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Mesenchymal stromal cells (MSC) are a promising therapy for inflammatory diseases.

However, MSC are large and become trapped in the lungs after intravenous infusion,

where they have a short survival time. To steer MSC immunoregulatory therapy beyond

the lungs, we generated nm-sized particles from MSC membranes (membrane particles,

MP), which have immunomodulatory properties, and investigated their internalization

and mode of interaction in macrophages subtypes and human umbilical vein endothelial

cells (HUVEC) under control and inflammatory conditions. We found that macrophages

and HUVEC take up MP in a dose, time, and temperature-dependent manner. Specific

inhibitors for endocytotic pathways revealed that MP internalization depends on heparan

sulfate proteoglycan-, dynamin-, and clathrin-mediated endocytosis but does not involve

caveolin-mediated endocytosis. MP uptake also involved the actin cytoskeleton and

phosphoinositide 3-kinase, which are implicated in macropinocytosis and phagocytosis.

Anti-inflammatory M2 macrophages take up more MP than pro-inflammatory M1

macrophages. In contrast, inflammatory conditions did not affect the MP uptake

by HUVEC. Moreover, MP induced both anti- and pro-inflammatory responses in

macrophages and HUVEC by affecting gene expression and cell surface proteins.

Our findings on the mechanisms of uptake of MP under different conditions help the

development of target-cell specific MP therapy to modulate immune responses.

Keywords: mesenchymal stromal cells, membrane particles, extracellular vesicles, endocytosis, phagocytosis,

macrophages, endothelial cells, immunomodulation

INTRODUCTION

Mesenchymal stromal cells (MSC) are self-renewing cells found in several postnatal organs
and tissues from which they can be easily isolated and expanded in in vitro conditions (1, 2).
Their immunomodulatory and regenerative properties enable MSC to be used as an potential
therapy for several diseases, including inflammatory bowel diseases (3, 4), rheumatoid arthritis (5),
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atherosclerosis (6), and kidney injury (7). However, culture-
expanded MSC are large and become trapped in the pulmonary
vascular network after intravenous administration (8–11). MSC
are no longer detected in the lungs after 24 h and their
cellular debris is phagocytized and distributed to other sites
of the body (12). Moreover, MSC transplantation can lead to
practical complications resulting from the use of living cells,
including immune responses, thrombosis, tumor formation, and
transmission of infections (2, 13–15).

To steer MSC therapy beyond the lungs, we generated nm-
sized vesicles from MSC membranes (membrane particles, MP).
MP have a spherical shape and are composed of MSC outer
cell membranes and organelles (unpublished data). Because of
their small size and vesicle shape, MP are potentially capable
of overcoming the pulmonary barrier. These particles contain
the membrane-bound proteins of MSC, several of which have
immunomodulatory, metabolic, and adhesion functions. We
previously reported that MP possess similar immune regulatory
properties as MSC with respect to the modulation of monocyte
function after being taken up by these cells (16). We also
found that MP, like naturally occurring extracellular vesicles,
are efficiently taken up by endothelial cells and modulate
their function (unpublished data), and (17, 18). However, the
specificity and mechanisms of MP uptake by target cells remain
unclear. Thorough understanding of the mechanisms of MP
uptake by different cell types is of great importance for the use
of MP for immune and regenerative therapy.

The mechanisms of particle uptake involve protein
interactions that facilitate subsequent endocytosis. The
internalization process can be divided into receptor-mediated
endocytosis, phagocytosis/macropinocytosis, and passive
penetration (19, 20). Endocytosis is mediated by specific
cell surface receptors. These are transmembrane proteins
that interact with specific extracellular molecules on vesicles
and subsequently initiate endocytosis, resulting in heparan
sulfate proteoglycans (HSPG)-, dynamin-, clathrin-, and
caveolin-mediated endocytosis (21, 22). Phagocytosis and
macropinocytosis are mediated by the polymerization of
actin and phosphoinositide 3-kinases (PI3K), which allow
the insertion of the cell membrane in the formation of
phagosomes (23–25). Moreover, the properties of particles
in combination with characteristics of the cellular and
extracellular environments, such as temperature, exposure
time, inflammatory environment, and type of receptor cells,
can govern the localization of particles in the target cells
(19, 24).

The ability of MP to interact with host cells, deliver their
biological effect, and provoke an immunological and regenerative
response is dependent on their uptake. Understanding the
mechanisms of uptake allows steering and conditioning of their
uptake and thereby control of their potential therapeutic effects.
Here, we characterized human MP uptake and internalization by
macrophages subtypes and endothelial cells, which are among the
first cell types to be exposed to infused MP and play a crucial
role in immune responses, and examined their function under
quiescent and inflammatory conditions.

MATERIALS AND METHODS

Isolation and Culture of MSC
MSC were obtained from subcutaneous adipose tissue from
13 healthy human donors that became available during
the living kidney donation procedure. All donors provided
written informed consent as approved by the Medical
Ethical Committee of the Erasmus University Medical Center
Rotterdam (protocol no. MEC-2006-190). MSC were isolated
and phenotypically characterized by the expression of CD13,
CD73, CD90, and CD105 and the absence of CD31 and CD45
as described previously (16). MSC were cultured in minimum
essential medium-α (MEM-α) (Sigma-Aldrich, St. Louis, MO,
USA) supplemented with 100 IU/ml penicillin, 100 mg/ml
streptomycin (P/S), 2mM L-glutamine, and 15% fetal bovine
serum (FBS) (all Lonza, Verviers, Belgium). Cultures were
kept at 37◦C, 5% CO2, and 95% humidity. At 90% confluence,
adherent cells were collected from culture flasks by incubation
in 0.05% trypsin-EDTA (Life Technologies, Bleiswijk, The
Netherlands) at 37◦C. MSC between passages 2 and 6 were used
for MP generation.

Generation of MSC Membrane Particles
MSC were collected, counted, washed twice with phosphate-
buffered saline (PBS), and centrifuged at 2,000× g for 5min. The
MSC pellet was incubated in Milli-Q water at 4◦C for ∼20min
to induce osmotic lysis and release of cell nuclei. This step was
carefully monitored by an optical microscope and stopped when
nuclei were released from the cells. Cell extracts were isolated
from unbroken cells and nuclei by centrifugation at 2,000 × g
for 20min. Then, the supernatant was transferred to Amicon
Ultra-15 filter tubes (100 kDa pore size) and concentrated by
centrifugation at 4,000 × g for 45min. The concentrated pellet
consisted of crude membranes and was diluted in filtered PBS.
To prepare a small and uniform size of MP, the membranes were
extruded three times through polycarbonate membrane filters
(Merck, KGaA, Darmstadt, Germany) using LiposoFast LF-50
(AVESTIN Europe, Mannheim, Germany) at 20 psi, first with a
pore size filter of 800 nm, then 400 nm, and finally 200 nm. All
procedures were performed on ice. To obtain fluorescent MP,
MSC were labeled with the red fluorescent PKH-26 dye (PKH-
MP), which intercalates into lipid bilayers, according to the
manufacturer’s instructions (Sigma-Aldrich), before generation
of MP.

Nanoparticle Tracking Analysis
Absolute size distribution and concentration of MP was
performed using the NTA by NanoSight NS300 (NanoSight
Ltd.). NTA automatically tracked and sized particles based
on Brownian motion and the diffusion coefficient. First,
the samples were diluted to obtain the right number of
particles (1 × 108 particles/ml) in accordance with the
manufacturer’s recommendations. Three measurements per
sample (30 s/measurement) were captured under the following
conditions: temperature 23.61 ± 0.8◦C; viscosity 0.92 ± 0.02 cP,
frames per second (25). After capture, the videos were analyzed
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to give the mean, mode, median, and estimated concentration for
each particle size with a detection threshold 3 (determined with a
protein solution).

Cryo-Transmission Electron Microscopy
The morphology of MP was visualized by Cryo-TEM. A thin
aqueous film was foMPed by applying a 3 µl droplet of
MP suspension to a specimen bare EM grid. For that, glow-
discharged holey carbon grids were used. Then, the grid was
blotted against filter paper, leaving a thin sample film covering
the grid holes. These films were vitrified by immersing the
grid into ethane, which was maintained at its melting point
by liquid nitrogen using a Vitrobot (Thermo Fisher Scientific
Company, Eindhoven, Netherlands) to prevent samples from
freezing at 95% humidity. The vitreous sample films were
transferred to a Tecnai Arctica microscope (Thermo Fisher
Scientific, Eindhoven, Netherlands). Images were taken at 200 Kv
with a field emission gun using a direct electron detector Falcon
III (Thermo Fisher Scientific).

Culture of Human Monocytic Cell Line
THP-1
THP-1 (ATCC: TIB-202) is a human monocytic cell line derived
from an acute monocytic leukemia patient. THP-1 cells were
cultured in RPMI 1640-GlutaMAX (Gibco, Thermo Fisher
Scientific) supplemented with 10% heat inactivated FBS and 1%
P/S at 37◦C under 5% CO2. Cells were grown to a density of 1–8
× 105 cells/ml and used for experiments between passage 2 and
10. Differentiation of THP1 cells into macrophage-like cells was
induced by stimulation with 50 ng/ml phorbol-12-myristate-13-
acetate (PMA) (Sigma) for 72 h. Following differentiation, PMA-
containing media was replaced with fresh media, and cells were
rested in culture for 24 h.

Culture of Human Umbilical Vein
Endothelial Cells
HUVEC pooled from multiple donors were purchased from
Promocell (Promocell, Germany). Cells were cultured in
endothelial cell basal medium (EBM, Cambrex Bio Science
Walkersville, Inc., Walkersville, MD, USA), endothelial cell
growth medium supplements (EGM, Cambrex Bio Science), 5%
FBS and 1% P/S at 37◦C under 5% CO2. At 90% confluence,
HUVEC were collected by incubation in 0.05% trypsin-EDTA
at 37◦C. HUVEC between passages 2 and 7 were used for
the experiments.

Uptake of MP by Macrophages and HUVEC
THP-1 macrophages (2 × 104 cells/ml) and HUVEC (1 × 104

cells/ml) were cultured with PKH-MP at different ratios (Cell:
MP; 1:10,000, 1:50,000, 1:100,000) at 37◦C, 5% CO2, and 95%
humidity. To determine if the uptake of MP was via an active
process, cells were alternatively incubated at 4◦C. MP uptake by
macrophages and HUVEC was analyzed through detection of
PKH positive cells by flow cytometry (FACS Canto II, Becton
Dickinson) at 1, 6, and 24 h.

For confocal microscopy analysis, THP-1 macrophages, and
HUVEC were cultured with PKH-MP (ratio 1:50,000) for 24 h.

Cell membranes of macrophages and HUVEC were labeled with
CD81-APC (BioLegend, San Diego, CA) and the nuclei with
10µM Hoechst 33342. Images were performed on a Leica TCS
SP5 confocal microscope (Leica Microsystems B.V., Science Park
Eindhoven, Netherlands) equipped with Leica Application Suite
– Advanced Fluorescence (LAS AF) software, DPSS 561 nm
lasers, using a 60 × (1.4 NA oil) objective. Images were
processed using ImageJ 1.48 (National Institutes of Health,
Washington, USA).

MP Uptake Inhibitors
Cells were preincubated for 30min at 37◦C in complete medium
containing Heparin (0.1–100µg/ml; H3149; Sigma), Dynasore
(20–160µM; D7693; Sigma), Chlorpromazine (1–50µM; C8138;
Sigma), Nystatin (5–40µg/ml; N6261; Sigma), Cytochalasin
D (0·25–2µM; C8273; Sigma), or Wortmannin (0.1–10µM;
W1628; Sigma). Cell viability was measured by flow cytometer
using BD Via-ProbeTM Cell Viability Solution containing 7-
AAD. PKH-MP were then added to the cells (ratio 1:100,000)
and analyzed after 6 h by flow cytometer. Following the results
of these experiments, combination treatment with inhibitors
of endocytosis (10µg/ml Heparin and 80µM Dynasore) and
phagocytosis (5µM Wortmannin) was also tested. Drug vehicle
controls were used for the experiments: 0.1% PBS as a control
for Heparin, Chlorpromazine, Nystatin, 0.1% dimethyl sulfoxide
(DMSO) for Dynasore, Cytochalasin D, and Wortmannin.

MP Uptake by Macrophages and HUVEC
Under Inflammatory Conditions
For simulating inflammatory conditions in vitro, macrophages
were primed with fresh medium supplemented with 20 ng/ml
IFNγ (Gibco, Thermo Fisher Scientific) and/or 100 ng/ml
lipopolysaccharides (LPS) (Sigma) to generate pro-inflammatory
M1 macrophages. For anti-inflammatory conditions,
macrophages were primed with 20 ng/ml IL-4 (PeproTech,
London, UK) and/or 20 ng/ml IL-13 (PeproTech) to generate
anti-inflammatory M2 macrophages. The incubation time
was 24 h for all the conditions. PKH-MP were then added
to macrophages (ratio 1:50,000) and incubated for another
24 h after which uptake was analyzed by flow cytometer and
confocal microscopy.

HUVEC were primed with fresh medium supplemented with
10 ng/ml TNFα and/or 50 ng/ml IFNγ for 24 h. MP were added
to the cells (ratio 1:50,000) and incubated for another 24 h
after which uptake was analyzed by flow cytometer. After 48 h,
HUVEC were collected for functional analysis by flow cytometer,
after staining with HLA-I-PacBlue (BD Biosciences, San Jose,
CA), HLA-II-PerCP (BioLegend), CD40-APC (Miltenyi Biotec,
Bergisch Gladbach, Germany), CD144-PE (Ebioscience, Thermo
Fisher Scientific).

Quantitative RT-PCR Analyses
Macrophages were polarized in M1 and M2 macrophages
by LPS, IFNγ, IL-4, and IL-13, respectively. HUVEC were
primed with TNFα and IFNγ. After 24 h, MP were added to
macrophages or HUVEC (ratio 1:50,000) and incubated for 48 h.
Cells were harvested, washed with PBS-diethylpyrocarbonate
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FIGURE 1 | Characterization of reconstructed membranes (MP) generated from MSC. (A) Schematic overview of the generation of MP. (B) Nanoparticle tracking

analysis (NTA) profile of MP. (C) MP size distribution. (D) Number of MP generated per MSC. (E) Cryo-electron microscopy image of MP. MP (arrow) show a spherical

shape and a visible lipid bilayer. Data in C and D are presented as mean ± SD from 12 independent preparations of MP.

(DEPC; Sigma-Aldrich), and stored at −80◦C. Total RNA
was isolated and 500 ng used for complementary DNA
(cDNA) synthesis. Gene expression was determined by
Quantitative Real-Time PCR (qPCR) using the TaqMan
Universal PCR Master Mix (Life Technologies), and the
assay-on-demand primer/probes for CXCL10 (Hs00171042),
CCR7 (Hs00171054), Interleukine-1β (IL-1β, Hs00174097),
Interleukine-10 (IL10, Hs00174086), tumor necrosis factor-α
(TNFα, Hs99999043), transforming growth factor- β (TGFβ,
Hs00171257), CCL22 (Hs00171080), and CD209 (Hs01588349)
for macrophages; and Interleukine-6 (IL-6, Hs00174131),
Interleukine-8 (IL-8, Hs00174114), and Endothelin (Hs

00174961) for HUVEC. 18S (Hs99999901) and glyceraldehyde

3-phosphate dehydrogenase (GAPDH, Hs99999905) mRNA

served as a housekeeping genes for macrophages and HUVEC
normalization, respectively.

Statistical Analysis
Data were analyzed for statistical significance by Student’s t-
test and one-way and two-ways ANOVA, and analysis using
GraphPad Prism 5 software. P < 0.05 was considered significant.

RESULTS

Characterization of MP
MP were generated from culture-expanded MSC and
characterized by NTA and Cryo-TEM to determine their
concentration, size distribution, and morphology (Figure 1A).
The percentage of particles with a size larger than 200 nm
was lower than 5% (Figure 1B). The mode size of MP was
134.1 ± 13.3 nm (Figure 1C). The average number of MP
generated per MSC was 2.4 × 105 ± 10.0 × 104 (Figure 1D)
There was no significant difference in size distribution or
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FIGURE 2 | Macrophages and HUVEC internalize MP in a dose-, time-, and temperature-dependent manner. MSC were labeled with PKH-26 before the generation

of MP (PKH-MP). PKH-MP were added to macrophages or HUVEC (ratios 1:10,000, 1:50,000, 1:100,000), incubated for 1, 6, and 24 h at 4 or 37◦C, and analyzed by

flow cytometer or confocal microscopy. (A) Percentage of macrophages and HUVEC positive for PKH-MP in different doses of MP over time, and (B) at 4 and 37◦C

over time. (C) Representative confocal microscopy analysis of MP uptake by macrophages and HUVEC (ratio 1:50,000) at time point 24 h. Staining for CD81 cell

membrane (green), Hoechst 33,342 nucleus (blue), and PKH26-MP (red) demonstrated that MP are internalized by macrophages and HUVEC. Data are presented as

mean ± SD from 3 to 4 experiments. ***P < 0.001 vs. ratio 1:10,000 and ###P < 0.001 vs. ratio 1:50,000 in (A); **P < 0.001 and **P < 0.001 vs. 4◦C in (B). Scale

bars: 20µm (macrophages) and 50µm (HUVEC).

concentration between MP and fluorescently-labeled MP (PKH-
MP) (Supplementary Figure 1). Cryo-TEM showed that MP
have a spherical shape and a discernible lipid bilayer. Some MP
were encapsulated inside larger MP (Figure 1E).

Macrophages and HUVEC Internalize MP
in a Dose-, Time-, and
Temperature-Dependent Manner
THP-1 macrophages and HUVEC were cultured with
PKH-MP at different ratios (1:10,000, 1:50,000, 1:100,000)

at 4 and 37◦C and analyzed by flow cytometer after 1,
6, and 24 h. We found that macrophages and HUVEC
uptake MP in a dose and time-dependent manner. MP
uptake increased with rising concentration and time of
incubation (Figure 2A) and was completely inhibited at
4◦C, which indicates a temperature-dependent process
(Figure 2B). The interaction of MP with macrophages and
HUVEC was visualized by confocal immunofluorescence
microscopy. The confocal microscopy images showed
that both macrophages and HUVEC internalized PKH-MP
(Figure 2C).
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MP Internalization Depends on HSPG-,
Dynamin- and Clathrin-Mediated
Endocytosis, but Does Not Involve
Caveolin-Mediated Endocytosis
To elucidate whether specific endocytic processes are responsible
for MP internalization, macrophages, and HUVEC were pre-
treated with pharmacological inhibitors that interfere in different
endocytosis pathways as described in Figure 3A. First, the effect
of different concentrations of the inhibitors on viability of the
recipient cells was evaluated (Supplementary Figure 2). For the
following experiments, we used the maximum doses that did not
affect cell viability.

MP bind to cells through cell-surface receptors, after which
they are internalized. Our results showed that heparan sulfate
proteoglycans (HSPGs) are involved in binding of MP as the
recipient cell-MP interaction is partially inhibited in the presence
of heparin (a soluble analog of HSPGs) (21) in a dose-dependent
manner (Figure 3B). Dynamin is a regulator of the endocytosis
processes and is involved in clathrin- and caveolin-dependent
routes (26).We blocked dynamin activity by its selective inhibitor
Dynasore, which dose-dependently reduced cellular uptake of
MP by macrophages and HUVEC (Figure 3C). To discriminate
endocytotic routes, we used Chlorpromazine and Nystatin to
block clathrin- and caveolin-mediated endocytosis, respectively.
We observed that Chlorpromazine led to a dose-dependent
inhibitory effect on MP uptake, and it was greater in HUVEC
than in macrophages (Figure 3D). Nystatin had no significant
effect on the uptake of MP by macrophages but it slightly
increased uptake of MP by HUVEC (Figure 3E). No effect was
observed with the carrier controls, PBS, or DMSO.

MP Internalization Involves Phagocytosis
and Macropinocytosis
Phagocytosis and macropinocytosis involve the polymerization
of actin and phagosome formation mediated by PI3K protein
(23, 24) as described in Figure 4A. Cytochalasin D, an inhibitor
of actin polymerization, dose-dependently inhibited MP uptake,
and its effect was stronger in macrophages than HUVEC
(Figure 4B). Wortmannin, an inhibitor of PI3K, led to a
dose-dependent blocking of MP uptake by both cell types
(Figure 4C). Combination treatment with 10µg/ml Heparin,
80µM Dynasore, and 5µM Wortmannin to block MP binding,
endocytosis, and phagocytosis resulted in a synergistic reduction
of MP uptake of more than 85% in both HUVEC and
macrophages (Figure 4D). No significant change in cell viability
was observed following combined treatment (Figure 4E).

MP Modulate Macrophage Function
To investigate the uptake of MP by macrophages under
different immunological conditions, we primed macrophages
with LPS and IFNγ (pro-inflammatory M1 macrophages)
or IL-4 and IL-13 (anti-inflammatory M2 macrophages).
Inflammatory conditions led to macrophage elongation and
anti-inflammatory conditions resulted in more rounded and
loosely attached macrophages within 24 h of stimulation
(Supplementary Figure 3A). M1 macrophages produced higher

gene expression levels of CXCL10, CCR7, IL-10, and TGFβ,
whereas M2 macrophages produced higher levels of CCL22 and
CD209 within 72 h of stimulation (Supplementary Figure 3B).
Significant changes in gene expression were not observed
for IL-10.

PKH-MP were added to macrophages and assessed by
flow cytometry after 24 h. We found that anti-inflammatory
M2 macrophages take up more efficiently MP than pro-
inflammatory M1 macrophages, which significantly decreased
their ability to internalizeMP as indicated in Figure 5A. Confocal
images showed that M1 and M2 macrophages internalized
PKH-MP into the cytoplasm (Figure 5B). mRNA expression
of a number of genes with pro- and anti-inflammatory
function was analyzed in macrophages by qPCR after 48 h
of stimulation with MP to determine whether MP could
affect macrophages gene expression and immune function. MP
induced anti- and pro-inflammatory genes in macrophages
exposed to LPS and IFNγ treatment. MP decreased the gene
expression of pro-inflammatory chemokines CXCL10 and CCR7
and increased anti-inflammatory cytokine IL-10 and TGFβ
in M1 macrophages. However, MP also increased the gene
expression of pro-inflammatory cytokines IL-1β and TNFα
(Figure 5C). Following IL-4 and IL-13 treatment, MP increased
gene expression of the anti-inflammatory chemokine CCL22
and the immunoregulatory marker CD209 in M2 macrophages
(Figure 5D).

MP Uptake Modulates HUVEC Function
Under Inflammatory Conditions
To investigate the uptake of MP by HUVEC in inflammatory
conditions, we primed HUVEC with single or combined TNFα
and IFNγ doses. HUVEC exposed to TNFα and IFNγ alone led
to cell elongation 24 h after stimulation and this morphological
change was more pronounced when TNFα and IFNγ were
combined (Supplementary Figure 4A). Moreover, HUVEC-
surface expression level of HLA-I, HLA-II, and costimulatory
molecule CD40 increased after single γ or combined doses
of TNFα and IFNγ for 72 h (Supplementary Figure 4B).
TNFα alone also increased HLA-I level. Significant changes
on HUVEC-surface expression were not observed for CD144
(vascular endothelial cadherin), which is involved in the
formation of endothelial intercellular junctions. TNFα and
IFNγ upregulated the mRNA expression of pro-inflammatory
cytokines IL-6 and IL-8 and of the angiogenic mediator
endothelin in HUVEC after 72 h (Supplementary Figure 4C).
TNFα alone also increased IL-8 gene expression.

We found that MP uptake by HUVEC after 24 h was
not affected under TNFα and IFNγ stimulation, alone or
in combination as indicated in Figure 6A. HUVEC were
collected for functional analysis by flow cytometry and
qPCR after 48 h of stimulation with MP to determine
whether MP affected HUVEC protein surface and gene
expression levels in quiescent and inflammatory environment
(TNFα and IFNγ). MP decreased the surface expression
level of HLA-I, HLA-II, and CD40 costimulatory molecule
on HUVEC under inflammatory conditions (Figure 6B).
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FIGURE 3 | MP uptake by macrophages and HUVEC depends on HSPG-, dynamin-, and clathrin-mediated endocytosis. Cells were preincubated for 30min at 37◦C

in complete medium containing Heparin (0.1, 1, and 10µg/ml), Dynasore (20, 40, and 80µM), Chlorpromazine (1, 5, and 25µM), or Nystatin (5, 10, and 20µg/ml).

PKH-MP were then added to cells (ratio 1:100,000) and analyzed after 6 h by flow cytometer. PBS and 0.1% DMSO were used as a control. (A) Receptor-mediated

endocytosis pathways. (B) Percentage of macrophages and HUVEC positive for PKH-MP in the presence of increasing concentrations of Heparin (B), Dynasore

(C), Chlorpromazine (D), and Nystatin (E). Data are presented as mean ± SD from 4 to 6 experiments. *P < 0.05 and ***P < 0.001 vs. vehicle; ###P < 0.001

vs. macrophages.

Moreover, MP increased the expression level of CD144
in non-inflammatory and inflammatory conditions. As in
macrophages, MP also induced a pro-inflammatory response in

HUVEC. MP upregulated gene expression of pro-inflammatory
cytokines IL-6 in inflammatory HUVEC and IL-8 in non-
inflammatory and inflammatory HUVEC. MP downregulated
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FIGURE 4 | MP internalization involves phagocytosis and macropinocytosis. Cells were preincubated for 30min at 37◦C in complete medium containing Cytochalasin

D (0.25, 0.5, and 1µM), Wortmannin (0.1, 0.5, and 10µM), or combination treatment with inhibitors of endocytosis (10µg/ml Heparin and 80µM Dynasore) and

phagocytosis (5µM Wortmannin). PKH-MP were then added to cells (ratio 1:100,000) and analyzed after 6 h by flow cytometer. PBS and 0.1% DMSO were used as a

control. (A) Phagocytosis and macropinocytosis mechanisms. Percentage of macrophages and HUVEC positive for PKH-MP in the presence of increasing

concentrations of Cytochalasin D (B), Wortmannin (C), and combined treatment (D). (E) Percentage of macrophage and HUVEC viability after combined treatment.

Data are presented as mean ± SD from 4 to 6 experiments. *P < 0.05, **P < 0.01 and ***P < 0.001 vs. vehicle; ##P < 0.001 vs. HUVEC.
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FIGURE 5 | MP uptake under pro- and anti-inflammatory conditions modulates macrophages function. Macrophages were primed with 100 ng/ml LPS and 20 ng/ml

IFNγ (M1 macrophages) or with 20 ng/ml IL-4 and 20 ng/ml IL-13 (M2 macrophages). (A,B) PKH-MP were added to macrophages (ratio 1:50,000) and incubated for

24 h for uptake analyze by flow cytometer and confocal microscopy. (A) Percentage of macrophages positive for PKH-MP in different culture conditions. (B)

Representative confocal microscopy analysis of MP uptake by macrophages under stimulation of IFNγ + LPS or IL-4 + IL-13. (C,D) Macrophages were separated

from MP and assessed by real-time RT-PCR after 48 h. mRNA expression of macrophages treated with MP in the presence of (C) LPS + IFNγ (CXCL10, CCR7, IL-1,

IL-10, TNFα, and TGFβ) and (D) IL-4 + IL-13 (CCL22 and CD209). Data are presented as mean ± SD from 6 experiments. *P < 0.05, **P < 0.01, and ***P < 0.001

vs. medium control or vs. macrophages without MP and #P < 0.05 vs. macrophages stimulated with IL-4 + Il-13. Scale bar: 20µm.

gene expression of endothelin under both conditions
(Figure 6C).

DISCUSSION

In this study, we investigated the mechanisms of MP uptake
and its effect on macrophage and HUVEC phenotype. Our
findings revealed that MSC-derived MP enter macrophages
and HUVEC through various mechanisms, involving receptor-
mediated endocytosis, macropinocytosis, and phagocytosis, and
modulate macrophage and HUVEC function. Identification of
mechanisms involved in MP internalization under different
conditions allows specific modulation of MP delivery to
target cells.

MSC-derived MP therapy has several advantages over MSC
themselves. MP contain the membrane-bound proteins of MSC
and the expression of these proteins on MP is not modified

by the environment after infusion as in living cells. Since
MP are not a living cellular product, there is no risk of
transformation after administration. Because of their small size,
MP are better capable of crossing the pulmonary barrier than
MSC. Unlike the collection of naturally occurring extracellular
vesicles, which are a mixture of vesicles budding off from the
cell membrane and endoplasmic reticulum, MP generation is
a simple, low-cost, and scalable process. The MP production
process offers a number of possibilities to modify their activity,
which would be more complex for extracellular vesicles. Firstly,
as the protein make-up of MP mirrors that of their mother MSC,
treatment of MSC with for instance pro-inflammatory cytokines
to induce the expression of membrane bound proteins with
anti-inflammatory function or lentiviral transfection of MSC to
induce the expression of a particular protein of interest would
result in the incorporation of such proteins in MP generated
from these MSC. Secondly, the closure of membrane fragments
into circular membrane particles allows the enclosure of drugs of
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FIGURE 6 | MP uptake modulates HUVEC function under inflammatory conditions. HUVEC were primed with single or combined doses of 10 ng/ml TNFα and

50 ng/ml IFNγ. PKH-MP were added to the cells (ratio 1:50,000) and incubated for 24 h after which uptake was analyzed by flow cytometer. (A) Percentage of HUVEC

positive for PKH-MP in different culture conditions. (B,C) HUVEC were separated from MP and assessed by flow cytometer and real-time RT-PCR after 48 h. (B)

HUVEC surface levels of HLA-I, HLA-II, CD40, and CD144 and (C) mRNA expression of HUVEC for IL-6, IL-8, and endothelin after treated with MP under quiescent or

TNFα + IFNγ conditions. Data are presented as mean ± SD from 6 experiments. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. medium control or HUVEC without MP.

interest, which will be delivered to target cells upon MP uptake.
In this way target cells can be treated withMP and simultaneously
with a drug.

The focus of the present study was on mechanisms of
MP uptake and internalization by two cell types with barrier
and immune patrolling functions, namely, endothelial cells
(represented by HUVEC) and macrophages (represented by
THP-1 macrophages). Cellular and extracellular environments,
such as temperature, exposure time, inflammatory environment,
and the available uptake machinery in target cells can govern
the bio-distribution of MP (19, 24). We established that
macrophages and HUVEC uptake MP in a dose-, time, and
temperature-dependent manner and internalized MP into the
cytoplasm. In our previous studies, we showed that MP do not

physically interact with T cells, but interact with monocytes
and HUVEC by binding to the plasma membrane through
fusion and internalization, respectively (16) (unpublished data).
This discrepancy might be explained by the fact that MP-cell
interaction is strictly dependent on cell contact, but T cell
activation requires soluble factors. Therefore, the interaction of
MP with the plasma membrane of macrophages and HUVEC
supports the idea that MP can be a natural delivery vehicle for
macrophage and endothelial cell targeting drugs. These results
need to be confirmed in primary cells as it is possible that the
cell lines used in the present paper generate different results than
primary cells.

In the present study, we choose to explore the mechanisms
of MP uptake by the use of a number of inhibitors at
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concentrations that did not induce cell death within 6 h. We
cannot rule out the possibility that longer incubations would
lead to cell death, or that mild cytotoxicity, not resulting in
cell death within 6 h, did occur. However the involvement of
some key pathways in MP uptake was already observed at
concentrations far below necrosis-inducing doses. Six different
mechanisms of endocytosis were addressed in this study:
HSPG-, dynamin-, clathrin-, caveolin-mediated endocytosis,
phagocytosis, and macropinocytosis. Our data revealed that
MP bind to cells via cell-surface receptors and are later
internalized through HSPG-, dynamin-, and clathrin-mediated
endocytosis. HUVEC internalized MP via clathrin-coated pits
more efficiently than macrophages, suggesting that there are
differences in the dominant uptake pathways between different
cell types (endothelial cells express more clathrin on their
cell membrane). In addition, we found that MP uptake is
a caveolin-independent process. Several studies report that
caveolin-independent, but dynamin-dependent endocytosis is
involved in the formation of non-coated vesicles in the plasma
membrane (21, 24, 27, 28). In cells without caveolin, the
same dynamin-dependent pathway can functionally replace
caveolar endocytosis (29). Moreover, studies suggest that the
internalization of particles is limited to particles smaller than
the size of caveolin (about 50–100 nm) (30, 31). However,
inhibition of caveolin pathway slightly increased uptake of MP
by HUVEC. We hypothesize that alterations in the caveolin
pathway can stimulate other uptake mechanisms as a result of
endocytic compensation.

We showed that MP internalization by macrophages
and HUVEC also depends on the actin cytoskeleton and
PI3K through phagocytosis and macropinocytosis process.
Macrophages internalized MP via actin-mediated mechanisms
more efficiently than HUVEC, indicating that MP are
preferentially internalized by phagocytes cells (24). Moreover,
combination treatment that interferes with HSPG-, dynamin,
and actin-mediated mechanism almost completely blocked MP
internalization, suggesting that receptor-mediated endocytosis,
and phagocytosis are processes that independently contribute to
MP uptake.

Our findings demonstrated that anti-inflammatory M2
macrophages take upmore efficientlyMP than pro-inflammatory
M1 macrophages. Tumor-associated macrophages exhibit the
tumor-promoting M2 phenotype rather than the tumor-
suppressing M1 phenotype (32). In the early stage of tumor
development, pro-inflammatory stimuli recruit monocytes and
polarize them into M1 macrophages (33), which inhibit cancer
progression and angiogenesis (34–36). However, in later stage,
tumor cells induce the differentiation of M1 macrophages into
M2 and in this way escape the immune system and support
tumor progression (37, 38). The efficient uptake of MP by M2
macrophages accompanied by increase production of CCL22
and CD209, which recruit regulatory T cells and dendritic
cells into cancer tissue (39, 40), enhanced the M2 immune
activity and can be used to target macrophages involved in
cancer progression. Such activity of MP could be further

enhanced by loading MP with anti-cancer drugs. Despite the
low uptake by M1 macrophages, MP regulated inflammation,
and induced the expression of tumor inhibitory cytokines IL1-
β and TNFα (34–36), indicating that M1 macrophages may
be a potential target for MP therapy in inflammatory diseases
and cancer.

Moreover, we demonstrated that MP promoted both pro-
and anti-inflammatory effects on macrophages and HUVEC
under different stimuli. We speculate that MP contain both
pro- and anti-inflammatory proteins fromMSC and induce gene
expression changes in target cells and, subsequently, support
the dynamic immunomodulatory activities of cell repair and
regeneration. In one of our previous studies, we detected intact
mRNA for VEGF, IL-8, and CD90 from the MSC on MP
samples (unpublished data). In the other study, we found CD90
from MSC was upregulated on monocytes after interaction with
MP (16). However, further studies are required to clarify the
MP components.

Taken together, this study broadens our knowledge on
the molecular pathways involved in the uptake of MP by
macrophages and HUVEC and on the effects of MP uptake
on cellular function. This knowledge can lead to the design of
MP with target cell specificity under particular inflammatory
conditions. MP thereby become a potential novel tool to
modulate inflammatory responses in immune and degenerative
diseases and cancer.
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Supplementary Figure 1 | Characterization of MP and PKH-MP. (A) Nanoparticle

tracking analysis (NTA) profile of MP and PKH-MP. (B) The size distribution of MP

and PKH-MP.

Supplementary Figure 2 | Macrophages and HUVEC viability after treating with

selective inhibitors. Cells were preincubated for 30min in complete medium

containing Heparin (0.1–100µg/ml), Dynasore (20–160µM), Chlorpromazine

(1–50µM), Nystatin (5–40µg/ml), Cytochalasin D (0.25–2µM), or Wortmannin

(0.1–10µM). PBS and 0.1% DMSO were used as a control. Cell viability was

measured by flow cytometer after 6 h using 7-AAD. Percentage of macrophage

(A) and HUVEC (B) viability. ∗P < 0.05 and ∗∗∗P < 0.001 vs. vehicle.

Supplementary Figure 3 | Macrophage profile under different culture conditions.

Macrophages were primed with 20 ng/ml IFNγ and 100 ng/ml LPS (inflammatory

condition), or 20 ng/ml IL-4 and 20 ng/ml IL-13 (anti-inflammatory condition). (A)

Photomicrographs showing characteristic morphologies of macrophages exposed

to different culture conditions for 24 h (Magnification 100x). (B) mRNA expression

of macrophages by real-time RT-PCR for CXCL10, CCR7, IL-1β, IL-10, TNFα,

TGFβ, CCL22, and CD209 after treated with IFNγ + LPS or IL-4 + IL-13 for 72 h.

Data are presented as mean ± SD from 6 experiments. ∗P < 0.05, ∗∗P < 0.01,

and ∗∗∗P < 0.001 vs. medium control.

Supplementary Figure 4 | HUVEC profile under different culture conditions.

HUVEC were primed with single or combined doses of 10 ng/ml TNFα and

50 ng/ml IFNγ and assessed by flow cytometer and real-time RT-PCR. (A)

Photographs showing characteristic morphologies of HUVEC exposed to different

culture conditions for 24 h (Magnification 100×). (B) HUVEC surface levels of

HLA-I, HLA-II, CD40, and CD144 and (C) mRNA expression of HUVEC for IL-6,

IL-8, and endothelin in the presence of single or combined doses of TNFα and

IFNγ after 72 h. Data are presented as mean ± SD from 6 experiments. ∗P <

0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 vs. medium control.
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The small molecule (molecular mass <900 Daltons) composition of extracellular vesicles

(EVs) produced by the pathogenic fungus Cryptococcus gattii is unknown, which

limits the understanding of the functions of cryptococcal EVs. In this study, we

analyzed the composition of small molecules in samples obtained from solid cultures

of C. gattii by a combination of chromatographic and spectrometric approaches, and

untargeted metabolomics. This analysis revealed previously unknown components of

EVs, including small peptides with known biological functions in other models. The

peptides found in C. gattii EVs had their chemical structure validated by chemical

approaches and comparison with authentic standards, and their functions tested in

a Galleria mellonella model of cryptococcal infection. One of the vesicular peptides

(isoleucine-proline-isoleucine, Ile-Pro-Ile) improved the survival of G. mellonella lethally

infected with C. gattii or C. neoformans. These results indicate that small molecules

exported in EVs are biologically active in Cryptococcus. Our study is the first to

characterize a fungal EV molecule inducing protection, pointing to an immunological

potential of extracellular peptides produced by C. gattii.

Keywords: Cryptococcus gatti, extracellular vesicles, small molecules, mass spectrometry, Galleria mellonella

INTRODUCTION

Cryptococcus gattii is a fungal pathogen that causes disease in immunocompetent individuals. This
fungus was responsible for outbreaks in the Pacific Northwest and in the Vancouver Island (1).
C. gattii virulent strains, which are endemic in Brazil (2), likely emerged from South America (3).
C. gattii can cause severe lung disease and death without dissemination. In contrast, its sibling
species C. neoformans disseminates readily to the central nervous system (CNS) and causes death
from meningoencephalitis (1). C. gattii and C. neformans share major virulence determinants,
including the ability to produce extracellular vesicles (EVs) (4–6). EVs are membranous structures
produced by prokaryotes and eukaryotes, including 14 fungal genera (7). In fungi, they were first
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characterized in culture fluids of C. neoformans (6). A decade
later, C. gattii was also demonstrated to produce EVs in liquid
matrices (4).

The perception that EVs are essential players in both
physiology and pathogenesis of fungi is now consolidated. Much
of the knowledge on the functions of fungal EVs has derived
from studies of their composition. During the last decade,
proteins, lipids, glycans, and nucleic acids were characterized as
components of fungal EVs (8, 9). Molecules of low molecular
mass, however, have been overlooked. Two recent studies have
characterized the small molecule composition of Histoplasma
capsulatum (10) and Penicillium digitatum EVs (11), but the low
molecular mass components of other fungal EVs are unknown.
Considering the molecular diversity found in bothH. capsulatum
and P. digitatum, it is plausible to predict thatmany still unknown
functions of EV components of low molecular mass remain to be
characterized. In fact, the metabolome analysis of P. digitatum
EVs revealed the presence of phytopathogenic molecules that
inhibited the germination of the plant host’s seeds (11).

We have recently described a protocol for the isolation of
cryptococcal EVs through which the vesicles were obtained
from solid fungal cultures (5). Although the general properties
of fungal EVs obtained from solid cultures resembled those
described for vesicles obtained from liquid media, a recent
analysis of the protein composition of cryptococcal EVs obtained
from solidmedium revealed important differences in comparison
to those obtained in early studies using liquid cultures (12, 13).
This observation and the fact that culture conditions impact
the composition of small molecules in H. capsulatum EVs (10)
reinforce the importance of the compositional characterization
of vesicles obtained from solid medium.

In this manuscript, we characterized the low mass
components of EVs produced by C. gattii. The synthesis of
some of the small molecules detected in the EVs revealed a
vesicular peptide that protected an invertebrate host against a
lethal challenge with C. gattii in a dose-dependent fashion. These
results indicate the existence of new venues of exploration of
the functions of EVs in fungal pathogens, and suggest that small
molecules of fungal EVs have immunological potential.

RESULTS

Small Molecule Characterization of
C. gattii EVs
C. gatti EV samples (Figures 1A,B) were prepared as
independent triplicates. EV extracts were analyzed by ultra-
high performance liquid chromatography-tandem mass
spectrometry (UHPLC-MS/MS), and the data submitted to
molecular networking analysis in the Global Natural Product
Social Molecular Networking (GNPS) platform, an interactive
online small molecule–focused tandem mass spectrometry data
curation and analysis infrastructure (14). Molecular networking
using high-resolution MS/MS spectra allows the organization of
vesicular compounds in a visual representation (15, 16). In this
analysis, each node is labeled by a precursor mass and represents
a MS/MS spectrum of a compound, and compounds of the same

molecular family are grouped together, connected by arrows,
forming clusters of similarity (15–18). Since the molecules can
be identified in a database through their fragmentation patterns
and are represented in the molecular networking, the benefits of
this approach include fast dereplication, identification of similar
compounds, and effortless comparisons between different
metabolic profiles or conditions (16, 17).

The cluster-based molecular networking analysis revealed
secondary metabolites present in the C. gattii EVs. The
molecules detected in our analysis were classified as EV
components if they were detected in the three replicates.
Using this criterion, our small molecule analysis identified 13
genuine components of the C. gattii EV samples (Table 1).
This analysis revealed previously unknown components of EVs,
including peptides, amino-acids, vitamins, and a carboxylic ester.
The metabolites were identified through hits in the GNPS
database (Supplementary Figures 1–13) and corresponded to
Ile-Pro-Ile (m/z 342.2384), Phe-Pro (m/z 263.1387), pyro
Glu-Ile (m/z 243.1335), pyro Glu-Pro (m/z 227.1022), Leu-
Pro (m/z 229.1544), pyro Glu-Phe (m/z 277.1180), Val-Leu-
Pro-Val-Pro (m/z 652.4025), cyclo (Trp-Pro) (m/z 284.1393),
cyclo (Tyr-Pro) (m/z 261.1234), tryptophan (m/z 205.0972),
asperphenamate (m/z 507.2278), riboflavin (m/z 377.1456), and
pantothenic acid (m/z 220.1181). The structures and MS data
of the detected metabolites are shown in Figure 1C, Table 1,
respectively. The cluster-based molecular networking analysis of
the C. gattii EV components is detailed in Figure 2.

For validation of some key GNPS hits, we performed
another round of spectrometric characterization of C. gattii
small molecules including additional criteria as follows. We
classified as authentic EV compounds those whose structure was
observed in EV extracts, but not in mock samples (extracted from
sterile culture medium). Finally, these compounds obligatorily
had chromatographic and spectrometric properties similar
to those of synthetic standards. Due to the easiness in
chemical synthesis and lack of detailed information in the
literature, the linear dipeptides Phe-Pro, pyro-Glu-Ile, pyro-
Glu-Pro, Leu-Pro, and pyro-Glu-Phe, and the tripeptide Ile-
Pro-Ile were selected for the validation assays. We then
searched for their presence in EV and mock extracts. The
six peptides selected for chemical synthesis were classified as
authentic EV components according to these criteria (Table 2).
Indeed, this analysis revealed similar fragmentation patterns
and retention times for the vesicle peptides and the standard
metabolites (Figure 3). The peptides exhibited typical fragments
of protonated amino acids at m/z 70.06, 86.09, 116.07, and
120.08 (Supplementary Figure 14). In compounds containing
proline, fragments at m/z 116.07 and 70.06 corresponded,
respectively, to the loss of protonated proline and subsequent loss
of H2O and CO. In peptides composed by isoleucine or leucine,
fragments at m/z 132.02 and 86.09 corresponded, respectively,
to protonated leucine/isoleucine and subsequent loss of H2O
and CO. Finally, the loss of H2O and CO in protonated
phenylalanine formed the major fragment ion atm/z 120.08 (19).
Assuming that the vesicular components are synthesized within
the cells and exported extracellularly, we also analyzed cellular
and supernatant extracts. The six peptides listed in Table 2 were
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FIGURE 1 | Small molecule characterization in EVs produced by C. gattii. (A). Transmission electron microscopy analysis (negative staining) of a C. gattii EV sample

submitted to chemical characterization by mass spectrometry. Scale bar, 100 nm. (B). Nanoparticle tracking analysis of EVs obtained from C. gattii cultures, showing

the typical distribution of EVs in the 50–250 nm range, and a minor population in the 300–400 nm range. EVs shown in (A,B) illustrate the characteristics found in three

independent samples with similar results. (C). Structures of the metabolites identified in C. gatti EVs through the GNPS MS/MS database. Amino acid codes represent

isoleucine (Ile), proline (Pro), phenylalanine (Phe), glutamic acid (Glu), leucine (Leu), valine (Val), tryptophan (Trp), and tyrosine (Tyr).

also found in these extracts (data not shown). These results were
highly reproducible. Of note, the analysis of the presence of
the peptides listed in Table 2 was performed independently by

two laboratory members in 12 EV samples produced by three
different strains of C. gattii. All six peptides were found in all
assays (data not shown).
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TABLE 1 | MS data obtained for Cryptococcus gattii secondary metabolites detected on EVs.

Compound Ion formula Calculated m/z Experimental m/z Error (ppm)

Ile-Pro-Ile (Diprotin A) C17H32N3O4 342.2392 342.2384 −1.1

Phe-Pro C14H19N2O3 263.1395 263.1387 −1.3

Pyro-Glu-Ile C11H19N2O4 243.1344 243.1335 −1.8

Pyro-Glu-Pro C10H15N2O4 227.1031 227.1022 −1.7

Leu-Pro C11H21N2O3 229.1552 229.1544 −1.4

Pyro-Glu-Phe C14H17N2O4 277.1188 277.1180 −1.0

Val-Leu-Pro-Val-Pro C31H54N7O8 652.4033 652.4025 −1.2

Cyclo(Trp-Pro) C16H18N3O2 284.1399 284.1393 −2.1

Cyclo(Tyr-Pro) C14H17N2O3 261.1239 261.1234 −1.9

Tryptophan C11H13N2O2 205.0977 205.0972 −2.4

Asperphenamate C32H31N2O4 507.2283 507.2278 −1.0

Riboflavin C17H21N4O6 377.1461 377.1456 −1.3

Pantothenic acid C9H18NO5 220.1184 220.1181 −1.3

FIGURE 2 | Molecular networking visualization of the peptides identified in the C. gattii EV cargo. Clusters (A,B) were obtained through molecular networking analysis

of the components of C. gattii EVs, which were obtained after organic extraction of secondary metabolites. Each node is represented as a compound’s MS/MS

spectrum. Blue nodes are represented as spectra of identified constituents obtained by comparison with the GNPS platform database. The peptides identified in the

GNPS platform had their identity further confirmed by comparison with synthetic standards. The gray nodes represent the spectra of their unknown analogs with

similar fragmentation patterns.
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TABLE 2 | Chromatographic identification of peptides in cryptococcal EVs*.

Peptide Control Mock EVs Synthetic standards

Ile-Pro-Ile NF NF 4.03 3.76

Phe-Pro NF NF 3.18 and 3.64 3.28 and 3.62

Pyro-Glu-Ile NF NF 3.55 3.53

Pyro-Glu-Pro NF NF 1.8 1.8

Leu-Pro NF NF 2.83 2.78

Pyro-Glu-Phe NF NF 4 4

Sample (retention time, min).

*Peptide identification was performed in blank samples (control) in addition to preparations obtained from sterile medium (mock) or fungal EVs. The results were compared to those

obtained with synthetic peptides. NF, not found.

FIGURE 3 | Structural analysis of EV peptides produced by C. gattii, including Ile-Pro-Ile (A), pyro-Glu-Phe (B), Phe-Pro (C), pyro-Glu-Ile (D), Leu-Pro (E), and

pyro-Glu-Pro (F). For each peptide, the chromatographic separation of synthetic standards, EV extracts, and control (mock) samples is presented on the left side of

each panel. The peaks with retention times similar to the corresponding standards (red boxed area) were selected for fragmentation by mass spectrometry (MS). The

MS fragmentation profiles are shown on the right side of each panel. These analyses confirmed that the structural match between the EV components and the

synthetic standards.

Biological Activity of EV Peptides of
C. gattii
After characterization of Ile-Pro-Ile, Phe-Pro, pyro-Glu-Ile,
pyro-Glu-Pro, Leu-Pro, and pyro-Glu-Phe as authentic EV
components of C. gattii, we used their synthetic forms to analyze
their possible biological activities. On the basis of the previously
reported ability of fungal peptides to kill bacteria (20), we initially
tested their antibacterial capacity against Staphylococcus aureus
and Pseudomonas aeruginosa.None of the peptides had any effect
on microbial growth (data not shown). Since cryptococcal EVs

regulate intercellular communication (4), we also speculated that
the peptides could mediate quorum sensing, Titan cell formation,

or capsule growth. Once again, none of the peptides had any
apparent effects on these processes in C. gattii (data not shown).

It has been recently reported that fungal EVs, including

cryptococcal vesicles, protect mice and the invertebrate host
Galleria mellonella against lethal challenges with pathogenic

fungi (12, 21–23). The vesicular molecules responsible for the

protection remained unknown. We then asked whether the
peptides listed in Table 2 could protect G. mellonella against

Frontiers in Immunology | www.frontiersin.org 5 March 2021 | Volume 12 | Article 65457422

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Reis et al. A Protective Tripeptide From Cryptococcus EVs

FIGURE 4 | Effects of the EV peptides (1 µg/µl, equivalent to 10 µg per animal) on the survival of G. mellonella lethally infected with C. gattii R265 (Cg; A) or C.

neoformans H99 (Cn; B). A. Ile-Pro-Ile was the only peptide prolonging the survival of G. mellonella. The other peptides did not interfere with the host’s survival. The

experiment illustrated in (A) was repeated using C. neoformans H99 instead of C. gattii R265, producing similar results. P-values resulting from the comparison of the

survival curves were obtained using Log-rank Mantel-Cox test with the Graphpad Prism software, version 9.0. P-values lower than 0.05 represented significant

statistical differences. Survival controls were obtained through injection of G. mellonella with PBS alone.

a lethal challenge with C. gattii. We compared the mortality
curves of G. mellonella infected with C. gattii alone with the
mortality of the invertebrate host receiving C. gattii and each
of the peptides at 1 µg/µl (equivalent to 10 µg per animal;
Figure 4A). Phe-Pro, pyro-Glu-Ile, pyro-Glu-Pro, Leu-Pro, and
pyro-Glu-Phe did not have any effect on the survival curves.
In contrast, the tripeptide Ile-Pro-Ile significantly improved the
survival of G. mellonella. We performed this experiment using
C. neoformans instead of C. gattii and obtained similar results
(Figure 4B). On the basis of these results, we selected Ile-Pro-Ile
for tests at lower concentrations (1, 0.5, and 0.1µg/µl, equivalent
to 10, 5, and 1 µg per animal) in the C. gattii infection model.
Once again, the peptide was highly efficient in prolonging the
survival of lethally infected G. mellonella in a dose-dependent
fashion (Figure 5A). The improved survival of lethally infected
G. mellonella was accompanied by a significant reduction in the
fungal burden, as concluded by counting colony forming units
(CFU) in peptide-treated (10µg per animal) and untreated larvae
at 3- and 5-days post infection (Figure 5B).

DISCUSSION

The knowledge of the functions of fungal EVs has continuously

increased in the recent years (7), but the biological roles of
low mass structures exported in EVs are unknown. Small

molecules secreted by Cryptococcus are immunologically active
and affect IL-1β inflammasome-dependent secretion (24), but
their association with EVs has not been established. In our

study, we aimed at proving the concept that biologically active
small molecules are exported in cryptococcal EVs. This idea
culminated with the characterization for the first time of a fungal
EV molecule inducing protection against pathogenic fungi.

Fungal EVs were demonstrated to mediate intercellular
communication (4), prion transmission (25), biofilm formation
associated with antifungal resistance (26), immunological
responses in vitro (23, 27–30), and protection of different hosts
against lethal challenges with fungal pathogens (12, 21–23).
In any of these examples, these biological effects attributed
to the EVs were correlated with the identification of the
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FIGURE 5 | Protection of G. mellonella against C. gattii (Cg) induced by Ile-Pro-Ile. (A). Survival of G. mellonella after injection with PBS alone (survival control) or with

C. gattii yeast cells (left panel) is shown, in addition to the comparative survival curves of G. mellonella after injection with C. gattii alone (red curves) or with the fungus

in the presence of variable concentrations of Ile-Pro-Ile. P-values resulting from the comparison of the survival curves were obtained using Log-rank Mantel-Cox test

with the Graphpad Prism software, version 9.0. P-values lower than 0.05 represented significant statistical differences. (B). Determination of fungal burden in infected

larvae. Untreated and Ile-Pro-Ile-treated (1 µg/µl, equivalent to 10 µg per animal) infected larvae were macerated at days 3- and 5- post infection for CFU

determination, which revealed a significantly decreased colonization of G. mellonella by C. gattii in peptide-treated systems (**). Paired statistical analysis after

comparison between untreated and peptide-treated systems were performed using Student’s t-test with the Graphpad Prism software, version 9.0.

bioactive vesicular molecules. The only known exception was
the protection of G. mellonella induced by cryptococcal EVs
enriched with sterol glycosides and capsular polysaccharides
(22). However, it is important to mention that the EVs in
this study were produced by genetically engineered cells and,
therefore, did not correspond to native vesicles. It remained also
unknown if other molecules influenced the protective effects,
since compositional studies have not been performed.

The identification of bioactive EV molecules is challenging
in multiple aspects. The compositional analysis of fungal EVs
in different models include a formidable variability in culture
conditions, since each of the fungal pathogens tested so far
manifest growth particularities. In this scenario, biomarkers of
fungal EVs are still not known, although it has been suggested
that mannoproteins and claudin-like Sur7 family proteins are
important components of vesicles produced by C. neoformans
and C. albicans, respectively (12, 31). The knowledge of small
molecules mediating important biological activities in fungal
EVs is even more limited. In H. capsulatum, carbohydrate
metabolites were abundantly detected in EVs, in addition to L-
ornithine and ethanolamine, among other small molecules (10).
Noteworthy, in the H. capsulatum study, the conditions used
for small molecule identification differed from those used in
our study. Under similar conditions, we identified a comparable
number of molecules in the EVs produced by the plant pathogen
P. digitatum (11) and in C. gattii (this study). Specifically, small
peptides were found in the EVs of these two distant species,

reinforcing the notion that this molecular class is present in
different fungal EVs. As for the possible detection of these
molecules as artifacts in the C. gattii model, it is noteworthy
that all identified peptides manifested high solubility in water,
being susceptible to efficient removal by washing if they were
not contained within the EVs. On the basis of their short
sequences (2-4 amino-acids), the possibility that they will form
insoluble, tertiary structures that will co-precipitate with EVs
during ultracentrifugation is negligible.

Fungal toxins were also identified in P. digitatum, but this
class of molecules is not normally produced by members the
Cryptococcus genus. In P. digitatum, EVs were characterized as
the carriers of tryptoquialanine A, a toxin that inhibited the
germination of orange seeds (11). So far, tryptoquialanine A is
the only low mass component of fungal EVs with a reported
function. In this model, the mycotoxin fungisporin was also
detected (11), but its function in fungal EVs remains to be
determined. Together, these findings illustrate the need for an
improved knowledge of the composition and functions of EV
metabolites in fungi.

The isolation of cryptococcal EVs from solid medium is
much more efficient than the similar protocols using liquid
cultures (5). RNA and proteins in cryptococcal EVs obtained
in liquid cultures were characterized in early studies (8, 32),
but their distribution in EVs obtained from solid medium
was only recently described in C. neoformans (12). Other
molecules remained unknown, and the metabolite composition
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of cryptococcal EVs has not been investigated so far. In our
study, we initially aimed at understanding what are the low
molecular weight components exported by C. gattii in solid
medium. We identified small molecules of different chemical
natures as putative components of cryptococcal EVs, but their
functions remain widely unknown. However, our chemical and
biological methods for structural validation revealed that one
tripeptide was capable to protect G. mellonella against lethal
challenges with C. gattii or C. neoformans. The mechanisms
by which the peptides induced protection against cryptococcal
infection remain unknown, but the immune response of G.
mellonella is innate and relies on the activity of hemocytes
in combination with antimicrobial peptides and lytic enzymes,
among others (33). Accordingly, immunity to Cryptococcus relies
on innate immune cells coordinating adaptive responses to
stimulate fungal killing (34). Therefore, we hypothesize that
the tripeptide identified in our study is an inducer of innate
responses, which have a key general role in the control of fungal
infections (35). Other possibilities, however, cannot be ruled out,
as follows below.

The peptide inducing protection against Cryptococcus in
G. mellonella was demonstrated to have important biological
activities in other models. Ile-Pro-Ile, also known as diprotin A,
is an inhibitor of dipeptidyl peptidase 4, an enzyme participating
in insulin metabolism (36) and chemotaxis of murine embryonic
stem cells toward stromal cell-derived factor-1 (37). Its role in
fungal physiology and/or pathogenesis was also suggested. In
Aspergillus fumigatus, a dipeptidyl peptidase 4 was purified from
fungal cultures and a role in binding to collagen and activation
of CD4+ T cells was speculated (38). It was also reported
that Blastomyces dermatitidis produces dipeptidyl peptidase 4.
In this model, the enzyme was responsible for disabling innate
immunity mechanisms and promoting pathogenicity (39). If
a similar mechanism is functional in the Cryptococcus model,
free Ile-Pro-Ile administered in the G. mellonella infection
model could inhibit the fungal dipeptidyl peptidase 4 with a
consequently decreased pathogenicity. Noteworthy, our study
did not elucidate any physiological or pathogenic functions.
Instead, we present a proof of concept that fungal EVs are
the vehicles for exporting biologically active molecules of low
molecular mass that may be involved in immunological and/or
pathogenic mechanisms. Since fungal EVs have been consistently
proposed as vaccine candidates in different models, the potential
of these findings can be substantial.

METHODS

Preparation of EVs
The EV-producing isolate used in this study was the standard
strain R265 of C. gattii. Of note, the R265 strain has been
recently reclassified as C. deuterogattii (40). In this study, we
kept its classification as C. gattii, as largely employed in the
Cryptococcus literature. EV isolation was based on the protocol
that we have recently established for C. gattii and other fungal
species (5). Briefly, One colony of C. gattii R265 cultivated in
solid Sabouraud’s medium was inoculated into yeast extract-
peptone-dextrose (YPD) medium (5ml) and cultivated for 1 day

at 30◦C with shaking. The cell density was adjusted to of 3.5 ×

107cells/ml in YPD. From this suspension, aliquots of 300µl were
taken for inoculation in YPD agar plates, which were cultivated
for 1 day at 30◦C. The cells were recovered from the plates
with an inoculation loop and transferred to a single centrifuge
tube containing 30ml of PBS filtered through 0.22-µm-pore
membranes. The cells were then removed by centrifugation
(5,000 × g for 15min at 4◦C), and the supernatants were
centrifuged again (15,000 × g for 15min at 4◦C) to remove
debris. The resulting supernatants were filtered through 0.45-
µm-pore syringe filters and again centrifuged (100,000 × g, 1 h
at 4◦C). Supernatants were discarded and pellets suspended in
300 µl of sterile PBS. To avoid the characterization of medium
components as EV molecules, mock (control) samples were
similarly prepared using sterile plates containing YPD. Four
petri dishes were used for each EV isolation, and EV isolation
was performed independently three times. In all samples, the
properties of EVs and their concentration were monitored by
nanoparticle tracking analysis (NTA) and transmission electron
microscopy as described by our group (5). The samples prepared
for mass spectrometry analyses had the typical properties of C.
gattii EVs, and were in the range of 4–6 × 1010 EVs within the
triplicate set.

Mass Spectrometry Analyses
C. gattii EVs were vacuum dried and extracted with 1ml of
methanol during 1 h in an ultrasonic bath. The extracts were
filtered (0.22µm), dried under a gentle N2 flux and stored
at −20◦C. EV extracts were resuspended in 200 µl of MeOH
and transferred into glass vials. Ultra high-performance liquid
chromatography-mass spectrometry (UHPLC-MS) analyses were
performed using a Thermo Scientific QExactive R© hybrid
Quadrupole-Orbitrap mass spectrometer with the following
parameters: electrospray ionization in positive mode, capillary
voltage at 3.5 kV; capillary temperature at 300◦C; S-lens of 50V
and m/z range of 100.00–1500.00. Tandem Mass spectrometry
(MS/MS) was performed using normalized collision energy
(NCE) of 20, 30, and 40 eV; maximum 5 precursors per cycle
were selected. Stationary phase was aWaters ACQUITY UPLC R©

BEH C18 1.7µm (2.1 × 50mm) column. Mobile phases were
0.1% (v/v) formic acid in water (A) and acetonitrile (B). Eluent
profile (A:B) 0–10min, gradient from 95:5 up to 2:98; held for
5min; 15–16.2min gradient up to 95:5; held for 3.8min. Flow
rate was 0.2mL min−1. Injection volume was 3 µL. UHPLC-MS
operation and spectra analyses were performed using Xcalibur
software (version 3.0.63).

Molecular Network
A molecular network was created using the online workflow
(https://ccms-ucsd.github.io/GNPSDocumentation/) on the
GNPS website (http://gnps.ucsd.edu). The data was filtered
by removing all MS/MS fragment ions within ±17 Da of the
precursor m/z. MS/MS spectra were window filtered by choosing
only the top 6 fragment ions in the ±50 Da window throughout
the spectrum. The precursor ion mass tolerance was set to 0.02
Da and a MS/MS fragment ion tolerance of 0.02 Da. A network
was then created where edges were filtered to have a cosine
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score above 0.5 and more than 5 matched peaks. Further, edges
between two nodes were kept in the network if and only if each
of the nodes appeared in each other’s respective top 10 most
similar nodes. Finally, the maximum size of a molecular family
was set to 100, and the lowest scoring edges were removed from
molecular families until the molecular family size was below
this threshold. The spectra in the network were then searched
against GNPS’ spectral libraries. The library spectra were filtered
in the same manner as the input data. All matches kept between
network spectra and library spectra were required to have a score
above 0.5 and at least 5 matched peaks (14).

Peptides
The peptides selected for biological tests were synthesized by
GenOne Biotechnologies (https://www.genone.com.br, Rio de
Janeiro, Brazil). Purity and structural properties of each peptide
were confirmed by high-performance liquid chromatography
coupled to mass spectrometry. All peptides were water-soluble
and had their purity at the 95% range.

Galleria mellonella Infection Model
Groups of 10 larvae (250–350mg) were used for injection
into the last left proleg using a Hamilton micro-syringe. The
injection systems (10 µl) consisted of sterile PBS alone, sterile
PBS containing 106 cells of C. gattii or C. neoformans, or
sterile PBS containing C. gattii or C. neoformans and Ile-Pro-
Ile, Phe-Pro, pyro-Glu-Ile, pyro-Glu-Pro, Leu-Pro, and pyro-
Glu-Phe at 1 µg/µl (equivalent to 10 µg per animal). Due to
its promising effects, Ile-Pro-Ile was also tested at 0.5, and 0.1
µg/µl (equivalent to 5 µg and 1 per animal) in a C. gattii model
of infection. Injected larvae were placed in sterile Petri dishes
and incubated at 37◦C. The survival was monitored daily in a
period of 7 days. Larvae were considered dead if they did not
respond to physical stimulus. Statistical analysis in the survival
curves was performed using the Log-rank Mantel-Cox test
with the Graphpad Prism software, version 9.0. Infected larvae
were also used for determination of fungal burden. Additional
experimental sets were prepared as described for survival curves,
but the experiments were interrupted at days 3- and 5- post
infection. Ile-Pro-Ile concentration in these assays corresponded
to 1 µg/µl. Surviving larvae (n = 5 at day 3-post infection; n =

4 at day 5-post infection) were macerated in 3ml PBS and 100
µl were plated onto Sabouraud agar plates supplemented with
1% penicillin and streptomycin. The plates were incubated at
30◦C for 48 h for further CFU counting. Paired statistical analysis
after comparison between untreated and peptide-treated systems

were performed using Student’s t-test with the Graphpad Prism
software, version 9.0.
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Dendritic cell (DC)-derived exosomes (DC EXO), natural nanoparticles of endosomal
origin, are under intense scrutiny in clinical trials for various inflammatory diseases. DC
EXO are eobiotic, meaning they are well-tolerated by the host; moreover, they can be
custom-tailored for immune-regulatory or -stimulatory functions, thus presenting
attractive opportunities for immune therapy. Previously we documented the efficacy of
immunoregulatory DCs EXO (regDCs EXO) as immunotherapy for inflammatory bone
disease, in an in-vivomodel. We showed a key role for encapsulated TGFb1 in promoting
a bone sparing immune response. However, the on- and off-target effects of these
therapeutic regDC EXO and how target signaling in acceptor cells is activated is unclear. In
the present report, therapeutic regDC EXOwere analyzed by high throughput proteomics,
with non-therapeutic EXO from immature DCs and mature DCs as controls, to identify
shared and distinct proteins and potential off-target proteins, as corroborated by
immunoblot. The predominant expression in regDC EXO of immunoregulatory proteins
as well as proteins involved in trafficking from the circulation to peripheral tissues, cell
surface binding, and transmigration, prompted us to investigate how these DC EXO are
biodistributed to major organs after intravenous injection. Live animal imaging showed
preferential accumulation of regDCs EXO in the lungs, followed by spleen and liver tissue.
In addition, TGFb1 in regDCs EXO sustained downstream signaling in acceptor DCs.
Blocking experiments suggested that sustaining TGFb1 signaling require initial interaction
of regDCs EXO with TGFb1R followed by internalization of regDCs EXO with TGFb1-
TGFb1R complex. Finally, these regDCs EXO that contain immunoregulatory cargo and
org March 2021 | Volume 12 | Article 636222128
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showed biodistribution to lungs could downregulate the main severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) target receptor, ACE2 on recipient lung
parenchymal cells via TGFb1 in-vitro. In conclusion, these results in mice may have
important immunotherapeutic implications for lung inflammatory disorders.
Keywords: dendritic cells, exosomes, lung diseases, immune therapy, COVID-19
INTRODUCTION

Exosomes (EXO) are nanoparticles of endosomal origin secreted
by all cells, including dendritic cells (DCs), the most potent
antigen presenting cells and “directors” of immune response (1).
EXO contain proteins, nucleic acids and lipid cargo that mediate
intercellular communication and signaling. They are secreted
into tissues and body fluids and can act locally or from at a
distance (2). In addition, EXO have desirable traits as a drug
delivery system, which includes their small size (30-150 nm),
their low clearance from target tissues and cargo preservation (3–
6). DC-derived EXO are already being used to deliver molecular
cargo to promote cytotoxic T cell responses for cancer (7) or
inhibit effector T cell responses and hyperinflammation in
autoimmune/inflammatory diseases (8).

We have previously reported important aspects of the
immunobiology and functions of DC-derived EXO subtypes,
isolated from DCs at distinct stages of maturation. Most notably
among these subtypes are immune-regulatory (regDCs EXO),
loaded with TGFb1 and IL10 and deficient in costimulatory
molecules. These have been shown to “reprogram” recipient DCs
and CD4+ T cells towards an immune-regulatory response in
vitro and in vivo. Immature or immune-null DC exo, (iDCs
EXO) and EXO from matured DCs, called immune-stimulatory
(stimDCs EXO), were also characterized for immune functions
(5). The stability of these EXO, their ability to protect their cargo,
and be retained at inflamed mucosal sites and inhibit
inflammatory bone loss has also been documented. Other
groups have had similar success with DC-derived EXO loaded
with immune-regulatory cargo in various disease states such as
inflammatory colitis and other inflammatory disease states (9–
11). Currently lacking however, is a more in-depth
characterization of the proteomic cargo of therapeutic DC
EXO and their biodistribution to different body organs, needed
to interpret the on-target and off-target effects of such immune
regulatory nanoparticles. In addition, how regDCs EXO
modulate cytokine signaling in recipient cells (5), needs
further investigations.

TGFb1 is a master regulator of the immune response (12, 13).
TGFb1 is a pleiotropic cytokine that, at high levels activates
SMAD2/3, inhibits DC maturation, and suppresses effector Th1
and Th2, and Th17 cells, thereby promoting anti-inflammatory
FoxP3+ T-regulatory cells. Moreover, TGFb1 may have other
therapeutic advantages in fatal infectious diseases such as
COVID-19, by inhibiting one of the SARS-CoV-2 attachments
and point of entry, like the ACE2 receptor (14–16).

SARS-CoV-2 is a coronavirus that gains entry primarily via
the mucosal respiratory tract and is the etiologic agent of the
org 229
COVID-19 pandemic (17). Symptoms of SARS-CoV-2 infection
can vary greatly, depending on host factors, from asymptomatic
infection to a severe and intense hyperinflammatory state
creating multiorgan failure, especially in the respiratory tract
(18). The severe inflammatory disease called acute respiratory
distress syndrome (ARDS) is one of the leading causes of death in
COVID-19 patients (19–21). An exaggerated immune/
inflammatory response, due to release of pro-inflammatory
cytokines, i.e. the “cytokine storm”, is a main characteristic of
ARDS in COVID-19 patients, and is responsible for producing
severe damage to numerous organs including the lung tissue and
frequently death (22, 23). One of the main entry points for SARS-
CoV-2 invasion is via its structural proteins such as spike (S) and
others, via the ACE2 expressing cells (24), however the ability to
regulate ACE2 using DC-derived EXO is unclear. Several
immunotherapeutic approaches to regulate the inflammatory
process or block ACE2 have been proposed, however the data
on efficacy and the associated adverse effects are contradictory
(25, 26).

The purpose of the present murine study was 4-fold: 1. To
characterize, in-depth, the proteomic cargo of immune
therapeutic and non-therapeutic DC EXO subtypes, to validate
on-target functions and potential off-target effects; 2. To track, in
live mice, the biodistribution patterns of intravenously injected
therapeutic regDCs EXO into major organs, including the lungs
in vivo; 3. To reveal how TGFb1 in regDCs EXO activates target
cell signaling; and 4. To test the ability of putative recipient cells
of SARS-CoV-2 to uptake regDC EXO, and thus influence
ACE2 expression.
METHODS

Ethics Statement
The Institutional Animal Care and Use Committee (IACUC) of
Augusta University (protocol # 2013-0586) approved all
experimental procedures on C57BL/6 mice.

Generation of Dendritic Cell Subsets
DC subsets including immature, immune-stimulatory (mature)
and immune-regulatory were generated as we previously described
(5, 27). Briefly, bone marrow was isolated from tibias and femurs of
6- to 8-week-old mice. Contaminating erythrocytes were lysed by
ACK cell lysing buffer (Invitrogen, Thermofisher scientific, and
Columbia, SC, USA). Cells were cultured in complete media
(RPMI 1640 containing 10% FBS and 100 IU/mL penicillin/
streptomycin) containing 20 ng/ml of murine GM-CSF and IL-4
(Peprotech, Rocky Hill, NJ, USA). Culture media was changed
March 2021 | Volume 12 | Article 636222
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every 2 days and cells were re-incubated on day 6 in EXO depleted
complete media to generate iDCs or in the presence of 1ug/ml LPS
(Sigma, St. Louis, M.O., USA) to generate mature stimDCs for 48
hours. regDCs were generated by adding TGFb1/IL10 recombinant
cytokines on Day 5, in which 1 × 107 DCs were incubated for 2
hours with 1ug/ml TGFb1 (R&D Systems, Inc. Minneapolis, MN)
and 1 mg/mL of the recombinant murine IL-10 (Cell Sciences,
Canton, Massachusetts) in a total volume of 1 mL serum-free
media, then diluted 1:10 in fresh complete media for 24 h. This is
followed by harvesting, washing and culturing for 48 h in EXO
depleted growth media. Culture supernatants were collected for
EXO isolation on day 8.

Phenotypic characterization of DCs subsets were defined by
expression level of differentiation and maturation markers
including CD11c+ (N418) (Invitrogen), MHCII (M5/114.15.2)
(Milteny biotech Auburn, CA,USA) and CD86 (GL1)
(Invitrogen), (Milteny biotech) using flow cytometry and by
expression level of pro/anti-inflammatory cytokine mRNA by
PCR , i n c l u d i n g I L 6 (Mm0 0 4 4 6 1 9 0 _m1 ) , I L 1 2
(Mm01288989_m1), IL23 (Mm00518984_m1), TGFb1:
Mm01 1 7 8 8 2 0 _m1 a n d TNF : Mm00 4 4 3 2 5 8 _m1 ,
(Thermofisher Scientific). Phenotypic profile was as follows:
regDCs : CD11c +, low MHCII+, low CD86+, low CD80 + and
low CD40+, iDCs: CD11c+, intermediate MHCII+,
intermediate CD86+, intermediate CD80+, intermediate IL6+,
intermediate IL12+ and intermediate IL23+ and stimDCs:
CD11c+, high MHCII+, high CD86+, high CD80+, high IL6+,
high IL12+ and high IL23 (5).

Exosome Isolation and Purification
EXO isolation was performed as previously described (9). Briefly,
culture supernatants were subjected to differential centrifugation
(successive centrifugations at 500 g for (5 min), 2000g for
(20 min), and 10,000 g for (30 min)) to eliminate cells and
debris, followed by ultrafiltration 3x with 0.2 um and 3x with 100
kDA filters (to remove free proteins) and ultracentrifugation for
1.5 h at 120,000 g. To further remove excess free proteins, EXO
pellets were washed with a large volume of PBS and ultra-
centrifuged 2x at 120,000 g for 1.5 h, and finally re-suspended
in 100 ul of PBS for further studies.

Cytokine Loading of Immunoregulatory
Dendritic Cell Exosomes
To increase the concentration of immunoregulatory factors
like TGFb1 and IL10, 1 x109 particles of regDC EXO were
actively loaded by sonication (3) with 5ug TGFb1 and 5ug
IL10 in 500 ul of PBS then filtered 3x by ultrafiltration with
100KDA filter to remove free proteins and washed 3x with
large volume of PBS and ultra-centrifugation at 120,000 g for
1.5 h to further purify EXO from free molecules, and finally re-
suspended in 100 ul of PBS. The supernatants of where regDCs
EXO were incubated were isolated and checked for any
contaminants of free TGFb1 and IL10 by ELISA. It is
important to mention that in our previous we have seen that
TGFb1 and IL10 were naturally loaded in regDCs EXO but
their concentrations were very low. Thus, additional artificial
Frontiers in Immunology | www.frontiersin.org 330
l o a d i n g wa s p e r f o rmed t o a c h i e v e t h e d e s i r e d
immunoregulatory effect (5).

Characterization of Dendritic
Cell-Derived Exosomes
DCs EXO subsets were characterized for their size distribution,
particle number and shape using nanotracking analysis and TEM
respectively, and for exosomal markers using Western blot (WB)
as we previously showed. In brief, nanoparticle tracking analysis
(NTA) was used to visualize and quantitate size and count of
nanoparticles in suspension using ZetaView PMX 110 (Particle
Metrix, Meerbusch, Germany) and software (ZetaView 8.02.28).
For TEM, EXO samples were loaded onto a copper grid. After
precipitation of EXO, the sample liquid was isolated, and counter
stained for 10 minutes with 2% phosphotungstic acid solution
and then placed under an incandescent lamp for 5 min. EXO
sample was then analyzed with TEM. For WB analysis, EXO
lysates were isolated to confirm principal EXO proteins using
anti-TSG101 (MA1-23296), anti-Alix (MA1-83977), anti-CD63
(10628D) and GRP94 (MA3-016) from (Invitrogen,
Thermofisher scientific West Columbia, SC, USA) as we
showed previously (5).

Liquid Chromatography–Mass
Spectrometry Analysis
Three biological replicates of regDCs, iDCs and stimDCs EXO
samples were lyophilized to dryness. 100 ul of freshly prepared
50mM ammonium bicarbonate buffer with 0.1% acid labile
detergent RapiGest SF Surfactant (Waters) was added to each
sample to resuspend exosomes. This was followed by reduction
with dithiothreitol, alkylation using iodoacetamide and digestion
overnight using trypsin (Thermo Scientific #90057).
Trifluoroacetic acid (TFA) was added to a final concentration
of 0.1% to the digested sample, followed by incubation at 37°C
for 40 minutes. Peptide digests were analyzed on an Orbitrap
Fusion tribrid mass spectrometer (Thermo Scientific) coupled
with an Ultimate 3000 nano-UPLC system (Thermo Scientific).
Two microliters of reconstituted peptide were first trapped and
washed on a Pepmap100 C18 trap (5um, 0.3X5mm) at 20ul/min
using 2% acetonitrile in water (with 0.1% formic acid) for 10
minutes and then separated on a Pepman 100 RSLC C18 column
(2.0 um, 75-mm × 150-mm) using a gradient of 2 to 40%
acetonitrile with 0.1% formic acid over 40 min at a flow rate of
300nl/min and a column temperature of 40°C. Analysis of DCs
EXO samples were then performed by data-dependent
acquisition in positive mode using Orbitrap MS analyzer for
precursor scan at 120,000 FWHM from 300 to 1500 m/z and ion-
trap MS analyzer for MS/MS scans in top speed mode. Collision-
induced dissociation (CID) was used as fragmentation method.
Raw data were processed using Proteome Discoverer (v1.4,
Thermo Scientific) and submitted for SequestHT search
against database of Uniport. Fixed value Peptide spectrum
matching (PSM) validator algorithm was used for peptide
spectrum matching validation. SequestHT search parameters
were 10 ppm precursor and 0.6 Da product ion tolerance, with
static Carbamidomethylation (+57.021 Da).
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Bioinformatics Analysis
Clustered heat map of the expression profiles of the differentially
expressed overlapped proteins in DCs EXO subtypes was
conducted by ClastVist software (28). All proteins that showed
a fold-change of at least 1.5 and satisfied p < 0.05 were
differentially expressed. The database of Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) were
performed using Web Gestalt software (29) to categorize
exclusive, shared, differentially, and non-differentially expressed
proteins in DCs EXO subsets. Functional categories and
pathways with a corrected p < 0.05 were considered as
significant. Percentage and significant level of DCs EXO
subsets proteins that are related to the identified pathways
were then identified.

In Vivo Imaging of Immunoregulatory
Dendritic Cell Exosomes and
Biodistribution
In Vivo Imaging
1.5 to 2 mCi of Indium-111-Oxine (AnazaoHealth Corporation,
Tampa, FL, USA) in PBS was incubated with 200 µl of exosomes
particles (~2 x 109 particles) at 37°C for 20 minutes. Free
Indium-111-Oxine was removed by repeated PBS washes
through an Amicon ultrafiltration device. Isolated Indium-111-
Oxine-labeled EXO were diluted to 200 µCi of radioactivity per
dose and injected intravenously via tail vein. Control animals
received an injection of equivalent activity of free Indium-111-
Oxine. Whole body and head single photon emission
spectroscopy (SPECT) images were acquired by Mediso’s
nanoScan microSPECT/CT system (Mediso, USA) at 3 and
24 h after injection. Images were reconstructed and imaging
software was used to calculate radioactivity in the major organs
and lymph nodes, as a percentage of total radioactivity (whole
body). Afterwards, organs were excised and weighed after the last
time point and ex vivo radioactivity measurements were
performed by gamma counter (Perkin-Elmer Packard Cobra II
Auto-Gamma) and expressed per mg wet weight (30).

Exosome Uptake In Vitro
For EXO uptake study in vitro, EXO labeled with Dil (D282,
Thermofisher Scientific) were co‐cultured with DCs or mouse
primary tracheal/bronchial respiratory epithelium cells
(PTBECs) (C57-6033, Cell Biologics, USA) for 24 h. Cells were
fixed and stained on glass slides with Alex flour 647 phalloidin
(A22287) and DAPI (D1306) (Invitrogen, Thermofisher
scientific West Columbia, SC, USA). In some experiment’s
cells were stained for TGFbR1 primary Antibody (PA5-32631)
and labeled with Goat anti-Rabbit IgG Secondary Antibody,
Alexa Fluor 488 conjugate (A27034) (Thermofisher Scientific,
USA). The images were then acquired by scanning confocal
fluorescence microscopy.

Cell Culture and Reagents
Immature DCs or mouse primary tracheal/bronchial epithelium
cells (PTBECs) were incubated with and without 108/ml EXO
Frontiers in Immunology | www.frontiersin.org 431
regDCs EXO, iDCs EXO in the presence or absence of TGFb1R
blocker (SB 431542, R and D, USA, endocytosis inhibitor
Cytochalasin D (C8273, Sigma Aldrich, USA) and free TGFb1
(with dose approximately matching that in regDCs EXO) for 1 h
and 24 hrs. Cells were harvested and ACE2 mRNA were
measured by polymerase chain reaction (PCR) while ACE2
surface markers levels were measured by flow cytometry.
Phosphorylation of TGb1 transcription factors was assessed by
western blot using anti PSMAD2/3 (D6G10), anti SMAD2/3
(D7G7), with anti-GAPDH (D16H11) or anti-Beta-actin
(8H10D10) as loading control (Cell Signaling Technology,
Danvers, MA, USA).

Flow Cytometry and Antibodies
FACS Staining Buffer (Thermofisher scientific) was used to stain
cells on ice. FC receptors (FcR) were blocked using mouse FcR
blocking reagent (Miltenyi Biotec) for 15 minutes protected from
light. Primary goat anti mouse ACE2 antibody (AF3437) at
recommended concentration were added for 30 minutes
followed by APC-conjugated Anti-Goat IgG Secondary
Antibody (F0108) (R and D). Cells were washed, re-suspended
in FACS buffer and data was acquired using Milteny biotech
machine and software.

Real-Time Polymerase Chain Reaction
Total RNA was isolated from DCs in vitro and from oral mucosal
(gingiva) tissue of the experimental groups used for in vivo
studies using QIAGEN RNeasy mini kit (Qiagen, Inc., Valencia,
CA, and USA). RNA purity and concentration were analyzed
with Nanodrop (NanoDrop 1000 UV-VIS Spectrophotometer
Software Ver.3.8.1, Thermofisher Scientific). Ratio of 260/280 of
2.0 was considered adequate for analysis and was reverse
transcribed to cDNA. Amplification by PCR was performed
using the High-Capacity cDNA Reverse Transcription Kit and
PCR in total reaction of 20 mL. Quantitative real-time PCR was
performed using TaqMan gene expression primers specific for
ACE 2 (Mm00446190_m1), and Beta Actin (Mm02619580_g1)
(Thermofisher Scientific). RT-PCR was run in StepOnePlus
Real-Time PCR System. Relative gene expression was
determined using delta-delta CT and plotted as relative
fold change.

Western Blotting
Cells or EXO lysates were extracted by addition of RIPA buffer
supplemented by protease/phosphatase inhibitor cocktail and
incubated for 20 minutes on ice. Proteins (10 mg) were separated
using 14% Mini-PROTEAN TGX Precast Protein Gel (Bio-Rad
Laboratories, Hercules, CA), and transferred onto PVDF
membranes (Sigma-Aldrich). After blocking with 5% nonfat
dry milk in PBS, the membrane was incubated with primary
antibodies, washed with TBST, and incubated with HRP-
conjugated secondary antibodies for 1 h at room temperature.
The membranes were developed by ECL kit and imaged with
ChemiDoc MP Imaging Gel (Bio-Rad Laboratories,
Hercules, CA).
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Statistical Analysis
Data analysis was performed by two-way or one ANOVA
followed by Tukey’s multiple-comparisons test using GraphPad
Prism 6 (GraphPad Software, La Jolla, CA). Values are expressed
as mean ± standard deviation (SD) and experiments were done
in triplicates.
RESULTS

Bona Fide Dendritic Cell Exosome
Subtypes for Proteomic,
Functional Studies
Phenotypic analysis of bone marrow derived donor DC subtypes
from C57BL/6 mice, as well as isolation, purification, and
validation procedures of DC EXO from these subtypes are
described in methods. Briefly, correct size distribution (30-150
nm) and shape of EXO were confirmed by nanoparticle tracking
analysis (Figure 1A) and TEM (Figure 1B), while surface
charge/colloidal stability was measured by the zeta potential
(Figure 1C). Our published report (5) further validated bona
fide EXO, based on their expression of CD63, CD81, Escort
related proteins including ALIX and TSG101 and negative
expression of GRP94.

Liquid Chromatography–Mass
Spectrometry Analysis of Dendritic Cell
Exosome Proteins
DC EXO subtypes are complex nano-particles, with on-target
functions typically consistent with the phenotype of source DCs.
This was previously reported by our group and includes
regulation by regDC EXO of inflammatory cytokines, and the
reprogramming of DC maturation and Treg-Th17 cell effector
differentiation (5). In this study, we focused on in-depth
proteomic LC-MS/MS analysis, to identify both on- and off-
target proteins that could lead to unintended consequences of
DC EXO therapy. We were able to identify 1276 overlapping or
shared proteins. Moreover, we identified 859,1054 and 634
proteins unique to regDCs EXO, stimDCs EXO and iDCs
EXO, respectively. These are illustrated in a Venn diagram
(Figure 2A). Details of the unique and overlapping proteins
are listed in Supplementary Tables 1–5. Of the overlapped
proteins, 235 showed significantly different expression levels. A
Clustered Heatmap performed using ClustVist software shows
the expression patterns of the differentially expressed proteins
(DEPs) in DCs EXO subsets (Figure 2B). More details of DEPs
showing PSM/sum of total PSM values in each DCs EXO subsets
are listed in Supporting Information Table 5.

By annotating unique and overlapped expressed proteins into
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
and identifying the top ten pathways, we discovered that regDC
EXO proteins are involved in: metabolic pathways, ubiquitin
mediated proteolysis, endocytosis, ABC transporters, Pyrimidine
metabolism, protein processing in the endoplasmic reticulum,
peroxisome, Wnt signaling pathway, and in cell cycle and mRNA
surveillance pathways. iDCs EXO proteins are involved in:
Frontiers in Immunology | www.frontiersin.org 532
neuroactive ligand receptor interactions, metabolic pathways,
ether lipid metabolism, lysosome, Toll-like receptor signaling
pathways, taste transduction, arachidonic acid metabolism, Fc
gamma R-mediated phagocytosis, cytokine-cytokine receptor
interaction and in the calcium signaling pathway. StimDCs
EXO proteins are involved in: metabolic pathways, ubiquitin
mediated proteolysis, MAPK signaling pathway, African
trypanosomiasis, cytokine-cytokine receptor interaction, Chagas
disease (American trypanosomiasis), pathways in cancer, purine
metabolism, pyrimidine metabolism and peroxisome.
Figures 3A–C. The non-DEPs were related to metabolic
pathways, ribosome, phagosome, pentose phosphate pathway,
leukocyte trans-endothelial migration, lysosome, protein
processing in endoplasmic reticulum, antigen processing and
presentation, Leishmaniasis and pathways in cancer (Figure
4A). DEPs were involved in ribosome, metabolic pathways,
phagosome, proteasome, regulation of actin cytoskeleton, Fc
gamma R-mediated phagocytosis, bacterial invasion of epithelial
cells, chemokine signaling pathway, endocytosis, and protein
processing in endoplasmic reticulum (Figure 4B). Collectively,
these data showed that DC EXO subsets are mostly involved in
pathways related to cellular immune function.

Further validation of high-throughput proteomic analysis
was evidenced by expression in all DCs EXO subsets of EXO
proteins CD63, CD81, CD82, C9, ALIX and TSG101 (Figure
5A), previously identified by WB and immunogold plating (5).
DC markers and immunological/inflammatory molecules
including CD11c, MHCII, CD205, ICAM1, SHIP1, LT3B,
PDL1, PDL2, STAT3, IL1a, IL1b, TNF, IL6, IL10 and TGFb1
were found in DC EXO. The negative regulators of
inflammation included SHIP1, LT3B, and STAT3 and were
expressed in both regDC EXO and stimDC EXO. In line with
our published WB data, ELISA and immune gold plating (5),
IL6, TNF, IL1b, and ILa were detected only in stimDCs EXO,
while TGFb1 and IL10 were exclusively detected in regDCs EXO
(Figure 5B). In addition, a variety of integrins and chemotactic
markers were differentially expressed in DCs EXO subsets
(Figure 6). RegDCs EXO contain integrin alpha-1, integrin
alpha-7, integrin beta-4 and CCR6, while stimDC EXO
contain integrin alpha-2, and CCL5 and iDC EXO contain
CCL24. DCs EXO subsets were also found to express integrin
alpha-2b, integrin alpha-4, integrin alpha-5, integrin alpha-L
(LFA-1), integrin alpha-M (CD11B), integrin alpha-V, integrin
beta-1, integrin beta-2, integrin beta-3, integrin beta-7 and
CD47, as well as other chemotactic factors including CCR7,
CCL6, CCL9, and CXCR2. Collectively, these data suggest that
DCs EXO subsets differentially express chemotactic and
adhesion molecules that may have a role in homing,
trafficking, cell adhesion and immune regulation. In addition,
regDCs EXO are enriched with naturally as well as artificially
loaded immunoregulatory/anti-inflammatory cargo.

We next analyzed the putative protein functions in DCs EXO
subtypes according to the biological process and molecular
function by Gene Ontology (GO) analysis. These results are
shown in detail in Figures 7 and 8. Briefly, while unique
expression patterns in DCs EXO subtypes were observed, all
March 2021 | Volume 12 | Article 636222
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are enriched in proteins of cellular localization, metabolism and
protein and phospholipid binding.

In Vivo Live Imaging and Anatomic
Biodistribution of Radioisotope
Indium-111-Oxine-Labeled Dendritic
Cell Exosome
Based on proteomic analysis, we predicted that regDCs EXO
would be particularly active in cellular trafficking and
localization, as well as cell surface receptor binding and
immune regulation. We therefore, conducted in vivo tracking
of regDCs EXO after intravenous injection in live mice. Indium-
111-Oxine-labeled-regDCs EXO or free label at equivalent
radioactivity was injected via tail vein. Three and 24 h after
administration, animals were scanned by SPECT/CT and
reconstructed images were analyzed and a percentage of
biodistribution to the lungs, liver, spleen and lymph nodes
was assessed. At the 3hr time point, we observed the highest
accumulation of labeled regDC EXO in the lungs (26 ± 2%),
followed by the liver (16 ± 2%), spleen (7 ± 1%) and lymph
nodes (6 ± .5%), while free label was rapidly dispersed to the
liver (Figures 9A, C). After 24 h, regDCs EXO were found
mainly in the liver, followed by the lungs, spleen and lymph
nodes, respectively (Figures 9B, D). These data suggest a
predilection of regDCs EXO for biodistribution to the lungs
shortly after IV injection and they persisted in the lungs for at
least 24 hrs. Afterwards, liver clearance appears to predominate.

To confirm these results, animals were euthanized, and
organs were harvested and weighed. The emitted gamma
activity from the harvested organs was measured to calculate
radioactivity per milligram of tissue. Consistent with in vivo
tracking, ex-vivo gamma activity measurements in animals
treated with Indium-111-Oxine -labeled regDCs EXO showed
gamma activity mostly in the lungs, liver and spleen. The gamma
Frontiers in Immunology | www.frontiersin.org 734
activity in these tissues was significantly higher for Indium-111-
Oxine -labeled regDCs EXO in comparison to those treated with
free In-111 (Supplementary Figure 1).

Immunoregulatory Dendritic Cell
Exosome Uptake Is Essential to Maintain
Sustained TGFb1R-Mediated Signaling
in Recipient Cells
To further examine mechanisms of action of regDC EXO, we
conducted coculture experiments with acceptor DCs using 108/ml
Dil-labeled regDCs EXO, iDCs EXO, free TGFb1 (at an equivalent
dosage to that contained within regDCs EXO by ELISA) or control
culture media, in the presence or absence of TGFb1R inhibitors or
the uptake inhibitor cytochalasin D (CytoD). Blocking the TGFb1
receptor with the specific inhibitor SB431542 in the recipient DCs
prevented the regDCs EXO mediated activation/phosphorylation
of TGFb1 signaling transcription factor SMAD2/3 after 24 h
(Figure 10A), suggesting its pivotal role in regDCs EXO
mediated TGFb1 signaling. Uptake of Dil-labeled regDC EXO,
along with TGFb1R, by recipient DCs was documented by
immunofluorescence confocal microscopy. In the absence of
regDCs EXO, TGFb1R was extracellular (Figure 10C), with no
phospho-SMAD2/3 evident at 1 or 24 h (Figure 10B). By contrast,
upon regDC EXO treatment, TGFb1R and regDCs EXO were
internalized (Figure 10C). High phosphorylation of SMAD2/3
induced by regDCs EXO was observed at 1 h and was sustained at
the 24 h timepoint (Figure 10B). CytoD prevented uptake of
regDC EXO (Figure 10C) and prevented sustained phospho-
SMAD2/3 signaling at 24 h, but not 1 h signaling (Figure 10B).
Free TGFb1 activated the 1 h signaling but did not sustain the 24h
time point (Figure 10B). IDC EXO were internalized, but TGFb1R
was extracellular (Figure 10C), with almost no phosphorylation of
SMAD2/3 (Figure 10B). Collectively, these data suggest optimum
and sustained intracellular signaling by regDC EXO involves early
A B

FIGURE 2 | (A) Venn diagram showing the overlap of proteins between regDCs EXO, iDCs EXO and StimDCs EXO. 1278 proteins were overlapped, whereas 859,
1,054, and 634 proteins were unique to regDCs EXO, stimDCs EXO, and iDCs EXO, respectively. (B) Heat map showing differential expression in the overlapped
proteins. The dots are color coded with red and blue indicating upregulation and downregulation, respectively.
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binding to TGFb1R, followed by internalization of TGFb1R and
sustained intercellular SMAD signaling.

Uptake of Immunoregulatory Dendritic
Cell Exosome by Recipient Primary
Tracheal/Bronchial Epithelial Cells,
Inhibiting ACE2 Expression, via a
TGFb1-Dependent Mechanism
In view of the predilection of regDC EXO for accumulation in
lung tissue, and consistent with their protein content, we
examined in vitro whether regDC EXO are taken up by
putative recipient cells of SARS-CoV-2 and how expression of
ACE2 (the main SARS-CoV-2 receptor), is influenced. PTBECs
were co-cultured with or without 108/ml dil-labeled regDCs
EXO, in the presence or absence of TGFb1R inhibitor for 24 h.
PTBECs take up regDCs EXO (Figure 11A), commensurate with
inhibition of ACE 2 expression (Figures 11B–D). Moreover,
Frontiers in Immunology | www.frontiersin.org 1037
blocking the TGFb1 receptor using specific inhibitor SB431542,
reduced the inhibitory effect of regDCs EXO on ACE2 levels,
suggesting a crucial role for TGFb1 in regDC EXO-mediated
inhibition of ACE 2 expression. This is consistent with previous
reports of TGFb1 cytokine induced inhibition of the ACE2
receptor, the SARS-CoV-2 point of entry (14–16).
DISCUSSION

Studies of EXO biology, especially of DC origin and their
therapeutic applications have rapidly expanded over the last
few years (31), revealing promising approaches to reprogram
harmful and excessive immune responses (32, 33). Advancing
such approaches into therapeutic applications requires more in-
depth knowledge of the proteomic cargo, biodistribution and
mechanism of action of DC EXO. This will enable investigators
A B

FIGURE 5 | (A) Identification of exosomal markers tetraspanins and ESCRT complex related proteins and (B) DCs markers, immune-stimulatory/inhibitory molecules
and pro/anti-inflammatory cytokines in DCs EXO.
FIGURE 6 | Identification of integrins and chemotactic factors in DCs EXO.
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A B

DC

FIGURE 9 | Biodistribution of IV administrated EXO at 3 h and 24 h time points. SPECT CT live animal in vivo imaging of free In-111 (left) or In-111-labeled
exosomes (right) in mice after (A) 3 h and (B) 24 h of IV administration. Radioactivity in lung, liver, spleen, and lymph nodes, relative to total, when free radiolabels or
bound to DC EXO, expressed as % determined using SPECT CT images after (C) 3 h and (D) 24 h of EXO IV injection. N = 3; *P < 0.05 by two-way ANOVA,
followed by Tukey’s multiple comparisons.
A B

C

FIGURE 10 | Early and sustained pSMAD2/3 signaling by uptake of regDC EXO with TGFbRI: (A) Immunoblot of Psmad2/3 and total smad2/3 in recipient DCs
co-cultured for 24 h with reg DCS EXO +/- TGFb1R inhibitor SB431542. Loading control was GAPDH (B) Immunoblot of Psmad2/3 and total smad2/3 in recipient
DCs co-cultured for 1 and 24 h with reg DC EXO or iDC EXO +/- cytochalasin D. Loading control was B-actin. (C) Uptake of Dil labeled EXO (red) by recipient DCs,
DAPI (blue), Alexa Fluor 680 phalloidin (violet) for FActin, Alexa flour 488 (green)-mouse anti-TGFbR1, visualized under confocal microscopy. Dil-DCs EXO or no EXO
were added to recipient DCs at a 10:1 EXO : DC ratio (24 h shown). Results shown are representative of three independent experiments.
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to optimize on-target effects and minimize off-target or
unintended consequences of such therapy.

We describe the complexity of the protein cargo of DC EXO
subtypes, which consist of 1278 shared proteins, and 859,1054
and 634 proteins unique to regDCs EXO, stimDCs EXO and
iDCs EXO, respectively (Figures 2 and 3). Our study revealed
that proteins associated with antigen presentation and
processing, phagosome, leukocyte endothelial transmigration
and chemokine signaling pathways were common to all DC
EXO subtypes, suggesting putative roles in homing to and entry
into peripheral tissues from circulation, uptake and modulation
of immune responses (Figure 4). PDL1 and PDL2, important
regulators of the immune response and targets for T cell-based
immunotherapy, were identified in all three DCs EXO subtypes.
Exosomal proteins including tetraspanins CD63, CD81, CD82,
CD9 and those involved in ESCRT complex ALIX and TSG101
were commonly expressed (Figure 5A) and further validated by
Western blotting and TEM analyses (5). DC markers including
CD11c and MHCII, and CD205 were detected in all three EXO
subsets, indicative of the parental cells of origin. ICAM1, a
positive regulator of leukocyte transmigration across the
endothelium and a promotor of naive T cells priming and
activation (34) was also found to be expressed in all DC EXO.

Apart from TGFb1 and IL-10, other proteins unique to
regDCs EXO included those in the Wnt signaling pathway;
namely, Wnt1 and Wnt9, both of which are involved in the
regulation of immune tolerance and bone formation (35). Other
negative regulators of the immune response were also identified
in regDCs EXO such as SHIP1 (36), ILT3B (37), STAT3 (38),
ostensibly resulting from parent DC treatment with TGFb1 or
Frontiers in Immunology | www.frontiersin.org 1441
IL10. These negative regulators were also found in stimDC EXO,
possibly upregulated in parent mature DC, counter regulatory to
overexpression of IL6, TNF, IL1b and IL1a. EXO proteins
involved in Toll-like receptor signaling pathway were elevated
in iDC EXO, consistent with antigen recognition functions of
parent immature DCs (39). Cytokine-cytokine receptor
interaction pathway proteins were common to iDCs EXO and
stimDCs EXO (Figure 3). All DCs EXO subset proteins are
detailed in Supplementary Tables 1–5.

The predominant express ion in regDC EXO of
immunoregulatory proteins, as well as proteins involved in
trafficking, cell surface binding, and transmigration, sparked
our interest in how these EXO might biodistribute to major
organs. Many previous studies used either fluorescence imaging
or bioluminescence imaging to track administered EXO. Our
nuclear imaging approach, has many advantages over these
technologies (5, 40–42), including a superior tissue
penetration, a higher resolution, a higher signal to noise ratio
and an improved sensitivity for deeper organs, thus enabling
more accurate imaging (43–45). Blood levels of EXO after IV
administration are a dynamic process, and decrease by greater
than 50% within 30 minutes of administration (46), with
complete elimination by 4 h (43). An initial phase of
distribution to the lungs, spleen and liver within minutes, is
followed by an elimination phase through the liver and kidney
(42, 46, 47). In our study, a significant accumulation of regDC
EXO occurred after 3 h in lung tissue, followed by liver, splenic
tissue and lymph nodes (Figures 9A, B). Significant levels of
regDC EXO persisted in lungs for up to 24 h, with a notable
increase in hepatic and splenic tissue (Figures 9C, D). Ex-vivo
A B

DC

FIGURE 11 | regDCs EXO are taken up by acceptor PBTECs, inhibiting ACE2 expression in vitro. (A) Uptake of Dil labeled EXO (red) by PBTECs, counterstained
with nuclear stain DAPI (blue), phalloidin (Alex flour 647) for cell membrane and visualized under confocal microscopy. ACE2 mRNA expression (B) and flow
cytometry scattergrams showing ACE2 positive cells percentage (C) in PBTECs treated or not treated with iDCs or regDCs EXO in the presence or absence of
TGFbR1 inhibitor SB431542. (D) representative bar graph of (C). Results shown are representative of three independent experiments (*P < 0.05 by one-way ANOVA
followed by Tukey’s multiple comparisons).
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gamma radiation measurements of postmortem tissue confirmed
the in vivo SPECT/CT analysis (SFig.1).

Chemokine receptors and integrins and their binding
partners shape the homing patterns of cells and ostensibly,
EXO in the body (48). Of particular note are the chemotactic
and adhesion factors identified in reg DCs EXO (Figure 6),
including CCR6, CCR7, CXCR2, Integrin alpha-M (CD11b),
Integrin beta-1 (CD29), CD47, Integrin alpha-1 (CD49a),
ICAM-1(CD54), integrin beta-2, integrin alpha-5, and integrin
alpha-L (LFA1) (49–60). CCR7 (50) mediates blood-derived
lymphocyte trafficking to bronchial associated lymphoid tissue
while CXCR2 directs neutrophil recruitment to the lungs (51).
CD49a expression promotes selective trafficking and retention of
lymphocytes into respiratory tissues (52–54). LFA-1 and ICAM-
1 function by binding lymphocytes to bronchial endothelium
cells (55, 56), while CCR6 and integrin beta-2 promote group 2
innate lymphoid cell migration to the lung (57, 58). Neutrophil
trafficking in the lung is regulated by integrin beta-1 (CD29),
CD47, integrin alpha-M (CD11b) and ICAM-1 (CD54) (59).
Integrin beta-1 and integrin alpha-5 are involved in
mesenchymal stem cell distribution in the lungs (60). Other
investigators have observed a high retention of extracellular
vesicles in the lungs 4 h after parenteral administration (42,
43). The accumulation of regDCs EXO observed here in splenic
tissue and lymph nodes may be attributed to their interaction
with abundant immune cells found in lymphoid tissue. EXO can
also bind to lymphocytes, DCs and macrophages which circulate
in the bloodstream and migrate to the spleen (61). CCR7
regulates cells or exosomes migration and homing to lymphoid
organs and splenic tissue (62). CCR7 was found to be highly
expressed in both regDCs EXO and stimDCs EXO. The liver is a
large organ and contains a large population of macrophages
(Kupffer cells) that can uptake a considerable amount of the
injected regDCs EXO for clearance. DCs and hepatocytes can
a l s o up t a k e e xo s ome s . Mo r eo v e r , EXO exp r e s s
phosphatidylserine (PS) on their surfaces that could enable the
recognition and uptake by hepatic phagocytes (42, 61).

Our previous work with these DC EXO subtypes, showed
efficacy in regulation of the inflammatory bone disease and
periodontitis, when administrated locally in gingival tissue.
Locally injected EXO persisted at the site of inflammation and
the adjacent lymph nodes, but were minimally cleared to distant
tissues such as the lung, spleen and liver (5). The route of
administrat ion of EXO is also important to their
biodistribution, especially to lymph nodes (63), brain (64) and
retina (65). The cell source of EXO and their dose may also affect
the biodistribution (66). Adhesion molecules like the
tetraspanins, integrins, and chemotactic factors can direct EXO
to immune cells found in inflammatory sites (10, 67).

Our previous work showed TGFb1 in regDCs EXO as a key
immunoregulatory factor that recruits T-regulatory cells to target
inflamed tissue to deactivate the inflammatory process (5). Thus,
we were interested to understand how TGFb1 when in form of
EXO activate the target signaling on acceptor cells. Examination
of mechanism of action showed that initial binding of regDC
EXO to TGFbR1, stimulated early SMAD2/3 phosphorylation,
Frontiers in Immunology | www.frontiersin.org 1542
followed by internalization sustained SMAD2/3 phosphorylation
in recipient DCs (Figure 10). An equivalent dose of free TGFb1
could not maintain optimum TGFb1 signaling. Several reports
emphasize the role of endosomal translocation of EXO with
TGFb1-TGFb1 receptor complex, in order to prevent the
lysosomal degradation for prolonged internal SMAD2
signaling (68–70). Also, EXO internalization and TGFb1
release inside the cell, can lead to TGFb1 recycling to the cell
membrane where it can be secreted and act on the cell surface
receptor in an autocrine manner (71).

The present study demonstrated preferential biodistribution
and retention of regDCs EXO into lung tissue. It is tempting to
speculate that this supports a possible therapeutic implication of
regDC EXO, or its cargo, in patients with COVID-19 infection. A
significant amount of lung damage in COVID-19 patients is due to
an exaggerated host immune response (72–74). In severe stages of
COVID-19 infection, high levels of IL-1b, and IL-6, TNF along
with decreased levels of antiviral factors (interferons-IFNs) are
secreted from respiratory epithelial cells, DCs, macrophages and T
cells. The resultant “cytokine storm” culminates in ARDS and
multiorgan damage and eventually failure (75–78). Thus,
reprogramming inflammatory cells such as DCs and T cells, with
regDC EXO as we have described (5) may actually reverse the
inflammatory response and attenuate the infectious process and
thus diminish the severity of the infection (79). ARDS is an acute
inflammatory response in lung tissue and frequently leads to severe
damage of tissue and ultimately death in COVID-19 patients (19–
23). The use of short-term TGFb1-loaded regDCs EXO to
attenuate the acute inflammation in the lung could prevent the
severe lung damage seen during the acute phase and could also
decrease the chronic consequences of severe pulmonary COVID-
19 infection (80). TGFb1 has been shown to inhibit early and acute
responses upon intranasal lipopolysaccharide (LPS) challenge in an
acute lung injury model (81). TGFb1 suppressed neutrophils and
induced Foxp3+r regulatory T cell responses needed to resolve
acute inflammation in the lungs (79). Given the acute
inflammatory nature of severe COVID-19 infection, regDCs
EXO may therefore represent a natural nano-therapy
modality. Furthermore, this may be also alleviate the need to use
concurrent anti-inflammatory agents such as hydroxychloroquine
and dexamethasone (26). Moreover, this may overcome limitations
of immunoregulatory cell-based therapy such as phenotypic
instability and low cell numbers (9). There are currently several
clinical trials registered in clinicaltrials.gov using extracellular
vesicles (EVs) as therapy for COVID-19. Extracellular vesicles
from mesenchymal stem cells reportedly retain their ability to
inhibit lung inflammation by shifting proinflammatory
monocytes/macrophages toward the regulatory phenotype in an
ARDS model. This is presumably done through reprograming the
lung-infiltrating DCs and T cells toward a regulatory phenotype
(82) as has been described in the oral mucosa (5).

In addition to immunoregulatory functions (5) and unique
proteins expressed by regDC EXO, we investigated their ability to
regulate expression of the SARS-COV-2 receptor, ACE2 (25, 26).
This was particularly pertinent in view of recent findings linking
TGFb1 and ACE 2 to SARS-COV-2 internalization (14–16). In
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our study, regDCs EXO were shown to inhibit ACE2 expression
in respiratory tract epithelial cells (PBTECs), which was
abrogated by TGFb1R blockers (Figure 11).

DCs EXO have many therapeutic advantages. These include
protection of cargo against proteolytic degradation and damage
by complement system, active migration, and localization to
target lung tissue, affinity for interaction with immune cells and
the capability to be loaded with therapeutic and diagnostic
factors (5, 9–11, 83). Mention should be made of other EXO
based approaches proposed for COVID-19, including EXO
tailored to express decoy ACE2 (84), to encapsulate the S
protein of the SARS-CoV-2, and used as a vaccine (85), or to
encapsulate antiviral drugs (86).

In conclusion, our study shows that although regDC EXO
contain a complex profile of proteins, their functions appear
reflective of the dominant proteins in the parent donor DCs.
These include proteins that mediate trafficking to inflamed
tissue, cell binding and retention in lung tissue. In addition,
the impact of regDCs EXO on regulating TGFb1 cargo signaling
and the main SARS-CoV-2 receptors expression such as ACE2
was shown. Overall, the capabilities of regDC EXO may suggest
their future utility as an immunotherapeutic modality to improve
the treatment of lung inflammatory diseases. Preclinical studies
using ARDS animal models and early clinical trials are still
necessary to evaluate the safety and efficacy of EXO from DCs.
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Exosomes are cell-derived nanovesicles carrying protein, lipid, and nucleic acid for
secreting cells, and act as significant signal transport vectors for cell-cell
communication and immune modulation. Immune-cell-derived exosomes have been
found to contain molecules involved in immunological pathways, such as MHCII,
cytokines, and pathogenic antigens. Tuberculosis (TB), caused by Mycobacterium
tuberculosis (MTB), remains one of the most fatal infectious diseases. The pathogen for
tuberculosis escapes the immune defense and continues to replicate despite rigorous and
complicate host cell mechanisms. The infected-cell-derived exosomes under this
circumstance are found to trigger different immune responses, such as inflammation,
antigen presentation, and activate subsequent pathways, highlighting the critical role of
exosomes in anti-MTB immune response. Additionally, as a novel kind of delivery system,
exosomes show potential in developing new vaccination and treatment of tuberculosis.
We here summarize recent research progress regarding exosomes in the immune
environment during MTB infection, and further discuss the potential of exosomes as
delivery system for novel anti-MTB vaccines and therapies.

Keywords: Mycobacterium tuberculosis, exosomes, extracellular vesicles, innate immunity, immune
evasion, vaccine
INTRODUCTION

By inducing over 1.2 million deaths and an additional 251,000 (Range: 223,000–281,000) human
immunodeficiency virus (HIV)-positive deaths in 2019 (1), tuberculosis remains one of the most
fatal public health threats in the world. Additionally, an increasing prevalence of drug-resistant and
multidrug-resistant Mycobacterium tuberculosis (MTB) is seen under current anti-tuberculosis
chemotherapy with limited efficacy, especially in underdeveloped and developing countries.
Therefore, it is in urgent demand to develop novel vaccines and therapies against tuberculosis
based on the in-depth understanding of the relationship between MTB and host immunity.

Innate immune cells, including macrophage and dendritic cells (DCs), are host cells for MTB,
and perform most of the antibacterial activities during MTB infection. As the first barrier in MTB
infection, alveolar macrophages (AMs) could produce inducible nitric oxide synthase (iNOS) that
org April 2021 | Volume 12 | Article 628973146
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participates in the killing of MTB via the production of nitric
oxide (2). Meanwhile, classical activation of macrophage induces
polarization into the M1 antibacterial phenotype, with strong
abilities in killing MTB by producing pro-inflammatory
cytokines such as tumor necrosis factor-a (TNF-a) and
interleukin-1 (IL-1) (3, 4). DCs, the “sentinels” of the immune
system, are responsible for initiation of adaptive immune
responses against MTB infection by migrating from infected
lungs to local lymph nodes for T cell activation (5). Adaptive
immunity is subsequently activated and engages in the host anti-
mycobacterial activities, mediated by a range of different T cell
and B cell subsets.

During MTB infection, a specific immune environment is
formed when host immune cells interact with the pathogen at the
infection site. The bactericidal immune responses of host cells
are fine-tuned and balanced by multiple signal pathways to
regulate immune cell functions. There are three widely
accepted signal transduction methods among immune cells:
direct immune cell contact (e.g. antigen presentation from DCs
to T cells via direct MHC and T cell receptor contact); secretion
of cytokines by immune cells to induce immune activities [e.g.
interferon-g promotes anti-MTB immunity (6); IL-10,
transforming growth factor-b (TGF-b), and IL-35 can regulate
immune function by manipulating inflammation (7, 8)]; and
extracellular vesicle which include exosomes and microvesicles
trafficking among immune cells. It has been demonstrated that
exosomes from MTB-infected immune cells can regulate
immune functions by transferring signal molecules into
recipient cells (9, 10). In order to develop new anti-
tuberculosis vaccine or therapy strategy based on exosomes,
the underlying mechanisms of exosome in TB immunity need
to be clarified. In this review, we discuss and summarize the
immune regulator role of exosomes in the immune system in
response to MTB which can extend our understanding of
exosomes in TB immunity. Then we further discuss the
possible role of exosomes in MTB immune evasion, as well as
the protective role of exosomes to serve in anti-MTB vaccine.
THE VECTOR ROLE OF EXOSOMES IN
EXTRACELLULAR SIGNAL CONDUCTION

Exosomes, a type of nano-sized extracellular vesicle generated
from multivesicular bodies (MVBs), contain constituents like
protein, lipid, DNA, and RNA. They have been found to have
unique physiological mechanisms and functions (11). Although
exosomes are considered as waste carriers in autophagy process,
more evidence has emerged to support cellular communication
roles of exosomes (12). After summarizing several proteomic
studies using different types of cells, Suresh Mathivanan has
concluded that exosomes contain proteins like MVB biogenesis
molecules [e.g. ALG-2 interacting protein X (Alix), and tumor
susceptibility 101 (TSG101)], member RAS oncogene family
(Rabs, facilitating exosome docking and fusion on the
membrane), and annexins (assisting membrane trafficking and
fusion events) (13). In recent years, researchers have also
Frontiers in Immunology | www.frontiersin.org 247
discovered various RNA contents in exosomes, including
mRNA and miRNA, which can be transferred into recipient
cells for cellular function regulations (14). Meanwhile, lncRNA is
also found in exosomes that can regulate cellular functions. For
example, HIF-1a-stabilizing lncRNA (HISLA) released from
tumor-associated macrophages can enhance the aerobic
glycolysis and apoptotic resistance of breast cancer cells (15).

After being released into extracellular environment, exosomes
can be absorbed by different kinds of cells, in which they will
perform cellular signal transduction and communication in two
main ways. The first one is the binding of exosomes to specific cell
membrane molecules. For example, genetically engineered chimeric
antigen receptor T lymphocyte cells (CAR-T cells) can secret
exosomes with chimeric antigen receptor (CAR) protein on the
surface, which can inhibit tumor growth through binding to specific
tumor antigens (16). The second way is that exosomes can be
transferred into the target cells through endocytosis. Upon entering,
exosomes can release their cargo into the target cells and execute
biological functions (17). Therefore, exosome performs important
vector role in facilitating cell-cell signaling communication by using
its contents to regulate various cellular functions.
DOUBLE ROLES OF EXOSOMES IN ANTI-
INFECTION IMMUNITY

When infection occurs, the innate immune system tries to kill the
pathogen as well as presents antigens to prime the adaptive
immune system for more effective pathogen clearance. Exosomes
have been found to contain plenty of immune-regulating
molecules with functions such as indirect activation of T cells
by DC-derived exosomes to help recipient cells to confer HIV
resistance (18, 19). It has also been discovered that DC can
release exosomes with MHC-I/peptide complexes for other naïve
DCs to uptake, eventually helps to prime CD8+ T lymphocyte
cells (20). In tumor environment, DC-derived exosomes
containing TNF, Fas ligand (FasL), and TNF-related apoptosis-
inducing ligand (TRaIL) could lead to tumor cell apoptosis (21)
and activate natural killer cells via TNF superfamily ligands for
enhanced tumor inhibition (22). Macrophages secrete cytokines
to create a pro-inflammatory environment against the pathogen,
during which the exosomes play critical roles. It has been found
that multiple intracellular pathogens, such as MTB, Bacillus
Calmette-Guerin (BCG), Salmonella typhimurium, and
Toxoplasma gondii, can induce infected macrophages to secrete
exosomes with pathogen-associated molecular patterns
(PAMPs). Those exosomes are in turn transferred into
uninfected macrophages to be activated through Toll-like
receptor (TLR) and myeloid differentiation factor 88-
dependent (MyD88) pathway (23, 24). More interestingly,
exosomes from T cells could be transferred into DC and
induce more resistant DC antiviral responses via the cyclic
GMP-AMP synthase/stimulator of interferon response cGAMP
interactor 1 (cGAS/STING) cytosolic DNA-sensing pathway and
via the expression of interferon regulatory factor 3 (IRF3)-
dependent interferon regulated genes (25).
April 2021 | Volume 12 | Article 628973

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. Role of Exosomes in Tuberculosis
Immune evasion pathways are found both in MTB infection
and other pathogen-induced diseases, where exosomes are
closely engaged in immune attack regulation, creating a pro-
bacteria or pro-virus environment. In Hepatitis C virus (HCV)
infection, hepatocyte-derived exosomes containing TGF-b could
promote the expansion of T follicular regulatory (Tfr) cells in
healthy subjects’ PBMCs, inhibiting the function of T cells and B
cells, leading to an environment in favor of HCV survival (26).
This means that exosomes can also act negatively during
immune regulation in infectious disease and its vector role in
the immune system is a double-edged sword. Another study
found that Newcastle disease virus (NDV)-infected HeLa cell-
derived exosomes can promote NDV replication by three
miRNA inside, which were associated with enhancing NDV-
induced cytopathic effects and suppressing IFN-b gene
expression (27). Therefore, exosomes could have either
beneficial or harmful properties during infection, depending on
the type of their regulatory molecules.
EXOSOMES FUNCTION AS PROTECTIVE
STIMULATORS DURING MTB INFECTION

MTB infection stimulates immune cells to secrete different kinds
of exosomes which act as pre-stimulators for immune system
even before the activation of DCs, macrophages, T cells, and B
cells. Meanwhile, exosomes can activate inflammatory and
autophagy signaling pathways in host cells, which can not only
enhance the anti-MTB immunity by helping to kill intracellular
MTB, but also prepare uninfected immune cells for upcoming
MTB infection.
MTB-INFECTED MACROPHAGES-
DERIVED EXOSOMES STIMULATE NAÏVE
MACROPHAGES AND INDUCE
SECRETION OF PRO-INFLAMMATORY
CYTOKINES

Macrophages, the first in defense line in face of MTB infection,
could trigger intracellular downstream inflammatory signaling
pathways for anti-MTB activities, such as the activation of
mitogen-activated protein kinase (MAPK) and nuclear factor
kappa B (NF-kB) signaling pathways (28). Meanwhile, they can
activate the downstream transcription factors to start translation
of target genes and initiate inflammatory responses. Pattern
recognition receptors (PRRs) and PAMPs are critical in
inflammation, especially TLRs, which can induce releasing of
pro-inflammatory cytokines, iNOS, and antimicrobial peptides
via MyD88 (29, 30). Interestingly, it is found that exosomes
secreted by MTB-infected macrophages also contain bacterial-
derived RNA, providing strong evidence for exosome-induced
anti-MTB immune responses. Notably, MTB peptides are also
found in serum extracellular vesicles from persons with latent
tuberculosis infections (31, 32). These studies strongly suggest
Frontiers in Immunology | www.frontiersin.org 348
that exosomes from MTB-infected cells could act as PAMPs,
which induce naïve macrophage activation and would be
beneficial for the anti-MTB immunity.

By regulating pro-inflammatory responses, exosomes from
infected macrophages is an essential force against MTB infection
as they can stimulate a higher level of cytokines and chemokines
production from bone marrow-derived macrophages (BMMs)
than from resting macrophages (9). Furthermore, Singh et al.
tested the ability of exosomes from MTB-infected macrophages
to influence the immune cells using Transwell system, and found
that exosomes-treated macrophages could induce stronger
transmigration ability than the resting cells. The researchers
also extracted exosomes from BCG-infected mice serum, and
found them to activate macrophages as pro-inflammatory
phenotype, and recruit macrophages and CD11b+ cells to the
lungs of mice (9). This study provides direct evidence for the
hypothesis that exosomes from infected macrophages could
activate uninfected macrophages and recruit other immune
cells. Additionally, another research revealed that extracellular
vesicles (EVs) secreted from MTB-infected macrophages or mice
could activate endothelial cells, which indicated that exosomes
might play comprehensive roles during immune activation (33).

A subsequent study demonstrated that exosomal RNA from
MTB-infected cells could stimulate a higher level of cytokine and
chemokine, and induce more significant apoptosis in macrophages
than that by exosomal RNA from uninfected cells (31). Moreover,
exosomes from BCG-infected macrophages could activate TLR/
MyD88-dependent proinflammatory pathways in BMMs,
associated with the lipoarabinomannan (LAM) and the 19-kDa
lipoprotein contained in the exosomes that are capable of
promoting TNF production (23). With the above evidences, it is
suggested that MTB-infected macrophages-derived exosomes
could serve as naïve macrophages activating components by
regulating pro-inflammatory responses.
EXOSOMES PRESENT ANTIGEN TO
ACTIVATE ADAPTIVE IMMUNE SYSTEM
DURING MTB INFECTION

CD4+ T lymphocyte cells play an important part in activating
macrophages against MTB infection and inducing apoptosis in
infected cells via IFN-g, which is mainly secreted by T helper
type-1 (Th1) cells. To initiate adaptive immunity, antigen-
presenting cells (APCs) load exogenous antigens on MHC-II
molecules via endocytic pathway and increase the surface
expression of T cell costimulatory molecules (34). Exosomes
from MTB-infected macrophages have been found to contain
various mycobacterial proteins such as Antigen 85-C and early-
secreted antigenic target of 6-kDa (ESAT-6), all important
antigens for T cell activation against MTB infection (35).
Exosomes secreted from MTB culture filtrate protein (CFP)-
treated macrophages could activate macrophages, DCs, as well as
naïve T cells in vivo to mediate protective responses with high
expression of antigen-specific IFN-g and IL-2, resulting in lower
MTB loads in the lungs of mice (36). Such in vitro and in vivo
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studies demonstrated the role of exosomes in the process of MTB
antigen presentation to T cells to activate T cell protective
responses against MTB.

DC derived-exosomes have been found to contain MHC and
costimulatory molecules, indicating potential ability of exosomes
in antigen presentation. Moreover, antigen-bearing exosomes
from DCs can activate antigen-specific naïve CD4+ T
lymphocyte cells in vivo, but cannot induce the CD4+ T
lymphocyte cells activation without mature DCs in vitro,
suggesting DC’s ability to present antigens without contacting
bacteria by manipulating exosomal antigen-MHC complex (19).
The ability of antigen presentation and naïve T cell activation can
also be found in exosomes secreted from MTB-infected
macrophages, which can induce the activation of DCs and the
generation of memory CD4+ T lymphocyte cells and CD8+ T
lymphocyte cells (10).

Additionally, some factors are reported to influence the
antigen-presenting role of exosomes. Ramachandra et al.
reported that MTB synergized with ATP to induce a more
potent release of exosomes containing MHC-II molecules,
which were capable of antigen presentation (37). In Rab27a-
knockout mice, exosome concentration decreased as Rab27a
mediated MVB docking to the plasma membrane, which
caused further diminution of T cell responses, leading to
increased bacterial loads in the lungs of mice. The reduction of
exosomes also led to decreased trafficking of antigens (Ag85A) to
exosomes, explaining the reduced priming ability of exosomes
(38). It has been clearly demonstrated that MTB-infected
immune cell-derived exosomes play important roles in both
innate and adaptive immunity, and any disruption of exosomal
functions would impair part of the anti-tuberculosis
immune protection.
EXOSOME MIGHT STIMULATE
AUTOPHAGY FOR MTB CLEARANCE

Autophagy, a form of cellular metabolism involved in innate
immunity, is a pathway for the clearance of cellular waste
substances or organelles. Low energy, malnutrition, and stress
could all contribute to the activation of intracellular autophagy
signaling pathways, which degrades the phosphorylation of
mammalian target of rapamycin complex 1 (mTOR1), followed
by the initiation and continual expansion of membrane to form
autophagosomes (39). By further fusion with the lysosomes,
autophagosomes would turn into autolysosomes, which have
strong abilities in eliminating damaged organelles, protein
aggregates, and intracellular pathogens. For host cells, autophagy
has been recognized as an important innate defense mechanism
against intracellular MTB, and in this way, host cells are sacrificed
for effective attack onMTB (40). The autophagy-defective mice are
found to show excessive inflammation in lungs and increased
bacterial burden, indicating the critical roles of autophagy against
MTB infection (41).

A growing number of studies have demonstrated that the
antibacterial function of EVs is mainly achieved through
Frontiers in Immunology | www.frontiersin.org 449
modulating autophagy. EVs extracted from infected and
uninfected macrophages can both significantly reduce the
bacterial loads in mice lungs. However, EVs from uninfected
macrophages reduce the bacterial load by production of C-C
motif chemokine ligand 2 (CXCR2), while EVs from MTB-
infected macrophages produce TNF-a (42). These results
indicate that the contents of EV could inhibit MTB both
in vitro and in vivo. EVs secreted from MTB-infected human
neutrophils can induce the production of pro-inflammatory
cytokines such as TNF-a, IL-6, and superoxide anion to
inhibit the intracellular MTB in human macrophages (43).
Meanwhile, autophagy is significantly upregulated, and higher
expression of autophagy-related marker LC3-II is seen in
infected macrophages co-localizing with MTB (43). These
results further confirm that EVs from infected innate immune
cells can upregulate autophagy for intracellular MTB clearance to
lower the intracellular bacterial load. MTB RNA is found to be
contained in EVs from infected BMMs, which could pass
through host nucleic acid-sensing pathways (RIG-1/MAVS/
TBK1/IRF3) to further activate autophagy in MTB-infected
macrophages with the co-localization of LC3-II and MTB for
MTB elimination (44).

As a member of EV family, exosomes have also been found to
be in strong association with autophagy. The newly discovered
evidence indicates that exosome biogenesis is closely related to
autophagy linked by the endolysosomal pathway (45). Exosomes
secreted from miR-181-5p-modified adipose-derived
mesenchymal stem cells are found to prevent liver fibrosis via
autophagy activation, showing its capability to activate
autophagy (46). These results reveal the potential bidirectional
regulation effects between exosomes and autophagy. This
regulation is mediated by the unique biogenesis mechanism
involved in autophagy, as well as by the MTB components and
membrane molecules contained in exosome that might induce
autophagy for MTB clearance (47, 48). As shown in Figure 1, we
summarize that exosomal contents from infected innate immune
cells, including RNA, antigens of MTB, and some MTB peptides,
would trigger multiple antibacterial immunological functions via
a series of traditional pathways. Additionally, we consider that
exosomes that inherit the functions of their parent cells could
perform cargo delivery function to induce immune functions,
such as inducing autophagy. However, almost all published
works focused on the effects of exosomes on other innate
immune responses. Further studies are needed to explore how
exosomes act on autophagy of host cells against MTB infection.
EXOSOMES CONTRIBUTE TO IMMUNE
EVASION OF MTB

Exosomes secreted from infected immune cells can induce
stronger anti-MTB activities in different immune cells,
supporting the potential use of exosomes for the development
of vaccine or immunotherapy strategies. However, as one of the
cleverest bacteria, MTB is continuously altering the environment
for immune evasion. Early infection defense can be induced by
April 2021 | Volume 12 | Article 628973
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constituents from MTB that interact with host protein and
interfere with host immune cells. However, in long-term
infection, these constituents from MTB could be harmful.
Moreover, host proteins and miRNA are changed during MTB
infection and can facilitate immune evasion of MTB. These
molecules can be transferred to different immune cells by
exosomes, creating an environment more prone to MTB
immune evasion.

Exosome can induce various biological or immunological
effects depending on the cargo inside. Pramod et al. identified
41 mycobacterial proteins present in exosomes released from
MTB-infected J774 cells, including some very important MTB
antigens. Many of these identified proteins were characterized as
highly immunogenic, especially Ag85b, which was widely used
for TB vaccine development (35). Small EV proteome isolated
from active tuberculosis (ATB) were found to carry host proteins
in TB-positive patients, which showed significant deregulation
and could be useful in developing alternate host-directed
therapeutic interventions (49). Using multiplexed multiple
reaction monitoring mass spectrometry (MRM-MS), Nicole A
et al. analyzed exosomes isolated from human serum samples
obtained from culture-confirmed active TB patients and found
Frontiers in Immunology | www.frontiersin.org 550
76 peptides representing 33 unique MTB proteins (50). Twenty
of the 33 proteins detected were found in the exosomes of TB
patients, including several peptides from eight important MTB
proteins, which were known to contribute to the intracellular
survival of MTB (50). These MTB and host proteins, as well as
the molecules that we have summarized above in exosomes,
allow exosomes to directly interact with different immune cells
with immune regulation effects. Here we summarized the
exosome sources, different isolation methods, and culprit
cargos from the quoted studies (Table 1).

Although specific proteins and peptides from MTB have been
identified, exosome-induced immune regulation effects are still
under investigation because MTB components can induce
complicated effects. For example, LAM from MTB has been
found in the urinary extracellular vesicles of tuberculosis patients
(51) and also in exosomes isolated from the broncho alveolar
lavage fluid (BALF) of BCG-infected mice (23). LAM from MTB
or other pathogenic mycobacteria is a high-molecular-mass,
amphipathic lipoglycan with a defined critical role in
mycobacterial survival during infection (54). It is thought to
show both active and passive protection against TB (55).
Although LAM shows ability to activate immune cells, Nicole
FIGURE 1 | Exosomes from Mtb-infected immune cells could induce multiple cellular responses. Exosomes from Mtb-infected immune cells contain various
regulatory materials, such as Mtb antigens, Mtb RNA, Mtb peptide, lipoprotein, and miRNA. In fusion with cell membrane or passing through endocytosis, exosomes
can release some Mtb specific contents to induce different anti-Mtb responses in immune cells. Mtb antigens from exosomes can be transferred into uninfected-DC,
where the antigens can combine with MHCII for antigen presentation and activating the adaptive immune systems. Mtb RNA, peptide, and lipoprotein from
exosomes are found to be responsible for exosomes induced-inflammation, which are in strong association with TLRs, MAPK, and NF-kB pathways. Furthermore,
Mtb RNA from exosomes can also stimulate macrophage autophagy through nucleic acid-sensing pathways (RIG-1/MAVS/TBK1/IRF3). However, exosomes from
Mtb-infected immune cells can also inhibit anti-Mtb functions. For example, lipoprotein from exosomes can suppress the IFN-g induced MHCII and CD64 expression.
Besides, miRNA from exosomes can inhibit autophagy of immune cells, while Mtb infection as well as PD1/PDL1 from exosomes can also act as immune inhibitor.
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P et al. also demonstrated that LAM from MTB could reduce the
expression of chemokine receptors CXCR2 by a mechanism that
involved the activation of p38 MAPK (56). As CXCR1 and
CXCR2 determines the functional properties of granulocytes,
the LAM inside exosomes from MTB-infected immune cells
suggest the ability of the host to limit inflammation induced by
granulocytes after MTB infection. Despite the anti-MTB effect
brought by exosomes, MTB has been menacing human health
throughout history. With a wide variety of immune evasion
mechanisms and its strong pathogen-host interaction ability,
MTB can also have exosomes act negatively (57). Several studies
have proved that MTB could influence macrophage functions
such as apoptosis, autophagy, and MTB-lysosome fusion by
some of the MTB components that interfere with anti-MTB
effects (58, 59). An affinity tag purification mass spectrometry
(AP-MS) study has demonstrated the interaction map between
MTB components and host cell proteins, and found that a lot of
the components can interact with host proteins by regulating
various cell functions (60). More importantly, exosomes from
MTB-infected macrophages are found to induce a decline of
IFN-g-induced MHC-II and CD64 expression through TLR2 and
Myd88 pathway, partially via the lipoproteins in exosomes (52).
This study reminds us that exosomes can act negatively in
defending MTB infection, which means that the immune
regulation roles of exosomes can be either inhibiting MTB
infection or promoting MTB infection. Based on these results,
we hypothesize that at the early stage, the cargos coming from
MTB inside the exosomes could activate the anti-MTB effect.
However, MTB can survive in macrophages, and after the early
stage, an increasing amount of MTB components are able to
interact with host proteins and interfere with the activated
immune function. We further speculate that the exosome-
induced immune suppression of IFN-g-induced MHC-II and
CD64 expression (52) is like MTB components-induced immune
evasion, which mainly happens at the post-infection stage.
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Therefore, exosomes can suppress the activated macrophages’
function instead of acting as an immune stimulator. For our
understanding, the cargos inside the exosomes would be a very
good anti-TB immune stimulator in inactivated immune cells.
However, as exosomes are part of the existing signal conduction
pathways of cells during MTB infection, they show two-sided
effects on TB immunity as the pathogen might pretend to use
these exosomes for their immune escape. Therefore, these
exosomes from MTB-infected cells might be anti-MTB vaccine
candidates due to their ability to activate anti-MTB immunity in
rest of the immune cells. However, they might also block cellular
antibacterial immunity by “hijacking” immune cells.

Furthermore, RNA in exosomes, especially miRNA for
regulating host cell functions, plays important roles in MTB
evasion. RNA sequencing provides a powerful strategy to explore
the miRNA in exosomes from MTB-infected macrophages and
plasma from tuberculosis patients, which are predicted to be
closely linked with the metabolism and energy production-
related pathways (53, 61). MiR-18a, a type of miRNA also
found in exosomes, is upregulated to promote mycobacterial
survival in MTB-infected macrophages by inhibiting the
autophagy pathways (62). In MTB infection, individual
miRNA alternation might induce cellular function changing as
miRNA could regulate gene expression post-transcriptionally.
Furthermore, miRNA can influence multiple antibacterial
functions of different immune cells (such as macrophages,
DCs, and CD4+ T lymphocyte cells) by regulating apoptosis,
autophagy, and polarization (63, 64), making miRNA an
important host material for immune regulation and a pathway
for MTB immune evasion. As miRNA contained in exosomes
can be transferred to different cells of the immune system,
harmful immune functions can also be shared by MTB-
benefiting miRNA.

Moreover, as a star molecule in immune suppression,
programmed cell death 1 ligand 1 (PD-L1) is also found in
TABLE 1 | Summary of the exosome sources, different isolation methods, and different culprit cargo from the studies.

Exosome sources Isolation methods Identified cargo Author

MTB-infected macrophages Sucrose-gradient
ultracentrifugation,
Ultracentrifugation

MTB components Lipoarabinomannan and the 19-kDa lipoprotein Bhatnagar et al. (23)

MTB-infected macrophages Ultracentrifugation MicroRNA, MRNA Singh et al. (31)
Serum from persons with latent
tuberculosis infection

Exoquick MTB peptides
(Ag85c, DnaK, HspX, Ag85A et al.)

Mehaffy et al. (32)

MTB-infected and CFP-treated
macrophages

Sucrose-gradient ultracentrifugation Mycobacterial proteins (Antigen 85-C, GInA, 19 kDa Lpqh et al.) Giri et al. (35)

MTB CFP-treated
macrophages

Exoquick,
Ultracentrifugation

19 kDa lipoprotein Cheng et al. (36)

MTB-infected macrophages Exoquick,
Ultracentrifugation

MTB RNA Cheng et al. (44)

Serum of tuberculosis patients Exoquick,
Sucrose-gradient ultracentrifugation

Host proteins
(KYAT3, SERPINA1, HP, and APOC3)

Arya et al. (49)

Serum of tuberculosis patients Exoquick MTB peptides
(Antigen 85B, Antigen 85C, Apa, BfrB, GlcB, HspX, KatG et al.)

Kruh-Garcia et al. (50)

Urine of tuberculosis patients Centrifugation Lipoarabinomannan and CFP-10 Dahiya et al. (51)
MTB-infected macrophages Sucrose-gradient ultracentrifugation Lipoproteins Singh et al. (52)
Serum of tuberculosis patients Ultracentrifugation MicroRNA (hsa-miR-1246, hsa-miR-2110, hsa-miR-370-3P, hsa-

miR-28-3p, and hsa-miR-193b-5p et al.)
Lyu et al. (53)
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exosomes, which suppresses the function of CD8+ T lymphocyte
cells and facilitates tumor growth (65). Increased programmed
cell death protein 1 (PD-1)/PD-L1 expression, which increases
the macrophage susceptibility to MTB-specific CD8+ T
lymphocyte cells, can lead to cell deaths (66), and this is
already proved in MTB infection. This indicates that the
exosomal PD-L1 might also contribute to the immune evasion
of MTB. Taking all the results into account, exosomes from
MTB-infected cells could also act as an accomplice for MTB
immune evasion by delivering components benefiting MTB
survival, as shown in Figure 1. More attention should be paid
to the exploration of MTB-benefiting components in the
exosomes, which would help develop novel immunotherapy
strategies to restrain MTB infection.
EXOSOMES FOR VACCINE AND
IMMUNOTHERAPY DEVELOPMENT
DURING MTB INFECTION

The full role of exosomes during MTB infection is still to be
revealed. We should be exploring how exosomes help MTB
escape from the immune attack and also trying to utilize the
antibacterial function of exosomes for TB treatments. Exosomes
carrying mycobacterial antigens can significantly protect mice
against MTB infection, indicating the potential of exosomes in
serving as a novel cell-free vaccine targeting MTB infection (36).
EVs from MTB-infected BMM can induce autophagy for in vitro
MTB killing and also decrease mycobacterial burden in the lungs
of mice with lower tissue damage (44). These studies strongly
suggest that exosomes may be a candidate vector for vaccine or
drug delivery.

In theory, exosomes are promising delivery tools for vaccines
and treatments thanks to their natural nano-size lipid membrane
structures. The vaccine based on exosomes with specific antigens
inside can activate multiple immune responses via antigen
presentation pathways. For example, exosomes loaded with
tumor-associated-antigens can activate adaptive immunity as
well as improve antitumor efficacy both in vivo and in vitro
(67, 68). In another study, researchers developed a novel vaccine
based on Ag85B-ESAT-6 fusion protein expressed in exosomes,
which could be further introduced for activating antigen-specific
INFɣ-secreting T lymphocytes in the lungs and spleen (69).
Moreover, the anti-MTB immunity induced by exosomes-based
vaccine can also be improved by costimulatory molecules in
exosomes. Hao et al. established ovalbumin (OVA)-pulsed
exosomes from dendritic cells to target CD4+ T cells as a
cancer vaccine, which also successfully stimulated CD8+
cytotoxic T lymphocyte (CTL) responses for enhanced
antitumor immunity (70). They found that the exosomal CD80
(70) and exosomal CD40L (71) were crucial in the development
of functional memory CTLs. Interestingly, it was also found that
exosomes observed in BALF were expressing MHC class I and II,
CD54, CD63, and the costimulatory molecule CD86, suggesting
that exosomes might have a role in antigen delivery or immune
Frontiers in Immunology | www.frontiersin.org 752
regulation during airway antigen exposure (72). Using MTB-
infected antigen-presenting cell-derived exosomes as vaccine not
only can realize antigen presentation but also express
costimulatory molecules which can stimulate strong anti-
MTB immunity.

Additionally, exosomes can act as adjuvants that stimulate
immune responses, which can improve vaccine efficiency by
mediating the immune environment of adaptive immune
system. It has been proven that hepatitis B recombinant antigen
(HBsAg), combined with exosomes from LPS-stimulated
macrophages, can induce pro-inflammatory cytokine expression
and antibody release similar to HBsAg alone (73). However,
exosomes could have further immunomodulatory effects on the
cellular immune response, highlighted by the enhancement of
IFN-g secretion as Th1 cell responses (73). Another study also
demonstrated that exosomes from TGF-b1-silenced leukemia
could promote DC maturation and their immune function,
backing up the roles of exosomes as adjuvants to establishing
enhanced anti-tumor immunity (74). Exosomes have the abilities,
inherited from parent cells, of boosting anti-MTB immunity
through traditional pathways, including macrophages, DCs, and
neutrophil granulocytes. These anti-MTB immune responses can
be triggered by some regulatory proteins in exosomes, such as
heat-shock protein (75) and PAMP (23). These findings
demonstrated the possibility of using exosomes from infected
innate immune cells for specific antigen loading, costimulatory
molecules stimulating, and immunity boosting, which would be
beneficial for vaccine development.

Apart from acting as components in immunological regulation,
exosomes can also be applied to direct drug delivery, which help
overcome the major challenges of drug treatment, i.e., delivery of
cargos across impermeable biological barriers and improvement of
the target effects and pharmacokinetics of drugs (76). As a novel
drug delivery system, exosomes isolated from M1 macrophages
have been proved to enhance the cytotoxicity of Paclitaxel (PTX)
in cancer cells and show stronger antitumor efficacy (77). A
majority of published studies focused on using exosomes for
anticancer drug delivery, inspiring the application of exosomes
in anti-MTB drug delivery, which could potentially improve the
current TB chemotherapy efficacy. Furthermore, certain
components with antibacterial regulation effects, such as non-
coding RNA, can also be loaded into exosomes for anti-MTB
treatment. Endowed triply for its potentials in novel vaccine,
immune therapy, and chemotherapy strategy developments as
shown in Figure 2, exosomes bring hope for anti-MTB treatments.

Lipids are critical components of exosomal membranes, and it
is well-known that some specific lipids are even more enriched in
exosomes compared to their parent cells. Therefore, the use of
exosomes for delivery can be considered as using “natural lipid
nanoparticles.” As a “competitor” against the current lipid
nanoparticles (nanolipids), it would be crucial to compare the
properties of exosomes with normal lipid nanoparticles, which
would benefit our understanding of the advantage and limitation
of exosomes as delivery systems. As shown in Table 2, firstly,
exosomes have natural immunogenicity and antigenicity
depending on the cargo loaded inside, while normal lipid
April 2021 | Volume 12 | Article 628973

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. Role of Exosomes in Tuberculosis
nanoparticles do not have similar abilities. This property can
distinguish between lipid nanoparticles and exosomes, and the
immune regulatory function of exosomes can be mediated by
controlling the parent cells. Based on these properties, exosomes
can be used as natural adjuvants, natural vaccines, or natural
immunomodulators. Secondly, the cell membrane structure of
exosomes can protect the loaded drug, protein, or RNA from the
extracellular environment with less rejection than chemosynthetic
lipid nanoparticles, providing much safer transportation
environment (78). Last but not least, exosomes have the ability
to pass through the blood-brain barrier without further
modification (79), while lipid nanoparticles can require specific
chemical modification (80).

However, we cannot deny that limitation exists in the
application of exosomes as delivery vectors. The quality control
of exosomes is still a big challenge to be addressed. The contents
inside exosomes always change along with the functions and
status of parent cells, leading to an unpredictability for both
cargo delivery and subsequent effects. Besides, as the structure of
exosomes is similar to the cell membrane, some environmental
factors such as pH and temperature, as well as preparation
procedures such as ultracentrifugation and freezing-thawing,
might introduce unexpected damage to exosome structures,
subsequently affecting the quality of exosomes (81). However,
chemosynthetic lipid nanoparticles can be prepared with
constant quality, which is also easy to be further modified and
Frontiers in Immunology | www.frontiersin.org 853
stored. Moreover, the types of nanoparticles-induced responses
in recipient cells are constant, while exosome-induced cellular
responses are much more complicated, unpredictable, and
uncontrollable. For example, exosomes from MTB-infected
macrophages can induce multiple anti-MTB effects, but at the
same time promote the immune escape of MTB. Furthermore,
the detailed mechanism that parent cells sort out MTB
components and dock them into exosomes remains unknown,
A

B

FIGURE 2 | Exosomes-associated anti-TB strategies. (A) Exosomes can be loaded with drugs to achieve enhanced anti-TB therapy by combining the improved
killing efficiency induced by the drugs and anti-TB responses induced by the exosomes. (B) Exosomes can be loaded with specific antigens to achieve enhanced
anti-TB immune responses by combing the T cell and B cell activation induced by the specific antigen as well as anti-TB responses induced by the exosomes.
TABLE 2 | Advantages and limitations of exosomes compared with nanolipids
(lipid nanoparticles) for vaccination.

Advantages Limitations

Nanolipid-
based
vaccination

1. Easy to be modified
2. Controllable size and shape
3. Long-term stability
4. Inexpensive expense
5. Easy for quality control

1. No natural antigenicity or
immunogenicity
2. Need specific modification
to pass blood-brain barrier

Exosome-
based
vaccination

1. Natural antigenicity and
immunogenicity
2. Natural immunomodulators
3. Better protection of inside
cargo by cell membrane
structures
4. Natural ability to pass blood-
brain barrier

1. Difficult in quality control
2. Unpredictable content
insides
3. Difficult to store and
transportation
4. MTB constitutes docking
pathway unclear
5. Modification techniques
immaturity
6. Expensive expense
April 2021
 | Volume 12 | Article 628973

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. Role of Exosomes in Tuberculosis
which also introduce unpredictability into their delivery actions.
Additionally, the modification techniques of exosomes are still
very limited, rendering the surface modification of exosomes
difficult. Finally, it is also worth noting that the high cost of
exosome preparation would also be considered a critical
limitation compared with lipid nanoparticles.

Taking all these considerations into account (as shown in
Figure 3), although exosomes show multiple limitations for
vaccination, their advantages, including their natural
antigenicity and immunogenicity to regulate immune
responses, provides an attractive blueprint for more powerful
vaccine developments. Thus, to extend the application of
exosomes as effective drug delivery systems for vaccination and
therapy, it would be critical to clarify the underlying mechanisms
involved in the formation and cargo loading of exosomes in
parent cells. Additionally, more attention should be paid to the
quality control, preparation, and modification methods of
exosomes to obtain homogeneous, constant, storable, and more
functional exosomal products, benefiting the use of exosomes for
novel vaccination and therapy strategy development.
CONCLUSION AND REMARKS

In MTB infection, exosomes from the infected immune cells have
double inherent immune regulation functions their parent cells
with double-edged sword regulation effects on anti-MTB
immunity. However, previous studies only focused on
exosomes from innate immunity cells, and little is understood
about the exosomes secreted from adaptive immune cells, which
are of more importance in facing MTB infection. Therefore,
exploring potential effects of exosomes from innate immune cells
Frontiers in Immunology | www.frontiersin.org 954
on MTB infection is helpful in developing new vaccination and
therapy. Up to now, diagnosis, vaccination, and treatment of TB,
especially drug-resistant TB, remains major clinical challenges.
Different RNA molecules have been found in exosomes after
MTB infection, which shed new light on the potential role of
exosomal RNAs as novel TB biomarkers for developing the next
generation of TB diagnostic strategy and relevant studies have
already begun (82–84). Exosomes have shown strong potential in
delivering vaccine components (proteins, peptides, and RNA) in
different infectious disease, showing the potential to provide a
more effective vaccine strategy for TB. Albeit the limited
knowledge regarding the drug delivery roles of exosomes for
anti-MTB treatment, the strong ability of macrophages to
internalize the nanosized system allows macrophage-targeted
drug delivery for anti-MTB treatment. However, careful
consideration is still in need when applying exosomes as drug
delivery systems as they also have negative roles in immune
function. Further surface functionalization of exosomes with
specific ligands would increase the targeting effects against
specific cell types (85), which reminds us that some ligands
with macrophage targeting effects could benefit the anti-MTB
therapy by exosomes functionalization and drug delivery. Most
importantly, designing cell systems to produce functional anti-
MTB exosomes would dramatically expand the application of
exosomes in developing vaccine or drug delivery methods.
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Proinflammatory stimuli lead to endothelial injury, which results in pathologies such as
cardiovascular diseases, autoimmune diseases, and contributes to alloimmune
responses after organ transplantation. Both mesenchymal stromal cells (MSC) and the
extracellular vesicles (EV) released by them are widely studied as regenerative therapy for
the endothelium. However, for therapeutic application, the manipulation of living MSC and
large-scale production of EV are major challenges. Membrane particles (MP) generated
from MSC may be an alternative to the use of whole MSC or EV. MP are nanovesicles
artificially generated from the membranes of MSC and possess some of the therapeutic
properties of MSC. In the present study we investigated whether MP conserve the
beneficial MSC effects on endothelial cell repair processes under inflammatory conditions.
MP were generated by hypotonic shock and extrusion of MSC membranes. The average
size of MP was 120 nm, and they showed a spherical shape. The effects of two ratios of
MP (50,000; 100,000 MP per target cell) on human umbilical vein endothelial cells
(HUVEC) were tested in a model of inflammation induced by TNFa. Confocal
microscopy and flow cytometry showed that within 24 hours >90% of HUVEC had
taken up MP. Moreover, MP ended up in the lysosomes of the HUVEC. In a co-culture
system of monocytes and TNFa activated HUVEC, MP did not affect monocyte
adherence to HUVEC, but reduced the transmigration of monocytes across the
endothelial layer from 138 ± 61 monocytes per microscopic field in TNFa activated
HUVEC to 61 ± 45 monocytes. TNFa stimulation induced a 2-fold increase in the
permeability of the HUVEC monolayer measured by the translocation of FITC-dextran
to the lower compartment of a transwell system. At a dose of 1:100,000 MP significantly
decreased endothelial permeability (1.5-fold) respect to TNFa Stimulated HUVEC. Finally,
MP enhanced the angiogenic potential of HUVEC in an in vitro Matrigel assay by
stimulating the formation of angiogenic structures, such as percentage of covered area,
total tube length, total branching points, total loops. In conclusion, MP show regenerative
org April 2021 | Volume 12 | Article 650522158
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effects on endothelial cells, opening a new avenue for treatment of vascular diseases
where inflammatory processes damage the endothelium.
Keywords: membrane particles, nanovesicles, mesenchymal stromal cells, endothelial cells, regeneration,
immune cell interaction
INTRODUCTION

The endothelium forms an interactive barrier between the
circulatory system and the tissues in the body. It plays a
pivotal role in the regulation of vascular permeability,
hemostasis, and immunological processes (1). Alterations of
endothelial cells (EC) play a central role in the pathogenesis of
a broad spectrum of the most dreadful of human diseases, such as
atherosclerosis (2), stroke (3), heart disease (4), diabetes (5),
allograft rejection (6), and chronic kidney failure (7).
Inflammatory mediators cause overexpression of cell adhesion
molecules (CAM) on EC and together with the secretion of
cytokines this permits the attraction and adhesion of circulating
immune cells to the endothelium, and consequently, the
transmigration of leukocytes into inflammation sites (8).
Therapies that protect the endothelium from stress and
immune factors or enhance the repair processes may be
capable of curing or preventing diseases where the
endothelium has a key role.

Mesenchymal stromal cells (MSC) represent such therapy as
they have immunomodulatory and regenerative capacities and
are known to deliver endothelial protective signals (9). The
endothelial protective effects of MSC are due to their anti-
inflammatory and repair properties that have shown
substantial therapeutic promise in preclinical models, such as
for instance in atherosclerosis (10). Moreover, MSC hold great
promise for revascularization of tissues as they secrete pro-
angiogenic and anti-apoptotic factors in large amounts (11).

The translation of the endothelial protective and reparative
effects of MSC found in the in vitro setting to an effective therapy
is hampered by the poor biodistribution of infused MSC after
intravenous administration. It is demonstrated that after
intravenous infusion, MSC get trapped in the lungs and have a
short survival time (12, 13). This implies that MSC do not reach
sites of injury and cannot interact locally with injured tissue.
Viable MSC may secrete cytokines and growth factors in the
circulation and target distant cells via this route, but recent work
demonstrated that inactivated MSC, which lost their capacity to
secrete factors, maintain their immunomodulatory capacity in an
animal model (14), suggesting that cell membrane dependent
interactions with target cells play a role in the immune regulatory
effects of MSC. Furthermore, MSC-conditioned media have
shown to possess similar regenerative properties as MSC on
tissue damage and contribute to the modulation of inflammation
(15). Conditioned medium is composed of growth factors,
cytokines, and extracellular vesicles (EV). EV are spherical
membrane fragments heterogeneous in size and composition
that carry and transfer proteins, lipids, and RNA from the source
cells to resident cells in damaged tissue (16). MSC-derived EV
have shown therapeutic effects in several diseases’ models
org 259
including CVD (17) and acute kidney injury (18). Despite EV
may be a promising alternative cell-free therapy, clinical
translation is hindered by the lack of suitable and scalable
technologies for the generation and purification of extracellular
vesicles (19, 20). Thus, novel methods are needed to make
pharmaceutically controllable and homogeneous membrane
vesicles for targeting injured tissues.

We previously reported on the generation of large amounts of
membrane particles (MP) from human adipose tissue MSC (AT-
MSC) (21). The size of these man-made MP was with on average
120 nm, like naturally occurring EV, and electron microscopy
showed they have a spherical shape. MP were shown to be able to
modulate immune cells, thereby showing a great potential as a
novel cell-free immune therapy, and a good alternative to EV
therapy as MP can be produced in large amounts, highly purified,
in an easy and economic process.

In the present study, we have investigated the potential
therapeutic effects of MP derived from AT-MSC on the barrier
integrity of inflamed endothelial cells using a model of TNFa
treated human umbilical vein endothelial cells (HUVEC). We
further explored whether MP could enhance the angiogenic
ability of HUVEC in an inflammatory environment.
MATERIAL AND METHODS

Ethics Statement and Human
Tissue Samples
Human MSC were isolated from subcutaneous adipose tissue
from healthy kidney donors that became available during kidney
donation procedures. The tissues were collected after obtaining
written informed consent, as approved by the Medical Ethical
Committee of the Erasmus University Medical Centre Rotterdam
(protocol no. MEC-2006-190).

Isolation and Culture of MSC From
Adipose Tissue
AT-MSC were isolated from subcutaneous adipose tissue of five
healthy donors (2 females/3 males). The age of the donors was
between 34-58 years old. The tissue was mechanically disrupted
and enzymatically digested with 0.5 mg/ml collagenase type IV
(Sigma-Aldrich, St. Louis, MO) in RPMI for 30 min at 37°C
under continuous shaking. Thereafter, the cells were
resuspended in MEM-a with 10% fetal bovine serum (FBS;
Lonza, Verviers, Belgium), 2 mM L-glutamine and 1% P/S,
filtered through a 100 µm cell strainer, and transferred to 175
cm2 culture flasks (Greiner Bio-one, Essen, Germany). At 90%
confluence AT-MSC (passage 2-6) were collected to generate
MP. The phenotypic characterization of AT-MSC was performed
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by flow cytometry using FACSCANTO-II with FACSDIVA
Software (BD Biosciences, San Jose, CA). AT-MSC were
incubated with mouse-anti-human monoclonal antibodies
against CD13-PE-Cy7; HLA-DR-PERCP; HLA-ABC-APC;
CD31-FITC; CD73-PE; PD-L1-PE (all BD Biosciences); CD90-
APC and CD105-FITC (R&D Systems, Abingdon, UK). All the
antibodies were incubated with the cells for 30 min, at room
temperature in the absence of light.

Culture of Human Umbilical Vein
Endothelial Cells
First-passage cryopreserved HUVEC from pooled donors were
obtained from Promocell (Promocell, Germany). HUVEC were
grown in 75 cm2

flasks at 37 °C, 5% CO2 with endothelial cell
basal medium (EBM, Cambrex Bio Science Walkersville, Inc.,
Walkersville, MD, USA), endothelial cell growth medium
supplements (EGM, Cambrex Bio Science), 10% FBS, 100 IU/mL
penicillin, and 100 mg/mL streptomycin. At 90% confluence,
HUVEC were dissociated by 0.05% trypsin-EDTA (Life
Technologies, Bleiswijk, The Netherlands). To establish an
endothelial cell model of inflammation, HUVEC were
incubated with TNFa (25ng/ml) for 4h or 24h depending on
the assay. All HUVEC used in the experiments were between
passage 2-7. During these passages, HUVEC conserved their
morphology, phenotype, and proliferation rate. For the
stimulation of HUVEC with TNFa, three concentrations of
TNFa were tested (10, 25, 50ng/ml). All the experiments were
performed with the concentration 25 ng/ml due to the difference
respect to adhesion molecules and monocyte adhesion assay
between Control and TNFa treated cells was enough to allowMP
play a role, without inducing HUVEC apoptosis.

Generation of Membrane Particles
From AT-MSC
AT-MSC were trypsinized and washed twice with PBS. Then, the
MSC were incubated in milliQ water at 4°C to induce osmotic
lysis and liberation of the cell nuclei (after about 20 min,
monitored by microscope). Cell extracts were cleared of
unbroken cells and nuclei by centrifugation at 2,000 x g for
Frontiers in Immunology | www.frontiersin.org 360
20 min. The obtained supernatant was transferred to Amicon
Ultra-15 filter tubes (100 kDa pore size) and concentrated by
centrifugation at 4,000 x g at 4°C. The concentrated pellet
consisted of crude membrane and was diluted in 0.2 µm
filtered PBS. A population of MP, homogeneous in size was
obtained by extruding the plasma membranes 3 times through
polycarbonate membrane filters (Merck, KGaA, Darmstadt,
Germany), first with a pore diameter of 800 nm, secondly with
a 400 nm and last with a 200 nm pore size filter. The extrusion
process was performed using LiposoFast LF-50 (AVESTIN
Europe, Mannheim, Germany) at 20 psi (Figure 1). All
procedures were performed on ice.

Analysis of Adhesion Markers on HUVEC
HUVEC were incubated with TNFa (25ng/ml) and two ratios of
MP (1:50,000, 1:100,000 HUVEC : MP) during 24h. Then, the
cells were trypsinized and washed with FACS Flow (BD
Biosciences, San Jose, CA). The immunophenotypic
characterization of the activation state of endothelial cells was
done by incubating HUVEC with mouse-anti-human
monoclonal antibodies against CD54-APC, CD106-BV421,
CD62e-PE, CD31-FITC, VEGFR2-PE, CD105-FITC and TIE2-
Alex647 (all BD Biosciences). All the antibodies were incubated
with the cells for 30 min, at room temperature in the absence of
light. After two washes with FACS Flow, flow cytometric analysis
was performed using FACSCANTO-II with FACSDIVA
Software (BD Biosciences).

Characterization of MP Size and
Concentration by Nanoparticle
Tracking Analysis
Analysis of absolute size distribution and concentration ofMP was
performed using NanoSight NS300 (NanoSight Ltd.). With NTA,
particles are automatically tracked and sized based on Brownian
motion and the diffusion coefficient. The NTA measurement
conditions were: detection threshold 3 (determined with a
protein solution), three measurements per sample (30 s/
measurement), temperature 23.61 ± 0.8°C; viscosity 0.92 ± 0.02
cP, frames per second 25. Each video was analyzed to give the
FIGURE 1 | Schematic overview of the generation of Membrane particles.
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mean, mode, median and estimated concentration for each
particle size. The samples were diluted in 0.2µm filtered PBS, to
obtain a measurable concentration of particles (1 x 108 particles/ml)
in accordance with the manufacturer’s recommendations.

Cryo-Transmission Electron Microscopy
The preparations of MP were visualized by the Cryo-TEM
method. A thin aqueous film was formed by applying a 3µl
droplet of MP suspension to a specimen bare EM grid. Glow-
discharged holey carbon grids were used. After the application of
the suspension the grid was blotted against filter paper, leaving a
thin sample film spanning the grid holes. These films were
vitrified by plunging the grid into ethane, which was kept at its
melting point by liquid nitrogen, using a Vitrobot (Thermo
Fisher Scientific Company, Eindhoven, The Netherlands). The
vitreous sample films were transferred to a Tecnai Arctica
microscope (Thermo Fisher Scientific, Eindhoven, The
Netherlands). Images were taken at 200 Kv with a field
emission gun using a Falcon III (Thermo Fisher Scientific)
direct electron detector.

Extraction and Identification of
DNA/RNA From MP
To examine whether DNA and RNA are present in MP, a High
Pure RNA Isolation Kit (Roche Applied Science, Penzberg,
Germany) was used to extract DNA/RNA from MP samples
following the manufacturer’s instructions. After the isolation of
the RNA/DNA, the samples were treated with DNase I to
quantify the concentration of RNA, whereas for the collection
of both DNA and RNA, DNase I treatment was omitted. The
concentration and purity of DNA+RNA and RNA in the samples
was assessed spectrophotometrically using a NanoDrop ND-
1000 (Thermo Fisher Scientific, Bleiswijk, The Netherlands). The
quality of the RNA was assessed by assigning an RNA integrity
number (RIN) using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA).

Quantitative RT-PCR Analysis
MP were stored at −80°C. Total RNA was isolated, and 500 ng
used for complementary DNA (cDNA) synthesis. Gene
expression was determined by Quantitative Real-Time PCR
(qPCR) using the TaqMan Universal PCR Master Mix (Life
Technologies ThermoFisher scientific), and the assay-on-
demand primer/probes for Thermo Fisher GAPDH
(Hs99999905.m1); CD90 (Hs00264235_s1), Vascular
endothelial growth factor A (VEGF-A: Hs00173626.m1),
Angiopoietin 1 (Hs01586213.m1), IL-8 (Hs00174114.m1). For
PCR, cDNA synthesized from 25 ng total RNA was used to
perform each amplification.

Assessment of MP Toxicity on HUVEC:
Apoptosis Assay
HUVEC were seeded at a density of 2x105/well in 12-well plates.
Then, unstimulated and TNFa (25ng/ml) stimulated HUVEC
were cultured with 2 ratios of MP (HUVEC : MP 1:50,000,
1:100,000) during 24h and 48h. Cell viability was assessed using
an Annexin V staining kit (BD Biosciences) according to the
Frontiers in Immunology | www.frontiersin.org 461
manufacturer’s recommendations. Briefly, after the incubation
time with MP, cells were harvested, washed in PBS, and
resuspended in a binding buffer that contained 5 ml Annexin V
antibody and 5 ml 7-AAD. Samples were measured by
FACSCanto II (BD Biosciences).

Uptake of MP by HUVEC
AT-MSC were labeled with red fluorescent PKH-26 dye, which
intercalates into lipid bilayers, according to the manufacturer’s
instructions (Sigma-Aldrich), enabling the generation of
fluorescent MP (PKH-MP). HUVEC were plated at a density
of 2x105 cells/well on a 12 well plate, treated with/without TNFa
(25ng/mL). Two ratios of PKH-MP, (1:50,000 and 1:100,000)
were added to the cultures for 4h and 24h and the uptake of MP
by HUVEC was quantified by flow cytometry. The data were
analyzed using Kaluza Software (Beckman Coulter).

For confocal microscopy analysis, cell membranes of HUVEC
were labeled with PKH-67, the nuclei with 10µM Hoechst 33342,
and the lysosomes with a LysoSensor dye (Invitrogen Molecular
Probes), which changes to yellow fluorescence in acidic
environments. PKH-MP uptake by HUVEC was imaged by a
Leica TCS SP5 confocal microscope (Leica Microsystems B.V.,
Science Park Eindhoven, Netherlands), equipped with Leica
Application Suite – Advanced Fluorescence (LAS AF) software,
DPSS 561 nm lasers, using a 40 X (1.4 NA oil) objective.
Microscopic images were processed using ImageJ 1.48
(National Institutes of Health, Washington, USA).

Monocyte Adhesion Assay
HUVEC were seeded at 0.5x106 cells/well in a 12 well plate and
TNFa added at 25ng/mL for 24h in combination with MP at a
ratio of 1:50,000. Peripheral blood mononuclear cells (PBMC)
were isolated from a buffy coat of healthy individuals. Monocytes
were purified from the buffy coat using auto-MACS Pro by
negative-selection (Miltenyi Biotec, Germany). The purified
monocytes were labeled with 1 µM of CFSE and kept in
suspension (1x106 cells/mL) in culture medium consisting of
RPMI 1640 medium (Life Technologies), supplemented with
10% FBS, 100 IU/mL penicillin and 100 mg/mL streptomycin.
Monocyte purity was checked using flow cytometry after staining
with mouse-anti-human monoclonal antibody against CD14
(BD Biosciences) for 20 min at room temperature. CFSE-
labeled monocytes (1x105 per condition) were added to the
stimulated HUVEC and incubated for 1h at 37 °C, 5% CO2.
The incubation time of 1h was determined as the time where
monocytes in suspension were not anymore observed in the
TNFa condition (positive control). After a thorough wash with
EBM, the cultures were photographed with a Leica TCS SP5
confocal microscope. Microscopic images were processed using
ImageJ 1.48. Stained cells were counted in five randomly selected
areas using bright field microscopy (× 20).

Transwell Cell Transmigration Assay
HUVEC (1x105 cells/transwell) were plated in Transwell®-24
well inserts (Costar, Corning Inc.), consisting of polycarbonate
filters (8 mm pore size; 0.33 cm2 area), and grown to confluence
for 24h. HUVEC were then treated with 25 ng/mL TNFa and
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50,000 MP per HUVEC for 24h. Then, the supernatant was
discarded and the transwells were transferred to a new well
containing 500µL of 50 ng/mL Monocyte Chemoattractant
Protein-1 (MCP-1, Invitrogen Molecular Probes) in the lower
well. Monocytes were isolated, labeled with PKH-26, and plated
in the transwell at a ratio of 2:1 (monocyte:HUVEC). Following
2 hours of incubation at 37 °C and 5% CO2, the supernatant of
the transwells was carefully removed together with the non-
adhering monocytes. The adherent cells were washed twice with
PBS and stained with 10µM Hoechst 33342 for 10 min at 37 °C,
5% CO2. The inserts were then washed twice with PBS and fixed
with 4% formaldehyde dissolved in PBS for 15 min at room
temperature. Monocytes that migrated through both the
HUVEC monolayer and polycarbonate membrane and
adhered to the bottom side of the transwell membrane were
visualized by Z-stacks analysis using a Leica TCS SP5 confocal
microscope. The number of transmigrated monocytes was
determined by counting the number of PKH-26 fluorescent
monocytes present in 5 randomly selected fields of view per
sample via ImageJ 1.48.

Transwell Permeability Assay
To analyze the endothelial cell barrier integrity 50,000 HUVEC
were grown on a transwell insert pre-coated with fibronectin
(polystyrene, 0.4 um pore size; Greiner Bio-one, The
Netherlands) until confluency. The monolayers of HUVEC were
then treated with 25 ng/mL TNFa and two ratios of MP (50,000
and 100,000 MP : HUVEC) for 24h. After the incubation time, the
supernatant was removed and FITC-dextran (1mg/ml; 70kDa;
Bio-connect, The Netherlands) was added to the transwells. After
2h, the FITC-dextran translocated to the lower compartment of
the transwell was measured in a microplate reader at excitation/
emission wavelength of 490/520nm. As a positive control a
transwell without cells was used. By normalizing the
fluorescence signals of the treatment group to the control group
a measure of endothelial layer leakiness was obtained.

Angiogenesis Assay/Tube
Formation Assay
A confluent monolayer of HUVEC was treated withMP at a ratio
of 1:50,000 and treated with/without TNFa (25ng/ml) for 24h.
After the incubation time, HUVEC were collected by
trypsinization and seeded on 50µl polymerized Matrigel
(Geltrex, ThermoFisher, USA). The major components of
Geltrex™ matrix include laminin, collagen IV, entactin, and
heparin sulfate proteoglycans. The protein concentration is
15mg/ml. Each condition was plated in duplicate. After 18h,
tube formation was observed and photographed using an
inverted light microscope equipped with a digital camera. The
percentage of covered area (percentage of tubular structures in
the whole area of the image), total tube length (complete length
in pixel of the tubular structure), total branching points
(a branching point is part of the skeleton where three or more
tubes converge), and the number of loop areas (a loop is an area
enclosed by tubular structures) were measured by WIMASIS
(Onimagin Technologies SCA, Córdoba, Spain).
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Sample Size and Statistical Analysis
In the experiments MP from 5 donors were used in duplicate. For
the apoptosis, expression of adhesion markers and monocyte
adhesion assays, 5 independent experiments were performed
where MP from 2 different donors were tested in each
experiment. For the monocyte migration assay, barrier
integrity and angiogenesis assays, 3 independent experiments
were performed where MP from 3 different donors were tested in
each experiment. Data were analyzed for normal distribution by
Kolmogorov-Smirnov test, and after that T-Test was used to
determine the significance between the groups using GraphPad
Prism 5 software. P < 0.05 was considered significant.
RESULTS

Morphology and Size Distribution of MP
Generated From AT-MSC
MP were generated from culture-expanded AT-MSC and
characterized by cryo-electron microscopy and NTA to
determine their shape, concentration, and size distribution.
Cryo-electron microscopy showed that MP have a spherical
shape and a discernible lipid bilayer (Figure 2A). Some MP
were found encapsulated inside larger MP. The size range of MP
was between 32 and 345 nm, with an average peak size frequency
of 126.5± 22.4 nm. The frequency of particles larger than 200nm
(cut-off pore size) was lower than 0.5 ± 0.3% (Figure 2B).

Presence of RNA in MP
To examine whether MP preparations contained DNA and RNA,
DNA and RNA concentrations were determined by Nanodrop.
MP preparations contained 35.2 ± 3.9 ng/ul DNA/RNA (Figure
2C). After DNase treatment, the concentration of DNA/RNA did
not change (Figure 2C), suggesting MP contain RNA, but no
DNA. To determine whether the RNA could be detected by RT-
PCR, several genes expressed by MSC were analyzed. PCR
product was obtained for GAPDH, the angiogenic genes
VEGFA, angiopoietin 1 and FGF-2, IL-8, and for the MSC cell
surface marker CD90 (Figure 2D) suggesting that MP
preparations contained RNA from the cell source (Figure 2D).

HUVEC Internalize Membrane Particles in
a Time Dependent Manner
Fluorescent MP were generated by labeling the cell membranes of
MSC with PKH-26 (PKH-MP). HUVEC were incubated with or
without TNFa and with two ratios of PKH-MP (ratio: 1:50,000 or
1:100,000) for 4h or 24h. Non-Stimulated HUVEC showed a
significant increase in the internalization of the PKH-MP with
increasing MP dose and over time. However, there was not
statistical difference in the internalization of PKH-MP in TNFa
Stimulated HUVEC between the two tested MP doses, but there
was a significant increase over time (Figure 3A). For the ratios
1:50,000 and 1:100,000 the percentage of Non-Stimulated HUVEC
positive for PKH-MP was 75.2 ± 6.3%, and 86.8 ± 7.4%
respectively after 24h of incubation, and for TNFa Stimulated
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HUVEC were 82.1 ± 7.1%, and 82.4 ± 11.2%. There was not
statistical difference between TNFa and Non-Stimulated HUVEC.

The interaction of PKH-MP with HUVEC was visualized
using confocal immunofluorescence microscopy. The analysis
showed that PKH-MP were internalized and localized in the
cytoplasm of HUVEC (Figure 3B). Subsequently, a LysoSensor
staining was used to examine whether PKH-MP end up in
lysosomes. The LysoSensor staining fluorescently labels
endosomes and turns yellow when the pH in the endosomes is
acidic, indicative for lysosomes. After incubating HUVEC with
PKH-MP for 24 h, fluorescently labeled MP co-localized with
lysosomes (Figure 3C).

Membrane Particles Do Not Induce
Apoptosis or Affect the Expression of
Adhesion Molecules in HUVEC
HUVEC were stimulated with TNFa and cultured with two
concentrations of MP (1:50,000 and 1:100,000) for 24h and 48h
to determine whether MP induce apoptosis. No increase in
Frontiers in Immunology | www.frontiersin.org 663
apoptosis was observed in non-stimulated and TNFa
stimulated HUVEC treated with MP at 24h (Figure 4A) or
48h (Figure 4B).

HUVEC were cultured with MP for 24h to determine whether
MP could influence adhesion molecules expression (CD54,
CD106, CD62e, CD31, CD105) and molecules involved in
angiogenesis (VEGFR2, TIE-2) in non-stimulated and TNFa
stimulated HUVEC. MP did not modify the expression of
ICAM-1 in non-stimulated or TNFa-stimulated HUVEC
(Figure 4C) or VEGFR2 (Figure 4D). In addition, no changes
were observed for the rest of molecules (data not shown).

MP Do Not Affect the Adhesion of
Monocytes to HUVEC
HUVEC were treated with or without TNFa for 24h and
1:50,000 MP per HUVEC. Subsequently, the HUVEC were co-
cultured for 1h with CFSE-labeled monocytes to examine the
adhesion of monocytes to HUVEC. After washing away non-
adherent cells, monocyte adhesion was quantified by analysis of
A B

C D

FIGURE 2 | Characterization of physical properties and DNA/RNA composition of membrane particles from MSC. (A) Cryo-electron microscopy images of MP. MP
show a spherical shape and a discernible lipid bilayer. (B) A representative profile of the nanoparticle tracking analysis (NTA) of MP. A graph was generated which
plots the distribution in size of the MP against the concentration of MP per ml. (C) RNA/DNA concentration (ng/µl) in MP samples before and after DNAse treatment.
The error bars represent standard deviation of the mean (SD). (D) Relative gene expression of RNA present in MP samples from three different MSC donors.
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A B
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FIGURE 3 | Characterization and quantification of uptake of MP by unstimulated and TNFa-stimulated HUVEC. MSC were labeled with PKH-26 before
generation of MP (PKH-MP). PKH-MP were added to HUVEC (ratio 1:50,000) and incubated for 4 and 24h at 37°C. (A) Uptake of PKH-MP by unstimulated and
TNFa-stimulated HUVEC (ratio 1:50,000 and 1:100,000) was quantified using flow cytometry. Uptake is indicated by PKH-MP positive HUVEC (PKH+ HUVEC).
(B) Representative confocal microscopy analysis of PKH-MP uptake by HUVEC at time point 24h. Staining for PKH26-MP (red), PKH-67 cell membrane (green),
and Hoechst 33342 nucleus (blue) showed that PKH-MP are internalized by HUVEC. Scale bars: 40 mm (C) Staining for PKH-MP (red), lysosomes (yellow) and
nucleus (blue) showed that PKH-MP (ratio 1:50,000) are co-localized with lysosomes in HUVEC after 24h of incubation. Scale bars: 20 mm.
A B

C D

FIGURE 4 | Effect of Membrane Particles on HUVEC apoptosis and adhesion molecules. HUVEC were stimulated with TNFa and treated with two concentration of
MP (1:50,000, 1:100,000) and incubated at (A) 24h, and (B) 48h for the analysis of apoptosis. Surface expression of adhesion molecules on HUVEC was measured
at the time point of 24h (C) ICAM-1, and (D) VEGFR2. Values are means ± SD of the mean fluorescent intensity of the receptors of 5 independent experiments each
testing MP from 2 donors in each experiment.
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confocal microscopy images. Digital images were captured at ×20
magnification and analyzed by ImageJ software. Figure 5A
shows representative images of the studied groups. Activating
the HUVEC using TNFa significantly increased the number of
monocytes adhering to the HUVEC compared to non-stimulated
HUVEC (Figure 5B). There was no effect of MP on the adhesion
of monocytes to Non-Stimulated and TNFa Stimulated HUVEC.

Inhibition of Monocyte Transendothelial
Migration by Membrane Particles
To examine the effect of MP on the transendothelial migration
potential of monocytes, a HUVEC monolayer on a transwell
membrane was treated with TNFa and/or MP and after 24h
fluorescent monocytes were added (Figure 6A). Monocyte
transmigration across the endothelial layer was observed at 2h.
Representative confocal microscopy pictures of the assay are
shown in Figure 6B. Addition of the chemo-attractant (MCP-1)
to the lower well significantly increased the number of migrated
monocytes 2.3-fold compared to PBS (PBS: 59.7 ± 24.3; MCP-1:
138.2 ± 61 migrated monocytes per microscopic field). MP were
able to significantly reduce the number of monocytes that
migrated through the TNFa activated HUVEC monolayer
(61.3 ± 44.6 migrated monocytes per microscopic field)
compared to the MCP-1 (Figure 6C). Non TNFa activated
HUVEC treated with MP were used to examine whether MP
could induce monocyte transmigration under non-inflammatory
conditions. The addition of MCP-1 did not induce an increase in
transmigrated monocytes (18.2 ± 3,4 migrated monocytes per
microscopic field) compared to PBS (11 ± 5.2 migrated
monocytes per microscopic field) . The number of
transmigrated monocytes in the MP treated HUVEC was
Frontiers in Immunology | www.frontiersin.org 865
similar to the Non-treated HUVEC (15.3 ± 7.1 migrated
monocytes per microscopic field). The number of monocytes
that migrated through the Non-Stimulated HUVEC monolayer
was very low compared to TNFa-Stimulated HUVEC and the
number of monocytes that adhered to the Non-Stimulated
HUVEC was also very low (Figure 6C).

MP Increase Endothelial
Monolayer Integrity
To analyze whether MP induce a decrease in endothelial
intercellular permeability, HUVEC were cultivated as tight
monolayers in a transwell system and were treated or not with
TNFa, and two ratios of MP (1:50,000; 1:100,000) during 24h.
Thereafter, permeability was determined by measuring the
passage of FITC-Dextran (molecular mass: 70 kDa) across
HUVEC monolayers (Figure 7A). Results were normalized to
the Non-Stimulated HUVEC control group. The analysis showed
that both doses of MP decreased the endothelial permeability in
Non-Stimulated HUVEC. TNFa stimulation induced a 2-fold
increase in the permeability of the monolayer compared to the
Non-Stimulated control. At a dose of 1:100,000 MP significantly
decreased endothelial permeability (Figure 7B).

MP Have Pro-Angiogenic Properties
The pro-angiogenic potential of MP on non-stimulated and
TNFa stimulated HUVEC was determined by measuring four
parameters (total tube length, total branching points, total loops,
and covered area) (Figure 8A) using the tube formation assay.
The experiment was performed in both groups of HUVEC after
24h of incubation with and without TNFa and with and without
MP. MP enhanced the process of angiogenesis in Non-
A

B

FIGURE 5 | Effects of Membrane Particles on monocyte adhesion to TNFa-activated HUVEC. HUVEC were stimulated with TNFa and treated with MP at ratio
1:50,000. Subsequently, CFSE-labeled monocytes were added during 1h. (A) Representative fluorescent microscopy pictures show the adhered monocytes (white
dots) to the HUVEC monolayer in non-stimulated and TNFa stimulated conditions. (B) Quantitative results of the monocyte adhesion assay analyzed by imageJ. No
significance difference respect to the respective control (Non-Stimulated, and TNFa Stimulated HUVEC) was observed when MP were added *p < 0.05 compared to
Non-Stimulated HUVEC.
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Stimulated and TNFa Stimulated HUVEC with respect to their
control groups (Figure 8B). The quantification of the
angiogenesis parameters revealed a significant increase in total
Frontiers in Immunology | www.frontiersin.org 966
tube length, total branching points, total loops, and covered area
for MP in Non-Stimulated HUVEC, and TNFa Stimulated
HUVEC (Figure 8C).
A B

C

FIGURE 6 | Effect of Membrane Particles on migration of monocytes through a monolayer of TNFa-activated HUVEC. (A) Schematic representation of the
transmigration assay. HUVEC were seeded on transwell inserts until confluency. The monolayer of cells was treated with TNFa and 1:50,000 MP for 24h. Then,
1x105 isolated monocytes were added during 2h with addition of the chemo-attractant MCP-1 in the bottom well. Three pictures from randomly selected areas of
the transwell were taken for the quantification. (B) Representative confocal microscopy images of the negative control (no MCP-1), positive control (MCP-1) and the
MP treated group analyzed by ImageJ. (C) Quantitative results of the transmigration assay. Data represent means ± SD of the number of transmigrated monocytes.
*p < 0.05 respect to Non-Stimulated HUVEC. #p < 0.05 respect to TNFa stimulated HUVEC non treated with MP in the MCP-1 group.
A B

FIGURE 7 | HUVEC barrier integrity. (A) Schematic representation of the endothelial barrier model used in the study. HUVEC were seeded on transwell inserts until
confluency and then treated with TNFa and MP (1:50,000 and 1:100,000) during 24h. FITC-dextran was added during 2h, after which the fluorescence intensity in
the lower chamber of the transwell system was quantified. (B) Quantitative results of the HUVEC barrier integrity assay. Data represent means ± SD of 3 experiments
using MP from 5 different donors. *p < 0.05 compared with the respective control (Non-Stimulated HUVEC). #p < 0.05 respect to TNFa stimulated HUVEC (Control).
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DISCUSSION

The present study demonstrates that small circular fragments of
cell membranes from AT-MSC can ameliorate TNFa induced
endothelial injury by improving endothelial cell monolayer
integrity and enhancing their angiogenic capacity. MP
encompass the surface molecules of MSC plasma membranes
and contain RNA present in the mother cells, thereby exploiting
some of the natural immunomodulatory and regenerative
properties of MSC.

The generation of MP as a cell free cell-therapy emerged after
our study to heat inactivated MSC (HI-MSC) where we observed
that HI-MSC possessed immunomodulatory properties in vitro
and in vivo, even being dead (14). HI-MSC lost the capacity to
secrete factors, or any another function related to the living cells
such as proliferation, while keeping the cell membrane intact.
This suggests that MSC membranes with their associated
proteins can govern at least some of the effects of MSC. The
Frontiers in Immunology | www.frontiersin.org 1067
size of HI-MSC is similar as MSC and HI-MSC get trapped in the
lung capillary system after their administration (14). To retain
the biological properties of MSC and concomitantly overcome
the problems of living cells, the generation of MSC membranes
in the nano-range devoid of cytoplasm and nucleus represent a
new promising approach in the cell therapy field and is
supported by the EV studies (22, 23).

MP and EV derived from MSC provide several advantages
over MSC. Both types of nanoparticles cannot be modified by the
molecular environment after their administration as they are a
fixed representation of MSC. Similar to naturally occurring EV,
the small size of MP (<200nm) makes them more suitable for
crossing the lung barrier than MSC (24, 25) and due to a better
biodistribution can exert broadly their effects in the
organism (26).

Interestingly, mRNA for factors such as VEGF, IL-8, and
CD90 from the MSC were detected in MP. It is assumable that
these mRNAs are on the inside of the MP as RNAases would
A B

C

FIGURE 8 | MP induce angiogenesis in Non- and TNFa Stimulated conditions. (A) Analysis and identification of angiogenic features. (B) Angiogenesis assay images
of Non-Stimulated and TNFa stimulated HUVEC under MP treatment. Quantitative image analysis of four angiogenic features (covered area (Blue lines), total tube
length, total branching points, and the number of loops) in (C) Non-stimulated HUVEC, and TNFa stimulated HUVEC. The analysis was performed by the company
WIMASIS. *p < 0.05 compared with the control (no MP). #p < 0.05 respect to Non-Stimulated HUVEC.
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likely degrade free floating RNA. The relative gene expression of
these factors in MP samples was different between donors and
may be related to the inherent donor variation or to differences in
the grade of RNA degradation during the process of MP
generation. To minimize the impact on the results due the
different amount of mRNA between samples, several batches of
MP per donor were used to perform the experiments. One of the
mechanisms proposed for explaining the action of EV is the
transfer of RNA to the target cells (27, 28). Whether this
mechanism is also occurring with MP deserves further studies.

To evaluate whether MP is a potential treatment to repair
inflamed endothelium, several aspects of endothelial repair were
studied. We showed that MP were efficiently taken up by
HUVEC, and that their last destination are the lysosomes of
the cells. Recently, we have studied the mechanisms of MP
internalization (29). Specific inhibitors for endocytic pathways
revealed that MP internalization depends on heparan sulfate
proteoglycan-, dynamin-, and clathrin-mediated endocytosis but
does not involve caveolin-mediated endocytosis. MP uptake also
involved the actin cytoskeleton and phosphoinositide 3-kinase,
which are implicated in macropinocytosis and phagocytosis. Due
to the different pathways involved in the uptake of MP, the
mechanisms involved in their actions may be very different.
Several authors described that endocytosis is the most common
pathway used by cells to incorporate natural vesicles such as
exosomes, and microvesicles to their cytoplasma (30, 31).
Bhagyashree S. Joshi et al. (32) demonstrated that EV are
internalized by endocytosis and phagocytosis as MP, and the
internalized EV fuse with the limiting membrane of endosomes
and lysosomes in an acidification-dependent manner, which
results in EV cargo exposure to the cell cytosol. MP may be
processed by the cells in a similar manner, but future studies
should address this question.

Potential adverse effects such as cytotoxicity and upregulation
of adhesion molecules on HUVEC by MP were analyzed. No
increase in apoptotic HUVEC was observed even with the
highest concentration of MP in the inflammatory condition.
MP did not have any role on the modulation of the surface
adhesion molecules of HUVEC. It is important to highlight that
MP did not induce the activation of the HUVEC under normal
conditions, which makes them a safe treatment for EC. Because
MP did not downregulate the expression of surface adhesion
molecules on HUVEC under inflammatory conditions, the
adhesion of the monocytes to the activated EC could not be
suppressed. Several studies have described the relation of EC
adhesion markers and monocyte adhesion. Blocking ICAM-1
receptors (33) in EC, or downregulating the expression of
adhesion receptors in EC with molecules such as L-Arginine
(34), and Eicosapentaenoic Acid (35) was correlated with a
decrease of monocyte adhesion. Although MP did not decrease
the number of monocytes adhered to EC, MP were able to
prevent the migration of monocytes through a monolayer of
HUVEC. Several authors described that MSC inhibit the
recruitment of leukocytes (9, 36), but there are some doubts
about the mechanisms of action. MSC could physically obstruct
the transmigration of leukocytes (37), or immune cells could
Frontiers in Immunology | www.frontiersin.org 1168
interact adhesively with MSC thereby reducing the number of
cells available to bind to EC (38). MP cannot physically block the
migration of monocytes through the barrier of EC, and
furthermore in our experiments, MP were removed before the
addition of the leukocytes, so they could not interact with the
leukocytes themselves. The most likely mechanism explaining
the impeding of monocyte transmigration by MP is that MP
restore the HUVEC barrier integrity from TNFa-induced
leakiness by stimulating a more compact HUVEC monolayer
structure. This characteristic of MP is shared with MSC and EV
derived from MSC (39, 40).

Additionally, we showed that MP stimulate the angiogenic
potential of HUVEC in normal and inflammatory conditions.
This effect has also been reported for EV derived fromMSC (41),
and the described mechanism is through the transfer of miRNAs
from EV to the recipient cells (42). It is possible that MP share
this mechanism of action with EV as MP also contain mRNAs
involved in angiogenesis such as VEGF, angiopoietin 1.

These features of MP, blocking of transmigration, restoring
endothelium integrity, and stimulation of angiogenesis could be
used in the treatment of different vascular complications such as
atherosclerosis, infiltration of immune cells in organ rejection, in
the joins in rheumatoid arthritis, or for injured endothelium after
organ ischemia. In comparison with similar treatments such as
MSC or EV derived from MSC, MP offer the advantage of their
small size, purity and excellent safety profile and the possibility
for upscaling production in a controlled manner.

In conclusion, MP show a promising medicinal potential,
opening a new avenue for treatment of vascular diseases where
the inflammatory process is involved in the damage of
the endothelium.
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Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm.
Exosomes are released by all cells through an endosome-dependent pathway and carry
nucleic acids, proteins, lipids, cytokines andmetabolites, mirroring the state of the originating
cells. The function of exosomes has been implicated in various reproduction processes,
such as embryo development, implantation, decidualization and placentation. Placenta-
derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after
conception and their levels increase with gestational age. Importantly, alternations in the
molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these
differentially expressed molecules could be the potential biomarkers for diagnosis of the
pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key
role in the establishment of maternal immune tolerance, which is critical for a successful
pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the
advanced studies of pEXO on immune cells in pregnancy.

Keywords: placenta, exosomes, maternal immune tolerance, preeclampsia, gestational diabetes mellitus, preterm
INTRODUCTION

Pregnancy is a complex process associated with numerous biological changes in the maternal body
and our understanding of the complicated relationship between the mother and its semi-allograft
fetus is still limited (1). An immune tolerant environment is a prerequisite to a successful pregnancy.
However, the understanding of how the fetus avoids maternal immune rejection is an enigma.
During pregnancy, the mother needs to have a competent immune system against infection but is
tolerant to the developing fetus. Any disruption of the immune tolerance would lead to adverse
pregnancy outcomes such as recurrent pregnancy loss (2), miscarriage (3) and preeclampsia (4).

The maternal immune system undergoes a wide variety of biological changes during pregnancy.
These include decidual immune cell mobilization, re-distribution and polarization at a local level
(5–7) and a universal immunosuppressive state at a systemic level (8, 9). In humans, the
trophectoderm of blastocyst protects the growing embryo at implantation (10). After
implantation, the syncytiotrophoblast (STB) derived from the trophectoderm, surrounds most of
the chorionic villi, and prevents the fetus from a direct contract with the maternal blood. The
trophoblasts have a unique human leukocyte antigen (HLA) profile (11). For example, the STBs are
org May 2021 | Volume 12 | Article 671093171
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HLA null and are considered as immunologically neutral, while
the extravillous trophoblast cells (EVTs) express an unusual
repertoire of HLA-I molecules including HLA-G, HLA-C and
HLA-E (12, 13). Furthermore, the STBs produce various
immunoregulatory factors such as interleukin 10 (IL10) (14),
macrophage colony-stimulating factor (M-CSF) (15) and IL-35
(16), which contribute to maternal immune tolerance as well.

Exosomes, firstly regarded as cell burden, are involved in the
process of antigen presentation, signal transduction and immune
responses. Placenta STB has been demonstrated to continuously
releases extracellular vesicles (EVs), microvesicles and exosomes,
to the maternal circulation (17, 18). The study on pEXO can date
back to 1999 (19) and our understanding of pEXO are
significantly increased due to advances in technologies of
exosome purification in the last decade. Beyond that, exosomes
from other sources-such as stem cells and tumor-have a critical
role in growth, metabolism and development. The function of
pEXO has been implicated in conferring viral resistance to non-
placenta cells, inhibiting T cells recognition and activation, and
promoting macrophage differentiation and polarization during
pregnancy. Here, we summarize the current knowledge of pEXO
in the establishment of maternal immune tolerance and outlined
an overview role of its application in disease diagnosis.
PLACENTA-DERIVED EXTRACELLULAR
VESICLES

Extracellular Vesicles
Communication among our body cells is traditionally considered
to be through autocrine, paracrine, endocrine and direct cell-cell
contact. Other than that, EVs are another means of cell-cell
communication. According to the guidelines of the International
Society for Extracellular Vesicles (ISEV), EVs are lipid-bound
vesicles with a diameter ranging from 30 nm to 2 mm released
from all kinds of cells (20, 21). Based on the biogenesis process,
EVs generally fall into two categories, ectosomes and exosomes
(Table 1) (20). Ectosomes are vesicles produced by cells via direct
outward budding. They can be further divided into microvesicles
(MVs, 200 nm ~ 1 mm in diameter) and apoptotic bodies (APs,
1 mm ~ 5 mm in diameter) (22). By contrast, exosomes are nano-
sizedparticleswith a size ranging from30nmto200nmindiameter
(100 nm on average) generated by inward budding of the plasma
membrane via a multi-vesicular system (21).
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Initially, EVs are considered as cell debris for the purpose of
maintaining cellular homeostasis (23, 24). EVs carry various
molecular cargoes, such as proteins, microRNAs (miRNAs),
mRNAs, lipids and metabolites, which endow the EVs with
capacity as a natural vehicle for intercellular communication
(25). The function of exosomes has been well documented in
tumorigenesis, metastasis, regeneration, mammalian reproduction
and development (26). Certain miRNAs are enriched in exosomes
compared to those in the cells of origin, indicating that the process
of exosomes biogenesis is not random, but in a pre-primed
manner (27, 28). However, the mechanism underlying the
exosomal cargo incorporation is still unclear.

Placenta Syncytial Nuclear Aggregates,
Microvesicles and Exosomes
During pregnancy, the placenta actively releases EVs into the
bloodstream of the mother. The STB is the major source of
placenta-derived EVs in the maternal blood (29, 30). Unlike
those EVs that originate from other tissues, placenta-derived EVs
are divided into three categories based on their sizes: syncytial
nuclear aggregates (SNAs), microvesicles (MVs) and exosomes
(Figure 1) (31).

Placenta-derived SNAs, also known as syncytial knot, are the
clusters of multinucleated aggregate of syncytial nuclei (20
mm~200 mm in diameter, averaged 60 nuclei per knot) extruded
from STB (32). The formation of placenta-derived SNAs is
generally considered as a degenerative process, an aging change
and an indicator of trophoblastic state when exposed to ischemia
or hypoxia (18, 31, 33). The history of placenta-derived SNAs can
be dated back to 120 years ago when they were first found in the
lungs of post-mortem women (34). However, the origin and
formation of SNAs are far from clear. Nuclei within SNAs
exhibited condensed morphology compared to the STB and
showed little evidence of apoptosis, indicating that SNAs are not
fragmented STB (31). SNAs could be used as an alternative source
of fetal DNA for prenatal diagnosis (35). The levels of SNAs
increase as gestation proceeds and are found to be correlated in
pregnancy complications such as preeclampsia (36).

The biological function of placenta-derived MVs is broad,
encompassing immune cell activation, proliferation, and
endothelial hemostasis (37). MVs collected from normal placenta
perfusion have a pro-inflammatory effect via activating monocytes
and B cells (38). Inhibition of MV internalization cannot block
placenta-derived MV-mediated activation of monocytes and B cells
indicating that membrane-bound proteins are the key players of the
TABLE 1 | Summary of different subtypes of placenta-derived extracellular vesicles.

Exosomes Microvesicles Apoptotic bodies Syncytial nuclear aggregates (SNA)

Size 30nm ~ 200nm 200nm ~ 1mm 1mm ~ 5mm 20m-200mm
Origin Endocytic pathway Plasma membrane Plasma membrane Syncytiotrophoblast
Function Intercellular communication Intercellular communication Facilitate phagocytosis Unclear
Contents Proteins, miRNA, mRNA, lipid and

metabolites
Proteins, miRNA, mRNA, lipid and
metabolites

Nuclear fractions, cellular
organelles

Nucleus, proteins, miRNA, mRNA, lipid,
metabolites

Markers Alix, CD81, CD63, CD9 Integrins, selectins, CD40 Annexin V,
phosphatidylserine

Nucleus cluster
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phenomenon. Proteomic analysis revealed that the differential
expressed proteins between MVs from normal pregnancy and
preeclampsia patients are related to mitochondria, transmembrane
transport and membrane transporter activity (39).

pEXO can interact with various target cells including
endothelium, T cells, monocytes, natural killer (NK) cells and
macrophages. pEXO are found to protect endothelial cells from
viral infection (40), inhibit NK cytotoxicity (41), constrain T cell
proliferation (42) and promote monocyte differentiation and
macrophage polarization (43). During pregnancy, pEXO can be
detected as early as 6 weeks (44) and their number increases
gradually and finally peaks at term. Pathologically, the levels of
exosomes have been correlated with pregnancy-associated
complications such as preeclampsia (45), gestational diabetes
mellitus (46) and preterm birth (47), which will be described
later in this review. Interestingly, all these complications have
been demonstrated to associated with alteration of immune
system during pregnancy. However, the detailed roles and
mechanisms of pEXO in maternal immune adaption and
placental development are still obscure.
pEXO PREPARATION AND ISOLATION

To date, pEXO are mainly purified from four types of sources:
maternal blood, placental perfusate, placental explant culture, and
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primary trophoblast culture. However, pEXO isolated by different
methods have distinct effects on endothelial cells, T cells and other
cells [Reviewed in (48–50)]. Generally, the yield of placenta
exosomes in the maternal blood is relatively low. On the other
hand, the yields of exosomes from placental perfusion and explant
culture are relatively high but the purity of the isolated exosomes is
a concern. Since differences in content and immunoregulatory
activities of exosome from primary cell and its established cell lines
have been reported (51–53). Primary cells are currently the best
source of exosomes preparation when sample availability is
adequate. However, exosomes from trophoblast cell lines with
gene manipulation could also provide valuable information
regarding trophoblast-specific gene expression and function
(54, 55).

Immuno-capture, centrifugation, precipitation, and size
exclusion chromatography are commonly used to isolate
exosomes from the biological fluid or culture medium (21, 56–59)
(Figure 2). The immuno-capture method is commonly used to
isolate pEXO in plasma (60). Magnetic beads coated with
monoclonal anti-PLAP (placental alkaline phosphatase) antibodies
capture placenta-specific exosomes through antigen-antibody
interaction. Ultracentrifugation and gradient ultracentrifugation
are the most widely used methods in exosome studies. In these
methods, EVs are isolated by differential centrifugal forces. Dead
cells and cell debris are pelleted with a relatively low centrifugal
force (300g for dead cells and 2000g for cellular debris). Higher
FIGURE 1 | Schematic illustration of placenta extracellular vesicles. Placenta derived extracellular vesicles can be divided into four categories: exosomes, microvesicles,
apoptotic bodies and syncytial nuclear aggregates based on size and biogenesis pathway. Exosomes are generated by multivesiculuar body (MVB)-intraluminal vesicles
(ILVs) system. first MVBs are generated by plasma membrane inward budding. Further, invagination of the late endosomes forms intraluminal vesicles (exosomes) within
multivesiculuar body (MVB). Exosomes release to extracellular space when MVB fuse with membrane plasma. During this processes, membrane components and
cytosolic materials are loaded into exosomes. Microvesicles and apoptotic bodies are produced by outward budding of plasma membrane and the size range of 200
nm - 5 mm. Syncytial nuclear aggregates (SNA) are clusters of syncntiotrophoblast with multiple nuclei per SNA. CTB, cytotrophoblast; Exo, exosomes; EVT, extravillous
trophoblast; MVs, microvesicles; Mj, macrophage; NK, Natural killer cells; STB, syncytiotrophoblast; SNA, syncytial nuclear aggregates.
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centrifugal force at 16,500g is then applied to separate the MVs.
Exosomes can be harvested by ultracentrifugation at >100,000g, for
60 minutes. To enhance the purity of exosomes, gradient
ultracentrifugation is employed to separate different subtypes of
exosomes (59). Precipitation is another method for exosome
purification (61, 62). Polyethylene glycol (PEG) functions as a
water-excluding molecule that precipitates the exosomes out of
the aqueous phase. Usually, exosomes are isolated by a low-speed
centrifugation after incubating the sample with a precipitation
solution containing PEG. However, proteins may also be
precipitated by PEG which could result in a lower purity than
those generated by ultracentrifugation. Size exclusion
chromatography (SEC) has also been used for exosome
purification (63, 64). In this method, exosomes and soluble
proteins are separated by a porous matrix. Exosomes that are
larger than the size cutoff of the matrix are eluted faster than the
soluble proteins. Compared to other methods, exosomes isolated by
SEC have a higher purity but lower yields. However, all the methods
have their limitation in terms of efficiency and purity. To bridge this
gap, new technologies and standardization of protocols for pEXO
isolation are needed in future studies.
MATERNAL ADAPTATION OF IMMUNE
SYSTEM RESPONSE AT EARLY
PREGNANCY

Placenta-driven immune tolerance is a hallmark of a successful
pregnancy when exposed to fetal antigens (65–69). Paternal
antigens encounter the maternal immune system when the
placenta villi are in contact with the maternal blood and when
the EVTs interact with the human decidua. Strikingly, the
Frontiers in Immunology | www.frontiersin.org 474
maternal immune cells are abundant in the human decidua in
early pregnancy accounting for 40% of the total decidual cells.
Among them, NK cells (70%) and macrophages (20%) are the
two largest subpopulations, with the rest constituted by T cells.
Dendritic cells and B cells are almost absent in the human
decidua (70). Interestingly, endometrium exhibits a sharp
increase in NK cells and macrophages and a steep decline in T
cells during the secretory phase of menstrual cycle, indicating
that hormones may influence immune cell population and
functions. Although the total cell numbers of the decidual
immune cells in the peri-implantation and post-implantation
periods are similar, their phenotypes and functions are
dramatically different (71, 72).

It is generally accepted that a T-helper type-2 (Th2) cytokine
prevailing environment is important in pregnancy (73). The
proportion of Th2 cytokines-secreting cells in the endometrium
are significantly higher in pregnant women in the first trimester
than in non-pregnant women (73–75). On the other hand, Th1
cytokine-dominated immune responses are associated with
implantation failures (76), abortion (77) and preeclampsia
(78). The excessive Th1 cytokines are also associated with an
elevated number of activated CD8+ T cells (79), M1 macrophages
(80), Th-17 cells (81) in the decidua. However, several Th1
cytokines such as interferon (IFN)-g and tumor necrosis factor-a
are important in uterine vascular remodeling (82) and
implantation (83), suggesting that the Th-1/Th-2 paradigm for
pregnancy may be too simplistic. Recently, the concept of Th-1/
Th-2 paradigm was gradually expanded to Th1/Th2/Th17/Treg
paradigm due to the discovery of new Th cell subsets at the
maternal-fetal interface (84, 85).

Systemic changes in peripheral immune cells are also essential
for a successful pregnancy. It is supported by the observations in
FIGURE 2 | Preparation and isolation of pEXO. Exosomes extruded from placenta can be purified from blood plasma, medium of placental perfusion, explant culture
and primary trophoblast culture through immune-capture, ultracentrifugation, gradient centrifugation, or size exclusion chromatography.
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immunodeficient mice (Table 2). In general, adaptive immune
cell-deficient female mice are fertile, whereas innate immune
cell-deficient female mice are often accompanied by a
compromised reproductive performance. However, the
mechanism responsible for this observation is still unknown.
The significance of peripheral immune cells in pregnancy is also
well manifested in pregnant mothers with rheumatoid arthritis,
an autoimmune disease which was partially subsided during
pregnancy (97). Peripheral Treg cells, granulocytes and
monocytic myeloid-derived suppressor cells (M-MDSC) are
significantly increased when compared to non-pregnant
women (98–100). In contrast, the number of T cells and B
cells remain stable (8, 101). Moreover, the cytotoxicity of
peripheral NK cells from pregnant women is well constrained
when compared to non-pregnant individuals (102, 103).
pEXO AS A MODULATOR OF MATERNAL
IMMUNE TOLERANCE

Given that exosomes, but not other EVs, are generated through
the endosomal pathway, biological molecules encompassed by
the exosomes are believed to have specific functions in cell-cell
crosstalk. The placenta secretes a large number of exosomes into
the maternal circulation. The NK cells, macrophages and T-cells
are the three largest cell types making up >90% of the immune
cells at the fetal-maternal interface in the post-implantation
period. Thus, this review focuses on the effect of pEXO on
these three immune cell populations. Yet it should be
emphasized that exosomes are also involved in mediating the
bi-direction communications between endometrium and
embryo during peri-implantation and implantation phase
(104–106). For example, endometrial epithelial cell-derived
exosomes promote embryo attachment during implantation via
miR-30d-dependent upregulation of integrins or through
activation of focal adhesion kinase (FAK) signaling pathway
(107, 108). Another study shows that diapausing endometrial
epithelial cell-derived exosomes enriched with miR-let-7 can
protect the embryo from collapsing (109). Conversely, embryo-
derived exosomes have been detected in spent embryo culture
medium. These exosomes can be internalized by endometrial
Frontiers in Immunology | www.frontiersin.org 575
epithelial/stromal cells (110, 111) and promote endometrial
receptivity (112–114).

Natural Killer Cells
Peripheral Blood Natural Killer Cells
NK cells in peripheral blood are divided into two groups: over 90%
of peripheral NK cells (pNK) are CD56dim CD16+ which are
cytotoxic cells; the rest are CD56+ CD16- NK cells which are less
cytotoxic and can migrate into peripheral tissues. Compare to non-
pregnant, pNK of pregnant women have a higher expression of
Tim-3 (115), galectin-1 (102) and lower secretion of IFN-g (103).
The cytotoxic activities of pNK at early pregnancy are controversial
(101, 116). Moreover, overactivated pNK are associated with
repeated implantation and unexplained spontaneous abortion
(117). Currently, there is no report on the effect of pEXO on pNK.

Endometrial NK Cells (eNK) and Decidual NK Cells (dNK)
NK cells represent the largest fraction of lymphocytes in the
endometrium during the late-secretory phase and early
pregnancy. Unlike pNK, majority of the endometrium NK cells
(eNK) are CD56+ CD16- with a minority being cytotoxic CD56dim

CD16+. The transformation from eNK to decidual NK cells (dNK)
occurs upon implantation, resulting in two cell subsets with
distinct transcriptional profiles. Strikingly, the eNK are more
active than the dNK as 70% of differentially expressed genes are
highly expressed in the eNK (118). On the other hand, the eNK
have no expression of NKp30 and cannot produce VEGF and
placental growth factor (119). The phenotype and KIR repertoire
are also different between the two type NKs; the dNK have a
higher expression of KIR2D, the killer immunoglobulin-like
receptor for HLA-C recognition than the circulating NK and the
non-pregnant eNK (72, 120).

Decidual NK cells (dNK) are abundant in the maternal-fetal
interface at early pregnancy- accounting for up to 70% of total
lymphocytes in decidua (121). The number of dNK gradually
increases upon embryo implantation, peaks at 8-10 weeks of
gestation, and returns to the original level at term. In general,
dNK have low cytotoxicity and are prone to produce more growth
factors with immunomodulatory activities (122). Elevated dNK
cytotoxicity is associated with recurrent spontaneous abortion due
to increased lysis activity (123). This was, in part, mediated by the
TABLE 2 | Reproductive performance of immunodeficient mouse model.

Immune cell deficiency Innate immune cell depletion

Cell types Nude SCID Nod-SCID Rag-/- Rag-/- gc-/- Treg-/- Csf1-null CD11b+ MDSC
Mature B cells Present Absent Absent Absent Absent Present Present Present Present
Mature T cells Absent Absent Absent Absent Absent Present Present Present Present
Dendritic cells Present Present Defective Present Present Present Present Present Present
NK cells Present Present Defective Present Present Present Present Present Present
Treg N/A N/A N/A N/A N/A Absent Present Present Present
Macrophages Present Present Present Present Present Present Absent Absent Absent
Monocytes Present Present Present Present Present Present Defective Absent Defective
MDSC N/A N/A N/A N/A N/A Present N/A N/A Absent
Reproductivity Fertile Fertile Impaired Fertile Fertile Impaired Infertile Infertile Impaired
Reference (86) (87) (88, 89) (90) (91) (92) (93, 94) (95) (96)
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up-regulation of NKp44 and NKp46 cytotoxicity receptors on
CD56bright CD16- and CD56dimCD16+ cells (124). In fetal/
neonatal alloimmune thrombocytopenia (FNAIT), activated
dNK with increased cytotoxicity induce trophoblast apoptosis
(125). A recent single-cell study (126) classified the dNK into
three subsets: dNK1 (CD39+KIR2DL+ITGB2-CD103-), dNK2
(CD39-KIR2DL+ITGB2+CD103-) and dNK3 (CD39-KIR2DL-

ITGB2+). The origin of the dNK remains uncertain, though they
are thought to be derived from the NK precursor in the
endometrium, or recruited from the circulating NK (126) and/or
renewed by the CD34+ progenitor cells (127).

dNK are localized closely to EVT and spiral artery (128). They
are vital to various processes of pregnancy including embryo
implantation, immunomodulation, trophoblast differentiation
and invasion, and endothelial cell remodeling. dNK also
express unique NK receptors (e.g. 2B4, KIR2DL, ILT2) for
interaction with their corresponding ligands (e.g. HLA-C, -E,
-G) on EVT to fine-tune their cytolytic activity (129) within the
maternal-fetal interface during the first trimester of pregnancy.
Recent studies also suggest novel properties of dNK such as
providing osteoglycin (OGN) and osteopontin (OPT) for fetal
development (130) and selectively killing the pathogenic bacteria
inside the trophoblast by injection of granulysin through
nanotubes (131).

Effect of pEXO on NK Cells
pEXO can be internalized by NK cells in vivo (132) and in vitro
(Supplementary Table 1) (133), which mediate the crosstalk
between the placenta and the maternal immune system. The
cytotoxic activity of NK cells mainly attributes to its activating
receptors on the plasma membrane. NK group 2 member D
(NKG2D) is widely expressed on the NK cells, activated CD8+ T
cells and macrophages for removal of infected cells or foreign
pathogens. NKG2D is remarkably downregulated in NK cells by
NKG2D ligands expressed on pEXO (Supplementary Table
1) (134).

NKp30 is another activating receptor on the NK cells
responsible for eliminating cancer cells and inducing dendritic
cells maturation by secretion of tumor necrosis factor-alpha
(TNF-a), interferon-gamma (IFN-g), perforins and granzymes
(135). B7H6, one of NKp30 endogenous ligands, is widely
expressed on cancer cells and trophoblasts, while soluble B7H6
(sB7H6) was a decoy agent for ligand-receptor interaction and
compromising NK cytotoxicity. High levels of exosome-packed
sB7H6 or soluble B7H6 are correlated with poor tumor
prognosis, likely due to inhibition of the NK cytotoxicity
against the tumor cells (136). During pregnancy, both
exosome-packed B7H6 and sB7H6 are present in the serum of
pregnant women (Supplementary Table 1), indicating its
potential contribution via a similar mechanism to inhibit NK
cells in the establishment of maternal immune tolerance (137).

In addition to reducing the cytotoxicity of NK cells, exosomes
from the serum of pregnant women can selectively increase the
caspase-3 activity in CD56dim NK cells, pointing to an alternative
way of exosome-mediated immune tolerance by inducing
apoptosis of the CD56dim NK cells (Supplementary Table 1)
(133). pEXO proteomic study showed that glycodelin A (GdA), a
Frontiers in Immunology | www.frontiersin.org 676
glycoprotein with immunosuppressive activities, is abundantly
expressed in human decidua and pEXO (138). We demonstrated
that decidua-derived GdA stimulated the conversion of
peripheral CD56bright CD16- NK cells to cells with a decidual
NK cell-like phenotype via upregulation of CD9, CD49a and
production of VEGF (139). Together, this evidence indicated that
the pEXO contribute to maternal immune tolerance through
modulating NK cytotoxicity, inducing CD56dim NK cells
apoptosis and promoting the development of decidual NK cell-
like phenotype.

Monocytes and Macrophages
Peripheral Blood Monocytes
Circulating monocytes are the primary phagocytic cells and the
major APCs in blood (140). Notably, monocytes are able to
differentiate into dendritic cells and macrophages for antigen
presentation and removal of foreign pathogens, respectively. In
humans, peripheral monocytes can be divided into three main
subtypes based on the expression of CD14 and CD16 (141):
classical monocytes (CD14++CD16-); intermediate monocytes
(CD14+CD16+) and non-classical monocytes (CD14-CD16++).
Approximately 80% of the total monocytes are classical
monocytes, while the non-classical monocytes comprise about 2-
11%. Non-classical monocytes retain a highly inflammatory
characteristic and their number is elevated in both chronic and
acute inflammation. The population of the intermediate
monocytes (2-8%) with both inflammatory and phagocytic
capacities expands during ZIKA viral infection and is the main
target for ZIKA infection during pregnancy (142). Despite the
conflicting results on the proportion of classical monocytes in
peripheral blood between pregnant and non-pregnant women,
classical monocyte number is lower in pregnancy complications
such as preeclampsia (143, 144), indicating a possible regulatory
role of monocyte in pregnancy.

Decidual Macrophages
Decidual macrophages are the second most abundant type of
lymphocytes (~20%) and the major antigen-presenting cells
(APC) in human decidua during early pregnancy (70). They
contribute to maternal-fetal immune homeostasis, spiral artery
remodeling and trophoblast functions (145). Decidual
macrophages display the transcriptional profile of both classically
activated macrophages (M1 macrophages) for immune activation
and alternatively activated macrophages (M2 macrophages) with
anti-inflammatory and immunosuppressive functions (146, 147).
Thus, the decidual macrophages do not fit into the conventional
M1/M2 classification of macrophages. Indeed, decidual
macrophages show dynamic changes throughout pregnancy (13).
For instance, seminal plasma-induced M1 macrophage infiltration
contributes to embryo implantation in mice (5) and early
placentation (5, 67, 148). As pregnancy proceeds, the M2-
dominated microenvironment protects the fetus from rejection.
At the time of parturition, M1 macrophage accumulation facilitates
uterine contraction (149). The driving forces underlying the
phenotype changes remain unclear, yet it is generally believed that
the surrounding micro-environment is essential for macrophage
transformation and maturation.
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Tissue-resident macrophages arise from three subsets of
precursors: early yolk sac macrophages, fetal liver monocytes and
bone marrow-derived monocytes (150, 151). In other words, the
tissue-resident macrophages can be generated by self-renewable
macrophages or replenished from circulating monocytes. However,
the origin of human decidual macrophages remains uncertain.
Kammerer et al. reported a unique CD209+CD14+CD68+ HLA-
DR+ CD83- proliferating APCs in the decidual of early human
pregnancy, suggesting that the human decidual macrophages
maintain themselves through self-renewal (152). On the other
hand, a gene knockout mice study indicates that the decidual
macrophages are replenished by peripheral monocytes expressing
circulating lymphocyte antigen 6 complex (Ly6C)hi via a
Chemokine (C-C Motif) Ligand 2 (CCL2) - CC chemokine
receptor-like 2 (CCR2) dependent pathway driven by CSF-1 (153).

Effect of pEXO on Circulating Monocytes and
Decidual Macrophages
Early pregnancy is in a pro-inflammatory state. Monocytes in the
maternal blood are progressively activated in pregnant women
compared to non-pregnant women (144). Placenta-derived EVs
can transform the phagocytic classical monocytes (CD14++CD16-)
to the intermediate monocytes (CD14+CD16+) (143) with
enhanced migratory capacity and secretion of pro-inflammatory
factors such as IL-1b, IL-6, serpinE1, granulocyte-macrophage
colony-stimulating factor (GM-CSF), M-CSF and TNF-a
(Supplementary Table 1) (154, 155). On the other hand, the
number of CD14+HLA-DRlow monocytes is elevated in the
maternal blood of the first trimester of pregnancy, and displays
an immunosuppressive phenotype when compared with non-
pregnant controls (99). Downregulation of HLA-DR endows
monocytes with a tolerogenic ability (156). Similarly, tumor-
derived exosomes contribute to a systemic immune tolerance via
modulating the monocyte phenotype. Exosomes from chronic
lymphocytic leukemia induce a high expression of PD-L1 in
monocytes in a Toll-like receptors 7 (TLR7)-dependent manner
(157). Head and neck squamous cell carcinoma-derived exosomes
promote monocytes differentiation into an M2 macrophage-like
phenotype via activation of miR-21 (158).

Studies of pEXO on decidual macrophage are sparse. On the
other hand, Nguyen et al. demonstrated that pEXO from pregnant
mice are specifically targeted to the lungs and liver, and are taken
up by lung interstitial macrophages (97). However, the
physiological implications of this observation are unclear.
Interestingly, tumor-derived exosomes play a critical role in
modulating the differentiation of tumor-associated macrophages
(TAMs) via exosomal miRNAs, proteins and metabolites (26,
159–161). Similarly, exosomes from the trophoblastic cell line
(Swan 71) induce monocyte recruitment and differentiation
(Supplementary table 1) (155). Another study found that
exosome-carrying fibronectin stimulates the production of IL-1b
frommacrophages (Supplementary table 1) (162). Of note, pEXO
contain molecules known to promote the induction of decidual
macrophages. For example, programmed death-ligand 1 (PD-L1),
a factor mainly released by trophoblast in early pregnancy, is
identified in trophoblast-derived exosomes, and trophoblast-
derived soluble PD-L1 promotes decidual macrophages
Frontiers in Immunology | www.frontiersin.org 777
polarization (163–165). Taken together, pEXO favor pregnancy
maintenance by inducing monocyte activation, differentiation and
decidual macrophage polarization.

T Cells
Decidual and Peripheral Blood T Cells
T cells are the main cell types responsible for immune
surveillance, pathogen recognition and elimination. CD3+ T
cells constitute ~10% of the decidual lymphocytes in the first
trimester. Among them, the CD4+ and the CD8+ T cells are the
two largest groups of T cells accounting for 30-45% and 45-75%
of the population respectively (3, 70). During pregnancy, these T
cells are immunologically tolerant to the fetus and remain in a
constrained cytotoxic phenotype (166). Compared to the
circulating CD8+ cells, the decidual CD8+ T cells are unable to
differentiate into the CD8+ effector cells as validated by low
production of perforin and granzyme B. Moreover, the decidual
CD8+ T cells show exhausted T cell phenotype with high
expression of PD-1, lymphocyte-activation gene 3 (LAG3),
cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and T
cell immunoglobulin and mucin domain 3 (Tim3) (167). Recent
studies further reveal that the CD8+ cells are expandable in the
decidua with upregulated expression of cell activation markers
such as CD25, CD38, CD69 and HLA-DR, as well as enhanced
expression of IFN-g and IL-17A. These partially activated
decidual CD8+ T cells may be associated with trophoblast
invasion and spiral artery remodeling after endothelial
monolayer destabilization (126, 168).

Other than the CD8+ T cells, CD4+ T helper cells (Th) are critical
in modulating the immune tolerance to fetal antigens as well. The
Th1/Th2 paradigm has been demonstrated to be essential for a
successful pregnancy. Furthermore, recent reports have shown that
a Th17/Treg balance is well maintained during pregnancy. The
number of regulatory Treg cells in both the human decidua and
circulation is increased during pregnancy (169–171). Decreased
level of CD25+Foxp3+ Treg is associated with spontaneous abortion
(172), preeclampsia (173), and spontaneous preterm birth (174).
Furthermore, acute Treg depletion after conception causes embryo
resorption along with maternal systemic inflammation and poor
endothelial function (92).

Th17 cells are a subset of CD4+ T cells presenting a pro-
inflammatory phenotype. Although accounting for only ~2% of
CD4+ T cells, elevated frequency of Th17 cells is related to
spontaneous abortion and chorioamnionitis (85, 175–177).
Interestingly, the study of Wu et al., showed that Th17 cell
numbers in both peripheral blood and decidua are elevated in the
first trimester of pregnancy and IL17 could promote trophoblast
migration and invasion (82). An inverse relationship of Treg cells
and Th17 cells are observed in a wide range of pregnancy
complications (81, 85). Thus, the new Th1/Th2/Th17/Treg
paradigm indicates that T cell homeostasis is an indispensable
factor in pregnancy.

Effect of pEXO on T Cells
The roles of pEXO in T cell response have been widely documented.
Recent progress suggests that the pEXOmediate immunosuppression
via transfer of exosomal proteins to the T cells, leading to T cell
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apoptosis, inhibition of T cell proliferation, induction of Treg
differentiation and reduction of T cell cytotoxicity.

T Cell Apoptosis
It has long been known that T cell apoptosis in human decidua is
a characteristic of early pregnancy. Fas ligand/receptor triggered
apoptosis is instrumental in the establishment of immune
privilege of the fetus and safeguards its development. pEXO
with surface Fas ligand and TNF-related apoptosis-inducing
ligand (TRAIL) can induce apoptosis in the Jurkat T cells and
activate peripheral blood mononuclear cells (PBMCs) in a dose-
dependent manner in vitro (42). Moreover, pEXO frommaternal
blood inhibit T cell activation by down-regulation of CD3 z and
JAK3, with a more notable effect on CD8+ T cells than on CD4+

T cells (Supplementary Table 1) (178).

Treg Differentiation
The role of exosomes in the differentiation of Treg cells has been
implicated in tumor immunology (179–181). Tumor-derived
exosomes inhibit T cell proliferation, cytotoxic activities and
macrophage polarization (179, 182, 183). Exosomes isolated from
the normal placenta via perfusion also inhibit lymphocyte
proliferation and induce Treg/memory T cells differentiation
(Supplementary Table 1) (184–186). Placental mesenchymal
stromal cells (PMSC)-derived exosomes alleviate tubulointerstitial
fibrosis by increasing infiltration of the Foxp3+/IL17+ cells in kidneys
of the unilateral ureteral obstruction animal model, indicating the
involvement of PMSC-exosomes in Treg differentiation (187).
Together, these findings indicate that the pEXO are one of the
modulators in Treg differentiation during pregnancy.

Cytotoxicity Activity of T Cell
NKG2D ligands such asMHC class I chain-related (MIC) and UL-
16 binding protein (ULBP) are expressed on pEXO. Interestingly,
the levels of the soluble forms of the MIC protein A and B are
negatively correlated with the survival time of cancer patients. The
soluble MIC supports tumor escape via binding to NKG2D and
downregulating its expression on cytotoxic T cells and NK cells.
Similarly, pEXO carrying MIC and ULBP down-regulates the
expression of NKG2D receptor on CD8+ T cells and cytotoxic
activities of the CD8+ and gamma delta T (gς T) cells
(Supplementary Table 1) (134). The expression of syncytin-2, an
endogenous retroviral protein exclusively expressed on the human
placenta, on the pEXO is down-regulated in preeclampsia patients.
Lokossou et al. reported that the pEXO bearing syncytin-2 are
immunosuppressive via reducing Th1 cytokine production in
activated PBMCs (Supplementary Table 1) (188). Together,
these findings indicate that exosomes contribute to immune
tolerance through the presentation of MHC molecules or other
surface ligands.
EXOSOMES IN PREGNANCY
COMPLICATIONS

Pregnancy-associated complications such as preeclampsia,
gestational diabetes mellitus and preterm birth, are the major
threats to human reproductive health. Despite advances in
Frontiers in Immunology | www.frontiersin.org 878
technology and understanding of pregnancy, the rates of
pregnancy-related morbidity and mortality increased slightly
over the last two decades (189). The current preventive and
prognostic approaches for these complications are limited. Thus,
a comprehensive understanding of pregnancy-related
complications is much needed for better diagnosis
and treatment.

Peripheral blood represents the most widely used biological
sample for clinical diagnosis. Circulating fetal DNA in maternal
plasma and serum has been used for non-invasive prenatal
diagnosis (190). Alterations in pEXO have been demonstrated
in pregnancy complications. Thus, pEXO might be a promising
alternative for screening the following disorders in pregnancy.

Preeclampsia
Preeclampsia, characterized by new onset of hypertension and
proteinuria, is one of the most severe complications in pregnancy
affecting 5% of pregnant women globally (45). Nonetheless, the
most effective treatment for preeclampsia is delivery. For
decades, its pathogenesis has largely been attributed to 1)
compromised trophoblast invasion (191); 2) dysregulated
maternal immune tolerance (192) and 3) endothelial
dysfunction (193). However, preeclampsia patients often have
more than one defect. It is not clear, to what extent, how each of
these causes contributed to preeclampsia as a whole. Considering
the growing body of evidence that pEXO are key in modulating
maternal homeostasis, we hereby summarize these studies to
provide new insight on preeclampsia treatment.

pEXO levels in maternal blood of preeclamptic patients are
remarkably increased compared to those of normal pregnancy.
Moreover, omics data found that the molecular signatures of
pEXO are largely different between preeclampsia and normal
pregnancy. For example, proteomic analysis of exosomes isolated
from maternal plasma by cholera toxin B chain and annexin V
binding show that exosomes from preeclamptic patients have a
higher expression of serpin peptidase inhibitor (PAI)-1,
porphyria cutanea tarda (PCT), S100 calcium-binding protein
B (S100b), TGF-b, VEGFR1, natriuretic peptide B (BNP),
placental growth factor (PGF) (194, 195). Non-coding RNA-
seq of plasma exosomes reveals that miR-486-1-5p and miR-486-
2-5p are significant enriched in the preeclampsia group and
could be used as potential diagnosis biomarkers (196). More
importantly, exosomes from preeclamptic patients elicit
preeclamptic symptoms (hypertension and proteinuria) in
mice when injected via tail veins (197), indicating their
indispensable role in preeclampsia occurrence.

Trophoblast invasion and migration are critical in spiral
artery remodeling and placentation. In preeclamptic patients,
miR-210 is highly enriched in the plasma exosomes compared
with that in normal pregnancy, and this in turn contributes to
preeclampsia by inhibition of trophoblast invasion through
downregulating the potassium channel modulatory factor 1
(198). In addition to the comprised trophoblast function, the
miRNA profile is disrupted in preeclampsia exosomes as well.
For instance, high levels of miR-517-5p, miR-518b and miR-
520h are associated with late-onset preeclampsia (199).
Controversially, another study observed that down-regulation
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of miR-517-5p, miR-520a-5p and miR-525-5p in patients are
related to late-onset of preeclampsia (200). The discrepancy
might be due to differences in sample preparation, donor
ethnicity and gestational age. Given that pEXO only accounts
for a small proportion (15-20%) of the total circulating exosomes
and remarkable differences in miRNA profiles between pEXO
and total plasma exosomes, the data should be interpreted
with caution.

Endothelial function is fundamental in modulating blood
pressure. Nitric oxide (NO) mediates vasorelaxation via an
endothelium-dependent pathway. While the diminished
activity of endothelial nitric oxide synthase (eNOS), a key
enzyme for NO production, is observed in endothelial cells
after treatment with preeclamptic pEXO (201). Moreover,
preeclamptic patients have a higher level of miR-155 in plasma
compared to healthy control and further study showed that it can
inhibit eNOS expression in human umbilical vein endothelial
cells (HUVEC) (55). An in vitro study showed that the macro-
EVs from normal pregnancy but not preeclampsia could protect
endothelial cells from activation (138). Moreover, an animal
study found that human pEXO could relax mesenteric arteries
after injection into pregnant mice (202). Another study showed
that trophoblast-derived exosomes could promote vascular
smooth muscle cell migration (203).

Disrupted maternal immune tolerance is another hallmark of
preeclampsia. Syncytin-1/2, which can inhibit T cell activation and
proliferation, is reduced in exosomes from preeclamptic patients
(204). PD-L1, involved in decidual macrophage polarization and
Treg cell differentiation, was found to be remarkably reduced in the
placenta and pEXO of preeclamptic patients. Although the
proteomic data on pEXO is rare, tissue proteomic results could be
an alternative for the exosome study. For example, the expression of
neprilysin (NEP), a membrane-bound metalloprotease associated
with hypertension, is increased in the preeclamptic placenta at
delivery. Interestingly, Manjot et al. recently demonstrated that
exosomes from preeclamptic placenta have a higher expression of
active NEP when compared to that of in normal placenta (60).

Gestational Diabetes Mellitus
Gestational diabetes mellitus (GDM) is one of the most common
metabolic disorders during pregnancy. It affects ~13.2% of the
pregnant mothers in developed countries (205). Without
treatment, it may lead to preterm birth, fetal death and other
pregnancy complications due to poor placentation induced by
hyperglycemia. Although GDM is usually preventable and
manageable, infants of mothers with GDM are at increased
risk for heart disease, obesity or type 2 diabetes (205–207).

GDM patients have a relatively higher level of total exosomes
and pEXO level in maternal plasma (46). Moreover, an in vitro
study showed that exosomes from GDM patients induced
endothelial activation, indicating the importance of pEXO in
modulating maternal vascular homeostasis. miRNA compositions
in urine-derived exosome and explant culture are different.
Exosomes isolated from the urine of GDM patients in the 3rd
trimester of gestation have a low level of miR-516-5p, miR-517-3p,
miR-518-5p, miR-222-3p and miR-16-5p (208). Those from
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placental explant culture express another group of miRNAs (miR-
125a-3p, miR-99b-5p, miR-197-3p, miR-22-3p and miR-224-5p)
(209). Dipeptidyl peptidase IV (DDPIV) modulates glucose
hemostasis by cleavage of glucagon-like peptide 1 (GLP-1) and
DDPIV inhibitors are used for type 2 diabetes treatment. Manu
Vatish et al. found that exosomes isolated from GDM placenta
through perfusion had an upregulation of DDPIV by 8-fold (210).
Moreover, exosomes from GDM pregnancy remarkably reduce
migration and glucose uptake of skeletal muscle cells (209).
Similarly, plasma exosomes from GDM patients also induce
glucose intolerance, reduce glucose-induced insulin secretion and
cause poor insulin responsiveness in mouse model (211).

GDM may arise from metabolic dysregulation of adipose
tissue, which is critical in the modulation of insulin sensitivity
(212). In general, normal pregnancy is accompanied by increased
total adipose mass. Maternal body mass index (BMI) has a strong
association with the risk of GDM, indicating excessive adipocytes
are a potential stressor for placentation (213). Adiponectin and
leptin, mainly produced by the placenta during pregnancy, have
a wide range of functions in adipose tissue such as
vascularization, adipocyte enlargement and expansion (207).
Exosomes from adipose tissue of GDM patients altered
placental glucose metabolism by increasing gene expression of
the glycolysis and gluconeogenesis pathways (214). Thus, pEXO
may participate in maternal metabolism via modulating the
activity of adipose tissue.

Preterm Birth
Preterm birth, also known as premature birth, generally refers to
birth at less than 37 weeks of gestational age (215). Nowadays,
preterm birth is the leading cause of perinatal morbidity and
mortality and has a long-term effect on the health of the fetus
(216). For instance, premature infants are vulnerable to heart
defects, cognitive disabilities, and respiratory illnesses (217).
Nonetheless, the cause of preterm birth is still unclear.

Studies on pEXO of preterm birth are rare. Unlike preeclampsia
and GDM, the level of pEXO in preterm birth is significantly
decreased compared to full-term pregnancy (218). Placenta
senescence and fetal membrane inflammation are generally
believed to be the causes of preterm birth. Proteomic study of
exosomes from preterm plasma indicates that alterations in protein
composition are associated with inflammatory and metabolic
signals (219). A similar result was found in amniotic fluid-derived
exosomes of preterm patients (220). In animals, Plasma exosomes of
CD-1 mice from late-gestation (E18), not early-gestation (E9),
induce preterm labor in mice, indicating that exosomes might
function as one trigger in labor initiation (221). Moreover, the
exosomal miRNA profile of maternal plasma is different between
mothers delivering at term and preterm (222, 223). A
comprehensive analysis of the exosomal miRNAs reveals that the
miRNAs target genes are associated with TGF-b signaling, p53, and
glucocorticoid receptor signaling (222). Despite the inconsistency
and irreproducibility of miRNA sequencing results, exosomal
miRNAs are still suggested as an alternative approach for the
diagnosis of preterm birth. Together, these studies indicate that
pEXO participate in the processes of labor and delivery.
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DISCUSSION

Studies of exosome had been tremendously increased in the last
two decades and exosomes are gradually demonstrated to be a
perfect tool for drug delivery. However, our understanding of
exosome biogenesis and the underlying forces that navigate them
to their destination is still lacking.

Currently, most studies on pEXO are conducted in vitro due
to ethical constraints in regard to manipulation of the maternal-
feto-placental unit and lack of proper animal models. pEXO
isolated from placenta tissue at mid (Abortion)- or term
(Delivery)-gestation, may not represent it’s in vivo functions at
early pregnancy. Therefore, the content and biological activities
of pEXO at different gestation periods should be investigated.
Furthermore, the alternation of pEXO signatures observed from
late gestational samples in clinical studies would possibly be the
consequence rather than the cause of the pregnancy
complications. A large prospective study of the first trimester
pEXO isolated from plasma/placenta tissue from pregnant
women who develop pregnancy complications at late gestation
should be carried out. Apart from that, in vitro manipulations
(Such as perfusion and explant culture) during exosome isolation
may disrupt the molecular signature of pEXO. Thus, pEXO
isolated by different isolation methods should be compared in
order to establish a standard isolation technique and to set a
standard parameter for diagnostic purposes.

In summary, pregnancy is a complex physiological process
with a wide range of systemic adaptations in the mother’s body.
The placenta, the frontline of the maternal-fetal interface, makes
these happened in a coordinated way. Exosome, as a signal
Frontiers in Immunology | www.frontiersin.org 1080
carrier, links the mother and the fetus and is a key player in
immune cell activation, differentiation, maturation and
endovascular homeostasis (Figure 3). Thus, advances in pEXO
research will deepen our understanding of pregnancy and may
provide new insight on the prevention and treatment of
pregnancy-related complications.
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FIGURE 3 | pEXO contribute to maternal tolerance toward the fetus during pregnancy. Exosomes from placenta, syncytiotrophoblast (STB) in particular, support
pregnancy via induction of Treg differentiation, restraint of cytotoxic activities of T cells and NK cells, promotion of decidual macrophage polarization, and endowing
endothelial cells with viral resistance. Disruption of maternal immune tolerance is associated with adverse pregnancy complications such as miscarriage,
preeclampsia. The specific cargoes within the pEXO represent the potential target for prenatal diagnosis and pregnancy-related disease screening.
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Extracellular vesicles (EVs) are released by most cell types as part of an intracellular
communication system in crucial processes such as inflammation, cell proliferation, and
immune response. However, EVs have also been implicated in the pathogenesis of several
diseases, such as cancer and numerous infectious diseases. An important feature of EVs
is their ability to deliver a wide range of molecules to nearby targets or over long distances,
which allows the mediation of different biological functions. This delivery mechanism can
be utilized for the development of therapeutic strategies, such as vaccination. Here, we
have highlighted several studies from a historical perspective, with respect to current
investigations on EV-based vaccines. For example, vaccines based on exosomes derived
from dendritic cells proved to be simpler in terms of management and cost-effectiveness
than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells
can be leveraged for therapeutics to induce strong anti-tumor immune responses.
Moreover, EV-based vaccines have shown exciting and promising results against
different types of infectious diseases. We have also summarized the results obtained
from completed clinical trials conducted on the usage of exosome-based vaccines in the
treatment of cancer, and more recently, coronavirus disease.

Keywords: extracellular vesicles (EV), immunization, infectious diseases, cancer, exosomes
EXOSOME FUNCTIONS: BIOGENESIS AND CARGO

Extracellular vesicles (EVs) are a group of biological, nano-sized, bilayered membrane vesicles
produced by almost all cells. EVs can be found naturally in body fluids, such as blood, saliva, and
breast milk (1–4). Classically, EVs are classified by size, molecular cargo, and the biogenesis pathway
(5). However, there was a debate in literature regarding the definition of EVs due to inconsistencies
in EV purification and characterization (6, 7). Fortunately, significant progress has been achieved
regarding the establishment of criteria for a standardized nomenclature of EVs, and minimal
requirements are set for experimental controls during EV separation, concentration and,
characterization endorsed by the International Society of Extracellular Vesicles (ISEV) (8). In
terms of biogenesis, EVs can be broadly divided into two dominant classes, namely exosomes and
microvesicles (MVs). Exosomes are 30-150 nm EVs that initially demonstrate formation as
intraluminal vesicles inside multivesicular bodies (MVBs) and are released after fusion of MVBs
org July 2021 | Volume 12 | Article 711565188
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with the plasma membrane (3, 6, 9, 10). Microvesicles are formed
by the outward budding of the plasma membrane, a process
regulated by the translocation of phospholipids (9, 11). However,
according to ISEV, there is no consensus on specific markers of
each EV subtype, therefore assigning an EV to a specific
biogenesis remains a challenging process (8).

In the extracellular space, exosomes can undergo fusion with
the plasma membrane of recipient cells and deliver their
packaged cargo into the cytosol. Exosomes are highly
heterogeneous vehicles that can transport a wide variety of
molecules, including lipids, proteins, and nucleic acids, such as
mRNAs and miRNAs. The transport of these molecules can
occur within the exosome itself or via attachment with the
surface of recipient molecules, as evidenced in the case of
major histocompatibility complex (MHC) molecules (12).
Healthy cells release exosomes under normal physiological
conditions that play a role in several cellular processes, for
example, intercellular communication by facilitating the
carriage and delivery of multiple molecules that can modulate
crucial processes, such as growth, differentiation, and stress
response (13, 14). Thus, considerable research attention is
focused on the biology of EVs. However, according to Edgar
(15), emerging interest in exosome biology is attributable to the
association of exosomes with disease development. Indeed,
infectious, inflammatory, and neurodegenerative diseases, as
well as cancer, exhibit specific biomarkers that are carried by
their respective exosomes (16–18).
HISTORY OF EXOSOME-BASED
VACCINES

EV release was initially thought to be a random process; however,
in 1983, two independent studies using different animal models
discovered that reticulocytes released transferrin receptors inside
EVs (19, 20). Barz et al. demonstrated that different lymphoma
variants could produce EVs with distinct profiles of proteins and
lipids that could be associated with tumor immune escape and
cancer invasion (21). A year later, Schirrmacher and Barz observed
that tumor-derived exosomes (TDEs) displayed antigens similar to
their corresponding tumor cells (22). The same study was the first
to show the anti-tumor effects of exosomes on cytotoxic
lymphocytes (CTLs). In 1987, Johnstone et al. coined the term
exosomes as a reference for EVs carrying transferrin receptors
(23). Raposo et al. demonstrated the role of exosomes in antigen
presentation by revealing MHC class II molecules in exosomes
derived from B lymphocytes, which induced specific MHC class II
T cell responses (24). These findings reveal that exosomes can be
exploited as biomarkers and can be used in immunotherapeutic
strategies for vaccine development.

The concept of a cancer vaccine is not new; it dates back to the
early 70s. However, the feasibility of a vaccine against cancer is
challenged by several issues, such as transplant rejection (25, 26).
Tumor peptides have generated promising results and have
shown potential applicability as a cancer therapeutic agent;
however, peptide-based vaccines exhibit poor immunogenicity
Frontiers in Immunology | www.frontiersin.org 289
(27–29). In 1998, Zitvogel et al. (30) published a study in which
they found that DEXs (exosomes derived from dendritic cells)
express functional MHC class I and II molecules. They observed
that tumor peptide-pulsed dendritic cells (DCs) released DEXs
presenting tumor antigens on the membrane, which induced
in vivo CTL priming and consequent tumor growth suppression.
This study was the first to support the development of a novel
cell-free vaccine using exosomes, representing a milestone in
exosome-based vaccine research.

In the new millennium, Wolfers and colleagues have reported
that TDEs represent a source of T-cell cross-priming which is
realized via transfer of antigens to DCs, and this induces CTL
anti-tumor responses in vitro and in vivo (31). During in vitro
stimulations, TDEs were more effective in eliciting protection
against autologous tumors than other cancer immunization
strategies, such as irradiated tumor cells, apoptotic bodies, or
tumor lysates (31, 32). In 2004, the Zitvogel group published two
articles that comprehensively described the transfer of MHC
class I molecules from DEXs to naïve DCs for efficient CTL
activation, and the role of toll-like receptors in combination with
DEXs in triggering an MHC-restricted response in CD8+ T cells
using in vitro stimulations and HLA-A2 transgenic mice (33, 34).
In the same year, exosomes released by plasmacytoma cells were
successfully used as a cancer vaccine; in this case, plasmacytoma
exosomes conferred protection to the animals through reduction
in tumor growth by 80% after a single vaccination (35). The use
of exosome-based vaccines has since spread to different research
areas outside cancer therapy. Exosomes derived from DCs
previously co-cultivated with Toxoplasma gondii generated a
strong and specific immune response to induced acute and
chronic toxoplasmosis (36). Further investigation using
Toxoplasma gondii has been detailed in section 5. Exosomes
derived from an antigenic extract of Salmonella enteritidis strain
were isolated and cultivated with serum samples obtained from
naturally infected and healthy chickens (37). After completion of
the exosome treatment, surface structures from Salmonella, such
as flagellin and porins, were found to be immunogenic in serum
samples collected from infected chickens but did not exhibit
immunogenicity in healthy ones. These results represented a
concrete evidence highlighting that Salmonella-derived
exosomes could be used in the preparation of vaccines (37).
Recently, a vaccine was designed by using a plasmid to generate
Salmonella exosomes containing highly immunogenic
membrane antigens and it showed satisfactory immune
responses against several Salmonella strains (38).

From this point onward, exosome research increased due to
the development of more sophisticated techniques, such as
exosome engineering for drug delivery systems and artificial
antigen presentation models (Figure 1). In the mid-2000s, the
first results from clinical trials on exosome-based vaccines were
reported (39–43). Clinical trials using exosome-based vaccines
have been detailed in section 6. Currently, several exosome-based
vaccine candidates are under development for diseases such as
cancer, AIDS, hepatitis B, and other infectious diseases (44–48).
The vaccines have been discussed in further detail in the
subsequent sections.
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EXOSOME-BASED VACCINES AS A
CANCER THERAPEUTIC STRATEGY

Tumor cells can evade immune surveillance through several
regulatory mechanisms, such as reduced immune recognition
or the establishment of an immunosuppressive tumor
microenvironment (49). In this scenario, cancer cells can
undergo proliferation and facilitate the recruitment of immune
and stromal cells to favor tumor progression, which can lead to
metastasis (50). Cancer immunotherapy has emerged as a clinical
strategy for controlling the immune system and for reactivating
anti-tumor immune responses (51). Immunotherapy approaches
include targeting of immune tolerance via co-inhibitory
checkpoints, adoptive T-cell therapy, and cancer vaccination (52).

Cancer vaccines differ from traditionally engineered vaccine
for infectious diseases in the intervention approach. Traditional
vaccines are preventive, on the other hand, cancer vaccines are
focused on the therapeutic aspect. However, there are
prophylactic interventions to reduce cancer incidence,
morbidity, and mortality for virus-related cancers, such as
hepatitis B (HBV) and human papilloma virus (HPV) (53).
Therapeutic cancer vaccines can target a wide variety of
antigens expressed by cancer cells, including antigens that are
exclusively expressed in cancer cells, also known as tumor-
specific antigens (TSAs), for example, mutated P53 and RAS.
Cancer vaccines can also target antigens that have low levels in
normal but highly expressed in tumor cells, the tumor-associated
antigens (TAAs), such as MAGE-1, HER2, and HPV (54–56).
There are also different platforms available, such as peptide-
based, DNA-based, protein-based, viral-based, whole cancer
cells, recombinant factors, and pulsed DCs (53, 56–58).
Currently, only three cancer vaccines are approved for clinical
use by FDA to treat early-stage bladder cancer (TheraCys®),
metastatic castration-resistant prostate cancer (PROVENGE),
and metastatic melanoma (IMLYGIC®). These vaccines have
produced slightly improved overall survival of patients with
early-stage disease (58). For patients with advanced or
Frontiers in Immunology | www.frontiersin.org 390
metastatic tumors, cancer vaccines are likely to have a
therapeutic role in a combination therapy approach (59).

Despite suboptimal results, recent cancer vaccine interventions
are clinically promising and have shown potential applicability,
especially with respect to overall patient survival (60). According
to Melief et al., a robust cancer vaccine design must enable the
induction of potent effector CD4+ and CD8+ T-cell responses
(60). Target antigen selection is challenging; selection is based on
overexpressed antigens in tumors relative to normal tissue (61).
Owing to the immunosuppressive tumor microenvironment,
cancer vaccines should be administered in combination with
adjuvants to overcome immunosuppression (62). Adjuvants are
key components of several successful vaccines that boost the
vaccine’s immune response, quality, and efficacy (63). An
interesting strategy for vaccines based on TAAs is the use of a
combination of adjuvants and immunomodulatory antibodies
(62). Exosomes exhibit features for application as adjuvant
carriers, such as optimal size, biocompatibility, stability in
systemic circulation, and target-specific delivery (64). Recently,
an exosome-based adjuvant delivery system was developed using
genetically modified murine melanoma B16BL6 cells, in which
the exosomes derived from these cells containing CpG DNA were
injected three times with a 3-days intervals and successfully
induced immunostimulatory signals in mice 7 days after the last
immunization (65). These results shed light on the novel use of
exosomes as adjuvant carriers for future cancer vaccine
development. Adjuvant strategies to increase cancer vaccine
efficacy have been thoroughly reviewed by Bowen et al. (62).

To design a successful cancer vaccine, researchers must also
consider administration routes and optimal delivery vehicles. DC
injection is a common delivery system that triggers initiation and
controls the direction of antigen-specific immune responses (64).
However, DC-based immunotherapy has shown inconclusive
results in clinical trials. Moreover, DC vaccines are an expensive
therapeutic strategy for implementation in large populations,
and they are difficult to ensure standardized production and lose
efficacy over long periods of storage (49, 66). DEXs have emerged
FIGURE 1 | Timeline illustrating main discoveries related to exosome-based vaccines. CTL, cytotoxic lymphocyte; DEXs, exosomes derived from dendritic cells (DCs);
NSCLC, non-small cell lung cancer; MSCs, mesenchymal stem cells; TDEs, tumor-derived exosomes; OMV, outer membrane vesicle; COVID-19, coronavirus disease-19.
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as a viable option for cancer vaccination because they possess
higher stability for a longer period than DCs because of their lipid
composition. DEXs also possess more peptide-MHC I and -MHC
II complexes than DCs, thereby rendering the use of DEXs a less
time- and space-consuming strategy (Figure 2A) (66–68).
Additionally, DEXs are more resistant to immunosuppressive
mechanisms in the tumor microenvironment than DCs (69).
Exosomes are reportedly more capable of inducing
immunocompetence in DCs than in microvesicles. An in vivo
comparison of immunostimulatory potential between
microvesicles and exosomes derived from ovalbumin (OVA)-
pulsed DCs showed that only exosomes induced antigen-specific
CD8+ T cells and increased the proportion of germinal center B
cells. Exosomes were also superior in terms of OVA levels, while
microvesicle-associated OVA was barely detectable; however,
microvesicles and exosomes both induced higher OVA-specific
IgG production relative to controls (70).

Several studies revealed that DEXs can activate CD4+ and
CD8+ T cells, indicating the ability of DEXs successfully carry
antigen-MHCI/II complexes in vivo and in vitro (34, 71–73).
Once activated, CD8+ T cells can become memory T cells. Wang
et al. using a melanoma mice model, induced the CD8+ T cells
differentiation to CTLs via DEXs from mature DCs. Three
months after the immunization, the immunized mice group
was boosted with DEXs and the number of CD8+ T cells
expressing antigen-specific T cell receptor (TCR) was
expanded six- to seven-fold in immunized mice. Another
experiment in this study was to challenge immunized mice and
control groups with melanoma cells three months after
immunization protocol. Immunized mice were tumor free and
control mice died of lung metastases. Moreover, these antigen-
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specific CD8+ T cells express CD44, a marker for memory T cells
(74). The immunological memory induced by DEXs was also
observed in CD4+ T cells of mice treated with OVA-pulsed
DEXs, which induced an immune response towards to Th1 type.
Interestingly, in this study, an efficient long term memory
response of OVA-specific Th1 cells after a boost was
dependent of prior B cell activation (75). CD4+ cells after
uptake OVA-pulsed DEXs could stimulate efficient antigen-
specific CTL responses and long-term T CD8+ cell memory in
immunized C57BL/6 mice against OVA-transfected melanoma
cells expressing OVA challenge after three months of complete
immunization (76). On the other hand, DEX vaccines failed to
induce antigen-specific T cell responses in clinical trials (further
discussed in section 6). Preclinical results showed that DEXs
released by DCs treated with interferon-g (IFN-g) express high
levels of molecules capable to induce a strong CD8+ T cell
activation, such as CD40, CD80, CD86, and CD54 (77).
However, this enhancing DC strategy did not translate into
results in a phase II clinical trial, which the peptide-specific T
cell responses were not detectable (43).

Recently, a combination of cancer vaccination and
checkpoint blockade strategies was designed to induce anti-
tumor responses in vitro and in vivo. Exosomes released by
modified anti-CTLA-4 antibody and OVA-pulsed DCs
(DEXsOVA-CTLA-4) were enriched in MHC I/II molecules and
were found to exert strong T-cell activation and proliferation in
vitro. Vaccination with DEXsOVA-CTLA-4 increased the migration
of CD4+ and CD8+ T cells to the tumor site and elevated the ratio
of CTLs/Tregs in the microenvironment of B16 melanoma
tumor model after 12 days (78). Hao et al. demonstrated that
exosomes derived from OVA-pulsed DCs and their uptake by
A B

FIGURE 2 | Exosomes derived from dendritic cells (DEXs) are potential targets for cancer therapeutic strategy. (A) Simplified illustration of a personalized vaccine
using DEXs. (B) DEXs can directly catalyze the transfer of peptide-MHC complexes from their membrane surface to T cell membrane surface (cross-dressing).
Moreover, DEXs can stimulate T cell responses in an indirect manner via cross-dressing with dendritic cells or via exosome uptake and processing, following the
peptide-MHC complex presentation to T cells. DEXs can also induce activation and proliferation of NK cells by establishing interaction of the NKG2D ligand on DEXs
with NKG2D receptors on the NK cell membrane.
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CD4+ T cells stimulated the proliferation and differentiation of
central memory CTLs and inhibited Treg suppression in vitro
using BL6 melanoma cells. Also, in this study, C57BL/6 mice
immunized with OVA-pulsed DEXs showed an elevated number
of OVA-specific CD8+ CD44+ T cells three months after the
immunization in comparison to control group (42). Long-term
functional CTL memory was observed in animals injected with
OVA-pulsed DCs and was then challenged with OVA-expressing
B16 melanoma cells (79). Different mechanisms of antigen
presentation by DEXs have been proposed (Figure 2B) (80,
81). Recipient DCs may establish interaction with antigen-loaded
DEXs via the endosomal pathway, followed by the transfer of the
peptide-MHC complex to the DC surface membrane for antigen
presentation to T cells (82). Furthermore, a second indirect
antigen presentation mechanism called cross-dressing occurs
when an acceptor DC captures DEXs by facilitating the
merging of membranes and retains the peptide-MHC complex
on the DC surface without processing (80, 83). The direct
interaction of DEXs with T cells seems to demonstrate poor
efficiency in stimulating T cell responses, therefore DEXs have
less T cell stimulation potential than their parent DCs (66, 84).
Some authors suggest that exosomes are not able to interact
directly with effector cells, thus prior capturing and processing
the exosomes by DCs is a superior pathway of priming specific
T cells via DEXs (75, 81, 85, 86). A study using the direct
interaction of DEXs with T cells showed that DEXs from mature
DCs are better at stimulating T cells than DEXs from immature
DCs (87). Robbins and Morelli suggest that the low ability of
exosomes to stimulate T cells in vitro is probably due to the small
size and dispersion of exosomes caused by Brownian motion
(88). These authors also suggest that T cell stimulation by
exosomes can be enhanced when exosomes are immobilized
and at high concentration (88).

Damage-associated molecular patterns (DAMPs) are
signaling molecules released by dying cells that trigger immune
cells to activate defensive mechanisms (89). For example, tumor-
derived DAMPs establish interaction with Toll-like receptors
(TLRs), which directly lead to the activation of T cells and
indirectly result in the induction of the release of inflammatory
cytokines (90). Damo and colleagues developed different
exosome vaccines derived from OVA and TLR ligand-pulsed
bone marrow DCs (91). Their results showed that the TLR-3
ligand-DEXs vaccine (OVA + poly I:C) stimulated higher
antigen-specific CD8+ T-cell proliferation and effector
functions and increased the population of TNFa+CD4+ T
cells in the lymph nodes of vaccinated mice with melanoma
compared to other vaccine formulations 19 days after priming.
Additionally, this group showed that purified DEXs successfully
carried melanoma epitopes and induced potent anti-tumor
immune responses, thereby slowing tumor progression.
Recently, a DEX-based vaccine combined with microwave
ablation was reported to inhibit tumor growth in hepatocellular
carcinoma (HCC) mouse models compared to microwave
ablation (a common therapy for HCC patients) alone, in this
case, the tumor disappeared 10 days after microwave ablation in
combination with DEX injection (92). Additionally, HCC features
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a high expression level of a-fetoprotein (AFP), which has been
used as an HCC antigen for monitoring and diagnosis (93). DEXs
from AFP-enriched DCs generated strong antigen-specific
immune responses in vitro tumor suppression after 26 days in
HCC mice under a vaccination regimen of a weekly injection for
three weeks (71).

In addition to carrying MHC complexes on their surface,
DEXs carry proteins that can stimulate cells of the innate
immune system. For example, a study showed that DEXs
expressing BAT3 on the surface, which is a protein responsible
for engaging natural killer (NK) cell activation, induced NK cell-
mediated cytokine release in vitro (94). DEXs induced a strong
NK cell activation and stimulated the release of IFN-g in a dose-
dependent manner via TNF in mice (95). DEXs also express
several other ligands on their surface that can mediate innate
immune functions, such as TNF, FasL, and TRAIL (95).
Moreover, the DEX membrane contains the activating receptor
NKG2D ligand, which is responsible for the activation and
proliferation of NK cells (96).

Although DCs have been pulsed with TLRs, biomarkers, and
tumor antigens derived from lysates, TDE-pulsed DCs were
reported to generate the most remarkable results as a potential
anti-tumor vaccination. As mentioned earlier, TDEs provide a
broad range of TAAs for antigen presentation. TDEs also
transfer mRNAs and non-coding RNAs, such as miRNAs and
long non-coding RNAs (lncRNAs) (97, 98). Recent data suggests
that mRNAs packaged inside TDEs are responsible for
stimulating the immune response by MHC I cross-presentation
to DCs (99–101). For example, TDEs derived from CD40L/4-
1BBL-expressing Mel526 melanoma cells induce potent DC
activation in vitro (100). The interaction of 4-1BBL with its
receptor 4-1BB results in the formation of a complex that induces
CD8+ T cell activation and expansion (102). Interestingly,
peptides derived from introns and exons of mRNAs derived
from mouse melanoma cells act as tumor-associated peptides
that can be delivered to DCs and result in the promotion of
CD8+ T cell activation and proliferation (99). A recent study
using sequencing technology showed that exosomes derived
from plasma of 150 patient with cancer contained abundant
levels of lncRNAs that could act as potential biomarkers for
cancer diagnosis, specially 5 lncRNAs that can serve as HCC
biomarkers diagnosis (103). Exploitation of lncRNAs derived
from TDEs seems promising as a vaccination approach. For
example, LINC02195 is an lncRNA capable of regulating MHC I
molecules during antigen processing and presentation (104).
Furthermore, a signature was identified as a prognostic
predictor of laryngeal cancer using the lncRNAs of TDEs (105).

A vaccine designed using TDE-loaded DCs showed superior
immune response induction compared to tumor lysate-loaded
DCs as evidenced by results obtained in mouse myeloid leukemia
and renal cell carcinoma models (106). Recently, the same effect
was observed in lung cancer, in which TDE-pulsed DCs induced
a reduction in the population of regulatory T cells (Tregs) in
vitro, while they suppressed tumor growth and increased animal
survivability in vivo (107). DCs pulsed with TDEs derived from
different types of cancers (such as leukemia, renal carcinoma,
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glioblastoma, and pancreatic cancer) elicit anti-tumor immune
responses (108–112). DC activation and maturation can be
induced by the high-mobility group nucleosome-binding
protein 1 (HMGN1), a well-known Th1-polarizing alarmin
(113, 114). TDEs bound to the N-terminal portion of HMGN
were found to induce persistent anti-tumor immunity in
orthotopic HCC mice (115).

In most studies, TDEs derived from patient sera have been
found to be biocompatible and exhibit low immunogenicity.
However, it is relevant that TDEs play roles in all steps of
cancer progression, including metastasis and they can be
immunosuppressive in certain types of cancer (115–117). The
immune-suppressive potential of TDEs has been reported to
inhibit the effector activity of CD4+ and CD8+ T cells and NK
cells (118). Recently was demonstrated that TDEs can carry the
programmed death ligand (PD-L1), which is responsible for
T cell exhaustion (119). Moreover, TDEs can block the
differentiation of DCs, induce apoptosis, and diminish the
overall T cell responses in different types of cancer (120–122).
In addition, several studies show that TDEs have potential to
suppress the effects of therapeutic agents (123, 124), for example,
TDEs are associated to acquired chemoresistance (125).

TDEs may also exert a dual effect, improving DC vaccine
efficiency in vitro, while favoring tumor progression in vivo
(117). Immunomodulatory molecules combined with TDEs
may induce enhanced anti-tumor immune responses. For
example, a vaccine designed with TDEs released by mouse
cancer cell lines subjected to treatment with IFN-g and
interferon receptor factor-1 (IRF-1) was found to increase the
number of infiltrated CD4+ and CD8+ T cells and reduce tumor
size in C57BL/6J female mice transfected with Hepa 1-6
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hepatoma cells or MC-38 colon carcinoma cells after 21 days
of the exosome injection (46). Additionally, in a recent study
reported by Shi et al., a vaccine with exosomes derived from IFN-
g-modified RM-1 prostate cancer cells under a vaccination
regimen of 4 injections (on days 0, 4, 8, and 12), decreased the
number of Tregs and reduced the tumor metastatic rate in
C57BL male mice with lung metastasis (126). These findings
indicate that pulsing DCs with a wide variety of molecules can
help produce exosomes capable of generating a robust anti-
tumor immune response (Table 1). These methods represent
promising and potentially individualized TDE- and DEX-based
vaccine strategies for cancer immunization.
EXOSOME-BASED VACCINES
FOR TREATMENT OF VIRAL
INFECTIOUS DISEASES

Similar to cancer, exosomes act as a double-edged sword because
of their ability to carry and deliver molecules to target cells in
infectious diseases. Exosomes play a crucial role in the
pathogenesis of infection, but also trigger immune responses to
confer protection against pathogens (134). This effect can be
observed in the context of viral infections, where exosomes
derived from infected cells can deliver viral content to
surrounding cells, but can also induce antiviral immune
responses (135). The “Trojan exosome” hypothesis proposed by
Gould et al., describes the evolutionary similarities of viruses and
exosomes with regard to their biogenesis and transmission
pathways, suggesting exosomes as a potential tool for
TABLE 1 | Different experimental models and design using exosomes to induce anti-tumor immune responses against several types of cancer.

Experimental model Cancer
type

Experimental design Clinical outcome Reference

C57BL/6 mice; Hepa1-6, 4T1,
Hela, and EL4 cell lines

HCC Intravenous injection of DCs pulsed with
TDE-N1ND

Generation of long-term memory T cells and robust
anti-tumor immunity

(115)

C57BL/6 and IRF3-KO mice;
E0771 cell line

Breast Cancer cells treated with topotecan TDEs from treated cells contain immunostimulatory
DNA

(127)

C57BL/6 mice; A549 and LLC cell
lines

Lung Vaccination with 3 doses of DCs pulsed
with TDEs

TDEs promoted DC maturation, which increased
tumor-infiltrating CD8+ T cells in mice

(107)

Zipras/myc-9-infected C57BL/6 Prostate Vaccination with 4 doses of TDEs pulsed
with IFN‐g

Prolonged survival time, attenuated expression of
PD-L1, reduced tumor metastasis rate

(126)

C57BL/6 and CD45.1 mice – Antigen transfer from DEXs released by
plasmacytoid DCs to conventional DCs

Cross-priming of naïve CD8+ T cells (128)

C57BL/6 and BALB/c mice;
Hepa1-6, RAW264.7, LLC, and
4T1 cell lines

Lung and
liver

Vaccination with a single dose of exosomes
from cancer-bearing mice after photothermal
therapy

Promoted infiltration of T cells into the tumor tissue (129)

Transgenic HLA-A2/HER2 mice;
4T1 and BT474 cell lines

Breast Vaccination with a single dose of DEXs from
HuRt-specific DCs transfected with an
adenoviral vector

Activation of CD8+ T cell cytolytic functions against
breast cancer cells in vitro and reduced tumor
growth in vivo

(130)

BALB/c and C57BL/6 mice; H22,
B16, and CT26 cell lines

Melanoma,
liver, and
colon

Vaccination with 3 doses of TDEs released by
different cancer cell lines

Promoted DC maturation and elicited T cell anti-
tumor responses

(131)

HepG2 and K562 cell lines HCC Isolation of exosomes released by cancer cells
treated with anti-cancer drugs

TDEs exhibited heat shock proteins in their surface
that activated NK anti-tumor response

(132)

4T1 Breast Modified TDEs with microRNAs to enhance
their immune stimulation function

Modified TDEs induced DC maturation in vitro (133)
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vaccination against human immunodeficiency virus (HIV) (136).
The exosomal biogenesis pathway that is hijacked by HIV for
viral spread can be exploited as a potential therapeutic
approach (137).

Efforts are ongoing to evaluate the potential of exosome-based
vaccines against HIV. Dr. Jim Xiang’s research group pioneered
this research area and developed a vaccine termed as Gp120-
Texo. This vaccine was designed with DEXs derived from DCs
transfected with an adenoviral vector, AdVGp120, which
expressed the HIV-specific envelope glycoprotein Gp120 (138).
Gp120-Texo induced strong and long-term HIV-specific CD8+

T-cell responses independent of CD4+ T cells and DCs in mice
(44, 138). Later, the Xiang group designed a vaccine to induce a
specific immune response against Gag (Gag-Texo) (139), a group
of proteins responsible for HIV maturation and infection (140).
Gag-Texo induced Gag-specific immunity in animal models of
chronic infection, suggesting that this vaccine might induce CTL
responses to attack HIV-infected cells (139). Nef is an HIV
protein associated with multiple cellular functions, such as the
survival of infected cells and vesicular trafficking (141). An
exosome-based vaccine was engineered by incorporating a Nef
mutant (Nefmut) into exosomes. In this case, Nefmut-exosomes
were absorbed by DCs, which then presented the antigens,
thereby eliciting CTL immune responses in mice against
several viral antigens, such as those for HIV, Ebola, influenza,
HBV, and hepatitis C virus (HCV) (47, 142, 143).

Even with current diagnostics and therapeutics that enable
viral suppression, HBV continues to represent a major healthcare
concern worldwide (144). HBV is frequently associated with the
development of chronic liver diseases, such as HCC (145).
Exosomes released by HBV-infected cells contain several
proteins encoded by the HBV genome, as well as miRNAs that
regulate gene expression in host cells (146–148). This sheds light
on the potential use of exosomes to understand HBV
transmission and HBV-host interactions. However, there is a
lack of literature on exosome-based HBV vaccination. Few
studies have investigated the potential of a general exosome-
based vaccine platform for multiple viral antigens, including
HBV. Additionally, a vaccine formulation designed with
unmodified exosomes as adjuvants for the recombinant HBV
antigen showed promising results, in which exosomes induced a
Th1 immune response, thereby enhancing the levels of IFN-g in
mice (149). These studies are in the early phase, and further
investigations are warranted to identify therapeutic targets for
consideration as vaccine candidates against HBV using exosomes
as delivery systems or adjuvants.

Influenza virus infection is another example of a healthcare
concern that causes significant morbidity and mortality
worldwide (150). Despite the wide variety of vaccine types
available for influenza infection, studies have shown that
exosomes can be used as a new platform for designing
influenza vaccines, with exhibition of advantages over classical
vaccines (151, 152). For example, airway exosomes released
during influenza virus infection can carry host proteins with
anti-influenza properties and can help trigger immune responses
(153). A study using LC-MS/MS showed that exosomes derived
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from infected cells also carried similar proteins as those reported
in the influenza virions, representing an alternative pathway for
the infection of new host cells (154). Lung and serum-derived
exosomes from mice infected with influenza virus exhibit high
levels of miR-483-3p, and this is associated with the induction of
pro-inflammatory cytokine release (155, 156). According to the
authors, further studies are warranted to determine whether the
transfer of miR-483-3p is involved in the activation of innate
immune responses or in the inflammatory pathogenesis of
influenza virus infection. Another exosome-based vaccination
approach to combat the influenza virus includes EVs released by
gram-negative bacteria, which are referred to as outer membrane
vesicles (OMVs) (157). Several recent studies have reported that
OMV-derived vaccines can induce strong immune protection
against the influenza virus in vivo (158–161).
EXOSOME-BASED IMMUNIZATION
STRATEGY FOR NON-VIRAL
INFECTIOUS DISEASES

The release of exosomes by non-viral pathogens such as bacteria
and parasites, plays an important role in pathogenesis by
establishing interactions with the host immune system and by
transferring resistance factors (162). However, exosomes and
OMVs derived from bacteria have been reported to be potent
immune modulators, rather than aiding pathogenesis (163). The
potential of OMVs as immune activators has been investigated
using models of different infectious diseases such as pertussis
(whooping cough), which is caused by Bordetella pertussis, a
gram-negative bacterium (164). Currently available vaccines aid
the successful reduction of the morbidity and mortality caused
by pertussis, but they are also associated with severe adverse
effects and weak immune protection (165). According to the
World Health Organization (WHO), there is no consensus
regarding the antigenic composition of an optimal pertussis
vaccine (https://www.who.int/biologicals/areas/vaccines/
apertussis/en/). Several studies have now shown that a
B. pertussis OMV-based vaccine can overcome this composition
issue, representing an attractive vaccination model for pertussis
(166–168). A recent OMV-based vaccine conferred protection to
mice against lung infection more effectively than the current
commercial pertussis vaccines (48). Although overshadowed by
gram-negative bacteria, EVs derived from gram-positive bacteria
have also recently gained attention as a potential vaccine platform
for several infectious diseases. EVs released by Staphylococcus
aureus were modified to possess no toxicity and to serve as
vaccine candidates. Genetically engineered EVs showed
immunogenic effects and protected mice against lethal sepsis
caused by S. aureus (169). Additionally, EVs derived from
Streptococcus pneumoniae incubated with murine DCs were
rapidly internalized and enhanced the release of tumor
necrosis factor (TNF)-a, which constitutes the inflammatory
response (170).
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Investigations of exosome-based vaccines for infectious
diseases are not limited to viruses and bacteria. Toxoplasmosis
is a globally occurring infectious disease caused by the coccidian
protozoan Toxoplasma gondii (171). Vaccines with live and
attenuated tachyzoites are available for animals; however, these
vaccines are not effective and safe for humans (172). Therefore,
the development of a toxoplasmosis vaccine for humans is of
considerable interest for public health. However, few studies
have reported the effects of DEXs derived from DCs pulsed with
T. gondii or Toxoplasma-specific antigens (36, 173). In a recent
study, DEXs released by DCs stimulated with T. gondii lysate
were inoculated intranasally and ocularly in mice, which
subsequently triggered humoral and mucosal immune
responses against Toxoplasma infection (174).

Schistosomiasis is a major parasitic disease caused by
Schistosoma mansoni, affecting a myriad individuals and
causing over 280,000 deaths annually worldwide (175). Thus
far, there is no vaccine available for schistosomiasis, which
underscores the need for the development of vaccines against
this disease. Few authors have suggested the use of exosomes as a
cell-free vaccination platform against S. mansoni infection (176–
178). Exosomes released by S. mansoni adult worms contain
miRNAs and proteins involved in host-parasite interactions,
such as invasion, nutrient acquisition, and immunomodulation
(178). A study showed that S. mansoni-derived exosomes
harbored several potential vaccine candidates, including
proteins involved in multiple life cycle stages, underlining their
potential utility in different stages of the parasite’s life cycle (176).
These findings represent a promising avenue for further
investigation of the potential applicability of exosomes in the
development of vaccines against infectious diseases.
CLINICAL TRIALS USING
EXOSOME-BASED VACCINES

Clinical trials using exosomes can be divided into three
categories with different approaches. First, exosomes can be
used as carriers to deliver drugs to specific targets. Second,
exosomes derived from mesenchymal stem cells. And last,
incorporating specific mRNAs and miRNAs into exosomes
elicit responses in patients (179). In 2005, results from two
phase I clinical trials using DEX vaccines were obtained. The
first trial reported the use of DEXs loaded with HLA-restricted
melanoma-associated antigen (MAGE) peptides, which were
infused into patients with HLA A2+ non-small cell lung cancer
(NSCLC) (41). After the administration of four weekly doses, the
vaccine was well tolerated by all patients. However, only one-
third of the patients presented with MAGE-specific T-cell
responses, while two of the four analyzed patients showed an
increase in NK cell activity (41). The second trial reported the use
of DEXs derived from DCs pulsed with MAGE and inoculated
them to conduct immunization of melanoma patients. No major
toxicity event was reported by any patient, except for the
occurrence of a grade I fever (five patients out of fifteen);
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however, no MAGE-specific response of CD4+ and CD8+ cells
was observed in peripheral blood. Interestingly, NK cell effector
functions were also induced by the DEX vaccine, where eight of
the thirteen patients presented with an increased number of NK
cells infiltrating the tumor site (40).

According to Fu and colleagues, the lack of an immune
response to these vaccines can be associated with the DC type
selected by researchers in these clinical trials (69). They used
immature DCs, while other studies showed that exosomes
derived from mature DCs induced more potent T-cell priming.
A phase II clinical trial reported the use of DEXs derived from
mature DCs pulsed with IFN-g in patients with NSCLC, and no
toxicity was observed, except for the occurrence of grade III
hepatotoxicity in one patient. In this case, the DEX vaccine did
not induce a cancer-specific T-cell immune response but resulted
in the induction of NK cell functions (43). According to the
authors, IFN-g may lead to an upregulated expression of PD-1
ligands on DEXs, a well-known immune checkpoint that
suppresses T-cell activity. Although these vaccines were
designed to activate specific MHC-restricted T-cell responses,
DEXs proved to be effective in activating NK cells in an MHC-
independent manner. Interestingly, DEX-based vaccines have
focused on direct CTL activation as an independent process in
other immune cells. However, Näslund et al. showed that CD4+

T cells and B cells were necessary for the DEX activation of CTL
anti-tumor response (85).

Recently, a non-randomized phase I/II clinical trial showed
promising results with a vaccine designed using exosomes derived
from DCs pulsed with SART1, a biomarker of squamous cell
carcinoma of the esophagus. Pulsed DCs obtained from patients
could generate exosomes that were well tolerated and induced
antigen-specific CTLs in seven patients (180). One patient of this
study remained stable for 20 months after DEXs therapy,
although he developed lung metastasis after the stable period.
The other six patients had progressive disease and died in a period
up to 10 months after vaccination. These findings indicate
that the development of a personalized exosome-based
immunotherapy is feasible, although incredibly challenging.
Patient indication criteria and the preparation of highly
competent DCs for vaccine formulation are keystones of a
successful exosome-based treatment (180). According to Xu
and colleagues, it is important to investigate the anti-tumor
immunity induced by DEXs-based vaccines to confirm whether
DEXs can be used as tumor antigens for an exosome-based
vaccine (52).

In addition to DEX vaccines, other clinical trials using different
exosome-based vaccines have been reported. One phase I clinical
trial reported the use of exosomes derived from ascites (AEXs) in
combination with granulocyte-macrophage colony-stimulating
factor (GM-CSF) as immunotherapy for colorectal cancer.
Injection of AEXs for colorectal cancer was safe and well
tolerated by all patients during the four weekly doses
administered. Patients with advanced colorectal cancer subjected
to treatment with AEXs plus GM-CSF demonstrated a strong
anti-tumor cytotoxic T-lymphocyte response against the
carcinoembryonic antigen (181), a colorectal cancer biomarker
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(182). Exosome-based vaccines have also been developed for the
treatment of chronic diseases other than cancer. A phase II/III
clinical trial was conducted using exosomes derived from
umbilical cord MSCs in patients with chronic kidney diseases,
such as type 1 diabetes and interstitial nephritis (45). The
participants in the study reported no significant adverse
effects during or after the treatment. The use of exosomes
derived from MSCs improved overall kidney function and
inflammatory immune activity. Currently, tests involving
the safety and tolerance of aerosol inhalation of exosomes
derived from MSCs are part of a clinical trial comprising
healthy volunteers (NCT04313647). Another clinical trial
involving he investigation of the use of exosomes derived from
MSCs as a therapeutic strategy is underway against macular
holes (NCT03437759).

Clinical Trials Using Exosomes as a
Potential Vaccine Against Coronavirus
Disease (COVID-19)
More recently, due to the coronavirus pandemic, clinical trials
for exosome-based therapy have shifted from cancer to COVID-
19 treatment for future vaccine development (183). To this date,
there are in total, 12 active clinical trials using exosome
interventions at ClinicalTrials.gov. A phase I (NCT04747574)
and a phase II (NCT04902183) independent clinical trials are
recruiting patients with moderate or severe COVID-19 infection
to evaluate the safety and efficacy of exosomes overexpressing
CD24 of two doses with a patient follow-up for 23 days. CD24 is
a costimulatory molecule expressed on several hematopoietic
cells, especially progenitor cells, such as B cell progenitors (184).
However, CD24 is also associated with autoimmune diseases
(185, 186). Two phase I and II clinical trials are being conducted
to investigate the safety and efficiency within 28 days after the
first treatment of aerosol inhalation of bone marrow MSC-
derived exosomes in severe patients hospitalized with SARS-
CoV-2 pneumonia and COVID-19 (NCT04602442 and
NCT04276987). And another phase I/II clinical trial
(NCT04798716) is investigating the safety and efficiency of an
intravenous infection of MSC-derived exosomes every other day
on an escalating dose of 2:4:8 in the treatment of severe patients
with COVID-19. According to these clinical trials description,
MSC-derived exosomes may reduce lung inflammation and
pathological impairment. Thus far, only one trial has reported
results (NCT04491240), and no adverse events have been
reported in patients after inhalation of 3 ml of MSC-derived
exosomes twice a day for 10 days. However, there is no
information about the source of MSCs used to generate
exosomes and other relevant information concerning the
aerosol formulation in this clinical trial. Additionally, another
ongoing phase I/II clinical trial (NCT04389385) is investigating
the safety and efficiency of inhaled exosomes derived from
COVID-19 specific T cells that were activated and expanded
in vitro via viral peptide exposure.

However, to this date, the clinical trials do not offer much
information concerning the usage of exosomes to induce
immunogenic properties and/or long-term memory response.
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The actual scenario of clinical trials using exosomes against
COVID-19 is still evaluating safety and efficacy of exosome
treatments. When completed, the ongoing clinical trials can
provide the foundation for the conduction of future studies
using MSC-derived exosomes in healthy patients. With their
ability to elicit anti-inflammatory effects and modulate immune
responses (187), MSC-derived exosomes may be important for
the future design and development of COVID-19 vaccines.

Recently, a statement published by the ISEV and the
International Society for Cell and Gene Therapy (ISCT)
encouraged the conduction of further research and clinical trials
using exosomes as a therapeutic strategy against COVID-19
(188). However, this statement also underscores the need for
good clinical practice and rational clinical trial design.
CONCLUSION

Initially, EVs were considered to demonstrate the sole function of
cellular waste elimination; however, EVs are now recognized as
crucial mediators of intercellular communication because of their
capacity to deliver different molecules and transfer signals over
long distances to modulate several physiological mechanisms.
The immunomodulatory properties of EVs provide insights into
their use as a cell-free therapeutic strategy for different diseases.
Several studies have reported promising results on EV-based
vaccines against different types of diseases, including cancer and
numerous infectious diseases. However, exosomes from cancer
cells modulate many aspects of intercellular communication,
which they can play a crucial role in tumor progression and
suppress anti-tumor activities. Understanding the dual effects of
exosomes represent a major challenge for future therapies using
exosome-based vaccines. Clinical trials showed modest results,
with no antigen-specific response induced by exosome vaccines,
i.e., MHC I/II-restricted TAAs did not stimulated anti-tumor
properties in effector T cells. Further studies are needed to
understand the pharmacokinetic of exosome-based vaccines.
On the other hand, clinical trials revealed the ability of
exosome-based vaccines in recruitment and activation of innate
immunity. Further investigation is warranted for the
development of new techniques for loading EVs with specific
antigens or drugs, and for engineering EVs to display more
efficiency in cargo delivery. When in combination with other
therapies, exosome-based vaccines are more promising, for
example, different studies showed that PD1/PDL1 blocking
therapy combined with DEXs resulted in effective T cell
activation (189). However, difficulties such as lack of quality
control and standards for EV characterization and purification
must be overcome. Also, logistical issues, such as manufacturing,
storage, and administration of exosome-based vaccines need to be
addressed (190). Additionally, exosome-based vaccination
encompasses various issues on exosome biocompatibility for
broad clinical usage and for the establishment of large-scale
immunization programs. There are several challenges, including
the development of an effective cell-free vaccine platform to use
exosomes for the treatment of various diseases. A focus on such
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aspects and challenges is necessary for future exosome-based
vaccine investigations.
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77. Viaud S, Ploix S, Lapierre V, Théry C, Commere P-H, Tramalloni D, et al.
Updated Technology to Produce Highly Immunogenic Dendritic Cell-
Derived Exosomes of Clinical Grade. J Immunotherapy (2011) 34(1):65–
75. doi: 10.1097/CJI.0b013e3181fe535b

78. Phung CD, Pham TT, Nguyen HT, Nguyen TT, OuW, Jeong JH, et al. Anti-
CTLA-4 Antibody-Functionalized Dendritic Cell-Derived Exosomes
Targeting Tumor-Draining Lymph Nodes for Effective Induction of
Antitumor T-Cell Responses. Acta Biomater (2020) 115:371–82.
doi: 10.1016/j.actbio.2020.08.008

79. Xie Y, Wang L, Freywald A, Qureshi M, Chen Y, Xiang J. A Novel T Cell-
Based Vaccine Capable of Stimulating Long-Term Functional CTL Memory
Against B16 Melanoma via CD40L Signaling. Cell Mol Immunol (2012) 10
(1):72–7. doi: 10.1038/cmi.2012.37

80. Nakayama M. Antigen Presentation by MHC-Dressed Cells. Front Immunol
(2015) 5:672:1–8. doi: 10.3389/fimmu.2014.00672

81. Montecalvo A, Shufesky WJ, Beer Stolz D, Sullivan MG, Wang Z, Divito SJ,
et al. Exosomes As a Short-Range Mechanism to Spread Alloantigen
Between Dendritic Cells During T Cell Allorecognition. J Immunol (2008)
180(5):3081–90. doi: 10.4049/jimmunol.180.5.3081

82. Pitt JM, Charrier M, Viaud S, André F, Besse B, Chaput N, et al. Dendritic
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Vesicles: A New Way to Decipher Host-Microbiota Communications in
Inflammatory Dermatoses. Exp Dermatol (2019) 29(1):22–8. doi: 10.1111/
exd.14050

164. Liu Z, Liu S, Shu Y, Yang Z, Peng B, Xu H, et al. Severe Bordetella Pertussis
Infection and Vaccine Issue in Chongqing, From 2012 to 2018. Int J Infect
Dis (2019) 84:102–8. doi: 10.1016/j.ijid.2019.05.014

165. Esposito S, Stefanelli P, Fry NK, Fedele G, He Q, Paterson P, et al. Pertussis
Prevention: Reasons for Resurgence, and Differences in the Current Acellular
Pertussis Vaccines. Front Immunol (2019) 10:1344. doi: 10.3389/
fimmu.2019.01344

166. Asensio CJ, Gaillard ME, Moreno G, Bottero D, Zurita E, Rumbo M, et al.
Outer Membrane Vesicles Obtained From Bordetella Pertussis Tohama
Expressing the Lipid A Deacylase PagL as a Novel Acellular Vaccine
Candidate. Vaccine (2011) 29(8):1649–56. doi: 10.1016/j.vaccine.2010.12.068

167. Ormazabal M, Bartel E, Gaillard ME, Bottero D, Errea A, Zurita ME, et al.
Characterization of the Key Antigenic Components of Pertussis Vaccine
Based on Outer Membrane Vesicles. Vaccine (2014) 32(46):6084–90.
doi: 10.1016/j.vaccine.2014.08.084

168. Hozbor DF. Outer Membrane Vesicles: An Attractive Candidate for
Pertussis Vaccines. Expert Rev Vaccines (2017) 16(3):193–6. doi: 10.1080/
14760584.2017.1276832
Frontiers in Immunology | www.frontiersin.org 14101
169. Wang X, Thompson CD, Weidenmaier C, Lee JC. Release of Staphylococcus
Aureus Extracellular Vesicles and Their Application as a Vaccine Platform.
Nat Commun (2018) 9(1):1–13. doi: 10.1038/s41467-018-03847-z

170. Mehanny M, Koch M, Lehr C-M, Fuhrmann G. Streptococcal Extracellular
Membrane Vesicles Are Rapidly Internalized by Immune Cells and Alter
Their Cytokine Release. Front Immunol (2020) 11:80:1–13. doi: 10.3389/
fimmu.2020.00080

171. Sasai M, Yamamoto M. Innate, Adaptive, and Cell-Autonomous Immunity
Against Toxoplasma Gondii Infection. Exp Mol Med (2019) 51(12):1–10.
doi: 10.1038/s12276-019-0353-9

172. Assolini JP, Concato VM, Goncalves MD, Carloto ACM, Conchon-Costa I,
Pavanelli WR, et al. Nanomedicine Advances in Toxoplasmosis: Diagnostic,
Treatment, and Vaccine Applications. Parasitol Res (2017) 116(6):1603–15.
doi: 10.1007/s00436-017-5458-2

173. Beauvillain C, Ruiz S, Guiton R, Bout D, Dimier-Poisson I. A Vaccine Based
on Exosomes Secreted by a Dendritic Cell Line Confers Protection Against T.
Gondii Infection in Syngeneic and Allogeneic Mice.Microbes Infect (2007) 9
(14-15):1614–22. doi: 10.1016/j.micinf.2007.07.002

174. Jung BK, Kim ED, Song H, Chai JY, Seo KY. Immunogenicity of Exosomes
From Dendritic Cells Stimulated With Toxoplasma Gondii Lysates in
Ocularly Immunized Mice. Korean J Parasitol (2020) 58(2):185–9.
doi: 10.3347/kjp.2020.58.2.185

175. LoVerde PT. Schistosomiasis. Adv Exp Med Biol (2019) 1154:45–70.
doi: 10.1007/978-3-030-18616-6_3

176. Sotillo J, Pearson M, Potriquet J, Becker L, Pickering D, Mulvenna J, et al.
Extracellular Vesicles Secreted by SchistosomaMansoni Contain Protein Vaccine
Candidates. Int J Parasitol (2016) 46(1):1–5. doi: 10.1016/j.ijpara.2015.09.002

177. Nowacki FC, Swain MT, Klychnikov OI, Niazi U, Ivens A, Quintana JF, et al.
Protein and Small Non-Coding RNA-Enriched Extracellular Vesicles Are
Released by the Pathogenic Blood Fluke Schistosoma Mansoni. J Extracell
Vesicles (2015) 4:28665. doi: 10.3402/jev.v4.28665

178. Samoil V, Dagenais M, Ganapathy V, Aldridge J, Glebov A, Jardim A, et al.
Vesicle-Based Secretion in Schistosomes: Analysis of Protein and microRNA
(miRNA) Content of Exosome-Like Vesicles Derived From Schistosoma
Mansoni. Sci Rep (2018) 8(1):3286. doi: 10.1038/s41598-018-21587-4

179. Rezakhani L, Kelishadrokhi AF, Soleimanizadeh A, Rahmati S. Mesenchymal
Stem Cell (MSC)-Derived Exosomes as a Cell-Free Therapy for Patients
Infected With COVID-19: Real Opportunities and Range of Promises. Chem
Phys Lipids (2021) 234:105009. doi: 10.1016/j.chemphyslip.2020.105009

180. Narita M, Kanda T, Abe T, Uchiyama T, Iwafuchi M, Zheng Z, et al. Immune
Responses in Patients With Esophageal Cancer Treated With SART1
Peptide-Pulsed Dendritic Cell Vaccine. Int J Oncol (2015) 46(4):1699–709.
doi: 10.3892/ijo.2015.2846

181. Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, et al. Phase I Clinical Trial of
Autologous Ascites-Derived Exosomes Combined With GM-CSF for
Colorectal Cancer. Mol Ther (2008) 16(4):782–90. doi: 10.1038/mt.2008.1

182. Campos-da-Paz M, Dorea JG, Galdino AS, Lacava ZGM. De Fatima Menezes
Almeida Santos M. Carcinoembryonic Antigen (CEA) and Hepatic
Metastasis in Colorectal Cancer: Update on Biomarker for Clinical and
Biotechnological Approaches. Recent Pat Biotechnol (2018) 12(4):269–79.
doi: 10.2174/1872208312666180731104244

183. Pocsfalvi G, Mammadova R, Ramos Juarez AP, Bokka R, Trepiccione F,
Capasso G. COVID-19 and Extracellular Vesicles: An Intriguing Interplay.
Kidney Blood Press Res (2020) 45(5):661–70. doi: 10.1159/000511402

184. Fang X, Zheng P, Tang J, Liu Y. CD24: From A to Z. Cell Mol Immunol
(2010) 7(2):100–3. doi: 10.1038/cmi.2009.119

185. Bai X-F, Liu J-Q, Liu X, Guo Y, Cox K, Wen J, et al. The Heat-Stable Antigen
Determines Pathogenicity of Self-Reactive T Cells in Experimental
Autoimmune Encephalomyelitis. J Clin Invest (2000) 105(9):1227–32.
doi: 10.1172/jci9012

186. Zheng C, Yin S, Yang Y, Yu Y, Xie X. CD24 Aggravates Acute Liver Injury in
Autoimmune Hepatitis by Promoting IFN-g Production by CD4+ T Cells.
Cell Mol Immunol (2017) 15(3):260–71. doi: 10.1038/cmi.2016.57

187. Akbari A, Rezaie J. Potential Therapeutic Application of Mesenchymal Stem
Cell-Derived Exosomes in SARS-CoV-2 Pneumonia. Stem Cell Res Ther
(2020) 11(1):356. doi: 10.1186/s13287-020-01866-6

188. Borger V, Weiss DJ, Anderson JD, Borras FE, Bussolati B, Carter DRF, et al.
International Society for Extracellular Vesicles and International Society for
July 2021 | Volume 12 | Article 711565

https://doi.org/10.1002/rmv.2014
https://doi.org/10.3389/fcimb.2020.00366
https://doi.org/10.3389/fimmu.2020.00887
https://doi.org/10.1038/ncomms5816
https://doi.org/10.1093/infdis/jiy035
https://doi.org/10.1093/infdis/jiy035
https://doi.org/10.3389/fmicb.2020.00144
https://doi.org/10.3389/fmicb.2020.00144
https://doi.org/10.1042/BST20180252
https://doi.org/10.1080/20013078.2019.1632100
https://doi.org/10.1080/20013078.2019.1632100
https://doi.org/10.1016/j.vaccine.2016.12.025
https://doi.org/10.1016/j.vaccine.2016.12.025
https://doi.org/10.1016/j.vaccine.2017.08.013
https://doi.org/10.3855/jidc.7513
https://doi.org/10.1016/j.ejpb.2017.04.005
https://doi.org/10.1111/exd.14050
https://doi.org/10.1111/exd.14050
https://doi.org/10.1016/j.ijid.2019.05.014
https://doi.org/10.3389/fimmu.2019.01344
https://doi.org/10.3389/fimmu.2019.01344
https://doi.org/10.1016/j.vaccine.2010.12.068
https://doi.org/10.1016/j.vaccine.2014.08.084
https://doi.org/10.1080/14760584.2017.1276832
https://doi.org/10.1080/14760584.2017.1276832
https://doi.org/10.1038/s41467-018-03847-z
https://doi.org/10.3389/fimmu.2020.00080
https://doi.org/10.3389/fimmu.2020.00080
https://doi.org/10.1038/s12276-019-0353-9
https://doi.org/10.1007/s00436-017-5458-2
https://doi.org/10.1016/j.micinf.2007.07.002
https://doi.org/10.3347/kjp.2020.58.2.185
https://doi.org/10.1007/978-3-030-18616-6_3
https://doi.org/10.1016/j.ijpara.2015.09.002
https://doi.org/10.3402/jev.v4.28665
https://doi.org/10.1038/s41598-018-21587-4
https://doi.org/10.1016/j.chemphyslip.2020.105009
https://doi.org/10.3892/ijo.2015.2846
https://doi.org/10.1038/mt.2008.1
https://doi.org/10.2174/1872208312666180731104244
https://doi.org/10.1159/000511402
https://doi.org/10.1038/cmi.2009.119
https://doi.org/10.1172/jci9012
https://doi.org/10.1038/cmi.2016.57
https://doi.org/10.1186/s13287-020-01866-6
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Santos and Almeida Exosome-Based Vaccines
Cell and Gene Therapy Statement on Extracellular Vesicles From
Mesenchymal Stromal Cells and Other Cells: Considerations for Potential
Therapeutic Agents to Suppress Coronavirus Disease-19. Cytotherapy (2020)
22(9):482–5. doi: 10.1016/j.jcyt.2020.05.002

189. Daassi D, Mahoney KM, Freeman GJ. The Importance of Exosomal PDL1
In Tumour Immune Evasion. Nat Rev Immunol (2020) 20(4):209–15.
doi: 10.1038/s41577-019-0264-y

190. Syn NL, Wang L, Chow EK-H, Lim CT, Goh B-C. Exosomes in Cancer
Nanomedicine and Immunotherapy: Prospects and Challenges. Trends
Biotechnol (2017) 35(7):665–76. doi: 10.1016/j.tibtech.2017.03.004
Frontiers in Immunology | www.frontiersin.org 15102
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Santos and Almeida. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
July 2021 | Volume 12 | Article 711565

https://doi.org/10.1016/j.jcyt.2020.05.002
https://doi.org/10.1038/s41577-019-0264-y
https://doi.org/10.1016/j.tibtech.2017.03.004
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Yann Lamarre,

University of São Paulo, Brazil

Reviewed by:
Patrick Provost,

Laval University, Canada
Abderrahim Benmoussa,
Laval University, Canada

*Correspondence:
Fons A. J. van de Loo

Fons.vandeLoo@radboudumc.nl

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 30 April 2021
Accepted: 06 July 2021
Published: 28 July 2021

Citation:
Aarts J, Boleij A, Pieters BCH,
Feitsma AL, van Neerven RJJ,

ten Klooster JP, M’Rabet L, Arntz OJ,
Koenders MI and van de Loo FAJ
(2021) Flood Control: How Milk-

Derived Extracellular Vesicles Can
Help to Improve the Intestinal

Barrier Function and Break the Gut–
Joint Axis in Rheumatoid Arthritis.

Front. Immunol. 12:703277.
doi: 10.3389/fimmu.2021.703277

REVIEW
published: 28 July 2021

doi: 10.3389/fimmu.2021.703277
Flood Control: How Milk-Derived
Extracellular Vesicles Can Help to
Improve the Intestinal Barrier
Function and Break the Gut–Joint
Axis in Rheumatoid Arthritis
Joyce Aarts1, Annemarie Boleij 2, Bartijn C. H. Pieters1, Anouk L. Feitsma3,
R. J. Joost van Neerven3,4, Jean Paul ten Klooster5, Laura M’Rabet5, Onno J. Arntz1,
Marije I. Koenders1 and Fons A. J. van de Loo1*

1 Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center
(Radboudumc), Nijmegen, Netherlands, 2 Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center (Radboudumc), Nijmegen, Netherlands, 3 FrieslandCampina, Amersfoort, Netherlands, 4 Cell
Biology and Immunology, Wageningen University & Research, Wageningen, Netherlands, 5 Research Centre for Healthy and
Sustainable Living, Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences, Utrecht, Netherlands

Many studies provided compelling evidence that extracellular vesicles (EVs) are involved in
the regulation of the immune response, acting as both enhancers and dampeners of the
immune system, depending on the source and type of vesicle. Research, including ours,
has shown anti-inflammatory effects of milk-derived EVs, using human breast milk as well
as bovine colostrum and store-bought pasteurized cow milk, in in vitro systems as well as
therapeutically in animal models. Although it is not completely elucidated which proteins
and miRNAs within the milk-derived EVs contribute to these immunosuppressive
capacities, one proposed mechanism of action of the EVs is via the modulation of the
crosstalk between the (intestinal) microbiome and their host health. There is increasing
awareness that the gut plays an important role in many inflammatory diseases. Enhanced
intestinal leakiness, dysbiosis of the gut microbiome, and bowel inflammation are not only
associated with intestinal diseases like colitis and Crohn’s disease, but also characteristic
for systemic inflammatory diseases such as lupus, multiple sclerosis, and rheumatoid
arthritis (RA). Strategies to target the gut, and especially its microbiome, are under
investigation and hold a promise as a therapeutic intervention for these diseases. The
use of milk-derived EVs, either as stand-alone drug or as a drug carrier, is often suggested
in recent years. Several research groups have studied the tolerance and safety of using
milk-derived EVs in animal models. Due to its composition, milk-derived EVs are highly
biocompatible and have limited immunogenicity even cross species. Furthermore, it has
been demonstrated that milk-derived EVs, when taken up in the gastro-intestinal tract,
stay intact after absorption, indicating excellent stability. These characteristics make milk-
derived EVs very suitable as drug carriers, but also by themselves, these EVs already have
a substantial immunoregulatory function, and even without loading, these vesicles can act
org July 2021 | Volume 12 | Article 7032771103
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Abbreviations: EV, extracellular vesicle; RA
TLR, toll-like receptor; MSC, mesenchymal
NEC, necrotizing enterocolitis; SEC, siz
multivesicular endosome.
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as therapeutics. In this review, we will address the immunomodulating capacity of milk-
derived EVs and discuss their potential as therapy for RA patients.

Review criteria: The search terms “extracellular vesicles”, “exosomes”, “microvesicles”,
“rheumatoid arthritis”, “gut-joint axis”, “milk”, and “experimental arthritis” were used.
English-language full text papers (published between 1980 and 2021) were identified from
PubMed and Google Scholar databases. The reference list for each paper was further
searched to identify additional relevant articles.
Keywords: rheumatoid arthritis, intestine, microbiome, immunomodulation, extracellular vesicles, bovine milk
INTRODUCTION

There is increasing awareness that the gut plays an important
role in many inflammatory diseases. The intestinal epithelial
cell layer is a selectively permeable barrier permitting the
absorption of nutrients, but at the same time preventing the
entry of microorganisms (gut flora/microbiome) (Box 1). The
gut also has an active immune surveillance system to actually
cope with these microbes and is the largest immune organ of
the body (11). Enhanced gut leakiness, dysbiosis, and intestinal
inflammation are associated with the pathogenesis of many
inflammatory and autoimmune diseases, such as Crohn’s
disease and rheumatoid arthritis (RA) (12–14). Patients with
these diseases also frequently report enhanced disease activity
after food intake (15). The relationship between food intake
and enhanced disease activity is further supported by
antibodies against food components in the blood of these
patients (15).

The pathogenesis of most autoimmune diseases is poorly
understood, but environmental factors, including the
microbiome, and genetic background are known to play a role
in the development of these disorders (16). Autoimmunity is
breaking self-tolerance and one of the proposed mechanisms is
epitope mimicry, a cross reactive immune recognition of self and
viral or bacterial epitopes (17). Some bacteria are capable of post-
translational modification of body ’s own proteins by
citrullination creating altered self-epitopes (18). Citrullination
is catalyzed by host’s own but also bacterial peptidylarginine
deiminase (PAD) enzymes (18). There is compelling preclinical
evidence that the gut microbiome is causally related to this break
in self-tolerance and clinically a leaky gut is linked with a higher
risk of autoimmune diseases (12). The microbiome consists of all
living microorganisms of a defined region, such as the gastro-
intestinal tract. Multiple lines of evidence support the potential
pathogenic role of microbial gut dysbiosis in inflammatory
disorders of the intestine, but also in autoimmune disorders
such as RA, indicating an important role for the gut–joint axis in
the development of this disease (19). For instance, in experimental
arthritis, RA disease is strongly attenuated in germ-free (GF) mice
, rheumatoid arthritis, GF, germ-free;
stem cell; IEC, intestinal epithelial cell;
e-exclusion chromatography; MVE,
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compared to conventionally colonized mice, as was also reported
for experimental autoimmune encephalomyelitis (20, 21). Both
systemic and intestinal T-helper 17 (Th17) cell differentiation was
strongly reduced in these GF mice (20–22), indicating an
important role of the microbiome in breaking immune
tolerance. Also, targeting intestinal barrier dysfunction before
arthritis onset attenuates development of collagen-induced
arthritis (23). This makes the gut and its microbiota promising
targets for drug- and dietary intervention (24). A way of doing this
is to optimize the micromilieu for hosting favorable
microorganisms and at the same time increase the barrier
function and direct the immune surveillance to target the
putative pathogens and prevent their entry. In this sense,
antibiotics are like a sledgehammer, and although promising
results are obtained in animal models (25, 26), the use of
antibiotics is also linked to microbiome dysbiosis and
consequently the development of autoimmune disease.
Probiotics and prebiotics to modulate the microbiome and
thereby the gut–joint axis are currently under investigation (27);
also, immune-regulatory components from food are promising
options. Milk is a complex biological fluid with unique bioactive
components that influence gut immunity, intestinal flora, and
growth and development of infants (28, 29). Breastfeeding is
associated with a decreased risk of asthma and allergic disease
during childhood [reviewed in (30)]. However, a protective effect
of breastfeeding against atopy, eczema, and food allergies is not
convincingly proven yet (30, 31). On the other hand, several
studies indicate a protective effect of raw cow milk consumption
early in life against the development of asthma and respiratory
tract infections during childhood (32–37). However, in some
studies, the effects were not always independent of other farm-
related exposures, e.g. exposure to straw, silage, or cows (32, 33, 36).
The underlying mechanisms for this protection are therefore not
always clear, but a potential contributor could be extracellular
vesicles found in milk. Many proteins present in milk, such as
lactoferrin, lactadherin, and immunoglobulins, are implied in
mediating these effects.

Compared to milk protein, fat, and hormones, milk-derived
exosomes or extracellular vesicles (mEVs) are less frequently
studied components of milk (Box 2). Our lab has been on the
forefront of researching the functional effects of milk EVs on
bone and joint-related diseases. Our initial study revealed that
milk-derived EVs could attenuate experimental arthritis in mice
(14). Oral gavage with milk EVs, or milk EVs in the drinking
July 2021 | Volume 12 | Article 703277
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water of mice resulted in reduced severity of experimental
arthritis in two different animal models (14). IL1rn−/− mice
developed spontaneous arthritis associated with loss of intestinal
microbial diversity and specific taxonomic alterations in the
microbiota (50). Furthermore, arthritis in these IL1rn−/− mice
was diminished under germ-free conditions and was shown to be
dependent on the activation of toll-like receptor 4 (TLR4) and
subsequent enhanced Th17 differentiation (22). Interestingly,
these mice showed reduced cartilage proteoglycan depletion
and bone marrow cellularity after treatment with mEVs by
oral gavage. Similarly, in a collagen-induced model for
arthritis, where one week before immunization with collagen
the mice received milk EVs via drinking water, the mEV-treated
group showed less severe arthritis. This was accompanied by
reduced inflammatory markers in the serum (MCP-1 and IL-6),
as well as lower Tbet (Th1) and RORyT (Th17) expression in
splenocytes, suggesting reduced T cell activation (14).

In this review, we summarize and discuss the current
knowledge on the therapeutic potential of bovine milk EVs in
Frontiers in Immunology | www.frontiersin.org 3105
inflammatory disorders, in particular in the context of the gut–
joint axis in RA.
EXTRACELLULAR VESICLES

EVs is the collective term for vesicles secreted by a variety of cells
throughout the body and can be found in all body fluids, such as
blood, urine, synovial fluid, and milk (51) (Box 3). EVs are small
cell membrane-derived phospholipid bilayer structures that
range in size from 30 to 2,000 nm in diameter (60). Previously,
they were considered to be cellular waste products, but
compelling evidence has indicated that EVs transport their
cargo, consisting of bioactive proteins, enzymes and lipids, and
deliver them to recipient cells. This makes EVs important
mediators in cell–cell communication.

Milk is a rich source of EVs, and EVs obtained from human
breast milk as well as from raw and pasteurized cow milk have
been characterized in great detail, including their microRNA and
BOX 2 | Milk processing and milk EV characteristics.
Bovine milk is part of the human diet. Next to the main milk proteins, i.e. caseins and whey proteins, milk contains 3.5% fat present in the milk fat globules, and milk EVs as
one of the minor milk components. The structure of milk EVs differs from milk fat globules in the fact that they are membrane vesicles that are structured in a bilayered cell
membrane, while the fat globules are surrounded by a trilayered membrane. Milk EVs can be characterized by their size, density, and surface markers like flotillin 1 and
tetraspanins CD9 and CD81 (38).

Milk EVs can survive digestion (39, 40), allowing the functional transfer of the bovine milk EVs (including membrane components or EV content) into the human body
after consumption (41, 42). However, because rawmilk is not sterile andmay contain pathogens, processing of milk by heat treatment is required to make bovine milk safe
for human consumption. There are several heating methods, from which pasteurization and ultra-heat treatment (UHT) are the processes that are applied most frequently.
These processing steps can impact the biological activity of the milk EVs. Pasteurization conditions result in preservation of the milk EVs to a large extent, while UHT is
detrimental for the milk EVs and its miRNA (43–46). During milk processing, homogenization is also performed to stabilize the milk fat globules in a uniform way in the milk
by decreasing their size. Part of the milk fat globules after homogenization have similar sizes as the milk EVs, and are therefore difficult to differentiate from EVs on the basis
of size alone. More pure EVs can be isolated with sucrose gradient centrifugation; however, for the scalability of the milk EVs, this is not the best method (47). To remove
protein content and thereby create more pure EVs, acidification is also an option (48, 49).
BOX 3 | Biogenesis of EVs.
Extracellular vesicle is the collective term for vesicles secreted by a variety of cells throughout the body. This heterogeneous population of vesicles is found in body fluids,
such as plasma, urine, synovial fluid, milks, saliva, and cerebrospinal fluid (52). A distinction can be made between three different subtypes of vesicles: microvesicles (MVs),
apoptotic bodies, and exosomes (53). The nomenclature of these vesicles is still under debate, and ongoing efforts are made to better distinguish vesicle subtypes [see
positional paper ISEV (54)]. Within this review, we will use terminology from the original papers. MV size varies from 50 to 1,000 nm (55), making them overlap slightly with
exosomes which are 30–150 nm in diameter. Apoptotic bodies are the largest vesicles, ranging from 500 to 2,000 nm. MVs and apoptotic vesicles arise through direct
outward budding and fission of the plasma membrane, a process also known as vesicle shedding (56), and by blebbing of the cell membrane during apoptosis (57),
respectively. Exosomes, on the other hand, derive from the multivesicular endosome (MVE). The generation of MVEs involves the lateral segregation of cargo at the
membrane of an endosome, followed by inward budding and release of vesicles into the endosomal lumen (58). A comprehensive review on the cell biology of EVs was
recently published by van Niel et al. (59).
BOX 1 | Gut microbiome and gastro-intestinal function.
The gut microbiome consists of bacteria, bacteriophages, yeasts, protozoa, and viruses and can be seen as an external organ. The biggest component of the gut
microbiome are bacteria. Colonization with gut microbes starts after birth and depends on many external factors, such as the delivery mode, type of feeding (breast versus
formula), maternal factors, and other early life exposures such as infections or use of antibiotics (1, 2). The gut microbiota in early life is important for the maturation of the
immune system, and it produces vitamins, minerals, and energy from our diet (3). During childhood, a complex relation between the host and its microbiome develops that
stabilizes over time (4, 5). The developed host–microbiome symbiosis is essential for health throughout life. After coevolution of the immune system with the microbiome,
keeping the balance is of utmost importance to sustain health. Microbiome disruptions can therefore lead to changes in barrier function and immune responses that
contribute to disease development or progression (6). In this respect, a highly diverse microbiome is considered healthy, as it helps to free essential nutrients and energy,
helps detoxification of toxic substances such as primary bile acids, and provides colonization resistance against pathogens. Contrarily, a low diversity is linked to microbial
dysbiosis and associated with many diseases, including autoimmune disorders such as RA (7, 8). However, there is still debate whether higher diversity is always a good
thing (9). Keeping a balanced microbiome is therefore essential for the function of our gut and maintaining health. A diverse diet rich in fibers, polyphenols, and fermented
food helps to maintain a healthy microbiome that provides short-chain fatty acids and essential vitamins that are important energy sources for the gut epithelium (10). It is
clear that a delicate balance between the host and its microbiome exists that reflects our health and is influenced by many external factors of which lifestyle is the
most important.
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protein cargo (48, 61). A large part of highly abundant
microRNAs in milk-derived EVs are evolutionary conserved
and are present in milk of all mammals (62). Numerous
microRNAs have been identified in milk-derived EVs, of which
a large number have been described as having an immune-
modulatory function. In Table 1, a list of these commonly
identified microRNAs can be found.

Milk-derived EVs have a particularly resilient lipid bilayer
membrane, which serves to protect miRNAs from degradation
caused by low pH and rich enzymatic environments, as seen in
the gastro-intestinal tract. Minimal loss of RNA was observed
after exposing milk EVs to digestive juices such as saliva and
gastric, pancreatic, and bile juice (39). Also, there are some
studies showing that miRNA from milk EVs can be found in
blood and organs from humans and mice (41, 76). Additionally,
using the in vitro TNO intestinal model-1, representing the
gastro-intestinal tract from stomach to small intestine, it was
shown that 2 h of ‘digestion’ resulted only in a minor loss of the
abundant miR-223 and miR-125b (40). These findings indicate
that mEVs can reach the small intestine without losing their
integrity. Besides their resilience to low pH and enzymatic
degradation, milk EVs can also withstand high temperatures,
as milk EVs isolated from store-bought pasteurized milk are still
bioactive (77). We will further discuss the bioactivity and effects
of milk EVs on various cell types below.
IMMUNOMODULATORY PROPERTIES OF
EXTRACELLULAR VESICLES

MilkEVs, andEVs in general, have interesting immunomodulatory
properties. Many studies have shown involvement of EVs in the
regulation of the immune response, acting as both enhancers and
dampeners of the immune system, depending on the source and
type of vesicle and the receiving cell type. Immunosuppressive EVs
are naturally present in the body, including T cell-derived EVs,
which have been shown to downregulate antigen presentation by
Frontiers in Immunology | www.frontiersin.org 4106
antigen-presenting cells (78). Additionally, stem cell-derived EVs
are vastly investigated for their immune-modulatory properties
[reviewed in (79)] Both embryonic stem cells (ESCs) and
mesenchymal stem cells (MSCs) are producers of EVs with strong
immunosuppressive capacities, similar to that found using stem
cells as therapeutics themselves. Finally, research, including our
own at the Radboudumc, has shown the anti-inflammatory effects
of milk-derived EVs, using human breast milk as well as bovine
colostrum and store-bought pasteurized milk. Although it is not
completely elucidated which factors within the EVs contribute to
these immunosuppressive capacities, a number of proteins and
miRNAs are likely candidates.

Despite their immunosuppressive role, in many diseases EVs
havebeen found toenhance inflammationaswell (80).For example,
EVsderived fromsynovialfluidofRApatients containhigh levelsof
TNFa and have been shown to delay activated T cell-mediated cell
death, possibly contributing to the pathogenesis in RA (81).
Similarly, sarcoidosis patients have EVs in their bronchoalveolar
fluid, which show pro-inflammatory properties (82). Macrophage-
derived EVs can also carry alarmins and contribute to bone
homeostasis (83). It is noteworthy that the membrane receptor
composition, cellular metabolism, and role in the disease process of
the recipient cell may also determine the net outcome of the
EV response.
T CELL ACTIVATION AND
DIFFERENTIATION BY
EXTRACELLULAR VESICLES

Activated CD4+ T cells are found in inflammatory infiltrates of
the rheumatoid synovium (84), and the hallmark cytokine for
Th17 cells, IL-17, is spontaneously produced in synovial explant
cultures of RA donors (85). In experimental animal models for
RA, such as collagen-induced arthritis and adjuvant arthritis, the
disease can be transferred by autoreactive T cells (86). Collagen-
induced arthritis is clearly attenuated in IL-17 deficient mice
TABLE 1 | Commonly identified microRNAs in milk-derived EVs.

MicroRNA present in bovine milk EVs Expected function

Let7 Protection against bacterial infection (63)

miR-21 Linked to regulation of TLR signaling (64)
Clearance of apoptotic cells (65)
Clearance of bacterial infection (63)

miR-146 Linked to regulation of TLR signaling (66)
Clearance of bacterial infection (63)

miR-148 Inhibition of demethylation Foxp3 (43, 67)
Suppression of TGFb signaling via SMAD (68)
Regulation of DNMT1 and DNMT3, epigenetic homeostasis of DNA methylation (69)

miR-155 Anti-inflammatory effects (70)
Regulation of TLR signaling (66)
Induction of Tregs (71)

miR-181 Anti-inflammatory effects (72)
NFkB signaling (73)

miR-223 Linked to infection and inflammation (74)
Eosinophil function (75)
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(87), and in IL1rn-deficient mice, spontaneous arthritis is
completely prevented in the absence of IL-17 (88). Another
important cytokine in the pathophysiology of RA and key in
Th17 differentiation is IL-23, which is detectable in RA synovial
joints (89, 90). In patients with RA, the Th17 and regulatory T
cell (Treg) balance is skewed in favor of Th17 development,
contributing to a break in tolerance and autoimmunity (91).

A strong candidate to modulate T cell function, especially
Th17 and Treg cells, is transforming growth factor-beta (TGFb).
TGFb has been found on the surface of EVs from a number of
different origins, including mast cells (92), tumor cells (93, 94),
but also milk-derived EVs (77) and intestinal epithelial cells
(IECs) (95). Most notable is a study by Cai et al. who used TGF-
b1 gene-modified dendritic cel ls (DCs) to produce
immunosuppressive EVs, which were able to attenuate
inflammatory bowel disease in vivo. A significant prevention of
weight loss, decreased disease activity scores, as well as reduced
intestinal bleeding was observed after the administration of TGF-
b1-EVs (96).

Ogino et al. speculate the underlying mechanism could be via
the induction of Tregs, which are known to downregulate Th17
cells and thereby suppress colonic inflammation (97).
Interestingly, milk EVs from both human (98) and bovine milk
(14) have been shown to promote Treg differentiation. Admyre
et al. (98) were among the first to show Treg differentiation
induced by EVs isolated from colostrum and mature breast milk.
Their functional analyses showed that milk EVs can inhibit anti-
CD3-induced IL-2 and IFN-g production by T cells and
simultaneously increase the number of Treg cells in vitro. A
potential link to the prevention of asthma by Tregs suppressing
Th2 responses was later suggested (99). Additionally, Zonneveld
et al. have recently reported that human milk EVs can directly
inhibit CD4+ T helper cell activation without inducing tolerance
(100). In experimental arthritis studies, our research group at the
Radboudumc found circumstantial evidence for this effect on T
cells, asmice treatedwith bovinemEVs showed amarked reduction
in Tbet (Th1) and RORyT (Th17) expression in splenocytes.
Although no changes were observed in the Treg subset in vivo, we
were able to confirm that EVs from pasteurized bovine milk
enhanced Treg differentiation in vitro. Further research is needed
toelucidate if the route ofEVadministration, aswell as the timing in
the developing immune response, determines the net outcome of
the EVs, as has been demonstrated for therapeutic viral vectors and
stem cells (101).
MICROBIOME AND BARRIER FUNCTION
IN RA

Several studies in RA patients and animal models showed that
dysbiosis of the gut microbiota induces an inflammatory
response and is associated with disease progression of RA
(102). For instance, new onset rheumatoid arthritis (NORA)
patients have enriched levels of Prevotella copri in their gut, and
this correlates with enhanced susceptibility to RA (8).
Interestingly, germ-free mice inoculated with P. copri-
Frontiers in Immunology | www.frontiersin.org 5107
dominated fecal samples from RA patients developed arthritis in
a Th17-dependent manner (103). Of great interest, our group
showed that these alterations in intestinal microbiome may
precede the development of arthritis, as our study showed that
the intestinal microbiome undergoes marked changes in the
preclinical phase of collagen-induced arthritis (26). It is also
known that the intestinal barrier is changed before the onset of
RA. Ileal mucosal biopsies from treatment-naïve NORA patients
and active RA patients showed a reduced expression of tight
junction proteins claudin-1 and occludin compared to healthy
controls on mRNA level and histology (23). Also, increased levels
of CD3+ T cells, macrophages, and B cells were found in the
lamina propria of NORA patients (23). Unfortunately, RA
patients are often treated with methotrexate, but this DMARD is
known to increase intestinal permeability (104, 105). Interestingly,
patients with RA successfully treated with DMARDs show partial
restoration of eubiotic gutmicrobiome, suggesting a crucial role of
microbiota in treatment efficacy (106).
MILK EVs PROMOTE GUT
BARRIER INTEGRITY

In RA, the gut–joint axis is in part related to the observation of
leaky guts in some of these patients as cause of the elevated levels
of bacterial cell wall fragments as well as bacterial DNA in the
joints of these patients (107–111). The mucosal barrier is an
important line of defense against invasion, infection, and
bacterial dissemination. Underneath the epithelial cells lies the
lamina propria, where T cells, macrophages, B cells, and plasma
cells are present, and dendritic cells promote the differentiation
of Th17 and Treg cells (112). The intestinal epithelial barrier
prevents the entry of microbes into this lamina propria (112).
Milk components have a protective effect on the intestine by
improving its barrier function and microbiome diversity and
limiting inflammatory processes. Milk EVs, from different
species, show a similar tendency (113–115). Most milk EV
studies focusing on barrier function study the functional effects
on the epithelial cells, often using cell lines or animal models for
necrotizing enterocolitis (NEC). Porcine milk EVs have been
shown to promote cell proliferation of intestinal epithelial cells
from newborn (unsuckled) piglets (IPEC-J2 cells), as well as,
promote intestinal tract development in vivo, as shown by
increased villus height, crypt depth, and higher expression of
CDX2, PCNA, and IGF-1R (116). Similarly, milk EVs also
promote epithelial cell growth, potentially via activation of the
MAPK pathway (117). Additionally, milk EVs were able to
protect mice from intestinal injuries caused by NEC (118).
Reduced intestinal inflammation (myeloperoxidase expression)
was observed, as well as an increase in goblet cell activity (MUC2+
and GRP94+ cells), highlighting the potential novel application of
milk-derived EVs in the prevention of NEC development. Several
studies using human milk EVs show comparable results. Martin
et al. found that human breast milk-derived EVs had a protective
effect on intestinal epithelial cells, reducing oxidative stress-induced
cell apoptosis (induced by H202) (119). The factors from EVs that
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promote the intestinal barrier function have not been identified, but
the expression of e.g. polymeric immunoglobulin receptor on EVs
could be of importance. This receptor mediates the transcytosis of
dimeric IgA and polymeric IgM through the intestinal epithelial
layer and by this, protects against bacterial overgrowth and invasion
causing leakage. Interestingly, two cow milk EV subsets [isolated by
ultracentrifugation 35,000 g (P35K) or isolated at 100,000 g
(P100K)] were administered orally by gavage to healthy and DSS
(dextran sodium sulfate)-treated mice. P35K EVs and P100K EVs
(to a lesser extent) improved several outcomes associated with DSS-
induced colitis; they restored intestinal impermeability, replenished
mucin secretion, and modulated the gut microbiota (13).
THERAPEUTIC USE OF MILK EVs

The use of milk EVs, either as stand-alone drug, drug carrier, or
functional dietary component, is often suggested in recent years.
Several research groups have studied the tolerance and safety of
milk-derived EVs in animal models, administered either
intravenously or by oral gavage, and the consensus is that they
are well tolerated with no significant changes or slightly induced
cytokine levels systemically (48, 76). Due to its composition,
milk-derived EVs are highly biocompatible and have enhanced
stability and limited immunogenicity, which gives them many
advantages over traditional synthetic delivery vehicles, such as
liposomes, indicating that they might be well tolerated.
Furthermore, it has been demonstrated that milk-derived EVs are
taken up in the gastro-intestinal tract after oral delivery via the
neonatal Fc receptor, and they stay intact after absorption (120).
This receptormediates bidirectional transcytosis of IgG in epithelial
cells and rescues albumin from intracellular degradation, thereby
increasing plasma half-lives of these proteins.

As previously mentioned, milk-derived EVs have two
important characteristics that make them very suitable as drug
carriers; first of all, their lipid bilayer functions as a protective
shell for drugs inside, and second, the efficient uptake of EVs
results in improved bioavailability (Box 4) of the drug. Among
one of the first studies is a large study undertaken by the group of
Gupta, who developed a scalable isolation method for bulk
production of milk-derived EVs that can act as carriers for
chemotherapeutic agents (76). They used a number of different
chemotherapeutics and chemoprotective compounds, including
withaferin A, to test loading efficiency which varied between 10
and 40% depending on the agent. After confirming tumor
Frontiers in Immunology | www.frontiersin.org 6108
growth inhibition by drug-loaded EVs in vitro, they compared
efficacy of drug-loaded EVs to free drug in a long tumor
xenograft model in vivo and found a significantly greater
tumor inhibitory effect with drug-loaded EVs (76). A follow-up
study, this time using paclitaxel-loaded EVs, demonstrated oral
delivery also resulted in significant tumor growth inhibition in a
tumor xenograft model (124). Additionally, the study confirmed
the stability of paclitaxel-loaded EVs for storage up to four weeks
at −80°C (124). Milk-derived vesicles have also been used as a
novel delivery system for small interfering RNA (siRNA) in a
therapeutic application against cancer (125, 126). Furthermore,
when encapsulated in milk EVs, curcumin showed increased
stability, solubility, and bioavailability (127). Of note, as
discussed in the previous paragraphs, milk-derived EVs
themselves already have a substantial immunoregulatory
function, and even without loading, these vesicles can act as
therapeutics. Additionally, the characterization of EVs to
monitor potential differences is very important, and this is still
a field of ongoing research.
FUTURE RESEARCH

There is increasing awareness that the gut plays a vital role in our
overall health. The gut represents the largest surface area being
exposed to our environment and is also the largest immune
organ in our body. An enhanced intestinal leakiness, dysbiosis of
the gut microbiome, and bowel inflammation are not only
associated with diseases of the gut such as colitis and Crohn’s
disease, but are also characteristic of many other systemic
inflammatory diseases such as lupus, multiple sclerosis, psoriatic
arthritis, systemic sclerosis, and RA (128–131). Strategies to target
the gut, and especially its microbiome, using pro- and prebiotics
(27) are under investigation and hold a promise as a therapeutic
intervention for these diseases.

We hypothesize that milk-derived EVs could be a potential
therapeutic strategy (Figure 1) in modulating the gut–joint axis
in RA. Since the net effect of the total dairy matrix on human
health is dependent on the health status of the individual, the
product type of dairy, and individual preferences towards dairy
products, several aspects need to be considered before such
application could be implemented. The isolation of pure
extracellular vesicles without other milk constituents like fat
globules, milk proteins, lactose, and feed-derived milk
components, would provide a widely applicable format of
BOX 4 | Bioavailability and safety of milk EVs.
Research has shown that milk EVs are easily taken up by several different cell types. Intestinal cells are particularly quick to take up milk EVs when exposed. Wolf et al.
(121) showed that both Caco-2 and IEC-6, intestinal cell lines, are able to take up milk EVs as fast as within 15 min. Intestinal uptake of EVs is likely via receptor-mediated
endocytosis by intestinal epithelial cells (transcellular transport) or paracellular transport via tight junctions. Interestingly, not all cells can take up milk EVs; for example
undifferentiated THP-1 cells (monocytes) do not show uptake, whereas their differentiated counterpart (macrophages) do take up EVs (122), indicating there is a cell type
or cell differentiation state specific mechanism at work. Besides in vitro uptake, several animal studies have shown uptake and biodistribution of milk EVs in mice (48, 123).
Both oral intake and intravenous injection (i.v.) resulted in peak uptake in the liver and spleen of mice, after 24 and 3 h, respectively. Interestingly, miRNAs transfected into
the milk EVs were found in several organs 6 and 12 h after oral gavage (123), confirming uptake in vivo. In the intestine, EVs could exert other additional effects due to their
ability to spread, cross the mucus layer, and directly migrate to other tissues and/or interact with different cells of the immune system of the host. In healthy animals, the
biocompatibility and safety have been tested, and extensive analysis confirmed that there were no systemic changes upon i.v. injection of milk EVs into mice (48). Blood
levels of markers for liver damage (aspartate transaminase, alanine transaminase, and total bilirubin), kidney damage (blood urea nitrogen and creatinine) and
hematological parameters were all unchanged (48).
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milk-derived EVs for therapeutic application. Pure mEVs would
be preferred over more complete milk products, since lactose
intolerance is prevalent in a large part of the world, and RA
patients for example can have increased antibodies against food
antigens including milk proteins of cows (132). The isolation
procedure is important and should conform GMP guidelines.

One of the important aspects to tackle is the reproducibility of
the efficacy of the milk EV product used. Another challenge is the
translation of studies performed in vitro or in animals into humans.

More research is required to figure out what the active
components of the milk-derived EVs are. Whether these are
miRNAs, growth-factors, or other proteins, or a combination of
these factors is important to understand. Whether further
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separation, based on size or content, into subpopulations of the
heterogeneous population of EVs is required, needs attention.
Another parameter determining the content of milk-EVs is the
origin of milk, i.e. species (cow, camel, horse, goat or sheep),
changes during lactation period, food intake, seasonal effects, and
animal breeds used.

Additionally, we need to know if these vesicles are actively taken
up via oral intake in humans and show similar effects to the mouse
and in vitro models described here. Finally, standard practices for
the isolation, especially on a larger scale, are required.

Over the years, many different isolation protocols have been
developed for the isolation of milk-derived EVs. Each isolation
protocol comes with its own strengths and pitfalls, which are
FIGURE 1 | Schematic overview how milk EVs can modulate intestinal barrier function and immunity. A healthy intestine has an intact barrier of various intestinal
cells and mucus. Milk-derived EVs may contribute to the restoration of an impaired barrier function during disease by increasing mucus production and expression of
tight junctions via miRNAs and TGF-b. Furthermore, mEVs can act on immune cells, locally in the gut, or systemically via the circulation. This figure was in part
created with BioRender and was licenced for use in publication (created with BioRender.com).
BOX 5 | Organoids.
In the human body, the intestinal epithelial layer is exposed to the microbiome. Although the microbiome is separated from the enterocytes by a mucus layer, bacterial-
derived metabolites can penetrate this mucus layer and affect growth, differentiation, and intestinal health. To mimic these interactions in vitro, there are several factors to
take into consideration. For instance, the intestine consists of different cell types such as, stem, Paneth, goblet, enteroendocrine cells, and enterocytes. The recent
development of intestinal organoid cultures in 3D and 2D, however, allows the use of more sophisticated cultures with all cell types present.

A second hurdle to take, and maybe the most difficult one, is the difference in growth (conditions) between human cells and bacteria. When bacteria are co-cultured
with human cells, they will rapidly overgrow the culture and kill the human intestinal cells within hours. In addition, human intestinal cells require high oxygen levels, whereas
most intestinal bacteria grow anaerobic. One way to solve these problems is by micro-injecting bacteria into the lumen of organoids/spheroids (139). Williamson et al.
injected human fecal microbiota and showed that even oxygen-sensitive anaerobic taxa are maintained for at least 96 h. However, when longer studies are required, the
group of Donald E. Ingber has developed an anaerobic human intestine and microbiome-on-a-chip system (140). Although they used Caco2 cells and endothelial cells
instead of organoids, they nicely demonstrated that it is possible to create an oxygen gradient that allows the growth of human intestinal cells combined with anaerobic
bacteria. The next step would be to apply 2D grown human intestinal organoids, replacing Caco2 cells in this system.
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nicely compared in a recent article by Maburutse et al. (133)
Ultracentrifugation is the most used isolation method, either as a
stand-alone procedure or in combination with further
purification using density gradients, isoelectric precipitation, or
size-exclusion chromatography (SEC). Several methods to lose
the casein and whey proteins, followed by purification of the milk
EV via ultracentrifugation, size exclusion chromatography,
membrane affinity columns, or solid phase extraction have
been reviewed (134–136). Which process is most applicable for
upscaling, with the preservation of biological functionality of the
milk EVs, needs to be validated.

Upfront milk testing and quality control will be an essential
component in the milk processing and downstream EV isolation.
Furthermore, the milk EV isolation methods that are used can
influence the composition of the EV sample. As described by
Provost, different subsets of milk EVs are present in commercial
milk (137). They found that a milk EV subset, which pellets at
low ultracentrifugation speeds, contains and protects the bulk of
milk microRNAs from degradation. In addition, sample
collection methods as well as storage conditions influence the
quality of the EVs. Zonneveld et al. have shown that prolonged
storage at 4°C and −80°C can lead to cell death which results in
contamination of the EV population in human breast milk.
Interestingly, the cow breed and even the diet of the cow can
also influence the milk EV composition (137, 138). These are all
important considerations in moving forward to establish a
standardized, large-scale isolation protocol for milk EVs, ready
to be used as potential therapeutics.
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FUTURE PERSPECTIVE AND FINAL
CONSIDERATION

Altogether, this review highlights the therapeutic potential of
milk EVs to treat arthritis and inflammatory gut diseases. Once a
suitable large-scale isolation method is established and it is
confirmed that the vesicles retained their therapeutic potential
in vitro and in mouse models of disease, we propose testing the
bioavailability and safety in both human organoids (Box 5) and
humans. It will not replace the current standards of care
(DMARDs, biologicals) but will be a sophisticated supportive
treatment by disrupting the pathogenic gut–joint axis.
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Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate
information exchange between distant cells; this process directly affects the biological
characteristics and functionality of the recipient cell. As such, EVs significantly contribute
to the shaping of immune responses in both physiology and disease states. While vesicles
secreted by immune cells are often implicated in the allergic process, growing evidence
indicates that EVs from non-immune cells, produced in the stroma or epithelia of the
organs directly affected by inflammation may also play a significant role. In this review, we
provide an overview of the mechanisms of allergy to which those EVs contribute, with a
particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding
the utilization of the EV-mediated communication route for the benefit of allergic patients.

Keywords: extracellular vesicles, exosomes, cellular communication, immune responses, allergy, asthma, atopic
dermatitis, allergic rhinitis
INTRODUCTION

During evolution multicellular organisms developed diverse methods of communication including a
direct cell-to-cell contact, which allows for receptor-ligand interactions as well as the release of
active mediators providing intercellular information transfer between donor to recipient cells. These
include both soluble molecules and extracellular vesicles (EVs) capable of travelling long distances
within the body. EVs which comprise apoptotic bodies (AP; 100-5000 nm), ectosomes or shedding
microvesicles (MV; 100–1000 nm), secreted mid-body remnants (sMB-Rs; 200-600 nm) and
exosomes (50–150 nm) are a group of heterogeneous structures (1, 2) surrounded by a lipid
bilayer. EVs are released from practically all cell types including epithelial cells, fibroblasts,
mesenchymal cells, dendritic cells (DCs), B cells, T cells, mast cells and tumor cells, among
others. The presence of EVs has also been shown in multiple body fluids, including saliva (3),
plasma (4, 5), breast milk (6), urine (7), bronchoalveolar lavage (8, 9) and malignant effusions
(10–12). The complete biological effects of EVs are not yet well understood, but it is known that
MVs and exosomes can bind to cells through several mechanisms, including receptor-mediated
endocytosis, direct fusion, phagocytosis, and caveolae- or clathrin-mediated endocytosis and
transfer their content to the recipient cell (1, 13). It has also been shown that alveolar epithelial
cells internalize MVs via fluid-phase endocytosis but not via the well-known receptor-mediated EV
endocytosis (14); MV uptake has endocytic basis which is energy-consuming and requires
org August 2021 | Volume 12 | Article 7023811115
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cytoskeletal rearrangement (15); receptor-mediated MV uptake
has also been reported (16). Because of their morphological
characteristics, exosomes are considered the EVs most
pronouncely involved in the information exchange process.
The uptake results in functional effects in recipients; hence
EVs contribute to the complexity of communication stream
between distant cells. Besides the size and density, EV
heterogeneity also derives from their diverse cargo, making it
arduous for researchers to determine their exact functions (17).

Given their ability to regulate physiological and pathological
processes (18, 19) there is growing interest focused on the
potential of EVs to serve as novel targets for the development
of therapeutic and diagnostic strategies. The role of different EV
subtypes largely depends on the type and activation state of a cell
producing them (20). Exosomes have been found useful in
diagnostics as possible biomarkers, e.g. in oncology and
nephropathies (21, 22) and as novel therapeutic approach for
treating various diseases, including those with a clear
immunological pathomechanism, e.g. atopic dermatitis,
asthma, arthritis (23–25). In those, EVs produced by the
immune cells are the main focus of the EV field. However,
multiple kinds of non-immune cells, often overlooked, have been
shown as efficient EV sources; these are often significant
Frontiers in Immunology | www.frontiersin.org 2116
contributors to the ongoing immune response. This review,
therefore, discusses the role of non-immune cell-derived EVs
in immune processes in allergy in contrast to the immune cell-
derived EVs.
EXTRACELLULAR VESICLES: TYPES
AND BIOGENESIS

EVs are most frequently categorized based on their biogenesis,
and sub-grouped into three major types: exosomes,
microvesicles and apoptotic bodies (Figure 1). Recently, a
novel type of EVs, namely secreted midbody remnants
(sMB-Rs) have also been described, along with yet another
type of secreted nanoparticles, i.e. “exomeres”. While the
former appear to be membranous structures and are likely true
vesicles, a debate on the latter is ongoing (due to the lack of
consensus we did not include exomers in Figure 1 and Table 1).
The differences in the origin are directly reflected in the
variations in the size, morphology, cargo and surface content
of those EV populations (Table 1); however, they all likely play a
role in cell-to-cell communication, transferring a variety of
FIGURE 1 | Different types and biogenesis of extracellular vesicles. Two types of EVs form through outward invagination of the plasma membrane; microvesicles
and apoptotic bodies. The apoptotic bodies are larger and form in the context of programmed cell death; they enclose organelles removed from the cell during
degradation, while microvesicles are produced by a healthy cell; their content is similar to that of the cytoplasm. Secreted midbody remnant is also secreted from the
plasma membrane, but contain residual secreted midbody remnants are following cell division. In contrast to this, exosomes form through a distinct cellular pathway
and within the endocytic system where inward budding of late endosome leads to the formation of a multivesicular body containing multiple intraluminal vesicles. The
content of multivesicular bodies is either digested after fusion with lysosome (degradative pathway) or released into the extracellular space (secretory pathway). EE,
early endosome; LE, late endosome; MVB, multivesicular body; ILVs, intraluminal vesicles; sMB-R, secreted midbody remnant.
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biological molecules, i.e. proteins, lipids, nucleic acids and small
molecular mediators (18, 19, 75–80) to the recipient cell.

Exosomes compose a population of small EVs (50-150 nm)
(1). Due to their size and composition mainly consisting of lipids,
these vesicles can squeeze between cells without damage and
enter the circulation; this facilitates transfer of their cargo
between cells at the longest distances (55, 81, 82). The
exosomal wall composition reflects the biogenesis of those
vesicles which have unique endocytic origin. Specifically,
exosomes form at the level of late endosomes (LEs) which later
progress into multivesicular bodies (MVBs) by accumulation of
intraluminal vesicles (ILVs) generated through inward budding
of the LE membrane (83). The formation of MVBs is mediated
by two separate pathways; one involving a multimolecular
machinery called endosomal sorting complex required for
transport (ESCRT) and the other, dependent on a specific lipid
composition of the endosomal membrane (84). ESCRT is a
protein cascade consisting of approximately 30 proteins which
are integrated into four subunits, namely ESCRT-0, ESCRT-I,
ESCRT-II and ESCRT-III (83, 85, 86). The role of ESCRT-0 is to
recognize and sequester ubiquitinated transmembrane proteins
in the endosomal membrane which allows the ESCRT-I to bind
to these ubiquitinated proteins and activate ESCRT-II to start
oligomerization and generation of ESCRT-III. ESCRT-I and
ESCRT-II complexes are implicated in the process of
Frontiers in Immunology | www.frontiersin.org 3117
membrane deformation which leads to the membrane budding,
and ESCRT-III components accomplish vesicle scission (1, 44,
87–89); the ESCRT pathway is ATP-dependent. To disassemble
ESCRT subcomplexes from the endosomal membrane, the AAA
(ATPases Associated with diverse cellular Activities); ATPase
VPS4 (Vacuolar Protein Sorting 4), is required, which
enzymatically accomplishes the membrane abscission (90–
92). During MVB sorting an accessory factor, ALIX, is
required for exosome secretion at the endosome to help sort
membrane proteins into vesicles which later bud into MVBs (93,
94). Larios et al. have shown that ALIX- and ESCRT-III–
dependent pathway promotes sorting and delivery of exosomal
proteins (95). In contrast, the ESCRT-independent pathway
relies on the process of converting membrane sphingolipids to
ceramides by sphingomyelinase which is necessary for the
inward budding and formation of ILVs (57, 96–98). Following
the budding, MVBs which accumulate ILVs either fuse with the
plasma membrane to release exosomes into the extracellular
space via exocytosis (secretory pathway) or fuse with lysosomes
and their content is digested by the lysosomal enzymes
(degradative pathway) (99–101). The ESCRT-independent
formation of ILVs in MVBs has been shown to be regulated by
CD63 tetraspanin, which is particularly enriched intracellularly
and is mostly localized in the endosomes and lysosomes,
although in specialized cells it is also associated with lysosome-
related organelles and their endosomal precursors (102, 103).
Edgar et al. have shown that the formation of small ILVs requires
CD63 (104).

Microvesicles (MVs) are vesicles generally larger than
exosomes, with sizes in the 100-1000 nm range but some
smaller MVs may be difficult to distinguish from exosomes
purely based on the size. However, their biogenesis is
completely unrelated; they originate through the processes of
direct outward budding and fission of the plasma membrane into
the extracellular space (105, 106); this explains why the MV
surface markers largely depend on the composition of the plasma
membrane (107). Based on the way of how the plasma
membrane has emerged during the MV formation, MVs may
contain various cell surface proteins, such as ARRDC1 (arrestin
domain-containing protein 1) (108, 109), Bin-1 (ampiphysin)
(110), EGFR (epidermal growth factor receptor), etc. (111).
Released MVs may be taken up via receptor-mediated uptake
(16, 112, 113) to transfer their cargo (surface receptors, lipids,
proteins, mRNA, miRNA, infectious particles e.g. prions) to the
target cells.

Apoptotic bodies (APs) are the largest subfraction of
extracellular vesicles (100-5000 nm), formed and released
when the cell undergoes programmed cell death, i.e. apoptosis
(114, 115). Many changes occur to the cell during this process,
including pronounced changes to the plasma membrane.
Specifically, the blebbing generates various types of protrusions
and APs form and may be released from those (116, 117). APs
carry antigens and a variety of biomolecules, intracellular
fragments, disrupted and degraded cellular organelles,
membranes, released nucleic acids and cytosolic contents (75).
APs have been shown to transfer their cargo and content
TABLE 1 | Common markers and cargo found in EVs.

EV type Markers EV Cargo

APs (100-5000 nm) Phosphatidylserine (26)

TSP (27)

C3b (28)

Calreticulin (29)

DNA (30, 31)

RNA (32)

Peptides (31)

Phospholipids (31)

Annexin V (31)

Lipids (33)
MVs (100-1000 nm) Actinin-4 (34)

Integrins (35)

Selectins (36)

Flotillin-2 (37)

CD40 ligand (36)

Metalloproteinase (38)

ARF6 (39)

VCAMP3 (40)

KIF23 (41)

DNA (42)

RNA (32, 43)

Poteins (44)

Receptors (45–48)

Lipids (49)

sMB-Rs (200-600 nm) KIF23 (2, 50, 51)

Prominin-1 (52)

Proteins (2)

Centraspindlin (2)
Exosomes (50-150 nm) CD81 (53)

CD82 (53)

CD9 (54)

CD63 (55, 56)

Alix (54, 57)

TSG101 (57)

Flotillin-1 (58, 59)

Syntenin (34)

Hsp70 (60)

CD24 (61)

Receptors (62, 63)

Cytoplasmic proteins (64, 65)

Tetraspanins (66)

DNA (67)

RNA (68, 69)

Lipids (70)

MHC complex (71, 72)

Integrins (73)

Cytoskeletal components (74)
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between various cells (30, 118). Interestingly, the communication
with the immune cells specifically is commonly mediated by
vesicle-associated cytokines or damage-associated molecular
patterns (DAMPs) (119). This includes mitochondria-derived
N-formylated peptides (120), the nuclear protein High Mobility
Group Box 1 (HMGB1) (121), histones (122), calcium-binding
S100 proteins (123), heat shock proteins (HSPs) (124), ATP
(125), uric acid (126), DNA/RNA and actin among many others
(127). This richness of the cargo is perhaps not surprising, given
the context of the cell death resulting in AP formation. Immune
cells recognize these molecules via pathogen recognition
receptors (PRRs) and drive inflammatory responses (117, 128,
129). APs act locally and are removed from the extracellular
environment during phagocytosis by macrophages (117,
130, 131).

Very recent developments in the EV field brought
identification of two new types of nanoparticles, i.e. exomeres
and secreted midbody remnants. Given their novel nature, these
are not yet well described, both in relation to their structure and
function, however certain aspects are already known which
positions these nanoparticles in the interest of the EV field.

Secreted midbody remnants (sMB-Rs),with sizes in the 200-
600 nm range have been described as particles generated during
the cell division. Specifically, these are generated at the time
when daughter cells are still connected with intercellular
cytoplasmic bridge; this bridge is cut during the cytokinesis by
a transient organelle called midbody which anchors SNARE and
exocyst complexes (50, 132). As a consequence, one of the
nascent cells retains these midbody remnants and discards
them either by autophagy (133) or releases them in the form
of secreted vesicles; sMB-Rs. It has been documented that these
nanoparticles are distinct from exosomes and shed microvesicles
(51, 52). While generated as a byproduct during the cell division,
sMB-Rs may also convey messages when internalized, as shown
for fibroblasts, in which sMB-Rs promote cellular transformation
into an invasive phenotype (2).

Exomeres, with their size at the ≤50 nmmark are the smallest
secreted nanoparticles described so far. They also have very
distinct characteristics; of all, the lack of a limiting membrane
is the most evident differential feature. Exomeres seem to be
involved in cargo transport and have been shown to contain
proteins, lipids and nucleic acids, which provide functional
outcome by receiving cells. Currently, however there is a
debate whether exomers should be classified as “vesicles” and
the EV field is awaiting specific recommendations in this regard
(134–136).

It should be noted that while distinct types of EVs can be
described by their origin pathway, as well as a set of specific
characteristics including the size, marker profile and cargo
content, the technical caveats and lack of very unique markers
available to unambiguously define every EV population, it is
virtually impossible to specify the origin of the EVs, unless these
are imaged during secretion. Therefore, following the
recommendation of the International Society for Extracellular
Vesicles (ISEV) for the purpose of this review we have used the
Frontiers in Immunology | www.frontiersin.org 4118
terms “small” and medium/large EVs” (sEVs and m/lEVs)
throughout instead of the original description published in the
referenced papers unless the populations are very well defined
according to the ISEV guidelines (137).
IMMUNE CELL-DERIVED EVs IN IMMUNITY

Recent progress in the EV field determined that thorough
understanding of the EV biology and function is pivotal for our
comprehension of immune-driven diseases, including the
pathogenesis of allergy. Here, immune cell-derived EVs emerge
as important contributors to immune responses, in both the innate
and adaptive immunity arms and it may be useful to explore their
potential as diagnostic and therapeutic tools. In the innate
immunity pathways EVs provided by NK cells, macrophages
and neutrophils mediate early host recognition and elimination
of invading pathogens. In the adaptive arm, EVs are capable of
activating B cells for antibody responses as well as providing both
the direct and indirect antigen-specific stimulation to T cells. For
the former, class I and class II MHC molecule-enriched EVs from
antigen-pulsed DC are able to act as a display system for antigen
presentation to cytotoxic and helper T cells (138). Moreover, it has
been shown recently that the responses induced by exosomes
(defined as tetraspanin and syntenin-positive sEVs) are by far
superior in comparison to those obtained from MVs
(distinguished as actinin-1-positive, syntenin-negative) (34),
further highlighting the distinctive features resulting from the
unique exosomal biogenesis pathway, encompassing the MHC-
reach cellular compartments. As far as the indirect presentation is
concerned, antigen or antigen/MHC complex transfer is also
engaged, as well as cross-priming and cross-dressing
presentation pathways. These topics have been extensively
covered already in excellent publications (138–144). Hence,
since the focus of this review is the EVs secreted by non-
immune cells which are often overlooked but also extensively
participate in immune responses, their contribution will be
presented next.
NON-IMMUNE CELL-DERIVED EVs
IN IMMUNITY

While not as potent, in some respects, as the EVs secreted from
the immune cells, the EVs that are produced by the non-immune
cell types have also been shown to exert many distinct roles in the
immune system. These non-immune EV-mediated pathways
include contribution to both innate and adaptive immunity,
ranging from the activating to inhibitory roles (Figure 2). As
with any cells, the relative impact depends on the type and the
activation state of the donor cell, in parallel to the functionality
observed at the cellular level. Next section will discuss the ways in
which those non-immune cell-derived EVs participate in the
mechanisms of the innate and adaptive immunity.
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Non-Immune Cell-Derived EVs in
Innate Immunity
EVs secreted by non-immune cells provide mechanisms of innate
control and consist a link between innate immunity and allergic
diseases (145). For example, Hu et al. have shown that the
activation of the TLR4 signaling results in enhanced luminal
sEV production and shuttling of the epithelial antimicrobial
peptides (cathelicidin-37 and b-defensin 2) from the
gastrointestinal epithelium (146). Nasal mucosa-derived sEVs
were also shown to carry proteins involved in the innate
immune responses, including inducible nitric oxide synthase
(NOS2) which exerts antimicrobial function (147). Similarly to
this, Nocera et al. have shown that the secretion of basal nasal
mucosa-derived sEVs and the expression of exosomal NO is
increased after TLR4-stimulation by lipopolysaccharide.
Interestingly, mucosa-derived sEVs had microbiocidal properties
and were capable of transferring their immunoprotective cargo to
naive epithelial cells to confer passive immunity to recipient cells
in the setting of chronic rhinosinusitis (148).

Non-immune cell-derived sEVs can also interfere with the
NOD-dependent signaling. Specifically, Vaccari et al. have
shown that the expression of the components of the
nucleotide-binding-and-oligomerization domain (NOD)-like
receptor protein-1 (NLRP-1) inflammasome are increased in
the spinal cord motor neurons and cortical neurons after trauma.
Interestingly, NLPR-1 inflammasome proteins were found in
cerebrospinal fluid-derived sEVs after spinal cord injury and
traumatic brain-injured patients. The authors have shown that
Frontiers in Immunology | www.frontiersin.org 5119
sEVs derived from neurons loaded with short-interfering RNA
against caspase recruitment domain (CARD) can deliver their
cargo and reduce inflammasome activation following
spinal cord injury in rodents (149). Following this, Li et al.
have demonstrated the ability of hepatocyte-derived sEVs
(expressing exosome-associated tetraspanins) to induce acute
liver injury in severe heat stress by activating the NOD-like
receptor signaling pathway in hepatocytes (150). This pathway
seems to provide a link between visceral organs and the central
nervous system (CNS) as shown in a hepatic ischemia-
reperfusion injury model. Liver transplantation may result in
neuronal injury and cognitive dysfunction (151); Zhang et al.
have demonstrated that circulating sEVs play critical role in
hippocampal and cortical injury through regulating neuronal
pyroptosis in rats. The authors have shown that neuronal
pyroptotic cell death may be caused by sEVs through
TLR4 activation of NLRP3 inflammasome (152).

Exosomal transfer of pathogen recognition pathway
components may convey the message to the immune cells,
such as monocytes and macrophages. Specifically, Mills et al.
have shown that poly(I:C) stimulation induces the release of
tenascin C-rich sEV from airway epithelial cells; these may
potentiate airway inflammation by promoting cytokine
production in macrophages (153). Furthermore, airway
epithelial cell-derived sEVs have been shown to induce
proliferation and infiltration of undifferentiated macrophages
into the lungs under the influence of IL-13 in a murine model
(20). In contrast, mesenchymal stem cells (MSC)-derived sEVs
FIGURE 2 | Involvement of non-immune cell-secreted extracellular vesicles in immunological processes of innate and adaptive immunity. Extracellular vesicles
produced by cells of non-immune origin participate in exchange of information that contributes to immune responses. In the innate arm EVs enable passive immunity
and may both induce activation and modulate innate cell function. In the adaptive arm EVs may influence antigen presentation, affect dendritic cell differentiation and
phenotype; they have also been implicated in T cell polarization into Th or Treg subsets. sEVs, small EVs; m/lEVs, medium/large EVs.
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are capable of inhibiting macrophage chemotaxis (154), altering
the M1/M2 balance (155), inhibiting M1 via miR-147 (156) and
stimulating the M2 polarization in monocytes (157).

Non-Immune Cell Derived-EVs
in Adaptive Immunity
Multiple studies indicate that non-immune cells, in the steady
state, secrete EVs that execute immunoregulatory roles in
adaptive immunity. For example, bone marrow MSC-
derived EVs have been shown to suppress the Th2/Th17-
mediated airway hyperresponsiveness and lung inflammation in
a model of Aspergillus hyphal extract-induced allergic airway
inflammation (158). Indeed, MSC-derived sEVs have shown
immunosuppressive effects on several types of immune cells
(159); including inhibition of B cell and DC proliferation (25), B
cell maturation (160), and induction of T regulatory cells (Treg)
(161–163). More specifically, Gomzikova et al. have demonstrated
that MSC-derived EVs alter DC maturation and functional state
(164); the antigen uptake by immature DCs was attenuated and
the stimulation rendered DCs with a semi-mature phenotype after
LPS exposure (165). These phenotypic changes were accompanied
by a functional shift in the cytokine production profile from
inflammatory to immunoregulatory (164), suggesting that those
sEVs could promote tolerogenic DC (tolDC) induction. MSC-
derived EVs have been also shown to reduce inflammatory
cytokine (IL-23 and IL-22) production (166), enhancing the
anti-inflammatory phenotype and regulatory lymphocyte
proliferation, and the ability to produce IL-10 and TGF-b (167).
Proliferation of T cells has also been shown to decrease after MSC-
derived EV treatment in vitro, accompanied by a downregulation
in IFN-g and TNF-a (168). The study by Shigemoto-Kuroda et al.
also confirmed that MSC-derived EVs have the ability to suppress
Th1 and Th17 development, inhibit antigen presenting cell
activation and increase expression of the immunosuppressive
cytokine IL-10 (169). In a limited model, murine epidermal
keratinocyte-derived sEVs (flotillin and Alix-positive) failed to
induce T cell immune response despite some phenotypic effects on
DC (170). However, when the donor cells are subjected to IFN-g
activation, keratinocyte-derived sEVs (of exosomal marker
characteristics) may act as a transfer vehicle for T cell
stimulation by Staphylococcal aureus enterotoxin B. Specifically,
in this context HaCaT keratinocytes were shown to produce sEVs
that contain MHC class I and class II and were able to drive
nonspecific proliferation of CD4+ and CD8+ T cells in vitro (171).
This suggests that the relative contribution of non-immune cell-
derived sEVs (and potentially other EVs) to the adaptive
immunity and T cell reactivity may change depending on the
stimulation received by the donor cell; further evidence supports
this (172).

Interesting are the results by Admyre et al. who have
demonstrated that human breast milk contains sEVs which
reveal immunomodulatory features inhibiting T cell cytokine
production from PBMC and increasing the number of
Foxp3+CD4+CD25+ Tregs in this semi-allogenic system (173,
174). Based on the content of surface molecules, in comparison
to the DC-derived sEVs, these sEVs originate from either
Frontiers in Immunology | www.frontiersin.org 6120
macrophages and lymphocytes in the breast milk or rather
breast epithelial cells (173, 175). To support this, Herwijnen
et al. have also shown that human milk-derived EVs contain
novel EV-associated bioactive proteins that have distinct functions
from other milk proteins; this suggests a novel mechanism of
cellular communication between the mother and newborn (176).
THE ROLE OF NON-IMMUNE CELL-
DERIVED EVs IN ALLERGIC CONDITIONS

Many studies have been performed to investigate the
involvement of non-immune cell-derived EVs content/cargo
with different clinical manifestations of allergy; in this section
current research regarding the role and function of non-immune
cell-derived EVs in allergic conditions is reviewed. Certainly, for
the outcome in allergic inflammation much depends on the
source of EVs as summarized in Figure 3.

Asthma
EVs contribute to the asthma pathogenesis via various
mechanisms, related to both inflammation and pathological
remodeling (177) and there are interesting interdependencies
that can be observed. Specifically, it has been shown that
fibroblasts-derived EVs secreted by cells obtained from severe
asthmatics increase proliferation of bronchial epithelial cells
(HBECs) in comparison to those in healthy individuals, due to
a decrease in the TGF-b2 content (178). Vice versa, vesicular
transfer between epithelial cells and fibroblasts which
includes inositol polyphosphate 4-phosphatase type I A
(INPP4A) cargo, may regulate inflammation and airway
remodeling (179). Further to that, Gupta et al. have shown that
sEV transfer between airway epithelial cells (AECs) and human
tracheobronchial cells (HTBEs) promotes expression several
proteins which may contribute to allergic inflammation and
exacerbation of asthma symptoms, i.e. gel-forming mucins
(180), complement component C3, SERPIN3. The addition of
an allergen source (house dust mite; HDM) to the AEC culture
resulted in DC activation by secreted sEVs in vitro and increased
airway inflammation in a murine model (181); the role for
contactin-1 has been demonstrated. Furthermore, it has been
also demonstrated that sEVs may be a vehicle of secretion for an
important Th2-promoting cytokine, interleukin 33 (IL-33); the
cytokine seams to decorate the EV surface rather than be
included within the intraluminal cargo (182). At the same
time, however, it has been also shown that CD83/OVA-
carrying sEVs derived from those cells may promote Treg
differentiation (183). Ax et al. have documented that HBECs
increase the number of EVs released upon treatment mimicking
asthma milieu which may contribute to establishing of the
neutrophilic airway inflammation associated with Th17-driven
asthma (184). Kulshreshtha et al. have shown that IL-13-treated
epithelial cells secrete sEVs which stimulate proliferation and
chemotaxis of monocytes; suppressing secretion of those sEVs in
the lungs alleviates asthmatic inflammation in a murine model of
bronchial asthma (20). Similarly, Lee et al. have shown that
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HBEC-derived m/lEVs may promote macrophage-mediated
inflammation upon hyperoxia-mediated lung injury via miR-
221 and/or miR-320a (185). Moreover, three additional
miRNAs, i.e. miR-92b, miR-34a and miR-210 found in the
sEVs secreted by HBECs have been suggested to have possible
roles in regulating Th2 differentiation and DCs maturation in
asthma, indicating that airway epithelial miRNA secretion via
sEVs might be even more implicated in the development of the
disease (186). In agreement with this, bronchoalveolar lavage
fluid (BALF)-derived EVs isolated from LPS-treated mice drive a
mixed Th1/Th17 cell response and enhance production of the
Th1/Th17-polarizing cytokines (IL-12p70 and IL-6) by lung DCs
in an asthmatic mouse model but are more tolerogenic if the
animals are devoid of the LPS stimulation (70). Specifically,
Paredes et al. have shown that asthmatic BALF-derived sEVs
which carry tetraspanins and MHC class II molecules might
reflect increased levels of antigen-presenting capacity and
suggest that these sEVs might contribute to the inflammation
by increasing cytokine and leukotriene production in AECs
Frontiers in Immunology | www.frontiersin.org 7121
(187). Asthmatic patients also have altered sEV proteomic
characteristics and eicosanoid profile which is shown to exert
pro-inflammatory functions in vitro. Specifically, Hough et al.
have shown that BALF-derived EVs contain lipids, such as
ceramides, sphingosines, prostaglandins and leukotrienes
which have been previously identified to drive inflammation in
asthma (188). In asthmatic conditions, BALF-derived EVs also
exhibit particular miRNA profiles (189) and carry the
biosynthetic machinery for the leukotriene biosynthesis
pathway (187, 188). In agreement with this, in a human study,
EVs isolated from the nasal secretions of children with asthma
and chronic rhinitis promoted trafficking of primary monocytes,
NK cells and neutrophils thanks to the changes in the exosomal
proteome contributing to the alterations in the immune-related
functions (147). These effects can be contrasted with a healthy
lungs, as demonstrated in an animal model by Wan et al., who
have shown that EVs isolated from the lungs of healthy mice
contain immunosuppressive cytokines TGF-b1 and IL-10 which
inhibit T helper cell proliferation and relieve asthmatic
FIGURE 3 | Extracellular vesicles produced by non-immune cells and their involvement in allergic diseases. Microvesicles and exosomes are the two types of
extracellular vesicles which have been implicated in the pathogenesis of allergic inflammation. There is significant predominance of the exosomal involvement, likely
due to the phenotypic characteristics and physical properties of these vesicles, enabling more without damage and entering the circulation for long-distance delivery.
HBECs, human bronchial epithelial cells; BALF, bronchoalveolar lavage fluid; NM, nasal mucus; NECs, nasal epithelial cells; AECs, airway epithelial cells; HTBEs,
human tracheobronchial cells; RBCs, red blood cells; IECs, intestinal epithelial cells; KCs, keratinocytes; FBs, fibroblasts; MSCs, mesenchymal stem cells. ↑ increase
in a process; ↓ decrease in a process; + disease promoting effect; - disease alleviating effect.
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symptoms in mice (190). The immunomodulatory effect of EVs
was also demonstrated by Prado et al. who have shown that
intranasal administration of sEVs isolated from BALF of mice
tolerized against major pollen allergen in the murine airway
inflammation model (Ole e1) induces tolerance and protects
naïve mice against allergic sensitization (191).

Finally, innate lymphoid cells type 2 (ILC2s) which are large
contributors to the Th2-dominated allergic inflammation in the
airways (192) can also be targeted by EV-mediated suppression.
Specifically, systemic administration of MSC-derived sEVs
resulted in the reduction in the ILC2 accumulation,
inflammatory cell infiltration and mucus production in the
lung, a reduction in the levels of Th2 cytokines, and alleviation
of airway hyperresponsiveness in a mouse model of asthma. It
seems that this sEV-mediated preventive effect was conveyed by
the transfer of miR-146a-5p (193).

Allergic Rhinitis
Allergic rhinitis (AR) is a disease manifesting as type I allergic
hypersensitivity within the nasal mucosa (194), and is characterized
by chronic inflammation (195). The imbalance between the Th1
and Th2 differentiation is involved in the development of ARwhich
is suggested to be partly regulated by sEVs. Zhu et al. have reported
expression of a long-noncoding RNA (Lnc) GAS5 in the nasal
mucus-derived sEVs in AR and in the ovalbumin-stimulated nasal
epithelial cell (NEC)-derived sEVs. Here, this Lnc RNA promoted
suppression of Th1 cell differentiation and induced Th2
differentiation upon treatment with nasal mucus (NM)-derived
sEVs. A potential mechanism seems to involve the regulation of
Enhancer of Zeste Homolog 2 (regulating proliferation and
differentiation processes, including mediating proliferation and
apoptosis of allogeneic T cells), and inhibition of T-bet
expression by long-noncoding RNA GAS5 (196).

NEC-derived exosomal miR-146a induces the expression of
IL-10 in monocytes in the murine model which seems to
suppress allergic reactions downstream. Specifically, IL-10+

monocytes have an immune suppressor effect on the CD4+

effector T cells and the Th2 polarization in this model of AR
(197). Interestingly, the alterations in the miRNA profile
obtained from NM-derived EVs of AR patients showed
intrinsic dysregulation of EV miRNA content in the disease.
Wu et al. have demonstrated significant enrichment of certain
biological and cellular processes within these differentially
expressed miRNA signatures, namely B-cell receptor signaling
pathway, natural killer cell-mediated cytotoxicity and T-cell
receptor signaling, among others, implying that vesicular
miRNAs exert regulatory function in AR. When investigated in
more detail, B cell receptor signaling pathway-related miR-30-5p
and miR-199b-3p were significantly increased, also miR-874 and
miR-28-3p were significantly down-regulated in EVs from nasal
mucus in AR (198).

Atopic Dermatitis and Contact Allergy
Atopic dermatitis (AD) is a chronic inflammatory skin disorder
associated with the epidermal barrier disruption, eczematous
Frontiers in Immunology | www.frontiersin.org 8122
cutaneous lesions and severe pruritus. AD pathogenesis is
complex and characterized by cytokine production predominantly
mediated by Th2 cells and ILC2 (199), but also involving innate and
Th17 and Th22 components (200).

The importance of keratinocytes of the skin in the disease
pathogenesis has been highlighted by the findings demonstrating
that insufficiency in the epidermal barrier is key component
(201). However, only one study so far has investigated the impact
of EVs secreted by keratinocytes in the context of allergic
inflammation (170). Here, using a murine allergy model, the
authors noticed some signs of DC activation upon exposure to an
antigen (OVA peptide) transferred by sEV from secreting
keratinocytes. At the same time, however, they failed to detect
any changes in the T cell reactivity to this peptide antigen.

Besides that, little is known about EV secretion from other
cells in the skin with relation to AD, with more focus directed
towards potential new therapies. In this regard, it has been
reported that intravenous/subcutaneous administration of
human adipose tissue-derived MSC-derived sEVs (showing
exosomal characteristics) ameliorate AD symptoms in vivo (in
a mouse model); the levels of serum IgE, the number of
eosinophils in the blood, and the infiltration of mast cells were
also shown to be reduced after the treatment. Such sEVs also
reduced mRNA levels of IL-4, IL-31, IL-23, and TNF-a in the
skin lesions demonstrating that their systemic administration
may ameliorate AD-like symptoms through the regulation of
inflammatory responses and expression of inflammatory
cytokines in the tissue (25). Shin et al. have shown that
exosomes-resembling sEVs derived from human adipose
tissue-derived MSCs may significantly restore the epidermal
barrier function in AD by inducing de novo synthesis of
ceramides and modulating multiple gene expression
programme, including the effects on differentiation of
keratinocytes, lipid metabolism, cell cycle, and immune
response (202). MSC-derived sEVs were shown to inhibit local
inflammatory reaction and reduce tissue damage in atopic
eczema (203). Hence, the evidence suggests that MSC-derived
sEVs could potentially offer a promising cell-free therapeutic
option for AD patients.

Contact allergy and contact sensitization is a common form of
a delayed type hypersensitivity to small contact allergens.
Contact allergy often develops after repeated or prolonged
topical exposure to a particular sensitizing agent (204–206).
Nazimek et al. have shown that intravenous administration of
syngeneic mouse red blood cells leads to the EV generation that
suppresses directed delayed type hypersensitivity in a miRNA-
150-dependent manner; specifically, the syngeneic mouse red
blood cell-derived EVs decreased T cell activation and enhanced
their apoptosis (207). Similarly, human umbilical cord MSC-
derived EVs were demonstrated to ameliorate and prevent the
pathology of contact hypersensitivity in mice. Specifically, these
EVs had a suppressive effect on both CD8+ cytotoxic cells and
CD4+ Th1 cells, including the effect on TNF-a and IFN-g
production, induction of Tregs and the level of secreted
IL-10 (208).
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TABLE 2 | Preclinical models using EVs for allergy treatment in animals.

nditions Outcomes Reference

BALF-derived exosomes induce tolerance and protection against allergic
sensitization in mice.

Prado et al, 2008 (191)

flammation IL-13 treated epithelial cell-derived exosomes induce enhanced proliferation
and chemotaxis of undifferentiated macrophages in the lungs during
asthmatic inflammatory conditions.

Kulshreshtha et al, 2013 (20)

y inflammation Selective sorting of Th2 inhibitory miRNAs into airway secreted EVs and
increase release to the airway is involved in the pathogenesis of allergic
airway inflammation.

Gon et al, 2017 (218)

atitis Intravenously or subcutaneously injected human adipose tissue-derived
MSC-derived exosomes ameliorate AD in an in vivo mouse model.

Cho et al, 2018 (25)

act dermatitis Human umbilical cord-derived MSC-EVs prevent the pathology of contact
hypersensitivity by inhibiting Tc1 and Th1 immune responses and inducing
the Tregs phenotype in vivo and in vitro.

Guo et al, 2019 (208)

is (patients) MSC-sEVs prevent ILC2-dominant allergic airway inflammation through miR-
146a-5p.

Fang et al, 2020 (193)
nt asthma
el)
atitis Human adipose tissue-derived MSC-exosomes effectively repair defective

epidermal barrier functions in atopic dermatitis.
Shin et al, 2020 (202)

hypersensitivity Intravenous delivery of syngeneic mouse red blood cells that is mediated by
EVs in a miRNA-150-dependent manner suppresses delayed-type
hypersensitivity.

Nazimek et al, 2020 (207)
ersensitivity

ma Intranasally delivered MSC-derived exosomes inhibit allergic asthma in mice. Ren et al, 2020 (219)

ic models Epithelial contactin-1 in exosomes is a critical player in asthma pathology. Zhang et al, 2021 (181)
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TABLE 3 | Registered clinical trial investigating the feasibility of using EVs in allergic patients.

Interventions Locations Identifier

Biological: Dermatophagoides pteronyssinus allergen Lithuanian University of Health Sciences,
Pulmonology Department Kaunas, Lithuania

NCT04542902
Procedure: Blood sampling, Procedure: Bronchial
challenge with allergen
Drug: Qufeng Shengshi Fang and Loratadine, Drug:
Loratadine

Peking Union Medical College Hospital
traditional Chinese medicine department
Beijing, Beijing, China

NCT02653339

Biological: tumor derived microparticles, Drug: cisplatin The Ohio State University Medical Center
Columbus, Ohio, United States

NCT00700726

Diagnostic Test: Broncho Alveolar Lavages HôpitalSaint-Philibert, Lomme, France NCT03608293

Drug: Chitin microparticles by nasal route Hammersmith Medicines Research,
London, United Kingdom

NCT00443495

Drug: Biodegradable and biocompatible
polymeric microparticles containing a fluorochrome applied
to the skin followed by a skin biopsy

Regional University Hospital Besançon,
France

NCT02369432

Other: Narrow band UVB treatment, (NB-UVB) The Rockefeller University New York, New
York, United States

NCT03083730

Other: FDG-PET Scan Other: MDCT, Other: biopsy and
blood collection

Innovaderm Research Inc Montreal,
Quebec, Canada

NCT02926807

Primary indicator: PD-L1, Immuno-suppression capacity of
regulatory T cell

Sun Yat-Sen Memorial Hospital, Sun Yat-
Sen University

ChiCTR2000031122
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atopic Asthma

Asthma, Allergies

Influence on Human Bronchial Epithelial Cells
Smoker Extracellular Vesicles Influence on Human
Bronchial Epithelial Cells

Smokers Human Bronchial
Epithelial Cells Lung
Pathogenesis Biomarkers

Phase I/IIa Study on Chitin Microparticles in Subjects
Suffering From Allergic Rhinitis

Seasonal Allergic Rhinitis

Exploratory Study of the Cutaneous Penetration of
Biodegradable Polymeric Microparticles in Atopic
Dermatitis (MicroIskin)

Atopic Dermatitis

Impact of Narrowband UVB Phototherapy on
Systemic Inflammation in Patients With Atopic
Dermatitis

Atopic Dermatitis

Trial on Vascular Inflammation in Atopic Dermatitis Atopic Dermatitis Vascular
Inflammation Coronary
Atherosclerosis

Role of Macrophage in immune-modulation by
mesenchymal stem cell derived exosome in asthma

Respiratory diseases
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Food Allergy and Allergic Inflammation in
the Gastrointestinal Tract
Food allergy is a manifestation of an abnormal immune response
to food or food additives (209) which is a complex process
involving multiple cellular and molecular mechanisms. It has
been shown that early exposure to allergens via the
gastrointestinal route promotes tolerance (210, 211). It is not
clear how much EVs are involved in this process, however,
animal models suggest that there could be some contribution.
Specifically, intestinal epithelial cells (IECs) subjected to OVA
release sEVs that carry IL-10 and OVA/MHC class II complexes
recognized by OVA-specific TCR-bearing CD4+ T cells. Here,
OVA-specific CD4+ T cells represent type 1 Tregs, produce IL-10
and show immune suppressive effects on effector T cell
proliferation. The proposed mechanism involved the role of
vasoactive intestinal peptides, which seemed to be required for
this effect (212, 213). Furthermore, Treg bias has been also
observed following a sEV-mediated transfer of food allergens
into the mesenteric lymph nodes (MLNs) of mice, in contrast to
a direct transfer of those allergens, which promoted Th2
responses (214); the results also highlighted the role of
exosomal integrin avb6 as a protective molecule. Finally, given
that the diverse composition of the gut microbiome has been
shown to be critical in food allergy prevention (215), antigen and
mediator transfer via EVs secreted by IECs may be also involved
in the elimination of pathogenic bacteria to prevent intestinal
dysbiosis (146).
CLINICAL PERSPECTIVES

Growing attention has been given to EVs as mediators in both
physiological conditions and pathology, including the role in
allergic diseases. Extensive research has been carried out showing
the capacity of EVs to regulate homeostasis and immune
functions in the allergic microenvironment. Alterations in
exosomal content in allergic conditions have been shown to
distinguish between physiological and diseased states suggesting
the potential use of sEVs as biomarkers in the search of
diagnostic tools for allergic diseases, for example in asthma
phenotype subgrouping (216). Naturally-occurring sEVs can be
also potentially used as drugs themselves, supporting healing
process, e.g. MSC-derived sEVs participating in wound healing
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and regeneration of the lung tissue; this highlights the possible
use of these sEVs in allergic airway remodeling (158, 202, 217).
Several studies have proposed treatment strategies in animal
models of allergic disease as summarized in Table 2. There are
also examples of the use of sEVs as compound carriers are now
being investigated as a naturally derived drug delivery systems
(DDSs) with a favorable biocompatibility profile, but sEVs can be
also potentially used to deliver non-drug anti-inflammatory
agents including miRNAs (e.g. let-7-miRNAs). Indeed, there
have been already several clinical trials in the past and more
are now ongoing which investigate a potential of using EVs for
the benefit of allergic patients (Table 3).

In summary, non-immune cell-derived EVs contribute to
allergic inflammation in the tissue location and potentially
systemically; they have a great potential to become a valuable
diagnostic option as well as a novel target for allergy therapy.
Such EVs are slowly introduced into the clinic within the setting
of clinical trials which investigate the feasibility of such
an approach.
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Recent years, the immunosuppressive properties of mesenchymal stem cells (MSCs)
have been demonstrated in preclinical studies and trials of inflammatory and autoimmune
diseases. Emerging evidence indicates that the immunomodulatory effect of MSCs is
primarily attributed to the paracrine pathway. As one of the key paracrine effectors,
mesenchymal stem cell-derived exosomes (MSC-EXOs) are small vesicles 30-200 nm in
diameter that play an important role in cell-to-cell communication by carrying bioactive
substances from parental cells. Recent studies support the finding that MSC-EXOs have
an obvious inhibitory effect toward different effector cells involved in the innate and
adaptive immune response. Moreover, substantial progress has been made in the
treatment of autoimmune diseases, including multiple sclerosis (MS), systemic lupus
erythematosus (SLE), type-1 diabetes (T1DM), uveitis, rheumatoid arthritis (RA), and
inflammatory bowel disease (IBD). MSC-EXOs are capable of reproducing MSC function
and overcoming the limitations of traditional cell therapy. Therefore, using MSC-EXOs
instead of MSCs to treat autoimmune diseases appears to be a promising cell-free
treatment strategy. In this review, we review the current understanding of MSC-EXOs and
discuss the regulatory role of MSC-EXOs on immune cells and its potential application in
autoimmune diseases.

Keywords: mesenchymal stem cells, exosomes, immunoregulation, therapy, autoimmune diseases
1 INTRODUCTION

Mesenchymal stem cells (MSCs) are pluripotent stem cells with the capacity for self-renewal and
multidirectional differentiation into osteoblasts, chondrocytes, adipocytes, and other types of cells
(1, 2). MSCs are widely distributed in the body and have been isolated from a variety of tissues,
among which the bone marrow and subcutaneous fat are common cellular sources (3). The
International Committee established the recognition characteristics of human MSCs, including
under standard culture conditions to maintain adhesion appearance, expression of CD105, CD73,
and CD90 molecules, no expression of CD45, CD34, CD14, CD45, CD11b, CD79a, CD19, and
HLA-DR, with the ability to differentiate into osteoblasts, adipocytes, chondrocytes in vitro (4). In
addition to its strong differentiation capacity, MSCs also have immunomodulatory potential to
modulate innate and adaptive immune cells (5). Abundant evidence indicates that MSCs can act on
natural killer (NK) cells, dendritic cells (DCs), macrophages, B lymphocytes, and T lymphocytes via
org September 2021 | Volume 12 | Article 7491921132
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inhibiting the activation, proliferation and differentiation into
effector cells (6–9). Following stimulation with inflammatory
factors, MSCs exhibit the properties of reducing the
inflammatory response, improving tissue repair, and avoiding
infection by secreting various immune regulatory factors (10). At
present, substantial evidence suggests that MSCs exert their
immunomodulatory function through paracrine pathway,
especially via exosomes (10, 11).

Extracellular vesicles(EVs) are a family of particles/vesicles
found in blood and body fluids. They are composed of
phospholipid bilayer and carry a variety of molecules that
serve as mediators for intercellular communication (12). In
1946, Chargaffaf et al. suspected the existence of EVs and
published the first study of EVs (13). It was not until 1967 that
Wolf et al. confirmed the existence of EVs with electron
microscopy (EM) (14). The term exosome (“ exo ”=
external,“ some ”= body) was introduced in the 1970s, and it
wasn’t until 1981 that the term“ exosome ”was first used by
Trams to refer to Evs (15). Shortly after Johnstone et al. described
multivesicular bodies (MVBs) and their 40-80nm exosomes in
1985 (16), differential centrifugation and ultracentrifugation
above 100,000 g were used to separate and distinguish the
smallest vesicles (17). With the increase in EVs (especially
exosomes) publications, most studies do not clearly distinguish
exosomes from other vesicles. To address this problem, in 2013,
the International Extracellular Vesicle Society (ISEV) proposed a
set of criteria for EV Science (18). In order to ensure normative
research, the Minimal Information of Studies of Extracellular
Vesicles (MISEV) was revised in 2018 to update knowledge in
the field (19).

Exosomes are spherical vesicles composed of lipid bilayer
membranes with a diameter of 40-200 nm, which contain
complex and abundant active substances such as proteins and
nucleic acids. Expression of exosome markers, proteins, nucleic
acids, and other bioactive molecules is related to the cell of origin
(20). There is increasing evidence that MSC-derived exosomes
(MSC-EXOs) play an important role in immune regulation.
MSC-EXOs are spherical vesicles secreted by MSCs that
contain many anti-inflammatory compounds and modulate the
immune response by interacting with immune effector cells (12).
In the treatment of autoimmune diseases, MSC-EXOs as a carrier
of cell-free therapy have attracted extensive attention, because
they not only carry most of the therapeutic effects of MSC itself,
but also reduce the concerns about the safety of injecting live
cells. MSC-EXOs has significant advantages over MSCs in
clinical treatment and may completely replace MSC therapy in
the future.
2 CHARACTERISTICS OF MESENCHYMAL
STEM CELL-DERIVED EXOSOMES

Both eukaryotic and prokaryotic cells release EVs, which are
regarded as a part of their normal physiology and acquired
abnormalities (20). EVs represent an important substance for
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intercellular communication. They participate in normal
physiological processes, as well as play a critical role in
disease occurrence and progression. Numerous experimental
and clinical studies have shown that the immunomodulatory
effects of MSCs can be primarily attributed to MSC-
derived extracellular vesicles (MSC-EVs) (21). Although the
classification of EVs is constantly evolving, it is generally
accepted that EVs are classified into three main categories
according to their size and biogenesis: apoptotic bodies (ABs),
microvesicles, and exosomes (22–24). ABs (greater than 1,000
nm in diameter) are comprised of relatively large fragments of
cells containing organelles derived from the cells undergoing
apoptosis, which are transferred to phagocytes (25, 26).
Microvesicles (100–1,000 nm in diameter) and exosomes (40–
200 nm in diameter) belong to EVs at the nano level.
Microvesicles, also known as ectosomes or microparticles, are
released into the extracellular environment after directly budding
or shedding from the plasma membrane (27). Exosomes
originate from the endosomal pathway. Extracellular material
fuses with early endosomes (ESEs) through membrane
invagination and endocytosis, and gradually matures and
develops into late endosomes (LSEs). The invagination of LSEs
leads to the formation of intraluminal vesicles (ILVs), and
multiple vesicles assemble to form MVBs, which fuse with the
cell membrane and are subsequently released (Figure 1) (20).
With regards to the delivery of exosome contents, exosomes can
be bound by target cells through multiple pathways, of which the
main mechanisms include endocytosis, ligand-receptor binding,
or direct binding (Figure 1) (28–31). Exosomes are formed by
budding through the endosome pathway and are wrapped in a
lipid bilayer, contents of which can be protected by the external
environment to maintain exosome integrity.

Exosomes contain a large number of proteins, lipids,
transcription factors, as well as DNA, mRNA, and miRNA (32,
33). Exosome membranes contain lipid raft structures composed
of cholesterol, spingomyosin, and ceramide and the tetraspanin
protein family (CD63, CD81, and CD9) as an exosome marker
(34). Exosomes also contain other common proteins, including
MVB biogenesis proteins (Alix, TSG101, and ESCRT Complex),
membrane transporter and fusion proteins (RAB protein,
GTPases, and annexins), heat shock proteins (HSP60, 70, and
90), lipid related proteins, and phospholipases (35). Notably,
MSC-EXOs express not only common surface markers such as
CD81 and CD9, but also mesenchymal stem cell surface markers
(CD44, CD73, and CD90) by flow cytometry (34). Proteomic
analysis of exosomes isolated from human bone marrow-derived
mesenchymal stem cells (hBM-MSC)provided evidence of 730
functional proteins associated with MSC proliferation, adhesion,
migration, and morphogenesis (36). Surprisingly, protein
packaging in exosomes is not random, because human primed
MSCs secrete exosomes (pMEX), compared to human primed
MSCs (pMSC), has a high concentration of specific subcategories
of proteins, including secretory proteins and extracellular matrix
(ECM) associated proteins, which may provide the molecular
basis for its unique functional properties (37). In addition to
proteins, MSC-EXOs also contain numerous RNA. Interestingly,
September 2021 | Volume 12 | Article 749192

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shen et al. Effects of MSC-EXOS on AID
RNA is specifically incorporated into exosomes, where it
accumulates and then enters the recipient cell to do its job
(38). Interestingly, enrichment of MSC-EXOs with network-
informed miRNA further enhanced the intrinsic ability of
MSC-EXOs to prevent apoptosis, promote angiogenesis and
induce myocardial cell proliferation (39). MSC-EXOs change
the activity and function of target cells primarily through the
horizontal transfer of these substances (Figure 1). Due to the
lack of specific markers, MSC-EXOs are currently prepared
according to size or density. Most laboratories separate
exosomes from conditioned media via hypercentrifugation,
which cannot differentiate exosomes from other EVs or
biological macromolecules (40). The MISEV2018recommends
using the generic term “small/medium/large EVs” based on its
size or density, rather than the classic terms “exosome”, “vesicle”,
and “apoptotic body” (19). However, most of the current articles
Frontiers in Immunology | www.frontiersin.org 3134
continue to use classic terms. The sizes of small/medium/large
EVs are partially overlapped and cannot be strictly distinguished.
Therefore, this review takes a cautious attitude towards the
absolute definition of different types of vesicles, and focuses on
the effects of nanoscale EVs (e.g., exosomes on immune cells)
and various autoimmune diseases.

Numerous studies have shown that MSC-EXOs exhibit similar
functions to that of MSCs (e.g., repairing damaged tissues,
regulating immune responses, and playing anti-inflammatory
effects) (10, 41). Although MSC therapy is widely regarded as an
effective therapy for several immunological diseases, the direct
therapeutic effect of MSCs remains limited. Due to the relatively
large size of MSCs, intravascular administration may lead to
vascular obstruction, which can result in pulmonary embolism
and death in severe cases (42). In addition, allogenic immune
rejection or abnormal chromosomal differentiation may occur
A

B

C

FIGURE 1 | Biogenesis and components of exosomes. (A) Exosomes originate from the endosomal pathway. Extracellular material enters the cytoplasm through
plasma membrane depression and endocytosis, and fuses with early endosomes, endoplasmic reticulum and preformed Golgi bodies, to develop into late
endosomes, which are interlinked with the cell membrane network structure to form ILVs containing a vesicle structure. Different concentrations and sizes of ILVs
constitute MVBs. On the one hand, MVBs fuse with lysosomes, degrade the contents, and release them into the cytoplasm. On the other hand, MVBs are
transferred to the cytoplasmic membrane through the membrane system and vesicles are released outside the cell, which are termed exosomes. (B) Exosomes can
act by binding to receptors present on the surface of target cells, by binding to endocytosis, or by the direct binding to recipient cells. (C) Exosome components.
MFGE8, milk fat globule-EGF factor 8 protein; ICAM-1, intercellular adhesion molecule 1; MHC I and II, major histocompatibility complex I and II; LAMP2, lysosomal-
associated membrane protein 2; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; PGK1, phosphoglycerate kinase 1; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase.
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during in vivo transplantation, and even malignant tumors may
form (43). Also, MSCs cells age rapidly and are expensive to have a
large-scale production (44). Using MSC-EXOs in humans has
several potential advantages over MSCs. First, nano-scale
exosomes are free to pass through various biological barriers
without blocking microvascular circulation. Second, their
application effectively prevents the metastasis of DNA-mutated
cells and hinders the tumor development. Third, the number of
MSCs decreases rapidly following transplantation, whereas the
delivery of MSC-EXOs can continue to function in the body (10).
In addition, MSC-EXOs are considered to be non-immunogenic
and can be produced in a large-scale production for clinic
application (44). However, toxicological studies of nanoparticles
in vivo still need to be fully evaluated, particularly following long-
term exposure (45). Moreover, the discovery of a broad
therapeutic effect of exosome-mediated MSCs eliminates many
of the challenges associated with the use of living replicative cells,
as it fundamentally shifts living-cell-based MSCs therapy to a
“cell-free” treatment, reducing the risk of living cell therapy.
Therefore, MSC-EXOs, as cell-secreted natural EVs, has the
advantage of being an ideal nanoscale drug carrier.
3 IMMUNOMODULATORY FUNCTION
OF MESENCHYMAL STEM CELL-
DERIVED EXOSOMES

3.1 Innate Immunity
3.1.1 Macrophages
As an important aspect of the innate immune system,
macrophages originate from either the yolk sac during
embryonic development or bone marrow-derived monocytes
(46). Under microenvironmental activation, macrophages may
evolve into an M1 phenotype of pro-inflammatory macrophages
or an M2 phenotype of anti-inflammatory macrophages. In
general, M1 macrophages secrete pro-inflammatory molecules,
including TNF-a and IL-1b, whereas M2 macrophages secrete
immune regulatory factors (e.g., IL-10) (47). Recent data support
the findings that the anti-inflammatory effect of MSC-EVs is
inseparably related to macrophage polarization. MSC-EVs inhibit
pro-inflammatory M1 macrophage activation and promote their
polarization to M2 macrophages, which are consistent with a
decrease in the levels of VEGF-A, IFN-g, IL-12, and TNF-a, and
an upregulation of IL-10 (48, 49). Previous studies have reported
that macrophages are the main target cells for MSC-EVs to
alleviate colon inflammation. In dextran sodium sulfate (DSS)-
induced colitis, MSC-EVs effectively alleviate colitis by inducing
an immunosuppressive M2 phenotype exhibited by colonic
macrophage polarization. Compared with the control group,
MSC-EV-treated mice produced a greater number of IL-10-
producing M2 macrophages (49). Similarly, in a study of sepsis
conducted by Song et al., the authors demonstrated that MSC-
EVs promoted M2 macrophage polarization. Human umbilical
cord-derived MSCs(hUC-MSCs) pretreated with IL-1b effectively
induce macrophage polarization into an anti-inflammatory M2
phenotype via exosomal miR-146a, which ultimately resulted in
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prolonging the survival of sepsis mice (50). Moreover, the results
showed that MSC-EVs down-regulated the production of IL-23
and IL-22, enhanced the anti-inflammatory phenotype of mature
human regulatory macrophages (Mregs), which led to a weakened
Th17 response (51). Zhao et al. reported that adipose-derived
MSC-EXOs(AD-MSC-EXOs) promoted an M2 macrophage
polarization by activating STAT3 transcription, up-regulating
the expression of IL-10 and Arg-1 in macrophages, thereby
inhibiting the inflammatory response of macrophages (52). In
addition, in the rat model of experimental autoimmune uveitis
(EAU), Bai et al. demonstrated that MSC-EXOs treatment
downregulated the proportion of CD68+ macrophages in the
retina and demonstrated the down-regulation of MSC-EXOs on
macrophage migration to the retina (Figure 2) (53). Interestingly,
MSC-EXOs also enhanced the immunosuppressive function of
macrophage precursor, which is called myeloid-derived
suppressor cells (MDSCs), a heterogeneous population of
immature Myeloid derived cells. IL-6 secreted by olfactory ecto-
mesenchymal stem cell-derived exosomes (OE-MSC-EXOs)
activates the JAK2/STAT3 pathway in MDSCs, and enhances
the inhibitory function of MDSCs by upregulating the levels of
arginase, ROS and NO (54). In addition, abundant S100A4 in OE-
MSC-EXOs mediated endogenous IL-6 production of MDSCs
through TLR4 signaling, and along with exosomal-derived IL-6
promotes the immunosuppressive function of MDSC (54).

3.1.2 Natural Killer Cells
NK cells are important effector cells in the innate immune
response and play an important role in the host pathogen
defense. When pathogens invade a host, they kill target cells by
releasing cytotoxic particles containing perforin and granzyme
(55). Although autoimmune diseases are primarily caused by T
and B lymphocytes, NK cells possess excessive activation and
inhibitory receptors, which can play a role in regulating
autologous cell reactivity (56). In addition, NK cells may
regulate the activity of other immune cells by secreting
cytokines and influence the development of the adaptive
immune response through these pathways (57). MSC-EVs
primarily induce an immunosuppressive effect on NK cells,
including the proliferation, activation, and cytotoxicity of NK
cells. In a rat model of EAU, an injection of MSC-EXOs around
the eye restored EAU damage by downregulating the transport of
CD161+ NK cells in the lesion (53). Recent studies have shown
that human fetal liver (FL) MSC-derived exosomes(hFL-MSC-
EXOs) mediated downstream TGF-b/Smad signal transduction
through the surface expression of TGF-b to inhibit the
proliferation and activation of NK cells (58). In human graft-
versus host disease (GVHD) experiments, researchers noted that
MSC-EXOs suppressed the release of IFN-g and TNF-a by
activated NK cells, which reduced the cytotoxic effect of NK
cells, and lessened the inflammatory response (Figure 2) (59).

3.1.3 Dendritic Cells
DCs play an immunological role as antigen presenting cells
(APCs), which can ingest, process, and present antigens to T
and B lymphocytes (60). Most DCs in the body are immature
DCs (iDCs) under normal circumstances and express low levels
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of class II major histocompatibility complex (MHC II) and T cell
costimulatory molecules (CD80, CD86, and CD40). In addition,
iDCs up-regulate the surface expression of MHC II and
costimulatory molecules after ingesting antigens or cytokine
stimulation, and are converted into mature DC (mDCs) (61).
Previous studies indicate that the immunosuppressive effect of
MSC-EVs on DCs is primarily realized by inhibiting DC
maturation and activation. In the presence of MSC-EVs, iDCs
are impaired in their ability to receive antigens and differentiate
mDCs, which results in the decreased expression of mature and
activation markers (e.g., CD83, CD38 and CD80), and
correspondingly decreased the secretion of pro-inflammatory
cytokines (i.e., IL-6 and IL-12p70) (62). At the same time, MSC-
EVs can also enhance the release of TGF-b and IL-10 in CD11c+

DCs, thereby inhibiting lymphocyte proliferation (63).
Researchers suggest that MSC-EVs treatment inhibits cell
surface expression of MHC II and costimulatory molecules on
CD11c+ cells in a dose-dependent manner. The results showed
that DCs exhibited a hypoactive phenotype and thereby
suppressed the subsequent T cell activation and proliferation
(64). Moreover, the co-culture of MSC-EV-treated DCs with T
cells reduced Th17 cell counts and IL-17 levels, and increased
Foxp3+ regulatory T cells. This finding is consistent with the
previous conclusion (65). In brief, there was a weakened ability of
iDCs co-cultured with MSC-EXOs to differentiate into mDCs.
This led to an inability to perform antigen presentation and
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effectively stimulate T lymphocyte proliferation. In contrast, it
promoted an increase in Treg cells, which indirectly reflected
that MSC-EXOs can enhance host immune tolerance (Figure 2).
3.2 Adaptive Immunity
3.2.1 B Cells
B cells are important adaptive immune cells, whose main
functions are to mediate humoral immunity and secrete
antibodies. The regulation of MSC-EVs on B lymphocytes was
investigated in vitro. In the CpG-stimulated PBMC co-culture
system, MSC-EVs can completely replicate the inhibitory effect
of MSCs on immunoglobulin secretion, B cell proliferation and
differentiation in a dose-dependent manner (66, 67). Budoni
et al. also claimed that MSC-EVs were internalized by activated
CD19+/CD86+ B cells to inhibit B cell proliferation,
differentiation, and antibody production, as well as inhibit
memory B cell maturation (68). There are functional B cell
subsets, known as regulatory B cells (Bregs). The key function of
Bregs is to release IL-10, which inhibits the production of
proinflammatory cytokines and supports regulatory T cell
differentiation (69). MSC-EVs exert dose-dependent anti-
inflammatory effects by inhibiting B cell maturation and
inducing Bregs in lymph nodes in a murine model of collagen-
induced arthritis (CIA) and delayed-type hypersensitivity
(DTH). Moreover, MSC-EVs also regulate cellular function
FIGURE 2 | The effects of MSC-EVs on immune effector cells.
September 2021 | Volume 12 | Article 749192

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shen et al. Effects of MSC-EXOS on AID
through the differential expression of mRNA in related genes.
Researchers found that MSC-EVs induced B cells to down-
regulate the PI3K/Akt signaling pathway through miR-155-5p,
inhibited B cell proliferation and reduced the activation capacity
of B lymphocytes (70). Real-time PCR analysis confirmed that
following exosome treatment from MSC sources, the expression
of genes that played an important role in B cell immune
regulation (e.g., CXCL8 and MZB1) were upregulated (67).
These studies confirmed that MSC-EXOs can play an
immunomodulatory role by acting on B cells (Figure 2).
3.2.2 T Cell
T cell proliferation and activation contribute to the occurrence
and development of many autoimmune diseases. MSC-EVs play
a negative role in T cell proliferation and activation. MSC-EVs
have been shown to carry a variety of active molecules, including
TGF-b (68, 71), IDO protein (72), and miR-125a-3p (73). These
molecules give MSC-EVs the ability to inhibit T cell proliferation
and activation. Studies have revealed that adenosine is associated
with a robust immunosuppressive effect, and MSC-EVs inhibits
T cell proliferation in vitro through adenosine signal
transduction (74). MSC-EVs can also adjust the balance of T
helper type 1 (Th1) and T helper type 2 (Th2) cells and
reconstruct the stable state of Th1 and Th2. Chen et al. co-
cultured bone marrow mesenchymal stem cell (BM-MSC)-
derived exosomes (BM-MSC-EXOs) and peripheral blood
mononuclear cells. The authors subsequently found that it
could promote the Th1 to Th2 conversion of helper T cells,
significantly reduced the levels of pro-inflammatory factors, IL-
1b and TNF-a, and improved the levels of anti-inflammatory
TGF-b (66). In a similar study, human adipose tissue MSC-EXOs
inhibited the differentiation and activation of T cells and the
release of pro-inflammatory factors (e.g., IFN-g) (75). In
addition, MSC-EXOs can facilitate the differentiation of Tregs.
Treg cells are immune cells with negative feedback regulation.
Similarly, inflammatory IL-1b-primed MSC-EVs upregulated
PD-L1 and TGF-b expression, which induced the apoptosis of
activated T cells, and increases the proportion of Treg cells in a
mouse model of autoimmune encephalomyelitis (76). Previous
studies in our laboratory have also found that OE-MSC-EXOs
had a potent inhibitory effect on the proliferation of CD4+ T cells
in experimental colitis mice. At the same time, the secretion of
IL-17 and IFN-g by T cells was reduced, whereas the secretion of
TGF-b and IL-10 was enhanced, which could significantly slow
disease progression (77). Following treatment with OE-MSC-
EXOs, the Th1/Th17 subsets were significantly reduced, while
Treg cells were increased (77). It was found that transgene-free
human induced pluripotent stem cells (iPSCs) derived EVs could
prevent the progression of Sjögren’s syndrome (SS) by inhibiting
the differentiation of follicular helper T (Tfh) and Th17 cells (78).
In addition, other studies have reported that MSC-EXOs can
promote the differentiation of monocytes into an M2
macrophage phenotype, thereby activating the differentiation
of CD4+ T cells into Treg cells and delaying the occurrence of
immune rejection (Figure 2) (79).
Frontiers in Immunology | www.frontiersin.org 6137
4 APPLICATIONS OF MESENCHYMAL
STEM CELL-DERIVED EXOSOMES IN
AUTOIMMUNE DISEASES

To develop EVs as a cell-free therapy and elucidate its potential
role in stem cell effects in vivo, the following contents can assess
the role of exosomes released by MSCs in the treatment of
autoimmune diseases, including Multiple sclerosis (MS),
Systemic lupus erythematosus (SLE), Type-1 diabetes (T1DM),
uveitis, Rheumatoid arthritis (RA), and Inflammatory bowel
disease (IBD) (Table 1).
4.1 Multiple Sclerosis
MS is the most common inflammatory disease of the central
nervous system (CNS), which is characterized by demyelination,
neuronal damage and loss, and ultimately neurological
dysfunction (80). Experimental autoimmune encephalomyelitis
(EAE) is the commonly used animal model of MS (81). As the
primary immune cells of the central nervous system, microglia
can maintain tissue homeostasis and contribute to central
nervous system development under normal physiological
conditions (82). Following pathogen invasion, activated
microglia with an M1 phenotype as the first line of defense
secrete pro-inflammatory cytokines to eliminate invading
pathogens. However, when tissue homeostasis is restored,
microglia exhibiting an M2 phenotype need to be activated,
otherwise the excessive release of pro-inflammatory cytokines
can lead to neuronal damage (83). Microglia have both
neurodestructive and neuroprotective functions. An imbalance
of the M1/M2 phenotype inhibits the nerve protection function
and promotes the occurrence of MS (84). Therefore, M1 to M2
polarization of microglia may be beneficial to the
neuroprotective function of microglia, thereby preventing
disease progression. The study by Zijian et al. demonstrated
that BM-MSC-EXOs therapy inhibits microglia from developing
into an M1 phenotype, promotes M2 phenotype polarization,
and secretes anti-inflammatory cytokines (e.g., TNF-a, IL-10,
and TGF-b). Moreover, BM-MSC-EXOs treatment significantly
improved the neurobehavioral symptoms of EAE rats and
relieved the inflammation and demyelination of CNS (85).
Human periodontal ligament stem cells (hPDLSCs)-EVs from
MS patients has been shown to inhibit NALP3 inflammasome
activation in an EAE model (86). Although substantial progress
has been made in the treatment of MS, the appropriate treatment
for MS remains controversial. The currently available drugs may
have potentially harmful side effects and cannot meet future
needs (87). MSC-EXOs is a natural non-toxic vesicle that can
deliver mRNA, miRNA, and proteins, as well as alleviate the
condition of EAE by regulating microglia polarization (88). As
the carrier of MSC-specific tolerance molecules (e.g., PD-L1,
Galecin-1 [GAL-1], and TGF-b), MSC-EVs can effectively
inhibit the activation and proliferation of self-responding
lymphocytes and promote the secretion of anti-inflammatory
cytokines derived from lymphocytes, thereby alleviating EAE
disease progression (76). In another study, it was also shown that
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TABLE 1 | The role of MSC-EVs in the treatment of autoimmune diseases, as discussed in the text.
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the infiltration of microglia in spinal cord sections treated with
MSC-EXOs was significantly reduced, and MSC-EXOs induced
the formation of Tregs and alleviated the development of EAE
(89). Therefore, MSC-EXOs may hold great potential for the
treatment of MS.

4.2 Systemic Lupus Erythematosus
SLE is a chronic autoimmune disease characterized by immune
inflammation and multiple organ damage. In addition, SLE
pathogenesis is extremely complex, primarily due to the
comprehensive influence of genetic, environmental, hormonal,
epigenetic, and other factors (90). With the help of Tfh cells, anti-
nuclear antibodies (ANA) are produced, leading to the
deposition of immune complexes in vital organs. The immune
complex triggers an influx of large inflammatory cells by activating
the complement cascade, causing tissue inflammatory damage
(e.g., nephritis) (91). Nephritis represents the leading cause of
morbidity and mortality in SLE and occurs in approximately half
of all patients (92). In previous studies, researchers found that the
infusion of hBM-MSCs into mouse models of lupus nephritis
reduced the level of autoantibodies, improved the survival rate in
mice, and alleviated the clinical symptoms of glomerulonephritis
by inhibiting the development of Tfh (91). Moreover, the loss of
BM-MSC/osteoblast function in an SLE mouse model results in an
impairment of the osteoblastic niche and an imbalance of immune
homeostasis. Allogeneic bone marrow mesenchymal stem cell
transplantation (MSCT) plays a positive role in reconstructing
the osteoblast niche and restoring immune homeostasis; thus,
effectively reversing multiple organ dysfunction (93). The above
findings confirm a positive therapeutic effect of MSCs on SLE;
however, cellular therapy continues to face technical, cost, and
regulatory challenges in clinical trials. Recent studies have
demonstrated that the immunoregulatory activity of MSCs was
mainly mediated by paracrine factors (e.g., MSC-EVs) (66). In a
novel porcinemodel of coexisting metabolic syndrome (MetS) and
renal artery stenosis (RAS), MSC-EVs isolated from adipose tissue
were capable of improving renal structuring and function, and
reducing renal injury and dysfunction by up-regulating the level of
IL-10 expression (94). Although MSC-EVs have been observed to
inhibit autoimmune diseases in vitro, there have been no studies
on the use of MSC-EVs for the treatment of SLE in mice or
humans. In the future, MSCs are expected to provide a novel and
safe treatment for SLE patients.

4.3 Type-1 Diabetes
T1DM is considered a chronic autoimmune disease that is
influenced by genetic, immune, and environmental factors
(95). T1DM is primarily caused by the autoimmune
destruction of beta-cells in the islets of Langerhans, leading to
insufficient insulin secretion (96). Non-obese diabetic (NOD)
mice are the preferred spontaneous disease model of T1DM.
NOD mice exhibited the same clinical symptoms of diabetes as
human beings-hyperglycemia, polyuria, and polydipsia (95).
Although insulin therapy remains the main treatment method
in the short term, MSCs have recently attracted wide attention as
a promising method for the treatment of diabetes (96). MSCs
display immunomodulatory properties in inflammatory diseases,
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and their immunomodulatory effects have been studied in
T1DM (97, 98). Human MSCs have the ability to delay the
onset of autoimmune diabetes by inhibiting the development of
Th1 cells, which may improve the efficacy of islet transplantation
in patients with T1DM (99). Currently, it is generally believed
that a paracrine mechanism of action is more direct in MSCs
in vivo, particularly MSC-EXOs (10). In previous studies, the
effect of MSC-EXOs on diabetes has been investigated. Previous
studies have shown that exosomes released by BM-MSCs had
similar functions to those of BM-MSCs, and they had the ability
to improve cognitive impairment in diabetic mice by repairing
damaged neurons and astrocytes (100). In another study, AD-
MSC-EXOs were found to have a significant mitigatory effect
on T1MD by increasing the expression of anti-inflammatory
factors (e.g., IL-10), and the population of Tregs that are
equipped to suppress the immune response, preventing
immune overactivation and autoimmune damage (101). In
addition, the results of the study by Shigemoto-kuroda et al.
also confirmed that MSC-EVs could inhibit islet inflammation,
significantly increasing the plasma insulin levels, and effectively
delaying the occurrence of T1DM in mice (64). These results
suggested that MSC-EVs have great potential as a cellular
therapy for the prevention of T1DM.

4.4 Uveitis
Uveitis is the leading cause of visual disability worldwide. Uveitis
can be divided into three categories according to etiology: 1)
infectious uveitis; 2) non-infectious uveitis; and 3) masquerade
uveitis, of which non-infectious uveitis is believed to be caused by
autoimmunity, and EAU is used as a mouse model (102).
Traditional immunosuppressive drugs (e.g., corticosteroids) and
novel biological agents have been shown to be effective for the
treatment of uveitis; however, side effects and unknown long-term
safety often limit the use of these drugs (103). A large number of
experimental results have suggested that MSC-EXOs have a
positive effect on inflammatory eye disease. EAU mice that do
not MSC-EXOs therapy have severely damaged retinal
photoreceptors and the infiltration of inflammatory cells,
whereas EAU mice with exosomes injected through tail vein
displayed eyes similar to that of normal mouse retinas, with
almost no structural damage and inflammatory infiltration (64).
Compared with EAU mice treated with PBS, mice treated with
MSC-EXOs exhibited a significant decrease in CD3+ T cells
infiltrating the retina and a decrease in the number of
macrophages migrating to the retina (53). In addition, Th1 and
Th17 cells represent important pathogenic factors in the
development of EAU disease. Flow cytometry results of the
cervical draining lymph nodes (CLNs) showed that the number
of IFN-g+CD4+ cells (Th1) and IL-17+CD4+ cells (Th17) in EAU
mice treated with MSC-EXOs was significantly lower than that in
the PBS-treated mice (64). The above results indicate that MSC-
EXOs can inhibit the development of EAU by inhibiting Th1 and
Th17 cells. Part of the immunomodulatory function of MSCs on
EAU is to induce the transformation of CD4+ T cells into antigen-
specific CD4+CD25+Foxp3+ Tregs by secreting TGF-b in a
paracrine manner (104). In another study, MSC-EVs alleviated
EAU by directly inhibiting the development of Th1 and Th17 cells
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rather than inducing Tregs to inhibit T cell proliferation (64).
Although there may be some differences between MSC-EVs and
MSCs in various immunomodulatory pathways, the treatment of
EAU using MSC-EVs also represents a potential new method.

4.5 Rheumatoid Arthritis
RA is a chronic inflammatory disease characterized by synovial
hyperplasia and immune cell infiltration, leading to joint
destruction (105, 106). The microvesicles derived from BM-
MSCs carry the regulatory molecules that exist in the mother
cell, including PD-L1, GAL-1, and TGF-b1 (76). As a PD-1
receptor, PD-L1 plays a key role in regulating the development
of inducible T regulatory cells (iTregs) (107). In addition, GAL-1 is
an endogenous lectin that has been shown to induce growth arrest
and the apoptosis of activated T cells, as well as the
immunoregulation mediated by regulatory T cells (108, 109).
Researchers found that the injection of co-gene DBA/1
fibroblasts secreting GAL-1 inhibited the progression of arthritis
through T cell apoptosis in collagen-induced arthritis (110).

Moreover, exosomal miRNA also plays an important role in
alleviating the development of RA (111). For example, MSC-
derived miRNA-150-5p-expressing exosomes decreased the
migration and invasion in RA fibroblast-like synoviocytes (FLS)
and downregulated tube formation in HUVECs by targeting
MMP14 and VEGF (112). In 2020, researchers found that BM-
MSCs-secreted exosomal miRNA-320a and miRNA-192-5p also
acted on FLS, reducing inflammatory response and alleviating the
progression of RA (113, 114). Despite the pathogenic role of B cells
in RA, recent studies have demonstrated the therapeutic effect of
MSC-EXOs via expanding Bregs (48, 115). BM-MSC-EXOs-
treated CIA mice exhibited a lower disease incidence and
deceased clinical score, accompanied by reduced levels of serum
auto-antibodies (115). Furthermore, such phenomena was
associated with decreased plasmablast differentiation and the
generation of Bregs (48). Interestingly, similar therapeutic effects
have been revealed in osteoarthritis (OA). The lncRNA KLF3-AS1
was significantly enriched in MSC-EXOs, which promoted
cartilage repair and chondrocyte proliferation in OA rat models
(116). In addition, in a model of porcine synovitis induced by
bovine serum albumin, the intraarticular injection of BM-MSC-
EVs into pigs had an anti-inflammatory effect, with a reduced
number of synovial lymphocytes and down-regulated level of
TNF-a transcription (117). These results provide evidence for a
role of MSC-EVs for the treatment of inflammatory diseases (e.g.,
arthritis). MSC-EVs provide novel insight into the treatment of
RA, which may lead to new therapeutic opportunities and
strategies for RA.

4.6 Inflammatory Bowel Disease
IBD is a chronic, nonspecific, relapsing inflammatory
gastrointestinal disease associated with mucosal immune
system disorders and gastrointestinal injury. IBD, which
primarily includes ulcerative colitis (UC) and Crohn’s disease
(CD), has become a global disease with an increasing incidence
(118). Studies of this disease have mainly used DSS and 2,4,6-
trinitrobenzenesulfonic acid (TNBS) to induce IBD in mouse
models (119). Existing drugs to treat IBD are still very limited,
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Therefore, there is an urgent need to develop safe and effective
treatments for IBD (120). At present, several studies have shown
that MSC-EXOs/exosome components have potential functions
in the development of IBD and can serve as potential targets for
the diagnosis and treatment of IBD. In a model of IBD induced
by DSS, hUC-MSC-EXOs treatment decreased the infiltration of
macrophages in colon tissue and inhibited the expression of IL-7
(121). hUC-MSC-EXOs also inhibited neddylation and alleviated
IBD by miR-326 (122). Another study also showed that exosomal
miRNA of MSCs, such us miR-146a, downregulated TNF
receptor-associated factor 6 (TRAF6) and IL-1 receptor-
associated kinase 1 (IRAK1) expression, inhibited pro-
inflammatory cytokine and enhanced the expression of IL-10
(123).Moreover, tumor necrosis factor-a stimulated gene 6
(TSG-6), as detected by hUC-MSC-EXOs, regulated the
immune response of Th2 and Th17 cells in mesenteric lymph
nodes (MLN), down-regulated the levels of pro-inflammatory
cytokines in colon tissue, and up-regulated the levels of anti-
inflammatory cytokines to protect the intestinal barrier (119).
Other tissue-derived MSC-EXOs showed similar efficacy to that
of hUC-MSC-EXOs in the treatment of DSS induced IBD. OE-
MSC-EXOs significantly improved the severity of experimental
colitis in mice primarily by modulating the immune response of
Th-cells, including a significant reduction in Th1/Th17 subsets
and an increase in Treg cells (77). Neda Heidari et al. reported
that AD-MSC-EXOs therapy could restore the percentage of
Treg in the spleen to a baseline level similar to that in normal
mice and improved inflammation in DSS induced acute colitis
(124). Furthermore, metallothionein-2 in hBM-MSC-EXOs
inhibited inflammatory responses, polarized M2b macrophages,
and maintained intestinal barrier integrity (125). With the
further research on exosomes, exosomal-structure design of
novel drugs may provide new insights for IBD.

5 CONCLUSION AND PROSPECTS

The treatment of autoimmune diseases is challenging and there
is currently no effective cure. In this review, we discussed the
regulatory role of MSC-EXOs on immune cells and the new
progress of MSC-EXOs in the treatment of autoimmune diseases,
suggesting that MSC-EXOs may be a new cell-free drug for the
treatment of autoimmune diseases.

In view of the therapeutic potential of MSC-EXOs in
preclinical studies, there are currently 19 clinical trials looking
at its application in a variety of diseases (Available online: http://
www.clinicaltrials.gov/). Although encouraging results have been
achieved with MSC-EXOs, several uncharted territories remain
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to be explored before MSC-EXOs can be used as drug vectors for
clinical use. First, although it has been reported that clinical-
grade exosomes can be produced using good manufacturing
techniques and standard operating procedures, large-scale
production of exosomes for clinical use remains to be explored
(126). Second, support materials can be used to maximize the
therapeutic power of MSC-EXOs. In recent years, hydrogel has
attracted much attention among biocompatible auxiliary
materials. In the experimental model of ischemia, the retention
time of MSC-EXOs with an injectable hydrogel was prolonged,
which enhanced the therapeutic effect of exosomes (127). In the
experiment of preventing hyperplastic scar in rabbit ear model,
adipose-derived stem cell conditioned Medium (ADSC-CM) was
combined with polysaccharide hydrogel to prolong the
therapeutic effect of cytokines (128). Third, in order to ensure
the safety of patients treated with MSC-EXOs, the route and dose
of exosomes must be explored. At present, the main route of
administration in clinical studies is intravenous infusion.
However, aerosol inhalation of MSC-EXOs was used in clinical
trials to explore the efficacy of MSC-EXOs in severe pulmonary
diseases (Clinical Trials. Gov Identifier: NCT04313647). In
addition, the clinical trial assessing the safety and efficacy of
MSC-EXOs in Patients with Alzheimer’s disease was conducted
with nasal drip (ClinicalTrials.gov Identifier: NCT04388982).
Therefore, the route of exosome administration needs to be
determined according to the actual situation of the disease. In
addition, clinical trials need to monitor patients treated with
MSC-EXOs in real time to ensure that the smallest dose is most
effective. Therefore, future work should focus on the
combination of basic research on MSC-EXOs with emerging
technologies to bring new breakthroughs for the treatment of
autoimmune diseases.
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Severe trauma is the principal cause of death among young people worldwide.
Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic
hemorrhagic shock (THS) is a complex phenomenon associating an absolute
hypovolemia secondary to a sudden and significant extravascular blood loss, tissue
injury, and, eventually, hypoxemia. These phenomena are responsible of secondary
injuries such as coagulopathy, endotheliopathy, microcirculation failure, inflammation,
and immune activation. Collectively, these dysfunctions lead to secondary organ failures
and multi-organ failure (MOF). The development of MOF after severe trauma is one of the
leading causes of morbidity and mortality, where immunological dysfunction plays a
central role. Damage-associated molecular patterns induce an early and exaggerated
activation of innate immunity and a suppression of adaptive immunity. Severe
complications are associated with a prolonged and dysregulated immune–inflammatory
state. The current challenge in the management of THS patients is preventing organ injury,
which currently has no etiological treatment available. Modulating the immune response is
a potential therapeutic strategy for preventing the complications of THS. Mesenchymal
stromal cells (MSCs) are multipotent cells found in a large number of adult tissues and
used in clinical practice as therapeutic agents for immunomodulation and tissue repair.
There is growing evidence that their efficiency is mainly attributed to the secretion of a wide
range of bioactive molecules and extracellular vesicles (EVs). Indeed, different
experimental studies revealed that MSC-derived EVs (MSC-EVs) could modulate local
and systemic deleterious immune response. Therefore, these new cell-free therapeutic
products, easily stored and available immediately, represent a tremendous opportunity in
the emergency context of shock. In this review, the pathophysiological environment of
THS and, in particular, the crosstalk between the immune system and organ function are
described. The potential therapeutic benefits of MSCs or their EVs in treating THS are
org September 2021 | Volume 12 | Article 7496591146
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discussed based on the current knowledge. Understanding the key mechanisms of
immune deregulation leading to organ damage is a crucial element in order to optimize the
preparation of EVs and potentiate their therapeutic effect.
Keywords: mesenchymal stromal cell, extracellular vesicles, inflammation, traumatic hemorrhagic shock,
multi-organ failure, acute injury
1 INTRODUCTION

Severe trauma is the main cause of death among young people
worldwide (1, 2), one-third being attributed to hemorrhage (3).
In the military population, during modern conflicts, 90% of
preventable deaths are of hemorrhagic origin (4).

Hemorrhage secondary to trauma is an emergency that can
evolve into traumatic hemorrhagic shock (THS). Hemorrhagic
shock in such condition is a complex association of tissue injuries
and a severe hypovolemia due to blood loss. This leads to
circulatory failure and inadequate tissue perfusion that induces
a switch from aerobic to anaerobic metabolism (5). This
phenomenon is responsible for secondary insults with tissue
damage and inflammation, which can progress in the worst cases
to organ dysfunction and multi-organ failure (MOF). The
incidence of MOF is high in cases of severe trauma and
remains a major cause of morbidity and mortality (≈33%) (6, 7).

Severe trauma is most often accompanied by significant tissue
damage. Tissue attrition will rapidly lead to significant
inflammation. The current challenge in the management of
THS patients is preventing organ injuries, which currently
have no etiological treatment available. Indeed, whereas post-
hemorrhage resuscitation improves tissue perfusion, it does not
treat the complex mechanisms that occur with reperfusion
(ischemia/reperfusion, I/R) and activation of inflammatory and
immune responses. Inflammatory and immune burst after
trauma are major contributors of MOF (8, 9). The immune
cells then become adherent to the vascular wall and decrease
distal blood flow. These phenomena then induce tissue
hypoperfusion, responsible for dysfunction of the microcirculation,
hypoxia, and cellular acidosis, rapidly leading to organ failure and
MOF.To improve the prognosis of patients, there is a critical need for
new therapies to prevent and treat organ dysfunction and MOF
after trauma.

Modulation of the immune and inflammatory response is a
promising therapeutic strategy to treat complications of THS.

Mesenchymal stromal cells (MSCs) were discovered in the
1970s. Alexander Friedenstein, demonstrated the ability of
culture-isolated fibroblast cells (now designated as MSCs) to
recreate a hematopoietic environment in vivo after heterotopic
grafting (10). These pioneering experiments provided the first
clues to the existence of a cellular memory of the function they
exerted in their original tissue. MSCs in the medullary
microenvironment participate in the regulation of self-renewal
and differentiation of hematopoietic stem cells (HSCs). More
recently, clinical trials have shown that the co-graft of MSCs and
HSCs allowed for better engraftment of HSCs while decreasing
the risk of graft vs. host disease (GvHD) (11–14). Since then,
org 2147
many studies have shown the immunomodulatory capacities of
MSCs in different contexts in vitro and in vivo and notably after
trauma (15–17). MSCs exert their immunomodulation capacities
by cell-to-cell contact or paracrine pathway via the secretion of
various types of anti-inflammatory molecules and extracellular
vesicles (EVs) (18).

In this review, we discuss the therapeutic potential and
rationale for the application of EV-enriched MSC secretome
for the prevention of organ injuries in an emergency context
of THS.
2 TRAUMATIC HEMORRHAGIC SHOCK

2.1 Epidemiology
Hemorrhagic shock is responsible for 1.9 million deaths per year
worldwide, 79% of which are caused by physical trauma (1).
According to the World Health Organization, 5.8 million deaths
per year are due to trauma, which represents 10% of the causes of
death (19). The majority of deaths occur at the site of the trauma
or in the first hours of medical management, mainly as a result of
brain injury or circulatory collapse following hemorrhage.
Hospital deaths are the result of sepsis or MOF (20, 21). In
modern conflicts, blast injuries have become predominant and
account for nearly 75% of combat casualties in Iraq and
Afghanistan (22). These injuries mainly concern poorly
protected areas (limbs and the head and neck axis) in 34% of
cases (23). Among soldiers killed in action, 87% died before
reaching a medical facility, 24% of these deaths being considered
to be potentially preventable. More than 90% of these potentially
preventable deaths are associated with hemorrhage (4). During
the last decade, the strategy to decrease the mortality rate was to
prevent pre-hospital exsanguination. This has been partially
achieved by the large diffusion of massive bleeding control
strategies based on compressive devices such as tourniquets
(24). However, the time of the pre-hospital phase has been
considerably increased in recent conflicts (Sahel), promoting
the duration of the shock and the onset of complications (25, 26).

2.2 Pathophysiology
The pathophysiology of THS is complex. We describe this
phenomenon from the clinical to the cellular aspect, then
discuss the 2021 guidelines for the management of critically ill
patients without comorbidity factors.

THS associates tissue trauma and hemorrhagic shock, a form
of hypovolemic shock in which sudden and severe blood loss
leads to inadequate oxygen delivery at the cellular level (5).
Hypovolemia causes a drop in venous return, blood pressure,
September 2021 | Volume 12 | Article 749659
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and stroke volume. The clinical manifestations of shock include
tachycardia, tachypnea, sweat, pallor, oliguria, and confusion.
The clinical definition of shock associates one or several of these
signs to a systolic blood pressure <90 mmHg. Metabolic cell
activity is strongly dependent on the oxygen supply (DO2). The
dioxygen artery concentration (CaO2) depends first on O2

binding to hemoglobin (Hb) and dioxygen saturation (SaO2)
and, second, on dissolved (PaO2) (27). During hemorrhage, DO2

decreases because of a drop in Hb, cardiac output, or SaO2.
Because of this drop, aerobic cell metabolism switches from
aerobic to anaerobic metabolism, allowing the cell to maintain a
minimal energy production (cf. Section 2.2.1). To maintain a
sufficient DO2, the number of perfused capillaries increases (i.e.,
capillary recruitment) in proportion to the degree of tissue
hypoxia, the oxygen extraction ratio increases, and regional
vascular resistance is lowered to induce blood flow
redistribution (28).

The adaptive mechanisms allowing the adaptation of the
organism are neurological, renal, and hormonal. These can
lead to the three phases of THS: compensated, decompensated
and exceeded (29).

2.2.1 Compensated THS
In the compensated shock phase, tissue hypoperfusion is
counterbalanced by adaptive mechanisms.

The decrease in blood pressure is quickly detected by
cardiopulmonary and arterial baroreceptors that induce an
increase in sympathetic activity, resulting in arteriolar and
venous vasoconstriction and an increase in heart rate to preserve
vital organs such as the heart, lungs, and brain (30, 31). The renin–
angiotensin–aldosterone system is also activated. Angiotensin
promotes a ubiquitous vasoconstriction and stimulates
aldosterone and anti-diuretic hormone production, sympathetic
heart stimulation, thirst sensation, and decreased glomerular
filtration rate (GFR) (32). Altogether, these compensatory
mechanisms maintain the cardiac output, perfusion pressure,
and circulating volume. All cellular functions are maintained as
long as the combined yields of the aerobic and anaerobic sources
of energy provide sufficient ATP (28). Nevertheless, these
compensations can be overwhelmed.

2.2.2 Decompensated THS
When blood loss reaches a critical level (30%–40%) (29, 30), the
compensatory mechanisms are overwhelmed: there is a massive
decrease of reflex-activated sympathetic drive and an increase in
cardiac vagal drive, resulting in reductions in heart rate and
arterial blood pressure and loss of peripheral resistances (30).
Uncompensated THS resulting in irreversible tissue damage
occurs when the combined aerobic and anaerobic ATP
supplies are not sufficient to maintain cellular function (28).

2.2.3 Exceeded THS
This last phase is associated with a “no reflow,” even if volemia is
restored. Neutrophils adhere to the damaged endothelium, block
capillaries, and aggravate local ischemic injuries. This worsens
lesions such as coagulopathy, endotheliopathy, microcirculation
Frontiers in Immunology | www.frontiersin.org 3148
failure, inflammation, and immune activation. All of these lead to
secondary organ failure, MOF, and death (29).

2.3 From Cellular Insults to MOF
2.3.1 Cellular Insult Due to Ischemia/Reperfusion
The shift from aerobic to anaerobic metabolism results in the
formation of lactate and protons and a decrease in ATP
production. pH is maintained via H+/Na+ and Na+/Ca2+

pumps, causing an elevation of cytosolic Ca2+ (33). Moreover,
ATP production is insufficient to maintain the function of these
pumps. A disruption of the mitochondrial architecture also
occurs, which destabilizes the mitochondrial membrane
potential. This membrane potential is further affected by the
opening of the mitochondrial permeability transition pore and
inner membrane anion channels, finally impairing ATP
production (34). The damaged mitochondria are no longer
able to efficiently reduce O2 in H2O in the electron transport
chain, leading to reactive oxygen species (ROS) formation (35).
Oxidative stress is usually defined as an imbalance between the
production of ROS and antioxidants . The ensuing
pathophysiological consequences and oxidative damages
correspond to protein nitrosylation, lipid peroxidation, or
DNA damage and can lead to cell death. Necrotic cells and
damage to the extracellular matrix release various intracellular
and extracellular molecules, which act as “alarmins” triggering
inflammatory cascades (36).

2.3.2 Activation of Inflammation During THS
2.3.2.1 Alarm Signals
“Alarmins,” among which damage-associated molecular patterns
(DAMPs) are released with tissue injuries, trigger both an intense
pro-inflammatory systemic immune response syndrome (SIRS)
and a counterbalancing anti-inflammatory response syndrome
(CARS) within 30 min post-injury (37). Every DAMP proven to
induce efferent pro-inflammatory pathways can be involved in
the development of SIRS (38). This highlights the critical role of
DAMPs in SIRS-associated MOF following THS. Moreover, it
has been recently described that suppressing inducible DAMPs
(SAMPs) (39), mainly produced by activated leukocytes and
macrophages upon stress and injury (e.g., lipid mediators such as
prostaglandin E2 or annexin A1) (40, 41), could trigger the pro-
resolving pathways in CARS. An excessive CARS could lead to
posttraumatic immunosuppression. In this review, we mainly
focus on the mechanisms of THS-induced SIRS. DAMPs are
passively released by necrotic cells, but also actively secreted by
stressed or activated cells (e.g., high mobility group box protein
1, HMGB1). Elevated levels of HMGB1 (42–46), mtDNA (47–
52), heat shock proteins (53–57), Ca2+-binding protein S100
(58), histones (59–63), ATP (64), interleukin 33 (IL-33) (65), or
IL-1 (66) have been described after trauma in preclinical and
clinical studies. DAMPs activate immune cells via their binding
to pattern recognition receptors (PRRs), a group of receptors
involved in the innate immune response, and induce the
transcription of inflammatory factors (67, 68). Toll-like
receptors (TLRs) form the most prominent group (69), and
Nod-like receptors (NLRs) such as NLRP3 (70), receptor for
September 2021 | Volume 12 | Article 749659
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advanced glycation end products (RAGE) (71), and purinergic
(72) or complement receptors (73) also contribute to
inflammation. The activation of these receptors triggers
multiple pathways, notably the tumor necrosis factor alpha
(TNF-a)/nuclear factor kappa B (NF-kB)/c-Jun N-terminal
kinase (JNK) and p38 mitogen-activated protein kinase
(MAPK) signaling cascade (42, 66, 74–77), and the activation
of NLRP3 inflammasome with production of IL-1b or IL-18 (78).
In the case of major THS, the massive release of DAMPs may
induce an excessive innate immune response, leading to
coagulopathy, endothelial dysfunction, and an increase in
vascular permeability, promoting the circulation of new
DAMPs. This amplifies a vicious cycle of cell and tissue
injuries that heightens the immunological response (73, 78).
Resident inflammatory cells have the role of sentinels. They
detect an increase in circulating DAMPs, and then they trigger
the recruitment of circulating immune cells by releasing TNF-a,
IL-6, IL-1b, etc. (34, 79, 80). DAMPs could also be secreted by
activated immune cells such as neutrophils or monocytes and are
also potent activators of the complement, leading to the
generation of C3a, iC3b, and C5a (81, 82). Elevated plasma
C3a, C5a, and C5b-9 levels correlate with trauma severity (83–
85), and complement activation also contributes to neutrophil
and monocyte recruitment (34).

2.3.2.2 Granulocytes: In the First Line
Knowledge of the immune changes during the early phase is
limited. A study on severe trauma patients revealed a massive
leukocytosis, elevated serum pro- and anti-inflammatory
cytokines, and evidence of innate cell activation within minutes
of trauma (86).

The SIRS-primed circulating neutrophils home to the tissues
and become activated by local inflammatory stimuli (87).
Notably, data obtained in a cohort of trauma patients suggest
that circulating platelet-activating factor (PAF) and IL-8 are
potential mechanisms of circulating neutrophil priming.
Indeed, the use of a PAF antagonist inhibits neutrophils
priming 3 h after injury, and plasmatic levels of IL-8 increase
between 6 and 12 h after injury. Moreover, at 12 h, IL-8 may also
be an early predictive marker of the onset of MOF (88).
Circulating neutrophil activation is associated with reduced
surface expressions of CXCR2 (CD182) and C5aR (CD88) 3–4
h after injury, followed by gradual restoration (86, 89). Then, the
expressions of CD62L (L-selectin) and CXCR1 (CD181) start
decreasing at about 4–12 h (86), and CD62L remains low at 24 h
(90). These phenotypic changes are directly related with
inflammation (87) and phagocytosis (91). C5aR promotes
phagocytosis, and its expression is downregulated by the
binding of C5a (92). Conversely, the expression of CD11b is
increased (93). Traumatic injury also leads to marked alterations
in the phenotype, function, and life span of circulating
neutrophils (94–96).

Circulating neutrophil counts increased sharply 3 h after
injury and then decreased within 12 h, suggesting end organ
sequestration. The drop in circulating neutrophils was
significantly greater in MOF than that in non-MOF patients
(93). Neutrophils reach the damaged tissues by diapedesis in the
Frontiers in Immunology | www.frontiersin.org 4149
post-capillary venules. Neutrophil binding to the endothelium is
first controlled by selectins (CD62L that binds to CD62E and
CD62P), which promote the initial rolling or tethering. Then,
integrins (the b2 integrins CD11a and CD11b) induce firm
adhesion. Examination of autopsy specimens from patients
with MOF revealed the presence of neutrophils that varies
from renal blood vessels to large-scale tissue infiltration of the
lung (97). Neutrophil apoptosis was profoundly delayed in
severely injured patients, as well as their tissue clearance,
correlating with a high risk of MOF (98, 99). When
neutrophils are exposed to pro-inflammatory signals, they
release not only ROS and proteases but also neutrophil
extracellular traps (NETs), which induce injuries in healthy
tissues. During NETosis, neutrophils release decondensed
chromatin and proteins including neutrophil elastase,
cathepsin G, and myeloperoxidase (MPO), as well as histones
in NETs (100–102), which participate in the pathophysiology of
trauma (103). The level of circulating cell-free DNA (used as a
marker of NET formation) is higher in SIRS trauma patients than
that in healthy subjects (104, 105).

2.3.2.3 Antigen-Presenting Cells: Pivot of the
Inflammatory Reaction
Antigen-presenting cells (APCs), such as dendritic cells (DCs)
and monocytes/macrophages, are important effector cells whose
functional capacities are deeply influenced during tissue-induced
injury (Figure 1). After THS, resident inflammatory cells serve as
sentinels, then circulating neutrophil recruitment is rapidly
followed by monocytes and macrophages. DAMPs bind to
macrophage PRRs, leading to their pro-inflammatory
activation, and can also trigger inflammasome formation,
which does not support any direct transcriptional activity but
allows the caspase-1-dependent cleavage of pro-IL-1b and pro-
IL-18 into mature forms (37). It was recently demonstrated that
inflammasomes, like TLRs, could trigger innate immune
responses to aggression.

Functional phenotypical changes of macrophages from pro-
inflammatory (M1) to anti-inflammatory (M2) occur to support
tissue repair at the damaged sites. The clearance of neutrophils in
tissues by efferocytosis represents a central element in the induction
of the M1-to-M2 switch (106). These M2 macrophages secrete
growth factors and anti-inflammatory cytokines such as IL-10,
transforming growth factor beta (TGF-b), and IGF-1, which
enhance tissue remodeling (79, 107) mediators of resolution (e.g.,
lipoxins and resolvins) (108) and increase their expression of the
receptors programmed cell death ligands 1 (PD-L1) and 2 (PD-L2)
(109, 110). Within 2–4 h after injury, the activation of the p38
MAPK,ERK1/2, and JNKpathways triggersmacrophage activation
in the liver, which releases TNF-a, IL-6, and remarkably high levels
ofmonocyte chemoattractantprotein-1 (MCP-1) andkeratinocyte-
derived chemokine.Macrophages are themajor producers ofMCP-
1 and IL-6 after trauma–hemorrhage and contribute, at least inpart,
to the trauma/hemorrhage-associated neutrophil infiltration
(111, 112).

As observed in sepsis, suppression of the function ofmonocytes/
macrophages isdirectly associatedwith the severityof trauma (113).
SIRS and CARS occur concomitantly, but when the CARS is
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excessive or persistent, it promotes immunosuppression, secondary
infections, and late or persisting organ dysfunctions (114).
Macrophage dysfunction is a significant contributor to both
innate and adaptive immune suppression (115). This suppressive
function is related to a decrease in human leukocyte antigen DR
(HLA-DR) and CD86 expression (116, 117). This impairment in
the antigen presentation of macrophages appears early after injury
and is maintained for several days (118–121). In addition, DCs,
which represent themost potent APCs for the induction of primary
T-cell responses, show a reduced responsiveness to bacterial
components within a few hours after trauma–hemorrhage, secrete
reduced levels of TNF-a and IL-6, as well as INF-g, IL12, and IL-
12p40, and are less potent to induce T-cell proliferation (122).

2.3.2.4 Bone Marrow Dysfunction
Maintaining the immune response following trauma requires the
mobilization of bone marrow progenitors.

However, the formation of bone marrow granulocyte–
macrophage colony-forming units (CFU-GM), erythroid burst-
forming units (BFU-E), and erythrocyte colony-forming units
(CFU-E) was significantly reduced, while peripheral blood CFU-
Frontiers in Immunology | www.frontiersin.org 5150
GM, BFU-E, and CFU-E were increased in trauma patients. Bone
marrow stroma failed to grow to confluence by day 14 in >90% of
trauma patients. These data indicate that trauma induces a bone
marrow dysfunction that releases immature white blood cells
into circulation and may also contribute to a failure to clear
infection and an increased propensity to organ failure (123, 124).
Moreover, in pathophysiological conditions such as trauma, a
partial blockade in the differentiation of immature myeloid cells
into mature myeloid cells results in an expansion of this
population called myeloid-derived suppressor cells (MDSCs),
which have remarkable ability to suppress T-cell responses and
to modulate macrophage cytokines (125). Moreover, MDSCs,
like all APCs, interact and modulate the behavior of the adaptive
immune system, notably T helper (Th) lymphocytes via major
histocompatibility complex class II (MHCII), CD40, CD80, or
CD86. MDSCs express low concentrations of MHCII and CD80/
CD86 (126). The expansion of MDSC populations is
proportional to the severity of the inflammatory insult (126,
127). Therefore, MDSCs could contribute to the post-trauma
immunosuppression leading to the development of late sepsis
and MOF (128).
FIGURE 1 | Immunological imbalance during traumatic hemorrhagic shock (THS). Damage-associated molecular patterns (DAMPs) play a key role in
pathophysiology. The resident immune cells detect them and carry out the first reactions of phagocytosis and amplification of the inflammatory response. The
circulating granulocytes infiltrate the tissue and maintain this reaction. Later-onset macrophages are pivotal in resolving this inflammatory phase (M1!M2) and initiate
the healing phase. However, during THS, the abundance of DAMPs promotes the acquisition and maintenance of a pro-inflammatory phenotype. The trio of Treg,
platelets, and endothelial cells co-stimulates and causes immunomodulation, with inhibition of Th1 lymphocytes. Bone marrow dysfunction induces an
immunosuppression that favors the occurrence of sepsis.
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2.3.2.5 Adaptive Immune Response
The persistence of high levels of pro- and anti-inflammatory
cytokines promotes T-cell exhaustion. There is a progressive
decrease in the ability of T cells to produce cytokines (IFN-g
and TNF-a), higher expressions of CD28 and PD1 on CD4+ and
a lower expression of CD127 on T cells, a loss of proliferative
capacity, and a decreased cytotoxicity, which can lead to apoptotic
cell death (129). Lymphocyte apoptosis occurs early after severe
trauma and usually peaks at day 3 after the injury. There is a
correlation between the injury severity score (ISS) and
lymphopenia, aggravating the risk of subsequent major
infection and sepsis (130). Apoptosis affects more the CD4+

and natural killer (NK) T lymphocytes than the CD8+. In
contrast, the CD4+/CD25+ lymphocyte populations, regulatory
T cells (Tregs), are more resistant to sepsis or burn-induced
apoptosis (129, 131). Tregs are important mediators of the
suppression of T-cell activation and the reduction in Th1
cytokine production after injury (132). Tregs also play a role in
Frontiers in Immunology | www.frontiersin.org 6151
regulating neutrophils during I/R by modulating, for example,
their sequestration diapedesis (133).

2.3.2.6 Imbalance of Immunological Response
A leukocyte “genomic storm” occurs in critically injured patients,
in which up to 80% of the leukocyte transcripts were altered in
the first 12 h. It activates a large number of inflammatory
mediators or pattern recognition receptors, but also suppresses
genes involved in antigen presentation, T-cell proliferation and
apoptosis, T-cell receptor function, or NK cell function
(Figure 2). The unfavorable clinical course of the patients
correlates with a higher and longer duration of expression of
these genes (28 days, against 7–14 days for a favorable course),
but not with the expression pattern (134). These results are
consistent with another study describing an increase in blood
Th17 CD4+ T cells and peripheral monocytes, as well as changes
in the NK profile, and the plasma increase in IL-17F and IL-22,
TNF-a, IFN-g, and MCP-1 at 5 days of trauma (135). This
FIGURE 2 | Balance of the inflammatory reaction (CARS or SIRS) as a function of time. The solid green curves represent the physiological response, following the
favorable genomic storm and the balance between the effects of DAMPs and SAMPs. In the case of imbalance, the genomic storm becomes unfavorable. The upper
dotted red curve represents the imbalance toward SIRS, with an increased effect of DAMPs, appearance of MODS and MOF, and cellular modifications. The lower
dotted red curve represents the imbalance toward CARS, with an increased effect of SAMPs, appearance of suppressive adaptive immune response, and cellular
changes. The box summarizes bone marrow dysfunction during THS. CARS, counterbalancing anti-inflammatory response syndrome; SIRS, systemic immune
response syndrome; DAMPs, damage-associated molecular patterns; SAMPs, suppressing inducible DAMPs; MODS, multi-organ dysfunction syndrome; MOF,
multi-organ failure; THS, traumatic hemorrhagic shock.
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suggests that it is illusory to imagine finding a specific marker or
a single therapeutic agent that allows avoiding complicated
outcomes of patients.

There is a concomitant and synchronous evolution of SIRS
and CARS. To restore homeostasis, their evolution must be
mirrored. If not, there is an imbalance on the SIRS side and,
therefore, the appearance of deregulated inflammation, and even
an MOF, or there is an imbalance on the CARS side and the
occurrence of infection or delayed healing.

This balance could be the target of therapeutic strategies and
help improve the prognosis of patients in the medium and long
term after THS (Figure 2). Cell therapy or therapy by EVs could
therefore be an interesting future strategy in this field.

2.3.3 Microvascular Dysfunction, Endotheliopathy,
and Coagulopathy
2.3.3.1 Microvascular Dysfunction
Microcirculation is made up of three levels: arterioles, capillaries,
and venules. All three are affected during THS. The
vasoconstriction induced by epinephrine maintains local
hypoxia and limits tissue exchange and, therefore, the
clearance of lactic acid, for example. This association—
coagulopathy, inflammation, anaerobiosis, and oxidation—
promotes endotheliopathy (3). In this case, the arteriolar
Frontiers in Immunology | www.frontiersin.org 7152
endothelium exhibits a dysfunction in relaxation linked to
the local overproduction of ROS by CD11/CD18+ cells. In
the capillaries, there is an adhesion of activated leukocytes
to damaged endothelial cells. There is also a local exudate
(Figure 3).

The endothelium of post-capillary venules plays a key role in
the onset of complications secondary to THS. Firstly, ROS cause
complement (C5) activation and the production of several
factors (PAF and leukotriene B4), which are able to induce the
adhesion and activation of leukocytes on the endothelium. ROS
also induce the release of Weibel–Palade bodies, which are large
endothelial vesicles that stock von Willebrand factor (vWF) and
P-selectin. Then, ROS lead to the production, via the NFkB and
AP-1 pathways, of E-selectin, intercellular adhesion molecules
(ICAM), or even vascular cell adhesion molecules (VCAM).
These elements allow the adhesion and diapedesis of CD11/
CD18+ activated cells such as neutrophils. The inflammatory
response is amplified by mast cells and macrophages, which
release inflammatory mediators like TNF-a, nitric oxide (NO),
histamine, or ROS. All these elements limit downstream blood
flow, called microcirculation failure (136, 137).

2.3.3.2 Endotheliopathy
Ischemia and inflammation often result in the disruption of
endothelial tight junctions, adherent junctions and glycocalyx
FIGURE 3 | Microvascular dysfunction occurring during traumatic hemorrhagic shock (THS) induces the permeability of tight junctions, responsible for edema,
increased oxidative stress, and, ultimately, local inflammation. Endotheliopathy is either direct from tissue damage or secondary to microvascular dysfunction.
Endothelial damage degrades the glycocalyx resulting in local autoheparinization. The shedding of the glycocalyx exposes integrins and selectins, promoting the
adhesion of platelets and polynuclear neutrophils. Their association stimulates endothelial cells, which release factors such as sCD40L, von Willebrand factor (vWF),
and platelet-activating factor (PAF). Endothelial damage is also associated with the release of damage-associated molecular patterns (DAMPs) and tissue factor (TF).
This activates the coagulation cascade reducing the downstream blood flow, forming the bed of coagulopathy in 15% of cases, the latter leading to disseminated
intravascular coagulopathy (DIC). These phenomena are associated with the lethal triad: coagulopathy, acidosis, and hypothermia.
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components (138–140). The decrease in blood flow is a
mechanical stimulus inducing the activation of the adhesion
molecule PECAM, vascular endothelial growth factor (VEGF)
receptors, and VE-cadherin, which results in the depolarization
of the endothelial cell membrane and subsequent ROS
generation. These events finally disrupt the integrity of the
endothelial cell–cell junction and compromise the endothelial
barrier, leading to hyperpermeability (141).

The glycocalyx is an intravascular coat composed of
glycosaminoglycans (e.g., heparan sulfate) and proteoglycans
(e.g., syndecan) (142). The thickness of the glycocalyx
decreases during hemorrhagic shock, in proportion to the
reduction in blood flow (143). During I/R, glycocalyx shedding
increases the circulating blood concentrations of syndecan-1
(which is highly associated with mortality) (144) and heparan
sulfate (145). This results in the exposure of the injured
endothelium to pro-inflammatory leukocytes, leading to the
alteration of its structural integrity and hyperpermeability
(146). Activated neutrophils cause glycocalyx disruption during
trauma because they release proteolytic enzymes such as
neutrophil elastase and degranulation, which promotes local
inducible nitric oxide synthase (iNOS) or ROS synthesis (143).

2.3.3.3 Coagulopathy
Coagulopathy occurs in up to 15% of THS patients. It worsens
the bleeding and is associated with excess mortality (139, 147).
Tissue factor (TF) is the key element in initiating the
coagulation cascade. Tissue damage exposes both TF and
collagen, capable of binding factor VII and vWF (148),
respectively, and initiating coagulation. At the damaged
vascular site, the platelets come into contact with the
thrombin formed during the initiation phase of the
coagulation cascade and are then massively activated.
Activated endothelial cells become procoagulant by secretion
of plasminogen activator inhibitor-1 (PAI-1). Moreover, the
damaged glycocalyx exposes P-selectin or ICAM-1, favoring
platelet and neutrophil adhesion, respectively. In turn,
neutrophils promote local fibrin activation and platelet
adhesion (143). Observational data suggest a correlation
between high levels of circulating syndecan-1 and higher
catecholamines, IL-6, IL-10, histone-complexed DNA
fragments, HMGB1, thrombomodulin, D-dimer, tissue
plasminogen activator (tPA), and urokinase plasminogen
activator and a threefold increased mortality (139). In
addition, hypotension and hypovolemia during THS cause the
release of tPA by endothelial cells (3). This could limit the
procoagulant effects of the activated endothelium proteins (e.g.,
protein C and protein S), which inhibit the coagulation
pathways and prevent an inappropriate extension of
coagulation beyond the damaged vascular site. Nevertheless,
this equilibrium may be broken and trigger trauma-associated
coagulopathy. As previously described in the literature (139),
there is a continuum between local and initial coagulopathy and
disseminated intravascular coagulopathy (DIC), which appears
later (hours/day). This DIC is the consequence of extensive
trauma, overwhelmed anticoagulant capacity, and major
inflammation. Coagulopathy is aggravated as part of the lethal
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triad via acidosis and hypothermia, which are traumatic or
iatrogenic, but also by hypovolemia (149–151).

2.4 Multiple Organ Failure
MOF is defined as alterations in the function of at least two organ
systems, ranging from mild dysfunction to irreversible failure.
Risk factors are related to the severity, type, and distribution of
injuries (thoracic trauma), as well as the duration of hemorrhagic
shock (152). As described previously, the pathogenesis of MOF is
complex, with interrelated mechanisms involving neurohumoral
and cellular cascades leading to generalized inflammatory
reaction, capillary damage and permeability, interstitial edema,
and, finally, organ dysfunction/failure (153). MOF should be
distinguished from multi-organ dysfunction syndrome
(MODS), which occurs frequently during resuscitation. Much
of these early organ dysfunctions return to normal within 48 h of
injury. The peak of MOF occurs within the first 3 days after
injury. Disparate patterns were described: early MOF occurring
within the first 3 days post-injury depending on shock severity,
carrying high mortality, or late MOF whose incidence increases
with age (154, 155). A retrospective study showed that lung failure
was the most common organ failure, whereas cardiac and
pulmonary system dysfunction decreased and renal and liver
failures persisted at similar levels (155). Liver, kidney, or
gastrointestinal tract injuries are directly linked to blood flow
redistribution to vital organs such as the brain and heart after
THS (155, 156).

A large number of scoring systems have been proposed to
define MOF, without gold standard. All scoring systems [Denver,
Marshall, and Sequential Organ Failure Assessment (SOFA)]
include at least the monitoring of cardiac (e.g., mean arterial
pressure), respiratory (e.g., PaO2/FiO2), hepatic (e.g., bilirubin),
and renal (e.g., creatinine) functions (157, 158). Serum cytokine
expression evaluated each 4 h during 24 h on 48 trauma patients
revealed six candidate predictors of MOF occurrence: CXCL10,
macrophage inflammatory protein-1 (MIP-1), IL-10, IL-6, IL-
1Ra, and eotaxin (159), and the IL-4, IL-6, IL-8, and TNF-a
levels are predictors of unfavorable outcomes (160).

However, depending on the type of scoring used and the
classification of patients, retrospective studies can have very
different conclusions. For example, over the years from around
2000 to 2010, some indicate a decrease in the incidence of MOFs
with a MOF-related death rate that did not change. In contrast,
others observed a significant increase of MOF prevalence and a
decrease of mortality after multiple trauma and notably in the
subgroup with MOF (84, 155).

2.4.1 THS-Induced Intestinal Injury
The gastrointestinal tract and the tissues vascularized by the
superior mesenteric artery are particularly sensitive to reduced
blood perfusion (156). The loss of gut barrier integrity is
hypothesized to be the “motor” of MOF by allowing the
translocation of organisms from the external environment
(including not only bacteria but also proteolytic enzymes) and
by limiting systemic access for necessary nutrients (161, 162).
Therefore, prevention of gut injury associated with intestinal
ischemia could be a key therapeutic strategy. The decrease of
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mesenteric perfusion after THS leads to hypoxia of the villi (73).
DAMPs govern the activation of resident leukocytes, the
recruitment of circulating leukocytes, and also the activation of
local and systemic complement (45, 82, 163). Inflammatory
response, ROS production, and intraluminal pancreatic
proteases also lead to mucus layer injury (164–166). Loss of
the mucus layer was associated with increased gut permeability
(164, 165, 167). Critical illness has a profound effect on the
number of cells in the mucosal immune system (161). The
lamina propria contains enteric glial cells (EGCs), and DCs;
they can both recognize DAMPs and pathogen-associated
molecular pattern molecules (PAMPs). EGCs are central in the
homeostasis of the intestinal epithelium (168). Moreover, tissue
damage can drive the dysregulation of pro-inflammatory group 3
innate lymphoid cell (ILC3s) response, which can contribute to
immunopathology (169). In contrast, successful integration of
environmental cues by ILC3s allows homeostasis of the gut–
blood barrier by the production of IL-22. This route allows the
restoration of local intestinal homeostasis after trauma (73, 169).
It was demonstrated that severe THS caused an increase in
bacterial translocation from the gut to the blood and organs,
such as the liver and spleen. Moreover, it induces a modification
toward a naive Th2 phenotype of CD4+ and a tolerogenic
phenotype of DC in mesenteric lymphatic nodes, which is
consistent with the clinical forms of immunosuppression
observed in severe patients (170). Interestingly, a recent study
of gut I/R showed that mice displayed a significant inflammatory
response with neutrophil infiltration into mucosal areas, but also
in the lung. Mesenteric lymph duct ligation, which had no effect
on gut injury, attenuated lung injury following gut I/R. This
study highlights the central role of the gut in the development of
systemic inflammation and MOF, including acute lung injury
(ALI) (171). Thus, the digestive tract can be both an instigator
and a victim of MOF (172).

2.4.2 THS-Induced ALI
ALI and acute respiratory distress syndrome (ARDS) are serious
complications of traumatic injury. ALI/ARDS constitute a
pathophysiological continuum that is defined by a lung disease
with acuteonset, non-cardiac, diffuse bilateral pulmonary infiltrates
and a PaO2/FiO2 ≤300 for ALI or ≤200 for ARDS (173).

In a recent study, 30% of patients developed ARDS as a result
of trauma, with a death rate three times higher. Lung damage can
be caused by pulmonary contusion, shock, administration of
blood products including platelets, and an element of volume
overload that can occur in the presence of increased pulmonary
vascular permeability (174). Following hemorrhagic shock,
neutrophils (activated via NF-kB and NLRP3 signaling) and
macrophages (via HMGB1/TLR4 pathway) induce pulmonary
inflammation (175). Moreover, in a model of THS lymph-
induced ALI, the lung injury was totally abrogated in
neutrophil-depleted animals (176). This inflammation locally
damaged tight junctions and endothelial cells and ultimately
led to the production of edema and the deterioration of capillary
alveolar exchanges (107). Furthermore, pulmonary edema is
aggravated by the decreased production of surfactant by
injured endothelial cells (177).
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2.4.3 THS-Induced Acute Liver Injury
During hemorrhage, the spongy hepatic structure and vascular
response, modulated by hepatic sympathetic nerves, could
temporarily compensate for the volume of blood lost.
Moreover, hepatic glycogenosis could also compensate for
hypovolemia by an osmotic effect toward the vessels (178).
Nevertheless, THS inducing liver ischemia rapidly leads to
endothelial and hepatocyte cell death (179). The diagnostic
evaluation includes a combination of biochemical tests with,
for example, the determination of serum hepatobiliary enzymatic
activities [alanine aminotransferase (ALT) and aspartate
aminotransferase (AST)] and gamma-glutamyl transpeptidase
(GGT). Histopathologic changes include cellular swelling,
vacuolization, endothelial cell disruption, neutrophil
infiltration, and hepatocellular necrosis (180, 181). Following
THS, the number of activated Ito cells (perisinusoidal fat-storing
cells, stellate cells, and lipocytes) and Kupffer cells (KCs, resident
hepatic macrophages) are increased. Activated KCs migrate from
hepatic sinusoids into the injury areas, increase phagocytosis,
and release ROS and various cytokines such as TNF-a, IL-1, IL-
6, or IFN-g (34, 181). This results notably in neutrophil
activation and their sequestration in different vascular beds of
the liver (156, 180). Neutrophil release NETs, proteases, and
ROS, inducing hepatocyte injury and their release of DAMPs
(133, 182). DAMPs (the most described in the liver is HMGB1)
and also the complement pathway can activate KCs. The pro-
inflammatory cytokines and ROS released by activated KCs also
exert cytotoxic effects by inducing changes in the cell membrane
receptors of hepatocytes and endothelial cells. They also activate
other KCs and produce chemotactic factors for neutrophils and
CD4+ lymphocytes (181, 183–187), which aggravate
microvascular/hepatocellular injury by the formation of cellular
thrombi (133).

2.4.4 THS-Induced AKI
The incidence of acute kidney injury (AKI) is indicated at 13% in
trauma and increases to 42.5% in THS; 96% of AKI appear
within the first 5 days (188). AKI is the clinical endpoint of
multiple processes and results in a decrease in the GFR, which is
a measure of global renal function. The injury mechanisms
identified are I/R, inflammation, and rhabdomyolysis. In the
nephron, the glomerulus is exposed to vasoconstriction of the
afferent glomerulus artery, resulting in a decrease in the GFR by
injury of the glomerular–blood barrier. Cellular debris can
precipitate in the tubule, further decreasing renal filtration and
reabsorption. I/R injury is among the most common causes of
AKI, and the underlying pathogenesis involves injury to the
nephron by both ischemia and oxidative stress survival/death
mechanisms. Proximal renal tubular cells along the nephron
segments are particularly sensitive to hypoxia. One of the early
events in renal I/R is the activation of the endothelium (increased
expressions of E-selectin, ICAM-1, and CX3CL1), increasing
vascular permeability and promoting leukocyte extravasation.
Moreover, tubular epithelial cells increase complement binding
and upregulate TLRs, leading to cytokine/chemokine
production. A study in patients suffering from AKI post-blunt
trauma showed a rapid increase in concentrations on D0 (time of
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measurements after injury within the first 12 h = D0, 24–96 h =
D1–D4, and ≥96 h ≥ D4) in inflammatory factors [e.g., IL-8,
MCP-1 (alias CCL2), and IL-6] and anti-inflammatory factor
(e.g., IL-1ra), followed by a drop on D4, in IL-1ra, IL-4, and IL-6
(189). In the tubules, neutrophils are observed between 3 and 24
h, followed by an ascending plateau up to 72 h after I/R injury
(190). Macrophages are recruited at D1, with a peak at D5. The
M1 is the dominant population from D1 to D3, then the M2
from D5 to D7. The authors demonstrated the role of M1 in the
onset of tissue lesions and more of M2 in tubular repair (191).
The I/R model also induces a maturation of the DC phenotypes
and their production of TNF-a, IL-6, or MCP-1 in the first 24 h
(192). Moreover, the injured epithelium releases fraktaline,
which recruits more DCs (193). Finally, the kidney disposes
type 2 innate lymphoid cells (ILC-2 cells), which appear to be
involved in the anti-inflammatory phase. ILC-2 releases IL-4 and
IL-13, allowing the polarization of macrophages and
lymphocytes to M2 and Th2/Treg phenotypes, respectively
(194). Finally, rhabdomyolysis is a classic complication of
severe trauma ranging from the elevation of serum myoglobin
and creatinine kinase (CK) activity to AKI and disseminated
intravascular coagulation. It induces disturbances in intracellular
ionic gradients, leading to increased concentrations of
intracellular Ca2+. The pathogenesis of AKI by rhabdomyolysis
involves myoglobin-induced intrarenal vasoconstriction, direct
ischemic injury, and tubular obstruction (195). Moreover, in a
model of rhabdomyolysis-induced AKI, the heme-activated
platelets enhanced the production of macrophage extracellular
traps (METs) by increasing intracellular ROS generation and
histone citrullination (196). There is a need today to find new
therapies to prevent/treat kidney damage in order to avoid the
clinical consequences associated with AKI and progress to
chronic renal failure (197).
3 CURRENT MANAGEMENT OF THS

3.1 Current Support
The current management of hemorrhagic shock is based on two
main pillars: stopping the bleeding and damage control
resuscitation. This is applied during the pre-hospital and
intrahospital phases (198). Bleeding control is first achieved by
local compression, placing tourniquets or hemostatic dressings.
The definitive management of these wounds requires surgical
hemostasis (150, 198). The aim of damage control resuscitation is
to maintain permissive hypotension (80–90 mmHg) as long as
surgical hemostasis is not achieved; it is a compromise between
tissue perfusion and aggressive resuscitation with high doses of
fluids (199). Moreover, this limits hemodilution by overfilling,
which helps maintain DO2 above the critical limit (<8/10 ml
min−1 kg−1) (28, 198).

Preserving blood pressure begins with vascular filling. It is
recommended to use a plasma first (200). Treatment with plasma
during massive bleeding allows restoration of the glycocalyx
(145). The use of vasopressors or sympathomimetics is only
recommended as a second-line treatment (198, 201–203).
Hemoglobinemia is not the only criterion for optimal
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transfusion. It is recommended to start the plasma transfusion
at the same time, with a plasma/blood cell ratio between 1:2 and
1:1. Platelet infusion should be administered to maintain a
minimum count, depending on the clinical situation (150,
198). To finish, tranexamic acid must be used before the third
hour after THS for anti-fibrinolytic action. Other treatments
such as coagulat ion factor concentrate , fibrinogen
supplementation, or calcium supplementation could be used
against coagulopathy (150, 198).

3.2 Frontiers in Current Management
The complexity and heterogeneity of the multiple factors
involved in the pathophysiology of THS can give rise to MOF
despite constant improvement in patient care. Deregulations of
the immune system are at the heart of systemic deregulations
after injury; therefore, modulating the immune response is a
promising therapeutic strategy for preventing the complications
of THS.

Preclinical and clinical proof-of-concept studies have
analyzed the efficacy of new and emerging therapeutic
candidates in the context of individual organ failure. Although
informative, these studies do not address the full complexity of
THS. Hence, hypothesis-driven research studies targeting the
multi-organ dysfunction of THS are urgently needed. The
therapeutic potential of MSC therapy has been well
characterized and demonstrated to improve tissue function and
regeneration. The established immunomodulation capacity and
ability to restore tissue damage may also be applied in the
treatment of THS-induced MOF. THS is a life-threatening
emergency requiring immediate medical intervention. While
cell-based therapy carries multiple advantages, the drawback is
the delay of the supply of MSCs that require in vitro expansion
and the complex storage and transport before administration.
EVs, on the other hand, are secretory products of MCS. The
major advantage of using cell derivatives rather than cells is the
immediate availability of the product, which may be prepared,
amplified, characterized, and easily stored for future use in the
emergency context of THS patients. Existing evidence indicates
that MSC-derived EVs are able to prevent immunological
disturbances that lead to organ failure.
4 MSC-DERIVED EXTRACELLULAR
VESICLES: TOWARD CELL-FREE
THERAPEUTIC APPLICATIONS

4.1 Mesenchymal Stromal Cells
MSCs have been described since 1970 (204). These cells of
mesenchymal origin have been found in both perinatal tissues
and numerous adult tissues (205). Although isolated from various
tissues, they share common properties described in 2006 by the
International Society for Cellular Therapy (ISCT), which proposed
minimal criteria to define MSCs. These plastic-adherent
fibroblastic-like cells express a panel of antigenic surface
markers (positive for CD73, CD90, and CD105 and negative for
hematopoietic markers) and have an in vitro multipotency
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capacity in the three canonical pathways: osteoblastic,
chondroblastic, and adipocytic (206). They have many
capacities: trophic support and immunomodulation, as described
above, but also anti-apoptosis, pro-angiogenesis, or even
antioxidation (207). MSCs were first described as key regulators
of the HSC niche homeostasis. Later, in the 2000s, it has been
described that allogeneic MSC transplantation given intravenously
is well tolerated (11), can promote hematopoietic engraftment
(208), accelerate lymphocyte recovery (209), reduce the risk of
graft failure, and reduce the incidence of GvHD (12, 210). MSCs
can modulate innate immunity by promoting the repolarization of
monocytes and macrophages from a type 1 (pro-inflammatory) to
a type 2 (anti-inflammatory) (211), by suppressing the
proliferation, cytokine secretion, and NK cell cytotoxicity (212),
and by inhibiting the maturation and migration of DCs (213), as
well as modulate polymorphonuclear cell apoptosis and activity
(214). MSCs can also modulate both adaptive immune effector
activity by inhibition of T-cell (215) and B-cell (216) functions.
These data open the way to their utilization as cell therapy
products in degenerative and/or inflammatory diseases lacking
appropriate treatments (217). Presently, hundreds of clinical trials
are using MSCs to evaluate their therapeutic effects in numerous
severe diseases (217). The first clinical trial in this context, using
the systemic administration of allogeneic MSCs, did not
exacerbate the elevated cytokine levels in the plasma of septic
shock patients, consistent with a safe response. This cohort also
revealed patient-specific and dose-dependent perturbations in
cytokines, including an early but transient dampening of pro-
inflammatory cytokines (218).

This immunomodulation potential has been extensively
documented. Caplan and Dennis (219), in 2006, postulated
that MSCs could mediate their therapeutic activity via the
secretion of soluble factors such as prostaglandin E2 (40), IL-1
receptor antagonist (IL-1RA) (220), TGF-b (221), hepatocyte
growth factor (HGF) (222), indoleamine 2,3-dioxygenase (IDO)
(223), or tumor necrosis factor-stimulated gene 6 (TSG-6) (224–
226) rather than by direct cellular interactions. In 2007, it was
then demonstrated that MSC-conditioned media rich in small
EVs could exert cardioprotective effects in a myocardial
infarction model (227). Another team described the beneficial
effects of MSC-conditioned media enriched with larger EVs in a
mouse model of AKI (228). Consequently, today, there is a
growing interest in MSC-derived EVs (MSC-EVs). More
recently, it was also demonstrated that MSC-EVs can be a
promising therapy for preventing chronic GvHD by exhibiting
potent immunomodulatory effects (229, 230). Moreover, in
several preclinical studies, it was shown that MSC-EV therapy
reduced inflammation in kidney injury animal models (231) and
decreased the inflammatory cell influx, altering alveolar
macrophages toward an anti-inflammatory phenotype in lung
injury models (232, 233) or the pro-inflammatory cytokine
messenger RNA (mRNA) levels in liver injury (234). Finally, it
is important to understand that MSCs are sensitive to their
environment. Their properties and those of their by-products
may vary depending on growing conditions, known as the
concept of “priming” (235, 236). Stimulating MSCs with pro-
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inflammatory cytokines such as IFN-g, TNF-a, IL-1a, or IL-1b
induces the secretion of soluble or EV-encapsulated anti-
inflammatory factors (237–240). Interestingly, the secretome of
MSCs primed with IL-1b and the sera of polytrauma patients
share important characteristics. IL-1b priming enhances the
secretion of pro-inflammatory and pro-angiogenic factors (IL-6
and VEGFA) and chemokines (CXCL1 and CCL2). Moreover,
MSC-IL-1b priming may improve their therapeutic effects by
inducting cell adhesion molecules and anti-inflammatory and
anti-fibrotic molecules (241).

The few studies using MSCs in THS showed that their
administration early after hemorrhagic +/− traumatic shock
limited vascular permeability by preserving the barrier junction
proteins (VE-cadherin, claudin-1, and occludin-1), inhibiting the
expressions of leukocyte adhesion molecules (VCAM-1 and
ICAM-1) on endothelial cells, and decreasing both serum
concentrations of inflammatory molecules and CD68- and
MPO-positive cell tissue infiltration (17). We recently showed
that IL-1b-primed MSCs attenuated hemorrhagic shock-induced
early hepatic and kidney injury and dysfunction and reduced the
SIRS/CARS syndrome, as shown by the decreases in the plasma
cytokine concentrations and the phenotypic activation of
circulating CD11bc+ cells (242). MSCs would also prevent the
decrease in hematopoietic progenitors induced by THS in the
bone marrow (15, 17, 243). Whether the use of MSCs could
alleviate or potentially exacerbate THS-induced coagulopathy is
unclear. MSCs express TF (244, 245) and phosphatidylserine
(246), which are thrombogenic and tend to increase the clotting
rates. MSCs can therefore behave as beneficial hemostatic agents,
but can also be excessively procoagulant, depending on the dose,
the time of administration, and the method of preparation, which,
in this case, may require the concomitant administration of
anticoagulants to prevent venous thromboembolism or
disseminated coagulopathy (247). Moreover, prothrombotic
factors on their surface could trigger the instant blood-mediated
inflammatory reaction (IBMIR) after blood exposure. IBMIR is
characterized by the activation of complement/coagulation
cascades, the binding of activated platelets to the MSCs, and clot
infiltration by neutrophils and monocytes, which could lead to cell
destruction. It is important to note that the induction of IBMIR
depends on the MSC source and the dose administered and
increases when their in vitro expansion has been high (passages 5
to 8) (245). This means that the choice of the modes of preparation
and administration of MSCs can modulate their thrombotic
activity. In contrast, cultured fibrin-embedded human MSCs can
dissolve the surroundingfibrinmesh. Thisfibrinolytic capacitymay
be related to the transcriptional expression of the urokinase
plasminogen activator (uPA) and its receptor (uPAR), the tPA,
and the PAI (248). In conclusion, MSCs are being employed as an
experimental therapy in a variety of human diseases and represent
an important hope in the context of lesions induced by THS. They
act on several biological processes including inflammation and
reprogramming of immune cells, but also by the activation of
endogenous repair pathways. Current dogma indicates that they
improve disease through the secretion of paracrine-acting factors
and, more recently, via the production of EVs.
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In the emergency context of THS, requiring very quick
availability of the therapeutic product, a ready-to-use EV
solution, appears to be a particularly interesting innovative strategy.
4.2 MSC-Derived EVs
4.2.1 EV Definition
Cells use multiple and sophisticated modes of communication.
Besides direct cellular communication through the expression of
cell surface markers, they communicate not only by the secretion
of soluble molecules but also via the production of EVs. The term
“extracellular vesicle” corresponds to a generic term that refers to
particles naturally released from the cells, delineated by a lipid
bilayer, and are devoid of replicative activity (i.e., without
functional nucleus). The three main EV subtypes found in the
literature include microvesicles (MVs; also known as microparticles
or ectosomes), exosomes (exo), and apoptotic bodies. They are
characterized by their size (small vesicles, <100–200 nm; medium/
large, >200 nm), density, cellular origin, and their biochemical
composition (tetraspanin, annexin V, etc.) or according to their
biogenesis process (249). The biogenesis of small vesicles (exosomes)
occurs in early endosomes; then, during the process of maturation,
theearly endosomesbecomeendosomesormultivesicularbodies and
accumulate intraluminal vesicles, which can either be degraded by
lysosomes or released as exosomes in the extracellular space. The
biogenesis of medium/large vesicles (MVs) occurs via the direct
budding of the cell membrane and are released into the extracellular
space (250). Apoptotic bodies are large-sized vesicles that specifically
originate from apoptotic cells (251). These EVs contain bioactive
soluble molecules (mRNA, miRNA, proteins, lipids, etc.) and
membrane-bound molecules (CDs and enzymes). The most
currently available EV isolation methods [ultracentrifugation,
tangential filtration, immunocapture, or precipitation (252),
including those used for clinical grade isolation] do not allow the
precise isolationorpurificationofa specificEVsubpopulation (exoor
MVs) (253–255). Therefore, the International Society for
Extracellular Vesicles (ISEV) has suggested minimal information
for studies of extracellular vesicles (MISEV). These guidelines
indicate that “EV” remains a collective term describing a complex
continuumofvesicles of different sizes andcompositionandresulting
from variousmechanisms of formation and release (249). Moreover,
inmost cases, EVpreparations are composed of different vesicles and
a greater or a lesser amount of soluble proteins thatmayparticipate in
thebiological activityof thefinalproduct.Wemust therefore also take
into consideration the heterogeneity of the final preparations used in
the different studies, which mostly include soluble factors. The most
suitable term would ultimately be “EV-enriched secretome” rather
than “EVs.”

Intercellular communication via extracellular cargo is highly
conserved across species (from bacteria to human); therefore,
EVs are likely to be a highly efficient, robust, and economic
manner of exchanging information between cells (256).

The specific combinations of molecules in EVs generally
reflect the unique characteristics of their original cells and
influence their functional properties; therefore, these EVs could
recapitulate most effects of the cells from which they originate
from and be used as substitutes of those cells in therapeutic
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objectives (18). EVs can be harvested from all body fluids and
take part in many physiological and pathophysiological processes
(18). Indeed, EVs are frequently produced in greater abundance
in stressed than in unstressed cells; therefore, they can promote
the activation of immune cells such as macrophages, which can,
in turn, also release EVs and soluble factors and promote stress
cell and tissue inflammation and injury (257).

The most extensive studies on EV-mediated communication
have been performed between tumor and immune cells and
between different types of immune cells. Currently, dendritic
cells and mesenchymal stromal cells are the sources for which the
prospects for clinical use in humans are most advanced. Since the
first descriptions of the therapeutic potential of MSC-EVs in AKI
and MI models (227, 228), many studies have addressed the
therapeutic functions of MSC-EVs. They could provide new
therapeutics and have to be better described and understood
(249, 258).

4.2.2 Immunomodulatory Capacity of MSC-EVs
4.2.2.1 Interaction Between MSC-EVs and Innate
Immune Cells
As described above, MSCs release a unique signature of proteins
(259), lipids (260), and membrane receptors or various types of
nucleic acids through EVs (258), which participate in the
protection and the regeneration process of damaged cells
notably by mitigating the immune response (261, 262).
Proteome analysis of MSC-EVs provided by the ExoCarta
database showed that the MSC-EV proteome is rich in IL-10,
HGF, and leukemia inhibitory factor (LIF) anti-inflammatory
cytokines. Moreover, some cytokines, chemokines, and
chemokine receptors involved in immune cell recruitment, cell
migration, immunosuppression, or neutrophil degranulation,
such as CCL2, VEGFC, CCL20, as well as chemokine ligand 2
(CXCL2), CXCL8, CXCL16, defensin a1, HERC5, and IFITM2,
are also expressed (261). Similarly, they carry microRNAs
(miRNAs) involved in immune function, like miR-146b,
identified as an IL-10 effector on macrophages by targeting the
TLR4 pathway (263), or miR-181c, which also decreases the
expression of TLR4 and the activation of the NF-kB pathway
(264). In addition, the pro-inflammatory priming of MSCs, for
example by TNF-a and IFN-g, generates modifications of the
protein content and the transcripts of MSC-EVs, notably a
greater expression of COX2 leading to an increased release of
PGE2, which could promote their anti-inflammatory activity
(260). Hypoxia also modulates the MSC-EV miRNA expression
profile with notably significant overexpressions of miR-223 and
miR-146b, which are implicated in the inflammatory phase of the
healing process (265).

Concerning the anti-inflammatory effects on DCs, the
authors described 49 miRNAs enriched in MSC-EVs, including
miR-21-5p, miR-142-3p, miR-223-3p, and miR-126-3p, known
for their role in DC maturation and function (266).

Macrophages have an important role in the inflammatory
phase firstly by their pro-inflammatory phenotype and then by
their switch to a pro-resolving, anti-inflammatory phenotype. A
study in which unfractionated PBMCs were co-cultured with
PKH26+-MSC-derived EVs showed that EVs were mostly
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internalized by monocytes and scarcely by lymphocytes after 24
h or 4 days, but inflammatory priming of MSCs increases EV
internalization by lymphocytes (267). It was already described
that PBMC or macrophage co-culture with adipose-derived
MSC-Exo (MSC-derived exosomes) could induce M2
macrophage polarization (265, 268). MSC-EVs also inhibited
TNF-a and IL-6 production by inflammatory glial cells and
limited their activation (loss of CD45 and CD11b expressions)
and induction of CCL2, one of the membrane markers of M2
polarization (269). Finally, bone marrow MSC-EVs could also
downregulate the production of IL-23 and IL-22 by macrophages
and pro-inflammatory cytokines, inducing Th17 effector T cells.
Therefore, MSC-EV-educated macrophages could promote
resolution via the decrease of Th17 pathogenicity (270).

4.2.2.2 Interaction Between MSC-EVs and Adaptive
Immune Cells
MSC-EVs limit the proliferation and differentiation of activated
CD4+ and CD8+ lymphocytes (271). They induce CD3+ and
CD4+ lymphocyte apoptosis and increase the Treg/T effector
balance (272) by promoting the passage from Th1/Th17 to Th2
(273–275). Otherwise, in co-culture with activated PBMCs,
MSC-EVs inhibit the secretion of TNF-a and IL-1b, but
increase the concentrations of TGF-b (276) and IL-10 in the
co-culture medium (272). As described above, monocytes and, to
a lesser extent, lymphocytes were able to internalize PKH26+-
MSC-derived EVs. Interestingly, the uptake of MSC-derived EVs
occurred in resting but mostly in activated immune effector cells,
al lowing presumption of a possible role of EVs in
immunosuppression, and the inhibition of EV secretion
impairs the immunosuppressive capacities of MSCs. Moreover,
EV uptake by stimulated B lymphocytes and NK cells is more
important than that by T lymphocytes and correlates with the
immunosuppressive activity of EV, observed only for B
lymphocytes and NK cells, but not for T lymphocytes. Finally,
pro-inflammatory priming of MSCs induced an increase in the
levels of the anti-inflammatory miRNA-155 and miRNA-146 in
both MSCs and their EVs (267, 277, 278). Another study also
reported a concentration-dependent immunosuppressive effect
of MSC-derived exosomes on B lymphocytes (263).

All these elements show MSC-EVs representing a promising
therapy for inflammatory diseases.
5 IMMUNO-PROPERTIES OF MSC-EVS
AND MOF

There is significant expanded literature concerning the use of
MSC-EVs in multiple preclinical models, in particular on isolated
organ damage (Table 1). However, no data are currently available
on their use in the context of THS. In the following paragraphs, the
beneficial effects of MSC-EVs on immunological deregulations
and the endothelial dysfunctions of several critical organs injured
in MOF are exposed. Otherwise, although inflammation and
coagulation are interdependent processes that can initiate a
vicious cycle in which each process intensifies the other, the
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potential benefit of MSC-EVs on coagulopathy has been poorly
explored. However, as discussed previously in the section on
MSCs, EVs express phosphatidylserine and TF on their surfaces,
which were functionally thrombogenic and tended to increase the
clotting rates (246) or IBMIR.

5.1 MSC-EVs and Intestinal Injury
To our knowledge, no study has investigated the role of EV
administration in THS-induced intestinal ischemia. Most studies
have investigated the role of EVs in inflammatory bowel diseases
(IBDs), mainly ulcerative colitis and Crohn’s disease. A number
of rodent models of colitis have been developed; among them,
chemical models, notably dextran sulfate sodium (DSS), are
widely used (308). The data listed below will relate to the
results obtained in this context.

The intravenous injection of MSC-EVs from different sources
[bone marrow, umbilical cord, and adipose-derived stromal cells
(ADSCs)] attenuated the severity of colitis. Indeed, they exert
antioxidative and anti-apoptotic effects, they also reduce the
mRNA and protein levels of NF-kB, numerous cytokines,
chemokines (TNF-a, IFN-g, IL-12, IL-1b, IL-6, IL-7, CCL-24,
and CCL-17) and enzymes (iNOS and COX2) and they increase
IL-10 and TGF-b in the injured colon (279, 280, 282). However,
it was observed that TSG-6 depletion in EVs reduced their
immunomodulatory efficacy. TSG-6 in EVs plays a key role in
increasing the population of Tregs and for macrophage
polarization from M1 to M2 in the colon (269). Moreover,
intraperitoneal injection of MSC-Exo in a mouse model of
inflammatory bowel disease indicated a protective role in the
intestinal barrier not only by preventing the destruction of tight
junctions, therefore decreasing permeability, but also by
modulating the responses of Th2 and Th17 cells in the
mesenteric lymph nodes. Again, the knockdown of TSG-6
abrogated the therapeutic effects of MSC-Exo; conversely,
administration of a recombinant of TSG-6 showed beneficial
effects similar to those of MSC-Exo (286). Therefore, TSG-6
appears to play a major role in the anti-inflammatory effects of
MSC-EVs in inflammatory bowel pathologies. Moreover,
another study revealed that bone marrow MSC-EVs could
inhibit the differentiation of Th17 cells in ulcerative colitis by
regulating histone H3 lysine-27 trimethylation (H3K27me3) that
is closely associated with the differentiation of Th17 cells.
Therefore, MSC-EVs, which regulate H3K27me3, could be
promising agents for inflammatory immune diseases associated
with abnormal Th17 cell differentiation (283). Administration of
MSC-EVs also increases the percentages of CD4+ CD25+Foxp3+

Tregs in lymph nodes and the spleen (281).
Moreover, as is described in other pathologies, TNF-a and

IFN-gMSC priming increased the immunosuppression of MSC-
EVs (270). Finally, Yu et al. evaluated the effect of EphB2-
overexpressing bone marrow MSC-EVs. EphB2 is a signaling
receptor involved in the regulation of inflammatory response,
immune homeostasis, and cell migration. They showed that the
overexpression of EphB2 improved the colonic targeting ability
of EVs and demonstrated a robust immunomodulatory effect by
the modulation of the Th17/Treg balance (278).
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TABLE 1 | Overview of the applications of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in preclinical experimental studies.

Results References

EV ↘ histological lesions,
inflammation (expression of
TNFa,IL-1b, NF-kBp65,
iNOS or COX2↘, and
expression of IL-10 ↗),
and apoptosis (Cleavage
od caspase 3, 8 and 9),
↗antioxydant effect. Dose
response effects

Yang et al. (279). doi:
10.1371/
journal.pone.0140551

EV ↘ histological lesions,
inflammation (expression of
TNF-a, IFN-g, IL-1b or IL-
6↘, and expression of IL-
10 ↗). Polarization M2 via
TSG-6 pathway

An et al. (269). https://
doi.org/10.1371/
journal.pone.0220756

Pro inflammatory primed
EV, over express
immunosuppressive
protein (HGF, TSG-6,
PGE2or TGF-b). EVs ↘
histological lesions,
inflammation, ↗ Tregs,
and M2 polarization

An et al. (270) https://
doi.org/10.1038/s41598–
020–58909–4

Ev ↘ symptoms,
histological lesions, and
VEGF-A, IFN-g, IL-12,
TNF-a, CCL-24, or CCL-
17 levels. EV ↗ IL-10 and
TGF-b levels. EV allow
polarization M2.

Cao et al. (280) https://
doi.org/10.1016/
j.intimp.2019.04.020

Ev ↘ symptoms,
histological lesions,
inflammatory cells
penetration. In spleen end
lymph nodes, Treg, TGF-b,
IL-4, and IL-10 ↗and IFN-
g, TNFa, IL-12, or IL-17↘

Heidari et al. (281),
https://doi.org/10.1002/
jcp.30275

hUC-MSCs-Ev ↘
symptoms, histological
lesions, inflammatory

Mao et al. (282) https://
doi.org/10.1155/2017/
5356760
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Organ Model Microparticles Priming CSM Model Administration

Origins Type Purification Timing Route Dose

GUT TNBS induced
colitis

Human
bone
marrow
derived
MSC

EV ultracentrifugation / male
Sprague-
Dawley

3 days after
colon lesions

systemic 50, 100 , or 200µg
EV diluted in 1mL

DSS induced
colitis

Dog
Adypocytes
tissu
derived
MSC

EV ultracentrifugation transfection
(TSG-6 siRNA)

C57BL/6 male
mice

during the
intoxication
week at day
1, 3 and 5

intraperitoneal 100 mg of EV
diluted en 100mL/

mouse

vitro : dogs
PBMC, LPS
stimulated

coculture
with EV

/ 100 mg/well

DSS induced
colitis

Dog
Adypocytes
tissu
derived
MSC

EV ultracentrifugation 24 h with TNF-
a and IFN-g

C57BL/6 J
male mice

during the
intoxication
week at day
1, 3 and 5

intraperitoneal 100 mg of EV
diluted in 100mL/

mouse

vitro 1: RAW
264.7 - vitro
2: DH82, LPS
stimulated -
Vitro 3: canine
PBMC
concavalin A
stimutated

coculture
with EV

/ 50 mg/well

DSS induced
colitis

Mouse
bone
marrow
derived
MSC

EV ultracentrifugation / BALB/c male
mice

1 per day,
during seven
intoxications
days

intraperitoneal 50 mg of EVs/
mouse

Vitro:
macrophage
stimulated
LPS

coculture
with EV

/ 100 mg/mL EVs for
24 h

DSS induced
colitis

Mouse
Adypocytes
tissu
derived
MSC

Exosome exosome
isolation kit

C57BL/6
female mice

during the
intoxication
week at day
2, 4 and 6

intraperitoneal 100 mg exosome
diluted in 200 ml

DSS induced
colitis

hUC-MSCs Exosome ultracentrifugation / male KM mice during the
intoxication
the 11 days

intraperitoneal 400 mg exosomes/
mouse

159
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TABLE 1 | Continued

Results References

cytokines levels (TNF-a, IL-
1b, iNOS, IL-6 or IL-7), ↘
macrophages infiltration,
and ↗ IL-10 levels, in
colon and spleen.

Ev ↘ symptoms,
histological lesions. Ev limit
Th17 polarization via
increase H3K27me3 levels.
Dose response effects

Chen et al. (283) https://
doi.org/10.1016/
j.molimm.2019.12.019

HO1-MSC derived
exosomes ↘ inflammatory
injury , via miR-200b which
↘ Hmgb3 gene
expression in intestinal
epithelial cells.

Sun et al. (284), https://
doi.org/10.1038/s41419-
020-2685-8

Ev ↘ histological lesions.
MiR-146a negatively
regulates TRAF6 and
IRAK1 and decrease
inflammatory (↘TNF-a, IL-
6 or IL-1b) via suppressing
NF-kB activation pathway.

Wu et al. (285) https://
doi.org/10.1016/
j.intimp.2018.12.043

Exosomes ↘ histological
lesions, pro-inflammatory
factors (IL-1b, IL-6), and ↗
IL-10. miR-326
overexpressed in
hucMSC-Ex inhibit
neddylation process and
NF-kB pathway.

Wang et al. (277) https://
doi.org/10.1002/
ctm2.113
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at 3, 6, and
9

vitro : Mice
macrophage

coculture
with EV

/ exosomes 160 mg/
ml

TNBS induced
colitis

Rat bone
marrow
derived
MSC

EV ultracentrifugation / male
Sprague-
Dawley

3 days after
colon lesions

systemic 50mg /100mg /
200mg EV

Small bowell
transplantation
rejection

Rat bone
marrow
derived
MSC

Exosome Exosome
separation kits

transfection
(Heme
Oxygen-1)

Allograft (
Lewis rat
(donnor)
Brown
Norway rat
(Recipient))

/ / /

vitro : Rat
intestinal
epithelial cells,
inflammation
injured wirh
TNF-a
(100 ng/mL)
and
lymphocytes

coculture
with CSM

/ 100 mg/mL
Exosome

TNBS induced
colitis

Rat bone
marrow
derived
MSC

EV ultracentrifugation transfection
(miR-146a)

male
Sprague-
Dawley

3 days after
colon lesions

systemic 100 mg EV diluted
in 1ml

DSS induced
colitis

hUC-MSCs Exosome ultrafiltration / C57BL/6 male
mice

during the
intoxication
at days 3, 6,
and 9

systemic 1 mg Exosome

vitro : Human
colorectal cells
LPS
stimulated

coculture
with
exosomes

/ 200 mg Exosome

160
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TABLE 1 | Continued

Results References

EphB2-EV ↘ symptoms,
histological lesions,
inflammation (NF-kB level,
TNF-a, IFN-g, IL-1b, and
IL-2 ↘), STAT3
expression, and oxydative
stress. EphB2-EV ↗ Treg
polarization.

Yu et al. (278) https://
doi.org/10.1186/s13287–
021–02232–w

↘ mortality, symptoms,
histological lesions, pro-
inflammatory cytokines, ↗
anti-inflammatory
cytokines, switch toward
Th2. Effects via TSG-6

Yang et al. (286), https://
doi.org/10.1186/s13287-
021-02404-8

↘ oxidative stress injury,
inflammatory response.
Mediated by miR-124-3p

Li et al. (287),
doi:10.1152/
ajplung.00391.2018

↘ TNF-a, IL-6 and IL-1b .
↘ TLR4 and NF-kB levels
in rat lung tissue

Liu et al. (288), doi:
10.7150/ijms.35369

e Exosomes ↘endothelial
damage via the PI3K/Akt
pathway, modulate by
miR-126.

Mizuta et al. (289) https://
doi.org/10.1186/s13287–
020–02015–9

In vivo: ↘ vascular
permeability, via
cytoskelatal proteins
phosphorylation. In vitro,
MSC CM but not MSC-
EVs prevented thrombin-
induced endothelial cell
permeability.

Potter et al. (290),
doi:10.1097/
TA.0000000000001744
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DSS induced
colitis

Rat bone
marrow
derived
MSC

EV ultracentrifugation transfection
(EphB2)

male
Sprague-
Dawley

after the
intoxication
week at day
8 and 11

systemic 100 mg of EV
diluted in 100mL

DSS / TNBS
induced colitis

hUC-MSCs Exosome ExoQuick-TC transfection
(siTSG-6)

C57BL/6 male
mice

TNBS: 24h
after colon
lesions

intraperitoneal 200µg Exosome
mouse

DSS: 5 days
after
intoxication

intraperitoneal 200µg Exosome
mouse

LUNG Traumatic ALI Rat bone
marrow
derived
MSC

Exosome exosome EVtant/
centrifugation

overexpressed
plasmid
vectors (miR-
124-3p)

male
Sprague-
Dawley

30 min
before
procedure

sytemic 25 mg of
exosomes

I/R induced ALI Rat bone
marrow
derived
MSC

Exosome ultracentrifugation / male
Sprague-
Dawley

end of
procedure

sytemic 5 - 10 mg of
exosomes

Histone induced
ALI

Mice
Adypocytes
tissu
derived
MSC

Exosome exosome
precipitation kit

GW4869 (N-
Smase
inhibitor)

male C57BL/
6 N mice

ADCS
Injection
30min prior
to injury

sytemic 3 × 10'5 cells/mic

/ human
umbilical vein
endothelial
cells exposed
to histones

coculture
with
exosomes

/ /

HS induced
lung vascular
permeability

Human
bone
marrow
derived
MSC

EV ultracentrifugation / C57BL/6 male
mice

end of HS systemic 30 mg of EVs

vitro: Human
lung

coculture
with EV

/ /

161
/

/
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Results References

↘ edema,neutrophil
diapedesis and
proinflammatory cytokine
(IL-17, TNF-a, HMGB1,
CXCL1, MCP-1, IL-6, MIP-
1a, ). Immunomodulatory
effect.

Stone et al. (291), doi
10.1186/s12931-017-
0704-9

Ev ↘ histological lesions,
apoptosis, hepatic
enzymes releasing (AST,
ALT, BUN), NFkB and
ROS activity.
Immunomodulatory effect
(TNF-a, IL-1a, IL-1b, IL-6,
IL-12, or IFNg↘, and
CXCL1 or MCP-1 ↗).

Haga et al. (292), doi:
10.1002/lt.24770

hUC-MSC-EVs ↘
histologic lesions,
inflammation, neutrophil
infiltration, oxydative
stress, apoptosis, ALT,
AST, and ALP level. hUC-
MSC-Evs carry antioxidant
enzyme.

Yao et al. (293), doi:
10.1096/fj.201800131RR

Evs, ↘ histological lesions,
hepatic enzymes levels,
oxydative stress,
inflammation (infiltration

Nong et al. (294) https://
doi.org/10.1016/
j.jcyt.2016.08.002
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Organ Model Microparticles Priming CSM Model Administration

Origins Type Purification Timing Route Dose

microvascular
EC cells

I/R and ex vivo
lung perfusion
induced lung
injury

hUC-MSCs EV ultracentrifugation / C57BL/6 wild-
type mice

1 h before
ischemia

intratracheal MSCs or EVs
(1 × 10'6)

vitro 1: murine
iNKT cells and
macrophages
- vitro 2: mice
primary lung
microvascular
endothelial
cells

coculture
with EV

/ /

LIVER I/R induced liver
injury

Mouse
bone
marrow
derived
MSC

EV ultracentrifugation / C57BL/6 mice 30 min
before
ischemia

systemic 2 × 10'10 EV
diluted en 200µL

vitro: AML12
and hypoxia
culture

coculture
with EV

/ 1,8 ×10'8 EV

I/R induced liver
injury

hUC-MSCs EV ultracentrifugation / male
Sprague-
Dawley

/ systemic 10 mg/kg EV

vitro 1: human
LO2 cells -
vitro 2:
neutrophils
LPS activated

/ / 20 µg EV

I/R induced liver
injury

Human-
induced
pluripotent
stem cell

Exosomes ultrafiltration/
ultracentrifugation.

/ male
Sprague-
Dawley

end of
procedure

inferior veina
cave

600 µg suspended
in 400 µL
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TABLE 1 | Continued

Results References

cells,HMGB1, TNF-a and
IL-6↘). Protect hepatocyte
(apoptosis↘
proliferation↗).
hUCB-MSCs-derived
exosomes ↘ apoptosis in
vitro, histological lesions,
enzymatic release (AST,
ALT) and cytokines (TNF-
a, IL-6 and IL-1b↘). via
miR-1246 and GSK3b-
Wnt/b-catenin pathway
activation.

Xie et al. (295), https://
doi.org/10.1080/
15384101.2019.1689480

hUCB-MSCs-derived
exosomes ↘ histological
lesions, enzymatic release
and Th17/Treg ratio in
CD4+ T cells in vitro, via
the IL-6-gp130-STAT3
pathway

Xie et al. (296), 2019 doi:
10.1002/iub.2147

Evs ↘ inflammatory
response by decrease
CD154 expression on T
CD4+, via CCT2 and
NFAT1 signaling pathway.

Zheng et al. (297), doi:
10.1002/
advs.201903746

MSC-derived EV ↘ serum
transaminase levels,
hepatic necrosis,

Anger et al (298), doi:
10.1089/scd.2019.0085

(Continued)
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Organ Model Microparticles Priming CSM Model Administration
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derived
MSC

I/R induced liver
injury

hUC-MSCs Exosomes ultracentrifugation Transfection
with : miR-
1246 inhibitor

C57BL/6 mice 0h after
reperfusion

/ 2.5 × 10'12
exosome diluted in

500 µL

vitro: LO2
cells exposed
to hypoxia/
reoxygenation
(H/R)

coculture / /

I/R induced liver
injury

hUC-MSCs Exosomes exosome isolation
kit

/ C57BL/6 male
mice

0h after
reperfusion

systemic 10 mg/100 mL
exosomes

vitro: naïve
human CD4+
T cocultured
with LO2 and
tranfected
with IL-6
signal
transductor

coculture / /

I/R induced liver
injury

hUC-MSCs EV ultracentrifugation / C57BL/6 male
mice

0h after
reperfusion

systemic 100 µg/100 µL EV

vitro 1:
intrahepatic
mononuclear
cells - vitro 2:
CD4+ T

/ / /

I/R induced liver
injury

Human
bone
marrow

EV ultracentrifugation / C57BL/6
female mice

5 min before
procedure

systemic 1 x 10'9 EV/ 200µL
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TABLE 1 | Continued

Results References

transcription of
inflammation-associated
genes, and ↗ number of
Ki67-positive hepatocytes
EVs accumulated
specifically in the kidneys
of the mice with AKI
compared with the healthy
controls

Grange et al. (299), DOI:
10.3892/ijmm.2014.1663

MV ↘ apoptosis,
functionnal lesions, ↗
stimulating tubular
epithelial cell proliferation.

Gatti et al. (300), doi:
10.1093/ndt/gfr015

Exosomes ↘histological,
functionnal lesions,
apotosis, ↗ cells
proliferation, density of
peritubular capillars, M2
polarization, and anti-
inflammatory effects (IL-4,
IL-13↗, TNF-a,IFN-g ↘)

Ren et al. (301), https://
doi.org/10.1186/s13287-
020-01917-y

Exosomes ↘ histological,
functionnal lesions,
apoptosis , oxydative
stress, inflammation (TNF-
a, NF-kB, IL-1b, MIF, PAI-
1 and COX-2 ↘at 72h )

Lin et al. (302) https://
doi.org/10.1016/
j.ijcard.2016.04.061

miARN allow MV
therapeutics effects

Collino et al. (303). doi:
10.1681/
ASN.2014070710

(Continued)
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Origins Type Purification Timing Route Dose

derived
MSC

KIDNEY Glycerol
induced AKI

Human
bone
marrow
derived
MSC

EV ultracentrifugation / male CD1
nude mice

3 days after
injury

systemic 200 mg

vitro: Human
renal proximal
tubular
epitheial cells

coculture
with EV

/ 50 mg/mL EV

I/R induced AKI Human
bone
marrow
derived
MSC

MV ultracentrifugation / male
Sprague-
Dawley rat

end of
procedure

systemic 30 µg of MV

I/R induced AKI Human
amnion
epithelial cell
derived
exosomes

Exosomes ultracentrifugation / Male C57BL/
6j mice

end of
procedure

systemic 3 × 10'8 exosomes

vitro: HK-2
cells exposed
to hypoxia
during 48h

coculture
with EV

/ 1 × 10'8/ml
exosomes

I/R induced AKI Rat
Adypocytes
tissu
derived
MSC

Exosomes ultracentrifugation / male
Sprague-
Dawley rat

3h after
injury

systemic exosome (100 mg)],
and/or ADMSC
(1.2 × 10'6 cells)

Rhabdomyolisis
via glycerol
induced AKI

Human
bone
marrow
derived
MSC

MV ultracentrifugation Transfection
with
shRNAmiR
targeting
Drosha

SCID Mice 3 days after
injury

systemic 2.2×10'8MV diluted
in 150µL

vitro: tubular
epithelials
cells, for
C57BL/6
female mice

coculture
with MV

/ /
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TABLE 1 | Continued

istration Results References

e Dose

100 µg of MV
diluted in 0,5 mL

EV ↘ NK (and CX3CL1 -
TLR2) up-regulation. EV
action is allowed by
carriying ARN

Zou et al. (304), doi:
10.1089/hum.2016.057

/

/ MV without priming are
better to protect kidney
(Histological and
functionnal lesions ↘). MV
promote Treg proliferation.
Priming with INFg
modulate MV material
carrying and origin.

Kilpinen et al. (305),
http://dx.doi.org/
10.3402/jev.v2i0.21927

/

165 × 10'6
particules diluted in

120µL

EV population enriched in
exosomes ↘ histlogical
and functionals lesions
comparable with total EV
population. Enriched in
specific mRNAs (CCNB1,
CDK8, CDC6) in
comparaison with EV
population enriched in MV

Bruno et al. (306), doi:
10.1089/
ten.tea.2017.0069

/

100 µg of MV
diluted in 1mL

EV ↗ renal VEGF, ↘
fibrosis and HIF-1a. Rnase
treatement abrogate
benefits

Zou et al. (307), doi:8(10):
4289–4299.

/
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I/R induced AKI hUC-MSC EV ultracentrifugation / male
Sprague-
Dawley rat

end of
procedure

systemic

vitro: human
umbilical vein
endothelial
cells

coculture
with EV

/

I/R induced AKI hUC-MSC MV ultracentrifugation IFN-g during
24 or 48h

male
Sprague-
Dawley rat

end of
procedure

systemic

vitro: PBMC coculture
with MV

/

Rhabdomyolisis
via glycerol
induced AKI

Human
bone
marrow
derived
MSC

EV ultracentrifugation / SCID Mice 3 days after
injury

systemic

vitro: murine
epithelials cells

coculture
with
particules

/

I/R induced AKI hUC-MSC EV ultracentrifugation Rnase pre
treatement of
EV

male
Sprague-
Dawley rat

end of
procedure

systemic

vitro1: rat
tubular
epithelial cells

coculture
with EV

/

↗ mean: increase, and ↘ mean: decrease
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TABLE 2 | Overview of the applications of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in clinical studies.

Other IDs or
DOI

Start Date Locations Results, if
published

9881 September
8, 2020

Larkin Community
Hospital Miami,and
Hospital South Miami,
Florida, United States

Not Published

EXARDS October
2020

Ruijin Hospital,
Medical School of
Shanghai Jiaotong
University and
Shanghai, Shanghai,
China

Not Published

0582 September
2021

Mission Community
Hospital Panorama
City, California,
United States

Not Published

B-001 // doi:
0.1089/
cd.2020.0080.
pub 2020 May
2.

September
24, 2020

Helen Keller Hospital
Sheffield, Alabama,
United States, 35660|
St. Joseph Hospital
Heritage Fullerton,
California, United
States, 92835 |
Donald Guthrie
Foundation/ Robert
Packer Hospital
Sayre, Pennsylvania,
United States, 18810
| Covenant Health
Lubbock, Texas,

Safty profile |
Restore
oxygenation |
Downregulate
cytokine
storm |
Reconstitute
immunity
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Phases Enrollment Study Type Study
Designs

NCT04384445 A Phase I/II Randomized,
Double Blinded, Placebo
Trial to Evaluate the Safety
and Potential Efficacy of
Intravenous Infusion of Zofin
for the Treatment of
Moderate to SARS Related
to COVID-19 Infection vs
Placebo

Recruiting Covid19
Corona Virus
Infection
SARS
(Severe Acute
Respiratory
Syndrome)
Acute
Respiratory
Distress
Syndrome

Drug: ZofinTM
Versus
Placebo

Incidence of any
infusion associated
adverse events |
Incidence of Severe
Adverse Events Safety
| Survival Rate|Cytokine
Levels | D-dimer Levels
| C-reactive protein
Levels |Quantification
of the COVID-19 |
Improved Organ
Failure | Chest Imaging
Changes

Organicell
Regenerative
Medicine

Phase I /
II

20 Interventional Allocation:
Randomized
| Intervention
Model:
Parallel
Assignment |
Intervention
Model
Description:
parallel |
Masking:
Double|
Double blind
|Primary
Purpose:
Treatment

1

NCT04602104 A Multiple, Randomized,
Double-blinded, Controlled
Clinical Study of Allogeneic
Human Mesenchymal Stem
Cell Exosomes (hMSC-Exos)
Nebulized Inhalation in the
Treatment of Acute
Respiratory Distress
Syndrome

Not yet
recruiting

Acute
Respiratory
Distress
Syndrome

Biological:
Exosome of
MSC (High,
medium or
low dose)

Incidence of adverse
reaction | Murray lung
injury score | PaO2/
FiO2 | SOFA score |
ApachII score |
Number of deaths |
The number of days
that survivors were
offline for mechanical
ventilation | The
number of days the
survivor was out of ICU
| Incidence of
treatment emergent
adverse event

Ruijin Hospital /
Cellular Biomedicine
Group Ltd.

Phase I /
II

169 Interventional Allocation:
Randomized
|Intervention
Model:
Parallel
Assignment |
Masking:
Double
(Participant,
Investigator) |
Primary
Purpose:
Treatment |

M

NCT04798716 Mesenchymal Stem
Cell Exosomes for the
Treatment of COVID-19
Positive Patients With Acute
Respiratory Distress
Syndrome and/or Novel
Coronavirus Pneumonia

Not yet
recruiting

Covid19
Novel
Coronavirus
Pneumonia
Acute
Respiratory
Distress
Syndrome

Drug: MSC-
exosomes
delivered
intravenously
every other
day on an
escalating
dose: (2:4:8)
or (8:4:8) or
(8:8:8)

Measure and report
treatment-related-
adverse events |
Quantify safety of

ARDOXSO™ |
Tabulate and report
the number of IMV
days | Analyze and
report organ failure,
associated with ICU
mortality | Correlate
and analyze the SOFA
score| Record and
analyze respiratory
measures (Berlin
Score/PEEP) | Quantify
efficacy of
interventional exosome
therapy in COVID-19

AVEM HealthCare Phase I /
II

55 Interventional Allocation:
Randomized
|Intervention
Model:
Sequential
Assignment |
Masking:
Double
(Participant,
Care
Provider) |
Primary
Purpose:
Treatment

2

NCT04493242 Bone Marrow Mesenchymal
Stem Cell Derived
Extracellular Vesicles Infusion
Treatment for COVID-19
Associated Acute
Respiratory Distress
Syndrome (ARDS): A Phase
II Clinical Trial

completed Covid19
ARDS
Pneumonia,
Viral

Biological:
DB-001
Versus
Placebo

PaO2/FiO2 ratio | Time
to Recovery |
Incidence of Serious
Adverse Events | All-
cause Mortality |
(SARS-CoV-2)
Ribonucleic Acid (RNA)
Level | Viremia | CRP,
D-dimer, Ferritin, IL-6,
TNF-a | Immune Cell
Counts |SOFA scoring
|Standardized Quality
of Life Metric

Direct Biologics,
LLC

Phase II 120 Interventional Allocation:
Randomized
| Intervention
Model:
Parallel
Assignment |
Masking:
Triple
(Participant,
Care
Provider,
Investigator) |
Double-
blinded |

D
1
s
E
1
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TABLE 2 | Continued

ther IDs or
DOI

Start Date Locations Results, if
published

United States, 79410
| PRX Research
Mesquite, Texas,
United States, 75149

XCOVID February
15, 2020

Ruijin Hospital
Shanghai Jiao Tong
University School of
Medicine Shanghai,
Shanghai, China

Not Published

VID-19 EXO
ended

October 1,
2020

Medical Centre
Dinasty Samara,
Russian Federation

Not Published

0005 September
1, 2020

Fujian Medical
University, Fujian
Province, China

Not
Published

(Continued)
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Phases Enrollment Study Type Study
Designs

O

Primary
Purpose:
Treatment

NCT04276987 A Pilot Clinical Study on
Aerosol Inhalation of
the Exosomes Derived From
Allogenic
Adipose Mesenchymal Stem
Cells in the Treatment of
Severe Patients With Novel
Coronavirus Pneumonia

Completed Coronavirus Biological:
MSCs-derived
exosomes

Adverse reaction and
severe adverse
reaction |Time to
clinical improvement |
Number of patients
weaning from
mechanical ventilation |
Duration (days) of ICU
monitoring | Duration
(days) of vasoactive
agents usage |
Duration (days) of
mechanical ventilation
supply | Number of
patients with improved
organ failure | Rate of
mortality | (SOFA)
score | Biologicals
measure

Ruijin Hospital /
Shanghai Public
Health Clinical
Center Wuhan
Jinyintan Hospital,
Wuhan, China
Cellular Biomedicine
Group Ltd.

Phase I 24 Interventional Allocation:
N/A |
Intervention
Model:
Single Group
Assignment |
Masking:
None (Open
Label) |
Primary
Purpose:
Treatment

ME

NCT04602442 The Extended Protocol of
Evaluation of Safety and
Efficiency of Method of
Exosome Inhalation in
COVID-19 Associated Two-
Sided Pneumonia

Enrolling
by
invitation

Covid19
SARS-CoV-2
PNEUMONIA
COVID-19

Drug: EXO 1
inhalation
Drug: EXO 2
inhalation
Drug: Placebo
inhalation

Number of participants
with non-serious and
serious adverse events
during trial |Time to
clinical recovery |SpO2
concentration changes
| Chest Imaging
Changes | CRP |
Procalcitonin
concentration | Ferritin
concentration |
Creatinine
concentration |Urea
concentration

Clinics of the
Federal State
Budgetary
Educational
Institution SSMU
Samara Regional
Clinical Hospital V.D.
Seredavin

Phase II 90 Interventional Allocation:
Randomized
| Intervention
Model:
Parallel
Assignment|
Masking:
Double
(Participant,
Care
Provider) |
Primary
Purpose:
Other

CO
Ex

NCT04356300 Exosome of Mesenchymal
Stem Cells for Multiple
Organ Dysfuntion Syndrome
After Surgical Repaire of
Acute Type A Aortic
Dissection

Not yet
recruiting

Multiple
Organ Failure

Biological:
Exosome of
MSC

survival after
intervention|sequential
organ failure
assessment score|
interleukin-6|The
number of allergic
reactions|The number
of people who get
cancer|the effects on
kidney function|the
effects on liver function|
the effects on lung
function|the effects on
coagulation function|
the effects on central
nervous system

Fujian Medical
University

Not
Applicable

60 Interventional Allocation:
Randomized
| Intervention
Model:
Parallel
Assignment|
Masking:
Single
(Outcomes
Assessor)|
Primary
Purpose:
Treatment

20

Reaserch terms in Clinical Trials (https://clinicaltrials.gov/ct2/home) on August 25th 2021
Statues Conditions or disease Other Terms
All studies lung disease microvesicules

lung dysfunction exosomes
lung injury microparticules
acute lung injury extracellular vesicules
acute respiratory distress syndrom exosomes of mesemchymal cells
kidney disease MSC derived
kidney injury
kidney dysfunction
acute kidney injury
liver disease
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Frontiers in Immunology | www.frontiersin.org 23168
Regarding the potential beneficial effect of the miRNA
content in EVs in this pathology, a crucial role of exosomal
miR200b has been described by using heme oxygenase-1 (HO-
1)-modified bone marrow MSC-Exo, which overexpresses
miR200b. This miRNA targets the HMGB3 gene involved in
intestinal inflammation (284). Moreover, EVs overexpressing
miR-146a seem to exert better anti-inflammatory effects in an
experimental rat model of colitis (285). Furthermore, the study of
Wang et al. demonstrated a stronger therapeutic effect of human
umbilical cord (hUC)-MSC-derived exosomes that highly
expressed miR-326. Indeed, this miRNA played an important
role in the inhibition of the neddylation process that indirectly
activated NF-kB pro-inflammatory transcription factor (277).

5.2 MSC-EVs and ALI or ARDS
MSC-EVs have been extensively studied in septic ALI, including
in clinical trials (309) and, more recently, in COVID-19 patients
(Table 2). In the few models of ALI induced by THS, it was
demonstrated that bone marrow MSC-EVs can modulate
cytoskeletal signaling and attenuate lung vascular permeability
(290). Moreover, ADSC-MSC-EVs could decrease endothelial
damage via the PI3K/Akt signaling pathway (289). In a mouse
model of lung I/R injury, EV treatment significantly attenuated
lung dysfunction and injury by decreasing edema, neutrophil
infiltration, and myeloperoxidase levels. Moreover, significant
decreases in pro-inflammatory cytokines (IL-17, TNF-a, and
CXCL1) and HMGB1 were observed. An upregulation of KGF,
PGE2, and IL-10 in the bronchoalveolar fluid was also shown.
Finally, MSC-EVs significantly downregulated the iNKT-
produced IL-17 and the macrophage-produced HMGB1 and
TNF-a in an in vitro model of hypoxia/reoxygenation (291).
Moreover, as described previously, intestinal I/R is a common
clinical occurrence caused by a number of pathophysiological
contexts, including THS. ALI is a primary component of MOF
triggered by intestinal I/R. In a rat model of ALI induced by
occlusion/reperfusion of the superior mesenteric artery,
intravenous treatment by rat bone marrow MSC-derived
exosomes attenuated lung damage by decreasing apoptosis and
the pulmonary levels of pro-inflammatory cytokines such as
TNF-a, IL-6, and IL-1b, accompanied by a downregulation of
the expressions of TLR4 and NF-kB (288).

EVmiRNAs also play a role.miR-124-3p, abundantly expressed
in rat MSC-derived exosomes, inhibits the expression of the
purinergic receptor P2X ligand gated ion channel 7 (P2X7).
Inhibition of P2X7, which is overexpressed in traumatic ALI rats,
improves oxidative stress and decreases the levels of inflammatory
factors, includingTNF-a, IL-6, and IL-8, and increases IL-10 (287).
Furthermore, the transfer of MSC-EV miR-451 to macrophages in
vitronotonly inhibitsTNF-a andmacrophagemigration inhibitory
factor secretion but also represses their TLR signaling. This
repression allowed the mitochondrial transfer of MSC-EVs to
macrophages. All these immunomodulatory effects on
macrophages were exerted by different MSC-EV populations
(310). Altogether, these data indicate that MSC-EVs, by limiting
oxidative stress and vascular permeability and by downregulating
the activity of immune cells in the lungs, represent a novel
therapeutic option in the treatment of traumatic ALI.
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5.3 MSC-EVs and Acute Liver Injury
As for ALI, many studies have evaluated MSC-EVs in models of
hepatic injury induced by the administration of D-
galactosamine/TNF-a, various toxic drugs, or LPS. Systemic
administration of human MSC-EVs on hepatic I/R injury
suppressed not only hepatocyte necrosis and sinusoidal
congestion but also AST and ALT injury markers (294, 298,
311). Moreover, in a model of I/R-induced hepatic apoptosis,
hUC-MSC-EVs reduced neutrophil infiltration and, therefore,
their respiratory burst. This alleviated oxidative stress in
hepatic tissue (293). This suggests that MSC-EVs could reduce
hepatic injury by suppressing inflammatory responses (of TNF-a,
IL-6, and HMGB1) and attenuating the oxidative stress response
[by increasing glutathione, glutathione peroxidase, and superoxide
dismutase (SOD)] and apoptosis (by decreasing caspase-3 andBax)
(292, 294). hUC-MSC-EVs could induce anti-apoptotic and pro-
survival effects in a human liver cell line and ameliorated the I/R
injury-induced hepatic dysfunction inmice. This study highlighted
the crucial role of miR-1246 via the regulation of the GSK3b-Wnt/
b-catenin pathway to mediate these effects (295). Subsequently,
exosomes expressing miR-1246 had protective effects against
hepatic I/R by regulating Th17/Treg imbalance via the interaction
of miR-1246 and IL-6-gp130-STAT3 (296). Another team
described in an I/R mouse model that hUC-MSC-EVs
significantly modulated the membranous expression of CD154 of
intra-hepatic CD4+ T cells, which initiated the inflammatory
response in the liver and can aggravate liver I/R (297). As shown
in the few studies exploring the effects of treatment with MSC-EVs
after I/R, their capacity to inhibit immune cell activation (mainly
neutrophils) and pro-inflammatory cytokine release, aswell as their
capacity to attenuate oxidative stress and to inhibit hepatic cell
apoptosis,makesMSC-EVsa promising therapy to treat liver injury
following THS.
5.4 MSC-EVs and AKI
Many studies have shown the beneficial effects of the
administration of MSC-EVs in AKI (312). As in the previous
sections, only studies using models of I/R or rhabdomyolysis
were discussed since toxicity studies (cisplatin) are not relevant
to THS. The therapeutic effects of EVs are mediated by different
biological processes, including anti-apoptosis, anti-
inflammation, angiogenesis, and anti-fibrosis (303, 306, 307).
After systemic injection, labeled MSC-EVs accumulated
specifically in the kidneys of mice with AKI, but not in healthy
controls (299). This suggests a homing capacity of EV-derived
MSCs on the site of injury.

In an I/R-induced AKI mouse model, exosomes from human
amnion epithelial cells (hAEC-Exo) could improve animal
survival and renal function and induce M2 macrophage
polarization. This M1/M2 shift was associated with increases in
the IL-4 and IL-13 levels and decreases in the TNF-a and IFN-g
levels, which helped reduce the inflammatory response (301).
Similarly, EVs from ADSCs decreased the protein levels of NF-kB,
TNF-a, IL-1b, andMIF, as well as PAI-1 and COX-2 in the kidney
parenchyma, 72 h after I/R (302). Moreover, administration of
human Wharton jelly MSC-EVs also alleviated inflammation
Frontiers in Immunology | www.frontiersin.org 24169
(decreased TNF-a and increased IL-10 expressions in the kidney)
in the first 48 h, but also suppressed the expression of CX3CL1 (a
potent chemo-attractant factor formacrophages) anddecreased the
number of CD68+macrophages in the kidney (231). Several studies
suggest that the therapeutic effects of EVs can be mediated by
functionalmRNAs andmiRNAs (228, 300, 303).MSC-EVs express
high levels of miR-15a, miR-15b, and miR-16 that may modulate
CX3CL1 expression (231). The same team also described that the
numberofNKcells increased in the kidney after I/R injury. EVs also
decreased the percentage ofNK cells in ischemic kidney, suggesting
that MSC-EVs could alleviate kidney injury by regulating NK cells
(304). Several proteins expressed by both naive and IFN-g-primed
EV-MSCs, such as galectin-1 and galectin-3 described asmediators
of MSC T-cell immunosuppression, or the membrane markers
CD90andCD73are also associatedwithMSC-immunosuppressive
capacity (305). Finally, EV-MSCs contain anti-inflammatory and
anti-oxidative apolipoprotein A1 (ApoA1). ApoA1 is described to
have therapeutic effects in kidney injury, leading to the reduction of
serum creatinine levels, serum TNF-a and IL-1b levels, and tissue
MPO activity. Moreover, ApoA1 can suppress the expressions of
ICAM-1 and P-selectin in the endothelium, thus diminishing
neutrophil adherence (313). This literature, reduced here to I/R
and rhabdomyolysis injuries, indicates the benefit of treatmentwith
MSC-EVs of AKI by limiting the leukocyte chemoattraction and
activation through inducing a shift fromM1 toM2macrophages or
by decreasing pro-inflammatory and increasing anti-inflammatory
cytokine production. All these encouraging arguments suggest that
there is a potential interest in the use of MSC-EVs in the context
of THS.

5.5 MSC-EVs: A New Hope for the
Prevention of MOF?
The pathophysiology of THS-induced MOF is complex and still
not fully understood. The aim of most treatments currently used
in the clinic is to compensate for the function of the affected
organ with, for example, dialysis, parenteral nutrition, or
controlled ventilation and oxygenation. Limited options are
available to prevent the occurrence or limit the extent of organ
failure in THS. The imbalance between SIRS and CARS is a key
mechanism in MOF, but because it is at the crossroad of multiple
system dysfunctions, no unique physiological or molecular
therapeutic target can be identified. As shown in previous
sections, MSCs and their EVs have an important potential to
treat isolated organ failure through multiple intricate molecular
mechanisms that target notably inflammation and oxidative
stress. This is the reason why we believe that taking advantage
of the pleiotropic effects of MSC-EVs could be a precious new
approach in a pathophysiological situation as complex and
multifactorial as that of THS leading to MOF.
6 MSC-EVS: TOWARD A CLINICAL
GRADE PRODUCTION

MSC-EVs represent a great hope for the treatment of THS.
Their use can have important advantages, but unknowns
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persist. Although a number of preclinical studies have
explored the biology of MSC-EVs, only a few clinical trials
have been listed concerning acute injuries of isolated organs,
systemic immune dysfunctions, I/R injuries, or trauma and
MOF (Table 2). A significant increase has occurred with the
SARS-CoV-2 pandemic, and complete studies indicated that
the administration of MSC-EVs decreases systemic
inflammation and al lows restoration of pulmonary
oxygenation; most other studies are in progress.

Regarding the systemic administration of EVs, which
seems the most relevant in the context of THS-induced
MOF, although the biodistribution/homing of MSCs has
been explored, it is still poorly understood for EVs.
However, it was demonstrated that 70% of near-infrared
lipophilic dye-labeled human MSC-EVs accumulated in the
liver after systemic administration in healthy mice.
Interestingly, dendritic cell-derived EVs showed an
increased accumulation in the spleen, suggesting that the
homing pattern of EVs reflects those of their original cells
(314). On the other hand, the unpredictable nature of THS, as
well as the need for emergency administration of the
therapeutic product, requires the use of EVs from allogeneic
MSCs. It is known that the survival of allogeneic MSCs is
limited after administration, but during this time, they
continuously secrete soluble factors/EVs, adapted to the
pathophysiological context that they encounter. This is not
the case with EVs, but iterative administrations can be more
easily considered. Indeed, it will be a product already
prepared/qualified, immediately available, and easily stored
and transportable, allowing patients to be treated anywhere
without the need for nearby production facilities. In addition,
we hope that the lack of adaptability of EVs to the
pathophysiological context could be compensated by the use
of optimized priming upstream.

In addition, as has been the case with MSCs, there may be a
mismatch between the hope raised by exciting preclinical
publications and the ability to enter daily clinical practice.
These difficulties could result not only from differences
between human and animal species but also from the
heterogeneity of the products used. Variability in MSC-EVs
is associated with the variability of the cells from which they
are produced. The variability of MSCs arises from several key
factors such as the tissue origin (bone marrow, adipose tissue,
perinatal tissues, etc.), donor, culture condition media/
support (platelet lysate, fetal bovine serum, bioreactor,
priming by hypoxia, or cytokines), age (age of donor and
culture passage), or cryopreservation. Moreover, depending
on the therapeutic target, a strategic choice between primary
MSCs or cell line, native or modified, must be carefully
considered. Therefore, EVs could be selected based on the
advantages of MSC sourcing/efficacy. A study comparing the
protein profiles of MSC-EVs with the proteome profiles of EVs
from other cells showed a specific protein signature of MSC-
EVs, despite the huge diversity in the sources of MSCs or the
preparation methods of MSC-EVs. However, 22 proteins were
Frontiers in Immunology | www.frontiersin.org 25170
exclusively found in the bone marrow-derived MSC-EV
profiles. Identification of the functional markers of potency
and the development of easily deployable and standardized
methods of evaluation would benefit the field of EVs, as it did
for cell therapy, and in this study, it was also suggested that
several membrane and extracellular proteins (i.e., COL6A2 or
COL6A3 and THY1) could be used as a standard for the
quality control of production either in research or in clinical
settings (259). EVs can also be transformed/loaded (without
prior transformation of the producing MSCs) to improve their
targeting or their therapeutic properties. All these provide a
large field of possibilities for the clinical use of EVs (315).
Moreover, in most EV manufacturing processes, the
therapeutic product is composed of a continuum of different
types of vesicles (size and origin) and certain amounts of
soluble proteins that may participate in the biological and
therapeutic activity of the final product (Figure 4). In fact,
most of the studies described in the literature are based on
products that do not consist solely of EVs (due very often to
isolation by ultracentrifugation), but which contain a greater
or a lesser proportion of soluble proteins. The most effective
product could therefore be an “EV-enriched secretome.” In
preclinical studies, EVs are isolated using different techniques:
ultracentrifugation, tangential filtration, immunocapture, or
precipitation (252). However, not all of them are easy to
consider when moving to clinical grade production. Indeed,
although ultracentrifugation is the most widely used, it is
time-consuming and additional stages of purification
(washing and microfiltration) are generally necessary to
increase the purity of the EV products. Tangential flow
filtration, for example, already validated for industrial-scale
productions, seems more suitable. On the other hand,
specifically concerning MSCs, the culture media used for the
expansion phases are enriched with fetal calf serum or platelet
lysate, which contain large amounts of EVs that cannot be
distinguished or separated from MSC-derived EVs. To
overcome this problem, in many studies, the culture
medium is removed after the expansion of MSCs, rinsed,
and replaced by a medium without these additives during
the entire period of MSC secretion. The cellular stress
generated by starving must, however, be taken into
consideration since it generates modifications in the state of
the cells and, therefore, in the quality/functionality of the EVs
produced. On the other hand, the secretion times of the EVs,
and therefore the potential quantity of EVs recovered, are
limited. The alternatives for the clinic consist in the use of
serum-free or platelet lysate-free media (containing specific
cocktails of growth factors and additives), but these media are
very specific of a cell type and very expensive, which is
problematic for the large-scale production of conditioned
medium. Commercial “exosome-free” media also exist.
Depletions are performed by ultracentrifugation; however,
the levels of depletion are not optimal, with variations
depending on the centrifugation conditions and durations.
Likewise, tangential flow filtration appears to be a possible
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solution concerning the purification of culture media for
large-scale clinical productions.

Finally, from a regulatory point of view, EV-derived products
are classified as medicinal products. Within the framework of
medicinal products, EV-derived products are categorized as
“biological medicinal products” (Directive 2003/63/EC of June
25, 2003, amending Directive 2001/83/EC). However, MSC-EVs
could be subcategorized. When they originate from unmodified
primary cells or from genetically modified cells that do not
contain a transgene product (immortalized cells), they belong
to the biological medicinal product category, without any further
subcategory. In contrast, MSC-EVs containing a transgene
considered as a gene therapy product (e.g., recombinant
mRNA and miRNA) are classified as gene therapy products, a
subclass of advanced therapy medicinal products (ATMP). This
means that the active substance and mode of action of MSC-EVs
are decisive for their regulatory classification and can have
significant repercussions on the manufacturing process. The
use of primary MSCs may have some limitations for large
clinical-scale manufacturing due to their limited life span and
the donor-to-donor or batch-to-batch heterogeneity. Therefore,
EVs produced from immortalized MSCs could be the most
promising strategy to prevent MOF.
Frontiers in Immunology | www.frontiersin.org 26171
7 CONCLUSION/DISCUSSION

In recent years, a considerable number of studies have
contributed to a better understanding of the biology of EVs
and paved the way for their therapeutic use. In cases of isolated
organ injuries, MSC-EVs can help restore local homeostasis by
decreasing inflammation and oxidative stress, by having an anti-
apoptotic effect, or even inhibiting endotheliopathy. Locally
protecting the onset of organ damage is a means to prevent the
onset of SIRS and the depression of CARS at the systemic level,
which promote the development MOF.

This new therapeutic tool could revolutionize the field of cell
therapy because it opens the way to treatments that can be
administered as early as possible for the care of patients, not only
in civilian life but also in hostile contexts such as those
encountered in theaters of military operations.
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FIGURE 4 | MSC-EVs in THS, or how to apply recent knowledge at the service of those seriously injured. (A) In blue are the main factors modulating the production
of EVs. EVs in the center contain, depending on the priming, organelles, proteins, enzymes, RNA, and miR in variable quantities. In aquamarine are the possible main
pathways of the potential beneficial effects of EVs in THS models. The administration methods vary by model and must be explored. (B) Simplified consequences of
THS. Three loops (coagulopathy, inflammation, and endotheliopathy) are involved in the vicious circle leading to MOF. Cytokines of clinical interest are predictors of
the onset of MOF. IL-4, IL-6, IL-8, and TNF-a are significantly increased in trauma patients with MOF and not surviving it. Items circled in aquamarine are potential
targets for EV action. EVs, extracellular vesicles; MSC-EVs, mesenchymal stromal cell-derived extracellular vesicles; THS, traumatic hemorrhagic shock; MOF, multi-
organ failure; MPO, myeloperoxidase; MDA, malondialdehyde; SOD, superoxide dismutase; GF, growth factor; IL, interleukin.
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M, Franquesa M, Rosell A, et al. Potential of Extracellular Vesicle-Associated
TSG-6 From Adipose Mesenchymal Stromal Cells in Traumatic Brain Injury.
Int J Mol Sci (2020) 21(18):6761. doi: 10.3390/ijms21186761

275. Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, et al. Exosome Derived From
Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c
Attenuating Burn-Induced Excessive Inflammation. EBioMedicine (2016)
8:72–82. doi: 10.1016/j.ebiom.2016.04.030

276. Chen W, Huang Y, Han J, Yu L, Li Y, Lu Z, et al. Immunomodulatory Effects
of Mesenchymal Stromal Cells-Derived Exosome. Immunol Res (2016)
64:831–40. doi: 10.1007/s12026-016-8798-6

277. Wang G, Yuan J, Cai X, Xu Z, Wang J, Kofi Wiredu Ocansey D, et al.
HucMSC-Exosomes Carrying miR-326 Inhibit Neddylation to Relieve
Inflammatory Bowel Disease in Mice. Clin Transl Med (2020) 10(2):e113.
doi: 10.1002/ctm2.113

278. Yu T, Chu S, Liu X, Li J, Chen Q, Xu M, et al. Extracellular Vesicles Derived
From EphB2-Overexpressing Bone Marrow Mesenchymal Stem Cells
Ameliorate DSS-Induced Colitis by Modulating Immune Balance. Stem
Cell Res Ther (2021) 12:181. doi: 10.1186/s13287-021-02232-w

279. Yang J, Liu X-X, Fan H, Tang Q, Shou Z-X, Zuo D-M, et al. Extracellular
Vesicles Derived From Bone Marrow Mesenchymal Stem Cells Protect
Against Experimental Colitis via Attenuating Colon Inflammation,
Oxidative Stress and Apoptosis. PloS One (2015) 10:e0140551.
doi: 10.1371/journal.pone.0140551

280. Cao L, Xu H, Wang G, Liu M, Tian D, Yuan Z. Extracellular Vesicles Derived
From Bone Marrow Mesenchymal Stem Cells Attenuate Dextran Sodium
Sulfate-Induced Ulcerative Colitis by Promoting M2 Macrophage
Polarization. Int Immunopharmacol (2019) 72:264–74. doi: 10.1016/
j.intimp.2019.04.020

281. Heidari N, Abbasi-Kenarsari H, Namaki S, Baghaei K, Zali MR, Khaligh SG,
et al. Adipose-Derived Mesenchymal Stem Cell-Secreted Exosome Alleviates
Dextran Sulfate Sodium-Induced Acute Colitis by Treg Cell Induction and
Inflammatory Cytokine Reduction. J Cell Physiol (2021) 236:5906–20.
doi: 10.1002/jcp.30275

282. Mao F, Wu Y, Tang X, Kang J, Zhang B, Yan Y, et al. Exosomes Derived
From Human Umbilical Cord Mesenchymal Stem Cells Relieve
Inflammatory Bowel Disease in Mice. BioMed Res Int (2017) 2017:
e5356760. doi: 10.1155/2017/5356760

283. Chen Q, Duan X, Xu M, Fan H, Dong Y, Wu H, et al. BMSC-EVs Regulate
Th17 Cell Differentiation in UC via H3k27me3. Mol Immunol (2020)
118:191–200. doi: 10.1016/j.molimm.2019.12.019

284. Sun D, Cao H, Yang L, Lin L, Hou B, Zheng W, et al. MiR-200b in Heme
Oxygenase-1-Modified Bone Marrow Mesenchymal Stem Cell-Derived
Exosomes Alleviates Inflammatory Injury of Intestinal Epithelial Cells by
Targeting High Mobility Group Box 3. Cell Death Dis (2020) 11:1–18.
doi: 10.1038/s41419-020-2685-8

285. Wu H, Fan H, Shou Z, Xu M, Chen Q, Ai C, et al. Extracellular Vesicles
Containing miR-146a Attenuate Experimental Colitis by Targeting TRAF6
and IRAK1. Int Immunopharmacol (2019) 68:204–12. doi: 10.1016/
j.intimp.2018.12.043

286. Yang S, Liang X, Song J, Li C, Liu A, Luo Y, et al. A Novel Therapeutic
Approach for Inflammatory Bowel Disease by Exosomes Derived From
Human Umbilical Cord Mesenchymal Stem Cells to Repair Intestinal Barrier
via TSG-6. Stem Cell Res Ther (2021) 12:315. doi: 10.1186/s13287-021-02404-8

287. Li Q-C, Liang Y, Su Z-B. Prophylactic Treatment With MSC-Derived
Exosomes Attenuates Traumatic Acute Lung Injury in Rats. Am J Physiol
Lung Cell Mol Physiol (2019) 316:L1107–17. doi: 10.1152/ajplung.
00391.2018

288. Liu J, Chen T, Lei P, Tang X, Huang P. Exosomes Released by Bone Marrow
Mesenchymal Stem Cells Attenuate Lung Injury Induced by Intestinal
Ischemia Reperfusion via the TLR4/NF-kb Pathway. Int J Med Sci (2019)
16:1238–44. doi: 10.7150/ijms.35369

289. Mizuta Y, Akahoshi T, Guo J, Zhang S, Narahara S, Kawano T, et al.
Exosomes From Adipose Tissue-Derived Mesenchymal Stem Cells
Ameliorate Histone-Induced Acute Lung Injury by Activating the PI3K/
Frontiers in Immunology | www.frontiersin.org 34179
Akt Pathway in Endothelial Cells. Stem Cell Res Ther (2020) 11:508.
doi: 10.1186/s13287-020-02015-9

290. Potter DR, Miyazawa BY, Gibb SL, Deng X, Togaratti PP, Croze RH, et al.
Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate
Pulmonary Vascular Permeability and Lung Injury Induced by
Hemorrhagic Shock and Trauma. J Trauma Acute Care Surg (2018)
84:245–56. doi: 10.1097/TA.0000000000001744

291. Stone ML, Zhao Y, Robert Smith J, Weiss ML, Kron IL, Laubach VE, et al.
Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Lung
Ischemia-Reperfusion Injury and Enhance Reconditioning of Donor Lungs After
Circulatory Death. Respir Res (2017) 18:212. doi: 10.1186/s12931-017-0704-9

292. Haga H, Yan IK, Borrelli DA, Matsuda A, Parasramka M, Shukla N, et al.
Extracellular Vesicles From Bone Marrow–Derived Mesenchymal Stem Cells
Protect Against Murine Hepatic Ischemia/Reperfusion Injury. Liver Transpl
(2017) 23:791–803. doi: 10.1002/lt.24770

293. Yao J, Zheng J, Cai J, Zeng K, Zhou C, Zhang J, et al. Extracellular Vesicles
Derived From Human Umbilical Cord Mesenchymal Stem Cells Alleviate
Rat Hepatic Ischemia-Reperfusion Injury by Suppressing Oxidative Stress
and Neutrophil Inflammatory Response. FASEB J (2019) 33:1695–710.
doi: 10.1096/fj.201800131RR

294. Nong K,WangW, Niu X, Hu B, Ma C, Bai Y, et al. Hepatoprotective Effect of
Exosomes From Human-Induced Pluripotent Stem Cell–Derived
Mesenchymal Stromal Cells Against Hepatic Ischemia-Reperfusion Injury
in Rats. Cytotherapy (2016) 18:1548–59. doi: 10.1016/j.jcyt.2016.08.002

295. Xie K, Liu L, Chen J, Liu F. Exosomes Derived From Human Umbilical Cord
Blood Mesenchymal Stem Cells Improve Hepatic Ischemia Reperfusion
Injury via Delivering miR-1246. Cell Cycle (2019) 18:3491–501.
doi: 10.1080/15384101.2019.1689480

296. Xie K, Liu L, Chen J, Liu F. Exosomal miR-1246 Derived From Human
Umbilical Cord Blood Mesenchymal Stem Cells Attenuates Hepatic
Ischemia Reperfusion Injury by Modulating T Helper 17/Regulatory T
Balance. IUBMB Life (2019) 71:2020–30. doi: 10.1002/iub.2147

297. Zheng J, Lu T, Zhou C, Cai J, Zhang X, Liang J, et al. Extracellular Vesicles
Derived From Human Umbilical Cord Mesenchymal Stem Cells Protect
Liver Ischemia/Reperfusion Injury by Reducing CD154 Expression on CD4+
T Cells via CCT2. Adv Sci (2020) 7:1903746. doi: 10.1002/advs.201903746

298. Anger F, Camara M, Ellinger E, Germer C-T, Schlegel N, Otto C, et al.
Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Improve
Liver Regeneration After Ischemia Reperfusion Injury in Mice. Stem Cells
Dev (2019) 28:1451–62. doi: 10.1089/scd.2019.0085

299. Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C, et al.
Biodistribution of Mesenchymal Stem Cell-Derived Extracellular Vesicles in
a Model of Acute Kidney Injury Monitored by Optical Imaging. Int J Mol
Med (2014) 33:1055–63. doi: 10.3892/ijmm.2014.1663

300. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, et al.
Microvesicles Derived From Human Adult Mesenchymal Stem Cells Protect
Against Ischaemia-Reperfusion-Induced Acute and Chronic Kidney Injury.
Nephrol Dial Transplant (2011) 26:1474–83. doi: 10.1093/ndt/gfr015

301. Ren Y, Chen Y, Zheng X, Wang H, Kang X, Tang J, et al. Human Amniotic
Epithelial Cells Ameliorate Kidney Damage in Ischemia-Reperfusion Mouse
Model of Acute Kidney Injury. Stem Cell Res Ther (2020) 11:410.
doi: 10.1186/s13287-020-01917-y

302. Lin K-C, Yip H-K, Shao P-L, Wu S-C, Chen K-H, Chen Y-T, et al. Combination
of Adipose-Derived Mesenchymal Stem Cells (ADMSC) and ADMSC-Derived
Exosomes for Protecting Kidney From Acute Ischemia–Reperfusion Injury. Int J
Cardiol (2016) 216:173–85. doi: 10.1016/j.ijcard.2016.04.061

303. Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P, et al. AKI Recovery
Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying
MicroRNAs. JASN (2015) 26:2349–60. doi: 10.1681/ASN.2014070710

304. Zou X, Gu D, Zhang G, Zhong L, Cheng Z, Liu G, et al. NK Cell Regulatory
Property is Involved in the Protective Role of MSC-Derived Extracellular
Vesicles in Renal Ischemic Reperfusion Injury. Hum Gene Ther (2016)
27:926–35. doi: 10.1089/hum.2016.057

305. Kilpinen L, Impola U, Sankkila L, Ritamo I, Aatonen M, Kilpinen S, et al.
Extracellular Membrane Vesicles From Umbilical Cord Blood-Derived MSC
Protect Against Ischemic Acute Kidney Injury, a Feature That is Lost After
Inflammatory Conditioning. J Extracell Vesicles (2013) 2:21927. doi: 10.3402/
jev.v2i0.21927
September 2021 | Volume 12 | Article 749659

https://doi.org/10.1089/scd.2013.0479
https://doi.org/10.3390/ijms21186761
https://doi.org/10.1016/j.ebiom.2016.04.030
https://doi.org/10.1007/s12026-016-8798-6
https://doi.org/10.1002/ctm2.113
https://doi.org/10.1186/s13287-021-02232-w
https://doi.org/10.1371/journal.pone.0140551
https://doi.org/10.1016/j.intimp.2019.04.020
https://doi.org/10.1016/j.intimp.2019.04.020
https://doi.org/10.1002/jcp.30275
https://doi.org/10.1155/2017/5356760
https://doi.org/10.1016/j.molimm.2019.12.019
https://doi.org/10.1038/s41419-020-2685-8
https://doi.org/10.1016/j.intimp.2018.12.043
https://doi.org/10.1016/j.intimp.2018.12.043
https://doi.org/10.1186/s13287-021-02404-8
https://doi.org/10.1152/ajplung.00391.2018
https://doi.org/10.1152/ajplung.00391.2018
https://doi.org/10.7150/ijms.35369
https://doi.org/10.1186/s13287-020-02015-9
https://doi.org/10.1097/TA.0000000000001744
https://doi.org/10.1186/s12931-017-0704-9
https://doi.org/10.1002/lt.24770
https://doi.org/10.1096/fj.201800131RR
https://doi.org/10.1016/j.jcyt.2016.08.002
https://doi.org/10.1080/15384101.2019.1689480
https://doi.org/10.1002/iub.2147
https://doi.org/10.1002/advs.201903746
https://doi.org/10.1089/scd.2019.0085
https://doi.org/10.3892/ijmm.2014.1663
https://doi.org/10.1093/ndt/gfr015
https://doi.org/10.1186/s13287-020-01917-y
https://doi.org/10.1016/j.ijcard.2016.04.061
https://doi.org/10.1681/ASN.2014070710
https://doi.org/10.1089/hum.2016.057
https://doi.org/10.3402/jev.v2i0.21927
https://doi.org/10.3402/jev.v2i0.21927
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Valade et al. MSC-EVs Therapeutic Potential in THS
306. Bruno S, Tapparo M, Collino F, Chiabotto G, Deregibus MC, Soares
Lindoso R, et al. Renal Regenerative Potential of Different Extracellular
Vesicle Populations Derived From Bone Marrow Mesenchymal Stromal
Cells. Tissue Eng Part A (2017) 23:1262–73. doi: 10.1089/ten.TEA.
2017.0069

307. Zou X, Gu D, Xing X, Cheng Z, Gong D, Zhang G, et al. Human
Mesenchymal Stromal Cell-Derived Extracellular Vesicles Alleviate Renal
Ischemic Reperfusion Injury and Enhance Angiogenesis in Rats. Am J Transl
Res (2016) 8:4289–99.

308. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran Sulfate
Sodium (DSS)-Induced Colitis in Mice. Curr Protoc Immunol (2014)
104:15.25.1–15.25.14. doi: 10.1002/0471142735.im1525s104

309. Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, et al.
Treatment With Allogeneic Mesenchymal Stromal Cells for Moderate to
Severe Acute Respiratory Distress Syndrome (START Study): A Randomised
Phase 2a Safety Trial. Lancet Respir Med (2019) 7:154–62. doi: 10.1016/
S2213-2600(18)30418-1

310. Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, et al.
Mesenchymal Stem Cells Use Extracellular Vesicles to Outsource Mitophagy
and Shuttle microRNAs. Nat Commun (2015) 6:8472. doi: 10.1038/
ncomms9472

311. Damania A, Jaiman D, Teotia AK, Kumar A. Mesenchymal Stromal Cell-
Derived Exosome-Rich Fractionated Secretome Confers a Hepatoprotective
Effect in Liver Injury. Stem Cell Res Ther (2018) 9:31. doi: 10.1186/s13287-
017-0752-6

312. Fazekas B, Griffin MD. Mesenchymal Stromal Cell–Based Therapies for
Acute Kidney Injury: Progress in the Last Decade. Kidney Int (2020)
97:1130–40. doi: 10.1016/j.kint.2019.12.019
Frontiers in Immunology | www.frontiersin.org 35180
313. Shi N, Wu M-P. Apolipoprotein A-I Attenuates Renal Ischemia/Reperfusion
Injury in Rats. J BioMed Sci (2008) 15:577–83. doi: 10.1007/s11373-008-
9258-7

314. Wiklander OPB, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I,
et al. Extracellular Vesicle In Vivo Biodistribution is Determined by Cell
Source, Route of Administration and Targeting. J Extracell Vesicles (2015)
4:26316. doi: 10.3402/jev.v4.26316

315. Fais S, O’Driscoll L, Borras FE, Buzas E, Camussi G, Cappello F, et al.
Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in
Nanomedicine. ACS Nano (2016) 10:3886–99. doi: 10.1021/acsnano.5b08015

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Valade, Libert, Martinaud, Vicaut, Banzet and Peltzer. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
September 2021 | Volume 12 | Article 749659

https://doi.org/10.1089/ten.TEA.2017.0069
https://doi.org/10.1089/ten.TEA.2017.0069
https://doi.org/10.1002/0471142735.im1525s104
https://doi.org/10.1016/S2213-2600(18)30418-1
https://doi.org/10.1016/S2213-2600(18)30418-1
https://doi.org/10.1038/ncomms9472
https://doi.org/10.1038/ncomms9472
https://doi.org/10.1186/s13287-017-0752-6
https://doi.org/10.1186/s13287-017-0752-6
https://doi.org/10.1016/j.kint.2019.12.019
https://doi.org/10.1007/s11373-008-9258-7
https://doi.org/10.1007/s11373-008-9258-7
https://doi.org/10.3402/jev.v4.26316
https://doi.org/10.1021/acsnano.5b08015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Paula Barbim Donate,

University of São Paulo, Brazil

Reviewed by:
Fataneh Tavasolian,

Tarbiat Modares University, Iran
Wei Seong Toh,

National University of Singapore,
Singapore

*Correspondence:
Ana Marı́a Vega-Letter

avega@uandes.cl
Patricia Luz-Crawford

pluz@uandes.cl

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 01 September 2021
Accepted: 14 October 2021

Published: 01 November 2021

Citation:
Lara-Barba E, Araya MJ,

Hill CN, Bustamante-Barrientos FA,
Ortloff A, Garcı́a C, Galvez-Jiron F,

Pradenas C, Luque-Campos N,
Maita G, Elizondo-Vega R, Djouad F,
Vega-Letter AM and Luz-Crawford P

(2021) Role of microRNA Shuttled
in Small Extracellular Vesicles
Derived From Mesenchymal

Stem/Stromal Cells for
Osteoarticular Disease Treatment.

Front. Immunol. 12:768771.
doi: 10.3389/fimmu.2021.768771

REVIEW
published: 01 November 2021

doi: 10.3389/fimmu.2021.768771
Role of microRNA Shuttled in Small
Extracellular Vesicles Derived From
Mesenchymal Stem/Stromal Cells for
Osteoarticular Disease Treatment
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Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are
chronic autoimmune/inflammatory and age-related diseases that affect the joints and other
organs for which the current therapies are not effective. Cell therapy using mesenchymal
stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and
tissue differentiation capacity. Several experimental studies in numerous diseases have
demonstrated the MSCs’ therapeutic effects. However, MSCs have shown heterogeneity,
instability of stemness and differentiation capacities, limited homing ability, and various
adverse responses such as abnormal differentiation and tumor formation. Recently,
acellular therapy based on MSC secreted factors has raised the attention of several
studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived
fromMSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively
mimic their impact in target cells. Thebiological effectsof sEVscriticallydependon their cargo,
where sEVs-embeddedmicroRNAs (miRNAs) are particularly relevant due to their crucial role
in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs
derived fromMSCsand theirmiRNAcargoon target cells associatedwith thepathologyofRA
and OA and their potential therapeutic impact.
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INTRODUCTION

An excessively prolonged imbalance of the immune system
response can lead to a vast array of inflammatory and
autoimmune disorders. Moreover, genetic predisposition and
epigenetic regulations, including environmental factors and
age, promote autoimmune, inflammatory, and degenerative
diseases development (1). These illnesses imply a high
economic burden for the healthcare system and those who
suffer from them (2, 3). Osteoarticular diseases (OD), such as
osteoarthritis (OA), and rheumatoid arthritis (RA), have raised
particular concern in the last decades due to the increase of
medical consults. They affect roughly 23% of the population over
40 worldwide for knee OA (the most common articulation
affected by OA) (4, 5), and around 0.5% of the worldwide
population for RA (6). Moreover, both OA and RA cause a
great deal of pain and discomfort to the patients, impacting their
quality of life (7). Without a cure for OD, patients rely mainly on
non-steroidal anti-inflammatory drugs (NSAIDs), analgesics,
and glucocorticoids as the primary options to manage the
symptoms (8, 9). Unfortunately, these treatments lack disease-
and structural-modifying capabilities and even worse, their
prolonged use is associated with severe side effects (9, 10).

Thus, alternative therapies are still needed to treat
autoimmune/inflammatory and degenerative diseases like OA
and RA. Both diseases are mainly defined by the loss of articular
cartilage and are known to affect people of all races, genders, and
ages (11, 12). Numerous therapeutic efforts have been made to
restore the affected joints, including tissue engineering to
promote tissue regeneration. Recently, cell-based therapies
have had a considerable rise, such as the regulatory T cell
therapy. However, their high cost and the technical difficulties in
producing off-the-counter cell therapies remain significant hurdles
for their clinical application (13). Three types of cell treatment are
used in clinical trials for OA or degenerative environments;
articular chondrocytes, meniscal fibrochondrocytes, and
mesenchymal stem/stromal cells (MSCs), where the latter has
shown encouraging results (11, 14–17). MSCs are multipotent
stem cells of mesodermal origin that can be defined as a cell
population with the hallmark self-renewal properties and
differentiation into chondrogenic, osteogenic, and adipogenic
lineages (18). Although therapy using MSCs has achieved
significant progress, stem cell-based therapies have not fulfilled
the initial promise. Some remaining drawbacks include the
inconveniences associated with high costs and potential side
effects, leading to inconsistency among preclinical and clinical
trials (19).

In recent years, the therapeutic benefit of MSCs has been
attributed to their functions through cell–to–cell contact and,
more prominently, paracrine communication. The main
mediators of paracrine communication are small extracellular
vesicles (sEVs), which play an essential role as an alternative
mechanism by which MSCs regulate different biological
processes (20, 21). sEVs are heterogeneous particles that are
delimited by a lipid bilayer membrane, whose primary function
is to act as vehicles of cellular communication, transporting and
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transferring several bioactive molecules, such as proteins,
peptides, lipids, messenger RNA (mRNA), and microRNA
(miRNA) (22). miRNAs are small 20–22-nucleotide-long non-
coding RNAs, which mediate post-transcriptional gene silencing
by binding to the 3’-untranslated region (UTR) or open reading
frame (ORF) region of target mRNAs (23) unpairing protein
translation and causing a rapid tuning of cell fate decisions in
response to environmental cues (24). Although sEVs can carry
different types of cargo, increasing evidence points at miRNAs as
significant mediators for the effects of these vesicles over the
target cells (25, 26). Noteworthy, miRNAs regulate the immune
system and signaling pathways related to extracellular matrix
synthesis, chondrocyte survival, and proliferation (27–29). In
addition, the auspicious use of sEVs as “cell-free cellular
therapies’’ provides substantial advantages in contrast to
whole-cell therapy, such as their easy handling and minimizing
the risks of rejection (30). This review summarizes the current
knowledge of MSC derived sEVs (MSC-sEVs) and their miRNA
cargo as a potential and attractive substitute for treating
autoimmune/inflammatory and degenerative disorders.
MSC-BASED THERAPY FOR
OD TREATMENT

MSCs are multipotent fibroblast-like cells of mesodermal origin
that have been described in several mammals, including humans
and mice (31). According to the International Society of Cell
Therapy (ISCT), three major criteria define MSCs: their capacity
to adhere to plastic surfaces under culture conditions (32), their
ability to self-renew and differentiate toward mesodermal
lineages, such as adipogenic, chondrogenic and osteogenic (33)
lineages, as well as the expression of surface markers CD105,
CD73, and CD90 in the absence of hematopoietic markers
including CD45, CD34, CD14 or CD11b, CD19, and HLA‐DR
(18, 34). These cells are found in various tissues, including bone
marrow, adipose tissue, dental pulp, endometrium, amniotic
fluid, placenta, and umbilical cord, among others (35).
However, bone marrow and adipose tissues represent the most
common sources for MSCs isolation because of their availability
(36–47).

MSCs display a wide variety of biological functions, such as
secretory (48), immunomodulatory (49) and homing (50)
properties, representing a stem cell population with
demonstrable progenitor cell functionality (33, 51) and a
promising candidate for cell-based therapies. Illustrating this,
ClinicalTrial.gov (https://clinicaltrials.gov/) lists 10406 phase I or
II trials using MSCs in skin, bone, cartilage, heart, kidney, lung,
liver, diabetes, immune/autoimmune diseases and even for
COVID-19. Among these trials, 222 registered studies are
using MSCs for OA and 55 for RA. OD are well–documented
candidates for MSC treatment. Recent studies have shown that
OA patients treated with an intra-articular injection of MSCs
display a substantial enhancement in cartilage coverage and
quality, relieving pain, ameliorating disability, and significantly
November 2021 | Volume 12 | Article 768771

https://clinicaltrials.gov/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lara-Barba et al. miRNA From MSC-sEVs in OD
improving their quality of life (11, 12, 52, 53). Similarly, a phase
Ia clinical trial in RA demonstrated the reduction of pro-
inflammatory cytokines in patients injected with MSCs and
revealed no short-term safety concerns (54). This data supports
the potential of MSCs as an effective treatment for OA and
RA patients.

Several studies have shown that MSCs can replace several
damaged tissues in vivo. Mirza and collaborators showed that
undifferentiated MSCs seeded on a graft were able to grow and
restore a thick multicellular layer mimicking mature vascular
tissue (55), whereas Sheng and collaborators were able to
successfully transplant MSCs and regenerating sweat glands in
patients in vivo (55, 56). Previous studies have demonstrated that
MSCs can regulate the inflammatory response by suppressing
mononuclear cells and promoting anti-inflammatory subsets
from innate and adaptive immunity, including T-cells (57, 58).
It has been well described that MSCs regulate T-cells activation
and proliferation without the need for the cell to cell contact,
suggesting the involvement of secreted soluble factors as the
mechanism of action (59, 60). Additionally, MSCs negatively
regulate natural killer cells (NK) activity, dendritic cells (DC)
maturation, and B-cells proliferation while promoting Treg
induction [Reviewed in (61, 62)]. It has also been shown that
one of the hallmarks of MSC therapeutic potential is the
regulation of cytokine production, including IFN-g, TNF-a,
and IL-10 (62). By modulating different immune cells involved
in autoimmune diseases’ pathogenesis, MSCs have a promising
therapeutic potential. Although some mechanisms require the
cell to cell contact, MSCs secretome seems to mediate most of
their therapeutic effects in several pathologies, including OD
(63, 64).

In the last few years, several studies suggest that MSC
therapies in clinical applications do not show severe adverse
effects showing promising therapeutic benefits (65). Nonetheless,
the clinical application of MSCs and the fast development of
commercial products show contradicting outcomes in clinical
application and unsatisfactory therapeutic effects, primarily due
to their low survival and homing capacity in vivo (19). Site-
specific injection seems to be better to obtain more efficiency
results [Reviewed in (66, 67)]. Therefore, to use MSCs as a
successful treatment, these difficulties must be overcome. The
most critical challenges are donor heterogeneity, stemness
stability and differentiation capacities, limited expansion
capacities, homing capacity, and rejection risks (68). In this
regard, their derivatives including extracellular vesicles come as
a promising solution as a cell-free based therapy due to their role
as molecule delivery vehicles that mimic the effects of the parent
on the target cell (66).
MSC-DERIVED SMALL EXTRACELLULAR
VESICLES AS THERAPEUTIC TOOLS TO
TREAT OSTEOARTICULAR DISEASES

Extrace l lu lar ves ic les (EVs) are membrane-bound
nanostructures released that act as essential mediators of cell-
Frontiers in Immunology | www.frontiersin.org 3183
to-cell communication under physiological and pathological
conditions (69). According to their size, EVs can be classified
as apoptotic bodies (more than 1000nm), microvesicles (between
40-1000nm), and exosomes (50-200nm) (70). EVs can be
generated directly by budding from the plasma membrane
(microvesicles) or after fusion of multivesicular bodies (related
to the endocytic pathway) with the plasma membrane to release
intraluminal vesicles (exosomes). EVs are normally obtained by
differential centrifugation protocols and the exosome enriched
fraction also contains small microvesicles (smVs) commonly
referred to as small extracellular vesicles (sEVs) (71, 72). sEVs
can be further characterized by the expression of exosome-
associated markers such as TSG101, ALIX, and tetraspanin
proteins such as CD9, CD63 or CD81 (70). Released sEVs can
either be readily taken up by neighboring or by distant cells due
to their ability to travel through body fluids and mimic the parent
cell’s effect on the target cell (70). Due to the natural role of sEVs
in cell-to-cell communication, they are readily taken up through
phagocytosis, micropinocytosis, and endocytosis mediated by
lipid raft, caveolin or clathrin (73, 74). Although sEVs can be
delivered to any cell type, they are internalized in a highly cell
type-specific manner that depends on recognizing typical sEV
surface molecules by the cell or tissue, making them ideal
therapeutic delivery systems [Reviewed in (74)].

A substantial advantage of using sEVs as therapeutic carriers
is that they are nearly non-immunogenic and are capable of
homing to distant tissues where the inflammation is located (75,
76) Indeed, mice injected with both wild-type and engineered
sEVs showed no toxicity nor a significant immune response,
further adding to the safety of sEV based therapies (77).
However, the delivery and the frequency of sEVs injection on
patients still needs to be addressed, in order to determine the
most efficient strategy to obtain positive clinical outcomes.

In preclinical models, it has been described that MSCs-sEVs
inhibit TNF-a induced collagenase activity and promote
cartilage regeneration in chondrocytes derived from OA
patients in vitro (75, 76). Moreover, MSCs-sEVs significantly
improve OA progression by inhibiting cartilage degeneration in
the collagenase-induced OA murine model (78). MSCs-sEVs
were also shown to enhance the production of immature DCs
that secrete IL-10, which are involved in suppressing
inflammatory T-cell responses (76, 79, 80). On the other hand,
Zhu and colleagues demonstrated that sEVs could reduce
arthritis index, leukocyte infiltration, and, most importantly,
destruction of the joint in a CIA mice model. These sEVs
lowered Th1 and Th17 cells’ frequencies through miRNA
targeting of STAT3 and T-bet, having a potential role in
treating arthritis (81). Munir and colleagues also proved that
treating CIA in mice with MSCs decreased the severity of the
disease by dampening the pathogenic immune response. Mice
that received this treatment had reduced IL-6 and TNF-a,
increased IL-10 in their joints and increased the frequency of
Tregs in their spleen and lymph nodes, and a lower Th1:Th17
ratio (66). Other studies have demonstrated that sEVs can
decrease the clinical signs of inflammation present in the CIA
model by polarizing B lymphocytes into Breg-like cells (82).
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Therefore, evidence supports the repairing properties of MSCs-
sEVs in joint tissue, especially after intra-articular administration
(83). These and other preclinical studies of MSCs-sEVs show
that these potential treatments are safe and scalable for clinical
application (20).

Since phase III clinical trials have shown inconsistent results
in RA and OA without cartilage regeneration despite the
promising preclinical studies (52, 84), their derived sEVs could
also display conflicting results for RA and OA treatment. Several
techniques to improve MSCs therapy have been recommended
to overcome these issues [Reviewed in (85)]. For example,
hypoxia preconditioning and 3D culture can increase the
production of pro-chondrogenic factors (86). Additionally,
sEVs action can be strengthened by modifying their specific
cargo (87, 88), or by treatment with immunosuppressive
cytokines, such as IL-10 (89), enhancing their anti-
inflammatory and chondroprotective properties. Moreover, it
has been shown that the genetic engineering of MSCs affects their
derived sEVs, improving their immunosuppressive and
chondroprotective abilities (87), where sEVs demonstrated to
enhance chondrogenesis and suppress cartilage degradation (88).

The therapeutic effect of sEVs in the target cell is directly
dependent on their cargo, which can be composed of a wide variety
of molecules, including proteins, peptides, lipids, and several
nucleic acids such as DNA, messenger RNA and microRNAs
[Reviewed in (21)]. Although the effects of other sEV cargos
cannot be excluded, proteins and miRNAs are considered the
main mediators of the effect of sEVs in target cells. Proteomic
analysis in sEVs has identified thousand proteins implicated in key
biological processes such as sEV biogenesis, cellular structure,
tissue repair and regeneration, and inflammatory response
[Reviewed in (90)] Indeed, Chaubey and collaborators, validated
TSG-6 as one of the protein mediators of MSC-sEV for
immunomodulation by inducing a decrease in neutrophil
infiltration in a murine model of hyperoxia-induced lung injury
(91). However, to determine the role of proteins and miRNA in
mediating the therapeutic efficacy of sEVs, a relation between the
concentration of miRNA and proteins in their cargo is needed (92).
Moreover, it is not well defined whether proteins and miRNAs
work independently or synergistically in target cells, indicating that
further studies are needed in this field. On the other hand, miRNAs
encompass an important fraction of the exosome content and arise
as the main regulators of MSC-sEVs function (26, 93). miRNAs are
small non-coding RNA highly conserved among species, which
control gene expression through its binding capacity to the three
prime untranslated region (3’-UTR) of the targeted mRNAs, for
repressing the expression of the corresponding gene at a post-
transcriptional level (94). Compared with transcriptional and
epigenetic regulation, post-transcriptional processes are fast and
therefore can instantly tune cell fate decisions in response to
environmental cues (94). Moreover, miRNAs contained in sEV
are protected from RNAse degradation and through their integrins
and opsonins the delivery of their internal content is efficient (24).
Indeed, Neviani and collaborators demonstrated that sEVs derived
from inactivated natural killer (NK) cells showed an equal cytotoxic
activity when compared to sEVs derived from activated NK cells.
Frontiers in Immunology | www.frontiersin.org 4184
Indeed, inactivated NK derived sEVs showed low levels of killer
proteins in their cargo (perforin 1, granzyme A, granzyme B) while
still retaining their cytotoxic activity, showing that the protein
cargo is not the main bioactive mediator (95). In line with these
results, RNA-depleted sEVs lose their immunosuppressive activity
on T-cells, demonstrating their pivotal role on MSC-
sEVs immunoregulation.
RELEVANCE OF miRNA IN THE
PATHOGENESIS OF OD

miRNAs are critical regulators in maintaining a healthy joint as
they participate in chondrocyte homeostasis and in the
regulation of inflammatory mediators (96, 97). Proof of this is
the phenotype observed in Dicer (a key enzyme in the miRNA
biosynthesis pathways) knock-out mice, whose growth plates
exhibited a reduction in proliferating chondrocytes and
accelerated differentiation into a hypertrophic type, resulting in
severe skeletal growth defects and premature death (98).
Accordingly, an imbalance of some miRNAs has been
associated with OD in both human and murine models.
Illustrating this, a study using the serum transfer mouse model
of RA in C57BL/6 mice identified a total of 536 upregulated
genes and 417 downregulated genes that are predicted targets of
miRNAs with reciprocal expression in arthritic mice (99).
Twenty-two miRNAs whose expression was most significantly
changed between nonarthritic and arthritic mice regulated the
expression of proteins involved in bone formation, specifically
Wnt and BMP signaling pathway components.

While activation of canonical Wnt signaling promotes bone
formation (100), Wnt signaling antagonists such as Dkk inhibit
this pathway and have been shown to regulate the erosive process
in RA (101, 102). Among the most upregulated miRNAs found
by Maeda and colleagues was miR-221-3p, which is induced in
the TNF-driven model of arthritis and fibroblast-like
synoviocytes (FLS) from RA patients (103). In bone,
synovium-derived miRNAs, including miR-221-3p, may
control skeletal pathways that inhibit osteoblast differentiation
from augmenting bone erosion in RA by regulating Dkk2.
Similar studies in OA patients have revealed significant
miRNA imbalance in cartilage, synovial fluid, and plasma
(104). Several studies have shown that there is differential
expression of several miRNAs in OA versus a healthy joint. By
evaluating the expression of 365 miRNA in OA patients versus
healthy donors, Iliopoulos and colleagues found 16 altered
miRNA, providing one of the earliest insights on the
osteoarthritic chondrocytes miRNA signature (105). A
subsequent study showed that a set of 17 miRNA that
contribute to cartilage remodeling presented an altered
expression and suggested that these changes were due to
epigenetic regulation (106). Murata and colleagues investigated
whether, in plasma and synovial fluid, miRNA could be used as
possible biomarkers for RA and OA, finding that some miRNAs
can effectively differentiate between both diseases (107).
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Interestingly, 12 miRNA were overexpressed under the OA
condition, all targeting important genes in chondrocyte
maintenance and differentiation such as SMAD1, IL-1B,
COL3A, VEGFA, and FGFR1 (104). Other reports point out
imbalances in miRNAs associated with the regulation of ECM
degradation enzymes. For example, the increase of miR-146a/
miR-145/miR-22 and the decrease in miR-149/miR-125b/miR-
558 causes ECM degradation. Some miRNAs such as miR-27b,
miR-140, and miR-320 have been reported to target MMP13, a
regulator of tissue repair and remodeling (108–110), while
miR-92a-3p and miR-27b regulate ADAMTS expression, an
enzyme that plays an important function in the degeneration
of cartilage in RA and OA (111). Furthermore, it has been
shown that the down-regulation of miR-140 inhibits IL-1b by
inducing ADAMTS expression and that miR-27b regulates
MMP-13 expression in human chondrocytes. Importantly,
miR-27b, miR-140, and miR-146a are dysregulated in OA
patients, suggesting a role for them in OA pathogenesis (108,
112, 113).

It has been widely reported that TGF-bs and BMPs regulate
postnatal joint cartilage homeostasis and that dysregulated TGF-
b and BMP signaling are often associated with OD [Reviewed in
(114)]. These TGF-b superfamily members bind to the
heteromeric receptor complex, comprised type I and II
receptors at the cell surface, that transduce intracellular signals
by activating Smad complex or mitogen-activated protein kinase
(MAPK) cascade. BMPs have a chondroprotective role in
different animal models of RA (115); specifically, it has been
suggested that endogenous expression of BMPs is required to
maintain chondrocytes phenotype in vitro (116, 117). However,
its dynamic regulation has been observed in the CIA murine
model, supporting a role for this pathway in RA (118). During
CIA, BMP-2 and BMP-7 are upregulated in a TNF-dependent
manner, a phenomenon accompanied by an increase in Smad-5
phosphorylation: thus, there is an increase in BMP signaling
activity. Similarly, in an OA rat model, it was shown that IL1b
upregulated BMP-2 through the MEK/ERK/Sp1 signaling
pathways and that the administration of the BMP antagonist
Noggin prevented cartilage degeneration and OA development
(119). An observational study in OA patients showed that the
levels miR-22, which targets BMP2, are increased in the
progression of the disease (120). Furthermore, the inhibition of
miR-22 has been shown to prevent inflammatory activity (105,
121). On the contrary to miR-22, miR-140 also targets BMP2 but
in a different position of the 3′-UTR region and is associated with
increased BMP2 expression (120). Notably, the levels of synovial
miR-140 were significantly reduced in the patients with OA and
were negatively correlated with OA severity compared to controls
(120, 122). Furthermore, after arthroscopic debridement, the levels
of these miRNAs and BMP2 were restored (120), suggesting miR-
22 andmiR-140 play a role in the development of OA by regulating
BMP-2. It has also been shown that BMP targeting miRNAs’
dysregulation is associated with the pathogenesis of RA. It has been
demonstrated that sEVs derived from fibroblast-like synoviocytes
with elevated levels of miR-486-5p promoted osteoblast
differentiation and proliferation by repressing Tob1, thus
Frontiers in Immunology | www.frontiersin.org 5185
activating the BMP/Smad signaling pathway, alleviating the
severity of RA in the CIA model (123).

On the other hand, TGF-b has been implicated in cartilage
ECM production and maintenance, specifically by increasing
COL2A1, perlecan, fibronectin, and hyaluronan (124, 125).
Furthermore, TGF-b also has anti-inflammatory functions,
counteracting IL1b and IL-6 mediated inflammation in the
joint (124, 125). Importantly, several miRNAs target different
proteins of these pathways, which has been reviewed elsewhere
(126). It has been shown that miR-455-3p promotes TGF-b/
Smad signaling in chondrocytes and inhibits cartilage
degeneration by directly suppressing PAK2, a kinase that
inhibits TGF-b signaling. Accordingly, the miR-455-3p levels
were decreased, and both PAK2 and phospho-PAK2 were
increased in OA cartilage compared with control cartilage.
Moreover, miR-455-3p KO mice displayed significant
degeneration of the knee cartilage (127). In OA cartilage, miR-
150-5p is overexpressed. It has been shown that miR-140-5p
directly targets TGF-b3 signaling by altering the expression of
TGF-b3 and Smad-3 in mandibular condylar chondrocytes, thus
having a role in the regulation of mandibular cartilage
homeostasis and development (128). Furthermore, this miRNA
is increased in the cartilage of OA patients compared to control
cartilage from femoral neck fracture patients, where it suppresses
the Smad2/3 pathway, a process that promotes cartilage
destruction and the progression of the disease (129). Using
miR-140-null mice, which showed different changes related to
OA such as fibrillation of articular cartilage, Miyaki and
collaborators demonstrated that miR-140 regulates cartilage
development and homeostasis (113). Interestingly, miR-140
knockout mice presented proteoglycan loss and fibrillation of
articular cartilage emulating age-related OA. On the contrary,
transgenic mice overexpressing miR-140 in cartilage were resistant
to antigen-induced arthritis. Another miRNA involved in TGF-b
signaling modulation is miR-125-5p, which downregulates the
Smad2 expression and leads to the dysfunction of TGF-b
signaling. Noteworthy, the circular ribonucleic acids (circRNAs),
CircCDK14, which is down-regulated in the joint wearing position,
regulates metabolism, inhibits apoptosis, and promotes
chondrocyte proliferation by miR-125a-5p sponging (130).
Taking together, studying miRNA dysregulation in OD and the
underlying mechanisms could provide new insights towards more
effective treatments. At the same time, TGF-b exerts an anabolic
repairing response on articular cartilage. On the other hand,
proinflammatory cytokines such as IL-1b and TNF-a which
exert a strong catabolic effect (131). As follows, the balance
between TGF-b and the IL-1b or TNF-a signaling pathways is a
critical regulator of articular cartilage homeostasis (131), thereby its
disruption contributes to the pathogenesis of OA.

In OA, NF-kB signaling orchestrates chondrocyte catabolism,
survival, and synovial inflammation. Growing evidence suggests
that miRNAs targeting either matrix-degrading enzymes or
components of the NF-kB pathway can suppress chondrocyte
catalytic activity. While some miRNAs such as miR-138 and
miR-9 directly suppress the NF-kB subunits p65 or p105/50
(132, 133), others like miR-210, miR-26a/b, miR-93, miR149,
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and miR-146a act indirectly by targeting upstream regulators of
NF-kB (134) such as death receptor 6 (DR6), KPNA3, Toll-like
receptor 4 (TLR4), TAK1, and TNF-receptor associated factor 6
(TRAF6)/interleukin-1 receptor-associated kinase 1 (IRAK1).
Additionally, synovial inflammation in the context of OA or
osteoblastogenesis is associated with miR-146/miR-155/miR-
218/miR-135, among others (135–137).

In RA, miRNA dysregulation is implicated in the activation of
multiple cytokine-signaling pathways that leads to synovial tissue
lesions and dysregulation of immune cells, thereby contributing
to pathogenesis (139). Many studies have demonstrated that
miR-16, miR-146a, miR-155, and miR-223 present an increased
expression level in synovial fluid of RA patients. Moreover,
inflamed joints of RA patients show an increased expression of
miR-133a, miR-142-3p, miR-142-5p, miR-146a, miR-155, miR-
203, miR-221, miR-222, miR223 (103, 107, 140, 141). On the
other hand, the expression of miR-124a and miR-34a is
decreased in the context of RA (142, 143). Furthermore, miR-
181a, miR-17–92 overexpression enhances the inflammation,
while upregulation of miR-146a and miR-573 suppresses the
autoimmunity (144). Although several miRNAs related to
inflammation are dysregulated in RA, miR-146a appears to be
essential in controlling the inflammation. miR-146a targets TNF-
a/TNF receptor-associated factor 6 (TRAF6) and IL-1 receptor-
associated kinase 1 (IRAK1), elevating TNF-a production
through TRAF6/IRAK1 mediated pathway [Reviewed in (126,
145)]. miR-146a is also able to regulate genes such as FAF1,
IRAK2, FADD, IRF-5, Stat-1, and PTC-1 (146), making it a
possible therapeutic target for the treatment of RA. Besides miR-
146, miR-155 can also stimulate the proinflammatory mediators
TNF-a, TLRs, LPS, and IL-1 [Reviewed in (145)]. Upregulation
of miR-155 has been observed in synovial tissue, FLS, peripheral
and blood mononuclear cells. Supporting a role for targeting
miR-155 in RA, miR-155 knockout mice do not develop
collagen-induced arthritis (146). Therefore, miR-155 may be a
promising therapeutic target for RA.

miRNAs and their levels in plasma and synovial fluids are
associated with the occurrence of OD. Therefore they could serve
as predictive biomarkers and even as therapeutics targets. Owing to
the fact that miRNAs play a crucial role in the maintenance of
healthy joints, restoring their balance could be an effective way to
treat OA and RA. To accomplish an effective therapeutic strategy,
the delivery system is the main barrier that has to be overcome
(147). Given that miRNAs are naturally carried by sEVs, they are
protected from RNAse degradation and the delivery to target cells
is efficient thanks to the integrins and opsonins (147–150).
miRNA SHUTTLED BY sEVs
DERIVED FROM MSCs AND THEIR
THERAPEUTIC FUNCTION ON
OSTEOARTICULAR DISEASES

Since MSC-sEVs are natural carriers of therapeutic miRNA, they
have arisen as an attractive therapeutic tool to treat several
Frontiers in Immunology | www.frontiersin.org 6186
diseases including OD. There are copious amounts of studies
reporting the different effects of miRNA transfer via sEVs, and
their relevance in cell to cell communication. Indeed, miRNAs
have gained more attention than proteins or other variety
molecules contained in sEVs, due to their regulatory roles in
gene expression. Goldie and collaborators demonstrated that the
proportion of miRNA is higher in sEVs than in their parent cells
(151). Moreover, a profiling study of miRNAs has demonstrated
that miRNAs are not randomly packaged into sEVs. Guduric-
Fuchs and collaborators have shown that a subset of miRNAs
(miR-150, miR-142-3p, and miR-451) are preferentially
incorporated in sEVs (152). Although the effects of other sEV
cargos cannot be excluded, miRNAs are considered the key
functional elements on recipient cells. Several thousand
miRNAs have been identified in humans, and their studies
have increased in the last decade, moreover miRNAs are
frequently deregulated in multiple human diseases which offers
many opportunities for diagnosis and treatment for various
pathological conditions.

The use of sEVs as a therapeutic treatment for different
immune diseases is still challenging, since safety evaluations
are still pending. Multiple experiments must be done in large
and proper animal models in order to prove their therapeutic
efficacy and safety in this area before applying this approach in
the clinic. Given that it primarily affects the joints, we suggest
that the optimal form of delivery should be intra-
articular injection.

Chen and collaborators, have shown that, both in vitro and in
vivo, BM-MSC-sEV enriched in miR-150-5p suppress the
expression of MMP14 and VEGF, and decrease the expression
levels of IL-b, TNF-a, and TGF-b, resulting in the inhibition of
the proliferation and migration of fibroblast-like synoviocytes
(FLS) and alleviation of inflammation (153). Similarly, BM-MSC
sEV derived miR-320a targets CXCL9 and thereby suppresses
FLS activation, migration and invasion in RA (154).
Additionally, the overexpression of miR-124a in MSC-sEV
significantly increased the expression of apoptosis-related
proteins inducing an inhibition on the proliferation, invasion
and migration of RA-FLS cells (155).

It has been well documented that miRNAs in MSC-sEVs have
a chondroprotective role in OA (156). Illustrating this, MSC-
sEVs shuttled miR-92a-3p increases chondrocyte proliferation
and the levels of COL9a2 and aggrecan, and effect mediated by
targeting noggin3 and Wnt5a while activating the PI3K/AKT/
mTOR pathway, thus increasing the levels of [Reviewed in (21)],
(88). On the other hand, MSC-sEVs-derived miR-135b
stimulates cartilage regeneration by binding to the
transcription factor Sp1 (SP1), which regulates apoptosis and
proliferation (157). Moreover, miR-140-5p upregulates Sox9 and
promotes MSCs chondrogenesis (Figure 1). Additionally, recent
studies show that sEV-mediated transfer of miR-140 from
dendritic cells improves OA in vitro by inhibiting proteases
associated with cartilage degradative processes in the joint and
alleviates the progression of OA in a rat model in vivo (158). In
contrast, another study reported that miR-155 levels are
significantly upregulated in human OA cartilage biopsies and
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primary chondrocytes stimulated by IL-1ß. Moreover, miR-155
overexpression promotes IL-1ß-induced apoptosis and catabolic
activity in chondrocytes in vitro (159). Chen et al. reported that
MSC-sEV-shuttled miR-136-5p promotes chondrocyte
migration in vitro and inhibits cartilage degeneration in vivo
(Figure 1) both in human chondrocytes in vitro and in mice in
vivo (160).

On the other hand, the involvement of MSC-sEVs-derived
miRNAs in the context of immune modulation has been reported
(149). MSC-sEVs are immunologically active, meaning that they
can attenuate the immune system through increasing anti-
inflammatory cytokines, such as IL-10 and TGF-b and the
induction of Tregs, modulating immune activity. Indeed, RNA-
depleted sEVs lose their immunosuppressive activity on T-cells
(161), demonstrating their pivotal role on MSC-sEVs
immunoregulation and therefore their potential use on
autoimmune diseases such as RA (75, 80, 83). Indeed, the
downregulation of miR-192-5p has been reported in RA
patients, and its transfer via sEVs derived from BM-MSCs
reduced the inflammatory response by downregulating the Ras-
related C3 botulinum toxin substrate 2 protein (RAC2) (Figure 1),
attenuating the severity of the disease in rats (162). It has been
reported that sEVs derived from TNFa and IFNg pretreated-
MSCs improve their suppressive activity over T cells (75). This
pretreatment was associated with a higher expression of miR-155
and miR-146, two miRNAs involved in activating and inhibiting T
cells inflammatory reactions (163). Similarly, miR-155-5p loaded
in sEVs derived from LPS-stimulated periodontal ligament stem
cells (PDLSCs) inhibited pro-inflammatory Th17 cells favoring
their conversion into Treg through inhibition of Sirtuin-1 (Sirt1)
(164). Moreover, the therapeutic role of miR-146a-5p contained in
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MSC-sEVs has been shown in vivo in a model of allergic airway
inflammation (161). In this study, the authors demonstrated that
the miRNA signature of MSC-sEVs was enriched in miR-146a-5p
compared to sEVs derived from less immunosuppressive cells
such as fibroblasts (161). In addition, miR-146a-5p mimic
improves the immunosuppressive capacities of fibroblast sEVs,
while miR-146a-5p inhibition impairs the immunosuppressive
activity of MSC-sEVs on T-cell proliferation (161). In RA, miR-
146a is downregulated, but its upregulation associated with the
administration of MSC-sEVs increased the frequency of Treg cell
population by increasing the expression of some key autoimmune
response genes and their protein products, such as TGFb, IL-10
and FOXP3 (Figure 1), resulting in a beneficial anti-inflammatory
response (165, 166). Rong and collaborators showed that the
hypoxic pre-treatment of rat BM-MSC (a known method for the
improvement of the therapeutic properties of MSCs [Reviewed in
(167)]) promotes the release of miR-216a-5p enriched sEVs that
target JAK2 in chondrocytes, resulting in an increase in
chondrocyte proliferation and migration, while inhibiting their
apoptosis. The miR-216a-5p enriched sEVs also reduced ECM
degradation through the inhibition of MMP expression and
increasing COL-II expression levels (168).

In summary, several miRNAs are known to be associated with
different processes relevant to OD (169), such as inflammation
(miR-22, miR-320) (105, 110), extracellular matrix synthesis
(miR-148a, miR-27, miR-218) (170, 171) and chondrocyte
proliferation. Additionally, several miRNAs have been shown to
be involved in processes associated with MSCs differentiation into
chondrocytes (miR-19a, miR-410) (172, 173), and processes such
as chondrocyte hypertrophy (miR-381, miR-140) (174, 175),
apoptosis and autophagy (miR-30b) (176) (Table 1). The
therapeutic potential of miRNAs both in degenerative diseases
such as OA and autoimmune diseases such as RA is very
promising, and their delivery through sEVs greatly facilitates
escalation to later-stage clinical trials. Still, more work needs to
be done concerning the full effect of miRNAs both in target cells
and other types of cells to assess the safety of the therapeutic
application of miRNAs.
CONCLUDING REMARKS

As mentioned in the previous sections, MSC-sEVs arise as a
potential cell-free based therapy that can reduce the risks
associated with MSC. Strikingly, several reports show that
MSC-sEVs mimic the biological effects of MSCs. Therefore,
MSC-sEVs represent a hopeful alternative to MSC therapy.

The main functional components of MSC-sEVs are miRNAs,
which can regulate the expression of multiple target genes and
participate in various cell signaling processes. The miRNA
profile of MSC-sEVs is associated with their effect. Although
there are tools to identify miRNAs in sEVs, the principal target
genes of sEVs derived miRNAs remain unspecified. However,
this work summarizes some of the miRNAs involved in OD
pathogenesis and some of the miRNAs that mediate the
therapeutic effects of sEVs in OD. These miRNA could be
FIGURE 1 | MSCs release sEVs with a miRNAs cargo that regulate gene
expression by targeting transcription factors associated to different processes
in osteoarticular diseases. These miRNA can be used to develop new and
effective therapies for OA and RA.
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considered as promising candidates to use for effective treatment
of these diseases. Further studies in this field are required to
develop MSC-sEVs therapeutics based on miRNA delivery for
autoimmune/inflammatory and degenerative diseases.
Furthermore, delving into the role of miRNAs in the
pathogenesis of disease, would also improve therapeutic
strategies that can restore their normal levels, because not all
miRNAs have beneficial effects. In this context it is also
important to study the regulation of miRNAs and their
biological functions, and also increase the knowledge of other
non-coding RNAs that can be involved in OD. On the other
hand, studies on the enrichment of sEVs in beneficial miRNAs
and/or other non-coding RNAs that regulate disease-promoting
miRNAs and evaluating strategies for the targeted delivery of
sEVs to particular cell types to increase efficiency remain one of
the following challenges.
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TABLE 1 | Summary of the literature reporting the role of miRNAs in OD.

miRNA Context Target cell Effect on the target cell Mechanism of action Reference

miR-
92a-3p

sEVs from miR-92-
3p-overexpressing
MSCs; OA

Chondrocytes Enhancement of chondrogenesis and
suppression of cartilage degradation

Targeting the PI3K/AKT/mTOR pathway 88

miR-
135b

sEVs from TGF-b1-
stimulated MSCs

Chondrocytes Cartilage regeneration Binding to transcription factor (SP1) 157

miR-22 OA; inflammation Chondrocytes Decrease inflammation and ECM degradation Targeting the PPARa and BMP-7 signaling pathway 105
miR-
140

OA; MSC-sEVs Chondrocytes;
MSCs;

Inhibition of cartilage degradation; suppression
of chondrocytes hypertrophy; Promotion of
chondrogenesis

Suppression of the expression of cartilage degrading
enzymes; controlling the BMPs signaling pathway;
Upregulation of Sox9

158; 175;
177

miR-
320

Cartilage
homeostasis

Chondrocytes Regulation of chondrogenesis Targeting the expression of MMP-13 110

miR-27 OA Chondrocytes Decreasement of inflammation Inhibition of the NF-kB pathway 170
miR-
149

OA inflammation Chondrocytes Suppression of chondrocyte inflammatory
response

Downregulation of the TAK1/NF-kB pathway 135

miR-
19a

OA Chondrocytes Promotion of cell viability and migration Upregulation of Sox9 via the/NF-kB pathway 173

miR-
410

OA MSCs Chondrogenic differentiation Targeting the Wnt signaling pathway 172

miR-
381

OA pathogenesis Chondrocytes Chondrocyte hypertrophy Targeting histone deacetylase 4 (HDAC4) 174

miR-
125b

OA Chondrocytes ECM degradation Targeting of ECM-degrading enzyme ADAMTS-4 178

miR-
558

OA Chondrocytes Cartilage homeostasis Inhibiting COX-2 and IL-1b-induced catabolic effects 178

miR-9 OA Chondrocytes Suppression of apoptosis and promotion of
cell proliferation

Binding to NF-kB1 132

miR-
138

OA Chondrocytes Decrease in the chondrocyte inflammatory
response

Suppressing the protein levels of p65, COX-2 and IL6 133

miR-
136-5p

OA; MSC-sEVs Chondrocytes Increase in chondrocyte migration and
decrease in cartilage degradation

Inhibiting the expression of ELF3 160

miR-
153

OD MSCs Decrease in osteogenic differentiation Interacting with bone morphogenetic protein receptor
type II (BMPR2)

134

miR-
194

Bone homeostasis MSCs Increase in osteogenic differentiation Suppressing STAT1 179

miR-
216a

OD; MSC-sEVs MSCs;
chondrocytes

Increase in osteogenic differentiation; increase
in chondrocyte proliferation and migration

Downregulation of c-Cbl; inhibiting JAK2 180;
168

miR-
126a-
5p

OA Chondrocytes Reduction in ECM degradation Increasing expression of collagen II and decreasing
expression of MMP

168

miR-
146a

RA; MSC-sEVs Tregs Increase in anti-inflammatory response Increasing the expression of FOXP3 83
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Primary aldosteronism (PA) is the most common cause of secondary hypertension and
reaches a prevalence of 6-10%. PA is an endocrine disorder, currently identified as a
broad-spectrum phenotype, spanning from normotension to hypertension. In this regard,
several studies have made advances in the identification of mediators and novel
biomarkers of PA as specific proteins, miRNAs, and lately, extracellular vesicles (EVs)
and their cargo.

Aim: To evaluate lipocalins LCN2 and AGP1, and specific urinary EV miR-21-5p and Let-
7i-5p as novel biomarkers for PA.

Subjects and Methods: A cross-sectional study was performed in 41 adult subjects
classified as normotensive controls (CTL), essential hypertensives (EH), and primary
aldosteronism (PA) subjects, who were similar in gender, age, and BMI. Systolic (SBP)
and diastolic (DBP) blood pressure, aldosterone, plasma renin activity (PRA), and
aldosterone to renin ratio (ARR) were determined. Inflammatory parameters were
defined as hs-C-reactive protein (hs-CRP), PAI-1, MMP9, IL6, LCN2, LCN2-MMP9,
and AGP1. We isolated urinary EVs (uEVs) and measured two miRNA cargo miR-21-5p
and Let-7i-5p by Taqman-qPCR. Statistical analyses as group comparisons were
performed by Kruskall-Wallis, and discriminatory analyses by ROC curves were
performed with SPSS v21 and Graphpad-Prism v9.

Results: PA and EH subjects have significantly higher SBP and DBP (p <0.05) than the
control group. PA subjects have similar hs-CRP, PAI-1, IL-6, MMP9, LCN2, and LCN2-
MMP9 but have higher levels of AGP1 (p <0.05) than the CTL&EH group. The
concentration and size of uEVs and miRNA Let-7i-5p did not show any difference
between groups. In PA, we found significantly lower levels of miR-21-5p than controls
(p <0.05). AGP1 was associated with aldosterone, PRA, and ARR. ROC curves detected
AUC for AGP1 of 0.90 (IC 95 [0.79 – 1.00], p <0.001), and combination of AGP1 and
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EV-miR-21-5p showed an AUC of 0.94 (IC 95 [0.85 – 1.00], p<0.001) to discriminate the
PA condition from EH and controls.

Conclusion: Serum AGP1 protein was found to be increased, and miR-21-5p in uEVs
was decreased in subjects classified as PA. Association of AGP1 with aldosterone, renin
activity, and ARR, besides the high discriminatory capacity of AGP1 and uEV-miR-21-5p
to identify the PA condition, place both as potential biomarkers of PA.
Keywords: primary aldosteronism (PA), biomarker, lipocalin, miR-21-5p, extracellular vesicles, AGP1, Alpha-1-acid
glycoprotein-1
INTRODUCTION

The etiology of arterial hypertension (AHT) is unknown in more
than 80-90% of cases, which is named essential hypertension
(EH). One third of EH has been suggested to be associated with
endocrine disorders (1). Primary aldosteronism (PA) is an
endocrine disorder, currently identified as a broad-spectrum
phenotype, spanning from normotension (4% prevalence) to
hypertension (10% prevalence) (2–6). PA is characterized by an
inappropriately high circulating aldosterone independent of
known physiological regulators such as renin, angiotensin II,
potassium, and sodium status (e.g., high saline intake) (7). The
diagnosis of PA is relevant, not only for its association to high
blood pressure but also for the harmful effects in extra-renal
tissues, generally associated with the mineralocorticoid receptor
(MR) activation by aldosterone which induces inflammation (8,
9), tissue remodeling, and fibrosis (8, 10–14), affecting the renal,
heart, the vascular system (endothelial cells and smooth muscles
cells), the immune system (15) and the adipose tissue (16).

Several studies have tied to advance in the identification of novel
biomarkers for PA that support its early detection and also other
reported effects as inflammation, endothelial dysfunction, renal
damage, vascular remodeling and (17, 18), and oxidative stress
(19, 20). Early “surrogate biomarkers” have been previously
evaluated, such as high sensitive C-reactive protein (hs-CRP),
Plasminogen inhibi tor act ivator-1 (PAI-1) , matr ix
metallopeptidase 9 (MMP-9) and malondialdehyde (MDA) (8, 9),
free Cystatin-C (CysC), and neutrophil gelatinase associated
lipocalin (NGAL or LCN2) (21–23). However, none of these
biomarkers are currently available in clinical diagnoses for arterial
hypertension or PA. Recent proteomic studies have shown that
urinary and serum alpha-1-acid glycoprotein-1 (AGP1), also known
as ORM1, have been proposed as prognostic biomarkers for
inflammatory diseases such as chronic heart failure (24), some
types of cancer (25), and lately for PA (26).

Experimental and clinical studies demonstrate that small
extracellular vesicles (sEVs) or exosomes are potential biomarkers
of disease (27), including in cancer, metabolic disorders, and
cardiovascular diseases (28, 29). Urinary EVs originated mainly
from cells lining the renal tubules carrying proteins, lipids, RNA,
and miRNA, and have been recognized recently as a source of
diagnostic biomarkers for different renal and endocrine pathologies
(30–36), including primary aldosteronism (26).
org 2195
MicroRNAs (miRNAs) are short non-coding RNA molecules
genome-encoded, that are approximately 22 nucleotides in length
and modulate downstream gene expression by post-
transcriptional mechanisms, specifically by binding to the 3′
untranslated regions (UTR) of a target messenger RNA
(mRNA), leading to mRNA degradation or repression of
translation (37–39). Recent literature (30, 37, 40–46) proposes
that microRNAs in exosomes are involved in physiological and
pathophysiological processes correlated with hypertension (47)
response to sodium intake (48) and PA (26, 30). miRNAs are
packaged into EVs for transport into different biofluids (e.g.,
blood, urine) and change according to the metabolic
microenvironment (e.g., inflammation) of the parent cell. In
endocrine hypertension phenotypes, such as nonclassic-AME
(31) and PA, have been identified in the differential expression
of EV-associated miRNAs, such as miR-192, miR-204 (31),
miRNA-21, and Let-7i. miR-21 has been found in EVs isolated
from urine (43), plasma (44), and endothelial cells (45). Romero
et al. reported on the protective role of miR-21 in the cardiac
pathology triggered by excess aldosterone in the heart of mice and
rats (49, 50). Let-7i negatively regulates cardiac inflammation and
fibrosis in presence of angiotensin II or aldosterone (49–51).
Similarly, Deccman et al. identified circulating miR-30e-5p,
miR-30d-5p, miR-223-3p, and miR-7-5p in PA patients with
bilateral adrenal hyperplasia (BAH) and aldosterone-producing
adenoma (APA). Altogether, these reports highlight the potential
role of both miRNA and EV-associated miRNAs as biomarkers or
mediators of PA (46).

The current study aimed to evaluate lipocalins LCN2 and
AGP1, and specific urinary extracellular vesicles miR-21-5p and
Let-7i-5p as novel biomarkers of primary aldosteronism.
METHODS

This study used the serum, plasma, and urine samples from a
biobank obtained from a cohort of 206 adult Chilean subjects of
both genders, between 18 and 65 years old. The subjects were
recruited from outpatient centers associated with the UC-
Christus Health Network in Santiago, Chile, following the
guidelines of the Declaration of Helsinki and approved by the
Ethics Committee of the Faculty of Medicine of the Pontificia
Universidad Católica de Chile (Certification CEC-MEDUC 12-
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207 and 14-268, and updated by CEC-MEDUC 190823001
and 200619004).

All subjects had a sodium diet ad libitum and declared that
they did not ingest any herbal products or extreme diets during
the month prior to the analysis. Subjects with a BMI >30 kg/m2,
kidney disease, diabetes mellitus, liver, and heart failure were
excluded. Subjects using glucocorticoids, contraceptives, or some
interfering drugs, such Ag-II-receptor blockers (ARB), ACE-
Inhibitors (ACEI), and spironolactone (MR antagonist), were
also excluded.

After exclusion criteria were applied, 132 subjects were
included in the study. The subjects were classified as
normotensive controls (CTL), have clinical and biochemical
parameters in the normal range, essential hypertensives (EH)
according to the 2017 ACC/AHA Guidelines for High Blood
Pressure (52), and subjects having a positive screening for PA
(Aldosterone >9ng/dl, PRA <1 ng/ml*h), according to The
Endocrine Society 2016 guidelines (53) and Vaidya et al. (5,
54–56). All studied subjects (PA, EH, and CTL) have a clinical
record including medical history and physical examination, as
well a biochemical profile, creatinine, electrolytes, aldosterone,
plasma renin activity (PRA), serum, and 24-hour and morning
urine samples. Aldosterone and PRA were measured by
immunoassay using a commercial kit (DiaSorin, Stillwater,
MN). Urine samples for uEV isolation were stored at -80C
with a 1X protease inhibitor cocktail (Roche, USA).

Evaluation of the Parameters Associated
With Inflammation, Endothelial, and Renal
Damage in PA Subjects
The inflammatory status of all subjects was evaluated by
measuring hs-CRP with a nephelometric assay (BN ProSpec
Systems; Siemens Healthcare Diagnostics Products, Marburg,
Germany) and IL-6 by an ELISA with commercial reagents and
standards (D6050, R&D Systems, Minneapolis, MN), according
to the manufacturer’s protocols. Endothelial damage was
evaluated by surrogate markers such as PAI-1, MMP9, and
MMP2 activities. PAI-1 was determined by ELISA (HYPHEN
BioMed, Neuville sur Oise, France), and MMP9 and MMP2
activities by zymography, as previously described (57). Early
renal damage was evaluated with 24-hour urine albuminuria to
creatinine ratio (UACR). Albumin is measured by a
turbidimetric immunoassay (Roche, Germany), and urine
creatinine was measured with a colorimetric assay (Roche,
Indianapolis, IN) in a Hitachi Automatic Analyzer 7600
(Roche/Hitachi, Kobe, Japan). Plasma and urinary electrolytes
(sodium and potassium) were evaluated with methods previously
described (58).

Determination of Serum Lipocalins AGP1,
LCN2, and LCN2-MMP9 in PA Subjects
We measured the serum levels of lipocalins AGP1, LCN2, and
LCN2-MMP9 proteins (26) by commercial ELISA immunoassay
for AGP1 (Human a1-Acid Glycoprotein Immunoassay,
DAGP00, USA R&D Systems, Inc.) according to the
manufacturer’s protocol, LCN2 (DLCN20, R&D Systems,
Frontiers in Immunology | www.frontiersin.org 3196
Minneapolis, MN), LCN2-MMP9 (DM9L20, R&D Systems,
Minneapolis, MN).

Isolation and Characterization of Urinary
Extracellular Vesicles From PA Subjects
Urinary EVs (uEVs) were isolated by a sequential ultracentrifugation
protocol previously described by Barros et al. (26). Urinary creatinine
was used to normalize samples of uEVs (59, 60). Isolated uEVs were
characterized as previously described (26, 31) and according to the
International Society for Extracellular Vesicles guidelines (27) using
transmission electron microscopy (TEM), nanoparticle tracking
analysis (NTA), and western blot with characteristic EV proteins (61).

TEM was performed with 15 ml of uEVs suspension were
absorbed onto a 200 mesh carbon-coated copper grid for 1 min.
Samples were negatively stained with 2% uranyl acetate solution
for 1 min. Grids were visualized in a Phillips Tecnai transmission
electron microscope at 80 kV and images were acquired using a
SIS-CCD Camera Megaview G2 (62). The concentration and size
of uEVs were determined by nanotracking analyses (NTA)
performed in a low-volume flow cell (LVFC) of a NanoSight
NS300 and NTA 3.2 software (Malvern Instruments Ltd,
Malvern, UK). Camera level and detection threshold was
optimized to identify individual particles and minimum
background noise during recordings (camera level = 12-14;
detection threshold = 3-5; flow speed = 50). Particles were
tracked by passing a laser beam through the liquid sample and
the scattered light was detected and captured in short videos by a
sCMOS camera (3 videos of 20 seconds each). The Brownian
motion of particles was determined, and the distance moved by
the detected particles will be used to calculate the diameter (mean
and mode size) and concentration of vesicles using the Stokes-
Einstein equation (63).

Western Blot of Exosome Markers
TSG101 and CD9 Proteins
Similar quantities of EVs were resuspended in Laemmli buffer
and then separated by SDS polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to nitrocellulose membranes (Bio-
Rad, CA, USA), blocked with 5% skim milk in PBS-Tween20
(PBST) 0.1% (vol/vol) for 1 hour and probed with primary rabbit
monoclonal anti-TSG101 (1:10.000 Ab125011, Abcam, MS,
USA), rabbit monoclonal anti-CD9 (1:500 (D801A) cat#13174;
Cell Signaling Technology, MA, USA). After washing,
membranes were incubated with horseradish peroxidase-
conjugated goat anti-rabbit IgG-HRP (1:10.000; ab6939;
Abcam, USA) for 1 hour at RT. Proteins were detected using
chemiluminescence (ECL Western Blotting substrate reagent,
Pierce, USA) in a Chemi-Doc MP imaging system (Bio-Rad,
CA, USA).

Urinary EV RNA Isolation
RNA from the extracellular vesicle was isolated by organic
extraction using the Trizol® reagent according to the
manufacturer’s instructions. Two microliters of each RNA
sample were pipetted on the NanoQuant Plate™ of the
Infinite® M200 PRO spectrophotometer (TECAN; Männedorfl;
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Switzerland) to quantify the RNA concentration (A260 nm) and
purity (A260/A280 nm ratio) using Tecan i-control™ software.

Expression of miR-21-5p and Let-7i-5p in
Urinary Extracellular Vesicles
Reverse transcription of miRNA samples was performed using
the TaqMan™ Advanced miRNA cDNA Synthesis Kit (A28007),
according to the manufacturer’s instructions. The expression of
miRNAs (Hsa-miR-21-5p and Hsa-let-7i-5p) were evaluated
with TaqMan™ Advanced miRNA Assay (A25576) and the
TaqMan™ Fast Advanced Master Mix (4444557, Applied
Biosystems) in the RotorGene 6000 thermocycler (Corbett
Research, Sydney, Australia). The amplification reactions were
performed as follows: Enzyme activation at 95°C for 20 seconds
and 40 cycles of 95°C for 3 seconds, anneal/extend at 60°C for 30
seconds. RNU6 snRNA was used as an internal normalization
control (TaqMan™ MicroRNA Assay, ID001973). The fold
changes of miRNA expression were calculated using the
relative cycle threshold (2−DDCt) method and further
normalized by the spot urinary creatinine. Unpaired Kruskal-
Wallis test was performed to identify differences in PA patients
versus EH and healthy controls.

Statical Analyses
Clinical, biochemical, and expression data are expressed as
median [Q1-Q3]. Data normality was determined by
Kolmogorov-Smirnov test. For parametric and non-parametric
comparisons between two sets of data, an unpaired Student t-test
or a Mann-Whitney test were performed. To assess differences
between groups of data and an independent variable, a one-way
Analysis of Variance (ANOVA) or Kruskal Wallis was
performed using a Tukey or Dunn post hoc test, respectively.
Associations were performed by linear regression by Pearson or
Spearman regression according to data normality.

Receiver operating characteristic (ROC) analysis was used to
test the ability of lipocalins (LCN2, AGP1) and uEV-associated
miRNAs (miR-21-5p and Let-7i-5p) to discriminate PA patients
Frontiers in Immunology | www.frontiersin.org 4197
from EH and control subjects. A p value < 0.05 was considered
statistically significant. Data were analyzed using GraphPad
Prism v9.1 (GraphPad, CA, USA) or SPSS v21 (IBM,
USA) software.
RESULTS

Clinical and Biochemical Characteristics
of Subjects With PA
We identified 11 PA subjects (8.3%) in our cohort of study
according to the PA criteria described in the Methods section.
Clinical and biochemical baseline characteristics are shown in
Table 1. PA, EH, and CTL groups were similar in age, gender,
and body mass index. Systolic (140 [125-153] vs. 134 [123-139]
vs 116 [110-121] mmHg, p<0.05) and diastolic blood pressure
(89 [76-98] vs. 87 [81-93] vs. 75 [71-78] mmHg, p <0.05) were
higher in the PA and EH group compared to healthy controls,
respectively (Figure 1).

Serum aldosterone was higher in PA in respect to EH, but
similar to the control group (12.7 [10.4-13.7] vs. 7.8 [6.1-8.4] vs.
9.8 [6.9-12.5] ng/dL, p <0.0001). PRA was significantly lower in
PA in respect to EH and controls (0.8 [0.5-0.9] vs. 1.9 [1.4-2.8]
vs. 1.8 [1.3-2.3] ng/mL*h, p <0.0001). The ARR was higher in PA
than EH and controls (17.9 [13.7-20.8] vs. 4.1 [2.6-5.4] vs. 5.4
[3.2-7.3], p<0.0001) (Table 1, Figure 2). No differences were
found in plasma and urinary sodium and potassium electrolytes,
nor in the fractional excretion of potassium (FEK) or the
fractional excretion of sodium (FENa) in PA, EH, and
controls (Table 1).

Evaluation of Parameters Associated With
Inflammation, Endothelial, and Renal
Dysfunction in PA Subjects
We found similar plasma levels of hs-CRP (1.4 [1.1-2.0] vs 2.1
[0.5-4.0] vs 1.1 [0.9-2.9] mg/L, p NS) and Interleukin 6 (IL-6)
TABLE 1 | Clinical and biochemical parameters of subjects identified as control, EH, and primary aldosteronism.

CONTROL EH PA

N 13 17 11
Age (years old) 37 [28-47] 39 [29-47] 48 [37-53]
Man (%) 46 58 55
BMI (kg/m2) 26.1 [24.7-27.7] 27.7 [24.4-29.7] 28.5 [27.5-29.1]
SBP (mmHg) 116 [110-121] 134 [123-139] b 140 [125-153]a

DBP (mmHg) 75 [71-78] 87 [81-93] 89 [76-98]a

Serum aldosterone (ng/dl) 9.8 [6.9-12.5] 7.8 [6.1-8.4] 12.7 [10.4-13.7]a

Plasma renin activity (ng/mL*h) 1.8 [1.3-2.3] 1.9 [1.4-2.8] 0.8 [0.5-0.9]a,b

ARR 5.4 [3.2-7.3] 4.1 [2.6-5.4] 17.9 [13.7-20.8]a,b

Plasma sodium (mEq/l) 140 [139-141] 141 [140-142] 140 [139-142]
Plasma potassium (mEq/l) 4.1 [3.9-4.4] 4.2 [3.8-4.5] 4.2 [3.9-4.4]
Urinary sodium (mEq/24 h) 136 [73-202] 162 [114-216] 125 [99-176]
Urinary potassium (mEq/24 h) 47 [31-62] 54 [39-66] 53 [41-67]
Sodium excreted fraction (%) 0.63 [0.53-0.83] 0.64 [0.34-0.78] 0.57 [0.51-0.88]
Potassium excreted fraction (%) 7.2 [5.6-8.2] 7.9 [5.1-9.3] 8.0 [7.4-8.7]
November 2021 | Volume 1
Data are presented as amedian and interquartile range [Q1-Q3]. BMI, Body Mass Index; PAS, Systolic Pressure; PAD, Diastolic Pressure; ARR, Aldosterone/Plasmatic Renin Activity Ratio.
aDifferent from the HE group and bthe control group. Analysis was performed using Kruskal-Wallis, p < 0.05, and c2 test, p < 0.05.
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(3.0 [1.5-3.1] vs. 3.2 [2.7-3.9] vs. 3.0 [1.7-3.2] pg/ml, p NS) in PA
from those found in EH and controls, respectively. Endothelial
markers PAI-1, MMP9 and MMP2 were also evaluated, showing
no differences in PA respect to EH or control subjects (Table 2,
Figure 3). Renal dysfunction was evaluated with the urinary
albumin to creatinine ratio (UACR) (3.2 [2.0-4.6] vs. 3.6 [1.5-5.4]
vs. 4.3 [1.9-6.6] mg/gr Crea) which was also similar in PA and
EH and Controls (Table 2).

Determination of Serum AGP1, LCN2,
and LCN2-MMP9 in PA Subjects
We detected higher levels of AGP1 in PA (934.1 [736.5-1255] vs
62.50 [47.1-365.9] and 60.7 [18,0-609,0] ug/ml, p<0.01)
compared to EH and controls subjects. LCN2 and LCN2-
MMP9 were similar between the groups (p NS) (Table 3).
Total LCN2 was found to be higher in EH with respect to the
control group, meanwhile, PA was similar to EH but did not
reach a significant difference when compared to the control
(Figure 4). We observed significant associations of AGP1 with
Frontiers in Immunology | www.frontiersin.org 5198
Aldosterone (rho = 0.34, p <0.05), with PRA (rho = -0.44,
p <0.01) and with ARR (rho = 0.38; p <0.05) (Figure 5).

Characterization and Quantification of
Urinary Extracellular Vesicles
We isolated uEVs from all subjects in this study. Figure 6 shows
a representative image of isolated uEVs with a donut-shape
morphology by TEM (Figure 6A), a characteristic plot size/
concentration from NTA with the main peak near to 150 nm
(Figure 6B), and the western-blot of EV markers CD9 and
TSG101 (Figure 6C). No differences were observed in
concentration, mean and mode size of uEVs measured by
NTA in PA, EH, and controls (Table 4 and Figure 7).

Expression of miR-21-5p and Let-7i-5p in
Urinary Extracellular Vesicles
We identified a low expression of miR-21-5p in uEVs in PA and
EH in the control group. No difference was detected of miR-21-
5p between the PA and EH group (Table 5). Concerning Let-7i-
A B DC

FIGURE 1 | Clinical characteristics of subjects with PA. (A) Age (years old). (B) Body mass index (BMI; kg/m2) (C) Systolic blood pressure (SBP; mmHg). SBP was
higher in PA and EH subjects in the CTL group. (D) Diastolic blood pressure (DBP; mmHg). DBP was higher in PA and EH subjects in the CTL group. Comparison
between groups was performed by unpaired one-way ANOVA or Kruskal-Wallis test. Data are presented as median and interquartile range [Q1-Q3], N.S: No
significative difference, *p < 0.05, **p < 0.01, ***p < 0.001.
A B C

FIGURE 2 | Biochemical characteristics of subjects with PA. (A) Serum aldosterone concentration (ng/dL). Serum aldosterone levels were higher in PA subjects in
the EH group. (B) Plasmatic renin activity (PRA; ng/mL*h). Plasmatic renin activity was lower in PA subjects in both the EH and CTL groups. (C) Aldosterone to renin
ratio (ARR). ARR was higher in PA subjects in both the EH and CTL groups. Comparison between groups was performed by unpaired one-way ANOVA or Kruskal-
Wallis test. Data are presented as median and interquartile range [Q1-Q3], N.S, No significative difference; ***p < 0.001, ****p < 0.0001.
November 2021 | Volume 12 | Article 768734
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5p, we did not detect any differences between all groups (Table 5
and Figure 8).

Receiver Operating Characteristic Curve
Analyses for AGP1 and miR-21-5p
Receiver operating characteristic (ROC) analysis showed that a
serum AGP1 concentration of 647.9 mg/ml had the best
sensitivity (90%) and specificity (83%) to discriminate PA from
EH and control subjects. In this analysis, the area under the curve
(AUC) for AGP1 was 0.90 (IC 95 [0.79 – 1.00], p <0.001)
(Figure 9) and for miR-21-5p (AUC 0.63 [0.40-0.86], p NS].
The ROC curve for both AGP1 + EV-miR-21-5p showed a
sensitivity of 90% and specificity of 85% with an AUC of 0.94 (IC
95 [0.85 – 1.00], p<0.001) (Figure 9).
Frontiers in Immunology | www.frontiersin.org 6199
DISCUSSION

In the present study, we evaluated the concentration of lipocalins
AGP1 and LCN2, and the expression of miR-21-5p and Let-7i-
5p in uEVs as potential biomarkers of PA. We observed a higher
concentration of AGP1 in PA subjects, which is associated with
the critical variables used to screen PA, as plasma aldosterone,
renin, and ARR. Further to these novel findings, we noted a low
expression of miR-21-5p in PA subjects, which is interesting
since it supports a combinate model for the identification of PA
conditions. We suggest that both AGP1 and miR-21-5p are
associated with the pathogenic course of the primary
aldosteronism and can be useful in the design of a novel
diagnostic algorithm for PA. There is also a widely accepted
TABLE 2 | Evaluation of parameters associated with inflammation, endothelial and renal damage in PA subjects, EH, and controls.

CONTROL EH PA

Hs-CRP (mg/l) 1.1 [0.9-2.9] 2.1 [0.5-4.0] 1.4 [1.1-2.0]
IL-6 (pg/ml) 3.0 [1.7-3.2] 3.2 [2.7-3.9] 3.0 [1.5-3.1]
PAI-1 (ng/ml) 14.0 [11.5-19.5] 15.8 [11.4-21.2] 21.1 [7.3-24.4]
MMP9 (activity FC) 1.2 [0.8-2.2] 1.4 [1.2-2.4] 1.4 [1.0-1.5]
MMP2 (activity FC) 1.2 [1.0-1.5] 1.2 [1.0-1.9] 1.1 [1.0-1.3]
Urinary albumin (mg/g creatinine) 4.3 [1.9-6.6] 3.6 [1.5-5.4] 3.2 [2.0-4.6]
November 2021 | Volume 12 |
hs-PCR, High sensitivity C reactive protein; IL-6, Interleukin-6; PAI-1, Plasminogen activator inhibitor-1; MMP9, Matrix metalloproteinase-9 activity (fold change); MMP2, Matrix
metalloproteinase-2 activity (fold change); LCN2, Serum LCN2 concentration; LCN2-MMP9, Serum LCN2-MMP9 concentration; LCN2+MMP9, Serum LCN2+LCN2-MMP9
concentration; AGP1, Serum AGP1 concentration. Data are presented as a median and interquartile range [Q1-Q3]. Statistical analyses were performed using Kruskal-Wallis (Dunn´s)
with significance p < 0.05.
A B DC

FIGURE 3 | Evaluation of parameters associated with inflammation, endothelial and renal dysfunction in PA subjects. (A) High sensitivity C reactive protein (hsPCR;
mg/L). (B) Plasminogen activator inhibitor – 1 (PAI-1; ng/mL). (C) Metalloproteinase 9 (fold change activity). (D) Metalloproteinase 2 (fold change activity). No
differences of parameters associated with inflammation, endothelial and renal dysfunction were found between groups. Comparison between groups was performed
by unpaired one-way ANOVA or Kruskal-Wallis test. Data are presented as a median and interquartile range [Q1-Q3], N.S, No significative difference.
TABLE 3 | Determination of serum AGP1A, LCN2, and LCN2-MMP9 in PA subjects.

CONTROL EH PA

AGP1 (mg/ml) 60.7 [18-609] 62.5 [47.1-365.9]a,c 934.1 [736.5-1255]a,b

LCN2 (ng/ml) 96 [61-117] 104 [88-133] 123 [80-131]
LCN2-MMP9 (ng/ml) 28 [16-43] 45 [29-65] 52 [29-75]
Total LCN2 (ng/ml) 107 [81-162] 179 [156-202]c 190 [172-214]b
AGP1, Serum AGP1 concentration. LCN2, Serum LCN2 concentration; LCN2-MMP9, Serum LCN2-MMP9 concentration; Total LCN2, sum of free LCN2 and LCN2-MMP9 complex.
Data are presented as a median and interquartile range [Q1-Q3]. Statistical analyses were performed using Kruskal-Wallis (Dunn´s) with significance p <0.05. aPA different from the EH
group, bPA different from the control group, and cEH different from the control group.
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consensus regarding a positive screening for PA is an ARR >30
ng/dL per ng/mL/h, with suppressed renin (PRA<1.0 ng/mL*h
or DRC <10 uUI/ml) and an aldosterone concentration >15 ng/
dL. Some studies have been identified that can improve the
detection of milder forms of primary aldosteronism when using
less conservative ARR thresholds with suppressed renin activity
and plasma aldosterone levels >9 ng/dL (5, 53, 54), which is in
agreement with the outcome of this study.

We found similar levels of hs-CRP and IL-6 as markers of
inflammation in PA subjects, which were similar to EH and
control groups, according to previous studies (12, 64). Similarly,
endothelial damage markers (PAI-1, MMP9, and MMP2) and
Frontiers in Immunology | www.frontiersin.org 7200
renal function markers (Urinary albumin (UACR)) do not show
any significant changes in PA compared with EH and controls. It
suggests these subjects, currently classified as subclinical PA (54,
65) do not have chronic inflammation, vascular compromise, or
renal function impairment as is seen in overt or classic PA.
Hence, is highly necessary novel and sensitive biomarkers aimed
to detect subclinical PA and avoid complications associated with
the renal and extra-renal effects reported in classic PA.

This perspective is the first to report findings that show a
higher serum AGP1 concentration in PA than EH and controls
subjects (Figure 4). We also observed a significant association of
AGP1 with classic screening parameters for PA (e.g., aldosterone,
A B DC

FIGURE 4 | Determination of serum AGP1, LCN2, LCN2-MMP9, and in PA subjects. (A) Serum AGP1 concentration (µg/mL). We detected higher levels of AGP1 in
PA subjects in both EH and CTL groups. (B) Serum LCN2 concentration (ng/mL). LCN2 concentration was similar between groups (C) Serum LCN2-MMP9
concentration. LCN2-MMP9 concentration was similar between groups (ng/mL). (D) Serum LCN2 + LCN2-MMP9 concentration (ng/mL). Serum levels of LCN2 +
LCN2-MMP9 were higher in EH subjects in the CTL group. LCN2 + LCN2-MMP9 concentration was similar between PA and EH subjects and PA and CTL subjects.
Comparison between groups was performed by unpaired one-way ANOVA or Kruskal-Wallis test. Data are presented as a median and interquartile range [Q1-Q3].
N.S, No significative difference, *p < 0.05, **p < 0.01.
FIGURE 5 | Heat map of AGP1 associations with serum Aldosterone, PRA, and ARR in PA, EH, and CTL subjects. Positive associations are presented in blue
gradient with the respective r (rho) value. Similarly, negative associations are presented in the red gradient. We observed a significant association between AGP1
concentration and the 3 relevant biochemical parameters in primary aldosteronism screening. Association studies were performed by Spearman test, p < 0.05.
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FIGURE 7 | Quantification of uEVs by NTA. (A) Urinary creatinine normalized uEVs concentration (uEVs particles/mg creatinine). (B) Mean diameter of uEVs
particle size distribution (nm). (C) Mode diameter of uEVs particle size distribution (nm). uEVs concentration and diameter were similar between groups. Comparison
between groups was performed by unpaired one-way ANOVA or Kruskal-Wallis test. Data are presented as a median and interquartile range [Q1-Q3]. N.S: No
significant difference.
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PRA, and ARR) (Figure 5). Moreover, we found by
discriminative analyses by ROC curves that AGP1 can identify
PA from HE&CTL subjects with high sensitivity and specificity.
All these results suggest that circulating AGP1 protein is a novel
and potential biomarker of PA, which was also suggested for
Frontiers in Immunology | www.frontiersin.org 8201
AGP1 protein in urinary exosomes (26). Since AGP1 is a protein
from the family lipocalin associated with the acute phase
response with immunomodulatory properties (66, 67), affected
by glucocorticoids (68–70) and mineralocorticoids (71), we
suggest that AGP1 expression is modified by high aldosterone
A B C

FIGURE 6 | Characterization and quantification of urinary EVs. (A). Identification of uEVs by Transmission Electron Microscopy (TEM) (indicated by black arrows).
(B) Representative size distribution plot from uEVs using a NanoSight NS300 instrument. (C). Western blot of classic extracellular vesicles markers TSG101 and CD9.
TABLE 4 | Characterization by NTA of urinary extracellular vesicles.

CONTROL EH PA

uEV (particle/g crea) 1.63x1011 [1.14 x1011-1.95 x1011] 2.21 x1011 [1.55 x1011-2.63 x1011] 2.0 x1011 [1.18 x1011- 3.89 x1011]
uEV mean size (nm) 142 [129-149] 141 [138-161] 145 [139-152]
uEV mode size (nm) 121 [109-129] 130 [117-169] 135 [122-155]
November 2
Statistical analyses were performed using Kruskal-Wallis (Dunn´s) with significance p <0.05.
TABLE 5 | Expression of miR-21-5p and Let-7i-5p in urinary extracellular vesicles.

CONTROL EH PA

miR-21-5p (RU/Crea) 2194 [143.5-12311] 34.1 [5.1-101.7]c 7.3 [0.6-667.5]b

Let7i-5p (RU/Crea) 157.2 [16.7- 374.5] 70.1 [14.9 -515.4] 26.7 [0.2-684.9]
021 | Volume 12
RU/Crea, Relative units/mg creatinine. Statistical analyses were performed using Kruskal-Wallis (Dunn´s) with significance p <0.05. bPA different from the control group, and cEH different
from the control group.
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FIGURE 8 | Expression of miR-21-5p and Let-7i-5p in uEVs. (A) miR-Let7i-5p expression in uEVs normalized by urinary creatinine (RU/mg creatinine). No
differences in miR-Let7i-5p levels were found between groups. (B) miR-21-5p expression in uEVs normalized by urinary creatinine (RU/mg creatinine). uEVs miR-21-
5p expression was higher in PA and EH subjects respect CTL group. Comparison between groups was performed by unpaired one-way ANOVA or Kruskal-Wallis
test. Data are presented as a median and interquartile range [Q1-Q3]. N.S: No significative difference, *p < 0.05.

FIGURE 9 | Regression model and Receiver operating characteristic (ROC) curve. ROC curve for serum AGP1 levels (black) and serum AGP1 levels + uEVs
associated miR-21-5p (red) can discriminate the PA condition from EH and CTL groups.
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levels through MR activation, having a dual role as a potential
biomarker of PA, and possible mediator of the tissue response to
high aldosterone. Further clinical and animal model or in-vitro
studies using MR antagonists should be performed to support
this hypothesis.

Similarly, we measured free LCN2 and LCN2 conjugated with
matrix metalloproteinase 9 protein as a potential biomarker of PA
(72). We found an increase only in total LCN2 (the sum of free and
complexed LCN2) in EH, but it did not reach a significant
difference in PA when compared with the control or EH. LCN2
is a proinflammatory molecule upregulated in obese individuals or
patients with cardiometabolic syndrome, as also has been described
Frontiers in Immunology | www.frontiersin.org 9202
in classic PA (73, 74) and is suggested as an MR sensitive protein
(75, 76). LCN2 expression is influenced by several factors including
obesity, salt intake, aging, infection, and inflammatory status (72,
74, 77–79). Since these subjects have a middle or subclinical PA,
with no clear evidence of inflammation, renal/vascular damage
(Figure 3), or concomitant cardiometabolic disease, we
hypothesize the LCN2 fails to increase in these PA subjects since
they require a concomitant hit as inflammation (78, 79), obesity
(high adipose tissue) (74), or high salt intake (72) to increase the
circulating LCN2 levels.

We studied the urinary extracellular vesicles as a source of
potential biomarkers for PA (26, 30). In the present study, uEVs
November 2021 | Volume 12 | Article 768734
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showed similar particle concentration and size in PA subjects
with respect to EH and controls (Table 4). Previous studies in PA
show similar findings in uEVs concentration (26) but differ from
studies in circulating EVs in PA (75, 76), where they reported an
increased concentration of circulating EVs in the serum of PA
patients when compared with essential hypertensives and
Frontiers in Immunology | www.frontiersin.org 10203
attributed it to an enhanced biological response of the
endothelium to aldosterone in vivo (75), which has also been
observed in vitro (80–82). These differences could be related to
the PA classification, overt PA versus subclinical PA, and also the
different biofluids used to quantify the impact of high
aldosterone in EV concentration, serum versus urine, which is
TABLE 6 | Target genes of miR-21-5p and Let-7i-5p, biological process associate and its predicted renal and global effect.

miRNA Gene
target

Biological process Predicted effect Global effect

Hsa-miR-21-5p IL1B
IL12A
IL10

- regulation of lymphocyte mediated immunity
- regulation of adaptive immune response

promote an inflammatory state
characterized by vascular infiltration of
immune cells

Increase inflammation

COL10A1
COL12A1
COL13A1
COL1A1
COL4A1

- collagen catabolic process
- extracellular matrix disassembly

degradation and reorganization of
extracellular matrix scaffold

Hypertrophy or hyperplasia of cardiac
myocytes and vascular smooth
muscle cells (VSMCs)

NEDD4 protein polyubiquitination Regulates ENaC function by controlling
the number of channels at the cell
surface

Increase plasma volume

SLC12A2 - Mediates sodium and chloride reabsorption.
- Plays a vital role in the regulation of ionic balance
and cell volume

Increased renal Na+ reabsorption Increase plasma volume

TIAM1 GEFs mediate the exchange of guanosine
diphosphate (GDP) for guanosine triphosphate (GTP).

Regulator involved in the activation of
Rac1 induced by salt loading and
aldosterone.

Salt sensitive hypertension

YWHAZ positive regulation of signal transduction by binding
to phosphoserine-containing proteins

14-3-3 proteins modulate the
expression of epithelial Na+ channels

Increase plasma volume

Hsa-let-7i-5p TGFBR1 Is a multifunctional cytokine affecting many cell types
and tissue remodeling processes, including
angiogenesis and organ fibrosis.
TGF-b mediates tissue fibrosis associated with
inflammation and tissue injury.

TGF-b
increased fibroblast activation,
proliferation, and excessive
extracellular matrix (ECM) production

increased fibroblast activation,
proliferation, and excessive ECM
production.
Increase fibrosis

AQP2 renal water homeostasis increasing the retention of water and
sodium

Increase plasma volume

COL1A1
COL1A2
COL24A1
COL3A1

extracellular matrix organization degradation and reorganization of
extracellular matrix scaffold

hypertrophy or hyperplasia of cardiac
myocytes and vascular smooth
muscle cells (VSMCs)

DNMT3A
DNMT3B

- DNA methylation on cytosine within a CG sequence
- S-adenosylmethioninamine metabolic process
- methylation-dependent chromatin silencing
- regulation of gene expression by genetic imprinting

Increased promoter methylation of
HSD11B2 gene

Decreased cortisol to cortisone
metabolism; High F/E ratio

IL10
IL12A
IL13
IL15
IL17RA
IL6
IL6R
IL8

- positive regulation of cytokine production
- inflammatory response

promote an inflammatory state
characterized by vascular infiltration of
immune cells

Increase inflammation

NEDD4 protein polyubiquitination Regulates ENaC function by controlling
the number of channels at the cell
surface

Increase plasma volume

ORM1
ORM2

- acute-phase response
- response to stress

Functions as transport protein in the
blood stream.

Increase due to acute inflammation

SCNN1A - sodium ion homeostasis Increased renal Na+ reabsorption Increase plasma volume
SLC12A1 - It plays a key role in concentrating urine and

accounts for most of the NaCl resorption
Increased renal Na+ reabsorption Increase plasma volume

YWHAZ
YWHAE

- mediate signal transduction by binding to
phosphoserine-containing proteins.

14-3-3 proteins modulate the
expression of epithelial Na+ channels

Increase plasma volume
Novembe
Gene target identification for identified miRNAs was performed using 5 miRNA gene target databases: miRmap, miRWalk, TargetScan, miRanda, and RNA22.
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associated with distinct mechanisms and the rates of EV
shedding that have different tissues (e.g., vascular endothelium
vs renal epithelia).

Based on previous reports, we measured the expression of two
miRNA in urinary EVs, miR-21-5p, and Let-7i-5p, as potential
biomarkers of PA. We observed that uEV-associated miR-21-5p
expression in uEVs from PA were lower than controls (Figure 8)
and similar to EH, however a trend to lower levels was observed
in PA. This result suggests that uEV-miR-21-5p is
downregulated and associated with pathophysiological
mechanisms depending on both high BP and PA conditions.
miR-21-5p expression is regulated by cytokines, inflammatory
modulators (e.g., NF1, AP1), and steroids. Downregulation of
miR-21-5p would affect the downstream target genes related
with inflammation (83) as IL-1B gene, aldosterone effect as
NEDD4, YWHAZ, SCL12A2 genes, and fibrotic processes (42,
84) as COL1A and COL4A1 genes (Table 6). Prospective animal
models and in vitro studies with miR-21-5p are necessary to gain
depth of understanding about the role of this miRNA in high
aldosterone conditions in renal epithelia, as occurs in PA.

With respect to uEV-associated Let-7i-5p, we did not observe
any differences in Let-7i-5p expression in all groups. Let-7i has
been found in either urine (31) and plasma exosomes (44) and is
associated with RAAS, mediating inflammation and fibrosis, in
both in vitro models and experimental models of kidney disease
(51, 85). Let-7i regulates downstream target genes TGFBR1, IL6,
IL10, COL1A1, COL3A1, DNMT3A, NEDD4, ORM1, VIM,
FN1, ACTIN, SCL12A1, and YWHAZ, among others (85–87)
(Table 6). In the current study, we did not find differences in
inflammation parameters, and were unable to measure other
important parameters related to fibrosis in these PA subjects,
such as the procollagen type 1 protein (PINP, COL1A1).

The ROC curves analyses with AGP1 and miR-21-5p as
significant variables associated with PA subjects, support a
simple (AGP1) or combinate model (AGP1 + miR-21-5p) to
discriminate PA with significant AUC of 90% or 94%,
respectively. This AUC is similar to previous reports on AGP1
in uEVs (92%), which support free or uEV-associated AGP1 as
potential biomarkers of PA (26).

In summary, we found higher levels of serum AGP1 and
lower uEV-miR-21-5p expression in subjects classified as PA
with respect to EH and controls. Besides the high discriminatory
Frontiers in Immunology | www.frontiersin.org 11204
capacity identified by ROC curves, the association of AGP1 with
aldosterone, PRA, and ARR, place both as potential biomarkers
of PA. Further studies examining the possible role of AGP1 and
miR-21-5p as a mediator of the pathogenic course of PA
are encouraged.
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