-
specific T cells in untreated mice with tumors. The possible
reasons are showed below: the inadequate mutated gene
expression; antigen can’t be presented effectively due to low
affinity to HLA or TCRs on T cells; dynamic variation of
neoantigen landscape leading to dominant neoantigens
eliminated; T cells in the repertoire which can bind to mutant
neoepitopes are in short or undergoing apoptosis (65). Two
approaches are capable of enhancing neoantigen-specific T cell
responses and improving the antitumor potency.

One is to use a potent adjuvant to stimulate innate immunity. In
some preclinical studies, researchers found that adding an agonist
OX40 antibody to PancVAX, decreased T cell exhausted markers,
such as Lag3 and PD-1, and helpedCD4+ T cell avoid
immunosuppressive Treg phenotype (108, 109). What’s more,
FoxP3+CD4+T cells decreased and tumor-specific IFN-g-secreting
CD4+ T cells appeared when combining PancVAXwith OX40 (65).
Furthermore, OX40 is capable of increasing the survival rate of
antitumor T cells with low avidity (94). These findings suggest that
an effective adjuvant can produce neoantigen-specific TILs, help
activate T cells and maintain TILs through survival improvement.

Another strategy to improve the efficacy of neoantigen vaccines
is taking MHC class II peptides into vaccination design (88). The
clonal expansion of tumor-specific T cells with potent antitumor
ability is the core of the success in the personalized cancer
immunotherapy (49). Kreiter and colleagues conducted a study
suggesting that many personalized cancer vaccines with
immunogenic neoantigens were correlated to MHC class II
molecules on CD4+ helper T cells (110). In the study, PancVAX
played its role to control or shrink tumors primarily through CD8+
T cells, meanwhile, CD4+ T cells may have influence as well.
Researchers further investigated the influence of both CD8+ T
cells and CD4+ T cells, and noted that antitumor response
disappeared when depleting CD8+ T cells while partial responses
loss with CD4+ T cells eliminated. The successful example of
immunotherapy in melanoma was due to existence of epitopes
targeting both CD4+ and CD8+ T cells (16, 20, 26, 65).
Therefore, vaccination with neoantigens targeting both CD8+ T
cells and CD4+ T cells is vital to induce powerful antitumor
immune responses, for the primary immune driver CD8+ T cells
can work better with the synergy of CD4+ T cells (111, 112).

Dose and Sequence of ICIs and Vaccines
Though many preclinical and clinical trials investigate the safety
and efficacy of the combination of ICIs and neoantigen vaccines,
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dose and schedule for ICIs and vaccines have been minimally
studied. Some researchers found that after the response to
interferon secreted by T cells, both PD-1 on activated T cells
and PD-L1 on tumors emerged in a short time, which supports
that using ICIs first or concomitant with vaccines may be both
rational (113). In some studies, after vaccination with
neoantigens in patients, the expression of both PD-1 on
neoantigen-specific T cells and PD-L1 in tumor tissues
increased, and anti-PD-1 or anti-PD-L1 immunotherapy
improved the efficacy of vaccines , suggest ing that
administering neoantigen vaccines before ICIs may have a
greater opportunity to achieve the maximal antitumor response
(1, 13, 20, 36, 53–55). We have searched up many preclinical and
clinical trials, unfortunately, we didn’t find a standard sequence
or dose for the combination, which need further exploration.
CONCLUSION

Neoantigen vaccines alone have a limited efficacy, and ICIs has
been limited to a minority of patients with certain cancer types.
However, the combination of personalized vaccines and ICIs can
significantly improve the antitumor efficacy with minimal
additional toxicity compared to either single method by
improving sensitivity and efficacy of ICIs, overcoming acquired
resistance of ICIs and relieving suppressive microenvironment.
This has led to envisaging and developing combined strategies
that might augment tumor regression and prolong overall
survival for patients with metastatic cancer. However, there
still some important aspects for the combination to achieve the
maximal efficacy, including optimizing the identification,
predication and production of neoantigen vaccines, selecting
proper population for the combination therapy, and the
optimized dose and sequence of the two agents.
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Background: The endoplasmic reticulum oxidoreductin-1-like (ERO1L) gene encodes an
endoplasmic reticulum luminal localized glycoprotein known to associated with hypoxia,
however, the role of ERO1L in shaping the tumor immune microenvironment (TIME) is yet
to be elucidated in lung adenocarcinoma (LUAD).

Methods: In this study, raw datasets (including RNA-seq, methylation, sgRNA-seq,
phenotype, and survival data) were obtained from public databases. This data was
analyzed and used to explore the biological landscape of ERO1L in immune infiltration.
Expression data was used to characterize samples. Using gene signatures and cell
quantification, stromal and immune infiltration was determined. These findings were used
to predict sensitivity to immunotherapy.

Results: This study found that ERO1L was significantly overexpressed in LUAD in
comparison to normal tissue. This overexpression was found to be a result of
hypomethylation of the ERO1L promoter. Overexpression of ERO1L resulted in an
immune-suppressive TIME via the recruitment of immune-suppressive cells including
regulatory T cells (Tregs), cancer associated fibroblasts, M2-type macrophages, and
myeloid-derived suppressor cells. Using the Tumor Immune Dysfunction and Exclusion
(TIDE) framework, it was identified that patients in the ERO1Lhigh group possessed a
significantly lower response rate to immunotherapy in comparison to the ERO1Llow group.
Mechanistic analysis revealed that overexpression of ERO1L was associated with the
upregulation of JAK-STAT and NF-kB signaling pathways, thus affecting chemokine and
cytokine patterns in the TIME.

Conclusions: This study found that overexpression of ERO1L was associated with poor
prognoses in patients with LUAD. Overexpression of ERO1L was indicative of a hypoxia-
induced immune-suppressive TIME, which was shown to confer resistance to
org July 2021 | Volume 12 | Article 677169148
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immunotherapy in patients with LUAD. Further studies are required to assess the potential
role of ERO1L as a biomarker for immunotherapy efficacy in LUAD.
Keywords: ERO1L, tumor microenvironment, biomarker, immunotherapy, lung adenocarcinoma
INTRODUCTION

Lung cancer is a leading cause of cancer-relatedmortality and lung
adenocarcinoma (LUAD) accounts for approximately 50% of all
reported cases (1). In recent years, as precision medicine
is becoming a reality, LUAD treatments have gradually
evolved from empirical chemotherapy to personalized
therapies. Immunotherapies, which have the advantage of high
efficiency, long duration, and low toxicity, have led to a paradigm
shift in cancer treatment. Immunotherapy has become the
standard of care for advanced LUAD. However, widespread
usage of immunotherapy is limited and drug resistance is
increasingly reported (2, 3). As a result, the identification of
biomarkers to enable patient selection is urgently required.

There is a growing body of evidence supporting the theory
that the tumor immune microenvironment (TIME) plays a
crucial role in the response to immunotherapy. The TIME
comprises a series of infiltrating cells, such as neoplastic cells,
immune cells, endothelial cells, fibroblasts. Different infiltration
components are associated with different clinical outcomes.
Based on immune score, recent research has classified TIME
into three subtypes: immune-inflamed (I-I TIME), immune-
desert (I-D TIME), and immune-excluded (I-E TIME) (4).
Patients with I-I TIME are frequently reported to be infiltrated
with an abundance of inflammatory cells. This indicates that they
will have a significant clinical response to immune checkpoint
inhibitor (ICI) therapy. Contrastingly, I-D TIME and I-E TIME
are both be considered noninflamed TIME. As such, these
patients are rarely responsive to ICI therapy (5). The
differential responses of these subtypes present the need to
develop individualized treatment strategies. However, two key
challenges remain. Firstly, determination of the threshold for an
inflamed or noninflamed TIME. And secondly, the lack of
appropriate biomarkers that are able to distinguish TIME
subtypes (6).

The endoplasmic reticulum oxidoreductin-1-like (ERO1L)
gene, which is located on chromosome 14 in humans, is
considered to be the primary source of the endoplasmic
reticulum. ERO1L is an endoplasmic reticulum luminal
localized glycoprotein which favors disulfide bond formation
via the selective oxidization from protein disulfide isomerases
(7). Hypoxia is a hallmark of the tumor microenvironment and is
reported in the majority of tumors overexpressing ERO1L (8).
Hypoxic stress has been described to cause immunosuppression
by controlling angiogenesis. This is predicted to result in
resistance to ICI therapy (9). What’s more, ERO1L is known to
promote programmed death-ligand 1 (PD-L1) expression by
increasing the expression of hypoxia-inducible factor1a (HIF-
1a) and subsequently facilitating oxidative protein folding within
PD-L1. Ultimately, this results in immune escape (10). The role
org 249
of ERO1L in the crafting of the tumor immunological
microenvironment is yet to be elucidated.

In this study, the association between ERO1L expression and
TIME was investigated in LUAD. Bioinformatics techniques
including cell quantification algorithms and gene expression
profi l ing were used. This study identified that the
overexpression of ERO1L is a feature in an immune-
suppressive TIME. This provided insight into the potential
association between ERO1L and tumor-immune interactions.
MATERIALS AND METHODS

mRNA and Protein Expression Analyses of
ERO1L Using Public Databases
The ERO1LmRNA expression in pan-cancer was analyzed in the
Oncomine database (www.oncomine.org) with the following
thresholds: p-value of 0.001, a fold change of 1.5, and a top
10% gene ranking (11). The expression data belonging to four
datasets (GSE7670, GSE31210, GSE32863, and GSE19188) were
downloaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/). Expression profiles were normalized by z-scores of
log2(count+1). Using the limma package in R-4.0.3, batch
normalization was also completed. Protein expression levels
were analyzed using the HPA database (http://www.
proteinatlas.org). Antibodies used in the HPA database
included HPA026653 (Sigma-Aldrich), HPA030053 (Sigma-
Aldrich) and CAB034294 (Santa Cruz Biotechnology). These
three antibodies were all validated by orthogonal method
(antibody staining mainly consistent with RNA expression data
across 41 tissues) and by independent antibodies (protein
distribution across 45 tissues similar between the independent
antibodies HPA026653 and HPA030053).

TCGA Database Analysis
TCGA LUAD data was downloaded from the UCSC Xena
database (http://xena.ucsc.edu/). This data included
information on: RNA-seq (HTSeq-FPKM), DNA methylation
(Illumina Human Methylation 450), and clinical profiles
(including both phenotype and survival data). Expression levels
were normalized using the z-score of log2(FPKM+1) to exclude
potential bias. Patients were assigned into ERO1L-high and
ERO1L-low groups based on the median expression value
according to the RNA sequencing data. In terms of
methylation analysis, we included 18 methylation sites (Table
S4). These sites were mapped to the ERO1L gene using the UCSC
Genome Browser HG19 RefSeq database (http://genome.ucsc.
edu). The methylation level of each CpG site was recorded as a b
value. This value indicated the ratio of the methylated signal
intensity over the sum of the methylated and unmethylated
July 2021 | Volume 12 | Article 677169
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intensities at each locus. Each locus with an average b-value of
less than 0.20 was considered a hypomethylation site. In
addition, Kaplan-Meier survival curves were plotted to show
differences in survival time. For this data, log-rank p-values
reported in the survival package in R-4.0.3 were used to
determine statistical significance. Path analysis was performed
in the ggalluvial in R-4.0.3. Visualization was performed using
the OriginPro 2019b software (version 9.6.5.169).

Organoid Culture
Mouse lung tissue was carefully dissected avoiding other tissue
contamination, then minced with surgical scalpels and incubated
in Trypsin (Gibco) at 37°C for 40-50 min. The digestion was
terminated with 10% serum (Gibco), and digested tissues were
filtered with a 70 mm cell strainer in order to filter out debris that
had not been fully digested. Cells were resuspended with
Matrigel (Corning) and plated in 48 well plates. Then the
Matrigel was solidified in an incubator at 37°C for 15-20 min
and overlaid with 150-200 mL medium. Organoid medium
contains advanced DMEM/F12, FGF 100 ng/mL, EGF 10 ng/
mL, B27 supplement (2 X final), N2 supplement (1 X final),
Noggin 100 ng/mL, RSPO-1 (10% final), Wnt-3a (10% final),
Y27632 10 mM,A83-01 10 mM, Glutamax (1 X final) and
Penstrep (1 X final). Cultures were kept at 37°C, 5% CO2 in
an incubator and the medium was exchanged every 4-8 days
according to the number of spheres. For passaging, the Matrigel
containing organoids was dissolved in 3-5 mL TrypLE at 37°C
for 10 min, and pipetted vigorously (80-100 times) to dissociate
organoids into single cells. Cells were filtered with 70 mm cell
strainer, centrifuged at 1,500 rpm for 10 min and resuspended
with Matrigel.

Organoid Infection
Organoids were dissociated into single cells as described above,
resuspended with 200 mL medium ae well as 2-3 mL virus
particles, and added polybrene to 1 X final. After being
centrifuged at 2,000 rpm, 37°C for 1 hour, the cells were then
incubated at 4°C, 5% CO2 for 2-3 hours. Finally, an organoid
culture was performed as described above.

Co-Expression Module Identification and
Pathway Analysis
Firstly, genes which were co-expressed were identified in the
Oncomine and TCGA databases respectively. By overlapping the
results from these two databases, we identified a co-expression
module consisting of 17-genes. STRING (version 10.5) was used
to construct a protein-protein interaction (PPI) network. The 17
genes within the module were subjected to pathway enrichment
analysis using DAVID (https://david-d.ncifcrf.gov/) (12). Results
were visualized using the Hmisc and ggplot2 packages in R-4.0.3.
Gene set enrichment analysis (GSEA) was performed using the
GSEA software (version 4.1.0) and Broad’s GSEA algorithm (13).

Immune Infiltration Analysis
The relationship between ERO1L expression levels and immune
infiltration was initially determined using the TIMER2.0
database (http://timer.comp-genomics.org). The TIMER2.0
Frontiers in Immunology | www.frontiersin.org 350
database utilizes immunedeconv, which is an R package
integrating six state-of-the-art algorithms. These algorithms
include: TIMER, xCell, MCP-counter, CIBERSORT, EPIC, and
quanTIseq (14). These algorithms were systematically
benchmarked, and each was found to have unique properties
and strengths. ERO1L expression was analyzed in the presence of
seven types of immune infiltrating cells, including B cells, CD4+

T cells, CD8+ T cells, NK cells, macrophages, CAFs, and MDSCs.
During immune infiltration analysis, adjustments were also
made for tumor purity. The online tool CIBERSORTx (https://
cibersortx.stanford.edu) was used to estimate different immune
cell proportions (15).

Correlation analysis between the expression of ERO1L,
immune cell markers and cytokines as well as chemokines was
also performed using the TIMER2.0 database, specifically using
the Gene_Corr module. The functionality of this module allows
users to uncover the co-expression pattern of genes across TCGA
cancer types. When provided with one initial gene of interest and
up to 20 other genes, the TIMER2.0 database generates a
heatmap table of Spearman’s correlation of gene expression
between the gene of interest and the other input genes. After
adjustment for tumor purity, a Spearman’s r >0 with
p-value <0.05 was considered as a positive correlation and a
Spearman’s r <0 with p-value <0.05 was considered as a positive
correlation. Secondary confirmation of correlation analysis was
performed using GEPIA (http://gepia.cancer-pku.cn) (16).
Tertiary confirmation of correlation analysis was performed
using TCGA expression data from the GEPIA database (http://
gepia.cancer-pku.cn/index.html).

Single-Cell Sequencing Analysis
Processed gene expression data was download from the GEO
database (GSE99254). This project consists of deep single-cell
transcriptome data with complete T cell receptor information,
which identified multi-dimensional characteristics of infiltrating
lymphocytes (17). Single-cell transcriptome data was analyzed
based on t-SNE dimension reduction using the R package Rtsne.
Additionally, the Tumor Immune Single-cell Hub (TISCH)
database was used to analyze the correlations between ERO1L
expression and infiltrating immune cells (18). TISCH is a
scRNA-seq database focusing on the tumor microenvironment.
This database includes 79 datasets and 2,045,746 cells. TISCH
provides detailed cell-type annotation at the single-cell level,
enabling detailed exploration of the tumor microenvironment
across various different cancer types.

Immunotherapy Response Prediction
In the first instance, in order to estimate the presence of the
various immune cell populations in the LUAD tissues, the R
package ESTIMATE was used. Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE) is a tool that predicts tumor purity via the use
of gene signatures. The tool calculates three scores, including
stromal score, which predicts the presence of stromal cells in
tumor bulk; immune score, which infers the levels of immune
cells infiltration in tumor tissue; and estimate score, which
estimates tumor purity. Subsequently, the R package
July 2021 | Volume 12 | Article 677169
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MCPcounter was used to develop a more detailed idea of the level
of immune cell infiltration. Microenvironment Cell Populations-
counter (MCPcounter) is a quantification method that
determines the relative abundance of an immune cell in
heterogeneous tissues. This method uses marker genes
optimized for interrogating microarray data (19). In order to
predict the response to immune checkpoint blockade, Tumor
Immune Dysfunction and Exclusion (TIDE) score was
employed. TIDE is a computational method used to model two
primary mechanisms of tumor immune evasion. These
mechanisms are: the induction of T cell dysfunction in tumors
with high infiltration of cytotoxic T lymphocytes (CTL) and the
prevention of T cell infiltration in tumors with low CTL level (20,
21). Using this framework and RNA-Seq tumor expression
profiles, TIDE can predict the outcomes of non-small cell lung
cancer (NSCLC) patients treated with first-line anti-PD1 or anti-
CTLA4 more accurately than other biomarkers such as PD-L1
levels and mutational load.

Statistical Analysis
Chi-squared and Fisher’s exact tests were used to investigate the
significance of the correlation of ERO1L expression with
clinicopathological features in LUAD patients. Analysis was
performed using SPSS (version 23.0). ANOVA was used to
identify the ERO1L expression levels in different datasets (22).
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The correlation of gene expression was evaluated using
Spearman’s correlation coefficient (23). A p value <0.05 was
considered statistically significant.
RESULTS

Quantification of ERO1L mRNA Expression
in Pan-Cancer
In order to determine the mRNA expression profile of ERO1L in
pan-cancer, expression levels of ERO1L in the Oncomine
database were analyzed. Comparisons of mRNA expression
levels of ERO1L in pan-cancers versus normal tissue identified
nine types of cancer in which ERO1L mRNA expression levels
were elevated. These types of cancer included bladder, brain,
central nervous system, colorectal, gastric, kidney, lung,
lymphoma, ovarian, and pancreatic cancer. In addition, three
types of cancer in which ERO1L mRNA expression levels were
diminished were identified. These types of cancer included
esophageal cancer, head and neck cancer, and leukemia
(Figure 1A). What’s more, lung cancer was found to be
associated with a significantly higher expression level of ERO1L
in comparison to normal tissue. The expression levels of ERO1L
were increased in seven datasets while no dataset possessed
decreased levels of ERO1L.
A B
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FIGURE 1 | ERO1L expression levels in pan-cancer and LUAD. (A) Expression levels of ERO1L mRNA in pan-cancer, compared with normal tissues in the
Oncomine database. The number in each cell denotes the number of datasets. (B) Expression levels of ERO1L mRNA in pan-cancer, compared with normal tissue
from the TCGA database. (C) Expression levels of ERO1L mRNA in LUAD across four GEO datasets. (D-G) Expression levels of ERO1L protein in four patients with
LUAD from the HPA database. Scale bar: 50 µm. *p < 0.05; **p < 0.01; ***p < 0.001.
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To further investigate the mRNA expression levels of ERO1L
in pan-cancers, RNA-sequencing data from The Cancer Genome
Atlas (TCGA) program was analyzed. Interestingly, it was
discovered that ERO1L mRNA expression levels were
somewhat increased in pan-cancers in comparison to normal
tissues (Figure 1B). This finding is consistent with our analysis
of data from the Oncomine database, which revealed
significantly elevated expression levels of ERO1L in lung
adenocarcinoma (LUAD; p <0.001) and in lung squamous cell
carcinoma (LUSC; p <0.001).

Expression Profiles of ERO1L mRNA and
Protein in LUAD
In order to study the mRNA expression levels of ERO1L in
LUAD, further analysis was performed on datasets from the
Gene Expression Omnibus (GEO) database. In this analysis, four
datasets (GSE7670, GSE31210, GSE32863, and GSE19188)
comprising a total of 526 samples were included. This included
356 tumoral and 170 paired normal biopsies (Table S1). After
normalizing the expression profile, it was identified that ERO1L
mRNA expression levels in LUAD was significantly elevated in
comparison to normal tissues. This was observed in all of the
datasets analyzed. Interestingly, expression fold changes ranged
from 2.8 to 4.1 times (Figures 1C and S1A). In addition, the
mRNA expression of ERO1L in LUAD was investigated using
the TCGA program. Similarly, significantly elevated expression
levels of ERO1L mRNA were observed in LUAD in comparison
to normal tissues. This was observed when the analysis was
performed using both TCGA program and the Genotype-Tissue
Expression (GTEx) program (Figure S1B).

These elevated ERO1L mRNA expression levels were
confirmed in LUAD. As a logical next step, the protein
expressions of ERO1L in LUAD were then investigated. Analysis
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using The Human Protein Atlas (HPA) program revealed that
ERO1L was positively detected via immunohistochemistry (IHC)
staining in patients with LUAD. Eleven patients with LUAD were
identified in the HPA database, all of these patients possessed
positive ERO1L protein expression (Figures 1D–G). Out of these
patients, the intensity of IHC staining is as follows: three patients
were associated with strong intensity, six with moderate, and two
with weak intensities of IHC staining (Table S2).
Overexpression of ERO1L Is Associated
With a Poorer Prognosis in LUAD
In order to study the correlation between ERO1L expression and
prognosis in LUAD patients, six cohorts of patients were
obtained from the PrognoScan database (Table S3). Via the
analysis of hazard ratios (HR) and 95% confidence intervals (CI),
four cohorts of LUAD patients (HLM, Nagoya, UM, and
NCCRI) with high expression of ERO1L were identified. This
high expression of ERO1L was associated with worsened
prognoses in these patients as measured by overall survival
(OS) and recurrent-free survival (RFS). Similarly, analysis was
performed on survival data from the Kaplan-Meier plotter
database. This is based on the Affymetrix microarrays with
probe ID 218498_s_at for the ERO1L gene. These results
showed consistently that overexpression of ERO1L was
associated with worse prognoses in patients with LUAD in
terms of OS (HR: 1.52, 95% CI: 1.27-1.82; Figure 2A) and RFS
(HR: 1.93, 95% CI: 1.47-2.53; Figure 2B).

The following hypothesis was proposed: ERO1L is a potential
biomarker in patients with LUAD. To investigate this hypothesis,
survival analysis was applied to the RNA-sequencing data obtained
from the TCGA program. This analysis revealed that there was a
significant correlation between ERO1L overexpression, shorter
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FIGURE 2 | Overexpression of ERO1L predicts a poorer prognosis in LUAD. (A, B) Survival analysis comparing low and high expression levels of ERO1L in the
Kaplan-Meier plotter database. Overexpression of ERO1L was correlated with significantly poorer overall survival (A) and relapse-free survival (B). Overexpression
of ERO1L was correlated with significantly poorer overall survival (C) and disease-free survival (D). (E) Association between the expression of ERO1L and
clinicopathological characteristics in patients with LUAD. (F) Fluorescence images of ERO1L-overexpressed organoids show an increase in the number of chimeric
organoids over passaging. (G) Quantification of ERO1L upregulated organoids relative to the average number of organoid spheres in four random fields. **p < 0.01
July 2021 | Volume 12 | Article 677169

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. ERO1L Shapes the Immune-Suppressive Microenvironment
overall survival (HR: 2.20, 95% CI: 1.71-2.56; Figure 2C) and
disease-free survival (HR: 1.43, 95% CI: 1.10-1.79; Figure 2D).
Interestingly, via correlation andmultiple linear regressionanalysis,
it was found that the expression level of ERO1L correlated with
specific clinicopathological characteristics in LUAD patients
(Figure 2E). As shown in Table 1, ERO1L overexpression was
significantly correlated with tumor recurrence, pathologic N
stage, primary treatment outcome, tumor histology, and
tumor stage.

Furthermore, we applied an organoid model to study the
biological function of ERO1L. We designed a protocol for
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organoid infection through dissociating organoid spheres into
single cells and then co-culturing with virus particles. By
introducing cDNA encoding ERO1L (labeled with mCherry)
into organoids (labeled with eGFP), we obtained ERO1L-
overexpressed organoids labeled in different colors. Organoids
would turn red when transduced with cDNA, indicating the
overexpression of ERO1L (Figure 2F). Using this, we detected
infected organoids and calculated the ratios of chimeric
organoids from passage 1 to 4. The initial percentage of
chimeric organoids was about 16%, and it gradually increased
to 75% after passaging three times (Figure 2F). Besides,
TABLE 1 | Correlation between ERO1L and clinicopathological characteristics in patients with lung adenocarcinoma.

Clinicopathological Characteristics ERO1L Expression p-value

Low High

Age (year) 65.13 ± 10.10 63.86 ± 10.74 0.262
Smoking status
Years smoked 31.65 ± 13.23 28.31 ± 12.71 0.168
Cigarettes/day 2.23 ± 1.51 2.19 ± 1.34 0.855

Tumor dimension
Intermediate dimension 0.79 ± 0.33 0.80 ± 0.33 0.832
Longest dimension 1.24 ± 0.54 1.22 ± 0.61 0.791
Shortest dimension 0.39 ± 0.18 0.38 ± 0.15 0.593

Tumor recurrence 91 (28.4%) 40 (43.0%) 0.008
Tumor stage 0.026
Stage I 211 (59.2%) 49 (45.8%)
Stage II 79 (22.1%) 32 (29.9%)
Stage III 51 (14.3%) 22 (20.6%)
Stage IV 16 (4.4%) 4 (3.7%)

T stage 0.574
T1 131 (36.7%) 32 (29.9%)
T2 183 (51.3%) 61 (57.0%)
T3 31 (8.7%) 9 (8.4%)
T4 12 (3.4%) 5 (4.7%)

N stage 0.020
N0 248 (69.3%) 60 (55.6%)
N1 66 (18.4%) 27 (25.0%)
N2 44 (12.3%) 20 (18.5%)
N3 0 (0.0%) 1 (0.9%)

M stage 0.746
M0 227 (93.8%) 73 (94.8%)
M1 15 (6.2%) 4 (5.2%)

Primary treatment outcome 0.040
Progressive disease 44 (15.7%) 22 (28.6%)
Stable disease 27 (9.6%) 4 (5.2%)
Partial remission 4 (1.4%) 0 (0.0%)
Complete remission 205 (73.2%) 51 (66.2%)

Tumor histology 0.028
Adenocarcinoma 203 (56.5%) 76 (70.4%)
Adenocarcinoma with mixed subtypes 80 (22.3%) 15 (13.9%)
Acinar cell carcinoma 17 (4.7%) 3 (2.8%)
Bronchiolo-alveolar carcinoma, non-mucinous 17 (4.7%) 1 (0.9%)
Papillary adenocarcinoma 16 (4.5%) 4 (3.7%)
Mucinous adenocarcinoma 15 (4.2%) 2 (1.9%)
Bronchiolo-alveolar carcinoma, mucinous 4 (1.1%) 1 (0.9%)
Micropapillary carcinoma 2 (0.6%) 0 (0.0%)
Bronchiolo-alveolar adenocarcinoma 2 (0.6%) 1 (0.9%)
Solid carcinoma 2 (0.6%) 4 (3.7%)
Signet ring cell carcinoma 1 (0.3%) 0 (0.0%)
Clear cell adenocarcinoma 0 (0.0%) 1 (0.9%)

Prior malignancy 61 (17.0%) 15 (13.9%) 0.444
Synchronous malignancy 7 (2.2%) 2 (2.0%) 0.943
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the doubling time of organoid cells decreased from five to six
days at passage 1 to two to two and a half days at passage 4.
Transduction of cDNA of ERO1L in organoids was also
performed. One thousand cells in each group were seeded and
cultured for fourteen days (passage 2). Sphere formation was
enhanced from cells overexpressing ERO1L compared with the
control (Figure 2G). Hence, we concluded that organoids with
ERO1L overexpression gradually gained an advantage in
development, which could be extended over time.

Regulation of ERO1L mRNA Level via
Promoter Methylation
In order to elucidate the mechanism underlying ERO1L
expression, promoter methylation levels of ERO1L were
investigated in 503 samples. This was performed via analysis of
methylation profiles (Illumina Human Methylation 450) from
the TCGA program (Table S4). A significant decrease in the
methylation level of the ERO1L was identified in the promoter
region in LUAD tissues in comparison to normal tissues
(Figure 3A). Tumor stage subgroup analysis revealed that
levels of ERO1L promoter methylation were most significantly
decreased in stage IV patients (Figure 3B). In addition,
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correlation analysis revealed a significant negative correlation
between mRNA levels and methylation levels of ERO1L
(Spearman’s r: -0.25, p <0.001). This confirmed that ERO1L
mRNA expression was regulated by promoter methylation in
LUAD patients (Figure S1C).

In order to analyze the clinical outcomes associated with
methylation and expression of ERO1L, datasets of 468 patients in
the TCGA database were analyzed. These datasets all contained
data corresponding to methylation, expression, and survival
profiles. Path analysis via a Sankey diagram was performed.
This quantified and visualized the transitions with various lines
and widths, and described paths and patterns across tumor
stages, promoter methylation levels, ERO1L mRNA expression,
and survival status (Figure 3C). As a result, it was determined
that hypomethylation of the ERO1L promoter potentially
induced overexpression of ERO1L mRNA and finally led to
poor prognoses in individuals with LUAD. This pattern was
observed more significantly in patients with advanced stages of
cancer (Figure S2A). This data is consistent with the survival
analysis based on ERO1L expression. This provides compelling
evidence that ERO1L is associated with poor prognoses in
patients with LUAD.
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FIGURE 3 | Promoter methylation of ERO1L and functional annotation of the ERO1L co-expression module. (A, B) Analysis of ERO1L methylation in the TCGA
database. Promoter methylation levels of ERO1L in tumor and normal tissues (A) according to tumor stage (B). (C) Path analysis in patients with LUAD across tumor
stage, promoter methylation, mRNA expression, and survival status. The line represents the group; the width of the lines represents the number of patients
transferred from one state to another (n=468). (D) PPI networks of the ERO1L co-expression module. (E, F) Functional annotation and pathway enrichment of the
ERO1L co-expression module. Top 10 terms of GO annotation (E) and KEGG pathway (F). *p < 0.05.
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Co-Expression Module of ERO1L in LUAD
In order to investigate proteins that were in close relationship to
ERO1L, a co-expression analysis of expression data from the
TCGA program and Oncomine database was conducted. Via
overlapping co-expression results and module mining, 29
proteins were found to be closely related to ERO1L (Figure
S2B). This included ERO1LB, GPX7, GPX8, P4HB, INS, PDIA3,
PDIA4, PDIA6, TXNDC5, and ERP44 among others. (Table S5).
Based on these results, the protein-protein interaction (PPI)
network of the ERO1L co-expression module was created
(Figure 3D, Table S6). Furthermore, the biological functions
of the module were investigated by Gene Otology (GO) analysis
(Figure 3E) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis (Figure 3F). Interestingly, it was found that
these genes showed strong associations with significant processes
such as response to endoplasmic reticulum stress, response to
reactive oxygen species, oxidation-reduction process, and
glycolytic process. Integrally, this module was shown to be
closely related to hypoxia responses as well as the HIF-1
signaling pathway. These might also play a role in shaping
the TIME.

Correlations Between ERO1L Expression
and Immune Cell Markers
To first understand the relationship between ERO1L and
infiltrating immune cells, a correlation analysis across ERO1L
and markers for immune cells was performed. These biomarkers
are widely used for the purpose of immune cell characterization
(Table 2). ERO1L expression showed strong correlations with
markers for infiltrating lymphocytes including regulatory T cells
(Tregs), exhausted T cells, macrophages, tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), and cancer-associated fibroblasts (CAFs), thus
indicating infiltrations of immune-suppressive cells are
mediated by ERO1L signaling (Figure 4A). Interestingly,
ERO1L expression was shown to be positively correlated with
the phenotype of M2-type macrophages while negatively
correlated with the phenotype of M1-type macrophages. This
implies that overexpression of ERO1L could indicate the
polarization of M1-type to M2-type macrophage (Figure 4B).

ERO1L Mediated Immune-Suppressive
Tumor Microenvironment Shaping
To confirm whether ERO1L expression impacts the TIME, the
coefficients of ERO1L expression and TIME infiltrations were
calculated in the Tumor IMune Estimation Resource 2.0 (TIMER
2.0) database. In relation to tumor-infiltrating lymphocytes, it
was found that immune-active cells including B cells
(Spearman’s r=-0.250, p <0.001), CD8+ T cells (Spearman’s
r=-0.299, p <0.001), and NK cells (Spearman’s r=-0.258,
p <0.001) correlated negatively with ERO1L expression. After
adjustments to account for tumor purity, immune-suppressive
cells CAFs (Spearman’s r=0.286, p <0.001) and MDSCs
(Spearman’s r=0.423, p <0.001) were shown to be positively
correlated with ERO1L expression (Figure 4C).
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As a positive correlation was observed between ERO1L and
CD4+ T cells (Spearman’s r=0.199, p <0.001), intrinsic CD4+ T
cell heterogeneity was further investigated via analysis of single-
cell sequencing data from dataset GSE99254. Dimensional
reduction analysis (t-SNE) applied to the expression data
showed that ERO1L was highly expressed in most CD4+ T cell
clusters. This was consistent with our previous findings
(Figure 4D). The clusters of CD4-CTLA4 (cluster C9) and
CD4-CXCL13 (cluster C7), representing suppressive Tregs and
exhausted T cells respectively, showed the highest ERO1L
expression levels. To further confirm ERO1L expression across
infiltrating cells in TIME, single-cell sequencing data from four
projects (GSE7670, GSE31210, GSE32863, and GSE19188) was
analyzed. Results showed that ERO1L expression closely
correlated with infiltrating cell levels including B cells, T cells,
NK cells, endothelial cells, macrophages, monocytes, MDSCs,
and CAFs (Figure 4E, Figure S2C). ERO1L was more closely
associated with the phenotype of a M2 macrophage than a M1
macrophage, which was consistent with our previous findings.

Of note, MDSCs are known to play a key role in
immunosuppression in various cancer types. In recent years,
increasing evidence has highlighted MDSCs as a major driver
behind the immunosuppressive tumor microenvironment. As C/
EBPb and c-Rel have been implicated in MDSC expansion, C/
EBPb and c-Rel expressions were examined. Consistent with
previous findings, it was identified that both C/EBPb and c-Rel
were significantly positively correlated with ERO1L expression
(C/EBPb: Spearman’s r=0.144, p <0.001; c-Rel: Spearman’s
r=0.201, p <0.001). This supports the notion that ERO1L
signaling potentially results in the accumulation of functional
MDSCs (Figure S2D). Based on the strong correlation observed
between ERO1L and MDSCs, a survival analysis was performed
by constructing a Cox proportional hazards model according to
expression profiles of ERO1L and MDSC (Figure 4F). Results
revealed that patients exhibiting low levels of both ERO1L and
MDSCs experienced a significantly better OS in comparison to
those with simultaneously high levels of ERO1L and MDSCs
(HR:1.55, 95% CI: 1.12-1.84, log-rank p <0.001). This indicates
that the combination of high levels of ERO1L and MDSC
expression can predict poor prognoses in patients with LUAD.
In tumors where the high expression level of ERO1L was a result
of copy number variations including gain and amplification
compared with deletion or normal diploid, significant
differences were also noted. In specific cases there a decrease in
CD8+ T cells and an increase of CAFs and macrophages (Figures
S2E, F). Taken together, these results indicate that ERO1L
overexpression is closely related to infiltration of immune-
suppressive cells and the deficiency of immune-active cells,
thus shaping an immunosuppressive TIME.

ERO1L Overexpression Can Potentially
Predict Immunotherapy Resistance
Based on the notion that ERO1L overexpression shaped an
immune-suppressive TIME, it was hypothesized that high
levels of ERO1L might also lead to immunotherapy resistance.
Given that the MC-38 cell line was sensitive to ICI treatment
July 2021 | Volume 12 | Article 677169
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while the LLC and A549 cell lines were relatively insensitive to
ICI treatment, we first performed Western blotting to examine
the expression levels of ERO1L protein across these cell lines.
Results showed that ERO1L protein was overexpressed in the
LLC and A549 cell lines while downregulated in the MC-38 cell
line (Figure S3A), which was consistent with our hypothesis that
overexpression of ERO1L might be associated with resistance to
ICI treatment.

To further investigate this hypothesis, the stromal and
immune cell infiltration levels were analyzed within ERO1Llow
Frontiers in Immunology | www.frontiersin.org 956
and ERO1Lhigh samples using ESTIMATE software. Low
expression of ERO1L was accompanied with a higher
abundance of stromal cells and immune cells in comparison to
overexpression of ERO1L, which was associated with a
significantly higher Estimate score. This suggested that an
immune-inflamed TIME that may well be susceptible to
immunotherapy (Figure 5A). To explore this issue in more
detail, the Tumor Immune Dysfunction and Exclusion (TIDE)
score was used. This score is a computational framework
designed to evaluate the potential of tumor immune escape
TABLE 2 | Correlations between ERO1L and gene markers of infiltrating immune cells.

Cell Type Gene Marker Without Adjusted Purity Adjusted

Correlation p-value Correlation p-value

B cell CD19 -0.065 0.140 -0.140 **
CD20 -0.119 ** -0.147 **
CD79A -0.023 0.606 -0.083 0.067
CD79B -0.103 * -0.182 ***
MS4A1 -0.108 * -0.183 ***

CD8+ T cell CD8A 0.098 0.262 0.063 0.163
CD8B 0.046 0.296 0.014 0.761

Th1 IL-2 -0.016 ** -0.148 ***
Th2 IL-4 -0.136 ** -0.138 **

IL-5 -0.012 0.788 -0.001 0.981
Treg FOXP3 0.123 ** 0.093 *

CCR8 0.175 *** 0.168 ***
CD25 0.312 *** 0.313 ***
IL7R 0.140 ** 0.114 *

T cell exhausted PD-1 0.133 ** 0.100 *
CTL4 0.107 * 0.075 0.097
TIM3 0.194 *** 0.173 ***
LAG3 0.145 *** 0.123 **

DC CD1C -0.235 *** -0.269 ***
CD141 -0.065 0.143 -0.081 0.073

Macrophage CD68 0.241 *** 0.224 ***
CD11b 0.152 *** 0.137 **

M1 NOS2 0.070 0.112 0.043 0.345
ROS -0.096 * -0.117 **
IL-12B -0.179 *** -0.213 ***
HLA-DR -0.069 0.117 -0.108 *

M2 ARG1 0.018 0.676 0.020 0.664
MRC1 0.046 0.295 0.027 0.552
CD68 0.241 *** 0.224 ***
CD163 0.256 *** 0.248 ***
CD204 0.181 *** 0.156 ***

TAM HLA-G 0.154 *** 0.131 **
CD80 0.130 ** 0.109 *
CD86 0.193 *** 0.178 ***
CD11b 0.152 *** 0.137 **

Monocyte CD14 0.183 *** 0.173 ***
CD16a 0.315 *** 0.308 ***
CD16b 0.245 *** 0.246 ***

MDSC CD11b 0.152 *** 0.137 **
CD33 0.021 0.639 -0.005 0.905

PMN-MDSC CD15 0.267 *** 0.259 ***
M-MDSC CD14 0.183 *** 0.173 ***
CAF FSP1 0.308 *** 0.318 ***

FAP 0.314 *** 0.314 ***
PDGFRa 0.158 *** 0.144 **
PDGFRb 0.086 0.052 0.058 0.200
aSMA 0.105 * 0.081 0.072
J
uly 2021 | Volume 12 | Article
TAM, tumor associated macrophage; MDSC, myeloid-derived suppressor cell; PMN-MDSC, polymorphonuclear myeloid-derived suppressor cell; M-MDSC, monocytic myeloid-derived
suppressor cell; CAF, cancer-associated fibroblast; Cor., R value of Spearman’s correlation. *p < 0.05; **p < 0.01; ***p < 0.001.
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and is a surrogate biomarker to predict response to
immunotherapy. TIDE scores showed that the ERO1Llow group
had a significantly higher response rate (86.0%) in comparison to
the ERO1Lhigh group (31.0%) (Figures 5B, C). It was also
observed that the ERO1Lhigh group scored high in MDSCs
(p <0.001) and immune dysfunction (p <0.001), while scored
low in CD8+ T cells (p <0.001) in comparison with the ERO1Llow

group (Figure 5D). To validate these results, the MCP counter
was applied to quantify the different immune cell populations
within the two groups. In agreement with our results, ERO1L
overexpression scored low in NK cells (p <0.001), myeloid
dendritic cells (p <0.001), neutrophils (p <0.001), and
endothelial cells (p <0.001). ERO1L overexpression scored high
in B lineage (p =0.004), monocyte lineage (p =0.020), and
fibroblast (p <0.001; Figure S3B). These results suggest that
ERO1L is in fact a biomarker with potential applications in the
prediction of immunotherapy response in patients with LUAD.

Mechanisms Underpinning an ERO1L-
Induced Immune-Suppressive Tumor
Microenvironment
Gene set enrichment analysis (GSEA) was performed in order
determine whether the transcriptional signature produced by
ERO1L overexpression was significantly related to other
previously studied conditions. By using hallmark gene sets and
all curated gene sets as references, GSEA was performed between
the ERO1Llow group and ERO1Lhigh group in patients from the
Frontiers in Immunology | www.frontiersin.org 1057
TCGA cohort. The global expression changes produced in LUAD
patients were positively correlated with the signatures of hypoxia
(NES =2.02; FDR q-value =0.0) and VEGF (NES =2.27; FDR q-
value =0.0; Figure 6A). Moreover, GSEA also revealed that the
gene signatures of the JAK-STAT (NES =1.65, FDR q-value =0.0)
and NF-kB (NES =2.03, FDR q-value =0.0; Figure 6B) signaling
pathways were commonly enriched when ERO1L signaling was
upregulated. The expression levels of the components involved in
the two pathways were examined, including JAK1, JAK2, STAT1,
STAT2, STAT3, NF-kB1, NF-kB2, RelA, RelB, and c-Rel.
Consistent with previous findings, there were significant
correlations observed between ERO1L overexpression and the
aforementioned components (Figure 6C).

As the JAK-STAT and NF-kB pathways have previously
been reported to play a role in increasing the secretion of
immune-suppressive factors, we further explored whether
ERO1L expression could affect the pattern of cytokines and
chemokines secreted by tumor cells and infiltrating immune
cells, which play a role in shaping TIME. Via TCGA expression
profiling analysis, it was identified that cytokines and
chemokines secreted by tumors (such as CSF-1, IL-1b, and IL-
6), which have been reported to recruit immune-suppressive cells
including MDSCs, TAMs, and CAFs, were positively correlated
with overexpression of ERO1L (Figure 6D). Moreover, it was
also identified that immune-suppressive cytokines and
chemokines (including IL-10, TGF-b, MMP2, MMP9, and
VEGF), which are known to be mostly secreted by immune-
A B

D E F

C

FIGURE 4 | Overexpression of ERO1L shapes an immune-suppressive tumor microenvironment. (A) Correlations between ERO1L and the immune cell markers.
(B) ERO1L expression correlates with macrophages polarization. (C) ERO1L expression was significantly negatively correlated with infiltrating levels of B cells, CD8+
T cells, and NK cells and significantly positively correlated with infiltrating levels of CD4+ T cells, macrophages, CAFs, and MDSCs. (D) The intrinsic heterogeneity of
CD4+ T cells according to ERO1L expression as determined via single-cell sequencing data. Each dot corresponds to a single cell and is colored according to the
cell cluster. The color density indicates the expression of ERO1L. (E) Summary of four single-cell sequencing datasets according to correlations with ERO1L. Different
datasets are labeled in different colors. (F) The Cox proportional hazards model is constructed according to expressions of ERO1L and MDSC. *p < 0.05; **p < 0.01;
***p < 0.001.
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suppressive cells, were simultaneously in a positive correlation
with overexpression of ERO1L. Taken together, these data
suggest a potential mechanism for ERO1L-associated immune-
suppressive TIME (Figure 6E).
DISCUSSION

Here, we report a study depicting the biological landscape of
ERO1L in LUAD. ERO1L expression is significantly higher in
lung adenocarcinomas in comparison to adjacent normal tissues
and is closely related to the prognoses of patients with LUAD.
High expression levels of ERO1L are associated with a poor
prognosis of patients with LUAD. Previous studies have reported
that the overexpression of ERO1L promoted proliferation,
migration, and invasion in pancreatic cancer as well as breast
cancer by activating the Wnt/catenin pathway. In this study,
overexpression of ERO1L was closely associated with infiltrating
of immune-suppressive cells and deficiencies in immune-active
cells. Therefore, we propose that ERO1L functions as an
oncogenic factor by inducing an immune-suppressive TIME.

Although ERO1L is relatively poorly studied in immunology,
molecular studies have investigated the biological functions of
the ERO1L protein. This protein is an oxidase in the endoplasmic
Frontiers in Immunology | www.frontiersin.org 1158
reticulum which regulates hypoxia-induced oxidative protein
folding. Its expression can be induced by hypoxia, which
is a common feature of cancers contributing to tumor
metastasis, angiogenesis, expansion of tumor-initiating cell,
chemoresistance, and genomic instability via the regulation of
hypoxia-inducible factors such as HIF-1a and HIF-2a. Taking
together, these results indicate that ERO1L may potentially
regulate tumor progression through HIF signaling pathways. In
this study, we found that the co-expression module of ERO1L
took part in oxidation-reduction, glycolytic, and hypoxia. This
finding is consistent with previous data. Moreover, hypoxia has
also been shown to be an important barrier to effective cancer
treatment. We propose that overexpression of ERO1L is
indicative of a hypoxic TIME, which could potentially confer
poor prognoses in patients with LUAD.

ERO1L overexpression is closely associated with the
infiltration of immune-suppressive cells including MDSCs,
TAMs, and CAFs. This leads to an immunosuppressive TIME.
MDSCs are derived from bone marrow and have an inhibitory
effect on the immune system. They play an important role in
tumor immunosuppression, tumor angiogenesis, drug resistance,
and tumor metastasis (24). What’s more, MDSCs can produce
NO and ROS which can nitrate chemokines and block entry of
CD8+ T cells to tumors (25). MDSCs have been reported to
A

B

D

C

FIGURE 5 | Overexpression of ERO1L predicts resistance to immunotherapy. (A) Boxplot showing stromal, immune, and Estimate scores within ERO1Lhigh and
ERO1Llow groups. (B, C) Prediction of immunotherapy response using the TIDE computational framework. Other biomarkers for immunotherapy were also assessed.
These included: IFN-g, MSI signatures, PD-L1, MDSCs, CAFs, and TAM-M2. (D) Violin plot showing MDSCs, CD8+ T, and dysfunction scores within the ERO1Lhigh

and ERO1Llow groups. Groups are labeled in different colors according to their level of ERO1L expression.
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produce immune-suppressive cytokines including IL-10 and
TGF-b, which induce Tregs and affecting NK cells (26, 27).
Furthermore, MDSCs could eliminate the key nutrition factors
needed for T cell proliferation via the depletion of L-arginine
(28), sequestering L-cysteine (29), or reducing local tryptophan
levels due to the activity of indoleamine 2,3 dioxygenase (30).
What’s more, recent studies have demonstrated that MDSCs
were highly significantly associated with poor OS and PFS in
gastrointestinal cancer, hepatocellular carcinoma, lung cancer,
and multiple myeloma (31).

TAMs generally display as M2 phenotype macrophages which
are devoid of cytotoxic activity, produce growth factors for
cancer cells, and have immune-suppressive activity (32). TAMs
preferentially localize in the hypoxic areas of tumors, where they
promote the expression of the transcription factor HIF-1a. This
transcription factor induces the transcription of various elements
including VEGF, basic fibroblast growth factor, platelet-derived
growth factor, and prostaglandin E2, which is associated with
angiogenesis (33). TAMs have potential to produce enzymes and
proteases such as MMPs including MMP2 and MMP9 which
Frontiers in Immunology | www.frontiersin.org 1259
regulate the degradation of the extracellular matrix (ECM). ECM
disruption by TAMs facilitates tumor cell spreading and
metastasis (34). What’s more, TAMs also contribute to
immune-suppression in the TIME via inhibition of IL-12. On
the contrary, TAMs promote the secretion of IL-10 and TGF-b,
which block T cell proliferation, suppress cytotoxic T lymphocyte
(CTL) responses, and activate Tregs (35). Clinical studies have
demonstrated a strong association between poor survival and
increased macrophage density in thyroid, lung, and
hepatocellular cancers (36, 37). Similarly, our research proved
that in tumors with high expression levels of ERO1L are
positively associated with the secretion of cytokines and
enzymes such as HIF-1a, MMPs, IL-10, TGF-b, and VEGF.

Recently, immune checkpoint inhibitors have led to a
paradigm shift in treatment for patients with non-small cell
lung cancer (NSCLC). However, the efficacy of these treatments
is less than 50%. The clinical responses of ICI are reported to be
unfavorable because of the low tumor mutation burden, low PD-
L1 expression, and the noninflamed TIME. Based on the results
presented in this study, we hypothesized that activation of
ERO1L signaling could recruit immune-suppressive cells and
shape an immune-suppressive TIME and thus conferring
resistance to ICI treatment. We propose that ERO1L
overexpression is an effective biomarker for noninflamed
TIME. However, our conclusions were mainly summarized
based on the public datasets; further studies based on grafted
tumors and patients’ samples are highly needed.
CONCLUSION

In summary, our study provides clear insight into the potential
role of ERO1L in tumor immunology. Our study also suggests the
potential prognostic value of ERO1L in patients with LUAD. We
described that overexpression of ERO1L, indicates a hypoxic
environment and shapes an immune-suppressive TIME through
the recruitment of immune-suppressive cells and inhibition of
immune-active cells. High levels of ERO1L may be indicative of
resistance to immunotherapy. ERO1L was shown to associated
with cytokine and chemokine patterns in the TIME, which were
resulted from activations of JAK-STAT and NF-kB signaling
pathways. These findings suggest a potential immune-based anti-
tumor strategy via the inhibition of ERO1L to clear tumor
microenvironment infiltrates.
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In the past few decades, great progress has been made in the clinical application of
dendritic cell (DC) vaccines loaded with personalized neoantigens. Personalized
neoantigens are antigens arising from somatic mutations in cancers, with specificity to
each patient. DC vaccines work based on the fundamental characteristics of DCs, which
are professional antigen-presenting cells (APCs), responsible for the uptake, processing,
and presentation of antigens to T cells to activate immune responses. Neoantigens can
exert their antitumor effects only after they are taken up by APCs and presented to T cells.
In recent years, neoantigen-based personalized tumor therapeutic vaccines have proven
to be safe, immunogenic and feasible treatment strategies in patients with melanoma and
glioblastoma that provide new hope in the treatment of cancer patients and a new
approach to cure cancer. In addition, according to ClinicalTrials.gov, hundreds of
registered DC vaccine trials are either completed or ongoing worldwide, of which 9 are
in early phase I, 191 in phase I, 166 in phase II and 8 in phase III. Hundreds of clinical
studies on therapeutic tumor vaccines globally have proven that DC vaccines are stable,
reliable and very safe. However, in this process, many other factors still limit the
effectiveness of the vaccine. This review will focus on the current research progress on
personalized neoantigen-pulsed DC vaccines, their limitations and future research
directions of DC vaccines loaded with neoantigens. This review aims to provide a better
understanding of DCs biology and manipulation of activated DCs for DCs researchers to
produce the next generation of highly efficient cancer vaccines for patients.

Keywords: personalized neoantigen, DC vaccine, tumor, immunotherapy, clinical applications
INTRODUCTION

Malignant tumors are still an acute threat for people worldwide and the incidence and mortality
from cancer are still rapidly growing. GLOBOCAN showed an estimated 19.3 million new cases and
10 million cancer deaths worldwide in 2020; at the same time, an estimated 28.4 million new cancer
cases are projected to occur in 2040 (1). Therefore, it is still difficult to find proper and effective ways
to fight cancer.

After decades of effort, conventional methods and systems for treating cancer have been
developed, including surgery, radiotherapy and chemotherapy alone or in combination.
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Surgery is the preferred treatment for most tumors; however, it is
a traumatic and local treatment that easily leads to surgical
complications. Although radiotherapy is the most suitable
method for tumors in all parts of the body, the radiation dose
that the body can withstand is limited, and normal cells are also
damaged when tumor cells are destroyed. Although chemotherapy
is successful for some tumors, such as testicular tumors, it can
cause severe side effects, such as hair loss, anemia and organ
damage, reducing the patients’ quality of life (2, 3). Because of the
side effects of conventional treatments, cancer immunotherapy has
been developed as a therapeutic method with better tumor
targeting, safety, and a lower toxicity.

Cancer immunotherapy relies on the individual’s own
immune system to recognize and control cancer progression to
fight and cure cancer (4). At the same time, cancer immunotherapy
has been developed to enhance the antitumor response of the
immune system and reduce off-target effects and other serious side
effects of other conventional therapies (5). There are five main types
of cancer immunotherapy (6):

(i) Immune checkpoint inhibitors, in which the most extensive
strategies involve the use of programmed death 1/programmed
death ligand 1 blockade (PD1/PD-L1 blockade) and cytotoxic
T lymphocyte-associated antigen-4 inhibition (CTLA-4
inhibition). Immune checkpoints are immunosuppressive
pathways that regulate the immune response to maintain
tolerance and protect the surrounding tissues. This property
is used by tumor cells to escape the attack of immune cells, and
immune checkpoint inhibitors can inhibit immune checkpoint
activity and reactivate the immune response of T cells to the
tumor to achieve an antitumor effect (7).

(ii) Cytokines, which contain three main types (interleukins,
interferons, and granulocyte–macrophage colony-stimulating
factor (GM-CSF)) (8), are the first class of approved
immunotherapies for clinical use and have effects via
stimulating immune cells directly (6, 9).

(iii) T cells and natural killer (NK) cells, in which T cells include
engineered T cells and non-engineered T cells such as adoptive
tumor infiltrating lymphocyte (TIL) and cultivated T cells.
Engineered T cells contain chimeric antigen receptor T cells
(CAR-T) and T cell receptor T cells (TCR-T), and CAR-T cells
can trigger the death of tumor cells by recognizing the targeted
antigens on tumor cells (10), and the antitumor activity of
TCR-T cells is mainly stimulated by tumor-associated antigens
presented by major histocompatibility complexes (MHCs)
(11). NK cells also include engineered NK cells such as CAR-
NK cells and many trials are under way.

(iv) Agonistic antibodies, which can specifically bind to receptors
on the surface of T cells, triggering intracellular signaling
pathways and inducing T cells to function as effectors to kill
tumor cells (12).

(v) Cancer vaccines include those based on tumor cell lysates,
nucleic acids, and peptides, which contain or can encode
neoantigens (13). Neoantigen vaccines are an attractive type
of cancer vaccine. In addition to being used separately as
vaccines, DNA, RNA, peptide and tumor lysate can also be
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loaded onto DCs (Figure 1). Although DNA can be easily
manipulated by molecular engineering, the successful use of
the first generation of drug delivery platforms in humans is
limited, and they tend to rely more on electroporation and it
is also limited by its potential to integrate into the genome
(14). On the other hand, there is no potential risk for RNA to
integrate into the genome; however, it is still affected by
RNase degradation although modification may prolong its
half-life (14). In addition, synthetic long peptide (SLP) is easy
to store, low toxicity and appropriate adjuvants are required
(14). Therefore, when working with DC vaccines, the choice
needs to be made between either loading with peptides, RNA,
DNA or tumor lysate. Furthermore, DCs pulsed with
neoantigens ex vivo to treat patients can effectively induce
anti-tumor immune responses induced by activated T cells
(13). Hundreds of research and clinical trials have been
conducted or are underway since the first DC vaccine,
sipuleucel-T, was approved for clinical use in 2010 (15).
Although the safety of DC vaccines has been demonstrated in
several clinical trials, several clinical trials have still failed due to
the lack of clear efficacy (16, 17). The emergence of personalized
neoantigens that were isolated, identified and selected from the
patients’ tumors and their entry into the body after loading on
DCs ex vivo can promote the efficient presentation of neoantigens
by DCs to T cells to exert an anti-tumor role (16) (Figure 2). In
this review, we summarize the progress and clinical application of
personalized neoantigen-pulsed DC cancer vaccines.
PERSONALIZED NEOANTIGENS

Neoantigens are a series of peptides with tumor specificity that are
present in proliferating tumor cells but not in normal tissues.
Therefore, they are different from tumor-associated antigens
(TAAs) mostly present in both normal and tumor tissues, which
also include viral antigens (18, 19). At the same time, they are
derived from viral proteins such as open reading frame-derived
epitopes in the viral genome and tumor somatic nonsynonymous
genetic alterations, including genomic variant level such as single
nucleotide variants (SNVs), insertion-deletions, gene fusion, frame
shift mutation and transcriptomic and proteomic variants (20–
23). The change in peptide sequence and its spatial structure can
result in a stronger affinity for major histocompatibility complexes
(MHCs), and therefore, making it more likely to be recognized by
T cells to induce antitumor immune responses (24). In general,
neoantigens are divided into two subgroups: shared neoantigens
and personalized neoantigens (25). Shared neoantigens are
common in some tumor types and can be used broadly to treat
patients who have the same tumor type and express these antigens;
however, there are antigenic differences between different patients
and different tumors, limiting the role of shared antigens (26, 27).
Unlike shared neoantigens, personalized neoantigens are a class of
antigens specific to individual patients and tumors. Since tumors
of the same cancer type can vary greatly, personalized treatment
with personalized neoantigens is a better way to ensure a response
by each cancer type (25).
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A series of completed or ongoing clinical trials on personalized
tumor neoantigens is listed in Table 1 according to the data on
ClinicalTrials.gov. In the trial conducted by Ott (28), they enrolled
10 patients, 8 of whom displayed a high degree of melanoma-
Frontiers in Oncology | www.frontiersin.org 364
related mutations as expected, and then 13-20 immunizing long
peptides were synthesized for each patient. Finally, 6 patients
completed the full series vaccinations. No disease recurrence was
observed in 4 patients during a median follow-up period of 25
FIGURE 2 | Schematic diagram of personalized neoantigen-pulsed DC vaccines. Tumor tissue and normal tissue of patients were sequenced. The epitope library is
processed by bioinformatics methods, from which immunogenic neoantigens are screened and synthesized. The DC vaccines loaded with neoantigens are prepared
by using DCs extracted from the peripheral blood of patients and injected into patients.
FIGURE 1 | Major types of neoantigen vaccines in clinical research. Neoantigen vaccines mainly include nucleic acid vaccines consisting of DNA and RNA vaccines,
synthetic long peptide vaccines and tumor lysate vaccines. In addition to being used separately as vaccines, these neoantigens formulations can also be loaded onto
DCs. Therefore, when working with DC vaccines, still the choice needs to be made between loading with either peptides, RNA, DNA or tumor lysate.
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months (range 20-32 months) after vaccination. Two other
patients suffered disease recurrence but also had a complete
response after anti-PD1 therapy, which still shows that
personalized neoantigen-based vaccines are safe and feasible and
could be used in the clinic.
Identification of Personalized Neoantigens
The identification of personalized neoantigens is an important
part of tumor immunity therapy to allow personalized neoantigens
to have an effect in each patient. The common approach is to
compare DNA sequences in tumor tissues with those in normal
tissues using high-throughput sequencing technologies (next-
generation sequencing, NGS), which is rapid and efficient (29).
However, many of the detected DNAmutations are not expressed
as they are noncoding mutations or nonsense mutations, which
poses new challenges to identify neoantigens (29). With the
progress of sequencing technology, a more efficient and feasible
sequencing technology with a lower false-negative rate was born:
whole-exome sequencing technology (the exome is the protein-
encoding part of the genome), which is currently widely used to
identify personalized neoantigens (30). The mutant amino acid
sequence that can be expressed needs to be translated and
processed into short peptide fragments. These also need to be
expressed on the cell surface in complex with MHC molecules to
be recognized successfully by the immune system (19). Therefore,
there are several crucial factors that determine whether a mutation
can produce an effective personalized neoantigen: (i) whether the
mutated DNA sequence can eventually be expressed and
processed into short peptide fragments at the protein level;
(ii) the ability of peptides to be presented and their affinity to
MHC molecules; (iii) the affinity of the complex formed by the
mutant peptides and MHC to TCR (31).

Because of lots of work involved in comparing high-
throughput sequencing data, the development of computer
simulation experiments or tools has effectively promoted the
identification of personalized tumor neoantigens. On the one
hand, for different neoantigen sources, there are corresponding
computational tools. For single nucleotide variants (SNVs), small
insertions and deletions (INDELs), or gene fusion at the genomic
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variant level, pVAC-Seq, TSNAD, CloudNeo, Tlminer, MuPeXI,
Neopepsee, and INTEGRATE-Neo are usually utilized (32–37).
For alternative transcript splicing at the transcriptomic variant
level, NeoantigenR is widely used (38). On the other hand, these
mutations need to be ranked according to their affinity with
individual autologous MHC molecules; for this, the tools
NetMHC, SMMPMBEC and SMM, among others, are used
(39–41). Of the MHC molecule, MHC-I is directly related to
neoantigen presentation on tumor cells, and the methods of
using the MHC-I molecule to predict neoantigens are relatively
mature at present, while CD4+ T cells recognize predicted
neoantigens presented by MHC-II molecules. Compared to
MHC-I molecules, where the peptide-binding groove is closed
at both ends, the binding groove of MHC-II molecules is open at
both ends and can deliver longer peptides (11-20 amino acids)
(42). However, there is currently a lack of robust and rich
databases and effective tools for assessing the interactions
between MHC-II molecules and peptides compared with what
is available for MHC-I (42). The further development of
bioinformatics resources and the use of other cross-disciplinary
methods are expected to improve neoantigen identification.

Personalized Neoantigens Manufacturing
Personalized neoantigens are a unique class of neoantigens
specifically prepared for each patient; therefore, a rapid, simple,
and mature system for the synthesis of personalized neoantigens is
needed, as this is the first step of manufacturing neoantigens (43).
In addition, the formulation of neoantigens such as buffering
agents and surfactants are another crucial factor due to the
different compositions and properties of each personalized
neoantigen and these other components play important roles in
ensuring the solubility and stability of neoantigens (44). The next
step is purification. Many systems are used to purify neoantigens
such as RP-HPLC and flash-like systems.With the development of
new technologies, an increasing number of manual operations
have been replaced by automated processes such as auto-sampling
systems and ultra-performance liquid chromatography (UPLC)
(45), saving time while enhancing the productivity and quality.
The last step is lyophilization to make the newly prepared
neoantigens easier to transport and store until used. Similarly, as
TABLE 1 | The clinical application of personalized neoantigen vaccines.

Tumor types Phase Status Participants NCT number

Melanoma Phase I Completed 20 NCT01970358
Pancreatic Cancer Phase I Recruiting 60 NCT03558945
Kidney Cancer Phase I Recruiting 19 NCT02950766
Bladder Cancer Phase I Recruiting 15 NCT03359239
Pancreatic Cancer Phase I Recruiting 20 NCT04161755
Non-Small-Cell Lung cancer Phase I Recruiting 20 NCT04487093
Glioblastoma Phase I Recruiting 56 NCT02287428
Melanoma Phase I/II Recruiting 25 NCT03715985
Bladder Cancer
Non-Small-Cell Lung cancer
Melanoma Phase I Recruiting 30 NCT04072900
Breast Cancer Phase II Recruiting 70 NCT03606967
Small Cell Lung Cancer Phase II Not yet recruiting 27 NCT04397003
Diffuse Intrinsic Pontine Glioma Phase I Not yet recruiting 30 NCT04749641
Melanoma Phase II Active, not recruiting 60 NCT02129075
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technology advances, the processing of personalized neoantigens
will become faster and more efficient, saving the patient precious
time and increasing the effectiveness of cures.
PERSONALIZED NEOANTIGENS-PULSED
DC VACCINES

Definition and Types of DCs
Immune cells, which include B cells, T cells, natural killer cells
(NK cells) derived from lymphoid stem cells and neutrophils,
eosinophils, basophils, and monocytes derived from myeloid
progenitor, produce an immune response to resist the invasion
of bacteria and viruses, kill tumor cells and maintain the human
body’s immune balance. DCs, often differentiated from
monocytes, are professional antigen-presenting cells and are
responsible for efficient uptake, processing and presentation of
antigens, which can not only teach naive T cells to become
antigen-specific cytotoxic T cells (CTLs) through antigen
presentation but also allow for interaction with other immune
cells in the body, such as NK cells, T cells and B cells, activating
the immune system to recognize and kill tumors (46).

In humans, committed DC precursors (CDPs) in bone marrow
are divided into two major subsets of DCs, plasmacytoid DCs
(pDCs) and conventional DCs (cDCs), which include two major
categories-cDC1 and cDC2 based on their phenotype (47). These
cells circulate in the blood and continue to enter the lymphoid
organs and peripheral tissues as a supplement to DCs. For pDCs,
surface markers mainly include CD123, CD303, CD304, and
CD45RA, and they specifically secrete type I interferons (IFN-I)
while presenting antigens to T cells and activating T cells (48, 49).
For cDC1, surface markers mainly include Cleca9A, XCR1, and
CD141, and cDC1 have the ability to cross-present and induce
cytotoxic T cell immune responses and can also significantly
stimulate the immune response of allogeneic or autologous CD4+

T cells (48, 49). For cDC2, surface markers mainly include CD1c,
CD1a, and CD103, which can present soluble antigens but rarely
present antigens derived from necrotic cells (48–50). In conclusion,
different DCs play different physiological functions in the body,
promoting the important role of DCs in immune regulation.

DC Vaccines
The principle of preparing a DC vaccine is simple. The precursor
cells of DCs in patients are isolated and cultured in vitro, loaded
with tumor antigens, and then transferred back into patients.
Then, the antitumor effect can be exerted by specific antitumor T
cells stimulated by DCs. After nearly 10 years of effort in the field
of DC vaccines, in 2000, DC-based immunotherapy was used for
the first time in a patient with a primary intracranial tumor. The
patient received 3 treatments with an allogeneic MHC class I
glioblastoma peptide-pulsed DC vaccine. The trial showed that
the DC vaccine was tolerated, and the patient received a positive
immune response. However, no objective clinical response was
observed (51). In 2010, the United States FDA approved
Sipuleucel-T as the first therapeutic DC vaccine for prostate
cancer. Sipuleucel-T consists of peripheral blood mononuclear
Frontiers in Oncology | www.frontiersin.org 566
cells (PBMCs), which include APCs, activated ex vivo by
PA2024, a recombinant protein including mainly prostate-
specific antigen and prostatic acid phosphatase (15).

Philip W. Kantoff’s group divided 512 patients into two
groups at a ratio of 2:1 to receive treatment with Sipuleucel-T
and placebo every two weeks by intravenous injection, for 3
treatments in total (52). The results showed that the 36-month
survival was 31.7% in the Sipuleucel-T group and 23% in the
placebo group. The median survival duration in the Sipuleucel-T
group was 25.8 months, an increase of 4.1 months compared
with 21.7 months in the placebo group. This revealed that the
drug could significantly prolong the survival period, suggesting
that the DC vaccine can give patients a survival benefit. Another
clinical trial on glioblastoma also showed superior efficacy of a
DC vaccine. ICT-107 is an autologous DC vaccine pulsed with 6
different peptides targeting glioblastoma. In a prior phase I study,
21 patients with glioblastoma administered ICT-107 showed
good tolerance and in 16 newly diagnosed patients, 6 patients
did not show tumor recurrence, which showed that this DC
vaccine was well tolerated and possessed antitumor activity (53).

In the following phase IIb trial conducted by Patrick Y. Wen,
among HLA-A2+ patients with a matriculated MGMT promoter,
progression-free survival (PFS) in the ICT-107 group (24.1
months) was significantly higher than that in the control group
(8.5 months) and the patients in the ICT-107 group showed
improved immune responses (54). Although many trials have
focused on DC vaccines in recent years (Table 2), the basis of DC
vaccines is the selection of immunogenic antigens to activate the
immune system effectively in addition to the maturation of DCs.
Because the antigens in each patient’s tumor are highly specific,
DCs loaded with personalized neoantigens for fusion into
therapeutic tumor vaccines are another attractive strategy.

Clinical Trial Progress of Personalized
Neoantigen-Pulsed DC Vaccines
Tumor vaccines that rely on neoantigens alone cannot completely
eliminate malignant tumors (55). The reason for this is not the
neoantigen itself but more because most of the trials used
neoantigens to solve the problem of the weak antigenicity of
tumor cells but did not solve the problem of immune cell
functional defects in cancer patients. Patients with malignant
tumors usually have a low level of immune function, and it is
difficult to initiate the antitumor immune response in vivo. One of
the main reasons is that the function of antigen-presenting cells in
patients is inhibited, and antigen-activated T cells cannot be
effectively presented. Therefore, to achieve good clinical efficacy,
immunotherapy should not only solve the problems related to
antigens but also the problems of immunosuppression in tumor
patients. In other words, when many tumor-specific antigens are
injected into the body, it is necessary to ensure that they are
efficiently taken up and presented by the body’s antigen-presenting
cells and that a sufficient number of effector T cells are activated.

In 2015, the first personalized neoantigen-loaded DC vaccine
began testing in a phase I clinical trial (56). They enrolled 3
melanoma patients with stage III resected cutaneous melanoma
and treated them with ipilimumab. Then, they identified somatic
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mutations from their own surgically excised tumors by whole-
exome sequencing and computer-simulated epitope prediction to
screen for suitable neoantigens. Furthermore, 7 neoantigens
selected from each patient were loaded with DCs isolated from
PBMCs, cultured ex vivo, and then intravenously injected into the
patients for a total of three treatments. After the treatments, an
enhanced immune response triggered by T cells was observed,
while three patients were all surviving and no autoimmune adverse
reactions were observed, which showed that DC vaccines pulsed
with personalized neoantigens was safe and reliable.

In another trial conducted by Ding’s group in 2020, they
demonstrated for the first time the activity of a personalized
neoantigen-pulsed DC vaccine in patients with advanced NSCLC
(57). In their study, they enrolled 12 patients with advanced lung
cancer and 13-30 peptide-based personalized neoantigens were
isolated and identified from each patient’s tumor tissue. At the
same time, PBMCs were derived from each patient, DCs were
separated, then DCs were pulsed with the corresponding selected
neoantigens to form a personalized neoantigen-pulsed DC vaccine
to treat patients. Their study showed a 25% objective response rate,
while a 75% disease control rate was observed after treatment of a
personalized neoantigen-pulsed DC vaccine. In addition, only low-
grade and transient side effects were observed, which also
demonstrated that the vaccine was safe and able to induce specific
T cell immune response. In particular, a patient withmetastatic lung
cancer whose main metastases were in bone, pelvis, and inferior
vena cava lymph nodes failed to show a tumor response after three
treatments. Then, he received personalized neoantigen-pulsed DC
vaccine treatment, and after 5 doses of this vaccine, almost no
metastatic lymph nodes and shrinking pelvic lesions were observed.
There was a 29% reduction in overall tumor lesions, which showed a
good therapeutic effect of the vaccine.

In Sarivalasis’s paper published in 2019, they present another
phase I/II trial that uses personalized peptides, including tumor-
specific neoantigens and TAAs derived from patients, and pulses
them into DCs isolated from autologousmonocytes (58). They will
acquire the tumor specimens from each patient for NGS analysis.
Then they will analyze the data to generate personalized databases,
and up to 10 will be selected per patient by verifying the immune
response of the candidate peptides to T cells isolated from the
patient. This trial will investigate the feasibility and safety of a
personalized neoantigen-loaded DC vaccine in patients with
Frontiers in Oncology | www.frontiersin.org 667
ovarian cancer and evaluate overall survival (OS) progression
time and disease-free survival at 12, 24, and 36 months. This
trial is the first of its kind to test a personalized neoantigen-pulsed
DC vaccine in ovarian cancer patients. We look forward to its
expected efficacy in a clinical trial, providing additional strong
evidence of the efficacy and safety of a personalized neoantigen-
pulsed DC vaccine and bringing benefits to patients.

In addition, according to ClinicalTrials.gov, there are several
clinical trials around personalized neoantigen-loaded DC vaccines
under way that are in phase I (Table 3). Although these trials are
underway, the fact that they have been carried out only in the last
decade shows that they are still forward-looking and innovative.
PERSONALIZED NEOANTIGEN-PULSED
DC VACCINES IN COMBINATION WITH
OTHER THERAPIES

The combination of personalized neoantigen-pulsed DC vaccines
with other strategies, such as chemotherapy and immune
checkpoint inhibitors, is another attractive approach to enhance
the tumor therapeutic vaccine efficacy. Chemotherapy is considered
an immunotherapy partner to improve immunotherapy efficacy by
enhancing antigen production and presentation, and inducing T
cell immune response, although it still has several side effects (59).
In a trial conducted by Batich and colleagues (60), cytomegalovirus
antigen pp65 was found to be present in glioma cells instead of
surrounding normal tissues. Then, they used a pp65-pulsed DC
vaccine combined with dose-intensified temozolomide, which is a
chemotherapeutic drug to treat glioma. As expected, the median
PFS was 25.3 months and OS was 41.1 months, and both were
much higher than the statistical median survival of patients (less
than 15 months) with newly diagnosed glioma.

Immune checkpoints exert strong immunosuppressive effects to
block the antitumor immune response; thus, neoantigen vaccines
combined with immune checkpoint inhibitors, which involve
mainly specific monoclonal antibodies such as anti-PD-1, anti-
PD-L1, and anti-CTLA-4 antibodies, are thought to generate strong
a T cell immune response to kill tumors (7, 61, 62). In Sahin’s trial,
neoantigen-specific T cells were PD1+ and after the neoantigen
vaccine, PD-L1 upregulation was observed (63). Then, anti-PD1
treatment was applied after the neoantigen vaccine, and a complete
TABLE 2 | The clinical application of DC vaccines.

Tumor types Phase Status Participants Source of DCs NCT number

Breast Cancer Phase I/II Completed 10 / NCT02018458
Breast Cancer Phase I/II Completed 44 / NCT01042535
Unspecified Adult Solid Tumor
Breast Cancer Phase I Completed 31 monocytes NCT00978913
Malignant Melanoma
Colorectal Cancer Phase I Completed 6 monocytes NCT01671592
Lung Cancer Phase II Completed 32 white blood cells NCT00103116
Prostate Cancer Phase II Completed 13 / NCT00970203
Hematological Malignancies Phase I/II Completed 10 / NCT02528682
Gastric Cancer Phase I/II Recruiting 45 / NCT04567069
Colorectal Cancer Phase I Recruiting 12 / NCT03730948
Glioblastoma Phase II/III Recruiting 60 / NCT03548571
Breast Cancer Phase I Active, not recruiting 15 / NCT02063724
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response to the neoantigen vaccine was observed. In a phase I trial,
the combination of MART-1 peptide-pulsed DCs and
tremelimumab, an anti-CTLA-4 antibody, was used for 16
patients with melanoma and they acquired a higher durable
objective tumor response rate than treatment alone (64). In
addition, a trial conducted by Ding showed that an enlarged
tumor was still observed in a patient with lung cancer after
treatment with a personalized neoantigen-pulsed DC vaccine (57).
When nivolumab, an anti-PD-1 antibody, was combined with this
DC vaccine, the patient’s tumor became cavitated, which
demonstrated the superiority of combination therapy for cancer.
FACTORS THAT LIMIT THE
EFFECTIVENESS OF PERSONALIZED
NEOANTIGEN-PULSED DC VACCINES

Although the current clinical application shows efficacy,
personalized tumor neoantigen-pulsed DC vaccines are still
limited in several aspects. (i) The selection of neoantigens: The
sequencing and screening of tumor neoantigens requires
individual detection and analysis for each patient’s tumor,
which is a complex and time-consuming process. Additionally,
the manufacture of neoantigens requires a better manufacturing
conditions to ensure the consistency of neoantigens (65). As a
result, the development and wide application of advanced
technology are urgently needed. It is believed that the time and
production cost of this process will be greatly reduced in the near
future. (ii) The source and maturation conditions of DCs: DCs
applied in personalized neoantigen-pulsed DC vaccines are also
individualized, and it is necessary to extract DCs from each
patient for separate culture. In addition, mature DCs are needed
to enhance antigen processing, presentation and stimulate B and
T cells. Antigens, cytokines such as GM-CSF and other factors
such as LPS could stimulate DCs maturation. This process still
has problems such as the intensive labor required for the ex vivo
culture process and the skill required for inducing DCmaturation.
Thus, in future studies, efforts are needed to optimize ex vivo
culture while inducing mature and high-quality DCs (66–69).
(iii) The efficiency of DC migration: DCs injected back into
Frontiers in Oncology | www.frontiersin.org 768
patients should migrate to the lymphoid organs to stimulate T
cells to achieve effective immune responses, and some
proinflammatory cytokines, such as prostaglandin E2 (PGE2),
could promote the migration of DCs to some extent (70–72).
However, selective migration of DCs and their residence in
nonlymphoid and lymphoid organs are tightly regulated events.
The molecular control mechanisms need to be elucidated in future
studies to lay the foundation for improving the stimulation
conditions of DC vaccines in clinical trials.
CONCLUSION

Personalized tumor neoantigens are highly specific to individuals,
and tumor vaccines targeting neoantigens can effectively induce T
cells to produce a strong immune response against tumors.
However, the key to the effectiveness of personalized tumor
neoantigens is that they can be efficiently taken up and processed
by APCs and delivered to T cells to induce an antitumor immune
response. However, the function of antigen-presenting cells in
patients with malignant tumors is usually inhibited. Therefore,
the treatment of patients with DC vaccines loaded with
neoantigens can specifically target the tumor and ensure that DCs
can exert their efficacy to the maximum extent. An increasing
number of research and clinical trials are currently underway,
promising to offer new hope to patients with solid tumors.
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TABLE 3 | The clinical application of personalized neoantigen-pulsed DC vaccines.

Tumor types Phase Status Participants Source of DCs NCT number

Breast Cancer Phase I Completed 9 monocytes NCT04879888
Triple Negative Breast Cancer Phase I Recruiting 5 / NCT04105582
Gastric Cancer Phase I Recruiting 80 / NCT04147078
Hepatocellular Carcinoma
Non-Small-Cell Lung Cancer
Colon Rectal Cancer
Pancreatic Adenocarcinoma Phase Ib Recruiting 12 PBMC NCT04627246
Non-Small-Cell Lung Cancer Phase I Recruiting 6 monocytes NCT04078269
Advanced Biliary Tract Tumor Phase I/II Recruiting 40 / NCT02632019
Non-Small-Cell Lung cancer Phase I unknown 20 / NCT02956551
Liver Cancer Phase I unknown 24 / NCT03674073
Non-Small-Cell Lung cancer Phase I unknown 30 / NCT03871205
Glioblastoma Phase I Enrolling by invitation 10 / NCT03914768
Colorectal Cancer Phase I/II Active, not recruiting 25 / NCT01885702
Non-Small-Cell Lung cancer Phase I/II Not yet recruiting 20 peripheral blood NCT03205930
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Esophageal cancer (EC) is a common malignant tumor with poor prognosis, and current
treatments for patients with advanced EC remain unsatisfactory. Recently,
immunotherapy has been recognized as a new and promising approach for various
tumors. EC cells present a high tumor mutation burden and harbor abundant tumor
antigens, including tumor-associated antigens and tumor-specific antigens. The latter,
also referred to as neoantigens, are immunogenic mutated peptides presented by major
histocompatibility complex class I molecules. While current genomics and bioinformatics
technologies have greatly facilitated the identification of tumor neoantigens, identifying
individual neoantigens systematically for successful therapies remains a challenging
problem. Owing to the initiation of strong, specific tumor-killing cytotoxic T cell
responses, neoantigens are emerging as promising targets to develop personalized
treatment and have triggered the development of cancer vaccines, adoptive T cell
therapies, and combination therapies. This review aims to give a current understanding
of the clinical application of neoantigens in EC and provide direction for
future investigation.

Keywords: esophageal cancer, immunotherapy, neoantigen, cancer vaccine, adoptive cell therapy
INTRODUCTION

EC ranks as the seventh most common malignant tumor and the sixth leading cause of cancer-
related death worldwide. An estimated 572,000 new cancers of EC and 509,000 deaths occurred in
2018 (1). To date, multidisciplinary therapy involving neoadjuvant chemoradiotherapy followed by
surgery has formed the standard treatment for local advanced EC (2, 3). However, only 29% of
patients who undergo resection after chemoradiotherapy show a pathological complete response,
and the incidence of grade 3 or 4 treatment-related adverse events during chemoradiotherapy are
common (2). The long-term survival for patients with locally advanced EC remains unsatisfactory
despite therapeutic improvements (4).

Immunotherapy, including immune checkpoint blockade (5, 6), cancer vaccination (7), and
adoptive T cell therapy (8), has been explored as a novel strategy for improving survival outcomes of
EC patients recently. Immune checkpoints on the surface of T cells are receptors that are crucial for
preventing autoimmune damage to healthy tissues. However, tumor cells exploit immune
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checkpoint inhibition to evade the immune response (9, 10).
Immune checkpoint blockade therapy has dramatically changed
the treatment of melanoma and advanced non-small-cell lung
cancer (11, 12). Several randomized clinical trials have shown
that immune checkpoint blockade is a promising prospect for the
treatment of EC (5, 13, 14).

It is known that accumulation of genetic alterations can result
in cancer development. Neoantigens, referred to as immunogenic
mutated peptides in tumor cells, are presented by major
histocompatibility complex class I molecules and stimulate a
strong cytotoxic T cell–mediated immune response (15).

EC appears to be associated with a high tumor mutation
burden and neoantigen load compared with esophageal
adenocarcinoma (16, 17). Due to their strong tumor-specific
immunogenicity, neoantigens are emerging as a promising target
for tumor immunotherapy. Immune checkpoint blockade
achieves tumor control by releasing immune inhibition, while
neoantigens aim to elicit the immunogenicity of tumors and
trigger cytotoxic T cell responses, thereby improving antitumor
efficacy (18).

In this review, we focus on the clinical application of
neoantigens and highlight advances in the use of neoantigens in
cancer vaccines, adoptive T cell therapy, and combination therapy
for EC, and we discuss the present barriers and strategies.
CANCER VACCINES

Traditional cancer vaccines mainly use tumor-associated antigens,
which are also expressed in normal human tissue. Owing to their
high tumor-specific and exceptional immunogenicity, tumor
neoantigens are ideal targets for cancer vaccine design (19, 20).
Neoantigen vaccines, a new type of tumor immunotherapy, can
induce a strong, specific immune response and elicit stable
therapeutic effects.

New York esophageal squamous cell carcinoma 1 (NY-ESO-1)
is known as a member of the testis cancer gene family with high
immunogenicity. Oshima et al. screened 1,969 patients with
various cancers and identified serum NY-ESO-1 antibody as a
tumor-specific biomarker for EC (21). Subsequently, Wada et al.
performed a phase I clinical trial using NY-ESO-1 protein as a
cancer vaccine for eight patients with advanced EC (22).
Antibody, CD4+, and CD8+ T cell responses were recognized
in 87.5% (7/8), 87.5% (7/8), and 75.0% (6/8) of patients,
respectively. Nevertheless, disease progression was eventually
observed in all patients after vaccination for various reasons,
such as primary tumor growth or paratracheal or abdominal
lymph node metastases.

In a phase I dose-escalation trial of a two-dose cohort,
cholesteryl pullulan (CHP)-NY-ESO-1 vaccine was confirmed
to be safe and to induce immunogenicity in patients with
advanced metastatic EC. The 200 mg dose cohort elicited
stronger immune responses and displayed better survival
outcomes than the 100 mg dose cohort (23). In addition, a
phase II comparative study of CHP-NY-ESO-1 vaccine was
performed in NY-ESO-1-expressing patients with esophageal
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squamous cell carcinoma who underwent neoadjuvant
chemotherapy followed by surgery. No significant difference in
survival benefit was noted between the CHP-NY-ESO-1 vaccine
group and untreated controls (24).

Several studies have shown that the neoantigen vaccine can
successfully induce cytotoxic T cells and trigger immune effects
(25–27). However, sufficient and persistent immune effects are
difficult to achieve with antitumor vaccines (25, 26). Rosenberg
et al. suggested tumor cells possibly possess multiple immune
escape mechanisms, such as insufficient tumor antigen
expression, the tumor produces local immunosuppressive
factors, T cells are “tolerized”, or there is downregulation of
T cell receptor signal transduction, among other things (28).

Compared with traditional peptide vaccines, mRNA vaccines
are a genetic vaccine that might stimulate an effective immune
response. Notably, Forghanifard et al. were the first to report that
a novel chimeric mRNA-loaded dendritic-cell (DC) vaccine can
elicit an effective immune response and induce cytotoxicity
against EC ex vivo. Although this was a preclinical study, it
provided a new approach to use DC-based vaccines for EC
immunotherapy (29).
ADOPTIVE T CELL THERAPY

Tumor-specific neoantigens can also serve as promising targets
for adoptive cell therapy. This involves patient T cells that have
been genetically engineered to target a tumor cell surface antigen.
The current strategies mostly use antigen-specific T cell receptor
(TCR) gene-engineered T cells, chimeric antigen receptor (CAR)
T cells, or tumor-infiltrating lymphocytes (TIL). These therapies
have yielded remarkable tumor responses in clinical trials of
hematological tumors and high mutation tumors (30, 31).
However, these therapeutic options have limited therapeutic
effect or are poorly understood in solid tumors.

Kageyama et al. conducted a first-in-man trial using adoptive
cell therapy of MAGE-A4 T cell receptor gene-transduced
lymphocytes in patients with MAGE-A4-expressing EC.
Results revealed that T cell receptor gene-engineered T cells
can be detected in the peripheral blood of all patients at the initial
administered level for 1 month. Notably, transferred T cells in
five patients persisted for more than 5 months. However, the
antitumor effect was limited. Despite the long persistence of
transferred T cells in blood, disease progression occurred in 70%
(7/10) of patients after treatment. It is noteworthy that 30%
(3/10) of patients with minimal tumor lesions had progression-
free survival for 27 months (32). These findings suggest that
adoptive T cell therapy may provide better survival outcomes in
patients with early-stage tumors compared with those with
advanced or recurrent EC. An explanation may be that various
mechanisms underlie the benefits of adoptive T cell therapy.
Another explanation might be cross-reactivity to corresponding
wild-type peptide sequences in the identification of neoantigens.
A recent study reported the establishment of a protocol for
effective construction of neoantigen-specific TCR T cells to
improve therapeutic outcomes (33).
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Advances in genomics and bioinformatics have accelerated
the emerging technology of CAR T cells, which transformed the
field of adoptive T cell therapy. To our knowledge, no clinical
trial using neoantigen target CAR T cell therapy in EC patients
has been published. It has been reported that CAR T cells
targeting EphA2 receptors stimulated antitumor activity of EC
cells in a preclinical trial (34). The only clinical trial of CAR T cell
therapy for EC, targeting the EpCAM adhesion molecule, is
ongoing (NCT03013712). Both EphA2 and EpCAM are tumor-
associated antigens that are overexpressed in patients with
esophageal squamous cell carcinoma but are not tumor-specific
antigens (34–36).

TIL is another candidate for T-cell therapy. Several clinical
studies have demonstrated successful adoptive TIL therapy for
solid tumors such as melanoma and ovarian cancer (37–40). In
EC, TIL positivity is associated with better survival outcomes
(41). Tan et al. used TIL to construct neoantigen-specific TCR
T cells for esophageal squamous cell cancer and identified
antitumor activity in vivo and in vitro (42). Due to this study
only enrolling one patient, it is difficult to comprehensively assess
the efficacy of adoptive TIL therapy. We recommend future
studies enroll larger populations. To date, a clinical trial of
adoptive TIL transfer therapy for EC has not been reported.
COMBINATION THERAPY

Although neoantigen-specific cancer vaccines or adoptive T cell
therapy can elicit specific immune responses, tumor cells can
escape from the immune system through multiple mechanisms
(43–45). Additionally, the tumor microenvironment is rather
complex and quite different from an in vitromilieu. Components
derived from a neoantigen-enriched tumor microenvironment
could suppress the function of effector T cells (46, 47). Therefore,
combinations of neoantigen immunotherapy and different
modes of treatment are now much more attractive.

Studies found that cancer vaccines could stimulate the
proliferation of specific T cells; however, the expression of the
programmed death ligand PD-L1 correspondingly increased
(48, 49). This might suggest that cancer vaccines combined
with a PD-L1 inhibitor or a PD-1 receptor inhibitor may be a
possible therapeutic strategy. In a preclinical trial, Ishihara et al.
tested a combination therapy of CHP-NY-ESO-1 cancer vaccine
and an anti-PD-1 monoclonal antibody and induced significant
tumor suppression (P = 0.029) compared with the no-treatment
group (27). This combination therapy is a promising strategy and
merits future attention.

Beyond this, it has been reported that a tumor-specific vaccine
combined with immune checkpoint therapy can lead to a more
efficient response than monotherapy in pancreatic and prostate
cancer in preclinical comparative studies (50, 51). A neoantigen-
specific cancer vaccine combined with adoptive T cell therapy has
also been successfully used to achieve an antitumor response.
Kageyama et al. conducted a phase I clinical trial of MAGE-A4
peptide vaccinations combinedwithTCR gene-engineeredT cell in
EC. Persistence of tumor-specific reactivity was detected although
tumor regression was not observed.
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Chemotherapy and radiation are important components in the
treatment arsenal forECpatients. Several studies have confirmed that
chemotherapy or radiotherapy can stimulate tumors to release
antigens and induce the production of tumor antigen-specific
effector cells in tumor tissue (52, 53). In EC, a phase I clinical trial
of amultiple-epitopepeptide vaccine combinedwith chemoradiation
therapy has successfully been performed. Notably, six of 11 patients
achieved complete response, and four patients with complete
response experienced long-term survival benefit (54). Approaches
to integrate chemoradiotherapy with immunotherapy provide novel
therapeutic strategies and are now in the ascendance.
SUMMARY AND FUTURE DIRECTIONS

This review summarized the trials with neoantigens for EC or solid
tumors including EC (Table 1) and the major types of neoantigens
in EC with clinical application (Figure 1). Compared with
immunotherapy based on tumor-related antigens, neoantigen-
specific cancer vaccines or adoptive T cell transfer can drive
specific immune responses and reduce adverse effects on normal
tissue. However, effective antitumor activity and even survival
benefit are currently not readily achievable with neoantigen
monotherapy (55, 56). The maturation of technologies identifying
non-synonymousmutations and evaluating the immunogenicity of
mutated peptides will determine the success of future clinical
applications (15, 57). Although substantial challenges lie ahead on
the road to enabling neoantigen-specific effector T cells to
completely eliminate tumor cells, recent advances in whole exome
sequencing and bioinformatics technology will greatly facilitate the
journey (58–60). There are threemajor strategies for the selectionof
candidate neoantigens—in silico peptide prediction, mass
spectrometry-based immunopeptidomics, and whole-exome
sequencing database list (15).

Better understanding the mechanisms of resistance to
immunotherapy may enable the development of new strategies
to improve clinical outcomes. While tumor cell intrinsic factors
for resistance of immunotherapy remain poorly understood,
published evidence points to the possibility of alterations in
interferon (IFN)-gamma signaling pathways and absence of
antigen presentation (61). It is already documented that IFN-
gamma is the primary cytokine involved in the recognition and
elimination of mutant cells in the classical signaling pathway
(62). However, tumor cells could escape this effect by
upregulating inhibitory ligands that impede the response of
T cells or by inducing mutations in the IFN-gamma signaling
pathway, resulting in immune evasion (63, 64). In addition,
neoantigens or immunogenic mutated peptides are processed
and presented on human leukocyte antigen (HLA) molecules of
cancer cells. This observation raises the possibility that resistance
to tumor-infiltrating lymphocyte adoptive cell transfer therapy
could be mediated through silenced HLA molecules (65).

Tumor cell extrinsic factors may also contribute to resistance. In
addition to tumor cells and immune cells, as well as the surrounding
stroma, abundant immunosuppressive cells, including T regulatory
cells, myeloid-derived suppressor cells, and tumor-associated
macrophages, in the tumor microenvironment have important
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roles in the activity of cytotoxic T cells (66, 67). Spranger et al.
showed that tumor immune escape is associated with a mechanism
whereby a cancer vaccine could elicit T cell activation and
upregulate regulatory T cells simultaneously (68). Moreover, Eil
et al. found that tumor necrosis releases intracellular potassium ions
and blocks the ionic checkpoint, resulting in inhibition of the
effector T cell response (69). Hence, the process of tumor
Frontiers in Oncology | www.frontiersin.org 474
immunogenicity and immune escape involves multiple
mechanisms, and there remains much to explore in future research.

To overcome the resistance of immunotherapy, contemporary
approaches primarily focus on the combination therapy of
neoantigen-specific immunotherapy and traditional therapy. As
described previously, chemotherapy or radiotherapy might
facilitate effector T cell infiltration by eliciting tumor tissue to
FIGURE 1 | The major clinical application of neoantigens in esophageal cancer. Neoantigens derived from mutations in tumor cells. They can serve many purposes,
including neoantigen vaccination, neoantigen specific adoptive T cell therapy, and combination therapy. Combinations of neoantigens with radiotherapy, chemotherapy, or
immune checkpoint inhibitor therapy may lead to a better effect. Neoantigens induce the production of effector CD8+ T cells, thereby eliminating tumor cells.
TABLE 1 | List of trials with neoantigens for EC or solid tumors including EC.

Target Sponsor Phase Sample
size

Trial identification Outcome summary

Peptide vaccine CHP-NY-
ESO-1

ImmunoFrontier, Inc. I 25 NCT01003808 The safety and immunogenicity were confirmed

CHP-NY-
ESO-1

Japan Agency for Medical Research and
Development

II 54 UMIN000007905 DFS in 2 years: 56 vs. 58% in the vaccine arm
and control arm; OS in
2 years: 76 vs. 79%, respectively

HLA-
A*2402

Shionogi & Co., Ltd I 15 UMIN000023324 Cytotoxic T cell response was induced in all
patients

Adoptive T cell
therapy

MAGE-A4 Mie University I 10 UMIN000002395 3 patients remained free from PD, survived for
more than 27 months

MAGE-A4 Tianjin Medical University Cancer Institute
and Hospital

I 15 NCT01694472 N/A

MAGE-A4 Adaptimmune I 52 NCT03132922 Ongoing
NY-ESO-1 Shenzhen Second People’s Hospital I 36 NCT02457650 N/A
NY-ESO-1 University Health Network, Toronto I 22 NCT02869217 Ongoing

Combination
therapy

CHP-NY-
ESO-1

ImmunoFrontier Inc. I 26 UMIN000008006 8 patients had SD

HLA-
A*2402

Teikyo University I 11 NCT00632333 6 patients of CR and 5 patients of PD were
observed
EC, esophageal cancer; CHP, cholesteryl pullulan; NY-ESO-1, New York esophageal squamous cell carcinoma 1; MAGE-A4, melanoma-associated antigen A4; HLA, human lymphocyte
antigen; DFS, disease-free survival; OS, overall survival; CR, complete response; SD, stable disease; PD, progressive disease; N/A, not available.
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release more antigens (52, 54). Another actionable approach
involves the use of neoantigen-specific immunotherapy and
PD-1 or PD-L1 inhibitor therapy. The rationale for this
combination is that blocking active checkpoints might
reactivate T cell function (70). Furthermore, the strategy
combining molecularly targeted therapy with immunotherapy
has been studied in patients with melanoma, and a synergistic
effect has been observed (71). These combination strategies may
be the potential future directions in the treatment of EC.

As an emerging therapeutic approach, neoantigen-specific
immunotherapy has shown potential therapeutic effect on EC
in several preclinical and clinical trials. Here, we provide a clear
picture of the clinical application of neoantigens in EC from
tumor-specific cancer vaccines and adoptive T cells to
combination therapy. We also discuss the current barriers and
strategies, thus providing direction for future investigation.
Frontiers in Oncology | www.frontiersin.org 575
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Mutation-derived neoantigens are now established as attractive targets for cancer
immunotherapy. The field of adoptive T cell transfer (ACT) therapy was significantly
reshaped by tumor neoantigens and is now moving towards the genetic engineering of
T cells with neoantigen-specific T cell receptors (TCRs). Yet, the identification of
neoantigen-reactive TCRs remains challenging and the process needs to be adapted
to clinical timelines. In addition, the state of recipient T cells for TCR transduction is critical
and can affect TCR-ACT efficacy. Here we provide an overview of the main strategies for
TCR-engineering, describe the selection and expansion of optimal carrier cells for TCR-
ACT and discuss the next-generation methods for rapid identification of relevant TCR
candidates for gene transfer therapy.

Keywords: cancer immunotherapy, T cell receptor, gene transfer therapy, adoptive cell transfer, cell engineering,
T cells
INTRODUCTION

Pioneered by Rosenberg and colleagues, adoptive cell transfer (ACT) therapy is an immunotherapy
strategy relying on the infusion of autologous tumor-infiltrating lymphocytes (TILs) to cancer
patients. ACT demonstrated promising clinic outcomes in melanoma; with durable responses in 10-
20% of patients (1, 2). Despite this progress, however, the majority of patients does not respond (3,
4) and the efficacy of ACT remains limited to melanoma and cervical cancer (5). One of the possible
reasons for this limitation is the low frequency of antigen-specific T cells in TILs (1–3, 6–8).
Furthermore, the proportion of bystander (i.e. tumor unrelated) TILs, such as viral-specific T cells,
can be quite high in cellular products (9). Also, it was recently demonstrated that current cell culture
conditions do not lead to a consistent clonal expansion of ex vivo TILs but rather lead to a biased
immune repertoire (10). Altogether, these observations brought on the hypothesis that the
proliferative potential of tumor antigen-reactive TILs is likely to be limited, therefore leading to
their relative dilution in vitro by overgrowing bystander TILs.

To circumvent these issues, the field is moving towards the genetic engineering of T cells to express
either chimeric antigen receptors (CARs) (11) or tumor antigen-specific T cell receptors (TCRs)
(Figure 1) (12–17). CD19-targeting CAR T cells mediated complete responses in about 80% of patients
with B cell acute lymphoblastic leukemia cancer (18). Yet, CARs target tissue-restricted antigens
expressed on the surface of tumor cells (19), thus limiting their applications (20), while TCR-transduced
org July 2021 | Volume 12 | Article 701636178
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cells can target any surface or intracellular antigen. In this report, we
will focus on TCR-based cellular immunotherapy (Figure 1).

TCRs are heterodimers consisting of disulfide-linked a and b
chains, each with a variable and a constant domain (21, 22). The
variable regions can bind the antigen-MHC complex. The
binding domain is constructed based on the recombination of
multiple gene segments, leading to the great diversity of the TCR
repertoire, with potentially >1015 distinct ab TCRs (23–25). TCR
gene-transfer therapy targeting tumor-associated antigens
(TAAs), such as MART-1 and NY-ESO-1, achieved clinical
responses ranging from about 10 to 60% of patients from
different malignancies (12, 14, 26, 27). Despite these promising
clinical outcomes, efficacy remained limited and important
toxicities occurred (13, 27, 28). The field was then rejuvenated
by the perspective of using TCRs targeting private neoantigens,
which have emerged as clinically relevant targets (29, 30). In this
review, we will discuss several issues including the common tools
used for cells transduction, the optimal cells to transduce for
ACT and the acceleration of the identification of relevant tumor-
specific TCRs for gene transfer therapy.
STRATEGIES FOR TCR-ENGINEERING
OF T CELLS

Viral Vectors
As for CAR-T cell based therapy, viral vectors were widely exploited
for ex vivo TCR gene transfer into recipient T cells (Figure 2).
Frontiers in Immunology | www.frontiersin.org 279
In clinical trials, the most common viral systems used are gamma
retrovirus- (RV) and lentivirus-based vectors (LV), as reviewed in
(31). Both RVs and LVs allow for stable integration and efficient
long-term expression of exogenous TCRs. However, safety concerns
to RVs and LVs remained, that are mainly insertional mutagenesis
and neoplastic transformation (32), as well as generation of
replication-competent viral particles. The latter limitations
boosted the development of novel vector designs, such as addition
of insulator sequences (33), disruption of the long terminal repeats
for self-inactivating viral vectors (34, 35) or pseudotyping (36). Of
note, RV transduction requires mitotic cells for the transgene to
penetrate the nucleus and integrate in the genome and thus
recipient cells must be activated beforehand. Conversely, LVs
allow the effective transduction of a variety of not actively
dividing and terminally differentiated cells. Yet, human resting T
cells are scarcely susceptible to transduction by LVs and need to be
minimally stimulated to enter the G1b phase (37, 38). Importantly.
several studies highlighted a positive correlation between the
proliferative potential of adoptively transferred cells and their in
vivo persistency (1), sustaining the use of LVs in the clinic to limit
recipient cell stimulation in vitro.

As alternative to RVs and LVs, adeno-associated virus-
derived vectors (AAVs) can be used for TCR-engineering.
AAVs are replication-deficient systems and are not known to
induce any side effects, making them ideal candidates from a
safety standpoint. AAV-based cancer treatments have not yet
been used in the clinic, however multiple strategies have been
developed and hold great promise for the future (39–41). It is to
A

B

D

C

FIGURE 1 | Overview of TCR-based immunotherapy. (A) Expansion of T cells from tumor or blood samples of patient or healthy donors. (B) Identification of antigen-
specific or tumor-reactive T cells and of cognate T cell receptors (TCRs). (C) Transduction of autologous or allogenic carrier cells. (D) Adoptive cell transfer of TCR-
engineered cells to the patient.
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be noted that vector manufacturing remains time consuming
(over six months) and expensive (42).

Non-Viral Systems
Non-viral methods for stable gene transfer into T cells were
investigated in CAR-T clinical trials and represent a future
opportunity for TCR gene transfer clinical studies. Non-viral
engineering strategies include transposon-based vector systems,
such as “Sleeping Beauty”, by which a transgene of interest
flanked by inverted terminal repeats is provided to target cells
as discrete DNAmolecule and randomly integrates in its genome
when a transposase is co-supplemented in trans (i.e. mRNA,
plasmid or protein) (43). Over the past decades, transposons and
transposases have been extensively optimized to increase their
activity and reduce toxicity (e.g. insertional mutagenesis) (44).
Alternatively, exogenous TCRs can be transiently expressed
in trans if transfected into T cells in the form of mRNA
molecules or non-integrating vectors (45, 46). All these non-viral
systems may be preferable to viral ones for the clinic because of
their easier handling and cheaper production costs. Of important
Frontiers in Immunology | www.frontiersin.org 380
note, gene editing of T cells with TCRs, as opposed to CARs,
has to face an extra challenge. Mispairing of exogenous and
endogenous TCR chains can indeed occur and lead to off-target
toxicity. Researchers have therefore developed several platforms
to specifically silence the expression of the endogenous TCR,
based on Sleeping Beauty, Zinc finger nucleases (47),
transcription activator-like effector nucleases (TALEN) (48,
49), mega-nucleases or Clustered Regularly-Interspaced Short
Palindromic Repeats (CRISPR)–Cas9 (50, 51) (Figure 2).

The CRISPR-Cas9 technology relies on short RNA sequences
which are used to target the site of insertion instead of proteins
and which are easily synthesized in vitro. As such, CRISPR-Cas9
enables the simultaneous targeting of multiple genome sites and
site-specific mutagenesis, allowing the knockout (KO) of
endogenous TCRs or of immune checkpoint such as PD-1 (52)
and the induction of cytokine expression (e.g. IL-7, IL-12, IL-15,
IL-18) (17) (Figure 2). The safety and feasibility of multiplex
CRISPR-Cas9 gene editing of T cells was demonstrated in a study
with advanced refractory cancer patients infused with autologous
T cells KO for the three genes TRAC, TRBC and PDC1
FIGURE 2 | Overview of main strategies to identify relevant TCRs, methods for transduction and options of carrier cells. (A) Identification of TCR candidates via
functional assays and sequential isolation of neoantigen-specific T cells based on pMHC multimer staining. Isolated neoantigen-reactive T cells can then be
sequenced in bulk for the identification of dominant TCR clonotypes (1). Alternatively, tumor-specific TCRs can be identified directly from ex vivo fresh tumor, without
intermediate culture, by sorting T cells by flow cytometry and performing single-cell TCR sequencing (2). (APC, antigen presenting cell; MHC, major histocompatibility
complex; LP, long peptide; TMG, tandem minigene). (B) Several carrier cells can be used for TCR transduction, including ab (CD4 or CD8) T cells, naïve or central
memory cells, NK cells, gd T cells and induced-pluripotent stem cells (iPSCs). Carrier cells can be derived from healthy donor or patient blood. (C) TCR engineering
into carrier cells can be obtained via viral (1) or non-viral vectors [such as CRISPR-Cas9 (2) or Sleeping Beauty (3)]. Additional modifications of cells to enhance their
functionality and in vivo persistency but also avoid TCR mispairing can be performed, such as the knock-out of endogenous TCR or immune inhibitor genes and the
induction of cytokines (4).
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(PD-1 loci) and transduced with a NY-ESO1 TCR (53). Of
interest, the KO by CRISPR-Cas9 of cytokine-induced SH2
protein (CISH), an immune checkpoint, was found to increase
the in vitro proliferation and functionality of TCR-engineered T
cells and such strategy will be further explored in an upcoming
clinical trial (NCT04426669) (54). Despite technical challenges
which still need to be overcome, in particular regarding the
delivery systems currently based on AAV and transfection (55–
59), CRISPR-Cas9 will likely become the method of choice for
therapeutic gene engineering in the upcoming years.
SELECTION AND EXPANSION OF
OPTIMAL CELLS FOR ACT

T Cells
T lymphocytes are the most common source of cells used as
carrier for gene transfer therapy. Following TCR engineering
into recipient cells, TCR-T cells need to be expanded to reach
sufficient numbers for ACT. The primary starting material is
most often autologous peripheral blood (Figure 2).

Thus far, TCR gene therapy mainly focused on CD8 T cells,
which represent key players of ACT. In particular, a retrospective
analysis of TIL ACT infusion products and clinical efficacy from
92 patients highlighted an association between the fraction of
CD8 T cells and clinical benefit (60). There is, however, an
emerging clinical relevance of CD4 T cells. Early evidence was
provided by Tran and colleagues who showed the antitumor
potential of neoantigen-specific CD4 TILs by ACT (61). Of
interest, the direct cytolytic capacity of CD4 T cells was
demonstrated (62–64). In addition, CD4 T cell’s help is
essential to generate efficient tumor-reactive effector CD8 T
cells (65), notably during the process of epitope spreading (29,
66). Yet TCR gene transfer therapy with CD4 tumor-specific
TCRs is also limited by the challenging prediction and detection
of MHC class II-restricted neoantigen-specific CD4 T cells,
despite major advances (67, 68).

T cell differentiation state is critical for ACT. The profile of
adoptively-transferred cells is indeed likely to affect their in vivo
persistency and thus treatment efficacy. T cell differentiation
states range from naïve to central memory, effector memory and
finally terminally differentiated (EMRA) (69). Accumulating
evidence shows that the effector phenotype acquired in vitro
negatively impacts the antitumor potential of T cells in vivo (70),
while ACT efficacy requires a long-term persistence of
transferred cells. Thus, less-differentiated T cell populations
that maintain self-renewal capabilities are preferred and were
associated with improved clinical benefit (71, 72). Naïve and
memory T cells maintain the highest proliferative potential
combined to the most potent fitness and stemness (73–76)
(Figure 2). Consistently, naïve and memory subsets were
found more effective than effector T cells for ACT (70, 74–77).
Furthermore, Hinrich and colleagues have demonstrated that
naïve CD8 T cells had a higher anti-tumor potential for ACT as
compared to central memory cells (77).
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The T cell state is also modulated during the expansion phase
in vitro. TCR-transduced T cells are commonly expanded with
anti-CD3/CD28 beads in the presence of IL-2 (12, 38, 78). It has
been demonstrated that the addition to the culture medium of
alternative cytokines, such as IL-7, IL-15 and/or IL-21, enabled to
the generation of less-differentiated TCR-engineered T cells thus
leading to increased persistency and ultimately improved efficacy
(71, 79–81).

Autologous T cells are available in limited quantities and their
state is likely to be affected by the multiple rounds of cancer
treatments which patients undergo before ACT, complicating the
manufacturing process and the feasibility of TCR gene transfer
therapy. Therefore allogenic universal T cells have also been
exploited for gene transfer therapy (82) (Figure 2). A few issues
are to be noted, including competition with endogenous TCRs,
mispairing of TCR subunits, risk of off-target toxicity due to
allogenic TCR-T cell infusion and ACT product rejection by the
host (83). It is thus required to KO endogenous TCRs to improve
the safety and efficacy of TCR-ACT with allogenic cells (49). For
all these reasons, several alternative non-T cell types
were evaluated.

Alternative to Autologous ab T Cells
Mensali and colleagues provided the first proof of concept that
cells other than ab T cells could be used as recipient cells for
TCR gene therapy. They transferred a TCR into NK cell line,
NK-92, and demonstrated efficacy in vivo (84). More recently,
Parlar and coworkers have engineered NK cells with a
tyrosinase-specific TCR and highlighted their cytolytic
potential in vitro (85). A potential benefit of using NK cells as
a carrier is their ability to remain cytotoxic in an MHC-
independent manner. This could be of interest in case of MHC
loss, which is a common immune suppressive mechanism
exerted by tumors (86). Alternatively, gd T cells can also be
TCR-engineered (Figure 2), thus avoiding the issue of TCR
mispairing. The latter strategy was proven efficient in leukemia
(87). Furthermore, as T cell exhaustion is a critical component of
ACT efficacy, there is an increasing interest in using induced-
pluripotent stem cells (iPSCs) for gene transfer therapy
(Figure 2). Nishimura and colleagues were able to generate
iPSCs from antigen-specific CD8 T cells and to re-differentiate
them. In this way, they obtained rejuvenated cells with longer
telomeres and a high proliferative potential, making them fitter
for therapy (88). The efficacy of TCR-engineered iPSCs was
shown in vivo (89).
IDENTIFICATION OF RELEVANT TCRS
FOR GENE TRANSFER THERAPY

As mentioned previously, neoantigens are attractive targets for
TCR-based therapy. To date, most neoantigens originated from
non-synonymous mutations. T cell reactivity to neoantigens was
associated with improved clinical benefit of immunotherapy, both
immune checkpoint blockade (90–92) and ACT (93–95). Early
reports showed promising results in terms of safety, feasibility and
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efficacy with neoantigen targeting immunotherapy either in the
form of vaccination (29, 96–98) or ACT (30, 99). Strikingly,
complete remissions were observed following infusion of
neoantigen-reactive T cells, highlighting the potency of
mutanome based therapies (30, 99).

The first key challenge lies in the identification of
neoantigens, which is a long and tedious process and was
reviewed elsewhere (100). Upon neoantigen identification,
neoepitope-specific T cells are purified and their TCR is
sequenced. Candidate TCRs are then cloned to validate their
antigen specificity and tumor reactivity (Figure 2).

Neoantigen Identification
Neoantigen-specific T cells, and hence their cognate TCR, can be
identified in different samples including tumor or blood from
patient or naïve T cells from healthy donors. Briefly, neoantigens
can be identified from expanded TILs (7, 95, 101). However, due
to low frequencies, sensitive detection sometimes requires
antigen-specific in vitro stimulation (IVS). Of interest, we
developed a novel strategy to improve the detection of
neoantigens in TILs, based on the addition of pools of
predicted neo-epitopes at the initiation of the TIL culture (7).
Alternatively, TILs can be enriched prior to culture by sorting of
dissociated tumor material ex vivo, based on various activation
markers like PD-1 (CD279), OX40, CD137 (4-1BB), CD39 and
CD103 (102–106).

Peripheral blood lymphocytes (PBLs) can also be exploited
for neoantigen identification. IVS with antigen presenting cells
(APC) loaded with neoantigen candidates have been extensively
used to detect neoantigen reactivity (7, 30, 96, 107–110). Prior
enrichment strategies have also been used by different groups
including: the isolation of memory (107) or naïve T cells (108) or
the sorting with PD-1 (109). Most identification processes use
PBLs from autologous origin but it has been shown to be possible
from allogenic sources as well (108).

Neoantigen-Specific T Cell Isolation and
TCR Repertoire Analysis
Upon their identification, neoantigen-specific T cells can be
purified based on pMHC multimer staining or based on the
up-regulation of activation markers following specific-activation,
such as 4-1BB and OX40 (7, 107, 108, 111, 112). Isolated cells
then undergo bulk a and b TCR sequencing in order to select the
dominant a and b TCR clonotypes. Of note, TCR repertoire
analysis strategies are challenging due to the high diversity of
TCR repertoires (113). Advances in next-generation sequencing
has improved the interpretation of TCR repertoires. Using RNA
as a source of material allows allelic exclusion thereby avoiding to
overestimate repertoires diversity. RNA is also more sensitive
than DNA despite being less quantitative due to variation in
expression levels (114). Among the different sequencing
methods, multiplex polymerase chain reaction (PCR) (115)
remains the most commonly used strategy, despite
misrepresentation of clonotypes proportion introduced by
heterogeneity in primers efficiency (116). Other approaches
rely on the addition of adaptors prior to PCR amplification
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(117, 118), such as the 5’ RACE PCR or TCR amplification
following gene capture (119). For each method, the bias in
quantification reduces the ability for easy pairing of a and b
chains, which is required for therapeutic applications. A concept
based on multiple sequencing and combinatorial analysis was
developed to pair ab TCR chains, yet this strategy is limited to
high-frequency clonotypes and requires large cell numbers (120).
To avoid the above-mentioned limitations, both T cell cloning or
single-cell sequencing can be used.

Antigen Specificity Validation of Candidate
TCR Pairs
Interrogation of neoantigen-specificity and antitumor-reactivity
of candidate TCRs can be assessed following the expression of
TCR candidates into recipient cells, a strategy hereafter referred
as TCR cloning. Antigen-specificity can be challenged by
transducing TCRs into activated PBLs or Jurkat T cells which
are then co-cultured with APCs loaded with neoantigens (29, 86,
94, 95, 99, 101, 102, 107, 121–123). Next, tumor-reactivity can be
measured by co-culture of TCR-engineered T cells with
autologous tumor cells or APCs pulsed with tumor lysate (86,
94, 101, 102, 121, 124, 125). To enable a rapid identification of
neoantigen-reactive TCRs, Paria and colleagues have developed a
TCR cloning methodology using Jurkat T cells electroporated
with RNAs encoding TCR a and b chain, respectively (126). The
benefit of this approach lies in the use of RNA electroporation,
which is faster and more efficient than TCR transduction by
genetic engineering. TCR expression is transient but sufficient for
TCR interrogation. Interestingly, they used the Jurkat luciferase
system (under NFAT promotor) which is a rapid and easy
read-out.

Of important note, the reactivity of validated neoantigen-
specific TCRs to the wild-type peptide should be evaluated to
avoid autoimmunity and thus ensure patient safety. This can
done by performing a peptide dose response with APCs (86, 94,
95, 99, 102, 107). Another method consists of using a high-
throughput genetic platform (127).

Selection of Tumor-Specific TCRs By
Single-Cell Technologies
As an alternative to the aforementioned time-consuming
strategies (based on TCR isolation and downstream TCR
validation), new developments enable the direct identification
of tumor-specific TCRs by pre-selecting the most frequent
clonotypes from fresh tumor samples (121) (Figure 2).
Selected ab TCR pairs are then challenged against tumor cells
by TCR cloning. Others have however found that the tumor
reactivity of intra-tumoral TCR repertoire was low (125),
highlighting a potential limitation of using this strategy for
gene transfer therapy. Identified tumor-reactive TCRs can then
be examined retrospectively for antigen specificity using ligand
discovery approaches, based for instance on trogocytosis, a
process in which T cells exchange membrane proteins with
APC presenting candidate antigens (128). Other possibilities
for TCR ligand discovery include the use of chimeric signaling
and antigen presenting bifunctional receptors (SABRs) (129).
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It is to be noted that the development of microfluidic-based
platforms will accelerate and automate the isolation of relevant
TCRs for TCR-ACT in the near future (130–132).

Instead of direct TCR identification, combined single-cell
transcriptomics and TCR sequencing (133) could be exploited
to define intra-tumoral signatures of neoantigen-specific or
tumor-reactive TCRs (134). Old-generation single-cell
methodologies are tedious and allow the sequencing of a
limited number of cells (135, 136). Single-cell TCR sequencing
and profiling of T cells was recently eased by the development of
a commercially available strategy by 10x Genomics (137–139).
Briefly, the latter microfluidic-based technology is able to
generate an emulsion containing one trapped cell with a
uniquely barcoded bead and, upon cell lysis polyadenylated
mRNA is captured. The process results in barcoded libraries,
which undergo both downstream single-cell TCR sequencing
and transcriptomic profiling. Overall, 15’000-20’000 cells can be
covered. The 10x Genomics strategy allows the analysis of clones
in a timely manner and was applied for the identification of a
signature of clone persistency in the circulation after ACT (140).
In the near future, intra-tumoral signatures of neoantigen and/or
tumor-reactive TCRs may be defined based on a comprehensive
database of TCRs combined to their ex vivo transcriptomic
profiling. We foresee that these signatures will enable the
direct identification of relevant TCR pairs from ex vivo tumor,
which will considerably facilitate and accelerate the selection of
TCR candidates for gene transfer therapy.
DISCUSSION AND FUTURE
PERSPECTIVES

In this review, we provided an overview of the available
therapeutic engineering systems, but also of the optimal carrier
cells for TCR gene transfer therapy, and finally we described
strategies to identify new TCR candidates. The field is constantly
evolving and future advances are likely to reshape the landscape
of TCR-ACT. Multiple clinical trials are currently ongoing in
different types of cancer (17) and the results are awaited with
much anticipation. In the future, we could take advantage of
unique intra-tumoral transcriptomic signatures from identified
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neoantigen-specific or tumor-reactive TCRs. These signatures
may then be used to directly and rapidly fish out TCRs of interest
for gene transfer therapy. Challenges of TCR-ACT remain,
in particular immune-editing following therapy, ultimately
leading to immune evasion and progression (86). To increase
the efficacy of TCR-ACT therapy and counter potential immune-
editing, multiple TCRs should be targeted, which is currently
possible with the CRISPR-Cas9 technology. Future strategies
may also focus on the simultaneous targeting of MHC-restricted
epitopes together with membrane antigens. Importantly, to
extend the reach of therapy and benefit more cancer patients,
‘shared’ neoantigens (141, 142) arising from ‘hotspots’mutations
shared between unrelated individuals should be preferentially
targeted and these approaches will be further explored in
upcoming clinical trials (e.g. NCT03190941). Additionally, it is
likely that next-generation improvement of carrier cells will
further potentiate TCR-ACT efficacy. Given the plethora of
existing technologies and their constant amelioration, together
with the many ongoing clinical trials, we expect the immune-
oncology field to be fundamentally modified by TCR gene
transfer therapy in the upcoming years.
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Somatic mutation-derived neoantigens, expressed only on tumor cells, may elicit
antitumor T-cell responses in cancer immunotherapies with minimal immune tolerance.
Neoantigens can be identified by multiple bioinformatics technologies, mainly based on
whole-exome sequencing. Personalized cancer vaccines and adoptive T cell therapies are
two primary treatment modalities targeting neoantigens, and both of them have shown
promising therapeutic effects. This review, summarizes the history of neoantigen-related
tumor control, introduces recent neoantigen screening and identification methods, and
discusses the role of neoantigen in cancer immunotherapies. Moreover, we propose the
challenges of targeting neoantigens for cancer treatment.

Keywords: neoantigen, immunotherapy, vaccine, adoptive cell therapy, personalized treatment
INTRODUCTION

Immunotherapy has revolutionized the management of cancer treatment. Targeting the immune
inhibitory regulators PD-1, PD-L1 or CTLA-4 is a common way to promote antitumor immune
responses. However, immunotherapy boosting the immune system to destroy cancer cells has
shown durable clinical responses in patients with various malignancies, but only in a subset of
patients (1). Moreover, the non-antigen-specific simulation can activate global T cells and damage
the human body, leading to immune-related adverse events, even fatal events (2). Thus substantial
efforts are needed to explore more specific and powerful immunotherapy approaches, either alone
or in combination.

As a genetic disease, cancer results from the accumulation of DNA damage and genetic
alterations (3). These non-synonymous somatic mutations generate neoepitopes, which can be
recognized by endogenous T cells as non-self-proteins and induce an antitumor immune response
(1, 4). In most cases, neoantigens arise from single nucleotide mutations (SNV), gene fusion,
alternative splicing, intron retention, insertion, and deletions. Other sources of neoantigens
including post-translational modifications and endogenous retrovirus-associated tumors (5). The
presentation of neoantigens is tumor-specific and able to elicit T cell-mediated antitumor immunity
(4). Therefore, neoantigen is an ideal immunotherapy candidate. Two primary neoantigen-based
therapeutic modalities have been explored in clinical practices: personalized vaccines and adoptive
cell therapy (ACT) (6). Here we review the history of neoantigens about tumor control and
August 2021 | Volume 11 | Article 682325188

https://www.frontiersin.org/articles/10.3389/fonc.2021.682325/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.682325/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:liujiyan1972@163.com
https://doi.org/10.3389/fonc.2021.682325
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.682325
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.682325&domain=pdf&date_stamp=2021-08-27


Zhu and Liu Application of Neoantigens in Immunotherapy
introduce recent neoantigen screening and identification
methods. We also discuss the role of neoantigen in cancer
immunotherapies and its current challenges.
HISTORICAL OVERVIEW OF TUMOR
NEOANTIGENS

The foundation of cancer immunology can date back to the
middle of the twentieth. Gross (7) reported that transplantable
tumors could produce active immunity against syngeneic mice.
Another research showed that carcinogen-induced tumors had
antigenic properties that the immune system could identify (8).
In 1988, De Plaen et al. (9) discovered the first neoantigen
recognized by cytolytic T lymphocytes (CTLs) in a
methylcholanthrene (MCA)-induced mouse tumor model. The
recognized neoantigen also could be identified in a cDNA library.
Then, CD4+ T cells stimulated tumor-specific immunity and
inhibited tumor growth after recognizing neoantigens in mice
(10). In 1996, mutated neoantigens recognized by tumor-
infiltrating lymphocytes (TILs) and CTLs were found in
human melanoma (11) and renal cell carcinoma (12),
respectively. Several years later, Rosenberg and his colleagues
(13) revealed nearly complete regression in a melanoma patient
after receiving autologous tumor-reactive TILs. T cells reactivity
against neoantigen was proved to predominate cellular
antitumor response in a long-term surviving melanoma patient
(14). A detailed analysis in a melanoma patient with complete
tumor regression after adoptive TILs transfer indicated that
tumor-reactive T cells could be persistent and relevant for
tumor regression (15). Collectively, neoantigen has the
potential to be the target of antitumor immunity.

Advances in next-generation sequencing (NGS) technologies
have provided access to compare mutations in the normal and
tumor genome in 2008 (16). Then NGS was used to demonstrate
tumor-specific antigens in an immunogenic mouse model, which
opened a new dimension for antigenic targets of cancer
immunity (17). By using NGS, Castle et al. (18) assessed the
antitumoral activity of the neoantigen vaccine in the B16
melanoma tumor model. Consequently, the vaccine-elicited T-
cell immunogenicity showed protective effects, providing new
insights into immunogenic neoantigen-based vaccine treatment
in human cancers (18). NGS also contributed to identify
neoantigens recognized by TILs in melanoma patients (19, 20)
and suggested the feasibility of neoantigen-specific T cell
reactivity analysis in human cancer immunotherapy (20).
Neoantigen was identified as the target of checkpoint blockade
immunotherapies in a sarcomas mouse model (21).
Concurrently, the adoptive transfer of neoantigen-specific
CD4+ T cells achieved tumor regression in a metastatic
epithelial cancer (22).

Further investigations found that neoantigen burden was
associated with immune checkpoint inhibitors’ therapeutic
responses in melanoma (23) and lung cancer patients (24). In
2015, Beatriz’s team first reported that vaccination with
neoantigen could augment T cell immunity in patients with
Frontiers in Oncology | www.frontiersin.org 289
advanced melanoma, demonstrating the efficacy and feasibility of
a personalized dendritic cell (DC)vaccine (25). A subsequent
study revealed that ACT targeting mutant KRAS neoantigen
mediated antitumor immune system, leading to regression in
patients with metastatic colon cancer (26). Furthermore, the
correlation between clonal neoantigen burden and response to
immune checkpoint blockade was defined, rendering it is
possible to target clonal neoantigens in T cell therapies (27).
Ott et al. treated melanoma patients with a peptide vaccine
targeting 20 predicted personal tumor neoantigens (28).
Consistent with the reactive T cells responses, four patients
had no recurrent diseases, and two patients had complete
tumor regression after anti-PD-1 was administrated to
recurrence (28). Then individualized RNA mutanome vaccine
also induced T cell infiltration and killed autologous tumor cells,
resulting in tumor regression and durable survival (29). The
personalized neoantigen vaccine and nivolumab combination
proved safe and immunogenicity in advanced solid tumors (30).
IDENTIFICATION OF TUMOR-SPECIFIC
NEOANTIGENS

With the advances of NGS, it has become feasible to acquire
genomic changes in some kinds of tumors, which provided the
basis of neoantigen identification (31). Thus, the current process
of predicting candidate neoantigens mainly includes three parts:
1) identify tumor-specific mutations using whole-genome
sequencing (WGS), whole-exome sequencing (WES), or RNA-
seq; 2) predict major histocompatibility complex (MHC) types,
which in humans are called human leukocyte antigen (HLA) and
neoantigen presentation; 3) prioritize and select candidate
neoantigens (4, 32).

WES should be performed to map the cancer mutanome from
the tumor and paired normal tissue. Combining RNA-seq can
determine whether the mutation is expressed in tumors and infer
its relative frequency overlapped with exome-based variants (4,
33). The minimum requirements for immunogenic and potential
therapeutic mutations include: 1) the mutant peptide must be
processed and presented by MHCmolecules, and 2) the presented
peptide-MHC complex must be recognized by endogenous T cells
(31). Antigen processing and presentation are complex but
different processes for MHC class I and II molecules (34).
Peptides binding to MHC-I molecules are usually of a small
length of 8-10 residues, while MHC-II molecules could bind to
longer peptides with a length of 11-20 amino acids (34–36).
Several tools depend on NGS data from WES, WGS, or RNA-
seq can be used to predict HLA alleles, including Optitype (37)
and Polysolver (38) for class I alleles, seq2HLA (39), Athlates (40),
HLAScan (41), HLAProfiler (42), PHLAT (43), and ArcasHLA
(44) for both class I and II HLA alleles. Following this,
computational algorithms [for example, NetMHC (45),
NetMHCpan (46, 47), and MHCflurry (48)] have been
developed to predict MHC binding affinity. The criteria of
binding affinities (IC50) are defined as high, intermediate to
weak, and non-binder with IC50 <150, 150-500, or >500 nM,
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respectively (the commonly described binding affinity threshold)
(49). The prioritization of candidate neoantigens can be achieved
by the predicted binding affinities alone or in combination with
the mutant expression level (50). On the other hand, mass
spectrometry (MS) based immunopeptidome has enabled the
discovery of thousands of MHC-associated neoantigens (51),
and the combination of MS and WES is a powerful weapon to
predict immunogenic tumor mutations (52). Compared to MS, T
cell-based assays can directly detect whether an MHC-presented
neoantigen has been recognized by T cells (4, 32). A variety of
methodologies [e.g., fluorescently labeled HLA tetramers or
multimers (53), the enzyme-linked immunosorbent spot
(ELISpot) (54)] that stimulate and test neoantigen-reactive T
cells have been reported. However, these cell-based assays are
currently costly, time-consuming, and technically challenging (4).
CLINICAL APPLICATION OF
NEOANTIGENS

The predicted tumor-specific neoantigens are relevant targets for
clinical personalized immunotherapies, either as a vaccine or a
cellular therapy product.

Vaccines
Personalized vaccines can be formulated as synthetic long
peptide (SLP), DNA, RNA, DC, and viral and bacteria (55).
Results from several clinical trials using neoantigen vaccines in
patients with melanoma or glioblastoma are encouraging (25, 28,
29, 56, 57). Carreno et al. (25) first found that the DC vaccine
augmented pre-existing neoantigen-specific immunity and
induced previously undetected neoantigen induced T cell
responses in three advanced melanoma patients. Neoantigens
are processed and presented by HLA-A*02:01 molecules. Two
subsequent clinical studies published in 2017 confirmed the
potential of personalized neoantigen vaccine in treating
patients with melanoma (28, 29). Ott et al. vaccinated six
patients with SLP targeting up to 20 predicted tumor
neoantigens (NCT01970358). Four of the six patients
experienced no tumor recurrence in the following 25 months
after vaccination, and another two patients with recurrence
achieved complete tumor regression after received anti-PD-1
therapy (28).

Further analysis indicated that eight high-risk patients had
durable neoantigens-induced T cell responses. It is encouraging
that almost four years after being treated with vaccines, all are
alive, and six have no active disease (58). Sahin et al. generated
the first individualized RNA mutanome vaccines in 13 patients
with stage melanoma (NCT02035956). Eight patients remained
tumor-free within the follow-up period. Two offive patients with
metastatic disease achieved objective responses, while one
presented a complete response to RNA vaccine combined with
PD-1 inhibitor (29).

Notably, two recent clinical trials emphasized the significance
of the tailored vaccines in treating glioblastoma (56, 57). First,
Keskin et al. treated glioblastoma patients with an individualized
Frontiers in Oncology | www.frontiersin.org 390
multi-epitope vaccine (NCT02287428), leading to increased
neoantigen-specific CD4+ and CD8+ T cells responses in
peripheral blood (56). Second, in another clinical trial, Hilf
et al. reported that the combination of personalized vaccine
and standard of care (NCT02149225) could induce sustained
CD8+ T cells responses and predominantly CD4+ Th1 cell
responses in glioblastoma patients (57).

Those encouraging results indicated that the personalized
neoantigen vaccine approach is feasible for immunologically
“cold” tumors with a low tumor mutation burden (56).
Another early DC-based vaccine study in ovarian cancer has
shown promising clinical outcomes without serious adverse
events (59). Vaccination upregulated T cells responses against
neoantigens, therefore elicited a broad antitumor immunity. In
line with previous studies, the neoantigen-based EpiGVAX
vaccine improved antitumor immunity in colorectal cancer
(60). Recently, Ott et al. conducted a clinical trial that
combined personalized neoantigen-based vaccine (NEO-PV-
01) with nivolumab in patients with advanced melanoma, non-
small cell lung cancer, and urothelial cancer (NCT02897765)
(30). T cells responsive to neoantigens were detected in all
vaccinated patients, while no serious adverse events were
observed. The increasing T cells induced by this approach
could control tumor growth and kill tumor cells, leading to
potential clinical benefits (30).

To date, dozens of clinical trials investigating personalized
neoantigen-based vaccines alone or in combination with
checkpoint inhibitors are underway in various cancers (Table 1).

Adoptive Cell Therapies
Another neoantigen-targeted treatment approach is adoptive cell
therapy (ACT). Natural or modified T cells are expanded ex vivo
and infused into patients to enhance T cell responses and kill
tumor cells. Adoptive T cell therapies include the adoptive
transfer of TILs, or of T cells genetically engineered to express
a T cell receptor (TCR), or a chimeric antigen receptor (CAR), as
well as other immune cells like natural killer cells (61).

Personal TILs could recognize neoepitopes derived from
somatic mutations were identified in gastrointestinal cancers
(62). Several studies have shown that the adoptive transfer of T
cells specific against oncogenic mutations could mediate tumor
regression in metastatic cholangiocarcinoma (22), colorectal
cancer (26), cervical cancer (63), and breast cancer (64). In
2014, Rosenberg et al. administrated neoantigen-reactive CD4+
TILs in a patient with metastatic cholangiocarcinoma
(NCT01174121), resulting in complete tumor regression (22).
This finding evidenced that CD4+ T cells against neoantigens
can be used to mediate epithelial cancer regression. Then a
patient with metastatic colorectal cancer was found to have
CD8+ T cells in TILs which could specifically target mutant
KRAS G12D (NCT01174121) (26). After infusion of the
HLA-C*08:02–restricted TILs, all lung metastases’ objective
regression was observed. One lesion that progressed nine
months later was proven to have the loss of chromosome 6
encoding the HLA-C*08:02 MHC class I molecule (26).
Additionally, therapeutic TILs against mutant neoantigens
induced immunodominant antitumor T cell responses instead
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of against human papillomavirus (HPV) antigens, resulting in
complete tumor regression in virally associated cervical cancer
(63). Successful adoptive therapy was also found in patients with
metastatic breast cancer (NCT01174121) (64). After received
TILs against four neoantigens (SLC3A2, KIAA0368, CADPS2,
and CTSB), the patient achieved durable tumor regression over
22 months (64). All these works supported that the adoptive
transfer of neoantigen-based TILs played a vital role
in immunotherapies.

Table 2 showed selected ongoing adoptive T cell therapy studies.
CHALLENGES

Despite recent advances, many challenges remain for the
application of personalized neoantigen-based vaccine or
adoptive cell transfer.

A critical issue that needs to be addressed is the expensive and
time-consuming manufacturing. Although the cost of genome
sequencing has decreased (65), it remains costly to identify
neoantigens and process good manufacturing practices. The
overall timeline from acquiring the patient’s sample to vaccine
administration was about 3 to 5 months (34). Reducing production
turnaround time is urgent, especially for patients with metastatic
disease. These cell-based experiments also are difficult to
standardize and require significant numbers of cells. Thus high-
throughput and unbiased computational strategies may need to
select neoantigens (4). An additional obstacle could be neoantigens
prediction and validation. Despite the current computational
neoantigen prediction algorithms and experimental validation
Frontiers in Oncology | www.frontiersin.org 491
approaches (tetramers or multimers, ELISpot) used to prioritize
neoantigens, some efforts are still needed to pursue further
optimization. Strategies include better predict MHC-peptide
binding and develop big datasets and new algorithms (4).
In addition, tumor heterogeneity is common and can be caused
by several factors, including 1) spontaneous mutations during
tumor progression, 2) tumor microenvironments regulation or
neoantigen loss (66), and 3) multiple lesions or even an individual
tumor originated from different subclones (61). Tumor
heterogeneity can reduce the accuracy of antigen clone
prediction in heterogeneous tumor masses. Therefore, it is vital
to analyze beneficial mutations carefully. In addition, fully
personalized immunotherapy targeting multiple clonal
neoantigens may also need to overcome the obstacle of tumor
heterogeneity (4, 61). Another challenge is to define the reliable
immune biomarkers to predict antitumor immunity and even
survival benefit. Although immune-related response criteria
(irRC) attempt to evaluate immunotherapeutic effects in clinical
practice, they may still not fully reflect all the characteristics of
clinical responses (67). Furthermore, the T cell responses induced
by neoantigens-based therapies may not directly be translated into
durable clinical responses. Thus, it is plausible to identify immune
response biomarkers in a systematic pattern.
CONCLUSIONS

Emerging evidence reveals that tumor neoantigens play an
essential role in antitumor immunity and successful cancer
immunotherapies. Both personalized neoantigen-based
TABLE 1 | Clinical trials of neoantigen vaccines.

ClinicalTrial.gov
identifier

Phases Enrollment status Cancer type Vaccine format Additional intervention Patient
accrual target

NCT03558945 Phase 1 Recruiting Pancreatic tumor peptide None 60
NCT04487093 Phase 1 Recruiting Non small cell lung cancer peptide EGFR-TKI/anti-angioge 20
NCT04397926 Phase 1 Recruiting Non small cell lung cancer peptide None 20
NCT02950766 Phase 1 Recruiting Renal cell carcinoma peptide Ipilimumab 19
NCT03359239 Phase 1 Recruiting Urothelial cancer peptide Atezolizumab 15
NCT02287428 Phase 1 Recruiting Glioblastoma peptide Pembrolizumab 56
NCT03956056 Phase 1 Recruiting Pancreatic cancer peptide None 15
NCT04117087 Phase 1 Recruiting Colorectal cancer, pancreatic

cancer
peptide Nivolumab, ipilimumab 30

NCT04248569 Phase 1 Recruiting Hepatocellular carcinoma peptide Nivolumab, ipilimumab 12
NCT04072900 Phase 1 Recruiting Melanoma peptide Toripalimab 30
NCT03953235 Phase 1/2 Recruiting Solid tumors peptide Nivolumab, ipilimumab 144
NCT03639714 Phase 1/2 Recruiting Solid tumors peptide Nivolumab, ipilimumab 214
NCT04161755 Phase 1 Recruiting Pancreatic cancer peptide Atezolizumab,

mFOLFIRINOX
20

NCT04024878 Phase 1 Recruiting Ovarian cancer peptide Nivolumab 30
NCT03552718 Phase 1 Recruiting Solid tumors peptide None 16
NCT04251117 Phase 1/2 Recruiting Hepatocellular carcinoma DNA Pembrolizumab 24
NCT03199040 Phase 1 Recruiting Triple negative breast cancer DNA Durvalumab 24
NCT04015700 Phase 1 Recruiting Glioblastoma DNA None 6
NCT03674073 Phase 1 Recruiting Hepatocellular carcinoma DC None 24
NCT04105582 Phase 1 Recruiting Triple negative breast cancer DC None 5
NCT04078269 Phase 1 Recruiting Non small cell lung cancer DC None 6
NCT04147078 Phase 1 Recruiting Solid tumors DC None 80
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vaccines and ACT approaches have shown encouraging
antitumor results. Decreased production turnaround time,
reduced manufacturing cost, better detection of immunogenic
neoantigens, improved computational algorithms, and effective
treatment biomarkers are expected to add the feasibility,
affordability, and momentum of neoantigen targeting therapies.
Neoantigen-based therapies have the potential to turn “cold”
tumors into “hot” ones. Therefore, it’s warranted to explore the
combinatorial approaches with other immunotherapies,
including checkpoint blockade therapies or conventional
treatments, including chemoradiotherapies, kinase inhibitors,
anti-angiogenesis therapies, et al. (68). Thus, it’s plausible to
think that neoantigen-based tailored therapies can be widely
performed in various cancers soon.
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Immune checkpoint inhibitors (ICIs) have made great progress in the field of tumors and
have become a promising direction of tumor treatment. With advancements in genomics
and bioinformatics technology, it is possible to individually analyze the neoantigens
produced by somatic mutations of each patient. Neoantigen load (NAL), a promising
biomarker for predicting the efficacy of ICIs, has been extensively studied. This article
reviews the research progress on NAL as a biomarker for predicting the anti-tumor effects
of ICI. First, we provide a definition of NAL, and summarize the detection methods, and
their relationship with tumor mutation burden. In addition, we describe the common
genomic sources of NAL. Finally, we review the predictive value of NAL as a tumor
prediction marker based on various clinical studies. This review focuses on the predictive
ability of NAL’s ICI efficacy against tumors. In melanoma, lung cancer, and gynecological
tumors, NAL can be considered a predictor of treatment efficacy. In contrast, the use of
NAL for urinary system and liver tumors requires further research. When NAL alone is
insufficient to predict efficacy, its combination with other indicators can improve prediction
efficiency. Evaluating the response of predictive biomarkers before the treatment initiation
is essential for guiding the clinical treatment of cancer. The predictive power of NAL has
great potential; however, it needs to be based on more accurate sequencing platforms
and technologies.

Keywords: cancer, neoantigen load, immune checkpoint inhibitor, biomarker, prognostic value
INTRODUCTION

Tumors acquire mutations as they develop and progress. These mutations can encode amino acid
sequences to translate different proteins, called tumor-specific antigens or neoantigens, which are
immunogenic and can be recognized and eliminated by immune cells (1, 2). Compared with
traditional chemotherapy and targeted therapy, immune checkpoint inhibitors (ICIs) therapy have
an enduring effect and efficacy in relieving the inhibitory effect of tumor cells on immune cells, thus
enhancing the immune response to cancer cells. Neoantigens elicit T-cell immunoreactivity and
sensitivity to ICIs (3).
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Studies have shown that new epitopes avoid the effect of
central T-cell tolerance, and endogenous T cells recognize new
epitopes and eliminate them, making neoantigens a promising
target for cancer immunotherapy (4–6). Currently, new
sequencing technologies, specialized calculation methods, and
the combination of human leukocyte antigen (HLA) are used to
predict neoantigen load (NAL). A certain correlation between
NAL and disease prognosis is an intrinsic property of neoplasms
(7). A preclinical study using a UVB-induced mouse melanoma
model reported that high NAL levels can predict the response
probability of ICIs (8). A series of follow-up clinical studies have
shown that higher NAL is associated with enhanced efficacy of
ICIs in melanoma, non-small cell lung carcinoma (NSCLC), and
colorectal cancer (6, 9–11).

These studies on NAL provide new directions for
individualized immunotherapy. Herein, we review patients
who were responsive to ICIs and had tumors with NAL
expression. This review provides new insights on prognostic
and predictive biomarkers of ICI sensitive cancers.
DEFINITION OF NAL

Tumor-specific expression, such as that of somatic mutations,
alternative splicing, fusion genes, non-coding RNA, and circular
RNA, may produce tumor-specific antigen polypeptides (12–15).
The formation of new antigens requires several steps. First, the
polypeptide enters the endoplasmic reticulum (ER) through a
transporter associated with the antigen processing (TAP)
complex. In the ER, these peptides bind to major
histocompatibility complex (MHC) class I molecules with
different affinities, and the peptide-MHC class I complex is
transported to the plasma membrane through the Golgi complex
and recognized by CD8+ cytotoxic T cells. Although T cells can
recognize antigens shared by normal and tumor cells, T-cell
receptors (TCRs) usually have a higher affinity for neoantigens
(16, 17). Some mutant proteins can be recognized by TCRs as
neoantigens, resulting in the initiation of an immune response. The
reactivity of TCRs expressed by tumor-infiltrating lymphocytes
(TILs) determines their ability to interact with tumor antigens on
antigen-presenting cells (APCs). Therefore, the TCR library is
related to the response and survival of cancer patients to immune
checkpoint blockade therapy (18, 19).
RELATIONSHIP BETWEEN NAL AND
TUMOR MUTATION BURDEN

The tumor mutation burden (TMB) generally refers to the
number of non-synonymous mutations per megabase (Mb) of
somatic cells in a specific genomic region TMB can be used to
estimate the ability and tumors to produce new antigens, and has
been proven to predict the efficacy of immunotherapy for a
variety of tumors (1, 20). In the past, whole-exome sequencing
(WES) was the first choice for TMB detection, accounting for 1%
Frontiers in Immunology | www.frontiersin.org 296
of the entire genome, including most known pathogenic
mutations (21). However, its application in clinical practice is
limited because of its high cost, large sample demand, and
complex data analysis (20, 22–24). With the identification of a
large number of tumor-related genes, the use of targeted
sequencing panels for tumor genome analysis has become
another option in clinical testing.

Early screening of new antigens was mainly performed using a
cDNA library, however, this is a very time-consuming and
laborious process. With the development of WES (25), whole-
genome sequencing (26), and second-generation sequencing of the
transcriptome (27), the cost of sequencing has been dramatically
reduced, making it possible to quickly and effectively perform
individual sequencing and neoantigen screening for each patient,
thereby laying the foundation for the clinical application of NAL.
In addition, large projects, such as The Cancer Genome Atlas
(TCGA) (25, 28) and the International Cancer Genome
Consortium (29), have identified cancer genomes across
multiple tumor types. Directly excavating tumor neoantigenic
epitopes in the databases and literature can identify high-
frequency mutation sites in solid tumors. In addition, single-cell
sequencing methods have been increasingly adopted as a high-
resolution alternative method to study gene expression, genomic
aberrations, microenvironment, and epigenetic modifications in
the constituent cells of various malignant and benign tumors (30,
31). Overall, neoantigens play a pivotal role in cancer
immunotherapy, especially in ICI therapy. The key to achieving
high effective individualized immunotherapy is the development
of new bioinformatics and calculation methods to improve the
sensitivity and specificity of antigen identification methods.

TMB has been used as a target for predicting the efficacy of ICI
therapy. Theoretically, tumor types with a high TMB often have a
high predictive NAL (32). The relationship between overall TMB/
NAL and ICI response in NSCLC and melanoma has been
clarified in various studies (6, 9, 11). The primary explanation is
that high TMB increases the formation and presentation of
immune neoantigens, thereby inducing effective anti-tumor
immune responses (33). Recent studies have confirmed that the
higher the TMB, the higher the tumor NAL, and the more likely to
a patient benefits from ICI therapy (34). It is speculated that
tumors with higher mutation burden have more tumor-specific
neoantigens, which stimulate the increase in the number of TILs
caused by the overexpression offset of immune checkpoint
modulators, such as the programmed death receptor 1 (PD-1)
or programmed cell death ligand 1 (PD-L1) (35–38). ICIs can
promote T cells to recognize tumors by antagonizing T-cell
activation inhibitory molecules, thereby restoring the anti-tumor
immune response (39).

However, TMB is not equivalent to NAL. Rizvi et al. showed
that the absolute burden of candidate neoantigens, but not the
frequency per non-synonymous mutation, correlated with
response, suggesting the importance of neoantigens in dictating
response (6). Another study analyzed the different patterns of
TMB and NAL numbers in NSCLC and found that half of the
oncogenic mutations did not produce neoantigens, suggesting
that TMB number is not a good surrogate marker of the
December 2021 | Volume 12 | Article 689076
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immunogenic neoantigen (40). TMB may thus be an indirect
measure of tumor immunogenicity because somatic mutations
must lead to amino acid changes in expressed proteins; thus,
peptides must be presented by HLA and subsequently cause cell
proliferation and kill tumors. Studies aiming to evaluate and
improve the prediction of NAL when high TMB cannot
effectively predict benefit from ICI therapy should be
conducted in the future.
NAL AND GENOMIC ALTERATIONS

Currently, a large number of clinical trials have explored whether
genemutations can beused to estimateNAL topredict the response
of various cancers to ICIs. The relationship between common
oncogenes and NAL has been explored. Driver mutant genes may
interfere with genome stability and affect immune status by
generating new antigens (41). One study reported that the
number of predicted neoantigens was significantly higher in
BRCA1/2 mutant tumors and that tumors with higher NAL were
associated with improved overall survival (OS) and higher
expression of immune genes associated with tumor cytotoxicity
(42). Another study found that patients with mutant TP53 (TP53-
MT) showed stronger tumor antigenicity and tumor antigen
presentation than patients with wild-type TP53 (TP53-WT) and
were more likely to benefit from ICI therapy (43). Tran et al. found
KRAS G12D mutations in lung metastasis resection tissues of
patients with rectal cancer and detected polyclonal CD8+ T cells
that specifically recognize KRAS G12D mutations in TILs (44).

Some rare gene mutations can also cause an increase in NAL;
however, findings on the prognosis remain inconclusive. For
example, Lei Zhang et al. reported that compared with patients
withwild-type tumors, patientswithMUC16mutant tumors have a
significant increase in NAL, which is related to improved the OS of
patients withMUC16mutation containing NSCLC andmelanoma
(45). Similarly, Wu et al. conducted a comprehensive analysis of
patients with TET1, a DNA demethylase that regulates DNA
methylation (46). They indicated that TET1 mutation was closely
associated with higher NAL, presenting a higher objective response
rate, better durable clinical benefit, longer progression-free survival
(PFS), and improved OS in patients receiving ICIs (47). A series of
studies have shown the relationship between geneticmutations and
NAL, such as TP53-MT (43), Eph receptor A5 mutations (48),
ZFHX3-MT (49), and AT-rich interaction domain 1A (50), which
are closely related to longer OS or PFS in patients treated with ICIs.

The DNA damage response system is essential for the
preservation of genomic integrity (51), and thus, mutations in
this system may lead to the appearance of new alleles that are
absent in normal DNA, resulting in an increase in NAL. Wang
et al. demonstrated that variations in the DNA damage response
pathway of homologous recombination repair (HRR), mismatch
repair, and base excision repair are associated with increased NAL
and increased levels of immune gene expression characteristics
(52). Similarly, a study reported that a deficiency in DNA double-
strand break repair, particularly HRR, is related to increased NAL
on the tumor cell surface, which subsequently activates the
adaptive immune response (53).
Frontiers in Immunology | www.frontiersin.org 397
In addition, other markers can represent an increase in NAL
and can thus be used as predictors of ICI efficacy. For example,
the centrosome protein 78 (CEP78) is required to regulate the
cell cycle (54). Huang et al. analyzed the RNA sequencing data of
a muscle-invasive bladder cancer cohort and found that high
CEP78 expression was correlated with high NAL; but was not
associated with OS (55). A similar study has shown that the
high expression of the aryl hydrocarbon receptor nuclear
translocator-like protein 1 is associated with increased NAL
and can be a clinically relevant biomarker for immunotherapy
(56). A low m6A score was also linked to increased NAL and
enhanced response to immunotherapy (57).

As more mutated genes are revealed to be clearly associated
with an increase in NAL, cancer patients can be better screened
for ICI therapy.
PROGNOSTIC VALUE OF
NAL IN TUMORS

The commonly used targets of immunotherapy are mainly
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or PD-
1/PD-L1, which can effectively treat a variety of malignant
tumors (58). Presently, it is generally believed that neoantigens
and neoantigen-specific T cells are closely related to tumor
regression after ICI therapy. Tumors with more mutations may
produce more new epitopes, which can be recognized by tumor-
infiltrating T cells. Checkpoint blocking antibodies activate these
T cells in the body and induce tumor regression (59) (Figure 1).

These mechanisms promote the success of ICI therapy and
NAL through several aspects. Tumors containing DNA repair
gene mutations, such asHR gene,MMR gene, or POLE mutations,
have a significantly higher mutation load and a significantly
greater number of T-cell types and other anti-tumor activities
than DNA repair wild-types tumors. The required immune cell
infiltration increases the efficacy of ICI therapy (60). Zhu et al.
analyzed the mechanism underlying the improved prognosis of
NAL-high (NAL-H) and NAL-medium (NAL-M) groups. They
found that the high- and medium-expression groups of NAL have
significantly overexpressed genes, which are related to IFN-g/
TNF-a, and are important predictors of immune activation (61).
In addition, these two groups of patients have a higher degree of
adaptive immune infiltration, whereas the low-expression group is
enriched with innate immune infiltration. A series of studies have
shown that the level of NAL can help screen this part of the
patients (6, 42, 60–74) (Table 1).

NAL in Melanoma
The emergence of ICIs has completely changed the clinical
management of metastatic melanoma, which has a higher
mutation burden than other solid tumors (75). A clinical trial
that included 110 patients with metastatic melanoma who were
treated with CTLA-4 inhibitors revealed the correlation between
NAL and clinical outcome, indicating that NAL could be used as a
potential biomarker patients selection (62). Another study that
focused on the detection of somatic mutations and the
transcriptome of metastatic melanoma to identify the factors
December 2021 | Volume 12 | Article 689076
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that may affect anti-PD-1 therapy found no statistical difference in
NAL between reactive and non-reactive tumors; thus, the NAL of
melanoma tumors before treatment was insufficient to predict the
response to anti-PD-1 therapy (63).

NAL in Lung Cancer
Neoantigens are associated with the response to anti-PD-1 therapy
inpatientswithNSCLC (6).Aprevious studyanalyzedmutations in
DNA repair genes using TCGA samples and found that NAL
correlated with the expression of PD-1, PD-L1, and IFN-g and
tended to increase the OS of patients with lung adenocarcinoma.
NAL is linked toDNA repairmutations, increased number of TILs,
and favorable survival outcomes (60). Furthermore, advanced
NSCLC treated with PD-1 and CTLA-4 blockade-based therapies
was profiled for intra-tumor heterogeneity (ITH) and neoantigen
burden. High NAL was associated with significantly longer OS in
patients with lung adenocarcinoma. Notably, patients with
homogeneous tumors (neoantigen ITH ≤1%) have a prolonged
OS compared with those with heterogeneous tumors (64). Rizvi
et al. analyzed NSCLC samples collected from patients treated with
pembrolizumab and reported that higher NAL in tumors was
associated with improved objective response, durable clinical
benefit, and PFS (6).

NAL in Gynecologic Cancer
Immunotherapy is also widely used in the field of gynecological
tumors, and identifying the ideal predictivemarkers for therapeutic
efficacy has always been the goal of researchers. A recent study
developed a new informatics workflow, which was applied to detect
Frontiers in Immunology | www.frontiersin.org 498
class I and class II HLA-bound neoantigens, and reported the
association between NAL and OS in breast cancer (65). A clinical
study including 812 gynecologic and breast cancer patients used a
NAL cutoff of 60% and 80% and divided the patients into three
groups. It was found that the NAL-high and NAL-middle groups
had a higher number of T cells, B cells, and cytotoxic lymphocytes,
whereas theNAL-low group was rich in eosinophils, NK cells, mast
cells, and interdigital cells, which represent adaptive immunity and
innate immunity, respectively. Furthermore, the NAL-high group
was associated with better OS, higher immune infiltration, and
lower intratumoral heterogeneity (61).

A previous study showed that hypermutated POLE-mutated
endometrial cancer has a higher predictive NAL and is related to
its prognosis (76). Shukla et al. investigated whether low-
mutation endometrial cancer has similar prognostic factors
and analyzed the data of 90 copy number-low/endometrioid
and 60 copy number-high/serous-like endometrial tumors using
the TCGA dataset. They found that the predicted NAL was
related to specific genomic changes, such as CTNNB1 mutation,
MYC amplification, and PIK3CA mutation. In copy number-
low/endometrioid tumors, high NAL was associated with
prolonged PFS, and low NAL in serous-like endometrial
tumors was associated with poor PFS (66).

Deficiencies in the homologous recombination (HR) pathway
are common in high-grade serous ovarian cancer (77, 78). The best
candidates for ICIs in HR-proficient ovarian cancer patients who
cannot benefit from poly(ADP-ribose) polymerase inhibition have
been investigated. In particilar, the exome and RNA sequencing
data of 80 patients with high-grade serous ovarian cancer were
A B

C

D

FIGURE 1 | The mechanism of tumor antigen processing, presentation on MHC class I, and improving efficacy of ICI therapy. (A) DNA mutations occurred and
synthesized proteins in the tumor cells. (B) The proteins are processed into smaller peptides, displayed by major histocompatibility complex (MHC) class I molecules
via APC cells, and recognized by CD8+ T effector cells as neoantigens. (C) Tumors expressing higher numbers of neoantigens are more likely to induce a
significantly greater number of T cells, while tumor cells inhibit T-cell function through immune checkpoints, such as PD-L1. (D) ICI therapy blocks immune
checkpoint suppression, reactivates T-cell function, and kills tumor cells. APC, antigen-presenting cell; ICI, immune checkpoint inhibitor; MHC, major
histocompatibility complex; PD-L1, programmed cell death ligand 1; PD-1, programmed death receptor 1; TCR, T-cell receptors.
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analyzed. They found that the OS and PFS of the high-NAL and
low-NAL groups were not statistically different. However, the
inclusion of HLA class I expression status in the survival analysis
showed that the subgroup of patientswith highNAL and highHLA
class I expression had the best PFS in HR-proficient high-grade
serous ovarian cancer patients (67). Similarly, in ovarian carcinoma
patients, early findings suggested that NAL is significantly
associated with OS but not with PFS (42).

NAL in Urothelial Cancer
Urothelial cancer has a high burden of somatic mutations, second
only to lung cancer and melanoma (79). A study described a
systematic method to effectively identify and verify immunogenic
neoantigens. This method was verified in some patients with
bladder tumors who received durvalumab treatment. In this
cohort, the most predicted neoantigen in all patients was
immunogenic in vitro. Finally, the patients were stratified by
TMB or NAL using the three-point method to evaluate OS. The
results showed that patients with higher NAL showed better OS.
Although the number of included cases was small, the study
demonstrated the predictive value of ICI therapy on bladder
cancer; thus, future studies should examine lager cohorts (68).
However, in a study of 38 muscle-invasive bladder cancer tissues
Frontiers in Immunology | www.frontiersin.org 599
frompatients who underwent definitive surgery. Choudhoury et al.
found that the relationship between filtered NAL and recurrence-
free survival (RFS) was not statistically significant (69). Two other
studies in clear-cell renal cell carcinoma have similar reported that
NAL is not associated with response to ICI therapy (70, 71).

NAL in Other Cancer
Mutations and NAL are associated with prolonged survival in
patients with newly diagnosed multiple myeloma (80). In a recent
study, researchers usednext-generation sequencingdata todescribe
the distribution of neoantigens inmultiplemyeloma and found that
in patientswithmultiplemyeloma recurrencewhen comparedwith
newly diagnosed multiple myeloma patients. In this study, the
neoantigenT-cell response of three patientswithmultiplemyeloma
recurrence, the NAL increased was verified and correlated with
improved clinical response (72). Osteosarcoma often presents with
lung metastases, and there is a lack of effective treatment strategies
for it (81). Researchers have sequenced the multi-region whole
exome and whole genome of 86 tumor regions of lung metastatic
osteosarcoma. Metastatic tumors showed better immunogenicity,
higherNAL, higherPD-L1expression, andmoreTILs thanprimary
tumors. One patient relapsed after the first primary tumor
operation and subsequent lung metastasis resection. After
TABLE 1 | Studies describing the impact of neoantigen load evaluation in the clinical research.

Type of cancer No of investigated
patients

Test for NAL Group Drug/treatment Result (whether NAL is associated
with clinical benefit)

Reference

Melanoma 110 WES High/low Ipilimumab YES (62)
Melanoma 38 WES High/low Pembrolizumab and nivolumab NO (63)
Non–small cell lung
cancer

34 WES High/low Pembrolizumab YES (6)

Non–small cell lung
cancer

NR RNA-sequencing High/low NR YES (60)

Non–small cell lung
cancer

139 NR High/low PD-1 and CTLA-4 blockade YES (64)

Breast cancer 835 WES and RNA
sequencing

high/
medium/
low

NR YES (65)

Gynecologic and
breast cancers

812 RNA-sequencing high/
medium/
low

Immunotherapy YES (61)

Endometrial cancers 150 WES High/low Immunotherapy YES (66)
Ovarian carcinoma 80 WES and RNA

sequencing
High/low Carboplatin

plus paclitaxel
YES (67)

Ovarian cancer 253 WES High/low PD-1/PD-L1 inhibitors YES (42)
Bladder tumors 37 RNA sequencing High/low Durvalumab YES (68)
Muscle-invasive
Bladder Cancer

38 WES High/low NR NO (69)

Clear cell renal cell
carcinoma

97 WES and RNA
sequencing

High/low Surgery alone or surgery plus
cytokines
tyrosine kinase inhibitors and
mTOR inhibitors

NO (70)

Clear cell renal cell
carcinoma

592 WES and RNA
sequencing

High/low PD-1 blockade NO (71)

Multiple myeloma 184 WES and RNA
sequencing

High/low Chemotherapy, or
immunotherapy

YES (72)

Osteosarcoma 321 WES High/low Pembrolizumab YES (73)
Hepatocellular
carcinoma

22 WES and RNA
sequencing

High/low Surgery alone or surgery plus
chemoradiotherapy

NO (74)
December 2021 | Volume 12 | Art
CTLA-4, cytotoxic T-lymphocyte-associated protein 4; NAL, neoantigen load; NR, not reported; PD-1, programmed death receptor 1; PD-L1, programmed cell death ligand 1; WES,
whole-exome sequencing.
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multiple chemotherapy regimens, the patient received six cycles of
pembrolizumab treatment. Lung metastases showed a partial
response, and some lung metastases had disappeared, thus
demonstrating that NAL may also be a potential biomarker for
lung metastatic osteosarcoma (73). Yang et al. investigated
neoantigens in hepatocellular carcinoma and concluded that OS
was not associated with NAL (74).
LIMITATIONS OF NAL IN
CLINICAL SETTINGS

In general, ICI therapy is not effective for all patients, and the
relationship between NAL and clinical outcomes is not consistent
among cancer types. However, the exact mechanisms responsible
for such differences remain unclear. Here, we will disscuss some of
these reasons. First, the rapid increase in the heterogeneity of
tumor cells may lead to the failure of immune monitoring, thereby
resulting in non-response to immunotherapy (64, 82–84). Tumors
with low neoantigen ITH are associated with longer PFS (64). One
possible explanation for this is that tumors with high ITH may
have more neoantigens, which are subsequently presented by DCs
to T cells in the form of MHC class I peptide complexes.
Eventually, the ITH level in these tumors changes from high to
low (85). Second, most previous studies did not comprehensively
analyze the mutation types, which would result in missing data
and inaccurate results. For example, they mostly included analysis
of somatic non-synonymous single nucleotide mutations and
small frameshift insertions and deletions but did not consider
large genome rearrangements or gene fusions. The contribution of
fusion genes exceeds one-third of the total NAL, and there is no
correlation between gene fusion NAL and OS. Thus, this will have
a significant impact on the results if there is no sufficient analysis
of mutation types (65). Third, most of the analyzed data are
derived from the TCGA database, wherein tumor samples are
screened and excluded by pathologists. This results in a loss of
information, which will inevitably affect the follow-up results (86).
In addition, some researchers have proposed that the ability of
neoantigens to activate T-cell recognition and the quality of T-cell
responses are more important in determining the immune
response during tumor evolution than the number of
neoantigens. Therefore, the quality rather than the quantity of
neoantigens may that affect the efficacy of ICI therapy (84). Some
studies with insufficient sample sizes may not have
reliable conclusions.

In addition, changes in the tumor genome landscape during
ICI therapy may lead to the possible evolution of NAL and affect
the efficacy of ICI therapy. Some patients who initially responded
to PD-1 blockade therapy developed resistance (87). Alternate
upregulation of immune checkpoints (88), loss of HLA
haplotypes (89), and somatic mutations in HLA or JAK1/JAK2
genes (90, 91) have been considered mechanisms by which some
patients evade immune recognition. Using comprehensive
genomic analysis, it was determined that the emergence of
acquired drug resistance during immune checkpoint blockade
therapy is related to the mutation and loss of putative tumor-
specific neoantigens, including the elimination of tumor
Frontiers in Immunology | www.frontiersin.org 6100
subclones or truncated changes in chromosomes (92). Several
recent studies have shown that the possible mechanism for the
change in the neoantigen mutation landscape during ICI
treatment is the induction of tumor resistance by losing
antigen or components of the antigen presentation pathway,
such as b-2 microglobulin (13, 44, 91, 93, 94). Simultaneous
targeting of multiple antigens or MHC class II-restricted
antigens can overcome this resistance. In addition, the
combination of checkpoint blocking therapy and T-cell therapy
can prevent T-cell failure and improve clinical efficacy (95).

To more accurately predict the therapeutic effect, NAL
combined with other indicators is a feasible method of testing.
A recent study reported no difference between the high-NAL and
the low-NAL groups; however, according to the subgroup analysis
results, the high-NAL and the high- HLA-I expression groups
were associated with better PFS than the other groups (67).
Similarly, in a clear-cell renal cell carcinoma cohort analyzed by
Matsushita et al., the high level of NAL combined with the
number of HLA-restricted neoepitopes correlated with better
clinical outcomes (70). Another study demonstrated that NAL
was not correlated with RFS, however, patients with more
neoantigens and low T-cell receptor b diversity had a prolonged
RFS compared with those with fewer neoantigens and high TCR
diversity (69). Therefore, when NAL alone cannot be used to
predict efficacy, the combined test will facilitate the application of
NAL and improve prediction efficiency.

CONCLUSIONS

ICIs provide cancer patients with more options, in addition to
targeted therapy drugs. However, the effectiveness of this treatment
is not satisfactory and many patients do not benefit from it. The
explorationof effective curative predictors is currently ongoing, and
NAL has a promising as a new generation of ICI biomarkers. With
rapid advancements in sequencing technologies, NAL can become
more reliable markers. NAL alone or in combination with other
indicators can provide accurate clinical guidance for patients
receiving immunotherapy.
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