
EDITED BY : John David Griffiths, Kelly Shen and Padraig Gleeson

PUBLISHED IN : Frontiers in Neuroinformatics and

Frontiers in Computational Neuroscience

NEUROINFORMATICS OF LARGE
SCALE BRAIN MODELLING

https://www.frontiersin.org/research-topics/16641/neuroinformatics-of-large-scale-brain-modelling
https://www.frontiersin.org/research-topics/16641/neuroinformatics-of-large-scale-brain-modelling
https://www.frontiersin.org/research-topics/16641/neuroinformatics-of-large-scale-brain-modelling
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/computational-neuroscience

Frontiers in Neuroinformatics 1 October 2022 | Neuroinformatics of Large Scale Brain

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-83250-179-5

DOI 10.3389/978-2-83250-179-5

https://www.frontiersin.org/research-topics/16641/neuroinformatics-of-large-scale-brain-modelling
https://www.frontiersin.org/journals/neuroinformatics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact

Frontiers in Neuroinformatics 2 October 2022 | Neuroinformatics of Large Scale Brain

NEUROINFORMATICS OF LARGE
SCALE BRAIN MODELLING

Topic Editors:
John David Griffiths, University of Toronto, Canada
Kelly Shen, Simon Fraser University, Canada
Padraig Gleeson, University College London, United Kingdom

Citation: Griffiths, J. D., Shen, K., Gleeson, P., eds. (2022). Neuroinformatics of
Large Scale Brain Modelling. Lausanne: Frontiers Media SA.
doi: 10.3389/978-2-83250-179-5

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/research-topics/16641/neuroinformatics-of-large-scale-brain-modelling
http://doi.org/10.3389/978-2-83250-179-5

Frontiers in Neuroinformatics 3 October 2022 | Neuroinformatics of Large Scale Brain

04 Editorial: Neuroinformatics of Large-Scale Brain Modelling

John D. Griffiths, Kelly Shen and Padraig Gleeson

07 Fast Simulations of Highly-Connected Spiking Cortical Models Using
GPUs

Bruno Golosio, Gianmarco Tiddia, Chiara De Luca, Elena Pastorelli,
Francesco Simula and Pier Stanislao Paolucci

24 Granular layEr Simulator: Design and Multi-GPU Simulation of the
Cerebellar Granular Layer

Giordana Florimbi, Emanuele Torti, Stefano Masoli, Egidio D’Angelo and
Francesco Leporati

47 BOLD Monitoring in the Neural Simulator ANNarchy

Oliver Maith, Helge Ülo Dinkelbach, Javier Baladron, Julien Vitay and
Fred H. Hamker

64 Extracting Dynamical Understanding From Neural-Mass Models of Mouse
Cortex

Pok Him Siu, Eli Müller, Valerio Zerbi, Kevin Aquino and Ben D. Fulcher

79 The Case for Optimized Edge-Centric Tractography at Scale

Joseph Y. Moon, Pratik Mukherjee, Ravi K. Madduri, Amy J. Markowitz,
Lanya T. Cai, Eva M. Palacios, Geoffrey T. Manley and Peer-Timo Bremer

91 EDEN: A High-Performance, General-Purpose, NeuroML-Based Neural
Simulator

Sotirios Panagiotou, Harry Sidiropoulos, Dimitrios Soudris, Mario Negrello
and Christos Strydis

115 Exploring Parameter and Hyper-Parameter Spaces of Neuroscience
Models on High Performance Computers With Learning to Learn

Alper Yegenoglu, Anand Subramoney, Thorsten Hater,
Cristian Jimenez-Romero, Wouter Klijn, Aarón Pérez Martín,
Michiel van der Vlag, Michael Herty, Abigail Morrison and Sandra Diaz-Pier

136 NNMT: Mean-Field Based Analysis Tools for Neuronal Network Models

Moritz Layer, Johanna Senk, Simon Essink, Alexander van Meegen,
Hannah Bos and Moritz Helias

158 A Robust Modular Automated Neuroimaging Pipeline for Model Inputs to
TheVirtualBrain

Noah Frazier-Logue, Justin Wang, Zheng Wang, Devin Sodums,
Anisha Khosla, Alexandria D. Samson, Anthony R. McIntosh and Kelly Shen

175 A Programmable Ontology Encompassing the Functional Logic of the
Drosophila Brain

Aurel A. Lazar, Mehmet Kerem Turkcan and Yiyin Zhou

198 A Spiking Neural Network Builder for Systematic Data-to-Model
Workflow

Carlos Enrique Gutierrez, Henrik Skibbe, Hugo Musset and Kenji Doya

Table of Contents

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/research-topics/16641/neuroinformatics-of-large-scale-brain-modelling

TYPE Editorial

PUBLISHED 11 October 2022

DOI 10.3389/fninf.2022.1043732

OPEN ACCESS

EDITED AND REVIEWED BY

Jan G. Bjaalie,

University of Oslo, Norway

*CORRESPONDENCE

John D. Gri�ths

j.davidgri�ths@gmail.com

RECEIVED 14 September 2022

ACCEPTED 26 September 2022

PUBLISHED 11 October 2022

CITATION

Gri�ths JD, Shen K and Gleeson P

(2022) Editorial: Neuroinformatics of

large-scale brain modelling.

Front. Neuroinform. 16:1043732.

doi: 10.3389/fninf.2022.1043732

COPYRIGHT

© 2022 Gri�ths, Shen and Gleeson.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Editorial: Neuroinformatics of
large-scale brain modelling

John D. Gri�ths1,2,3*, Kelly Shen4 and Padraig Gleeson5

1Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON,

Canada, 2Department of Psychiatry, University of Toronto, Toronto, ON, Canada, 3Institute of

Medical Sciences, University of Toronto, Toronto, ON, Canada, 4Institute for Neuroscience and

Neurotechnology, Simon Fraser University, Burnaby, BC, Canada, 5Department of Neuroscience,

Physiology, and Pharmacology, University College London, London, United Kingdom

KEYWORDS

large-scale brain modeling, computational neuroscience, neuroinformatics,

neuroimaging, simulators and models

Editorial on the Research Topic

Neuroinformatics of large scale brain modelling

A major focus in contemporary neuroscience research is the mapping and modeling

of connectivity and activity dynamics in large-scale brain networks. As the resolution,

coverage, and availability of neural data increase rapidly, neuroinformatics techniques

are playing an increasingly important role in this scientific enterprise. Large-scale brain

modeling is the methodologically-defined sub-field of computational neuroscience that is

focused on simulations of either whole-brain activity at a coarse-grained (meso/macro)

spatial scale, or activity in select neural subsystems at a fine-grained (micro) spatial

scale and high level of detail. Neuroinformatics tools employed in large-scale brain

modeling come in the form of software infrastructure, database resources, and practical

implementations of mathematical and algorithmic techniques that facilitate these core

research goals.

In many cases the neuroinformatics and architectural solutions developed as part

of this work are in themselves of general methodological interest to researchers, but

are often communicated secondarily to the principal neuroscientific research questions.

This joint Frontiers in Neuroinformatics and Frontiers in Computational Neuroscience

Research Topic was therefore conceived by the Editorial Team as a venue to highlight

exciting recent developments in the field, as well as to demonstrate the broad range

of innovative work taking place. It features a collection of 11 original research articles

describing new advances in the neuroinformatics of large-scale brain modeling. These

span a diverse range of computational methods and neuroscientific applications, from

cell and microcircuit dynamics to macro-scale neuroanatomy and neuroimaging. In

addition to the stand-alone value of the various individual contributions, we believe

strongly that the shared focus on computational methodologies across the articles in this

collection brings an important additional benefit—to facilitate dialogue, exposure, and

cross-pollination across neuroscience sub-fields.

Frontiers inNeuroinformatics 01 frontiersin.org

4

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.1043732
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.1043732&domain=pdf&date_stamp=2022-10-11
mailto:j.davidgriffiths@gmail.com
https://doi.org/10.3389/fninf.2022.1043732
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2022.1043732/full
https://www.frontiersin.org/research-topics/16641/neuroinformatics-of-large-scale-brain-modelling
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Gri�ths et al. 10.3389/fninf.2022.1043732

Two common themes across the included articles are (i)

improving the scale, speed, accuracy, and resolution of modeling

and data analysis pipelines, and (ii) improving connections

between micro-meso-macro levels of analysis. We will discuss

contributions from each of these themes in turn. Several

of the featured papers describe new or improved simulator

software. One example is the article by Panagiotou et al., which

introduces a novel and high-performance neural simulator

named EDEN (“Extensible Dynamics Engine for Networks”).

By heavily basing EDEN around the model specification

language NeuroML (Gleeson et al., 2010), EDEN achieves an

impressive combination of flexibility and ease-of-use. More

impressively however, the authors also demonstrate almost two

orders-of-magnitude speed improvements as compared to the

industry-standard tool NEURON (Hines and Carnevale, 1997)

for simple single-computer usage, as well as seamless scaling

over multiple CPUs and compute clusters with minimal effort

and code modification. Improving computational scalability

is also a major emphasis in the contributions of Florimbi et

al. and Golosio et al., who describe impressive performance

with new GPU-based architectures for modeling large-

scale cerebellar networks (incorporating conductance-based

neuronal models) and spiking network models, respectively.

A common context where high-performance implementations

are particularly needed and useful is in parameter space

exploration and parameter optimization problems. On this

topic, Yegenoglu et al. present a novel genetic algorithm-based

approach, drawing on the concept of “learning to learn”

(L2L), with worked examples for multiple simulators at

multiple scales.

Complementing these contributions focused on the

specification and execution of neural simulations, several

articles in this collection address another major topic in the

field of neuroinformatics, namely the systematic and efficient

analysis of multimodal structural and functional brain data, at

various spatial scales, as a critical first step in the development of

large-scale computational models of brain activity. Moon et al.

offer suggestions for improving the scalability of tractography

analyses, now commonly used for reconstructing white matter

fiber projections and anatomical connectivity patterns from

individual human diffusion-weighted MRI scans. Their article

is based around the interesting observation that probabilistic

tractography reconstructions, which conventionally make use

of thousands or millions of samples per seed location, can

be reduced down to a handful of samples with comparable

results in terms of identifiability and connectome matrix

quality. Building on tools such as these, Frazier-Logue

et al. describe a new improved neuroimaging pipeline for

preprocessing brain connectivity using structural and functional

MRI scans in preparation for whole-brain simulations with

TheVirtualBrain library (https://thevirtualbrain.org; Sanz Leon

et al., 2013).

Moving another level up, two articles in this collection

explore the question of data organization via systematic

ontologies. Gutierrez et al. describe a new tool for collaborative

data-driven development of spiking network models, including

structured management of the various entities used to

specify physiological parameters and state variable dynamics,

as well as code generation functionality that allows full

specification of NEST-based network models (Gewaltig and

Diesmann, 2007). At a slightly higher level of abstraction,

Lazar et al. offer a novel “programmable logic” schema

for describing the functional organization of the Drosophila

brain, including a web application (“NeuroNLP++”) allowing

natural language querying of published literature. These authors

demonstrate usage of their new tool with examples exploring

the functional logic of feedback loops in the Drosophila

antennal lobe.

The second main theme in this Research Topic is, as noted,

improving connections between micro, meso, and macro

levels of analysis, which is represented by the articles from

Siu et al., Layer et al., and Maith et al.. In the first of these,

Maith et al. introduce a blood oxygenation-dependent (BOLD)

“monitor” (i.e., empirical measurement process simulator) into

the ANNarchy (Vitay et al., 2015) spiking neuron modeling

library. This work can be seen as part of the major recent

and growing trend in computational neuroscience toward

“true” multiscale neural models that simultaneously capture

experimentally observed patterns across several qualitatively

different data types (D’Angelo and Jirsa, 2022). The contribution

by Siu et al. also has a focus on modeling of hemodynamic

activity patterns, in this case resting-state and stimulus-evoked

fMRI activity patterns in anesthetized mice. Impressively, these

authors combine theoretical analyses of bifurcation behavior

in neural mass models of mouse cortex with neuroinformatics

database-driven spatial variations in dynamical parameters

to study resting-state and stimulus-driven activity patterns

in (mouse) whole-brain functional MRI data. Finally, the

paper by Layer et al. articulates a general approach for mean-

field model derivation/reduction that is both theoretically

powerful and practically useful, the latter in particular due

to their development of the new open-source “Neuronal

Network Mean-Field Toolbox” (NNMT) Python library

(github.com/INM-6/nnmt). A particular strength of NNMT

is its treatment of mean-field behavior for leaky integrate

and fire model neuron models. The toolbox also provides

functionality to estimate various properties of large neuronal

networks, such as firing rates, power spectra, and dynamical

stability in mean-field and linear response approximations,

based entirely on well-developed mathematical theory and

without the need for running computationally expensive

numerical simulations.

We thank the authors for their excellent contributions to this

Research Topic on the Neuroinformatics of Large-Scale Brain

Frontiers inNeuroinformatics 02 frontiersin.org

5

https://doi.org/10.3389/fninf.2022.1043732
https://doi.org/10.3389/fninf.2022.724336
https://doi.org/10.3389/fncom.2021.630795
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.3389/fncom.2022.885207
https://doi.org/10.3389/fninf.2022.752471
https://doi.org/10.3389/fninf.2022.883223
https://thevirtualbrain.org
https://doi.org/10.3389/fninf.2022.855765
https://doi.org/10.3389/fninf.2022.853098
https://doi.org/10.3389/fncom.2022.847336
https://doi.org/10.3389/fninf.2022.835657
https://doi.org/10.3389/fninf.2022.790966
https://doi.org/10.3389/fninf.2022.790966
https://doi.org/10.3389/fncom.2022.847336
https://doi.org/10.3389/fninf.2022.835657
http://github.com/INM-6/nnmt
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Gri�ths et al. 10.3389/fninf.2022.1043732

Modeling. Our hope and aim is that the collection assembled

here provides an interesting and representative overview of the

impressive recent work on this topic from around the world, and

we look forward to continued discussions on new developments

in this exciting field.

Author contributions

All authors contributed equally to the editing of the Research

Topic and conceptualization of the manuscript. JG wrote the

first draft of the manuscript and all authors contributed to

revisions and approved the submitted version.

Funding

JG acknowledges research funding support from

the Krembil Foundation, CAMH Discovery Fund,

Labbatt Foundation, and Tri-Council UK-Canada AI

Initiative. PG acknowledges research funding support from

Wellcome (212941).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

D’Angelo, E., and Jirsa, V. (2022). The quest for multiscale brain modeling.
Trends Neurosci. 45, P777–790. doi: 10.1016/j.tins.2022.06.007

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia J. 2, 1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,
M., et al. (2010). NeuroML: a language for describing data driven models of
neurons and networks with a high degree of biological detail. PLoS Comput. Biol.
6, e1000815. doi: 10.1371/journal.pcbi.1000815

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation
environment. Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,
McIntosh, A. R., et al. (2013). The virtual brain: a simulator of primate brain
network dynamics. Front. Neuroinform. 7, 10. doi: 10.3389/fninf.2013.00010

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: a
code generation approach to neural simulations on parallel hardware. Front.
Neuroinform. 9, 19. doi: 10.3389/fninf.2015.00019

Frontiers inNeuroinformatics 03 frontiersin.org

6

https://doi.org/10.3389/fninf.2022.1043732
https://doi.org/10.1016/j.tins.2022.06.007
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.3389/fninf.2015.00019
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

ORIGINAL RESEARCH
published: 17 February 2021

doi: 10.3389/fncom.2021.627620

Frontiers in Computational Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 627620

Edited by:

Padraig Gleeson,

University College London,

United Kingdom

Reviewed by:

Jiang Wang,

Tianjin University, China

Marcel Stimberg,

Université de la Sorbonne, France

*Correspondence:

Bruno Golosio

golosio@unica.it

Received: 09 November 2020

Accepted: 26 January 2021

Published: 17 February 2021

Citation:

Golosio B, Tiddia G, De Luca C,

Pastorelli E, Simula F and Paolucci PS

(2021) Fast Simulations of

Highly-Connected Spiking Cortical

Models Using GPUs.

Front. Comput. Neurosci. 15:627620.

doi: 10.3389/fncom.2021.627620

Fast Simulations of
Highly-Connected Spiking Cortical
Models Using GPUs

Bruno Golosio 1,2*, Gianmarco Tiddia 1,2, Chiara De Luca 3,4, Elena Pastorelli 3,4,

Francesco Simula 4 and Pier Stanislao Paolucci 4

1Department of Physics, University of Cagliari, Cagliari, Italy, 2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari,

Cagliari, Italy, 3 Ph.D. Program in Behavioral Neuroscience, “Sapienza” University of Rome, Rome, Italy, 4 Istituto Nazionale di

Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy

Over the past decade there has been a growing interest in the development of parallel

hardware systems for simulating large-scale networks of spiking neurons. Compared

to other highly-parallel systems, GPU-accelerated solutions have the advantage of a

relatively low cost and a great versatility, thanks also to the possibility of using the

CUDA-C/C++ programming languages. NeuronGPU is a GPU library for large-scale

simulations of spiking neural network models, written in the C++ and CUDA-C++

programming languages, based on a novel spike-delivery algorithm. This library includes

simple LIF (leaky-integrate-and-fire) neuron models as well as several multisynapse AdEx

(adaptive-exponential-integrate-and-fire) neuron models with current or conductance

based synapses, different types of spike generators, tools for recording spikes, state

variables and parameters, and it supports user-definable models. The numerical solution

of the differential equations of the dynamics of the AdEx models is performed through

a parallel implementation, written in CUDA-C++, of the fifth-order Runge-Kutta method

with adaptive step-size control. In this work we evaluate the performance of this library on

the simulation of a cortical microcircuit model, based on LIF neurons and current-based

synapses, and on balanced networks of excitatory and inhibitory neurons, using AdEx or

Izhikevich neuron models and conductance-based or current-based synapses. On these

models, we will show that the proposed library achieves state-of-the-art performance in

terms of simulation time per second of biological activity. In particular, using a single

NVIDIA GeForce RTX 2080 Ti GPU board, the full-scale cortical-microcircuit model,

which includes about 77,000 neurons and 3 · 108 connections, can be simulated at

a speed very close to real time, while the simulation time of a balanced network of

1,000,000 AdEx neurons with 1,000 connections per neuron was about 70 s per second

of biological activity.

Keywords: spiking neural network simulator, corticalmicrocircuits, adaptive exponential integrate-and-fire neuron

model, conductance-based synapses, GPU

7

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.627620
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.627620&domain=pdf&date_stamp=2021-02-17
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:golosio@unica.it
https://doi.org/10.3389/fncom.2021.627620
https://www.frontiersin.org/articles/10.3389/fncom.2021.627620/full

Golosio et al. Cortical Model Simulations Using GPUs

1. INTRODUCTION

The human brain is an extremely complex system, with a number
of neurons in the order of 100 billions, an average number of
connections per neuron in the order of 10 thousands, hundreds
of different neuron types, several types of neurotransmitters and
receptors. Because of this complexity, the simulation of brain
activity at the level of signals produced by individual neurons
is extremely demanding, even if it is limited to relatively small
regions of the brain. Therefore, there is a growing interest in
the development of high-performance hardware and software
tools for efficient simulations of large-scale networks of spiking
neuron models. Some simulators, as for instance NEST (Fardet
et al., 2020), NEURON (Carnevale and Hines, 2006), and
Brian (Goodman and Brette, 2008), combine flexibility and
simplicity of use with the possibility to simulate a wide range
of spiking neuron and synaptic models. All three of these
simulators offer support for multithread parallel computation for
parallelization on a single computer. NEST and NEURON also
support distributed simulations on computer clusters through
MPI. On the other hand, a fertile field of research in recent
decades has investigated the use of highly parallel hardware
systems for simulating large-scale networks of spiking neurons.
Such systems include custom made neuromorphic very-large-
scale-integration (VLSI) circuits (Indiveri et al., 2011), field
programmable gate arrays (FPGAs) (Wang et al., 2018), and
systems based on graphical processing units (GPUs) (Sanders and
Kandrot, 2010; Garrido et al., 2011; Brette and Goodman, 2012;
Vitay et al., 2015; Yavuz et al., 2016; Chou et al., 2018). Compared
to other highly-parallel systems, the latter have the advantages
of a relatively low cost, a sustained technological development
driven by the consumer market and a great versatility, thanks
also to the possibility of using CUDA (Compute Unified Device
Architecture), a parallel computing platform and programming
model that has been created by NVIDIA to allow software
developers to take full advantage of the GPU capabilities
(Sanders and Kandrot, 2010). General purpose computing on
graphical processing units (GPGPU) is widely employed for
massively parallel computing. GPGPUs can significantly reduce
the processing time compared to multi-core CPU systems for
tasks that require a high degree of parallelism, because a single
GPU can perform thousands of core computations in parallel.
However, in order to derive maximum benefit from GPGPU, the
applications must be carefully designed taking into account the
hardware architecture. Over the past decade, several GPU-based
spiking neural network simulators have been developed (see
Brette and Goodman, 2012 for a review). EDLUT (Garrido et al.,
2011) is a hybrid CPU/GPU spiking neural network simulator
which combines time-driven (in GPU) and event-driven (in
CPU) simulation methods to achieve real-time simulation of
medium-size networks, which can be exploited in real-time
experiments as for instance the control of a robotic arm.
ANNarchy (Vitay et al., 2015) is a simulator for distributed
rate-coded or spiking neural networks, which provides a Python
interface for the definition of the networks and generates
optimized C++ code to actually run the simulation in parallel,

using either OpenMP on CPU architectures or CUDA on GPUs.
CARLsim (Chou et al., 2018) is a GPU-accelerated library for
simulating large-scale spiking neural network (SNN), which
includes different neuron models and provides programming
interfaces in C/C++ and in Python. Recently, the GeNN
simulator (Yavuz et al., 2016; Knight and Nowotny, 2018)
achieved cutting edge performance in GPU-based simulation
of spiking neural networks, achieving better performance than
CPU-based clusters and neuromorphic systems in the simulation
of the full-scale cortical microcircuit model proposed by Potjans
and Diesmann (2014). In this work we present a comprehensive
GPU library for fast simulation of large-scale networks of spiking
neurons, called NeuronGPU, which uses a novel GPU-optimized
algorithm for spike delivery. This library can be used either in
Python or in C/C++. The Python interface is very similar to that
of the NEST simulator and allows interactive use of the library.
Having an interface similar to that of NEST is an advantage
in view of a possible integration of this library with the NEST
simulator, which is currently in progress (Golosio et al., 2020). In
the following sections, after a general description of the library
and of the spike-delivery algorithm, we will evaluate the library
on three types of spiking neural network models:

• The Potjans-Diesmann cortical microcircuit model (Potjans
and Diesmann, 2014), based on the leaky-integrate-and-fire
(LIF) neuron model, which describes the behavior of a region
of the cerebral cortex having a surface of 1 mm2 and includes
about 77,000 neurons and 3 · 108 connections;

• A balanced network of excitatory and inhibitory neurons
(Brunel, 2000), based on the adaptive-exponential-integrate-
and-fire (AdEx) neuron model (Brette and Gerstner, 2005),
with up to 1,000,000 neurons and 109 connections;

• A balanced network of excitatory and inhibitory neurons,
based on the Izhikevich neuron model (Izhikevich, 2003)
and STDP synapses, with up to 1,000,000 neurons and
108 connections.

We will show that, although the building time is larger
compared to other simulators, NeuronGPU achieves state-of-
the-art performance in terms of simulation time per unit time
of biological activity.

2. MATERIALS AND METHODS

2.1. The NeuronGPU Library
NeuronGPU is a GPU library for simulation of large-scale
networks of spiking neurons, written in the C++ and CUDA-
C++ programming languages. Currently it can simulate LIF
models, different multisynapse AdEx models with current or
conductance based synapses as well as user definable neuron
models. The LIF model subthreshold dynamics is integrated by
the exact integration scheme described in Rotter and Diesmann
(1999) on the time grid given by the simulation time resolution.
On the other hand, the numerical solution of the differential
equations of the AdEx dynamics is performed through a parallel
implementation, written in CUDAC++, of the fifth-order Runge-
Kutta method with adaptive control of the step size (Press and
Teukolsky, 1992). NeuronGPU can simulate networks of any

Frontiers in Computational Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 6276208

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

neuron and synaptic current models whose dynamics can be
described by a system of ordinary differential equations (ODEs),
although currently it does not provide a dedicated interface for
defining new models; the definition of a new model involves
changes in specific parts of the code. However, such changes
do not require experience with programming languages. In the
simplest approach, the user has tomodify the list of state variables
and parameters, their initial values, and the differential equations
that describe the neuron dynamics. With this approach the
number of user-defined neuron models that can be used in a
simulation together with the pre-definedmodels is limited to two.
A more advanced approach allows to use an arbitrary number
of new models in the same simulation and greater flexibility
in the model definition. Detailed instructions on different
approaches for the implementation of new models can be
found in https://github.com/golosio/NeuronGPU/wiki/How-to-
implement-new-neuron-models. The computations are carried
out using mainly 32-bit floating point numerical precision, with
the exception of some parts of the code for which double
precision calculations are more appropriate, e.g., those in which a
very large number of terms can be added. Neuron parameters and
connectionweights and delays can be initialized either using fixed
values or through arrays or probability distributions. Neuron
groups can be connected either using predefined connection
rules (one-to-one, all-to-all, fixed indegree, fixed outdegree,
fixed total number) or by user-defined connections. In addition
to the standard synapse model, nearest-neighbor spike-timing-
dependent-plasticity (STDP) is also available (Morrison et al.,
2008; Sboev et al., 2016). In the STDP model, the weight
that characterizes the strength of a synapse changes when the
presynaptic and postsynaptic neurons emit spikes that are close
in time. More specifically, the weight change depends on the
time difference: 1t = tpost − tpre = tspike_post + τdendritic −
(tspike_pre + τaxon) where tspike_pre is the time the presynaptic
neuron emits the spike, τaxon is the axonal delay, tpre is the
time the presynaptic spike reaches the synapse, tspike_post is
the time the postsynaptic neuron emits the spike, τdendritic is
the dendritic backpropagation delay, i.e., the time between the
emission of the postsynaptic spike and the time in which it
affects the synapse, tpost is the time in which the postsynaptic
spike affects the synapse. NeuronGPU uses a symmetric-nearest-
neighbor spike pairing scheme (Morrison et al., 2008). A weight
change can be triggered either by the postsynaptic or by the
presynaptic spike buffer. The first case occurs when the time
associated with a spike stored in the postsynaptic spike buffer
becomes equal to the dendritic delay. In this case 1t is equal
to the difference between the current time and the time in
which the last presynaptic spike reached the synapse. The
second case occurs when the time associated with a spike
stored in the presynaptic spike buffer becomes equal to the
axonal delay. In this second case, 1t is equal to the difference
between the time in which the last postsynaptic spike reached
the input synapse and the current time. In both cases, the
weight change is computed using the formula (Sboev et al.,
2016):

1w =

−λαwmax ·
(w

wmax

)µ−

· e

(1t

τ−

)

if 1t = tpost − tpre < 0

λwmax ·
(

1−
w

wmax

)µ+

· e

(

−
1t

τ+

)

if 1t = tpost − tpre > 0

(1)

If µ+ = µ− = 0, the rule is called additive, while if µ+ = µ− =

1 the rule is called multiplicative, and intermediate values are
also possible. Different types of spike generators and recording
devices can be simulated, including Poisson generators, spike
recorders, and multimeters. NeuronGPU includes an efficient
implementation of GPU-MPI communication among different
nodes of a GPU cluster, however the performance of the proposed
library on GPU clusters has not yet been thoroughly evaluated,
therefore this feature is not described in the present work.
The Python interface is very similar to that of NEST in main
commands, use of dictionaries, connection rules, model names,
and parameters. The following Python code sample illustrates
this strong similarity.

import neurongpu as ngpu
create Poisson generator with rate
poiss_rate
pg = ngpu.Create(‘‘poisson_generator’’)
poiss_rate = 12000. 0
ngpu. SetStatus(pg, ‘‘rate,’’ poiss_rate)
Create n_neurons neurons with n_receptor
receptor ports
neuron model is multisynapse AdEx (aeif)
with conductance-based synapse
described by the beta function
n_neurons = 10
n_receptor = 2
neuron = ngpu.Create(‘‘aeif_cond_beta,’’
n_neurons, n_receptors)
Initialize receptor parameters
E_rev = [0.0, -85.0]
tau_decay = [1.0, 1.0]
tau_rise = [1.0, 1.0]
ngpu.SetStatus(neuron,
{"E_rev":E_rev, "tau_decay":tau_decay,
"tau_rise":tau_rise})
Connect Poisson generator to neurons
poiss_weight = 0.05
poiss_delay = 2.0
conn_dict={"rule": "all_to_all"}
syn_dict={"weight": poiss_weight, "delay":
poiss_delay, "receptor":0}
ngpu.Connect(poiss_gen, neuron, conn_dict,
syn_dict)

About 30 test scripts and C++ programs have been designed
to check the correctness of neuron model dynamics, spike
generators, recording tools, spike delivery, connection rules.
Many of such tests use similar NEST simulations as reference.
Several examples in C++ and in Python are also available.
NeuronGPU is an open-source library, freely available onGitHub
from the web address https://github.com/golosio/NeuronGPU
under the terms of the GNU General Public License v3.0.

2.2. The Spike-Delivery Algorithm
A crucial issue that must be addressed in the design of spiking
neural network simulators is the choice of the algorithms to store

Frontiers in Computational Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 6276209

https://github.com/golosio/NeuronGPU/wiki/How-to-implement-new-neuron-models
https://github.com/golosio/NeuronGPU/wiki/How-to-implement-new-neuron-models
https://github.com/golosio/NeuronGPU
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

the spikes and to propagate and deliver them after proper delays.
In particular, two important aspects can significantly affect the
performance of different approaches: the way they account for the
delays associated with connections and the representation used
to index connections and to retrieve them when they must be
used for spike delivery. A common approach for handling delays
consists in using a circular event queue (see for instance Brette
et al., 2007). Each element of this queue corresponds to a time
index, and points to a list of synaptic spikes that are scheduled for
that time. When a neuron i fires a spike, for each target neuron j
a synaptic event i → j is scheduled to be delivered at a time t+ d,
where d is the synaptic delay. The computational cost per time
step of managing delays with this approach is (Brette et al., 2007)

cd × N × F × C × dt (2)

where cd is the cost of one store and retrieve operation in the
circular queue, N is the number of neurons or other spiking
devices, F is the average firing rate, C is the number of output
connections per neuron and dt it the simulation time step. The
computational cost per time step for propagating the spikes is

cp × N × F × C × dt (3)

where cp is the cost of one spike propagation. In CPU
implementations of this approach, cd is usually small compared
to cp, therefore handling delays through the circular queue
increases the cost of spike propagation by a small factor. On
the other hand, in a GPU implementation cd may not be small
compared to cp, because the insertion and retrieval operations
in the circular queue would require access to the GPU global
memory. This type of access is relatively slow, and represents
in many cases one of the main bottlenecks of GPU codes. For
this reason, many GPU-based simulators use different methods.
Nageswaran et al. (2009) propose an approach for handling spikes
and synaptic delays in GPU architectures based on two tables:
a firing count table and a firing address table. The firing count
table stores the cumulative count of neurons that emitted a spike
in each time step of the last second. The firing address table
holds the indexes of the neurons that emitted a spike in the
last second. The firing count table is used to retrieve from the
firing address table the list of all the neurons that fired in each
time step t′, with t − max_delay ≤ t′ ≤ t, where t is the
current time step, and max_delay is the maximum delay of
all synaptic connections of the network, expressed in time step
units. The computational cost per time step for retrieving the
spikes emitted in that interval is O(N × F × max_delay ×

dt). The spikes emitted in the time step t′ are sent to the
neurons’ outgoing synaptic connections having a delay equal to
t − t′. Synaptic connections are represented through a sparse
representation similar to adjacency lists for directed graphs. Each
neuron has a list of output connections, identified by the index
of the target neuron and by the index of the synapse in that
neuron. The connections in the list are sorted based on their
delays. Two arrays, delay start and delay count, are
used to retrieve the connections corresponding to a given delay:
delay start[k] is the index of the first connection in the list

with a delay of k ms, and delay count[k] is the number of
connections having that delay. A drawback of this approach is
that spikes produced by neurons that have outgoing connections
with a maximum delay much less than max_delay remain in
the firing address table and are retrieved for a number of time
steps equal to max_delay.

Yavuz et al. (2016) propose an algorithm for handling spikes
and synaptic delays based on a circular queue array structure,
with N × m elements, where m = delay/dt. An index p points
to the slots of the queue, and is increased by 1 at every time step.
A spike of the ith neuron is stored in the slot (i, p) of the queue,
and spikes to be delivered are retrieved from the slots [i, (p −

m) mod m]. This approach is very efficient, with a computational
cost O(N), however it has the limitation that delays have to
be identical across the synapses of each synapse population. In
order to use different delays, a synapse population has to be
defined for each delay, with its own circular queue structure.
In particular, this approach would not be efficient in realistic
conditions where the delays vary according to some probability
distribution. The spikes retrieved from the queue are delivered to
the target neurons through a connection matrix, either an all-to-
all connection matrix in case of dense connections, or based on
the YALE sparse matrix format (Eisenstat et al., 1982) in case of
sparse connectivity.

NeuronGPU uses one (output) spike buffer per neuron,
which holds the spikes that have been fired by the neuron. The
output connections of each neuron are organized in groups,
all connections in the same group having the same delay (see
Figure 1). Only three values per spike are stored in the buffer:
a multiplicity, a time index ts, which starts from 0 and is
incremented by 1 at every time step, and a connection-group
index ig , which also starts from zero and is incremented by 1
every time the spike reaches a connection group, i.e., when the
time index ts matches the connection-group delay. Figure 1A
represents the structure of the spike buffer and illustrates an
example of how the spike is delivered from the neuron that fired
it to the target neurons of different connection groups. Keeping
a connection-group index and having output-connection groups
ordered according to their delays is useful for reducing the
computational cost, because with this approach there is no need
for a nested loop for comparing the time index of the spike
with the connection delays. When the time index of a spike ts
matches a connection-group delay, the spike is sent to the spike
array, as shown in Figure 1B. Finally, spikes are sent from this
array to the target neurons. This final delivery is done directly
by a CUDA kernel, so no additional memory is required. The
maximum size of the global spike array is equal to the number of
nodes (i.e., neurons and other spiking devices), so the maximum
GPU memory required by this algorithm is well-defined.

InMPI connections, when a source node (a neuron or another
spiking device) is connected to target nodes of another host, a
spike buffer, similar to the local one, is created in the remote host.
When the source node fires a spike, this is sent to its spike buffer
of the remote host, which delivers the spike to all target neurons
after proper delays.

The computational cost per time step of the spike-buffer
update algorithm is cs × N × B, where cs is the cost of a single

Frontiers in Computational Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 62762010

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

FIGURE 1 | (A) Example of spike delivery through the spike buffer. At time t, the i-th neuron emits a spike which is inserted in the spike buffer. In this example, the

buffer contains also another spike emitted previously. At each time step, the spike time index is incremented by 1. When it becomes equal to the delay of some

connection group, the spike is delivered to that group and its connection group index is incremented by 1. (B) The spike array. When the time index of a spike

matches the delay of a connection group, the spike is sent to the spike array, which is used for delivering the spike to all neurons of the connection group.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 62762011

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

spike update and B is the average number of spikes stored in a
spike buffer. If we call dmax(i) the maximum delay, expressed in
time step units, of the outgoing synaptic connections of the ith
neuron, and 〈dmax(i)〉 its average over all the neurons, B can be
expressed as

B = F × 〈dmax(i)〉 × dt (4)

and therefore the cost of the spike buffer update is

cs × N × F × 〈dmax(i)〉 × dt (5)

It should be observed that 〈dmax(i)〉 is less than or equal to
max_delay, which is the maximum delay of all synaptic
connections of the network and can be expressed as
max_delay = maxi{dmax(i)}, therefore the order of the
computational cost of the proposed approach is smaller than or
equal to that proposed by Nageswaran et al.

The computational cost per simulation time step for writing
and reading the spikes to and from the spike array is O(N ×

F × dt). This contribution is usually much smaller than the cost
of neuron dynamics update, which is O(N), because in realistic
conditions F × dt ≪ 1. The computational cost per simulation
time step for delivering the spikes from the spike array to the
target neurons is

cd × N × F × C × dt (6)

where cd is the cost for delivering a single spike. By comparing
this cost with that of the spike buffer update, it can be observed
that when

C≫ 〈dmax(i)〉 × cs/cd (7)

the delivery of the spikes to the target neurons gives the main
contribution to the computational cost. This is usually the case
when the number of connections per neuron is of the order of
hundreds or more. An advantage of the proposed approach is
that the delivery of the spikes from the spike array to the target
neurons requires a small number of global memory accesses per
delivery, therefore cd is relatively small.

2.3. The Potjans-Diesmann Cortical
Microcircuit Model
The cortical microcircuit model used in this work was developed
in 2014 by Potjans and Diesmann (2014) and describes a portion
of 1mm2 of sensory cortex, comprising approximately 77,000 LIF
neurons organized into layers 2/3, 4, 5, and 6. Each layer contains
an excitatory and an inhibitory population of LIF neurons with
current-based synapses, for a total of eight populations: 2/3I,
2/3E, 4I, 4E, 5I, 5E, 6I, and 6E. The number of neurons in
each population, the connection probability matrix and the rates
of the external Poisson inputs are based on the integration of
anatomical and physiological data mainly from cat V1 and rat
S1. The total number of connections is about 3 · 108. Figure 2
shows a diagram of the model with a schematic representation of
the connections having probabilities >0.04.

FIGURE 2 | Schematic diagram of the Potjans-Diesmann cortical microcircuit

model.

The LIF neuronmodel, used in the cortical microcircuit, is one
of the simplest spiking neuron models. The neuron dynamics is
modeled by the following differential equation

τm
dVi

dt
= −(Vi − EL)+ RmIsyn,i (8)

where Vi(t) represents the membrane potential of neuron i
at time t, τm is the membrane time constant, EL is the
resting membrane potential, Rm is the membrane resistance and
Isyn,i is the synaptic input current. In the exponential shaped
postsynaptic currents (PSCs) model, which will be used to
simulate the Potjans-Diesmann cortical microcircuit model, the
input current is described by the following equation

τsyn
dIsyn,i

dt
= −Isyn,i +

∑

j

wij

∑

t
f
j

δ(t − t
f
j) (9)

where τsyn is the synaptic time constant, wij are the connection

weights and t
f
j are the spike times from presynaptic neuron j. The

simulation time step is set to 0.1 ms.

2.4. The AdEx-Neurons Balanced Network
Model
The performance of the library was also assessed on a balanced
network of sparsely connected excitatory and inhibitory neurons
(Brunel, 2000), using the AdEx neuron model with conductance-
based synapses and synaptic conductance modeled by an alpha
function (Roth and van Rossum, 2013). The differential equations
underlying the neuron dynamics are solved using the fifth-order
Runge Kutta method with adaptive step size. To our knowledge,
other GPU simulators of large scale spiking neural networks
do not support this method. For this reason, the results of

Frontiers in Computational Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 62762012

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

FIGURE 3 | Schematic diagram of the balanced network used in the

simulations.

TABLE 1 | Values of the parameters used for the balanced network simulations.

Parameter Value

Nex (n. of excitatory neurons) Variable

Nin (n. of inhibitory neurons) Nex/4

CE (n. of input excitatory synapses per neuron) Variable

CI (n. of input inhibitory synapses per neuron) CE/4

Wex (excitatory connection weight) 0.05

Win (inhibitory connection weight) 0.35

Mean delay 0.5 ms

Delay STD 0.25 ms

Wpoisson (Poisson signal weight) 0.37

Ratepoisson (Poisson signal rate) 20,000 Hz

Neuron average firing rate 30.7 Hz

the simulations of the AdEx-neurons balanced network model
are compared only with the CPU-based simulator NEST, which
supports the same method. In general, GPU simulations work
more efficiently with fixed step size; the adaptive step size is
challenging and it was not obvious a priori that a GPU simulator
could be faster than multi-core CPU systems with this kind of
methods. Both populations of excitatory and inhibitory neurons
are stimulated by an external Poissonian signal, as shown in
Figure 3. Simulations have been made with a variable number
of neurons and connections, with up to 1,000,000 neurons and
109 connections. Table 1 represents the parameters used for the
balanced network simulations.

The AdEx model represents an attractive neuron model for
use in large-scale network simulations, because it is relatively
simple compared to biologically detailed spiking neuron models,
nonetheless it provides a good level of realism in representing the
spiking behavior of biological neurons in many conditions, in the
sense that it fits well the response of neurons as measured from
electrophysiological recordings (Brette and Gerstner, 2005). This
model is described by a system of two differential equations. The
first equation describes the dynamics of the membrane potential

TABLE 2 | Values of the AdEx parameters used in the balanced network

simulations.

Parameter Value

C (Membrane capacitance) 281 pF

gL (leak conductance) 30 nS

EL (leak reversal potential) −70.6 mV

VT (spike initiation threshold) −50.4 mV

1T (slope factor) 2 mV

τw (adaptation time constant) 144 ms

a (subthreshold adaptation) 4 nS

b (spike-triggered adaptation) 80.5 pA

Vr (reset value of Vm after a spike) −60 mV

Eex (excitatory reversal potential) 0 mV

Ein (inhibitory reversal potential) −85 mV

τsyn (synaptic time constant) 1 ms

V(t) and includes an activation term with an exponential voltage
dependence

C
dV

dt
= −gL(V − EL)+ gL1Te

V−VT
1T + Isyn(V , t)− ω + Ie (10)

where the synaptic current is

Isyn(V , t) =
∑

i

gi(t)(V − Erev,i) (11)

C is the membrane capacitance, gL is the leak conductance, EL
is the leak reversal potential, 1T is a slope factor, VT is the
spike initiation threshold, ω is the spike-adaptation current, Ie
is an external input current, gi(t) are the synaptic conductances
and Erev,i are the reversal potentials. The voltage is coupled to a
second equation which describes adaptation

τω

dω

dt
= a(V − EL)− ω (12)

where τω is the adaptation time-constant and a is the
subthreshold adaptation parameter. When the neuron fires a
spike, the adaptation current ω changes into ω → ω + b,
where b is a spike-triggered adaptation parameter, while the
membrane potential changes into V → Vr . Table 2 reports the
AdEx parameter values that have been used for the balanced
network simulations. The time step for spike communication is
set to 0.1 ms.

2.5. The Izhikevich-Neurons Balanced
Network With STDP Synapses
The architecture of this model is still that shown in Figure 3 and
the ratio of excitatory to inhibitory neurons is the same as the
model presented in the previous section. The other features of
the model are listed below:

• Time step of 1 ms;
• 4-parameters Izhikevich neuron model (Izhikevich, 2003);

Frontiers in Computational Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 62762013

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

TABLE 3 | Values of the STDP parameters used in the Izhikevich-neurons

balanced network simulations.

Parameter Value

τ+ 20.0 ms

τ− 20.0 ms

λ 0.001

α 1.0

µ+ 1.0

µ− 1.0

wmax 10.0

• Current-based synapses described by an exponential-decay
function;

• Euler forward integration method with two integration steps
per simulation time step;

• 100 connections per neuron;
• Excitatory synapses change their weights according to the

STDP rule, while inhibitory synapses have fixed weights;
• Average firing rate of 16 Hz for both excitatory and inhibitory

populations.

The values of the Izhikevich-neuron parameters are a = 0.02,
b = 0.2, c = −65, and d = 8. The synaptic decay time is τdecay =

2 ms. Table 3 reports the values of the STDP parameters. The
value of λ is small so that the weights do not change significantly
during the simulation. It should be considered that the simulation
time overhead due to STDP synapses depends only on the spike
time distributions and not on the values of the STDP parameters
if λ is sufficiently small.

3. RESULTS

The cortical microcircuit model and the balanced network
described in the previous section were used both to verify the
correctness of the simulations performed using NeuronGPU and
to compare the performance of the proposed library with those
of NEST version 2.20.0 (Fardet et al., 2020) and GeNN version
3.2.0 (neworderofjamie et al., 2018). For this purpose, we used
a PC with a CPU Intel Core i9-9900 K with a frequency of 3.6
GHz and 8 cores featuring hyperthreading with two threads per
core, for a total number of 16 hardware threads, 64 GB RAM,
and a GPU card NVIDIA GeForce RTX 2080 Ti with 11 GB of
GDDR6 VRAM, 4,352 CUDA cores, and a boost clock of 1,635
MHz. NeuronGPU and GeNN simulations were also performed
on a system equipped with an NVIDIA Tesla V100 GPU with 16
GB GPU memory and 5,120 CUDA cores.

3.1. Simulation of the Cortical Microcircuit
Model
Following the procedure proposed by van Albada et al. (2018)
and by Knight and Nowotny (2018), in this section we will
verify the correctness of the simulations by comparing some
relevant statistical distributions extracted from the simulations
of the Potjans-Diesmann cortical microcircuit model made using
NeuronGPU with the analogous distributions obtained using the
NEST simulator. Subsequently, still following the same line of van

FIGURE 4 | Raster plot showing spike times (dots) of neurons from each

population of the cortical microcircuit model, simulated using (A) NEST and

(B) NeuronGPU, in a time window of 200 ms (in blue the excitatory and in red

the inhibitory). Due to the high number of neurons in the model, only the spikes

of one neuron out of ten are shown.

Albada et al. (2018) and Knight and Nowotny (2018), the cortical
microcircuit model will be used as a benchmark to evaluate
the performance of NeuronGPU in terms of building time and
simulation time per unit time of biological activity.

The Python code used for simulations, available in https://
github.com/golosio/NeuronGPU/tree/master/python/Potjans_
2014, is almost identical to the NEST implementation (https://
nest-simulator.readthedocs.io/en/stable/microcircuit/).
Figure 4 shows a raster plot of the spike times of neurons
from each population of the model, simulated using NEST and
NeuronGPU, in a time window of 200 ms.

In order to verify the correctness of the simulations,
we simulated 11 s of biological activity of the full-scale

Frontiers in Computational Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 62762014

https://github.com/golosio/NeuronGPU/tree/master/python/Potjans_2014
https://github.com/golosio/NeuronGPU/tree/master/python/Potjans_2014
https://github.com/golosio/NeuronGPU/tree/master/python/Potjans_2014
https://nest-simulator.readthedocs.io/en/stable/microcircuit/
https://nest-simulator.readthedocs.io/en/stable/microcircuit/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

Potjans-Diesmann model with both NeuronGPU and
NEST, with a time step of 0.1 ms. For both simulators we
performed 10 simulations, distinct from each other only for
the initial seed for random number generation. As in van
Albada et al. (2018) and Knight and Nowotny (2018), the
first second was discarded in order to eliminate transient
trends. The spike times of all neurons have been recorded
during the simulations, and subsequently they have been
used to extract three distributions for each population,
namely:

• The average firing rate of the single neuron;

• The coefficient of variation of the inter-spike time
interval (CV ISI), defined as the ratio between the
standard deviation and the average of the inter-spike
time intervals;

• The Pearson correlation between the spike trains.

The latter has been computed on a subset of 200 neurons for
each population, as in van Albada et al. (2018) and Knight
and Nowotny (2018). This number represents a compromise
between statistical precision and computation time. The spike
trains of those neurons have first been rebinned to a time
step of 2 ms, equal to the refractory time. Denoting the

FIGURE 5 | Distribution of the firing rates, coefficient of variation of interspike intervals (CV ISI) and Pearson correlation coefficient of the spike trains for the

populations L2/3E and L2/3I of the cortical microcircuit model, averaged over 10 simulations, made using NEST (blue) or NeuronGPU (red). (A) Firing rate L2/3E, (B)

firing rate L2/3I, (C) CV ISI L2/3E, (D) CV ISI L2/3I, (E) Pearson correlation L2/3E, (F) Pearson correlation L2/3I.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 62762015

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

binned spike trains as bi and their mean value as µi, the
correlation coefficient between the spike trains bi and bj is defined
as

C[i, j] =< bi − µi, bj − µj > /
√

< bi − µi, bi − µi > · < bj − µj, bj − µj >

where <,> represents the scalar product. For 200 spike
trains, a 200x200 correlation matrix is returned. The Pearson
correlation distribution is evaluated as the distribution of
the off-diagonal elements of this matrix. All distributions
have been evaluated from the spike time recordings using the
Elephant (Electrophysiology Analysis Toolkit) package (Denker
et al., 2018), dedicated to the analysis of electrophysiological
data in the Python environment. The distributions have
been smoothed using the KDE (Kernel Density Estimation)
method (Rosenblatt, 1956; Parzen, 1962), available in the
scikit-learn Python library (Pedregosa et al., 2011) through
the function sklearn.neighbors.KernelDensity.

The KDE method allows to estimate the probability density
of a random variable with a reduced dependence on
random fluctuations linked to individual simulations. In
particular, each of the N points belonging to a sample is
represented by a Gaussian function of suitable width, called
kernel bandwidth. The integral of each of these functions
is normalized to 1/N; the overall distribution is therefore
estimated as the sum of all these Gaussians, and obviously
it has an integral normalized to one. The kernel bandwidth
has been optimized using the so-called Silverman’s rule
(Silverman, 1986), which prescribes a bandwidth value
of

b = 0.9 ·min

(

σ̂ ,
IQR

1.349

)

· N− 1
5 (13)

where σ̂ is the standard deviation of the samples,
N is the sample size and IQR is the interquartile
range. It should be observed that the distributions
obtained through the KDE method are continuous

FIGURE 6 | Kullback-Leibler divergence between the distributions of the firing rate (A), coefficient of variation of interspike intervals (B), and Pearson correlation

coefficient (C), extracted from NEST and NeuronGPU simulations. The red error bars represent the average values and the standard deviations of the divergence

between NEST and NeuronGPU, while the blue ones represent the same values for NEST simulations with different seeds.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 62762016

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

FIGURE 7 | (A) Building time of the cortical microcircuit model simulated with NEST and with NeuronGPU on a system equipped with an Intel Core i9-9900K CPU.

(B) Times for code generation, compilation, and initialization of the cortical microcircuit model for GeNN. The first two phases are performed by the CPU, and the

times refer to a system equipped with an Intel Core i9-9900K. The third phase is mainly performed by the GPU, and the figure shows the time for an NVIDIA Tesla

V100. (C,D) Simulation times per second of biological time of the cortical microcircuit model simulated with NEST, NeuronGPU, and GeNN on various CPU and GPU

hardware. (E) Contributions of neuron dynamic update time, Poisson generator time, and spike handling and delivery time to the total simulation time of the

Potjans-Diesmann model, simulated using NeuronGPU and GeNN on a Tesla V100 GPU. In GeNN the Poissonian input signal is generated within the same code that

manages the neuron’s dynamics, and furthermore it was not possible to separate the time used for spike handling and delivery from the remaining contributions to the

simulation time. The horizontal line represents the biological time. The simulation time step is set to 0.1 ms.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 February 2021 | Volume 15 | Article 62762017

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

functions, since they are evaluated as the sum of a set of
Gaussian functions.

Figure 5 shows the distributions of the firing rate, the CV ISI
and the Pearson correlation coefficient for two populations of
the Potjans-Diesmannmodel, averaged over 10 simulationsmade
using NEST or NeuronGPU. As can be seen in the graphs, the
distributions obtained from the two simulators are very similar
to each other. This is also true for the other populations of
the model. In order to compare quantitatively the distributions
obtained using NeuronGPU to those obtained using NEST, we
evaluated the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951), defined as DKL(p1, p2) = −

∑

i p1,i log(p1,i/p2,i),
where p1 and p2 are two distributions, and the index i runs on
the sampling points of the two distributions. For this purpose,
we used 10 pairs of simulations (NeuronGPU-NEST and NEST-
NEST) using different seeds for random number generation.
The KL divergence was then calculated for each pair and its

FIGURE 8 | Membrane voltage of an AdEx neuron with the parameter values

reported in Table 2 and an injected current of 700 pA, simulated with

NeuronGPU and with NEST (A) and difference between the two simulation

signals (B).

average and standard deviation were calculated on the 10 pairs.
Since the KDE method provides a smooth continuous function,
the result is not sensitive to the sampling step as long as this
is small enough. The KL divergence was evaluated using the
Python scientific library (Virtanen et al., 2020) and in particular
the scipy.stats.entropy function. Figure 6 shows the
average and standard deviation of the KL divergences between
the distributions of firing rates, CV ISI, and Pearson correlation,
obtained from NEST and from NeuronGPU simulations, for the
eight populations of the cortical microcircuit model. It can be
observed that the KL divergence between distributions obtained
from NEST and from NeuronGPU are perfectly compatible
with the divergence between distributions obtained from NEST
simulations with different seeds. To compare the performance
of NeuronGPU with those of NEST and GeNN, we performed
a series of 10 simulations of 10 s of biological activity of the
cortical microcircuit with each simulator, using different seeds
for random number generation. The execution time of the
simulations can be divided into building time and simulation
time of biological activity. The building time includes the time
needed to allocate memory for connections, neurons, spike
generators, and recording devices, to build connections and to
initialize the values of state variables and parameters. Figure 7A
shows the building time for NEST and NeuronGPU. On a system
equipped with an Intel Core i9-9900 K CPU, the building times
were 36.8 ± 0.6 and 39.7 ± 0.4 s for NEST and NeuronGPU,
respectively. The building time of NeuronGPU is comparable
to that of NEST. This is due to the fact that in NeuronGPU
the connections are initially created in the RAM, and only
immediately before the simulation they are copied from RAM
to GPU memory. The times for code generation, compilation,
and initialization of the cortical microcircuit model with GeNN
were 49.7, 20.6, and 0.65 s, respectively, as shown in Figure 7B.
Importantly, since GeNN uses a code-generation approach, while
in NeuronGPU the models are created dynamically, the building

FIGURE 9 | Membrane voltage of an AdEx neuron stimulated by three input

spikes in a subthreshold condition, simulated using NeuronGPU and NEST.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 February 2021 | Volume 15 | Article 62762018

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

times of GeNN and NeuronGPU cannot be directly compared.
In GeNN the code of the model is generated from C/C++-
like code fragments and it must be compiled before execution.
Any changes in the model parameters require a new generation
and compilation of the code. Once the code is generated and
compiled, the initialization is very fast. Figures 7C,D show
the simulation times per unit time of biological activity for
NeuronGPU, NEST and GeNN on different CPU and GPU
platforms. The simulation time per second of biological time with
NEST running on the Intel Core i9-9900K CPU was 62.7 ± 0.3
s. On a system equipped with an NVIDIA Tesla V100 GPU
card, the simulation time per second of biological time with
GeNN was 2.16 s. NeuronGPU was 31.6% faster than GeNN,
with a simulation time of 1.641 ± 0.014 s on the same GPU.

On an NVIDIA RTX 2080 Ti GPU card, the simulation time
per second of biological time with GeNN was 1.398 ± 0.007 s,
while NeuronGPU was 32.5% faster with a simulation time of
1.055 ± 0.004 s. Figure 7E shows the contributions of neuron
dynamic update time, Poisson generator time and spike handling
and delivery time to the total simulation time of the Potjans-
Diesmann model, simulated using NeuronGPU and GeNN on
a Tesla V100 GPU. It should be noted that while in the case of
NeuronGPU the Poissonian input signal is generated by external
Poisson spike generators connected to the neurons, in the case
of GeNN this is generated within the same code that manages
the neuron’s dynamics. Furthermore, in the case of GeNN it was
not possible to separate the time used for spike handling and
delivery from the remaining contributions to the simulation time.

FIGURE 10 | Building time (A) and simulation time (B) for the balanced network simulations with a variable number of neurons and a fixed number of 1,000 input

connections per neuron, simulated using NeuronGPU and NEST, and simulation time for NeuronGPU shown on a different scale (C). The time step for spike

communication is set to 0.1 ms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 February 2021 | Volume 15 | Article 62762019

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

In the case of NeuronGPU, excluding the neuron dynamic update
time and the Poisson generator time, most of the remaining
simulation time is spent on handling and delivering the spikes.
Assuming this is also the case with GeNN, the improvement in
the simulation time of NeuronGPU over GeNN would be mainly
due to a more efficient approach in spikes handling and delivery.

3.2. Simulation of the AdEx-Neurons
Balanced Network Model
Figure 8A shows the time course of the membrane voltage of an
AdEx neuron with the parameter values reported in Table 2 and
an injected current of 700 pA, simulated with NeuronGPU and
with NEST. With the exception of the peaks, the two plots appear
to be perfectly superimposed on this scale. Figure 8B represents
the difference between the two signals simulated with NEST and

with NeuronGPU. Apart from the peaks, the difference is in
the order of a few 10−4 mV. Figure 9 shows the time course of
the membrane voltage of an AdEx neuron stimulated by three
input spikes on three different receptor ports in a subthreshold
condition, simulated with NeuronGPU and with NEST.

In the remaining part of this section we present the results
of simulations of the AdEx-neurons balanced network with the
parameters shown in Tables 1, 2. Figure 10A shows the building
time for the balanced network simulations as a function of
the number of neurons, for a fixed number of 1,000 input
connections per neuron. Figures 10B,C represent the simulation
time per second of biological activity of the balanced network as
a function of the total number of neurons. It can be observed that
the GPU simulations are faster than the CPU’s by a factor ranging
from about 18× for 100,000 neurons with 108 connections to
30.4× for 106 neurons with 109 connections.

FIGURE 11 | Building time (A) and simulation time (B) for the balanced network simulations with a fixed number of 30,000 neurons and a variable number of input

connections per neuron, simulated using NeuronGPU and NEST, and simulation time for NeuronGPU shown on a different scale (C). The time step for spike

communication is set to 0.1 ms.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 February 2021 | Volume 15 | Article 62762020

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

FIGURE 12 | (A) Building time of the Izhikevich-neurons balanced network model as a function of the number of neurons, simulated using NeuronGPU on a system

equipped with a Tesla K80 GPU. (B) Simulation time per second of biological activity of the Izhikevich-neurons balanced network model simulated using NeuronGPU

and CARLsim 4 on a Tesla K80 GPU. The data for the latter are taken from Chou et al. (2018). STDP plasticity is active on excitatory connections. The simulation time

step is set to 1.0 ms.

Figure 11A shows the building time as a function of the
number of connections per neuron for a fixed total number of
neurons, which was set to 30,000. Figures 11B,C represent the
simulation time as a function of the number of connections per
neuron. It can be observed that, in this case, simulations on GPU
are faster than on CPU by a factor ranging from about 16× for
30,000 neurons with 3 · 108 connections to about 27× for 30,000
neurons with 9 · 108 connections.

3.3. Simulation of the Izhikevich-Neurons
Balanced Network With STDP Synapses
Figure 12A shows the building time of the Izhikevich-neurons
balanced network model as a function of the number of neurons,
simulated using NeuronGPU on a system equipped with an
Intel Xeon E5-2686 v4 processor, 64 GB RAM and a Tesla K80
GPU. Figure 12B compares the simulation time per second of
biological activity of the model simulated using NeuronGPU
with that of CARLsim 4. The simulation times for the latter are
taken from Chou et al. (2018), which reports that the simulations
were performed on a system that was also equipped with a Tesla
K80 GPU card, while the CPU model and the amount of RAM
of the system are not specified. It can be observed that the
simulation time of NeuronGPU is lower than that of CARLsim 4
in the considered interval. In particular, for 106 neurons and 108

connections NeuronGPU is about 59% faster than CARLsim 4.

4. DISCUSSION

As it can be observed in Figure 7, the building time of the

cortical microcircuit model simulated using NeuronGPU is

comparable to that of NEST, mainly because in NeuronGPU
the connections are created in the RAM and only immediately

before the simulation loop they are copied to the GPU memory.
Compared to most GPU-based simulators, NeuronGPU offers
a wide range of choices for connection rules and connection
parameter distributions, which can be exploited at runtime
and interactively through the Python interface. It is easier
to manage these connection rules and these distributions on
the CPU side, also thanks to the functions provided by the
standard C++ library. In both NEST and NeuronGPU the
model parameters, the neuron populations and the network
architecture are defined at runtime and the memory they need
is allocated dynamically. On the other hand, GeNN uses a code-
generation approach. Themodel parameters, neuron populations
and architecture are defined using code fragments similar to
C/C++, from which the CUDA/C ++ code of the model is
generated. This code must be compiled before execution. Any
changes in the parameters, neuron populations or network
architecture require a new generation and compilation of the
code. Once the code is generated and compiled, the initialization
is very fast as it is carried out directly by the GPU with parallel
computing algorithms. On the other hand, NeuronGPU achieved
a simulation time per second of biological activity of 1.64 s on
an NVIDIA Tesla V100 GPU and of 1.055 s on an NVIDIA
RTX 2080 Ti GPU, about 32% faster than GeNN, 59x faster than
NEST and very close to biological time. Moreover, NeuronGPU
was about 59% faster than CARLsim 4 in terms of simulation
time per second of biological activity in the simulation of the
Izhikevich-neurons balanced network with 106 neurons and 108

STDP synaptic connections. The building time of the AdEx-
neurons balanced network simulated using NeuronGPU was
about twice as large as that of NEST. However, NeuronGPU
was faster than NEST in terms of simulation time per second of
biological activity by a factor ranging from about 16× for smaller
networks to about 30× for networks with 109 connections. In

Frontiers in Computational Neuroscience | www.frontiersin.org 15 February 2021 | Volume 15 | Article 62762021

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

future releases of the library, the building time could significantly
be reduced by creating the connections directly in the GPU
memory, exploiting the parallel computing capabilities of the
GPU and avoiding the bottleneck of memory transfer from
RAM to GPU memory. Besides the relatively long building
time, NeuronGPU has other limitations compared to other
GPU simulators. In particular, it currently does not include
multi-compartment models. The only type of synaptic plasticity
available is nearest-neighbor STDP. Neuromodulation is also
not included. Multi-GPU simulations are only supported via
MPI, which is yet to be evaluated. User defined models are
supported, however there is currently no dedicated interface to
configure them; the list of state variables and parameters and
the differential equations of the dynamics must be modified
directly in the code, which has to be recompiled. On the
other hand, the high simulation speed demonstrated by the
proposed library, significantly higher than that of other CPU
and GPU based simulators, combined with the availability of
a wide range of neuron models, spike generators, recording
tools, and connection rules, makes this library particularly useful
for simulations of large spiking neural networks over relatively
long biological times. NeuronGPU was recently proposed for
being integrated with the NEST neural simulator (Golosio
et al., 2020). The high degree of similarity between the Python
interfaces of NEST and NeuronGPU immediately simplifies
porting scripts from one simulator to the other, and opens
the door to integration and cosimulations between NEST
and NeuronGPU.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be
found in online repositories. The names of the

repository/repositories and accession number(s) can be found
at: https://github.com/golosio/ngpu_cortical_circuits_paper;
https://github.com/golosio/NeuronGPU.

AUTHOR CONTRIBUTIONS

BG, GT, and PP wrote the manuscript. BG is the main developer
of NeuronGPU. BG and PP designed the experiments. All
authors contributed to conducting the experiments, analyzing the
results, and reviewed the manuscript.

FUNDING

This work has been partially supported by the European Union
Horizon 2020 Research and Innovation program under the FET
Flagship Human Brain Project (grant agreement SGA3 n. 945539
and grant agreement SGA2 n. 785907) and by the INFN APE
Parallel/Distributed Computing laboratory. We acknowledge
the use of Fenix Infrastructure resources, which are partially
funded from the European Union’s Horizon 2020 research and
innovation programme through the ICEI project under the grant
agreement No. 800858.

ACKNOWLEDGMENTS

We are grateful to Prof. Hans Ekkehard Plesser and to Dr. Tanguy
Fardet for their revision of the aeif_cond_beta_multisynapse
model in the NEST simulator, which was the basis for the
implementation of the same model in NeuronGPU. We would
also like to thank Prof. Plesser, Prof. Markus Diesmann, Dr.
Alexander Peyser, andDr.Wouter Klijn for the useful discussions
on the dynamics of spiking neural networks, the use of CPU and
GPU clusters and the spike-delivery algorithms.

REFERENCES

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neural

networks on GPU. Network 23, 167–182. doi: 10.3109/0954898X.2012.

730170

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,

et al. (2007). Simulation of networks of spiking neurons: a review of tools

and strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-

0038-6

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory

and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.

doi: 10.1023/A:1008925309027

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:

Cambridge University Press. doi: 10.1017/CBO9780511541612

Chou, T.-S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M., et al.

(2018). “CARLsim 4: an open source library for large scale, biologically detailed

spiking neural network simulation using heterogeneous clusters,” in 2018

International Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro).

doi: 10.1109/IJCNN.2018.8489326

Denker, M., Yegenoglu, A., and Grün, S. (2018). “Collaborative HPC-enabled

workflows on the HBP collaboratory using the elephant framework,” in

Neuroinformatics 2018, P19.

Eisenstat, S. C., Gursky, M. C., Schultz, M. H., and Sherman, A. H. (1982). Yale

sparse matrix package i: the symmetric codes. Int. J. Numer. Methods Eng. 18,

1145–1151. doi: 10.1002/nme.1620180804

Fardet, T., Vennemo, S. B., Mitchell, J., Mørk, H., Graber, S., Hahne, J., et al. (2020).

NEST 2.20.0. Genève.

Garrido, J. A., Carrillo, R. R., Luque, N. R., and Ros, E. (2011). “Event and

time driven hybrid simulation of spiking neural networks,” in Advances

in Computational Intelligence (Berlin; Heidelberg: Springer), 554–561.

doi: 10.1007/978-3-642-21501-8_69

Golosio, B., De Luca, C., Pastorelli, E., Simula, F., Tiddia, G., and Paolucci, P.

S. (2020). “Toward a possible integration of NeuronGPU in NEST,” in NEST

Conference 2020, 7 (Aas). doi: 10.5281/zenodo.4501615

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in Python. BMC Neurosci. 9:P92. doi: 10.1186/1471-2202-9-S1-P92

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw.

14, 1569–1572. doi: 10.1109/TNN.2003.820440

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC

and neuromorphic solutions in terms of speed and energy when

simulating a highly-connected cortical model. Front. Neurosci. 12:941.

doi: 10.3389/fnins.2018.00941

Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.

Stat. 22, 79–86. doi: 10.1214/aoms/1177729694

Frontiers in Computational Neuroscience | www.frontiersin.org 16 February 2021 | Volume 15 | Article 62762022

https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1109/IJCNN.2018.8489326
https://doi.org/10.1002/nme.1620180804
https://doi.org/10.1007/978-3-642-21501-8_69
https://doi.org/10.5281/zenodo.4501615
https://doi.org/10.1186/1471-2202-9-S1-P92
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1214/aoms/1177729694
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Golosio et al. Cortical Model Simulations Using GPUs

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.

(2009). A configurable simulation environment for the efficient simulation of

large-scale spiking neural networks on graphics processors. Neural Netw. 22,

791–800. doi: 10.1016/j.neunet.2009.06.028

neworderofjamie, Nowotny, T., Turner, J. P., Yavuz, E., Zhang, M.,

Diamond, A., et al. (2018). genn-team/genn: Genn 3.2.0. Genève.

doi: 10.5281/zenodo.1478540

Parzen, E. (1962). On estimation of a probability density function and

mode. Ann. Math. Stat. 33, 1065–1076. doi: 10.1214/aoms/11777

04472

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res.

12, 2825–2830. Available online at: https://www.jmlr.org/papers/volume12/

pedregosa11a/pedregosa11a.pdf

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Press, W. H., and Teukolsky, S. A. (1992). Adaptive stepsize runge-kutta

integration. Comput. Phys. 6:188. doi: 10.1063/1.4823060

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a

density function. Ann. Math. Stat. 27, 832–837. doi: 10.1214/aoms/1177

728190

Roth, A., and van Rossum, M. (2013). “Chapter 6: Modeling synapses,” in

Computational Modeling Methods for Neuroscientists, ed E. D. Schutter

(Cambridge, MA: MIT Press), 266–290.

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant

linear systems with applications to neuronal modeling. Biol. Cybern. 81,

381–402. doi: 10.1007/s004220050570

Sanders, J., and Kandrot, E. (2010). CUDA by Example: An Introduction to

General-Purpose GPU Programming. Upper Saddle River, NJ: Addison-Wesley.

Sboev, A., Vlasov, D., Serenko, A., Rybka, R., and Moloshnikov, I. (2016). On the

applicability of STDP-based learning mechanisms to spiking neuron network

models. AIP Adv. 6:111305. doi: 10.1063/1.4967353

Silverman, B. W. (1986). Density estimation for statistics and data analysis.

London: Chapman and Hall. doi: 10.1007/978-1-4899-3324-9

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,

Stokes, A. B., et al. (2018). Performance comparison of the digital

neuromorphic hardware SpiNNaker and the neural network simulation

software NEST for a full-scale cortical microcircuit model. Front. Neurosci.

12:291. doi: 10.3389/fnins.2018.00291

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,

D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in

python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Vitay, J., Dinkelbach, H. U., and Hamker, F. H. (2015). ANNarchy: a code

generation approach to neural simulations on parallel hardware. Front.

Neuroinform. 9:19. doi: 10.3389/fninf.2015.00019

Wang, R. M., Thakur, C. S., and van Schaik, A. (2018). An FPGA-based

massively parallel neuromorphic cortex simulator. Front. Neurosci. 12:213.

doi: 10.3389/fnins.2018.00213

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Golosio, Tiddia, De Luca, Pastorelli, Simula and Paolucci. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 17 February 2021 | Volume 15 | Article 62762023

https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.5281/zenodo.1478540
https://doi.org/10.1214/aoms/1177704472
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1063/1.4823060
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1007/s004220050570
https://doi.org/10.1063/1.4967353
https://doi.org/10.1007/978-1-4899-3324-9
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.3389/fnins.2018.00213
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

ORIGINAL RESEARCH
published: 16 March 2021

doi: 10.3389/fncom.2021.630795

Frontiers in Computational Neuroscience | www.frontiersin.org 1 March 2021 | Volume 15 | Article 630795

Edited by:

Padraig Gleeson,

University College London,

United Kingdom

Reviewed by:

James Courtney Knight,

University of Sussex, United Kingdom

Federico Giove,

Centro Fermi-Museo Storico della

Fisica e Centro Studi e Ricerche

Enrico Fermi, Italy

*Correspondence:

Emanuele Torti

emanuele.torti@unipv.it

Received: 18 November 2020

Accepted: 17 February 2021

Published: 16 March 2021

Citation:

Florimbi G, Torti E, Masoli S,

D’Angelo E and Leporati F (2021)

Granular layEr Simulator: Design and

Multi-GPU Simulation of the

Cerebellar Granular Layer.

Front. Comput. Neurosci. 15:630795.

doi: 10.3389/fncom.2021.630795

Granular layEr Simulator: Design and
Multi-GPU Simulation of the
Cerebellar Granular Layer
Giordana Florimbi 1, Emanuele Torti 1*, Stefano Masoli 2, Egidio D’Angelo 2,3 and

Francesco Leporati 1

1Custom Computing and Programmable Systems Laboratory, Department of Electrical, Computer and Biomedical

Engineering, University of Pavia, Pavia, Italy, 2Neurocomputational Laboratory, Neurophysiology Unit, Department of Brain

and Behavioral Sciences, University of Pavia, Pavia, Italy, 3 Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino

Foundation, Pavia, Italy

In modern computational modeling, neuroscientists need to reproduce long-lasting

activity of large-scale networks, where neurons are described by highly complex

mathematical models. These aspects strongly increase the computational load of

the simulations, which can be efficiently performed by exploiting parallel systems to

reduce the processing times. Graphics Processing Unit (GPU) devices meet this need

providing on desktop High Performance Computing. In this work, authors describe

a novel Granular layEr Simulator development implemented on a multi-GPU system

capable of reconstructing the cerebellar granular layer in a 3D space and reproducing

its neuronal activity. The reconstruction is characterized by a high level of novelty and

realism considering axonal/dendritic field geometries, oriented in the 3D space, and

following convergence/divergence rates provided in literature. Neurons are modeled

using Hodgkin and Huxley representations. The network is validated by reproducing

typical behaviors which are well-documented in the literature, such as the center-

surround organization. The reconstruction of a network, whose volume is 600 × 150 ×

1,200 µm3 with 432,000 granules, 972 Golgi cells, 32,399 glomeruli, and 4,051 mossy

fibers, takes 235 s on an Intel i9 processor. The 10 s activity reproduction takes only 4.34

and 3.37 h exploiting a single and multi-GPU desktop system (with one or two NVIDIA

RTX 2080 GPU, respectively). Moreover, the code takes only 3.52 and 2.44 h if run on

one or two NVIDIA V100 GPU, respectively. The relevant speedups reached (up to∼38×

in the single-GPU version, and∼55× in the multi-GPU) clearly demonstrate that the GPU

technology is highly suitable for realistic large network simulations.

Keywords: computational modeling, neuroscience, granular layer simulator, graphics processing unit, high

performance computing, parallel processing

INTRODUCTION

The challenge to understand, reproduce and simulate the human brain activities needs more and
more High-Performance Computing (HPC) support, in particular, where heterogeneous elements,
described by complex mathematical models, have to be simulated as fast as possible (Bouchard
et al., 2016). For example, computational modeling in neuroscience has to perform large-scale
simulations to reproduce complex physiological behaviors of neuronal networks. Among the

24

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.630795
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.630795&domain=pdf&date_stamp=2021-03-16
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:emanuele.torti@unipv.it
https://doi.org/10.3389/fncom.2021.630795
https://www.frontiersin.org/articles/10.3389/fncom.2021.630795/full

Florimbi et al. Granular layEr Simulator

different aspects that ask for HPC in neuroscience, some have a
more relevant impact as the network dimension, i.e., the number
of neurons, and the connections to model. Nowadays, several
research groups work on reproducing the functionalities of very
large areas of the brain (Beyeler et al., 2014; Cremonesi and
Schürmann, 2020). To this aim, they need multicore and/or
manycore technologies capable of reducing the processing time
and of ensuring the power, memory, and storage capabilities
offered by HPC solutions (Fidjeland et al., 2013). Another aspect
to consider is the model to use for the neuron representation
and the detailed morphologies introduced in the network.
Starting from the simple Leaky Integrate and Fire (LIF) model
up to the more complex Hodgkin Huxley (HH) one, all the
mathematical representations are characterized by a variable
number of differential equations, which strongly increases
the computational load of the simulations (Izhikevich, 2004).
Moreover, the detailed morphologies provide information about
how to perform the signal exchange between neurons in the
network and how the potential evolves inside the single element.
If not properly managed, those aspects can easily increase the
computational load of the simulation. A further issue to consider
is the duration of the neuronal activity to reproduce. Particular
attention should be given to the time integration step that directly
determines the number of times that the differential equations
have to be solved.

Recently, the number of research neuroscience groups using
multicore and/or manycore architectures has indeed increased
due to the need of high computing power to simulate complex
and realistic neuronal models. Among HPC architectures, the
Graphics Processing Unit (GPU) technology is becoming one
of the most popular since it is capable of processing in parallel
the neuronal activity of a huge number of cells. One important
aspect that can make the GPUs useful in this research field
is that they can be hosted in desktop systems as well as
in supercomputers.

In this work, authors present the Granular layEr Simulator
(GES), a system capable of reconstructing in detail the granular
layer network of the cerebellum (a major cortical structure of the
vertebrate brain) in a 3D space and of reproducing its neuronal
activity. This code has been written in C language and using the
OpenMP API together with the CUDA framework to efficiently
exploit desktop architectures characterized by multicore CPUs
connected to single and multi-GPUs. The simulator consists
of three modules: the network design displaces the neurons
and the glomeruli in a volume and connects them considering
axonal/dendritic field geometries, oriented in the 3D space, and
following the convergence/divergence rates that, to the best of the
authors’ knowledge, are the most relevant in the literature. Once
the neurons displacement and connections have been elaborated,
the simulation module can reproduce the network neuronal
activity. The neurons are modeled using the Hodgkin andHuxley
representation (Hodgkin and Huxley, 1990). The third module
is the graphical interface that allows the user to generate several
network configurations, to simulate and to graphically visualize
them in a 3D space. In fact, the aim is to build a parametric
network that can reproduce different configurations only by
changing the values of suitable variables. This parametric system

is also scalable allowing the reproduction of networks with
different sizes.

Section Materials and Methods presents the granular layer
model and the optimized codes developed for the network
reconstruction. Moreover, the serial and parallel codes of the
simulation module will be detailed. Then, the graphical user
interface will be described. Section Results and Discussion
presents the results and an exhaustive analysis of the neurons
placement with relative connections, of the processing times and
of the system memory occupancy. A comparison with the state
of the art and possible future works are shown. Finally, section
Conclusions draws the main conclusions and the possible future
directions of the work.

MATERIALS AND METHODS

In the previous works, authors developed the simulators for
the single cells hosted in the cerebellar granular layer. The
neurons have been modeled exploiting the Hodgkin and
Huxley representation and their simulators have been developed
targeting parallel devices. This activity had a crucial importance
to validate the neuronal behaviors and to evaluate the best parallel
technologies to use in the network implementation (Florimbi
et al., 2016, 2019).

The development of the GES required three main phases that
represent a further step-on in the conducted research. At first, an
efficient algorithm to reconstruct the granular layer network in
a 3D space was developed. It places and connects different types
of neurons as realistically as possible, taking into account their
cellular morphology and their axonal/dendritic field geometries,
oriented in the 3D space. The cells connections are the input
of the second step, which concerns the neuronal activity
reproduction of the layer. The network activity simulation has
been carried out on one of the most recent multi-GPUs systems,
in order to reduce the computational time. In the last phase of
the work, a graphical interface has been developed to visualize
the displacement, the connections and the activation patterns
of the different neurons providing to the scientists a useful and
easy tool that allows to setup the simulation and to monitor its
own behavior.

Overview of the Cerebellar Granular Layer
Model
The Neurons Models
The Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1990)
is one of the most accurate and complex representations to
reproduce the neuronal activity. The model describes the cellular
membrane as a capacitor Cm since it keeps the ions separated
on its sides. The capacitor is connected in parallel with different
branches, each one including a resistor and a voltage generator
connected in series. The resistors stand for the ionic channels,
contained in the membrane, which allow the ions crossing. The
voltage generators represent the active transport mechanisms
that characterized the cellular activity. The current I flowing

Frontiers in Computational Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 63079525

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

through the membrane is described as in Equation (1):

I = Cm
dVm

dt
+ Isyn+ Iions (1)

where Vm is the membrane potential, Isyn the synaptic current,
and Iions is the sum of the ionic currents. Each ionic current (Iion)
is defined as the product between the channel conductance gion
and the difference between the membrane potential Vm and the
equilibrium potential of the specific ion Eion (Equation 2):

Iion = gion(Vm − Eion) (2)

The ionic channels are characterized by the presence of gating
particles, whose position inside the channel allows its opening or
closure. The HH model reproduces how they dynamically affect
the channel conductance as in Equation (3):

gion = gion × xzion × ykion (3)

where gionis the maximum conductance of the channel, xion and
yion are the probabilities that the gating particles occupy a certain
position in the membrane. z and k represent the number of
activation and inactivation particles for each channel (Florimbi
et al., 2017). The probability of a particle of being in a permissive
state depends from two coefficients αn and βn related to the
velocity of transition (D’Angelo et al., 2001). The relation is
given by:

dn

dt
= αn (1− n)− βnn (4)

where the probability of being in a permissive state is n. Equation
(4) can be simplified using these two relations:

n∞ =
αn

αn + βn
(5)

τn =
1

αn + βn
(6)

where n∞ and τn are the stationary part and the activation time
of the channel. Equation (4) can then be rewritten as:

dn

dt
=

n∞ − n

τn
(7)

which is solved by:

n (t) = n∞ − (n∞ − n0)e
− t

τn (8)

where n0 is the initial value of n.
The final model is obtained considering the gating particles for

each ionic channel and including these relations in Equation (1):

I = Cm
dVm

dt
+ Isyn + gkn

4 (Vm − Vk)+ gNam
3h (Vm − VNa)

+ gL (Vm − VL) (9)

where n is the gating particle of the potassium channel andm and
h are the ones of the sodium channel.

Concerning the soma of the granule (GRCs), the model
described in D’Angelo et al. (2001), takes into account some
particular mechanisms related to ions. The sodium channel is
represented by three currents: a fast Na+ (INa−f), a persistent
Na+ (INa−p), and a resurgent Na+ (INa−r) currents. The
potassium channel is represented by five currents that reproduce
different dynamics: a current for rectified delayed channels
(IK−V), one depending on intracellular calcium concentration
(IK−Ca), one for inward rectified channels (IK−IR), one for type-
A channels (IK−A) and a current for slow kinetic channels
(IK−slow). The reversal or Nernst potential of the sodium and
of the potassium channels are constant during the neuronal
activity evaluation. The calcium channel is characterized by a
variable intracellular calcium concentration. The Ca2+ dynamic
is described by the following differential equation (Florimbi et al.,
2016) (Equation 10):

d[Ca2+]

dt
=
−ICa

2FAd
− (βCa

([

Ca2+
]

−
[

Ca2+
]

0

)

) (10)

where d is the depth of the vesicle linked to the cellular
membrane, whose area is indicated with A. βCa determines the
calcium ions leakage from the cell, F is the Faraday constant,
[Ca2+]0 is the calcium concentration at rest. Once [Ca2+] is
computed, Eca can be determined and used in the calcium current
evaluation. The kinetic of these ionic channels is described using
the HH model and the gating particle mechanism described
above. Each channel is characterized by a different number of
activation and inactivation particles.

Also for the Golgi (GOC), the model adopted to reproduce
its activity considers several ionic currents (Solinas et al., 2008;
D’Angelo et al., 2013). The ones that reproduce the regular
pacemaking of the cell are the sodium persistent current (INa−p),
the h current (Ih), the SK-type small conductance calcium-
dependent potassium current (IK−AHP) and the slow M-like
potassium current (IK−SLOW). These currents together with the
sodium resurgent one (INa−r) and the A-current (IK−A) regulate
the response frequency and delay the fast phase of a spike, which
is present after the hyperpolarization. The ICa−LVA reinforces
the rebound depolarization. The rebound excitation is caused by
the currents ICa−LVA and Ih. All these currents are described by
the gating particles model explained before. Instead, the IK−AHP

current is simulated with a Markov gating scheme characterized
by six states, four closed and two open (Solinas et al., 2008;
Florimbi et al., 2019).

The Synapses Models
The term Isyn in Equation (4) represents the synaptic currents,
i.e., the currents injected to the cell by their connected neurons
through excitatory and inhibitory synapses. To compute the
synaptic current, it is important to provide a model that
reproduces the presynaptic and the post-synaptic terminals. In
the first case, a three-state kinetic scheme has to be solved to
compute the amount of neurotransmitter (T) released by the
presynaptic terminal (Nieus et al., 2006). This neurotransmitter

Frontiers in Computational Neuroscience | www.frontiersin.org 3 March 2021 | Volume 15 | Article 63079526

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

reaches the receptors hosted in the post-synaptic terminal,
reproduced by a model that allows to compute the currents
that flow in the receptors channels. The excitatory synapses is
characterized by the N-methyl-D-aspartate (NMDA) and the α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors in the post-synaptic terminal (Nieus et al., 2006), while
the inhibitory synapses present the gamma-Aminobutyric acid
(GABA) one (Nieus et al., 2014). The current flowing in each
receptor channel is computed solving a kinetic scheme of first-
order reactions, with five (NMDA), three (AMPA) and eight
(GABA) states. A detailed description of the dynamic of these
receptors can be found in Nieus et al. (2006) for NMDA and
AMPA, and in Nieus et al. (2014) for GABA.

Concerning AMPA receptors, there are three possible channel
states: open (O), closed (C), and desensitized (D). Therefore, the
current contribution is given by:

IAMPA = gmax,AMPA

(

Vm − Vrev,AMPA

)

O(T) (11)

where gmax,AMPA is the maximum conductance of the AMPA
receptor (1,200 pS), Vm is the membrane potential, Vrev,AMPA

is the ionic reversal potential and O(T) is the probability of
being in the open state, which depends from the concentration
of neurotransmitter T.

The NMDA receptor is more complex since it has five possible
states: three closed states (C1, C2, and C3), an open state (O), and
a desensitized state (D). The current contribution is given by:

INMDA = gmax,NMDA

(

Vm − Vrev,NMDA

)

O(T)B (12)

where gmax,NMDA is the maximum conductance of the NMDA
receptor (18,800 pS), Vm is the membrane potential, Vrev,NMDA is
the ionic reversal potential,O(T) is the probability of being in the
open state and B is a term to take into account the concentration
of the Mg2+ ion.

The GABA inhibitory receptors are made up of two parts,
called α1-GABA and α6-GABA. These two parts can be modeled
using the same Markov chain, which is made up of two open
states (OA1 and OA2), three closed states (C, CA1, and CA2) and
three desensitized states (DA1, DA2, and DA2f).

The current of each part of the GABA receptor is given by

IGABA = gmax,GABA(Vm − Vrev)(OA1 (T)+ OA2(T)) (13)

where gmax,GABA is the maximum conductance (918 pS for
α1-GABA and 132 pS for α6-GABA), Vm is the membrane
potential, Vrev,GABA is the ionic reversal potential and the sum
OA1(T)+OA2(T) represents the probability of being in an
open state.

Finally, Isyn is given by receptor currents (Equation 14):

Isyn = INMDA + IAMPA + IGABA (14)

A deeper description of the GRC, GOC, and synaptic models can
be found in Florimbi et al. (2016, 2019).

The Network Connectivity
The cerebellar cortex is composed of three layers (the granular,
the Purkinje, and the molecular layers), each one including
different types of neurons. The granular layer hosts GRC and
GOC cells that connect their dendrites and axons in structures
called glomeruli (GLOs), reached also by the mossy fibers (MFs).
These elements are connected in the so called feedforward and
feedback loops (Figures 1A,B) (Mapelli et al., 2014). In the first
case, the MFs excite the GRCs and GOCs dendrites and these
latter inhibit the GRCs; in the second case, the MFs excite the
GRCs and, then, the parallel fibers (PFs) excite the GOCs that
inhibit the GRCs.

All the elements (GOC, GRC, GLO, MF, and PF) are
connected following convergence/divergence rules present in
literature. According to Solinas et al. (2010) and D’Angelo et al.
(2016), the convergence rate between GLOs and GRCs is 4:1,
which means that 3–5 GRC’s dendrites are connected to each
GLO. The GRCs dendrites cannot reach GLOs located more than
40µm away (the mean dendritic length is 13.6µm) and a single
GRC cannot send more than one dendrite into the same GLO
(D’Angelo et al., 2013). Moreover, each GRC must project its
dendrites to four different GLOs (Solinas et al., 2010). Each GLO
has about 50 connections available for the GRCs dendrites since
the divergence rule between GLOs and GRCs dendrites is 1:53
(D’Angelo et al., 2016).

The GOCs axons are placed in the granular layer spreading
longitudinally. They enter in the GLOs to inhibit the GRCs. The
convergence rate between GLOs and the GOCs is 50:1 (Solinas
et al., 2010; D’Angelo et al., 2016). A GOC axon can enter only in
GLOs without GRCs in common: a GRC is not inhibited twice
by the same GOC (Solinas et al., 2010). Moreover, each GOC
axon can reach and inhibit a maximum of 40 different GLOs (i.e.,
reaching ∼2,000 GRCs following the ratio GOCs:GRCs equal to
1:430) (Korbo et al., 1993; D’Angelo et al., 2013).

The GOCs basal dendrites spread around the soma on the
same plane. They reach the GLOs where they make excitatory
synapses with theMFs. EachGOC receives excitatory inputs from
about 40 MFs on basal dendrites (Kanichay and Silver, 2008;
D’Angelo et al., 2013).

The GRCs axons cross vertically the cerebellar Purkinje
layer (i.e., ascending axon), which contains the Purkinje soma,
and reach the molecular layer where it branches into PFs
running transversally. It has been observed that GRCs form their
connections through PFs and also along the ascending axon
(D’Angelo et al., 2013). Moreover, D’Angelo et al. (2016) report
that the convergence rate between the ascending axon and the
GOCs is 400:1 and between the PFs and the GOCs is 1,000:1.
GOCs are connected through gap-junctions present in the basal
and apical dendrites (D’Angelo et al., 2013, 2016).

The Granular layEr Simulator
The basic idea followed in the network development has been
to construct a non-fixed parametric structure. This means that
even though the network is defined by specific structural
and connections rules, it is still possible to modify its size,
reproducing different configurations. The volume that will be
reproduced in this work is 600 (length) × 150 (height) × 1,200

Frontiers in Computational Neuroscience | www.frontiersin.org 4 March 2021 | Volume 15 | Article 63079527

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 1 | Cerebellar granular layer. (A) The granular layer circuit receives the input from the mossy fibers (MFs) that reach the glomeruli (GLOs). Here, they reach

and excite the Golgi cells (GOCs) and granules (GRCs) dendrites. Once the GRCs are stimulated, the signal travels along the GRCs ascending axon and parallel fibers

(PFs) and, then, can reach the GOCs apical dendrites (feedback loop). (B) On the other hand, the MFs signals reach the GOCs cells that inhibit the GRCs (feedforward

loop). The black arrows indicate the direction of the signals in the loops. The image is taken from Mapelli et al. (2014).

TABLE 1 | GOCs, GRCs, and GLOs density values and the number of elements

that a volume of 600 × 150 × 1,200 µm3 can host.

Cell or element ID Density (mm–3) Cells (or

element)

number

Soma diameter

[µm]

GOCs 9,000 (Korbo

et al., 1993)

972 15 (Dieudonné,

1998; Houston

et al., 2017)

GRCs 4,000,000

(Korbo et al.,

1993)

432,000 5 (Solinas et al.,

2010)

GLOs 300,000 (Korbo

et al., 1993)

32,400 5 (Rossi and

Hamann, 1998)

Moreover, soma diameters are considered.

(depth) µm3. This flexibility should be intended only in terms of
parameters variability rather than new constraints introduction.
The serial algorithm developed to reconstruct the granular layer
is written in C language, which allows direct and efficient
dynamic memory management.

Network Design
The network design module performs two main operations: the
elements displacement and connection in a 3D volume.

In this case, the serial algorithm starts computing the number
of GOCs, GRCs, and GLOs, referring to typical rat densities
as shown in Table 1. It also shows the number of elements
considered in the network configuration under study. Finally,
since the neurons soma is modeled as a sphere, the correspondent
diameter is reported.

Once the elements number is known, the algorithm computes

the GOCs, GRCs and GLOs coordinates that are stored in
three arrays (c_goc, c_grc, and c_glo, respectively), dynamically

allocated through the malloc routine in the initial phase of
the code. The algorithm inserts the elements in the space

in a partially random way, considering specific physiological

requirements (Korbo et al., 1993; Dieudonné, 1998; Rossi and
Hamann, 1998; Solinas et al., 2010). The height of the volume

(z-axis) is divided into several layers, whose number is related

to the dimensions of the GOCs since they are the first type of

elements introduced in the volume. Each layer includes several
boxes, organized in rows (shown by the arrows in Figure 2),

which dimensions are related to the GOCs ones. The basis of the

box is a square, whose side is equal to the GOC diameter. On the

other hand, the height of the box is higher than the diameter so
that the algorithm can randomly compute the z coordinate of the

cell inside the box. In this way, all the GOCs inside a layer are not
placed at the same height. The algorithm has to insert a defined

number of GOCs in each layer, selecting a box for each cell.
The algorithm chooses the suitable box following morphological

constraints (i.e., dendrites length and depth) and avoiding boxes
already occupied by other neurons. When a cell is placed in a
box, its x and y coordinates are defined. Once all the GOCs have
been placed in the volume, the algorithm inserts the GLOs and,
then, the GRCs, both represented by spheres with 5µm diameter
(Table 1). The strategy adopted to place GLOs and GRCs is the
same as for GOCs. During the GLOs and GRCs displacement, a
further constraint is added to avoid that these elements overlap
the GOCs. Finally, the correspondent coordinates are written in
the c_goc, c_glo, and c_grc arrays.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 63079528

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 2 | Volume division for the displacement of the GOCs. The volume is divided into z-layers (five in this image). Each z-layer (x-y plane) is divided into rows

along the y-axis (indicated with the arrows), where rectangular parallelepipeds are placed to host the cells. The algorithm starts placing the neurons from the blue row

to the red one. The procedure is repeated for each z-layer.

Once the elements have been placed in the volume, the
algorithm starts to connect them, generating the connection
matrices. They are linear arrays containing the information on
how elements are connected following convergence/divergence
rules. The connection matrices reproducing the feedforward and
feedback loops (D’Angelo et al., 2016) contain the links among
the following elements (the name of the connection matrices is
reported between brackets):

• GRCs and GLOs (link_grc_glo);
• GOCs axon and GLOs (link_goca_glo);
• GOCs basal dendrites and GLOs (link_gocdb_glom);
• GRCs (ascending axon and PFs) and GOCs

(aa_goc_link, pf_goc_link);
• MFs and GLOs (mf_glom_clustering);
• GOCs and GOCs (gap_junction).

For each type of connection, the authors developed a suitable
algorithm capable of connecting the elements following the
morphological rules and the convergence/divergence ratios.

As an example, the algorithm that links the GRCs to the GOCs
through ascending axon and PFs is detailed in the following.

As said in section Overview of the Cerebellar Granular Layer
Model, the GRCs axons cross vertically the cerebellar Purkinje
layer and reach the molecular one where it branches into PFs
running transversally, i.e., along the y-axis (Figure 3). Even if
this work aims to reproduce the granular layer, it is important
to take into account these connection schemes, in order to
reproduce the feedback and feedforward loops, simulating all
the connections between neurons. As previously said, the GRCs
form their connections with GOCs through PFs and also along
the ascending axon with a convergence rate of 1,000:1 and
400:1, respectively (D’Angelo et al., 2016) (D’Angelo et al., 2013).
Firstly, the algorithm computes the connections between the

ascending axons and the GOCs. When the algorithm has to find
those GRCs to connect to, it builds an elliptical cylinder (in
red in Figure 3) around the GOC soma, whose major axis is
the maximum length of the apical dendrites, while the minor
axis is given by their depth. For each GOC, the algorithm
selects 400 GRCs inside the red cylinder avoiding the area
under the GOC soma, denoted by a blue cylinder in Figure 3,
where it is less probable to have connections. The algorithm
randomly selects a GRC among the 400, and checks if it is
inside the red cylinder. If yes, the connection is performed (AA
CONNECTION in Figure 3) and the GRC index is stored in
the linear matrix aa_goc_link. Considering the PFs, the GOC
receives 400 connections through the PFs of local GRCs and
1,200 distal connections (D’Angelo et al., 2013). The algorithm
selects the GOCs to link to the GRCs, checking if in the red
cylinder there are GRCs, whose PF crosses the apical dendrites
area (as in the purple case in Figure 3): if yes, the connection
is made (LOCAL PF CONNECTION). If the PF that crosses
the apical dendrite area belongs to a GRC far from the GOC
soma (orange parallel fiber), a distal connection (DISTAL PF
CONNECTION) is implemented. These connections are stored
in the linear matrix pf_goc_link.

Another interesting part of the system performs the
connections between MFs and GLOs. In this case, authors
developed a custom clustering algorithm to meet physiological
constraints. Authors in Sultan and Heck (2003) described how
the MFs branch in the cerebellum. They form clusters of
presynaptic enlargements called rosettes, which represent the
presynaptic part in the GLOs. EachMF can formmultiple clusters
of rosettes arranged with a characteristic spatial organization.
In particular, authors in Sultan and Heck (2003) demonstrate
that the clusters belonging to the same MF are separated from
each other. For this reason, given the dimension of the network

Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2021 | Volume 15 | Article 63079529

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 3 | GRC ascending axon and PF connections with GOC. The figure

shows the different layers of the cerebellum cortex: granular layer (GL),

Purkinje layer (PL), and molecular layer (ML). In the GL, GRC soma, and GOC

soma are represented with red and blue spheres, respectively. The yellow

trapezoid represents a schematization of the area occupied by the GOC apical

dendrites (partially shown inside the area). The image shows three examples of

connection. Firstly, the algorithm connects the GOC apical dendrites with the

GRC ascending axon (AA CONNECTION). Then, it performs the connections

through PFs (LOCAL PF CONNECTION and DISTAL PF CONNECTION).

Notice that in the image, the sizes do not scale proportionally to improve the

graphical view.

considered in this work, it is not reasonable to find two clusters
belonging to the same MF.

They demonstrate that each cluster accumulates 7.7 (±4.1)
rosettes and, thus, GLOs. Finally, always in Sultan and Heck
(2003), the authors show that elements in a cluster are located
within 350µm from the cluster mean location. Taking into
account this physiological information, a clustering algorithm
capable of generating clusters with a defined dimension is
needed. The elements inside the cluster must comply with
the distance constraint. Authors developed an algorithm whose
goal is to divide several points (inserted in a 3D volume,
characterized by spatial coordinates) into N clusters with a
fixed, properly set dimension. The number of clusters N is
one of the algorithm inputs. Let us assume that the clusters
dimension is NUM_POINT_CLUSTER (±DELTA): in this case,
NUM_POINT_CLUSTER is set to 8 and DELTA is set to 4
according to Sultan and Heck (2003). In the initialization phase,
the algorithm computes the centroids in a pseudo-random way.
Once the coordinates are initialized, the algorithm computes
the Euclidean distances between the GLOs and the centroids

to identify the nearest centroid for each GLO. The algorithm
computes the K-nearest centroids for each GLO (in this work,
K = 100) and sorts them in ascending order, on the basis of the
GLO-centroid distance. At the end, all these data are stored in the
data_clusters structure, including these fields:

• GLO ID (IDglo);
• Nearest centroid ID (IDprimary);
• Distance GLO IDglo and centroid IDprimary;
• Structure that contains ID and distances of the K-nearest

centroids of the GLO IDglo.

Each GLO is temporarily assigned to its nearest cluster. At
this point, the algorithm computes the dimensions of each
cluster (i.e., how many GLOs have that specific centroid as
the nearest). If the cluster dimension is out of the range
NUM_POINT_CLUSTER (± DELTA), its ID is stored in one of
the following arrays:

• buffer_low, which contains the IDs of the centroids with a
dimension lower than NUM_POINT_CLUSTER – DELTA;
• buffer_high, which contains the IDs of the centroids with a

dimension higher than NUM_POINT_CLUSTER+ DELTA.

The next step aims to reduce the centroids present in the
buffer_high, so that its dimension can be within the range
presented above. A for loop removes the extra elements
in the clusters present in the buffer_high array and assigns
them to other clusters with lower dimensions. The algorithm
tries to select a cluster that has a dimension lower than
NUM_POINT_CLUSTER – DELTA and, at the same time, is
one of the nearest for the GLO that will be moved. Otherwise,
it searches for another cluster in the volume giving priority to
the ones with a dimension lower than NUM_POINT_CLUSTER
+ (DELTA/2).

Serial and Parallel Network Simulation
This section illustrates the serial and parallel codes developed to
simulate the granular layer activity. In previous works (Florimbi
et al., 2016, 2019), authors developed the GOCs and GRCs
simulators where the neurons were not connected and their
activities were evaluated in parallel. These works validated
the GOCs and GRCs behaviors reproduced by the simulators.
Moreover, this phase was of crucial importance to evaluate the
GPU technology in this kind of applications. The significant
speed-up obtained comparing the serial and parallel simulators
demonstrates that the GPU is a suitable technology for neuronal
simulations. For this reason, authors developed also a CUDA
version of the granular layer simulator to exploit single and
multi-GPU systems.

Once the connection matrices have been generated in the
network design step, the GRC and GOC simulators can
be integrated to reproduce the activity of the cerebellar
granular layer.

In the Initialization phase, all the variables related to all
the cells and their synapses are declared and initialized in a
structure called grc_cell for the GRCs, and goc_cell for the GOCs.
Moreover, each structure contains two further structures (one
for the excitatory and one for the inhibitory connections), the

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2021 | Volume 15 | Article 63079530

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

Algorithm 1 | Network simulation.

1 Connection matrices reading;

2 Initialization;

3 MF signal Initialization;

4 for t←0 to tend
5 for n←0 to ngoc
6 GOC Synaptic activity computation;

7 GOC Cellular activity computation (solve Equation 2 for each ion);

8 GOC sum currents and conductances;

9 GOC membrane potential update (solve Equation 9);

10 Send signals to granule cells;

11 end

12 Gap junctions currents update;

13 for n←0 to ngrc
14 GRC Synaptic activity computation;

15 GRC Cellular activity computation (solve Equation 2 for each ion);

16 GRC sum currents and conductances;

17 GRC membrane potential update (solve Equation 9);

18 Send signals to Golgi cells;

19 end

20 end

21 Write results;

22 end

membrane potential Vm, the synaptic current Isyn, the ionic
channel current Iion and conductance gion, all the gating particles
for each ionic channel, and the calcium Nernst potential. Each
structure related to the connections contains an array storing
the spikes that occur in the synapses. Then, in the MF signal
initialization phase, the configuration of the simulation protocol,
described in section Computational Results, has to be initialized,
deciding how the MFs provide inputs to the network. At this
point, the algorithm can start evaluating the network activity.
For each t-th time step, the algorithm evaluates the synaptic and
cellular activities of the GOCs and of the GRCs. The for loop
that iterates over the simulation time is shown in Algorithm 1

at line 4.
Inside this loop, lines 5 and 13 indicate the loops iterating on

the GOCs and GRCs. For the t-th time step, the algorithm starts
evaluating the GOCs synaptic activity (line 6), by solving the
pre-synaptic and post-synaptic terminal models. In particular,
the algorithm checks if some inputs have occurred in the GOCs
basal and apical dendrites. To model this aspect, three buffers
(spike queues) have been allocated in each goc_cell structure
storing the inputs from the basal dendrites, the apical dendrites
and the inhibitory synapses. The GOC dendrites are modeled
as passive components characterized only by an axial resistance,
which causes a delay in the signal transmission. This kind of
representation allows analyzing, at each time step, if one or more
inputs occurred in the different dendrites of the cell.Algorithm 2

shows this process.
The for loops that iterate on the time steps and on the GOCs

number are in lines 1–2 of Algorithm 2. Then, the algorithm
checks if, in each buffer (Algorithm 2, line 3), a spike has
occurred in the current time t (Algorithm 2, line 4). If the
spike occurs, the algorithm solves the three-state kinetic scheme,
cited above, to compute the neurotransmitter concentration (line
5). Once the input has been evaluated, the spike is removed
from the spike queue. Once all the inputs have been evaluated,

Algorithm 2 | Synaptic activity computation.

1 for t← 1 to tend do

2 for i← 1 to ngoc do

3 for j← 1 to buffers do

4 if spike then

5 compute neurotransmitter concentration;

6 remove the spike from the queue;

7 end

8 end

9 solve the AMPA, NMDA and GABA kinetic schemes;

10 compute the currents that flow in the receptors;

11 Isyn = IAMPA + INMDA + IGABA;

12 …

13 end

14 …

15 end

the algorithm solves the receptors schemes to compute the
currents that flow in the channels present in AMPA, NMDA,
and GABA receptors (lines 9–10). Finally, the synaptic current
Isyn is updated and the GOC Synaptic activity computation phase
ends. The flow of Algorithm 1 continues evaluating the GOCs
cellular activity (line 7): the value of the gating particles of each
ionic channel is updated and, then, the channel conductances
and currents are computed. At this point, the current and
conductance contributions are summed and included in the
membrane potential update. Moreover, in this last phase of the
GOCs activity, the gap junctions currents are also considered.
In the first iteration (t = 0), their value is initialized to zero
since all the cells have the same membrane potential. Then, their
values will be updated on the basis of the membrane potential
difference between the cells linked through gap junctions. The
last phase of the GOCs activity (Send signals to granule cells)
manages the signals exchange between the GOCs and the GRCs.
In fact, as said before, the signals travel along the GOCs axons
that enter the GLOs, where the GRCs dendrites receive the
signals from the GOC. At this point, the algorithm evaluates
if the considered GOC generates a spike: if yes, the algorithm
searches the GRCs linked to that cell through the connection
matrix. Then, it stores the spike time in the suitable GRC spike
queue. Here, two considerations are necessary: the first is that the
GOC axon is modeled as a passive component. For this reason,
the spike time is computed by adding a delay caused by the
axonal resistance. The second is about how the GRCs dendrites
have been modeled. As said before, the convergence rate between
GLOs and GRCs is lower than the GOCs one (Solinas et al., 2010;
D’Angelo et al., 2016), thus GRCs have 3–5 dendrites that enter
the GLOs. For this reason, the four GRC dendrites have been
represented with the same number of buffers for the excitatory
and inhibitory connections.

Once all the GOCs signals have been stored in the suitable
GRCs buffers, the for loop that iterates on the GOCs ends. At this
point, the algorithm computed a new membrane potential value
for all the GOCs and, then, the gap junctions currents are updated
(Gap junctions current update). Then, for the same t-th iteration,
the algorithm continues analyzing the GRCs synaptic and cellular
activities. In the for loop that iterates on the GRCs, the algorithm

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 63079531

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

starts to evaluate the synaptic activity as shown in Algorithm 2

for the GOCs: the only difference is that, in this case, each GRC
has four buffers for the excitatory connections and four for the
inhibitory ones. Clearly, the spikes generated by the GOCs in the
t-th time step are not considered by the GRCs in this iteration.
Once the membrane potentials have been updated, the action
potentials generated by the GRCs are sent to the GOCs (Send
signals to Golgi cells phase). In particular, as said before, the GOC
receives excitation from the GRC through their ascending axons

and/or through their PFs. Once all the GRC have been evaluated,
the code can continue with the next time step (t+1t).

The serial version of the granular layer network has been used
as a basis for the development of two parallel codes, written in
C/CUDA language. Figure 4 shows the flow of the first parallel
version, which runs in a single-GPU system.

The code starts on the host where the connection matrices
are read (Connection matrices reading) and the variables are
initialized. In addition to the initialization of the variables, in the

FIGURE 4 | Parallel flow for single-GPU system. The flow starts on the host where the for loop iterates on the time steps. The signals exchange is performed on the

host, while the neurons activity computation is performed on the device (yellow box). The black arrows indicate the flow, while the red dashed arrows indicate the data

transfers between host and device, and vice versa.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 March 2021 | Volume 15 | Article 63079532

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

second phase, the algorithm prepares the data to be transferred
from the host to the device memory. This phase is crucial to
reach high performance and to reduce the computational times.
In fact, if not properly managed, the data transfer could be
the bottleneck of the process. In order to prevent this potential
slow-down, all the data related to the cells have been stored
at contiguous memory addresses, trying to minimize the bus
activations during the transfers. The idea is to create a 1D array
and to join the data according to their physiological meaning. In
this phase (Initialization and Array packaging), the data related
to the cellular activity and to the initialization of the pre-synaptic
and post-synaptic models are prepared. On the other hand, the
input signals will be set for the transfer after the configuration
of the simulation protocol in the successive phase. In fact, inMF
signals initialization, a protocol is chosen and the spike queues
for each MF are generated. In this case, the authors chose to
not transfer all the spikes queues of all the MFs from the host
to the GPU global memory in order to not increase the memory
usage. Once the protocol is generated, the for loop that iterates on
the time steps begins. The MF spike queues evaluation phase has
been introduced to properly manage the data transfers of theMFs
queues. Since it is not efficient to transfer all the queues in the
global memory, at each time step the algorithm evaluates if the
MFs have generated an input signal. If yes, that input is stored
in a temporary queue of the cell linked to that MF. Notice that
each queue of all the MFs is evaluated in parallel exploiting a
multicore strategy with the Application Programming Interface
(API) OpenMP. It is a parallel programming model for shared-
memory multiprocessors that provides a wide set of directives
and strategies for the parallelization of loops and program
sections through the #pragma directive. This statement is placed
before the loop that should be parallelized. Moreover, in this
directive, the variables or array are expressed as private to a single
thread or shared among all the threads. In this case, at each
current time, the MFs for loop is parallelized to simultaneously
check the GRCs and GOCs linked to the MFs that have generated
a spike. Finally, the algorithm generates two arrays of flags (one
for GOCs, goc_spikeMF and one for the GRCs, grc_spikeMF) that
contain the value 1 if the corresponding GOC or GRC received
an input from the linked MFs. The flags are equal to zero if the
corresponding cell is not stimulated. In this way, at each time
step, the algorithm will transfer from the host to the device global
memory, only two arrays of dimension ngoc × sizeof(int) and ngrc
× sizeof(int), instead of all the MFs queues. In the Other queues
evaluation phase, other arrays are prepared for the transfer. In
this code, the queues/buffers, already defined in the serial code,
are present together with their related arrays of flags, exploited
to transfer data to the global memory at each time step. For this
reason, the GOCs have a buffer and an array of flags for the apical,
basal and inhibitory connections (goc_spikeAPIC, goc_spikeMF,
and goc_spikeINH, respectively). The GRCs have two flag arrays:
one for the excitatory and one for the inhibitory connections.
These two arrays are properly managed to transfer the signals
stored in the four excitatory and inhibitory buffers present in the
host. On the device global memory, space has been allocated to
store the synaptic buffers and the gap junctions currents, i.e., an
array whose dimension is ngoc × ngap × sizeof(float), where ngap

is the number of connections through gap junctions for each cell.
All the flag arrays are transferred to the GPU global memory (red
dashed arrows in Figure 4). At this point, the activity of all the
GOCs, at the t-th time step, can be evaluated simultaneously on
the device. This part (GOC Activity phase) represents a kernel,
thus a function performed by parallel threads. For this reason,
the device generates a number of threads equal to the number of
GOCs, so that each thread can compute the activity of a specific
GOC. Threads are organized in blocks that, in turn, constitute
a grid. The block dimension (i.e., how many threads a block
contains) is set as multiple of 32, according to thewarp definition,
to optimize the scheduling carried out by the NVIDIA Giga
Thread scheduler (NVIDIA, 2019).

Before the kernel invocation, the code computes the grid
dimension (i.e., the blocks number) as [ngoc/nthread_block], where
ngoc is the GOCs number (i.e., the total number of threads
needed), and nthread_block is the number of threads in a block,
set to 32. If the remainder of the division is not equal to zero,
the grid dimension is incremented by one. In this case, the
last block contains more threads than necessary: this turns out
in inactive threads assigned to the last block. Despite this, the
inactive threads cannot be avoided because each block must
have the same number of threads. Once all these parameters
have been defined, the kernel can be activated. The first step
of this phase is the data transfer from the global to the local
memory of the device. All the threads within a block can access
the same portion of the local memory and, for this reason, the
goal is to copy the parts of the arrays that are needed by the
threads in the block in this memory. In this way, the memory
access latency diminishes. On the other hand, the local memory
has a reduced size (dozens of KB) and, for this reason, not
all the data can be transferred. In this way, only the arrays
and variables that are the most used in the kernel are stored
in the local memory. Moreover, these variables are accessed
multiple times by all the threads in the block. When this first
set of memory transfers has been concluded, all the threads start
evaluating in parallel the GOCs activity. The evaluated phases are
those shown for the serial code and represented in Algorithm 1

lines 6–9. Once the GOCs activity is computed, all the updated
data (i.e., membrane potential, kinetic scheme variables, gating
particles, Nernst potentials, calcium concentration, and so on)
are stored in the global memory because they will be used in
the next iteration. Once this kernel has finished, another one
starts computing the gap junctions currents. This kernel has the
same number of threads and blocks previously defined since each
thread evaluates the gap junctions connections of each GOC. The
currents are stored in the device global memory and evaluated
in the next GOCs activity evaluation. Once the kernels finished,
two arrays are transferred from the device to host: the former
stores the membrane potential of all the GOCs; the latter, called
flag_golgi_spike, has size ngoc and, for each cell, stores a flag whose
value is 1 if the corresponding GOC has generated a spike. The
first arrays is then used to record the potentials in the mass
memory of the system. As described above, this spike travels
along the GOC axon, which enters in the GLOs, where the GRCs
dendrites are hosted. At this point, exploiting the connections
matrices, the code evaluates on the host which are the GRCs

Frontiers in Computational Neuroscience | www.frontiersin.org 10 March 2021 | Volume 15 | Article 63079533

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

linked to the GOCs that have generated a spike. For these GRCs,
the spike time is computed and stored in their buffers for the
inhibitory connections, since the GOCs provide an inhibition.
In this way, all the GRCs inhibitory buffers are updated and,
then, analyzed in order to see if they contain inputs that have
to be evaluated by the GRCs in the current time t. This means
that the flags of the array grc_spikeINH assume the value 1 if
the corresponding GRC received an inhibitory signal to evaluate
in t. Clearly, also in this case, the GRCs do not evaluate the
GOCs spikes generated at the same time iteration. The flag array
is then transferred from host to device, where a new kernel is
invocated (GRC activity in Figure 4) to evaluate the activity of
all the GRCs, for the t-th time step, simultaneously. In fact,
the device generates a number of threads equal to the GRCs
number. As for the GOCs activity, also in this case parts of data
are transferred from the global to the local memory. Then, each
thread computes the activity of one GRC, performing all the
functions indicated in Algorithm 1 lines 14–17. At the end, all
the updated variables are transferred back from the local to the
global memory, in order to be used in the next time iteration.
For the GRCs, two arrays are also transferred from the device
to the host: the first stores the neurons membrane potentials,
and the second (flag_grc_spike) stores flags that indicate if the
corresponding GRC has generated a spike. At this point, the
code is processed on the host, where the array flag_grc_spike
is analyzed. In this case, the code checks which are the GOCs
linked to the GRCs (that have generated a spike) through the
ascending axon and the PFs. For all these GOCs, the spike
time is computed and stored in the apical connections buffer,
which is then evaluated to update the goc_spikeAPIC array.
The flags values will be set to 1 if the corresponding GOC is
linked to a GRC that has sent a signal. The Send signals to
Golgi cells phase is the last and the code can proceed with the
next iteration.

The flow of the multi-GPU parallel version is shown in
Figure 5. It starts on the host where data are initialized and
prepared for the transfer. Despite the previous version, data have
to be transferred from the host to two different devices. In fact,
the neuronal activity evaluation is split between the two boards
and, in particular, each one processes the activity of half of the
neurons. Therefore, data related to the first half part of the
cells are transferred to the device 0 global memory, the others
to the device 1 one. For each simulation time step, the queues
evaluation is the same done in the single-GPU version. The only
difference is how data are prepared and split to be transferred
to two devices. In order to invocate the GOC Activity kernel
on two boards, firstly the kernel parameters have to be set. The
number of threads in each kernel is given by (ngoc/2)/nthread_block,
where nthread_blockis always set to 32. If the number of cells is
not an even number, the threads number in one of the two
devices is incremented by one. In order to perform two kernels
simultaneously, CUDA provides the streams to concurrently
execute and overlap kernels and data transfers (Rennich and
NVIDIA, 2014). The streams carry out the transfers (indicated
with red dashed lines in Figure 5) and activate the kernels on
both the devices. All the previous considerations related to the

transfers from the global to the local memory can be also done in
this case for each board. Once the GOC Activity of all the GOCs
is evaluated, the kernels end, and the flow is synchronized. At
this point, the arrays that store the GOCs membrane potentials
and flags (which indicate if each a GOC has generated a spike
or not) are transferred from the device to the host memory.
Moreover, a data transfer between the two boards is performed
(light blue dashed line in Figure 5). In fact, the kernel related
to the gap junctions currents computation is entirely performed
on the device 0 since the code needs the membrane potential
values of all the GOCs to update these currents. Indeed, each
GOC is connected through gap junctions to other GOC which
might not be located on the same device. For this reason, the
membrane potentials evaluated by the device 1 are transferred
to the device 0 through a cudaMemcpyPeerAsync function, which
allows to directly transfer data between GPUs on the same PCI
Express bus bypassing the CPU host memory.1 Once the gap
junctions currents have been updated and stored in the device
0 global memory, the flow returns on the host where the signals
are exchanged and the flags arrays updated, as explained before.
Then, the arrays are transferred on the two boards in order
to activate the GRC Activity kernel on the two devices. As for
the GOCs, each kernel evaluates on each board the activity
of half part of the GRCs. Once the flow is synchronized, the
arrays containing the GRCs membrane potentials and the flags,
indicating the spike presence, are transferred from the devices
to the host. At the end, the signals are exchanged between
GRCs and GOCs and stored in the GOCs buffers for the apical
connections. At this point, the flow can continue with the
next iteration.

Graphical User Interface
The results of the design and of the network neuronal simulations
can be graphically and quantitatively analyzed through a
graphical interface, developed with the OpenGL API in order to
achieve a GPU-accelerated rendering (Sellers et al., 2015). The
main task of this graphical interface is to display the elements
in a 3D volume, considering the spatial coordinates computed
in the network design stage. In Figure 6, the main panel shows
the granular layer network, with the dimension considered in this
work (i.e., 600 × 150 × 1,200 µm3). In particular, the GLOs are
represented in green, the GRCs in red and the GOCs in blue. The
interface is also useful to analyse the connections between GLOs
and neurons, the MFs clustering and to watch the simulation
output. As an example, two tasks have been shown in Figure 7.
In particular, Figure 7A shows how the MFs branch in the
cerebellum forming clusters of GLOs, represented with different
colors. Figure 7B shows an example of connections between
GRCs and GOCs through PFs. All the GRCs in red are the ones
selected by the algorithm following the rules presented in section
NetworkDesign. Only the ascending axon and the PF of one GRC
are represented to show how the PF crosses the space dedicated
to the GOC apical dendrites, generating a connection. As far as

1NVIDIA GPU Direct. Available online at: https://developer.nvidia.com/gpudirect

(accessed October 1, 2020).

Frontiers in Computational Neuroscience | www.frontiersin.org 11 March 2021 | Volume 15 | Article 63079534

https://developer.nvidia.com/gpudirect
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 5 | Flow parallel version for the multi-GPUs system. The flow starts on the host, where the variables are initialized, and data are prepared for the transfers to

the global memory of the devices. The GOC Activity and GRC Activity is managed by the two devices. The black lines indicate the flow, the red dashed lines indicated

the host–device (and vice versa) transfers, and the blue dashed line indicates the transfer between devices.

the simulation tasks are concerned, the algorithm evaluates the
membrane potential of each element in all the time steps of the
simulation. In each time step, it changes the color of the elements
that are generating a spike. In this way, the user can graphically
analyse how neurons react to particular stimuli. In the center-
surround simulation (Figure 7C), which will be described in
section Computational Results, a particular technique is adopted
to show the spiking neurons: at the beginning, all the neurons are
not visible in the volume. As soon as a cell generates a spike, it will
be shown with a color whose tone becomes darker as the spikes
number increases.

RESULTS AND DISCUSSION

Neuron Placement and Connection
Analysis
The first validation concerns the evaluation of how many
elements can be correctly placed by the proposed network design
algorithm. The analysis presented below is performed after
running the design algorithm 20 times with different random
seeds. Authors find that the algorithm always places the 100%
of GOCs and GLOs, and 98% of the GRCs. This amount of
not placed cells is negligible in terms of the correct evaluation

Frontiers in Computational Neuroscience | www.frontiersin.org 12 March 2021 | Volume 15 | Article 63079535

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 6 | Complete view of the network. Main panel where the complete network (with dimension 600 × 150 × 1,200 µm3) is shown. Only the GRCs (red) and

GOCs (blue) soma have been displayed. The GLOs have been represented as green spheres.

of the network activity. Moreover, authors carefully analyzed
the connection matrices to evaluate the percentage of links
established during the network design step. The analysis of the
link_grc_glo matrix reveals that the algorithm completely fills
the 50 available places of the 89.75% of the GLOs (Figure 8A).
In only the 5.07% of cases, the GLOs are not linked to the
GRCs dendrites and, in the other cases, the number of dendrites
that reach the GLOs is between 1 and 49. Moreover, the
evaluation of this connection matrix highlights that 82.30% of
the GRCs sends its dendrites to four different GLOs, satisfying
the convergence constraint (Solinas et al., 2010; D’Angelo et al.,
2016) (Figure 8B). Moreover, this means that this percentage
of GRCs is excited by four different MFs. In other cases, the
GRCs are partially linked to 3 (3.90%), 2 (4.46%), and 1 (3.21%)
GLOs/GLO. Only in the 6.20% of the cases, the GRCs are not
connected to GLOs. The fact that not all the GLOs and GRCs
are entirely linked is not a limit of the algorithm that is based
on convergence/divergence average values (or ranges) taken from
the literature. For this reason, performing the connections not
reaching the maximum number of the expected elements is not
an error. Instead, it provides more variability and realism to
the network. These considerations are also valid concerning the
connections presented below. Figure 8C shows the results of
the analysis conducted on the link_gocdb_glo matrix, containing
the GLOs where the GOCs spread their basal dendrites. The
algorithm is capable of fully connecting the 90.95% of GOCs
to 40 MFs. In the 9.06% of the cases, the GOCs are linked
to <40 GLOs, but all the GOCs receive at least the signal
from one MF. Figures 8D–F also show the count of connection
for GLOs, GRCs and GOCs. Considering the inhibition that
the GRCs receive from the GOCs through their axon, the
matrix link_goca_glo evaluation highlights that the developed
function generates the 94.97% of these connections. Moreover,
considering the GRCs–GOCs connection through ascending
axon and PFs, the algorithm fully connects the GOCs to the

GRCs, following the convergence/divergence rates presented
in section Overview of the Cerebellar Granular Layer Model.
Finally, the gap junctions connections evaluation highlights that
the 96.60% of GOCs are connected to two other cells (Vervaeke
et al., 2010), while only the 1.85% shows one link and the 1.54%
is not connected since those cells are located in the borders of
the volume. The algorithm that reproduces the MFs branching
creates all the clusters with a number of GLOs in the range of
7.7 (±4.1), satisfying the constraint proposed in Sultan and Heck
(2003). The number ofMFs present in this network configuration
is 4051. Figure 9A presents a graph showing the percentages
of clusters with a different number of GLOs. It is possible to
notice that the algorithm creates the 22.72% of clusters with 4
elements, 20.15% with 10 and 19.28% with 12. Moreover, the
distances between the elements within the clusters satisfy the
constraint of 350µm. Therefore, the procedure described in
section Network Design does not alter the distances distribution
inside a cluster. The distances distribution is shown in Figure 9B.
Figure 9C shows all the GLOs belonging to a cluster in the
same color.

Computational Results
Simulations have been carried out on a system equipped with
an Intel i9-9900X CPU, working at 3.50 GHz, and with 128
GB of DDR4 RAM memory. The system is also equipped with
two NVIDIA RTX 2080 GPU (Turing architecture), each one
with 2944 CUDA cores, 8 GB of DDR6 memory and working at
1.8 GHz. The boards are connected to the host through a PCI
Express 3.0.

The simulations have been also carried out on a single node of
an EOS cluster hosted at our University. The node is equipped
with two NVIDIA Tesla V100 GPU (Volta architecture), each
one with 5120 CUDA cores, 32 GB of HBM2 RAMmemory, and
working at 1.38 GHz. Each node has an Intel Xeon Silver 4110
CPU, working at 2.1 GHz. Considering the network design stage,

Frontiers in Computational Neuroscience | www.frontiersin.org 13 March 2021 | Volume 15 | Article 63079536

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 7 | Three tasks of the network. (A) MFs branch in the cerebellum forming clusters of GLOs. All the GLOs that belong to a cluster are shown in the same

color; (B) example of connection between the GRCs (red) and the GOC (blue) through PFs: the GRC ascending axon branches in PF (yellow) that crosses the space

dedicated to the GOC apical dendrites (light blue cylinder); (C) Four frames of the center-surround organization: (C1) only the GOCs have already generated a

spontaneous spike; (C2) some GRCs and GOCs are stimulated by the active MFs; (C3) the core of the center-surround organization is more visible. The GOCs

connected through PFs are more excited than the others; (C4) final frame of the center-surround.

the developed algorithm places and connects all the elements
in only 235 s on an Intel i9 CPU. In particular, the elements
placement takes 31.84 s, while their connections and the matrices
generation take 203.16 s.

Considering the layer activity simulation, the differential
equations in the neurons models have been solved adopting a
first-order Euler method, with a time step equals to 0.025ms.
During the single-cells simulators development, the authors
performed several tests to set the optimal time step in order to
validate the results against the ones produced by the NEURON
simulator (Florimbi et al., 2016, 2019).

To evaluate different neuronal behaviors of the network,
several protocols have been developed. Table 2 shows
their characteristics.

The first protocol (Prot1) aims at evaluating the network
response to a background signal of 1Hz over all the MFs. These
inputs start after a delta of 350ms from the beginning of the
simulation and last for the whole activity time (Tend). On the
other hand, to evaluate the network behavior in response to
bursts, 10% of theMFs are activated (Prot2). They generate bursts
lasting 50ms and whose initial time is randomly selected. Their
frequency is 100Hz. Prot3 combines background and bursts in

Frontiers in Computational Neuroscience | www.frontiersin.org 14 March 2021 | Volume 15 | Article 63079537

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 8 | Percentage of connection and connections count of GLOs, GRCs, and GOCs. (A) Percentage of GLOs fully (COUNT = 50), partially (25 ≤ COUNT < 50,

0 ≤ COUNT < 25) and not linked (COUNT = 0) to the GRCs; (B) percentage of independent connections between GRCs and MFs (through GLOs). Each GRC can be

linked to four different GLOs at most; (C) percentage of GOCs basal dendrites linked to the MFs (through GLOs). (D) Connections count of GLOs. (E) Connections

count of GRCs. (F) Connections count of GOCs.

only one protocol. In particular, each MF presents a background
stimulus and a burst. This scenario is not realistic from the
physiological point of view since it is very improbable that all
the fibers are characterized by both these stimuli in these kinds
of simulations. However, this protocol has been introduced as a
stress test to analyse the performance with a huge computational
load. Finally, Prot4 represents a realistic version of Prot3. In
fact, all the MFs are characterized by a background stimulus but
only 1% of them generates a burst during the simulation. Each
protocol has been used as input of three different simulations,
where 1, 3, and 10 s of neuronal activity have been evaluated.
Figure 11 shows three graphs presenting the processing time (in
logarithmic scale) of each simulation on the different test systems.
In particular, the Serial version has been processed on the Intel i9
CPU. The single and multi-GPU versions have been processed
exploiting the NVIDIA RTX 2080 GPUs, and the NVIDIA V100
GPUs. Similarly, Figures 10A–C present the processing times
for 1, 3, and 10 s of activity reproduction, respectively. All the
elaborations refer to a network with size 600× 150× 1,200 µm3,
hosting a number of neurons equal to ∼423,066 and of 32,400

GLOs. This network dimension has been chosen to consider a
relevant number of elements and to reproduce the characteristic
network behaviors. When analyzing the graphs in Figure 11, we
can firstly observe that, as expected, Prot3 is the slowest among
the four tests. In fact, this protocol provides to the network a huge
number of inputs, which increases the times that the algorithm
has to evaluate the presynaptic model. Taking into account the
number of stimuli that are introduced in the network, it can
be concluded that the computational time of the serial versions
strongly depends on the number of inputs of the protocol.
Both in the 1, 3, and 10 s simulations, the highest number of
inputs is provided by the Prot3 (∼24,300, ∼32,400, and ∼60,750
signals on the whole network, respectively), followed by the
Prot4 (∼4,250, ∼12,350, and ∼40,700, respectively), the Prot1
(∼4,050, ∼12,150, and ∼40,500, respectively), and the Prot2
(always ∼2025). As can be seen from these data, in Prot1 and
Prot4 the number of inputs is similar, and this small difference
does not guarantee that Prot 4 is always the fastest solution
among the two. In these serial simulations, Prot2 takes always the
lowest computational time, as expected. The considerationsmade

Frontiers in Computational Neuroscience | www.frontiersin.org 15 March 2021 | Volume 15 | Article 63079538

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 9 | MFs clustering. (A) The graph shows the percentage of clusters with a different number of GLOs (4 ÷ 12); (B) the graph shows the distances distribution;

(C) the GLOs within the same cluster are displayed in the same color. By way of example some clusters have been highlighted.

on the link between the number of inputs and the processing
time cannot be repeated for the parallel versions since different
aspects have to be introduced. For example, the data transfers
and the access to the device global memory can introduce delays
that increase the processing time. Comparing the parallel and
serial versions, all the parallel elaborations perform better than
the serial ones. In fact, the serial versions of the 1, 3, and 10 s
simulations last from 10 to 14 h, from 30 to 35 h, and from 103
to 321 h (i.e., from 4 to 13 days), respectively. These processing
times are strongly decreased considering that, in the worst case,
the parallel simulation takes about 6 h (considering the 10 s
simulation, with one RTX, Prot3). Comparing the single-GPU

versions (RTX and EOS in Figure 10), it can be noticed that
there are no substantial differences between the processing times,
considering the three simulations and the four protocols. This is
due to the fact that, even if the EOS GPU (i.e., NVIDIA V100)
is equipped with a higher number of CUDA cores than the
NVIDIA RTX, this last one features a higher working frequency
and a more recent architecture. These characteristics make the
difference between the processing times negligible as expected.
All the single-GPU parallel versions provide a speedup compared
to the serial code processing time. For example, considering the
10 s simulation of Prot4, the serial code takes 484999.77 s (i.e.,
∼5.61 days), to elaborate the network activity. The parallel code

Frontiers in Computational Neuroscience | www.frontiersin.org 16 March 2021 | Volume 15 | Article 63079539

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

TABLE 2 | Protocols details.

Protocol ID Background

(Hz)

TIback (s) TFback (s) Burst (Hz) TIburst (s) TFburst (s) #MF burst

Prot1 1 0 + delta Tend – – – –

Prot2 – – – 100 Trand Trand +

0.05

10%

Prot3 1 0 + delta Tend 100 Trand Trand +

0.05

100%

Prot4 1 0 + delta Tend 100 Trand Trand +

0.05

1%

The table shows the protocol ID, the background frequency, the instant times when the background starts and ends. Moreover, it shows the burst frequency, the instant times when

the burst starts and ends, and the number of MFs activated with the bursts.

on one RTX 2080 GPU takes 15650.66 s (∼4.34 h) while the one
on the V100 GPU (EOS) takes 12693.46 s (∼3.52 h), obtaining
a speedup of ∼31× and ∼38×, respectively. Also in the stress
test case (Prot3), the single-GPU parallel versions perform better
than the serial code, providing a speedup up to ∼72×. The
multi-GPU versions always improve the performances compared
to the corresponding single-GPU code. For example, always
considering the 10 s simulation of Prot4, the processing time is
12120.83 s (∼3.37 h) considering two RTX 2080, and 8773.99 s
(∼2.44 h) considering the two boards in the EOS system. In these
cases, the speedup compared to the serial version increases to
∼40× and∼55×, respectively. It is worth noticing that the usage
of a dual-GPU system does not halve the processing time. This
is because some elaborations are performed on a single GPU,
moreover, the initialization and the results writing are performed
in serial. Finally, not all the memory transfers from the host to
the devices can be perfectly overlapped.

Authors also analyzed the code in order to highlight the
computational weight of each part of the main for loop. The code
profiling highlights that about the 95% of the time is taken by the
CUDA kernels, the memory transfer account for the 4.6% and
only the 0.4% is taken by the host functions. Therefore, there is no
reason to implement the spike propagation on GPU. Moreover,
the spike propagation could degrade the GPU performance since
some parts are strictly sequential.

These results demonstrate that this kind of technology,
together with an efficient code development, allows reducing
the serial processing times. In this respect, authors decided
to perform a very long simulation (50 s) of the neuronal
activity using the GES system adopting the Prot4. The choice
of this protocol has been made since it is the most realistic
one, combining the background signals with the bursts. The
simulation has been run on the EOS cluster exploiting two
NVIDIA V100 GPUs. To reproduce 50 s of neuronal activity, the
system takes 49839.68 s (∼13 h). This result demonstrates that
this system is suitable to reproduce very long neuronal activity,
giving the opportunity to study particular behaviors that are
not reproducible with other kinds of simulators due to their
slower processing times. The GPU technology, together with the
optimization developed to efficiently perform the data transfers
and the memory accesses and to process the neuronal activity,
constitutes an appropriate solution for the network simulation.

In particular, this system is capable of fast reproducing a
considerable portion of the granular layer, characterized by a high
number of neurons, described by complex mathematical models.

Figure 11 shows the raster plots to graphically visualize the
network activity in response to Prot2. In Figure 11A, it is possible
to evaluate the GOCs activity. In particular, these cells generate
spontaneous firing and, when stimulated by MFs, they increase
their firing frequency. Only some cells are shown (id 50–80)
and in a reduced time-window (0–450ms). On the other hand,
the GRCs do not show spontaneous firing and they generate
spikes only when stimulated (Figure 11B). In fact, as it is possible
to notice from the raster plot, the cell generates a spike after
receiving 3–4 stimuli by the MFs.

Finally, a further validation of the proposed network has been
achieved reproducing the typical center-surround organization
of the granular layer (Mapelli and D’Angelo, 2007; Solinas et al.,
2010; Gandolfi et al., 2014). In fact, several electrophysiological
experiments (Mapelli and D’Angelo, 2007; Mapelli et al., 2010a,b)
showed that a MFs bundle can stimulate a specific area of the
granular layer, generating a central area of excitation and a
surrounding one of inhibition. To reproduce this organization,
the protocol adopted as input is characterized by the activation
of the MFs present in a selected area whose diameter is 50µm.
It is important to highlight that the GLOs, and thus the GRCs
and GOCs, excited by these MFs can be also outside this area.
In fact, as explained before, each MF stimulates all the GLOs
within a cluster and, even if all the elements within a cluster are
not so far, it could be possible that they are outside the selected
area. Also in this case, it is possible to correctly reproduce the
center-surround organization using as input the branched MFs.
In particular, in this simulation, the MFs within the selected
area are 9 and each one stimulates the GLOs with a burst of
50ms and a frequency of 150Hz. Moreover, the entire network
is considered (i.e., all the elements can react to an eventual
stimulus) and all the connections are switched-on while, in
the reference papers, only the area of interest is switched-on.
The response of the center-surround shown in Figure 12 is the
result of a single simulation run. The burst stimulation causes
a central area with a stronger excitation (red area) than the
surrounding one (blue area), where the GOCs inhibition limits
the rate of GRCs output, overcoming the excitation around
the core.

Frontiers in Computational Neuroscience | www.frontiersin.org 17 March 2021 | Volume 15 | Article 63079540

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 10 | Processing times. 1 s (A), 3 s (B), and 10 s (C) neuronal activity simulations on the different test systems. The serial simulation ran on Intel i9 CPU, RTX

and Dual RTX refer to the NVIDIA RTX 2080 boards, and EOS and Dual EOS refer to the NVIDIA V100 boards. The graphs show the results of the simulations where

the four protocols have been tested (Prot1, Prot2, Prot3, and Prot4). The graphs are in logarithmic scale. The legend refers the three graphs.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 March 2021 | Volume 15 | Article 63079541

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 11 | Raster plots. (A) The activity of the GOCs (id 50–80) is shown. The cells show a spontaneous firing until they are stimulated (green lines) by MFs. In

these cases, their firing frequency is increased; (B) the activity of the GRCs (id 405911–405976) is shown. Some GRCs are stimulated with bursts by MFs. It is

possible to notice that GRCs generate a spike only after 3–4 stimuli. The red lines refer to the cells with an even id, while the blue lines refer to the cells with an odd id.

Memory Occupancy
One of the most important aspects of the simulator is that it
is parametric. The user can vary several parameters, such as
the volume of the network, to simulate different granular layer
configurations. This characteristic makes the system very flexible
for what concerns the network construction. Concerning the
network design stage, running on the CPU, the code allocates 600
B for parameters used in the network construction and elements

connections, whose number is not proportional to the number
of neurons or elements. Moreover, the code allocates a memory
space proportional to the number of GOCs, GRCs, GLOs and
MFs, as shown in Equation (15):

MEMdesign = 600+ 15432 ngoc + 32 ngrc + 1292 nglo

+ 296 nMF (15)

Frontiers in Computational Neuroscience | www.frontiersin.org 19 March 2021 | Volume 15 | Article 63079542

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

FIGURE 12 | Center surround organization. The MFs stimulate the GLOs with a burst of 50ms and 150Hz. The network response is characterized by an excited core

caused by the GRC firing (red area). This center is surrounded by an area, where the GRCs response is inhibited by the GOCs. (A) Center-surround lateral view. (B)

Center-surround top view.

where MEMdesign is the amount of memory expressed in byte.
In the case of the present configuration, this value is equal to
∼70MB. If the second stage, i.e., the network simulation, runs
on the CPU, the code allocates a total amount of memory given
by Equation (16):

MEMcpusim = 42542 ngoc + 12220 ngrc + 204 nglo + 8004 nMF

(16)

In the simulation of the present network configuration, the
allocated amount of RAM is∼5 GB.

If the network simulation is performed on the GPU, the major
constraint is represented by the available RAM provided on the
device. In order to evaluate the maximum volume that can be
reproduced with a specific board, it is important to compute
the amount of global memory device to be allocated using the
cudaMalloc function. Considering the network configuration
simulated, the code allocates 580 B for parameters used both
for the GOCs and GRCs activities, whose allocation is not
proportional to the number of reproduced cells. On the other
hand, it is necessary to allocate space for the variables used in the
neuronal activity computation. This memory size is proportional
to the GOCs and GRCs number and, for this reason, 2788× ngoc
B and 7172 × ngrc B are allocated, respectively. Therefore, the
total amount of memory needed to reproduce a generic network
configuration is given by Equation (17).

RAMGPU = 580+ 2788 ngoc + 7172 ngrc (17)

It is worth noticing that the RAM occupancy on the GPU is lower
than on the CPU. The reason is that part of the connectivity is
processed on the CPU; therefore, these data are not allocated
on the GPU memory. Moreover, this memory amount can be
generalized if two or more GPUs are used: in this case the

values of ngoc and ngrc should be divided by the number of
available devices.

If the number of cells is expressed as a function of cellular
densities, it is possible to estimate if the volume of a certain
network configuration can be stored using a specific GPU board.
Equation (18) expresses the bound of the volume in function of
the neurons densities and the available RAMmemory.

V ≤
RAMGPU − 580

2788 ngoc + 7172 ngrc
(18)

In Equation (11), V is the volume expressed in mm3 and the
memory occupancy is measured in byte. In the configuration
adopted in this work, the total amount of allocated memory
is ∼2.88 GB, which represents the ∼24% of the RAM of the
NVIDIA RTX 2080 board. It is possible to conclude that the
amount of memory allocated for the network design stage is
negligible compared to the simulation stage performed both on
the CPU and on the GPU. Finally, the memory requirements of
the two stages are compatible with a standard desktop system.
Therefore, it is not mandatory to use a cluster or supercomputer
to run a realistic simulation with the proposed system.

Scalability Analysis
The scalability of the proposed system has been evaluated
considering two network with x and y dimensions halved
(Network2) and doubled (Network3) with respect to the network
described in the previous sections (Network1). The performance
has been evaluated both in terms of elements placed and
connected and of processing times. In terms of elements
placement and connections, the considerations are the same
made for the original network. Concerning the processing times,
Network2 takes approximatively four times less than Network1.
This is an expected value since the volume simulated in Network1
is four time the one simulated in Network2. Similarly, network3

Frontiers in Computational Neuroscience | www.frontiersin.org 20 March 2021 | Volume 15 | Article 63079543

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

runs four times slower than network1 as it has a quarter of
the volume.

Comparison With the State of the Art
The main differences between this work and the literature are
related to the neuronal models chosen to reproduce the activity
of the neurons, the simulation duration and the integration time
step. Here, some of the most relevant and similar works at the
state of the art are reported and compared with this work. In
Naveros et al. (2015), authors developed an event- and time-
driven spiking neural network simulator for a hybrid CPU-GPU
platform. It consists of a very dense granular layer and a Purkinje
layer with a small number of cells, where neurons are reproduced
using LIF models and characterization tables (computed offline)
containing the dynamic of each cell. To reproduce 10 s of
neuronal activity, the simulation of 3 million neurons and 274
million synapses takes 987.44 s on an Intel i7 CPU equipped with
32 GB RAM and an NVIDIA GTX 470 GPU equipped with 1.28
GB RAM. This result cannot be directly compared to this work
for two main reasons: the most important is the different model
chosen and the other is related to the integration step, which
varies from 0.1 to 1ms that is higher than the one used in this
work (0.025 ms).

Another interesting work that reproduces the cat cerebellum
network containing more than a billion spiking neurons, is
described in Yamazaki et al. (2019). Authors do not exploit
the GPU technology but an HPC special purpose computer
equipped with 1280 PEZY-SC processors. This system elaborates
in real-time 1 s of neuronal activity, with an integration step of
1ms. Also in this case, cells are described by LIF models and
the connectivity rules are not updated. Moreover, the synapses
are characterized only by the AMPA receptors. Finally, this
architecture represents a completely different philosophy that
from one side benefits the application specificity, from another
one follows a not fairly comparable approach in terms of
programmability, size/performance ratio and technological life of
the employed components.

Authors of Gleeson et al. (2007) provide a tool to build,
visualize and analyse network models in a 3D space. The
network design reproduces very realistic and complex neuron
morphologies exploiting the Hodgkin and Huxley model.
Nevertheless, they run simulations of up to only 5,000 neurons on
a single-processor machine that takes 1–2 h for 4 s of activity. In
this case, even if the morphology is very detailed, the simulation
part is not so efficient as the one proposed in this work. On
the other hand, the cerebellar granular layer network developed
in Solinas et al. (2010) is the one considered as reference for
the present work. In fact, these networks present the same
mathematical models (even if their models are written for the
NEURON simulator) and connection rules. The main difference
concerns the cellularmorphology and the elements displacement.
In this case, the cellular soma is represented by a point (not
sphere) and this means that two soma can be overlapped.
Moreover, during the cells displacement, the algorithm does not
take into account the minimum distances between cells. They
create a network inside a 3D space (i.e., a cube with 100µm
edge length) and that includes 315 MFs and 4,393 neurons (4,096

GRCs, 27 GOCs, 270 basket, and stellate cells). The reproduction
of 3 s neuronal activity requires about 20 h on a Pentium-5 dual-
core and 30min using 80 CPUs on the CASPUR parallel cluster.

The work in Van Der Vlag et al. (2019) reports a multi-GPU
implementation of a neuronal network based on the Hodgkin
and Huxley model. The connectivity is based on the uniform or
on the Gaussian distribution. Therefore, no realistic connection
rules are considered. Moreover, the simulated time is only 100ms
with a time step of 0.05 ms.

Authors of Yavuz et al. (2016) proposed a systems to
automatically generate CUDA kernels and runtime codes
according to a user-defined network model. The work only
supports single GPU systems.

A multi-GPU framework is proposed in Chou et al. (2018).
However, this framework only includes the four and nine
parameters Izhikevich models. Moreover, the authors evaluated
the performance on a random spiking network. Thus, a direct
comparison with our work would not be fair.

In Casali et al. (2019), authors present the whole cerebellar
network reconstruction (i.e., granular, Purkinje, and molecular
layers) based on the morphological details and connection rules
used also in this work. Considering the design part of the
system, the main differences with GES are the absence of the gap
junctions and of the organization of the MFs in rosettes. Another
important aspect to highlight is that in Casali et al. (2019)
neurons are represented with single-point LIF models since the
work is focused on a detailed network construction. Another
difference between the systems is that the network in Casali et al.
(2019) is simulated on pyNEST and pyNEURON while, in GES,
optimized codes for the network design and simulation have been
developed in C/CUDA languages. Authors in Casali et al. (2019)
simulated a cerebellar cortex volume of 400 × 400 × 330 µm3

with a total amount of 96,734 cells even if the system is scalable.
Authors do not provide information about the simulation time
and the technical features of the HPC system used for the code
elaboration. The integration step is set to 0.1ms, so four times
bigger than the one used in this work. Even if this network and
the one described in the present work are based on the same
physiological data exploited in the network reconstruction, it is
not possible to make a comparison on the efficiency of the two
systems since some data are missing.

Limits and Future Works
Even if the GES system reconstructs the granular layer and
reproduces its behavior, some aspects can still be improved.
One of the main features of this simulator is that it is possible
to change the models representing the neurons, without any
modifications in the network design module. For this reason, one
of the aspects that can be improved is the introduction of multi-
compartment models with active compartments. This aspect
will lead also to include more detailed morphologies, which
will be also graphically shown through the graphical interface.
Another aspect that could be improved in the design module
is the introduction of a more specific constraint in the way the
gap junctions are generated. Moreover, it will be interesting to
reproduce a larger area of the granular layer where the MFs will
stimulate more than one cluster of GLOs. Finally, since authors

Frontiers in Computational Neuroscience | www.frontiersin.org 21 March 2021 | Volume 15 | Article 63079544

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

have already developed the Purkinje cells simulator on GPU
(Torti et al., 2019), an efficient way to include these cells in the
network will be studied. In this way, also the molecular and
Purkinje cell layers will be reconstructed to obtain a complete
cerebellar cortex network.

CONCLUSIONS

The use of HPC technologies in computational modeling
in neuroscience is becoming more and more attractive and
widespread. In particular, the GPUs play a critical role in the
large-scale networks elaboration where the activity of a huge
number of connected neurons is reproduced.

This paper presented the GES system capable of
reconstructing, simulating and visualizing the cerebellar
granular layer, exploiting a desktop system with the GPU device.

The algorithm reconstructs the cerebellar granular layer
following detailed rules and data aligned with the state of
the art, targeting a high level of realism. The granular layer
reconstruction in a 3D space is performed by an efficient serial
code that takes <4min to place and connect the neurons in a
600× 150× 1,200 µm3 volume (with 432,000 GRCs, 972 GOCs,
32,399 GLOs, and 4,051 MFs).

The simulator is also characterized by two parallel codes
elaborating the network neuronal activity. The GPU device
has proved to be vital to strongly reduce the computational
time of the serial elaboration. Different protocols considering
background, bursts and the combination of them have been
tested. In particular, Prot4 provided the most realistic scenario
performing both background and bursts. In this case, the system
reproduces 10 s of neuronal activity in 4.34 and 3.37 h exploiting
a single and multi-GPU desktop system (equipped with one
or two NVIDIA RTX 2080 GPU, respectively). Moreover, if

the code runs on one node of the EOS system the processing
time further decreases to 3.52 and 2.44 h exploiting one or two

NVIDIA V100 GPU, respectively. The processing time of the
related serial code takes ∼135 h (∼5.61 days) on an Intel i9 CPU
and this means that the parallel versions reach a speedup up
to ∼38× in the single-GPU version, and up to ∼55× in the
multi-GPU code. This kind of technology and the development
of an efficient code allowed to perform very long simulations,
useful to study particular network behaviors reproducible only
analyzing long time frames. In this work, authors presented a first
long-lasting simulation (Prot4), reproducing 50 s of the network
activity in∼13 h on one node of the EOS system. A crucial aspect
to highlight is that the code is flexible and allows the user to
reconstruct and simulate networks with different dimensions.
Finally, a graphical interface has been developed to graphically
analyse the results.

DATA AVAILABILITY STATEMENT

The code for this study can be found in the mclab website http://
mclab.unipv.it/index.php/ges. The source code is available from
the correspondent authors upon reasonable request.

AUTHOR CONTRIBUTIONS

GF, ET, and SM: conceputalization andmethodology. GF and ET:
investigation, software, and writing—original draft. SM, ED’A,
and FL: writing—review and editing. FL: supervision. All authors
contributed to the article and approved the submitted version.

FUNDING

ED’A received funding from the European Union’s Horizon 2020
Framework Program for Research and Innovation under the
Specific Grant Agreement No. 785907 (Human Brain Project
SGA2) and Specific Grant Agreement No. 945539 (Human Brain
Project SGA3).

REFERENCES

Beyeler, M., Richert, M., Dutt, N. D., and Krichmar, J. L. (2014).

Efficient spiking neural network model of pattern motion selectivity

in visual cortex. Neuroinformatics 12, 435–454. doi: 10.1007/s12021-01

4-9220-y

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker, M., Diesmann,

M., et al. (2016). High-performance computing in neuroscience for data-

driven discovery, integration, and dissemination. Neuron 92, 628–631.

doi: 10.1016/j.neuron.2016.10.035

Casali, S., Marenzi, E., Medini, C., Casellato, C., and D’Angelo, E. (2019).

Reconstruction and simulation of a scaffold model of the cerebellar network.

Front. Neuroinform. 13:37. doi: 10.3389/fninf.2019.00037

Chou, T. S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler,

M., et al. (2018). “CARLsim 4: an open source library for large scale,

biologically detailed spiking neural network simulation using heterogeneous

clusters,” in Proceedings of the International Joint Conference on Neural

Networks (Rio de Janeiro: Institute of Electrical and Electronics Engineers Inc.).

doi: 10.1109/IJCNN.2018.8489326

Cremonesi, F., and Schürmann, F. (2020). Understanding computational costs of

cellular-level brain tissue simulations through analytical performance models.

Neuroinform. 18, 407–428. doi: 10.1007/s12021-019-09451-w

D’Angelo, E., Antonietti, A., Casali, S., Casellato, C., Garrido, J. A., Luque, N.

R., et al. (2016). Modeling the cerebellar microcircuit: new strategies for

a long-standing issue. Front. Cell Neurosci. 10:176. doi: 10.3389/fncel.2016.

00176

D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., et al.

(2001). Theta-frequency bursting and resonance in cerebellar granule cells:

experimental evidence and modeling of a slow K+-dependent mechanism. J.

Neurosci. 21, 759–770. doi: 10.1523/jneurosci.21-03-00759.2001

D’Angelo, E., Solinas, S., Mapelli, J., Gandolfi, D., Mapelli, L., and Prestori, F.

(2013). The cerebellar Golgi cell and spatiotemporal organization of granular

layer activity. Front. Neural Circuits 7:93. doi: 10.3389/fncir.2013.00093

Dieudonné, S. (1998). Submillisecond kinetics and low efficacy of parallel fibre-

Golgi cell synaptic currents in the rat cerebellum. J. Physiol. 510, 845–866.

doi: 10.1111/j.1469-7793.1998.845bj.x

Fidjeland, A. K., Gamez, D., Shanahan, M. P., and Lazdins, E. (2013). Three tools

for the real-time simulation of embodied spiking neural networks using GPUs.

Neuroinformatics 11, 267–290. doi: 10.1007/s12021-012-9174-x

Florimbi, G., Torti, E., Danese, G., and Leporati, F. (2017). “High performant

simulations of cerebellar Golgi cells activity,” in Proceedings−2017

25th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing, PDP 2017 (St. Petersburg: IEEE), 527–534.

doi: 10.1109/PDP.2017.91

Frontiers in Computational Neuroscience | www.frontiersin.org 22 March 2021 | Volume 15 | Article 63079545

http://mclab.unipv.it/index.php/ges
http://mclab.unipv.it/index.php/ges
https://doi.org/10.1007/s12021-014-9220-y
https://doi.org/10.1016/j.neuron.2016.10.035
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.1109/IJCNN.2018.8489326
https://doi.org/10.1007/s12021-019-09451-w
https://doi.org/10.3389/fncel.2016.00176
https://doi.org/10.1523/jneurosci.21-03-00759.2001
https://doi.org/10.3389/fncir.2013.00093
https://doi.org/10.1111/j.1469-7793.1998.845bj.x
https://doi.org/10.1007/s12021-012-9174-x
https://doi.org/10.1109/PDP.2017.91
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Florimbi et al. Granular layEr Simulator

Florimbi, G., Torti, E., Masoli, S., D’Angelo, E., Danese, G., and Leporati,

F. (2016). The human brain project: parallel technologies for biologically

accurate simulation of granule cells. Microprocess. Microsyst. 47, 303–313.

doi: 10.1016/J.MICPRO.2016.05.015

Florimbi, G., Torti, E., Masoli, S., D’Angelo, E., Danese, G., and Leporati, F. (2019).

Exploiting multi-core and many-core architectures for efficient simulation of

biologically realistic models of Golgi cells. J. Parallel Distrib. Comput. 126,

48–66. doi: 10.1016/j.jpdc.2018.12.004

Gandolfi, D., Pozzi, P., Tognolina, M., Chirico, G., Mapelli, J., and D’Angelo, E.

(2014). The spatiotemporal organization of cerebellar network activity resolved

by two-photon imaging of multiple single neurons. Front. Cell Neurosci. 8:92.

doi: 10.3389/fncel.2014.00092

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: A tool

for modeling networks of neurons in 3D space. Neuron 54, 219–235.

doi: 10.1016/j.neuron.2007.03.025

Hodgkin, A. L., and Huxley, A. F. (1990). A quantitative description of membrane

current and its application to conduction and excitation in nerve. Bull. Math.

Biol. 52, 25–71. doi: 10.1007/BF02459568

Houston, C. M., Diamanti, E., Diamantaki, M., Kutsarova, E., Cook, A., Sultan, F.,

et al. (2017). Exploring the significance of morphological diversity for cerebellar

granule cell excitability. Sci. Rep. 7:46147. doi: 10.1038/srep46147

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Kanichay, R. T., and Silver, R. A. (2008). Synaptic and cellular properties of the

feedforward inhibitory circuit within the input layer of the cerebellar cortex. J.

Neurosci. 28, 8955–8967. doi: 10.1523/JNEUROSCI.5469-07.2008

Korbo, L., Andersen, B. B., Ladefoged, O., and Møller, A. (1993). Total

numbers of various cell types in rat cerebellar cortex estimated

using an unbiased stereological method. Brain Res. 609, 262–268.

doi: 10.1016/0006-8993(93)90881-m

Mapelli, J., and D’Angelo, E. (2007). The spatial organization of long-term

synaptic plasticity at the input stage of cerebellum. J. Neurosci. 27, 1285–1296.

doi: 10.1523/JNEUROSCI.4873-06.2007

Mapelli, J., Gandolfi, D., and D’Angelo, E. (2010a). Combinatorial responses

controlled by synaptic inhibition in the cerebellum granular layer. J.

Neurophysiol. 103, 250–261. doi: 10.1152/jn.00642.2009

Mapelli, J., Gandolfi, D., and D’Angelo, E. (2010b). High-pass filtering and

dynamic gain regulation enhance vertical bursts transmission along

the mossy fiber pathway of cerebellum. Front. Cell Neurosci. 4:14.

doi: 10.3389/fncel.2010.00014

Mapelli, L., Solinas, S., and D’Angelo, E. (2014). Integration and regulation

of glomerular inhibition in the cerebellar granular layer circuit. Front. Cell

Neurosci. 8:55. doi: 10.3389/fncel.2014.00055

Naveros, F., Luque, N. R., Garrido, J. A., Carrillo, R. R., Anguita, M., and

Ros, E. (2015). A spiking neural simulator integrating event-driven and

time-driven computation schemes using parallel CPU-GPU co-processing:

a case study. IEEE Trans. Neural Netw. Learn. Syst. 26, 1567–1574.

doi: 10.1109/TNNLS.2014.2345844

Nieus, T., Sola, E., Mapelli, J., Saftenku, E., Rossi, P., and D’Angelo, E. (2006). LTP

regulates burst initiation and frequency at mossy fiber-granule cell synapses

of rat cerebellum: experimental observations and theoretical predictions. J.

Neurophysiol. 95, 686–699. doi: 10.1152/jn.00696.2005

Nieus, T. R., Mapelli, L., and D’Angelo, E. (2014). Regulation of output spike

patterns by phasic inhibition in cerebellar granule cells. Front. Cell Neurosci.

8:246. doi: 10.3389/fncel.2014.00246

NVIDIA (2019). CUDA C Best Practices Guide. Available online at: https://docs.

nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

Rennich, S., and NVIDIA (2014). CUDA C/C++ Streams and Concurrency.

Available online at: https://developer.download.nvidia.com/CUDA/training/

StreamsAndConcurrencyWebinar.pdf

Rossi, D. J., and Hamann, M. (1998). Spillover-mediated transmission

at inhibitory synapses promoted by high affinity α6 subunit

GABA(A) receptors and glomerular geometry. Neuron 20, 783–795.

doi: 10.1016/S0896-6273(00)81016-8

Sellers, G., Wright, R. S., and Haemel, N. (2015). OpenGL SuperBible. 7th Edn.

A.-W. Professional.

Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., and D’Angelo,

E. (2008). Computational reconstruction of pacemaking and intrinsic

electroresponsiveness in cerebellar golgi cells. Front. Cell Neurosci. 1:2.

doi: 10.3389/neuro.03.002.2007

Solinas, S., Nieus, T., and D’Angelo, E. (2010). A realistic large-scale

model of the cerebellum granular layer predicts circuit spatio-temporal

filtering properties. Front. Cell Neurosci. 4:12. doi: 10.3389/fncel.201

0.00012

Sultan, F., and Heck, D. (2003). Detection of sequences in the cerebellar

cortex: numerical estimate of the possible number of tidal-wave inducing

sequences represented. J. Physiol. 97, 591–600. doi: 10.1016/j.jphysparis.200

4.01.016

Torti, E., Masoli, S., Florimbi, G., D’Angelo, E., Ticli, M., and Leporati,

F. (2019). “GPU parallelization of realistic Purkinje cells with complex

morphology,” in 2019 27th Euromicro International Conference on Parallel,

Distributed and Network-Based Processing (PDP) (Pavia: IEEE), 266–273.

doi: 10.1109/EMPDP.2019.8671581

Van Der Vlag, M. A., Smaragdos, G., Al-Ars, Z., and Strydis, C.

(2019). Exploring complex brain-simulation workloads on multi-GPU

deployments. ACM Trans. Archit. Code Optim. 16, 1–25. doi: 10.1145/33

71235

Vervaeke, K., Lorincz, A., Gleeson, P., Farinella, M., Nusser, Z., Angus Silver,

R., (2010). Rapid Desynchronization of an Electrically Coupled Interneuron

Network with Sparse Excitatory Synaptic Input. Neuron 67, 435–451.

doi: 10.1016/j.neuron.2010.06.028

Yamazaki, T., Igarashi, J., Makino, J., and Ebisuzaki, T. (2019). Real-time

simulation of a cat-scale artificial cerebellum on PEZY-SC processors. Int.

J. High Perform. Comput. Appl. 33, 155–168. doi: 10.1177/10943420177

10705

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep

18854

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Florimbi, Torti, Masoli, D’Angelo and Leporati. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 23 March 2021 | Volume 15 | Article 63079546

https://doi.org/10.1016/J.MICPRO.2016.05.015
https://doi.org/10.1016/j.jpdc.2018.12.004
https://doi.org/10.3389/fncel.2014.00092
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1007/BF02459568
https://doi.org/10.1038/srep46147
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1523/JNEUROSCI.5469-07.2008
https://doi.org/10.1016/0006-8993(93)90881-m
https://doi.org/10.1523/JNEUROSCI.4873-06.2007
https://doi.org/10.1152/jn.00642.2009
https://doi.org/10.3389/fncel.2010.00014
https://doi.org/10.3389/fncel.2014.00055
https://doi.org/10.1109/TNNLS.2014.2345844
https://doi.org/10.1152/jn.00696.2005
https://doi.org/10.3389/fncel.2014.00246
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://doi.org/10.1016/S0896-6273(00)81016-8
https://doi.org/10.3389/neuro.03.002.2007
https://doi.org/10.3389/fncel.2010.00012
https://doi.org/10.1016/j.jphysparis.2004.01.016
https://doi.org/10.1109/EMPDP.2019.8671581
https://doi.org/10.1145/3371235
https://doi.org/10.1016/j.neuron.2010.06.028
https://doi.org/10.1177/1094342017710705
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

ORIGINAL RESEARCH
published: 22 March 2022

doi: 10.3389/fninf.2022.790966

Frontiers in Neuroinformatics | www.frontiersin.org 1 March 2022 | Volume 16 | Article 790966

Edited by:

Kelly Shen,

Simon Fraser University, Canada

Reviewed by:

Dominic Standage,

University of Birmingham,

United Kingdom

Erin Lindsay Mazerolle,

St. Francis Xavier University, Canada

*Correspondence:

Fred H. Hamker

fred.hamker@

informatik.tu-chemnitz.de

†These authors have contributed

equally to this work

Received: 07 October 2021

Accepted: 08 February 2022

Published: 22 March 2022

Citation:

Maith O, Dinkelbach HÜ, Baladron J,

Vitay J and Hamker FH (2022) BOLD

Monitoring in the Neural Simulator

ANNarchy.

Front. Neuroinform. 16:790966.

doi: 10.3389/fninf.2022.790966

BOLD Monitoring in the Neural
Simulator ANNarchy

Oliver Maith †, Helge Ülo Dinkelbach †, Javier Baladron, Julien Vitay and Fred H. Hamker*

Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany

Multi-scale network models that simultaneously simulate different measurable signals

at different spatial and temporal scales, such as membrane potentials of single

neurons, population firing rates, local field potentials, and blood-oxygen-level-dependent

(BOLD) signals, are becoming increasingly popular in computational neuroscience. The

transformation of the underlying simulated neuronal activity of these models to simulated

non-invasive measurements, such as BOLD signals, is particularly relevant. The present

work describes the implementation of a BOLD monitor within the neural simulator

ANNarchy to allow an on-line computation of simulated BOLD signals from neural

network models. An active research topic regarding the simulation of BOLD signals is the

coupling of neural processes to cerebral blood flow (CBF) and cerebral metabolic rate of

oxygen (CMRO2). The flexibility of ANNarchy allows users to define this coupling with a

high degree of freedom and thus, not only allows to relate mesoscopic network models

of populations of spiking neurons to experimental BOLD data, but also to investigate

different hypotheses regarding the coupling between neural processes, CBF and CMRO2

with these models. In this study, we demonstrate how simulated BOLD signals can be

obtained from a network model consisting of multiple spiking neuron populations. We

first demonstrate the use of the Balloon model, the predominant model for simulating

BOLD signals, as well as the possibility of using novel user-defined models, such as

a variant of the Balloon model with separately driven CBF and CMRO2 signals. We

emphasize how different hypotheses about the coupling between neural processes, CBF

and CMRO2 can be implemented and how these different couplings affect the simulated

BOLD signals. With the BOLD monitor presented here, ANNarchy provides a tool for

modelers who want to relate their network models to experimental MRI data and for

scientists who want to extend their studies of the coupling between neural processes

and the BOLD signal by using modeling approaches. This facilitates the investigation

and model-based analysis of experimental BOLD data and thus improves multi-scale

understanding of neural processes in humans.

Keywords: blood-oxygen-level-dependent signal, neural simulator, spiking networks, rate-coded networks,

Balloon model, neurovascular coupling, cerebral blood flow, cerebral metabolic rate of oxygen

1. INTRODUCTION

Network models are simulated neural networks composed of multiple computational units that
model the dynamics of biological neurons at various levels of complexity: macroscopic mean-field
or neural mass models simulate the average dynamics of large groups of neurons, rate-coded point
neuron models simulate the instantaneous mean firing rate of individual neurons, spiking point

47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.790966
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.790966&domain=pdf&date_stamp=2022-03-22
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fred.hamker@informatik.tu-chemnitz.de
mailto:fred.hamker@informatik.tu-chemnitz.de
https://doi.org/10.3389/fninf.2022.790966
https://www.frontiersin.org/articles/10.3389/fninf.2022.790966/full

Maith et al. ANNarchy BOLD Monitoring

neuron models simulate precise spike timings, while multi-
compartmental neuron models also consider the 3D structure
of the neurons. Such network models can exhibit complex
dynamics due to the recurrent connectivity between the
simulated neurons and can be validated against a large amount
of experimental data and make extensive predictions at different
scales, such as patterns in spike timing, local field potentials
or electroencephalography, and blood-oxygen-level-dependent
(BOLD) signals from magnetic resonance imaging (MRI). Large-
scale network models are becoming increasingly common in
computational neuroscience (see Einevoll et al., 2019 for a review
about brain simulations with network models). Concerning MRI
data, network models can be used primarily to examine the
underlying neural mechanisms of the experimental non-invasive
data or, for example, to better understand the relationship
between the structural connectivity and the functional dynamics
of neural circuits (Popovych et al., 2019).

The ANNarchy neural simulator (Vitay et al., 2015) provides
a user-friendly equation-based interface which can be used to
create large-scale rate-coded and spiking network models at
different levels of biological realism. Recently, the ANNarchy
neural simulator has been combined with the whole-brain neural
simulator The Virtual Brain (TVB) (Ritter et al., 2013; Sanz Leon
et al., 2013; Meier et al., 2021) to allow the creation of multi-
scale network models. This allows to study how processes in
detailed spiking network models of specific brain regions such
as the basal ganglia created in ANNarchy affect the dynamics
of the whole cortex simulated in TVB (Meier et al., 2021). To
further improve the usability of ANNarchy, we introduce a BOLD
signal monitoring module (called BOLD monitor in ANNarchy)
that allows obtaining simulated BOLD signals from spiking and
rate-coded network models in an on-line manner.

Several modeling tools already provide utilities to obtain
simulated BOLD signals from network models TVB, Dynamic
Causal Modeling (Friston et al., 2003) in SPM (Penny et al.,
2011), neuRosim (Welvaert et al., 2011), which so far have been
applied mainly to network models at the macroscopic level of
detail (Vanni et al., 2015). These methods mainly use variants of
the Balloon model to compute simulated BOLD signals (Buxton
et al., 1998, 2004; Stephan et al., 2007). Hereafter, we will refer
to the Balloon model and other such models that convert an
input time signal into a simulated BOLD signal, generally as
BOLD models. A critical open issue when simulating BOLD
signals from network models is the neurovascular coupling, i.e.,
which neural mechanisms are associated with the metabolism
and dynamics of the blood vessels that ultimately cause the BOLD
signal. This is essential information needed to meaningfully
couple a network model with a BOLD model. The issue of the
neurovascular coupling remains unsolved and is an active area of
research (Vanni et al., 2015; Buxton, 2021; Howarth et al., 2021).
Recently, it has been proposed that cerebral blood flow (CBF)
and cerebral metabolic rate of oxygen (CMRO2) may be driven
separately by distinct neural processes (Buxton, 2012, 2021). As
these variations are not captured by the classic Balloon model
implementations in current tools, researchers need more flexible
tools that allow them to define their own BOLD models.

The neural simulator ANNarchy is primarily concerned with
models ranging from the mesoscopic to the microscopic level

that simulate biological neurons as single units and can thus
account for more detailed processes, which can include different
ionic membrane currents and account for the dynamics of
specific classes of real neurons (Humphries et al., 2009; Corbit
et al., 2016; Goenner et al., 2021). Thus, ANNarchy allows to
consider various neural processes for the implementation and
investigation of neurovascular coupling. The BOLD monitor not
only allows linking predefined BOLD models (e.g., the Balloon
model variants, Stephan et al., 2007) to a rate-coded or spiking
network model but also gives the user freedom in defining the
neurovascular coupling and the BOLD model itself, allowing
to investigate different hypotheses regarding the link between
neural processes and BOLD signals.

In this article, we present the rationale, implementation and
use of the BOLD monitor in ANNarchy. We first demonstrate
the use of the classic Balloon model as a BOLD model for the
BOLD monitor. We then demonstrate how to create a user-
defined BOLD model. Finally, using a simple network model as
an example, we demonstrate how the BOLDmonitor can be used
to compare various hypotheses about neurovascular coupling
in simulation.

2. THE BALLOON MODEL

2.1. The Classic Balloon Model
The Balloon model was originally designed by Buxton et al.
(1998). It describes the changes in the BOLD signal of a tissue
region, often called region of interest (ROI), as a function of
normalized CBF (fin). According to this model, the BOLD signal
corresponds to the sum of the extravascular and intravascular
signal resulting from the normalized total deoxyhemoglobin
content (q) and the normalized venous volume fraction (v).
The normalized venous volume fraction is described as a
balloon that expands with increasing inflow and slowly recovers
after a stimulus. The normalized deoxyhemoglobin content is
determined by the dynamics of the volume fraction and the blood
oxygen extraction fraction (E), whose behavior is based on the
oxygen limitation model (Buxton and Frank, 1997).

Friston et al. (2000) extended the Balloon model so that it
can be used to simulate BOLD signals using network models.
The extension included a neurovascular coupling component
that links the normalized CBF of the Balloon model to simulated
neuronal activity. Based on this extension, the normalized CBF
is modeled as a damped oscillator that is stimulated by neuronal
activity. This extension allows the Balloon model to be used to
simulate a change in the BOLD signal due to a change in some
type of simulated neuronal activity (hereafter, more generally
referred to as input signal). In this form, the Balloon model
has been used in several studies to compute simulated BOLD
signals from network models (Friston et al., 2003; Smith et al.,
2011; Deco and Jirsa, 2012; Van Hartevelt et al., 2014; Bennett
et al., 2015; Maith et al., 2021). The individual components of
the extended Balloon model and their dynamics following a
rectangular input signal change are shown in Figure 1A.

Different values for the parameters and even variations of
some equations of the model can be found in the literature. We
use a version from Stephan et al. (2007) with a non-linear BOLD
equation with revised coefficients for our default BOLDmonitor.

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2022 | Volume 16 | Article 79096648

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

FIGURE 1 | (A) Schematic overview of the classic Balloon model (Buxton et al., 1998) with the neurovascular coupling extension of Friston et al. (2000). The data was

simulated using ANNarchy’s default BOLD monitor which recorded a single artificial neuron, whose activity (the source variable for the BOLD monitor) was manually

set. The activity of the neuron and thus the input signal (ICBF) were manually increased from zero to 0.2 for 20 s. The normalized CBF (fin) changes as a function of the

CBF-driving signal (sCBF), which is subject to negative feedback from itself and fin. fin is coupled to the blood oxygen extraction fraction (E) and increases the

normalized volume fraction of the venous compartment (v), which behaves like a balloon and decreases with outflowing blood (fout). The normalized total

deoxyhemoglobin content (q) increases by oxygen extraction of inflowing blood and decreases with outflowing deoxyhemoglobin-containing blood. Finally, relative

changes of the BOLD signal are calculated. The gray horizontal lines correspond to one for the quantities normalized to their baseline in the Balloon model (fin, fout, v,

q). For ICBF , sCBF and BOLD the gray horizontal lines correspond to zero and for E to E0. (B) Balloon model with parallel driven CBF and CMRO2. Instead of coupling

the increase in q with fin via E, the normalized CMRO2 (r) is used directly (see Buxton et al., 2004), which is driven by a second input signal (ICMRO2) like the normalized

CBF (increased to 0.05 for 20 s). Further, fout is described by the equations of Buxton et al. (2004) which causes v to decrease slower. Besides these changes, the

processes are the same as in (A) and the plots of the same quantities have the same limits in (A,B). The equations of both models can be found in

Supplementary Sections 2, 4.2.

The other versions of Stephan et al. (2007) are also implemented
in ANNarchy and available as alternatives. All equations are
summarized in Supplementary Section 2. The implementation
of the default model in ANNarchy is described in Section 3.4.

2.2. The Two-Input Balloon Model
In the classic Balloon model, CBF and CMRO2 are tightly
coupled. The greater increase in CBF compared to CMRO2 in
response to a stimulus is explained by the oxygen limitation
model (Buxton and Frank, 1997). This model is based on
the assumptions that oxygen coming from the capillaries is
completely metabolized in the tissue and that all brain capillaries
are perfused at rest. As a consequence, an increase in CMRO2
would only be possible by increasing the transport of oxygen
from the capillaries to the tissue, and an increase in CBF would
be accompanied by an increase in capillary blood velocity.

Because an increase in CBF increases the available oxygen in the
capillaries, but also decreases the fraction of oxygen extracted
from the capillaries, an increase in CMRO2 (i.e., oxygen transport
from the capillaries to the tissue) requires a disproportionate
increase in CBF (for further details, see Buxton and Frank, 1997).

However, in recent years, it has been proposed that CBF
and CMRO2 are driven in parallel by different sources rather
than being tightly coupled (Buxton, 2012, 2021; Buxton et al.,
2014). Recently, Buxton (2021) has put forward a new theory,
based on the thermodynamics of metabolism, that could explain
why CBF needs to increase more than CMRO2 in response
to a stimulus and has proposed that CBF and CMRO2 are
both driven in parallel in a feed-forward manner. The open
question here is by which neural signals CBF and CMRO2 are
driven. One suggestion is that CMRO2 is tightly coupled to
the energy consumption of neurons, whereas CBF is controlled

Frontiers in Neuroinformatics | www.frontiersin.org 3 March 2022 | Volume 16 | Article 79096649

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

by vasodilatory signals. These vasodilatory signals are not
necessarily coupled to energy consumption and are caused, for
example, by activated astrocytes (Buxton, 2012; Howarth et al.,
2021). Network models, in which a wide variety of populations
can be simulated and manipulated in a controlled manner, may
be useful in investigating this question. Therefore, not only the
classic Balloon model with tightly coupled CBF and CMRO2
can be used in our BOLD monitor, but also user-defined BOLD
models, potentially using more than one input signal from the
network model.

We demonstrate how to define BOLD models with multiple
input signals for the BOLD monitor in ANNarchy by
implementing a modified version of the Balloon model where
CBF and CMRO2 are driven in parallel by separate input
signals (hereafter referred to as two-input Balloon model). For
simplicity, in the two-input Balloon model, we describe both,
the normalized CBF and CMRO2, as damped oscillators similar
to the normalized CBF in the classic Balloon model version
of Friston et al. (2000). Equal input signals elicit responses
with equal amplitudes for the normalized CBF and CMRO2.
Thus, the coupling between CBF and CMRO2 is determined by
the coupling of the two input signals. Figure 1B demonstrates
how the individual components of the two-input Balloon model
change during stimulation. Compared to the normalized CBF,
the normalized CMRO2 responds faster to a changing input
signal and without an overshoot or undershoot. The faster
response allows for an initial dip in the BOLD signal. For
the transformation from normalized CBF and CMRO2 to q
and v, we use the Balloon model equations from Buxton
et al. (2004). This is a slightly modified version of the classic
Balloon model, which additionally considers viscoelastic effects
causing the venous volume fraction to lag behind its steady-
state relation with the outflow during transient changes. Thus,
a post-stimulus undershoot in the BOLD signal is caused by
the undershoot of the CBF (based on the damped oscillator
modeling approach) as well as by the slow recovery of the
venous volume fraction (based on the viscoelastic effects). Finally,
the change in the BOLD signal is computed by the non-linear
BOLD equation with revised coefficients from Stephan et al.
(2007). A more detailed description including the equations of
the two-input Balloon model summarized here can be found in
Supplementary Section 4.2.

3. BOLD MONITOR

3.1. ANNarchy Neural Simulator
The ANNarchy neural simulator is intended for the simulation
of network models at the single-unit level using rate-coded
and spiking neuron models. The equation-based interface of
ANNarchy allows a flexible and easy implementation of network
models by defining equations describing the dynamics of specific
neuron types in so called neuron models and equations defining
synaptic transmission dynamics (e.g., plasticity) in so called
synapse models (Vitay et al., 2015). For efficiency, the model
description is transformed into optimized C++ code, optionally
using parallel programming frameworks such as openMP for
multi-core CPUs or CUDA for GPUs (Dinkelbach et al., 2019).

An earlier version of the BOLD monitor in ANNarchy relied on
the normalization of pre-synaptic activity and was used in Maith
et al. (2021). This implementation was limited to one specific
BOLDmodel and allowed only a few parameter variations, unlike
the version presented here. All the simulations in this work
use the version 4.7.0.1 of the neural simulator ANNarchy. All
references to neurons, populations, synapses, BOLD signals and
other neural quantities and data in the following sections refer to
simulated values from a network model.

3.2. General Concept
BOLD models, for example the Balloon model (Buxton et al.,
1998) or the Davis model (Davis et al., 1998), are based on
signals that characterize the dynamics of an entire ROI, such as
the change in the normalized CBF or CMRO2 (Figure 2, fin, r).
To combine such a BOLD model with a network model, it is
necessary to bridge the gap between these ROI-wide signals and
the individual components of the ROI in the networkmodel (e.g.,
multiple populations, individual neurons). In this section, we will
focus on the processes necessary to obtain the input signals for a
BOLDmodel from a ROI that represents part of a network model
consisting of multiple populations. Figure 2 shows the general
functionality of the BOLD monitor in ANNarchy.

First, the populations of the network model that are part
of the ROI for the BOLD computation have to be specified
and instantiated. In the example shown in Figure 2, the ROI
consists of two populations labeled pop1 and pop2. From the
definition of their neuron models, variables must be selected
or defined (hereafter referred to as source variables) which will
be used to derive the input signals of the BOLD model. In
Figure 2, two different source variables are defined: one variable
varCBF that causes the input signal of the CBF (ICBF) and one
variable varCMRO2 that causes the input signal of the CMRO2
(ICMRO2). These source variables can correspond to any variables
or combinations of variables present in the neuron models
(membrane potential, firing rate, etc.).

After defining the ROI and the mapping between source
variables in the neuron models and the input variables of the
BOLDmodel, the BOLDmonitor implements four preprocessing
steps. First, the source variables are averaged over all the neurons
for each population of the ROI, resulting in only one signal
per population and source variable. This averaging is followed
by an optional population-wide normalization that computes
the relative deviation of the signal from a baseline value. The
baseline corresponds to the mean of the raw averaged source
variable signal calculated over a specified initial period. This
normalization is useful when deviations from the resting-state are
required as input signal in the BOLD model. After the optional
normalization, the signals are scaled per population. By default,
the signals of each population are scaled based on the ratio
between the size of the population and the total number of
neurons in the ROI. Thus, the larger a population, the greater
its influence on the input variables of the BOLD model. Finally,
the population signals are summed across all populations of the
ROI, resulting in one input signal for each input variable of the
BOLD model.

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2022 | Volume 16 | Article 79096650

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

FIGURE 2 | Schematic overview of how the BOLD monitor calculates the input signals (here ICBF, ICMRO2) for a BOLD model (e.g., Balloon model). The ROI from which

the BOLD signal should be calculated can consist of multiple populations (here pop1, pop2). In the neuron models of each population, the variables (varCBF, varCMRO2)

have to be defined, which are used to calculate the input signals (referred to as source variables). Three preprocessing steps are applied to the source variables per

population: (1) averaging over all neurons of the population, (2) optional normalization, (3) scaling by proportion of the population in the ROI. Finally, the signals

resulting from the preprocessed source variables are summed across all populations and fed into the BOLD model as input signals. x, the averaged signal; B,

baseline; Npop, size of the population; Nregion, total number of neurons in the ROI.

3.3. A Simple Example
This section describes a minimal example demonstrating the use
of the BOLD monitor in the ANNarchy framework. ANNarchy
modules and the BOLD extension must first be imported:

1from ANNarchy import setup, Population, Izhikevich,
compile, simulate

2from ANNarchy.extensions.bold import BoldMonitor,
balloon_RN

The evaluation of equations is performed with the forward
Euler numerical method using a fixed time grid of step dt (in ms):

3setup(dt = 1.0)

Two populations, both composed of 100 Izhikevich spiking
neurons are then created (line 4, 5). The Izhikevich neuronmodel
is part of the standard models pre-implemented in ANNarchy,
with equations and parameters derived from Izhikevich (2003).
Initially, the baseline activity in both populations is defined by
setting their noise variables to 5.0 (line 7). The term noise refers
to an internal variable of the pre-implemented Izhikevich neuron
model in ANNarchy which simply determines a baseline current
in the membrane potential equation.

4pop0 = Population(100, neuron=Izhikevich)
5pop1 = Population(100, neuron=Izhikevich)
6

7pop0.noise = 5.0; pop1.noise = 5.0

To keep the example simple and still have a modulation in
the source variable of the BOLD monitor, the baseline activity
(the noise variable) is varied during the simulation to mimic the
effect of external inputs. The mean-firing rate r of the individual
neurons is used as the source variable for the computation of
the BOLD signal. As the computation of this value requires
an additional overhead, it must be enabled explicitly. The time
window for the averaged activity is set to 100 ms:

8pop0.compute_firing_rate(window=100.0)
9pop1.compute_firing_rate(window=100.0)

The BOLD monitor is then created and initialized (line 10–
16). The populations in the ROI have to be assigned in the
populations argument in form of a list of or a single population
(line 11). The desired BOLD model can be optionally defined in
the argument bold_model by assigning the corresponding BOLD
model object (line 12). The BOLDmodel can be either one of the
built-in BOLDmodels provided by the module or user-defined as
we will demonstrate in Section 3.4. The default BOLD model is
the built-in implementation balloon_RN containing the Balloon
model with revised coefficients and a non-linear BOLD equation
(described in Section 2, implementation shown in Section 3.4).

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2022 | Volume 16 | Article 79096651

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

The mapping between the source variables of the populations
(here mean-firing rate r) and the input signals of the BOLD
model (referred to as input variables, here I_CBF) has to be
defined in the mapping argument by providing a dictionary for
each input variable-source variable pair (line 13).

A time window relevant to the normalization of the source
variables can be optionally defined (in ms, line 14), whose
purpose we explain in Section 4.2. By default, no normalization
is performed.

Finally, the variables of the BOLD model which should be
recorded during the simulation can be optionally assigned in the
recorded_variables argument (line 15) as a string or list of strings.
All variables of the BOLD model can be recorded. By default, the
output variable of the BOLD model (here the variable BOLD)
defined in the BOLD model implementation (see Section 3.4)
is recorded.

10m_bold = BoldMonitor(
11populations=[pop0, pop1],
12bold_model=balloon_RN,
13mapping={"I_CBF": "r"},
14normalize_input=2000,
15recorded_variables=["I_CBF", "BOLD"]
16)

The C++ code representing the model (network model and
BOLD monitor) can now be generated and compiled:

17compile()

The last part of this section describes a sample simulation to
demonstrate the BOLD recording on our simple example. A short
simulation period (1,000 ms, line 19) ensures that the network
reaches a stable state, which is necessary for ameaningful baseline
calculation (required for the normalization outlined in Section
4.2). The recording of BOLD signals is started (line 22) and the
simulation is run for 5 s (line 25). After this, the baseline activity
(noise variable) of half of the recorded neurons (one population,
pop0) is increased for 5 s (lines 26, 27) and afterwards set back to
the previous value (line 28, 29).

18# Ramp up time
19simulate(1000).
20

21# Start recording
22m_bold.start()
23

24# Manipulate the noise for half of the neurons
25simulate(5000) # 5s with low noise
26pop0.noise = 7.5
27simulate(5000) # 5s with higher noise
28pop0.noise = 5
29simulate(10000) # 10s with low noise
30

31# Retrieve the BOLD recordings
32bold_recordings = m_bold.get()

This leads to an increased mean firing rate in the recorded
area and consequently to a BOLD signal response as depicted
in Figure 3. The figure shows that the increase of the noise
variable in pop0 leads to an increase in the mean-firing rate,
which is the source variable for the BOLD monitor (Figure 3A,
blue line). This increase of activity results in an increase of the

input signal (input variable I_CBF) of the BOLD model depicted
in Figure 3B, consequently leading to an increase of the BOLD
signal depicted in Figure 3C. After resetting the noise variable,
the firing rates of both populations reach again the same level,
which reduces the input signal of the BOLD model as well as the
resulting BOLD signal.

3.4. BOLD Model Definition
In the previous example, the default Balloonmodel (balloon_RN)
was used as the BOLD model, but ANNarchy allows users to
create their own BOLD model by defining a BoldModel object
representing the desired equations. We describe the definition
of a BoldModel object using the BOLD model balloon_RN
(described in Section 2, applied in Section 3.3) as an example.
This BOLD model is implemented as follows:

1balloon_RN = BoldModel(
2parameters = """
3phi = 1.0 ; kappa = 1/1.54
4gamma = 1/2.46 ; E_0 = 0.34
5tau = 0.98 ; alpha = 0.33
6V_0 = 0.02 ; v_0 = 40.3
7TE = 40/1000. ; epsilon = 1.43
8r_0 = 25. ; second = 1000.0
9""",
10equations = """
11# CBF input
12I_CBF = sum(I_CBF)
13ds/dt = (phi * I_CBF - kappa * s -

gamma * (f_in - 1))/second
14df_in/dt = s / second

: init=1, min=0.01
15

16# Balloon model
17E = 1 - (1 - E_0)**(1 / f_in)

: init=0.3424
18dq/dt = (f_in * E / E_0 - (q / v) *

f_out)/(tau*second) : init=1, min=0.01
19dv/dt = (f_in - f_out)/(tau*second)

: init=1, min=0.01
20f_out = v**(1 / alpha)

: init=1, min=0.01
21

22# Revised coefficients
23k_1 = 4.3 * v_0 * E_0 * TE
24k_2 = epsilon * r_0 * E_0 * TE
25k_3 = 1.0 - epsilon
26

27# Non-linear BOLD equation
28BOLD = V_0 * (k_1 * (1 - q) + k_2 *

(1 - (q / v)) + k_3 * (1 - v))
29""",
30inputs = "I_CBF",
31output = "BOLD"
32)

A BoldModel object requires a parameters argument (line 2),
which is a string defining all constants of the BOLD model in a
key-value pair notation, i.e., a parameter name on the left and the
initialization value on the right side of the assignment operator.

The equations argument (line 10) describes all time-dependent
variables, defined either by regular equations or ordinary
differential equations evaluated on a fixed time grid. Note that
parameters resulting from the combination of other parameters

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2022 | Volume 16 | Article 79096652

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

FIGURE 3 | A simple simulation using the ANNarchy BOLD monitor. In this example, we obtain a BOLD signal from two populations pop0 and pop1. Both

populations contribute their mean-firing rate r (A) to the BOLD model which we defined in Section 3.4. After 5 s of simulation, the noise variable in pop0 is increased

which leads to a higher mean-firing rate. This increases the input signal I_CBF (B) and consequently the computed BOLD signal (C). For clarity, the vertical lines

depict three relevant time points (left to right): end of baseline period, time point of increased noise variable, time point of reset noise variable.

can also be defined here (in this example k_1, k_2, k_3). In the
case of a regular equation, the variable name is on the left side
and the update performed in each step on the right side. If the
update is defined by a differential equation, the left side needs

to contain a d[var]
dt

symbol. To limit the range of values taken by a
variable, themin andmax keywords can be used. The initial value
for variables is 0.0 by default, but it can be changed by providing
an init keyword.

The inputs argument (line 30) specifies which input signals are
expected by the BOLDmodel. It consists of a single string or a list
of strings. These variables can be accessed in the BOLD model
definition by using sum(NAME) in the equations argument,
where NAME corresponds to the name of the variable (here
I_CBF, line 12).

Finally, in the output argument (line 31), one output
variable of the BOLD model is defined, which is automatically
recorded by the BOLDmonitor. In the following implementation
example and all other BOLD models implemented in ANNarchy
mentioned in this work, this default output variable corresponds
to the BOLD signal (variable BOLD), which is also the
default value for the output argument (here only defined for
demonstration purposes).

The balloon_RN model is one of the four pre-implemented
BOLD models (balloon_RN, balloon_RL, balloon_CN and
balloon_CL, Stephan et al., 2007) and therefore does not
need to be defined by the user (but its parameters can be
changed dynamically). With the BoldModel object, the user can
implement new models with the same equation-based interface.
For example, a user might want to additionally implement
the Davis model (Davis et al., 1998) described by Equation

1 to calculate the change of the BOLD signal 1BOLD from
normalized CBF f and CMRO2 r.

1BOLD = M

[

1− f α
(

r

f

)β
]

(1)

Here,M, α, and β are additional parameters of the Davis model.
In the BoldModel above, the normalized CBF is already defined
(fin). Thus, only the calculation of the normalized CMRO2 (r)
must be added. This could be done with the term fin ·

E
E0

(see also
Buxton et al., 2004). The following code demonstrates how the
previous BoldModel could be extended to additionally compute
the normalized CMRO2 (r, line 34) and the Davis model BOLD
signal (line 35) in the equations argument:

29...
30BOLD = V_0 * (k_1 * (1 - q) + k_2 * (1 - (q /

v)) + k_3 * (1 - v))
31

32# Davis model
33r = f_in * E / E_0

: init=1,min=0.01
34BOLD_Davis = M * (1 - f_in**alpha_D * (r /

f_in)**beta)
35""",
36...

This way, a custom BoldModel is obtained, where the BOLD
signal is additionally calculated according to the Davis model and
the modified signal (BOLDDavis) can additionally be recorded.
In addition, the parameters of the Davis model would have
to be added to the parameters argument, which we have

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2022 | Volume 16 | Article 79096653

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

not shown explicitly (but see Supplementary Section 4.3 for a
full implementation).

4. EXAMPLE USE CASES

4.1. Model Description
In this section, we implement a simple network model of
a cortical microcircuit (hereafter referred to as microcircuit
model) to further demonstrate use cases of the BOLD monitor.
The microcircuit model consists of a population of excitatory
neurons and a population of inhibitory interneurons. As neuron
models, we use a regular spiking cortical neuron model for
the excitatory population (corE) and a fast-spiking cortical
interneuron model for the inhibitory population (corI), both
introduced in Izhikevich (2007). The two populations receive
excitatory inputs from another population whose neurons
randomly emit spikes such that their inter-spike intervals
correspond to a Poisson process (hereafter referred to as Poisson
neurons). The structure of the microcircuit model is shown in
Figure 4A. The projections of the microcircuit model include
feed-forward excitation (Poisson neurons→ corE), feed-forward
inhibition (Poisson neurons → corI → corE), and feedback
inhibition (corE → corI → corE). The ratio between excitatory
neurons and inhibitory interneurons is 4:1, as found, for example,
for the visual cortex (Beaulieu et al., 1992; Potjans and Diesmann,
2014). The equations and parameters of the microcircuit model
can be found in Supplementary Section 3.

Each neuron receives synaptic input from 10 random neurons
in the pre-synaptic population for each projection. Following
our previous modeling approaches (Baladron et al., 2019;
Goenner et al., 2021; Maith et al., 2021), we model synaptic
inputs as conductance-based synapses in our neuron models.
Therefore, the synaptic currents (which drive the membrane
potential of the neurons) are proportional to the product of
a voltage difference (between the membrane potential and
the synaptic reversal potential) and a conductance variable
representing the spike input of the corresponding synapse
(see Supplementary Section 3 for equations). We model only
two different types of conductance-based synapses, excitatory
synapses (AMPA) and inhibitory synapses (GABA). The
conductance variables of the synapses are instantaneously
increased by a fixed value (by the weight of the synaptic
connection) for each incoming spike and otherwise decay
exponentially to zero with a time constant of 10 ms.

A conductance greater than zero causes a synaptic current
that drives the membrane potential toward the reversal potential
associated with the synapse (0 mV for AMPA synapses and −90
mV for GABA synapses). All synaptic weights are drawn from a
log-normal distribution and scaled by a factor for each projection
during model initialization. The weights and scaling factors
were optimized to replicate distributions from excitatory post-
synaptic potentials (Song et al., 2005) and firing rates (Buzsáki
andMizuseki, 2014) with themicrocircuit model (see Figure 4B).
Further details about obtaining the distributions and optimizing
the parameters can be found in Supplementary Section 3.3.

Although the use of neuron models mimicking spiking
patterns of real cortical neurons and tuning the parameters to

replicate experimental data can provide more realistic network
models (see e.g., Humphries et al., 2006; Günay et al., 2008;
Pospischil et al., 2008; Goenner et al., 2021), the microcircuit
model presented here only aims at demonstrating the application
of the BOLD monitor and not at replicating any particular
experimental data. To keep themodel simple, we chose a network
model with two spiking populations and multiple excitatory
and inhibitory projections. No particular functional processing
takes place in this microcircuit model, as it consists of only two
small homogeneous populations, the connectivity is random and
synaptic plasticity, important neurotransmitters such as NMDA,
the effect of neuromodulators and potential dynamic changes
in activity were not taken into account during construction.
However, the applicability of the BOLD monitor to larger-scale
network models is demonstrated in Section 4.4.

4.2. Normalization for Resting-State
Activity
We first demonstrate the effect of baseline normalization in the
BOLD monitor using the microcircuit model. To do so, we
simulate a brief stimulus presentation corresponding to studies
of the event-based BOLD response (Glover, 1999; Serences, 2004)
by briefly increasing the mean firing rate of the Poisson neurons
and meanwhile recording the BOLD response.

All simulations start with an initialization period of 2 s to allow
the microcircuit model to enter its steady-state. After that, the
recordings are started. A 10-s resting-period is simulated, after
which the mean firing rates of the Poisson neurons are increased
by a factor of five for 100 ms (hereafter referred to as stimulus
pulse). Finally, another post-stimulus resting-period is simulated
until a total simulation time of 25 s. This procedure is performed
for 40 different random microcircuit model initializations (each
with different seeds producing different synaptic contacts,
weights, and mean firing rates of Poisson neurons). Additionally,
we run 40 simulations without a stimulus pulse, in which only a
25 s resting-period is simulated for comparison.

The BOLD response is recorded simultaneously using two
differently initialized BOLD monitors. Both BOLD monitors use
the default BOLD model (balloon_RN) shown in Section 3.4 and
determine the BOLD signal of the ROI which comprises both
the corE and corI populations. The source variable for the BOLD
monitor is the synaptic activity of the neurons normalized by the
number of afferent connections, which has already been used and
described in Maith et al. (2021). The key difference between the
two BOLD monitors is the baseline normalization. One BOLD
monitor uses no baseline normalization and the other BOLD
monitor uses a baseline computed over the first 5 s after the 2-s
initialization period.

Figure 5 shows the recorded variables of the BOLD model:
the input variable (ICBF) of the BOLD model and the resulting
BOLD signal. Although the response of the microcircuit model
to the stimulus pulse can be clearly seen in the ICBF of both
BOLD monitors, an important difference is that the ICBF of
the BOLD monitor without baseline normalization has an offset
greater than zero, while the ICBF with baseline normalization
fluctuates around zero. It is also noticeable that ICBF with baseline

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2022 | Volume 16 | Article 79096654

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

FIGURE 4 | Overview of the microcircuit model. (A) The structure of the microcircuit model. Rectangles represent the populations and arrows the projections. The

numbers at the projections indicate the factors which scale the weights of each projection. (B) Probability density function (PDF) and histogram of the firing rate

distribution of the neurons of the corE and corI populations (top) and PDF and histogram of the excitatory post-synaptic potentials (EPSPs) evoked by single spikes in

the excitatory and inhibitory neurons (bottom). The weights for the projections of the microcircuit model were drawn from a weight distribution which was tuned to

generate the EPSPs distribution of Song et al. (2005) (indicated in black). The weights of each projection were further scaled so that the corE and corI populations

produce the firing rate distribution of Buzsáki and Mizuseki (2014) (indicated in black). The scaling factors were optimized, for more details see

Supplementary Section 3.3.

normalization is zero in the first 5 s. This is because the input
variable for the BOLD model is not calculated during the time
in which the baseline for normalization is determined. In the
normalized CBF signal and the BOLD signal, one can clearly
see the effect of baseline normalization on the Balloon model
dynamics. The response to the stimulus pulse is much more
pronounced for the BOLD monitor with baseline normalization.
Without baseline normalization, the normalized CBF signal and
BOLD signal at rest have an offset greater than zero, whereas
with baseline normalization, the signals fluctuate around one and
zero, respectively.

The CBF and BOLD signals are defined in the Balloon model
relative to their value at rest (normalized CBF and relative
change of BOLD). Therefore, the normalized CBF signal or the
BOLD signal should only deviate from one or zero, respectively,
when the underlying system deviates from its resting-state. For
models with resting-state activity, we recommend using the
baseline normalization of the BOLD monitor when using the
Balloon model.

4.3. The Effect of Different Source Variables
One important motivation for developing the BOLD monitor is
to provide a simple way to flexibly adjust both the source variables
and the BOLD model itself. In Section 3.4, we have already
shown how to implement a user-defined BOLD model. Here,
we also want to show the possibility to use different variables
of the neurons as source variables. The underlying neural
processes influencing CBF and CMRO2, and thus ultimately the
BOLD signal, are still rather unclear (Howarth et al., 2021).
Many different hypotheses and modeling approaches can be
found in the literature (Smith et al., 2011; Van Hartevelt et al.,
2014; Bennett et al., 2015; Heikkinen et al., 2015; Schmidt
et al., 2018). The flexible BOLD monitor in ANNarchy allows
us to easily create and compare BOLD models implementing

different hypotheses on spiking or rate-coded network models.
In this section, we demonstrate this by implementing six
different hypotheses using our microcircuit model. For each
hypothesis, we add a different BOLDmonitor to the microcircuit
model, each with different source variables. The six different
BOLD monitors are summarized in Table 1. The source code
for adding them to the microcircuit model can be found in
Supplementary Section 4. Note that the simulated BOLD signals
are not compared with experimental data, so we do not make any
statements about the validity of the hypotheses. Such an analysis
would require an extensive underlying network model, tailored
to the brain region under investigation.

We again use the stimulus pulse simulation from Section 4.2
to compare the different BOLD signal responses (see Figure 6).
The first three hypotheses are based on previous studies that used
the classic Balloon model. Thus, we also use the classic Balloon
model (BOLD model balloon_RN) for the BOLD calculation,
which includes a single CBF-driving input signal (see Figure 1A)
whose source variable we vary for each hypothesis. The first
hypothesis we implement is that the CBF or the BOLD signal
is driven by the total synaptic activity of the neurons (as in
Van Hartevelt et al., 2014; Schmidt et al., 2018; Maith et al., 2021).
To implement this, we use the normalized synaptic activity as
the source variable of the BOLD monitor (BOLD monitor A), as
previously in Section 4.2. The second hypothesis we implement
is that the CBF or the BOLD signal is driven only by the
excitatory (glutamatergic) synaptic activity (similar to Heikkinen
et al., 2015). For this, we use the conductance variable of the
excitatory synapses of the neurons as source variable for the
BOLD monitor (BOLD monitor B). The third hypothesis is that
the CBF or the BOLD signal is driven by the neuronal output
of the neurons, for example, the mean firing rate (as in Smith
et al., 2011; Bennett et al., 2015). Thus, for this BOLD monitor
(BOLD monitor C), we use the mean firing rate of the neurons

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2022 | Volume 16 | Article 79096655

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

FIGURE 5 | Recordings from two BOLD monitors with (right) and without (left)

baseline normalization. Shown are the averaged recordings of 40 resting-state

simulations (black) and 40 simulations with a 100 ms stimulus pulse (red). Both

BOLD monitors use the same source variable of the same underlying

microcircuit model. For the BOLD monitor with baseline normalization, the

input signal to the Balloon model (ICBF) corresponds to the relative change in

the signal from the source variable, thus fluctuates around zero. Whereas,

without baseline normalization, the input signal has an offset greater than zero.

Thus, with baseline normalization only, the normalized CBF signal and the

BOLD signal of the Balloon model during the resting-state are approximately

one and zero, respectively, corresponding to the definition of the Balloon

model. The response to the stimulus pulse is more pronounced with baseline

normalization. For visualization, ICBF values are shown divided by their

maximum value.

as source variable, as in Section 3.3. Figures 6A–C shows that the
normalized CBF and BOLD responses vary for these three BOLD
monitors with different source variables. The response based on
the mean firing rates (Figure 6C) is the strongest, because the
firing rates change more relatively to the resting-state compared
to the two other source variables. However, the shape of the
responses is almost identical.

As mentioned in Section 2.2, it has also been proposed that
the CBF and CMRO2 are driven in parallel in a feed-forward
manner. Therefore, for the following three BOLD monitors,
we use the two-input Balloon model defined in Section 2.2
(balloon_two_inputs), which requires two input signals (ICBF,
ICMRO2, see Figure 1). The source variables used to obtain ICBF
and ICMRO2 can be freely chosen from the neuron models of the
corE and corI populations.

The first hypothesis considering CBF and CMRO2 being
driven in parallel proposes that the CMRO2 is driven only by
excitatory synaptic processes and that the CBF is driven by
both excitatory and inhibitory synaptic processes (Buxton, 2012,
2021). To implement this hypothesis in BOLD monitor D, we

TABLE 1 | The input and source variables of the 6 different BOLD monitors of

Section 4.3.

Monitor ID BOLD model Input variables Source variables

corE corI

A balloon_RN ICBF syn

B balloon_RN ICBF gAMPA

C balloon_RN ICBF r

D balloon_two_inputs ICBF IAMPA + 1.5 IGABA

ICMRO2 IAMPA

E balloon_two_inputs ICBF IAMPA + 1.5 IGABA

ICMRO2 IAMPA r

F balloon_two_inputs ICBF IAMPA + 1.5 IGABA

ICMRO2 I
1
3
AMPA

If the source variables of a specific input variable are different for excitatory and inhibitory

neurons (corE and corI populations), they are given separately for corE and corI. ICBF,

CBF-driving input; ICMRO2, CMRO2-driving input; syn, normalized total synaptic activity;

gAMPA, conductance variable of AMPA synapse; r, neuron firing rate; IAMPA, current caused

by AMPA synapses; IGABA, current caused by GABA synapses.

define the current caused by AMPA synapses (IAMPA) as the
CMRO2-driving source variable, and the sum of IAMPA and the
current caused by GABA synapses (IGABA) as the CBF-driving
source variable. These source variables have to be additionally
defined in the neuron models of the neurons of the corE and corI
populations (see Supplementary Section 4.1).

The next hypothesis is similar, but additionally states that in
inhibitory interneurons, energy consumption, and thus CMRO2,
is driven by neuronal output rather than synaptic input (in
contrast to excitatory neurons) (Howarth et al., 2021). To
implement this in BOLD monitor E, the mean firing rate of
the neurons rather than IAMPA is defined as the CMRO2-
driving source variable for the inhibitory interneurons of
the corI population. For the excitatory neurons of the corE
population, the same source variables are used as in the previous
BOLD monitor.

Figures 6D,E show that the normalized CBF, CMRO2, and
BOLD (relative change) responses of these two BOLD monitors
are significantly different from the previous ones (with a single
input). The BOLD signal shows a much stronger initial dip as
CMRO2 increases much faster than CBF. There is little difference
between the responses of the two BOLD monitors. The CMRO2
of BOLDmonitor E is slightly lower because the firing rate of the
inhibitory interneurons increases less than their synaptic current
caused by AMPA synapses. However, because the inhibitory
interneurons only contribute one-fifth to the input signal of the
BOLD monitor (due to the ratio between corE and corI sizes),
there is only a small difference from BOLD monitor D to E.

In the last BOLDmonitor (Figure 6F), we use almost the same
source variables as in BOLD monitor D. We only introduce an
additional non-linear operation for the source variable driving
CMRO2 by defining the current caused by the AMPA synapses,
to the power of one third, as the source variable (instead
of the current itself). As a result, energy consumption or
CMRO2 no longer increases linearly with the current. Thus,

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2022 | Volume 16 | Article 79096656

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

FIGURE 6 | Normalized CBF, CMRO2, and BOLD (relative change) responses of six different BOLD monitors including different source variables. The averaged

recordings of 40 simulations with a 100 ms stimulus pulse are shown. The vertical gray bar in columns two and three indicate the time window of the active stimulus

pulse. The left column illustrates, which compartments of the microcircuit model were used as source variables for the BOLD monitors. red, CBF-driving; blue,

CMRO2-driving; purple, CBF and CMRO2-driving. For a more detailed description about the source variables see Section 4.3 and Table 1. The BOLD monitors (A–C)

using the classic Balloon model with a single CBF-driving input signal. The BOLD monitors (D–F) using the two-input Balloon model defined in this work with two

input signals driving CBF and CMRO2 separately.

we are still basically following the same general hypothesis
(CMRO2 driven by AMPA synaptic processes, CBF driven by
AMPA and GABA synaptic processes), but assuming different
mathematical relationships for CMRO2. This change causes
CMRO2 to increase much less due to the stimulus pulse, as
shown in Figure 6F. Thus, the initial dip in the BOLD response
is smaller than for the BOLD monitors D & E.

In summary, the BOLD monitor allows users to determine
the BOLD signal based on individually chosen source variables.
Without much effort, we can define different source variables
and even compare different BOLD models (e.g., a model with
two input variables). With the classic Balloon model, the BOLD
response for our microcircuit model hardly differs for different
source variables. Since all variables in the microcircuit model

Frontiers in Neuroinformatics | www.frontiersin.org 11 March 2022 | Volume 16 | Article 79096657

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

FIGURE 7 | Normalized CBF, CMRO2, and BOLD (relative change) responses of the different BOLD monitors (A–C, left), (D, mid), and (F, right) including different

source variables. The averaged recordings of 40 simulations with a 20 s stimulus pulse are shown. The background highlighted in gray indicates the time window of

the active stimulus. Here, the firing rate of the Poisson neurons is increased by a factor of 1.2 for 20 s. For a more detailed description about the source variables see

Section 4.3 and Table 1. The BOLD monitors (A–C) using the classic Balloon model with a single CBF-driving input. The BOLD monitors (D–F) using the two-input

Balloon model defined in this work with separately driven CBF and CMRO2. The responses of BOLD monitor E are shown in the Supplementary Figure 1 as they

are almost identical to those of BOLD monitor (D).

increase similarly in response to the stimulus pulse, the BOLD
response also looks similar and only differs in amplitude. When
driving CBF and CMRO2 in parallel with different source
variables, the choice of the source variable is much more
important, because the relationship between them critically
affects the shape of the BOLD response not only the amplitude.
Nevertheless, the effect of changing the source variable on the
resulting BOLD signal may be different for other underlying
network models with different dynamics of the different variables
(e.g., synaptic currents, mean firing rate, etc.), even when the
classic Balloon model is used.

In a second experiment, we perform a simulation with
sustained stimulation (longer stimulus pulse) with our six
different BOLD monitors. The firing rate of the Poisson neurons
is increased by a factor of 1.2 for 20 s. Like in the stimulus pulse
simulations, the responses of the first three BOLD monitors (A-
C) are very similar and only differ in amplitude (Figure 7, left).
The CBF or BOLD responses show a slight initial overshoot,
then reach a plateau, and finally, show a slight post-stimulus
undershoot. The three BOLD monitor variants with two input
signals (D-F) again show significant differences from the three
BOLD monitors using the classic Balloon model. The BOLD
monitors D and E showed almost identical responses consisting
of an initial undershoot a negative plateau and a post-stimulus
over- and undershoot (for results of BOLD monitor E see
Supplementary Figure 1). It is particularly noticeable that the
plateau is negative for the BOLD monitors D & E but not for
BOLD monitor F because only for BOLD monitor F, the CBF
increases more than the CMRO2. This again illustrates how
critical the choice of source variables is when CBF and CMRO2
are driven in parallel by them.

4.4. Computational Time Analysis
In this section, we study the additional computational time
introduced by the BOLD monitor (hereafter referred to as
computational overhead). We use a scaled version of the
microcircuit model described in Section 4.1, by incrementally
increasing the number of neurons for the populations and
leaving the number of synaptic inputs for a neuron fixed to
10 connections (from 10 different neurons of the pre-synaptic
population) per projection. Table 2 shows an overview of the
total number of neurons and connections for each network
model instance.

Figure 8 depicts the single thread computational time in
seconds as a function of the number of recorded neurons with
(blue line) and without (orange line) BOLD recording. For
each configuration, we performed 10 runs, each simulating 25
s biological time and we measured the elapsed real time with
the Python time module. The relative standard deviation was in
the range of 0.55% to 2.53% which is too small to be depicted
meaningfully in the graph and was therefore omitted.

For all simulated configurations, the computational time with
and without BOLD recording is globally similar (between 1%
and 8% of overhead depending on the model’s size). The relative
computational overhead (visualized as gray bars) is larger for
small network models but shrinks when the model size increases.
Therefore, if network models get more complex, in the sense
of number of neurons, complexity of neuron models and the
number of connections, one can expect that the share of the
computational overhead will shrink accordingly. Overall, the
computational time is dominated by the complexity of the
network model and the BOLD recording plays a minor role,
especially in complex network models.

Frontiers in Neuroinformatics | www.frontiersin.org 12 March 2022 | Volume 16 | Article 79096658

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

TABLE 2 | Overview on the network model sizes used for the computational time

analysis.

Number of Number of Number of

recorded neurons neurons connections

250 450 5,500

500 900 11,000

1,000 1,800 22,000

2,000 3,600 44,000

4,000 7,200 88,000

8,000 14,400 176,000

16,000 28,800 352,000

32,000 57,600 704,000

The first column are the number of recorded neurons (i.e., corE and corI populations), the

second column the number of all neurons (additionally the Poisson population) within the

network model and the third column the overall number of connections.

5. DISCUSSION

In this work, we presented a BOLD monitor for obtaining
simulated BOLD signals from spiking or rate-coded network
models in the ANNarchy neural simulator. All variants of the
Balloon model summarized by Stephan et al. (2007), thus the
currently prevailing BOLD models, are available as built-in
models. The integrated BOLD monitor makes it easy for users to
connect their network models to a mathematical BOLD model
such as the Balloon model (Buxton et al., 1998) or their own
user-defined BOLD models. Users only need to specify from
which populations they want to record the BOLD signal, which
BOLD model they want to use and which variables of the
neurons should be mapped to the input signal(s) of the BOLD
model.

The optional baseline normalization of the source variables is
a useful feature, as it allows the use of variables with arbitrary
magnitudes for the BOLD calculation (including, for example,
negative membrane potentials or large synaptic currents), since
it sets the relative change of the source variables as the input
signal for the BOLD calculation. This is a simple and effective
alternative to the previous normalization approaches of the
input signals (Schmidt et al., 2018; Maith et al., 2021). Another
advantage of baseline normalization is that the resulting input
signal for the BOLDmodel is approximately zero at rest and thus
suitable for the Balloon model. A limitation is that it can only
use variables that have a relatively constant non-zero mean in the
resting-state of the networkmodel. It is highly recommended that
users verify that the normalization is appropriate for their chosen
variables and used BOLD model. For example, an unsuitable
source variable would be the mean firing rate of neurons that are
quiescent during the baseline calculation phase and are activated
due to a model manipulation after the baseline calculation phase
(e.g., during an experiment with input presentation). Another
example would be if the selected source variable must first enter a
steady-state at the beginning of the simulation (e.g., increase from
0 to a constant non-zero value) and one conducts the baseline
calculation during this ramp-up period. This would lead to a too

low baseline and thus to a permanently positive normalized signal
during recording.

The implementation of the BOLD monitor is flexible enough
so that the source variables for the BOLD calculation can be any
of the variables present in the neuronmodels (e.g., a combination
of different synaptic currents). Recently, an energy-dependent
leaky integrate-and-fire neuron model has been developed that
accounts for the neuron’s energy consumption by calculating
adenosine triphosphate (ATP) dynamics (Jaras et al., 2021). The
variables involved there, which are associated with the brain’s
metabolism, could be of great interest for calculating the BOLD
signal and could be easily linked to BOLD models in ANNarchy
using the BOLD monitor. Such flexibility makes ANNarchy
with the BOLD monitor an useful environment for investigating
hypotheses about the coupling between neural processes and
BOLD signals, which is an active area of research (Buxton,
2021; Howarth et al., 2021). Since the coupling between neural
processes and BOLD signals is still quite unclear, there is no
recommended standard method for obtaining simulated BOLD
signals with network models (Einevoll et al., 2019). We have
demonstrated here how to use the BOLD monitor to study the
role of different source variables in a simple network model of
a cortical microcircuit. As such, ANNarchy and the new BOLD
monitor can support research in neurovascular coupling, which
may lead to the development of better BOLDmodels in the future
and possibly to a better understanding of the BOLD response.

The ability to easily obtain BOLD signals from network
models opens up more potential applications for ANNarchy,
particularly in the area of model-based analysis of neuroimaging
data (see Popovych et al., 2019 for a review). The basic idea
here is to adjust network models to replicate experimental MRI
data while simulating underlying neural processes that cannot
be inferred from the MRI data alone. Especially for the study of
neuronal diseases in humans, model-based analysis offers new
opportunities. Network models customized to patients can be
compared with network models customized to healthy controls,
or the customized network models can be used as a virtual test
bed for specific treatments (Cabral et al., 2013; Van Hartevelt
et al., 2014; Jirsa et al., 2017; Meier et al., 2021). Since this
approach has been mainly performed with macroscopic network
models, ANNarchy can extend this approach by being used
mainly in the study of processes at the mesoscopic level of
detail. A possible application would be the study of deep brain
stimulation (DBS) in, e.g., Parkinson’s disease patients, the
mechanisms of which may be more extensively and realistically
implemented in ANNarchy (similar to other mesoscopic network
models, e.g., Rubin and Terman, 2004; Hahn and McIntyre,
2010) than in macroscopic network models (e.g., Meier et al.,
2021). Similar to the recently proposed approach to predict DBS-
induced clinical improvements using MRI data from Parkinson’s
disease patients (Horn et al., 2017, 2019), predictors for clinical
improvements could also be obtained frommodel-based analysis
of the MRI data. Speculatively, these predictive approaches could
potentially even be used in combination with intraoperative MRI
(Cui et al., 2016) in the future to optimize electrode positions
during DBS electrode implementation. In addition, model-based
analysis of MRI data could potentially provide new biomarkers

Frontiers in Neuroinformatics | www.frontiersin.org 13 March 2022 | Volume 16 | Article 79096659

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

FIGURE 8 | Computational time for a simulation with (blue) and without (orange) BOLD recording as a function of the number of recorded neurons. The gray bars

indicate the percentage of the computational overhead of the BOLD recording in the total computation time. This value was computed on the average values and

therefore no standard deviation is depicted. The computational overhead is higher for small network models and gets smaller for larger models.

for mental disorders for whichMRI data alone are not well-suited
(Linden, 2012).

The BOLD monitor is already quite flexible and user friendly,
but a potential improvement may be an optional delay for
the input signals of the BOLD model. This was demonstrated,
for example, for the Balloon model in Buxton et al. (2004).
A delayed CBF relative to the CMRO2 could be the cause
for the initial dip in the BOLD signal (Buxton et al., 2004;
Buxton, 2012). In our two-input Balloon model, we currently
implement this with a faster responding for CMRO2 than for
CBF. However, whether the initial dip in the BOLD response is
actually caused by a faster CMRO2 response is still a matter of
debate in the literature (Buxton, 2012). Another useful extension
would be individual scaling factors for each source variable
signal in the preprocessing of the BOLD monitor. This would
allow, for example, one population to be heavily weighted
for CBF and another population for CMRO2. Currently, the
scaling factor is based on the size of the population and can
optionally be adjusted. One of the most important possible
further developments concerns the simulation of realistic noise
components of the BOLD signal. Experimentally collected
BOLD signals are subject to physiological noise, especially
motion, cardiac, and respiratory artifacts, as well as instrumental
noise (Birn et al., 2008; Chang et al., 2009; Caballero-Gaudes
and Reynolds, 2017). To meaningfully compare simulated
and experimental signals, these noise sources should also
be considered.

We have demonstrated the properties of the BOLD monitor
using a simple network model of a cortical microcircuit.
However, we did not focus on a use case that includes a
comparison of a realistic network model with experimentally

obtained BOLD data. Our microcircuit model is not such a
use case, but mainly functions as a means to demonstrate the
possibilities of the BOLD monitor. Thus, the simulated BOLD
responses should not be overinterpreted. Our implementation
could be helpful for researchers to compare different BOLD
models. Our simulations showed that different source variables
of the same underlying network model can affect the simulated
BOLD signal differently and, most importantly, that this can
be easily tested with the BOLD monitor in ANNarchy. To
actually link experimental BOLD signals to their underlying
neural processes, more realistic and detailed network models
should be used (Vanni et al., 2015).

In this work, we implemented a modified version of the
Balloon model in which CBF and CMRO2 are driven in parallel
by two different input signals. This two-input Balloon model
was composed of model components from previous publications
(Buxton et al., 1998, 2004; Friston et al., 2000). By implementing
this BOLDmodel, we demonstrated how ANNarchy allows users
to define their own systems of equations as a BOLD model.
A BOLD model considering parallel excitation of CBF and
CMRO2 will be necessary for future model-based investigation
of current hypotheses regarding the origin of the BOLD signal
(Buxton, 2021).

Other modeling tools also provide the ability to simulate
BOLD signals or analyze MRI data in a model-based manner.
One of the best known is Dynamic Causal Modeling (DCM) by
Friston et al. (2003), which is included in the Matlab Software
Package SPM (Penny et al., 2011). DCM can be used to obtain
the effective connectivity of network models from MRI data.
The model implementation in DCM differs significantly from
that in ANNarchy, where more complex network models can be

Frontiers in Neuroinformatics | www.frontiersin.org 14 March 2022 | Volume 16 | Article 79096660

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

implemented at finer scales, for example with spiking neurons,
detailed neuron and synapse definitions. In DCM, the focus
is not on explicitly implementing neural processing, but on
investigating how brain regions interact: the dynamics of the
brain regions are usually simulated by an activity vector which
depends on a connectivity matrix and driving and modulating
inputs defined by an experimental paradigm. The length of the
activity vector usually corresponds to the number of regions
included, i.e., each region is described by one activity value.
Simulated BOLD signals for the different brain regions are
obtained from the activities of the regions using the Balloon
model versions of Stephan et al. (2007). Based on this, free
parameters (e.g., the connectivity matrix) are optimized using
Bayesian inference to replicate the MRI data and keep the
model complexity low (also called Bayesian model inversion).
In DCM, other BOLD models than the Balloon model are
not available. DCM is not designed to flexibly test hypotheses
regarding neurovascular coupling. Therefore, DCM in SPM
and ANNarchy with the new BOLD monitor are designed for
different applications.

Another modeling tool that incorporates simulation of BOLD
signals is The Virtual Brain (TVB) (Ritter et al., 2013; Sanz Leon
et al., 2013). TVB is a neural simulator to create large-
scale network models usually of the whole cortex and not a
mathematical setup for model inversion using BOLD data as
DCM, which is only one possible application of TVB. In TVB,
network models are usually implemented as a combination of
neural mass models, sets of equations that describe the average
dynamics of large neuron populations (macroscopic models),
but neglect processes at the single-neuron level. Therefore, a
TVB – multi-scale co-simulation toolbox that links TVB and
neural simulators which model the lower scale processes such
as ANNarchy and NEST (Gewaltig and Diesmann, 2007), has
been recently introduced (Meier et al., 2021; Schirner et al.,
2022). BOLD simulation in TVB is mainly used to validate large-
scale network models on experimental MRI data. In TVB, the
different versions of the Balloon model of Stephan et al. (2007)
are available. However, a flexible definition of source variables or
the BOLD model is not currently available because the focus is
not on examining the relationship between the BOLD signal and
detailed neural processes.

Several successful neural simulators, such as NEST (Gewaltig
and Diesmann, 2007) and Brian2 (Stimberg et al., 2019), do
not yet have an integrated BOLD simulation routine. For these
simulators, users currently have to use external tools for BOLD
simulation like the R package neuRosim (Welvaert et al., 2011).
Several hemodynamic response functions (HRF) are available
in neuRosim, including the Balloon model from Buxton et al.
(2004), which can be used to calculate a BOLD response from
a given stimulus signal. The stimulus signal typically follows
an experimental design, with 1 indicating the presence and 0
the absence of a stimulus. Simulating the BOLD signal based
on specific neural processes is actually not the intended use of
neuRosim. Nevertheless, neuRosim can be applied to specific
simulated signals from network models (Schmidt et al., 2018). A
separate definition of the BOLDmodel (or the HRF in neuRosim)
is not currently available. The strengths of neuRosim are the

possibility to define spatial positions and the extent of BOLD
activation and the modeling of different noise sources of the
BOLD signal.

An important advantage of on-line BOLD computation
in ANNarchy over off-line computation such as using
neuRosim is that simulated data of the recorded neurons
(e.g., membrane potentials or synaptic currents) do not need
to be stored separately to be used for BOLD computation after
simulation. The latter can result in significant increased memory
requirements, especially for larger network models. On the other
hand, the on-line BOLD computation increases the computation
time of the simulations. However, this is a less crucial factor than,
for example, the size of the network model, as we show in Section
4.4. Moreover, the share of the on-line BOLD computation
in the computation time decreases as the complexity of the
model increases. Therefore, the use of the BOLD monitor is
also appropriate for larger network models than those used in
this work.

In summary, we introduced the BOLD monitor in ANNarchy
which allows the on-line computation of simulated BOLD
signals directly from spiking or rate-coded network models.
Highlights of the BOLD monitor are the flexible definition
of source variables in the neuron models of the recorded
network model and the possibility to use new user-defined
BOLD models. We demonstrated here how this can be done
and how this can be used, for example, to compare different
hypotheses regarding neurovascular coupling. This tool allows
both the validation and optimization of network models with
experimental MRI data and the model-based analysis of the
BOLD response for a better understanding of its neural
basis.

DATA AVAILABILITY STATEMENT

All used source code is publicly available. This data can be
found here: the ANNarchy neural simulator (4.7.0 release) is
available on github: https://github.com/ANNarchy/ANNarchy.
The simulation code of this work is available on github:
https://doi.org/10.5281/zenodo.5547665.

AUTHOR CONTRIBUTIONS

OM and HD: designed the research, performed the research,
programming, data analysis, and writing (first draft). JB, JV,
and FH: guided the research. FH: acquired the funding.
OM, HD, JB, JV, and FH: writing (reviewing) and editing.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) SPP-2041 Computational
Connectomics as part of the project Clinical Connectomics:
A network approach to deep brain stimulation (DFG
HA2630/11-2 and HA2630/11-1) and in part by Auto-tuning

Frontiers in Neuroinformatics | www.frontiersin.org 15 March 2022 | Volume 16 | Article 79096661

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

for neural simulations on different parallel hardware (DFG
HA2630/9-1). The publication of this article was funded by
Chemnitz University of Technology and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
- 491193532.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.790966/full#supplementary-material

REFERENCES

Baladron, J., Nambu, A., and Hamker, F. H. (2019). The subthalamic nucleus-

external globus pallidus loop biases exploratory decisions towards known

alternatives: a neuro-computational study. Eur. J. Neurosci. 49, 754–767.

doi: 10.1111/ejn.13666

Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynader, M., and Cowey, A. (1992).

Quantitative distribution of gaba-immunopositive and-immunonegative

neurons and synapses in the monkey striate cortex (area 17). Cereb. Cortex 2,

295–309. doi: 10.1093/cercor/2.4.295

Bennett, M. R., Farnell, L., Gibson, W. G., and Lagopoulos, J. (2015). Cortical

network models of firing rates in the resting and active states predict bold

responses. PLoS ONE 10, e0144796. doi: 10.1371/journal.pone.0144796

Birn, R. M., Smith, M. A., Jones, T. B., and Bandettini, P. A. (2008).

The respiration response function: the temporal dynamics of fMRI signal

fluctuations related to changes in respiration. Neuroimage 40, 644–654.

doi: 10.1016/j.neuroimage.2007.11.059

Buxton, R. B. (2012). Dynamic models of bold contrast. Neuroimage 62, 953–961.

doi: 10.1016/j.neuroimage.2012.01.012

Buxton, R. B. (2021). The thermodynamics of thinking: connections between

neural activity, energy metabolism and blood flow. Philos. Trans. R. Soc. B 376,

20190624. doi: 10.1098/rstb.2019.0624

Buxton, R. B., and Frank, L. R. (1997). A model for the coupling between cerebral

blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood

Flow Metab. 17, 64–72. doi: 10.1097/00004647-199701000-00009

Buxton, R. B., Griffeth, V. E., Simon, A. B., and Moradi, F. (2014).

Variability of the coupling of blood flow and oxygen metabolism responses

in the brain: a problem for interpreting bold studies but potentially a

new window on the underlying neural activity. Front. Neurosci. 8, 139.

doi: 10.3389/fnins.2014.00139

Buxton, R. B., Uludağ, K., Dubowitz, D. J., and Liu, T. T. (2004). Modeling

the hemodynamic response to brain activation. Neuroimage 23, S220–S233.

doi: 10.1016/j.neuroimage.2004.07.013

Buxton, R. B., Wong, E. C., and Frank, L. R. (1998). Dynamics of blood flow

and oxygenation changes during brain activation: the balloon model. Magnet.

Reson. Med. 39, 855–864. doi: 10.1002/mrm.1910390602

Buzsáki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed

distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278.

doi: 10.1038/nrn3687

Caballero-Gaudes, C., and Reynolds, R. C. (2017). Methods for cleaning the bold

fMRI signal. Neuroimage 154, 128–149. doi: 10.1016/j.neuroimage.2016.12.018

Cabral, J., Fernandes, H. M., Van Hartevelt, T. J., James, A. C., Kringelbach,

M. L., and Deco, G. (2013). Structural connectivity in schizophrenia and its

impact on the dynamics of spontaneous functional networks.Chaos 23, 046111.

doi: 10.1063/1.4851117

Chang, C., Cunningham, J. P., and Glover, G. H. (2009). Influence of heart rate

on the bold signal: the cardiac response function. Neuroimage 44, 857–869.

doi: 10.1016/j.neuroimage.2008.09.029

Corbit, V. L., Whalen, T. C., Zitelli, K. T., Crilly, S. Y., Rubin, J. E., and

Gittis, A. H. (2016). Pallidostriatal projections promote β oscillations in a

dopamine-depleted biophysical network model. J. Neurosci. 36, 5556–5571.

doi: 10.1523/JNEUROSCI.0339-16.2016

Cui, Z., Pan, L., Song, H., Xu, X., Xu, B., Yu, X., et al. (2016). Intraoperative

MRI for optimizing electrode placement for deep brain stimulation of

the subthalamic nucleus in Parkinson disease. J. Neurosurg. 124, 62–69.

doi: 10.3171/2015.1.JNS141534

Davis, T. L., Kwong, K. K., Weisskoff, R. M., and Rosen, B. R. (1998). Calibrated

functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl.

Acad. Sci. U.S.A. 95, 1834–1839. doi: 10.1073/pnas.95.4.1834

Deco, G., and Jirsa, V. K. (2012). Ongoing cortical activity at rest:

criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375.

doi: 10.1523/JNEUROSCI.2523-11.2012

Dinkelbach, H. Ü., Vitay, J., and Hamker, F. H. (2019). “Scalable simulation

of rate-coded and spiking neural networks on shared memory systems,” in

2019 Conference on Cognitive Computational Neuroscience (Berlin: Cognitive

Computational Neuroscience), 526–529. doi: 10.32470/CCN.2019.1109-0

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M.,

et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.

doi: 10.1016/j.neuron.2019.03.027

Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling.

Neuroimage 19, 1273–1302. doi: 10.1016/S1053-8119(03)00202-7

Friston, K. J., Mechelli, A., Turner, R., and Price, C. J. (2000). Nonlinear responses

in fMRI: the Balloon model, volterra kernels, and other hemodynamics.

Neuroimage 12, 466–477. doi: 10.1006/nimg.2000.0630

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Glover, G. H. (1999). Deconvolution of impulse response in event-related bold

fMRI1. Neuroimage 9, 416–429. doi: 10.1006/nimg.1998.0419

Goenner, L., Maith, O., Koulouri, I., Baladron, J., and Hamker, F. H. (2021). A

spiking model of basal ganglia dynamics in stopping behavior supported by

arkypallidal neurons. Eur. J. Neurosci. 53, 2296–2321. doi: 10.1111/ejn.15082

Günay, C., Edgerton, J. R., and Jaeger, D. (2008). Channel density distributions

explain spiking variability in the globus pallidus: a combined physiology

and computer simulation database approach. J. Neurosci. 28, 7476–7491.

doi: 10.1523/JNEUROSCI.4198-07.2008

Hahn, P. J., and McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of

subthalamopallidal network activity during deep brain stimulation. J. Comput.

Neurosci. 28, 425–441. doi: 10.1007/s10827-010-0225-8

Heikkinen, H., Sharifian, F., Vigario, R., and Vanni, S. (2015). Feedback

to distal dendrites links fMRI signals to neural receptive fields in a

spiking network model of the visual cortex. J. Neurophysiol. 114, 57–69.

doi: 10.1152/jn.00169.2015

Horn, A., Reich, M., Vorwerk, J., Li, N., Wenzel, G., Fang, Q., et al. (2017).

Connectivity predicts deep brain stimulation outcome in Parkinson disease.

Ann. Neurol. 82, 67–78. doi: 10.1002/ana.24974

Horn, A., Wenzel, G., Irmen, F., Huebl, J., Li, N., Neumann, W.-J., et al.

(2019). Deep brain stimulation induced normalization of the human

functional connectome in Parkinson’s disease. Brain 142, 3129–3143.

doi: 10.1093/brain/awz239

Howarth, C., Mishra, A., and Hall, C. N. (2021). More than just summed neuronal

activity: how multiple cell types shape the bold response. Philos. Trans. R. Soc.

B 376, 20190630. doi: 10.1098/rstb.2019.0630

Humphries, M. D., Stewart, R. D., and Gurney, K. N. (2006). A physiologically

plausible model of action selection and oscillatory activity in the basal

ganglia. J. Neurosci. 26, 12921–12942. doi: 10.1523/JNEUROSCI.3486-0

6.2006

Humphries, M. D., Wood, R., and Gurney, K. (2009). Dopamine-modulated

dynamic cell assemblies generated by the gabaergic striatal microcircuit.Neural

Netw. 22, 1174–1188. doi: 10.1016/j.neunet.2009.07.018

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience. Cambridge: MIT

Press.

Jaras, I., Harada, T., Orchard, M. E., Maldonado, P. E., and Vergara, R. C. (2021).

Extending the integrate-and-fire model to account for metabolic dependencies.

Eur. J. Neurosci. 54, 5249–5260. doi: 10.1111/ejn.15326

Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-

Martinez, J., et al. (2017). The virtual epileptic patient: individualized

Frontiers in Neuroinformatics | www.frontiersin.org 16 March 2022 | Volume 16 | Article 79096662

https://www.frontiersin.org/articles/10.3389/fninf.2022.790966/full#supplementary-material
https://doi.org/10.1111/ejn.13666
https://doi.org/10.1093/cercor/2.4.295
https://doi.org/10.1371/journal.pone.0144796
https://doi.org/10.1016/j.neuroimage.2007.11.059
https://doi.org/10.1016/j.neuroimage.2012.01.012
https://doi.org/10.1098/rstb.2019.0624
https://doi.org/10.1097/00004647-199701000-00009
https://doi.org/10.3389/fnins.2014.00139
https://doi.org/10.1016/j.neuroimage.2004.07.013
https://doi.org/10.1002/mrm.1910390602
https://doi.org/10.1038/nrn3687
https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1063/1.4851117
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1523/JNEUROSCI.0339-16.2016
https://doi.org/10.3171/2015.1.JNS141534
https://doi.org/10.1073/pnas.95.4.1834
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.32470/CCN.2019.1109-0
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1006/nimg.2000.0630
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1006/nimg.1998.0419
https://doi.org/10.1111/ejn.15082
https://doi.org/10.1523/JNEUROSCI.4198-07.2008
https://doi.org/10.1007/s10827-010-0225-8
https://doi.org/10.1152/jn.00169.2015
https://doi.org/10.1002/ana.24974
https://doi.org/10.1093/brain/awz239
https://doi.org/10.1098/rstb.2019.0630
https://doi.org/10.1523/JNEUROSCI.3486-06.2006
https://doi.org/10.1016/j.neunet.2009.07.018
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1111/ejn.15326
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Maith et al. ANNarchy BOLD Monitoring

whole-brain models of epilepsy spread. Neuroimage 145, 377–388.

doi: 10.1016/j.neuroimage.2016.04.049

Linden, D. E. (2012). The challenges and promise of neuroimaging in psychiatry.

Neuron 73, 8–22. doi: 10.1016/j.neuron.2011.12.014

Maith, O., Villagrasa Escudero, F., Dinkelbach, H. Ü., Baladron, J., Horn, A.,

Irmen, F., et al. (2021). A computational model-based analysis of basal ganglia

pathway changes in Parkinson’s disease inferred from resting-state fMRI. Eur.

J. Neurosci. 53, 2278–2295. doi: 10.1111/ejn.14868

Meier, J., Perdikis, D., Blickensdörfer, A., Stefanovski, L., Liu, Q., Maith, O., et al.

(2021). Virtual deep brain stimulation: multiscale co-simulation of a spiking

basal ganglia model and a whole-brain mean-field model with the virtual brain.

bioRxiv, 1–38. doi: 10.1101/2021.05.05.442704

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., and Nichols, T. E.

(2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images.

London: Elsevier.

Popovych, O. V., Manos, T., Hoffstaedter, F., and Eickhoff, S. B. (2019). What can

computational models contribute to neuroimaging data analytics? Front. Syst.

Neurosci. 12, 68. doi: 10.3389/fnsys.2018.00068

Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T.,

Frégnac, Y., et al. (2008). Minimal Hodgkin–Huxley type models for different

classes of cortical and thalamic neurons. Biol. Cybernet. 99, 427–441.

doi: 10.1007/s00422-008-0263-8

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Ritter, P., Schirner, M., McIntosh, A. R., and Jirsa, V. K. (2013). The virtual

brain integrates computational modeling and multimodal neuroimaging. Brain

Connect. 3, 121–145. doi: 10.1089/brain.2012.0120

Rubin, J. E., and Terman, D. (2004). High frequency stimulation of

the subthalamic nucleus eliminates pathological thalamic rhythmicity

in a computational model. J. Comput. Neurosci. 16, 211–235.

doi: 10.1023/B:JCNS.0000025686.47117.67

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,

McIntosh, A. R., et al. (2013). The virtual brain: a simulator of primate brain

network dynamics. Front. Neuroinform. 7, 10. doi: 10.3389/fninf.2013.00010

Schirner, M., Domide, L., Perdikis, D., Triebkorn, P., Stefanovski, L., Pai, R., et al.

(2022). Brain modelling as a service: the virtual brain on ebrains. NeuroImage,

251:118973. doi: 10.1016/j.neuroimage.2022.118973

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada,

S. J. (2018). A multi-scale layer-resolved spiking network model of resting-state

dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14, e1006359.

doi: 10.1371/journal.pcbi.1006359

Serences, J. T. (2004). A comparison of methods for characterizing the

event-related bold timeseries in rapid fMRI. Neuroimage 21, 1690–1700.

doi: 10.1016/j.neuroimage.2003.12.021

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann,

C. F., Nichols, T. E., et al. (2011). Network modelling methods

for fMRI. Neuroimage 54, 875–891. doi: 10.1016/j.neuroimage.2010.

08.063

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B.

(2005). Highly nonrandom features of synaptic connectivity in

local cortical circuits. PLoS Biol. 3, e68. doi: 10.1371/journal.pbio.00

30068

Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A., and Friston, K. J.

(2007). Comparing hemodynamicmodels withDCM.Neuroimage 38, 387–401.

doi: 10.1016/j.neuroimage.2007.07.040

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8, e47314. doi: 10.7554/eLife.47314.028

Van Hartevelt, T. J., Cabral, J., Deco, G., Møller, A., Green, A. L., Aziz, T. Z., et al.

(2014). Neural plasticity in human brain connectivity: the effects of long term

deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. PLoS

ONE 9, e86496. doi: 10.1371/journal.pone.0086496

Vanni, S., Sharifian, F., Heikkinen, H., and Vigário, R. (2015). Modeling fMRI

signals can provide insights into neural processing in the cerebral cortex. J.

Neurophysiol. 114, 768–780. doi: 10.1152/jn.00332.2014

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: a code

generation approach to neural simulations on parallel hardware. Front.

Neuroinform. 9, 19. doi: 10.3389/fninf.2015.00019

Welvaert, M., Durnez, J., Moerkerke, B., Berdoolaege, G., and Rosseel, Y. (2011).

neurosim: an r package for generating fMRI data. J. Stat. Softw. 44, 1–18.

doi: 10.18637/jss.v044.i10

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Maith, Dinkelbach, Baladron, Vitay and Hamker. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 17 March 2022 | Volume 16 | Article 79096663

https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.1016/j.neuron.2011.12.014
https://doi.org/10.1111/ejn.14868
https://doi.org/10.1101/2021.05.05.442704
https://doi.org/10.3389/fnsys.2018.00068
https://doi.org/10.1007/s00422-008-0263-8
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1089/brain.2012.0120
https://doi.org/10.1023/B:JCNS.0000025686.47117.67
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1016/j.neuroimage.2022.118973
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.1016/j.neuroimage.2003.12.021
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1016/j.neuroimage.2007.07.040
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1371/journal.pone.0086496
https://doi.org/10.1152/jn.00332.2014
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.18637/jss.v044.i10
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 25 April 2022

doi: 10.3389/fncom.2022.847336

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 847336

Edited by:

Kelly Shen,

Simon Fraser University, Canada

Reviewed by:

Spase Petkoski,

INSERM U1106 Institut de

Neurosciences des Systèmes, France

Jorge F. Mejias,

University of Amsterdam, Netherlands

*Correspondence:

Ben D. Fulcher

ben.fulcher@sydney.edu.au

Received: 02 January 2022

Accepted: 22 March 2022

Published: 25 April 2022

Citation:

Siu PH, Müller E, Zerbi V, Aquino K

and Fulcher BD (2022) Extracting

Dynamical Understanding From

Neural-Mass Models of

Mouse Cortex.

Front. Comput. Neurosci. 16:847336.

doi: 10.3389/fncom.2022.847336

Extracting Dynamical Understanding
From Neural-Mass Models of
Mouse Cortex
Pok Him Siu 1, Eli Müller 1, Valerio Zerbi 2,3, Kevin Aquino 1 and Ben D. Fulcher 1*

1 School of Physics, The University of Sydney, Camperdown, NSW, Australia, 2Neural Control of Movement Lab, D-HEST,

ETH Zurich, Zurich, Switzerland, 3Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland

New brain atlases with high spatial resolution and whole-brain coverage have rapidly

advanced our knowledge of the brain’s neural architecture, including the systematic

variation of excitatory and inhibitory cell densities across the mammalian cortex. But

understanding how the brain’s microscale physiology shapes brain dynamics at the

macroscale has remained a challenge. While physiologically based mathematical models

of brain dynamics are well placed to bridge this explanatory gap, their complexity

can form a barrier to providing clear mechanistic interpretation of the dynamics they

generate. In this work, we develop a neural-mass model of the mouse cortex and show

how bifurcation diagrams, which capture local dynamical responses to inputs and their

variation across brain regions, can be used to understand the resulting whole-brain

dynamics. We show that strong fits to resting-state functional magnetic resonance

imaging (fMRI) data can be found in surprisingly simple dynamical regimes—including

where all brain regions are confined to a stable fixed point—in which regions are

able to respond strongly to variations in their inputs, consistent with direct structural

connections providing a strong constraint on functional connectivity in the anesthetized

mouse. We also use bifurcation diagrams to show how perturbations to local excitatory

and inhibitory coupling strengths across the cortex, constrained by cell-density data,

provide spatially dependent constraints on resulting cortical activity, and support a greater

diversity of coincident dynamical regimes. Our work illustrates methods for visualizing

and interpreting model performance in terms of underlying dynamical mechanisms, an

approach that is crucial for building explanatory and physiologically grounded models of

the dynamical principles that underpin large-scale brain activity.

Keywords: brain dynamics, dynamical systems, neural mass model, mouse cortex, cell densities

1. INTRODUCTION

Recent advances in neuroimaging have produced intricate maps revealing the complexity of the
brain’s microscale circuits, with whole-brain coverage. Analyzing and integrating these data have
uncovered new patterns of brain organization, including the systematic spatial variation of gene
expression (Burt et al., 2018; Fulcher et al., 2019), cytoarchitecture (Goulas et al., 2016), neuron
densities (Erö et al., 2018), cortical thickness (Wagstyl et al., 2015), axonal connectivity (Oh et al.,
2014), cognitive function (Margulies et al., 2016), and local dynamical properties (Shafiei et al.,
2020). Existing evidence suggests that, to a good first approximation, these properties vary together

64

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.847336
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.847336&domain=pdf&date_stamp=2022-04-25
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ben.fulcher@sydney.edu.au
https://doi.org/10.3389/fncom.2022.847336
https://www.frontiersin.org/articles/10.3389/fncom.2022.847336/full

Siu et al. Dynamical Understanding From Mouse Models

along a dominant hierarchical axis in mouse and human (Burt
et al., 2018; Fulcher et al., 2019; Wang, 2020).

To understand the functional role of observed physiological
patterns, like systematic spatial variations in brain architecture,
we need a way of simulating their effect on whole-brain
dynamics. Physiologically based brain models achieve this, using
methods from statistical physics to capture the dynamics of
large populations of neurons and their interactions (Deco et al.,
2008; Breakspear, 2017). Neural population models can capture
the complex spatiotemporal dynamics in modern neuroimaging
datasets, including persistent activity, intermittent oscillations,
and multi-stability (Robinson et al., 2016; Noori et al., 2020;
Froudist-Walsh et al., 2021; Mejías and Wang, 2022), and
have successfully reproduced a wide range of experimental
phenomena, from the alpha rhythm to seizure dynamics (Mejias
et al., 2016; Breakspear, 2017; Schneider et al., 2021; Sip
et al., 2022). The physiological formulation of these models
means that their variables and parameters encode interpretable
and biologically measurable properties of neural circuits, like
the strengths and timescales of interactions between neuronal
populations. This allows them to provide a unique mechanistic
account of whole-brain dynamics that can be validated against
both physiological experiments and the dynamical patterns
observed in neuroimaging experiments.

While most existing brain models involve dynamical rules
that are spatially uniform (e.g., the same model parameters
in all brain areas), recent work has begun to investigate
the effect of non-uniform dynamical rules, constrained by
emerging brain-atlas datasets. An early example is the work
of Chaudhuri et al. (2015), which incorporated a variation
in recurrent excitation corresponding to that of measured
spine count in the macaque. More recent work in human
has incorporated spatial heterogeneity in model parameters
with: the MRI-derived T1w:T2w map (Demirtas et al., 2019);
T1w:T2w, the first principal component of gene transcription,
and an inferred excitation:inhibition ratio (Deco et al., 2021);
a linear combination of T1w:T2w and the principal resting-
state functional connectivity (FC) gradient (Kong et al., 2021);
a fitted parametric variation that recapitulated an interpretable
hierarchical variation (Wang et al., 2019); and a spatial
variation in excitability with a spatial map of epileptogenicity
in modeling seizure dynamics and spread (Jirsa et al., 2017;
Courtiol et al., 2020). These papers have reported improved
out-of-sample model fits to empirical data, evaluated according
to a range of summary statistics of the resulting dynamics
(most typically FC), and provided insights into how spatial
variation in biological mechanisms (like recurrent excitation)
may underpin whole-brain dynamical regimes. While these
studies demonstrate the promise of producing more accurate
predictions of measured brain dynamics by incorporating
regional heterogeneity—constraining to physiological data, or
through large-scale parameter fitting (Wang et al., 2019)—the
resulting models are correspondingly complex and challenging
to interpret in terms of the mechanisms which underpin their
dynamics. The tools of dynamical systems have the potential to
reveal the dynamical features that improve model fits to data,
including the bifurcation structure that defines the accessible

dynamical regimes and the range of such regimes that different
brain areas can access, including their vicinity to critical points
(Deco and Jirsa, 2012; Deco et al., 2013; Cocchi et al., 2017;
Demirtas et al., 2019; Wang et al., 2019). In this work, we show
that analyzing the dynamical response of individual brain regions
to inputs using bifurcation diagrams provides an understanding
of model behavior in terms of accessible dynamical regimes,
an approach that is particularly valuable for understanding the
increased complexity of spatially non-uniform models.

The mouse is an ideal organism to develop comprehensively
constrained physiologically based models of brain dynamics, but
models of the mouse brain have been relative few compared to
the large number of studies of human cortex. Existing models of
mouse-brain dynamics on the macroscale have taken a variety
of approaches, from phenomenological—connectome-coupled
Kuramoto oscillators (Choi and Mihalas, 2019; Allegra Mascaro
et al., 2020) and network diffusion models (Shadi et al., 2020)—
through to neural mass models (Lin et al., 2020) coupled
via a connectome (Melozzi et al., 2017, 2019) and interacting
populations of spiking neural networks (Nunes et al., 2021).
Compared to human, there is an abundance of high-resolution,
whole-brain physiological data in mouse (Fulcher et al., 2019),
including directed tract-tracing axonal connectivity data (Oh
et al., 2014; Harris et al., 2019), high-resolution gene-expression
maps (Lein et al., 2007), and cell-density atlases (Kim et al.,
2017; Erö et al., 2018). High-quality whole-brain neuroimaging
data using fMRI in mouse is also available, allowing us to
evaluate model predictions in the resting state (Zerbi et al.,
2015; Grandjean et al., 2020) and as a result of targeted
manipulations (Zerbi et al., 2019; Markicevic et al., 2020, 2022).
Prior work has shown that FC is strongly constrained by direct
structural pathways (Grandjean et al., 2017), and prior dynamical
models have reported the ability of coupled dynamical models
to reproduce FC structure, especially when modeling using
matching individual structural connectivity (Melozzi et al., 2019).
In this work, we develop a neural-mass model of mouse cortical
dynamics, and aim to understand the dynamical regimes in which
it best captures resting-state fMRI data in mouse. We also aim
to characterize the impact of incorporating spatial variations in
excitatory and inhibitory cell densities as spatial variations in
model parameters from a dynamical systems perspective.

2. METHODS

As illustrated in Figure 1, we developed a neural mass model
of the right hemisphere of the mouse cortex, across 37 cortical
areas, comprising a simple Wilson–Cowan local dynamical
model (Figure 1A) coupled via a directed structural connectome
(Figure 1B). These regions are shown on the mouse brain in
Figure 1C, colored by their relative excitatory cell densities
(which are incorporated into the model in section 3.2). Of the
38 cortical regions reported in Oh et al. (2014), we excluded the
frontal pole (FRP) due to its small size (likely contributing to
noisy, outlying values of excitatory and inhibitory cell densities
Erö et al., 2018). In visualizing our results, we grouped cortical
regions according to six functional labels: Somatomotor, Medial,

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 84733665

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

FIGURE 1 | Simulating and evaluating a coupled neural-mass model of mouse cortical dynamics. (A) The dynamics of individual brain regions follow the

Wilson–Cowan equations (Wilson and Cowan, 1972, 1973) which govern interactions between local excitatory (E) and inhibitory (I) neural populations. (B) Regions are

coupled together by connections defined by the AMBCA (Oh et al., 2014), represented as a directed adjacency matrix (connections shown black). A schematic shows

how these long-range structural connections couple local cortical regions via excitatory projections (Breakspear, 2017). (C) Heterogeneity in local model parameters

can be introduced as a perturbation that follows the measured variation in excitatory and inhibitory neural densities. Here the variation in excitatory cell density is

plotted across the 37 mouse cortical areas as deviations relative to the mean level (green), using brainrender (Claudi et al., 2021) and data from Erö et al. (2018).

(D) Model simulation yields activity time series for each brain region, from which pairwise linear correlations (functional connectivity, FC) are computed. (E) Model

simulations are evaluated against empirical FC, averaged across 100 mice, as the Spearman correlation between all unique pairwise FC values, yielding an FC–FC

score, ρFCFC.

Temporal, Visual, Anterolateral, and Prefrontal (Harris et al.,
2019) (see Supplementary Table S1 for full list).

As shown in Figure 1A, a given brain region consists of both
an excitatory (E) and an inhibitory (I) neural population, whose
dynamics are governed by the Wilson–Cowan equations (Wilson
and Cowan, 1972, 1973). Brain regions are coupled via long-
range excitatory projections using a binary, directed connectome
from the Allen Mouse Brain Connectivity Atlas (AMBCA) (Oh
et al., 2014; Fulcher and Fornito, 2016) (Figure 1B). As these
data are the result of right-hemisphere viral tracer injections,
yielding estimates of ipsilateral cortical connectivity in the right
hemisphere, we modeled just the right hemisphere in this work,
but note that model of both hemispheres could be developed
in future under the assumption of lateral symmetry [e.g., as
Melozzi et al. (2017)]. Simulating the model yields dynamics
for the E and I populations; we take the activity time series of
the excitatory population to evaluate the similarity of pairwise
linear correlation structure as functional connectivity (FC),
shown in Figure 1D. To assess the goodness of fit, we compare
this simulated FC to an empirical FC calculated on a mouse
fMRI dataset (Figure 1E). The goodness of fit is assessed as a
Spearman correlation coefficient computed between all pairs of
FC values from the empirical data and the model (Figure 1E).
Spearman’s correlation coefficient was used instead of Pearson’s

correlation coefficient to capture a potentially nonlinear but
monotonic relationship.

As our main aim was to develop tools to understand
the distributed dynamics of neural mass models, we favored
simplicity in focusing on the Wilson–Cowan (W–C) model
relative to alternative models. In addition, its physiological
formulation is crucial for mapping to experimental cell-density
data, as its parameters encode measurable properties with
physical units that can be constrained by such data. The W–
C model also exhibits a wide range of dynamical behaviors,
including bifurcations, hysteresis, stable fixed-points (attractors),
and limit cycles (oscillatory attractors) (Wilson and Cowan, 1972,
1973; Cowan et al., 2016), that are common features of dynamical
systems in general, including more complex biophysical neural
population models. We use a formulation of the Wilson–Cowan
equations based on the mean firing rates of coupled populations
of excitatory and inhibitory neurons, as

τeĖ = −E+ (1− E)S
[

ae
(

weeE− weiI − Be + Je
)]

, (1)

τi İ = −I + (1− I)S
[

ai
(

wieE− wiiI − Bi
)]

, (2)

where E and I are the mean firing rates of the excitatory and
inhibitory populations, respectively (Hz); S(v) = h/[1+exp(−v)]
is the sigmoidal firing-rate function; h (which is set to 1 here) is

Frontiers in Computational Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 84733666

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

the upper bound for the sigmoid function representing amaximal
population firing rate (Hz); ae, ai control the gradient scaling
for the sigmoid function (V−1); wxy are the coupling weights
from population y to population x, where x and y correspond
to excitatory (e) or inhibitory (i) populations (V s); Be, Bi are
the firing thresholds for excitatory/inhibitory cells (V); Je is the
voltage induced by external current injected into the excitatory
cells, defined below as a weighted sum over external inputs (V);
and τe, τi are the time constants of excitation and inhibition
respectively (s).

Neural masses, corresponding to cortical areas, were coupled
via projections between excitatory populations through the

external current term, Je. For a given region a, J
(a)
e (t) is

computed as

J(a)e (t) = G
∑

b

Aab E
(b)(t) , (3)

where G is a global coupling constant (V s), Aab is the adjacency
matrix corresponding to the structural connectome (unweighted
here), and E(b) is the excitatory activity of region b (Hz). It is
helpful to define the quantity

J
(a)
tot (t) = J(a)e (t)− Be = G

∑

b

Aab E
(b)(t)− Be , (4)

as the total input that includes the constant offset Be. We will use
this to understand the dynamical response of a brain area to its
net input in section 3.1.

In addition to this “homogeneous” model, in which the
parameters are identical for all brain regions, we also analyze
a heterogeneous model (in section 3.2), in which the coupling
parameters, wij, vary across regions. We calibrate this variation
to estimated cell-density data (Erö et al., 2018), by making
the assumption that local connectivity from excitatory and
inhibitory cells is uniform, and thus that coupling strengths
from a given population are proportional to the density of cells
of that population. Thus, we adjust the coupling parameters
corresponding to outputs from the excitatory population, wee

and wie, according to measured variations in excitatory cell
density across cortical areas, and adjust wii and wei according to
measured variations in inhibitory cell density. Defining nominal
parameter values as ŵxy (for x and y taking i and e), we can then
define linear parameter perturbations for a given region a as:

w(a)
ee = ŵee(1+ R(a)e), w

(a)
ie = ŵie(1+ R(a)e),

w
(a)
ii = ŵii(1+ R

(a)
i), w

(a)
ei = ŵei(1+ R

(a)
i),

(5)

where rescaling factors, Re and Ri, represent relative variations
in excitatory and inhibitory cell density, respectively (see
Figure 1C for a visualization of how excitatory cell density varies
across cortical areas). To map cell-density measurements to
corresponding Re and Ri values, we first z-score normalized
raw excitatory and inhibitory cell-density data, as e(a) and i(a),
respectively, across all regions, a. We then defined a simple

proportional mapping to model parameters via a single scaling
parameter, σ ≥ 0, as

R(a)e = σ e(a) , R
(a)
i = σ i(a) . (6)

In this formulation, setting σ = 0 sets all R
(a)
e = R

(a)
i = 0

and reproduces the spatially homogeneous model; increasing σ

increases the level of variation in coupling parameters across
areas. Note that there is much scope for defining more complex
mappings involving more new parameters, but defining the
mapping from cell densities to model parameters in this simple,
single-parameter scheme allows us to more clearly tackle our
main aim to investigate how the model’s dynamical features are
shaped by such variation.

For a given system of coupled ODEs defined above, dynamics
were simulated using The Virtual Brain (Sanz-Leon et al., 2015;
Melozzi et al., 2017), yielding simulated time series for each
region. The system was driven by white noise with a mean µ =

0 and standard deviation s = 1.3 × 10−5 using the Euler–
Maruyama method with a fixed time step, 1t = 0.1ms, for a
total simulation length of 1.2 × 105ms, (or 2min at 1,000Hz).
Initial transients of 1 s (1,000 time steps) were removed from all
simulations to focus on themodel’s steady-state dynamics. As our
aim was to understand the dynamical properties of the model
that enable it to match the statistics of measured fMRI dynamics,
we chose not to adjust the model output, E(a)(t), through a
simulation of the hemodynamic response function to match the
fMRI measurement [but could be done in future using, e.g.,
a convolution of a canonical hemodynamic response (Boynton
et al., 1996) or a biophysical model (Friston et al., 2000; Kim and
Ress, 2016)].

fMRI data for 100 wild-type mice are taken from Zerbi
et al. (2021), and consisted of blood-oxygen-level-dependent
(BOLD) signals recorded from 100 anesthetized mice measured
at rest for a period of 15min using a Biospec 70/16 small
animal MR system operating at 7T, equipped with a cryogenic
quadrature surface coil for signal detection (Bruker BioSpin
AG, Fällanden, Switzerland). The data were processed (see
Supplementary Material for details) and parcellated using the
Allen Common Coordinate Framework (CCF v3). Using time-
series data from each of the 37 cortical regions analyzed here, we
computed a functional connectivity (FC) matrix for each mouse
as pairwise Pearson correlations. These matrices were averaged
across mice to yield a group-average FC that was used as the basis
of comparison for computing FC–FC scores.

Models were assessed on their ability to reproduce the pairwise
linear correlation structure (FC) of empirical mouse fMRI data,
as the Spearman correlation between predicted and measured
FC values: the FC–FC score, ρFCFC. While we focused here on
reproducing pairwise linear correlations using ρFCFC, we note
that a more comprehensive evaluation of model fit, incorporating
aspects of local dynamics and dynamic FC properties, will
be important for future investigations to more fully evaluate
the rich patterns contained in the dynamics (Cabral et al.,
2017; Aquino et al., 2021; Deco et al., 2021). To account for
variability in simulatedmodel dynamics due to a finite simulation
time and different random seeds, we computed ρFCFC for 40

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 84733667

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

repeats of each simulation using different random seeds. Code
for reproducing the simulations and analysis presented here
is available at https://github.com/DynamicsAndNeuralSystems/
MouseBrainModelling.

3. RESULTS

Here, we aim to understand the dynamical principles underlying
coupled dynamical models using a neural mass model of the
mouse cortex. First, in section 3.1, we investigate the spatially
uniform case in which all brain regions are governed by identical
dynamical rules. Focusing on model behavior in the vicinity of
saddle-node and Hopf bifurcations, we characterize the model’s
dynamical regimes that best capture empirical FC structure. We
then investigate the spatially heterogeneous case in section 3.2, in
which regional variations in parameters are introduced according
to variations in excitatory and inhibitory cell-density maps (Erö
et al., 2018), which shape the model’s local bifurcation properties
and resulting dynamical regimes.

3.1. What Dynamical Features Drive High
Model Performance?
We first characterize the model’s dynamical regimes that best
capture the pairwise correlation structure of experimental
mouse fMRI, with the aim to understand how the positioning
of individual nodes (brain regions) around specific types of
bifurcations affects the model’s ability to capture empirical FC.
In this section we focus on a homogeneous model, in which all
brain areas are governed by the same dynamical rules, but differ
in their inputs from other regions (via the connectome). We
characterize the model’s behavior in each of three regimes: (i) in
the vicinity of a single stable equilibrium, which we denote as the
“Fixed Point” regime [using parameters adapted from Sanz-Leon
et al. (2015)]; (ii) in the vicinity of a bistable region separated by
saddle-node bifurcations, which we denote as the “Hysteresis”
regime [using parameters from Heitmann et al. (2018)]; and
(iii) in the vicinity of a pair of Hopf bifurcations, denoted as
the “Limit Cycle” regime [using parameters from Borisyuk and
Kirillov (1992)]. Parameter values for each of these three regimes
are given in Supplementary Table S2. Bifurcation diagrams of
excitatory firing, E, as a function of net external input, Jtot = Je −
Be, are plotted for the Fixed Point regime (Figure 2D), Hysteresis
regime (Figure 2E), and Limit Cycle regime (Figure 2F). These
plots show how stable states of E vary with Jtot as solid lines (with
unstable states shown for the bistable regime in Figure 2E and
lower and upper limits of a limit-cycle oscillation in Figure 2F).
They thus capture the rules underlying the dynamical behavior of
individual brain regions in response to their aggregate input from
other brain regions, Jtot, with each parameter setting defining
a qualitatively different set of accessible dynamics, and types
of response to inter-regional inputs. Importantly, these basic
bifurcation structures, and the insights we gain from them, are
not specific to the W–Cmodel but are common features of many
dynamical models (Strogatz, 2018).

We can understand the dynamics of an individual brain region
in terms of the variation in its inputs over time, Jtot(t) (recalling

that Jtot is high when a region has many inputs from other high-
activity, or high-E, regions). To understand this in more detail,
we consider two key parameters that control the range of Jtot that
can be explored by a given brain region. As per Equation (4),
these parameters are: (i) the excitatory firing threshold, Be, which
contributes a constant offset to Jtot; and (ii) the global coupling
constant, G, which scales each region’s response to excitatory
inputs from other connected regions. Increasing Be decreases
Jtot for all cortical regions, shifting the range of Jtot explored by
network nodes to the left on the Jtot–E bifurcation diagram. We
can see this from the annotated levels of input, Jtot, corresponding
to selected Be values (when Je = 0) as vertical dashed lines in
Figures 2D–F, which denote the minimum Jtot for selected Be
values. Low G ≈ 0 removes the effect of inter-regional coupling
altogether (Je ≈ 0), resulting in a very narrow range of Jtot around
Be, while increasing G allows individual regions to respond more
strongly to external inputs, and thus span a greater range of Jtot
values. Given fixed values of Be and G, the key factor controlling
how different brain regions differ in Jtot in the homogeneous
model is their connected neighbors, with high in-degree regions
having more inputs and thus the potential to achieve a higher Je
and Jtot than low in-degree regions.

We are now able to analyze how different values of Be
(which adjusts the baseline of Jtot) and G (which scales the
excitatory inputs, Je, relative to this baseline) shape the dynamics
of a given brain region. For example, some combinations of
Be and G confine all nodes in the network to a fixed-point
attractor, whereas others allow some nodes to span one (or
multiple) bifurcations. Different choices of G and Be control
the diversity of dynamical features supported by the model,
but what types of configurations yield high FC–FC scores,
ρFCFC? Our results, comparing across a range of both G and
Be, are shown as heat maps for the Fixed Point (Figure 2A),
Hysteresis (Figure 2B), and Limit Cycle (Figure 2C) regimes. To
visualize the correspondence between points in G–Be space and
the resulting range of Jtot(t) (and hence accessible dynamical
regimes) they correspond to in themodel simulation (range taken
across time and nodes), we annotated this range in Figures 2D–F

for key selected points in each corresponding heat map—labeled
as “i,” “ii,” etc. For example, points toward the left of the G–Be
heat map correspond to low G and thus narrowing the range
of Jtot, while points near the top of the heat map correspond to
high Be and hence low baseline inputs; hence points labeled “i”
correspond to low and narrow ranges of Jtot, as annotated to the
bifurcation diagrams in Figures 2D–F.

We first note a wide range of ρFCFC in all cases, indicating
that model performance depends strongly on the local response
to inputs, G and Be, and thus the types of dynamical regimes
available to the nodes of the coupled network. We also see that
each dynamical regime exhibits characteristic regions of G–Be
space in which there is high FC–FC correspondence (colored red
in Figures 2A–C), which reaches as high as ρFCFC = 0.52 (for
the Fixed-Point regime), ρFCFC = 0.50 (Hysteresis regime), and
ρFCFC = 0.56 (Limit-Cycle regime). All three model regimes can
capture FC better than the direct correlation between SC and FC,
ρSCFC = 0.42, indicating a benefit of accounting for distributed
dynamics via coupled dynamical equations in capturing FC.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 84733668

https://github.com/DynamicsAndNeuralSystems/MouseBrainModelling
https://github.com/DynamicsAndNeuralSystems/MouseBrainModelling
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

FIGURE 2 | Model performance is highly sensitive to the types of dynamical features available to the coupled dynamical network, with high FC–FC found near

bifurcations and where external inputs have strong dynamical responses. (A–C) FC–FC score between model and data is plotted as a heat map in G–Be space for the

three model regimes considered here (see text): (A) “Fixed-point” regime, (B) “Hysteresis” regime, and (C) “Limit-cycle” regime. Corresponding Jtot–E bifurcation

diagrams [cf. Equation (4)] for each regime are shown in the right-hand panels (D–F), showing stable E fixed points (solid), unstable E fixed points (dotted), and minima

and maxima of limit-cycle oscillations (solid lines with shading). Dashed vertical lines represent the minimum Jtot corresponding to selected Be values. Gray horizontal

lines represent the range of Jtot values across regions and time for a sample simulation from the corresponding point in G–Be space annotated in (A–C). Parameter

values for each regime are in Supplementary Table S2.

Furthermore, model performance is consistent with, or higher
than recently reported results for mouse cortex using a reduced
Wong–Wangmodel (Wong andWang, 2006) in a bistable regime
[and using a Balloon–Windkessel BOLD filter (Friston et al.,
2000) and a linear correlation, ρFCFC]: 0.35 / ρFCFC / 0.50
(Melozzi et al., 2019).

To understand how the model can produce high FC–FC,
ρFCFC = 0.52 ± 0.03, in the Fixed Point regime (Figure 2A), we
start by exploring the qualitatively different types of input–output
responses in Figure 2D. At high excitatory firing threshold,
Be, and low coupling, G (labeled “i” in Figures 2A,D), nodes

can only access the relatively flat, low-E steady-state branch,
weakening inter-regional communication across the brain and
leading to poor FC–FC. A similar suppression of inter-regional
communication, and resulting low ρFCFC, occurs when the model
is confined to the upper branch at low Be and high G (labeled
“iii” in Figures 2A,D). In the intermediate region, labeled “ii” in
Figures 2A,D, we obtain high FC–FC scores, up to a maximum
ρFCFC = 0.52±0.03 (at Be = 3.3mV,G = 0.65mVs). Here, brain
areas can access the sharp gradient of the sigmoid-like stable
branch in E, and are thus highly sensitive in their response to
variations in the activity of neighboring brain regions. This gives

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2022 | Volume 16 | Article 84733669

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

us the somewhat surprising result that this very simple model,
in a regime in which regions respond to the aggregate activity
of their neighbors (but without any complex local dynamical
features like bifurcations or oscillations) can produce high
ρFCFC = 0.52, consistent with results reported recently using
more complex models (Melozzi et al., 2019). This is qualitatively
consistent with direct structural connections providing a strong
constraint on the resulting FC (Grandjean et al., 2017), with
non-direct interactions providing a more minor perturbation
(Robinson, 2012).

We next investigated a “Saddle Node” model regime [using
parameters from Borisyuk and Kirillov (1992)], that involves a
pair of saddle-node bifurcations with an intermediate bistable
region, shown in Figures 2B,E. We obtained qualitatively similar
results to the Fixed-Point regime analyzed above: ρFCFC is
low when nodes are confined to relatively flat low-E branch
(at low G and high Be, labeled “i” in Figures 2B,E) or
the high-E branch (high G and low Be, labeled “iii” in
Figures 2B,E), where responses to external inputs are weak.
Stronger FC–FC scores (e.g., a maximum ρFCFC = 0.50 ±

0.14 at Be = 3.7mV and G = 0.35mVs) again arise
in the intermediate region, where the local activity response
is most sensitive to driving inputs, Jtot (labeled “ii” in
Figures 2B,E). The difference now is the increased diversity
of supported dynamics: regions coexist between the stable
low-E and high-E states, and can switch between them.
This bistability leads to a greater dynamical repertoire of
regions in the network, including longer-timescale switching
(cf. Supplementary Figure S2), but this is not reflected in an
improved ρFCFC.

Finally, we investigated model dynamics in the neighborhood
of a stable limit cycle, separated by two Hopf bifurcations [model
parameters from Heitmann et al. (2018)], shown as a Jtot–E
bifurcation diagram in Figure 2F. As for the two regimes studied
above, when nodes are confined to a relatively flat stable branch,
labeled “i” and “v” in Figures 2C,F, FC–FC scores are low. For a
similar reason, we also find low FC–FC when nodes are confined
to a limit-cycle oscillation (labeled “iii” in Figures 2C,F), where
nodes have a restricted ability to respond to their inputs in a way
that their neighbors canmeaningfully respond to [since nodes are
coupled via E, cf. Equation (3)]. But the heat map in Figure 2C

reveals two regions of G–Be space with high ρFCFC, labeled “ii”
and “iv.” In the region labeled “ii” (e.g., ρFCFC = 0.38 ± 0.03
at Be = 2.8mV, G = 0.45mVs), nodes sit on a stable branch
which has a small but sufficient curvature to enable local activity
to respond, albeit weakly, to inputs from connected regions.
But the best fits to data, reaching ρFCFC = 0.56 ± 0.04 (at
Be = 1.5mV, G = 0.7mVs), are found in the region labeled
“iv” in Figures 2C,F. In this region of Be–G space, nodes can
access two distinctive types of dynamics: the limit-cycle regime
(at low Jtot) and the high-E fixed-point attractor (at high Jtot).
High FC–FC scores are also obtained when nodes can also access
the low-E stable branch (at high G and high Be). Importantly, the
high-E branch at high Jtot has a relatively sharp dependence on
Jtot, a feature that is common to obtaining high-ρFCFC scores in
all three model regimes. Together, our analyses in this section
demonstrate the importance of a model that allows nodes to

respond sensitively to inputs from their network neighbors for
reproducing FC.

3.1.1. Interpreting Simulated Dynamics in Terms of

Bifurcation Diagrams
Bifurcation diagrams provide an understanding of the dynamical
regimes accessed by individual nodes, and the way in which
they respond to changes in inputs, information that can
guide understanding of the complex distributed dynamics that
result from a full model simulation. For the Limit-Cycle
regime, simulated multivariate time series and corresponding FC
matrices are plotted in Figure 3 for points labeled “ii,” “iii,” and
“iv” in Figures 2C,F. In “ii,” nodes are confined to the low-E
stable branch and, accordingly, the dynamics consist of noisy
deviations from a low-E stable fixed point (Figure 3D). These
perturbations can drive changes in structurally connected nodes,
yielding weak pairwise correlations shown in Figure 3A. In “iii,”
when nodes are mostly confined to the limit cycle and ρFCFC is
low, most nodes exhibit oscillations (with some longer-timescale
deviations, cf. Figure 3E), and a minority of other nodes
(situated near the low-Jtot Hopf bifurcation) move between noisy
deviations from the low-E stable branch and oscillatory limit-
cycle dynamics. This results in very high pairwise correlations
between groups of synchronized oscillatory nodes, r > 0.8,
such that the underlying structural connections play less of
a role in shaping the pairwise correlation structure, resulting
in a low FC–FC score. In “iv,” with the highest ρFCFC, the
Hopf bifurcations facilitate complex spatiotemporal dynamics
shown in Figure 3F. While many nodes spend most of the
simulation near the high-E stable branch (those with high Jtot),
we observe periods of time during which groups of nodes
(near the Hopf bifurcation) display synchronized oscillations,
embedded in globally complex and distributed dynamics on
longer timescales. These analyses demonstrate how analyzing the
response of local nodes to inputs, as ranges of Jtot in a bifurcation
diagram (as in Figures 2D–F), can ground an understanding
of the complex distributed dynamics that result from the full
coupled model, which can be visualized effectively as heat maps
(Figure 3).

3.1.2. Resolving Inter-regional Differences in Inputs
The variation in qualitative dynamics across individual brain
areas in the multivariate time series plotted in Figures 3D–F

indicates that different network elements are accessing different
dynamical regimes permitted by the model, resulting from
substantial variability in the Jtot(t) experienced by different nodes.
Since all nodes are governed by the same dynamical rules, and,
hence, the same bifurcation diagrams, we can annotate Jtot(t)
ranges onto a common bifurcation diagram to understand how
the dynamics of individual regions are governed by different
types of inputs from their connected neighbors. That is, rather
than plotting just the overall range of Jtot (from the minimum
to the maximum across all nodes), as in Figures 2D–F, we
can resolve the individual ranges of Jtot experienced by each
individual node on the Jtot–E bifurcation diagram. An example
is shown for the Limit-Cycle regime at “iv” in Figure 4A [where
we have plotted Je instead of Jtot, equivalently, for a fixed Be =

Frontiers in Computational Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 84733670

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

FIGURE 3 | Different dynamical features of the limit-cycle regime yield very different dynamics, including noisy deviations about a stable fixed point, synchronous

oscillations, and a complex distributed dynamics featuring intermittent synchronization with high FC–FC. Here, we investigate simulated time series (lower row) and

functional connectivity matrices (upper row) for three regions in Be–G space annotated “ii,” “iii,” and “iv” in Figure 2. (A–C) Simulated functional connectivity matrices

are plotted for “ii,” “iii,” and “iv,” respectively. (D–F) Simulated E time series are plotted as a node × time heat map (or “carpet plot” Aquino et al., 2020) for all brain

regions for “ii,” “iii,” and “iv,” respectively. Colored bars label the six cortical divisions listed in Supplementary Table S1. In all plots, nodes are ordered as per

Supplementary Table S1.

1.5mV, cf. Equation (4)]. We see how, even with fixed dynamical
rules, the range of Je experienced by individual nodes varies
markedly. Some regions have low Je across the simulation, like the
dorsal retrosplenial area, RSPd (annotated in Figure 4A), and,
therefore, only display oscillations, as plotted in Figure 4B. Other
regions with high Je across the simulation, like the posterior
parietal association areas, PTLp (annotated in Figure 4A), are
confined to the stable high-E branch across the full simulation
and display dynamics consistent with noisy deviations from a
fixed point, as shown in Figure 4B. Regions like the ventral
retrosplenial area, RSPv (annotated in Figure 4A), span the
Hopf bifurcation, and thus exhibit more complex patterns that
contain both oscillatory dynamics and noisy excursions about
a stable fixed-point, depending on fluctuations in inputs, Je(t).
The short samples of E(t) for six annotated Medial regions in
Figure 4B reveal some of these dynamics, including dynamic
phase relationships between the oscillatory populations. These
findings demonstrate the usefulness of interpreting the dynamics
of coupled mass models in terms of time-varying inputs to the
constituent populations.

3.2. Understanding Heterogeneity in Local
Dynamical Rules
Above, we used bifurcation diagrams to show that complex
distributed dynamics in a neural-mass model can be understood
in terms of the responses of individual regions to inputs

from their connected neighbors. Despite equivalent local
dynamical rules, and hence identical bifurcation diagrams
for all brain regions, we found substantial inter-regional
variability in accessible dynamical regimes and resulting activity
dynamics, due to differences in structural connectivity and
resulting Je(t). In this section, we aim to understand the
effect of varying the local dynamical rules themselves, by
incorporating spatial heterogeneity in the properties of local
cortical circuits (via a corresponding variation in model
parameters). Specifically, we varied excitatory and inhibitory
coupling strengths of individual brain areas according to
excitatory and inhibitory cell-density data (Erö et al., 2018). We
focused on the Limit Cycle regime of the W–C model described
above, which displayed the richest dynamical repertoire and
highest ρFCFC. As described in section 2, we used relative
variations in excitatory and inhibitory cell densities across
cortical areas to define a corresponding variation in Re and
Ri, which proportionally adjust coupling parameters—wii, wie,
wei, wee—across brain areas. Setting Re = Ri = 0 for all
areas recovers the homogeneous model studied above [see
Equation (5) for details]. This simple formulation allows
us to understand how varying the excitatory and inhibitory
coupling parameters across areas, in accordance with underlying
excitatory and inhibitory cell densities, shape the dynamical
responses of individual areas to inputs, and, hence, the resulting
model dynamics.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 84733671

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

FIGURE 4 | Resolving different ranges of inputs, Je, experienced by different network nodes allows us to understand their variable dynamical behavior in a coupled

network model. Here we focus on the point labeled “iv” in the Limit-Cycle regime (Figures 2C,F), Be = 1.5mV, G = 0.7mVs, in which nodes differ substantially in their

inputs, Je, and hence their resulting dynamics. (A) Bifurcation diagram for E and a function of Je (as Figure 2F), with ranges of net excitatory drive, Je, across the

model simulation annotated for each brain region (colored according to the six labeled divisions). All regions are ordered according to Supplementary Table S1, and

are labeled for the six Medial regions, which are plotted in (B). (B) E time series for the six Medial regions—PTLp, VISam, VISpm, RSPd, RSPv, and RSPagl—shown

for the final 1 s of the simulation.

FIGURE 5 | Variations in excitatory and inhibitory cell density modify the dynamical regimes accessible to cortical regions. We model the effect of variations in

excitatory and inhibitory cell density via perturbation parameters Re and Ri , respectively, as defined in Equation (5). Relative to the nominal bifurcation diagram,

Re = Ri = 0 (black), we investigate variations in −0.1 ≤ Re ≤ 0.1 and −0.1 ≤ Ri ≤ 0.1. Four types of variation were investigated: (A) Re only (Ri = 0); (B) Ri only

(Re = 0); (C) Re and Ri , such that Re = Ri ; and (D) Re and Ri , such that Re = −Ri . The legend indicates values of Re.

3.2.1. Levels of Excitation and Inhibition Perturb

Bifurcation Diagrams
To understand how variations in Re and Ri affect model
dynamics, we first analyze how these parameters shape the
Jtot–E bifurcation diagrams for an individual area. The effect
of ±10% variations to coupling parameters (corresponding to
the ranges −0.1 < Re < 0.1 and −0.1 < Ri < 0.1),
are shown as Jtot–E bifurcation diagrams in Figure 5, varying
just Re (Figure 5A), just Ri (Figure 5B), Re and Ri together

with Re = Ri (Figure 5C), and Re and Ri such that Re =

−Ri (Figure 5D). We find that even these relatively small, ≈
10%, perturbations have a substantial effect on the dynamical
responses of individual areas, affecting: (i) the range of Jtot
over which model exhibits stable oscillations; (ii) the oscillation
amplitudes themselves; and (iii) steady-state activity levels. As
shown in Figure 5, cortical areas with a higher excitatory cell
density, Re, have higher-amplitude oscillations, a wider range
of Jtot over which stable oscillations are exhibited, and, for the

Frontiers in Computational Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 84733672

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

same Jtot, increased activity, E, in the upper branch. Different
changes result from modifying the inhibitory cell density, shown
in Figure 5B: increasing Ri shifts the same bifurcation and fixed-
point structure to higher Jtot (equivalent to raising the firing
threshold, Be). That is, regions with higher inhibitory cell density,
Ri, require a greater aggregate input, Je, to produce the same
dynamics. Varying both Re and Ri, shown in Figures 5C,D,
yields combinations of the individual perturbations from Re and
Ri individually. These results demonstrate how relatively small
variations in excitatory and inhibitory coupling parameters can
have large effects on the bifurcation structure and dynamical
regimes exhibited by local cortical regions. The effects are more
dramatic for Re and Ri values in the range from−0.5 to 0.5, where
the Hopf bifurcations can be removed altogether from the Limit
Cycle regime (Supplementary Figure S3), or additional stable
states can be added via saddle-node bifurcations in the Hysteresis
regime (Supplementary Figure S4).

3.2.2. Understanding Mouse Cortical Model

Dynamics Constrained by Excitatory and Inhibitory

Cell Densities
In the heterogeneous model, individual different brain areas
differ both in their Jtot values that they receive from their coupled
neighbors (due to differences in their structural connections), but
also have different dynamical rules, due to different individual
combinations of Re and Ri values. As demonstrated above for
the homogeneous model, this understanding of the dynamical
responses of individual brain areas to inputs from across the
network is crucial to guiding understanding of the complex,
distributed dynamics of the full coupled model. In this section,
we explore how the impact of local variations in Re and Ri
can be visualized and used to understand the dynamics of the
full coupled model. Recall that our heterogeneous model is
formulated with a single new parameter, σ , that defines how
strongly relative differences in excitatory and inhibitory cell
densities are mapped to corresponding changes in the model’s
coupling parameters (Equation 6). For the Limit-Cycle regime,
we investigated how FC–FC scores change as we introduce a
greater degree of inter-areal heterogeneity, σ . The variation in
ρFCFC as a function of σ across the range 0 ≤ σ ≤ 1 is
shown in Figure 6E. We did not find a substantial increase in
ρFCFC when incorporating heterogeneity, σ > 0, although there
was a modest improvement relative to the homogeneous model
(σ = 0) for σ = 0.2, yielding ρFCFC = 0.60 ± 0.05. Testing
this result against a null distribution (obtained by repeating the
procedure but with randomly permuted excitatory and inhibitory
cell-density data) using a permutation test yielded p ≈ 0.15,
indicating that ρFCFC = 0.60 does not constitute a significant
improvement relative to the homogeneous model (see section 2
for details). As we discuss later, this result may be contributed to
the small number of regions in the model, the simplicity of the
dynamical equations, or the dominance of SC in constraining FC
in the anesthetized mouse (Grandjean et al., 2017).

While we did not find evidence of a significant improvement
in FC–FC score from a simple incorporation of heterogeneity,
our main aim was to demonstrate how tools from dynamical
systems can help to understand the complex coupled dynamics

of such a spatially heterogenous model. We used the point,
σ = 0.2, inferred above as a suitable example for this purpose.
With σ = 0.2, we plotted Je–E bifurcation diagrams for all
brain regions on the same plot in Figure 6A. The plot shows
how differences in excitatory and inhibitory cell densities results
in different bifurcation diagrams, that correspond to similar
qualitative changes as analyzed in Figure 5 above. Specifically,
brain regions now differ substantially in their: critical values, Je,
that separate limit cycle from fixed-point dynamics; ranges of
Je in which oscillations are stable; oscillation amplitudes; and
fixed-point activity levels, E, in the upper branch (for a given Je).
Compared to the homogeneousmodel, two regions with the same
input, Je, no longer indicates that they will be subject to the same
dynamical rules.

To understand how these changes in local dynamical rules
affect the resulting cortical dynamics, we next plotted the range
of Je that each node experiences across the simulation. As
shown in Figure 6B, this can be represented as a horizontal
line, distinguishing Je values corresponding to what stable
dynamical feature—“limit cycle” or “fixed point”—according to
each region’s individual bifurcation structure. This results in a
richer dynamical landscape for themodel: some brain regions can
access both stable limit cycle and fixed-point dynamics, others
can only access the high-E fixed-point equilibrium, while others
can access just the limit-cycle attractor. It is useful to connect
the range of dynamical regimes each region accesses across the
simulation, shown in Figure 6B, with the E dynamics themselves,
shown in Figure 6C. We can clearly see the high-E regions on
the upper stable branch, as well as the more complex intermittent
oscillations of regions that can access limit-cycle dynamics. The
functional connectivity matrix from this simulation is shown in
Figure 6D. This representation of pairwise correlations in the
model dynamics hides much of the richness of the individual
time series themselves (Figure 6C), and the dynamical rules that
underlie them (Figures 6A,B). The ability to represent qualitative
dynamical regimes of individual regions in a coupled network
model—as Je–E bifurcation diagrams with individual ranges of
Je explored for each region—provides a powerful illustration of
the dynamics supported by the coupled components of a complex
networked dynamical model.

4. DISCUSSION

In this article, we developed a neural-mass model of the
mouse cortex. We showed how bifurcation diagrams can be
used to understand how regional differences in dynamics result
from differences in inputs, Jtot, and delineated the types of
dynamical regimes that yield good fits to experimental functional
connectivity. We first analyzed a homogeneous model in which
all regions are governed by identical dynamical rules to show
how regional variations in dynamics result from differences in
inputs (driven by differences in structural connectivity). We then
extended this treatment to a heterogeneous model in which
the bifurcation structures themselves vary across regions due
to variation in local excitatory and inhibitory cell densities.
Our results provide a useful framework for understanding the

Frontiers in Computational Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 84733673

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

FIGURE 6 | Modeling spatial variation in local excitatory and inhibitory cell densities produces complex distributed dynamics. (A) Bifurcation diagrams are plotted for

all cortical areas according to their excitatory and inhibitory cell densities. Regions are colored according to their labeled anatomical grouping and the homogeneous

case (Re = Ri = 0) is shown in black for comparison. (B) The type of equilibrium dynamics displayed by a given cortical region, limit cycle (blue) or fixed point (red), is

plotted as a function of Je − Be for all cortical regions for the range of Je − Be they experience across the model simulation. Nodes are ordered as per

Supplementary Table S1 and shading reflects the six anatomical groupings labeled in A. Dashed lines shown at the top correspond to the uniform case

(Re = Ri = 0) for comparison. (C) Simulated time series for all brain areas are plotted as a heat map. Colors annotated to the right label the six anatomical groupings

listed in A. (D) Simulated functional connectivity matrix. (E) FC–FC score as a function of the scaling parameter, σ , Equation (6). Results are shown for the model

constrained by excitatory and inhibitory cell-density data (blue) and the permutation-based null distribution shown as mean ± standard deviation (red).

mechanisms that underlie complex simulated model dynamics,
using a combination of local bifurcation diagrams (annotated
with ranges of inputs for different regions) and visualizations of
the multivariate time-series dynamics [as “carpet plots” (Aquino
et al., 2020)]. These analyses will be particularly important for
understanding how the brain’s microscale circuits give rise to
the complex distributed dynamics observed in brain-imaging
experiments. A common scientific goal of modeling a system
is to accurately reproduce important properties of it, while also
gaining an understanding of how it does so. While successful
approaches have been demonstrated for maximizing goodness of
fit [sometimes optimizing large numbers of parameters (Wang
et al., 2019; Kong et al., 2021; Wischnewski et al., 2021)],
obtaining understanding is a key challenge for complex nonlinear
models of brain dynamics. The analyses and visualizations
demonstrated in this work aim to provide an understanding
of the model dynamics in terms of the dynamical regimes
that individual regions can access, shaped by their inputs from
coupled neighbors. Key analyses include: (i) assessing the role

of input parameters Be and G in shaping empirical FC fits in
terms of corresponding ranges spanned across Je–E bifurcation
diagrams (Figure 2); (ii) annotating of Je for all cortical regions
onto a common bifurcation diagram (Figure 4A); (iii) analyzing
perturbations to bifurcation diagrams due to variations in local
circuit properties (Figure 5); and (iv) annotating region-specific
qualitative equilibrium dynamics across ranges of Je for all
regions in a single plot (Figure 6B). As whole-brain models
develop to incorporate whole-brain datasets—including whole-
brain maps of gene-expression and cell types (Fulcher et al.,
2019; Yao et al., 2021)—these types of analyses will be crucial
to understanding how this complexity shapes the underlying
dynamical mechanisms, both at the level of individual brain
regions, and their distributed interactions.

While many studies focus on determining an optimal working
point, i.e., structural connectome scalingG, we find that the offset
(Be in the present model) is also critical in determining how local
regions respond to inputs, and hence the resulting ρFCFC. We also
found strong fits to empirical FC whenever brain regions were

Frontiers in Computational Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 84733674

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

able to respond to inputs with sufficient gain, likely reflecting the
strong role of direct structural connections in shaping FC in the
anesthetized mouse (Grandjean et al., 2017). In particular, even
in the Fixed-Point regime, in which the model exhibits the most
constrained dynamical repertoire, we report ρ ≈ 0.52, consistent
with other published results in the literature [FC–FC scores up to
≈ 0.5 (Melozzi et al., 2019) using a Wong–Wang model (Wong
and Wang, 2006)]. Only a small improvement was found when
the model operated near a Hopf bifurcation, ρFCFC = 0.56.
This highlights the ability of simple dynamical features to capture
aspects ofmeasured dynamics, consistent with prior comparisons
demonstrating high performance of simple models (Messé et al.,
2014, 2015; Nozari et al., 2021). The results also demonstrate
the importance of comparingmodel performance against simpler
benchmarks, and justifying increased model complexity only if it
accompanies enhanced explanatory power.

Incorporating spatial variations in local dynamical rules
according to whole-brain maps has immense potential in
allowing us to connect new physiological understanding of
neural circuits to the whole-brain dynamics that they enable.
In this work, we incorporated spatial variations in excitatory
and inhibitory cell densities as a corresponding perturbation to
coupling parameters between E and I populations, with a single
scaling parameter, σ . However, there are alternative ways in
which this heterogeneity could be implemented and constrained
in future, for example, by allowing σ to differ for excitatory
(σe) and inhibitory (σi) populations. Incorporating more
detailed physiological data into correspondingly more complex
biophysical models (e.g., incorporating multiple inhibitory cell
types), brings further parametric freedom that needs to be
properly constrained from a combination of physiological and
neuroimaging data. Our approach for assessing the improvement
in ρFCFC after incorporating cell-density data involved a
permutation approach against randomized assignment of the
data to regions (preserving the match between e and i, but
permuting their assignment to brain regions), and did not reveal
a significant improvement relative to null gradients (p ≈ 0.15).
This may be due to the relatively small number of brain regions
included, and the focus on FC–FC as an evaluation metric rather
than a more comprehensive set of evaluations. Other ways of
assessing the improvement of the spatially heterogeneous model
could also be explored, such as testing the e : i ratio against
alternative spatial gradients [as Deco et al. (2021)], or taking an
optimization approach to estimate the optimal e and i gradients,
and then assess their similarity to the measured excitatory and
inhibitory cell-density data [as Wang et al. (2019)].

As our aim here was to demonstrate methods for
understanding the dynamics of coupled neural models with
heterogeneity using a simple modeling approach, many aspects
of the model could be improved in future work. First, we have
focused here on a specific simple biophysical model, the Wilson–
Cowan model (Wilson and Cowan, 1972, 1973; Cowan et al.,
2016), that allowed us to incorporate variations in excitatory and
inhibitory cell-density data. We have focused on the behavior
of the model in three specific dynamical regimes (a fixed point
with gain, hysteresis, and limit cycle), but the results should
be qualitatively applicable to those same dynamical regimes

of other models. However, we note that other models with
different dynamical features may display different behavior,
such as the Wong–Wang model (Wong and Wang, 2006; Deco
et al., 2013, 2021; Murray et al., 2017; Demirtas et al., 2019;
Wang et al., 2019), or models that incorporate cortico–thalamic
interactions (Wilson and Cowan, 1973; Robinson et al., 2015;
Lin et al., 2020; Müller et al., 2020). We also note that while
our aim here was to understand the model dynamics directly,
it is common practice to simulate a hemodynamic response,
such as the Balloon–Windkessel model (Friston et al., 2000) or
a more sophisticated hemodynamic response function (Aquino
et al., 2014). Simulating a slower hemodynamic response
would introduce challenges in mapping bifurcation diagrams
in E to the corresponding BOLD dynamics, and could lead
to substantial qualitative differences between the dynamics of
the neural model and the HRF-filtered dynamics. As a result,
our specific conclusions about model performance in different
dynamical regimes may not generalize to different choices of
hemodynamic responses, but this could be achieved in future
work by attempting to construct an effective bifurcation diagram
of the dynamics of the BOLD forward solution as a function of
the model parameters. We note, however, the body of evidence
showing improved performance of linear models over nonlinear,
biophysically informed models, in capturing the dynamical
properties of fMRI data (Messé et al., 2014, 2015), and a recent
finding that the performance of nonlinear neural mass models
can drop when including HRF (Nozari et al., 2021). This suggests
that, in the absence of thoroughly validated neural-mass models
at the level of population neural activity (Lin et al., 2020),
and a clearly demonstrated improvement of a BOLD forward
model, neural mass models may be more conservatively viewed
as a phenomenological means of capturing different types of
dynamics and dynamical interactions, for which our simple
approach, here, is valid and useful.

We also highlight our relatively simple treatment of structural
connectivity, as a binary adjacency matrix, even though estimates
of axonal connectivity strengths vary over at least four orders
of magnitude (Oh et al., 2014). It remains an open question
what greater structural connection “strengths” (approximated by
the number of axons connecting two brain areas), corresponds
to dynamically, e.g., faster connection speeds, a stronger effect
on local population mean dynamics, or some alternative type
of response. While the model here does not include time
delays (assuming fast inter-regional interactions on the timescale
of neural dynamics), they are likely to be crucial in shaping
the brain’s distributed dynamics (Petkoski and Jirsa, 2019)
and should be explored in future work. We next note a
major simplifying assumption in using a neural-mass model,
which involves representing the spatially continuous cortical
sheet as a set of 37 discrete cortical areas, abstracted away
from their physical embedding (Robinson, 2019). Given the
spatial resolution of modern mouse-brain maps, and the often
continuous spatial variation they reveal, it will be important to
develop models that accurately capture this physical continuity,
e.g., using a neural field approach (Robinson et al., 2003).

Finally, we highlight the limitation of evaluating our model
with respect to its ability to match only the linear correlation

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 84733675

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

structure, FC, of the empirical dataset. fMRI data have a much
richer dynamical structure than is captured by the static FC,
including the dynamics of FC across a recording (Cabral et al.,
2017; Demirtas et al., 2019; Aquino et al., 2021; Deco et al., 2021)
and the organization of regional timescales (Sethi et al., 2017;
Shafiei et al., 2020). For example, despite producing very different
patterns in simulated time series, we found similar fits, ρFCFC,
across the Fixed-Point, Hysteresis, and Limit-Cycle regimes of
our homogeneous model, and when incorporating heterogeneity.
The more complex distributed dynamics, including intermittent
synchronization seen in carpet plots from the Limit Cycle regime
(Figure 3F) and when incorporating regional heterogeneity
(Figure 6C), qualitatively match the types of patterns seen in
empirical fMRI dynamics better than in the fixed-point regime.
This highlights the simplicity of the FC–FC score, ρFCFC, in
capturing only the pairwise linear correlation structure in the
data, and indicates the need for future work to perform a
more comprehensive evaluation. This should include similar
visualizations of model performance across Be–G space (as
Figures 2A–C), where the most distinctive models features for
reproducing a greater range of characteristics of fMRI dynamics
may be more clearly distinguished.

With the increasing availability of high-resolution
neuroscience data, in space and time, the need for tools to
provide interpretable accounts of their dynamics is pressing.
Our work demonstrates a range of useful tools to analyze the
behavior of coupled dynamical models of brain dynamics,
helping them to provide understanding of the dynamical
mechanisms that underpin their predictions. Our results
emphasize the importance of benchmark comparison (e.g., a
simple fixed-point model yields high FC–FC), visualization (e.g.,
very different dynamical patterns exhibited in carpet plots can
yield similar correlation structures in FC), and proper statistical
testing (e.g., while the heterogeneous model yields improved

FC–FC, it is not significantly better than repeating the process
on randomized data), practices that may help guide progress
in the field.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The animal study was reviewed and approved by the Ethical
Committee of the Canton Zurich, Switzerland.

AUTHOR CONTRIBUTIONS

BF and EM contributed to conception and design of the study.
PS performed all simulations and analysis, supervised by BF and
EM. Mouse fMRI data were processed by VZ. PS wrote an initial

draft of the manuscript, which was refined for submission by BF
and EM. All authors contributed to manuscript revision.

FUNDING

This work was supported by the Physics Foundation, School of
Physics, The University of Sydney.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2022.847336/full#supplementary-material

REFERENCES

Allegra Mascaro, A. L., Falotico, E., Petkoski, S., Pasquini, M., Vannucci, L.,

Tort-Colet, N., et al. (2020). Experimental and computational study on

motor control and recovery after stroke: toward a constructive loop between

experimental and virtual embodied neuroscience. Front. Syst. Neurosci. 14, 31.

doi: 10.3389/fnsys.2020.00031

Aquino, K. M., Fulcher, B., Oldham, S., Parkes, L., Gollo, L., Deco,

G., et al. (2021). On the intersection between data quality and

dynamical modelling of large-scale fMRI signals. NeuroImage. 119051.

doi: 10.1016/j.neuroimage.2022.119051

Aquino, K. M., Fulcher, B. D., Parkes, L., Sabaroedin, K., and Fornito, A. (2020).

Identifying and removing widespread signal deflections from fMRI data:

Rethinking the global signal regression problem. NeuroImage 212, 116614.

doi: 10.1016/j.neuroimage.2020.116614

Aquino, K. M., Robinson, P. A., Schira, M. M., and Breakspear, M. J.

(2014). Deconvolution of neural dynamics from fMRI data using a

spatiotemporal hemodynamic response function. NeuroImage 94, 203–215.

doi: 10.1016/j.neuroimage.2014.03.001

Borisyuk, R. M., and Kirillov, A. B. (1992). Bifurcation analysis of a neural network

model. Biol. Cybern. 66, 319–325.

Boynton, G.M., Engel, S. A., Glover, G. H., andHeeger, D. J. (1996). Linear systems

analysis of functional magnetic resonance imaging in human V1. J. Neurosci.

16, 4207–4221.

Breakspear, M. J. (2017). Dynamic models of large-scale brain activity. Nat.

Neurosci. 20, 340–352. doi: 10.1038/nn.4497

Burt, J. B., Demirtas, M., Eckner, W. J., Navejar, N. M., Ji, J. L., Martin, W. J.,

et al. (2018). Hierarchy of transcriptomic specialization across human cortex

captured by structural neuroimaging topography. Nat. Neurosci. 27, 889.

doi: 10.1038/s41593-018-0195-0

Cabral, J., Kringelbach, M. L., and Deco, G. (2017). Functional connectivity

dynamically evolves on multiple time-scales over a static structural

connectome: models and mechanisms. NeuroImage 160, 84–96.

doi: 10.1016/j.neuroimage.2017.03.045

Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., and Wang, X.-J.

(2015). A large-scale circuit mechanism for hierarchical dynamical processing

in the primate cortex. Neuron 88, 419–431. doi: 10.1016/j.neuron.2015.

09.008

Choi, H., and Mihalas, S. (2019). Synchronization dependent on spatial structures

of a mesoscopic whole-brain network. PLoS Comput. Biol. 15, e1006978.

doi: 10.1371/journal.pcbi.1006978

Claudi, F., Tyson, A. L., Petrucco, L., Margrie, T. W., Portugues, R., and Branco,

T. (2021). Visualizing anatomically registered data with brainrender. eLife 10,

e65751. doi: 10.7554/eLife.65751

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. J. (2017).

Criticality in the brain: a synthesis of neurobiology, models and

cognition. Progr. Neurobiol. 158, 132–152. doi: 10.1016/j.pneurobio.2017.

07.002

Frontiers in Computational Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 84733676

https://www.frontiersin.org/articles/10.3389/fncom.2022.847336/full#supplementary-material
https://doi.org/10.3389/fnsys.2020.00031
https://doi.org/10.1016/j.neuroimage.2022.119051
https://doi.org/10.1016/j.neuroimage.2020.116614
https://doi.org/10.1016/j.neuroimage.2014.03.001
https://doi.org/10.1038/nn.4497
https://doi.org/10.1038/s41593-018-0195-0
https://doi.org/10.1016/j.neuroimage.2017.03.045
https://doi.org/10.1016/j.neuron.2015.09.008
https://doi.org/10.1371/journal.pcbi.1006978
https://doi.org/10.7554/eLife.65751
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

Courtiol, J., Guye, M., Bartolomei, F., Petkoski, S., and Jirsa, V. K. (2020).

Dynamical mechanisms of interictal resting-state functional connectivity in

epilepsy. J. Neurosci. 40, 5572–5588. doi: 10.1523/JNEUROSCI.0905-19.2020

Cowan, J. D., Neuman, J., and van Drongelen, W. (2016). Wilson–cowan

equations for neocortical dynamics. J. Math. Neurosci. 6, 1.

doi: 10.1186/s13408-015-0034-5

Deco, G., and Jirsa, V. K. (2012). Ongoing cortical activity at rest:

criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375.

doi: 10.1523/JNEUROSCI.2523-11.2012

Deco, G., Kringelbach, M. L., Arnatkeviciute, A., Oldham, S., Sabaroedin,

K., Rogasch, N. C., et al. (2021). Dynamical consequences of regional

heterogeneity in the brain’s transcriptional landscape. Sci. Adv. 7, eabf4752.

doi: 10.1126/sciadv.abf4752

Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., and

Corbetta, M. (2013). Resting-state functional connectivity emerges from

structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33,

11239–11252. doi: 10.1523/JNEUROSCI.1091-13.2013

Deco, G., Robinson, P. A., Jirsa, V. K., Breakspear, M. J., and Friston, K. J. (2008).

The dynamic brain: from spiking neurons to neural masses and cortical fields.

PLoS Comput. Biol. 4, e1000092. doi: 10.1371/journal.pcbi.1000092

Demirtas, M., Burt, J. B., Helmer, M., Ji, J. L., Adkinson, B. D., Glasser,

M. F., Van Essen, D. C., et al. (2019). Hierarchical heterogeneity across

human cortex shapes large-scale neural dynamics. Neuron 101, 1181–1194.e13.

doi: 10.1016/j.neuron.2019.01.017

Erö, C., Gewaltig, M.-O., Keller, D., and Markram, H. (2018). A cell atlas for the

mouse brain. Front. Neuroinf. 12, e17727. doi: 10.3389/fninf.2018.00084

Friston, K. J., Mechelli, A., Turner, R., and Price, C. J. (2000). Nonlinear responses

in fMRI: the balloon model, volterra kernels, and other hemodynamics.

NeuroImage 42, 649–662. doi: 10.1016/j.neuroimage.2008.04.262

Froudist-Walsh, S., Bliss, D. P., Ding, X., Rapan, L., Niu, M., Knoblauch, K.,

et al. (2021). A dopamine gradient controls access to distributed working

memory in the large-scale monkey cortex. Neuron 109, 3500–3520.e13.

doi: 10.1016/j.neuron.2021.08.024

Fulcher, B. D., and Fornito, A. (2016). A transcriptional signature of hub

connectivity in the mouse connectome. Proc. Natl. Acad. Sci. U.S.A. 113,

1435–1440. doi: 10.1073/pnas.1513302113

Fulcher, B. D., Murray, J. D., Zerbi, V., and Wang, X.-J.

(2019). Multimodal gradients across mouse cortex. Proc. Natl.

Acad. Sci. U.S.A. 116, 4689–4695. doi: 10.1073/pnas.1814

144116

Goulas, A., Uylings, H. B. M., and Hilgetag, C. C. (2016). Principles of ipsilateral

and contralateral cortico-cortical connectivity in the mouse. Brain Struct.

Funct. 252, 1–15. doi: 10.1007/s00429-016-1277-y

Grandjean, J., Canella, C., Anckaerts, C., Ayrancı, G., Bougacha, S., Bienert,

T., et al. (2020). Common functional networks in the mouse brain

revealed by multi-centre resting-state fMRI analysis. NeuroImage 205, 116278.

doi: 10.1016/j.neuroimage.2019.116278

Grandjean, J., Zerbi, V., Balsters, J., Wenderoth, N., and Rudina, M. (2017). The

structural basis of large-scale functional connectivity in the mouse. J. Neurosci.

37, 0438–17–8101. doi: 10.1523/JNEUROSCI.0438-17.2017

Harris, J. A., Mihalas, S., Hirokawa, K. E., Whitesell, J. D., Choi, H., Bernard, A.,

et al. (2019). Hierarchical organization of cortical and thalamic connectivity.

Nature 575, 195–202. doi: 10.1038/s41586-019-1716-z

Heitmann, S., Aburn,M. J., and Breakspear,M. (2018). The brain dynamics toolbox

for matlab. Neurocomputing 315, 82–88. doi: 10.1016/j.neucom.2018.06.026

Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-

Martinez, J., et al. (2017). The virtual epileptic patient: individualized

whole-brain models of epilepsy spread. NeuroImage 145, 377–388.

doi: 10.1016/j.neuroimage.2016.04.049

Kim, J. H., and Ress, D. (2016). Arterial impulse model for the BOLD

response to brief neural activation. NeuroImage 124, 394–408.

doi: 10.1016/j.neuroimage.2015.08.068

Kim, Y., Yang, G. R., Pradhan, K., Venkataraju, K. U., Bota, M., García del

Molino, L. C., et al. (2017). Brain-wide maps reveal stereotyped cell-type-based

cortical architecture and subcortical sexual dimorphism. Cell 171, 456–469.e22.

doi: 10.1016/j.cell.2017.09.020

Kong, X., Kong, R., Orban, C., Wang, P., Zhang, S., Anderson, K., et al. (2021).

Sensory-motor cortices shape functional connectivity dynamics in the human

brain. Nat. Commun. 12, 6373. doi: 10.1038/s41467-021-26704-y

Lein, E., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al.

(2007). Genome-wide atlas of gene expression in the adult mouse brain.Nature

445, 168–176. doi: 10.1038/nature05453

Lin, I.-C., Okun, M., Carandini, M., and Harris, K. D. (2020). Equations

governing dynamics of excitation and inhibition in the mouse corticothalamic

network. bioRxiv Preprint. 2020.06.03.132688. doi: 10.1101/2020.06.03.

132688

Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M.,

Langs, G., et al. (2016). Situating the default-mode network along a principal

gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. U.S.A. 113,

12574–12579. doi: 10.1073/pnas.1608282113

Markicevic, M., Fulcher, B. D., Lewis, C., Helmchen, F., Rudin, M., Zerbi, V.,

et al. (2020). Cortical excitation:inhibition imbalance causes abnormal brain

network dynamics as observed in neurodevelopmental disorders. Cereb. Cortex

30, 4922–4937. doi: 10.1093/cercor/bhaa084

Markicevic, M., Sturman, O., Bohacek, J., Rudin, M., Zerbi, V., Fulcher, B. D.,

et al. (2022). Neuromodulation of striatal D1 cells shapes BOLD fluctuations

in anatomically connected thalamic and cortical regions. bioRxiv Prepint

2022.03.11.483972. doi: 10.1101/2022.03.11.483972

Mejias, J. F., Murray, J. D., Kennedy, H., and Wang, X.-J. (2016). Feedforward and

feedback frequency-dependent interactions in a large-scale laminar network of

the primate cortex. Sci. Adv. 2, e1601335. doi: 10.1126/sciadv.1601335

Mejías, J. F., and Wang, X.-J. (2022). Mechanisms of distributed working

memory in a large-scale network of macaque neocortex. eLife 11, e72136.

doi: 10.7554/eLife.72136

Melozzi, F., Bergmann, E., Harris, J. A., Kahn, I., Jirsa, V., and Bernard, C. (2019).

Individual structural features constrain the mouse functional connectome.

Proc. Natl. Acad. Sci. U.S.A. 116, 26961–26969. doi: 10.1073/pnas.1906694116

Melozzi, F., Woodman, M. M., Jirsa, V. K., and Bernard, C. (2017).

The virtual mouse brain: a computational neuroinformatics platform to

study whole mouse brain dynamics. eNeuro 4, ENEURO.0111–17.2017.

doi: 10.1523/ENEURO.0111-17.2017

Messé, A., Rudrauf, D., Benali, H., and Marrelec, G. (2014). Relating structure

and function in the human brain: relative contributions of anatomy,

stationary dynamics, and non-stationarities. PLoS Comput. Biol. 10, e1003530.

doi: 10.1371/journal.pcbi.1003530

Messé, A., Rudrauf, D., Giron, A., and Marrelec, G. (2015). Predicting

functional connectivity from structural connectivity via computational

models using MRI: an extensive comparison study. NeuroImage 111, 65–75.

doi: 10.1016/j.neuroimage.2015.02.001

Müller, E. J., Munn, B. R., and Shine, J. M. (2020). Diffuse neural coupling mediates

complex network dynamics through the formation of quasi-critical brain states.

Nat. Commun. 11, 6337. doi: 10.1038/s41467-020-19716-7

Murray, J. D., Jaramillo, J., and Wang, X.-J. (2017). Working memory and

decision-making in a frontoparietal circuit model. J. Neurosci. 37, 12167–12186.

doi: 10.1523/JNEUROSCI.0343-17.2017

Noori, R., Park, D., Griffiths, J. D., Bells, S., Frankland, P. W., Mabbott, D., et al.

(2020). Activity-dependent myelination: a glial mechanism of oscillatory self-

organization in large-scale brain networks. Proc. Natl. Acad. Sci. U.S.A. 117,

13227–13237. doi: 10.1073/pnas.1916646117

Nozari, E., Bertolero, M. A., Stiso, J., Caciagli, L., Cornblath, E. J.,

He, X., et al. (2021). Is the brain macroscopically linear? A system

identification of resting state dynamics. arXiv [Preprint]. arXiv:2012.12351.

doi: 10.48550/arXiv.2012.12351

Nunes, R. V., Reyes, M. B., Mejias, J. F., and de Camargo, R. Y. (2021). Directed

functional and structural connectivity in a large-scale model for the mouse

cortex. Netw. Neurosci. 5, 874–889. doi: 10.1162/netna00206

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., et al.

(2014). A mesoscale connectome of the mouse brain. Nature 508, 207–214.

doi: 10.1038/nature13186

Petkoski, S., and Jirsa, V. K. (2019). Transmission time delays organize the brain

network synchronization. Philosoph. Trans. R. Soc. Math. Phys. Eng. Sci. 377,

20180132. doi: 10.1098/rsta.2018.0132

Frontiers in Computational Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 84733677

https://doi.org/10.1523/JNEUROSCI.0905-19.2020
https://doi.org/10.1186/s13408-015-0034-5
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.1126/sciadv.abf4752
https://doi.org/10.1523/JNEUROSCI.1091-13.2013
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1016/j.neuron.2019.01.017
https://doi.org/10.3389/fninf.2018.00084
https://doi.org/10.1016/j.neuroimage.2008.04.262
https://doi.org/10.1016/j.neuron.2021.08.024
https://doi.org/10.1073/pnas.1513302113
https://doi.org/10.1073/pnas.1814144116
https://doi.org/10.1007/s00429-016-1277-y
https://doi.org/10.1016/j.neuroimage.2019.116278
https://doi.org/10.1523/JNEUROSCI.0438-17.2017
https://doi.org/10.1038/s41586-019-1716-z
https://doi.org/10.1016/j.neucom.2018.06.026
https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.1016/j.neuroimage.2015.08.068
https://doi.org/10.1016/j.cell.2017.09.020
https://doi.org/10.1038/s41467-021-26704-y
https://doi.org/10.1038/nature05453
https://doi.org/10.1101/2020.06.03.132688
https://doi.org/10.1073/pnas.1608282113
https://doi.org/10.1093/cercor/bhaa084
https://doi.org/10.1101/2022.03.11.483972
https://doi.org/10.1126/sciadv.1601335
https://doi.org/10.7554/eLife.72136
https://doi.org/10.1073/pnas.1906694116
https://doi.org/10.1523/ENEURO.0111-17.2017
https://doi.org/10.1371/journal.pcbi.1003530
https://doi.org/10.1016/j.neuroimage.2015.02.001
https://doi.org/10.1038/s41467-020-19716-7
https://doi.org/10.1523/JNEUROSCI.0343-17.2017
https://doi.org/10.1073/pnas.1916646117
https://doi.org/10.48550/arXiv.2012.12351
https://doi.org/10.1162/netna00206
https://doi.org/10.1038/nature13186
https://doi.org/10.1098/rsta.2018.0132
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Siu et al. Dynamical Understanding From Mouse Models

Robinson, P. A. (2012). Interrelating anatomical, effective, and functional brain

connectivity using propagators and neural field theory. Phys. Rev. E 85, 011912.

doi: 10.1103/PhysRevE.85.011912

Robinson, P. A. (2019). Physical brain connectomics. Phys. Rev. E 99, 012421.

doi: 10.1103/PhysRevE.99.012421

Robinson, P. A., Postnova, S., Abeysuriya, R. G., Kim, J. W., Roberts, J. A.,

McKenzie-Sell, L., et al. (2015). “A multiscale working brain model,”

in Validating Neuro-Computational Models of Neurological and Psychiatric

Disorders. (Cham: Springer), 107–140.

Robinson, P. A., Rennie, C. J., Rowe, D. L., O’Connor, S. C., Wright, J. J.,

Gordon, E., et al. (2003). Neurophysical modeling of brain dynamics.

Neuropsychopharmacology 28, S74–S79. doi: 10.1038/sj.npp.1300143

Robinson, P. A., Zhao, X., Aquino, K. M., Griffiths, J. D., Sarkar, S., and

Mehta-Pandejee, G. (2016). Eigenmodes of brain activity: neural field

theory predictions and comparison with experiment. NeuroImage 142, 79.

doi: 10.1016/j.neuroimage.2016.04.050

Sanz-Leon, P., Knock, S. A., Spiegler, A., and Jirsa, V. K. (2015). Mathematical

framework for large-scale brain network modeling in The Virtual Brain.

NeuroImage 111, 385–430. doi: 10.1016/j.neuroimage.2015.01.002

Schneider, M., Broggini, A. C., Dann, B., Tzanou, A., Uran, C., Sheshadri, S.,

et al. (2021). A mechanism for inter-areal coherence through communication

based on connectivity and oscillatory power. Neuron 109, 4050–4067.e12.

doi: 10.1016/j.neuron.2021.09.037

Sethi, S. S., Zerbi, V., Wenderoth, N., Fornito, A., and Fulcher, B. D.

(2017). Structural connectome topology relates to regional BOLD signal

dynamics in the mouse brain. Chaos Interdiscipl. J. Nonlin. Sci. 27, 047405.

doi: 10.1063/1.4979281

Shadi, K., Dyer, E., and Dovrolis, C. (2020). Multisensory integration in the

mouse cortical connectome using a network diffusion model. Netw. Neurosci.

4, 1030–1054. doi: 10.1162/netna00164

Shafiei, G., Markello, R. D., Vos de Wael, R., Bernhardt, B. C., Fulcher, B. D., and

Misic, B. (2020). Topographic gradients of intrinsic dynamics across neocortex.

eLife 9, e62116. doi: 10.7554/eLife.62116

Sip, V., Guye, M., Bartolomei, F., and Jirsa, V. (2022). Computational modeling

of seizure spread on a cortical surface. J. Comput. Neurosci. 50, 17–31.

doi: 10.1007/s10827-021-00802-8

Strogatz, S. H. (2018). Nonlinear Dynamics and Chaos with Student Solutions

Manual:With Applications to Physics, Biology, Chemistry, and Engineering. CRC

Press.

Wagstyl, K., Ronan, L., Goodyer, I. M., and Fletcher, P. C. (2015). Cortical

thickness gradients in structural hierarchies. NeuroImage 111, 241–250.

doi: 10.1016/j.neuroimage.2015.02.036

Wang, P., Kong, R., Kong, X., Liégeois, R., Orban, C., Deco, G., et al. (2019).

Inversion of a large-scale circuit model reveals a cortical hierarchy in the

dynamic resting human brain. Sci. Adv. 5, eaat7854. doi: 10.1126/sciadv.

aat7854

Wang, X.-J. (2020). Macroscopic gradients of synaptic excitation and inhibition in

the neocortex.Nat. Rev. Neurosci. 21, 169–178. doi: 10.1038/s41583-020-0262-x

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interactions in

localized populations of model neurons. Biophys. J. 12, 1–24.

Wilson, H. R., and Cowan, J. D. (1973). A mathematical theory of the functional

dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80.

Wischnewski, K. J., Eickhoff, S. B., Jirsa, V. K., and Popovych, O. V. (2021).

Towards an efficient validation of dynamical whole-brain models. Sci Rep. 12,

4331. doi: 10.1038/s41598-022-07860-7

Wong, K.-F., and Wang, X.-J. (2006). A recurrent network mechanism

of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328.

doi: 10.1523/JNEUROSCI.3733-05.2006

Yao, Z., van Velthoven, C. T. J., Nguyen, T. N., Goldy, J., Sedeno-Cortes,

A. E., Baftizadeh, F., et al. (2021). A taxonomy of transcriptomic cell types

across the isocortex and hippocampal formation. Cell 184, 3222–3241.e26.

doi: 10.1016/j.cell.2021.04.021

Zerbi, V., Floriou-Servou, A., Markicevic, M., Vermeiren, Y., Sturman, O.,

Privitera, M., et al. (2019). Rapid reconfiguration of the functional connectome

after chemogenetic locus coeruleus activation. Neuron 103, 702–718.e5.

doi: 10.1016/j.neuron.2019.05.034

Zerbi, V., Grandjean, J., Rudin,M., andWenderoth, N. (2015).Mapping themouse

brain with rs-fMRI: an optimized pipeline for functional network identification.

NeuroImage 123, 11–21. doi: 10.1016/j.neuroimage.2015.07.090

Zerbi, V., Pagani, M., Markicevic, M., Matteoli, M., Pozzi, D., Fagiolini, M.,

et al. (2021). Brain mapping across 16 autism mouse models reveals a

spectrum of functional connectivity subtypes. Mol. Psychiatry 26, 1–11.

doi: 10.1038/s41380-021-01245-4

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Siu, Müller, Zerbi, Aquino and Fulcher. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 15 April 2022 | Volume 16 | Article 84733678

https://doi.org/10.1103/PhysRevE.85.011912
https://doi.org/10.1103/PhysRevE.99.012421
https://doi.org/10.1038/sj.npp.1300143
https://doi.org/10.1016/j.neuroimage.2016.04.050
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1016/j.neuron.2021.09.037
https://doi.org/10.1063/1.4979281
https://doi.org/10.1162/netna00164
https://doi.org/10.7554/eLife.62116
https://doi.org/10.1007/s10827-021-00802-8
https://doi.org/10.1016/j.neuroimage.2015.02.036
https://doi.org/10.1126/sciadv.aat7854
https://doi.org/10.1038/s41583-020-0262-x
https://doi.org/10.1038/s41598-022-07860-7
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1016/j.cell.2021.04.021
https://doi.org/10.1016/j.neuron.2019.05.034
https://doi.org/10.1016/j.neuroimage.2015.07.090
https://doi.org/10.1038/s41380-021-01245-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

ORIGINAL RESEARCH
published: 16 May 2022

doi: 10.3389/fninf.2022.752471

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 752471

Edited by:

John David Griffiths,

University of Toronto, Canada

Reviewed by:

Eric K. Neumann,

Independent Researcher, Cambridge,

United States

Gabriel Girard,

Center for Biomedical Imaging (CIBM),

Switzerland

Javier Guaje,

Indiana University, United States

*Correspondence:

Joseph Y. Moon

moon15@llnl.gov

Pratik Mukherjee

pratik.mukherjee@ucsf.edu

Received: 03 August 2021

Accepted: 22 April 2022

Published: 16 May 2022

Citation:

Moon JY, Mukherjee P, Madduri RK,

Markowitz AJ, Cai LT, Palacios EM,

Manley GT and Bremer P-T (2022)

The Case for Optimized Edge-Centric

Tractography at Scale.

Front. Neuroinform. 16:752471.

doi: 10.3389/fninf.2022.752471

The Case for Optimized Edge-Centric
Tractography at Scale

Joseph Y. Moon 1*, Pratik Mukherjee 2*, Ravi K. Madduri 3, Amy J. Markowitz 2,

Lanya T. Cai 2, Eva M. Palacios 2, Geoffrey T. Manley 2 and Peer-Timo Bremer 1

1 Lawrence Livermore National Laboratory, Livermore, CA, United States, 2Department of Radiology and Biomedical

Imaging, University of California, San Francisco, San Francisco, CA, United States, 3 Argonne National Laboratory, Lemont,

IL, United States

The anatomic validity of structural connectomes remains a significant uncertainty in

neuroimaging. Edge-centric tractography reconstructs streamlines in bundles between

each pair of cortical or subcortical regions. Although edge bundles provides a stronger

anatomic embedding than traditional connectomes, calculating them for each region-pair

requires exponentially greater computation. We observe that major speedup can be

achieved by reducing the number of streamlines used by probabilistic tractography

algorithms. To ensure this does not degrade connectome quality, we calculate the

identifiability of edge-centric connectomes between test and re-test sessions as a

proxy for information content. We find that running PROBTRACKX2 with as few as 1

streamline per voxel per region-pair has no significant impact on identifiability. Variation

in identifiability caused by streamline count is overshadowed by variation due to subject

demographics. This finding even holds true in an entirely different tractography algorithm

using MRTrix. Incidentally, we observe that Jaccard similarity is more effective than

Pearson correlation in calculating identifiability for our subject population.

Keywords: connectomes, identifiability, tractography, diffusion MRI, optimization, EDI, edge-centric

1. INTRODUCTION

The structural connectome is a powerful framework for analyzing macro-scale circuity of the
living human brain and associating this connectivity with behavioral traits and health outcomes.
Streamlines (also called fiber tracks or samples) are computationally reconstructed from each seed
voxel in the white-to-gray matter boundary and connect exactly two regions of the brain. Structural
connectome analysis, or connectomics, may have the power to distinguish autism spectrum
disorder, estimate patient age and gender, and even predict cognitive ability (Betzel et al., 2014;
Ingalhalikar et al., 2014; Contreras et al., 2015; Roine et al., 2015). Furthermore, there is a significant
expectation that connectomics will provide crucial insights into otherwise difficult-to-probe
neurological conditions, such as traumatic brain injury (TBI) and other cognitive disorders.

However, the anatomic validity of connectomes based on diffusion MRI has been inconsistent
(Maier-Hein et al., 2017; Jeurissen et al., 2019). Tractography algorithms based on local fiber
orientationmay reconstruct large numbers of erroneous streamlines without additional constraints
from ground-truth observation. Furthermore, the reconstructed streamline density may differ
greatly from actual streamline density at each voxel, even when adjusted with filtering techniques
such as SIFT (Smith et al., 2014, 2015). Owen et al. (2015) propose edge density imaging
(EDI), which maps the number of region-to-region edges that pass through every white matter
voxel. EDI is generated by edge-centric tractography, which reconstructs streamlines as edge
bundles between individual pairs of cortical and subcortical regions. Each edge bundle is confined

79

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.752471
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.752471&domain=pdf&date_stamp=2022-05-16
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:moon15@llnl.gov
mailto:pratik.mukherjee@ucsf.edu
https://doi.org/10.3389/fninf.2022.752471
https://www.frontiersin.org/articles/10.3389/fninf.2022.752471/full

Moon et al. Optimized Tractography

to its own anatomically-plausible volume, which helps to exclude
invalid streamlines. This has the advantage of normalizing
connections between regions and improving inter-subject
reproducibility, particularly between regions with high edge
density (Owen et al., 2016).

However, progress in EDI and edge-centric tractography has
been hampered by the computational cost of generating an
order of magnitude more streamlines than before. A traditional
connectome will simply seed a specific quantity of streamlines
per voxel in the white-to-gray matter boundary and determine
in which region each streamline terminates. This can be
accomplished with a few tens of millions of streamlines and
may take at most a few hours on modern computers. Edge-
centric tractography must be repeated for each region-pair,
such that each voxel (in the white-to-gray matter boundary)
will reconstruct streamlines for every single region-pair that
its streamlines could possibly intersect. Even when excluding
anatomically-implausible region-pairs, this process can easily
require billions of streamlines and consume many nodes on the
most advanced high performance computing (HPC) platforms.
Creating and curating edge-centric connectomes for a few dozen
patients, even at a research facility, may take weeks and requires
dedicated personnel familiar with computational neuroscience.
As a result, processing hundreds or thousands of patients for
a large-scale study has been cost-prohibitive. Here, we exploit
the Department of Energy’s vast HPC capabilities to examine
the probabilistic variation of edge-centric tractography and the
predictability of its computations. This aspect of EDI has not
been studied carefully because of the sheer scale of computational
and human resources required to analyze a large number
of connectomes.

In particular, we focus on the probabilistic algorithms
underpinning edge-centric tractography, particularly
PROBTRACKX2 (Behrens et al., 2003) and MRTrix (Tournier
et al., 2019). Though our thesis only applies to probabilistic
algorithms, we include the results of a deterministic algorithm
from MRTrix to demonstrate the robustness of identifiability
as a quality metric. To account for the potential of crossing
tracks, imprecise white-to-gray matter boundary estimations,
and uncertainty induced by the lack of spatial resolution in the
MRI scans, the research standard has been to compute 1,000
streamlines per voxel per region-pair (Owen et al., 2015). The
unofficial publication standard is as many as 5,000 streamlines.
However, the advantage of 1,000 streamlines per voxel remains
unclear and the results presented below suggest that there may be
little practical benefit in computing more than 1 streamline per
voxel per region-pair. This simple but significant change implies
an immediate reduction in computational cost by up to three
orders of magnitude without significant loss of information.

The tractability of structural connectomes to matrix analysis
has resulted in a variety of proposed techniques to assess
their reliability (Imms et al., 2019). But since most of these
techniques target specific medical or anatomical conditions, it
is difficult to use them as universal metrics. In this work, we
utilize a more general notion of identifiability, introduced by
Amico and Goñi (2018). Conceptually, identifiability measures
how well one can identify the connectome of a specific patient

among a cohort of participants given an independently computed
connectome from a prior MRI scan. Identifiability provides
a generic measure of the information content of structural
connectomes that is independent of any particular health
condition or metric. We use a multi-center cohort of participants
admitted for orthopedic, i.e., non-head related, injuries in order
to demonstrate that a large streamline count does not improve
identifiability in a general population. More specifically, we find
that connectomes computed using 1 streamline per voxel per
region-pair are as descriptive as connectomes that were generated
with significantly higher streamline counts. Furthermore, the
random variance induced by the probabilistic tractography is
often as big as any changes observed for higher streamline
counts. These two facts combined imply that many standard
analyses will perform just as well with connectomes generated
from a small number of streamline count than what is currently
considered the standard. Reducing streamline count drastically
reduces the computational resources required, making edge-
centric structural connectomes accessible to a much wider range
of researchers and potentially paving the way for real-time
connectome analysis in a clinical setting.

2. METHODS

The edge-centric tractography workflow consists of three major
steps (Payabvash et al., 2019): (1) calculating the probability
distributions of fibers within each voxel from the raw MRI data,
(2) parcellating the brain into structurally relevant regions, and
(3) estimating how strongly each pair of regions are connected.
The main focus of this paper is to analyze heuristics for the
connectivity between brain regions using different streamline
counts and use that information to estimate the accuracy of
different levels of optimization. These heuristics must, in essence,
estimate the likelihood that reconstructed connectomes match
the real-world connectome. Since computing this likelihood
directly is challenging, the accepted approach is to use uniform
random sampling. Specifically, we begin with a large number
of streamlines at each seed voxel and subsequently approximate
the likelihood values by dividing the number of successful
streamlines by the total number of streamlines. The likelihood
values are then normalized by the volume of the regions and
inserted into the connectome. Each cell of this upper-triangular
matrix represents the connectivity of a region-to-region pair.

When we increase the streamline count, this process will
converge to the true connectome as defined by the given
parcellation, local fiber directions, and tractography algorithm.
As the fiber directions form a very high dimensional sampling
space and a complex distribution, common wisdom would
suggest that a very large number of streamlines are required
for an accurate estimate. The exact origin of the accepted
publication standard of streamlines, between 1,000 and 5,000
streamlines per voxel. remains unclear. But these numbers are
likely the result of similar concerns regarding accuracy. However,
while more streamlines undoubtedly add more information to
the connectome, doing so repeatedly for every single region-
pair generates enormous amounts of redundant data. If we

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 75247180

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

use 82 cortical and subcortical regions in the commonly-
used Desikan-Killiany parcellation, this results in 6642 potential
region-pairs. Even when we curate the number of plausible
region-pairs in the same way as Payabvash et al. (2019), we
have nearly 1,000 region-pairs to consider for each seed voxel.
Given between 10,000 and 100,000 seed voxels in the white-to-
gray matter boundary (depending on subject anatomy, image
resolution, and voxel density), this can result 10 to 100 billion
streamline computations. We contend that this is far in excess of
requirements for most use cases.

It is well-known that the physical aspects associated with
an MRI procedure, i.e., measurement noise, patient motion,
etc., as well as the constant change of the human brain add
significant uncertainties to the measurements made on the brain
which affect the generated connectome (Burgess et al., 2016).
Therefore, it is unproductive to compute the connectome to a
precision that is significantly higher than the maximal resolution
implied by the inherent uncertainties. However, quantitatively
assessing the “quality” of a connectome is not straight forward.
There are two significant challenges. The first challenge is the
requirement of a sufficient number of comparable MRI scans and
the resources to compute their corresponding connectomes at
different streamline counts. The second challenge is that there
is no agreed-upon comparison metric between connectomes to
understand the level of differences relevant in practice.

Here we address the first problem through a collaboration
with the Transforming Research and Clinical Knowledge in
Traumatic Brain Injury (TRACK-TBI) consortium.1 TRACK-
TBI is a longitudinal, observational study of TBI carried out at
18 Level 1 Trauma Centers across the United States. It includes
brain-injured subjects along with a matched cohort of orthopedic
injury control subjects. All participants were followed for 12
months following injury, and MRIs were collected from a subset
of both the brain-injured and orthopedic injury cohorts. To avoid
potential bias from the actual brain injuries, we are using a
cohort of 88 orthopedic injury control subjects all between ages
18 and 71 (mean 37.8 yr; SD 13.7 yr; 30 female). All patients have
no indication of head trauma based on clinical screening. We
utilize diffusion-weighted MR imaging for each patient at two
time points: 2 weeks and 6 months after injury. MR imaging is
conducted with 3T scanners at 11 sites across the United States.
All images are acquired using a uniform single-shell sampling
scheme. All sites use the same acquisition parameters, insofar
as possible across GE, Philips, and Siemens platforms (Palacios
et al., 2017). DiffusionMRI and T1-weightedMRI pre-processing
and post-processing are as reported in Owen et al. (2015, 2016).
This process ultimately provides NIfTI diffusion tensor images
with b = 1,000 s/mm2, divided into 2.7-mm isotropic voxels in a
128 L×128 W× 72 H matrix.

Given a total of 176 MRI scans we utilize MaPPeRTrac (Moon
et al., 2020), a new portable and parallel computing pipeline
that enables us to exploit large-scale computing facilities
for the necessary tractography computations.2 Our pipeline

1https://tracktbi.ucsf.edu
2https://github.com/LLNL/MaPPeRTrac

TABLE 1 | Software components of MaPPeRTrac.

Pre-processing BET, DTIFIT, FLIRT (Jenkinson et al.,

2002)

Segmentation Freesurfer (Desikan et al., 2006)

Fiber tensor estimation BEDPOSTX2 (Behrens et al., 2003)

Probabilistic tractography PROBTRACKX2 (Behrens et al., 2003)

Alternative prob. and

deterministic tractography

MRTrix3 (Tournier et al., 2019)

accomplishes the tractography workflow using the software
components shown in Table 1.

Figure 1 gives a rough illustration of how we convert NIfTI
images to connectomes matrices. When running Freesurfer, we
parcellate the brain with the Desikan-Killiany atlas. For the
PROBTRACKX2 pipeline, we use BEDPOSTX2 to estimate fiber
orientation directions (FOD). We then run PROBTRACKX2
for each region-pair while adjusting streamline count between
1 and 1,000 streamlines per voxel and using the gray-white
matter boundary as the seeding volume. All other software
components are left to their default values. Our tractography
workflow is portable across most scientific HPC clusters with
Slurm, Cobalt, or Grid Engine job scheduling. However, to
process these particular subjects, we used machines running the
TOSS 3 operating system with Slurm scheduling. Further details
can be found in Table 2 (Moon et al., 2020).

Our software can also conduct tractography using the MRTrix
library, as shown in Figure 2. It is important to note that we ran a
traditional tractography algorithm using MRTrix. Since MRTrix
lacks the ability to track the number of streamlines passing
through each voxel, as opposed to just the start and end regions,
it cannot be used to generate EDI. Our main intention with
MRTrix is to show the generalizability of the claim that extremely
high streamline counts fail to provide unique information,
regardless of algorithm details and parameters. We conducted
these experiments with the same of number of streamlines as
edge-centric tractography to demonstrate this point.

Our MRTrix pipeline uses the same pre-processing tools
and Freesurfer parcellation as the PROBTRACKX2 pipeline
(Tournier et al., 2007). However, we convert the parcellation to
five-tissue-type (5TT) format in order to use the Anatomically-
Constrained Tractography (ACT) framework (Smith et al., 2012).
This framework will more accurately terminate streamlines. We
then estimate the response function for each white-matter voxel
using the (Tournier et al., 2013) iterative algorithm, since this
is the recommended approach for single-shell data. Having
specified a mask using the whole diffusion-weighted image, we
run the spherical deconvolution algorithm proposed by Tournier
et al. (2007) on the response function estimation to generate the
FOD. After normalizing the FOD to correct for intensity outliers,
we use this FOD as the input for either the iFOD2 algorithm
for probabilistic tractography or the SD_STREAM algorithm
for deterministic tractography. The iFOD2 algorithm conducts
second-order integration of estimated fiber orientations to
determine principle streamline direction (Tournier et al., 2010).

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 75247181

https://tracktbi.ucsf.edu
https://github.com/LLNL/MaPPeRTrac
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

FIGURE 1 | Overview of MaPPeRTrac pipeline.

TABLE 2 | Hardware used to run MaPPeRTrac.

System CPU Clock speed Cores/ RAM/ GPU

node node

Quartz Intel Xeon E5-2695 2.10–3.30 GHz 36 128 GB n/a

Pascal Intel Xeon E5-2695 2.10–3.30 GHz 36 256 GB NVIDIA

Tesla P100

The SD_STREAM algorithm performs Newton optimization to
orient streamlines toward local peaks in the fiber orientation
(Tournier et al., 2012). Like with PROBTRACKX2, we seed
streamlines at the center of each voxel in the gray-white
matter boundary and adjust streamline count between 1 and
1,000 streamlines per voxel. But whereas our PROBTRACKX2
pipeline seeded only the starting region in each region-pair, our
MRTrix pipeline must combine all gray-white matter boundary
volumes to create a single seeding volume. Since masking was
performed during spherical deconvolution on our FOD, we do
not apply another mask during tractography. Unless previously
indicated, all MRTrix parameters are left to their default values.
The hardware and subject data are identical to those used
with PROBTRACKX2.

Our goal is to optimize tractography such that computation is
minimized without losing any information content. Information
content in this context refers to any biomarkers extrapolated
from the connectome which may relate to various psychiatric
disorders. These biomarkers are essentially patterns in the
connectome matrix which are valuable insofar as they can be
associated with patient outcomes, such as depressive disorder or
Alzheimer’s disease. However, despite significant advances, most
studies of structural connectomes in a clinical context remain
limited to a small number of patients. As a result, it is difficult
to point to any set of best practices for tractography optimization
in studies with dozens or hundreds of patients.

As previously mentioned, we use the notion of identifiability
introduced by Amico and Goñi (2018). Whereas they measured
identifiability in functional connectomes, we extend the concept
to structural connectomes in order to estimate the information
content across different streamline counts. Identifiability assumes
that the connectome must capture unique characteristics of
the individual, or at least distinct enough to make accurate

medical and/or scientific predictions. Given the evidence for
this assertion (Finn et al., 2015), we should be able to identify
individual patients within a cohort of similar patients as long
as each patient’s unique characteristics are borne out in their
connectome. Identifiability formalizes this concept and provides
a quantitative measure of how well we can identify connectomes.

Aij = corr(pi, qj) (1)

Iself =
1

N

∑

Aii and Iothers =
1

N2 − N

i6=j
∑

Aij (2)

Idiff = (Iself − Iothers) ∗ 100 (3)

The identifiability score for each patient is computed by
comparing their connectome at one timepoint p to every
connectome generated at different timepoints, q. As discussed in
more detail below we have experimented with various forms of
connectome metrics such as correlation, L2 distance, and Jaccard
similarity. Equation (1) shows that this results in an N × N
matrix A, composed of correlations between the two timepoints
where N is the number of patients. The average of diagonal
elements, Iself , measures correlation between connectomes of
the same patient. The average of off-diagonals, Iothers, measures
correlation between connectomes of different patients. These
can be expressed as in Equation (2). Identifiability Idiff , as seen
in Equation (3), is measured as the difference between Iself
and Iothers.

Amico and Goñi (2018) improve identifiability by reducing
connectome dimensionality. If we perform principal component
analysis (PCA) reconstruction withm components, then the best
possible identifiability we can extract from the data is

Idiff ∗ = arg max
mǫM

Idiff (m) (4)

We express identifiability as Equation (4) in all subsequent
sections, as it represents the strongest identification ability for any
set of connectomes.

Identifiability can be used to compare the success of different
procedures at preserving the connectomes’ information content.
However, larger study populations will necessarily have lower
identifiability, since each patient must self-identify out of a

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 75247182

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

FIGURE 2 | Overview of alternative pipeline with MRTrix.

FIGURE 3 | Mean identifiability with all patients (q = 4 random seeds per

streamline count, k = 20 subset size, r = 10 repetitions). For each streamline

count, there are q data points with tractography running a unique random

seed. Each data point represents the average of r repetitions of k randomly

selected patients in order to normalize for dataset size.

wider pool of candidates. To mitigate this, we calculate the
mean identifiability of repeated k-fold validation with fixed-
size subsets. We randomly select a subset of k patients out
of n total population, calculate identifiability of the subset,
repeat this r times, and average the repetitions. The resulting
mean identifiability enables comparison between differently-
sized populations.

Aij =
|pi − qj|

|pi| + |qj|
(5)

Aij =
pi

|pi|
·
qj

|qj|
(6)

Aij =

∑

kmin(pik, qjk)
∑

kmax(pik, qjk)
(7)

It is possible to calculate identifiability using correlation metrics
other than Pearson correlation. The comparison between test

and retest connectomes (see Equation 1) can be expressed
using any linear correlation algorithm. For example, Equation
(5) demonstrates a comparison using L2 distance, normalized
against each connectome. We also examine the normalized
dot product (Equation 6) and the Jaccard similarity coefficient
(Equation 7).We experiment withmultiple correlationmetrics to
help demonstrate the robustness of our optimization argument.

3. RESULTS

We re-ran probabilistic tractography with the same MRI scans
for twenty iterations: at five streamline counts with four samples,
each initialized with different random seeds. Note that we do not
present median or standard deviation for these figures—this is
because the cost of computation is so high that generating more
than four samples per streamline count would be prohibitive.
The five streamline counts are 10, 50, 200, 500, and 1,000
streamlines per voxel per region-pair. In the following figures,
each data point represents the mean identifiability at a particular
streamline count and random seed. Our tractography workflow
re-calculates streamlines for every region pair, so each white
matter voxel at the gray-white matter boundary will actually
originate many more streamlines than this number suggests. We
do not observe a relationship between mean identifiability and
streamline count, especially considering stochastic variation and
the narrow Y-axis. Since identifiability is the total percentage
difference in correlation between Iself and Iothers (see Equation
3), small stochastic variations of fractions of a percent have
little impact. However, even stochastic variation appears to
have a greater impact than streamline count. This suggests that
connectomes generated with low streamline counts contain just
as much information as high streamline counts, at least for
identification tasks.

Due to the small number of data points (related to the extreme
cost of compute), it would be unhelpful to evaluate correlation
metrics between streamline count and identifiability such as
coefficient of determination or error bars. We do not deny
that correlation may exist between identifiability and streamline
count. Because we argue that this correlation is not significant
compared to variations due to demographics, we instead consider
the absolute variations of identifiability within a category and
between categories. In Figure 3, we see variation within all

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 75247183

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

FIGURE 4 | Mean identifiability by category (q = 4 random seeds per streamline count, k = 20 subset size, r = 10 repetitions).

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 75247184

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

subjects of just 0.25 percent. In comparison, most categories in
Figure 4 differ from each other by much greater than 1 percent.

If we zoom in to individual categories, we see that mean
identifiability does not strongly vary with streamline count no
matter how patients are grouped together. Variation within each
category is an average of 0.6 percent. The greatest variation is
within 50–74 year olds at 2.1 percent, but this variation shows
no positive relationship streamline count and identifiability. In
addition, we observe that certain categories present stronger

differences than others. Male and female identifiability differ
by 3.9 percent, the youngest and oldest patients by 4.1 percent
on average, and various MRI platforms by less than 1 percent.
Though this does not confirm that identifiability is reading
population differences between categories, it does suggest that
those differences would be more significant than any increase in
identifiability from a higher streamline count.

One could argue that by comparing connectomes only against
other connectomes at the same streamline count, identifiability

FIGURE 5 | Mean identifiability across streamline counts (q = 4 random seeds per streamline count, k = 20 subset size, r = 10 repetitions).

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 75247185

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

is biased by processing artifacts unique to that streamline
count. Considering this, we compared identifiability with test
connectomes pi against retest connectomes qj from different
streamline counts. Figure 5 appears to confirm this bias because
identifiability is higher when the test and retest share the same
streamline count. But to some degree, this is expected, as
information particular to that streamline count is shared between
its tests and retests, whereas those from different streamline
counts may not carry that information. Nevertheless, the degree
of bias does not seem to be significant compared to the overall
success in identification. Again note the narrow Y-axis - even
identifiability as low as 13% is more than sufficient to distinguish
a retest from all 87 other retest connectomes.

We observe the same trend of weak correlation between
streamline count and identifiability in Figure 6. Incidentally, we
find that L2 distance yields somewhat better identification power
than Pearson correlation. The normalized dot product appears
relatively weak in comparison. However, the Jaccard similarity
coefficient demonstrates significantly stronger identifiability than
Pearson correlation. This is particularly unusual since Jaccard
similarity discards much information from its inputs by only
selecting the maximum and minimum of the test and retest
values. Although we use Pearson correlation in all other figures

due to its prevalence in existing literature, Figure 6 suggests that
there may be room for improving the identifiability algorithm.

For sake of completeness, we examine the edge-centric
connectomes using alternative graph metrics common in
neuroimaging literature. Details of these graph metrics for the
purpose of investigating test-retest reliability have been described
by Imms et al. (2019). For each connectome, we (1) calculate each
graph metric at each streamline count, (2) normalize the graph
metric at each streamline count against the value of the graph
metric at 1,000 streamlines, and (3) plot each normalized graph
metric in Figure 7. The resulting plots demonstrate no added
value above 1 streamlines per voxel per region-pair, similar to our
results for identifiability.

We ran the same subjects with MRTrix to generate traditional
connectomes, again using five streamline counts with four
samples each and k-fold validation. The results in Figure 8

demonstrate the same trend—an extremely slight variation in
identifiability with streamline count. In fact, the relationship
between streamline count and identifiability appears so tenuous
that higher counts have slightly lower identifiability. In Figure 9,
it is unsurprising to see the deterministic algorithm sees no
variation with streamline count at all. This indicates that the
deterministic algorithm used by MRTrix is conducting needless

FIGURE 6 | Mean identifiability by correlation metric (q = 4 random seeds per streamline count, k = 20 subset size, r = 10 repetitions).

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 75247186

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

FIGURE 7 | Comparison of graph metrics.

computation beyond the first streamline per voxel, since there is
no remaining decision space for tractography to explore.

4. DISCUSSION

By comparing edge-centric connectomes with the concept
of identifiability, we find that probabilistic and deterministic
algorithms do not significantly benefit from high streamline
counts. This has major ramifications for the computational cost
and availability of edge-centric tractography, as similar results
can be achieved with a fraction of the streamlines. However,
there is a major risk that optimization would lose information
not captured by identifiability. The ability to identify a patient
is necessary to connectome analysis—otherwise one could argue
that a connectome is indistinguishable and therefore dominated
by noise and external variables. But even if we could perfectly
identify patients from connectomes, this may not be sufficient for
more complex analyses.

There is also the risk that we did not compute sufficient
samples. To address this, we re-ran probabilistic tractography on
all patients with five streamline counts and four different random
seeds, for a total of twenty iterations. With that amount of

data, streamline count does not appear to significantly influence
identifiability. Even if correlation can be established, the slope of
such a curve is so flat as to be swamped by noise and subject
demographics. However, it is remotely possible that running far
more than twenty iterations would show strong variation. We do
not pursue this possibility owing to the computational expense of
tractography with high streamline counts - generating our data
already consumed over 300,000 CPU hours.

We also find that Jaccard similarity outperforms more
commonly used connectome correlation metrics such as Pearson
correlation in the calculation of identifiability. Though we
are surprised that this is the case, it is possible that Jaccard
similarity increases the weight of low-frequency information by
effectively binarizing the non-shared values. When calculating
identifiability, high-frequency values, such as dense contiguous
sections of the brain, may often match to the wrong subject.
Subjects are better distinguished by low-frequency areas with
unique structures. Given an incorrect match, choosing a
minimum or maximum of the test and retest value in low-
frequency areas will create a strongly fluctuating test-retest
variation since values tend not to overlap. And whereas Pearson
correlation and other metrics would dilute this variation by

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 75247187

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

FIGURE 8 | Mean identifiability with all patients using probabilistic MRTrix (q =

4 random seeds per streamline count, k = 20 subset size, r = 10 repetitions,

iFOD2 algorithm).

FIGURE 9 | Mean identifiability with all patients using deterministic MRTrix

(SD_STREAM algorithm).

the weight of high-frequency areas, Jaccard similarity would
provide consistent test-retest variation in high-frequency areas
since it does not combine the test and retest in each voxel. As a
result, Jaccard similarity improves identifiability similarly to PCA
reconstruction, by pruning low-information data. However, this
is mostly speculation and would require further study beyond the
scope of this paper.

There is also the concern that our findings lack external
physiological data. Brains do not exist in a vacuum, so key
markers such as clinical survey results, blood pressure, and body
weight may influence connectome analysis in subtle ways. We
mitigate this to an extent by categorizing patients by age and
gender and find that nothing in these categories undermines our

argument regarding streamline count. Furthermore, it has been
demonstrated that tractography is highly sensitive to choice of
processing method. If the method itself diverges from ground
truth, there is little that reproducibility can do to recover accurate
results. Ideally, we would approach ground truths using phantom
studies on the MRI processing techniques (Nath et al., 2020)
or histological studies on ex vivo specimins (Schilling et al.,
2018, 2019). However, we do not possess further anatomical or
physiological data for this patient population, so the influence of
other external variables remains unexplored.

We are also limited to using a particular set of acquisition and
pre-processing parameters. Previous studies have used a broad
array of parameters on the same subjects to make generalizable
observations (Côté et al., 2013). Though our narrow parameters
may appear to limit the generalizability of our findings, we
contend that differences between scans of the patients are subtle
enough that the ability of distinguish between them is more
significant than the ability to compare alternative parameters on
the same data. For example, a slightly different parcellation would
result in changes to the overall structure of the connectome
matrix, but identifiability would not greatly change since the
relative differences between connectomes would be much less
affected. Since we can even find the same results with two entirely
different tractography softwares, PROBTRACKX2 and MRTrix,
then minor changes on tractography parameters are unlikely to
change our overall findings.

5. CONCLUSIONS

Progress in EDI connectomics has been limited by the
steep computational cost of probabilistic white matter fiber
tractography. Creating diverse datasets with large numbers of
patients requires optimizations of the tractography workflow.
However, excessive optimization may degrade the connectome’s
information content. To measure the extent to which we can
optimize tractography, we use identifiability as an approximate
measure of the average information content in a set of
connectomes. Identifiability is a quantifiable metric for
identification tasks predictiveness using a patient’s test and retest,
based on MRI conducted 6 months apart. This enables us to
optimize computation by determining whether information
is lost.

Edge-density probabilistic tractography is computationally
expensive because it simulates massive quantities of white-matter
fiber streamlines. We find that the number of streamlines can be
greatly reduced from current practice. This optimization appears
to have no impact on identifiability; ergo, it does not degrade the
connectome’s information content for most purposes. Reducing
the number of streamlines yields direct linear efficiencies, such
that using half the streamlines takes approximately half the time
to compute. Existing literature uses between 1,000 and 5,000
streamlines per voxel per region-pair to ensure a well-converged
solution. We find that identifiability is stable with as few as 1
streamlines per voxel per region-pair.

We find that low streamline counts perform just as well as high
streamline counts even when analyzing our study population

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 75247188

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

with different demographics. These findings hold true for male
and female patients, different age ranges, different correlation
metrics, and all three common MRI hardware platforms. The
choice of populationmakes a far greater impact than any decision
on streamline count. In fact, variations in mean identifiability
due to streamline count are even less than those from stochastic
variation due to probabilistic tractography.

Using low streamline counts promises to greatly accelerate
study of EDI and edge-centric connectomes. High streamline
counts do not appear to harm identifiability in any scenario,
and will likely continue to be the standard for small-scale
studies. But by reducing the computational cost of tractography,
this simple optimization will enable hundreds to thousands
of edge-centric connectomes to be generated on systems that
previously handled a few dozen. Many open neuroimaging
questions related to EDI cannot be answered with small-scale
studies alone, particularly those on subtle population differences
such as behavioral disorders. As the field of connectomics grows,
optimizations such as these will be necessary to keep up with
the large amount of clinical data and computational resources
applied to human brain research as well as foster clinical
applications that require faster results for real-time patient care.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

Code, experimentation, and writing were primarily conducted
by JM under the supervision of P-TB. RM and LC contributed
significant technical and editorial collaboration, particularly with
the Mappertrac software. The patient data was prepared by the
UCSF authors, led by GM. PM and EP contributed most of
the Section 2, with significant assistance from AM. All authors
assisted with the creation of this paper. All authors contributed
to the article and approved the submitted version.

FUNDING

The research was funded by the United States Department
of Energy under the DOE Office of Science, Advanced
Scientific Computing Research. Support was organized under
The Co-Design for Artificial Intelligence and Computing at
Scale for Extremely Large, Complex Datasets projects (Grant
#KJ040301). This document was prepared as an account of
work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore
National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government
or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed herein do not necessarily state
or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

REFERENCES

Amico, E., and Goñi, J. (2018). The quest for identifiability in human

functional connectomes. Sci. Rep. 8, 8254. doi: 10.1038/s41598-018-25

089-1

Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R.,

Clare, S., et al. (2003). Characterization and propagation of uncertainty

in diffusion-weighted mr imaging. Mag. Reson. Med. 50, 1077–1088.

doi: 10.1002/mrm.10609

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., and Sporns, O.

(2014). Changes in structural and functional connectivity among resting-

state networks across the human lifespan. Neuroimage 102, 345–357.

doi: 10.1016/j.neuroimage.2014.07.067

Burgess, G. C., Kandala, S., Nolan, D., Laumann, T. O., Power, J. D., Adeyemo,

B., et al. (2016). Evaluation of denoising strategies to address motion-

correlated artifacts in resting-state functional magnetic resonance imaging

data from the human connectome project. Brain Connect. 6, 669–680.

doi: 10.1089/brain.2016.0435

Contreras, J. A., Goñi, J., Risacher, S. L., Sporns, O., and Saykin, A. J.

(2015). The structural and functional connectome and prediction of risk for

cognitive impairment in older adults. Curr. Behav. Neurosci. Rep. 2, 234–245.

doi: 10.1007/s40473-015-0056-z

Côté, M.-A., Girard, G., Bore, A., Garyfallidis, E., Houde, J.-C., and Descoteaux, M.

(2013). Tractometer: Towards validation of tractography pipelines.Med. Image

Anal. 17, 844–857. doi: 10.1016/j.media.2013.03.009

Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,

D., et al. (2006). An automated labeling system for subdividing the human

cerebral cortex on mri scans into gyral based regions of interest. Neuroimage

31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun,

M. M., et al. (2015). Functional connectome fingerprinting: identifying

individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671.

doi: 10.1038/nn.4135

Imms, P., Clemente, A., Cook, M., D’Souza, W., Wilson, P. H., Jones, D.

K., et al. (2019). The structural connectome in traumatic brain injury:

a meta-analysis of graph metrics. Neurosci. Biobehav. Rev. 99, 128–137.

doi: 10.1016/j.neubiorev.2019.01.002

Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel,

K., et al. (2014). Sex differences in the structural connectome of the human

brain. Proc. Natl. Acad. Sci. U.S.A. 111, 823–828. doi: 10.1073/pnas.1316909110

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved

optimization for the robust and accurate linear registration and

motion correction of brain images. Neuroimage 17, 825–841.

doi: 10.1006/nimg.2002.1132

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 75247189

https://doi.org/10.1038/s41598-018-25089-1
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1089/brain.2016.0435
https://doi.org/10.1007/s40473-015-0056-z
https://doi.org/10.1016/j.media.2013.03.009
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1038/nn.4135
https://doi.org/10.1016/j.neubiorev.2019.01.002
https://doi.org/10.1073/pnas.1316909110
https://doi.org/10.1006/nimg.2002.1132
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Moon et al. Optimized Tractography

Jeurissen, B., Descoteaux, M., Mori, S., and Leemans, A. (2019). Diffusion MRI

fiber tractography of the brain.NMR Biomed. 32, e3785. doi: 10.1002/nbm.3785

Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Côté, M.-A., Garyfallidis,

E., Zhong, J., et al. (2017). The challenge of mapping the human

connectome based on diffusion tractography. Nat. Commun. 8, 1349.

doi: 10.1038/s41467-017-01285-x

Moon, J. Y., Bremer, P.-T., Mukherjee, P., Markowitz, A. J., Palacios, E.

M., Rodriguez, A., et al. (2020). MaPPeRTrac: a massively parallel,

portable, and reproducible tractography pipeline. bioRxiv [Preprint].

doi: 10.1101/2020.12.23.424191

Nath, V., Schilling, K. G., Parvathaneni, P., Huo, Y., Blaber, J. A., Hainline, A.

E., et al. (2020). Tractography reproducibility challenge with empirical data

(traced): the 2017 ISMRM diffusion study group challenge. J. Mag. Reson.

Imaging 51, 234–249. doi: 10.1002/jmri.26794

Owen, J. P., Chang, Y. S., and Mukherjee, P. (2015). Edge density imaging:

mapping the anatomic embedding of the structural connectome within

the white matter of the human brain. Neuroimage 109, 402–417.

doi: 10.1016/j.neuroimage.2015.01.007

Owen, J. P., Wang, M. B., and Mukherjee, P. (2016). Periventricular white matter

is a nexus for network connectivity in the human brain. Brain Connect. 6,

548–557. doi: 10.1089/brain.2016.0431

Palacios, E., Martin, A., Boss, M., Ezekiel, F., Chang, Y., Yuh, E., et al. (2017).

Toward precision and reproducibility of diffusion tensor imaging: amulticenter

diffusion phantom and traveling volunteer study. Am. J. Neuroradiol. 38,

537–545. doi: 10.3174/ajnr.A5025

Payabvash, S., Palacios, E. M., Owen, J. P., Wang, M. B., Tavassoli, T., Gerdes, M.,

et al. (2019). White matter connectome edge density in children with autism

spectrum disorders: potential imaging biomarkers using machine-learning

models. Brain Connect. 9, 209–220. doi: 10.1089/brain.2018.0658

Roine, U., Roine, T., Salmi, J., Nieminen-von Wendt, T., Tani, P.,

Leppämäki, S., et al. (2015). Abnormal wiring of the connectome in

adults with high-functioning autism spectrum disorder. Mol. Autism 6,

65. doi: 10.1186/s13229-015-0058-4

Schilling, K., Gao, Y., Stepniewska, I., Janve, V., Landman, B., and Anderson, A.

(2018). Anatomical accuracy of standard-practice tractography algorithms in

the motor system - a histological validation in the squirrel monkey brain.Mag.

Reson. Imaging 55, 7–25. doi: 10.1016/j.mri.2018.09.004

Schilling, K. G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y.,

et al. (2019). Limits to anatomical accuracy of diffusion tractography using

modern approaches. Neuroimage 185, 1–11. doi: 10.1016/j.neuroimage.2018.

10.029

Smith, R., Tournier, J.-D., Calamante, F., and Connelly, A. (2014). The effects

of sift on the reproducibility and biological accuracy of the structural

connectome. Neuroimage 104, 253–265. doi: 10.1016/j.neuroimage.2014.

10.004

Smith, R. E., Tournier, J.-D., Calamante, F., and Connelly, A. (2012). Anatomically-

constrained tractography: improved diffusion mri streamlines tractography

through effective use of anatomical information. Neuroimage 62, 1924–1938.

doi: 10.1016/j.neuroimage.2012.06.005

Smith, R. E., Tournier, J.-D., Calamante, F., and Connelly, A. (2015).

Sift2: enabling dense quantitative assessment of brain white matter

connectivity using streamlines tractography. Neuroimage 119, 338–351.

doi: 10.1016/j.neuroimage.2015.06.092

Tournier, J.-D., Calamante, F., and Connelly, A. (2007). Robust determination of

the fibre orientation distribution in diffusion mri: non-negativity constrained

super-resolved spherical deconvolution. Neuroimage 35, 1459–1472.

doi: 10.1016/j.neuroimage.2007.02.016

Tournier, J.-D., Calamante, F., and Connelly, A. (2012). Mrtrix: diffusion

tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66.

doi: 10.1002/ima.22005

Tournier, J.-D., Calamante, F., and Connelly, A. (2013). Determination of

the appropriate b value and number of gradient directions for high-

angular-resolution diffusion-weighted imaging. NMR Biomed. 26, 1775–1786.

doi: 10.1002/nbm.3017

Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch,

M., et al. (2019). MRTRIX3: a fast, flexible and open software framework

for medical image processing and visualisation. Neuroimage 202, 116137.

doi: 10.1016/j.neuroimage.2019.116137

Tournier, J. D., Calamante, F., Connelly, A., et al. (2010). “Improved probabilistic

streamlines tractography by 2nd order integration over fibre orientation

distributions,” in Proceedings of the International Society forMagnetic Resonance

in Medicine (Hoboken, NJ: John Wiley & Sons, Inc.)

Conflict of Interest: GM discloses grants from the United States Department of

Defense—TBI Endpoints Development Initiative (Grant #W81XWH-14-2-0176),

TRACK-TBI Precision Medicine (Grant #W81XWH-18-2-0042), and TRACK-

TBI NETWORK (Grant #W81XWH-15-9-0001); NIH-NINDS—TRACK-TBI

(Grant #U01NS086090); and the National Football League (NFL) Scientific

Advisory Board—TRACK-TBI LONGITUDINAL. The United States Department

of Energy supports GM for a precision medicine collaboration. One Mind has

provided funding for TRACK-TBI patients stipends and support to clinical sites.

He has received an unrestricted gift from the NFL to the UCSF Foundation to

support research efforts of the TRACK-TBI NETWORK. He has also received

funding from NeuroTruama Sciences LLC to support TRACK-TBI data curation

efforts. Additionally, Abbott Laboratories has provided funding for add-in

TRACK-TBI clinical studies. AM receives funding from the Department of

Defense TBI Endpoints Development Initiative (Grant #W81XWH-14-2-0176)

and TRACK-TBI NETWORK (Grant #W81XWH-15-9-0001). She also receives

salary support from the United States Department of Energy precision medicine

collaboration and the philanthropic organization, One Mind. JM and P-TB are

employed by Lawrence Livermore National Security, LLC.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Moon, Mukherjee, Madduri, Markowitz, Cai, Palacios, Manley

and Bremer. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 75247190

https://doi.org/10.1002/nbm.3785
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1101/2020.12.23.424191
https://doi.org/10.1002/jmri.26794
https://doi.org/10.1016/j.neuroimage.2015.01.007
https://doi.org/10.1089/brain.2016.0431
https://doi.org/10.3174/ajnr.A5025
https://doi.org/10.1089/brain.2018.0658
https://doi.org/10.1186/s13229-015-0058-4
https://doi.org/10.1016/j.mri.2018.09.004
https://doi.org/10.1016/j.neuroimage.2018.10.029
https://doi.org/10.1016/j.neuroimage.2014.10.004
https://doi.org/10.1016/j.neuroimage.2012.06.005
https://doi.org/10.1016/j.neuroimage.2015.06.092
https://doi.org/10.1016/j.neuroimage.2007.02.016
https://doi.org/10.1002/ima.22005
https://doi.org/10.1002/nbm.3017
https://doi.org/10.1016/j.neuroimage.2019.116137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 20 May 2022

doi: 10.3389/fninf.2022.724336

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 724336

Edited by:

John David Griffiths,

University of Toronto, Canada

Reviewed by:

Boris Marin,

Federal University of ABC, Brazil

Richard C. Gerkin,

Arizona State University, United States

Shailesh Appukuttan,

UMR9197 Institut des Neurosciences

Paris Saclay (Neuro-PSI), France

*Correspondence:

Sotirios Panagiotou

s.panagiotou@erasmusmc.nl

Mario Negrello

m.negrello@erasmusmc.nl

Christos Strydis

c.strydis@erasmusmc.nl

Received: 12 June 2021

Accepted: 24 March 2022

Published: 20 May 2022

Citation:

Panagiotou S, Sidiropoulos H,

Soudris D, Negrello M and Strydis C

(2022) EDEN: A High-Performance,

General-Purpose, NeuroML-Based

Neural Simulator.

Front. Neuroinform. 16:724336.

doi: 10.3389/fninf.2022.724336

EDEN: A High-Performance,
General-Purpose, NeuroML-Based
Neural Simulator
Sotirios Panagiotou 1,2*, Harry Sidiropoulos 2, Dimitrios Soudris 1, Mario Negrello 2* and

Christos Strydis 2,3*

1 School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece, 2Department of

Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands, 3Quantum and Computer Engineering Department, Delft

University of Technology, Delft, Netherlands

Modern neuroscience employs in silico experimentation on ever-increasing and more

detailed neural networks. The high modeling detail goes hand in hand with the need for

high model reproducibility, reusability and transparency. Besides, the size of the models

and the long timescales under study mandate the use of a simulation system with high

computational performance, so as to provide an acceptable time to result. In this work,

we present EDEN (Extensible Dynamics Engine for Networks), a new general-purpose,

NeuroML-based neural simulator that achieves both high model flexibility and high

computational performance, through an innovative model-analysis and code-generation

technique. The simulator runs NeuroML-v2 models directly, eliminating the need for

users to learn yet another simulator-specific, model-specification language. EDEN’s

functional correctness and computational performance were assessed through NeuroML

models available on the NeuroML-DB and Open Source Brain model repositories.

In qualitative experiments, the results produced by EDEN were verified against the

established NEURON simulator, for a wide range of models. At the same time,

computational-performance benchmarks reveal that EDEN runs from one to nearly two

orders-of-magnitude faster than NEURON on a typical desktop computer, and does so

without additional effort from the user. Finally, and without added user effort, EDEN has

been built from scratch to scale seamlessly over multiple CPUs and across computer

clusters, when available.

Keywords: computational neuroscience, biological neural networks, simulation, High-Performance Computing,

code morphing, interoperability, NeuroML, software

1. INTRODUCTION

Simulation of biological neural networks is an essential tool of modern neuroscience. However,
there are currently certain challenges associated with the development and in silico study of such
networks. The neural models in use are diverse and heterogeneous; there is no single set of
mathematical formulae that is commonly used by the majority of existing models. In addition, the
biophysical mechanisms that make up models are constantly being modified, and reused in various
combinations in new models. These factors mandate the use of general-purpose neural simulators
in common practice. At the same time, the network sizes and levels of modeling detail employed
in modern neuroscience translate to a constant increase in the volume of required computations.

91

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.724336
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.724336&domain=pdf&date_stamp=2022-05-20
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.panagiotou@erasmusmc.nl
mailto:m.negrello@erasmusmc.nl
mailto:c.strydis@erasmusmc.nl
https://doi.org/10.3389/fninf.2022.724336
https://www.frontiersin.org/articles/10.3389/fninf.2022.724336/full

Panagiotou et al. EDEN: A Novel Neural Simulator

Thus, neuroscience projects necessitate high-performance tools
for simulations to finish in a practical amount of time and for
models to fit into available computer memory.

Although there already exists a rich arsenal of simulators
targeting neuroscience, the aforementioned challenges of neural
simulation remain an open problem. On one hand, there are
hand-written codes that push the processing hardware to the
limit but they are difficult or impossible to extend in terms
of model support, because of their over-specialization. They
offer great computational performance by executing solely the
numerical calculations required by the model’s dynamics. On
the other hand, there are general-purpose simulators that readily
support most types of models, however, their computational
efficiency is much less than that of hand-written codes.
Hence, there is a significant gap in efficiency between general-
purpose neural simulators and the computational capabilities
that modern hardware platforms can achieve.

Besides, simulation of large networks often requires deploying
neural models on multiple processor cores or, even, on computer
clusters. Existing general-purpose simulators do not manage
the technicalities of parallelization, model decomposition, and
communication automatically. Thus, significant engineering
effort is spent on setting up the simulators to run on multi-core
and multi-node systems, which further obstructs scientific work.

A further problem is that, presently, each neural simulator
uses its own model-specification language. Thus, models written
for one simulator are difficult and laborious to adapt for another,
which hampers the exchange and reuse of models across the
neuroscience community. In this context, if a new simulator were
to support only its own modeling language, this would fragment
the modeling community further and would add a serious barrier
to the simulator’s adoption as well as the reuse of existing models.

1.1. The EDEN Simulator
To address the challenges in in silico neuroscience, we
designed a new general-purpose neural simulator, called EDEN
(Extensible Dynamics Engine for Networks). EDEN directly runs
models described in NeuroML, achieves leading computational
performance through a novel architecture, and handles parallel-
processing resources—both on standalone personal computers as
well as on computer clusters—automatically.

EDEN employs an innovative model-analysis and code-
generation technique1 through which the model’s variables and
the mathematical operations needed for the simulation are
converted into a set of individual work items. Each work item
consists of the data that represent a part of the neural network,
and the calculations to simulate this part of the network over
time. The calculations for the individual work items can then be
run in parallel within each simulation step, allowing distribution
of the computational load among many processing elements.
This technique enables by-design support for general neural
models, and at the same time offers significant performance

1 Code generation as a general technique is prevalent in high-performance neural

simulators—see Blundell et al. (2018)—but these simulators either analyse neuron

models at a shallower level than our work does, or they support a narrow subset of

neuron models, as we explain in the following.

benefits over conventional approaches. The need for model
generality with user-provided formulae is directly addressed via
automatic code generation; but the architecture also supports
hand-optimized implementations that apply for specific types of
neurons. At the same time, reducing the complex structure of
biophysical mechanisms inside a neuron into an explicitly laid
out set of essential, model-specific calculations allows compilers
to perform large-scale optimizations. What is more, traditional
simulators perform best with specific kinds of neuron models
(e.g., multi-compartmental or point neurons) and worse with
other ones. In contrast, EDEN’s approach allows selecting the
implementation that works best for each part of the network, at
run time.

We adopted the NeuroML v2 standard (Cannon et al.,
2014) as our simulator’s modeling language. NeuroML v2 is
the emerging, standard cross-tool specification language for
general neural-network models. By following the standard, we
stay compatible with the entire NeuroML-software ecosystem:
EDEN’s simulation functionality is complemented by all the
existing model-generation and results-analysis tools, and the
ecosystem gets the most value out of EDEN as an interoperable
simulator. Furthermore, positioning the simulator as a plug-
compatible tool in the NeuroML stack allows us to focus
our efforts on EDEN’s features as a simulator (namely,
computational performance, model generality, and usability).
Finally, supporting an established modeling language makes user
adoption much easier, compared to introducing a new simulator-
specific language.

Another aspect that was taken into account in EDEN’s
design is usability. In addition to the benefits gained through
NeuroML support, EDEN addresses usability through automatic
management of multi-processing resources. This means that
EDEN can distribute processing for a simulation across the
processor cores of a personal computer–or even a computer
cluster–fully automatically. Thus, users can fully exploit their
modern computer hardware and deploy simulations of large
networks on high-performance clusters, with no additional effort.

To evaluate all aforementioned features of EDEN, we
employed: (1) qualitative benchmarks showing simulation
fidelity to the standard neural simulator NEURON; and (2)
quantitative benchmarks showing far superior simulation speed
compared to NEURON, for networks of non-trivial size. The
results of these benchmarks are expanded on in Section 3.

The contributions of this work are, thus, as follows:

• A novel neural simulator called EDEN supporting high
model generality, computational performance, and usability
by design.

• A novel model-analysis/code-generation technique that allows
extracting the required calculations from a neural-network
model, and casting them into efficient work items that can be
run in parallel to simulate the network.

• A qualitative evaluation of EDEN, demonstrating NEURON-
level fidelity, for a diverse set of neural models.

• A quantitative evaluation of EDEN, demonstrating simulation
speeds of real-world neural networks (sourced from literature)
up to close to two orders-of-magnitude faster than NEURON,
when run on an affordable, 6-core desktop computer.

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 72433692

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

TABLE 1 | Qualitative comparison between EDEN and other state-of-the-art neural simulators: NEURON (McDougal et al., 2017), CoreNEURON (Kumbhar et al., 2019),

JLEMS (Cannon et al., 2014), BRIAN2 (Stimberg et al., 2019), GeNN (Yavuz et al., 2016), NEST (Gewaltig and Diesmann, 2007), and Arbor (Akar et al., 2019).

EDEN (Core) NEURON Arbor jLEMS BRIAN2 NEST GeNN

Supported models and features

LIF, AdEx, Izhikevich cells X X Only LIF X X X X

Custom artificial cells X X × X X Partially via NestML Partially via NineML

Highly detailed multi-compartmental

cells

X X X × Not practical × ×

Native NeuroML support X × × X × × ×

Overall support compared to EDEN Baseline X × × × × ×

Performance

Machine-wide parallelism X Manual X × Only for simple cases X X

Cluster-wide parallelism X Manual X × × X ×

Cluster-wide auto-parallelization of

detailed networks with graded

synapses

X × × × × × ×

Overall performance compared to

EDEN

Baseline × × × × X† X†

†Only for artificial-cell models that NEST and GeNN support.

1.2. Qualitative Comparison of Neural
Simulators
In Table 1, we present a qualitative comparison between our
proposed simulator EDEN, and the most popular, actively
developed simulators in the computational-neuroscience field. In
line with the scope of this article, we consider the more general-
purpose simulators that can be used in a batch-mode, brain-
modeling setting. The table consists of two parts, the top half
dealing with coverage of neuron models and features, and the
bottom half dealing with aspects of computational performance.
Figure 1 also summarizes a qualitative comparison between
the usability, range of supported models and computational
performance of the various simulators. The characteristics and
relative advantages of each simulator are further laid out in the
following paragraphs.

NEURON (McDougal et al., 2017) is the popular standard
simulator for biological and hybrid2 neural networks. It supports
the richest set of model features among neural-simulation
packages. A characteristic feature of NEURON is that everything
about the model can be changed dynamically while the model is
being simulated. This allows simulation of certain uncommon
models, but it negatively impacts the simulator’s computational
efficiency. CoreNEURON (Kumbhar et al., 2019) is a new
simulation kernel for NEURON that improves computational
performance and memory usage at the cost of losing the ability to
alter the model during simulation. It does not affect setting up the
simulator and the model, which are still performed in the same
way. Due to the underlying architectural design, the user has
to add custom communication code to allow parallel simulation
with NEURON, though there is ongoing effort to standardize and
automate the needed user code (Dura-Bernal et al., 2019).

2Neural networks with mixed populations of both artificial and biophysically

modeled neurons.

Compared to NEURON, EDEN only supports the
NeuroML gamut of models. However, EDEN has much
higher computational performance that also automatically scales
up with available processor cores and computational nodes. Also,
setting up a neural network in NEURON requires the connection
logic to be programmed in its own scripting language. This
is a cumbersome task and, what is more, NEURON’s script
interpreter is slow and non-parallel, often resulting in model
setup taking more time than the actual simulation. In contrast,
EDEN can load networks from any neural-network generation
tool that can export to NeuroML3, thus leveraging the capabilities
and computational performance of these tools.

Another simulator for biological neural networks is
Arbor (Akar et al., 2019) which aims at high performance
as well as model flexibility. Its architecture somewhat resembles
the object model used by NEURON, which facilitates porting
models, written in NEURON, to Arbor. However, compared to
NEURON, it supports a smaller set of mechanisms. Regarding
hybrid networks, modeling artificial cells is difficult; only
linear integrate-and-fire (LIF) neurons are readily supported,
and the user has to modify and rebuild the Arbor codebase
for introducing new artificial-cell types. In addition, neuron
populations connected by graded synapses cannot be distributed
across machines for parallel simulation, which restricts scalability
when running cutting-edge biological-neuron simulations.
Compared to Arbor, EDEN supports about the same range
of biophysical models but also supports all types of abstract-
neuron models, while Arbor only supports LIF abstract neurons.
This limitation prevents Arbor from supporting many hybrid
networks. There is also a difference in usability: To set up a

3Common NeuroML-compatible model-generation tools: NetPyNE (Dura-Bernal

et al., 2019), neuroConstruct (Gleeson et al., 2007), NeuroMLlite (https://github.

com/NeuroML/NeuroMLlite).

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 72433693

https://github.com/NeuroML/NeuroMLlite
https://github.com/NeuroML/NeuroMLlite
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 1 | A relative comparison of the characteristics of EDEN and the

established neural simulators. (A) compares the simulators on the

performance and usability plane; (B) shows the ordering between simulators

regarding the level of model detail; and (C) shows the level of modeling detail

supported by each simulator.

network model, the network-generation logic must be captured
as Arbor-specific programming code. EDEN, instead, avoids
simulator-specific programming by using a cross-tool file format.

In the space of artificial-cell-based spiking neural networks
(SNNs), there are various specialized simulators in common use.
jLEMS (Cannon et al., 2014) is the reference simulator for the
LEMS side of NeuroML v2. It supports custom point-neuron
dynamics through LEMS, which itself is a hierarchical-dynamics
description language that co-evolved with NineML (Raikov
et al., 2011). It was not designed for high performance and
supports only simplified point neurons. BRIAN2 (Stimberg et al.,
2019) is a simulator originally designed for point neurons, that
focuses on usability and user productivity. It supports custom
point-neuron dynamics, written in mathematical syntax. Its
support for multi-compartmental cells is a work in progress;
currently, all compartments must have the same set of equations.
NEST (Gewaltig and Diesmann, 2007) and GeNN are general-
purpose simulators for networks of point neurons and achieve
high performance through a library of optimized codes for
specific neuron types. Setting up the network is done through
a custom programming language for NEST, and by extending
the simulator with custom C++ code for GeNN. For NEST

and GeNN, the way to add custom point-neuron types without
modifying the C++ code is by writing the neuron’s internal
dynamics in a simulator-specific language; however, this method
is not enough to capture all aspects of the model (such as multiple
pre-synaptic points on the same neuron in NEST). Compared
to abstract-cell simulators, EDEN has an advantage in model
generality, since it also supports biophysically detailed multi-
compartmental neurons, and hybrid networks of physiological
and abstract cells. Although EDEN is not as computationally
efficient as the high-end abstract-cell simulators, it readily
supports user-defined dynamics inside the cells and synapses,
whereas said high-performance simulators have to be modified
to support new cell and synapse types. EDEN also supports non-
aggregable synapses [i.e., not just types that can be aggregated
into a single instance as per (Lytton, 1996)], and any combination
of synapse types being present on any type of cell; which are also
not supported by high-performance abstract cell simulators.

An important point to stress is that, the differences in
supported model features, combined with the different model-
description languages, make it difficult to reproduce the exact
same neural network (and its output) across all simulators;
this is especially the case for biologically detailed models.
Thus, although there is much previous work on performance-
driven neural simulation, our work is one of the first to
directly compare performance with NEURON on physiological
models that are drawn from existing literature, rather than
employing synthetic ones. This further underscores the point
that EDEN is a general-purpose tool that can be readily
used with existing NeuroML models as well as in new
NeuroML projects.

In the literature, the designers of CoreNEURON and
Arbor have each reported utilizing the cores of a whole
High-Performance Computing (HPC) node, to achieve up to
an order of magnitude of speedup over NEURON. While
the models and the machines used in those cases are
not identical to ours for allowing a strict comparison, our
demonstrated speedup of 1 to nearly 2 orders of magnitude
over NEURON on a 6-core PC shows that EDEN is more
than competitive against the state of the art in terms of
computational performance. Furthermore, the fact that a regular
desktop PC has been used for achieving such speedups
makes the results highly relevant for a typical neuroscientist’s
computational resources.

2. METHODS AND MATERIALS

2.1. EDEN Overview
The architecture of EDEN can be visualized as a processing
pipeline, which is illustrated in Figure 2. The pipeline
details and the reasons for allowing EDEN to deliver
high performance, model flexibility, and usability are
explained in this section. While current neural simulators
primarily focus on either computational performance or
model generality, EDEN simultaneously achieves both
objectives with a novel approach: it generates efficient
code kernels that are tailored for the neuron models
at hand.

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 72433694

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 2 | EDEN’s processing pipeline. The whole model is analyzed in order

to extract the computationally similar parts of neurons, and to generate

optimized code and data representations for them, on the fly.

EDEN performs time-driven simulation of any sort of
neural network that can be described in NeuroML. To enable
simulation of complex, and often heterogeneous, networks
with high performance, EDEN first performs model- and
workload-analysis steps so as to divide the simulation workload
into independent, parallelizable components and, subsequently,
determines efficient code and data representations for simulating
each one of them. Finally, EDEN employs automatic code
generation to convert these components to parallel-executable
tasks (called work items). Code generation boosts computational
efficiency by adapting performance-critical code to the specific
model being simulated and to the specific hardware platform
being used. Task parallelization boosts computational efficiency
even further by distributing the simulation work across multiple

CPU cores in a given computer, and across multiple computers
in a high-performance cluster.

2.2. Usability Through Native NeuroML
Support
Choosing NeuroML as EDEN’s input format allows us to focus
on our core part of high-performance numerical simulation and,
at the same time, leverage the existing NeuroML-compatible,
third-party tools for design, visualization, and analysis of
neural networks. Adopting the standard also improves the
simulator’s usability, as the end user does not need to learn one
more simulator-specific modeling language. In practice, directly
supporting the NeuroML standard also allowed us to verify the
simulator’s results against the standard NEURON simulator, for
numerous available models. As we will see in Section 3, the
same NeuroML description can be used for both simulators and
run automatically. Otherwise, porting all these models separately
to both simulators would have taken an impractical amount of
effort, making verification and comparison much more difficult
to achieve.

2.3. Performance and Flexibility Through
Code Generation
Neural models, especially biophysical ones, are commonly
described through a comprehensive, complex hierarchy of
mechanisms. Neural-simulation programmers have to consider
this cornucopia of mechanisms and their combinations so as to
form neural models. All the while, the formulations behind the
mechanisms are constantly evolving, thus, allowing for no single
set of mathematical equations to cover most (or even a few of the)
neural models.

The resulting complexity—in both setting up a model and
running the simulation algorithm—has steered general-purpose
neural-simulation engines to adopt object-oriented models of the
neural networks being run. Each type of programming object,
then, captures a respective physiological mechanism, and the
hierarchy of mechanisms in the model is represented by an
equivalent object hierarchy. By adopting NeuroML, EDEN takes
the same object-oriented approach at the model input.

Although this approach does help simplify the programming
model by mitigating the conceptual and programming
complexity of working with sophisticated models, it is
detrimental to the execution model since it is an inefficient
way to run the simulations on modern computer hardware.
The object-oriented data structure of a model in use has to be
traversed, every time the equations of the model are evaluated
and the model’s state is advanced. The traversal logic in use
enforces a certain ordering among the calculations that are
needed to advance the model’s state. Also, the object-oriented
model’s pointer-based data structures make control flow and
data-access patterns unpredictable, slowing down the processing
and memory subsystems of the computer, respectively.

For example, NEURON advances the state of the network
in successive stages: Within the scope of one parallel thread,
the processing stages of (a) evaluating current and conductivity
for all membrane mechanisms present, (b) solving the cable

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 72433695

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

equation for all neurons, and (c) advancing the internal state
of all membrane mechanisms are performed in strict sequence.
Since each part of these three stages pertains to a specific
compartment of the network, and yet processing of these
stages for the same compartment is separated in time by
processing for the whole network, this ordering is detrimental
to data locality. In accelerator-enabled implementations of this
technique, namely CoreNEURON and Arbor, the mechanisms
with identical mathematical structure are grouped together and
executed in an even stricter sequence within the original phases of
processing. This exacerbates the impact to locality and introduces
synchronization overhead that increases with model complexity,
as parallelization is only applied across identical instances of each
mechanism type.

Now, starting from the computer-architecture part of the
problem, HPC resources are designed so that the maximum
amount of computations can be done independently and
simultaneously. Thus, fully utilizing them requires streamlined
algorithms and flat data structures. In many cases, neural-
simulation codes have been custom-tailored for the HPC
hardware at hand. Although such codes improve simulation
speed and supported network size by orders of magnitude
compared to general-purpose simulators, they make inherent
model assumptions that prevent them from supporting
other models. The result is that these manually optimized codes,
as well as the knowledge behind them, are abandoned after the
specific experiment they were developed for is concluded.

To avoid the pitfalls of these two approaches, EDEN
consciously refrains from imposing a specific executionmodel, so
that it can support both model generality and high-performance
characteristics. Both of them are simultaneously achieved
through a novel approach: efficient code kernels that are tailored
for the neuron models at hand are automatically generated, while
supporting the whole NeuroML gamut of network models. The
specific processing stages that EDEN undergoes to achieve this
(see Figure 2) are as follows:

1. Analyse all types of neurons in a given model.
2. Deduce the parts of the neural network that have a similar

mathematical structure.
3. Produce efficient code kernels, each custom-made to simulate

a different part of the network.
4. Iteratively run the code kernels to simulate the network.

This code-generation approach used by EDEN has manifold
benefits: First, the simulation can be performed without
traversing the model’s hierarchy of mechanisms at run time, since
the set of required calculations has already been determined
at setup time. Second, since the generated code contains only
the necessary calculations to simulate a whole compartment
or neuron, the compiler is given much more room for
code optimization compared to code generation for individual
mechanisms. Third, the minimal set of constraints that EDEN’s
backend places on the code of work items allows incorporating
hand-written code kernels that have been optimized for
specific neural models. This is also made possible due to the
model-analysis stage, which isolates groups of neurons and/or
compartments with an identical mathematical structure; when

a hard-coded kernel is available for a detected neuron type, it
can be employed for the specific cell population, to further boost
performance. Thus, EDEN’s model-decomposition and code-
generation architecture delivers high computational performance
for a general class of user-provided neuron models, and it also
permits extensions in both the direction of model generality and
computational performance.

For this first version of EDEN, a polymorphic kernel
generator4 that supports the full gamut of NeuroML models was
implemented. The specifics of the code kernels are customized
for each neuron type; still, the generator’s format covers any
type of neuron, whether it is a rate-based model, an integrate-
and-fire neuron or a complex biological neuron, or whether
the interaction is event-based, graded, or mixed. Thus, this
implementation provides a baseline of computational efficiency,
for all neural models. It can also work in tandem with specialized
kernels. Two ways of extending EDEN with such specialized
high-performance codes are described below.

The simplest way to integrate an existing code in EDEN is
to directly use it just for the models that the code supports.
Programming-wise, the neural network to be run is checked
whether it can be run on the new code, and if this is the case, the
original new code is generated as a work item, and the simulation
data is accordingly allocated and initialized for the model. By
running the same code on the same data, extended EDEN should
perform as well as the original EDEN code, for the supported
family of models.

Alternatively, if the specialized code applies to only a part
of the desired network, it can interface with work items from
EDEN’s general-purpose implementation (or other extensions)
for the part of the network that it does not cover. Some
modification is then necessary to make the code exchange
information (such as synaptic communication) in the same way
as the work items it is connected to, but the gains in model
generality are immediate.

Following these methods, the usefulness of the optimized
code is extended with the least possible effort, simulation can
utilize multiple computational techniques at the same time,
and the details of each technique do not affect the rest of the
EDEN codebase.

2.4. EDEN Concepts
2.4.1. Work Items
The fundamental units of work executed per each simulation step
in EDEN are called “work items.” The work items are parts of the
model that can be processed in parallel within a simulation step,
to advance the state of the simulated model. Within a time-step,
each work item is responsible for updating a small part of the
entire model. Each work item is associated with a single part of
the model data being simulated, and a single code block being
run. That code block is responsible for updating the mutable part
of its model data over time, but it may also update other parts as
well, so that it can send information to other parts of the model.
One such case is transmission of spike events to post-synaptic

4Polymorphic means that it adapts to the neuron’s structure, instead of handling

just one type.

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 72433696

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

components. Then, data-access collision with the work item that
is assigned to the post-synaptic component is avoided by double
buffering; the work item receiving the information reads it on
the next time-step, while leaving the alternate buffer available
for other work items to write to. In the case multiple other
work items may write simultaneously, atomic memory accesses
are used.

In this first version of EDEN, each work item involves
simulating exactly one neuron, but the design allows further
variations—for example, to consolidate simple neurons in
batches, or to split large neurons in parts—as long as the
calculations for each work item are independent.

2.4.2. Code and Data Signatures
EDEN generates compact code and data representations to run
the simulation, by composition of the multiple underlying parts.
The details of how this works are explained below.

Each simulated mechanism is defined by its dynamics, the
fixed parameters and state variables of the dynamics, and
the variables through which it influences other mechanisms,
and is influenced by other mechanisms. The external variables
influencing the mechanism are called requirements, and the
values it, in turn, presents for other mechanisms to use, are called
exposures. Then, to simulate the mechanism, the required actions
are:

• to evaluate all variables involved in the dynamical equations
(called “assigned” henceforth, in EDEN as well as NEURON
parlance). This is the “evaluation” step of the simulation code.

• then, to advance the simulation’s state based on the dynamics,
and the current values of the assigned variables. This is the
“update” step of the simulation code.

The whole set of code and data for simulating a mechanism is
collectively called a signature in EDEN parlance. Examples of
code-data signatures are shown in Figure 3, for simple cases of
a post-synaptic component and an ion channel. Each of them
consists of the code for running the “evaluation” and “update”
steps (also called code signature), and the data representing
the mechanism (also called data signature). The signature
representation is used in EDEN both for simple mechanisms and
composite ones. In fact, the signatures of smaller mechanisms
are successively merged to form the signatures of higher-
order parts of the neurons, eventually forming signatures for
whole compartments or even entire neurons. The code of such
signatures is then run in parallel, in order to simulate the whole
neural network.

In order to combine the signatures representing two
mechanisms, the interfaces (i.e., requirements and exposures)
through which the mechanisms interact have to be determined.
The hierarchical structure of the provided neural models helps in
this, since it delineates the interfaces through which the “parent”
mechanism interacts with its “children,” and the “siblings”
interact with each other.

Code generation starts from the simple, closed-form
mechanisms present (for example, Hodgkin-Huxley rate
functions or plasticity factors of mechanisms). The hierarchy of

mechanisms present in a neuron is traversed, and signatures are
incrementally formed for each level of the hierarchy.

The specific steps to merge two signatures are then, in terms
of code and data:

• The “evaluation” parts of the code signature have to be placed
in a certain order, such that after the variables eachmechanism
requires are defined and evaluated before the mechanism’s
evaluation code.

• The “update” parts of the code signature can be
appended anywhere after the mechanism’s corresponding
evaluation code.

• The data signatures of the mechanisms are simply
concatenated to each other.

As signatures are generated for each higher or lower level
mechanism, an auxiliary data structure that has the same
hierarchical structure as the original object-orientedmodel is also
formed. This is called the implementation of the signature, and it
keeps track of how the conversion to signatures was performed,
for each mechanism. Relevant information includes the specific
decisions made for the generated code (like selection of ODE
integrator for the particular mechanism), and the mapping of
abstract parameters and state variables (such as the gate variable
of an ion channel, the fixed time constant of a synapse, the
membrane capacitance of a compartment, etc.) to the specific
variables allocated in the data signature. The information is
useful for:

• referring to parts of the network symbolically (like
when recording trajectories of state variables, and when
communicating data-dependencies between machines in
multi-node setups),

• initializing the data structures through the symbolic
specifications in use (such as weights of specified synapses),

• properly combining signatures, according to implementation
decisions (e.g., adjusting the update code to the integrator in
use).

2.4.3. Data Tables and Table-Offset Referencing
To achieve high performance during simulation, EDEN uses a
simplified data structure for the model. The model’s data are
structured in a set of one-dimensional arrays of numbers. These
arrays (called tables henceforth) are grouped by numerical type
(such as integral or floating-point), and mutability (whether their
values remain fixed along the simulation, or they evolve through
time). This means that each value in the model being simulated is
identified by the table it belongs to, its position in the table, and
the value’s numerical type and mutability.

The value’s location can then be encoded into an integer,
from the table’s serial number and the offset on the table.
The code generated by EDEN can use such references to
values at run time, to access data associated with other
work items. This relieves EDEN’s simulation engine from
the need to manage communication between parts of the
model with a fixed implementation. Instead, control is given
to the work items’ generated code on how to manage this
communication effectively.

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 72433697

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 3 | Code and data signatures for an exponential-conductance post-synaptic component (A), and for a classic Hodgkin-Huxley sodium channel (B).

Another benefit of the table-offset referencing scheme is that
the references can be redirected to any location in the model’s
data, if need arises. This is used in particular when a model is
run on a computer cluster, where parts of the network are split
between computers. In this case, only a fraction of the model
is realized on each machine, and the data read by or written
to remote parts of the network are redirected to local mirror
buffers instead. The change is automatically applied by editing
the references in the instantiated data, hence there is no need to
change the generated code for the work items.

2.5. Implementation
The present implementation of EDEN takes as input NeuroML
and supports all neural models in the NeuroML v2 specification.
This implementation, and the code kernels it generates, can
be used as a fall-back alternative to further extensions: the
extensions can provide specialized implementations for specific
parts of the neural network, while the rest of the network is still
covered by the fully general, original implementation.

2.5.1. Structure of the Program
To begin analysis and simulation of a neural network,
its NeuroML representation, along with additional LEMS
components describing the custom neuron mechanisms present,
is loaded into an object-oriented representation.

The main steps of the process are:

1. Model analysis
2. Work-item generation through code and data signatures
3. Model simulation in the EDEN simulation engine

These steps are further described in the following sections.

2.5.2. Model Analysis and Code Generation
The first part in model analysis is to associate the types of
synapses in the network with the neuron types they are present
in. This resolves which types of neurons contain which kinds of
synaptic components, and where each kind of synapse is located
on the neuron. The same assessment is also made for the input
probes connected to each neuron, since probes are also part of
the neurons’ models.

Then, each neuron type is analyzed, to create a signature for
each kind of neuron. First, the structure of the neuron is split into
compartments, and the biophysical mechanisms applied over
abstract groups of neurite segments are made explicit against the
set of compartments. Thus, for each compartment, we get the
entire list of biophysical mechanisms existing on it. Using these
lists, the corresponding code and data signature is formed for
each individual compartment.

If the number of compartments is small, these signatures
are concatenated for all compartments present on the neuron,
into a neuron-wide signature. This way, a compact code block
is generated, with a form similar to how hand-made codes are
written for reduced compartmental neuron models. The process
is illustrated in Figure 4.

2.5.2.1. Signature Deduplication for Identical Compartments
If the number of compartments is large, it is not practical to
generate a flat sequence of code instructions for each individual
compartment. However, in practice, neuron models have less
than a few tens of distinct compartment types with different

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 72433698

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 4 | The stages of the per-neuron signature synthesis process, for neurons with few (phenomenological) compartments. The neuron shown consists of three

different compartments, each containing different physiological mechanisms. The simulation code for all mechanisms is laid out in a flat format, along with their

associated data. Thus, a streamlined and compact code kernel is created for this specific type of neuron.

mathematical structure, in the most complicated models. Thus,
a different approach called signature de-duplication is employed,
as follows. In this approach, the compartments are grouped for
processing, according to their structural similarity (equivalently,
similarity of signature representation). The process is illustrated
in Figure 5.

Using the per-compartment list of mechanisms, we can
immediately deduce which compartments have the exact same
structure; which is the case when the set of mechanisms,
and thus the code and data signature representation, is the
same. The code signature for the whole neuron now has a
set of loops, one for each type of compartment. Inside the
loop, the code signature to simulate a single compartment
is expanded. Each iteration of the loop performs the work
for a different compartment with the same structure. Thus,
the data signatures are concatenated together for each
group of compartments, and the appropriate offsets are
shifted in each iteration of the loop, so that they point
to the specific instance of the per-compartment data
signature to be used each time. By generating a specific
code block for each sort of compartment, we eliminate
the computational overhead of traversing the individual
mechanisms present on each simulation step, that affects
previous general-purpose neural simulators. Finally, after the
code signatures for the work items are determined, they are
compiled to machine code, and loaded dynamically on the
running process.

2.5.3. Model Instantiation
After the model is analyzed to determine the structure of the
work items it is converted to, it is time for the work items and
their associated data to be realized in memory. The process that
we describe in the following is also illustrated on Figure 6. As
mentioned previously, in this version of EDEN, each neuron
in the network, along with the synaptic components and input
probes attached to it, is assigned to an individual work item. The
mapping of parts of the network to work items, is thus fixed.

The data signatures of the work items specify the number
of scalar variables and tables each work item uses. Thus, to
instantiate each work item, we just have to allocate the same
number of scalars and tables, and keep track of the work item
for which these blocks of memory were allocated. After the
variables are allocated for each work item instance, they are filled
in, according to the model definition. This is made possible by
the implementations of the work items, that keep track of how
model-specific references to values map to concrete data values
for each work item. Thus, the changes between different instances
in the specified model are mapped into changes in the low-level
data representation.

The scalar values for each instantiated work item are located
in contiguous slices of certain tables, which are reserved for
each type of scalar values. Other parts of a work item may not
have a fixed size every time. This is, for example, the case for
synaptic components of a given type; theymay exist inmultitudes
on a compartment of a neuron, and their number varies across

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 72433699

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 5 | The stages of the per-compartment signature de-duplication process, from the abstract model to the concrete implementation. On the schematic of the

detailed neuron model, distinct compartment types are shown in different colors. The components sharing the same type are then grouped together, in terms of

simulation code and data representation. The specific mechanisms comprising the compartments and the data cells they contain are not shown here, for brevity.

instances of the neuron or compartment type. The data for these
variable-sized populations is stored in tables; one set of tables
per kind of mechanism on the same compartment. That way,
although the sizes of each set of tables may vary eventually, the
number of scalars and individual tables required for a work item
remains fixed, for all of its instances.

After allocating the scalars and the tables for the model,
what remains is to replace default scalar values with per-instance
overrides specified by the model where they exist, and to fill
in the allocated tables with their variable-sized contents. The
customized scalar values and tables pertaining to the inner
models of neurons (where the “inner model” excludes the
synapses and input probes attached to the neuron) are filled
in while running through the list of neurons specified in the
model. The synaptic connections in the network model are
also run through, and the corresponding pre- and post-synaptic
components are instantiated on the connected cells. More
specifically, on each cell, the tables representing the specified
synaptic component are extended by one entry each, with the
new entries having the values of the scalar properties of the
mechanism. The default values for these properties are provided
by the data signature of the mechanism, and customized values
(such as weight and delay of the synapse) are filled in using the
connection list in the model description.

2.5.4. Simulation Loop
After model instantiation is done, the code blocks and data
structures for the model are set up in system memory and ready
to run. Communication throughout the network is internally
managed by the code blocks, via a shared-memory model.
Double buffering is employed to allow parallel updates of the
state variables within a time-step, thus all state-variable tables are
duplicated to hold the state of the both the old and new time-step
as the latter is being calculated.

All that remains to run the simulation, is to repeat the
following steps for each simulation time-step:

• set the global “current time” variable to reflect the new step;
• execute the code for each work item in parallel, on the CPU;
• output the state variables to be recorded in the network, for the

new time-step;
• alternate which set of state variable buffers is read from and

written to, as per the common double-buffering scheme.

Parallel execution of the code kernels is managed by the
OpenMP multi-threading library. The “dynamic” load-balancing
strategy is followed by default, so whenever a CPU thread
finishes executing a work item, it picks the next pending one.
The synchronization overhead of this load-balancing strategy is
mitigated by the relatively large computational effort to simulate
physiological models of neurons, as will be shown in Section 3.

2.5.5. Numerical Methods
The numerical integration methods that EDEN employs in
this version are simple but they are sufficient to provide
accurate simulation, as we will demonstrate in Section 3. All
calculations are done with single-precision arithmetic except
for expressions involving the amount of simulated time, which
is represented with double precision since it changes by
microseconds throughout up to hours. The state of synapses
and of most membrane mechanisms is advanced using the
Forward Euler integrator. An exception is made for the gate
variables of Hodgkin-Huxley ion channels with alpha-beta rate
(or, equivalently, tau-steady state) dynamics, where NEURON’s
cnexp integrator (i.e., Exponential Euler under the assumption
that the transition rates are fixed throughout the timestep) is
employed. To simulate the diffusion of electrical charge within
each cell, we use a linear-time, Gaussian-elimination method
that is equivalent to the Hines algorithm (Hines, 1984) used
in NEURON.

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 724336100

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 6 | A schematic representation of how the extracted work item signatures are converted to low-level data structures for efficient processing. For each work

item, the set of scalars and work tables of each is appended into flat node-wide arrays, for each data type. Data types shown: CF32 = 32-bit floating-point constants,

CF64 = 64-bit integer constants, SI64 = 64-bit integer variables. The different data types for scalars and tables have been omitted for clarity in the diagram, without

loss of generality. Colors indicate different code-data signatures among work items.

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 724336101

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

2.5.6. Running on Multi-Node Clusters
Apart from the high-performance properties implemented in
EDEN for fast simulation on a single computer, EDEN also
supports MPI-based execution on a compute cluster, so as to
further handle the large computational and memory needs of
large simulations. To distribute the simulation over multiple co-
operating computational nodes, some modifications are made to
the process described above. In the following, each co-operating
instance of EDEN is called a “node.”

At the model-instantiation stage, the nodes determine which
one will be responsible for simulating each part of the neural
network. The neurons in the network are enumerated, and
distributed evenly among nodes. To keep a small and scalable
memory footprint, in this version of EDEN, each node is
responsible for a contiguous range of the enumerated sequence
of neurons. Then, each node instantiates only the neurons it
is responsible to simulate, allocating the corresponding scalar
values and tables. The parts that pertain only to individual
neurons are also instantiated and filled in. But special care has
to be taken when instantiating synapses, since they are the way
neurons communicate with each other—and the neurons a node
is managing may communicate with other neurons, that are
managed by a different node. Thus, the instantiation of synapses
is performed in three stages:

1. an initial scan of the list of synapses, to determine which
information is needed by each node from each node during
the simulation;

2. exchange of requirement lists among nodes, so they all are
aware of which pieces of information they must send to other
nodes, during the simulation;

3. establishment of cross-node mirror buffers, and remapping
cross-node synapses so that they use these buffers, to access
the non-local neurons they involve.

To support these stages, a new auxiliary data structure is created
on each node. It is an associative array, mapping the identifiers
of peer nodes to the set of information that needs to be provided
by that node to run the local part of the simulation (called send
list from now on). A send list consists of the spike event sources
and state variables on specific locations on neurons, that the node
needs to be informed about to run its part of the simulation. The
kinds and locations for these state variables and spikes, are stored
and transmitted using a symbolic representation, that is based
on the original model description. For example, a location on a
neuron is represented by the neuron’s population and instance
identifiers, the neurite’s segment identifier, and the distance along
that segment from the proximal to the distal part. Using symbolic
representations for send lists allows each node to use the most
efficient internal data representation for its part of the model,
without requiring peer nodes to be aware of the specific data
representation being used on each node. The three stages to set up
multi-node coordination are further described in the following:

2.5.6.1. Synapse-Instantiation Stage
First, the list of synaptic connections is scanned, and synapses
connecting pairs of neurons are handled by each node according
to four different cases:

1. If a synapse connects two neurons managed on this node, it is
instantiated, and the tables are filled in just as described above,
for the single-node case.

2. If neither neuron connected by the synapse is managed by this
node, the synaptic connection is skipped.

3. If the local neuron needs to receive information from the
remote neuron (as is the case with post-synaptic neurons and
those with bi-directional synapses), then the location on the
remote neuron and type of data (e.g., spike event ormembrane
voltage), is added to the send list for the remote node. The
local neuron’s synaptic mechanism is also instantiated using
its data signature, however:

• If the synaptic mechanism is continuously tracking a
remote state variable (as is the case with graded synapses),
the table-offset reference to that variable is set with a
temporary dummy value. This entry is also tracked, to be
resolved in the final synapse fix-up stage.

• If the mechanism receives a spiking event from a remote
source (as is the case with post-synaptic mechanisms), the
mechanism receives the spike event in one of its own state
variables, instead of tracking a remote variable. (This is
the same way event-driven synapses are implemented in
the single-node case.) The state variable is used as a flag,
so custom event-based dynamics are handled internally.
Thus, this entry has to be tracked, so that its flag can be set
whenever the remote spike source sends a spiking event, at
runtime.

4. If the locally managed neuron does not need to receive
information, then is it skipped. The need for this node to send
information to other peers will be resolved in the following
send-list exchange stage.

2.5.6.2. Send-List Exchange Stage
At this point, the send lists have been determined, according to
the information each node needs from the other nodes. These
send lists are then sent to the nodes the data is needed from;
sending nodes do not have to know what they are required to
send a priori. Therefore, the algorithm described in the following
also applies to the more general problem of distributed sparse
multigraph transposition (Magalhães and Schürmann, 2020).

In the beginning of this stage, each node sends requests
to the nodes it needs data from; each request contains the
corresponding send list it has gathered. Then, from each node
it sent a request to, it awaits an acknowledgement. While nodes
are exchanging send lists, they also participate asynchronously
in a poll of whether they have received acknowledgements
for all the requests they sent. When all nodes have received
all acknowledgements, this means all send lists have been
exchanged, and the nodes can proceed to the next stage.

By using this scheme, information is transmitted efficiently in
large clusters: no information has to be exchanged between nodes
that do not communicate with each other. This is a scalability
improvement over existing methods, where the full matrix of
connectivity degrees among nodes is gathered on all nodes (Vlag
et al., 2019; Magalhães and Schürmann, 2020).

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 724336102

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

2.5.6.3. Synapse Fix-Up Stage
After all data dependencies between nodes are accounted for,
each node allocates communication buffers to send and receive
spike and state-variable information. The buffers to receive the
required information are allocated as additional tables in the data
structures of the model. They are “mirror buffers” that allow each
node to peek into the remote parts of the network they need to.

The table-offset references that were left unresolved in the
synapse-instantiation stage because the required information was
remote, are now updated with references to the mirror buffers
for the corresponding remote nodes. This way, the components
of cross-node synapses that—were the simulation run on a single
node—would directly access the state of adjacent neurons, now
access these mirror buffers instead. The mirror buffers are, in
turn, updated on every simulation step as described in the next
section, maintaining model integrity across the node cluster.

2.5.6.4. Communication at Run-Time
After the additional steps to instantiate the network on a multi-
node setup, the nodes also have to communicate continuously
during the simulation. Each node has to have an up-to-date
picture of the rest of the network its neurons are attached to,
to properly advance its own part of the simulation. Thus, the
simulation loop is extended with two additional steps: to send
local data to other nodes that need them, and to receive all
information from other nodes it needs to proceed with the
present time step.

The nodes follow a peer-to-peer communications protocol,
which resembles the MUSIC specification (Ekeberg and
Djurfeldt, 2008). The data sent from each node to a peer per
time-step form a single message, consisting of:

• A fixed-size part, containing the values of state variables the
receiving node needs to observe.

• A variable-size part, containing the spike events that occurred
within this communication period. The contents are the
indices of the events that just fired, out of the full list of events
previously declared in the send list.

During transmission, each data message is preceded by a small
header message containing the size of the arriving message;
this is done so that the receiving node can adjust its message
buffer accordingly.

After receiving the data message, the fixed-size part is directly
copied to the corresponding mirror buffer for state variables,
while the firing events in the variable-sized list are broadcast to
the table entries that receive them. Broadcasting of firing events
is performed using the spike recipient data structure that was
created in the synapse instantiation stage.

Inter-node communications are placed in the simulation loop,
as follows:

• In the beginning of the time step, the information to be sent
to other nodes is picked from this node’s data structures, into
a packed message for each receiver. Transmission of these
packed messages begins;

• Meanwhile, the node starts receiving the messages sent by
other nodes to this one. Whenever a message arrives, it is

unpacked and the contents are sent to mirror buffers and spike
recipients in the model’s data.

• When messages from all peers for this node are received, the
node can start running the simulation code for all work items,
while its own messages are possibly still being sent;

• Before proceeding with the next simulation step, the node
waits until all messages it started sending have been fully sent;
so, then, the storage for these messages can be re-used to send
the next batch of messages.

3. RESULTS

During development of the EDEN simulator, we ran functional
and computational performance tests, using NeuroML models
from the existing literature. The functional tests were used to
ensure that the simulator properly supports the various model
features specified by NeuroML, and that its numerical techniques
are good enough, with regard to stability and numerical accuracy.

The NeuroML-based simulations used in the experiments
here were sourced from the Open Source Brain model
repository (OSB) (Gleeson et al., 2019), and from the NeuroML-
DB (Birgiolas et al., 2021). They were selected to cover a wide
range of models in common use (regarding both level of detail
and model size), and because their results clearly show various
features of neural activity, and how each simulator handles them.

The simulations for the functional tests included all neuron
models available on the NeuroML-DB and also present in the
more general ModelDB (McDougal et al., 2017), and the smaller
version of each network used in the performance tests. A visual
comparison of output trajectories for various other OSB models
is included in the Supplementary Material, in order to illustrate
some finer details of the differences between the simulators. The
performance tests were done on large neural networks in order
to evaluate EDEN’s computational efficiency and scalability, in
various realistic cases.

Both simulation accuracy and performance characteristics
were compared to the standard NeuroML simulation stack
for biophysical models: the NEURON simulator (version 7.7),
with the NeuroML-to-NEURON exporter jNeuroML (version
0.10.0). Model-porting complications were thus avoided by using
the same NeuroML model descriptions. NEURON is the most
commonly used general-purpose neural simulator, its numerical
algorithms have been proven through decades of use, and it also
enjoys the most complete NeuroML support to date (through the
jNeuroML tool).

3.1. Evaluation of Functional Correctness
3.1.1. Evaluation Through Single-Neuron Models
Each neuron model present in the NeuroML-DB and also
present in the ModelDB was individually simulated, to compare
EDEN’s results with NEURON’s in each case. The protocol used
was to stimulate each neuron with a 2 nADC current clamp on its
soma, from 10 to 90 ms of simulated time, with total simulation
time being 100 ms. A fixed timestep of 0.025 ms was used for
all simulations. The one recorded waveform for each neuron was
membrane voltage on the soma. This is one type in the array

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 724336103

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 7 | Histograms of relative error under the NeuroML-DB similarity (A) and inter-spike interval (B) accuracy metrics for each NeuroML-DB neuron model. The

bins around the “<-10” and “>10” limits include all models with more than 10% of discrepancy.

of tests already used in the NeuroML-DB, to characterize the
electrophysiology of each neuron model.

The similarity metrics being assessed for EDEN’s resulting
waveforms, using NEURON’s waveforms as reference, are:

• per-cent difference in inter-spike interval (ISI), assuming a
spike threshold of−20mV ,

• the NeuroML-DB similarity metric 1 −
mean(|x−x̂|)

max(x)−min(x)
, where

x, x̂ are the reference and tested waveforms. This one is
used throughout NeuroML-DB to measure the discrepancy
of NEURON’s results under different (fixed) simulation step
sizes, to determine an optimal step size that balances error with
simulation time.

In total, EDEN failed to run seven models, whereas jNeuroML
failed to run 24 models, out of 1,105 neuron models in total.
EDEN could not run said seven models because they contain
minor LEMS features it does not support at the time—though
all these models can still work with a minimal, equivalent change
to their description. We speculate that jNeuroML could not run
said 24 models because of a defect in its support for certain types
of artificial cells.

A histogram of waveform accuracy under each metric for the
specified timestep, over all neuron types, is shown on Figure 7.
(The models that either EDEN or jNeuroML could not simulate
are excluded).

We observe that the EDEN’s discrepancy against NEURON
under the NeuroML-DB similarity metric is centered around 5%,
and 99% of the models run under EDEN at <10% of waveform
error. Under the inter-spike interval metric, EDEN’s difference
with NEURON is centered around +2.5%, with 90% of models
having<±5% difference and with 98% of models having<±10%
difference in mean inter-spike interval compared to NEURON.

Regarding error in the NML-DB metric, this is typically high
for certain models with a high firing rate; as the waveforms
get out of phase this metric drops sharply, even though the
waveform of a single firing period has the same overall shape5.
Regarding the discrepancies in firing period: We compared the
mechanisms present on each neuron model with a high ISI

5This effect had been discounted in the evaluation method used in the

Rallpacks (Bhalla et al., 1992), by linearly distorting the waveforms of inter-

spike intervals to have the same nominal duration for both simulators, before

comparing.

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 724336104

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 8 | Raster plots for each network used in the performance benchmarks, when run on NEURON and EDEN. Note that the input stimuli are

pseudo-randomly generated.

difference between EDEN and NEURON. These neuron models
do not share a distinct mechanism type, or other distinguishing
commonality that could explain this; nonetheless, we note all
these models originate from the Blue Brain Project collection and
they showed a low firing rate under the protocol’s clamp current.
Since these neuron models emitted few spikes, the difference
might be specific to the starting phase of regular firing, when
induced by DC current.

The full set of results with accuracy metrics and waveform
plots for each simulated model is available on Zenodo: https://
zenodo.org/record/5526323.

3.1.2. Evaluation on Neural Network Models
To assess EDEN’s functionality when simulating networks,
the result data from simulating the smaller versions of each

network used in the performance benchmark on Section 3.2 were
analyzed. Note that the enlarged versions of the GCL and cGOC
models should not be used for functional analysis, because they
have not been validated by the creators of the original models and
they serve only as a computational benchmark.

For reference, the raster plots for the networks analyzed in
the following are shown in Figure 8. We observe that in the
GCL model used for the benchmark, the granule cells did not
generate action potentials under either NEURON or EDEN;
a closer inspection of the voltage waveforms of these cells
indicated that they are over-inhibited by the synapses. Therefore,
we chose to apply the analysis on the original, smaller, single-
compartment version of the network, which is also discussed in
the Supplementary Material. The raster plot of this version of
the network is also included there.

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 724336105

https://zenodo.org/record/5526323
https://zenodo.org/record/5526323
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

Since the networks are driven by random stimuli, the results
cannot be compared directly as waveforms, but through network
activity statistics. We employed the analysis methods proposed
by Gutzen et al. (2018), who used them to compare the results
generated by the SpiNNaker system and the original floating-
point arithmetic based C code, for an Izhikevich cell network.

The measured metrics are: average firing rate (simply number
of spikes divided by simulation time), local variation, mean
inter-spike interval, correlation values of the binned spike
trains with small and large temporal bins (metrics CC and
RC respectively), and eigenvalues of the correlation matrix
(computed by correlating the exact waveforms, in this work). For
each of the metrics except for eigenvalues, the effect size between
NEURON and EDEN’s results is computed as Cohen’s d, that
is the difference of mean values of the distributions, divided by
the pooled standard deviation of the two distributions. The 95%
confidence interval for each effect size is calculated using the

formula:±1.96
√

N1+N2
N1N2 + (effectSize)2

2(N1+N2−2)

The resultingmetrics for each network are shown on Figure 9.
Presentation is similar to Figure 10 of the Gutzen et al. (2018)
article.

For each of the networks, we observe the following:

• The results for the GCL network, we observe a slightly
wider distribution of average firing rates in EDEN’s results
than in NEURON’s, which is however not reflected in the
inter-spike interval metric. In contrast with the other two
networks, this one exhibits a wide range of neuron-pair
correlation coefficients, both in fine time resolution and in rate
correlation.

• The results for the M1 network are largely the same. This was
expected, since NEURON and EDEN produce very similar
results when simulating artificial cells (see also results from
various OSB models in the Supplementary Material).

• The neurons of the cGOC network exhibit periodic,
synchronized spiking. Thus all neurons exhibit the
same estimated firing rate and are concentrated around
specific values in fine temporal and rate-based correlation.
Furthermore, the short-term and rate-based correlation
indices are tightly clustered around specific values. There is
a slight but clear difference between the simulators on the
means of local variation and inter-spike interval; the effect
size is very high because the variation in these metrics is very
small across the neuron population (see the range of the in the
LV and ISI plots).

In many cases, as the effect size is estimated to be low, the
confidence interval for the monovariate metric s(firing rate,
local variation, inter-spike interval) is determined by the small
number of data points in the sample (i.e., neurons). Overall,
the quantitative analysis indicates that our simulator succeeds in
capturing the characteristics of simulated networks, much like
NEURON does.

3.2. Computational Performance Analysis
3.2.1. Overview
Beside flexibility in supported models, another distinguishing
characteristic of neural simulators is speed. To evaluate the

simulation speed EDEN offers we ran simulations of neural
networks available in NeuroML literature, on a recent cost-
effective desktop computer. We chose to run published neural
networks over synthetic benchmarks, because:

• they have been used in practice, so they are concrete examples
of what end users need; and

• existing models are usually the base for newer models, so the
insights about the former do remain relevant.

Since the original neural networks were developed with the
computing limitations of earlier years, these days they run
comfortably in a desktop computer, using a minor fraction
of system memory and within just a few minutes per run.
(Unfortunately, new network models that do push the limits of
present hardware, are still only available in heavily custom setups,
that cannot be easily ported to another data format, simulator,
or HPC cluster). To evaluate simulation performance for longer
simulation run times, and more challenging neural network
sizes, we also used enlarged versions of the original neural
networks. This was possible, because the original networks were
themselves procedurally generated, with parametric distributions
of networks and synapses.

The neural networks that were run for performance evaluation
are listed in Table 2, along with quantitative metrics for each
case. Beside these quantitative metrics, there also are substantial
qualitative differences between the models. These differences
determine both the neural functions of each network, as well as
the required computational effort to simulate each one.

3.2.2. Simulated Networks
The neural network models used were the following, sourced
from NeuroML-DB:

1. A multi-compartmental extension of the (Maex and Schutter,
1998) Cerebellar Granule Cell Layer (GCL) model (NeuroML-
DB ID: NMLNT000001).

2. An Izhikevich cell-based, multiscale model of the mouse
primary motor cortex (M1) (Dura-Bernal et al., 2017)
(NeuroML-DB ID: NMLNT001656).

3. A model of the Golgi cell network in the input layer
of the cerebellar cortex(CGoC), electrically coupled with
gap junction (Vervaeke et al., 2010) (NeuroML-DB ID:
NMLNT000070).

3.2.2.1. The GCL Network
The GCL network is based on the Maex and Schutter (1998)
model for the cerebellar granule cell layer, which includes granule
cells, Golgi cells, and mossy-fiber cells. The designers of the
GCL network benchmark extended the original GCL model to
have multi-compartmental cells; in particular, the axons and
parallel fibers of the granule cells are spatially detailed with
four compartments per cell, and Golgi cells follow the ball-
and-stick model, with 4 compartments per cell. The mossy-
fiber cells are stimulated by Poisson randomly firing synapses
and stimulate the granule cell population through AMPA and
blocking NMDA synapses. The granule cells excite the Golgi
cells through AMPA synapses, and the Golgi cells inhibit the
granule-cell population through GABAA synapses. We enlarged

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 724336106

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

FIGURE 9 | Histograms of neural activity metrics for each network used in the performance benchmarks. FR, firing rate; LV, local variation; ISI, inter-spike interval; CC,

short-time firing correlation; RC, rate correlation; (λ), correlation eigenvalue. For each simulated network, the solid green line outlines the distribution of metric values

when using EDEN, and the overlaid dashed red line outlines the distribution when using NEURON. On the right, the effect size (ES) and its confidence interval is

shown for each applicable metric.

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2022 | Volume 16 | Article 724336107

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

TABLE 2 | The simulated networks used for performance benchmarking.

Simulation
Simulated
time (s) Steps

Compartments
per neuron Neurons

Total
compartments

Total
synapses

GCL
1 100,000 1 ∼ 4

728 2,624 7,958

GCL x10 7,280 26,240 79,825

M1 5%

1 20,000 1

527 527 15,469

M1 10% 1,065 1,065 61,538

M1 100% 10,734 10,734 5,032,223

CGoC
0.1 40,000 319

45 14,355 472

CGoC x10 450 143,550 5,410

the original GCL network, by multiplying the population size by
a factor of 10, and keeping the same per-neuron synapse density
for the various projections. Thus, the total number of synapses
was also 10 times the original.

3.2.2.2. The M1 Network
The M1 network is an Izhikevich cell-based model of the mouse
primary motor cortex, with various groups of cells intertwined
across cortical depth. There are 13 groups of cells and four
different sets of dynamics parameters among the cells. Each cell
is stimulated by an external randomly firing synapse stimulus,
and cells interact with each other through excitatory AMPA and
NMDA synapses, and inhibitory GABA synapses. All synapses
follow the stateless, double-exponential conductance model. This
model is rather recent, so in its full size, it is computationally
challenging enough to simulate, without enlarging it.

To better investigate performance characteristics, and evaluate
performance at a model scale similar to the original GCL and
CGoC networks, we generated two smaller versions of the M1
network, at “scale” values of 10 and 5%. Note that the model uses
fixed probability connectivity for the various projections between
populations, thus the number of synapses grows quadratically
with the population size.

3.2.2.3. The CGoC Network
The CGoC network models a small part (0.1 mm3) of the
Golgi cell network, in the input layer of the mouse’s cerebellar
cortex. It was used in Vervaeke et al. (2010) to investigate the
network behavior of Golgi cells, using experimental data. In
this network, the neurons communicate with each other solely
through gap junctions. Each cell also has 100 excitatory inputs
in the form of randomly firing synapses, randomly distributed
among apical dendrites.

Gap junctions have rarely been introduced in large network
models in the past. This is not because they are absent from tissue,
nor because their effects are negligible, but primarily because of
their intense computational requirements. The continuous-time
interaction between neurons that gap junctions effect requires
a large amount of state data to be transferred to simulate each
neuron in every step, while spike-based synapses need to only
transfer the firing events between neurons, whenever they occur
(rarely, compared to the number of simulation steps). As with the

GCL network, we also enlarged this network, by making neuron
count, synapse count and network volume 10 times the original.

3.2.3. A Note on Numerical Methods & Performance
In the following, computational efficiency is compared between
EDEN and NEURON (run under jNeuroML), for the same
models. We notice a disparity in per-thread efficiency between
EDEN and NEURON, and an immediate question is whether
the difference is caused by differences in the simulators’
numerical methods.

We noticed that, because of the MOD files, jNeuroML
generates in the present version, most membrane mechanisms
are simulated with the Forward-Euler integrator, as they are
under EDEN as well6. The methods EDEN uses in these
benchmark are explained in Section 2.5.5. The only clear
difference in numerical methods between NEURON and EDEN
is that EDEN uses single-precision arithmetic whereas NEURON
uses double-precision arithmetic; but this is not enough to
explain the observed disparity in simulation speed. Thus, we
expect that our simulator’s improved performance comes mostly
from a more compact control flow, improved data locality, and
reduced memory usage (since memory transfers also are a factor)
than from pure numerical efficiency.

3.2.4. Benchmark Results
The three neural networks described above—with network
sizes, simulation time and time-steps as shown on Table 2—
were run on a recent desktop PC, and simulation run time
was measured in each case. The NEURON simulator was
chosen as a baseline to compare simulation speed, because
it is the predominant simulator for biophysically detailed,
multi-compartmental neuron models. The models were run
on NEURON, using both a direct-to-NEURON export of the
networks as well as the HOC/MOD code that jNeuroML
generates automatically. Although NeuroML2 models can
be run on NEURON directly through the jNeuroML tool,
there is no published information on the computational
efficiency of simulations run through jNeuroML, compared
to running hand-written NEURON code for the same model.

6With the exception of Markov gates for ion channels. In that specific case, the

“sparse” method is employed by jNeuroML, but the kinetic scheme that is present

in cGoC cells has too few state variables to affect overall run time compared to

using a simpler method.

Frontiers in Neuroinformatics | www.frontiersin.org 18 May 2022 | Volume 16 | Article 724336108

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

By running both versions of the model, we compare EDEN’s
computational efficiency directly against NEURON, and also
evaluate experimentally and publish the first data points on
the computational efficiency of running neural networks on
NEURON through jNeuroML.

All three networks used in the benchmarks were originally
generated with a high-level model generation tool; this was
neuroConstruct for the GCL and cGoCmodels, and NetPyNE for
the M1 model. This fact also serves as an indication that model
creators prefer to focus on the pure aspects of their models, than
spend effort on the simulator-specific programming. We checked
the implementations of the networks that these tools export for
NEURON, and found that the implementations are as efficient as
a modeler would reasonably write them to be.

• For the GCL and cGoC models, the HOC and MOD code
was generated by neuroConstruct; however, we inspected the
generated code and found that it is similar to how the HOC
and MOD files are typically written in practice. The only
difference is that the HOC statements to create the network are
laid out as explicit lines, whereas on manual code loops and
procedural (or file-based) generation would have been used
to populate the network. However, once NEURON’s run()
command is run, the simulation is controlled by the hard-
coded NEURON engine, save for the NMODL mechanisms;
whose code, although machine generated, is straightforward
and efficient. As explained below, the time to initialize each
model is excluded from the measurements.

• The original M1 network was generated at runtime and loaded
into NEURON through NetPyNE, which uses the simulator’s
Python API. The MOD file for the Izhikevich cell model was
hand-written and supplied by the model creators, and the
Exp2Syn mechanism for synapses is one of NEURON’s built-
in mechanisms. This use case is thus considered to be how the
model is run directly on NEURON.

Although NEURON can employ multi-process parallelism on a
network simulation, setting up a simulation for this requires non-
trivial, simulator-specific programming code that is difficult to
keep free of errors, and possibly changes in the model’s MOD
files to allow parallel processing. NetPyNE aims to remedy this
but parallelizing a NEURON simulation still relies on non-
trivial custom programming and care by the model creator.
We explored ways to run NEURON in parallel using the
existing NeuroML tooling, but none worked correctly for our
models. Thus, NEURON was run on a single processing thread
for all simulations; this represents the use case of running
a NeuroML model on NEURON directly, without extensive
NEURON-specific modifications. EDEN was also run on a single
thread, allowing a direct comparison of intrinsic computational
efficiency of the two simulators (that is, excluding EDEN’s
performance boost from automatic parallelization).

In this work, in order to focus on the pure computational
efficiency of simulating the networks, we excluded the time
needed to set up the model and to write result data from our
measurements; we only measured the wall-clock time to run the
model over the simulated time. EDEN’s run time was measured
both when using all CPU cores of the PC and when running

on a single CPU thread. These two cases reflect different usage
scenarios of the simulation workload: the first one occurs when
an individual simulation has to be run and the second one when
a large batch of simulations has to be run, as a group. The uses and
the technical considerations for each case are explained below.

The first case is relevant when a neural network is simulated
once, and its behavior is empirically assessed by the experimenter,
who adjusts parameters interactively. This takes place in the first
exploratory steps of development, when the experimenter is still
deciding on the form and type of dynamics of the network. In
this case, a single simulation has to be run as quickly as possible,
using all available computational resources. Thus, EDEN uses all
CPU cores simultaneously to run this simulation.

The second case is relevant after the network’s form andmodel
are determined (or candidates for a more extensive evaluation).
In this case, the model’s properties are explored, by varying its
structural and physiological parameters across simulations, and
measuring high-level metrics for the behavior of the network
(such as type of firing activity and emergent correlations). To
that end, a batch of up to thousands of simulations has to be
run, in order to explore each individual point of the parameter
space. Simulations can then run on a separate CPU thread each,
in parallel. Some technical effort is required to distribute the runs
of the batch among CPU cores but this technique also allows
non-parallel simulators to use multi-core computers effectively.
Even so, this kind of parallelism has its limitations. If parameter
exploration is performed on a relatively large network, the high
memory requirements may prevent launching as many model
instances as CPU cores. In that case, it would be better to assign
multiple CPU cores per simulation. Likewise, a non-uniform
memory hierarchy (common in high-end compute nodes) could
even make it more efficient to run fewer models simultaneously,
with more cores assigned to each.

For all performance benchmarks, the machine used was a
desktop PC, with an Intel i7-8700 3.2 Ghz CPU and 32 GB of
2133 MT/S DDR4 RAM. The CPU has six physical cores and
can run up to 12 (hyper)threads simultaneously. The particular
CPU was selected to reflect the typical, current-day system
available on a researcher’s desk–rather than what is available on a
supercomputer setting, which requires substantial technical effort
to use and is often not available for day-to-day experimentation.
The OS used was Ubuntu Linux 18.04. NEURON, EDEN and the
code generated by both at runtime were all compiled using the
GNU C compiler, version 7.4.

The results for the performance benchmarks are shown in
Table 3. For each simulation in Table 2, the time to run it is
shown when running NEURON directly, NEURON through
jNeuroML, EDEN on one CPU thread, and EDEN on the
whole CPU. The corresponding speedup ratios for EDEN on
a single thread and on all threads over NEURON are also
shown on the table. Figure 10 visualizes the relative time to
run each simulation with EDEN, using one CPU thread or
the whole CPU, against the time to run the same simulation
with NEURON.

We observe that EDEN largely outperforms NEURON while
running on a single CPU thread, and even more so when
the network is simulated across all threads of the CPU. This

Frontiers in Neuroinformatics | www.frontiersin.org 19 May 2022 | Volume 16 | Article 724336109

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

TABLE 3 | Measured run time for benchmarks for NEURON on 1 thread, jNeuroML/NEURON, EDEN on 1 thread, and EDEN using all CPU threads, and respective

speedup ratios.

Benchmark
NEURON
run time (s)

jNML

run time (s)

jNML

speed ratio
EDEN run time (s) EDEN speed ratio

1 thread Full node 1 thread Full node

GCL 145.71 153.03 ×0.95 46.55 8.07 ×3.13 ×18.05

GCL x10 1,828.18 2,758.91 ×0.66 756.20 179.54 ×2.42 ×10.18

M1 5% 13.28 9.20 ×1.44 8.00 1.41 ×1.66 ×9.46

M1 10% 52.99 38.93 ×1.36 25.12 3.98 ×2.11 ×13.32

M1 100% 5,378.23 3,581.39 ×1.50 914.17 378.74 ×5.88 ×14.20

CGoC 152.69 170.36 ×0.90 14.64 2.33 ×10.43 ×65.45

CGoC x10 6,227.36 6,269.13 ×0.99 268.75 85.22 ×23.17 ×73.07

FIGURE 10 | Run time for each neural network considered, for NEURON versus jNeuroML/NEURON and versus EDEN on one CPU thread and on all CPU threads.

For each neural network, benchmark the bar height in the chart is normalized against NEURON’s run time for that benchmark.

is because EDEN was designed from the start to achieve
high computational performance, especially when running
complex, biophysically detailed neurons. In the following, we will
comment on the performance characteristics demonstrated when
running each specific neural network, and reiterate the network’s
properties that affect computational performance.

The GCL network comprises biophysically detailed cells, with
a very small number of compartments per cell. In this case, EDEN
generates fully simplified code kernels for each neuron type; the
code to simulate each individual compartment is laid out as an
explicit, flat sequence of arithmetic operations.

When running the original GCL network, EDEN runs at
3.1 × the speed of NEURON, using one CPU thread. This
level of speedup over NEURON applies when running a batch
of many small simulations; in which case, each simulation
is run on a single CPU thread for best results. By utilizing

all six cores of the CPU, simulation speed further improves
around six times, for a total of 18 × the speed of NEURON.
This shows that when a single simulation has to be run at
maximum speed, EDEN can automatically, efficiently parallelize
the computational work across multiple processor cores to
run faster. For the enlarged version of the network, single-
thread speedup using EDEN is less, to 2.4 × the simulation
speed of NEURON. Speed improves by using all threads, but
the total improvement in speed vs. running NEURON is not
as great as when running the smaller, original-size model
(×10.18 total, compared to ×27.1 previously). It could be that
the processor’s data transfer speed decreases with model size,
and limits computational throughput; however, the fact that
jNeuroML runs significantly slower than NEURON for this
network could indicate that there is an inefficiency involved in
interpreting the NeuroML2 version of themodel. At any rate, this

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2022 | Volume 16 | Article 724336110

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

relative slowdown of the NeuroML-based simulators warrants
further investigation.

The M1 network comprises Izhikevich-type artificial cells,
with dense synaptic connectivity between the neurons. In
this case, each neuron’s internal model is one Izhikevich-
cell mechanism; EDEN generates a simplified code kernel,
that simulates the neuron’s internal dynamics and synaptic
interaction. When running the 5% version of the network,
EDEN on a single CPU thread runs at 1.7 times the speed of
NEURON, and using all cores it runs at 9.5 times the speed of
NEURON. Running the larger 10% network, these performance
ratios increase to 2.1 × and 13.3 ×, respectively. Finally, when
running the full-sized version of the network, EDEN on one CPU
thread runs at 5.9x the speed of NEURON, and using all cores
it runs at 14.2 × the speed of NEURON. For the reduced-size
versions of the network, EDEN still runs faster than NEURON,
but not by as much as when running the full-sized version.
This might be because the amount of computations and data
involving these simplified neurons is smaller (also due to the
smaller number of synapses per cell, in the M1 network), which
increases the effect of parallelization overhead for EDEN. For
the full-sized network, EDEN’s relative performance improves
steadily. Another interesting observation is that all sizes of the
M1 network run significantly faster as NeuroML models under
jNeuroML/NEURON than as the original NetPyNE/NEURON
model. We speculate that this is because of the MOD file
describing the neurons; the original hand-written one contains
many additional features, calculations and WATCH statements
which are not used in this model. Compared to the original
MOD file, the one that jNeuroML generates automatically is
quite simpler.

Networks solely consisting of point neurons can already be
run with high computational performance, on specialized
simulators like NEST. However, there is the important
class of hybrid SNNs (Lytton and Hines, 2004) that mixes
physiologically-detailed and artificial cells according to the
focus of each model. Such networks have to be run with
general-purpose neural simulators, that support both types of
neuron, which then need to run in tandem. By demonstrating a
consistent high speedup factor even for artificial-cell networks
that are not its main target, EDEN shows that it can run hybrid
neural networks at a greatly increased speed, without running
into performance problems. For pure artificial-cell networks,
EDEN is still relevant for modifications that depart from the
commonly supported models, or take a lot of effort to set up
on high-performance artificial-cell simulators (e.g., require
modifying the simulator’s source code to extend model support).

The CGoC network is made up of Golgi cells, which are
modeled with hundreds of physiological compartments. Since
these cells have too many compartments to apply a flat-code
representation per cell type, as was done for the GCL network,
EDEN works differently in this case. For each type of cell,
the compartments comprising it are grouped according to the
set of physiological mechanisms that they contain. This way,
one code kernel is generated for simulating each different type
of compartment. Then, all compartments of the same type
are simulated as a group using a loop over the same code.

After computing the internal dynamics for each compartment,
the interactions between the compartments, such as the cable
equations, are also computed to complete the time-step. We
notice that, when running either the original or the 10x-enlarged
version of the CGoC network, EDEN exhibits a spectacular
increase in simulation speed compared to NEURON. When
running the original-sized network, the relative simulation speed
over NEURON is 10.4 × using one thread, and 65.5 × using all
threads. In wall-clock terms, this means that a simulation that
used to take two and a half minutes to run with NEURON, takes
14.6 s with EDEN in batch mode, and 2.3 s with EDEN in single-
simulation mode. When running the 10x-enlarged version of the
network, the relative simulation speed using NEURON is 23.2
× when using one thread, and 73.1 × when using all threads.
In this case, wall-clock run times are 1 h 44 min to run with
NEURON, vs. 4 min 29 s with EDEN in batch mode and 1
min 25 s with EDEN in single-simulation mode. The significant
improvement in speedup that EDEN exhibits when running the
cGoC network vs. the other two networks indicates that the
current implementation is best suited for large populations of
highly detailed neurons.

4. DISCUSSION

4.1. Current Neural-Simulator Challenges
Through the process of developing EDEN and our
involvement with the existing neural-modeling literature,
tools and practices, we realized the urgent need
for standards in brain modeling and reproducibility
between simulators.

From the perspective of a computer engineer, there
is an enormous learning curve in designing simulators
for biophysically-detailed neural networks. The technical
know-how on handling the differential equations of neural
physiology is scattered across past publications and program
source code and, even then, is rarely mentioned by name.
A modeling standard could help form a compendium
of all the mathematical concerns that affect simulator
design, and would allow neuroscientists and engineers to
co-operate efficiently.

As mentioned in Section 1, when working with highly
detailed neural networks, swapping among different simulators
during experimentation would take an impractical amount
of effort. This is one of the reasons why there are so
few inter-simulator comparisons of the same model in in
silico neuroscience literature and why they usually only concern
porting a custom simulation code to, or from, a general-
purpose simulator. A standardized, interoperable description
for models would remove this major obstacle and enable
cross-simulator evaluation. There do exist software that can
algorithmically generate neural networks and run them on
different simulators [examples are PyNN (Davison et al., 2009),
and also neuroConstruct via NeuroML export and jNeuroML].
The problem with them is that the model-building “recipes”
they support are few and basic. However, model creators often
use highly custom methods to construct their networks, which
prevents them from using the multi-simulator capability of tools

Frontiers in Neuroinformatics | www.frontiersin.org 21 May 2022 | Volume 16 | Article 724336111

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

to save programming effort. A solution to this conundrum may
be to use an unambiguous description for generated neural
networks, such as NeuroMLv2; then, model creators still have
to convert the networks that their custom methods generate
to the common description, but multi-simulator capability is
much easier to implement since the network to simulate is
described explicitly. Still, this approach allows combining all
types of network-building recipes with all simulation platforms,
without extra programming effort for each combination. The
related field of systems biology reveals a success story in the
CellML (Cuellar et al., 2003) and SBML (Hucka et al., 2003)
standards; however, those standards are still not sufficient for
capturing modern networks of multi-compartment neurons.

Another important aspect of upcoming neuroscience projects
is multiscale modeling; that is, studying a neural structure across
multiple levels of modeling detail. Since this often involves many
different simulators of different model types, it only becomes
practical by adopting extensive standards that capture not only
the different models but also the results of the simulation at
each level. This is necessary in order to reconcile and investigate
the different scales of modeling without writing fully custom,
one-off code for each case.

The integrated TVB modeling platform (Sanz Leon et al.,
2013) is currently the leading tool for multiscale brain
modeling and features a complete methodology for integration
of macroscopic neuroimaging data into models. However, this
methodology is mostly designed around the specific TVB
platform; there is effort to co-simulate with the NEST simulator
specifically, but it is still at an ad-hoc, proof-of-concept stage.

Besides standards, we also advocate for a more rigorous
integration of the various simulators with neuroscientific as well
as general (e.g., Python/Jupyter) workflows, which will speed up
experimental setup and enable seamless transfer of simulation
results across different platforms. This may sound obvious but
it is in fact a crucial element for real-world quick adoption and
utilization of this ensemble of platforms. NEURON, BRIAN2,
GeNN, and Arbor have already caught on to this need; that is
why they all natively support a Python interface, alternative to
their own custom languages (BRIAN2 itself is Python-native).
EDEN already offers such integration through its pyNeuroML-
compatible Python bindings7 and interoperability with the
existing NeuroML tooling infrastructure before and after the
simulation stage.

Regarding the NeuroML community, it is important to stress
the usefulness of providing simulation files along with the
published model descriptions. This is important not only to
fully record the published experiments but also to be able to
reproduce the experiments and cross-validate the results on
multiple simulators. To illustrate, we tried to evaluate EDEN
on as many NeuroML networks as possible but were only able
to find five individual, non-trivial network models in the entire
NeuroML-DB—and important simulation parameters such as
duration, time-step size, and recording probes were only available
in the original code repositories outside NeuroML-DB.

7https://pypi.org/project/eden-simulator/

Finally, from an HPC perspective, the large-network
simulation needs of modern researchers call for the use of
computer clusters. However existing simulators either offer
partial support for clusters or require advanced programming
from the end user to work. Automatic, complete support for
clusters must therefore be a development priority, which the
simulator designers are best suited to address. EDEN offers
such built-in automation and will continue improving on
its performance.

4.2. The EDEN Potential and Next Steps
The evaluation presented makes it abundantly clear that EDEN
delivers on its triple mission toward high performance, high
model generality and high usability. This first version of EDEN
was focused on ensuring that all kinds of NeuroML models are
supported, rather than optimizing the performance of a limited
subset thereof. Thus, the performance results seen in this work
form a minimum guaranteed baseline of performance, on top of
which future improvements can boost performance even further.

Even so, we showed that this performance baseline provides,
for real-world neural networks drawn from NeuroML-DB, a
speedup ratio over NEURON of 2∼23× per CPU thread
and 9∼73× in total, on an ordinary desktop PC. We also
demonstrated that no technical expertise is required for
deploying and parallelizing the simulations of small and large
networks alike, which presents a great incentive for the quick
adoption of EDEN by the neuroscientific community.

All its achievements notwithstanding, EDEN is far from a
concluded simulator. Our future plans involve work in various
directions. Below, we enumerate a few crucial ones:

1. Validate further the EDEN architecture through integrating
existing, best-in-class code kernels from the community
for special cases (Kasap and van Opstal, 2018; Miedema
et al., 2020). Characterize performance etc. on various
types of neural networks so as to determine further
performance margins.

2. Boost the EDEN general-purpose backend by porting it to
accelerator hardware, e.g., on GPUs and graph processors.
Employ graph-theory methods for problem mapping in
order to deploy EDEN on heterogeneous (e.g., CPU-GPU)
platforms and reduce communication overheads.

3. Study the structure and communication patterns of spiking
neural network models used in practice, and develop
sophisticated strategies to map large simulated networks to
computer clusters most efficiently.

4. Add further extensions to EDEN for high-end HPC
application, such as support for the SONATA data format and
for simulation checkpointing.

5. Research and refine innovative numerical integrators,
to improve computational parallelism and maintain
numerical accuracy on challenges like cable equations
and kinetic schemes.

6. Evaluate and propose extensions to EDEN and NeuroML
that enable direct interfacing with arbitrary data sources
such as video stimuli, simulated environments to

Frontiers in Neuroinformatics | www.frontiersin.org 22 May 2022 | Volume 16 | Article 724336112

https://pypi.org/project/eden-simulator/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

allow training experiments, and dynamic clamps for
hybrid experimentation.

5. CONCLUSION

The large scale, fast pace and ample diversity of
in silico neuroscience necessitates simulation platforms that offer
high computational performance alloyed with reproducibility,
low complexity in model description and a wide range of
supported mechanisms. To those ends, we have developed
EDEN, a novel neural simulator that natively supports the
entire NeuroML v2 standard, manages the simulation’s technical
details as well as multi-node and multi-core cluster resources
automatically, and offers computational performance without
precedent in the scope of general-purpose neural simulators.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The source code of the EDEN simulator is
available on GitLab, through the URL: https://gitlab.com/
neurocomputing-lab/Inferior_OliveEMC/eden. The benchmark
files and scripts to reproduce the figures of the paper are
available on Zenodo, accession number 5526323: https://zenodo.
org/record/5526323.

AUTHOR CONTRIBUTIONS

SP designed and developed the EDEN simulator and
conducted the experiments. HS was the technical manager

of the simulator project and designed the experiments.

MN provided guidelines for usability and for numerical
issues of neural simulation. MN, CS, and DS conceived and
supervised the simulator project. All authors contributed to
the article, edited and wrote the manuscript, and approved the
submitted version.

FUNDING

This research was supported by the European Commission
Horizon2020 Framework Programme Projects EXA2PRO (Grant
Agreement No. 801015) and EuroEXA (Grant Agreement
No. 754337).

ACKNOWLEDGMENTS

The authors would like to thank their colleagues for their insights
on GPU acceleration: Max Engelen, Lennart Landsmeer, and
furthermore, to thank their students who were the first to use
EDEN in the early development stage and provided valuable
feedback and use cases in alphabetical order: Naomi Hulst, Hugo
Nusselder, and Rocher Smol. This paper was first published as a
preprint on arXiv, with the Panagiotou et al. (2021).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.724336/full#supplementary-material

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.

(2019). “Arbor – Amorphologically-detailed neural network simulation library

for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia), 274–282. doi: 10.1109/EMPDP.2019.8671560

Bhalla, U. S., Bilitch, D. H., and Bower, J. M. (1992). Rallpacks: a set

of benchmarks for neuronal simulators. Trends Neurosci. 15, 453–458.

doi: 10.1016/0166-2236(92)90009-W

Birgiolas, J., Haynes, V., Gleeson, P., Gerkin, R. C., Dietrich, S. W.,

and Crook, S. M. (2021). Neuroml-db: Sharing and characterizing data-

driven neuroscience models described in neuroml. bioRxiv [Preprint].

doi: 10.1101/2021.09.11.459920

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.

(2018). Code generation in computational neuroscience: a review of tools and

techniques. Front. Neuroinformatics 12:68. doi: 10.3389/fninf.2018.00068

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E.,

et al. (2014). LEMS: a language for expressing complex biological models in

concise and hierarchical form and its use in underpinning NeuroML 2. Front.

Neuroinformatics 8:79. doi: 10.3389/fninf.2014.00079

Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., and

Hunter, P. J. (2003). An overview of cellml 1.1, a biological model description

language. Simulation 79, 740–747. doi: 10.1177/0037549703040939

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2009). PyNN: a common interface for neuronal network simulators. Front.

Neuroinformatics 2:11. doi: 10.3389/neuro.11.011.2008

Dura-Bernal, S., Neymotin, S. A., Kerr, C. C., Sivagnanam, S., Majumdar, A.,

Francis, J. T., et al. (2017). Evolutionary algorithm optimization of biological

learning parameters in a biomimetic neuroprosthesis. IBM J. Res. Dev. 61,

1–6.14. doi: 10.1147/JRD.2017.2656758

Dura-Bernal, S., Suter, B., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez,

F., et al. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain

circuits. eLife 8:16. doi: 10.7554/eLife.44494.016

Ekeberg, Ö., and Djurfeldt, M. (2008). MUSIC - multisimulation coordinator:

request for comments. Nat. Prec. doi: 10.1038/npre.2008.1830.1

Gewaltig, M., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,

et al. (2019). Open source brain: a collaborative resource for visualizing,

analyzing, simulating, and developing standardized models of neurons and

circuits. Neuron 103, 395–411.e5. doi: 10.1016/j.neuron.2019.05.019

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: a tool

for modeling networks of neurons in 3D space. Neuron 54, 219–235.

doi: 10.1016/j.neuron.2007.03.025

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.

(2018). Reproducible neural network simulations: Statistical methods formodel

validation on the level of network activity data. Front. Neuroinformatics 12:90.

doi: 10.3389/fninf.2018.00090

Hines, M. (1984). Efficient computation of branched nerve equations.

Int. J. Bio-Med. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)9

0008-4

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,

et al. (2003). The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics

19, 524–531. doi: 10.1093/bioinformatics/btg015

Kasap, B., and van Opstal, A. J. (2018). Dynamic parallelism for synaptic updating

in gpu-accelerated spiking neural network simulations. Neurocomputing 302,

55–65. doi: 10.1016/j.neucom.2018.04.007

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F.,

et al. (2019). CoreNEURON: an optimized compute engine for the NEURON

simulator. Front. Neuroinformatics 13:63. doi: 10.3389/fninf.2019.00063

Frontiers in Neuroinformatics | www.frontiersin.org 23 May 2022 | Volume 16 | Article 724336113

https://gitlab.com/neurocomputing-lab/Inferior_OliveEMC/eden
https://gitlab.com/neurocomputing-lab/Inferior_OliveEMC/eden
https://zenodo.org/record/5526323
https://zenodo.org/record/5526323
https://www.frontiersin.org/articles/10.3389/fninf.2022.724336/full#supplementary-material
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1016/0166-2236(92)90009-W
https://doi.org/10.1101/2021.09.11.459920
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1177/0037549703040939
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1147/JRD.2017.2656758
https://doi.org/10.7554/eLife.44494.016
https://doi.org/10.1038/npre.2008.1830.1
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1016/0020-7101(84)90008-4
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1016/j.neucom.2018.04.007
https://doi.org/10.3389/fninf.2019.00063
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Panagiotou et al. EDEN: A Novel Neural Simulator

Lytton, W. W. (1996). Optimizing synaptic conductance calculation for

network simulations. Neural Comput. 8, 501–509. doi: 10.1162/neco.1996.

8.3.501

Lytton, W. W., and Hines, M. (2004). “Hybrid neural networks - combining

abstract and realistic neural units,” in The 26th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, Vol. 2 (San Francisco,

CA), 3996–3998. doi: 10.1109/IEMBS.2004.1404116

Maex, R., and Schutter, E. D. (1998). Synchronization of golgi and granule cell

firing in a detailed network model of the cerebellar granule cell layer. J.

Neurophysiol. 80, 2521–2537. doi: 10.1152/jn.1998.80.5.2521

Magalhães, B., and Schürmann, F. (2020). Efficient distributed transposition of

large-scale multigraphs and high-cardinality sparse matrices. arXiv preprint

arXiv:2012.06012. doi: 10.48550/arXiv.2012.06012

McDougal, R. A., Morse, T. M., Carnevele, T., Marenco, L., Wang, R., Migliore,

M., et al. (2017). Twenty years of ModelDB and beyond: building essential

modeling tools for the future of neuroscience. J. Comput. Neurosci. 42, 1–10.

doi: 10.1007/s10827-016-0623-7

Miedema, R., Smaragdos, G., Negrello, M., Al-Ars, Z., Müller, M., and

Strydis, C. (2020). flexhh: A flexible hardware library for hodgkin-

huxley-based neural simulations. IEEE Access 8, 121905–121919.

doi: 10.1109/ACCESS.2020.3007019

Panagiotou, S., Sidiropoulos, H., Negrello, M., Soudris, D., and Strydis, C.

(2021). EDEN: A high-performance, general-purpose, NeuroML-based neural

simulator. arXiv doi: 10.48550/ARXIV.2106.06752

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., et al.

(2011). Nineml: the network interchange for neuroscience modeling language.

BMC Neurosci. 12:P330. doi: 10.1186/1471-2202-12-S1-P330

Sanz Leon, P., Knock, S., Woodman, M., Domide, L., Mersmann, J., McIntosh, A.,

et al. (2013). The virtual brain: a simulator of primate brain network dynamics.

Front. Neuroinformatics 7:10. doi: 10.3389/fninf.2013.00010

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

Vervaeke, K., Lőrincz, A., Gleeson, P., Farinella, M., Nusser, Z., and Silver, R.

A. (2010). Rapid desynchronization of an electrically coupled interneuron

network with sparse excitatory synaptic input. Neuron 67, 435–451.

doi: 10.1016/j.neuron.2010.06.028

Vlag, M. A. v. d., Smaragdos, G., Al-Ars, Z., and Strydis, C. (2019). Exploring

complex brain-simulation workloads on multi-GPU deployments. ACM Trans.

Archit. Code Optim. 16, 1–25. doi: 10.1145/3371235

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Panagiotou, Sidiropoulos, Soudris, Negrello and Strydis. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 24 May 2022 | Volume 16 | Article 724336114

https://doi.org/10.1162/neco.1996.8.3.501
https://doi.org/10.1109/IEMBS.2004.1404116
https://doi.org/10.1152/jn.1998.80.5.2521
https://doi.org/10.48550/arXiv.2012.06012
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1109/ACCESS.2020.3007019
https://doi.org/10.48550/ARXIV.2106.06752
https://doi.org/10.1186/1471-2202-12-S1-P330
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1016/j.neuron.2010.06.028
https://doi.org/10.1145/3371235
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 27 May 2022

doi: 10.3389/fncom.2022.885207

Frontiers in Computational Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 885207

Edited by:

Kelly Shen,

Simon Fraser University, Canada

Reviewed by:

Sora A. N.,

Ewha Womans University, South

Korea

Mantas Mikaitis,

The University of Manchester, United

Kingdom

*Correspondence:

Alper Yegenoglu

a.yegenoglu@fz-juelich.de

Received: 27 February 2022

Accepted: 13 April 2022

Published: 27 May 2022

Citation:

Yegenoglu A, Subramoney A, Hater T,

Jimenez-Romero C, Klijn W, Pérez

Martín A, van der Vlag M, Herty M,

Morrison A and Diaz-Pier S (2022)

Exploring Parameter and

Hyper-Parameter Spaces of

Neuroscience Models on High

Performance Computers With

Learning to Learn.

Front. Comput. Neurosci. 16:885207.

doi: 10.3389/fncom.2022.885207

Exploring Parameter and
Hyper-Parameter Spaces of
Neuroscience Models on High
Performance Computers With
Learning to Learn

Alper Yegenoglu 1,2*, Anand Subramoney 3, Thorsten Hater 1, Cristian Jimenez-Romero 1,

Wouter Klijn 1, Aarón Pérez Martín 1, Michiel van der Vlag 1, Michael Herty 2,

Abigail Morrison 1,4,5 and Sandra Diaz-Pier 1

1 Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA,

Forschungszentrum Jülich GmbH, Jülich, Germany, 2Department of Mathematics, Institute of Geometry and Applied

Mathematics, RWTH Aachen University, Aachen, Germany, 3 Institute of Neural Computation, Ruhr University Bochum,

Bochum, Germany, 4 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN

Institute I, Jülich Research Centre, Jülich, Germany, 5Computer Science 3-Software Engineering, RWTH Aachen University,

Aachen, Germany

Neuroscience models commonly have a high number of degrees of freedom and only

specific regions within the parameter space are able to produce dynamics of interest. This

makes the development of tools and strategies to efficiently find these regions of high

importance to advance brain research. Exploring the high dimensional parameter space

using numerical simulations has been a frequently used technique in the last years in

many areas of computational neuroscience. Today, high performance computing (HPC)

can provide a powerful infrastructure to speed up explorations and increase our general

understanding of the behavior of the model in reasonable times. Learning to learn (L2L)

is a well-known concept in machine learning (ML) and a specific method for acquiring

constraints to improve learning performance. This concept can be decomposed into

a two loop optimization process where the target of optimization can consist of any

program such as an artificial neural network, a spiking network, a single cell model,

or a whole brain simulation. In this work, we present L2L as an easy to use and

flexible framework to perform parameter and hyper-parameter space exploration of

neurosciencemodels on HPC infrastructure. Learning to learn is an implementation of the

L2L concept written in Python. This open-source software allows several instances of an

optimization target to be executed with different parameters in an embarrassingly parallel

fashion on HPC. L2L provides a set of built-in optimizer algorithms, which make adaptive

and efficient exploration of parameter spaces possible. Different from other optimization

toolboxes, L2L provides maximum flexibility for the way the optimization target can be

executed. In this paper, we show a variety of examples of neuroscience models being

optimized within the L2L framework to execute different types of tasks. The tasks used

to illustrate the concept go from reproducing empirical data to learning how to solve a

115

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.885207
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.885207&domain=pdf&date_stamp=2022-05-27
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a.yegenoglu@fz-juelich.de
https://doi.org/10.3389/fncom.2022.885207
https://www.frontiersin.org/articles/10.3389/fncom.2022.885207/full

Yegenoglu et al. L2L

problem in a dynamic environment. We particularly focus on simulations with models

ranging from the single cell to the whole brain and using a variety of simulation engines

like NEST, Arbor, TVB, OpenAIGym, and NetLogo.

Keywords: simulation, meta learning, hyper-parameter optimization, high performance computing, connectivity

generation, parameter exploration

1. INTRODUCTION

An essential common tool to most efforts around brain research
is the use of algorithms for analysis and simulation. Specialists
have developed a large variety of tools that typically rely on
many parameters in order to produce the desired results.
Finding an appropriate configuration of parameters is a highly
non-trivial task that usually requires both experience and the
patience to comprehensively explore the complex relationships
between inputs and outputs. This problem is common to all
input and output formats, as they differ in their type such as
images, continuous or discrete signals, experimental data, spiking
activity, functional connectivity, etc. In this article, we focus on
parameter specification for simulation.

In order to address this problem, we present a flexible tool for
parameter optimization: L2L. Initially inspired by the learning to
learn (L2L) concept in the machine learning (ML) community,
the L2L framework is an open-source Python tool1 that can
be used to optimize different workloads. The flexibility of the
framework allows the user to set the target of optimization to
be a model which can be executed either from Python or the
command line. The optimization target can also be adaptive
and capable of learning, providing a natural way to carry out
hyper-parameter optimization. The L2L framework can be used
in local computers as well as on clusters and high performance
computing (HPC) infrastructure.

This manuscript is structured as follows. First, we provide a
quick overview on the state of the art for optimization methods
and highlight the main differences between those tools and the
L2L framework. In Section 2, we provide an overview of the
framework’s architecture, its implementation, and the way it can
be used and extended. We then demonstrate its effectiveness
on a variety of use cases focused on neuroscience simulation at
different scales (Section 3).

1.1. State of the Art
In the field of ML, the concept of L2L (c.f. Section 2.1) has
been well studied. The L2L concept can be decomposed into two
components: (a) an inner loop where a program to be optimized,
here named the optimizee, executes specific tasks and returns a
measure of how well it performs, called the fitness, and (b) an
outer loop where an optimizer searches for generalized optimizee
parameters (hyper-parameters) that improve the optimizee’s
performance over distinct tasks measured by the fitness function.
The fitness function is different for each model and tightly linked
to the expected transitions in its dynamics. The optimizee can
consist of any program such as an artificial neural network, a
spiking network, a single cell model, or a whole brain simulation

1https://github.com/Meta-optimization/L2L

using rate models. In a recent work, Andrychowicz et al. (2016)
proposed using long short term memory network (LSTM) with
access to the top-level gradients to produce the weight updates
for the task LSTM. The main idea is to replace the gradient
descent optimizer of the optimizee with an LSTMas an optimizer.
In this case, the weights of the inner loop network are treated
as the hyper-parameters and trained/learned in the outer loop,
while being kept fixed in the inner loop. Based on the work
of Andrychowicz et al. (2016) and Ravi and Larochelle (2017)
modified the optimization scheme so that the test error can be
incorporated into the optimization step. Thus, the optimization
can be executed in fewer steps which leads to fewer unrollings
of the LSTMs and a reduction of the computational burden.
By representing the learning updates of the classifier within the
hidden state of the outer-loop optimizer network, the authors
acquire a good initialization for the parameters of the inner-loop
learner and for further update steps.

For feed-forward networks, Model Agnostic Meta-Learning
(MAML) was introduced by Finn et al. (2017). MAML can learn
initial parameters for a base-model solving inner-loop-level task.
After a few steps of optimization with gradient descent, the
base-model can generalize well on the validation set, which is
the related data seen for the first time from the same class as
the training set. The method can be applied to a vast set of
learning problems since the learning itself is agnostic to the inner-
loop model. Finn and Levine (2017) showed that learning the
initialization combined with gradient updates was as powerful
as L2L using a recurrent network. Several extensions have
been proposed to enhance the performance of the learning and
computation time (Finn et al., 2018, 2019). For example, Li et al.
(2017) introduce META-SGD, a stochastic gradient optimization
method that not only learns the parameter initialization but
also the gradient update of the base-model optimization.
However, Antoniou et al. (2018) list several issues found with
MAML, such as training instabilities, due to repeated application
of backpropagation through the same network multiple times
which leads to gradient issues. This leads to a performance drop
in learning and computational overhead. A gradient-free version
of MAML was proposed by Song et al. (2019) using evolution
strategies to replace the second-order backpropagation used in
MAML. A framework that is model agnostic but does not depend
on calculating gradients or backpropagating through networks
and is not limited to a single optimization algorithm would
be highly desirable, especially to address the needs of highly
interdisciplinary fields such as neuroscience.

Cao et al. (2019) utilize particle swarm optimization
(Kennedy and Eberhart, 1995) to train a meta-optimizer that
learns both point-based and population-based optimization
algorithms in a continuous manner. The authors apply a
set of LSTMs to train and learn the update formula for a

Frontiers in Computational Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 885207116

https://github.com/Meta-optimization/L2L
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

population of samples. Their learning is based on two attention
mechanisms, the feature-level (“intra-particle”) and sample-level
(“inter-particle”) attentions. The intra-particle module reweights
every feature based on the hidden state of the corresponding i-th
LSTM, whereas the inter-particle attention module learns in the
update step of the actual particle information from the previous
already updated particles.

Similarly, Jaderberg et al. (2017) use a parallel population-
based approach and random search to optimize the hyper-
parameters of neural networks. They randomly sample the
initialization of the network parameters and hyper-parameters
and every training run is evaluated asynchronously. If a
network is underperforming, it is replaced by a more successful
network. Furthermore, by perturbing the hyper-parameters of
the replacing network the search space is expanded. Neural
architecture search (Zoph and Le, 2016) and related methods
have been shown to be very useful in choosing network
architectures for various tasks. A random search was shown
to be surprisingly effective for hyper-parameter searches for a
wide variety of tasks (Bergstra and Bengio, 2012). Many of the
automated hyper-parameter searches also fall under the category
of Automated Machine Learning or AutoML (Hutter et al., 2019;
He et al., 2021).

In the area of computational neuroscience,
BluePyOpt (Van Geit et al., 2016) has represented a robust
solution to address optimization problems. Even if it was
originally meant to support the optimization of single cell
dynamics, BluePyOpt is also able to optimize models at other
scales. It makes use of DEAP (Fortin et al., 2012) for the
optimization algorithms and of SCOOP (Hold-Geoffroy et al.,
2014) to provide parallelization. The target of optimization in
BluePyOpt is also quite flexible, it can be any simulator that
can be called from Python. This framework can also be used
in different infrastructures, from laptops to clusters. However,
the framework only allows the execution of optimization targets
written in Python.

Deep Learning compatible spiking network libraries, such
as NengoDL (Rasmussen, 2018) or Norse (Pehle and Pedersen,
2021), are getting more popular. They are based on modern
tensor libraries and can be executed on GPUs which can speed up
the simulations. Although these libraries do not focus on meta-
learning they are interesting for solving ML tasks using spiking
neural networks (SNN). They can be used to quickly learn the
tasks while the hyper-parameters of the SNNs can be optimized
in an outer loop.

The L2L framework offers a flexible way to optimize
and explore hyper-parameter spaces. Due to its interface, the
optimization targets are not restricted to executables with a
Python interface offering the possibility to optimize models
written in different programming languages. In our work, we
focus on neuroscientific use cases. The framework, however,
is available for a variety of simulations in different scientific
domains. Furthermore, the framework is agnostic to the
inner loop models and thus allows for different types of
optimization techniques in the outer loop. Most of the optimizers
adapt population-based computational algorithms, which enable

parallel executions of optimizees (see Section 3). This helps to
optimize for a vast range of parameter ranges. The error or
rather fitness of the inner loop on the absolved tasks is included
in the optimization step to update the parameters. Optimizers
such as the genetic algorithm or ensemble Kalman filter (EnKF)
use the fitness in order to rank the individuals and replace
underperfoming individuals with more successful ones (e.g., see
Section 3.1).

2. METHODS

2.1. Concept of L2L
Learning to learn or meta-learning is a technique to induce
learning from experience (Thrun and Pratt, 2012). The L2L
process consists of two loops, the inner and outer loop (Figure 1).
In the inner loop, an algorithm with learning capabilities (e.g., an
artificial or SNN, a single cell model or a whole brain simulation
using rate models) is executed on a specific task T from a family
F of tasks.

Tasks can range from classification (e.g., MNIST;
LeCun et al., 2010, see Section 3.1), to identifying
parameter regimes that result in specific network dynamics
(Sections 3.2, 3.4) or training agents to autonomously solve
optimization problems (Sections 3.3, 3.5).

The performance of the algorithm over tasks is evaluated
with a specifically designed fitness function, which produces
a fitness value f or a fitness vector f. The function is,
in general, different for every model but closely connected
to the task itself. Parameters and hyper-parameters, together
with the fitness value of the optimizee are sent to the outer
loop. Different optimization techniques, such as evolutionary
algorithms, filtering methods or gradient descent, can be utilized
to optimize the hyper-parameters in order to improve the
performance of the optimizee. Afterward, the hyper-parameters
are fed back into the algorithm and a new iteration (i.e., a
new generation) is invoked. It is important to note that from a
technical point of view, the optimizee acts as an orchestrator of
the inner loop. Each optimizee executes a simulation. Borrowing
the terminology from evolutionary algorithms, the parameter set
which is optimized is called an individual. The optimizee accepts
(hyper-)parameters from the outer loop and starts the inner loop
process to execute the simulation. Last, it calculates the fitness
and transmits everything to the optimizer.

2.2. Parallel Executions in the L2L
Framework
In L2L, the optimizers apply population based methods which
enable simulations to be run in an embarrassingly parallel
fashion. Each individual is initialized independently. They can
be easily distributed on several computing nodes and thus can
exploit HPC systems. The L2L framework supports the message
passing interface (MPI) over several nodes and multi-threading
per node. The number of nodes and cores can be set in the
beginning of the run and the L2L framework will automatically
take care of the distribution and collection of results. Section 2.3
explains in detail how to set up a simulation run in L2L.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 885207117

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

2.3. Workflow Description

Listing 1 | Template script to start a L2L run. The optimizee, optimizer are defined. The experiment class is managing the run.

1 from l2l.utils.experiment import Experiment
2 from l2l.optimizees.optimizee import Optimizee, OptimizeeParameters
3 from l2l.optimizers.optimizer import Optimizer, OptimizerParameters
4
5 experiment = Experiment(root_dir_path= '/home/user/L2L/results')
6 jube_params = {"exec": "srun -n 1 -c 8 --exclusive python" }
7 traj, all_jube_params = experiment.prepare_experiment(name= 'L2L-Run',
8 log_stdout=True,
9 jube_parameter=jube_params)
10
11 ## Inner loop simulator
12 # Optimizee class
13 optimizee = Optimizee (traj)
14 optimizee_parameters = OptimizeeParameters()
15
16 ## Outer loop optimizer initialization
17 optimizer_parameters = OptimizerParameters()
18 optimizer = Optimizer(traj,
19 optimizee_prepare=optimizee.create_individual,
20 fitness_weights=(1.0,),
21 optimizee_bounding_func=optimizee.bounding_func,
22 parameters=optimizer_parameters)
23
24 experiment.run_experiment (optimizee=optimizee,
25 optimizee_parameters=optimizee_parameters,
26 optimizer=optimizer,
27 optimizer_parameters=optimizer_parameters)
28 experiment.end_experiment(optimizer)

In L2L, the user has to work on two main files. The first file is
the run script, which invokes the whole L2L two loop run. The
second file is the optimizee, which operates the simulation in the
inner loop.

In the run script, the user configures hardware-related

settings, e.g., if the run is executed on a local computer or on
an HPC. Furthermore, the optimizee and optimizer and their

parameter options have to be set. An example code template to
start the whole L2L run is shown in Listing 1. Lines 1-3 import

the necessary modules, i.e., the experiment, optimizee, and the

optimizer. Of course, in the real run, the names of the modules
and classes have to be adapted to their respective class names,
for simplicity, we call them here optimizee and optimizer. The
experiment class manages the run. In line 5, the results path
is set in the constructor of the class. The experiment method
prepare_experiment in line 7 prepares the run. It accepts
the name of the run, whether logging should be enabled, and the
Juelich Benchmarking Environment (JUBE; Speck et al., 2021)
parameters. In L2L, JUBE’s functionality was stripped down to
submit and manage parallel jobs on HPCs and interact with the
jobmanagement system SLURM (Yoo et al., 2003). The execution
directives for the HPC jobs can be seen in line 6. Here, exec
is the indicator command to invoke a run on a supercomputer,
followed by a srun directive for SLURM. In the example, one

task (-n 1) should be run on 8 cores (-c 8). Optimizees
and optimizers run as Python executables, which is why the
python command is needed here. If a local run is desired, just
the Python command is sufficient, i.e., “exec”:“python.”
Internally, JUBE creates a job script and passes it to SLURM,
which then executes the parallel optimizees and the optimizer.
JUBE accepts manymore commands for SLURM, but elaborating
on all options would go beyond the scope of this work; see the
SLURM documentation2 for a list of executives. The run script
can be executed either as a batch script or as an interactive job on
an HPC.

The optimizee is defined in line 13 and requires only
the trajectory traj. The trajectory, modeled after PyPet’s
trajectory3, is a class that holds the history of the parameter
space exploration and the results from each execution and
the parameters to be explored. OptimizeeParameters is a
Python namedtuple object, which accepts the parameters of
the optimizee. For the optimizee, the namedtuple appears as
a parameter object and can be accessed as a class variable, i.e., as
parameters.name . The optimizee has access to the trajectory
and the parameters object.

2https://slurm.schedmd.com/
3https://github.com/SmokinCaterpillar/pypet

Frontiers in Computational Neuroscience | www.frontiersin.org 4 May 2022 | Volume 16 | Article 885207118

https://slurm.schedmd.com/
https://github.com/SmokinCaterpillar/pypet
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 1 | Learning to learn (L2L) consists of two loops. In the inner loop, the optimizee, an algorithm with learning capabilities is trained on a family of tasks. A

fitness function evaluates the performance of the algorithm. The (hyper-) parameters and the fitness value of the algorithm are sent to the optimizer in the outer loop.

Several optimization methods are available to optimize the parameters, which are fed back to the optimizee and the algorithm.

In the optimizee, three main functions have to be
implemented.

1. The function create_individual() defines the
individual. Here, the parameters which are going to be
optimized need to be initialized and returned as a Python
dictionary.

2. simulate() is the main method to invoke the simulation.
The L2L framework is quite flexible about the simulation in
the inner loop. It is agnostic with regards to the application
carrying out the simulation and only requires that a fitness
value or fitness vector is returned.

3. bounding_func() is a function that clips parameters
before and after the optimization to defined ranges. For
example, in an SNN, it is necessary that delays are strictly
positive and greater than zero. The function is applied only on
parameters that are defined in create_individual() .

Similarly, the optimizer is created in line 18. It requires
the optimizer parameters (line 17) and the method
optimizee.create_individual , and if available,
the bounding function optimizee.bounding_func .

Additionally, a tuple of weights (fitness_weights , here
(1.0,)) can be given, which weights the optimizee fitness by
multiplying those values with the fitness itself. For example, in
the case of a two-dimensional fitness vector, a tuple of (1.0, 0.5)
would weigh the first fitness fully and the second one only half.
Most of the optimizers in the L2L framework perform fitness
maximization, but if minimization is required, then it suffices
to flip the sign of the fitness function that would be used for
maximization. Several optimization techniques are available
in the framework, such as cross-entropy, genetic algorithm
(GA), evolutionary strategies (Salimans et al., 2017), gradient
descent, grid-search, ensemble Kalman Filter (EnKF; Iglesias
et al., 2013) natural evolution strategies (Wierstra et al., 2014),
parallel tempering, and simulated annealing. The results of the
optimizations are automatically saved in a user specified results
folder as Python binary files; however, users can store result files
from within the optimizee in any format they wish.

The method run_experiment (line 24) requires that the
optimizee and the optimizer and their parameters have to be
defined. Finally, the end_experiment method is needed to
end the simulation and to stop any logging processes.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 885207119

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

3. RESULTS

In this section, we present the results of using L2L to optimize
the parameters for a variety of simulation use cases. Every task
is executed with a different set of simulation tools, and the
interfaces with the simulators also differ between use cases. We
present here 5 use cases. Please see the Supplementary Material

for an additional use case where hyper-parameters are also
optimized. A GitHub repository with instructions to run the
provided use cases can be found at https://github.com/Meta-
optimization/L2L/tree/frontiers_submission.

3.1. Use Case 1: Digit Classification With
NEST
The first use case describes digit classification with an SNN
implemented in the NEST simulator (Gewaltig and Diesmann,
2007). The SNN is designed as a reservoir, i.e., a liquid state
machine (LSM, Maass et al., 2002). The network consists
of an input encoding layer, a recurrent reservoir, and an
output layer as shown in Figure 2. The weights between the
reservoir and the output layer are optimized to maximize the
classification accuracy.

3.1.1. Description of the Simulation Tool
NEST is a simulator for SNN models. Its primary design focus
is the efficiency and accurate simulation of point neuron models,
in which the morphology of a neuron is abstracted into a single
iso-potential compartment; axons and dendrites have no physical
extent. Since NEST supports parallelization with MPI and multi-
threading and exhibits excellent scalability, simulations can either
be executed on local machines or efficiently scaled up to large
scale runs on HPCs (Jordan et al., 2018). Our experiments were
conducted on the HDF-ML cluster of the Jülich Supercomputing
Center using NEST 3.1 (Deepu et al., 2021).

3.1.2. Optimizee: Spiking Reservoir Model
The network consists of three populations of leaky integrate-and-
fire (LIF) neurons, the encoder, the reservoir, and the output;
see Figure 2. The input to the network is the set of MNIST
digits, encoded into firing rates; the firing rates are proportional
to the intensity of the pixels from 0 to 255 mapped between
[1, 100]Hz. A total of 768 excitatory neurons receive input from
a pixel of the image in a one-to-one connection. The reservoir
has 1,600 excitatory and 400 inhibitory neurons, while the output
has a population of 12 neurons (10 excitatory (red), 2 inhibitory
(blue)) per digit. The connections in the reservoir are randomly
connected but limited to a maximal outdegree of 6% and 8% for
each excitatory and inhibitory neuron. In this setting, we focused
explicitly on three digits of the dataset (0 to 2), thus having
three output clusters. Each excitatory neuron receives a maximal
indegree of 640 connections and each inhibitory neuron receives
an indegree of maximal 460 connections from the reservoir. This
results in 28,800 (= 800 × 12 × 3) connections in total. The
neurons within an output are recurrently connected, while the
output clusters do not have connections to each other. If an
input is not presented, the network exhibits low spiking activity
in all three parts. The whole network is constructed in the

create_individual function. The connection weights are
sampled from a normal distribution with µ = 70 and σ = 50
for the excitatory neurons and µ = −90 and σ = 50 for the
inhibitory neurons.

In the simulation (simulate function), a small batch of 10
different numbers from the same digit is presented to the network
for 500ms per image as spike trains. Additionally, each neuron in
the network receives background Poissonian noise with a mean
firing rate of≈ 5 spikes/s to always maintain a low activity within
the reservoir.

Before any image is presented, there is a warming up
simulation phase lasting for 100ms in order to decay all neuron
parameters to their resting values. Likewise, between every image,
there is a cooling period of 200ms where no input is shown. After
the simulation is run, the output with the highest spike activity
indicates the number of the presented digit.

3.1.3. Fitness Metric
In the output, we acquire the firing rates of all clusters and apply
the softmax function

σ (x)j =
exj

∑

k e
xk

,

where σ :R
k → [0, 1]k and x = (x0, x1, . . . xk) ∈ R

k, j = 1, . . . , k
is the vector of firing rates.

We take the highest value, which indicates the digit the
network classified. Since every image in the dataset has a label,
we can calculate the loss by applying the mean squared error
function to the corresponding label:

L =
1

n

n
∑

i=1

(yi − ŷi)
2 , (1)

with yi the label and ŷi the predicted output, encoded as one-hot
vectors with a non-zero entry corresponding to the position of
the label. As the optimizer used in the outer loop for this use
case is the ensemble Kalman filter, which minimizes the distance
between the model output and the training label, we define the
fitness function as f = 1 − L and use it in order to rank
individuals (see next Section 3.1.4). After each presentation of
a digit, the fitness and the softmax model output are sent to
the optimizer.

3.1.4. Optimizer: EnKF
The ensemble Kalman filter (Iglesias et al., 2013) is the
optimization technique we use to update the weights between
the reservoir and the output, as described in Yegenoglu et al.
(2020). Before the optimization, they are normalized to be
in the range of [0, 1]. The weights from the reservoir to the
output are concatenated to construct one individual. In total,
98 individuals go into the optimization. Each individual has
28,800 weights. To specify in terms of the EnKF setting, the
set of ensembles are the network weights, the observations are
the softmax model outputs. In Yegenoglu et al. (2020), it was
shown that around 100 ensembles are required to reach at least
chance level on the MNIST dataset. However, the experiments

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 885207120

https://github.com/Meta-optimization/L2L/tree/frontiers_submission
https://github.com/Meta-optimization/L2L/tree/frontiers_submission
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 2 | A schematic view of a reservoir network classifying the MNIST dataset. The input image is encoded into firing rates and fed afterward into the reservoir.

The output consists of 10 excitatory neuron depicted in red and 2 inhibitory neurons depicted in blue. The highest activity at the output indicates the presented digit.

were conducted using convolutional neural networks tested
with harsh conditions such as poor weight initialization and
different activation functions. Due to long simulation times, we
limited the number of ensembles in this case. Future work will
investigate a more variable ensemble size. We implemented a
slight modification of the EnKF in which poorly performing
individuals can be replaced by the best individuals. The fitness is
used to rank the individuals and replace the worst n individuals
with m best ones. Furthermore, we add random values drawn
from a normal distribution to the replacing individuals in order
to increase the search space for the parameters and to find
different and possibly better solutions. We set n andm to be 10%
of the corresponding individuals. One hyper-parameter of the
EnKF is γ (set to γ = 0.5), it can be compared to the effect of
the learning rate in stochastic gradient descent. A lower γ may
lead to a faster convergence but also has the risk of overshooting
minima. In contrast, a higher γ is slower to converge or can get
trapped in minima. Since the simulations take a relatively long
time to finish, we cannot train on the whole dataset (see next
Section 3.1.5) In this setting, the EnKF with the implemented
additions is a suitable optimization technique, because it is able
to quickly converge to minima and provide satisfactory results.

3.1.5. Analysis
Figure 3 depicts the evolution of the fitness over 320 generations.
The test is acquired over a subset of the MNIST test set in every
tenth generation. The test set (10, 000 images) is separated from
the training set (60, 000 images) and contains digits that were not
presented during training.

While the mean fitness steadily increases over the generations,
the best individual fitness exceeds 0.9 at generation 50 and
improves to a fitness very close to 1.0 before decreasing again
to around 0.9. Toward the end of training, we observe that
the standard deviation of the individuals gets smaller and the
mean increases. After a maximum standard deviation of 0.16
in generation 100, the spread of the ensemble contracts to a
minimum standard deviation of 0.08 in generation 260, and
remains low thereafter. It is important to note that the green

FIGURE 3 | Every tenth iteration the reservoir is tested on a small part of the

MNIST test data. The blue dotted line shows the mean fitness and the shaded

area is the standard deviation of all individuals. The green line depicts the best

fitness in every generation.

curve indicates the performance of the highest performing
individual in each generation, this is not necessarily the same
individual. Currently we show 10 images for 500ms on each
generation in every training and testing phase which takes
relatively long simulation times, thus hindering our ability to
process the whole dataset and limits the total number of used
images to 3, 200 (2, 880 training, 320 testing). Although the
simulations take a relatively long time, using the HPC capabilities
of L2L we are able to process an entire generation of 98
individuals including the optimization of a total of 98 × 28, 800
weights in less than 3min. In comparison a grid search on 28, 000
parameters exploring a range of 20 values for each weight would
require the evaluation of 2028,000 combinations. Due to the fast
convergence behavior of the EnKF it is possible to reach an

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2022 | Volume 16 | Article 885207121

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

optimal solution in few generations. Our modifications to sample
new individuals from well performing ones and perturbing them
increases the possibility to find an overall better solution by
exploring other parameter ranges. A future research direction we
want to investigate is to move the optimization process of the
weights into the inner loop and optimize the hyper-parameters
of the optimizer. In this light, it would be interesting to use
Nengo or Norse which are suitable for solving ML tasks with
SNNs and optimizing the hyper-parameters of the optimizers
provided by those libraries. Finally, we can compare the results by
executing the same approach having NEST as the SNN back-end.
Our setup for learning MNIST is different from other reported
works in literature in terms of architecture, learning strategy,
and even metrics to measure performance. This makes a direct
comparison not straightforward. Previous studies have shown a
high accuracy in the MNIST dataset by shaping the structure
of the reservoir. For instance, Wijesinghe et al. (2019) divide
the reservoir into clusters of locally connected neurons and
change the connectivity in order to reach satisfactory results on
different tasks. Zhou et al. (2020) apply neural search techniques
and hyper-parameter optimization using a mix of covariance
matrix adaptation evolution strategy and Bayesian optimization
to modify the reservoir structure, reaching an accuracy of more
than 90% on the MNIST dataset. They also report high accuracy
on different spatio-temporal tasks.

3.2. Use Case 2: Fitting
Electrophysiological Data With Arbor
This use case is concerned with optimizing the parameters
of a biophysically realistic single cell model implemented in
Arbor such that the response of the neuron to a specific
input stimulus matches an experimental recording. Both
passive parameters—morphology and resistivities—and active
response to an external stimulus are commonly recorded in
electrophysiological experiments. Similarly, the ion channels
present are typically known. However, the internal parameters of
the mechanisms—usually implemented as a set of coupled linear
ODEs—are not known. To address this, we use L2L to fit the
model parameters to the available data. This proof-of-concept
aims at providing a robust way for model fitting for the Arbor
simulator using HPC resources.

3.2.1. Description of the Simulation Tool
Arbor is a library for writing high-performance distributed
simulations of networks of spiking neuron with detailed
morphologies (Akar et al., 2019). Arbor implements a
modification of the cable-equation model of neural dynamics
which describes the evolution of the membrane potential over
time, given the trans-membrane currents. In this model, neurons
comprise a tree of cables (the morphology), a set of dynamics
assigned to sub-sections of the morphology (called ion-channels
or mechanisms), and a similar assignment of bio-physical
parameters. The morphology describes the electric connectivity
in the cell’s dendrite and the mechanisms primarily produce the
trans-membrane currents.

3.2.2. Optimizee: Morphologically-Detailed Single

Cell
As outlined above, we expect models to be imported from
laboratory data, that is a morphological description of the cell
from microscopy, a template of ion channels with yet unknown
parameter values, and some known data like the temperature
of the sample. In addition, a series of stimulus and response
measurements need to be provided, which will be the target
of optimization. Our objective then is to assign values to the
parameters to best approximate the measured response. For
designing this use case, we focus on a single specimen from the
Allen Cell Database with a known parametrization in addition to
the input/response data (Lein et al., 2007).

We define the parameter sets P to be fit as a list of 4-tuples: a
sub-section of the morphology, an ion-channel id, a parameter
name, and the value to set the parameter to. Regions in the
morphology are written as queries against Arbor’s layout engine,
e.g., selecting all parts of the dendrite where the cable radius
is smaller than 1 µm becomes (rad-lt (tag 2) 1), since
tag=2 has been set during morphology creation. Consequently,
setting the parameter tau in the expsyn mechanism to 2ms
appears as

[.., ((rad-lt (tag 2) 1), expsyn,
tau, 2), ..]

in the individual. Optimizee instances are constructed from
are configuration file which lists the following items (example
item)

• morphology file name (cell.swc)
• list of current clamps with expected response

(delay, duration, amplitude, ref.csv)
• simulation parameters: length and time-step
• location where to record the response (location 0 0.5)
• fixed parameter assignments (T=285 K)
• list of ion channel assignments and optimizable parameters

[(tag 2), pas, e, -70, -30]

Parameters to be optimized are given a bounding range used to
automatically restrict the optimizer, here e may vary in the range
of [-70mV. . . -30mV]. This data is sufficient—together with the
statically known items—to construct a simulation in Arbor that
can be run forward in time.

3.2.3. Fitness Metric
We implemented the naive approach of using the mean square
loss as the measure of fitness. Given the experimentally obtained
membrane potential Uref(t) we define the fitness as

L(P) = −
1

T2

T
∑

t=0

[

Uref(t · τ)− Usim(P, t · τ)
]2

(2)

where Usim(P, t) is the measurement produced by Arbor given
the parameter set P and τ is the sampling interval of the voltage
measurement. The optimizer attempts to maximize the given
metric, which is why we defined the fitness as the negative of the
L2 norm here.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 885207122

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 4 | Example input to Arbor and trace of a run of the optimizer. (Left) Cell morphology as consumed by Arbor and imported from the Allen DB, regions are

marked as “soma,” “dendrite,” and “axon.” (Right) Loss function over successive generations of the genetic optimizer for an example run of L2L on this cell starting

from random parameters. Shown are the mean loss per generation (as a line) and the spread between minimum and maximum (shaded area).

Figure 4 shows an example of single cell morphology and the
loss function across a single run of L2L. The scales and units
of L are arbitrary. After roughly 50 generations, the best result
has been identified and we found only minor improvements to
the fitness after this. As can be seen in Figure 5 (left), we quite
easily reach a configuration that reproduces themeanmembrane
voltage but does not exhibit spiking behavior. From experience,
we know that spikes are only produced for a narrow band of
parameters in these complex configurations.

Thus, the fitness function will need to be extended to include
the requirement for spiking. Furthermore, it seems prudent that
the final result of the optimization process should include the
responses to multiple separate stimulation protocols. Therefore,
the overall fitness becomes a vector

F(P, I) =

L(P, I0)
S(P, I0)
L(P, I1)

...

(3)

which—in conjunction with a vector of weights—is suited for
use with L2L’s multi-objective optimization. Here, I is the vector
of stimuli and the function S collects the fitness with respect to
the spiking behavior. Thus, the fitness function was changed to
emphasize spiking behavior

L(P, I) = |〈Uref〉 − 〈Usim〉| (4)

S(P, I) = 〈Uref − Usim〉

∣

∣

∣

Uref>σ
(5)

where S selects spikes by applying a threshold σ and then applies
the temporal average 〈·〉. As can be seen in Figure 5 (right),
we find spiking behavior with this fitness function, albeit still
different from the expected outcome.

3.2.4. Optimizer: Evolutionary Algorithm
The fitness metric is used to drive the outer loop optimizer,
an evolutionary algorithm searching for maximum fitness.
This choice of the algorithm was motivated by prior studies
showing it to be computationally efficient for this kind of fitting
problem (Druckmann et al., 2007).

In the L2L framework, the genetic algorithm optimizer (GA)
is a wrapper around the DEAP library (Fortin et al., 2012). This
adapter takes care of handling the parameters received from
the inner loop and prepares them for the optimization process.
The DEAP library then facilitates the cross-over and mutation
methods, applies them to the actual parameter set, and saves
the best individuals into the Hall of Fame if they fare better
than previous runs. Afterward, the optimized parameters are sent
back to the optimizee, which then initializes the next generation
of individuals.

Here, we use a population of 100 individuals and a total of 200
generations. Individuals in a generation are evaluated by using 16
parallel tasks on a single dual-socket node.

3.2.5. Analysis
We have shown a basic implementation for finding optimal
parameter sets for single cell models using Arbor and L2L.
This enables researchers to fit experimental data to neuron
models in Arbor, a workflow that is important in practice
and lacking so far in Arbor’s ecosystem. The approach shown
here so far is implemented in a straightforward fashion but
falls short to reach the desired configuration in a reasonable
time frame.

A fitness function based on salient features is generally
more successful in producing spiking behavior (Druckmann
et al., 2007; Gouwens et al., 2018). We expect the current
fitness implementation to evolve further, likely including more

Frontiers in Computational Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 885207123

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 5 | Impact of the fitness function. Shown is the measured membrane potential at the center of the soma from the simulation • against reference • and

applied stimulus •. (Left) Simple square loss, the best result after 100 generations. (Right) Feature based fitness, the best result after 100 generations.

features, such as the resting potential and mean spike frequency.
Further, L2L does not normalize parameters, thus parameters
that have significantly different ranges can pose issues to
the optimization process, e.g., the test case here features
parameters of magnitude 100 as well as 10−7. Given the
bounding annotations in our configuration, we implemented
normalization within the optimizee and L2L handles uniform
ranges [0, 1]4. To cope with common time-restrictions on
the used resources in the mean-time, we implemented a
method to resume optimization given an intermediate result.
Currently, this workflow is being extended beyond the proof-
of-concept state we presented here. A further open task
is to investigate the impact of the hyper-parameters passed
through L2L to DEAP, such as tournament size, population
size, etc.

Another extension is the use of accelerators (GPUs), which
allow for massively parallel evaluation of individuals. Arbor is
able to use GPUs for simulations efficiently starting at a few
thousands of cells per GPU. This would enable processing an
entire generation of the optimization process at once. Given
the current number of 100 cells per generation, this is not yet
profitable, but for larger generation sizes and additional stimulus
protocols, it becomes attractive. L2L was extended to enable
a vectorized version of the evolutionary algorithm similar to
the multi-gradient descent approach presented in use case 4
(Section 3.4).

3.3. Use Case 3: Foraging Behavior With
Netlogo and NEST or SpikingLab
In this use case, we describe optimizing the foraging behavior
in a simulated ant colony. The colony consists of 15 ants, all of
which are searching for food (big green patches, Figure 6). Any
food found must be brought back to the nest. Ants communicate
with each other by dropping pheromones on the ground (blue

4Note that this can introduce different issues with numerical precision if said

ranges span too many orders of magnitude.

patches) whenever the food is found or the nest is reached. The
pheromone can be smelled by other ants which then can follow
the trail left on the ground. Each ant is controlled by an SNN,
which is an identical copy for every ant. Here, we use L2L to
configure its weights and delays so that the ants bring food back
to the nest as efficiently as possible.

3.3.1. Description of the Simulation Tools
NetLogo is a multi-agent simulator and modeling
environment (Tisue and Wilensky, 2004). It is widely used
as an educational and scientific tool for the study of emergent
behavior in complex systems. Agents are expressed as objects
that can communicate with each other. In our setting, NetLogo
helps us to observe and manipulate the state of every neuron
and synapse. For the simulations, we have two backends:
NEST (see Section 3.1.1) and SpikingLab (Jimenez-Romero
and Johnson, 2017). SpikingLab is an engine directly integrated
within NetLogo and can be easily and quickly used for small scale
networks, as we present in our use case. Invoking NEST from
NetLogo causes a minimal communication overhead since NEST
needs to be called as an external process. For larger networks, it
is preferable to use NEST since its higher simulation efficiency
compensates for the communication overhead.

3.3.2. Optimizee: Simulated Ant Brain
In the first iteration, the optimizee creates the individual
inside the create_individual function. The individual
consists of network weights and delays. The weights are
uniformly distributed in [−20, 20], while the delays range
between [1, . . . , 7)N+ . The network has an input, a hidden, and an
output layer, the neurons are all-to-all connected for every layer
as depicted in Figure 7. The input layer consists of 12 neurons.
The first three neurons are receptors to smell the direction
of the pheromone. The next three neurons are responsible to
locate the nest. The queen receptor indicates the middle of
the nest. Reward and nociceptors determine the reward and
punishment for the ant. The green and red photoreceptors are

Frontiers in Computational Neuroscience | www.frontiersin.org 10 May 2022 | Volume 16 | Article 885207124

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 6 | The ant colony is searching for food (big green patches with

brown leaves). The ants are communicating via pheromones which are

dropped on the ground (blue-white patches) when food is found or when the

ants return to the nest (black-brown patch). Green colored ants are

transporting the food, while orange colored ants are exploring the environment

or following the pheromone trail. The red border around the world is an

impenetrable wall and prevents ants from crossing from one side to the other.

The pheromone trail decays with time if it is not reinforced by other ants.

triggered when food or a wall is seen. Finally, the heartbeat
neuron stimulates the network in every timestep with a small
direct current to keep a low dynamic ongoing in the network.
The four output neurons are responsible for the movement and
for dropping the pheromone. Similar to the first use case in
Section 3.1.5, the total number of individuals is 98. The total
number of connection weights (250) and delays (250) is derived
as follows: 110 connections from the input to the middle layer,
10 connections from the heartbeat neuron to the middle layer,
90 connections in the middle layer, and 40 connections from the
middle layer to the output (110 + 10 + 90 + 40 = 250). The
weights and delays can be min-max normalized if specified. The
optimizee saves these parameters as a csv file before starting the
simulation. The model is invoked by a Python subprocess5 in

5https://docs.python.org/3/library/subprocess.html

the simulate function, which then calls the headless mode of
NetLogo to start the run. The optimizee waits until the simulation
is finished and collects the fitness value from a resulting csv file
which is written after the simulation ends.

The user has to set whether NEST or SpikingLab is invoked as
a backend inside the simulation. NEST is known as a subprocess
by NetLogo, while SpikingLab is directly accessed by the model.
In the case that NEST is selected, the parameters have to be
passed to it as well since the network needs to be constructed
with the new parameters. This can be done either by loading the
parameter in a csv file within NEST, or NetLogo can read the csv
file and pass the values to the simulation.

The parameters are restricted within the bounding_func
function if their values exceed the specified ranges after the
optimization process. Weights are clipped to the range of
[−20, 20] and delays to [1, 5].

3.3.3. Fitness Metric
The fitness function for the ant colony optimization problem
rewards finding food and bringing it back to the nest while
punishing excessive movement.

We define the ant colony fitness fi of optimizee i as:

fi =

T
∑

t=1

J
∑

j=1

N
(t)
i,j + F

(t)
i,j − C

(t)
i,j

 , (6)

where t = 1, . . . ,T is the simulation step, T is the total simulation
time, J is the total number of ants in the colony, and j indexes the
ants. N is the reward for coming back to the nest with food, F
is a reward for touching the food, and C is the movement cost.
Every movement, rotation, and pheromone dropping is added
toward C. We set the cost as follows: Rotation−0.02, pheromone
dropping −0.05, and movement −0.25. The movement has a
higher cost since we would like to restrict vast movements and
force them to return to the nest. We also punished resting
with −0.5 to speed up the movement and to slightly induce
exploration. The rewards are returning to the nest 220 and
touching food 1.5. A high reward for coming back to the nest is
necessary, otherwise, the ants are spending a long time exploring
the environment even when the food is found. This slows down
learning and hinders solving the task.

3.3.4. Optimizer: Genetic Algorithm
We use a genetic algorithm to optimize the weights and delays in
the ant brain network. This is the same class of optimizers as used
in Section 3.2.

3.3.5. Analysis
Figure 8 depicts the evolution of the fitness of the ant colony over
800 generations. Initially, the ants move a lot without retrieving
food, resulting in a negative maximum fitness. After around
200 generations, the mean fitness is consistently positive and
the best solution is close to 10,000. In following generations,
the mean fitness saturates at around 5,000, with increasing
best fitness. After 800 generations, the L2L run is stopped
with the best individual fitness close to 15,000. Similarly to
use case 3.1, L2L enables us to execute 98 individuals in

Frontiers in Computational Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 885207125

https://docs.python.org/3/library/subprocess.html
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 7 | The SNN for the ant colony. Every ant is steered by an SNN. Neurons are depicted as pink dots and excitatory/inhibitory connections as red/blue lines. All

networks are identical.

FIGURE 8 | Fitness of the ant colony. The blue curve shows the mean fitness

and the shaded area is the SD. The green curve indicates the best solution

found so far, and thus rises monotonically.

parallel, where a generation is optimized in less than 2 min.
A grid search algorithm with 20 values to explore weight and
delay combinations would require 20500 possibilities to test

for. The mutation and cross-over steps of the GA increase
the parameter space and avoid local minima, without loosing
performance. The best individuals are saved in the Hall of
Fame (HoF) if they have better fitness than their predecessors.
If an optimization step produces underperforming individuals,
it is possible to recombine the new set utilizing the HoF.
Due to the parallel distribution of individuals and the GA
optimizer, we are able to find well performing individuals in less
than 400 generations. In contrast to other literature optimizing
ant colonies using rule-based systems, our work describes the
optimization of an SNN that learns the foraging behavior of
an ant. The decision making of each ant is not based on fixed
rules (e.g., if food is found turn around 180° and go back
to the nest), instead, it depends on the firing activity of the
network in response to the perceived environment. Compared
to the ant colony model provided by NetLogo (Wilensky, 1997),
which solves the foraging task within ≈ 15,000 steps, our
SNN solution takes between 15,000 and 20,000 steps with
a diffusion rate of 20 and evaporation rate of 1. However,
when the environmental conditions change to the detriment
of the pheromone communication (e.g., the evaporation rate
increases and diffusion rate decreases), the performance of the
two implementations becomes closer. In general, utilizing the
network solution enables the ants to be more adaptable toward
environmental modifications.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 May 2022 | Volume 16 | Article 885207126

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

3.4. Use Case 4: Fitting Functional
Connectivity With TVB
This use case describes tuning the parameters of a whole brain
simulation using the GPUmodels of The Virtual Brain simulator
(TVB; Sanz Leon et al., 2013) to give the best match to empirical
structural data.

To do clinical research with TVB, it is often necessary to
configure the parameters of a model for a specific person
such that it matches obtained empirical data. First, the brain
is parcellated into different regions, based on many available
atlases (Bansal et al., 2018). The connectivity of these regions
is determined using diffusion weighted imaging, estimating the
density of white matter tracts between the regions, resulting
in a connectivity matrix which is regarded as the structural
connectivity. Finally, a model that represents the regional brain
activity must be chosen. To optimize thematch between a specific
person and the TVB simulation, obtained fMRI can be used
to further personalize the structural connectivity (Deco et al.,
2014).

Due to the high dimensionality of TVB models and the wide

variation in possible parameter values, fitting patient data often

requires extensive parameter explorations over large ranges. In
this use case, the simulated functional connectivity is matched

to the structural connectivity. The task has the underlying
assumption that regions that are anatomically connected often

show a functional connection (Honey et al., 2009). In this task,

we want to find the values for the global_coupling and

global_speed variables, characteristic of the connectome

of a TVB stimulation, which gives rise to the strongest
correlation between the structure of the brain and the functional
connectivity, i.e., the relationship between spatially separated
brain regions.

3.4.1. Description of the Simulation Tools
The Virtual Brain is a simulation tool which enables researchers
to capture brain activity at mesoscopic level using different
modalities such as EEG, MEG of fMRI, using realistic biological
connectivity. A TVB brain network consists of coupled neural
mass models (NMM) whose dynamics can be expressed by a
single or system of ordinary differential equations. The coupling
of the NMMs is defined by the connectivity matrix. The NMMs
describe, e.g., the membrane potential or firing rate of groups
of neurons using differential equations, which are then solved
numerically. In this use case, we utilize an Euler based solver.
RateML (van der Vlag et al., 2022), the model generator of TVB,
enables us to create the desired TVB model written in CUDA for
the GPU and a driver to simulate the model, from a high level
model XML file.

Listing 2 | Implementation of the correlation computation between functional and structural connectivity.

1 SC = connectivity.weights / connectivity.weights.max()
2 for i in range(couplings * speeds):
3 FCSC[i] = np.corrcoef(FC[:, :, i].ravel(), SC.ravel())[0, 1]

Unlike the use cases discussed above, in this case, we exploit
GPU-parallelization by defining an optimizer that can process a

vector of fitnesses and create new individuals for multiple TVB
simulations executed in parallel on the GPU. An overview of
this process is shown in Figure 9. The optimizee in the inner
loop spawns a number of threads (here: 1, 024) according to
the users defined parameters ranges and resolution. Each thread
represents a TVB instance, simulating a unique set of parameters.
The fitness is computed for each instance, and the outer loop
optimizer selects the best fitness by using the gradient ascent
strategy. The arrows indicate the independent iterations of the
vector of fitnesses. In the figure, six TVB simulations run in
parallel, thus the optimizer needs to iterate a vector of six
fitnesses.

3.4.2. Optimizee: Whole Brain Simulation
The create_individual function initializes a first instance
for the TVB simulation. The structural connectivity is usually
obtained from the patient but in this case, the standard TVB
connectivity for 76 nodes is used. We model the regions
with the Generic2DimensionOscillator (G2DO;
Ott and Antonsen, 2008). A dictionary is created which
contains initial random values for the optimization parameters,
connection_speed and coupling_strength .

For subsequent simulation generations, the optimizee reads
the adapted values from a text file written by the optimizer
and utilizes the Python subprocess module to spawn a new
TVB simulator object with the corresponding parameterization.
When the TVB simulation is complete, the fitness for each TVB
instance is computed and written to a separate text file. The text
files are read by the optimizee reformatted for processing by
the optimizer.

3.4.3. Fitness Metric
The computation of the fitness for this task is 2-fold. In the
first step, the simulated functional connectivity is determined by
computing the Pearson product-moment correlation coefficient,
ρxy, of the simulated 76 regions according to Equation 7.

ρxy =
Cov(x, y)

σxσy
, (7)

where Cov(x, y) is the covariance of variables x and y and σx
and σy are the SD. This first step determines how strong the
dynamics of the simulated regions correspond to one another.
A strong functional correlation means that the simulated activity
between the spatially separated brain regions is more similar. The
second step is to determine the correlation between the obtained
functional and the structural connectivity, the weight matrix used
in the simulation, also using Equation 7.

The Python implementation of the second step is shown in
Listing 2, where SC is the structural connectivity and FC is the

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2022 | Volume 16 | Article 885207127

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 9 | The multi-gradient ascent implementation of L2L. The inner loop launches multiple instances of TVB on the GPU simulating different sets of parameters.

The outer loop selects the best fitnesses and produces a new parameters range.

simulated functional connectivity that was computed previously.
On line 1, the weights are normalized. In the for-loop on line
2, the correlation with the structural connectivity is computed.
The FCSCholds these correlations and is the array of fitnesses
returned to the optimizer.

3.4.4. Optimizer: Multi-Gradient Ascent
The best fitness is selected with a gradient ascent optimizer.
The existing optimizer has been adapted for processing the
vector of fitnesses returned by the GPU, named multi-gradient
ascent (MGA). In order to adapt it to vector processing, the
fitnesses need to be expanded before processing and compressed
afterward, as is shown in Figure 9. The expansion transforms
the obtained fitnesses from the optimizee process to a data
structure in which the obtained fitnesses are linked to the used
parameters, thus enabling the multi-gradient ascent optimizer
the possibility to select the best fitness and define a range
for the new parameters to be sent to the optimizee. When
the optimizer has selected the parameters for the optimizee, it
compresses the new individuals to a data structure that just
contains the new parameter combinations for the optimizee.

Aside from the expanding and compressing, the MGA algorithm
determines the new values for the individuals similar to
gradient ascent.

3.4.5. Analysis
The results in Figure 10 show the evolution of the mean and best
fitness for a generation of 1, 024 parameter combinations for the
global_speed and global_coupling variables, with a
learning rate of 0.01 and four individuals. These four individuals
each spawn 1,024 TVB simulations on the GPU, enlarging the
chance of success. Each generation contains a TVB simulation
of 4,000 simulation steps with a dt = 0.1. These results were
obtained using a NVIDIA V100 GPU on the JUSUF6 cluster. Our
results show that after 30 generations the best attainable fitness
(green curve) is reached (c.f. Deco et al., 2014).

Comparing the GPU population based on a single L2L
implementation, the latter would need more generations before
the best fitness is attained. The likelihood of finding a suitable
solution in earlier generations rises with the size of the

6https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUSUF/JUSUF_node.

html

Frontiers in Computational Neuroscience | www.frontiersin.org 14 May 2022 | Volume 16 | Article 885207128

https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUSUF/JUSUF_node.html
https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUSUF/JUSUF_node.html
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 10 | SD of the mean and best out of 1,024 fitnesses for 116

generations for the multi-gradient TVB parameter optimization TVB simulation.

The blue curve is the mean fitness over the population of 1, 024 and the

shaded area gives the SD. The green curve shows the best fitness for each

generation.

population: the more configurations considered in a single
generation, the faster it converges to the best value. The GPU
implementation has already considered 30 × 1,024 different
parameters values, after which the optimal fitness is found
(Figure 10), while the single implementation would have only 30.
A single implementation would need at least 30,720 generations
to find the same result, but would very likely need many more.
Additionally, the GPU makes it very convenient to execute
many simulations in parallel by not having to split them up
onto multiple nodes, without communication overhead and
decreasing wall clock time even further.

3.5. Use Case 5: Solving the Mountain Car
Task With OpenAI Gym and NEST
In this use case, we describe a solution to the OpenAI Gym
Mountain Car (MC) problem. The MC task is interesting since
it requires the agent to find a policy in a continuous state
space constituted by the position and velocity of the car. At
the same time, the action space is discrete, limited to three
possible actions: accelerate left, accelerate right, and do nothing.
The initial position and velocity of the car are set randomly by
the environment; the aim is to reach the goal position (yellow
flag) as depicted in Figure 11. As the car’s motor is weak,
consistently reaching the goal at the top of the hill requires
the agent to learn a policy that swings the car back and forth
in order to build up momentum. The challenge is considered
solved if the car reaches the goal position in an average of
110 steps over 100 consecutive trials. We implement a feed-
forward LIF SNN in NEST to encode a policy and optimize
the weights so as to improve the ability of the network to
solve the task.

3.5.1. Description of the Simulation Tools
The OpenAI Gym (Brockman et al., 2016) is a software library
that provides an interface to a wide range of environments
for experimentation with reinforcement learning techniques.
NEST has been described in Section 3.1. Both simulators
are instantiated and invoked by the optimizee process which
implements the closed-loop interactions. These interactions are
synchronized in such a way that for each simulation step of
the MC environment, the SNN is simulated for an interval of
20 ms in NEST. On completion of a simulation interval, the
state of the network is sampled and fed back as an action to the
MC environment.

3.5.2. Optimizee: Spiking Feed-Forward Policy

Network
The SNN of LIF neurons that controls the actions of the car is
implemented in NEST. The inputs to the SNN are the position
[−1.2, 0.6] and velocity [-0.7, 0.7] variables which are discretized
and encoded using 30 input neurons for each variable. For
the discretization (binning) of the continuous variables, the
width (w) of the bins is given by the minimum (min) and
maximum (max) value of the interval divided by the number of
input neurons (n) available for each variable. Each value within
the range is discretized into a bin which corresponds to one
input neuron:

w =
min+max

n
(8)

Once a value falls into a bin, its corresponding neuron is
activated by a dc current as provided by a connected dc
generator resulting in a firing rate of 500 Hz. The 60 encoding
neurons have all-to-all connections to an intermediate layer

of five neurons, which in turn have all-to-all connections to
the three neurons in the output layer corresponding to the
three possible actions. The action sent to the OpenAI Gym

environment depends on the activity of the three neurons in

the output (third) layer. Each output neuron represents one
of the possible actions. Following a winner-takes-all approach,

the neuron with the highest spiking activity determines which

action is sent to the OpenAI Gym environment. Figure 11

illustrates the spiking network and the closed-loop interaction

with the MC environment on the basis of input variables and
output actions.

Similar to the Netlogo use case (see Section 3.3), at
the beginning, the optimizee creates the individual inside
the create_individual() function. The total number
of individuals per generation is 32. Each individual consists
of network weights, which are initially uniformly distributed
in [−20, 20]. There are 315 weights corresponding to the
(60 × 5) + (5 × 3) = 315 synaptic connections in the
network. The instantiation and orchestration of OpenAI Gym
and NEST simulator (including the set-up of the SNN) is
carried out by the optimizee. Each simulation runs for 110
simulation steps (where a simulation step corresponds to an
action being sent to the environment) or until the goal position
is reached. Once the simulation is completed, the optimizee

Frontiers in Computational Neuroscience | www.frontiersin.org 15 May 2022 | Volume 16 | Article 885207129

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 11 | A feed-forward spiking network to solve the Mountain Car task. In the Mountain Car environment (left) the agent must steer the car to reach the goal

position (flag on top of the hill). The position and velocity of the car reported by the MC are encoded into spikes by the encoding layer (DC generators depicted as

green dots) of the three-layer spiking neural network (SNN) (neurons depicted as pink dots and excitatory/inhibitory connections as red/blue lines) running in the NEST

simulator (right). The activity from the three output neurons (accelerate left, accelerate right, do nothing) is decoded into actions for MC. The set of weights between

the sixty encoding neurons and the three output neurons is the object of optimization.

returns the calculated fitness value to the optimizer. The
bounding_func() function ensures the weights are clipped
to the range [−20, 20] if the values exceed this range after the
optimization process.

3.5.3. Fitness Metric
The fitness function for the MC optimization problem is defined
as the maximum horizontal position reached by car during an
episode comprised of 110 simulation steps, i.e.,

f = maxT(EPT)

Where maxT returns the item with the highest value in a vector
and EPT contains the position of the car on each simulation step
up to T = 110.

3.5.4. Optimizer: Genetic Algorithm
The optimization method is identical to that used in Section 3.3.
Afterward, the optimized parameters are sent back to
the optimizee, which then initializes the next generation
of individuals.

3.5.5. Analysis
Figure 12 depicts the fitness of the SNN over 400 generations.
After 50 generations, the fitness becomes positive showing that
the car is moving toward the goal position. The best solution
(goal position of 0.5) is first reached around generation 160.
In following generations, the mean fitness saturates at around
0.3, while the best fitness reaches the maximum of 0.5. After
400 generations, the L2L run is stopped with the best individual
fitness being 0.5. Finally, we confirmed that the fittest individual
could solve the MC problem. We ran a thousand episodes (each
episode lasting for a maximum of 200 simulation steps); the
spiking network achieved the required average of 110 or less
simulation steps over 100 episodes. Our solution requires 101
simulation steps on average to reach the goal position and thus
solves the task (data not shown).

The Mountain Car problem has been approached using
several ML techniques most of them focusing on reinforcement
learning (Heidrich-Meisner and Igel, 2008; Weidel et al.,
2021) and gradient descent (Young et al., 2019). Current
implementations are able to solve the challenge while delivering
a good performance in terms of speed of convergence and

Frontiers in Computational Neuroscience | www.frontiersin.org 16 May 2022 | Volume 16 | Article 885207130

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

FIGURE 12 | Fitness of the MC run. The blue, starred line shows the mean of

all individuals while the shaded area is the SD. The green line is the best fitness

per generation.

the obtained final score. We took an evolutionary approach
by using a GA to optimize an SNN that is able to solve the
MC obtaining consistently a high reward (over 100 trials).
Evolutionary strategies have shown comparable performance
to reinforcement learning and gradient descent algorithms in
problems where learning to sense and act in response to
the environment are required (Salimans et al., 2017; Such
et al., 2017; Stanley et al., 2019). Another advantage with
the evolutionary approach is the parallel exploration of the
solution space. In L2L, each individual is run as an independent
optimizee process. The framework enables us to execute a
large number of parallel optimizees in multi-core CPUs and
HPC infrastructures.

4. DISCUSSION AND FUTURE WORK

Simulations in different science domains tend to become more
and more complex and span over multiple disciplines and scales.
These simulations usually have a large number of parameters to
configure, and researchers spend a long time tuning the model
parameters manually, which is difficult and time-consuming. To
tackle these issues, it is necessary to have an automated tool
that can be easily executed on local machines or likewise on
super-computers. We present the L2L framework as a flexible
tool to optimize and explore ranges of parameter spaces. Because
the tool does not require a particular type of simulation,
i.e., it is agnostic to the model in the inner-loop, it enables
the optimization of any type of parameter resulting from the
model, as long as fitness can be calculated and sent to the
outer loop.

In Section 3, we described several neuroscientific use cases
at different scales. The optimizations range from finding the
correct set of parameter configurations to determining network
dynamics to solving optimization problems up to exploring

values for specific growth rules. In all cases, the optimization
methods in the outer loop treated the inner loop simulations as
black box problems and similarly, the optimization technique was
unknown to the inner loop.

In terms of implementation, every optimizee follows the
same structure by providing three functions: 1. creating the
individual, i.e., the parameters to optimized, 2. starting and
managing the optimizee run and providing fitness to asses
the simulation performance, and 3. optionally constraining the
parameter exploration range. The framework offers a plethora of
built-in optimization techniques. Most of them are population
based optimizers, which require several individuals and fitness
or a fitness vector. Both the fitness and the population approach
are incorporated into the optimization. For example, with genetic
algorithms and the EnKF, the fitness is used to rank the
individuals. A large population enables a wider range to explore
parameters and find possible good initializations, which leads to a
faster convergence. In order to not get stuck in local optima, most
of the optimizers offer techniques to perturb the individuals and
additionally enlarge the parameter space (which of course can be
bounded if needed).

Clearly, executing a high number of individuals leads to
an increase in computational requirements. By utilizing MPI
in combination with the JUBE back-end, it is easy to deploy
simulation and optimization on high performance computers
in an automated fashion. From the users’ perspective, only a
few parameters have to be configured in a run script. The
optimizees for the inner loop are created and the simulations
are executed in parallel. One of the practical reasons for the
population based optimizers is that the simulations are very easily
parallelizable: each simulation can be conducted independently.
Only the parameters have to be collected in a single step and
fed into the optimizer. Afterward, the optimized parameters are
distributed for the next generation and the new simulations can
be started.

The TVB use case is an example of demonstrating a
parallelized simulation in the optimizee. We show that we
successfully reconfigured the gradient ascent optimizer to a
version that can process a vector of fitnesses. We used this
optimizer to find the best parameter setting for a TVB model
such that the match between simulated functional and structural
connectivity is optimal. Results from performance testing for
the RateML (van der Vlag et al., 2022) models show that for
a double state model such as the G2DO, on a GPU with 40
GB of memory, up to ≈ 62, 464 (61 times more parameters),
can be simulated in a single generation, taking approximately
the same amount of wall time due to the architecture of
the GPU. This would reduce the time it takes for each
generation and increases the range and resolution of the to be
optimized processes even further; opening up possibilities for
experiments requiring greater computational power. Moreover,
this particular optimizer is not limited to TVB simulations
only. Any process which uses a parallel architecture, e.g., GPU,
CPU or FPGA, for which the output is a vector of fitnesses,
can be adapted as an optimizee for the MGA optimizer.
The utilization of the subprocess library and information

Frontiers in Computational Neuroscience | www.frontiersin.org 17 May 2022 | Volume 16 | Article 885207131

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

transfers via in- and output text files, makes usage of this
optimizer generic for any process. The MGA is just one example
of an optimizer adapted to process multiple fitnesses, in theory,
any of the optimizers can be adjusted to handle multi fitness
optimizees.

4.1. Choice of Fitness Function and
Optimizer
One important point to mention is the challenge of creating
the fitness function. Every fitness function is a problem specific
and finding a suitable function is often a complex task. In
some cases, the fitness is given by the design of the problem
(c.f. Section 3.1, in this case supervised learning). To illustrate
the point, the task in Section 3.3 can be extended so that the
ants are punished whenever they collide. However, just adding
a simple cost value for the collision makes the training and
optimization much harder, the ants exhibit erratic behaviors,
such as spinning around or stopping moving after a few steps.
Potentially, this behavior might resolve with enough generations,
but it is more likely that the fitness function would need
to be adapted. Even for the simple example shown here, the
fitness function had to be carefully balanced in terms of the
punishment and reward cost, which lead to several trials and
manual adjustments. Thus, the exploratory and exploitative
behavior is influenced by the fitness function. With a strict
fitness function, i.e., every action in the simulation generates
a reward or a punishment, it may be possible to exploit local
optima; however, it may restrict the exploration of different,
better optima. Conversely, making the fitness function too lax
may lead to an overly exploratory behavior that does not exhibit
any exploitation.

The choice of the optimizer is based on experience, the
familiarity with the task and often includes a trial and error
approach. Furthermore, the choice may be dependent on the
task itself. For instance, in a supervised learning scheme, the
“observable” parameter of the EnKF can be modified to support
labels and enable this optimizer for supervised training. However,
other optimization techniques may not be suitable as they cannot
incorporate the concept of labels into their optimization process
without extensive changes. It is not easy to recommend general
optimization solutions for a variety of problems, and it is out of
the scope of this work, we instead refer here to further literature
(Okwu and Tartibu, 2020; Malik et al., 2021; Oliva et al., 2021).
However, we would like to discuss some pointers which may be
helpful in choosing an optimization technique when using L2L.
Gradient descent and Kalman filtering can provide a directed
and fast search within the parameter space. If it is known that
the optimization problem space is smooth and ideally convex,
the gradient descent algorithm is known for providing an efficient
solution. The EnKF can also provide a fast convergence for non-
convex problems with several optima and is especially suited for
problems where calculation of the gradient is not possible or
requires complex approximations. This can be particularly useful
for problems where fast optimization with adequate results is
more important than thorough explorations of vast parameter

spaces to identify the optimal parameter configuration. Both the
EnKF and gradient descent are suitable for optimization in high
dimensional parameter spaces, such as the weight optimization of
neural networks.

In contrast, if the solution space is not known and exploration
is the focus, genetic algorithms—from the family of optimizers
inspired by nature—may be the correct choice. By creating new
individuals using mutation and cross-over, genetic algorithms
can cover a vast space and still be very performant. For example,
we also used genetic algorithms to optimize the network in use
case 1 and obtained reasonable optimization results but did not
reach as high a performance as with the ensemble Kalman filter
(data not shown). The dimensionality of the parameter space in
combination with the optimization algorithm chosen plays a key
role in the outcome of the optimization. From our experience
with the use cases presented here, we have seen that genetic
algorithms work well with parameter spaces in the range of tens
to thousands of dimensions.

Learning to learn provides several additional optimizers
beyond those introduced in the use cases, which also have
advantages in certain applications. The evolution strategies
optimizer creates new individuals by perturbing, i.e., adding
Gaussian noise, to the fittest individuals to create new ones
and falls into the same category as the GA but uses stochastic
gradient descent as an optimization technique. For example,
the authors of Salimans et al. (2017) optimize large networks
which are then able to play Atari games. Similarly, the
natural evolution strategies (NES) optimizer samples from a
multivariate Gaussian distribution to obtain new individuals.
Wierstra et al. (2014) employ NES on several benchmark tasks
with different parameter dimensions. They conclude that NES
is applicable on low dimensional and high-dimensional and
multi-modal problems.

The performance of simulated annealing depends heavily
on the annealing schedule selected. L2L provides a variety
of schedules to choose from the exploration progress and
they define the ratio between exploration and exploitation
of the algorithm. Simulated annealing can be an excellent
tool to perform initial explorations of large parameter spaces
and progressively move from exploration to exploitation as
experience with the simulated model increases. The L2L version
includes a cooling factor that allows the user to explore the
balance between exploration and exploitation.

Cross entropy is highly directed and fast to converge. It is
well suited for dealing with noisy optimization problems and
large parameter spaces. In contrast, L2L also provides the grid-
search, a technique that just iterates over the given parameter
range in a brute force manner. This technique can be used for
rather small parameter ranges if nothing is known about the
problem space.

4.2. Outlook
Specifically regarding our presented use cases, future work will
include multi-objective optimization to decouple the objectives
from a specific fitness function and optimize the fitness functions
in interchangeable steps. The L2L framework already supports

Frontiers in Computational Neuroscience | www.frontiersin.org 18 May 2022 | Volume 16 | Article 885207132

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

multi-objective optimization since it can handle several fitness
values. Alternatively, the optimizee can be written in such a way
that it exchanges the fitness function in certain generations and
still returns one fitness value.

A visualization of the trajectories through generations may
give further insights for a follow-up analysis of the parameters.
We aim to implement a visualization tool that can plot the
evolution of the parameters using simple diagrams such as
histograms, correlations, and similar statistics. A desirable feature
would be to interact with the plot while the simulation is
ongoing, as demonstrated by Tensorboard7. A challenge here is
to interact with the results whenever the run is conducted on
an HPC, as many super computing centers no longer allow X-
forwarding—a network protocol to control and display a remote
software from a local computer. Instead, other mechanisms for
interactive computing need to be considered such as virtual
network computing8.

In preliminary work, we were already able to run the L2L
simulations on an HPC while instructing the run from a local
machine. By utilizing UNICORE (Streit et al., 2005), a tool for
distributed computing, we could successfully send an optimizee
to a specified HPC, initialize the L2L framework, run the
optimizations, and collect the results. For this approach to work,
we have to ensure that the L2L framework is correctly deployed
on the remote side. Seamless integration of all tools in the
process chain is required. This approach also leads toward a
vision of L2L as a service, where users can submit optimization
workloads using a simple API. Despite the advantages of this
approach, new aspects should be considered to protect user data
and any sensitive data that can be used or produced during
simulations. In order to deploy this service, full integration
with the EBRAINS9. infrastructure is our target for the near
future, as this will enable L2L to support the neuroscience
community while being part of a well-established research
platform.

Another necessary element, which is currently only available
in a preliminary form, is check-pointing the run, i.e., the
possibility to continue the inner and outer loop processes to
a later time. This would allow us to execute jobs in a very
long period without any HPC time restriction. At the moment,
the run-script (see Section 2.3) has to be changed with a few
more routines to load the trajectories from an earlier run and
to continue it. In an upcoming release, this component will be
integrated into the L2L framework.

Finally, we would like to extend the set of optimization
techniques with optimizers that have more capabilities. This
would be for example a neural network, along the lines of the
approach proposed by Andrychowicz et al. (2016). For instance,
the network could learn the distribution of the parameter space
and predict the next set of parameters. One other interesting
direction is to include Bayesian Optimization via Bayesian
hierarchical modeling. In this case, the parameters are not

7https://www.tensorflow.org/tensorboard/
8https://trac.version.fz-juelich.de/vis/wiki/vnc3d
9https://ebrains.eu/

optimized directly as depicted in this work, instead, uncertainty
measures and prediction uncertainty are inferred (Finn et al.,
2018; Gordon et al., 2018; Yoon et al., 2018).

In conclusion, with this work, we have presented L2L as a
software framework for the hyper-parameter optimization of
computing workloads, especially focusing on neuroscience use
cases. The flexibility of this framework is designed to support the
broad and interdisciplinary nature of brain research and provides
easier access to HPC for ML-based optimization tasks.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: The Modified National Institute of Standards
and Technology (MNIST) database, http://yann.lecun.com/exdb/
mnist/.

AUTHOR CONTRIBUTIONS

AS, AY, WK, and SD-P worked on the design of the framework.
AY, AS, SD-P, and WK worked on the implementation. AY,
TH, CJ-R, WK, AP, MV, and SD-P implemented the use
cases and produced the results reported in the manuscript.
All authors conceived of the project, designed the set of use
cases, reviewed, contributed, and approved the final version of
the manuscript.

FUNDING

The research leading to these results has received funding from
the European Union’s Horizon 2020 Framework Programme for
Research and Innovation under the Specific Grant Agreements
no. 785907 (Human Brain Project SGA2) and 945539 (Human
Brain Project SGA3). This research has also been partially
funded by the Helmholtz Association through the Helmholtz
Portfolio Theme Supercomputing and Modeling for the
Human Brain. Open Access publication funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)-491111487.

ACKNOWLEDGMENTS

We would like to thank Dr. Alexander Peyser for his ideas,
support and useful input to implement the L2L framework and
take it into HPC. We would also like to thank Prof. Wolfgang
Maass for his input and feedback during the progress of the
project. Finally, we would like to thank the HBP community and
collaborators around the learning to learn concept who provided
a platform for fruitful discussions, identify requirements and
expand the potential of the L2L framework. We acknowledge
the use of Fenix Infrastructure resources, which are partially
funded from the European Union’s Horizon 2020 research and
innovation programme through the ICEI project under the grant
agreement No. 800858. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss/centre.eu)

Frontiers in Computational Neuroscience | www.frontiersin.org 19 May 2022 | Volume 16 | Article 885207133

https://www.tensorflow.org/tensorboard/
https://trac.version.fz-juelich.de/vis/wiki/vnc3d
https://ebrains.eu/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.gauss/centre.eu
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

for funding this project by providing computing time on the GCS
Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2022.885207/full#supplementary-material

SUPPLEMENTAL DATA

All code used to produce the results in this paper as well as the
L2L framework can be accessed in this repository: https://github.
com/Meta-optimization/L2L/tree/frontiers_submission.

Installation instructions for the framework can be found in the
README file of the repository.

An additional use case using structural plasticity in NEST can
be found in the Supplementary Material.

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Ksters, A., Klijn, W., Peyser, A., et al.

(2019). “Arbor - a morphologically-detailed neural network simulation library

for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia, Italy), 274–282.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T.,

et al. (2016). “Learning to learn by gradient descent by gradient descent,”

in Advances in Neural Information Processing Systems (Barcelona, Spain),

3981–3989.

Antoniou, A., Edwards, H., and Storkey, A. (2018). How to train your

MAML. arXiv preprint arXiv:1810.09502. doi: 10.48550/arXiv.1810.0

9502

Bansal, K., Nakuci, J., and Muldoon, S. F. (2018). Personalized brain network

models for assessing structure-function relationships.Curr. Opin Neurobiol. 52,

42–47. doi: 10.1016/j.conb.2018.04.014

Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter

optimization. J. Mach. Learn. Res. 13, 281–305.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,

Tang, J., et al. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

doi: 10.48550/arXiv.1606.01540

Cao, Y., Chen, T.,Wang, Z., and Shen, Y. (2019). “Learning to optimize in swarms,”

in Advances in Neural Information Processing Systems, Vol. 32, eds H. Wallach,

H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (Pavia,

Italy: Curran Associates, Inc.).

Deco, G., McIntosh, A. R., Shen, K., Hutchison, R. M., Menon, R. S., Everling,

S., et al. (2014). Identification of optimal structural connectivity using

functional connectivity and neural modeling. J. Neurosci. 34, 7910–7916.

doi: 10.1523/JNEUROSCI.4423-13.2014

Deepu, R., Spreizer, S., Trensch, G., Terhorst, D., Vennemo, S. B., Mitchell, J., et al.

(2021). NEST 3.1. Zenodo. doi: 10.5281/zenodo.5508805

Druckmann, S., Banitt, Y., Gidon, A. A., Schürmann, F., Markram, H., and Segev,

I. (2007). A novel multiple objective optimization framework for constraining

conductance-based neuron models by experimental data. Front. Neurosci.

1:2007. doi: 10.3389/neuro.01.1.1.001.2007

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-learning for fast

adaptation of deep networks,” in International Conference on Machine Learning

(PMLR), 1126–1135.

Finn, C., and Levine, S. (2017). Meta-learning and universality: deep

representations and gradient descent can approximate any learning algorithm.

arXiv:1710.11622 [cs]. doi: 10.48550/arXiv.1710.11622

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. (2019). “Online meta-learning,”

in International Conference on Machine Learning (Long Beach, CA: PMLR),

1920–1930.

Finn, C., Xu, K., and Levine, S. (2018). “Probabilistic model-agnostic meta-

learning,” in Advances in Neural Information Processing System, vol. 31,

eds S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett (Curran Associates, Inc.), 1–14. Available online at: https://

proceedings.neurips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-

Paper.pdf

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné, C.

(2012). DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13,

2171–2175. doi: 10.1145/2330784.2330799

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and Turner, R. E. (2018). Meta-

learning probabilistic inference for prediction. arXiv preprint arXiv:1805.09921.

doi: 10.48550/arXiv.1805.09921

Gouwens, N. W., Berg, J., Feng, D., Sorensen, S. A., Zeng, H., Hawrylycz, M. J.,

et al. (2018). Systematic generation of biophysically detailed models for diverse

cortical neuron types.Nat. Commun. 9, 1–13. doi: 10.1038/s41467-017-02718-3

He, X., Zhao, K., and Chu, X. (2021). AutoML: a survey of the state-of-the-art.

Knowl. Based Syst. 212, 106622. doi: 10.1016/j.knosys.2020.106622

Heidrich-Meisner, V., and Igel, C. (2008). “Variable metric reinforcement learning

methods applied to the noisy mountain car problem,” in Recent Advances in

Reinforcement Learning. EWRL 2008. Lecture Notes in Computer Science, vol.

5323, eds S. Girgin, M. Loth, R. Munos, P. Preux, and D. Ryabko (Berlin;

Heidelberg: Springer), 136–150.

Hold-Geoffroy, Y., Gagnon, O., and Parizeau, M. (2014). “Once you SCOOP, no

need to fork,” in Proceedings of the 2014 Annual Conference on Extreme Science

and Engineering Discovery Environment (New York, NY: ACM), 60.

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli,

R., et al. (2009). Predicting human resting-state functional connectivity

from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040.

doi: 10.1073/pnas.0811168106

Hutter, F., Kotthoff, L., and Vanschoren, J. (Eds.). (2019). Automated Machine

Learning-Methods, Systems, Challenges. Cham, Switzerland: Springer.

Iglesias, M. A., Law, K. J., and Stuart, A. M. (2013). Ensemble

kalman methods for inverse problems. Inverse Probl. 29, 045001.

doi: 10.1088/0266-5611/29/4/045001

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi,

A., et al. (2017). Population based training of neural networks. arXiv preprint

arXiv:1711.09846. doi: 10.48550/arXiv.1711.09846

Jimenez-Romero, C., and Johnson, J. (2017). SpikingLab: modelling agents

controlled by spiking neural networks in netlogo. Neural Comput. Appl. 28,

755–764. doi: 10.1007/s00521-016-2398-1

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops

to exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.

00002

Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization,” in Proceedings

of ICNN’95-International Conference on Neural Networks, vol. 4 (Perth, WA:

IEEE), 1942–1948.

LeCun, Y., Cortes, C., and Burges, C. (2010).MNIST Handwritten Digit Database.

ATandT Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2:18.

Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al.

(2007). Genome-wide atlas of gene expression in the adult mouse brain.Nature

445, 168–176. doi: 10.1038/nature05453

Li, Z., Zhou, F., Chen, F., and Li, H. (2017). Meta-sgd: Learning to

learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835.

doi: 10.48550/arXiv.1707.09835

Maass,W., Natschläger, T., andMarkram, H. (2002). Real-time computing without

stable states: a new framework for neural computation based on perturbations.

Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Malik, H., Iqbal, A., Joshi, P., Agrawal, S., and Bakhsh, F. I. (2021).

Metaheuristic and Evolutionary Computation: Algorithms and Applications.

Cham, Switzerland: Springer.

Frontiers in Computational Neuroscience | www.frontiersin.org 20 May 2022 | Volume 16 | Article 885207134

https://www.frontiersin.org/articles/10.3389/fncom.2022.885207/full#supplementary-material
https://github.com/Meta-optimization/L2L/tree/frontiers_submission
https://github.com/Meta-optimization/L2L/tree/frontiers_submission
https://doi.org/10.48550/arXiv.1810.09502
https://doi.org/10.1016/j.conb.2018.04.014
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.1523/JNEUROSCI.4423-13.2014
https://doi.org/10.5281/zenodo.5508805
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.48550/arXiv.1710.11622
https://proceedings.neurips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.48550/arXiv.1805.09921
https://doi.org/10.1038/s41467-017-02718-3
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.48550/arXiv.1711.09846
https://doi.org/10.1007/s00521-016-2398-1
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1038/nature05453
https://doi.org/10.48550/arXiv.1707.09835
https://doi.org/10.1162/089976602760407955
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Yegenoglu et al. L2L

Okwu, M. O., and Tartibu, L. K. (2020). Metaheuristic Optimization: Nature-

Inspired Algorithms Swarm and Computational Intelligence, Theory and

Applications, volume 927. Switzerland: Springer Nature.

Oliva, D., Houssein, E. H., and Hinojosa, S. (2021). Metaheuristics in Machine

Learning: Theory and Applications. Cham, Switzerland: Springer.

Ott, E., and Antonsen, T. M. (2008). Low dimensional behavior of large systems of

globally coupled oscillators. Chaos 18, 37113. doi: 10.1063/1.2930766

Pehle, C., and Pedersen, J. E. (2021). Norse - A Deep Learning Library for Spiking

Neural Networks. Available online at: https://norse.ai/docs/.

Rasmussen, D. (2018). NengoDL: combining deep learning and neuromorphic

modelling methods. arXiv 1805.11144:1–22. doi: 10.48550/arXiv.1805.11144

Ravi, S., and Larochelle, H. (2017). “Optimization as a model for few-shot

learning,” in International Conference on Learning Representations (ICLR)

(Toulon, France).

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution

strategies as a scalable alternative to reinforcement learning. arXiv preprint

arXiv:1703.03864. doi: 10.48550/arXiv.1703.03864

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,

McIntosh, A. R., et al. (2013). The Virtual Brain: a simulator of primate brain

network dynamics. Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., and Tang, Y. (2019).

Es-maml: simple hessian-free meta learning. arXiv preprint arXiv:1910.01215.

doi: 10.48550/arXiv.1910.01215

Speck, R., Knobloch, M., Lhrs, S., and Gocht, A. (2021). “Using performance

analysis tools for a parallel-in-time integrator,” in Parallel-in-Time Integration

Methods, volume 356 of Springer Proceedings in Mathematics and Statistics,

Cham 9thWorkshop on Parallel-in-Time Integration, online (online), 8 Jun 2020

- 12 Jun 2020 (Cham: Springer International Publishing), 51–80.

Stanley, K., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing

neural networks through neuroevolution. Nat. Mach. Intell. 1, 24–35.

doi: 10.1038/s42256-018-0006-z

Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., et

al. (2005). UNICOREfrom project results to production grids. Adv. Parallel

Comput. 14, 357–376. doi: 10.1016/S0927-5452(05)80018-8

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and

Clune, J. (2017). Deep neuroevolution: genetic algorithms are a competitive

alternative for training deep neural networks for reinforcement learning.ArXiv,

abs/1712.06567. doi: 10.48550/arXiv.1712.06567

Thrun, S., and Pratt, L. (2012). Learning to Learn. Cham, Switzerland: Springer

Science and Business Media.

Tisue, S., and Wilensky, U. (2004). “Netlogo: a simple environment for modeling

complexity,” in International Conference on Complex Systems, vol. 21 (Boston,

MA), 16–21.

van der Vlag, M., Woodman, M., Fousek, J., Diaz-Pier, S., Perez Martin, A., Jirsa,

V., et al. (2022). RateML: a code generation tool for brain network models

(accepted). Front. Netw. Physiol. 2:826345. doi: 10.3389/fnetp.2022.826345

Van Geit, W., Gevaert, M., Chindemi, G., Rssert, C., Courcol, J.-D., Muller, E. B., et

al. (2016). BluePyOpt: leveraging open source software and cloud infrastructure

to optimise model parameters in neuroscience. Front. Neuroinform. 10:17.

doi: 10.3389/fninf.2016.00017

Weidel, P., Duarte, R., and Morrison, A. (2021). Unsupervised

learning and clustered connectivity enhance reinforcement learning

in spiking neural networks. Front. Comput. Neurosci. 15:543872.

doi: 10.3389/fncom.2021.543872

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber,

J. (2014). Natural evolution strategies. J. Mach. Learn. Res. 15, 949–980.

doi: 10.48550/arXiv.1106.4487

Wijesinghe, P., Srinivasan, G., Panda, P., and Roy, K. (2019). Analysis of

liquid ensembles for enhancing the performance and accuracy of liquid state

machines. Front. Neurosci. 13:504. doi: 10.3389/fnins.2019.00504

Wilensky, U. (1997). Netlogo Ants Model. Evanston, IL: Center for Connected

Learning and Computer-Based Modeling, Northwestern University.

Yegenoglu, A., Krajsek, K., Pier, S. D., and Herty, M. (2020). “Ensemble kalman

filter optimizing deep neural networks: an alternative approach to non-

performing gradient descent,” in International Conference onMachine Learning,

Optimization, and Data Science (Siena – Tuscany, Italy: Springer), 78–92.

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “Slurm: simple linux utility for

resource management,” in Workshop on Job Scheduling Strategies for Parallel

Processing (Seattle, Washington USA: Springer), 44–60.

Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., and Ahn, S. (2018). Bayesian model-

agnostic meta-learning. Adv. Neural Inf. Process. Syst. (Montréal, Canada),

31.

Young, K., Wang, B., and Taylor, M. (2019). “Metatrace actor-critic: online step-

size tuning by meta-gradient descent for reinforcement learning control,” in

Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence Main Track (Macao, China), 4185–4191.

Zhou, Y., Jin, Y., and Ding, J. (2020). Surrogate-assisted evolutionary search of

spiking neural architectures in liquid state machines. Neurocomputing 406,

12–23. doi: 10.1016/j.neucom.2020.04.079

Zoph, B., and Le, Q. V. (2016). Neural architecture search with reinforcement

learning. arXiv:1611.01578 [cs]. doi: 10.48550/arXiv.1611.01578

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Yegenoglu, Subramoney, Hater, Jimenez-Romero, Klijn, Pérez

Martín, van der Vlag, Herty, Morrison and Diaz-Pier. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 21 May 2022 | Volume 16 | Article 885207135

https://doi.org/10.1063/1.2930766
https://doi.org/10.48550/arXiv.1805.11144
https://doi.org/10.48550/arXiv.1703.03864
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.48550/arXiv.1910.01215
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1016/S0927-5452(05)80018-8
https://doi.org/10.48550/arXiv.1712.06567
https://doi.org/10.3389/fnetp.2022.826345
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.3389/fncom.2021.543872
https://doi.org/10.48550/arXiv.1106.4487
https://doi.org/10.3389/fnins.2019.00504
https://doi.org/10.1016/j.neucom.2020.04.079
https://doi.org/10.48550/arXiv.1611.01578
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

TECHNOLOGY AND CODE
published: 27 May 2022

doi: 10.3389/fninf.2022.835657

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 835657

Edited by:

John David Griffiths,

University of Toronto, Canada

Reviewed by:

Caglar Cakan,

Technical University of Berlin,

Germany

Richard Gast,

Max Planck Institute for Human

Cognitive and Brain Sciences,

Germany

*Correspondence:

Moritz Layer

m.layer@fz-juelich.de

Received: 14 December 2021

Accepted: 17 March 2022

Published: 27 May 2022

Citation:

Layer M, Senk J, Essink S, van

Meegen A, Bos H and Helias M (2022)

NNMT: Mean-Field Based Analysis

Tools for Neuronal Network Models.

Front. Neuroinform. 16:835657.

doi: 10.3389/fninf.2022.835657

NNMT: Mean-Field Based Analysis
Tools for Neuronal Network Models
Moritz Layer 1,2*, Johanna Senk 1, Simon Essink 1,2, Alexander van Meegen 1,3, Hannah Bos 1

and Moritz Helias 1,4

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain

Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 RWTH Aachen University, Aachen,

Germany, 3 Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany,
4Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

Mean-field theory of neuronal networks has led to numerous advances in our analytical

and intuitive understanding of their dynamics during the past decades. In order to

make mean-field based analysis tools more accessible, we implemented an extensible,

easy-to-use open-source Python toolbox that collects a variety of mean-field methods

for the leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox

(NNMT) in its current state allows for estimating properties of large neuronal networks,

such as firing rates, power spectra, and dynamical stability in mean-field and linear

response approximation, without running simulations. In this article, we describe how the

toolbox is implemented, show how it is used to reproduce results of previous studies, and

discuss different use-cases, such as parameter space explorations, or mapping different

network models. Although the initial version of the toolbox focuses on methods for leaky

integrate-and-fire neurons, its structure is designed to be open and extensible. It aims to

provide a platform for collecting analytical methods for neuronal network model analysis,

such that the neuroscientific community can take maximal advantage of them.

Keywords: mean-field theory, (spiking) neuronal network, integrate-and-fire neuron, open-source software,

parameter space exploration, (hybrid) modeling, python, computational neuroscience

1. INTRODUCTION

Biological neuronal networks are composed of large numbers of recurrently connected neurons,
with a single cortical neuron typically receiving synaptic inputs from thousands of other neurons
(Braitenberg and Schüz, 1998; DeFelipe et al., 2002). Although the inputs of distinct neurons
are integrated in a complex fashion, such large numbers of weak synaptic inputs imply that
average properties of entire populations of neurons do not depend strongly on the contributions
of individual neurons (Amit and Tsodyks, 1991). Based on this observation, it is possible to
develop analytically tractable theories of population properties, in which the effects of individual
neurons are averaged out and the complex, recurrent input to individual neurons is replaced by
a self-consistent effective input (reviewed, e.g., in Gerstner et al., 2014). In classical physics terms
(e.g., Goldenfeld, 1992), this effective input is called mean-field, because it is the self-consistent
mean of a field, which here is just another name for the input the neuron is receiving. The term
self-consistent refers to the fact that the population of neurons that receives the effective input is the
same that contributes to this very input in a recurrent fashion: the population’s output determines
its input and vice-versa. The stationary statistics of the effective input therefore can be found in a

136

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.835657
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.835657&domain=pdf&date_stamp=2022-05-27
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.layer@fz-juelich.de
https://doi.org/10.3389/fninf.2022.835657
https://www.frontiersin.org/articles/10.3389/fninf.2022.835657/full

Layer et al. Neuronal Network Mean-Field Toolbox

self-consistent manner: the input to a neuron must be set exactly
such that the caused output leads to the respective input.

Mean-field theories have been developed for many different
kinds of synapse, neuron, and network models. They have been
successfully applied to study average population firing rates
(van Vreeswijk and Sompolinsky, 1996, 1998; Amit and Brunel,
1997b), and the various activity states a network of spiking
neurons can exhibit, depending on the network parameters
(Amit and Brunel, 1997a; Brunel, 2000; Ostojic, 2014), as well as
the effects that different kinds of synapses have on firing rates
(Fourcaud and Brunel, 2002; Lindner, 2004; Schuecker et al.,
2015; Schwalger et al., 2015; Mattia et al., 2019). They have
been used to investigate how neuronal networks respond to
external inputs (Lindner and Schimansky-Geier, 2001; Lindner
and Longtin, 2005), and they explain why neuronal networks
can track external input on much faster time scales than a single
neuron could (van Vreeswijk and Sompolinsky, 1996, 1998).
Mean-field theories allow studying correlations of neuronal
activity (Sejnowski, 1976; Ginzburg and Sompolinsky, 1994;
Lindner et al., 2005; Trousdale et al., 2012) and were able
to reveal why pairs of neurons in random networks, despite
receiving a high proportion of common input, can show low
output correlations (Hertz, 2010; Renart et al., 2010; Tetzlaff
et al., 2012; Helias et al., 2014), which for example has important
implication for information processing. They describe pair-wise
correlations in network with spatial organization (Rosenbaum
and Doiron, 2014; Rosenbaum et al., 2017; Dahmen et al.,
2022) and can be generalized to correlations of higher orders
(Buice and Chow, 2013). Mean-field theories were utilized to
show that neuronal networks can exhibit chaotic dynamics
(Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky,
1996, 1998), in which two slightly different initial states can
lead to totally different network responses, which has been
linked to the network’s memory capacity (Toyoizumi and
Abbott, 2011; Schuecker et al., 2018). Most of the results
mentioned above have been derived for networks of either
rate, binary, or spiking neurons of a linear integrate-and-
fire type. But various other models have been investigated
with similar tools as well; for example, just to mention a
few, Hawkes processes, non-linear integrate-and-fire neurons
(Brunel and Latham, 2003; Fourcaud-Trocmé et al., 2003;
Richardson, 2007, 2008; Grabska-Barwinska and Latham, 2014;
Montbrió et al., 2015), or Kuramoto-type models (Stiller and
Radons, 1998; van Meegen and Lindner, 2018). Additionally,
there is an ongoing effort showing that many of the results
derived for distinct models are indeed equivalent and that
those models can be mapped to each other under certain
circumstances (Ostojic and Brunel, 2011; Grytskyy et al., 2013;
Senk et al., 2020).

Other theories for describing mean population rates in
networks with spatially organized connectivity, based on taking
a continuum limit, have been developed. These theories, known
as neural field theories, have deepened our understanding of
spatially and temporally structured activity patterns emerging in
cortical networks, starting with the seminal work by Wilson and
Cowan (1972, 1973), who investigated global activity patterns,
and Amari (1975, 1977), who studied stable localized neuronal

activity. They were successfully applied to explain hallucination
patterns (Ermentrout and Cowan, 1979; Bressloff et al., 2001), as
well as EEG and MEG rhythms (Nunez, 1974; Jirsa and Haken,
1996, 1997). The neural field approach has been used to model
working memory (Laing et al., 2002; Laing and Troy, 2003),
motion perception (Giese, 2012), cognition (Schöner, 2008), and
more; for extensive reviews of the literature, we refer the reader
to Coombes (2005), Bressloff (2012), and Coombes et al. (2014).

Clearly, analytical theories have contributed to our
understanding of neuronal networks and they provide a
plethora of powerful and efficient methods for network
model analysis. Comparing the predictions of analytical
theories to simulations, experimental data, or other theories
necessitates a numerical implementation applicable to various
network models, depending on the research question. Such
an implementation is often far from straightforward and at
times requires investing substantial time and effort. Commonly,
such tools are implemented as the need arises, and their reuse
is not organized systematically and restricted to within a
single lab. This way, not only are effort and costs spent by the
neuroscientific community duplicated over and over again, but
also are many scientists deterred from taking maximal advantage
of those methods although they might open new avenues for
investigating their research questions.

In order to make analytical tools for neuronal network
model analysis accessible to a wider part of the neuroscientific
community, and to create a platform for collecting well-tested
and validated implementations of such tools, we have developed
the Python toolbox NNMT (Layer et al., 2021), short for
Neuronal Network Mean-field Toolbox. We would like to
emphasize that NNMT is not a simulation tool; NNMT is
a collection of numerically solved mean-field equations that
directly relate the parameters of a microscopic network model
to the statistics of its dynamics. NNMT has been designed
to fit the diversity of mean-field theories, and the key features
we are aiming for are modularity, extensibility, and a simple
usability. Furthermore, it features an extensive test suite to ensure
the validity of the implementations as well as a comprehensive
user documentation. The current version of NNMT mainly
comprises tools for investigating networks of leaky integrate-and-
fire neurons as well as somemethods for studying binary neurons
and neural field models. The toolbox is open-source and publicly
available on GitHub.1

In the following, we present the design considerations that
led to the structure and implementation of NNMT as well as
a representative set of use cases. Section 2 first introduces its
architecture. Section 3 then explains its usage by reproducing
previously published network model analyses from Schuecker
et al. (2015), Bos et al. (2016), Sanzeni et al. (2020), and Senk et al.
(2020). Section 4 compares NNMT to other available toolboxes
for neuronal network model analysis, discusses its use cases from
a more general perspective, indicates current limitations and
prospective advancements of NNMT, and explains how new tools
can be contributed.

1https://github.com/INM-6/nnmt

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 835657137

https://github.com/INM-6/nnmt
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

A

B

C

FIGURE 1 | Structure and workflows of the Neuronal Network Mean-field Toolbox (NNMT). (A) Basic workflow: individual mean-field based analysis methods are

implemented as functions, called _tools(), that can be used directly by explicitly passing the required arguments. (B) Model workflow: to facilitate the handling of

parameters and results, they can be stored in a model class instance, which can be passed to a tool(), which wraps the basic workflow of the respective

_tool(). (C) Structure of the Python package. In addition to the tool collection (red frame), containing the tools() and the _tools(), and pre-defined model

classes, the package provides utility functions for handling parameter files and unit conversions, as well as software aiding the implementation of new methods.

� �
1 # basic workflow
2 result = nnmt.<submodule>.<_tool>(∗args, ∗∗kwargs)
3

4 # model workflow
5 my_model = nnmt.models.<model>(
6 <network_params>, <analysis_params>)
7 result = nnmt.<submodule>.<tool>(my_model)
� �

Listing 1: The two modes of using NNMT: In the basic
workflow (top), quantities are calculated by passing all required
arguments directly to the underscored tool functions available
in the submodules of NNMT. In the model workflow (bottom),
a model class is instantiated with parameter sets and the model
instance is passed to the non-underscored tool functions which
automatically extract the relevant parameters.

2. WORKFLOWS AND ARCHITECTURE

What are the requirements a package for collecting analytical
methods for neuronal network model analysis needs to fulfill?
To begin with, it should be adaptable and modular enough
to accommodate many and diverse analytical methods while
avoiding code repetition and a complex interdependency of
package components. It should enable the application of the
collected algorithms to various network models in a simple and

transparent manner. It should make the tools easy to use for
new users, while also providing experts with direct access to
all parameters and options. Finally, the methods need to be
thoroughly tested and well documented.

These are the main considerations that guided the
development of NNMT. Figures 1A,B illustrate how the
toolbox can be used in to two different workflows, depending
on the preferences and goals of the user. In the basic workflow
the individual method implementations called tools are directly
accessed, whereas the model workflow provides additional
functionality for the handling of parameters and results.

2.1. Basic Workflow
The core of NNMT is a collection of low-level functions that
take specific parameters (or pre-computed results) as input
arguments and return analytical results of network properties.
In Figure 1A, we refer to such basic functions as _tools(),
as their names always start with an underscore. We term this
lightweight approach of directly using these functions the basic
workflow. The top part of Listing 1 demonstrates this usage;
for example, the quantity to be computed could be the mean
firing rate of a neuronal population and the arguments could be
parameters which define neuron model and external drive. While
the basic workflow gives full flexibility and direct access to every

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 835657138

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

parameter of the calculation, it remains the user’s responsibility
to insert the arguments correctly, e.g., in the right units.

2.2. Model Workflow
The model workflow is a convenient wrapper of the basic
workflow (Figure 1B). A model in this context is an object that
stores a larger set of parameters and can be passed directly
to a tool(), the non-underscored wrapper of the respective
_tool(). The tool() automatically extracts the relevant
parameters from the model, passes them as arguments to the
corresponding core function _tool(), returns the results, and
stores them in the model. The bottom part of Listing 1 shows
how a model is initialized with parameters and then passed to a
tool() function.

Models are implemented as Python classes and can be
found in the submodule nnmt.models. We provide the
class nnmt.models.Network as a parent class and a few
child classes which inherit the generic methods and properties
but are tailored to specific network models; custom models
can be created straightforwardly. The parameters distinguish
network parameters, which define neuron models and network
connectivity, and analysis parameters; an example for an analysis
parameter is a frequency range over which a function is
evaluated. Upon model instantiation, parameter sets defining
values and corresponding units are passed as Python dictionaries
or yaml files. The model constructor takes care of reading
in these parameters, computing dependent parameters from
the imported parameters, and converting all units to SI units
for internal computations. Consequently, the parameters passed
as arguments and the functions for computing dependent
parameters of a specific child class need to be aligned. This
design encourages a clear separation between a concise set of base
parameters and functionality that transforms these parameters
to the generic (vectorized) format that the tools work with.
To illustrate this, consider the weight matrix of a network
of excitatory and inhibitory neuron populations in which all
excitatory connections have the same weight and all inhibitory
ones another weight. As argument one could pass just a tuple of
two different weight values and the corresponding model class
would take care of constructing the full weight matrix. This
happens in the example presented in Section 3.2.2: The parameter
file network_params_microcircuit.yaml contains the
excitatory synaptic weight and the ratio of inhibitory to excitatory
weights. On instantiation, the full weight matrix is constructed
from these two parameters, following the rules defined in
nnmt.models.Microcircuit.

When a tool() is called, it checks whether the provided
model object contains all required parameters and previously
computed results. Then the tool() extracts the required
arguments, calls the respective _tool(), and caches and returns
the result. If the user attempts to compute the same property
twice, using identical parameters, the tool() will retrieve the
already computed result from the model’s cache and return that
value. Results can be exported to an HDF5 file and also loaded.

Using the model workflow instead of the basic workflow
comes with the initial overhead of choosing a suitable
combination of parameters and a model class, but has the

advantages of a higher level of automation with built-in
mechanisms for checking correctness of input (e.g., regarding
units), reduced redundancy, and the options to store and load
results. Both modes of using the toolbox can also be combined.

2.3. Structure of the Toolbox
The structure of the Python package NNMT is depicted in
Figure 1C. It is subdivided into submodules containing the
tools (e.g., nnmt.lif.exp, or nnmt.binary), the model
classes (nnmt.models), helper routines for handling parameter
files and unit conversions, as well as modules that collect
reusable code employed in implementations for multiple neuron
models (cf. Section 4.4). The tools are organized in a modular,
extensible fashion with a streamlined hierarchy. To give an
example, a large part of the currently implemented tools apply
to networks of leaky integrate-and-fire (LIF) neurons, and they
are located in the submodule nnmt.lif. The mean-field theory
for networks of LIF neurons distinguishes between neurons with
instantaneous synapses, also called delta synapses, and those
with exponentially decaying post-synaptic currents. Similarly,
the submodule for LIF neurons is split further into the two
submodules nnmt.lif.delta and nnmt.lif.exp. NNMT
also collects different implementations for computing the same
quantity using different approximations or numerics, allowing
for a comparison of different approaches.

Apart from the core package, NNMT comes with an extensive
online documentation,2 including a quickstart tutorial, all
examples presented in this paper, a complete documentation of
all tools, as well as a guide for contributors.

Furthermore, we provide an extensive test suite that validates
the tools by checking them against previously published results
and alternative implementations where possible. This ensures
that future improvements of the numerics do not break the tools.

3. HOW TO USE THE TOOLBOX

In this section, we demonstrate the practical use of NNMT by
replicating a variety of previously published results. The examples
presented have been chosen to cover a broad range of common
use cases and network models. We include analyses of both
stationary and dynamic network features, as mean-field theory
is typically divided into two parts: stationary theory, which
describes time-independent network properties of systems in a
stationary state, and dynamical theory, which describes time-
dependent network properties. Additionally, we show how to use
the toolbox to map a spiking to a simpler rate model, as well as
how to perform a linear stability analysis. All examples, including
the used parameter files, are part of the online documentation.2

3.1. Installation and Setup
The toolbox can be either installed using pip:

pip install nnmt

or by installing it directly from the repository,
which is described in detail in the online

2https://nnmt.readthedocs.io/

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 835657139

https://nnmt.readthedocs.io/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

documentation. After the installation, the module can
be imported:

import nnmt

3.2. Stationary Quantities
3.2.1. Response Nonlinearities
Networks of excitatory and inhibitory neurons (EI networks,
Figure 2A) are widely used in computational neuroscience
(Gerstner et al., 2014), e.g., to show analytically that a
balanced state featuring asynchronous, irregular activity emerges
dynamically in a broad region of the parameter space (van
Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000; Hertz,
2010; Renart et al., 2010). Remarkably, such balance states emerge
in inhibition dominated networks for a variety of neuron models
if the indegree is large, K≫ 1, and the weights scale as J ∝ 1/

√
K

(Sanzeni et al., 2020; Ahmadian and Miller, 2021). Furthermore,
in a balanced state, a network responds linearly to external
input in the limit K → ∞ (van Vreeswijk and Sompolinsky,
1996, 1998; Brunel, 2000; Sanzeni et al., 2020; Ahmadian and
Miller, 2021). How do EI networks of LIF neurons respond to
external input at finite indegrees? Sanzeni et al. (2020) uncover
five different types of nonlinearities in the network response
depending on the network parameters. Here, we show how to use
the toolbox to reproduce their result (Figures 2B–F).

The network consists of two populations, E and I, of identical
LIF neurons with instantaneous (delta) synapses (Gerstner et al.,
2014). The subthreshold dynamics of the membrane potential Vi

of neuron i obeys

τmV̇i = −Vi + RIi , (1)

where τm denotes the membrane time constant, R the membrane
resistance, and Ii the input current. If the membrane potential
exceeds a threshold Vth, a spike is emitted and the membrane
voltage is reset to the reset potential V0 and clamped to this value
during the refractory time τr. After the refractory period, the
dynamics continue according to Equation (1). For instantaneous
synapses, the input current is given by

RIi(t) = τm

∑

j

Jij
∑

k

δ(t − tj,k − dij) , (2)

where Jij is the synaptic weight from presynaptic neuron j to
postsynaptic neuron i (with Jij = 0 if there is no synapse),
the tj,k are the spike times of neuron j, and dij is a synaptic
delay (in this example dij = d for all pairs of neurons). In
total, there are NE and NI neurons in the respective populations.
Each neuron is connected to a fixed number of randomly chosen
presynaptic neurons (fixed in-degree); additionally, all neurons
receive external input from independent Poisson processes with
rate νX. The synaptic weights and in-degrees of recurrent and
external connections are population-specific:

J =

(

JEE −JEI
JIE −JII

)

, Jext =

(

JEX
JIX

)

,

K =

(

KEE KEI

KIE KII

)

, Kext =

(

KEX

KIX

)

. (3)

All weights are positive, implying an excitatory external input.
The core idea of mean-field theory is to approximate the

input to a neuron as Gaussian white noise ξ (t) with mean
〈ξ (t)〉 = µ and noise intensity 〈ξ (t)ξ (t′)〉 = τmσ 2δ(t − t′). This
approximation is well-suited for asynchronous, irregular network
states (van Vreeswijk and Sompolinsky, 1996, 1998; Amit and
Brunel, 1997b). For a LIF neuron driven by such Gaussian white
noise, the firing rate is given by (Siegert, 1951; Tuckwell, 1988;
Amit and Brunel, 1997b)

φ(µ, σ) =

(

τr + τm
√

π

∫

˜Vth(µ,σ)

˜V0(µ,σ)
es

2
(1+ erf(s))ds

)−1

, (4)

where the rescaled reset- and threshold-voltages are

˜V0(µ, σ) =
V0 − µ

σ
, ˜Vth(µ, σ) =

Vth − µ

σ
. (5)

The first term in Equation (4) is the refractory period and the
second term is the mean first-passage time of the membrane
voltage from reset to threshold. The mean and the noise intensity
of the input to a neuron in a population a ∈ {E, I}, which control
themean first-passage time through Equation (5), are determined
by (Amit and Brunel, 1997b)

µa = τm(JaEKaEνE − JaIKaIνI + JaXKaXνX) , (6)

σ 2
a = τm(J

2
aEKaEνE + J2aIKaIνI + J2aXKaXνX) , (7)

respectively, where each term reflects the contribution of one
population, with the corresponding firing rates of the excitatory
νE, inhibitory νI, and external population νX. Note that we use the
letters i, j, k, . . . to index single neurons and a, b, c, . . . to index
neuronal populations. Both µa and σa depend on the firing rate
of the neurons νa, which is in turn given by Equation (4). Thus,
one arrives at the self-consistency problem

νa = φ(µa, σa) , (8)

which is coupled across the populations due to Equation (6) and
Equation (7).

Our toolbox provides two algorithms to solve Equation (8):
(1) Integrating the auxiliary ordinary differential equation
(ODE) ν̇a = −νa + φ(µa, σa) with initial values νa(0) =

νa,0 using scipy.integrate.solve_ivp (Virtanen et al.,
2020) until it reaches a fixed point ν̇a = 0, where Equation (8)
holds by construction. (2) Minimizing the quadratic deviation
∑

a

[

νa − φ(µa, σa)
]2
, using the least squares (LSTSQ) solver

scipy.optimize.least_squares (Virtanen et al., 2020)
starting from an initial guess νa,0. The ODE method is robust
to changes in the initial values and hence a good first choice.
However, it cannot find self-consistent solutions that correspond
to an unstable fixed point of the auxiliary ODE (note that the
stability of the auxiliary ODE does not indicate the stability of
the solution). To this end, the LSTSQ method can be used. Its
drawback is that it needs a good initial guess, because otherwise
the found minimum might be a local one where the quadratic

deviation does not vanish,
∑

a

[

νa − φ(µa, σa)
]2

> 0, and which

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 835657140

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

A B C

D E F

FIGURE 2 | Response nonlinearities in EI-networks. (A) Network diagram with nodes and edges according to the graphical notation proposed by Senk et al.

(in press). (B–F) Firing rate of excitatory (blue) and inhibitory (red) population for varying external input rate νX . Specific choices for synaptic weights (J, Jext) and

in-degrees (K, Kext) lead to five types of nonlinearities: (B) saturation-driven nonlinearity, (C) saturation-driven multi-solution, (D) response-onset supersaturation,

(E) mean-driven multi-solution, and (F) noise-driven multi-solution. See Figure 8 in Sanzeni et al. (2020) for parameters.

accordingly does not correspond to a self-consistent solution,
νa 6= φ(µa, σa). A prerequisite for both methods is a numerical
solution of the integral in Equation (4); this is discussed in
Section A.1 in the Appendix.

The solutions of the self-consistency problem Equation (8)
for varying νX and fixed J, Jext, K , and Kext reveal the
five types of response nonlinearities (Figure 2). Different
response nonlinearities arise through specific choices of
synaptic weights, J and Jext, and in-degrees, K and Kext,
which suggests that already a simple EI-network possesses
a rich capacity for nonlinear computations. Whenever
possible, we use the ODE method and resort to the LSTSQ
method only if the self-consistent solution corresponds to an
unstable fixed point of the auxiliary ODE. Combining both
methods, we can reproduce the first columns of Figure 8 in
Sanzeni et al. (2020), where all five types of nonlinearities
are presented.

In all cases, we chose appropriate initial values νa,0 for
either method. Note that an exploratory analysis is necessary if
the stability properties of a network model are unknown, and
potentially multiple fixed points are to be uncovered because
there are, to the best of our knowledge, no systematic methods
in d > 1 dimensions that provide all solutions of a nonlinear
system of equations.

In Listing 2, we show a minimal example to produce
the data shown in Figure 2B. After importing the function
that solves the self-consistency Equation (8), we collect the
neuron and network parameters in a dictionary. Then, we
loop through different values for the external rate νX and
determine the network rates using the ODE method, which
is sufficient in this example. In Listing 2 and to produce
Figure 2B, we use the basic workflow because only one isolated
tool of NNMT (nnmt.lif.delta._firing_rates()) is

� �
1 import numpy as np
2 from nnmt.lif.delta import _firing_rates
3

4 params = dict(
5 # membrane and refractory time constants (in s)
6 tau_m=20.∗1e-3, tau_r=2.∗1e-3,
7 # relative reset and threshold potentials (in V)
8 V_0_rel=10.∗1e-3, V_th_rel=20.∗1e-3,
9 # recurrent and external weights (in V)
10 J=np.array([[0.2, -1.6], [0.2, -1.4]])∗1e-3,
11 J_ext=np.array([0.2, 0.2])∗1e-3,
12 # recurrent and external in-degrees
13 K=np.array([[400, 100], [400, 100]]),
14 K_ext=np.array([1600, 800]),
15 # set the method for the fixpoint finder
16 fixpoint_method=’ODE’,
17 # initial guess for the firing rate
18 nu_0=(0, 0))
19

20 # determine self-consistent rates (in 1/s)
21 nu_ext = np.linspace(1, 100, 50) # external rates (in 1/s)
22 nu_E, nu_I = np.zeros_like(nu_ext), np.zeros_like(nu_ext)
23 for i, nu_X in enumerate(nu_ext):
24 nu_E[i], nu_I[i] = _firing_rates(nu_ext=nu_X,
25 ∗∗params)
� �

Listing 2: Example script to produce the data shown in
Figure 2B using the ODE method (initial value νa,0 = 0 for
population a ∈ {E, I}).

employed, which requires only a few parameters defining the
simple EI-network.

3.2.2. Firing Rates of Microcircuit Model
Here we show how to use the model workflow to calculate
the firing rates of the cortical microcircuit model by Potjans
and Diesmann (2014). The circuit is a simplified point

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 835657141

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

A

B

FIGURE 3 | Cortical microcircuit model by Potjans and Diesmann (2014).

(A) Network diagram (only the strongest connections are shown as in Figure 1

of the original publication). Same notation as in Figure 2A. (B) Simulation and

mean-field estimate for average population firing rates using the parameters

from Bos et al. (2016).

neuron network model with biologically plausible parameters,
which has been recently used in a number of other works:
for example, to study network properties such as layer-
dependent attentional processing (Wagatsuma et al., 2011),
connectivity structure with respect to oscillations (Bos et al.,
2016), and the effect of synaptic weight resolution on activity
statistics (Dasbach, Tetzlaff, Diesmann, and Senk, 2021); to
assess the performance of different simulator technologies
such as neuromorphic hardware (van Albada et al., 2018)
and GPUs (Knight and Nowotny, 2018; Golosio et al., 2021); to
demonstrate forward-model prediction of local-field potentials
from spiking activity (Hagen et al., 2016); and to serve as a
building block for large-scale models (Schmidt et al., 2018).

The model consists of eight populations of LIF neurons,
corresponding to the excitatory and inhibitory populations of
four cortical layers: 2/3E, 2/3I, 4E, 4I, 5E, 5I, 6E, and 6I (see
Figure 3A). It defines the number of neurons in each population,
the number of connections between the populations, the single
neuron properties, and the external input. Simulations show that
the model yields realistic firing rates for the different populations
as observed in particular in the healthy resting-state of early
sensory cortex (Potjans and Diesmann, 2014, Table 6).

In contrast to the EI-network model investigated in
Section 3.2.1, the neurons in the microcircuit model have
exponentially shaped post-synaptic currents: Equation (2) is
replaced by Fourcaud and Brunel (2002)

τsR
dIi

dt
(t) = −RIi(t)+ τm

∑

j

Jij
∑

k

δ(t − tj,k − dij) , (9)

with synaptic time constant τs. Note that Jij is a measure in
volts here. As discussed in Section 3.2.1, in mean-field theory the
second term, representing the neuronal input, is approximated
by Gaussian white noise. The additional synaptic filtering leads
to the membrane potential (Equation 1) receiving colored noise
input. Fourcaud and Brunel (2002) developed a method for
calculating the firing rate for this synapse type. They have shown
that, if the synaptic time constant τs is much smaller than the
membrane time constant τm, the firing rate for LIF neurons with
exponential synapses can be calculated using Equation (4) with
shifted integration boundaries

˜Vcn,0(µ, σ) = ˜V0(µ, σ)+
α

2

√

τs

τm
,

˜Vcn,th(µ, σ) = ˜Vth(µ, σ)+
α

2

√

τs

τm
, (10)

with the rescaled reset- and threshold-voltages from Equation (5)
and α =

√
2 |ζ (1/2)| ≈ 2.07, where ζ (x) denotes the Riemann

zeta function; the subscript cn stands for “colored noise”.
The microcircuit has been implemented as an NNMT

model (nnmt.models.Microcircuit). We here use the
parameters of the circuit as published in Bos et al. (2016) which
is slightly differently parameterized than the original model (see
Table A1 in the Appendix). The parameters of the model are
specified in a yaml file, which uses Python-like indentation and
a dictionary-style syntax. List elements are indicated by hyphens,
and arrays can be defined as nested lists. Parameters with units
can be defined by using the keys val and unit, whereas unitless
variables can be defined without any keys. Listing 3 shows an
example of how some of the microcircuit network parameters
used here are defined. Which parameters need to be provided in
the yaml file depends on the model used and is indicated in their
respective docstrings.

Once the parameters are defined, a microcircuit model is
instantiated by passing the respective parameter file to the model
constructor; the units are automatically converted to SI units.
Then the firing rates are computed. For comparison, we finally
load the simulated rates from Bos et al. (2016):

create the network model using a network parameter yaml
file
microcircuit = nnmt.models.Microcircuit(

’network_params_microcircuit.yaml’)
calculate firing rates
firing_rates = nnmt.lif.exp.firing_rates(microcircuit)
load simulated results
simulated_firing_rates = \

nnmt.input_output.load_h5(’Bos2016_rates.h5’)[’rates’]

The simulated rates have been obtained by a numerical network
simulation (for simulation details see Bos et al., 2016) in which

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 835657142

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

� �
1 # membrane time constant
2 tau_m:
3 val: 10.0
4 unit: ms
5

6 # neuron numbers
7 N:
8 - 20683
9 - 5834
10 - 21915
� �

Listing 3: Some microcircuit network parameters defined in a
yaml file. A dictionary-like structure with the keys val (value)
and unit is used to define the membrane time constant, which
is the same across all populations. The numbers of neurons in
each population are defined as a list. Only the numbers for the
first three populations are displayed.

the neuron populations are connected according to the model’s
original connectivity rule: “random, fixed total number with
multapses (autapses prohibited)”, see Senk et al. (in press) as a
reference for connectivity concepts. The term multapses refers
to multiple connections between the same pair of neurons
and autapses are self-connections; with this connectivity rule
multapses can occur in a network realization but autapses are
not allowed. For simplicity, the theoretical predictions assume
a connectivity with a fixed in-degree for each neuron. Dasbach
et al. (2021) show that simulated spike activity data of networks
with these two different connectivity rules are characterized by
differently shaped rate distributions (“reference” in their Figures
3d and 4d). In addition, the weights in the simulation are
normally distributed while the theory replaces each distribution
by its mean; this corresponds to the case Nbins = 1 in Dasbach
et al. (2021). Nevertheless, our mean-field theoretical estimate of
the average population firing rates is in good agreement with the
simulated rates (Figure 3B).

3.3. Dynamical Quantities
3.3.1. Transfer Function
One of the most important dynamical properties of a neuronal
network is how it reacts to external input. A systematic way to
study the network response is to apply an oscillatory external
input current leading to a periodically modulated mean input
µ(t) = µ+ δµRe

(

eiωt
)

(cf. Equation 6), with fixed frequency ω,
phase, and amplitude δµ, and observe the emerging frequency,
phase, and amplitude of the output. If the amplitude of the
external input is small compared to the stationary input, the
network responds in a linear fashion: it only modifies phase
and amplitude, while the output frequency equals the input
frequency. This relationship is captured by the input-output
transfer function N (ω) (Brunel and Hakim, 1999; Brunel et al.,
2001; Lindner and Schimansky-Geier, 2001), which describes the
frequency-dependent modulation of the output firing rate of a
neuron population

ν(t) = ν + Re
(

N (ω) δµ eiωt
)

.

Note that in this section we only study the linear response to a
modulation of the mean input, although in general, a modulation
of the noise intensity (Equation 7) can also be included (Lindner
and Schimansky-Geier, 2001; Schuecker et al., 2015). The transfer
functionN (ω) is a complex function: Its absolute value describes
the relative modulation of the firing rate. Its phase, the angle
relative to the real axis, describes the phase shift that occurs
between input and output. We denote the transfer function
for a network of LIF neurons with instantaneous synapses in
linear-response approximation as

N (ω) =

√
2ν

σ

1

1+ iωτm

8′
ω

∣

∣

√
2˜Vth√
2˜V0

8ω|

√
2˜Vth√
2˜V0

, (11)

with the rescaled reset- and threshold-voltages ˜V0 and ˜Vth as

defined in Equation (5) and 8ω(x) = e
x2

4 U
(

iωτm − 1
2 , x

)

using

the parabolic cylinder functions U
(

iωτm − 1
2 , x

)

as defined
in (Abramowitz and Stegun, 1974, Section 19.3) and (Olver
et al., 2021, Section 12.2). 8′

ω denotes the first derivative by
x. A comparison of our notation and the transfer function
given in Schuecker et al. (2015, Equation 29) can be found in
Section A.2.1 in the Appendix.

For a neuronal network of LIF neurons with exponentially
shaped post-synaptic currents, introduced in Section 3.2.2,
Schuecker et al. (2014, 2015) show that an analytical
approximation of the transfer function can be obtained by
a shift of integration boundaries, akin to Equation (10):

Ncn (ω) =

√
2ν

σ

1

1+ iωτm

8′
ω

∣

∣

√
2˜Vcn,th√
2˜Vcn,0

8ω|

√
2˜Vcn,th√
2˜Vcn,0

. (12)

To take into account the effect of the synaptic dynamics, we
include an additional low-pass filter:

Ncn,s (ω) = Ncn (ω)
1

1+ iωτs
. (13)

If the synaptic time constant is much smaller than the
membrane time constant (τs ≪ τm), an equivalent expression
for the transfer function is obtained by a Taylor expansion
around the original boundaries (cf. Schuecker et al. 2015,
Equation 30). The toolbox implements both variants and offers
choosing between them by setting the argument method of
nnmt.lif.exp.transfer_function to either shift
or taylor.

Here, we demonstrate how to calculate the analytical “shift
version” of the transfer function for different means and noise
intensities of the input current (see Figure 4) and thereby
reproduce Figure 4 in Schuecker et al. (2015).

The crucial parts for producing Figure 4 using NNMT are
shown in Listing 4 for one example combination of mean and
noise intensity of the input current. Instead of using the model
workflow with nnmt.lif.exp.transfer_function,
we here employ the basic workflow, using

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 835657143

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

A B

FIGURE 4 | Colored-noise transfer function Ncn of LIF model in different regimes. (A) Absolute value and (B) phase of the “shift” version of the transfer function as a

function of the log-scaled frequency. Neuron parameters are set to Vth = 20mV, V0 = 15mv, τm = 20ms, and τs = 0.5ms. For given noise intensities of input

current, σ = 4mV (solid line) and σ = 1.5mV (dashed line), the mean input µ is chosen such that firing rates ν = 10Hz (black) and ν = 30Hz (gray) are obtained.

nnmt.lif.exp._transfer_function directly. This
allows changing the mean input and its noise intensity
independently of a network model’s structure, but requires
two additional steps: First, the necessary parameters
are loaded from a yaml file, converted to SI units and
then stripped off the units using the utility function
nnmt.utils._convert_to_si_and_strip_units.
Second, the analysis frequencies are defined manually. In this
example we choose logarithmically spaced frequencies, as we
want to plot the results on a log-scale. Finally, the complex-
valued transfer function is calculated and then split into its
absolute value and phase. Figure 4 shows that the transfer
function acts as a low-pass filter that suppresses the amplitude of
high frequency activity, introduces a phase lag, and can lead to
resonance phenomena for certain configurations of mean input
current and noise intensity.

The replication of the results from Schuecker et al. (2015)
outlined here is also used in the integration tests of the toolbox.
Note that the implemented analytical form of the transfer
function by Schuecker et al. (2015) is an approximation for
low frequencies, and deviations from a simulated ground truth
are expected for higher frequencies (ω/2π & 100Hz at the
given parameters).

3.3.2. Power Spectrum
Another frequently studied dynamical property is the power
spectrum, which describes how the power of a signal is
distributed across its different frequency components, revealing
oscillations of the population activity. The power is the Fourier
transformed auto-correlation of the population activities (c.f. Bos
et al. 2016, Equations 16-18). Linear response theory on top
of a mean-field approximation, allows computing the power,
dependent on the network architecture, the stationary firing

rates, and the neurons’ transfer function (Bos et al., 2016). The
corresponding analytical expression for the power spectra of
population a at angular frequency ω is given by the diagonal
elements of the correlation matrix

Pa(ω) = Caa(ω)

=
[

(

1−˜Md(ω)
)−1

diag (ν ⊘ n)
(

1−˜Md(−ω)
)−T

]

aa
,

(14)

with ⊘ denoting the elementwise (Hadamard) division, the
effective connectivity matrix ˜Md(ω) = τmNcn,s(ω) · J ⊙ K ⊙

D(ω), where the dot denotes the scalar product, while⊙ denotes
the elementwise (Hadamard) product, the mean population
firing rates ν, and the numbers of neurons in each population
n. The effective connectivity combines the static, anatomical
connectivity J ⊙ K , represented by synaptic weight matrix J

and in-degree matrix K , and dynamical quantities, represented
by the transfer functions Ncn,s,a (ω) (Equation (13)), and the
contribution of the delays in (Equation 13), represented by their
Fourier transformed distributions Dab(ω) (cf. Bos et al. 2016,
Equations 14, 15).

The modular structure in combination with the model
workflow of this toolbox permits a step-by-step calculation of
the power spectra, as shown in Listing 5. The inherent structure
of the theory is emphasized in these steps: After instantiating
the network model class with given network parameters, we
determine the working point, which characterizes the statistics of
the model’s stationary dynamics. It is defined by the population
firing rates, the mean, and the standard deviation of the input
to a neuron of the respective population. This is necessary for
determining the transfer functions. The calculation of the delay
distribution matrix is then required for calculating the effective
connectivity and to finally get an estimate of the power spectra.

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 835657144

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

FIGURE 5 | Power spectra of the population spiking activity in the adapted cortical microcircuit from Bos et al. (2016). The spiking activity of each population in a 10 s

simulation of the model is binned with 1ms resolution and the power spectrum of the resulting histogram is calculated by a fast Fourier transform (FFT; light gray

curves). In addition, the simulation is split into 500ms windows, the power spectrum calculated for each window and averaged across windows (gray curves). Black

curves correspond to analytical prediction obtained with NNMT as described in Listing 5. The panels show the spectra for the excitatory (top) and inhibitory (bottom)

populations within each layer of the microcircuit.

Figure 5 reproduces Figure 1E in Bos et al. (2016) and shows the
spectra for each population of the adjusted version (see Table A1
in the Appendix) of the microcircuit model.

The numerical predictions obtained from the toolbox
largely coincide with simulated data taken from the original
publication (Bos et al., 2016) and reveal dominant oscillations
of the population activities in the low-γ range around
63Hz. Furthermore, faster oscillations with peak power around
300Hz are predicted with higher magnitudes in the inhibitory
populations 4I, 5I, and 6I.

The deviation between predicted and simulated power spectra
seen at ∼ 130Hz in population 2/3E could be a harmonic of the
correctly predicted, prominent 63Hz peak; a non-linear effect not
captured in linear response theory. Furthermore, the systematic
overestimation of the power spectrum at large frequencies is
explained by the limited validity of the analytical approximation
of the transfer function for high frequencies.

3.3.3. Sensitivity Measure
The power spectra shown in the previous section exhibit
prominent peaks at certain frequencies, which indicate
oscillatory activity. Naturally, this begs the question: which
mechanism causes these oscillations? Bos et al. (2016) expose the
crucial role that the microcircuit’s connectivity plays in shaping
the power spectra of this network model. They have developed a
method called sensitivity measure to directly relate the influence
of the anatomical connections, especially the in-degree matrix,
on the power spectra.

The power spectrum of the a-th population Pa(ω) receives a
contribution from each eigenvalue λb of the effective connectivity

matrix, Pa(ω) ∝ 1/
(

1− λb(ω)
)2
. Such a contribution

consequently diverges as the complex-valued λb approaches
1 + 0i in the complex plane, which is referred to as the
point of instability. This relation can be derived by replacing
the effective connectivity matrix ˜Md(ω) in Equation (14) by
its eigendecomposition. The sensitivity measure leverages this
relationship and evaluates how a change in the in-degree
matrix affects the eigenvalues of the effective connectivity
and thus indirectly the power spectrum. Bos et al. (2016)
introduce a small perturbation αcd of the in-degree matrix, which
allows writing the effective connectivity matrix as ̂Mab(ω) =

(1+ αcdδcaδdb) ˜Mab(ω), where we dropped the delay subscript
d. The sensitivity measure Zb,cd(ω) describes how the b-th
eigenvalue of the effective connectivity matrix varies when the
cd-th element of the in-degree matrix is changed

Zb,cd(ω) =
∂λb(ω)

∂αcd

∣

∣

∣

∣

αcd=0

=
vb,c˜Mcdub,d

vT
b
· ub

, (15)

where
∂λb(ω)
∂αcd

is the partial derivative of the eigenvalue with

respect to a change in connectivity, vT
b
and ub are the left and

right eigenvectors of ˜M corresponding to eigenvalue λb(ω).
The complex sensitivity measure can be understood in terms

of two components: Z
amp
b

is the projection of the matrix Zb

onto the direction in the complex plane defined by 1 − λb(ω);

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 835657145

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

A B

FIGURE 6 | Sensitivity measure at low-γ frequency and corresponding power spectrum of microcircuit with adjusted connectivity. (A) Sensitivity measure of one

eigenmode of the effective connectivity relevant for low-γ oscillations. The sensitivity measure for this mode is evaluated at the frequency where the corresponding

eigenvalue is closest to the point of instability 1+ 0i in complex plane. Z
amp
b (ω) (left subpanel) visualizes the influence of a perturbation of a connection on the peak

amplitude of the power spectrum. Z
freq
b (ω) (right subpanel) shows the impact on the peak frequency. Non-existent connections are masked white. (B) Mean-field

prediction of power spectrum of population 4I with original connectivity parameters (solid line), 5% increase (dashed line) and 10% increase (dotted line) in connections

K4I→4I. The increase in inhibitory input to population 4I was counteracted by an increase of the excitatory external input Kext→4I to maintain the working point.

it describes how, when the in-degree matrix is perturbed, the
complex-valued λb(ω) moves toward or away from the instability
1 + 0i, and consequently how the amplitude of the power

spectrum at frequency ω increases or decreases. Z
freq
b

is the
projection onto the perpendicular direction and thus describes
how the peak frequency of the power spectrum changes with the
perturbation of the in-degree matrix. For a visualization of these
projections, refer to Figure 5B in Bos et al. (2016).

The toolbox makes this intricate measure accessible by
supplying two tools: After computing the required working
point, transfer function, and delay distribution, the tool
nnmt.lif.exp.sensitivity_measure computes the
sensitivity measure at a given frequency for one specific
eigenvalue. By default, this is the eigenvalue which is closest to
the instability 1 + 0i. To perform the computation, we just need
to add one line to Listing 5:

sensitivity_dict = nnmt.lif.exp.sensitivity_measure(
microcircuit, frequency)

The result is returned in form of a dictionary that
contains the sensitivity measure and its projections. The
tool nnmt.lif.exp.sensitivity_measure_all_
eigenmodes wraps that basic function and calculates the
sensitivity measure for all eigenvalues at the frequency for which
each eigenvalue is closest to instability.

According to the original publication (Bos et al., 2016), the
peak around 63Hz has contributions from one eigenvalue of the
effective connectivity matrix. Figure 6 shows the projections of
the sensitivity measure at the frequency for which this eigenvalue
is closest to the instability, as illustrated in Figure 4 of Bos
et al. (2016). The sensitivity measure returns one value for each
connection between populations in the network model. For Z

amp
b

a negative value indicates that increasing the in-degrees of a
specific connection causes the amplitude of the power spectrum
at the evaluated frequency to drop. If the value is positive,

the amplitude is predicted to grow as the in-degrees increase.

Similarly, for positive Z
freq
b

the frequency of the peak in the power

spectrum shifts toward higher values as in-degrees increase, and

vice versa. Themain finding in this analysis is that the low-γ peak

seems to be affected by excitatory-inhibitory loops in layer 2/3

and layer 4.
To decrease the low–γ peak in the power spectrum, one could

therefore increase the 4I to 4I connections (cp. Figure 6A):

5 percent increase
K_new = microcircuit.network_params[’K’].copy()
K_new[3,3] = 1001 # originally 953
K_ext_new = microcircuit.network_params[’K_ext’].copy()
K_ext_new[3] = 2034 # originally 1900
microcircuit_new = microcircuit.change_parameters(

{’K’: K_new, ’K_ext’: K_ext_new})

and calculate the power spectrum as in Listing 5 again to

validate the change. Note that a change in connectivity

leads to a shift in the working point. We are interested in

the impact of the modified connectivity on the fluctuation

dynamics at the same working point and thus need to

counteract the change in connectivity by adjusting the external
input. In the chosen example this is ensured by satisfying

J4I→4I1K4I→4Iν4I = −Jext→4I1Kext→4Iνext, which yields
1Kext→4I = − J4I→4I1K4I→4Iν4I

Jext→4Iνext
.

If several eigenvalues of the effective connectivity matrix
influence the power spectra in the same frequency range,

adjustments of the connectivity are more involved. This is

because a change in connectivity would inevitably affect all

eigenvalues simultaneously. Further care has to be taken because
the sensitivity measure is subject to the same constraints as

the current implementation of the transfer function, which
is only valid for low frequencies and enters the sensitivity
measure directly.

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 835657146

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

� �
1 # load parameters in custom units
2 params = nnmt.input_output.load_val_unit_dict_from_yaml(
3 ’Schuecker2015_parameters.yaml’)
4

5 # convert parameters to SI units
6 nnmt.utils._convert_to_si_and_strip_units(params)
7

8 # define the analysis frequencies
9 frequencies = np.logspace(
10 params[’f_start_exponent’],
11 params[’f_end_exponent’],
12 params[’n_freqs’])
13 # add the zero frequency
14 frequencies = np.insert(frequencies, 0, 0.0)
15 omegas = 2 ∗ np.pi ∗ frequencies
16

17 # extract necessary parameters from params dictionary
18 mean_input = params[’mean_input’]
19 ... # here we leave out similar statements
20

21 # calculate the transfer function
22 transfer_function = nnmt.lif.exp._transfer_function(
23 mu, sigma,
24 tau_m, tau_s, tau_r,
25 V_th_rel, V_0_rel,
26 omegas,
27 method=’shift’,
28 synaptic_filter=False)
29

30 # calculate properties plotted in Schuecker et al. (2015)
31 absolute_value = np.abs(transfer_function)
32 phase = np.angle(transfer_function) / 2 / np.pi ∗ 360
� �

Listing 4: Example script for computing a transfer
function shown in Figure 4 using the method of shifted
integration boundaries.

3.4. Fitting Spiking to Rate Model and
Predicting Pattern Formation
If the neurons of a network are spatially organized and connected
according to a distance-dependent profile, the spiking activity
may exhibit pattern formation in space and time, including wave-
like phenomena. Senk et al. (2020) set out to scrutinize the non-
trivial relationship between the parameters of such a network
model and the emerging activity patterns. The model they use
is a two-population network of excitatory E and inhibitory
I spiking neurons, illustrated in Figure 7. All neurons are of
type LIF with exponentially shaped post-synaptic currents. The
neuron populations are recurrently connected to each other and
themselves and they receive additional external excitatory Eext
and inhibitory Iext Poisson spike input of adjustable rate as shown
in Figure 7A. The spatial arrangement of neurons on a ring
is illustrated in Figure 7B and the boxcar-shaped connectivity

profiles in Figure 7C.
In the following, we consider a mean-field approximation of

the spiking model with spatial averaging, that is a time and space

continuous approximation of the discrete model as derived in
Senk et al. (2020, Section E. Linearization of spiking network
model). We demonstrate three methods used in the original
study: First, Section 3.4.1 explains how a model can be brought
to a defined state characterized by its working point. The working
point is given by the mean µ and noise intensity σ of the input
to a neuron, which are both quantities derived from network

� �
1 # create network model microcircuit
2 microcircuit = nnmt.models.Microcircuit(
3 network_params=’Bos2016_network_params.yaml’,
4 analysis_params=’Bos2016_analysis_params.yaml’)
5

6 # calculate working point for exponentially shaped post-
synaptic currents

7 nnmt.lif.exp.working_point(microcircuit, method=’taylor’)
8 # calculate the transfer function
9 nnmt.lif.exp.transfer_function(microcircuit,
10 method=’taylor’)
11 # calculate the delay distribution matrix
12 nnmt.network_properties.delay_dist_matrix(microcircuit)
13 # calculate the effective connectivity matrix
14 nnmt.lif.exp.effective_connectivity(microcircuit)
15 # calculate the power spectra
16 power_spectra = nnmt.lif.exp.power_spectra(microcircuit)
� �

Listing 5: Example script to produce the theoretical prediction
(black lines) shown in Figure 5B.

A

B C

FIGURE 7 | Illustrations of spiking network model by Senk et al. (2020).

(A) Excitatory and inhibitory neuronal populations randomly connected with

fixed in-degree and multapses allowed (autapses prohibited). External

excitatory and inhibitory Poisson drive to all neurons. Same notation as in

Figure 2A. (B) One inhibitory and four excitatory neurons per grid position on

a one-dimensional domain with periodic boundary conditions (ring network).

(C) Normalized, boxcar-shaped connection probability with wider excitation

than inhibition; the grid spacing is here 10−3 mm. For model details and

parameters, see Tables II–IV of Senk et al. (2020); the specific values given in

the caption of their Figure 6 are used throughout here.

parameters and require the calculation of the firing rates. With
the spikingmodel in that defined state, Section 3.4.2 thenmaps its
transfer function to the one of a rate model. Section 3.4.3 finally
shows that this working-point dependent rate model allows for
an analytical linear stability analysis of the network accounting
for its spatial structure. This analysis can reveal transitions to
spatial and temporal oscillatory states which, when mapped back

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 835657147

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

to the parameters of the spiking model, may manifest in distinct
patterns of simulated spiking activity after a startup transient.

3.4.1. Setting the Working Point by Changing

Network Parameters
With network and analysis parameters predefined in yaml files,
we set up a networkmodel using the examplemodel classBasic:

space_model = nnmt.models.Basic(
network_params=’Senk2020_network_params.yaml’,
analysis_params=’Senk2020_analysis_params.yaml’)

Upon initialization the given parameters are automatically
converted into the format used by NNMT’s tools. For instance,
relative spike reset and threshold potentials are derived from
the absolute values, connection strengths in units of volt are
computed from the post-synaptic current amplitudes in ampere,
and all values are scaled to SI units.

We aim to bring the network to a defined state by fixing the
working point but also want to explore if the procedure of fitting
the transfer function still works for different network states.
For a parameter space exploration, we use a method to change
parameters provided by the model class and scan through a
number of different working points of the network. To obtain the
required input for a target working point, we adjust the external
excitatory and inhibitory firing rates accordingly; NNMT uses a
vectorized version of the equations given in Senk et al. (2020,
Appendix F: Fixing the working point) to calculate the external
rates needed:

relative to spike threshold (in V)
mu = 10. ∗ 1e-3; sigma = 10. ∗ 1e-3
nu_ext = nnmt.lif.exp.external_rates_for_fixed_input(

space_model, mu_set=mu, sigma_set=sigma)
space_model = space_model.change_parameters(

changed_network_params={’nu_ext’: nu_ext})

The implementation uses only one excitatory and one inhibitory
Poisson source to represent the external input rates which
typically originate from a large number of external source
neurons. These two external sources are connected to the
network with the same relative inhibition g as used for the
internal connections. The resulting external rates for different
choices of (µ, σ) are color-coded in the first two plots of
Figure 8A. The third plot shows the corresponding firing rates of
the neurons, which are stored in the results of the model instance
when computing the working point explicitly:

nnmt.lif.exp.working_point(space_model)

Although the external rates are substantially higher than the
firing rates, since a neuron is recurrently connected to hundreds
of neurons, the total external and recurrent inputs are of the
same order.

3.4.2. Parameter Mapping by Fitting the Transfer

Function
We map the parameters of the spiking model to a corresponding
rate model by, first, computing the transfer function Ncn,s given
in Equation (13) of the spiking model, and second, fitting the
simpler transfer function of the rate model, for details see
Senk et al. (2020, Section F. Comparison of neural-field and
spiking models). The dynamics of the rate model can be written

as a differential equation for the linearized activity ra with
populations a, b ∈ {E, I} :

τ
d

dt
ra(t) = −ra(t)+

∑

b

wbrb(t − d) (16)

with the delay d; τ is the time constant and wb are the unitless
weights that only depend on the presynaptic population. The
transfer function is just the one of a low-pass filter, NLP =

1/ (1+ λτ), where λ is the frequency in Laplace domain. The
tool to fit the transfer function requires that the actual transfer
function Ncn,s has been computed beforehand and fits NLPw to
τmNcn,s · J ⊙ K for the same frequencies together with τ , w, and
the combined fit error η:

nnmt.lif.exp.transfer_function(space_model)
nnmt.lif.exp.fit_transfer_function(space_model)

The absolute value of the transfer function is
fitted with non-linear least-squares using the solver
scipy.optimize.curve_fit. Figure 8B illustrates
the amplitude and phase of the transfer function and its fit for a
few (µ, σ) combinations. The plots of Figure 8C show the fitted
time constants, the fitted excitatory weight, and the combined fit
error. The inhibitory weight is proportional to the excitatory one
in the same way as the post-synaptic current amplitudes.

3.4.3. Linear Stability Analysis of Spatially Structured

Model With Delay
Sections 3.4.1 and 3.4.2 considered a mean-field approximation
of the spiking model without taking space into account.
In the following, we assume a spatial averaging of the
discrete network depicted in Figure 7 and introduce the spatial
connectivity profiles pa(x). Changing Equation (16) to the
integro-differential equation

τ
∂

∂t
ra(x, t) = −ra(x, t)+

∑

b

wb

∫ ∞

−∞

pb(x− y)rb(y, t − d) dy

(17)

yields a neural field model defined in continuous space x.
This model lends itself to analytical linear stability analysis,
as described in detail in Senk et al. (2020, Section A. Linear
stability analysis of a neural-field model). In brief, we analyze
the stability of a fixed-point solution to this differential equation
system which, together with parameter continuation methods
and bifurcation analysis, allows us to determine points in
parameter space where transitions from homogeneous steady
states to oscillatory states can occur. These transitions are given
as a function of a bifurcation parameter, here the constant
delay d, which is the same for all connections. The complex-
valued, temporal eigenvalue λ of the linearized time-delay system
is an indicator for the system’s overall stability and can serve
as a predictor for temporal oscillations, whereas the spatial
oscillations are characterized by the real-valued wave number k.
Solutions that relate λ and k with the model parameters are given
by a characteristic equation, which in our case reads (Senk et al.,
2020, Equation 7):

λB(k) = −
1

τ
+

1

d
WB

(

c
(

k
) d

τ
e
d
τ

)

, (18)

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 835657148

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

A

C

B

FIGURE 8 | Network parameters and mean-field results from scanning through different working points. Working point (µ, σ) combines mean input µ and noise

intensity of input σ . (A) External excitatory νext, E and inhibitory νext, I Poisson rates required to set (µ, σ) and resulting firing rates ν. (B) Transfer function Ncn,s of

spiking model and fitted rate-model approximation with low-pass filter for selected (µ, σ) (top: amplitude, bottom: phase). (C) Fit results (time constants τ and

excitatory weights wE) and fit errors η. The inhibitory weights are wI = −gwE with g = 5. Star marker in panels (A) and (C) denotes target working point (10, 10) mV.

Similar displays as in Senk et al. (2020, Figure 5).

with the time constant of the rate model τ , the multi-valued
Lambert WB function3 on branch B (Corless et al., 1996),
and the effective connectivity profile c

(

k
)

, which combines the
weights wb and the Fourier transforms of the spatial connectivity
profiles. Note that the approach generalizes from the boxcar-
shaped profiles used here to any symmetric probability density
function. NNMT provides an implementation to solve this
characteristic equation in its linear_stability module
using the spatialmodule for the profile:

import nnmt.spatial as spatial
import nnmt.linear_stability as linstab

connectivity = (
W_rate ∗ spatial._ft_spatial_profile_boxcar(

k_wavenumber,
space_model.network_params[’width’]))

eigenvalue = (
linstab._solve_chareq_lambertw_constant_delay(

branch_nr, tau_rate,
space_model.network_params[’delay’],
connectivity))

Figure 9A shows that the computed eigenvalues come for the
given network parameters in complex conjugate pairs. The
branch with the largest real part is the principal branch (B = 0).
Temporal oscillations are expected to occur if the real part of

3The Lambert WB function is defined as z = WB (z) eWB(z) for z ∈ C and has

infinitely many solutions, numbered by the branches B.

the eigenvalue on the principal branch becomes positive; the
oscillation frequency can then be read off the imaginary part
of that eigenvalue. In this example, the largest eigenvalue λ∗

on the principal branch has a real part that is just above zero.
There exists a supercritical Hopf bifurcation and the delay as the
bifurcation parameter is chosen large enough such that the model
is just beyond the bifurcation point separating the stable from the
instable state. The respective wave number k∗ is positive, which
indicates spatial oscillations as well. The oscillations in both time
and space predicted for the rate model imply that the activity
of the corresponding spiking model might exhibit wave trains,
i.e., temporally and spatially periodic patterns. The predicted
propagation speed of the wave trains is given by the phase velocity
Im [λ∗] /k∗.

To determine whether the results obtained with the ratemodel
are transferable to the spiking model, Figure 9B interpolates
the analytical solutions of the rate model [α = 0, evaluating
Equation (18)] to solutions of the spiking model (α = 1,
accounting for the transfer function Ncn,s), which can only
be computed numerically. Thus, the parameter α interpolates
between the characteristic equations of these two models which
primarily differ in their transfer function; for details see Senk
et al. (2020, Section F.2 Linear interpolation between the transfer
functions). Since the eigenvalues estimated this way show only
little differences between rate and spiking model, we conclude
that predictions from the rate model should hold also for the
spiking model in the parameter regime tested. Following the

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 835657149

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

A B

FIGURE 9 | Linear stability analysis of spatially structured network model.

(A) Analytically exact solution for real (top) and imaginary (bottom) part of

eigenvalue λ vs. wavenumber k using rate model derived by fit of spiking

model at working point (µ, σ) = (10, 10) mV. Color-coded branches of

Lambert WB function; maximum real eigenvalue (star marker) on principal

branch (B = 0). (B) Linear interpolation between rate (α = 0) and spiking

model (α = 1) by numerical integration of Senk et al. (2020, Equation 30) (solid

line) and by numerically solving the characteristic equation in Senk et al. (2020,

Equation 29) (circular markers). Star markers at same data points as in (A).

Similar displays as in Senk et al. (2020, Figure 6).

argument of Senk et al. (2020), the predicted pattern formation
could next be tested in a numerical simulation of the discrete
spiking network model. Their Figure 7c for the delay d = 1.5ms
shows such results with the same parameters as used here; this
figure also illustrates transitions from homogeneous states to
oscillatory states by changing the delay (panels b, c, and e).

4. DISCUSSION

Mean-field theory grants important insights into the dynamics
of neuronal networks. However, the lack of a publicly available
numerical implementation for most methods entails a significant
initial investment of time and effort prior to any scientific
investigations. In this paper, we present the open-source toolbox
NNMT, which currently focuses on methods for LIF neurons but
is intended as a platform for collecting standard implementations
of various neuronal network model analyses based on mean-
field theory that have been thoroughly tested and validated by
the neuroscientific community (Riquelme and Gjorgjieva, 2021).
As use cases, we reproduce known results from the literature:
the non-linear relation between the firing rates and the external
input of an E-I-network (Sanzeni et al., 2020), the firing rates of
a cortical microcircuit model, its response to oscillatory input,
its power spectrum, and the identification of the connections

that predominantly contribute to the model’s low frequency
oscillations (Schuecker et al., 2015; Bos et al., 2016), and pattern
formation in a spiking network, analyzed by mapping it to a
rate model and conducting a linear stability analysis (Senk et al.,
2020).

In the remainder of the discussion, we compare NNMT to
other tools suited for network model analysis. We expand on
the different use cases of NNMT and also point out the inherent
limitations of analytical methods for neuronal network analysis.
We conclude with suggestions on how new tools can be added to
NNMT and how the toolbox may grow and develop in the future.

4.1. Comparison to Other Tools
There are various approaches and corresponding tools that can
help to gain a better understanding of a neuronal network
model. There are numerous simulators that numerically solve the
dynamical equations for concrete realizations of a networkmodel
and all its stochastic components, often focusing either on the
resolution of single-neurons, for example NEST (Gewaltig and
Diesmann, 2007), Brian (Stimberg et al., 2019), or Neuron (Hines
and Carnevale, 2001), or on the population level, for example
TheVirtualBrain (Sanz Leon et al., 2013). Similarly, general-
purpose dynamical system software like XPPAUT (Ermentrout,
2002) can be used. Simulation tools, like DynaSim (Sherfey
et al., 2018), come with enhanced functionality for simplifying
batch analysis and parameter explorations. All these tools yield
time-series of activity, and some of them even provide the
methods for analyzing the generated data. However, simulations
only indirectly link a model’s parameters with its activity: to
gain an understanding of how a model’s parameters influence
the statistics of their activity, it is necessary to run many
simulations with different parameters and analyze the generated
data subsequently.

Other approaches provide a more direct insight into a model’s
behavior on an abstract level: TheVirtualBrain and the Brain
Dynamics Toolbox (Heitmann et al., 2018), for example, allow
plotting a model’s phase space vector field while the parameters
can be changed interactively, allowing for exploration of low-
dimensional systems defined by differential equations without
the need for simulations. XPPAUT has an interface to AUTO-
07P (Doedel and Oldeman, 1998), a software for performing
numerical bifurcation and continuation analysis. It is worth
noting that such tools are limited to models that are defined
in terms of differential equations. Models specified in terms
of update rules, such as binary neurons, need to be analyzed
differently, for example using mean-field theory.

A third approach is to simplify the model analytically and
simulate the simplified version. The simulation platformDiPDE4

utilizes the population density approach to simulate the statistical
evolution of a network model’s dynamics. Schwalger et al. (2017)
start from a microscopic model of generalized integrate-and-
fire neurons and derive mesoscopic mean-field population
equations, which reproduce the statistical and qualitative
behavior of the homogeneous neuronal sub-populations.
Similarly, Montbrió et al. (2015) derive a set of non-linear

4http://alleninstitute.github.io/dipde

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 835657150

http://alleninstitute.github.io/dipde
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

differential equations describing the dynamics of the rate
and mean membrane potentials of a population of quadratic
integrate-and-fire (QIF) neurons. The simulation platform
PyRates (Gast et al., 2019) provides an implementation of this
QIF mean-field model, and allows simulating them to obtain the
temporal evolution of the population activity measures.

However, mean-field and related theories can go beyond
such reduced dynamical equations: they can directly link model
parameters to activity statistics, and they can even provide access
to informative network properties that might not be accessible
otherwise. The spectral bound (Rajan and Abbott, 2006) of the
effective connectivity matrix in linear response theory (Lindner
et al., 2005; Pernice et al., 2011; Trousdale et al., 2012) is an
example of such a property. It is a measure for the stability of the
linearized system and determines, for example, the occurrence
of slow dynamics and long-range correlations (Dahmen et al.,
2022). Another example is the sensitivity measure presented in
Section 3.3.3, which directly links a network model’s connectivity
with the properties of its power spectrum. Thesemeasures are not
accessible via simulations. They require analytical calculation.

Similarly, NNMT is not a simulator. NNMT is a collection
of mean-field equation implementations that directly relate a
model’s parameters to the statistics of its dynamics or to other
informative properties. It provides these implementations in
a format that makes them applicable to as many network
models as possible. This is not to say that NNMT does not
involve numerical integration procedures; solving self-consistent
equations, such as in the case of the firing rates calculations in
Section 3.2.1 and Section 3.2.2, is a common task, and a collection
of respective solvers is part of NNMT.

4.2. Use Cases
In Section 3, we present concrete examples of how to apply some
of the tools available. Here, we revisit some of the examples
to highlight the use cases NNMT lends itself to, as well as
provide some ideas for how the toolbox could be utilized in
future projects.

Analytical methods have the advantage of being fast, and
typically they only require a limited amount of computational
resources. The computational costs for calculating analytical
estimates of dynamical network properties like firing rates, as
opposed to the costs of running simulations of a network model,
are independent of the number of neurons the network is
composed of. This is especially relevant for parameter space
explorations, for which many simulations have to be performed.
To speed up prototyping, a modeler can first perform a parameter
scan using analytical tools from NNMT to get an estimate of
the right parameter regimes and subsequently run simulations
on this restricted set of parameters to arrive at the final model
parameters. An example of such a parameter scan is given in
Section 3.2.1, where the firing rates of a network are studied as
a function of the external input.

Additionally to speeding up parameter space explorations,
analytical methods may guide parameter space explorations in
another way: namely, by providing an analytical relation between
network model parameters and network dynamics, which allows
a targeted adjustment of specific parameters to achieve a desired

network activity. The prime example implemented in NNMT is
the sensitivity measure presented in Section 3.3.3, which provides
an intuitive relation between the network connectivity and the
peaks of the power spectrum corresponding to the dominant
oscillation frequencies. As shown in the final part of Section 3.3.3,
the sensitivity measure identifies the connections which need to
be adjusted in order to modify the dominant oscillation mode
in a desired manner. This illustrates a mean-field method that
provides a modeler with additional information about the origin
of a model’s dynamics, such that a parameter space exploration
can be restricted to the few identified crucial model parameters.

A modeler investigating which features of a network model
are crucial for the emergence of certain activity characteristics
observed in simulationsmight be interested in comparingmodels
of differing complexity. The respective mappings can be derived
in mean-field theory, and one variant included in NNMT, which
is presented in Section 3.4, allows mapping a LIF network to a
simpler rate network. This is useful to investigate whether spiking
dynamics is crucial for the observed phenomenon.

On a general note, which kind of questions researchers pursue
is limited by and therefore depends on the tools they have
at hand (Dyson, 2012). The availability of sophisticated neural
network simulators for example has lead to the development of
conceptually new and more complex neural network models,
precisely because their users could focus on actual research
questions instead of implementations. We hope that collecting
useful implementations of analytical tools for network model
analysis will have a similar effect on the development of new tools
and that it might lead to new, creative ways of applying them.

4.3. Limitations
As a collection of analytical methods, NNMT comes with
inherent limitations that apply to any toolbox for analytical
methods: it is restricted to network, neuron, and synapse models,
as well as observables, for which a mean-field theory exists, and
the tools are based on analytical assumptions, simplifications,
and approximations, restricting their valid parameter regimes
and their explanatory power, which we expand upon in the
next paragraphs.

Analytical methods can provide good estimates of network
model properties, but there are limitations that must be
considered when interpreting results provided by NNMT:
First of all, the employed numerical solvers introduce
numerical inaccuracies, but they can be remedied by changing
hyperparameters such as integration step sizes or iteration
termination thresholds. More importantly, analytical methods
almost always rely on approximations, which can only be justified
if certain assumptions are fulfilled. Typical examples of such
assumptions are fast or slow synapses, or a random connectivity.
If such assumptions are not met, at least approximately, and
the valid parameter regime of a tool is left, the corresponding
method is not guaranteed to give reliable results. Hence, it is
important to be aware of a tool’s limitations, which we aim to
document as thoroughly as possible.

An important assumption of mean-field theory is
uncorrelated Poissonian inputs. As discussed in Section 3.2.1,
asynchronous irregular activity is a robust feature of inhibition

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 835657151

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

dominated networks, and mean-field theory is well-suited to
describe the activity of such models. However, if a network
model features highly correlated activity, or strong external
input common to many neurons, approximating the input by
uncorrelated noise no longer holds and mean-field estimates
become unreliable.

In addition to the breakdown of such assumptions, some
approaches, like linear response theory, rely on neglecting higher
order terms. This restricts the tools’ explanatory power, as they
cannot predict higher order effects, such as the presence of higher
harmonics in a network’s power spectrum. Addressing these
deficiencies necessitates using more elaborate analyses, and users
should be aware of such limitations when interpreting the results.

Finally, a specific limitation of NNMT is that it currently only
collects methods for LIF neurons. However, one of the aims of
this paper is to encourage other scientists to contribute to the
collection, and we outline how to do so in the following section.

4.4. How to Contribute and Outlook
A toolbox like NNMT always is an ongoing project, and there are
various aspects that can be improved. In this section, we briefly
discuss how available methods could be improved, what and how
new tools could be added, as well as the benefits of implementing
a new method with the help of NNMT.

First of all, NNMT in its current state is partly vectorized
but the included methods are not parallelized, e.g., using
multiprocessing or MPI for Python (mpi4py). Vectorization
relies on NumPy (Harris et al., 2020) and SciPy (Virtanen
et al., 2020), which are thread-parallel for specific backends, e.g.,
IntelMKL. With the tools available in the toolbox at the moment,
run-time only becomes an issue in extensive parameter scans, for
instance, when the transfer function needs to be calculated for
a large range of frequencies. To further reduce the runtime, the
code could be made fully vectorized. Alternatively, parallelization
of many tools in NNMT is straightforward, as many of them
include for loops over the different populations of a network
model and for loops over the different analysis frequencies. A
third option is just-in-time compilation, as provided by Numba
(Lam et al., 2015).

Another aspect to consider is the range of network models a
tool can be applied to. Thus far, the toolbox primarily supports
arbitrary block structured networks. Future developments could
extend the class of networks to even more general models.

Due to the research focus at our lab, NNMT presently mainly
contains tools for LIF neurons in the fast synaptic regime and
networks with random connectivity. Nonetheless, the structure
of NNMT allows for adding methods for different neuron types,
like for example binary (Ginzburg and Sompolinsky, 1994)
or conductance-based neurons (Izhikevich, 2007; Richardson,
2007), as well as more elaborate network models. Another
way to improve the toolbox is adding tools that complement
the existing ones: As discussed in Section 4.3, many mean-
field methods only give valid results for certain parameter
ranges. Sometimes, there exist different approximations for the
same quantity, valid in complementary parameter regimes. A
concrete example is the currently implemented version of the
transfer function for leaky integrate-and-fire neurons, based

on Schuecker et al. (2015), which gives a good estimate for
small synaptic time constants compared to the membrane time
constant τs/τm≪1. A complementary estimate for τs/τm≫1 has
been developed by Moreno-Bote and Parga (2006). Similarly, the
current implementation of the firing rates of leaky integrate-and-
fire neurons, based on the work of Fourcaud and Brunel (2002),
is valid for τs/τm ≪ 1. Recently, van Vreeswijk and Farkhooi
(2019) have developed a method accurate for all combinations
of synaptic and membrane time constants.

In the following, we explain how such implementations
can be added and how using NNMT helps implementing
new methods. Clearly, the implementations of NNMT help
implementing methods that build on already existing ones. An
example is the firing rate for LIF neurons with exponential
synapses nnmt.lif.exp._firing_rates() which wraps
the calculation of firing rates for LIF neurons with delta synapses
nnmt.lif.delta._firing_rates(). Additionally, the
toolbox may support the implementation of tools for other
neuron models. As an illustration, let us consider adding the
computation of themean activity for a network of binary neurons
(included in NNMT 1.1.0). We start with the equations for the
mean input µa, its variance σ 2

a , and the firing rates m (Helias
et al., 2014, Equations 4, 6, and 7)

µa (m) =
∑

b

KabJabmb ,

σ 2
a (m) =

∑

b

KabJ
2
abmb (1−mb) , (19)

ma (µa, σa) =
1

2
erfc

(

2a − µa
√
2σa

)

,

with indegree matrix Kab from population b to population a,
synaptic weight matrix Jab, and firing-threshold2a. The sum

∑

b

may include an external population providing input to themodel.
This set of self-consistent equations has the same structure as
the self-consistent equations for the firing rates of a network
of LIF neurons, Equation (8): the input statistics are given as
functions of the rate, and the rate is given as a function of
the input statistics. Therefore, it is possible to reuse the firing
rate integration procedure for LIF neurons, providing immediate
access to the two different methods presented in Section 3.2.1.
Accordingly, it is sufficient to implement Equation (19) in a new
submodule nnmt.binary and apply the solver provided by
NNMT to extend the toolbox to binary neurons.

The above example demonstrates the benefits of collecting
analytical tools for network model analysis in a common
framework. The more methods and corresponding solvers
the toolbox comprises, the easier implementing new methods
becomes. Therefore, contributions to the toolbox are highly
welcome; this can be done via the standard pull request
workflow on GitHub (see the “Contributors guide” of the
official documentation of NNMT2). We hope that in the future,
many scientists will contribute to this collection of analytical
methods for neuronal network model analysis, such that, at some
point, we will have tools from all parts of mean-field theory

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2022 | Volume 16 | Article 835657152

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

of neuronal networks, made accessible in a usable format to
all neuroscientists.

DATA AVAILABILITY STATEMENT

Publicly available datasets were used in this study, and the
corresponding sources are cited in the main text. The toolbox’s
repository can be found at https://github.com/INM-6/nnmt, and
the parameter files used in the presented examples can be found
in the examples section of the online documentation https://
nnmt.readthedocs.io/en/latest/.

AUTHOR CONTRIBUTIONS

HB and MH developed and implemented the code base and
the initial version of the toolbox. ML, JS, and SE designed
the current version of the toolbox. ML implemented the
current version of the toolbox, vectorized and generalized
tools, developed and implemented the test suite, wrote the
documentation, and created the example shown in Section
3.2.2. AM improved the numerics of the firing rate integration
(Methods) and created the example shown in Section 3.2.1. SE
implemented integration tests, improved the functions related
to the sensitivity_measure, and created the examples
shown in Section 3.3. JS developed and implemented the tools

used in Section 3.4 and created the respective example. ML, JS,
SE, AM, and MH wrote this article. All authors approved the
submitted version.

FUNDING

This project has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and
Innovation under Specific Grant Agreement Nos. 720270 (HBP
SGA1), 785907 (HBP SGA2), and 945539 (HBP SGA3), has been
partially funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 368482240/GRK2416, and has
been partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 491111487. This
research was supported by the Joint Lab “Supercomputing and
Modeling for the Human Brain”.

ACKNOWLEDGMENTS

We would like to thank Jannis Schuecker, who has contributed
to the development and implementation of the code base and the
initial version of the toolbox, and Angela Fischer, who supported
us designing Figure 1. Additionally, we would also like to thank
our reviewers for the thorough and constructive feedback, which
lead to significant improvements.

REFERENCES

Abramowitz, M., and Stegun, I. A. (1974). Handbook of Mathematical Functions:

With Formulas, Graphs, and Mathematical Tables (New York: Dover

Publications).

Ahmadian, Y., and Miller, K. D. (2021). What is the dynamical regime

of cerebral cortex? Neuron 109, 3373–3391. doi: 10.1016/j.neuron.2021.

07.031

Amari, S.-I. (1975). Homogeneous nets of neuron-like elements. Biol. Cybern. 17,

211–220. doi: 10.1007/BF00339367

Amari, S.-I. (1977). Dynamics of pattern formation in lateral-inhibition type neural

fields. Biol. Cybern. 27, 77–87. doi: 10.1007/bf00337259

Amit, D. J., and Brunel, N. (1997a). Dynamics of a recurrent network of spiking

neurons before and following learning. Netw. Comp. Neural Sys. 8, 373–404.

doi: 10.1088/0954-898x_8_4_003

Amit, D. J. and Brunel, N. (1997b). Model of global spontaneous activity and local

structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7,

237–252. doi: 10.1093/cercor/7.3.237

Amit, D. J., and Tsodyks, M. V. (1991). Quantitative study of attractor neural

network retrieving at low spike rates I: substrate–spikes, rates and neuronal

gain. Network 2, 259. doi: 10.1088/0954-898X_2_3_003

Bos, H., Diesmann, M., and Helias, M. (2016). Identifying anatomical origins

of coexisting oscillations in the cortical microcircuit. PLOS Comput. Biol. 12,

e1005132. doi: 10.1371/journal.pcbi.1005132

Braitenberg, V. and Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal

Connectivity, 2nd Edn. Berlin: Springer-Verlag.

Bressloff, P. C. (2012). Spatiotemporal dynamics of continuum neural fields. J.

Phys. A 45, 033001. doi: 10.1088/1751-8113/45/3/033001

Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., and Wiener, M. C.

(2001). Geometric visual hallucinations, euclidean symmetry and the functional

architecture of striate cortex. Phil. Trans. R. Soc. B 356, 299–330. doi: 10.1098/

rstb.2000.0769

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and

inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208. doi: 10.1023/

a:1008925309027

Brunel, N., Chance, F. S., Fourcaud, N., and Abbott, L. F. (2001). Effects

of synaptic noise and filtering on the frequency response of spiking

neurons. Phys. Rev. Lett. 86, 2186–2189. doi: 10.1103/physrevlett.86.

2186

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of integrate-

and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671. doi: 10.

1162/089976699300016179

Brunel, N., and Latham, P. (2003). Firing rate of the noisy quadratic integrate-

and-fire neuron. Neural Comput. 15, 2281–2306. doi: 10.1162/089976603322

362365

Buice, M. A., and Chow, C. C. (2013). Beyond mean field theory:

statistical field theory for neural networks. J. Stat. Mech. 2013, P03003.

doi: 10.1088/1742-5468/2013/03/P03003

Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol.

Cybern. 93, 91–108. doi: 10.1007/s00422-005-0574-y

Coombes, S., bei Graben, P., Potthast, R., and Wright, J. (2014). Neural Fields.

Theory and Applications. Berlin; Heidelberg: Springer-Verlag.

Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E.

(1996). On the lambert w function. Adv. Comput. Math. 5, 329–359. doi: 10.

1007/BF02124750

Dahmen, D., Layer, M., Deutz, L., Dąbrowska, P. A., Voges, N., von Papen,

M., et al. (2022). Global organization of neuronal activity only requires

unstructured local connectivity. eLife 11, e68422. doi: 10.7554/eLife.684

22.sa0

Dasbach, S., Tetzlaff, T., Diesmann, M., and Senk, J. (2021). Dynamical

characteristics of recurrent neuronal networks are robust against low synaptic

weight resolution. Front. Neurosci. 15, 757790. doi: 10.3389/fnins.2021.

757790

DeFelipe, J., Alonso-Nanclares, L., and Arellano, J. (2002). Microstructure of

the neocortex: comparative aspects. J. Neurocytol. 31, 299–316. doi: 10.1023/

A:1024130211265

Doedel, E. J., and Oldeman, B. (1998). Auto-07p: Continuation and Bifurcation

Software.Montreal, QC: Concordia University Canada

Dyson, F. J. (2012). Is science mostly driven by ideas or by tools? Science 338,

1426–1427. doi: 10.1126/science.1232773

Frontiers in Neuroinformatics | www.frontiersin.org 18 May 2022 | Volume 16 | Article 835657153

https://github.com/INM-6/nnmt
https://nnmt.readthedocs.io/en/latest/
https://nnmt.readthedocs.io/en/latest/
https://doi.org/10.1016/j.neuron.2021.07.031
https://doi.org/10.1007/BF00339367
https://doi.org/10.1007/bf00337259
https://doi.org/10.1088/0954-898x_8_4_003
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1088/0954-898X_2_3_003
https://doi.org/10.1371/journal.pcbi.1005132
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1098/rstb.2000.0769
https://doi.org/10.1023/a:1008925309027
https://doi.org/10.1103/physrevlett.86.2186
https://doi.org/10.1162/089976699300016179
https://doi.org/10.1162/089976603322362365
https://doi.org/10.1088/1742-5468/2013/03/P03003
https://doi.org/10.1007/s00422-005-0574-y
https://doi.org/10.1007/BF02124750
https://doi.org/10.7554/eLife.68422.sa0
https://doi.org/10.3389/fnins.2021.757790
https://doi.org/10.1023/A:1024130211265
https://doi.org/10.1126/science.1232773
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems:

A Guide to Xppaut for Researchers and Students (Software, Environments,

Tools). Philadelphia, PA: Society for Industrial and Applied Mathematics.

Ermentrout, G. B., and Cowan, J. D. (1979). A mathematical theory of visual

hallucination patterns. Biol. Cybern. 34, 137–150. doi: 10.1007/BF00336965

Fourcaud, N., and Brunel, N. (2002). Dynamics of the firing probability of

noisy integrate-and-fire neurons. Neural Comput. 14, 2057–2110. doi: 10.1162/

089976602320264015

Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., and Brunel, N.

(2003). How spike generation mechanisms determine the neuronal

response to fluctuating inputs. J. Neurosci. 23, 11628–11640.

doi: 10.1523/JNEUROSCI.23-37-11628.2003

Gast, R., Rose, D., Salomon, C., Möller, H. E., Weiskopf, N., and Knösche, T. R.

(2019). Pyrates - a python framework for rate-based neural simulations. PLoS

ONE 14, e0225900. doi: 10.1371/journal.pone.0225900

Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics.

From Single Neurons to Networks and Models of Cognition. Cambridge:

Cambridge University Press.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (nEural simulation tool).

Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Giese, M. A. (2012). Dynamic Neural Field Theory for Motion Perception, Vol. 469.

Berlin; Heidelberg: Springer Science & Business Media)

Ginzburg, I., and Sompolinsky, H. (1994). Theory of correlations in stochastic

neural networks. Phys. Rev. E 50, 3171–3191. doi: 10.1103/PhysRevE.50.3171

Goldenfeld, N. (1992). Lectures on Phase Transitions and the Renormalization

Group. Reading, MA: Perseus books.

Golosio, B., Tiddia, G., Luca, C. D., Pastorelli, E., Simula, F., and Paolucci, P. S.

(2021). Fast simulations of highly-connected spiking cortical models using

GPUs. Front. Comput. Neurosci. 15, 627620. doi: 10.3389/fncom.2021.627620

Grabska-Barwinska, A., and Latham, P. (2014). How well do mean field theories

of spiking quadratic-integrate-and-fire networks work in realistic parameter

regimes? J. Comput. Neurosci. 36, 469–481. doi: 10.1007/s10827-013-0481-5

Grytskyy, D., Tetzlaff, T., Diesmann, M., and Helias, M. (2013). A unified view on

weakly correlated recurrent networks. Front. Comput. Neurosci. 7, 131. doi: 10.

3389/fncom.2013.00131

Hagen, E., Dahmen, D., Stavrinou, M. L., Lindén, H., Tetzlaff, T., van Albada,

S. J., et al. (2016). Hybrid scheme for modeling local field potentials from

point-neuron networks. Cereb. Cortex 26, 4461–4496. doi: 10.1093/cercor/

bhw237

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,

357–362. doi: 10.1038/s41586-020-2649-2

Heitmann, S., Aburn,M. J., and Breakspear,M. (2018). The brain dynamics toolbox

for matlab. Neurocomputing 315, 82–88. doi: 10.1016/j.neucom.2018.06.026

Helias, M., Tetzlaff, T., and Diesmann,M. (2014). The correlation structure of local

cortical networks intrinsically results from recurrent dynamics. PLoS Comput.

Biol. 10, e1003428. doi: 10.1371/journal.pcbi.1003428

Hertz, J. (2010). Cross-correlations in high-conductance states of a model cortical

network. Neural Comput. 22, 427–447. doi: 10.1162/neco.2009.06-08-806

Hines, M. L., and Carnevale, N. T. (2001). NEURON: a tool for neuroscientists.

Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of

Excitability and Bursting. Cambridge, MA: MIT Press.

Jirsa, V. K., and Haken, H. (1996). Field theory of electromagnetic brain activity.

Phys. Rev. Lett. 77, 960. doi: 10.1103/PhysRevLett.77.960

Jirsa, V. K., and Haken, H. (1997). A derivation of a macroscopic field theory of

the brain from the quasi-microscopic neural dynamics. Phys. D 99, 503–526.

doi: 10.1016/S0167-2789(96)00166-2

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC and

neuromorphic solutions in terms of speed and energy when simulating a

highly-connected cortical model. Front. Neurosci. 12, 941. doi: 10.3389/fnins.

2018.00941

Laing, C. R., and Troy, W. C. (2003). Two-bump solutions of amari-

type models of neuronal pattern formation. Phys. D 178, 190–218.

doi: 10.1016/S0167-2789(03)00013-7

Laing, C. R., Troy, W. C., Gutkin, B., and Ermentrout, B. G. (2002). Multiple

bumps in a neuronal model of workingmemory. SIAM J. Appl. Math. 63, 62–97.

doi: 10.1137/s0036139901389495

Lam, S. K., Pitrou, A., and Seibert, S. (2015). “Numba: a llvm-based python

jit compiler,” in Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC, Austin, TX, 1–6

Layer, M., Senk, J., Essink, S., van Meegen, A., Bos, H., and Helias, M. (2021).

NNMT (1.0.0). Zenodo. doi: 10.5281/zenodo.5779548

Lindner, B. (2004). Interspike interval statistics of neurons driven by colored

noise. Phys. Rev. E 69, 0229011–0229014. doi: 10.1103/PhysRevE.69.02

2901

Lindner, B., Doiron, B., and Longtin, A. (2005). Theory of oscillatory firing induced

by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E 72,

061919. doi: 10.1103/physreve.72.061919

Lindner, B., and Longtin, A. (2005). Effect of an exponentially decaying threshold

on the firing statistis of a stochastic integate-and-fire neuron. J. Theor. Biol. 232,

505–521. doi: 10.1016/j.jtbi.2004.08.030

Lindner, B., and Schimansky-Geier, L. (2001). Transmission of noise coded versus

additive signals through a neuronal ensemble. Phys. Rev. Lett. 86, 2934–2937.

doi: 10.1103/physrevlett.86.2934

Mattia, M., Biggio, M., Galluzzi, A., and Storace, M. (2019). Dimensional

reduction in networks of non-markovian spiking neurons: Equivalence of

synaptic filtering and heterogeneous propagation delays. PLoS Comput. Biol.

15, e1007404. doi: 10.1371/journal.pcbi.1007404

Montbrió, E., Pazó, D., and Roxin, A. (2015). Macroscopic description for

networks of spiking neurons. Phys Rev X 5, 021028. doi: 10.1103/PhysRevX.

5.021028

Moreno-Bote, R., and Parga, N. (2006). Auto- and crosscorrelograms for the spike

response of leaky integrate-and-fire neurons with slow synapses. Phys. Rev. Lett.

96, 028101. doi: 10.1103/PhysRevLett.96.028101

Nunez, P. L. (1974). The brain wave equation: a model for the eeg.Math. Biosci. 21,

279–297. doi: 10.1016/0025-5564(74)90020-0

Olver, F. W. J., Olde Daalhuis, A. B., Lozier, D. W., Schneider, B. I., Boisvert, R. F.,

Clark, C. W., et al. (2021). NIST Digital Library of Mathematical Functions.

Available online at: http://dlmf.nist.gov/

Ostojic, S. (2014). Two types of asynchronous activity in networks of excitatory and

inhibitory spiking neurons. Nat. Neurosci. 17, 594–600. doi: 10.1038/nn.3658

Ostojic, S., and Brunel, N. (2011). From spiking neuronmodels to linear-nonlinear

models. PLoS Comput. Biol. 7, e1001056. doi: 10.1371/journal.pcbi.1001056

Pernice, V., Staude, B., Cardanobile, S., and Rotter, S. (2011). How structure

determines correlations in neuronal networks. PLoS Comput. Biol. 7, e1002059.

doi: 10.1371/journal.pcbi.1002059

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007).

Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge

University Press.

Rajan, K., and Abbott, L. F. (2006). Eigenvalue spectra of random

matrices for neural networks. Phys. Rev. Lett. 97, 188104.

doi: 10.1103/PhysRevLett.97.188104

Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A.,

et al. (2010). The asynchronous state in cortical circuits. Science 327, 587–590.

doi: 10.1126/science.1179850

Richardson, M. J. E. (2007). Firing-rate response of linear and nonlinear integrate-

and-fire neurons to modulated current-based and conductance-based synaptic

drive. Phys. Rev. E 76, 1–15. doi: 10.1103/PhysRevE.76.021919

Richardson, M. J. E. (2008). Spike-train spectra and network response

functions for non-linear integrate-and-fire neurons. Biol. Cybern. 99, 381–392.

doi: 10.1007/s00422-008-0244-y

Riquelme, J. L., and Gjorgjieva, J. (2021). Towards readable code in neuroscience.

Nat. Rev. Neurosci. 22, 257–258. doi: 10.1038/s41583-021-00450-y

Rosenbaum, R. and Doiron, B. (2014). Balanced networks of spiking neurons with

spatially dependent recurrent connections. Phys. Rev. X 4, 021039. doi: 10.1103/

PhysRevX.4.021039

Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E., and Doiron, B. (2017). The

spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114.

doi: 10.1038/nn.4433

Sanz Leon, P., Knock, S., Woodman, M., Domide, L., Mersmann, J., McIntosh, A.,

et al. (2013). The virtual brain: a simulator of primate brain network dynamics.

Front. Neuroinform. 7, 10. doi: 10.3389/fninf.2013.00010

Frontiers in Neuroinformatics | www.frontiersin.org 19 May 2022 | Volume 16 | Article 835657154

https://doi.org/10.1007/BF00336965
https://doi.org/10.1162/089976602320264015
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1371/journal.pone.0225900
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1103/PhysRevE.50.3171
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1007/s10827-013-0481-5
https://doi.org/10.3389/fncom.2013.00131
https://doi.org/10.1093/cercor/bhw237
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.neucom.2018.06.026
https://doi.org/10.1371/journal.pcbi.1003428
https://doi.org/10.1162/neco.2009.06-08-806
https://doi.org/10.1177/107385840100700207
https://doi.org/10.1103/PhysRevLett.77.960
https://doi.org/10.1016/S0167-2789(96)00166-2
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1016/S0167-2789(03)00013-7
https://doi.org/10.1137/s0036139901389495
https://doi.org/10.5281/zenodo.5779548
https://doi.org/10.1103/PhysRevE.69.022901
https://doi.org/10.1103/physreve.72.061919
https://doi.org/10.1016/j.jtbi.2004.08.030
https://doi.org/10.1103/physrevlett.86.2934
https://doi.org/10.1371/journal.pcbi.1007404
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevLett.96.028101
https://doi.org/10.1016/0025-5564(74)90020-0
http://dlmf.nist.gov/
https://doi.org/10.1038/nn.3658
https://doi.org/10.1371/journal.pcbi.1001056
https://doi.org/10.1371/journal.pcbi.1002059
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1103/PhysRevLett.97.188104
https://doi.org/10.1126/science.1179850
https://doi.org/10.1103/PhysRevE.76.021919
https://doi.org/10.1007/s00422-008-0244-y
https://doi.org/10.1038/s41583-021-00450-y
https://doi.org/10.1103/PhysRevX.4.021039
https://doi.org/10.1038/nn.4433
https://doi.org/10.3389/fninf.2013.00010
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

Sanzeni, A., Histed, M. H., and Brunel, N. (2020). Response nonlinearities

in networks of spiking neurons. PLOS Comput. Biol. 16, e1008165.

doi: 10.1371/journal.pcbi.1008165

Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada, S. J.

(2018). Multi-scale account of the network structure of macaque visual cortex.

Brain Struct. Func. 223, 1409–1435. doi: 10.1007/s00429-017-1554-4

Schöner, G. (2008). “Dynamical systems approaches to cognition,” in Cambridge

Handbook of Computational Cognitive Modeling. Cambridge: Cambridge

University Press, 101–126.

Schuecker, J., Diesmann, M., and Helias, M. (2014). Reduction of colored

noise in excitable systems to white noise and dynamic boundary conditions.

arXiv[Preprint].arXiv:1410.8799. doi: 10.48550/arXiv.1410.8799

Schuecker, J., Diesmann, M., and Helias, M. (2015). Modulated escape from a

metastable state driven by colored noise. Phys. Rev. E 92, 052119. doi: 10.1103/

PhysRevE.92.052119

Schuecker, J., Goedeke, S., and Helias, M. (2018). Optimal sequence memory in

driven random networks. Phys. Rev. X 8, 041029. doi: 10.1103/PhysRevX.8.

041029

Schwalger, T., Deger, M., and Gerstner, W. (2017). Towards a theory of cortical

columns: From spiking neurons to interacting neural populations of finite size.

PLoS Comput. Biol. 13, e1005507. doi: 10.1371/journal.pcbi.1005507

Schwalger, T., Droste, F., and Lindner, B. (2015). Statistical structure of neural

spiking under non-poissonian or other non-white stimulation. J. Comput.

Neurosci. 39, 29. doi: 10.1007/s10827-015-0560-x

Sejnowski, T. (1976). On the stochastic dynamics of neuronal interaction. Biol.

Cybern. 22, 203–211. doi: 10.1007/BF00365086

Senk, J., Korvasová, K., Schuecker, J., Hagen, E., Tetzlaff, T., Diesmann, M., et al.

(2020). Conditions for wave trains in spiking neural networks. Phys. Rev. Res.

2, 023174. doi: 10.1103/physrevresearch.2.023174

Senk, J., Kriener, B., Djurfeldt, M., Voges, N., Jiang, H.-J., Schüttler, L., et al.

(in press). Connectivity concepts in neuronal network modeling. PLOS

Comput. Biol.

Sherfey, J. S., Soplata, A. E., Ardid, S., Roberts, E. A., Stanley, D. A., Pittman-

Polletta, B. R., et al. (2018). Dynasim: a matlab toolbox for neural modeling

and simulation. Front. Neuroinform. 12, 10. doi: 10.3389/fninf.2018.00010

Siegert, A. J. (1951). On the first passage time probability problem. Phys. Rev. 81,

617–623. doi: 10.1103/PhysRev.81.617

Sompolinsky, H., Crisanti, A., and Sommers, H. J. (1988). Chaos in random neural

networks. Phys. Rev. Lett. 61, 259–262. doi: 10.1103/PhysRevLett.61.259

Stiller, J., and Radons, G. (1998). Dynamics of nonlinear oscillators with random

interactions. Phys. Rev. E 58, 1789. doi: 10.1103/PhysRevE.58.1789

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8, e47314. doi: 10.7554/elife.47314

Tetzlaff, T., Helias, M., Einevoll, G. T., and Diesmann, M. (2012). Decorrelation

of neural-network activity by inhibitory feedback. PLOS Comput. Biol. 8,

e1002596. doi: 10.1371/journal.pcbi.1002596

Toyoizumi, T., and Abbott, L. F. (2011). Beyond the edge of chaos: Amplification

and temporal integration by recurrent networks in the chaotic regime. Phys.

Rev. E 84, 051908. doi: 10.1103/PhysRevE.84.051908

Trousdale, J., Hu, Y., Shea-Brown, E., and Josic, K. (2012). Impact of network

structure and cellular response on spike time correlations. PLoS Comput. Biol.

8, e1002408. doi: 10.1371/journal.pcbi.1002408

Tuckwell, H. C. (1988). Introduction to Theoretical Neurobiology, Vol. 2

Cambridge: Cambridge University Press.

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes, A. B.,

et al. (2018). Performance comparison of the digital neuromorphic hardware

SpiNNaker and the neural network simulation software NEST for a full-scale

cortical microcircuit model. Front. Neurosci. 12, 291. doi: 10.3389/fnins.2018.

00291

van Meegen, A., and Lindner, B. (2018). Self-consistent correlations of randomly

coupled rotators in the asynchronous state. Phys. Rev. Lett. 121, 258302. doi: 10.

1103/PhysRevLett.121.258302

van Vreeswijk, C., and Farkhooi, F. (2019). Fredholm theory for the mean first-

passage time of integrate-and-fire oscillators with colored noise input. Phys.

Rev. E 100, 060402. doi: 10.1103/PhysRevE.100.060402

van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks with

balanced excitatory and inhibitory activity. Science 274, 1724–1726. doi: 10.

1126/science.274.5293.1724

van Vreeswijk, C., and Sompolinsky, H. (1998). Chaotic balanced state in a

model of cortical circuits. Neural Comput. 10, 1321–1371. doi: 10.1162/

089976698300017214

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,

Cournapeau, D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific

computing in python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-

0686-2

Wagatsuma, N., Potjans, T. C., Diesmann, M., and Fukai, T. (2011). Layer-

dependent attentional processing by top-down signals in a visual cortical

microcircuit model. Front. Comput. Neurosci. 5, 31. doi: 10.3389/fncom.2011.

00031

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interactions in

localized populations of model neurons. Biophys. J. 12, 1 – 24. doi: 10.1016/

S0006-3495(72)86068-5

Wilson, H. R., and Cowan, J. D. (1973). A mathematical theory of the functional

dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80. doi: 10.

1007/BF00288786

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Layer, Senk, Essink, van Meegen, Bos and Helias. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2022 | Volume 16 | Article 835657155

https://doi.org/10.1371/journal.pcbi.1008165
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.48550/arXiv.1410.8799
https://doi.org/10.1103/PhysRevE.92.052119
https://doi.org/10.1103/PhysRevX.8.041029
https://doi.org/10.1371/journal.pcbi.1005507
https://doi.org/10.1007/s10827-015-0560-x
https://doi.org/10.1007/BF00365086
https://doi.org/10.1103/physrevresearch.2.023174
https://doi.org/10.3389/fninf.2018.00010
https://doi.org/10.1103/PhysRev.81.617
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevE.58.1789
https://doi.org/10.7554/elife.47314
https://doi.org/10.1371/journal.pcbi.1002596
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1371/journal.pcbi.1002408
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1103/PhysRevLett.121.258302
https://doi.org/10.1103/PhysRevE.100.060402
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1038/s41592-019-\penalty -\@M {}0686-2
https://doi.org/10.3389/fncom.2011.00031
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1007/BF00288786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

A. APPENDIX

A.1. Siegert Implementation
Here, we describe how we solve the integral in Equation (4)
numerically in a fully vectorized manner. The difficulty in
Equation (4), φ(µ, σ) = 1/[τr + τm

√
πI(˜V0,˜Vth)] where

˜V0 = ˜V0(µ, σ) and ˜Vth = ˜Vth(µ, σ) are determined
by either Equation (5) or Equation (10), is posed by
the integral

I(˜V0,˜Vth) =

∫

˜Vth

˜V0

es
2
(1+ erf(s))ds. (A1)

This integral is problematic due to the multiplication of es
2
and

1 + erf(s) in the integrand which leads to overflow and loss of
significance.

To address this, we split the integral into different
domains depending on the sign of the integration
variable. Furthermore, we use the scaled complementary
error function

erf(s) = 1− e−s2erfcx(s) (A2)

to extract the leading exponential contribution. Importantly,
erfcx(s) decreases monotonically from erfcx(0) = 1 with
power law asymptotics erfcx(s) ∼ 1/(

√
πs), hence it does

not contain any exponential contribution. For positive s, the
exponential contribution in the prefactor of erfcx(s) cancels

the es
2
factor in the integrand. For negative s, the integrand

simplifies even further to es
2
(1 + erf(−s)) = erfcx(s) using

erf(−s) = −erf(s). In addition to erfcx(s), we employ the
Dawson function

D(s) = e−s2
∫ s

0
er

2
dr (A3)

to solve some of the integrals analytically. The Dawson
function has a power law tail, D(s) ∼ 1/(2s); hence, it
also does not carry an exponential contribution. Both erfcx(s)
and the Dawson function are fully vectorized in SciPy
(Virtanen et al., 2020).

Any remaining integrals are solved using Gauss–Legendre
quadrature (Press et al., 2007). By construction, Gauss–Legendre
quadrature of order k solves integrals of polynomials up to degree
k on the interval [−1, 1] exactly. Thus, it gives very good results if
the integrand is well approximated by a polynomial of degree k.
The quadrature rule itself is

∫ b

a
f (s)ds ≈

b− a

2

k
∑

i=1

wif

(

b− a

2
ui +

b+ a

2

)

, (A4)

where the ui are the roots of the Legendre polynomial of order
k and the wi are appropriate weights such that a polynomial of
degree k is integrated exactly. We use a fixed order quadrature for
which Equation (A4) is straightforward to vectorize to multiple
a and b. We determine the order of the quadrature iteratively
by comparison with an adaptive quadrature rule; usually, a small
order k = O(10) already yields very good results for an erfcx(s)
integrand.

Inhibitory Regime
First, we consider the case where lower and upper bound of
the integral are positive, 0 < ˜V0 < ˜Vth. This corresponds
to strongly inhibitory mean input. Expressing the integrand in
terms of erfcx(s) and using the Dawson function, we get

Iinh(˜V0,˜Vth) = 2e
˜V2
thD(˜Vth)− 2e

˜V2
0D(˜V0)−

∫

˜Vth

˜V0

erfcx(s)ds.

The remaining integral is evaluated using Gauss–Legendre
quadrature, Equation (A4). We extract the leading contribution

e
˜V2
th from the denominator in Equation (4) and arrive at

φ(µ, σ) =
e−
˜V2
th

τre
−˜V2

th + τm
√

π

(

e−
˜V2
th Iinh(˜V0,˜Vth)

) . (A5)

Extracting e
˜V2
th from the denominator reduces the latter

to 2τm
√

πD(˜Vth) and exponentially small correction terms
(remember 0 < ˜V0 < ˜Vth becauseV0 < Vth), thereby preventing
overflow.

Excitatory Regime
Second, we consider the case where lower and upper bound of
the integral are negative, ˜V0 < ˜Vth < 0. This corresponds
to strongly excitatory mean input. In this regime, we change
variables s → −s to make the domain of integration positive.
Using erf(−s) = −erf(s) as well as erfcx(s), we get

Iexc(˜V0,˜Vth) =

∫ |˜V0|

|˜Vth|

erfcx(s)ds.

Thus, we evaluate Equation (4) as

φ(µ, σ) =
1

τr + τm
√

π
∫ |˜V0|

|˜Vth|
erfcx(s)ds

. (A6)

In particular, there is no exponential contribution involved in this
regime.

Intermediate Regime
Last, we consider the remaining case ˜V0 ≤ 0 ≤ ˜Vth. We split the
integral at zero and use the previous steps for the respective parts
to get

Iinterm(˜V0,˜Vth) = 2e
˜V2
thD(˜Vth)+

∫ |˜V0|

˜Vth

erfcx(s)ds.

Note that the sign of the second integral depends on whether
|˜V0| > ˜Vth (+) or not (−). Again, we extract the leading

contribution e
˜V2
th from the denominator in Equation (4) and

arrive at

φ(µ, σ) =
e−
˜V2
th

τre
−˜V2

th + τm
√

π

(

e−
˜V2
th Iinterm(˜V0,˜Vth)

) . (A7)

As before, extracting e
˜V2
th from the denominator prevents

overflow.

Frontiers in Neuroinformatics | www.frontiersin.org 21 May 2022 | Volume 16 | Article 835657156

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Layer et al. Neuronal Network Mean-Field Toolbox

Deterministic Limit
The deterministic limit σ → 0 corresponds to |˜V0|, |˜Vth| → ∞

for both Equation (5) and Equation (10). In the inhibitory and the
intermediate regime, we see immediately that φ(µ, σ → 0) → 0

due to the dominant contribution e−
˜V2
th . In the excitatory regime,

we use the asymptotics erfcx(s) ∼ 1/(
√

πs) to get

I(˜V0,˜Vth) →

∫ |˜V0|

|˜Vth|

1
√

πs
ds =

1
√

π
ln

|˜V0|

|˜Vth|
.

Inserting this into Equation (4) yields

φ(µ, σ) →

1

τr+τm ln
µ−V0
µ−Vth

if µ > Vth

0 otherwise
, (A8)

which is the firing rate of a leaky integrate-and-fire neuron
driven by a constant input (Gerstner et al., 2014). Thus, this
implementation also tolerates the deterministic limit of a very
small noise intensity σ .

TABLE A1 | Microcircuit Parameters.

Symbol Value (Potjans and

Diesmann, 2014)

Value (Bos

et al., 2016)

Description

K4E,4I 795 675 In-degree from 4I to 4E

K4E,ext 2100 1780 External in-degree to 4E

D(ω) none truncated

Gaussian

Delay distribution

de ± δde 1.5± 0.75ms 1.5± 1.5ms Mean and standard

deviation of excitatory

delay

di ± δdi 0.75± 0.375ms 0.75±

0.75ms

Mean and standard

deviation of inhibitory

delay

Parameter adaptions used here are introduced by Bos et al. (2016) compared to original

microcircuit model. Kij denotes the in-degrees from population j to population i. The delays

in the simulated networks were drawn from a truncated Gaussian distribution with the

given mean and standard deviation. The mean-field approximation of the microcircuit by

Potjans and Diesmann (2014) assumes the delay to be fixed at the mean value, which is

specified in the toolbox by setting the parameter delay_dist to none.

A.2. Transfer Function Notations
In Section 3.3.1 we introduce the analytical form of the
transfer function implemented in the toolbox. Schuecker
et al. (2015), derive a more general form of the transfer
function, which includes a modulation of the variance
of the input. Here we compare the notation used in
Equation (11) to the notation used in Schuecker et al. (2015, Eq.
29).

Schuecker et al. (2015) define the modulations of input mean
and variance as

µ(t) = µ + ǫµ eiωt , (A9)

σ 2(t) = σ 2 +Hσ 2 eiωt ,

and introduce the transfer function in terms of its influence on
the firing rate

ν(t)/ν0 = 1+ n (ω) eiωt ,

where ν0 is the stationary firing rate. Here the transfer
function n (ω) includes contributions of both the modulation
of the mean nG(ω) ∝ ǫ and the modulation of the
variance nH(ω) ∝ H. We write the modulation of the
mean as

µ(t) = µ + δµ eiωt ,

implying that δµ corresponds to ǫµ in Equation (A9). As we
only consider the modulation of the mean, the firing rate can be
rewritten as

ν(t) = ν + N (ω) δµ eiωt ,

where we moved the stationary firing rate ν to the right hand
side and included it in the definition of the transfer function
N (ω). In the main text we emphasize that µ(t) and ν(t) are
physical quantities by only considering the real part of complex
contributions. Additionally, we swap the voltage boundaries in
Equation (11), introducing a canceling sign change in both
the numerator and the denominator. This reformulation was
chosen to align the presented formula with the implementation in
the toolbox.

Frontiers in Neuroinformatics | www.frontiersin.org 22 May 2022 | Volume 16 | Article 835657157

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 1

TECHNOLOGY AND CODE
published: 14 June 2022

doi: 10.3389/fninf.2022.883223

Edited by:
Mike Hawrylycz,

Allen Institute for Brain Science,
United States

Reviewed by:
Seok Jun Hong,

Sungkyunkwan University,
South Korea

Lester Melie-Garcia,
University of Basel, Switzerland

*Correspondence:
Kelly Shen

kelly_shen@sfu.ca

†These authors have contributed
equally to this work and share first

authorship

Received: 24 February 2022
Accepted: 26 May 2022

Published: 14 June 2022

Citation:
Frazier-Logue N, Wang J,

Wang Z, Sodums D, Khosla A,
Samson AD, McIntosh AR and

Shen K (2022) A Robust Modular
Automated Neuroimaging Pipeline

for Model Inputs to TheVirtualBrain.
Front. Neuroinform. 16:883223.
doi: 10.3389/fninf.2022.883223

A Robust Modular Automated
Neuroimaging Pipeline for Model
Inputs to TheVirtualBrain
Noah Frazier-Logue1,2†, Justin Wang1†, Zheng Wang1, Devin Sodums1,3, Anisha Khosla1,4,
Alexandria D. Samson1,4, Anthony R. McIntosh1,2,4,5 and Kelly Shen1,2*

1 Rotman Research Institute, Baycrest, Toronto, ON, Canada, 2 Institute for Neuroscience and Neurotechnology, Simon
Fraser University, Burnaby, BC, Canada, 3 Kunin-Lunenfeld Centre for Applied Research and Innovation, Baycrest, Toronto,
ON, Canada, 4 Department of Psychology, University of Toronto, Toronto, ON, Canada, 5 Department of Biomedical
Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada

TheVirtualBrain, an open-source platform for large-scale network modeling, can be
personalized to an individual using a wide range of neuroimaging modalities. With the
growing number and scale of neuroimaging data sharing initiatives of both healthy
and clinical populations comes an opportunity to create large and heterogeneous sets
of dynamic network models to better understand individual differences in network
dynamics and their impact on brain health. Here we present TheVirtualBrain-UK
Biobank pipeline, a robust, automated and open-source brain image processing
solution to address the expanding scope of TheVirtualBrain project. Our pipeline
generates connectome-based modeling inputs compatible for use with TheVirtualBrain.
We leverage the existing multimodal MRI processing pipeline from the UK Biobank
made for use with a variety of brain imaging modalities. We add various features and
changes to the original UK Biobank implementation specifically for informing large-
scale network models, including user-defined parcellations for the construction of
matching whole-brain functional and structural connectomes. Changes also include
detailed reports for quality control of all modalities, a streamlined installation process,
modular software packaging, updated software versions, and support for various
publicly available datasets. The pipeline has been tested on various datasets from
both healthy and clinical populations and is robust to the morphological changes
observed in aging and dementia. In this paper, we describe these and other pipeline
additions and modifications in detail, as well as how this pipeline fits into the
TheVirtualBrain ecosystem.

Keywords: magnetic resonance imaging, structural connectivity, functional connectivity, connectome-based
modelling, large-scale networks

INTRODUCTION

Neuroimaging data sharing initiatives have expanded substantially in the last decade. Multimodal
data collection initiatives like the Human Connectome Project (HCP; Van Essen et al., 2013), UK
Biobank (Sudlow et al., 2015), and Alzheimer’s Disease Neuroimaging Initiative (ADNI; Mueller
et al., 2005), among others, allow for promising new avenues of neuroscientific research that

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 883223158

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.883223
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2022.883223
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.883223&domain=pdf&date_stamp=2022-06-14
https://www.frontiersin.org/articles/10.3389/fninf.2022.883223/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 2

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

connect different scales of measurement across large samples.
While many efforts are being made to analyze these large datasets
to better understand the inner workings of the brain and,
specific to neurological disorders, identify effective biomarkers
of disease, their potential for creating large and heterogeneous
sets of personalized generative models is not yet fully realized.
TheVirtualBrain (TVB) is an open source software platform for
large-scale network modeling (Sanz Leon et al., 2013; Sanz-
Leon et al., 2015), where models can be personalized to an
individual using a wide range of neuroimaging modalities.
Creating personalized models in TVB from large multimodal
neuroimaging datasets will allow us to not only better understand
individual differences in network dynamics but also allow for
the interrogation of mechanisms of disease across large and
heterogeneous samples.

For modeling large-scale brain networks, TVB requires,
as input, a structural connectivity matrix that represents the
anatomical wiring of the brain. In humans, this is often
derived from anatomical (T1w) and diffusion-weighted magnetic
resonance imaging (dMRI) tractography and specified as the
long-range connections between brain regions of interest (ROIs).
Optional inputs for TVB models include the cortical surface
for surface-based models (e.g., Spiegler et al., 2016), and
functional data (e.g., BOLD-fMRI responses, M/EEG activity,
functional connectivity) for model input (e.g., Schirner et al.,
2018) or parameter fitting (e.g., Shen et al., 2019a), parcellated
into the same ROIs as the structural connectivity. A software
pipeline for processing large datasets for TVB, then, would
ideally be automated and able to preprocess multiple imaging
modalities into a set of matching parcellated inputs for TVB.
Existing popular MRI processing pipelines include fMRIPrep
for anatomical and fMRI data (Esteban et al., 2019), and HCP’s
Minimal Preprocessing Pipeline for anatomical, fMRI and dMRI
data (Glasser et al., 2013). HCP’s pipeline is especially well-
suited for higher resolution images and relies on the FreeSurfer
software package (Fischl, 2012) for working with the cortical
surface. An existing empirical data processing pipeline already
exists for processing anatomical, fMRI and dMRI data for
TVB inputs, and also relies on FreeSurfer-generated surfaces
(Schirner et al., 2015).

Data re-use of publicly-available datasets offers great promise
for improving both accessibility and replicability. Within the
scope of connectome-based modeling, these data also present
the opportunity to generate models that capture a population-
level understanding that no single empirical dataset can offer.
However, considerations for data processing and analysis of
data acquired using older protocols and in special populations
are warranted. For example, a user may wish to avoid the
projection of lower resolution data (e.g., fMRI) to cortical surface
vertices (Alfaro-Almagro et al., 2018). With data from aging
and clinical populations, FreeSurfer tissue-class segmentations
can also be inaccurate and may require manual intervention
(McCarthy et al., 2015; Henschel et al., 2020; Srinivasan et al.,
2020), something that is not reasonably feasible with large
samples. Moreover, with automated processing, a quality control
(QC) workflow that detects processing inaccuracies is also
needed. This is especially important for aging and clinical

datasets where inaccuracies in preprocessing MRI data are
common due to differences in brain morphology and image
contrast. The HCP pipeline can be used with an fMRI QC
pipeline that computes summary statistics to capture signal
quality and subject motion of fMRI scans (Marcus et al.,
2013). QC of other imaging modalities (e.g., T1w, dMRI)
processed with the HCP pipeline relies on extensive manual
inspection of raw and processed images. MRIQC (Esteban
et al., 2017) is an fMRIPrep-compatible software package
that computes image-based metrics for raw or minimally-
processed T1w and fMRI data. It outputs a set of HTML-
based reports of the individual and group-wise summary
metrics to allow identification of outlier images. MRIQC also
offers an automated pass-fail classification of T1w images.
These existing tools, however, do not allow for identification
for common preprocessing errors such as poor tissue-class
segmentation, and poor registrations to templates and across
modalities. Often, these errors are detected via detailed manual
QC but the visual inspection of hundreds to thousands of
subject’s processed multi-modal data derivatives is unfeasible
and a streamlined QC workflow at the scale of such large
datasets is needed.

The UK Biobank offers an alternative multi-modal MRI
(anatomical, fMRI, dMRI, susceptibility-weighted MRI)
processing pipeline that mostly relies on tools from the FMRIB
Software Library (FSL; Jenkinson et al., 2012) and maintains
images in volumetric space. The pipeline is fully automated, built
to process the very large and longitudinal UK Biobank sample of
aging individuals. It generates a number of image-based metrics
of raw and processed intermediates, mostly from their structural
preprocessing sub-pipeline. Referred to as “Imaging-Derived
Phenotypes,” these metrics were used for automated QC of the
large UK Biobank aging sample. Here, we describe an extension
of the UK Biobank pipeline that addresses the expanding
scope of TheVirtualBrain project. The extension includes the
generation of matched structural and functional connectivity
data based on a user-defined brain parcellation, expanded
capability for additional MRI modalities and manufacturers,
additional preprocessing considerations for aging data (e.g.,
age-specific templates), an expanded number of image-based
metrics for fMRI and dMRI, and the addition of new metrics for
structural and functional connectivity. We have also developed
an extensive new HTML-based QC report for quick assessment
of raw, intermediate and processed outputs, and containerized
the pipeline to maximize portability and ease of installation.
The pipeline supports data from aging and neurodegenerative
populations, and has been tested on a number of different
datasets including multi-modal MRI data from the Cambridge
Centre for Ageing and Neuroscience study (Cam-CAN; Taylor
et al., 2017) as well as the ADNI3 study (Weiner et al., 2016).
Finally, in keeping with TheVirtualBrain’s commitment to the
FAIR guiding principles (Wilkinson et al., 2016) and open
science practices, our pipeline is open source and compliant with
the Brain Imaging Data Structure (BIDS) standard (Gorgolewski
et al., 2016). Below, we describe the software and methodological
modifications and additions we made to the original UK Biobank
pipeline, highlight the new QC pipeline and HTML report, show

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 883223159

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 3

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

some usage examples, and discuss future work and integrations
with TheVirtualBrain.

METHOD

We refer to our pipeline as TheVirtualBrain-UK Biobank (or
TVB-UKBB) pipeline. It is built from a fork of the UK Biobank
pipeline,1 which has been previously described (Alfaro-Almagro
et al., 2018). The UK Biobank pipeline processes a variety of
MRI modalities but, for the purposes of creating TVB inputs,
we focused on modifying and extending the existing structural
(T1w, T2 FLAIR), functional (resting-state, task), and diffusion-
weighted MRI sub-pipelines. The processing of other MRI
modalities (e.g., susceptibility-weighted imaging) in the TVB-
UKBB pipeline remain unaltered and untested.

Figure 1 shows the general workflow of the whole pipeline,
its sub-pipelines, and their outputs. The pipeline accepts MRI
data in both raw DICOM and reconstructed NIfTI formats, and
data may be organized into any directory structure, including
BIDS. The major output of the structural MRI pipeline is the
user-defined parcellation registered to the subject’s T1w image.
The registered parcellation is used by both the functional and
diffusion MRI sub-pipelines to define ROIs for computing
average regional timeseries and connectivity measures for TVB
inputs. Following the completion of the functional and diffusion
MRI sub-pipelines, an “IDP” pipeline computes image-based
metrics for all modalities. Finally, our newly developed QC
pipeline generates a comprehensive HTML-based report for
manual quality assurance procedures.

Structural Sub-Pipeline
Our pipeline largely retains the structural (T1w, T2 FLAIR)
preprocessing steps from the UK Biobank pipeline (Alfaro-
Almagro et al., 2018). These include brain extraction and
non-linear registration to the MNI152 standard-space T1
template, defacing, bias correction, and tissue-class segmentation
(Figure 2). Processing of T2∗ images (brain extraction,
registration to MNI152 and T1w, bias correction) has been added.
Other major modifications and additions to the structural sub-
pipeline are outlined below.

Parcellation
To support connectome-based modeling in TVB, our additions
to the structural sub-pipeline allow users to create connectomes
from T1w, dMRI, and resting-state fMRI data by specifying
a brain parcellation of their choice. Currently, our pipeline
supports parcellations defined on the MNI152 1mm template.
For ease, we include three different parcellations in our
repository. Two are combinations of the Schaefer cortical
(Schaefer et al., 2018) with either the Tian subcortical (Tian
et al., 2020) or Harvard-Oxford subcortical (Frazier et al., 2005)
parcellation and the third is the Regional Map parcellation
(Bezgin et al., 2017). The Schaefer-Tian parcellation is offered
at three different scales of granularity and, if the user wishes,

1https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1

other scales can be created from the parcellations shared on the
respective GitHub repositories. A tab-separated look-up table for
the parcellation that specifies image labels and label names is
required. The parcellation is registered to the T1w image using
the warps from the non-linear registration of the template to T1w.

Segmentation
In both healthy older adult and neurodegenerative samples,
accurate tissue classification using T1w images is hindered
by decreasing image contrast with age (Bansal et al., 2013).
Additional difficulties in T1w tissue classification arise from the
presence of white matter pathology, where white matter lesions
become misclassified as gray matter (Levy-Cooperman et al.,
2008). Since tissue classification is a vital part to defining accurate
ROIs for both structural and functional connectivity, we have
implemented a number of modifications to the segmentation
procedure to improve ROI assignments. We derive an initial
image segmentation following the UK Biobank’s procedure using
FSL’s FAST toolbox. We then refine the gray matter subcortical
segmentation by adding the outputs of FSL’s FIRST toolbox (an
object model-based segmentation and registration tool) to the
gray matter mask.

To address inaccuracies in the gray matter mask due to
the presence of WM pathology, we have implemented two
alternative methods that may be used depending on available
image modalities. The first method, if T2 FLAIR images are
available, uses the outputs of the WM lesion classification (FSL’s
BIANCA) to exclude any misclassified voxels from the gray
matter mask and add them back to the white matter mask. The
second method is an option for when T2 FLAIR images are
not available. In these cases, we use age-specific image classes
(Fillmore et al., 2015) as tissue priors. T1w images from adults
aged 40 or over are registered to the template for their age decile
(e.g., 40–49 years, 50–59 years, etc.) while subjects aged under 40
are registered to the FSL-distributed tissue priors. These template
space-registered T1w images are then segmented using the set
of matching age-specific priors. Segmented images are registered
back to T1w space. Age-specific templates are provided up to the
80s age decile. Subjects older than 89 years are registered to the
80–84 years template.

Defining Regions of Interest for fMRI and dMRI
Sub-Pipelines
The user-provided parcellation is registered to the T1w image and
the gray matter mask is labeled with ROI indices. The labeled gray
matter volume serves as input to the functional MRI sub-pipeline.
The white and gray matter segmentations are both used to create
the gray matter–white matter interface for dMRI tractography.
This interface consists of voxels of white matter that are adjacent
to gray matter and, when labeled, will serve as the seed and target
masks for tractography in the diffusion MRI sub-pipeline.

Functional Magnetic Resonance Imaging
Sub-Pipeline
The fMRI sub-pipeline processes both resting-state- and
task-fMRI data (Figure 3). The processing of both data types
by the UK Biobank pipeline relies on FSL’s FEAT toolbox.

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 883223160

https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 4

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 1 | General workflow of the TVB-UKBB pipeline. The main imaging sub-pipelines of interest for the current paper are shown (structural in green, functional in
red, and diffusion in purple). A TVB-compatible .zip file (TVB Inputs) is created from the relevant outputs of the imaging sub-pipelines. The “IDP Pipeline” collects
image-based metrics from raw, intermediate and processed outputs across imaging sub-pipelines and makes them available for analysis. The final step of the
pipeline is the generation of the QC report.

As best practices for preprocessing of fMRI data are both
dataset-dependent and constantly evolving (Uddin, 2017),
the pipeline allows users flexibility on selecting the right
preprocessing methods for their needs. Users may specify
their preferences, which can include brain extraction, motion
correction via realignment of fMRI images (MCFLIRT), slice
timing correction, spatial smoothing, intensity normalization,
and temporal filtering. Registration to the T1w image and
MNI152 template is performed. For resting-state fMRI
data, automated classification and removal of noise artifacts
is performed using FMRIB’s ICA-based Xnoiseifier (FIX)
(Griffanti et al., 2014).

We have modified the UK Biobank pipeline to now accept an
arbitrary number of fMRI sessions. Other major additions and
modifications are described below.

Field Map Correction
The UK Biobank pipeline performs geometric distortion
correction for the unwarping of EPI (e.g., fMRI and dMRI)
images. This correction requires a reverse phase-encoded B0
dMRI image for estimating the field map, which is not always
available. To support more “traditional” field map acquisitions
for EPI distortion correction, such as those in the Cam-CAN

dataset, we have implemented the option for dual echo-time
gradient distortion correction using FSL’s FUGUE toolbox.

Resting-State fMRI
We have updated the pipeline’s FIX version from 1.063 to
1.06.15. Although FMRIB provides a default trained-weights file,
and we provide trained-weights files for both the ADNI3 and
Cam-CAN datasets, the classifier performs best when trained
with the user’s specific dataset. The most notable addition to
resting-state fMRI processing is the replacement of group-ICA-
based detection of resting-state networks with the parcellation of
the resting-state fMRI data to accommodate connectome-based
modeling. Following denoising, the parcellation output from the
structural sub-pipeline (Figure 2) is registered to a reference
resting-state fMRI volume and the average BOLD response across
voxels is computed for all ROIs (i.e., ROI time series). The
Pearson correlation coefficient between all ROI time series is also
computed to obtain a measure of functional connectivity.

Task-Based fMRI
In our implementation of the fMRI sub-pipeline, task-based
fMRI data are minimally preprocessed but not further analyzed.
Users may choose to re-implement a GLM-based analysis using

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 883223161

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 5

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 2 | Structural sub-pipeline workflow. Original components of the UK Biobank pipeline with few or no modifications are in green; pipeline components with
major changes or additions are indicated in white; and new components are indicated in orange. Dotted lines indicate components that are included in the QC
report. Black lines indicate components that are used downstream by other sub-pipelines or included in “TVB Inputs.” GM, gray matter; WM, white matter.

FIGURE 3 | fMRI sub-pipeline workflow. Original components of the UK Biobank pipeline with few or no modifications shown in red; pipeline components with major
changes or additions shown in white; and new components shown in orange. Dotted lines indicate components that are included in the QC report. Black lines
indicate components that are included in the TVB Inputs.

FEAT or, alternatively, they may take the preprocessed task-fMRI
data and apply other analytic methods (e.g., Partial Least Squares;
McIntosh and Lobaugh, 2004).

Diffusion Sub-Pipeline
Processing steps for diffusion imaging data that we have retained
from the UK Biobank pipeline include correction of eddy
currents and head motion (EDDY), diffusion tensor image
fitting (DTIFIT) for tract-based analysis (TBSS), and multi-fiber
orientation modeling (BEDPOSTX) (Figure 4). New features and
additions to the diffusion sub-pipeline are described below.

Distortion Correction With Synthesized B0
Our first addition to the diffusion sub-pipeline was the
integration of B0 field estimation for unwarping data that

lack reverse phase-encoded images using the Synb0-DisCo tool
(Schilling et al., 2019). This tool uses a deep learning approach to
create a synthetic undistorted B0 image from a T1w image. The
synthetic undistorted B0 is used as input to FSL’s TOPUP toolbox
for dMRI distortion correction. In our pipeline, users have the
option to implement this tool to improve registrations between
the T1w and dMRI images.

Tractography
The other major addition to the dMRI sub-pipeline was the
replacement of the UK Biobank tractography approach with one
that takes as input the user-defined parcellation for connectome
construction. In our approach, the gray matter–white matter
labeled interface is registered to the distortion-corrected B0
image. This interface is used to define seed and target ROI masks.

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 883223162

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 6

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 4 | Diffusion sub-pipeline workflow. Original components of the UK Biobank pipeline with few or no modifications shown in purple; pipeline components
with major changes or additions shown in white; and new components shown in orange. Dotted lines indicate components that are included in the QC report. Black
lines indicate components that are included in the TVB Inputs.

The gray matter mask is also registered to the B0 image and used
as an exclusion mask. Probabilistic tractography is performed
using FSL’s PROBTRACKX toolbox to generate a matrix of
the streamlines between all ROIs. The structural connectivity
“weights” matrix is then computed by taking the streamlines
matrix and dividing it by the total number of streamlines that
were successfully sent from the seed ROIs. This weights matrix
therefore encapsulates the probability of connection between
all ROIs. “Distance” matrices (i.e., estimated tract lengths) are
also obtained. Since directionality of fiber tracts cannot be
inferred from dMRI tractography, both the weights and distance
matrices are symmetrized. No other post-processing of structural
connectivity, including thresholding, is performed.

Compatibility With TheVirtualBrain
Our pipeline generates inputs for connectome-based
modeling, with file formats that are directly compatible
with TheVirtualBrain (TVB2) (Supplementary Figure 1).
These include the structural connectivity weights and tract
lengths matrices, as well as the ROI time series and functional
connectivity matrix from resting-state fMRI scans. ROI location
information such as hemisphere or subcortical localization and
centroid coordinates are also included. Toward the end of the
pipeline, these TVB-input files are given the appropriate file
names, placed in the correct folder structure, and compressed
into a zip file that can be accepted by TVB without further
processing. This zip file can be found in the top-level directory
for each processed subject. The TVB website3 has a variety of
resources, including sample code, videos, and documentation,

2http://thevirtualbrain.org/
3https://thevirtualbrain.org/tvb/zwei/brainsimulator-help

available for use with connectivity data such as those generated
by the TVB-UKBB pipeline.

Imaging-Derived Phenotypes
The original UK Biobank pipeline generates various image-
based metrics, or imaging-derived phenotypes (IDPs), for
evaluating the characteristics of input images, pipeline processing
outputs, and derivative files. These IDPs were intended to be
a quantitative measure of the quality of processed subjects
but mostly describe structural sub-pipeline processing and
outputs. To better capture modalities of interest for connectome-
based modeling, we have developed an additional 75 unique
IDPs that describe fMRI and dMRI processing as well
as connectivity outputs (Supplementary Table 1). Notable
examples include IDPs for assessing the alignment of various
modalities to T1 space, the temporal signal-to-noise ratio (tSNR)
in resting-state fMRI, and summary statistics for functional
and structural connectivity. In conjunction with the original
IDPs, these new metrics were developed for the purpose of
flagging subjects whose outputs’ quality is poor, either due to
acquisition errors, subject anomalies, or pipeline errors and
insufficiencies.

We performed a manual QC of 140 (70 female, 70 male)
Cam-CAN subjects using our QC reports (described below)
to enable assessment of the utility of our newly developed
IDPs for quantifying processing errors. The subjects were
pseudorandomly selected, balanced for sex and 20 were chosen
from each age decile to cover the entire age range of the
dataset. Two experienced subject raters (DS, AK) scored the
processing intermediates and outputs. These graders gave
each subject a score along a 5-point scale for each modality
(ranging from excellent [1] to poor [5]) and also gave each
subject a pass/fail classification based on the integrity of

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 883223163

http://thevirtualbrain.org
https://thevirtualbrain.org/tvb/zwei/brainsimulator-help
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 7

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

the TVB inputs as a whole. A fuller description of the
QC procedure and example QC report usage for the Cam-
CAN data is presented in the Section “Results.” We used a
multivariate statistical approach, partial least squares analysis
(Krishnan et al., 2011), to identify a set of latent variables
that represent the maximal covariance between the QC ratings
and the image-based metrics outputted from the pipeline.
First, the covariance between the two sets of variables was
computed. Singular value decomposition on this cross-block
covariance was then performed to produce latent variables, each
containing three elements: (1) a set of weighted “saliences”
that describe a pattern of IDPs; (2) a design contrast of
QC ratings that express their relation to the saliences, and
(3) a scalar singular value that expresses the strength of
the covariance. The mutually orthogonal latent variables are
extracted in order of magnitude, with the first latent variable
explaining the most covariance between the IDPs and QC
ratings, the second LV the second most, and so on. We
report the relative percentage of total cross-block covariance
explained by each latent variable, where the sum of this
percentage across all latent variables is 100. The statistical
significance of each latent variable was assessed with permutation
testing: 1,000 permutations shuffled subjects’ QC ratings without
replacement while maintaining their IDP assignments. This
resulted in 1,000 new covariance matrices which were each
subjected to singular value decomposition to produce a null
distribution of singular values. The reliability with which each
IDP expressed the differences across QC ratings was determined
with bootstrapping: 500 bootstrap samples were created by
resampling subjects with replacement within each rating class.
This resulted in 500 new covariance matrices which were, again,
subjected to singular value decomposition. The 500 saliences
from the bootstrapped dataset were used to build a sampling
distribution of the saliences from the original dataset. The
bootstrap ratio for a given IDP was calculated by taking the ratio
of the salience to its boostrap-estimated standard error. With
the assumption that the bootstrap distribution is normal, the
bootstrap ratio is akin to a Z-score and corresponding saliences
were considered to be reliable if the absolute value of their
bootstrap ratio was ≥ 2.

Quality Control Report
Typical manual QC requires users to manually search for
NIfTI files, load them into visualizer GUIs like FSLeyes, and
adjust various parameters for each overlay. To streamline
these procedures, our pipeline generates a Quality Control
(QC) Report for each subject. The QC sub-pipeline runs at
the end of the TVB-UKBB pipeline and leverages derivative
data to generate brain image overlays, data visualization
plots, and summary tables. These assets are wrapped in
an offline HTML page that can be compressed into a
portable, small, and standalone archive using a script included
in the pipeline. This standalone report may be viewed
on any browser and requires no access to the original
subject’s files.

Our QC Report allows users to view and interact with 17 preset
key QC overlays immediately upon opening the HTML report.

Our QC Report offers the ability to zoom, pan, switch between
planes of view, inspect different analyses, and toggle visibility of
layers in brain overlay images. These controls are also assigned
to various hotkeys, allowing for browsing without a mouse and
further expediting the QC process for more experienced users.
Additionally, each brain overlay shows an array of 18 slices for
each orientation, saving time typically spent seeking slices in
visualization software. Especially when considering that multiple
different overlays need to be generated for QC and certain
overlays may need to be revisited more than once, our HTML
Report can economize users’ time and effort in the QC process.

The QC Report features a page for each sub-pipeline and
multiple analyses on each page, corresponding to various key
steps of the sub pipeline. For instance, brain image overlays,
generated using FSL’s FSLeyes and SLICER, are intended to offer
users qualitative assessment of brain extraction, segmentation,
registration, and labeling for multiple modalities (Figure 5). Data
visualization plots are also included to simplify the verification
of TVB-inputs. IDP tables offer a simple interface for accessing
metrics and assessing the quality of a subject’s processing. Within
these tables, rows of IDPs are color-coded green or red (pass or
fail) depending on their values relative to user-defined thresholds.
A more detailed summary and explanation of QC analyses
included in the report can be found in the Supplementary
Tables 2–4. At the bottom of several QC Report pages, there are
multiple file path links to the depicted overlay image as well as
its source NIfTI image files. If more detailed investigation into a
processed subject is required, then users have the option to load
these files and perform QC with a NIfTI visualizer.

As part of the QC sub-pipeline development, we included
FSL’s EDDY QC toolbox for generating automated reports of
within-(EDDY QUAD) and across-(EDDY SQUAD) subject QC
assessments. Reports automatically generated by these tools,
along with others from FEAT and MELODIC can be found in
our QC Report. Notably, our QC Report reconstructs the existing
MELODIC ICA report and combines it with classified ICA
outputs from FIX into a single MELODIC page. This page groups
signal and noise labeled components for quick assessment of FIX
performance and allows immediate access to every component’s
analyses through a set of dropdown menus and optional hotkeys.

The QC Report is portable, at ∼180 MB for a compressed
QC Report compared to ∼2 GB to ∼5 GB for a compressed
full subject for the datasets we have tested. This enables faster
and lower-overhead report sharing and collaboration without
needing to share potentially sensitive raw or intermediate data.
Furthermore, viewing the report requires no installations and
it can be run on any operating system and modern browser.
The lightweight and portable nature of our report is especially
impactful for users who work on headless servers and may need
to download files for visualization.

The Brain Imaging Data Structure
During processing, we retain and mimic the directory structure
and file organization of the UK Biobank pipeline. We extend the
UK Biobank’s BIDS conversion script, which organizes pipeline
output files in a manner outlined in a filename conversion
dictionary. Our extension updates the conversion dictionary with

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 883223164

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 8

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 5 | Screenshot of the Anatomical page of a subject’s QC report. Analysis [e.g., extraction, registration (shown), segmentation] and image view can be
navigated with mouse or keyboard.

BIDS-compliant filenames for new TVB-UKBB intermediate
and output files. This ensures interoperability of our pipeline’s
outputs, such that the derivative and raw data files for each

subject are named, documented, and organized in a directory
structure in accordance with BIDS v1.6.0. Additionally, we have
introduced a reversal feature to the BIDS conversion script,

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2022 | Volume 16 | Article 883223165

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 9

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

allowing BIDS-converted pipeline outputs to be reverted to the
original TVB-UKBB file organization to facilitate reprocessing
and reproducibility.

Developed Software
The pipeline has been constructed principally with Linux
compatibility in mind. The software utilizes a Python backbone
which brings together various BASH, MATLAB, and R
scripts to process data moving through the pipeline. This
software environment is encapsulated largely in a conda
environment which can be used standalone or inside a supplied
Singularity container (Kurtzer et al., 2017). The installation is
straightforward and self-contained, with minimal dependencies
on external applications after configuration. The Singularity
container enables users to stage and run the pipeline in myriad
high-performance computing environments and to leverage the
batching capabilities of schedulers like SLURM and SGE.

GitHub Repository and Documentation
The source code for our pipeline is hosted on GitHub.4 Several
versions of the pipeline exist, each catering to different dataset
needs and specifications. These versions are stored as separate
branches on the repository. For example, branch Cam-CAN
is available for pipeline users who want to process Cam-CAN
subjects or datasets similar in specification to the Cam-CAN
dataset using the Singularity container. ADNI3 is similar and is
also the basis for the main branch as it is likely compatible with
the widest range of datasets that the pipeline would be used with.

Extensive documentation on the TVB-UKBB pipeline is
available on the Wiki page of our GitHub repository. This
wiki includes information on the methodological components
of the pipeline as well as installation, troubleshooting, QC
interpretation, usage examples, etc.

A sample subject from the The Amsterdam Open MRI
Collection (Snoek et al., 2021), containing inputs and processed
outputs, is included in the repository so users may test and
validate their own installations.

Installation and Singularity Container
Due to the high degree of complexity involved in the UK
Biobank pipeline installation process, significant efforts were
made to streamline installation and configuration. Singularity
is a core component of these streamlining efforts due to its
use in high performance computing environments as well as its
ability to encapsulate complex and difficult-to-configure software
stacks. Users may wish to install our pipeline with or without
the Singularity container. All dependencies are included in the
Singularity container, with the exception of FreeSurfer, AFNI,
and ANTS. FSL and CUDA 9.1 were installed and configured
in the container because GPU-enabled versions of BEDPOSTX,
EDDY, and PROBTRACKX all require CUDA 9.1. MATLAB
compatibility is packaged into the container using the MATLAB
Compiled Runtime to eliminate the need for a MATLAB license.

4https://github.com/McIntosh-Lab/tvb-ukbb

Technical Features
The pipeline features CPU-only and CUDA-enabled versions.
The CUDA-enabled version allows the FSL toolkit to take
advantage of NVIDIA GPUs to drastically reduce runtimes of
the BEDPOSTX, EDDY, and PROBTRACKX programs and cut
the overall pipeline runtime significantly. If NVIDIA GPUs are
not available, users can specify the CPU-only version which
will run these FSL toolkits serially. To shorten the runtime and
memory requirements of probabilistic tractography on CPU, we
also include a parallelized implementation of PROBTRACKX.

Due to the variety of programming languages and heavy
use of BASH, efforts were made to simplify configuration
of pipeline parameters for end-users. The result is a single
configuration file where the vast majority of environment
variables for pipeline configuration and customization are
specified. Parameters like the location of a FreeSurfer installation,
specification of parcellation, etc. are set in this configuration file
and is sourced prior to running the pipeline.

RESULTS

Usage
The pipeline currently supports several different datasets,
including data from Cam-CAN and ADNI3, and can be
customized with minimal effort to support novel datasets. Here
we demonstrate usage of the TVB-UKBB pipeline using an
example subject from the Cam-CAN dataset (Taylor et al., 2017),
which includes T1w, T2∗, resting-state and task-fMRI, field maps,
and dMRI from ∼650 adults aged 18–99. In these examples, we
used a Schaefer-Tian parcellation consisting of 400 cortical and
20 subcortical regions.

As we have not removed any features from the UK Biobank
implementation, UK Biobank subjects should still work when
processed with the TVB-UKBB pipeline. However, we were not
able to validate this as we did not have access to the UK Biobank
dataset at the time of this writing.

The key TVB inputs generated by the pipeline can be
visualized and analyzed with ease. Figure 6 shows the pipeline
outputs of interest for connectome-based modeling for an
example subject. These include the structural connectivity
weights and tract lengths matrices, and the resting-state BOLD-
fMRI responses and functional connectivity matrix.

Quality Control Procedures and Quality
Control Report Usage
The QC reports allow users to quickly inspect pipeline
intermediates and outputs. A detailed manual QC of a single
subject without the QC report previously took our experienced
raters (DS, KS) up to 30 min to complete, but a subject assessed
with the QC report now takes an average of ∼5 min. Here
we briefly outline our QC procedures for aging (Cam-CAN)
and neurodegenerative (ADNI3) imaging data and provide some
examples of common preprocessing errors detected using the
QC reports. We describe the QC procedures in the order that
the pipeline processes the data, but in practice we start QC

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 883223166

https://github.com/McIntosh-Lab/tvb-ukbb
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 10

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 6 | An example subject’s set of pipeline outputs for connectome-based modeling. These include (A) a weights matrix and (B) a tract lengths matrix from
dMRI processing that capture the subject’s structural connectivity; (C) a functional connectivity matrix of Pearon correlation coefficients, and (D) the region of interest
(ROI) time series from resting-state fMRI processing. The structural connectivity matrices are presented on a log scale to enhance readability. Ten ROIs were chosen
randomly for presentation in panel (D).

investigations with the final outputs of the pipeline (structural
and functional connectivity and functional responses) and work
upstream through the QC report to quickly pinpoint the source
of errors in processed subjects.

Structural Sub-Pipeline Quality Control
Examination of the structural pipeline includes the raw
T1w image and the outputs of T1w brain extraction,
segmentation, and registration to the MNI template. The
reconstructed T1w image is checked for the presence of
major motion or other visible artifacts. The T1w brain mask
is then inspected and inclusion of dura along the lateral
boundaries is noted.

The labeled and unlabeled segmentation outputs are
also examined, and the accuracy of tissue classification
(especially the delineation of gray and white matter) is

assessed. Misclassification of non-brain tissue (i.e., inclusion
in gray and white matter segmentations) is also noted. For
older adults in the Cam-CAN sample (≥50 years), we also
checked if white matter lesions were misclassified as gray
matter during segmentation. This was supported by also
inspecting the T2∗ image in conjunction with the T1w.
Figure 7 shows an example of white matter lesions being
classified as gray matter. In cases with high WML loads,
this will be impossible to avoid, and QC involves deciding
to what extent the misclassification impacts tractography,
namely the placement of seed and target ROIs, which will
be covered below.

Finally, the registrations of the structural images to the
MNI template are also inspected. Poor brain extraction and/or
significant brain atrophy can affect the quality of the registration.
Since the parcellation is defined on the MNI template, poor

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2022 | Volume 16 | Article 883223167

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 11

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 7 | Example of white matter lesion misclassification as gray matter. (A) The labeled gray matter image is shown on the T1w. (B) T2∗ image from the same
older adult subject indicating a significant volume of white matter lesions that are also notable on the T1w. Although performing segmentation on the T1w image
using age-specific tissue priors is largely successful despite the large white matter lesion volume, some misclassification remains [white arrows in panel (A)]. Images
reproduced from the example subject’s QC report.

registrations can substantially hinder the parcellated downstream
outputs from both the functional and diffusion sub-pipelines.

Similar procedures are followed for examining T2∗ images.
For T2 FLAIR images, like those in the ADNI3 dataset, lesion
classification outputs from BIANCA are also examined.

Functional Sub-Pipeline Quality Control
For the purposes of creating modeling inputs for TVB, we focus
here on QC of the processing of resting-state fMRI data. For
these data, the hyperlinked FEAT report is used to check the
field map registration and correction, the relative motion of
the resting-state fMRI scans and their registrations to both the
T1w and MNI152 template. Signal dropout in susceptible areas
such as the temporal pole or orbitofrontal cortex, if substantial,
is also noted. The MELODIC page of the QC report is used
to examine the components classified as signal to determine
whether substantial artifactual components were included post-
processing.

The functional connectivity matrix is visually inspected in the
QC report and is checked for the presence of strong homotopic

connectivity, clear delineation of intra- and inter-hemispheric
quadrants, a sensible range of correlation values and minimal
“banding” which can reflect motion artifacts or misregistration
of the parcellation. The QC report allows users to examine the
matrix in conjunction with a carpet plot of the cleaned ROI
time series and the MCFLIRT motion plots to determine whether
residual motion artifacts impact the functional connectivity
matrix. See Figure 8 for an example of a bad resting-state fMRI
processed outcome.

Diffusion Sub-Pipeline Quality Control
The QC procedure for the diffusion sub-pipeline starts with
examining the undistorted B0 image to check the quality of
distortion correction and the presence of major artifacts. The
brain mask calculated from the distortion corrected B0 is
also checked as it is used to exclude non-brain tissue from
downstream diffusion processing. Brain masks that are too
conservative are noted as they can impact registration and
placement of ROIs for tractography. The principle orientations
of the modeled fibers are also inspected to confirm that

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 883223168

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 12

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 8 | An example of poorly processed resting-state fMRI. (A) Functional connectivity matrix and (B) distribution of functional connectivity show large number
of strong positive correlations and a compressed range of correlations. (C) Examination of the carpet plot of region of interest (ROI) time series suggests artifacts
remain in fMRI data after cleaning. (D) In the QC report, motion estimations from MCFLIRT are shown alongside the carpet plots for quick assessment. All images
reproduced from the example subject’s QC report.

the b-vectors have been specified appropriately. It is usually
necessary to check the orientations for a single representative
subject per study, but in the case of multi-site studies the
user may wish to check representative subjects from each site.
The registration between the reference B0 image and the T1w
is also examined.

Next, the inputs for tractography are examined. These
include the gray matter exclusion mask, and the seed and
target ROIs that are overlaid on the FA image in the QC
report. Each of these images are checked for accuracy of
their placement. The border of the brain is also inspected
and seeds that are mislocalized to dura or other non-brain
tissue is noted (see Figure 9 for example of poor quality
tractography seed placement). With atrophic cases, poor T1-
MNI template registration can impact the quality of the
tractography within the brain and those with a large white matter
lesion load will have lesions labeled as gray matter which can
cause similar issues.

Finally, the structural connectivity matrices are examined.
This includes the weights matrix, which is displayed with
a logarithmic scale to improve visual assessment, and the
tract lengths matrix. Visual inspection can be aided by the
examination of the distributions of weights and tract lengths.
Extreme sparsity of the connectome is easily detected and

is often apparent in the interhemispheric quadrants of the
matrices (Figure 10).

More examples of well-processed and poorly processed
pipeline outputs can be found in Supplementary Figures 2–9.

Utility of New Imaging Derived
Phenotypes and Other Summary
Statistics
We performed manual QC of 140 Cam-CAN subjects to enable
a preliminary assessment of the utility of existing and newly
developed IDPs and summary statistics. This assessment was
done using a partial least squares analysis of the IDPs with
subjects grouped by the rater’s scores. For the functional sub-
pipeline, this analysis returned one significant latent variable
(Figure 11) showing how IDPs related to head motion,
temporal signal-to-noise ratio, the proportion of signal/noise
components, and the distribution of functional connectivity
values (e.g., center, range, shape) to be reliable indicators of
resting-state fMRI processing quality (p = 0.001, 83.4% cross-
block covariance).

A similar analysis of the diffusion sub-pipeline IDPs resulted
in no significant latent variables. This was likely due to a lack of
variability in the quality of the diffusion processing and structural

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 883223169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 13

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 9 | Example of poor quality tractography seed/target placement. The seeds/targets image (blue) as well as the exclusion mask image (yellow) are overlaid
on the FA image. White arrows indicate seeds/targets located in the dura.

FIGURE 10 | (A) An example structural connectivity matrix of poorer quality.
Note the sparsity, especially in the interhemispheric quadrants (top right and
bottom left), which was confirmed by (B) the relatively small distribution of
non-zero weights in the matrix. Upon further examination, the dMRI
registration to T1w was poor, resulting in some tractography seeds and
targets being placed in non-brain tissue. Both images shown are reproduced
from the QC report.

connectivity, where nearly all subjects’ (136/140) diffusion sub-
pipeline outputs were judged by our raters to be either excellent
(1) or very good (2).

DISCUSSION

We have described the development of the TVB-UKBB
pipeline, an open-source, easy to install, automated
multimodal MRI processing solution for generating inputs
for connectome-based modeling that directly interface
with TheVirtualBrain. We have expanded the original UK
Biobank pipeline to accept additional MRI modalities and
data from various manufacturers. Users may now provide
their own parcellation of choice to generate complementary
structural and functional connectivity outputs. We have
also developed a QC report to support the assessment
of pipeline outputs. The pipeline has been containerized
and supports various job schedulers on high performance
compute clusters. We have tested it on both healthy and
clinical populations and added features to improve its
robustness against the morphological changes observed in
aging and dementia.

We developed the TVB-UKBB pipeline with the
processing of aging and neurodegenerative data, such
as those from ADNI (Mueller et al., 2005) and Cam-
CAN (Taylor et al., 2017), in mind. These datasets
present particular challenges such as significant changes
in brain morphology with age and/or disease (i.e.,
brain atrophy) and decreased image contrast, which
can greatly affect registrations to a standard template
and the classification of tissue classes. We addressed
inaccuracies in gray matter classification by either taking
advantage of available T2 FLAIR images for classifying
white matter lesions, or by using age-specific tissue
priors when T2 FLAIR images are not available. Future
developments will include a fuller implementation of
age-specific or, more generally, study-specific templates to
aid registrations.

Our pipeline offers an alternative for generating modeling
inputs to pipelines that rely on working with cortical surfaces.
This avoids the need to project lower resolution data to
high resolution surfaces (Alfaro-Almagro et al., 2018), avoids
manual interventions that might be needed for correcting tissue
segmentations of aging and neurodegenerative data (McCarthy
et al., 2015; Henschel et al., 2020; Srinivasan et al., 2020),

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 883223170

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 14

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

FIGURE 11 | Partial least squares analysis of functional sub-pipeline IDPs and summary statistics as a function of the functional connectivity QC rating. The analysis
returned a contrast (inset) between good (1 and 2) and bad (4 and 5) scores. The most reliable indicators of a good QC rating included high temporal signal-to-noise
ratios, low relative displacement, a higher proportion of ICA components classified as signal, and Gaussian-like functional connectivity distributions. IDPs and
summary statistics with an absolute value bootstrap ratio > 2 were considered reliable (see Section “Method”), and are indicated in bold.

and avoids the long processing times needed for reconstructing
the cortical surface. It also allows for easier integration of
subcortical region parcels that, until very recently, were not
available on the surface (see Lewis et al., 2022). We added
the ability to perform distortion correction on dMRI data for
datasets without reverse phase-encoded images by adopting
a toolbox that generates a synthetic undistorted B0 image

(Schilling et al., 2019). Tractography methodologies for our
pipeline were chosen based on our previous validation work
comparing probabilistic tractographic outputs to connectomes
derived from anatomical tracer data in macaques (Shen
et al., 2019b). We found this method to produce reasonable
estimates of fiber tract capacities (or “weights”) and fiber tract
lengths. However, like many other reports of probabilistic

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 883223171

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 15

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

tractography (e.g., Thomas et al., 2014; Maier-Hein et al.,
2017), we also found the method to be susceptible to false
positives, generating connections where there ought not to
be any. There are several thresholding methods to mitigate
the effects of spurious connections (e.g., de Reus and van
den Heuvel, 2013; Roberts et al., 2017; Shen et al., 2019b)
and we leave it to users to decide the method that best
suits their needs.

All of the above considerations were made so that a
greater range of “legacy” datasets could be accommodated
by our pipeline. Although these were all important, we
recognize that cortical surface processing is considered
state-of-the-art because it handles the problem of partial
voluming effects and accommodates spatial smoothing to
increase the signal-to-noise ratio (Brodoehl et al., 2020).
Basic FreeSurfer support is already available as a part of
the UK Biobank pipeline and future in-depth integrations
with our pipeline are planned. GPU-enabled deep learning
implementations, in particular, will be considered because
they are attractive for creating more accurate cortical surface
reconstructions quickly in aging and neurodegenerative data
(Henschel et al., 2020). Given the increasing availability of
GPU processing, this is in line with our efforts to develop
a faster and more consistent pipeline. This type of cortical
surface reconstruction will be especially important for our
future development of M/EEG processing sub-pipelines
where cortical surfaces are needed for computing the
forward solution for source localization. Users may also
wish to use other tractography approaches such as those
that constrain tractography using anatomical priors (Smith
et al., 2012). The modular implementation of our pipeline
allows for these future adaptations to be implemented
with relative ease.

A key component of our pipeline is the development
of user-friendly HTML reports to facilitate QC assessment
and faster subject scoring. With the introduction of
hotkeys, fully navigable pre-generated image overlays, and
re-compilation of FSL reports, our QC Reports make the
novel and essential images generated by the QC sub-pipeline
accessible. Existing reports are also consolidated with these
images into a single, convenient point of access with an
intuitive interface.

To further support QC efforts for large multimodal datasets,
we developed a number of new image-based metrics and
summary statistics for assessing resting-state fMRI and
dMRI processing. The summary statistics, in particular,
capture characteristics of processed data (i.e., connectivity
matrices) that may still reflect residual artifacts that remain
post-processing. For example, high motion indicated by
simple motion related metrics may not warrant exclusion
of a subject because some motion artifacts can be detected
and removed. Post-processing summary metrics related
to the FC can convey information about the successful or
unsuccessful removal of motion artifacts which cannot be
derived from simple motion-related metrics that are typically
available in other QC reports. Image-based metrics from
the UK Biobank’s structural sub-pipeline has proved useful

for training a classifier to detect poorly processed data
(Alfaro-Almagro et al., 2018). Our preliminary assessment
with a partial least squares analysis of our newly developed
metrics suggest that extending the machine learning approach
to include our new downstream metrics could be useful
for automated QC.

We developed our pipeline with the FAIR principles
for data (Wilkinson et al., 2016) and software (Lamprecht
et al., 2019; Katz et al., 2021) management in mind. We
adopt the BIDS neuroimaging standard (Gorgolewski et al.,
2016) for raw data file naming, directory organization and
metadata and extend the standard to the derived data.
The source code is publicly available under the Apache
2.0 License, version controlled and supported by wiki-style
documentation and a discussion board. Its containerization
improves both accessibility and interoperability and its
customization options allow for reuse across different
datasets and research applications. Future iterations of the
Singularity container will include FreeSurfer, AFNI, and
ANTS once a solution to circumvent cloud storage quotas has
been implemented.

Our pipeline generates multi-modal outputs for
connectome-based modeling that are directly compatible
with TheVirtualBrain software package. The high throughput
nature of the pipeline, its robustness against the challenges
imposed by MRI imaging of aging and clinical populations,
and its extended QC capability contribute to the expanding
scope of TheVirtualBrain project. In combination with
the growing availability of datasets that span large
age ranges and different neurological disorders, our
pipeline supports TheVirtualBrain project’s endeavors to
understanding large-scale network dynamics at the level
of the individual.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://adni.loni.usc.edu/data-samples/access-
data/ and https://www.cam-can.org/index.php?content=dataset.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Rotman Research Institute Research Ethics Board
and the Cambridgeshire 2 Research Ethics Committee. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

KS and AM conceptualized the project, supervised the research
activities, and acquired the financial support for the project. KS,
DS, and JW developed the methodology. NF-L, JW, KS, and ZW
contributed to the software development, implementation, and
testing. AS, NF-L, JW, and KS performed the data curation. DS,

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 883223172

http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
https://www.cam-can.org/index.php?content=dataset
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 16

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

AK, AS, and KS validated the research outputs. KS, AK, and JW
performed the statistical analysis. KS, NF-L, JW, and DS wrote the
initial draft of this manuscript. All authors reviewed and edited
this manuscript and approved the submitted version.

FUNDING

This project was supported by grants from the Canadian
Institutes of Health Research and the BrightFocus Foundation to
AM and KS, as well as by a grant from the Natural Sciences and
Engineering Research Council of Canada to AM.

ACKNOWLEDGMENTS

This research was enabled in part by support provided by
Compute Ontario (www.computeontario.ca/) and Compute
Canada (www.computecanada.ca).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.883223/full#supplementary-material

REFERENCES
Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R., Griffanti,

L., Douaud, G., et al. (2018). Image processing and quality control for the first
10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400–424.
doi: 10.1016/j.neuroimage.2017.10.034

Bansal, R., Hao, X., Liu, F., Xu, D., Liu, J., and Peterson, B. S. (2013). The effects
of changing water content, relaxation times, and tissue contrast on tissue
segmentation and measures of cortical anatomy in MR images. Magn. Reson.
Imaging 31, 1709–1730. doi: 10.1016/J.MRI.2013.07.017

Bezgin, G., Solodkin, A., Bakker, R., Ritter, P., and McIntosh, A. R. (2017). Mapping
complementary features of cross-species structural connectivity to construct
realistic “Virtual Brains.”. Hum. Brain Mapp. 38, 2080–2093. doi: 10.1002/hbm.
23506

Brodoehl, S., Gaser, C., Dahnke, R., Witte, O. W., and Klingner, C. M. (2020).
Surface-based analysis increases the specificity of cortical activation patterns
and connectivity results. Sci. Rep. 101:5737. doi: 10.1038/s41598-020-62832-z

de Reus, M. A., and van den Heuvel, M. P. (2013). Estimating false positives
and negatives in brain networks. Neuroimage 70, 402–409. doi: 10.1016/j.
neuroimage.2012.12.066

Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., and
Gorgolewski, K. J. (2017). MRIQC: advancing the automatic prediction of
image quality in MRI from unseen sites. PLoS One 12:e0184661. doi: 10.1371/
journal.pone.0184661

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe,
A., et al. (2019). FMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat. Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4

Fillmore, P. T., Phillips-Meek, M. C., and Richards, J. E. (2015). Age-specific MRI
brain and head templates for healthy adults from 20 through 89 years of age.
Front. Aging Neurosci. 7:44. doi: 10.3389/fnagi.2015.00044

Fischl, B. (2012). FreeSurfer. Neuroimage 62:774. doi: 10.1016/J.NEUROIMAGE.
2012.01.021

Frazier, J. A., Chiu, S., Breeze, J. L., Makris, N., Lange, N., Kennedy, D. N., et al.
(2005). Structural brain magnetic resonance imaging of limbic and thalamic
volumes in pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265. doi:
10.1176/appi.ajp.162.7.1256

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,
Andersson, J. L., et al. (2013). The minimal preprocessing pipelines
for the human connectome project. Neuroimage 80, 105–124. doi:
10.1016/j.neuroimage.2013.04.127

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff,
E. P., et al. (2016). The brain imaging data structure, a format for organizing
and describing outputs of neuroimaging experiments. Sci. Data 3:160044. doi:
10.1038/sdata.2016.44

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud,
G., Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated
fMRI acquisition for improved resting state network imaging. Neuroimage 95,
232–247. doi: 10.1016/j.neuroimage.2014.03.034

Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., and Reuter, M. (2020).
FastSurfer - A fast and accurate deep learning based neuroimaging pipeline.
Neuroimage 219:117012. doi: 10.1016/j.neuroimage.2020.117012

Jenkinson, M., Beckmann, C., Behrens, T., Woolrich, M., and Smith, S. (2012). FSL.
Neuroimage 62, 782–790. doi: 10.1016/J.NEUROIMAGE.2011.09.015

Katz, D. S., Gruenpeter, M., and Honeyman, T. (2021). Taking a fresh look at FAIR
for research software. Patterns 2:100222. doi: 10.1016/j.patter.2021.100222

Krishnan, A., Williams, L. J., McIntosh, A. R., and Abdi, H. (2011). Partial Least
Squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage
56, 455–475. doi: 10.1016/j.neuroimage.2010.07.034

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: scientific
containers for mobility of compute. PLoS One 12:e0177459. doi: 10.1371/
JOURNAL.PONE.0177459

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico,
E., et al. (2019). Towards FAIR principles for research software. Data Sci. 3,
37–59. doi: 10.3233/ds-190026

Levy-Cooperman, N., Ramirez, J., Lobaugh, N. J., and Black, S. E. (2008).
Misclassified tissue volumes in Alzheimer disease patients with white matter
hyperintensities: importance of lesion segmentation procedures for volumetric
analysis. Stroke 39, 1134–1141. doi: 10.1161/STROKEAHA.107.498196

Lewis, J. D., Bezgin, G., Fonov, V. S., Collins, D. L., and Evans, A. C. (2022). A
sub+cortical fMRI-based surface parcellation. Hum. Brain Mapp. 43, 616–632.
doi: 10.1002/hbm.25675

Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Côté, M.-A., Garyfallidis, E., Zhong,
J., et al. (2017). The challenge of mapping the human connectome based
on diffusion tractography. Nat. Commun. 8:1349. doi: 10.1038/s41467-017-
01285-x

Marcus, D. S., Harms, M. P., Snyder, A. Z., Jenkinson, M., Wilson, J. A., Glasser,
M. F., et al. (2013). Human connectome project informatics: quality control,
database services, and data visualization. Neuroimage 80, 202–219. doi: 10.1016/
j.neuroimage.2013.05.077

McCarthy, C. S., Ramprashad, A., Thompson, C., Botti, J. A., Coman, I. L., and
Kates, W. R. (2015). A comparison of FreeSurfer-generated data with and
without manual intervention. Front. Neurosci. 9:379. doi: 10.3389/fnins.2015.
00379

McIntosh, A. R., and Lobaugh, N. J. (2004). Partial least squares analysis of
neuroimaging data: applications and advances. Neuroimage 23(Suppl. 1), S250–
S263. doi: 10.1016/j.neuroimage.2004.07.020

Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., et al.
(2005). Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am.
15, 869–877. doi: 10.1016/j.nic.2005.09.008

Roberts, J. A., Perry, A., Roberts, G., Mitchell, P. B., and Breakspear, M. (2017).
Consistency-based thresholding of the human connectome. Neuroimage 145,
118–129. doi: 10.1016/j.neuroimage.2016.09.053

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,
McIntosh, A. R., et al. (2013). The Virtual Brain: a simulator of primate brain
network dynamics. Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Sanz-Leon, P., Knock, S. A., Spiegler, A., and Jirsa, V. K. (2015). Mathematical
framework for large-scale brain network modeling in The Virtual Brain.
Neuroimage 111, 385–430. doi: 10.1016/j.neuroimage.2015.01.002

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes,
A. J., et al. (2018). Local-Global parcellation of the human cerebral cortex
from intrinsic functional connectivity MRI.Cereb. Cortex 28:3095. doi: 10.1093/
CERCOR/BHX179

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2022 | Volume 16 | Article 883223173

http://www.computeontario.ca/
http://www.computecanada.ca
https://www.frontiersin.org/articles/10.3389/fninf.2022.883223/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2022.883223/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/J.MRI.2013.07.017
https://doi.org/10.1002/hbm.23506
https://doi.org/10.1002/hbm.23506
https://doi.org/10.1038/s41598-020-62832-z
https://doi.org/10.1016/j.neuroimage.2012.12.066
https://doi.org/10.1016/j.neuroimage.2012.12.066
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.3389/fnagi.2015.00044
https://doi.org/10.1016/J.NEUROIMAGE.2012.01.021
https://doi.org/10.1016/J.NEUROIMAGE.2012.01.021
https://doi.org/10.1176/appi.ajp.162.7.1256
https://doi.org/10.1176/appi.ajp.162.7.1256
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1016/j.neuroimage.2020.117012
https://doi.org/10.1016/J.NEUROIMAGE.2011.09.015
https://doi.org/10.1016/j.patter.2021.100222
https://doi.org/10.1016/j.neuroimage.2010.07.034
https://doi.org/10.1371/JOURNAL.PONE.0177459
https://doi.org/10.1371/JOURNAL.PONE.0177459
https://doi.org/10.3233/ds-190026
https://doi.org/10.1161/STROKEAHA.107.498196
https://doi.org/10.1002/hbm.25675
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1016/j.neuroimage.2013.05.077
https://doi.org/10.1016/j.neuroimage.2013.05.077
https://doi.org/10.3389/fnins.2015.00379
https://doi.org/10.3389/fnins.2015.00379
https://doi.org/10.1016/j.neuroimage.2004.07.020
https://doi.org/10.1016/j.nic.2005.09.008
https://doi.org/10.1016/j.neuroimage.2016.09.053
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1093/CERCOR/BHX179
https://doi.org/10.1093/CERCOR/BHX179
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-16-883223 June 8, 2022 Time: 12:17 # 17

Frazier-Logue et al. Automated MRI Processing for TheVirtualBrain

Schilling, K. G., Blaber, J., Huo, Y., Newton, A., Hansen, C., Nath, V., et al. (2019).
Synthesized b0 for diffusion distortion correction (Synb0-DisCo). Magn. Reson.
Imaging 64, 62–70. doi: 10.1016/j.mri.2019.05.008

Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G., and Ritter, P. (2018). Inferring
multi-scale neural mechanisms with brain network modelling. Elife 7:e28927.
doi: 10.7554/eLife.28927

Schirner, M., Rothmeier, S., Jirsa, V. K., McIntosh, A. R., and Ritter, P. (2015).
An automated pipeline for constructing personalised virtual brains from
multimodal neuroimaging data. Neuroimage 117, 343–357. doi: 10.1016/j.
neuroimage.2015.03.055

Shen, K., Bezgin, G., Schirner, M., Ritter, P., Everling, S., and McIntosh, A. R.
(2019a). A macaque connectome for large-scale network stimulations in
TheVirtualBrain. Sci. Data 6:123. doi: 10.1038/s41597-019-0129-z

Shen, K., Goulas, A., Grayson, D. S., Eusebio, J., Gati, J. S., Menon, R. S., et al.
(2019b). Exploring the limits of network topology estimation using diffusion-
based tractography and tracer studies in the macaque cortex. Neuroimage 191,
81–92. doi: 10.1016/j.neuroimage.2019.02.018

Smith, R. E., Tournier, J. D., Calamante, F., and Connelly, A. (2012). Anatomically-
constrained tractography: improved diffusion MRI streamlines tractography
through effective use of anatomical information. Neuroimage 62, 1924–1938.
doi: 10.1016/j.neuroimage.2012.06.005

Snoek, L., van der Miesen, M. M., Beemsterboer, T., van der Leij, A., Eigenhuis,
A., and Steven Scholte, H. (2021). The amsterdam open MRI collection, a set
of multimodal MRI datasets for individual difference analyses. Sci. Data 81:85.
doi: 10.1038/s41597-021-00870-6

Spiegler, A., Hansen, E. C. A., Bernard, C., McIntosh, A. R., and Jirsa,
V. K. (2016). Selective activation of resting-state networks following focal
stimulation in a connectome-based network model of the human brain. eNeuro
3:ENEURO.0068-16.2016.

Srinivasan, D., Erus, G., Doshi, J., Wolk, D. A., Shou, H., Habes, M., et al.
(2020). A comparison of Freesurfer and multi-atlas MUSE for brain anatomy
segmentation: findings about size and age bias, and inter-scanner stability in
multi-site aging studies. Neuroimage 223:117248. doi: 10.1016/j.neuroimage.
2020.117248

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., et al. (2015).
UK Biobank: an open access resource for identifying the causes of a wide
range of complex diseases of middle and old age. PLoS Med. 12:e1001779.
doi: 10.1371/JOURNAL.PMED.1001779

Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A., Dixon, M., et al.
(2017). The cambridge centre for ageing and neuroscience (Cam-CAN) data

repository: structural and functional MRI, MEG, and cognitive data from a
cross-sectional adult lifespan sample. Neuroimage 144, 262–269. doi: 10.1016/j.
neuroimage.2015.09.018

Thomas, C., Ye, F. Q., Irfanoglu, M. O., Modi, P., Saleem, K. S., Leopold, D. A.,
et al. (2014). Anatomical accuracy of brain connections derived from diffusion
MRI tractography is inherently limited. Proc. Natl. Acad. Sci. U.S.A. 111,
16574–16579. doi: 10.1073/pnas.1405672111

Tian, Y., Margulies, D. S., Breakspear, M., and Zalesky, A. (2020). Topographic
organization of the human subcortex unveiled with functional connectivity
gradients. Nat. Neurosci. 23, 1421–1432. doi: 10.1038/s41593-020-00711-6

Uddin, L. Q. (2017). Mixed signals: on separating brain signal from noise. Trends
Cogn. Sci. 21, 405–406. doi: 10.1016/j.tics.2017.04.002

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil,
K., et al. (2013). The WU-Minn human connectome project: an overview.
Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

Weiner, M. W., Aisen, P., Petersen, R., Rafii, M., Chow, T., Shaw, L. M., et al. (2016).
Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI3) Protocol. 3, 1. Available
online at: https://clinicaltrials.gov/ct2/show/NCT02854033 (accessed February
12, 2022).

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., et al. (2016). Comment: the FAIR guiding principles for scientific data
management and stewardship. Sci. Data 3:160018. doi: 10.1038/sdata.2016.18

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Frazier-Logue, Wang, Wang, Sodums, Khosla, Samson, McIntosh
and Shen. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2022 | Volume 16 | Article 883223174

https://doi.org/10.1016/j.mri.2019.05.008
https://doi.org/10.7554/eLife.28927
https://doi.org/10.1016/j.neuroimage.2015.03.055
https://doi.org/10.1016/j.neuroimage.2015.03.055
https://doi.org/10.1038/s41597-019-0129-z
https://doi.org/10.1016/j.neuroimage.2019.02.018
https://doi.org/10.1016/j.neuroimage.2012.06.005
https://doi.org/10.1038/s41597-021-00870-6
https://doi.org/10.1016/j.neuroimage.2020.117248
https://doi.org/10.1016/j.neuroimage.2020.117248
https://doi.org/10.1371/JOURNAL.PMED.1001779
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1073/pnas.1405672111
https://doi.org/10.1038/s41593-020-00711-6
https://doi.org/10.1016/j.tics.2017.04.002
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://clinicaltrials.gov/ct2/show/NCT02854033
https://doi.org/10.1038/sdata.2016.18
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 20 June 2022

doi: 10.3389/fninf.2022.853098

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 853098

Edited by:

Padraig Gleeson,

University College London,

United Kingdom

Reviewed by:

Louis K. Scheffer,

Howard Hughes Medical Institute

(HHMI), United States

Max Turner,

Stanford University, United States

*Correspondence:

Aurel A. Lazar

aurel@ee.columbia.edu

†The authors’ names are listed in

alphabetical order

Received: 12 January 2022

Accepted: 19 April 2022

Published: 20 June 2022

Citation:

Lazar AA, Turkcan MK and Zhou Y

(2022) A Programmable Ontology

Encompassing the Functional Logic of

the Drosophila Brain.

Front. Neuroinform. 16:853098.

doi: 10.3389/fninf.2022.853098

A Programmable Ontology
Encompassing the Functional Logic
of the Drosophila Brain
Aurel A. Lazar*†, Mehmet Kerem Turkcan † and Yiyin Zhou †

Department of Electrical Engineering, Columbia University, New York, NY, United States

The Drosophila brain has only a fraction of the number of neurons of higher organisms

such as mice and humans. Yet the sheer complexity of its neural circuits recently revealed

by large connectomics datasets suggests that computationally modeling the function

of fruit fly brain circuits at this scale poses significant challenges. To address these

challenges, we present here a programmable ontology that expands the scope of the

current Drosophila brain anatomy ontologies to encompass the functional logic of the

fly brain. The programmable ontology provides a language not only for modeling circuit

motifs but also for programmatically exploring their functional logic. To achieve this goal,

we tightly integrated the programmable ontology with the workflow of the interactive

FlyBrainLab computing platform. As part of the programmable ontology, we developed

NeuroNLP++, a web application that supports free-form English queries for constructing

functional brain circuits fully anchored on the available connectome/synaptome datasets,

and the published worldwide literature. In addition, we present a methodology for

including a model of the space of odorants into the programmable ontology, and for

modeling olfactory sensory circuits of the antenna of the fruit fly brain that detect odorant

sources. Furthermore, we describe a methodology for modeling the functional logic of

the antennal lobe circuit consisting of a massive number of local feedback loops, a

characteristic feature observed across Drosophila brain regions. Finally, using a circuit

library, we demonstrate the power of our methodology for interactively exploring the

functional logic of the massive number of feedback loops in the antennal lobe.

Keywords: Drosophila melanogaster, ontology, connectome/synaptome, feedback loops, functional logic, early

olfactory system, in silico execution, cell type

1. INTRODUCTION

1.1. Challenges in Discovering the Functional Logic of Brain
Circuits in the Connectomic/Synaptomic Era
Large scale foundational surveys of the anatomical, physiological and genomic architecture of
brains of mice, primates and humans have shown the enormous variety of cell types (Tasic et al.,
2018; Grünert andMartin, 2020; Bakken et al., 2021), diverse connectivity patterns with fan-ins and
fan-outs in the tens of thousands and extensive feedback that vary both within and between brain
regions (Harris et al., 2019). The last decade also saw an exponential growth in neuroscience data
gathering, collection and availability, starting with the cubic millimeter brain tissue in mice and
humans (Shapson-Coe et al., 2021). However, due to the sheer magnitude and complexity of brains

175

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.853098
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.853098&domain=pdf&date_stamp=2022-06-20
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aurel@ee.columbia.edu
https://doi.org/10.3389/fninf.2022.853098
https://www.frontiersin.org/articles/10.3389/fninf.2022.853098/full

Lazar et al. A Programmable Ontology

of higher organisms, even with such data at hand, we are
far behind in our understanding of the principles of neural
computation in the brain.

Prior studies have highlighted the need for developing means
of formally specifying and generating executable models of
circuits that incorporate various types of brain data, including
the heterogeneity and connectivity of different cells types and
brain circuits, neurophysiology recordings as well as gene
expression data. In principle, a whole brain simulation can
be instantiated by modeling all the neurons and synapses
of the connectome/synaptome with simple dynamics such as
integrate-and-fire neurons and α-synapses, with parameters
tuned according to certain criteria (Huang et al., 2019). Such
an effort, however, may fall short of revealing the fundamental
computational units required for understanding the functional
logic of the brain, as the details of the units of computation are
likely buried in the uniform treatment of the vast number of
neurons and their connection patterns.

It is, therefore, imperative to develop a formal reasoning
framework of the functional logic of brain circuits that
goes beyond simple instantiations of flows on graphs
generated from the connectome. A framework is needed
for building a functional brain from components whose
functional logic can be readily envisioned, and for exploring the
computational principles underlying these components given
the available data.

Recently released connectome, synaptome and transcriptome
datasets of the Drosophila brain and ventral nerve cord (VNC)
present a refreshing view of the study of neural computation
(Zheng et al., 2018; Scheffer et al., 2020; Li et al., 2021). These
datasets present challenges and opportunities for hypothesizing
and uncovering the fundamental computational units and
their interactions.

1.2. Modeling the Functional Logic of Fruit
Fly Brain Circuits With Cell Types and
Feedback Loops
The fruit fly brain can be subdivided into some 40 neuropils.
The concept of the local processing unit (LPU) was introduced
in the early works of the fly connectome to represent
functional subdivisions of the fruit fly brain circuit architecture
(Chiang et al., 2011). LPUs are characterized by unique
populations of local neurons whose processes are restricted to
specific neuropils.

It was not until the release of follow up electron microscopy
(EM) connectome datasets that the minute details of the
connectivity of these local neurons were revealed (Ohyama
et al., 2015; Takemura et al., 2015; Zheng et al., 2018; Scheffer
et al., 2020). Oftentimes, local neurons within each neuropil
form intricate feedback circuits with a massive number of
feedback loops.

For example, the antennal lobe of the early olfactory
system, consists of the axons of olfactory sensory neurons
(OSNs) as inputs (depicted in Figure 1A in darker colors),
the antennal lobe projection neurons (PNs) as outputs (in

Figure 1A in brighter colors), and a large collection of local
neurons (in Figure 1A in transparent white). The adjacency
matrix of the connectivity graph of the AL circuit is shown
in Figure 1B.

The axons of the OSNs expressing the same olfactory receptor
(OR) project into the same glomerulus where they provide inputs
to uniglomerular PNs (uPNs) whose dendrites only extend within
the same glomerulus. Such connections form the feedforward
signaling path in the antennal lobe (see the magenta-colored
block in Figure 1B).

While not all neuropils share such glomerular structure, three
features in the AL connectivity patterns can be found in many
other neuropils.

First, OSNs expressing the same OR exhibit strong axon-
axonal connections but not with OSNs expressing other ORs
(see the cyan-colored block corresponding to the OSN-to-
OSN connectivity on the top left of Figure 1B). Similar axonal
connections can be observed between Kenyon Cells (KCs) of
the mushroom body (MB) (Zheng et al., 2018), between Lobular
Columnar (LC) neurons in the optic glomeruli (OG) (Scheffer
et al., 2020), and between the ring neurons of the ellipsoid body
(EB) (Hulse et al., 2021).

Second, local neurons in the AL can be grouped into a large
number of cell types. The diversity of the LN cell types and the
complexity of their arborization suggest the key role that the LNs
play in shaping the functional logic of the AL. Determining the
role each of these cell types plays is essential in modeling the
functional logic of the AL circuit.

Third, local neurons receive inputs from OSNs and PNs
(see green and blue blocks, corresponding to OSN-to-LN and
PN-to-LN connectivity, respectively, in Figure 1B). They also
provide feedback to OSNs and PNs (see red and yellow blocks,
respectively, in Figure 1B). In addition, LNs also synapse onto
other LNs (white block in Figure 1B). Given the simplicity of the
feedforward signaling path and the complex nature of feedback
driven by LN connectivity, the massive number of feedback loops
must underlie the functional logic of the AL circuit.

A massive number of feedback loops can be ubiquitously
found across other brain regions, for example in the medulla
(Takemura et al., 2015), lateral horn, mushroom body (Scheffer
et al., 2020), central complex (Hulse et al., 2021), etc. The
feedback loops considered here map the states at the output of
a circuit into inputs. Since the AL has a connectivity structure
that in many ways is representative, for simplicity and clarity in
the rest of this work we will be mostly focused on characterizing
the AL circuit.

Finally, note that in mammals, particularly in the visual
system, feedback pathways have long been considered to
be a key component of the architecture of brain circuits
(Lamme et al., 1998). However, due to the lack of detailed
brain circuit connectivity in these higher organisms there
remains insufficient insight into the functional role played
by the feedback circuits. The connectome/synaptome
of the fruit fly opens new avenues for discovering the
full complexity and computational principles underlying
feedback circuits.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 853098176

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

D
 O

S
N

D
A

1
 O

S
N

D
A

2
 O

S
N

D
A

3
 O

S
N

D
A

4
l
O

S
N

D
A

4
m

 O
S
N

D
C

1
 O

S
N

D
C

2
 O

S
N

D
C

3
 O

S
N

D
C

4
 O

S
N

D
L
1

 O
S
N

D
L
2

d
 O

S
N

D
L
2

v
 O

S
N

D
L
3

 O
S
N

D
L
4

 O
S
N

D
L
5

 O
S
N

D
M

1
 O

S
N

D
M

2
 O

S
N

D
M

3
 O

S
N

D
M

4
 O

S
N

D
M

5
 O

S
N

D
M

6
 O

S
N

D
P
1

l
O

S
N

D
P
1

m
 O

S
N

V
 O

S
N

V
A

1
d
 O

S
N

V
A

1
v
 O

S
N

V
A

2
 O

S
N

V
A

3
 O

S
N

V
A

4
 O

S
N

V
A

5
 O

S
N

V
A

6
 O

S
N

V
A

7
l
O

S
N

V
A

7
m

 O
S
N

V
C

1
 O

S
N

V
C

2
 O

S
N

V
C

3
l
O

S
N

V
C

3
m

 O
S
N

V
C

4
 O

S
N

V
C

5
 O

S
N

V
L
1

 O
S
N

V
L
2

a
 O

S
N

V
L
2

p
 O

S
N

V
M

1
 O

S
N

V
M

2
 O

S
N

V
M

3
 O

S
N

V
M

4
 O

S
N

V
M

5
d
 O

S
N

V
M

5
v
 O

S
N

V
M

7
d
 O

S
N

V
M

7
v
 O

S
N

V
P
1

d
 O

S
N

V
P
1

l
O

S
N

V
P
1

m
 O

S
N

V
P
2

 O
S
N

V
P
3

a
 O

S
N

V
P
3

b
 O

S
N

V
P
4

 O
S
N

V
P
5

 O
S
N

L
N

(A
L
)?

_
1

6
7

2
6

3
5

2
7

3

L
N

(A
L
)?

_
1

7
6

2
3

5
1

2
0

1

L
N

(A
L
)?

_
1

7
6

3
7

2
8

3
4

0

L
N

(A
L
)?

_
1

9
5

2
9

8
5

2
4

8

L
N

_
1

6
3

6
2

3
8

5
6

0

L
N

_
1

6
7

0
2

6
5

0
9

5

L
N

_
1

6
7

0
2

7
3

7
4

3

L
N

_
1

6
7

1
2

9
7

0
6

4

L
N

_
1

6
7

1
9

5
7

1
2

2

L
N

_
1

6
9

7
9

4
9

7
1

3

L
N

_
1

6
9

8
2

8
6

3
2

9

L
N

_
1

7
0

2
6

6
8

5
8

0

L
N

_
1

7
3

0
7

5
4

6
7

6

L
N

_
1

7
9

0
0

2
7

8
1

1

L
N

_
1

7
9

4
4

4
7

7
2

3

L
N

_
1

7
9

5
1

3
0

3
5

3

L
N

_
1

8
2

4
1

2
7

5
2

5

L
N

_
1

8
2

5
4

2
2

1
9

5

L
N

_
1

8
8

3
7

8
8

2
8

4

L
N

_
1

8
8

3
8

0
1

1
4

8

L
N

_
1

8
8

7
5

3
9

8
7

1

L
N

_
1

9
1

8
9

1
1

3
2

3

L
N

_
1

9
2

0
6

0
8

0
7

3

L
N

_
2

0
1

1
9

9
4

8
5

8

L
N

_
2

0
4

4
4

4
5

7
1

4

L
N

_
2

1
0

6
8

4
3

6
5

1

L
N

_
5

8
1

3
0

0
5

4
9

9

L
N

_
5

8
1

3
0

5
7

6
3

7

L
N

_
5

8
1

3
0

7
0

8
7

3

L
N

_
7

1
1

2
6

1
4

5
8

5

L
N

_
L
_
1

6
0

6
2

0
5

3
6

2

L
N

_
L
_
1

6
6

6
5

7
4

1
9

9

L
N

_
L
_
1

6
7

2
3

1
6

1
2

2

L
N

_
L
_
1

6
9

8
6

7
9

7
0

8

L
N

_
L
_
1

6
9

9
0

2
9

5
2

5

L
N

_
L
_
1

7
2

7
9

7
5

2
1

5

L
N

_
L
_
1

7
2

7
9

8
8

1
1

1

L
N

_
L
_
1

7
2

9
3

2
1

5
9

3

L
N

_
L
_
1

7
2

9
9

9
1

0
1

4

L
N

_
L
_
1

7
3

1
1

0
9

5
3

1

L
N

_
L
_
1

7
5

8
3

3
7

3
5

1

L
N

_
L
_
1

7
5

8
6

6
4

6
7

8

L
N

_
L
_
1

7
5

8
9

9
3

1
9

1

L
N

_
L
_
1

7
5

8
9

9
6

9
3

2

L
N

_
L
_
1

7
5

9
0

0
1

3
2

9

L
N

_
L
_
1

7
5

9
0

1
9

2
2

1

L
N

_
L
_
1

7
5

9
3

2
9

2
9

4

L
N

_
L
_
1

7
5

9
3

2
9

4
5

8

L
N

_
L
_
1

7
5

9
3

4
2

0
5

6

L
N

_
L
_
1

7
5

9
6

8
2

7
7

7

L
N

_
L
_
1

7
6

0
4

2
5

7
6

9

L
N

_
L
_
1

7
6

1
3

5
4

1
0

7

L
N

_
L
_
1

7
6

2
1

4
3

9
9

5

L
N

_
L
_
1

7
6

3
1

6
7

2
5

2

L
N

_
L
_
1

7
8

8
3

6
1

3
3

7

L
N

_
L
_
1

7
8

8
6

8
0

5
1

3

L
N

_
L
_
1

7
8

8
6

8
0

7
6

2

L
N

_
L
_
1

7
8

8
6

8
8

9
9

7

L
N

_
L
_
1

7
8

8
6

8
9

5
0

4

L
N

_
L
_
1

7
8

9
0

1
7

4
8

6

L
N

_
L
_
1

7
9

0
3

6
8

5
8

9

L
N

_
L
_
1

7
9

0
7

0
9

2
1

0

L
N

_
L
_
1

7
9

4
0

7
6

7
0

3

L
N

_
L
_
1

7
9

4
1

8
9

4
9

1

L
N

_
L
_
1

7
9

5
1

0
0

2
0

3

L
N

_
L
_
1

8
2

0
7

2
1

3
6

7

L
N

_
L
_
1

8
2

1
0

6
2

8
4

8

L
N

_
L
_
1

8
2

1
7

4
0

1
0

0

L
N

_
L
_
1

8
2

3
7

6
0

4
8

6

L
N

_
L
_
1

8
5

0
7

9
3

4
3

9

L
N

_
L
_
1

8
5

0
7

9
3

6
2

3

L
N

_
L
_
1

8
5

1
7

4
7

9
5

0

L
N

_
L
_
1

8
5

1
8

1
6

7
6

3

L
N

_
L
_
1

8
5

4
1

1
7

6
3

4

L
N

_
L
_
1

8
8

2
7

9
1

8
4

8

L
N

_
L
_
1

8
8

3
4

4
3

0
8

0

L
N

_
L
_
1

8
8

3
7

8
8

8
6

2

L
N

_
L
_
1

9
1

5
6

0
9

3
1

0

L
N

_
L
_
1

9
4

6
8

5
0

9
7

9

L
N

_
L
_
1

9
7

6
5

4
7

4
9

1

L
N

_
L
_
1

9
7

7
8

7
7

7
0

6

L
N

_
L
_
2

0
0

7
2

4
5

4
9

1

L
N

_
L
_
2

0
3

8
6

1
7

5
1

5

L
N

_
L
_
2

1
3

2
4

1
3

3
4

9

L
N

_
L
_
2

1
6

4
7

5
1

5
6

2

L
N

_
L
_
2

1
9

7
8

3
2

8
3

7

L
N

_
L
_
2

2
2

3
8

0
4

6
3

4

L
N

_
L
_
2

2
2

7
1

6
2

8
3

1

L
N

_
L
_
5

8
1

2
9

9
5

1
9

2

L
N

_
L
_
5

8
1

2
9

9
6

7
4

9

L
N

_
L
_
5

8
1

2
9

9
7

5
1

8

L
N

_
L
_
5

8
1

3
0

3
9

4
9

1

L
N

_
L
_
5

8
1

3
0

6
1

3
2

8

L
N

_
L
_
5

8
1

3
0

8
6

0
0

7

L
N

_
L
_
5

8
1

3
1

0
3

3
6

3

L
N

_
L
_
5

9
0

1
1

9
4

5
9

0

L
N

_
L
_
5

9
0

1
1

9
9

8
2

5

L
N

_
L
_
5

9
0

1
2

0
3

7
3

0

L
N

_
L
_
5

9
0

1
2

0
4

0
0

7

il
3

L
N

6
_
L
_
1

il
3

L
N

6
_
R

_
1

l2
L
N

1
8

_
R

_
1

l2
L
N

1
9

_
R

_
1

l2
L
N

1
9

_
R

_
2

l2
L
N

2
0

_
R

_
1

l2
L
N

2
0

_
R

_
2

l2
L
N

2
1

_
R

_
1

l2
L
N

2
2

_
R

_
1

l2
L
N

2
2

_
R

_
2

l2
L
N

2
3

_
1

l2
L
N

2
3

_
R

_
1

lL
N

1
0

_
R

_
1

lL
N

1
1

_
R

_
1

lL
N

1
1

_
R

_
2

lL
N

1
1

_
R

_
3

lL
N

1
2

a
_
R

_
1

lL
N

1
2

a
_
R

_
2

lL
N

1
2

a
_
R

_
3

lL
N

1
2

b
_
R

_
1

lL
N

1
2

b
_
R

_
2

lL
N

1
3

_
R

_
1

lL
N

1
3

_
R

_
2

lL
N

1
3

_
R

_
3

lL
N

1
4

_
R

_
1

lL
N

1
4

_
R

_
2

lL
N

1
5

_
R

_
1

lL
N

1
5

_
R

_
2

lL
N

1
5

_
R

_
3

lL
N

1
6

a
_
R

_
1

lL
N

1
6

a
_
R

_
2

lL
N

1
6

b
_
R

_
1

lL
N

1
6

b
_
R

_
2

lL
N

1
6

b
_
R

_
3

lL
N

1
6

b
_
R

_
4

lL
N

1
6

b
_
R

_
5

lL
N

1
6

b
_
R

_
6

lL
N

1
6

b
_
R

_
7

lL
N

1
7

_
R

_
1

lL
N

1
7

_
R

_
2

lL
N

1
_
a
_
R

_
1

lL
N

1
_
a
_
R

_
2

lL
N

1
_
b
_
R

_
1

lL
N

1
_
b
_
R

_
2

lL
N

1
_
b
_
R

_
3

lL
N

1
_
b
_
R

_
4

lL
N

1
_
b
_
R

_
5

lL
N

1
_
b
_
R

_
6

lL
N

1
_
b
_
R

_
7

lL
N

1
_
b
_
R

_
8

lL
N

1
_
c
_
R

_
1

lL
N

1
_
c
_
R

_
2

lL
N

1
_
c
_
R

_
3

lL
N

1
_
c
_
R

_
4

lL
N

1
_
c
_
R

_
5

lL
N

1
_
c
_
R

_
6

lL
N

2
F
_
a
(F

u
ll
)_

R
_
1

lL
N

2
F
_
a
(F

u
ll
)_

R
_
2

lL
N

2
F
_
b
(F

u
ll
)_

R
_
1

lL
N

2
F
_
b
(F

u
ll
)_

R
_
2

lL
N

2
P
_
a
(P

a
tc

h
y
)_

R
_
1

lL
N

2
P
_
a
(P

a
tc

h
y
)_

R
_
2

lL
N

2
P
_
a
(P

a
tc

h
y
)_

R
_
3

lL
N

2
P
_
a
(P

a
tc

h
y
)_

R
_
4

lL
N

2
P
_
b
(P

a
tc

h
y
)_

R
_
1

lL
N

2
P
_
b
(P

a
tc

h
y
)_

R
_
2

lL
N

2
P
_
b
(P

a
tc

h
y
)_

R
_
3

lL
N

2
P
_
b
(P

a
tc

h
y
)_

R
_
4

lL
N

2
P
_
c
(P

a
tc

h
y
)_

R
_
1

lL
N

2
P
_
c
(P

a
tc

h
y
)_

R
_
2

lL
N

2
P
_
c
(P

a
tc

h
y
)_

R
_
3

lL
N

2
P
_
c
(P

a
tc

h
y
)_

R
_
4

lL
N

2
P
_
c
(P

a
tc

h
y
)_

R
_
5

lL
N

2
P
_
c
(P

a
tc

h
y
)_

R
_
6

lL
N

2
R

_
a
(R

e
g
io

n
a
l)

_
R

_
1

lL
N

2
R

_
a
(R

e
g
io

n
a
l)

_
R

_
2

lL
N

2
R

_
a
(R

e
g
io

n
a
l)

_
R

_
3

lL
N

2
R

_
b
(R

e
g
io

n
a
l)

_
R

_
1

lL
N

2
R

_
b
(R

e
g
io

n
a
l)

_
R

_
2

lL
N

2
S
(S

ta
r)

_
R

_
1

lL
N

2
S
(S

ta
r)

_
R

_
2

lL
N

2
S
(S

ta
r)

_
R

_
3

lL
N

2
S
(S

ta
r)

_
R

_
4

lL
N

2
S
(S

ta
r)

_
R

_
5

lL
N

2
S
(S

ta
r)

_
R

_
6

lL
N

2
T
_
a
(T

o
rt

u
o
u
s
)_

R
_
1

lL
N

2
T
_
a
(T

o
rt

u
o
u
s
)_

R
_
2

lL
N

2
T
_
a
(T

o
rt

u
o
u
s
)_

R
_
3

lL
N

2
T
_
a
(T

o
rt

u
o
u
s
)_

R
_
4

lL
N

2
T
_
a
(T

o
rt

u
o
u
s
)_

R
_
5

lL
N

2
T
_
a
(T

o
rt

u
o
u
s
)_

R
_
6

lL
N

2
T
_
a
(T

o
rt

u
o
u
s
)_

R
_
7

lL
N

2
T
_
a
(T

o
rt

u
o
u
s
)_

R
_
8

lL
N

2
T
_
b
(T

o
rt

u
o
u
s
)_

R
_
1

lL
N

2
T
_
b
(T

o
rt

u
o
u
s
)_

R
_
2

lL
N

2
T
_
c
(T

o
rt

u
o
u
s
)_

R
_
1

lL
N

2
T
_
c
(T

o
rt

u
o
u
s
)_

R
_
2

lL
N

2
T
_
d
(T

o
rt

u
o
u
s
)_

R
_
1

lL
N

2
T
_
d
(T

o
rt

u
o
u
s
)_

R
_
2

lL
N

2
T
_
e
(T

o
rt

u
o
u
s
)_

R
_
1

lL
N

2
T
_
e
(T

o
rt

u
o
u
s
)_

R
_
2

lL
N

7
_
R

_
1

lL
N

8
_
R

_
1

lL
N

8
_
R

_
2

lL
N

9
_
R

_
1

lL
N

9
_
R

_
2

v
2

L
N

2
_
R

_
1

v
2

L
N

2
_
R

_
2

v
2

L
N

2
_
R

_
3

v
2

L
N

3
0

_
R

_
1

v
2

L
N

3
1

_
R

_
1

v
2

L
N

3
2

_
R

_
1

v
2

L
N

3
3

_
R

_
1

v
2

L
N

3
3

_
R

_
2

v
2

L
N

3
3

_
R

_
3

v
2

L
N

3
4

a
_
R

_
1

v
2

L
N

3
4

a
_
R

_
2

v
2

L
N

3
4

a
_
R

_
3

v
2

L
N

3
4

a
_
R

_
4

v
2

L
N

3
4

b
_
R

_
1

v
2

L
N

3
4

b
_
R

_
2

v
2

L
N

3
4

b
_
R

_
3

v
2

L
N

3
4

b
_
R

_
4

v
2

L
N

3
4

c
_
R

_
1

v
2

L
N

3
4

c
_
R

_
2

v
2

L
N

3
4

d
_
R

_
1

v
2

L
N

3
4

d
_
R

_
2

v
2

L
N

3
4

d
_
R

_
3

v
2

L
N

3
4

e
_
R

_
1

v
2

L
N

3
4

e
_
R

_
2

v
2

L
N

3
4

e
_
R

_
3

v
2

L
N

3
4

e
_
R

_
4

v
2

L
N

3
4

f_
R

_
1

v
2

L
N

3
5

_
R

_
1

v
2

L
N

3
5

_
R

_
2

v
2

L
N

3
5

_
R

_
3

v
2

L
N

3
6

_
R

_
1

v
2

L
N

3
7

_
R

_
1

v
2

L
N

3
8

_
L
_
1

v
2

L
N

3
8

_
R

_
1

v
2

L
N

3
8

_
R

_
2

v
2

L
N

3
9

a
_
R

_
1

v
2

L
N

3
9

a
_
R

_
2

v
2

L
N

3
9

a
_
R

_
3

v
2

L
N

3
9

a
_
R

_
4

v
2

L
N

3
9

b
_
R

_
1

v
2

L
N

3
9

b
_
R

_
2

v
2

L
N

3
a
_
R

_
1

v
2

L
N

3
a
_
R

_
2

v
2

L
N

3
a
_
R

_
3

v
2

L
N

3
a
_
R

_
4

v
2

L
N

3
b
_
R

_
1

v
2

L
N

3
b
_
R

_
2

v
2

L
N

3
b
_
R

_
3

v
2

L
N

4
0

_
R

_
1

v
2

L
N

4
0

_
R

_
2

v
2

L
N

4
0

_
R

_
3

v
2

L
N

4
0

_
R

_
4

v
2

L
N

4
0

_
R

_
5

v
2

L
N

4
0

_
R

_
6

v
2

L
N

4
0

_
R

_
7

v
2

L
N

4
1

_
R

_
1

v
2

L
N

4
1

_
R

_
2

v
2

L
N

4
2

_
R

_
1

v
2

L
N

4
2

_
R

_
2

v
2

L
N

4
3

_
R

_
1

v
2

L
N

4
3

_
R

_
2

v
2

L
N

4
3

_
R

_
3

v
2

L
N

4
4

_
R

_
1

v
2

L
N

4
4

_
R

_
2

v
2

L
N

4
5

_
R

_
1

v
2

L
N

4
5

_
R

_
2

v
2

L
N

4
5

_
R

_
3

v
2

L
N

4
6

_
R

_
1

v
2

L
N

4
6

_
R

_
2

v
2

L
N

4
6

_
R

_
3

v
2

L
N

4
7

_
R

_
1

v
2

L
N

4
7

_
R

_
2

v
2

L
N

4
7

_
R

_
3

v
2

L
N

4
8

_
R

_
1

v
2

L
N

4
9

_
R

_
1

v
2

L
N

4
9

_
R

_
2

v
2

L
N

4
_
R

_
1

v
2

L
N

4
_
R

_
2

v
2

L
N

4
_
R

_
3

v
2

L
N

5
0

_
R

_
1

v
2

L
N

5
_
R

_
1

v
2

L
N

5
_
R

_
2

v
L
N

2
4

_
1

v
L
N

2
4

_
R

_
1

v
L
N

2
5

_
1

v
L
N

2
5

_
R

_
1

v
L
N

2
6

_
R

_
1

v
L
N

2
7

_
R

_
1

v
L
N

2
8

_
R

_
1

v
L
N

2
9

_
R

_
1

D
 P

N

D
A

1
 P

N

D
A

2
 P

N

D
A

3
 P

N

D
A

4
l
P
N

D
A

4
m

 P
N

D
C

1
 P

N

D
C

2
 P

N

D
C

3
 P

N

D
C

4
 P

N

D
L
1

 P
N

D
L
2

d
 P

N

D
L
2

v
 P

N

D
L
3

 P
N

D
L
4

 P
N

D
L
5

 P
N

D
M

1
 P

N

D
M

2
 P

N

D
M

3
 P

N

D
M

4
 P

N

D
M

5
 P

N

D
M

6
 P

N

D
P
1

l
P
N

D
P
1

m
 P

N

V
 P

N

V
A

1
d
 P

N

V
A

1
v
 P

N

V
A

2
 P

N

V
A

3
 P

N

V
A

4
 P

N

V
A

5
 P

N

V
A

6
 P

N

V
A

7
l
P
N

V
A

7
m

 P
N

V
C

1
 P

N

V
C

2
 P

N

V
C

3
l
P
N

V
C

3
m

 P
N

V
C

4
 P

N

V
C

5
 P

N

V
L
1

 P
N

V
L
2

a
 P

N

V
L
2

p
 P

N

V
M

1
 P

N

V
M

2
 P

N

V
M

3
 P

N

V
M

4
 P

N

V
M

5
d
 P

N

V
M

5
v
 P

N

V
M

7
d
 P

N

V
M

7
v
 P

N

V
P
1

l
P
N

V
P
1

m
 P

N

V
P
2

 P
N

V
P
3

 P
N

V
P
4

 P
N

V
P
5

 P
N

D OSN

DA1 OSN

DA2 OSN

DA3 OSN

DA4l OSN

DA4m OSN

DC1 OSN

DC2 OSN

DC3 OSN

DC4 OSN

DL1 OSN

DL2d OSN

DL2v OSN

DL3 OSN

DL4 OSN

DL5 OSN

DM1 OSN

DM2 OSN

DM3 OSN

DM4 OSN

DM5 OSN

DM6 OSN

DP1l OSN

DP1m OSN

V OSN

VA1d OSN

VA1v OSN

VA2 OSN

VA3 OSN

VA4 OSN

VA5 OSN

VA6 OSN

VA7l OSN

VA7m OSN

VC1 OSN

VC2 OSN

VC3l OSN

VC3m OSN

VC4 OSN

VC5 OSN

VL1 OSN

VL2a OSN

VL2p OSN

VM1 OSN

VM2 OSN

VM3 OSN

VM4 OSN

VM5d OSN

VM5v OSN

VM7d OSN

VM7v OSN

VP1d OSN

VP1l OSN

VP1m OSN

VP2 OSN

VP3a OSN

VP3b OSN

VP4 OSN

VP5 OSN

LN(AL)?_1672635273

LN(AL)?_1762351201

LN(AL)?_1763728340

LN(AL)?_1952985248

LN_1636238560

LN_1670265095

LN_1670273743

LN_1671297064

LN_1671957122

LN_1697949713

LN_1698286329

LN_1702668580

LN_1730754676

LN_1790027811

LN_1794447723

LN_1795130353

LN_1824127525

LN_1825422195

LN_1883788284

LN_1883801148

LN_1887539871

LN_1918911323

LN_1920608073

LN_2011994858

LN_2044445714

LN_2106843651

LN_5813005499

LN_5813057637

LN_5813070873

LN_7112614585

LN_L_1606205362

LN_L_1666574199

LN_L_1672316122

LN_L_1698679708

LN_L_1699029525

LN_L_1727975215

LN_L_1727988111

LN_L_1729321593

LN_L_1729991014

LN_L_1731109531

LN_L_1758337351

LN_L_1758664678

LN_L_1758993191

LN_L_1758996932

LN_L_1759001329

LN_L_1759019221

LN_L_1759329294

LN_L_1759329458

LN_L_1759342056

LN_L_1759682777

LN_L_1760425769

LN_L_1761354107

LN_L_1762143995

LN_L_1763167252

LN_L_1788361337

LN_L_1788680513

LN_L_1788680762

LN_L_1788688997

LN_L_1788689504

LN_L_1789017486

LN_L_1790368589

LN_L_1790709210

LN_L_1794076703

LN_L_1794189491

LN_L_1795100203

LN_L_1820721367

LN_L_1821062848

LN_L_1821740100

LN_L_1823760486

LN_L_1850793439

LN_L_1850793623

LN_L_1851747950

LN_L_1851816763

LN_L_1854117634

LN_L_1882791848

LN_L_1883443080

LN_L_1883788862

LN_L_1915609310

LN_L_1946850979

LN_L_1976547491

LN_L_1977877706

LN_L_2007245491

LN_L_2038617515

LN_L_2132413349

LN_L_2164751562

LN_L_2197832837

LN_L_2223804634

LN_L_2227162831

LN_L_5812995192

LN_L_5812996749

LN_L_5812997518

LN_L_5813039491

LN_L_5813061328

LN_L_5813086007

LN_L_5813103363

LN_L_5901194590

LN_L_5901199825

LN_L_5901203730

LN_L_5901204007

il3LN6_L_1

il3LN6_R_1

l2LN18_R_1

l2LN19_R_1

l2LN19_R_2

l2LN20_R_1

l2LN20_R_2

l2LN21_R_1

l2LN22_R_1

l2LN22_R_2

l2LN23_1

l2LN23_R_1

lLN10_R_1

lLN11_R_1

lLN11_R_2

lLN11_R_3

lLN12a_R_1

lLN12a_R_2

lLN12a_R_3

lLN12b_R_1

lLN12b_R_2

lLN13_R_1

lLN13_R_2

lLN13_R_3

lLN14_R_1

lLN14_R_2

lLN15_R_1

lLN15_R_2

lLN15_R_3

lLN16a_R_1

lLN16a_R_2

lLN16b_R_1

lLN16b_R_2

lLN16b_R_3

lLN16b_R_4

lLN16b_R_5

lLN16b_R_6

lLN16b_R_7

lLN17_R_1

lLN17_R_2

lLN1_a_R_1

lLN1_a_R_2

lLN1_b_R_1

lLN1_b_R_2

lLN1_b_R_3

lLN1_b_R_4

lLN1_b_R_5

lLN1_b_R_6

lLN1_b_R_7

lLN1_b_R_8

lLN1_c_R_1

lLN1_c_R_2

lLN1_c_R_3

lLN1_c_R_4

lLN1_c_R_5

lLN1_c_R_6

lLN2F_a(Full)_R_1

lLN2F_a(Full)_R_2

lLN2F_b(Full)_R_1

lLN2F_b(Full)_R_2

lLN2P_a(Patchy)_R_1

lLN2P_a(Patchy)_R_2

lLN2P_a(Patchy)_R_3

lLN2P_a(Patchy)_R_4

lLN2P_b(Patchy)_R_1

lLN2P_b(Patchy)_R_2

lLN2P_b(Patchy)_R_3

lLN2P_b(Patchy)_R_4

lLN2P_c(Patchy)_R_1

lLN2P_c(Patchy)_R_2

lLN2P_c(Patchy)_R_3

lLN2P_c(Patchy)_R_4

lLN2P_c(Patchy)_R_5

lLN2P_c(Patchy)_R_6

lLN2R_a(Regional)_R_1

lLN2R_a(Regional)_R_2

lLN2R_a(Regional)_R_3

lLN2R_b(Regional)_R_1

lLN2R_b(Regional)_R_2

lLN2S(Star)_R_1

lLN2S(Star)_R_2

lLN2S(Star)_R_3

lLN2S(Star)_R_4

lLN2S(Star)_R_5

lLN2S(Star)_R_6

lLN2T_a(Tortuous)_R_1

lLN2T_a(Tortuous)_R_2

lLN2T_a(Tortuous)_R_3

lLN2T_a(Tortuous)_R_4

lLN2T_a(Tortuous)_R_5

lLN2T_a(Tortuous)_R_6

lLN2T_a(Tortuous)_R_7

lLN2T_a(Tortuous)_R_8

lLN2T_b(Tortuous)_R_1

lLN2T_b(Tortuous)_R_2

lLN2T_c(Tortuous)_R_1

lLN2T_c(Tortuous)_R_2

lLN2T_d(Tortuous)_R_1

lLN2T_d(Tortuous)_R_2

lLN2T_e(Tortuous)_R_1

lLN2T_e(Tortuous)_R_2

lLN7_R_1

lLN8_R_1

lLN8_R_2

lLN9_R_1

lLN9_R_2

v2LN2_R_1

v2LN2_R_2

v2LN2_R_3

v2LN30_R_1

v2LN31_R_1

v2LN32_R_1

v2LN33_R_1

v2LN33_R_2

v2LN33_R_3

v2LN34a_R_1

v2LN34a_R_2

v2LN34a_R_3

v2LN34a_R_4

v2LN34b_R_1

v2LN34b_R_2

v2LN34b_R_3

v2LN34b_R_4

v2LN34c_R_1

v2LN34c_R_2

v2LN34d_R_1

v2LN34d_R_2

v2LN34d_R_3

v2LN34e_R_1

v2LN34e_R_2

v2LN34e_R_3

v2LN34e_R_4

v2LN34f_R_1

v2LN35_R_1

v2LN35_R_2

v2LN35_R_3

v2LN36_R_1

v2LN37_R_1

v2LN38_L_1

v2LN38_R_1

v2LN38_R_2

v2LN39a_R_1

v2LN39a_R_2

v2LN39a_R_3

v2LN39a_R_4

v2LN39b_R_1

v2LN39b_R_2

v2LN3a_R_1

v2LN3a_R_2

v2LN3a_R_3

v2LN3a_R_4

v2LN3b_R_1

v2LN3b_R_2

v2LN3b_R_3

v2LN40_R_1

v2LN40_R_2

v2LN40_R_3

v2LN40_R_4

v2LN40_R_5

v2LN40_R_6

v2LN40_R_7

v2LN41_R_1

v2LN41_R_2

v2LN42_R_1

v2LN42_R_2

v2LN43_R_1

v2LN43_R_2

v2LN43_R_3

v2LN44_R_1

v2LN44_R_2

v2LN45_R_1

v2LN45_R_2

v2LN45_R_3

v2LN46_R_1

v2LN46_R_2

v2LN46_R_3

v2LN47_R_1

v2LN47_R_2

v2LN47_R_3

v2LN48_R_1

v2LN49_R_1

v2LN49_R_2

v2LN4_R_1

v2LN4_R_2

v2LN4_R_3

v2LN50_R_1

v2LN5_R_1

v2LN5_R_2

vLN24_1

vLN24_R_1

vLN25_1

vLN25_R_1

vLN26_R_1

vLN27_R_1

vLN28_R_1

vLN29_R_1

D PN

DA1 PN

DA2 PN

DA3 PN

DA4l PN

DA4m PN

DC1 PN

DC2 PN

DC3 PN

DC4 PN

DL1 PN

DL2d PN

DL2v PN

DL3 PN

DL4 PN

DL5 PN

DM1 PN

DM2 PN

DM3 PN

DM4 PN

DM5 PN

DM6 PN

DP1l PN

DP1m PN

V PN

VA1d PN

VA1v PN

VA2 PN

VA3 PN

VA4 PN

VA5 PN

VA6 PN

VA7l PN

VA7m PN

VC1 PN

VC2 PN

VC3l PN

VC3m PN

VC4 PN

VC5 PN

VL1 PN

VL2a PN

VL2p PN

VM1 PN

VM2 PN

VM3 PN

VM4 PN

VM5d PN

VM5v PN

VM7d PN

VM7v PN

VP1l PN

VP1m PN

VP2 PN

VP3 PN

VP4 PN

VP5 PN

3740 4 4 2 1 1 2 6 12 4 6 151180 7 6 81 9 18 27 4 1 1 3 3 22 1 53 188 74 28 1 5 7 13 1 2 3 8 4 11 1 7 3 5 2 1 5 7 3 2 3 5 3 137161358176 30 252 8 96 74 63 45 31 41 2 10 14 62 43 63 47 41 43 60 98 43 69 100 52 31 84 66 47 62 169373 49 97 67 32 17 16 1 11 88 6 6 2 2 2 7 10 34 2 4 13 19 3 3318 117 2 1

4358 2 1 1 1 19 13 5 10 1 10 57 1 1 1 1 1141116425 1 5 58 1 8 1 2 4 4 4 5 2 1 1 4 1 4 345190627498 370 92 494 51 84 36 49 74 79 30 66 30 53 38 32 66 11 31 64 2 767381163502 99 219 99 93 7 1 3 605 1490265 2 5 1 9963 3 12

7 828 10 6 5 1 2 4 3 2 2 1 9 52 101 4 6 18 2 11 5 19 1 5 1 2 2 5 5 8 5 6 5 1 1 2 4 2 79 98 95 36 79 12 1 47 20 39 44 5 7 20 32 52 35 28 31 26 22 65 31 55 36 11 3 14 14 47 13 2 7 4 27 1 1 1 3 1 3 883 13 22

12 4 1022 1 15 1 1 1 8 1 2 10 75 21 18 3 3 28 3 1 1 1 4 2 2 2 1 1 2 2 91 103 36 9 191 39 55 5 34 21 20 33 15 1 44 28 33 33 52 24 65 22 23 2 3 8 3 6 44 16 2 830 2 6

234 1 4 3 7 1 11 13 12 2 5 7 1 2 237 14 1

1 3 1 83 2 3 1 8 3 5 1 5 12 1 2 5 1 1 8 5 6 7 3 2 3 3 7 5 2 2 3 3 3 4 4 1 3 1 2 2 3 5 2 5 158 3

4 3 417816 6 11 129 57 1 2 2 1 99 15 16 2 10 292234120 50 16 5 1 1 2 1 1 4 1 1 8 3 15 9 1 11 7 1 12 7 3 1 6 8 6 4 4 11 9 9 5 160218280357207 65 1 82 139 9 192 39 54 72 26 1 33 25 8 19 20 38 18 44 27 36 71 128 24 34 51 59 63 94 456202193132 53 76 50 11 118 1 1 1 5 9 12 9 2 31 60 2 47 26 1 6 40 66 3 4 1 207276741 4

2 241624 1 2 5 2 2 5 81 66 7 4 1 18 4 3 3 45 79 2 6 16 11 1 1 128273 36 9 12 17 11 2 2 3 8 9 7 13 9 2 5 2 2 9 1 4 1 6 2 3 2 3 1 1 7 89 74 261341110 3 80 43 106261 5 94 18 51 113 59 28 7 34 33 55 16 23 7 41 37 41 59 36 32 149250 61 165 58 30 39 41 12 25 2 1 35 25 8 23 64 8 18 2 1 3 2 2303 1 2 1 1 1 1 1 6 12 14 1 1 1

1 770 2 10 2 3 19 1 2 1 2 3 210152 64 10 2 3 4 11 1 16 15 13 9 1 2 54 3 3 3 5 4 2 5 2 4 11 113110299204 89 72 99 1 118 36 3 33 21 26 56 10 40 23 17 9 28 40 47 33 37 22 30 37 211403135 41 81 28 125 47 13 1 2 89 1 1 1 1 1 113 5 5 5 25 27 21 16 10 11 16 2 16 1 1 2967 2 2 2 40

1 2 1418 7 7 3 1 1 46 127112 12 4 1 15 12 3 2 8 1 128 1 11 1 5 1 2 1 1 1 1 2 5 2 3 4 3 1 6 2 366259144 42 30 68 10 3 5 9 3 6 1 6 2 5 5 11 17 22 24 8 10 9 21 15 6 8 20 5 18 15 28 22 272264504449 1 33 368 8 105 3 423 6 5 2 101 94 3 118 7 12 25 46 26 63 34 59 45 74 81 66 25 50 42 69 36 447164 60 5 6 54 60 15 3 3 1 1 2 2 3 1 1 107 66 1 87 8 1 4 53 5 12 10 2186 4 49 19 1 1 9 3 2 20

3 3712 3 6 1 3 1 1 220169 2 8 4 89 1 8 173367 36 17 1 15 4 36 1 9 9 1 1 28 3 3 6 4 3 5 2 7 4 3 2 3 1 202198265378 174 2 157 1 168 14 5 6 22 8 52 12 45 35 84 63 62 82 88 27 73 50 11 62 144 34 43 284362 83 47 68 4 21 57 4 1 1 1 7 5 2 1 24 18 4450 6 1 1

4 12 387 21 6 3 9 52 50 4 3 47 1 20 3 26 115128 56 4 1 1 1 3 2 1 2 5 5 3 2 1 10 2 3 2 2 10 15 6 97 113261117 5 22 3 45 71 73 11 6 111 71 12 39 60 38 45 55 44 8 31 12 43 25 58 18 3 94 71 137 77 64 9 16 1 39 35 66 1 2 15 16 34 18 1 51 853301 1 1 15 1

1 2 8 30 912 1 1 7 6 5 1 121128 53 4 80 70 23 17 23 61 4 61 2 304239 25 2 9 1 6 2 3 1 4 4 3 10 1 7 7 9 3 13 3 5 3 15 28 9 9 162143426287 8 23 28 69 44 92 74 26 9 4 10 1 33 55 10 8 19 49 25 63 54 30 12 22 18 47 16 38 17 9 166 36 164206183 13 9 3 121132 2 196 33 2 30 13 21 5 7 2 76 6 13 30 5343441 18 3

1 52 1 17 1 1 223823 9 1 6 96 10 1 1 3 159 1 2 2 2 50 79 26 396 426 31 3 12 5 5 1 9 17 23 19 2 21 162 99 85 87 37 63 89 694 5 2 29 1 3804

4 12 1 6 1 8 192152 7 2 4 1 3 1 4 1 1 7 2 5 287 1 1 2 114135175 4 451 47 1 1 109112 10 2 3 8 6 1 34 37 10 5 42 36 232 40 13 164 77 99 2 224 2 42 2 1569

4 4 2 1 10 1 12 3 2457 6 1 1 328269 2 5 5 1 5 15 265 172226 54 4 5 6 3 10 20 7 25 1 5 9 3 3 22 7 6 1 8 3 1 3 2 3 5 221243235361 1 74 98 130 54 94 1 24 72 1 42 20 147 3 53 57 76 96 88 88 72 31 54 49 87 44 88 76 66 154273167 57 31 28 51 1 3 2 6 15 38 37 37 7 3 1 1 8 2351

1 1 6 3 881118 1 37 3 2 9 1 3 1 2 40 405290 2 8 1 10 2 5 77 13 10 4 10 165289 1 1 459648 5 2 6 7 1 1 1 21 1 1 1 7 469708134 1 2 4 7 27 4 39 4 7 1 9 4 5 10 11 15 15 13 15 10 2 236187894981 74 127154 225 38 102 48 35 15 23 3 34 57 23 81 104 41 59 69 40 41 48 37 37 75 723640192254552448104134 9 12 3 3 4 3 1 1 2 2 32 43 17 108 24 5 14 3 244 4828 3 34 45 1

193385 10 11 6 1 70 58 1 1 8 30 78 52 18 3 3 1 1 9 2 160139 31 3 3 2 1 2 6 4 4 40 3 2 4 3 7 5 2 7 96 129 84 126 45 36 48 2 101 1 3 5 67 35 10 14 40 24 31 15 16 41 3 27 20 26 23 14 53 79 78 105134120 93 195148 6 21 1 3 11 1 1 26 1 182981 36 2

8 7 2 24 8 4 1 6 9 1 3161 2 71 4 6 12 11 171 1 2 9 131 98 18 1 1 5 1 2 1 61 3 1 2 9 2 1 3 1 125112227143 172 11 158 151 93 5 6 52 8 12 6 29 11 29 10 18 4 12 25 8 49 12 27 27 296140 9 129141171 59 61 3 18 1 8 1 1 26 13 24 1 3 2153 1

1 82 5 1 3740 2 2 5 8 144118 54 21 1 5 4 80 99 45 24 3 167 1 174 4 1 6 26 1 8 2 3 2 4 2 1 1 1 1 164426 65 10 2 1 1 3 2 2 1 2 172193350396 5 193 3 246 75 24 46 22 41 47 3 21 30 31 32 45 19 20 24 39 68 37 27 42 33 318285 90 113190109 73 55 65 1 1 3 1 13 1 28 4 27 91 23 98 1 29 82 11 1 56 31 6 2 3305 33 27

11 196 3 1 17 2 11 2 8 2 1 10 1 1 2 4 7 9 1 12 1 9 2 3 6 3 220

1 1 3 6 2 8 3 4 4399 3 10 3 2 1 2 135 23 15 1 3 13 277 4 6 1 3 2 1 2 2 2 3 159148120330 2 138134270 50 41 77 3 37 34 80 31 8 20 59 44 21 45 21 101 20 130344 88 142126130 3 112 20 84 4 1 3 3 6 1 3772

8 7 1 1 1 1563 5 3 19 2 1 39 1 51 10 9 1 11 1 19 2 7 55 4 43 3 2 459524 98 1 7 1 1 2 8 2 2 6 2 4 6 3 1 8 2 4 1 2 9 190180356338 75 12 52 30 3 14 13 125220200 10 9 83 37 90 113 83 4 145 26 88 71 89 137 8 272 25 101234202 18 27 104127 85 213 89 37 39 21 4 1 1 14 4 18 78 71 7 10 47 236169 72 50 2 2497 7

4 1 2 5 1 9 2 5 4500 2 3 205 388225 158 1 62 5 9 104 51 200 300130118 39 3 33 52 3 44 1011712199 2 3 12 15 12 5 77 4 2 1 3 6 3 1 8 1 5 3 37659110001042 39 59 8 51 17 89 8 16 18 3 9 84 21 127 48 56 132 37 123116 84 37 140 42 145 26 130 34 75 640398240291460457 91 50 40 38 2 1013 26 3 17 1 5 5 1 3 11 1 3 70 96 92 64 11 5 2 4 9 16 71 18 10 12 22 4 4 325420

4652 5 2 2 4 5 16 1 1 1 1 10 4 18 5 1 30 4 25 6 31 126166 1258140015 20 34 3 12 8 12 6 4 4 6 8 8 16 23 15 16 13 8 20 308274611534 139 434 83 52 38 94 1 1 2 3 18 34 29 42 17 79 30 30 12 32 468388 80 258 59 41 5 1 25 44 5 35 5 20 8 37 68 9 11 8 2 36 1106845 1 1 4 1 716 2

1 4 1 2 4 1693 6 152 9 1 2 301252 40 1 21 10 1 4 3 21 3 8 1 3 3 3 7 4 1 146147232183 67 28 147166 31 7 70 34 7 1 41 3 21 10 53 31 31 19 1 224342124145 45 16 39 18 5 11 121 7 6 3 25 30 25 1303 16 16 31 1 2 1 30 4 526522

3 8 1 2 1 4 3 283287 187 6 99 124463 43 5 1 10 1 93 126 1 2 6 4 3 3 3 5 1 1 5 1 5 6 268197391128 1 89 65 3 12 1 179152 40 1 71 9 22 38 14 12 20 19 17 303 92 6 34 40 16 25 14 20 34 39 28 9 1 1342 2 46 28 1 20 99 1 1 22 6 6325 2 9

1991 1 4 2 50 77 109 6 118 4 108297 53 11 3 1 7 2 39 2 12 11 2 1 8 1 6 13 2 1 9 2 12 3 2 5 1 4 4 3 114207304251 8 107 31 16 8 8 26 12 22 11 23 13 42 25 27 43 22 30 100393 39 118163111105 76 1 16 89 3 30 7 35 83 37 17 1 5 53 2851 1 1 50 2 1 1

741 1 1 1 1 27 81 59 65 4 56 58 12 1 12 2 174 54 65 2 11 5 2 5 1 10 31 2 3 4 2 1 2 3 4 1 3 2 5 1 110105208264 29 62 8 2 40 17 9 1 26 1 51 24 48 44 18 48 16 8 54 38 31 35 19 10 146237 57 37 171117 23 16 19 12 39 12 22 77 1 6 10 5 3 1 1 39 204 97 5 1 270684 3 1

306 1 3 11 1 39 1 17 22 2 9 1 229157 7 1 2 1 5 1 1 5 1 4 2 109135110233 18 115 57 42 15 31 22 14 30 22 52 14 24 14 25 22 26 17 17 14 199 94 53 38 79 59 31 35 1 193 23 2 29 29 7 9 1 37 1205 2

1 583 1 1 2 1 6 16 1 4 28 194 9 3 5 9 94 1 2 1 1 2 1 2 2 1 3 1 1 89 131144 21 233 29 12 80 56 10 34 22 32 14 28 6 26 18 35 13 41 10 31 11 80 53 29 47 25 22 63 143 14 67 59 15 12 1 99 16 3 5 1 7 1 5 15 11 1 5 33 82 6 2 2885 5

2 4 1 2358 2 109 110 93 41 8 1 1 20 60 1 4 184333104 31 42 21 1 20 140 35 15 6 24 10 85 20 15 35 14 21 61 44 14 11 27 5 6 4 12 7 8 10 10 15 10 6 2 19 11 179260164205 78 2 4 88 54 30 125116 56 11 58 41 96 41 54 74 53 46 82 73 126 90 78 114 72 59 206310150110167 73 75 100 21 211 2 3 1 1 1 4 1 2 8 13 56 40 1 20 2 2 2437 2 2

3 112 1 1 1 1 32 1 1 26 79 90 59 3 4 45 5 3 1 1 1 3 1 4 60 63 54 61 66 89 10 1 19 5 4 16 4 12 10 17 13 16 23 26 6 27 10 25 20 29 9 108 1 29 31 10 9 3 1 39 1 3 22 4 2 1 48 26 704 6 1

1 1 1 4 1 2 1011 1 23 33 14 12 1 41 1 3 1 19 20 3 5 3 3 1 6 1 5 3 3 3 1 1 1 6 2 1 3 2 3 1 2 73 91 159140 3 67 75 38 2 41 6 12 23 12 36 31 25 22 42 11 42 21 12 55 32 41 63 180 39 61 81 14 21 32 15 13 3 1 6 12 9 2 4 1924

2 405 3 4 17 81 57 40 1 9 13 13 21 61 3 2 259225 35 2 15 8 15 20 10 5 18 5 1 3 2 10 3 4 1 3 2 1 2 2 1 2 3 4 26 1 142170157227187 10 147 6 24 1 13 2 30 26 1 8 37 14 34 35 56 23 54 19 72 17 33 63 40 34 195144 7 42 31 1 11 35 8 112 13 5 1 1 44 3 22 26 1 21 1 2 1 2 2 1 1 1 5 146042 9 1

3 789 8 1 122 21 41 6 1 1 13 51 1 1 162194 46 4 9 2 16 31 18 9 2 6 5 3 1 1 5 1 9 1 5 5 3 2 5 3 2 1 2 9 114123236190 72 2 1 3 36 107 27 1 1 1 2 8 17 18 14 29 36 16 4 38 19 54 24 16 54 47 32 260111 56 47 46 7 52 47 141 2 2 21 9 1 2 1 1 4 4 13 30 10 56 3 121 20 3 1416 3

1 1 2 1 17 10 561 1 1 1 225136 5 2 1 2 1 157 4 3 5 167105 61 5 1 3 1 3 1 1 2 1 3 2 4 3 11 3 85 64 73 240214 6 1 43 106 80 29 56 5 2 2 40 40 19 9 2 10 21 16 5 15 8 5 86 12 13 11 17 5 73 153 66 30 32 18 20 56 24 1 3 9 1 3 7 2 3 1 1 2 1 2359101 2 1 2 4

1 702 5 10 1 27 14 3 7 1 5 17 1 3 2 1 2 3 2 4 7 6 1 1 7 2 1 3 25 37 117161 6 43 21 35 46 6 7 8 16 4 10 26 8 13 6 15 3 23 6 43 9 1 7 42 15 7 120128 36 66 15 12 18 32 1 1 3 1 20 1 28 11 28 10 7 8 2 1502 4 9 7

705 1 72 7 9 2 2 3 129 10 23 64 5 7 31 1 3 3 5 2 5 1 1 1 2 10 1 1 17 4 4 82 65 203205 83 264 21 6 14 45 2 1 4 1 16 10 5 4 22 22 1 10 15 20 4 41 220 97 69 59 64 26 4 10 1 11 1 8 2 3 1 4 2189 1 2 9

4 2175 5 10 5 48 58 2 102 17 88 19 5 1 1 2 120246 74 1 1 1 1 1 5 18 5 3 15 7 1 6 4 2 3 1 7 10 2 7 234137239195 7 13 3 17 1 3 21 6 12 6 1 105 42 32 22 48 32 44 20 53 19 79 37 80 11 117 19 9 163 35 12 29 27 24 52 36 114 1 51 83 4 2 2 34 27 1 1 1 1 1182968 12 25 106 318557569 11 2786 1 20

1 1 2311 2 1 7 4 138 89 7 57 111 212183 53 2 2 310 7 1 3 9 7 9 7 13 11 17 7 11 12 10 9 13 12 12 269153 14 50 73 105 78 33 11 10 326365224 24 62 159 85 117 95 159 75 13 270166 95 155 76 184 3 5 48 3 80 25 17 144 339206203 1 1 2 1 16 3 2 1 1 2 389725277393143 58 871 48 93 1 1 33 208146 59 30 104 7 16 2 8 3 383 5 1 3

1 1 1 6 1 3 1 16 1 250311 5 9 2 14 27 3 1 66 8 4 493190 96 10 1 6 3 2 1 6 4 22 39 7 9 8 8 6 7 158 7 8 7 4 50 423821352 66 91 7 59 186 4 20 32 1 75 52 33 59 48 92 60 87 94 106 71 185 71 102103 96 126 13 23 59 170152 19 159110 44 5 6 15 122 167 32 4 17 20 4 1 1 2 1 305 1 9 235209 8 3 6 461771

3 4 10 807 1 3 1 12 21 12 1 27 1 6 5 351175 70 4 4 6 7 1 23 2 3 5 1 2 1 17 3 1 3 5 168129339228 24 60 15 70 53 29 8 5 180173160 15 45 63 42 64 127 86 9 186 45 97 34 93 78 12 219184 60 46 114148 14 14 6 5 55 64 4 1 6 10 16 8 4 19 7 43 11 6 2 297 3 94 1 22 7 35 1 6 58 70 34 288 1 2 23 129259 1 202922

1 8 718 2 17 1 4 5 22 36 6 4 2 3 1 1 1 67 20 29 10 20 6 3 11 3 11 30 12 17 22 20 33 16 89 7 28 13 1 24 2 3 36 8 23 25 1 85 1 3 2 5 3 696

2 1 1 1 1 1 1 1 5

1 1 123 11 1 1 1 2 2 5 4 3 2 4 1 7 1 9 3 11 14 3 1 6 2 6 1 8 261

6 4 2 1 3 1227 6 10 1 50 1 73 2 3 4 1 43 3 2 1 1 3 106 93 123 1 112 13 12 2 11 1 4 9 17 17 18 12 16 40 13 22 19 34 72 129 58 62 1 7 21 53 8 2 28 2 64 2 8 17 1 17 72 14 1560 1

1 212312 1 2 126136 4 1 1 3 2 9 37 135 8 1 73 335 54 30 13 12 2 2 46 9 3 4 5 4 6 2 9 4 5 11 4 3 33 197204544397 176 119278 4 114 5 54 6 32 36 39 53 62 28 42 62 20 64 5 56 48 93 49 12 224155138159 69 54 88 1 1 3 2 1 2 1 3 221 7 1 4918 2 29

1 1 7 1514 127111 56 10 3 140 1 3 1 39 71 21 4 1 2 5 3 4 2 2 3 5 3 2 2 2 6 2 4 157175285216 10 70 13 1 149 3 37 1 26 2 4 4 18 20 36 23 12 37 29 58 32 39 38 68 52 184126 44 99 26 8 15 4 6 4 1 4 3 1 4 16 17 16 96 7 4 2 3 14 15 352258 1

2 465 6 9 15 46 40 3 17 1 3 4 14 17 8 38 3 13 17 1 155 90 53 49 24 5 3 1 2 7 2 4 4 2 2 5 1 2 3 59 101188204 10 67 44 78 56 38 14 5 15 10 5 18 15 21 15 14 8 4 30 14 26 14 13 29 64 156 92 35 27 3 15 29 36 1 2 1 5 29 14 6 33 23 1 1744 4

1 1 1 2 3 2 3 1 417 1 2 4 8 2 1 2 1 1 120 80 8 79 49 19 1 2 8 5 3 3 2 1 5 1 1 5 2 2 3 2 6 5 72 102212129 44 64 11 2 4 37 24 29 3 3 28 9 15 8 27 8 25 6 13 4 23 4 5 192 46 41 34 12 9 17 1 13 4 1 1 1 4 13 86 6 2 1 1 6 1 3 12 201595 5

254 1 1 1 45 54 20 1 4 3 14 106 2 1 7 4 1 2 2 1 59 7 2 7 2 1 1 2 1 3 4 1 17 54 43 20 30 28 21 16 15 19 22 19 19 40 23 19 318290 88 137 1 6 2 8 3 5 1 4 157189224 1 11 63 112 68 95 165 88 3 27 36 107 48 264 38 3 49 97 1 1 68 1 18 18 1 2 1 25 6 134288 39 179126129 4 1 1 281 1 2 1 16 10 2 20 40 10 1 8 5 5 19 63 2 30 34 2 3 1 3 2 2 1 1 2 2 12 1 2 1 17 1 1

1 2 519 1 9 2 2 1 1 9 2 3 1 2 3 3 3 3 6 1 2 2 7 5 2 14 2 2 6 7 158124 90 191 15 10 31 7 3 80 40 27 37 26 36 47 38 54 17 7 23 83 15 105 26 26 48 56 1 2 3 4 8 9 7 22 1 3 17 18 33 1 1 1 3 11 71 36 16 16 11 2 2 1 23 28 19 13 8 2 32 2 1 466 14 71 6

1 1 194 11 1 6 7 2 25 1 3 12 3 1 58 11 40 30 2 4 1 22 7 32 1 1 31 8 11 8 16 39 2 28 8 41 14 39 6 25 12 48 79 26 13 228225299388 62 10 35 34 18 12 1 2 16 6 37 21 17 3 27 91 47 93 28 85 25 10 44 98 77 105 42 21 99 73 8 8 3 9 11 1 11 7 17 10 25 10 22 75 68 1 3 14 65 15 13 1 6 3 514180 1 3 86 3 1 9 1 1719 2

1 2 2 8 20 1 7 6 20 1 23 1 1 4 11 2 2 1 48 2 3 3 6 1 1 20 12 5 6 1 6 7 4 1 8 1 1 1 3 98 81 104 85 3 5 6 5 7 7 107 90 33 42 46 20 35 6 72 9 29 18 89 23 82 26 15 127 90 1 1 9 18 28 12 5 18 9 1 1 5 1 1 29 13 1 84 85 6 2 8 2 3 10 7 1 241162 18

2 5 1 1 250 12 151 51 192 1 24 42 22 1 35 198196600322313 2 6 6 6 2 87 50 73 90 6 29 4 4 4 13 12 55 1 19 14 28 5 20 90 164 24 3 5 1 5 26 7 3 1 4 21 4 2 3 3 11 2 13 1 11 7 136182107 1 2 1 1365 123

1 8 29 1 1 1 13 24 12 4 3 1 2 1 4 2 1 3 1 41 52 9 5 2 14 2 1 5 16 18 4 4 2 24 10 21 8 2 2 5 13 12 1 1 5 1 1 1 8 2 26 7 1 4 3 1 1 9 3 194

614 3 1 4 117 1 4 2 3 2 2 308 2 4 35 4 2 1 1 7 17 6 6 114 1 9 12 1 10 5 1 3 8 2 2 3 5 1 2 269248 7 113123 31 12 46 70 105 7 92 217183180 54 98 33 89 119 51 10 201164 82 114 62 48 3 37 68 3 1 1 5 104 40 76 11 3 68 157134 4 3 26 1 19 14 2 2 2 8 8 2 1 11 10 6 23 96 142181 96 100113 2 3 14 32 46 17 20 51 2 4 1 2 1 5 29 9 1 244 1 2 1 1 52 10 3 4 1037

2 3 4 2 313 1 1 1 1 47 7 3 1 468 147 16 10 7 7 15 5 3 1 5 1 36 1 1 1 127110 31 91 2 1 29 37 41 1 6 3 13 205 7 10 5 9 9 5 120197 1 1 30 24 7 6 1 2 2 3 1 2 453265272 4 2 16 13 216223189 2 2 24 2 1 2 2 1 18 31 15 2 873

1 2 12 6 1 114143 1 1 2 1 112 39 2 1 1 1 1 1 2 1 2 8 3 1 9 1 1 1 3 3 1 1 7 1 4 142 1 55 3 90 120 86 6 5 2 7 15 4

1 1 1 1 1 2 1 3 1 1 1 1 2 1 1 1 5 2 1 1 1 1 1 1 10 10 1 1 1 4 1 2 1 1 1 1 1 1 1 5 3 5 3 5 4 1 1 4 2 7 1 7 2 1 3 2 1 2 1 1 2 1 2 7 5 1 1 1 1 1 1 2 2 1 1 1 1 1

1 8 7 1 11 3 114 33 6 14 2 3 1 1 2 5 1 19 11 5 4 39 40 98 89 17 82 78 3 7 11 26 10 11 5 7 1 1 4 2 3 4 21 4 3 91 108 19 1 73 5 6 1 72 46 9 15 2 12 102 78 92 111102 5 1 2 75 17 8 3 5 7 2 2 1 5 1 2 7 6 1 1 2 2 10 2 7 1 1 30 2 3 52 3 3 1 6 11

2 1 2 5 3 2 1 3 1 3 1 6 1 1 1 1 3 2 1 2 3 20 30 18 14 22 30 15 15 24 27 26 27 24 26 9 9 88 74 78 33 40 52 71 85 43 53 34 58 34 40 57 50 3 3 2 1 4 6 1 6 5 3 16 3 2 12 4 2 4 27 29 16 16 12 6 16 6 1 1 1 1 1 1 1 3 1 1 2 3 3 1 4 2 1 6 10 6 5 6 2 3 8 1 2 1 1 2 3

1 2 1

19 2 7 9 9 5 3 25 24 17 1 1 8 43 147 27 10 2 3 27 1 135 2 1 67 3 3 1 1 4 9 6 2 61 23 1 2 4 2 1 5 2 2 2 1 3 3 1 1 2 1 4 1 1 3 1 1 2 76 84 80 1 1 2 2 1 1 2 1 1 8 4 8 3 5 3 3 3 4 1 4 9 4 1 6 3 10 11 11 6 4 2 11 3 1 4 2 5 3 4 2 3 1 1 2 2 2 1 1 2 2 2 5 52 2 2 4 4 4 2 3 7 23 24 4 5 2 9 1 84 1 2 1 1 1 4 2 1 4 4 3 3 1 3 2 10 6 4 1 2 1 1 1 14 7 58 1 14 10 26 31 4 5 29 8 28 1 33 22 22 6 35 1 7 34 112 7 5 22 38 7 1 10 2 16 28 5 116 11 22 19 9 16 3 3 7 1 33 29 24 9 22 1 2

9 10 4 19 8 12 20 11 15 5 1 10 1 10 158 89 6 1 4 8 1 12 2 67 1 1 103 13 4 21 13 21 2 72 20 8 1 1 2 7 2 1 1 3 1 1 7 7 3 4 4 1 1 2 1 1 2 7 6 60 75 77 1 2 1 1 1 2 4 2 1 1 2 5 1 2 1 1 1 6 28 16 14 1 1 4 7 2 6 4 2 3 3 2 4 2 1 1 2 3 2 2 2 5 3 65 3 2 5 4 9 1 6 10 30 26 3 6 5 1 1 119 1 3 6 2 1 1 1 1 2 1 2 3 4 3 7 1 3 5 4 8 1 4 4 4 3 1 3 21 10 1 34 15 7 38 43 2 4 60 18 44 31 23 28 1 37 2 23 16 75 5 11 97 34 3 2 13 21 33 17 7 66 16 15 28 28 15 12 5 2 5 64 55 55 12 16 2

10 37 1 3 4 2 1 1 1 1 2 1 1 5 7 1 1 11 8 12 9 1 5 3 1 1 1 2 5 3 1 2 1 9 6 4 1 7 5 5 4 1 8 1 3 1 1 7 102 2 3

4 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 5 2 1 3 2 2 1 2 1 1 3 1 1 2 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 3 5 3 1 6 4 4 6 2 1 11 2 1 1 1

1 6 5 1 7 3 9 2 1 4 1 2 2 1 3 1 2 1 1 3 2 1 1 2 3 2 1 3 1 1 1 1 3 2 1 2 4 2 6 2 1 2 2 1 1 1 1 1 1 3 4 1 1 2 1 7 1 4 4 3 1 1 1 2 2 1 2 2 1 1 2 3 1 5 2 3 2 1 2 3 1 1 1 1 3 2 3 3 2 5 9 1 1 4 1 3 1 2 9 1 3 7 6 5 1 1 1 1 1 4 4 5 5 5 2 1 1 7 1 1 2 1 29 5 1 22 18 20 33 52 20 34 19 24 14 16 30 2 15 9 26 24 30 17 57 27 22 15 24 19 53 25 42 34 23 24 3 5 20 24 14 30

1 2 4 8 4 1 1 2 5 1 1 1

1 2 3 1 1 1 1 4 1 2 4 1 2 1 1 1 4 18 1 1 2 3 1 1 5 1 12 23 15 16 12 31 9 18 32 25 12 23 20 21 7 11 106101 39 85 59 90 116 64 105 47 58 64 68 46 44 86 8 1 3 5 2 6 5 3 2 10 19 6 9 3 1 1 39 36 26 33 27 15 4 3 1 2 5 3 1 9 11 1 3 1 6 4 2 1 3 3 1 2 5 8 15 10 22 18 4 1 7 3 5 1 11 2 1

3 1 1 1 2 1 1 18 3 4 2 1 1 5 5 1 6 6 4 4 2 2 8 1 7 13 18 19 1 1 2 1 4 2 1 1 1 1 1 1 1

7 4 2 4 3 1 1 3 5 1 2 2 6 3 1 2 2 1 1 3 1 1 5

1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 2 2 1 7 12 19 4 7 3 4 3 3 17 6 6

76 1 2 1 1 1 1 5 3 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 2 1 1 1 1 1 21 29 3 3 3 9 3 1 1 1 1 2 23

1 4 1 1 1 2 1 1 2 1 1 1 12 16 1 1 11 7 7 2 6 1 6 12 1 1 1 4 4 3 1

1 1 1 2 1 2 7 1 1 2 1 1 2 5 1 1 2 1 2 3 6 8 3 1 2 1 3 2 2 2 1 1 1 1 1 5 6 2 2 3

7 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1

3 1 1 2 1 3 4 1 1 1 1 1 2 1

3 1 6 1 15 4 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 6 2 1 6 3 2 8 8 13 6 4 17 19 5 3 2 16 7 9 3 9 5 1 3 1 2 2 3 4 1 1 2 2 4 19 21 13 12 9 3 1 2 1 1 1 1 2 2 1 1 1 1 1 3 6 1 1 4 1 13 2 5 1 1 2 4 3 1

3 7 4 2 5 1 10 1 2 4 1 1 1 2 4 1 1 1 1 5 3 1 1 1 4 1 3 11 4 2 2 4 2 1 1 1 1 1 1 4 1 1 1 3 2 2 4 1 3 2 1 2 1 1 2 10 5 3 1 3 2 2 1 2 1 1 2 3 2 2 1 1 1 1 2 2 1 1 1 7 3 1 2 3 2 2 1 7 2 4 3 7 2 1 5 1 1 8 2 2 1 13 7 4 2 1 1 1 6 1 3 2 4 1 1 1 8 3 1 11 3 5 24 23 40 39 28 73 16 24 6 17 32 2 17 19 46 50 26 13 31 23 24 15 17 33 18 10 45 1 6 1 38 54 2 8 1 39 26 14 19

1 3 1 2 1 2 3 4 2 1 2 3 3 1 1 1 1 3 1 1 1 1 1 1 1 6 1 1 2 1 5 2 1 1 4 1 1 14 1 1 1 3 4 7 1 1 2 1 1

2 4 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 2 2 39 4 8 4 9 6 24 10 7 1 1

5 90 13 68 17 1 2 3 8 2 1 1 1 2 4 1 2 5 6 9 3 1 2 1 1 1 5 2 2 3 5 5 5 3 2 8 1 14 15 2 6 7 3 1 2 1 1 8 1 1 2 1 10 15 4 27 8

146 1 4 1 1 2 1 1 3 3 2 1 3 1 1 1 1 1 2 1 6 2 4 7 1 2 1 1 2 5 3 2 5 20

1 5 1 1 1 1 1 1 1 1 1 1 2 9 6 1 3 1 1 1 2 1 3 1 1 1 1 1 1 1 3 1 1 3 15 18 1 2

4 2 2 25 218148170 7 15 151 1 1 1 3 1 1 1 1 1 1 2 2

17 4 6 30 4 32 3 25 10 1 12 3 5 129 54 27 5 8 6 19 6 65 3 9 5 13 11 2 55 9 5 1 1 1 1 5 1 7 3 2 1 2 2 1 1 3 3 64 75 44 1 1 2 1 1 2 1 1 1 1 1 1 1 3 2 2 1 2 2 4 5 12 8 7 2 1 1 1 2 5 4 1 1 7 3 1 2 2 1 2 1 1 1 2 46 2 3 3 2 4 6 17 23 7 2 5 3 1 67 1 3 7 1 1 1 4 5 6 6 15 4 1 2 9 3 3 5 3 2 4 21 2 36 12 6 33 37 5 9 37 2 36 17 33 30 10 48 5 35 8 65 1 12 32 57 2 20 12 22 18 23 9 62 4 16 2 24 24 1 34 36 24 13 11

72 1 1 1 3 2 1 1 2 1 7 2 14 6 6

7 1 1 3

1 1 3 3 2 1 1 1 1 1 1 1 2 5 1 2 11

4 2 2 1 1 2 5 9 3 2 1 1 1 1 3 1 2 1 2 2 16 10 2 1 3 1 2 4 5 1 6 9 3 2 3 11 13 1 6 3 2

1 622 4 223 3 360 1 1 4 2 1 1 1 1 1 1 1 1 1 6

1 1 1 6 1 1 1 5 1 9 10 1 1 1 1 4 1 1 1 1 2 7 1 3 1 1 6 1 2 3 4 4 1 1 1 1 2 1 1 1 2 8 2 4 18 9 2 2 2 1 2 1 1 1 1 2 1 3 17 2 2 2 5

3 2 2 2 3 1 2 7 1 1 1 9 1 1 3 4 3 1 3 3 1 1 1 1 2 1 1 2 1 1 2 2 1 2 1 3 1 2 1 3 1 1 1 2 12 3 32 53 32 31 19 21 14 1 1 1 2 9 2 10 1 7 31 12 10 2 5 1 1 1

1 1 2 1 1 1 1 1 1 2 1 2 30 5 5 1 2 10 15 11 5 14 21 11 7 12 15 3 6 5 5 5 10 9 11 6 8 15 19 5 4 8 8 6 2 5 1 2 5 1 1 8 12 9 3 8 7 11 18 11 7 13 12 21 6 3 13 4 5 1 6 17 1 5 2 1 2 1 13 7 3 4 1 2 2 1 1 2 1 2 1

1 2 1 9 1 2 2 1 1 2 1 8 10 1 5 1 1 1 1 8 12 21 11 1 1 1 1 1 5 1 3 2 7 8 4 7 2 2 4 1 2 1 16 1 1

4 2 1 1 1 5 2 2 1 1 1 1 1 1 4 1 1 1 2 3 2 1 2 5 1 1 1 1 3 1 1 2 1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 2 2 4 1 1 1 1 5 1 1 1 1 1 1 1 1 1 2 2 4 2 1 1 4 20 2 2 4 7 10 8 14 22 17 21 9 11 6 8 19 5 10 9 19 17 7 2 7 7 5 4

1 1 3 1 6 3 1 1 1 3 1 3 1 1 4 3

1 3 1 1 1 1 1 2 8 3 7 5 4 3 5 1 2 1 1 1 1 1 4 10

3 2 1 1 1 3 1 2 2 2 3 2 4 1 2 7 9 6 1 4 1 1 1 1 1 4 9 2 1

1 1 1 2 5 3 3 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 17 8 5 20 18 2 15 8 16 13 15 5 18 1 1 8 12 11

1 3 1 2 3 3 1 2 4 1 3 4 1 4 2 2 1 1 3 1 4 2 9 2 2 1 2 1 1 3 2 3

1 1 1 2 1 2 1 5 3 2 1 1 1 1 2 6 12 1 2 1 3 2 4 2 5 1 5 5 7 1 2 2 1 5 12 3 1

1 1 1 1 1 1 1 1 11 1 1 1 1 4 1 1 1 2 1 1 2 1 1 1 1 9 5 3 1 1

1 1 1 1 3 1 2 2 2 1 1 2 1 2 3 1 3 2 1 3 4 1 1 1 1 1 4 12 2 7

23 25 3 74 161 16 22 1 1 14 1 1 2 1 28 15 1 1 12 11 7 15 11 7 2 1 1 6 3 1 1 1 1 2 1 1 1 1 4 2 14 18 2 1 9 5 3 1 3 3 1 2 1 2 7 1 114 71 3 1 42 34 14 25 10 1 3 11 13 10

1 1 2 1 3 1 1 1 1 1 1 4 3 2 2 1 4 1 1 19 12 1 1 2 1 1 2 1 1 1 1 1 6 7 7 17 2 2 3 13 16 1 1 1 1 4 3

2 1 6 1 1 1 1 1 1 1 2 3 1 3 1 3 5 8 2 1 1 1 5 2 1 2 3 5 2 3 2 4 1 1 2 1 5

1 1 5 1 2 5 1 1 1 1

1 2 2 1 1 1 1 7 3 4 3 2 7 11 4 2 7 1 6 2 6 3 2 9 8 15 26 1 1 1 2 3 1 1 1 1 2 1 1 1 1 1 1 4 1 1

2 2 2 1 1 1 2 1 1 2 1 1 1 3 5 2 10 2 1 4 2 1 3 3 2 2 1 3 7 13 1 1 1 1 1 2 1 1

1 2 1 1 6 1 2 4 3 3 2 3 1 7 2 3 1 3 1 1 1 1 5 1 1

1 1 13 2 3 2 1 1 1 3 1 5 10 13

4 1 4 1 1 1 2 2 1 1 3 1 1 6 1 1 1 2 2 5 5 1

1 2 2 8 1 2 4 1 7 4 1 1 3 6 1 1 1 2 2 5 1 6 1 4 4 1 7

5 1 2 1 1 2 10 13 2 2 2 3 1 1

1 1 4 7 1 1 1 3 1 1 1 4 4 1 1 1 1 3

1 3 3 2 9 11 4 1 1 1 1 5 5 1 1 1 5 2 1 1

1 2 1 1 2 4 6 9 1 1 2 1 1 4 2 1 11 1 1 2 6 1 3 2 2 1 1 1 1 3 3

1 2 1 4 2 1 1 1 4 1 10 2 1 1 14 14 1 1 1 1 1 1 1 1 3 8 2 6 9 17 1 1 1 16 15 1 1 1 1 1 3 3 2 2 1 1 1 5

1 1 1 1 1 3 1 1 1 1 2 1 3 6 1 1 1 1 1 1 1 2

1 1 2 4 4 1 1 1 2 1 5 4 1 2 10 10 3 3 2 1 1 2 1 1 3 3 1 1 4 2 2 14 1 1 2 1 1 2 1 1 3 2

1 1 1 1 1 1 6 1 1 1 1 7 9 1 1 4 2 4 3 3 2 5 6 6 3 4 1 1 1 1 1 1 1 1 1 1 1 4 1 1 160 3 1 1 5 1 1 1 3 4 1 13 4 3 1 1

1 1 3 1 1 2 2 4 3 1 1 2 1 3 4 1 1 4 4 1 8 5 5 12 5 1 2 7 1 2 7 1

2 1 1 1 1 6 1 1 1 1 1 2 1 3 2 4 1 5 4 4 4 3 2 2 1 5 1 1 1 3

3 1 1 1 2 1 4 1 4 6 4 1 1 4 1 2 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 1 1 5 2 4 11 10 1 1 3 5 1 1 1 1 1 1 1 6 3 1

1 1 3 4 2 4

1 8 1 1 6 1 3 1 1 1 2 8 1 2 8

1 1 1 1 1 7

1 1 1 1 1 1 1 3 3 1 1 1 1 2 1 1 1 1 1 1 1 2 14 2 1 3 2

1 1 1 1 1 1 1 1 3 1 1 4 9 8 4 3 1 3 3 1 1 4 1 4 1 3 4 1 18 14 18 25 1 1 1 1 1 1 1 1 2 3 2 2 5 5 4 2 1 1 1 1 1 1 1 4 1 2 1

2 1 1 2 1 3 1 1 1 1 7 1 2 3 2 2 2 1 1 1 1 4 2

1 3 2 3 1 1 1 1 1 8 2 2 1 1 2 4 5 17 1 7

5 2 3 2 3 1 4 2 3 3 6 3 1 5 1 3 1 5 7 7 1 1 1 2 1 3

1 1 1 1 1 1 1 1 5 1 6 3 2 2 1 1 3 8 1 1

24 44 48 151 12 2 2 8 3 1 1 1 1 1 1 1 1 3 24 19 1 1 11 11 11 7 16 7 1 1 1 6 4 2 1 1 1 1 1 2 1 1 2 1 1 1 12 2 3 1 1 1 5 8 1 1 3 1 1 1 2 2 122 82 1 21 33 18 7 7 10 19

88 1 1 1 5 2 5 1 4 4 1 1 6 3 11 24 24 12 12 2 7 1 1 2 3 2 3 1 2 1 2 3 5 2 1 1 1 13 17 7 1 1 5 1 6 1 2 1 2 1 6 1 4 27 33 28 20 4 1 16 20 2 1 1 18 19 32 24

2 1 1 1 1 3

189 1 1 1 2 4 8 1 1 4 2 3 17 18 19 6 1 3 4 1 2 3 1 1 3 1 1 2 3 1 2 2 24 4 1 1 5 9 3 6 1 1 1 5 2 4 2 1 2 1 1 5 1 1 1 2 4 9 35 35 26 2 1 21 27 1 3 5 3 7 11 26 39

83 2 2 2 2 2 11 3 3 3 1 1 6 6 21 16 16 4 7 1 4 4 4 1 1 1 1 1 2 2 1 1 3 57 1 4 3 2 26 15 6 1 3 2 3 1 1 8 3 1 1 1 1 1 7 1 2 1 1 15 35 41 33 5 12 10 34 2 3 1 1 1 9 15 34 27

2 22 1 1 1 3 1 1 1 1 1 3 5 5 20 4 1 1 1 1

1 1 1 1 1 1 2 1 2

1 1 1 1 3 1 1 6

1 3 1 3 1 1 4 1 1 5 15 3 2 1 5 2 1 3 1 1 18 1 1 9 1

1 1 1 1 1 2 1 1 3 1 1 3

1 1 1 1 4 1 4 1 1 7

3 6 2 1 1 1 4 1 3 5 2 4 3 1 2 3 1 3 15 1 7 3 5 3 7 7 3 3 1 2 12 17 1 1 5 1 4 1 1 1

1 1 1 4 2 1 2 1 1 5 2 1 2 1 5 1 2 3 10 3 4 5 3 4 2 1 1 1 1 1 1 1 2 1 3 7 4 4

1 3 1 1 6 2 3 3 8 1 3 1 1 1 1 2 1 5 1 2 2 10 3 1 1 1 4 7 6 1 1 1 4 8 1 5 3 3 4 2 4 6 1 3 2 1 9 1 2 7 2 2 2 1 1 1 3 7 21 1 21

2 1 1 1 1 2 4 12 1 4 1 1 5 1 8 9 4 2 4 8 3 6 6 3 1 1 2 5 9

1 2 1 1 1 1 1 1 13 25 1 1 1 13 1 11 3 9 1 5 3 5 2 3 7 8 3 15 19 24 24 1 1 1 2 1 2 5 1 1 1 10 1 4 4 1 1 2 2 2

2 1 1

1 2 5 1 8 14 1 3 9 9 1 1 1 1 1 1 2 1 7 5 6 6 6 7 7 5 1 1 1 2 2 2 2 1 4 30 17 3

2 1 1 2 3 3 9 4 4 1 5 3 8 17 1 1 4 2 1 4 1 1 2 7 2 4 1 1 1 1 1 1 1 4 2

1 4 2 1 1 1 2 1 3 2 4 7 2 1 2 2 2 6 7 2 1 1 1 1 1 2 1 2 1 1 2 6 1 21 1 1 1 2 2 9

1 1 2 1 1 4 1 5 4 2 4 1 1 2 5 2 2 1

35 212 1 6 98 16 22 41 24 24 144 1 41 76 62 38 58 85 150414 92 65 83 23 30 27 24 78 55 28 8 49 24 188 64 27 31 60 32 1 7 40 2 51 46 1 9 3 1 1 4 5 2 1 3 1 3 51 1 27 1 6 1 1 1 1 5 1 1 2 8 1 30 19 3 4 15 3 2 3 5 2 2 1 2 1 1 1 1 1 3 14 6 2 1 2 3 3 9 1 4 4 4 2 4 49 51 241175 3 6 5 10 10 6 12 8 15 8 7 3 3 4 35 52 63 19 17 48 84 18 76 84 74 20 33 77 44 63 57 72 39 373267 86 76 67 68 29 19 2 1 1 11 33 1 1 1 1 3 1 11 1 80 2 51 81 49 82 42 2 8 1 1 1 3 2 4 8 1 1 1 1 2 14 14 13 16 7 19 3 4 1 40 45 36 1 9 6 17 280 15 24 24 43 26 40 11 32 1 21 45 31 13 15 34 33 60 47 41 18 39 56 19 24 5 50 32 14 2 14 96 99 5 4 18 19

93 254 8 1 99 41 18 29 95 42 122 9 53 147 53 48 185 194325 78 206 5 22 30 2 62 25 1 79 69 21 34 207 10 117 52 12 140 14 42 26 1 3 42 59 47 3 5 3 4 1 5 8 2 5 1 1 47 3 32 1 4 1 1 2 1 1 4 1 1 1 1 1 1 3 19 15 1 9 1 2 2 1 5 2 1 3 2 1 1 2 4 15 7 5 1 5 3 6 8 7 6 6 6 4 5 2 4 43 49 206128 10 7 7 11 15 11 14 5 7 5 3 4 4 6 25 39 63 19 15 61 96 21 78 78 86 24 27 71 34 65 55 78 50 348231 86 108 98 59 21 19 1 5 2 1 19 29 1 2 1 1 1 3 1 3 8 6 90 5 1 41 56 44 99 35 1 3 2 2 7 2 2 1 4 14 7 7 2 5 5 8 3 38 30 19 2 17 26 61 269 4 9 23 66 32 17 68 17 18 42 28 82 37 13 61 32 73 80 111 1 7 28 24 33 47 36 10 2 14 8 28 56 5 44 4 11 10

36 15 29 1 1 4 61 10 31 52 28 23 13 20 134 8 7 33 60 64 39 33 34 21 29 3 34 25 17 6 24 31 4 1 56 153 39 71 11 2 27 16 51 46 4 127 3 18 37 21 9 60 163 4 1 2 13 13 1 4 2 2 4 4 9 3 4 1 14 1 3 1 3 3 1 1 2 3 2 1 3 1 2 1 1 3 1 2 7 1 8 2 1 27 34 3 49 27 43 2 1 1 14 1 1 3 1 4 2 2 3 1 1 1 1 2 1 2 1 21 40 31 34 42 47 40 52 39 38 49 50 51 63 40 50 188153 90 72 191139134176 74 60 52 47 40 35 28 26 28 57 16 25 13 4 13 16 24 14 21 24 35 105 15 89 17 79 26 78 116 42 47 56 26 24 9 67 57 3 1 2 1 5 126 9 11 6 6 6 8 1 29 1 24 3 10 2 3 3 3 2 12 1 71 3 13 9 1 4 1 3 2 2 9 4 3 6 1 11 10 34 48 5 4 1 1 19 2 2 1 2 1 1 1 1 1 1 1 2 6 15 3 2 15 5 5 10 7 18 5 11 6 59 33 25 2 14 55 40 71 23 77 125 52 1 31 33 35 27 54 4 83 112 5 54 49 31 77 14 34 26 28 37 35 42 46 14 72 6 74 40 14 5 26 47 18 59 7 1 52 102 21 5 7

4 25 92 14 1 15 1 2 2 2 2 1 2 3 3 1 22 15 1 1 1 1 7 10 13 2 2 2 1 1 3 1 32 15 1 3 7 10 1 6 9 1 2 1 1 1 7 2 5 2 2 2 3 5 1 3 2 1 3 2 3 2 5 1 2 10 11 1 1 7 10 9 1 1 1 1 2 1 5 9 12 3 1 1 2 3 1 1 1 4 2 1 2 45 23 2 2 4 1 12 3 27 1 12 4 2 1 12 69 2 8 77 12 1 1 15

13 1 109 1 9 4 1 1 13 1 1 1 1 2 5 1 1 2 1 2 4 2 1 1 1 12 19 1 1 11 21 10 1 1 2 1 1 1 3 1 34 18 1 4 11 5 2 11 2 1 1 1 5 8 6 1 1 1 8 1 2 3 3 1 1 2 1 2 2 3 2 2 1 1 4 13 1 10 2 2 4 1 13 6 3 1 3 4 1 1 4 8 10 3 1 1 1 2 3 2 1 5 2 1 1 1 2 2 1 2 1 1 2 2 42 48 6 2 13 1 1 8 24 2 23 65 2 1 1 1 63 16 2 8

3 12 23 1 12 3 4 3 2 1 1 9 1 1 8 6 1 1 2 1 1 3 3 5 17 52 41 3 11 4 4 2 1 2 5 8 1 4 51 11

1 10 1 17 12 3 5 1 8 1 1 9 5 1 1 1 1 3 1 2 1 1 3 1 5 22 61 32 5 4 1 1 1 1 1 4 2 1 11 13 3 45 13 2

1 2 4 1 1 1 21 1 1 3 4 4 1 1 1 2 1 20 2 4 3 2 5 276

327 3 24 1 2 25 4 1 38 43 30 12 1 1 1 50 4 1 19 8 8 14 1 1 1 6 3 1 1 1 3 4 1 3 2 2 5 1 2 15 22 9 1 1 1 1 1 1 4 39 6

284 31 4 31 7 33 39 24 14 1 1 4 5 39 5 1 20 12 7 11 1 2 1 6 1 1 1 1 2 4 1 1 6 2 18 17 18 1 1 1 2 1 1 1 1 2 28 2

1 1 5 1 1 2 1 1 1 3 2 1 7 3 3 1 1 1 2 10 34 15 31 1 1 1 31 1 1

3 1 1 7 1 4 1 9 1 1 1 1 1 1 5 3 1 2 4 2 8 43 11 29 1 1 1 3 1 38 1 1 1

2 1 1 3 2 1 1 1 1 3 5 2 3 8 1 1 1 4 2 1 4 3 6 3 1 4 1 1 2 3 1 12 3 1 9 3 3 10 11 11 10 13 2 1 1 1 4 1 1 1 2 1 2 2 2 2 1 2 1 9 4 4 7 12 23 4 22 28 5 4 4 6 1 2 2 1 2 7 3 3 3 16 3 5 4 1 1 3 42 53 21 3 15 69 10 90 11 34 11 2 6 8 9 4 18 4 6 1 1 36 29 10 1 6 2 11 11 19 10 17 8 14 17 17 5 17 9 3 3 1 3 6 2 3 1 1 1 1 14 8 16 24 25 1 10 11 12 3 5 1 1 3 2 2 1 9 2 85 3 5 4 35 38 7 1 2 1 10 1 6 47 5 1 12 6 21 11 17

20 2 4 1 23 1 5 14 1 1 1 4 1 4 2 1 2 25 9 1 1 1 2 1 1 1 5 3 2 2 2 8 4 4 4 1 1 1 1 1 1 1 3 1 1 3 2 2 12 4 3 1 1 3 4 1 1 1 1 1 5 3 2 3 2 1 1 3 2 3 1 2 6 11 21 16 1 11 4 19 7 6 1 10 6 1 7 1 1 5 5

5 15 1 5 5 1 13 33 18 1 1 1 1 1 3 3 1 2 1 3 1 1 1 1 1 1 2 1 2 2 1 1 1 11 2 3 4 9 1 2 1 1 1 1 2 5 1 7 4 13 5 3 11 2 2 5 8 23 7 1 10 1

1 22 6 10 13 1 1 2 5 1 2 1 1 1 2 3 3 3 1 21 20 2 1 1 1 1 2 1 1 2 3 1 6 1 4 1 1 3 1 2 1 1 1 1 1 1 2 1 2 1 1 1 4 1 2 6 1 2 1 2 6 1 1 1 3 1 1 1 2 8 2 2 3 3 1 1 2 19 25 8 10 4 8 2 10 4 6 5 1 3 10 15 17 1 12 2 8 2 1 6 13

2 14 4 1 21 2 1 1 2 1 2 1 1 2 2 1 2 1 5 7 2 2 1 1 1 18 12 1 1 3 1 1 4 1 1 1 1 2 4 4 6 4 3 2 2 1 1 1 1 5 1 3 2 10 4 2 2 1 5 1 2 1 1 1 2 4 1 2 1 7 1 1 15 3 4 6 17 23 17 1 9 20 8 2 1 1 1 8 2 18 10 6 1 20 10 8 15 1 1

1 1 5 7 1 1 1 2 1 3 1 2 2 2 1 1 2 4 2 4 1 1 8 2 1 1 2 1 1 1 3 1 11 2 3 4 1 3 1 1 1 1 1 2 1 1 5 2 3 6 2 1 1 1 2 2 1 4 1 1 1 1 1 4 4 4 1 1 3 4 26 5 1 9 34 40 4 7 2 10 13 12 51 4 1 58 17 12 13

1 1 4 3 1 5 1 3 2 4 1 1 1 27 1 1 1 1 1 3 2 1 1 1 2 9 7 1 1 1 4 2 1 1 1 1 1 2 1 1 3 3 10 4 3 1 1 1 2 3 1 1 1 1 1 1 3 2 1 1 2 1 3 3 1 1 1 3 1 1 3 1 1 3 1 1 6 3 1 1 12 1 6 8 6 10 13 3 3 4 6 1 18 1 27 1 13 13 2 2 13 13 9 9 3 1 1 1

4 3 2 56 52 1 25 1 3 1 2 1 1 1 2 1 4 1 1 3 1 1 1 3 1 1 7 11 2 2 1 2 1 1 1 1 9 18 4 7 9 6 1 3 3 2 2 2 5 8 1 2 1 1 2 4 1 5 5 1 2 2 10 4 15 5 19 2 1 1 1 1 4 1 6 1 8 2 1 1 1 3 7 7 2 3 1 2 18 4 3 6 10 22 12 4 5 35 15 14 16 7 8 15 3 30 5 36 13 3

1 2 1 2 1 2 2 3 1 1 11 2 1 1 4 1 1 1 1 1 3 1 2 1 5 1 5 1 2 7 1 1 2 3 1 1 1 1 3 1 1 3 4 2 1 1 3 5 1 1 2 15 3 11 1 1 2 1 1 1 1 1 1 1 11 11 1 1 1 2 4 4 13 25 20 10 7 13 2 4 3 2 1 3 15 2

1 1 2 2 1 4 5 1 3 1 1 1 3 2 1 1 1 2 1 1 5 1 1 1 1 1 1 1 1 1 1 1 2 2 3 1 1 1 1 1 1 1 1 8 8 1 2 1 12 15 2 1 2 6 25 1 5 3 4 1 3 2 1 45 3

1 1 1 1 3 1 6 9 1 1 1 1 1 2 1 5 1 2 1 1 1 1 1 2 10 1 1 1 1 2 1 3 1 2 1 1 9 2 20 1 4 2 1 10 19 15 6 4 22 14 6 1 8 5 1 10 3 40

1 1 1 1 1 1 3 7 1 2 7 5 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 4 1 2 2 1 2 1 1 2 1 1 1 1 1 2 2 1 1 3 4 7 3 1 2 2 1 1 4 1 2 2 9 2 7 13 2 1 7 1 2 6 1 1 1 4 3 5 2 1 1 22 2

1 1 23 1 3 1 3 1 2 1 5 1 2 2 1 1 2 1 1 1 1 1 2 3 1 1 1 1 1 1 5 9 1 2 1 2 1 1 2 5 6 36 7 1 4

1 2 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 4 12 7 12 4 1 5 2 1 1 12 6 4 13 7 3 1 1 1 1

1 1 1 1 1 1 1 2 4 4 1 3 2 3 2 4 3 2 1 2 1 5 1 3 1 4 1 1 1 2 4 2 1 3 2 6 3 1 2 2 1 1 2 1 1 1 1 1 1 1 12 12 2 3 1 2 1 1 1 1 1 3 2 7 1 2 1 2 1 13 1 4 1 1 12 22 21 2 22 1 2 6 5 5 7 7 1 3 7 1 8 2 7

4 1 1 8 7 2 9 1 5 1 1 2 1 21 9 2 6 11 15 2 4 2 12 6 17 9 5 5 4 2 1 1 1 1 1 10 15 2 3 2 4 5 3 3 1 1 3 1 1 1 43 10 4 1 10 1 7 8 11 1 10 1 4 8 20 2 2 12 8 8 1 7 1 2

2 1 1 1 4 6 5 5 5 2 3 2 1 1 1 11 1 14 2 3 2 1 9 12 1 1 8 9 16 9 1 1 1 4 1 1 2 1 1 1 23 32 5 4 5 2 1 2 2 1 1 1 3 7 2 1 1 1 1 1 1 9 1 1 10 4 3 2 4 8 34 6 10 2 16 9 2 8 3 6 3 7 2 1 8 1 1 11 1

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 10 6 1 3 1 4 1 1 1 4

1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 6 12 1 1 1 1 1 2

1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 16 3

3 1 1 1 8 1 2 2 1 2 1 1 1 1 1 1 2 2 2 2 13 6 1 1 3 1 2

1 2 2 4 3 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 1 1 3 1 4 7 2 3 1 2 1 3 1 1

1 4 1 1 1 4 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 2 3 2 1 1 3 1 1 1 2 2 1 1 1 8 5 3 3 7 2 9 8 9 1 6 2 1 1

1 1 1 3 2 1 6 1 3 1 1 3 1 1 1 1 3 1 1 1 4 2 12 2 4 2 1 1 1

2 1 1 1 3 2 1 2 1 1 2 6 1 1 4 1 1 1 1 2 1 1 1 2 1 2 3 2 1 2 3 3 1 3 1 3 3 1 11 1 3 1 1 1 1 6 6 2

1 1 2 2 1 4 1 1 1 1 1 2 1 1 2 1 2 1 2 1 4 1 1 1 2 2 1 2 1 5 2 1 5 2 4 1 2 1

2 2 17 136 84 1 1 1 1 1 5 1 1 4 1 1 2 1 3 2 9 8 2 2 3 4 1 1 4 19 15 7 6 1 4 5 4 3 1 1 1 1 1 1 2 10 14 1 2 1 1 2 5 10 2 1 1 1 19 5 1 1 4 77 89 1 8 1 3 2 7 5 13 1 1 2 1

4 54 149 3 1 2 1 1 4 1 1 1 1 2 1 1 1 3 1 1 2 3 3 1 2 6 3 2 1 3 1 2 1 8 1 2 1 1 5 1 3 1 2 1 1 1 3 5 1 2 1 23 1 3 2 2 47 2 44 208 6 1

3 6 4 6 7 1 1 1 55 1 1 4 9 12 4 1 1 6 3 1 1 3 10 43 1 3 31 2 26 26 1 22 1 6 10 2 5 4 5 5 3 3 2 2 3 1 1 1 8 2 1 6 2 1 1 2 1 2 1 1 4 1 1 8 4 1 5 1 1 1 6 33 32 23 6 6 1 1 1 3 3 1 1 1 2 2 4 2 2 1 2 2 1 3 1 2 1 45 61 47 62 64 68 57 67 48 58 48 53 75 52 55 18 16 22 31 16 8 6 11 10 9 7 8 15 6 16 12 11 14 19 23 26 2 18 20 27 27 26 29 22 18 21 32 20 25 21 48 14 14 21 29 32 19 9 72 55 5 4 1 1 85 7 2 1 3 4 1 5 1 33 24 5 16 1 1 1 1 3 12 12 15 33 3 1 1 1 2 12 9 1 1 4 2 1 2 1 1 2 7 6 2 10 2 10 4 2 14 21 17 3 1 4 3 33 10 3 1 8 11 41 29 24 18 9 62 34 12 29 20 24 11 5 21 92 101 12 1 33 37 3 35 39 20 34 41 25 30 10 19 35 1 19 31 15 1 9 39 119 18 33 10 3 63 46 1

4 1 4 2 5 11 2 2 2 4 1 7 6 5 1 1 7 1 5 1 7 5 1 8 1 1 39 4 27 30 3 97 9 11 4 3 3 4 7 3 2 1 2 1 1 2 6 3 2 1 1 1 3 3 4 2 4 3 1 3 2 1 2 8 2 1 16 26 68 1 2 5 5 10 2 2 4 1 3 3 1 1 1 4 1 5 1 4 1 1 4 1 1 1 2 2 1 1 71 67 68 80 111 92 88 95 91 101 84 71 89 83 63 66 59 25 32 18 8 6 10 7 8 10 5 13 11 11 10 11 20 55 29 45 1 18 53 68 67 50 62 74 28 51 94 47 102 49 86 34 15 26 20 13 31 6 26 32 2 2 2 1 2 140 5 1 9 7 6 5 2 1 8 4 23 1 31 10 27 1 1 1 16 16 12 23 3 3 1 2 3 1 1 3 1 2 1 2 3 4 2 4 7 2 3 2 4 4 1 3 1 1 3 10 7 3 2 10 8 5 2 1 1 5 11 15 11 6 1 4 5 20 2 8 1 9 10 46 32 18 22 36 41 21 8 18 48 27 12 14 16 66 73 8 6 38 29 18 22 34 22 28 38 22 26 26 22 37 3 34 39 15 2 18 22 22 21 12 19 3 83 55 4 2

4 2 1 1 3 4 11 3 8 1 1 7 1 1 10 2 14 3 1 2 2 3 1 6 1 1 2 1 1 2 6 1 1 50 3 42 3 1 7 3 2 3 11 6 2 13 2 2 2 1 1 1 3 1 2 1 5 1 1 1 1 2 2 3 7 8 25 1 4 1 4 1 1 2 2 2 3 3 3 3 2 3 1 1 1 1 3 3 1 1 70 78 180209210174194211188192172234190188162 32 32 19 17 12 14 12 11 10 5 6 6 18 18 22 15 21 28 20 18 31 1 15 32 46 39 39 49 43 17 31 70 20 69 26 68 32 11 12 62 55 21 7 22 23 2 1 7 43 27 20 4 11 7 3 7 5 9 6 3 7 11 2 2 6 8 8 2 1 2 1 5 7 1 1 1 4 4 3 11 1 3 1 1 1 3 3 3 3 2 1 1 6 2 6 2 1 4 29 22 15 3 8 6 35 43 22 12 19 64 47 4 12 42 34 33 18 30 11 74 81 3 11 26 30 40 19 22 28 13 27 20 26 39 16 33 37 13 45 53 2 2 8 4 2 16 21 15 2 57 49 1

6 8 2 2 5 6 2 7 1 1 4 3 9 3 4 1 1 1 6 1 2 2 2 13 48 1 2 2 44 3 12 3 1 1 2 6 4 6 2 1 1 1 1 3 3 18 1 1 3 1 1 1 2 1 2 1 4 2 1 2 1 1 1 1 1 1 78 68 135 153185164201170166170172171158188214 40 31 13 23 9 9 6 9 6 10 11 8 4 12 16 11 11 10 19 16 19 5 12 29 38 33 33 32 42 29 28 67 24 63 36 67 22 14 11 40 39 28 4 18 20 1 1 49 1 13 5 2 1 1 5 5 3 4 7 7 1 1 1 3 1 2 3 3 2 2 2 2 2 10 4 1 1 3 11 1 1 2 1 2 2 2 3 1 4 7 1 1 4 1 30 45 6 5 6 5 45 34 33 14 25 45 19 8 8 20 7 21 11 1 2 7 42 52 3 30 28 23 26 15 14 32 10 14 20 22 27 27 27 35 5 45 74 8 1 6 24 20 18 17 16 1 45 30 2

5 3 2 1 11 2 3 18 1 5 3 3 10 1 1 3 98 13 4 8 5 2 3 1 1 2 1 3 3 1 5 1 57 1 39 7 2 1 2 1 3 5 5 1 12 2 2 1 1 1 1 1 2 4 5 2 1 1 2 1 1 3 7 14 40 3 4 1 1 1 1 1 1 1 3 1 2 2 1 1 1 1 1 2 1 2 1 1 84 80 194183 233204205227198197169213195217189 31 41 20 24 17 12 14 22 9 6 6 2 22 19 26 26 26 28 18 15 24 3 24 51 51 46 49 37 47 37 29 104 22 91 45 81 24 11 13 66 55 23 7 35 23 1 2 44 17 16 2 13 13 4 6 4 14 1 4 3 8 1 1 1 10 6 12 9 13 5 1 2 3 2 3 5 4 2 4 4 4 2 10 2 3 7 1 3 5 1 2 2 7 4 12 9 1 2 1 4 6 4 36 39 5 4 12 4 43 41 14 15 22 62 44 2 18 43 39 27 17 42 4 13 66 115 3 23 44 20 49 23 18 33 20 14 24 19 31 24 30 37 11 54 58 3 9 5 18 16 18 8 1 66 44 2

4 9 1 5 2 5 15 1 5 2 2 1 4 1 2 4 7 11 22 9 1 2 1 3 3 1 2 2 1 2 4 2 1 3 1 1 31 2 16 4 3 4 6 4 5 6 6 6 2 10 1 5 1 4 1 1 1 1 2 4 1 3 1 9 2 1 1 1 1 2 1 2 1 14 16 46 2 3 1 1 6 1 2 1 3 1 2 1 4 3 1 1 2 1 2 2 1 1 1 85 118185194213 217239251244224183210221219218 42 51 25 22 12 18 16 14 9 13 16 6 16 13 14 15 28 27 20 14 21 8 20 49 44 52 42 41 36 37 46 107 20 84 37 93 31 12 17 65 52 30 14 35 42 1 3 1 1 112 2 1 20 10 4 5 13 2 4 2 10 3 16 4 7 1 2 1 7 6 6 11 13 3 1 2 1 1 2 4 11 7 1 1 1 3 2 4 16 5 1 5 1 3 3 1 2 1 2 4 4 3 1 3 13 8 4 5 1 2 2 40 29 9 8 13 8 45 43 44 17 33 55 58 10 20 35 38 36 24 49 4 18 77 68 9 57 37 36 36 24 25 33 22 20 12 24 28 29 28 57 2 41 65 11 15 72 39 14 21 10 3 71 47 1

2 10 1 5 1 6 15 7 7 11 1 1 6 2 6 2 4 5 10 3 2 1 1 3 11 2 1 1 3 4 5 5 3 3 1 38 2 40 5 2 1 1 6 2 3 3 2 3 9 1 4 1 3 1 2 2 1 2 5 1 2 1 1 1 2 2 1 1 1 2 12 12 31 3 3 4 11 3 1 1 1 2 1 3 2 1 1 1 1 1 1 1 2 1 1 79 81 176185178229 229224219220171206201171185 33 24 31 28 15 13 13 10 12 14 16 12 21 22 20 18 18 27 11 13 22 4 14 33 50 52 33 24 43 27 29 81 19 80 39 74 39 14 5 41 54 32 6 24 31 1 1 1 1 66 1 15 13 3 5 9 3 5 4 11 3 6 6 7 2 1 1 1 1 8 5 3 10 4 4 2 2 3 3 4 2 1 2 4 2 11 1 3 2 1 2 2 3 2 2 1 6 9 3 3 1 5 23 45 5 4 10 3 43 45 35 17 34 55 56 1 17 28 30 28 52 45 1 22 61 74 7 25 41 32 36 20 25 40 20 25 29 20 36 32 32 30 3 47 63 11 1 5 18 40 20 19 4 51 31 1

6 1 2 7 6 2 15 4 2 1 180 4 3 1 3 2 4 11 3 3 2 5 3 1 1 2 1 4 6 4 4 1 2 1 2 3 42 9 28 10 3 2 1 2 4 6 3 2 3 1 3 1 1 1 4 5 1 1 1 1 1 7 8 19 1 1 1 6 1 2 1 2 3 1 2 2 1 1 1 1 1 61 89 149182166194165 176188202207198186199210 44 56 17 26 18 13 13 14 7 11 10 6 12 9 20 20 25 13 16 14 18 5 22 36 66 29 53 26 54 25 28 70 22 58 37 61 27 7 8 39 52 22 1 16 22 2 1 2 29 10 8 1 2 4 4 3 2 6 2 4 3 5 1 1 2 1 9 4 14 4 1 1 1 2 1 2 3 6 7 3 1 1 2 3 2 4 12 2 1 1 2 2 1 2 2 3 2 9 2 5 3 7 3 33 53 9 4 8 5 46 45 27 14 24 38 37 34 24 30 9 15 26 3 10 59 58 2 22 36 23 29 19 16 37 18 25 17 21 29 29 30 41 5 39 37 4 3 6 20 65 29 18 16 1 55 24 1

5 10 3 1 4 3 19 2 6 3 2 3 2 1 2 3 2 13 1 11 6 3 6 4 1 1 1 3 2 5 3 7 1 1 2 6 30 3 28 7 1 1 4 4 4 11 5 7 2 6 1 1 1 2 4 1 1 5 1 1 1 1 1 1 1 4 1 3 12 41 3 3 1 1 4 4 1 1 2 1 6 1 1 3 1 1 2 2 2 2 78 95 218182220245237223 194229219227222200187 39 38 16 22 19 13 21 14 8 9 8 5 27 18 19 20 23 19 23 12 23 10 24 44 63 44 44 53 60 35 36 94 14 74 41 88 27 9 7 53 58 22 8 29 44 3 1 75 3 15 11 3 6 6 4 5 1 9 6 11 10 8 2 1 1 1 2 2 6 7 12 7 9 1 1 3 9 3 1 1 1 12 3 3 2 3 2 5 2 3 3 2 1 4 11 5 7 1 3 34 35 6 1 12 8 44 39 30 11 44 71 60 12 15 36 42 41 24 39 2 20 113 94 8 39 47 35 38 20 32 30 30 27 22 25 36 30 35 50 12 35 63 11 4 9 27 38 35 21 14 2 57 40 1 2

8 11 1 3 7 14 4 5 2 5 2 1 6 1 19 4 7 1 8 1 1 9 2 3 6 4 1 3 1 38 1 18 10 2 1 11 3 2 4 4 2 2 3 2 7 2 1 3 1 3 2 4 6 2 2 1 2 1 2 1 2 1 2 1 4 17 50 4 5 2 5 1 2 3 1 1 1 2 1 2 1 2 1 1 3 2 1 1 4 4 1 1 1 86 100188198216242218214252 204219196186205204 42 49 32 37 11 10 14 18 7 6 12 3 15 22 20 17 23 28 15 17 21 5 22 44 53 43 46 38 59 28 43 104 34 85 40 78 40 13 17 45 39 26 14 28 27 5 1 111 13 6 7 5 5 2 5 5 9 2 11 9 9 3 1 1 1 1 2 7 2 15 8 8 1 1 2 1 1 4 6 6 4 1 3 1 1 7 4 1 2 1 2 3 2 1 1 1 1 2 1 5 8 1 6 3 2 41 49 16 6 9 7 56 39 35 18 36 34 43 11 17 41 67 31 19 45 3 26 28 72 10 24 33 27 45 21 34 33 23 23 22 26 35 30 40 46 8 41 66 8 2 17 33 38 27 12 9 2 49 65 2 1 1

6 8 1 12 3 5 19 6 2 1 10 1 2 1 7 2 7 2 7 1 2 3 1 2 2 1 1 2 1 5 3 3 2 1 41 2 33 8 1 5 5 1 8 2 14 1 3 2 1 4 1 1 2 1 1 1 1 2 4 8 24 8 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 65 80 163176137182169217180185 216186231200196 34 40 11 24 13 12 21 20 8 7 8 2 14 15 12 8 15 23 20 20 22 3 25 30 44 38 56 39 54 28 22 87 18 70 45 56 30 7 6 47 27 24 7 20 15 2 1 4 29 21 9 3 8 9 2 3 2 3 4 5 4 3 1 6 5 10 8 2 2 1 1 1 1 5 8 1 3 1 4 16 1 1 1 2 3 3 1 3 4 6 4 1 2 3 37 35 7 7 7 2 46 29 28 17 31 39 42 1 9 21 52 25 21 32 16 63 69 5 14 40 28 34 15 19 27 17 19 27 10 28 25 37 45 13 40 32 4 12 24 33 21 29 15 62 24 1

2 1 1 4 1 16 1 1 4 1 1 1 9 5 4 2 6 1 3 1 2 3 1 3 7 114 10 2 2 3 36 8 21 1 3 1 5 4 2 10 1 1 1 1 2 3 2 2 5 2 1 1 2 1 1 1 1 7 8 26 1 3 1 1 4 4 1 4 2 4 1 1 2 1 1 3 1 83 75 142157145165147214165170178 183171177210 41 44 26 26 13 12 16 9 11 9 6 6 13 22 16 7 19 33 16 18 22 5 13 27 47 24 51 36 45 27 18 56 28 55 47 61 18 16 11 41 38 28 18 24 30 1 1 4 1 31 1 12 13 3 1 4 1 4 1 4 3 1 4 5 1 2 3 5 5 2 2 4 4 2 1 1 6 4 2 2 11 1 1 1 1 2 2 1 3 3 1 1 5 7 2 4 1 4 3 31 12 6 8 8 5 37 33 26 14 24 32 36 9 20 19 15 28 2 8 55 56 2 31 35 16 22 13 22 34 16 16 26 25 21 31 15 31 11 69 35 6 1 9 22 24 12 17 13 56 24 2 1

2 1 2 5 1 5 14 2 7 3 1 1 1 3 1 6 5 10 17 1 6 2 2 5 1 2 1 3 3 3 4 2 1 56 1 35 8 1 2 2 10 3 9 3 5 2 1 2 3 2 1 4 1 3 1 1 1 1 1 1 1 1 6 7 27 1 1 7 2 1 1 2 3 2 2 1 2 1 1 1 2 1 1 63 77 154168155188167203169161194202 180191196 35 30 15 17 16 12 22 13 8 7 11 7 20 18 21 14 12 19 21 13 19 4 16 31 39 40 47 37 37 32 20 62 16 84 39 71 38 6 7 59 50 21 7 24 25 1 2 1 25 3 29 12 3 6 15 3 1 4 2 5 5 7 1 4 2 10 6 4 2 2 1 3 4 5 1 2 2 3 16 1 1 1 1 3 3 1 1 10 4 3 3 1 2 36 11 11 11 5 8 32 37 26 16 31 54 33 2 12 14 53 32 21 31 15 64 76 4 25 45 28 46 18 11 33 14 12 14 16 6 19 40 27 14 47 34 8 8 8 39 22 17 15 54 28 1

14 6 2 8 1 1 8 2 10 3 1 1 8 1 1 1 6 4 10 2 6 2 1 2 4 4 1 3 5 1 5 2 2 2 6 5 2 1 1 52 1 71 7 1 1 8 3 1 13 1 1 4 1 1 4 3 1 4 1 1 3 1 1 1 1 1 1 1 2 1 4 8 10 24 1 2 3 1 1 1 3 2 4 1 2 3 2 1 2 1 76 96 165147165211172239193182234202214 233192 45 37 21 32 30 23 13 9 26 15 16 5 13 12 19 18 13 30 19 14 21 5 16 27 55 30 36 51 41 24 22 80 23 74 52 53 24 10 11 40 49 23 7 21 22 1 2 2 1 32 26 18 4 10 18 5 5 4 6 3 5 3 5 1 1 2 6 2 10 5 8 5 3 1 3 2 1 5 3 1 1 1 5 4 4 14 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 4 3 1 3 6 3 36 32 9 8 6 6 51 46 15 13 18 42 57 8 9 18 52 31 14 30 2 10 65 70 3 22 45 25 29 16 15 27 19 31 50 19 37 28 57 47 12 35 42 5 3 7 33 40 19 21 21 60 38 2 3

9 2 3 1 5 1 2 14 1 3 4 2 2 2 2 6 2 4 5 1 6 1 1 1 1 1 2 8 4 1 1 1 1 55 5 33 3 5 3 3 2 2 8 4 1 1 3 2 1 1 3 1 2 1 2 5 24 1 4 1 1 2 1 2 2 1 1 2 1 2 2 1 1 1 79 71 143153145205153192166174181191181200 179 45 41 16 9 9 5 8 8 9 5 5 5 6 8 13 13 17 16 17 14 25 6 15 28 52 21 30 27 46 25 24 55 23 46 39 48 30 5 12 42 30 30 8 15 21 2 2 32 1 17 8 1 3 5 1 6 1 6 4 3 4 4 1 1 1 3 3 4 4 2 4 1 3 1 6 3 1 2 3 6 2 12 1 1 1 1 1 1 1 1 1 3 5 2 1 1 1 27 33 3 8 12 10 40 38 24 6 14 39 22 3 11 12 31 17 19 8 3 51 30 2 23 37 21 28 20 17 31 19 19 27 22 24 17 14 43 10 43 52 1 7 25 30 9 24 7 56 22 1

5 10 1 1 7 1 17 3 1 5 5 4 1 1 3 3 4 16 2 7 2 1 37 4 1 2 5 44 4 2 4 8 12 1 6 3 53 7 22 5 3 6 2 1 5 4 3 2 2 1 1 1 1 5 3 1 1 1 1 1 3 8 34 2 1 1 4 1 1 1 1 1 2 14 2 3 2 1 1 2 1 1 1 1 2 1 75 86 123201146209152220169167191216187179194 65 57 9 18 15 14 9 6 11 8 14 3 13 17 10 13 17 24 17 19 19 6 15 29 59 31 66 27 60 35 23 77 35 58 51 52 23 9 11 35 45 14 8 16 19 1 1 36 1 15 4 3 9 2 1 1 1 2 1 3 7 4 1 1 1 2 5 8 3 6 1 3 2 3 13 1 1 3 1 10 2 1 3 1 4 1 7 4 7 1 5 1 24 38 8 11 8 7 41 39 29 14 20 46 38 9 28 19 35 15 19 1 14 78 46 2 26 38 22 37 13 71 30 9 18 25 22 52 39 31 39 10 34 45 4 2 13 24 35 18 15 15 62 32 2

169166 65 77 12 154 61 69 145172 61 105 57 106192224 77 69 164 6 124145327213135305 75 99 57 85 116 35 59 73 76 37 15 66 299481 30 231 56 1 4 54 92 112 29 44 320255228102109 35 236124 2 9 4 1 9 10 6 3 2 2 1 5 2 2 1 1 2 2 1 5 2 1 4 6 1 1 1 1 1 3 4 4 4 1 1 9 13 15 3 1 1 4 73 61 132 6 1 1 5 5 2 3 1 3 2 2 2 1 3 2 4 2 1 4 1 1 2 1 10 25 58 26 32 37 52 47 52 30 48 60 45 39 54 51 55 26 330355 57 60 88 88 97 78 82 49 231174199158186223 72 73 84 7 25 65 255 69 191 83 228253107261102231163282206 89 102229231119 88 62 65 3 3 2 1 156 4 3 3 2 1 4 10 17 6 17 9 20 2 1 8 13 36 25 13 8 2 1 3 7 13 4 1 1 2 2 6 10 7 3 2 2 1 1 2 6 4 3 4 5 3 3 4 1 2 2 4 1 1 3 3 2 1 2 1 2 2 7 18 5 6 1 3 4 4 15 48 5 6 11 17 45 25 12 31 24 74 6 13 19 44 18 32 25 4 16 84 79 2 16 36 13 30 21 27 13 30 12 40 23 26 18 29 44 4 4 42 4 10 11 23 17 13 10 1 45 40 29 5 5

194 82 61 77 1 4 170 39 79 153136 72 90 73 117182187111 84 152 98 127455174129180103 75 52 97 113 28 73 72 102 44 13 65 173263202177 10 7 46 110122 60 44 328172245 62 71 49 178135 3 11 2 3 11 11 6 7 5 1 1 5 1 2 1 2 3 2 5 1 3 6 2 4 3 7 1 1 1 2 3 1 1 1 2 1 2 1 5 6 7 1 1 2 4 58 62 121 1 2 3 1 5 3 1 2 5 2 2 2 2 11 2 1 2 1 1 1 2 2 1 1 1 1 1 2 31 77 30 47 42 55 43 70 48 50 54 60 39 57 42 56 27 340394 96 108 79 101114 98 70 46 213239262201163234 80 64 67 13 21 83 275 63 170 93 217230102295 89 283185278230 98 102216217131 70 72 61 2 1 2 1 104 4 2 1 6 1 8 17 23 3 18 12 22 2 1 1 1 6 8 7 30 39 5 3 3 1 3 9 4 4 6 2 7 8 6 10 9 2 1 4 3 3 1 8 1 3 3 1 1 1 1 2 1 1 7 4 5 1 1 7 15 12 2 1 17 31 11 4 3 11 34 26 29 19 49 42 59 17 15 22 48 36 33 32 1 15 89 106 2 23 52 22 33 36 42 22 31 18 46 45 47 19 27 28 1 111 62 2 12 12 17 13 15 18 5 49 49 20 2 4

575338116 53 23 357323359398407175510 22 1393051005131209405 1064901382544177340272340 75 16 117 48 177152199370147284507 542427 28 2 5 68 361279202165189128350182121 7 12 35 11 22 4 1 17 24 20 6 3 2 3 7 1 5 6 5 10 1 2 18 2 1 2 1 1 2 2 1 19 20 17 1 6 1 99 100 99 3 5 2 1 4 2 1 5 5 3 1 4 1 1 2 1 2 1 1 10 25 16 21 18 26 35 31 18 22 29 25 38 14 34 22 28 824930 96 15 34 29 32 75 82 55 53 229192232195179251 26 19 14 7 22 33 95 26 95 27 109158 67 222120252174247175371422717773166108 91 57 1 3 10 145 3 2 2 2 3 2 3 2 9 4 5 140 11 7 3 1 1 9 23 5 11 9 6 10 1 5 1 2 3 1 5 1 5 1 1 10 3 3 1 2 2 9 15 7 2 22 150 9 15 1 5 22 36 55 31 31 94 92 33 15 20 64 12 55 44 6 88 52 6 17 59 22 21 18 1 11 21 17 48 35 33 17 35 27 144 84 6 1 1 1 27 13 27 31 2 75 73 10 2

250290 50 12 491441223427570140476 1 1 4781288183125615 3604591510487185153264470190320153 65 157213196311173271437 39 236380 19 313224197120306280499152 87 11 339147 9 19 1 4 16 24 21 1 2 1 2 4 2 2 1 1 1 1 5 4 1 7 1 2 1 8 6 1 1 1 1 3 1 2 18 15 18 1 14 84 90 71 12 1 1 1 4 2 2 4 2 2 1 2 2 5 3 1 2 1 1 1 2 1 1 1 1 40 27 19 12 22 9 25 26 20 33 18 35 19 20 16 29 8881015141 29 23 25 24 100 66 70 35 203171198168160231 26 24 35 4 23 24 111 41 74 26 104181 45 219113230196207181397452730787179101 91 91 1 1 1 2 2 59 3 1 4 2 1 3 3 5 1 2 2 8 3 6 53 12 15 12 5 1 1 1 7 1 1 2 1 1 13 11 8 8 2 6 2 1 1 1 1 3 3 1 1 4 1 2 1 10 14 10 6 1 1 9 98 4 7 6 33 49 42 24 29 21 38 1 43 75 17 41 42 33 66 54 4 27 15 16 14 27 41 20 71 20 48 11 22 9 42 19 1 88 62 1 8 2 27 15 32 27 8 76 57 3 9 6

3 3 8 1 4 27 1 3 4 3 25 2 4 1 3 1 9 5 2 37 1 1 2 1 2 11 5 3 1 1 1 1 1 17 1 6 17 6 4 5 2 8 7 9 20 21 18 3 2 1 8 3 2 3 1 1 36 17 6 6 8 12 7 18 16 8 9 13 4 17 14 26 4 6 4 2 1 13 16 7 3 13 9 4 9 2 4 2 1 19 12 2 4 9 4 9 2 12 18 2 24 5 22 4 3 9 8 10 3 4 5 1 2 1 12 11 16 7 1 2 4 2 2 1 1 4 5 6 32 32 2 1 1 1 1 10 2 8 1 1 2 2 3 2 1 1 2 1 2 1 4 3 4 5 8 19 11 2 1 63 14 25 4 9 5 45 12 1 5 4 18 1 45 1 3

12 3 1 11 4 4 4 4 2 68 5 1 15 2 1 5 4 3 12 8 2 1 1 1 1 1 1 7 16 3 4 3 2 1 2 2 3 3 6 4 4 3 2 21 5 7 9 5 10 7 14 11 8 9 16 10 12 9 16 6 3 1 4 18 9 11 6 2 5 9 3 3 4 1 21 14 2 1 6 2 3 2 3 15 9 2 20 4 19 6 5 4 9 7 3 1 5 3 1 1 1 1 1 2 1 4 10 11 1 3 12 1 5 1 2 4 58 5 6 3 17 1 58 7 7 2 1 21 10 24 2 1 20 3 4 12 24 1 1 32 1 8 3 5 1

88 13 1 2 1 3 1 7 6 3 1 17 8 22 19 3 2 3 1 8 5 2 2 9 7 1 7 6 1 1 2 1 2 28 14 5 8 9 13 10 18 14 8 17 8 11 9 10 16 3 1 2 5 19 9 7 4 6 12 6 2 1 2 44 24 1 4 2 3 4 4 15 22 4 9 5 21 1 2 1 9 11 3 2 6 7 12 4 5 1 1 2 2 1 1 1 1 7 2 7 24 2 1 1 1 9 3 13 1 2 9 2 1 1 4 4 55 14 2 8 2 11 18 3 3 59 33 12 1 27 8 27 25 2 2 10 15 22 7

1 1 1 2 3 2 1 1 1 1 1 29 1 2 4 1 1 4 7 6 15 1 16 3 1 1 2 5 1 9 1 1 1 9 15 3 3 3 1 3 1 8 3 1 4 3 2 4 1 23 8 9 13 3 5 10 15 11 12 21 16 10 7 11 18 2 7 4 15 14 8 6 5 2 4 15 9 4 2 2 2 16 8 2 1 10 5 3 5 5 9 22 3 18 5 14 7 1 2 8 14 3 3 3 5 2 1 3 1 1 1 1 1 1 1 3 1 2 15 13 1 1 1 1 12 2 5 1 1 10 1 1 1 1 2 1 8 6 13 12 15 23 9 39 23 1 10 14 13 27 12 3 10 9 5 15 45 1 8 14 5 2 2

17 1 7 9 127 93 66 37 100 46 45 1 1 129227 51 9 1 301 2 75 154 4 53 77 36 80 77 1 9 22 14 300 4 7 39 12 267 18 34 66 11 42 1 24 1 3 5 5 1 5 1 19 2 8 2 1 1 3 1 1 1 1 7 7 5 2 3 3 9 1 1 3 1 3 1 1 1 1 3 5 3 1 15 2 1 2 1 2 1 2 3 4 4 5 3 9 17 18 55 47 25 35 4 12 2 10 11 9 13 9 14 2 3 7 8 13 4 6 5 7 4 30 26 8 17 14 32 44 140125 14 8 18 19 1 1 6 2 2 3 6 5 2 7 3 1 2 25 14 16 2 4 2 9 2 7 25 8 33 11 2 1 1 2 1 1 1 1 2 1 2 1 5 17 23 39 32 6 145 33 15 28 24 13 1 2 67 5 51 28 3 2 1 34 25 25 54 36 34 4 77 38 29 8 8 1 59 2 14 29 1 54 3

111 5 208 4 75 105137 37 58 6 6 179256 103 34 295150 75 41 13 7 96 37 10 23 25 62 2 1 16 32 2 3 3 7 6 5 3 4 2 17 2 6 1 1 1 1 4 1 1 1 1 7 13 7 2 4 6 14 1 1 1 1 3 4 2 2 2 2 7 1 1 3 3 3 4 6 2 1 2 2 3 2 1 11 13 38 36 17 5 19 23 1 20 13 9 8 4 9 1 1 2 3 4 1 3 1 4 8 8 20 3 29 3 25 5 22 19 73 107 11 17 18 29 3 1 3 2 4 12 3 6 5 2 1 1 2 3 22 28 20 28 1 2 6 1 5 37 22 50 2 2 1 2 4 3 4 4 17 2 3 104 2 30 40 131 5 18 2 32 81 1 1 118 10 29 34 1 19 3 3 88 27 7 15 3 3 27 1 2 6 1 27 1

92 217 1 27 2 172 4 92 155138 81 94 4 112 1 86 1 80 106 1 13 63 81 3 78 29 1 177 88 142 2 21 15 13 1 1 74 2 2 13 7 3 2 7 2 2 1 1 1 1 10 1 4 1 1 1 1 1 6 2 6 6 2 1 3 13 1 3 1 2 1 1 2 1 4 3 1 8 3 2 3 2 1 1 3 4 2 2 4 1 1 4 18 18 45 32 12 23 19 19 17 8 10 6 18 5 1 2 4 2 1 8 1 11 3 11 13 9 43 3 24 5 34 12 32 30 107107 8 3 24 19 2 5 25 5 2 6 2 4 3 2 10 6 1 5 30 15 21 10 3 1 8 1 5 1 6 1 6 31 27 28 1 1 3 1 2 8 1 4 1 1 1 1 1 1 3 2 1 3 12 215 6 1 11 24 5 24 49 76 41 47 39 5 20 1 5 3 2 2 27 3 23 48 6 43 32 1 4 12 1 59 1 36 19 24 3

65 25 1 26 265103135 24 32 132 34 55 63 38 6 164249 76 83 1 1 2 6 2 2 1 1 10 2 1 1 5 5 6 1 2 3 1 3 1 1 1 1 1 3 1 2 2 1 1 2 1 1 2 1 2 1 3 4 6 8 36 23 4 6 13 8 1 7 7 8 1 5 5 1 2 1 2 1 2 5 2 3 5 4 1 4 14 13 5 18 4 19 21 63 56 5 9 16 10 1 1 3 6 1 1 2 1 5 6 3 7 2 3 1 2 2 1 22 14 26 5 2 6 1 1 2 1 3 2 8 6 2 8 7 8 1 8 1 32 15 18 12 41 49 1 29 26 16 33 5 100 52 4 1 20

8 30 8 2 8 3 1 1 4 27 11 14 4 1 1 2 1 1 1 3 10 1 87 48 2 1 2 1 8 3 4 1 2 5 1 1 2 1 1 1 4 3 7 2 1 1 1 1 1 8 4 1 1 1 1 5 1 2 2 3 3 5 3 5 5 4 5 2 3 6 15 13 196185 89 83 57 97 12 14 12 8 4 1 1 1 2 2 2 2 3 2 3 8 10 2 2 7 3 4 10 17 23 21 36 6 6 20 13 1 1 2 5 1 1 1 1 2 2 1 1 1 2 2 1 1 1 4 1 62 74 18 7 28 74 15 9 54 81 65 19 6 60 68 5 60 4 4 12 11 1 29 23 1 44 48 18 3 19 1 7 38 9 64 1 33 6 8 8

4 4 3 1 1 19 5 6 3 5 1 12 6 7 1 1 2 1 1 2 8 1 1 1 1 1 1 1 1 2 2 3 1 7 1 2 3 1 1 1 1 1 1 2 2 2 9 6 2 2 2 6 2 3 3 5 1 5 10 12 165191113 83 47 125 12 7 12 9 1 1 1 1 2 2 3 2 2 5 9 6 1 5 1 4 5 16 15 39 23 9 3 23 12 1 2 7 1 1 1 1 2 1 2 1 1 1 2 2 2 45 1 14 4 8 37 59 5 8 63 1 6 53 1 2 44 52 90 21 116 5 64 2 23 25 34 6 68 36 46 1 20 10 2

2 56 10 3 2 9 13 5 2 8 5 11 2 2 2 1 8 1 8 1 1 2 1 1 40 2 1 1 9 3 1 2 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 4 2 3 3 1 15 1 2 1 1 1 1 4 1 3 1 3 3 4 7 1 3 3 1 3 3 4 2 11 16 178182 55 126164 90 9 11 20 6 1 1 1 2 2 2 2 2 1 4 10 9 8 2 6 1 7 11 27 28 44 35 4 4 17 21 6 1 9 3 1 1 1 1 3 1 2 1 1 1 2 2 6 4 1 1 1 7 2 1 2 1 65 117 4 1 15 67 15 15 36 1 2 66 40 21 33 10 27 5 43 15 22 1 5 32 7 10 24 1 4 20 101 9 6 20 17 4 30 3 29 17 3 25 1 19

1 5 1 7 10 9 17 15 6 1 1 3 4 7 8 3 6 2 8 4 57 1 1 1 5 6 1 1 1 2 4 2 1 8 2 1 2 2 1 3 3 22 1 1 1 1 4 2 3 4 2 2 4 5 1 1 2 5 5 5 3 2 9 16 172155 55 66 69 109 13 8 11 6 1 1 3 1 1 1 1 2 2 5 3 4 7 2 9 2 6 13 20 23 19 32 10 5 35 22 1 3 3 1 7 1 1 1 1 1 2 1 3 3 2 2 32 2 13 15 43 52 40 1 24 43 28 4 12 1 24 1 27 41 1 1 38 27 55 3 45 13 2 79 12 3 20 13 2 4 42 1 53 19 5

6 18 5 1 34 3 1 1 1 6 8 15 2 5 3 7 1 1 2 3 2 2 1 10 57 2 1 1 2 7 2 1 1 2 1 4 1 2 2 1 1 1 1 3 3 5 4 1 2 1 2 1 2 2 1 5 2 13 7 6 3 4 5 6 4 5 4 10 7 7 13 23 136130 46 31 71 81 18 5 1 9 1 1 5 2 8 8 3 6 14 8 11 1 9 6 13 4 23 23 29 25 6 9 17 17 4 1 1 3 1 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1 1 5 8 11 42 12 34 1 52 36 4 42 4 24 79 4 1 1 114 10 17 5 23 55 11 1 1 3 4 28 111 52 3 34 1 24 1 3 23 3 1 32 57 1 17 5 18

2 22 8 11 21 3 11 1 3 5 5 3 3 2 5 1 6 3 3 2 1 2 1 6 1 7 14 68 2 1 1 5 14 3 3 2 7 1 4 2 9 10 4 6 2 3 3 1 2 11 3 1 3 1 1 4 2 4 2 2 6 4 2 2 4 4 6 4 2 2 12 19 181216 75 84 86 67 18 4 25 5 3 3 1 13 2 2 3 4 2 2 3 17 7 6 2 4 4 24 13 22 18 30 33 10 6 14 17 1 1 2 1 5 1 1 2 1 1 2 6 1 1 1 1 3 2 2 1 4 3 25 40 5 30 24 1 54 51 57 41 24 26 41 49 1 3 33 4 13 26 18 6 25 37 36 54 23 24 41 9 5 1 57 1 21 2 29 21 56 57 1 7 2

55 34 6 2 1 85 347 158 3 3 157 81 16 60 31 6 99 1 2 1 3 1 1 1 1 1 2 1 1 1 1 2 1 2 4 1 2 1 42 44 24 1 1 1 4 1 1 7 1 1 1 1 1 5 10 6 9 15 12 9 8 7 7 11 5 10 7 13 13 80 91 16 17 4 1 3 3 1 2 5 4 5 1 2 37 16 2 17 44 7 41 15 44 7 28 28 39 25 38 18 8 13 12 9 12 26 19 5 6 2 1 1 11 22 8 1 1 3 13 1 13 10 19 1 1 1 2 7 1 2 2 3 5 17 2 11 1 1 2 1 1 1 6 6 4 3 2 1 3 1 1 1 9 12 16 1 1 1 4 3 10 3 4 4 4 6 7 1 30 35 2 2 27 11 1 13 25 4 55 12 7 3 11 41 31 6

2 21 24 3 117 13 1 2 39 377 17 151 2 256 70 13 38 8 1 105 3 2 3 1 1 1 1 1 1 4 2 1 2 1 1 2 1 70 47 11 1 11 3 4 1 1 7 9 13 6 11 8 3 7 9 3 8 12 9 10 5 6 96 77 19 12 5 1 6 2 3 3 7 2 2 3 2 5 1 4 47 24 2 18 40 7 33 24 42 8 16 17 30 19 39 17 3 7 3 10 5 25 20 13 3 1 1 3 5 24 1 1 3 1 1 2 14 20 5 23 11 13 1 2 13 1 1 1 6 6 1 5 1 2 4 2 1 1 1 2 12 4 2 5 4 2 1 3 2 16 6 12 2 2 9 11 6 7 1 2 1 1 5 35 13 13 1 39 8 1 6 21 5 1 3 1 34 47 3 2 2 31 5 4

46 10 4 7 23 35 43 93 61 3 2 2 1 4 3 17 229 15 122 297 46 1 20 2 89 7 7 4 1 1 1 1 1 1 2 2 3 1 1 2 6 1 1 1 1 1 1 1 2 1 1 132 91 17 1 6 1 2 1 1 1 1 2 10 20 16 11 16 16 11 10 16 10 9 14 12 16 10 6 122111 43 31 5 4 2 7 6 3 8 5 11 5 6 5 3 6 17 48 1 2 16 63 13 56 28 43 17 17 35 39 25 42 28 18 29 15 19 14 41 35 11 13 1 1 1 1 2 3 32 8 2 1 20 26 5 21 8 21 1 1 1 1 1 12 1 2 1 1 7 18 1 7 1 1 1 1 1 3 4 1 1 1 1 5 4 3 2 1 4 2 1 1 1 1 1 1 2 5 2 7 1 14 18 7 10 8 2 3 1 18 1 1 5 6 4 18 32 30 30 8 6 39 51 2 8 1 19 12 7 9 25 6 7 19 47 3 1 2 2 9 15 4 5

13 17 2 7 7 3 14 1 2 1 20 64 4 1 1 1 35 4 1 4 2 2 8 6 1 1 1 2 1 2 1 1 6 6 6 1 3 1 2 1 6 2 1 1 1 1 3 1 3 2 2 4 3 29 18 7 7 9 36 16 12 15 38 12 7 12 11 10 9 12 19 9 3 3 6 9 8 4 3 2 3 1 2 4 1 2 4 2 2 1 5 3 8 1 11 5 11 6 4 4 12 10 8 15 8 15 9 17 2 5 6 1 1 60 1 1 1 3 1 2 3 1 1 1 1 6 22 1 5 1 1 2 2 1 4 3 2 4 24 64 5 2 7 32 6 4 27 12 2 10 18 1 4 31 67 3 4 14 11 10 8 10 16 1 1 24 14 4 1 2 1

36 20 9 5 4 12 1 20 2 3 2 2 8 1 2 5 1 36 18 103 1 8 4 1 9 5 1 3 1 41 9 8 3 2 17 1 3 6 6 4 2 8 1 1 1 2 1 2 1 3 35 23 22 1 3 1 1 1 3 3 2 2 1 5 1 1 2 2 1 1 4 1 22 32 31 21 25 42 37 31 38 45 37 18 29 24 25 21 110100 28 30 7 10 7 8 6 9 10 4 9 3 4 15 4 9 2 3 7 4 22 74 9 75 4 60 24 15 43 28 24 87 30 35 13 16 28 28 53 14 5 9 5 2 2 1 124 1 2 1 1 1 2 10 1 9 6 4 1 1 1 2 5 1 5 5 7 1 4 2 1 1 1 1 2 2 9 3 3 2 31 56 3 10 6 23 11 25 32 4 41 20 34 6 9 21 6 3 20 2 9 22 26 66 4 22 9 21 22 27 29 29 14 7 2 9 39 19 11 7 4

27 6 3 1 4 6 1 5 6 11 11 3 1 9 13 4 2 3 6 4 32 4 35 2 9 3 4 9 3 2 3 5 1 1 14 123 12 30 1 1 8 3 4 2 92 45 14 28 1 17 7 3 4 5 6 4 4 1 1 1 1 2 3 1 1 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 36 50 40 5 2 1 25 1 2 2 4 1 1 1 1 1 1 1 3 2 26 54 54 30 70 79 70 44 63 105 45 48 42 65 45 36 172186 43 49 5 7 7 14 10 4 8 2 7 8 8 14 14 13 28 38 25 17 77 18 63 16 53 45 40 58 73 54 143 56 32 18 20 22 16 86 37 14 15 2 104 3 1 1 2 1 4 8 18 12 19 27 27 1 1 4 4 2 14 2 2 1 1 3 2 1 4 4 2 1 2 6 8 3 1 2 2 2 3 1 3 1 2 1 6 1 1 2 22 11 4 3 3 4 1 21 18 11 6 2 8 15 21 15 18 31 20 19 5 3 29 14 20 13 32 1 15 4 41 4 12 27 6 16 12 26 18 27 16 23 16 17 9 7 9 23 23 1 10 8 17 15 11 10 4 9 22

24 11 2 17 6 10 17 18 6 8 1 19 14 13 10 8 3 6 15 40 3 1 10 5 6 6 18 4 5 5 6 7 2 7 26 67 29 37 3 1 11 11 5 7 109 22 59 15 1 2 27 8 9 1 14 13 1 6 1 1 2 4 1 3 2 1 3 1 1 11 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 2 1 1 1 1 61 63 59 3 2 1 1 9 4 1 1 2 2 5 1 1 2 1 5 5 3 5 1 5 3 48 97 50 47 66 66 65 84 87 79 72 58 48 60 50 54 246273101110 9 11 8 9 5 7 15 4 12 11 12 12 17 25 59 49 69 6 20 55 64 44 95 39 78 50 88 71 72 163 75 51 25 35 33 28 90 44 19 22 1 2 1 2 88 4 1 2 1 4 2 2 20 9 6 14 19 17 2 1 1 5 5 1 7 9 1 2 1 1 2 1 4 3 2 3 5 2 2 1 2 16 7 1 3 1 4 2 1 2 3 1 1 1 8 1 5 3 13 12 7 5 3 4 3 18 26 5 4 17 28 27 27 22 46 31 23 3 23 27 27 18 22 3 15 52 65 1 5 7 15 24 12 24 15 19 21 29 22 31 21 16 36 30 39 4 7 6 16 14 12 27 39 24 2 3 3

29 14 6 3 5 2 7 12 14 5 3 4 6 9 9 9 2 11 11 8 11 26 62 5 17 5 2 13 2 6 7 6 1 2 6 11 121 18 33 2 1 2 5 10 1 1 90 37 34 3 8 7 8 5 3 11 11 2 4 1 1 1 1 1 3 1 2 3 2 4 1 1 6 1 1 1 1 1 1 5 3 1 79 59 29 1 7 37 2 1 3 2 1 1 2 2 1 1 1 1 1 1 1 3 3 1 3 25 66 50 49 69 86 74 46 91 84 64 44 45 54 37 44 222227 82 66 20 9 11 16 26 13 10 9 11 15 6 4 13 15 15 13 11 3 8 16 142 118 15 103 38 36 86 68 70 136 63 37 26 29 30 31 112 53 17 15 5 1 1 2 1 170 2 1 1 1 1 18 18 9 22 21 22 1 3 2 1 10 15 6 8 1 2 1 1 7 3 2 1 1 2 7 16 9 1 1 1 3 2 1 2 1 13 14 6 3 1 2 1 19 39 45 5 4 17 12 30 23 28 38 29 26 3 10 26 22 19 22 31 25 24 28 1 50 33 8 37 23 24 23 31 39 28 20 27 16 23 26 29 25 6 1 10 5 19 23 17 14 1 18 11

35 10 8 5 1 1 13 11 7 23 19 9 12 24 27 6 7 15 5 5 31 56 8 1 7 9 1 6 4 14 1 8 10 2 5 3 4 25 74 31 45 2 1 6 6 8 7 4 94 44 46 19 2 1 28 7 9 3 2 7 9 1 2 8 1 1 1 1 1 3 1 4 2 1 12 3 8 2 2 2 1 1 5 1 1 1 1 1 1 1 65 61 58 1 1 1 1 1 12 4 1 7 2 1 2 1 3 1 1 2 1 1 1 1 1 2 2 1 2 1 44 71 53 59 72 77 64 89 67 85 70 49 59 67 59 74 243229122 95 14 7 8 14 11 8 9 9 15 7 18 6 10 14 67 46 63 2 15 53 39 59 90 28 57 49 78 59 64 121 73 39 34 33 35 29 99 59 20 22 2 1 2 1 118 4 1 1 1 1 2 2 1 1 14 8 7 12 14 18 2 1 1 1 1 2 3 5 3 10 2 2 1 1 2 1 1 1 5 2 7 2 1 2 1 6 9 5 1 1 3 4 5 4 1 2 1 2 2 2 1 8 9 5 9 3 1 3 3 26 27 17 1 19 20 29 10 24 39 23 22 3 7 27 36 22 21 18 5 14 59 65 2 3 6 17 12 17 25 18 28 19 35 18 17 15 5 21 1 21 42 6 6 9 30 16 9 18 3 21 36 1 1

62 4 8 1 16 12 17 20 1 19 26 4 2 10 5 46 59 7 12 1 2 2 5 1 1 4 1 2 16 160 21 83 1 4 4 5 4 203 35 22 3 51 1 6 1 8 12 3 4 1 3 1 2 1 1 1 1 6 1 2 1 3 1 1 1 1 81 87 28 3 1 11 1 1 1 1 2 1 1 1 2 2 2 12 45 30 11 33 39 33 29 33 39 35 23 26 33 23 22 180154 52 52 7 8 5 6 9 10 2 4 5 5 8 3 7 10 30 26 43 7 8 100 10 71 54 22 27 50 54 46 106 46 27 15 20 23 16 88 51 18 11 1 3 1 63 4 1 1 1 2 3 14 22 3 7 24 20 1 2 2 1 1 1 3 2 14 1 7 1 2 4 1 2 2 6 2 3 6 6 1 3 1 5 4 4 2 1 1 1 6 1 2 1 1 1 1 2 2 3 9 2 2 8 9 9 7 1 1 1 3 23 2 10 1 2 3 21 18 8 13 45 23 23 1 34 43 14 10 39 7 35 41 4 10 14 8 21 14 14 11 5 2 21 11 10 3 1 37 29 1 1 9 6 9 3 9 6 1 6 1 2

20 15 4 14 1 12 3 5 11 24 2 3 1 1 14 10 5 3 4 6 6 33 9 8 22 7 2 6 4 16 5 11 3 14 4 6 3 30 42 21 43 6 10 4 13 7 7 6 93 30 57 38 6 17 9 1 1 10 10 2 11 3 1 1 5 1 1 2 1 4 4 3 1 2 1 1 1 1 3 2 1 2 1 1 2 2 1 1 1 1 1 65 55 47 3 1 1 3 1 7 3 1 3 1 3 1 1 3 2 2 2 2 1 4 2 4 1 1 1 38 98 62 58 61 93 67 88 77 94 82 64 53 74 46 60 272242135116 19 10 6 9 7 5 16 6 13 7 11 12 25 20 42 48 63 3 18 37 44 49 31 44 64 50 93 65 82 128 95 60 31 38 31 36 76 42 27 20 1 1 1 1 142 4 3 1 1 19 12 4 4 25 16 2 1 1 3 4 5 1 12 2 1 3 1 3 1 2 4 2 1 1 5 17 6 4 5 3 4 1 1 1 1 3 5 5 1 13 14 4 8 4 2 2 2 24 20 8 9 1 15 33 16 13 20 36 29 22 1 9 27 22 7 13 17 1 9 44 48 1 14 16 14 14 18 40 21 24 33 42 26 16 26 26 27 2 36 49 4 17 7 13 20 16 23 8 35 48 14 2 1

54 13 9 7 1 46 12 28 27 12 4 11 2 7 20 12 4 34 1 7 19 19 6 9 4 6 4 21 18 14 9 11 2 13 23 10 38 14 4 4 25 14 9 5 28 42 44 23 22 3 7 26 6 2 3 3 1 2 3 1 2 1 1 4 2 4 1 1 6 1 1 1 2 1 2 2 1 1 1 1 1 1 2 20 20 76 1 1 1 8 4 3 13 1 5 1 3 1 1 1 1 2 1 2 2 2 1 29 40 25 29 51 37 40 50 37 54 51 53 39 52 40 45 327313149145152131137173 61 38 64 46 78 58 86 47 64 100 12 19 18 2 5 31 49 16 31 22 60 75 224 16 177 43 205 7 36 24 76 79 31 10 54 48 2 1 125 1 1 1 1 3 1 2 2 5 2 2 3 2 20 6 3 7 2 1 3 1 1 1 3 1 8 4 1 2 1 3 5 1 1 1 1 1 1 1 1 1 1 1 2 6 3 1 4 7 1 27 29 8 2 6 55 21 28 15 25 27 33 8 14 42 45 7 13 6 4 36 85 7 6 2 30 21 10 19 39 15 16 28 19 23 29 16 42 8 50 53 17 3 18 15 7 22 12 27 40 4 1 6

53 12 10 73 15 23 42 27 15 9 8 9 26 63 1 4 15 1 21 63 48 31 39 31 13 22 5 35 32 11 22 7 17 50 8 1 55 130 77 169 1 11 8 39 4 12 108 5 20 42 27 1 99 190 2 6 4 17 12 5 2 2 1 1 1 1 1 9 2 1 8 2 1 2 1 1 1 1 3 3 2 3 5 1 1 3 1 4 1 1 1 2 3 4 9 3 8 2 44 33 13 1 57 41 58 2 3 1 16 1 2 1 15 2 2 1 2 1 1 2 1 13 28 42 29 48 46 24 45 38 34 37 42 44 36 40 42 167162 74 81 203122156134 56 71 67 37 32 34 38 31 32 37 12 17 15 3 13 19 24 11 17 15 20 116 64 13 68 33 65 107 38 41 38 54 27 24 65 49 1 1 1 6 2 10 151 1 24 6 4 11 5 1 5 35 27 8 7 1 1 6 2 49 9 18 6 7 5 4 7 3 4 22 6 7 3 2 8 27 38 53 3 1 1 1 19 6 6 4 5 1 2 3 1 2 1 1 1 1 9 8 1 1 3 3 14 8 4 12 7 22 1 5 11 9 75 57 12 1 7 59 29 40 16 72 42 37 25 7 25 19 12 16 35 11 47 90 106 7 67 61 22 70 25 54 33 15 44 43 31 57 70 23 70 11 133122 14 4 5 27 14 11 12 1 57 129 33 4 5

11 4 6 1 6 4 1 3 2 8 1 3 4 2 1 1 2 6 5 3 4 10 2 1 3 9 48 10 9 14 2 4 2 46 3 12 1 8 3 3 1 1 7 2 2 10 1 1 1 5 2 3 3 1 1 7 1 1 1 1 1 1 1 1 2 1 1 1 120114 36 2 2 1 1 1 2 4 4 2 1 1 1 18 25 12 18 27 13 12 26 23 19 18 15 18 16 18 18 152137284318 65 50 80 71 187125181 86 10 16 10 6 12 12 6 8 8 10 5 13 29 17 23 10 65 177 28 46 3 90 10 191 36 30 54 50 56 15 21 26 1 7 1 1 71 10 12 8 14 6 7 2 3 19 13 5 12 24 14 3 1 1 1 3 9 5 33 1 6 8 10 1 3 14 7 1 8 14 35 1 1 6 11 6 2 4 3 2 1 1 12 1 5 2 11 18 11 14 7 6 3 3 51 42 14 6 2 7 32 36 19 11 53 36 33 25 9 30 45 40 9 52 1 29 39 61 5 44 25 22 21 19 54 19 9 28 37 27 26 34 36 49 3 51 54 4 9 42 28 18 31 14 2 16 30 1 19

26 22 36 7 18 9 42 23 10 2 31 11 31 92 30 11 1 60 74 72 86 12 11 2 10 3 103 65 91 45 11 11 31 4 2 1 11 2 3 1 2 1 1 1 1 5 2 3 2 4 2 1 6 1 1 1 1 1 1 3 35 27 31 4 2 1 1 4 3 3 3 2 1 1 2 2 1 1 1 2 2 22 44 34 33 26 38 30 24 28 39 22 25 26 45 33 25 172153125134 7 7 8 4 7 7 10 6 12 3 16 8 9 12 53 42 43 3 11 38 79 34 62 48 46 27 30 65 63 50 54 46 32 25 29 36 42 37 19 19 1 1 56 7 2 1 1 6 9 2 8 9 13 2 1 3 1 1 1 2 7 2 3 2 2 1 1 1 1 1 1 2 2 2 1 2 6 9 4 1 2 1 1 1 1 1 2 8 3 5 2 4 3 11 14 14 7 2 2 2 11 6 11 32 5 32 29 34 29 26 10 24 13 66 81 1 12 1 9 1 20 1 34 60 11 1 6 2 19 11 32 51 15 4

5 7 1 4 3 6 1 6 2 10 4 7 4 6 2 3 8 4 1 8 4 11 3 1 3 4 2 5 1 1 1 4 31 12 8 2 7 12 4 1 70 7 21 4 2 3 14 9 1 3 2 1 5 2 1 3 1 5 4 3 9 1 2 1 2 1 2 1 2 77 96 28 1 2 5 5 2 2 2 1 1 4 1 2 7 3 1 1 1 18 45 16 15 23 19 8 25 21 15 29 23 22 23 13 15 128139289298 80 61 50 57 131121116 63 16 19 9 11 8 17 4 12 8 5 7 7 37 9 19 15 59 162 45 1 64 113 10 158 38 37 53 34 45 6 25 23 2 3 1 1 1 61 1 14 18 17 11 9 9 3 6 11 17 13 13 12 18 1 4 2 1 4 3 6 24 8 3 5 1 1 10 5 2 2 12 12 21 1 7 11 3 3 12 1 5 4 1 1 9 7 3 14 6 17 15 8 20 1 1 50 11 14 4 4 13 28 45 23 3 56 57 34 17 9 26 46 37 26 47 3 39 51 60 2 36 26 28 23 20 29 22 25 9 38 18 35 37 26 34 3 42 39 9 1 13 41 10 17 27 1 29 29 8 11 1

50 11 13 5 1 1 34 15 9 25 75 16 4 2 3 23 5 8 6 14 10 20 74 13 16 6 3 10 46 4 19 9 8 8 15 5 81 63 43 71 14 1 2 16 12 6 3 180 71 93 27 11 4 17 5 7 3 1 7 15 2 7 3 1 2 2 1 2 1 4 2 2 1 8 1 2 1 1 1 1 2 3 1 1 5 1 1 1 1 1 1 3 1 1 60 53 45 5 4 1 3 5 4 13 1 3 2 1 2 2 3 1 4 2 1 1 1 5 2 2 1 3 3 1 38 104 59 59 47 53 57 76 63 60 68 56 57 70 58 62 275276153166 16 17 14 10 13 9 20 7 12 11 21 17 26 36 65 71 69 6 32 109195 78 124124147 58 40 129 51 121 118 64 42 38 32 27 115 63 30 24 5 1 2 156 2 1 6 1 1 3 30 13 8 18 32 31 7 5 3 1 3 4 2 7 2 5 4 3 1 1 2 1 2 2 1 1 1 2 9 2 4 15 5 1 3 2 3 2 3 2 1 2 1 3 3 10 1 6 3 6 22 14 16 9 1 2 8 8 33 18 33 8 10 21 46 52 17 36 65 41 40 1 15 34 30 22 11 13 5 5 55 64 3 1 3 22 25 15 47 45 26 49 65 27 23 42 27 51 1 41 54 9 17 20 20 32 17 20 3 42 51 16 2 1

12 6 3 1 2 6 1 4 2 4 1 2 3 6 9 3 2 2 44 61 2 2 8 1 2 5 1 9 2 3 2 1 4 34 8 16 3 1 5 9 2 46 13 15 4 1 3 5 1 2 1 1 1 2 3 2 1 1 1 5 2 1 1 1 12 2 1 2 1 1 1 1 2 1 1 1 1 1 78 96 33 1 6 2 1 2 3 3 5 2 2 1 1 2 2 21 39 21 16 24 16 25 29 13 20 21 16 15 13 15 18 143151312287 87 75 76 82 108133162101 12 18 19 10 21 14 9 7 10 2 7 9 26 16 34 9 51 137 29 2 45 4 71 179 36 36 48 51 42 17 29 24 3 1 67 1 7 12 15 11 9 11 2 4 19 25 10 19 15 10 1 2 2 9 2 8 31 4 12 3 1 1 6 5 1 4 6 25 22 1 2 10 10 4 3 10 2 7 1 1 1 1 7 2 1 8 15 6 5 13 13 7 13 1 2 39 68 17 8 3 13 30 32 8 4 45 49 35 16 14 30 35 29 23 43 11 26 64 42 4 38 46 16 15 22 34 32 17 25 47 31 46 36 16 43 2 37 54 11 1 15 39 39 27 6 3 11 50 5 7 1

32 5 2 4 4 43 6 11 26 15 2 6 9 11 15 16 5 23 11 3 29 16 1 6 15 2 14 1 16 17 9 4 29 15 2 1 1 8 22 9 6 45 41 45 25 38 1 3 4 1 4 1 2 4 1 5 2 2 2 4 4 3 1 2 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 16 23 74 4 1 1 1 7 1 2 8 2 1 3 3 14 2 1 1 1 1 5 2 2 13 36 60 44 55 45 47 53 45 47 52 37 69 60 25 28 349357136112134171140200 56 52 75 41 54 34 58 78 42 78 9 8 15 4 14 27 63 21 35 20 46 4 54 235 29 203 41 226 34 28 65 62 24 18 62 37 4 1 1 93 2 1 1 3 2 2 2 6 4 2 2 1 2 2 1 1 2 4 3 21 5 16 1 1 3 2 3 7 2 1 5 1 2 3 1 2 1 4 7 1 3 1 2 35 6 7 10 10 8 61 48 37 35 74 18 23 1 15 50 73 62 23 32 1 22 48 102 9 5 34 32 20 14 31 37 20 27 36 36 16 14 54 28 2 13 40 6 7 2 10 10 25 12 3 25 51 12 1

80 337 1 4 206 53 118 12 147 21 25 111 88 68 279 56 146146 66 125230226114153 46 99 72 26 93 44 34 74 121 34 22 101101 16 27 22 6 31 7 91 38 96 51 9 27 94 26 3 19 40 11 5 3 1 17 13 4 1 4 1 2 2 1 3 3 1 5 12 1 7 1 5 1 1 1 1 1 4 1 2 4 53 60 121 1 1 1 27 2 2 2 1 1 3 1 1 5 1 1 1 2 1 5 2 48 27 20 24 27 30 40 30 20 47 18 15 15 31 17 22 42 27 122 84 69 44 43 60 167142124 63 139116210131 90 128 7 12 9 2 7 8 15 22 15 10 22 24 144 71 15 79 17 70 29 6 42 46 11 15 68 65 1 115 1 1 2 1 1 4 5 2 29 32 1 4 2 2 5 1 13 2 3 3 5 6 2 1 1 1 2 4 10 4 6 7 1 2 9 14 5 4 2 6 31 108 2 85 48 59 3 67 68 90 25 35 32 105 29 50 58 17 72 142 1 27 31 6 26 37 27 19 36 23 49 36 20 33 58 52 4 54 27 15 9 3 26 14 52 53 52 4 2

193171 25 85 79 180173161 68 24 98 271 39 74 114 196 109196129 45 198142 37 46 121 1 76 57 54 69 23 50 25 12 19 24 1 51 89 45 90 18 78 13 12 60 44 6 29 90 12 4 1 20 17 2 2 4 1 1 6 1 1 2 15 7 16 1 1 6 1 4 1 1 1 2 39 36 192 6 1 3 58 2 2 2 2 1 2 1 2 1 1 1 1 3 1 1 1 28 26 25 31 31 42 26 32 31 37 30 19 16 30 24 22 33 52 78 115 54 50 60 71 149107123 62 202148148180128179 6 2 8 4 11 9 18 20 17 11 19 30 182 88 5 89 14 81 29 8 46 36 14 1 62 51 2 3 92 1 1 1 1 1 1 1 1 1 13 9 2 28 9 8 3 2 1 8 1 2 6 3 2 3 1 1 1 2 1 2 3 1 1 3 1 4 1 2 3 4 5 2 1 1 1 88 62 10 4 1 44 73 98 19 90 8 8 44 94 33 36 43 32 3 89 1 53 11 37 49 19 40 38 1 51 36 26 43 28 26 28 10 54 2 26 28 15 39 15 34 48 11 6

22 17 5 39 16 27 12 16 11 12 6 2 24 21 36 3 12 1 21 4 84 60 32 2 6 18 5 2 12 3 8 2 2 13 7 6 1 13 3 10 16 13 20 3 1 2 12 2 11 98 68 1 2 18 24 1 8 16 3 10 2 4 1 5 6 4 1 71 1 1 1 1 2 146150127 5 2 1 1 1 1 1 1 5 1 3 1 1 2 3 1 2 1 72 54 102123133136121154134140142116113159130119 63 104129143 28 31 16 27 146 66 77 55 94 118113 76 88 105 3 10 14 10 34 22 35 27 34 20 35 41 121268 14 226 14 271 34 17 22 8 27 15 27 47 1 1 503 4 1 1 1 3 4 1 5 1 1 2 10 1 1 2 97 39 2 2 2 6 15 2 5 1 1 1 5 1 4 11 5 1 1 10 2 11 3 1 1 1 4 73 2 5 5 1 100 17 31 27 36 13 20 23 1 36 75 26 3 18 8 18 39 165 1 12 15 26 56 18 1 44 16 13 4 14 43 7 35 10 26 44 2 6 12 48 21 29 11 1 11 4

31 26 34 21 6 10 13 19 24 6 20 7 32 34 9 24 31 15 77 174 24 6 24 15 4 13 14 9 2 6 5 17 3 5 18 30 8 2 15 1 3 1 12 6 87 62 1 18 39 3 37 2 16 2 4 2 1 9 11 3 53 3 1 2 1 191232 97 2 4 1 4 2 1 3 1 1 3 6 3 2 1 1 3 1 1 5 84 59 95 121140172119138120143110104101121107105 84 113139143 25 27 17 37 143 99 95 70 111 77 109 93 99 72 3 2 16 13 36 15 35 32 35 20 37 30 89 214 7 207 21 231 31 27 40 10 22 22 46 41 3 2 1 459 10 1 2 1 2 1 1 3 2 2 1 7 143 40 1 3 2 15 5 7 3 9 9 5 11 1 2 3 2 1 1 18 93 4 1 1 60 45 7 6 23 27 53 21 23 23 74 34 24 36 42 49 149 1 21 25 52 20 11 22 24 1 15 16 12 23 12 34 14 14 22 19 3 6 35 10 10 25 2

54 163 10 8 1 33 55 91 7 25 86 313 2 1 854150134287 7 128332523 99 64 181248 64 15 80 17 60 11 31 69 12 75 23 31 201 2 17 118 76 34 6 67 1 1 3 9 2 1 19 8 11 3 12 4 1 2 1 2 3 2 2 6 10 7 1 7 2 1 2 2 1 2 1 2 1 1 2 1 2 67 72 26 1 1 4 2 1 2 2 3 3 5 2 1 3 1 1 2 2 1 1 4 1 1 1 6 27 28 20 27 36 28 32 30 28 29 24 30 28 37 25 27 150196135112 12 12 7 15 37 28 19 13 24 31 21 20 21 32 17 11 20 5 22 41 64 35 67 47 71 40 30 63 14 57 68 40 29 58 43 68 59 16 32 30 1 4 128 5 1 2 1 7 6 3 10 4 2 1 1 1 1 3 7 5 31 1 1 3 7 6 10 5 7 1 1 1 1 1 1 1 1 1 1 4 3 7 7 3 1 1 21 42 20 4 6 13 23 51 38 3 31 21 56 1 6 26 22 38 59 2 24 100176 15 15 58 73 49 32 47 38 46 42 25 46 9 84 15 1 42 3 3 22 1 78 37 12 7 1

245 38 66 14 5 77 247 45 662124162149 158293511 37 59 177205 70 59 15 33 1 6 35 30 122188252 1 24 61 40 1 3 4 7 1 4 3 8 3 4 2 1 1 2 1 3 4 2 6 1 3 1 1 1 1 1 2 1 1 1 63 63 14 2 1 1 1 2 2 1 1 1 3 5 8 4 8 9 12 4 3 6 6 8 14 10 10 5 7 87 75 54 39 1 10 3 11 11 11 11 16 26 20 15 16 15 12 6 10 9 2 3 4 12 6 20 12 15 13 14 12 10 12 11 11 9 33 20 36 47 15 11 15 1 1 1 1 66 11 1 1 1 1 1 1 1 1 1 9 40 1 1 4 6 5 5 5 5 1 2 1 1 1 2 3 3 1 4 6 4 53 22 17 1 5 14 39 13 27 14 49 20 23 77 176 10 24 23 29 30 8 5 11 3 14 2 25 11 54 2 8 30 9 1 2

99 153 42 1 210 85 80 42 75 28 19 57 129 83 329169105184 2 10 91 240185154 96 167103 47 56 115 19 71 18 78 47 27 6 32 69 188 72 22 9 23 83 18 51 40 61 4 28 1 1 8 9 1 2 5 13 7 4 1 4 3 2 3 4 1 3 3 5 2 1 1 2 8 2 1 1 2 1 2 2 26 23 28 2 3 1 1 2 1 2 1 1 2 3 1 1 2 2 3 2 4 117 38 47 21 58 42 38 38 48 36 33 30 46 46 20 31 35 47 45 56 26 22 17 21 64 47 59 31 35 39 48 38 29 39 11 7 10 4 4 4 8 10 8 16 18 22 38 21 13 17 22 31 22 31 19 55 79 18 18 13 1 2 1 71 3 1 1 1 3 1 1 1 1 1 5 2 9 8 4 14 14 12 4 5 5 8 4 4 1 1 2 1 1 4 5 4 5 2 6 1 3 4 9 6 6 2 1 2 27 110 15 1 3 75 38 52 10 46 39 18 16 23 41 61 105 33 60 22 16 63 153 1 52 56 29 61 35 30 44 14 30 17 35 32 30 17 48 51 43 17 8 8 49 5 17 20 52 14 1

46 140 4 5 6 127102 77 51 140 43 14 82 148118328134104168 9 221 96 133137 79 23 138 79 53 49 162 17 96 50 84 132 20 24 64 40 111 49 1 55 127 43 71 45 62 1 12 3 12 5 8 7 10 4 5 2 3 2 1 2 1 1 4 3 1 5 2 1 1 5 3 24 22 33 5 2 2 1 5 2 1 1 1 2 1 2 1 2 1 1 3 2 1 3 106 50 50 17 65 65 63 43 64 52 47 34 58 47 35 37 34 42 46 49 25 17 22 42 84 74 51 36 43 35 46 34 31 46 10 7 10 6 4 7 16 15 14 19 8 23 35 30 22 28 23 17 24 33 27 73 76 22 5 11 5 4 1 87 1 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 13 11 3 8 18 1 1 13 6 2 2 8 2 4 2 1 1 2 3 9 6 3 5 4 5 1 6 9 5 3 13 6 3 3 7 20 116 3 8 3 59 67 38 15 66 80 60 31 34 54 49 55 39 72 6 57 78 129 5 29 44 48 60 32 28 48 15 48 51 33 80 54 35 74 2 46 44 10 16 91 15 57 36 39 12

2 1 3 1 9 1 1 1 1 1 1 1 1 4 7 1 2 1 2 2 5 1 1 4 3 4 5 1 1 1 1 143 1 2 1 1 11 1 1 11 1 3 1 1 1 3 1 1

23 42 2 1 5 65 130 2 10 1 2 1 1 4 1 1 1 18 14 1 9 12 4 8 11 2 2 1 1 5 1 2 1 1 1 11 2 1 1 1 1 6 2 3 1 1 1 1 104 52 26 16 3 1 1 11 3

18 30 59 149 27 14 39 8 1 4 5 1 2 1 1 25 16 2 1 16 21 15 19 16 12 2 4 5 1 1 5 1 1 1 1 2 1 2 1 1 1 1 1 1 1 4 4 1 13 2 1 1 1 2 5 3 2 2 1 1 1 1 2 2 1 1 66 59 1 5 36 36 13 25 10 1 2 6 20 14 3

2 3 1 5 61 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 2 2 2 1 1 1 4 1 4 1 1 1 17 54 1

5 43 49 1 1 6 2 1 1 2 1 1 1 4 2 9 1 3 3 4 2 2 1 1 1 3 1 2 7 2 1 4 1 1 2 4 2 1 1 6 35 2 1 1 2 1 35 44 1

1 1 1 1 1 1 1 1 4 12 2 2 4 10 19 1 11 1 14 20 32 1 2 1 1 1 1 1 5 2 2 3 8 28 6 3 3 9 12 2 1 34

1 1 1 2 1 1 1 10 12 1 1 3 18 1 10 2 1 1 1 2 2 2 1 2 1 4 2 17 4 1 11 1 3 21

3 1 3 1 2 1 1 4 1 1 2 1 1 1 1 1 1 1 2 1 2 2 2 1 1 23 2 6 17

5 45 2 1 1 15 7 1 5 2 1 1 6 2 5 2 7 3 7 5 2 1 3 3 3 1 7 1 7 7 3 1 3 1 1 3 8 28 15 8 15 8 25 1 3 6 1 1 5 1 11 5 1 1 7 9 5 11 11 200 1 1 1 4 4 2 1 3 5 5 14 22 5 3 3 9 1 6 6 3 8 2 1 6 1 2 141142 4 13 16 20 16 16 22 30 14 11 9 7 5 30 16 17 66 20 19 7 7 10 12 7 11 4 4 9 13 6 13 10 19 11 18 60 105 64 117107 77 25 104171242238 36 261101253148194161229219126 55 72 56 4 1 2 1 9 7 3 5 2 3 1 5 9 10 7 3 6 8 7 1 1 6 17 12 14 12 5 2 14 15 3 19 13 3 19 2 8 10 14 22 4 29 4 1 4 9 4 14 6 2 6 1 3 2 2 9 10 19 8 29 22 1 1 78 602 72 13 11 16 159 27 197 1 1 162153103 10 38 5 2 137161 11 1 180141 97 164138144123 70 53 133 94 75 129 13 125 25 89 203 38 2 9 111 1 41 32 2

1 11 1 1 1 3 1 1 2 1 1 1 2 27 1 3 14 12 2 1 2 3 1 1 1 1 1 1 2 2 2 1 1 3 1 1 1 4 5 6 3 2 2 2 4 4 2 4 3 2 6 5 2 4 1 6 6 4 1 2 1 1 1 10 10 2 2 2 1 1 1 2 2 1 1 2 2 2 1 1 1 8 2 1 2 1 2 1 5 5 1 1 7 3 4 1 3 34 9 1 1 3

1 3 3 1 1 1 1 3 8 2 1 1 21 7 2 1 50 28 2 1 1 1 1 1 1 1 2 1 3 3 28 34 3 2 1 1 2 1 1 1 2 1 1 7 3 1 2 2 1 54

2 1 1 1 1 1 1 1 1 5 1 1 2 1 1 1 3 2 8 8 3 9 1 1 2 1 1 2 11 19 11 3 5 3 3 3 1 1 1 2 4 4 18 3 1 2 1 1 5 6 2 21 1 1 1 4 1 11

1 1 3 1 4 3 1 1 6 1 1 4 1 2 3 2 1 5 1 1 1 5 24 24 2 2 3 2 9 1 1 13 18 8 3 3 4 1 1 1 13 11 1 1 16 1 2 4 10 13

1 1 2 1 2 6 2 5 3 1 1 5 1 1 2 1 2 3 1 2 1 3 1 3 1 1 1 2 3 19 13 2 1 4 5 1 4 1 1 4 1 1 1 3 7 5 3 6 2 1 6 1 6 3 6 1 16 11 9

1 3 2 1 1 1 1 1 1 1 6 1 1 6 2 1 2 3 2 3 1 10 1 12 18 13 1 7 9 4 2 2 6 25 28 1 1 1 1 3 1 2 4 7 2 1 2 2 1 1 1 1 1 1 2 1 1 1 4 24 1 1 2 1 2

1 1 1 2 1 1 1 1 3 3 4 2 1 2 1 1 1 1 2 3 8 5 5 1 1 3 4 1 20 26 3 1 1 6 1 5 3 8 2 2 1 2 1 1 2 1 1 1 2 26 1 1 2 1 2

1 1 1 1 1 3 1 1 3 1 6 5 1 1 1 1 9 3 1 2 1 1 1 1 2 1 4 5 1 1 1 22 2 20 6 11 1 1 1 2 1 1 1 1 1 8 24 6 2 3 1 1

2 2 2 1 1 3 1 4 4 6 2 4 1 1 1 2 4 1 1 9 10 12 1 13 5 3 3 8 17 6 8 12 32 48 1 1 1 1 1 5 1 1 1 1 6 1 1 1 4 1 4 1 1 1 1 1 1 1 1 1 1 6 9 2 1 2 2

1 1 2 1 1 4 1 3 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 14 2 2 2 1 1 1 2 1 5 1 1 1 5 2 2 2 1 4 1 1 4 2 1 1 1 1 2 1 5 1 28 26 5 4 4 1 1 2 2 2

1 1 1 17 1 1 1 2 1 1 1 1 7 1 1 1 1 1 1 3 5 3 3 1 3 1 1 1 2 4 1 3 2 1 1 2 1 1 1 2 4 22 2 2 1 2 20 35 33 2 3 1 37 42 1 1 4 1 7 1 2 1 1 2 1 1 1 1 3 1 1 1 3 1 1 10 3 1 2 1 2 1 1 1 1 7 28 2 1 3 1 1 1 1 3 1 1 6 2 3 2 9 2 2 3 2

1 1 1 2 2 1 1 2 1 1 1 5 2 1 1 1 2 4 2 4 2 5 1 3 6 7 21 1 1 1 1 2 1 2 4 6 2 1 1 1 3 1 1 2 6 1 1 3 1 1 1 1 1 26 14 1 4 4 2 11 3 1 1 1 1 2

2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 5 1 1 1 2 1 1 2 13 1 1 1 2 21 20 18 1 19 32 3 1 1 1 1 1 1 3 1 2 1 1 1 3 2 1 2 1 6 13 2 1 1 1 1 2 2 1 1 1 1 5 1 1 2 2 1 1 4 1 2 2

1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 5 1 1 1 1 1 3 7 2 2 1 14 5 6 6 3 2 2 1 1 1 1 2 1 2 3 1 1 1 3 2 1 2 35 29 1 1 5 5 2 6 1 1 3 1 2 1 1

3 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 2 1 1 2 1 1 1 3 5 2 1 1 1 1 1 1 1 2 1 3 12 1 2 4 10 11 6 2 3 9 14 1 1 1 1 2 4 4 1 1 1 1 1 1 1 5 13 1 2 3 1 1 1 17 31 1 1 1 2 1 1 2 3 6 2 1 1 3 2 1 2 1

1 3 1 2 9 18 4 15 3 1 1 11 1 1 2 8 7 1 2 2 1 16 3 9 1 16 5 8 30 5 1 15 1 1 1 1 1 4 1 1 1 4

1 1 1 1 1 1 1 1 1 1 15 10 1 1 3 3 2 1 9 1 1 4 1 1 1 1 1 9 1 2 1 6 6 1 12 21 10 4 1 3 8 1 1 1 1 1 4 1 1 6 1

1 3 1 1 1 1 12 10 4 2 4 1 1 2 1 1 1 1 1 2 1 9 7 11 1 1 14 1 21 1 14 9 3 4 1 2 1 1 1 1 7 3

3 1 3 1 1 1 1 3 6 10 1 7 3 1 6 9 2 2 5 1 10 1 4 1 24 2 2 1 1 1 22 2 1 3 2 3

2 2 2 1 1 1 2 1 1 2 1 1 5 8 7 2 1 14 7 1 3 3 3 1 9 6 1 1 1 1 1 21 1 2 4 22 2 4 2 1 1 1 1 1 1 15 7 1 7

1 1 1 1 16 7 2 2 1 1 3 3 1 1 2 1 1 2 1 1 1 1 6 12 2 1 3

1 1 5 1 1 5 1 1 1 2 3 1 1 2 5 3 4 1 2

1 1 1 1 1 2 2 3 1 1 1 1 1 19 13 3 4 1 4 1 2 1 27 2 26 13 18 3 36 13 26 9 12 25 12 4 14 18 48 48 1 1 1 1 1 2 6 2 1 1 1 1 9 1 1 1 4 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1

1 1 1 1 1 1 1 2 1 1 1 1 3 3 1 1 26 29 5 1 1 1 2 10 3 10 14 10 5 7 6 12 4 8 5 6 4 76 78 136127 1 7 3 3 6 1 3 1 2 4 1 2 1 17 11 1 1 2 3 5 17 4 8 20 15 7 10 24 30 4 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 10 1 1 2 1 2 1 1 3 2

1 2 3 1 2 1 4 3 1 1 4 1 2 1 1 17 15 3 2 3 1 1 33 3 29 9 24 6 31 14 13 9 14 34 19 9 41 44 98 79 1 1 1 1 2 3 1 2 1 1 1 1 1 1 1 9 1 1 1 1 2 11 1 1 1 3 2 1 9 5 2 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1

2 2 1 1 1 1 2 2 2 1 4 6 1 1 4 1 4 1 1 1 10 1 1 1 1 2 1 2 1 2 3 1 1 4 1 2 1 1 1 1 1 1 1 47 34 2 2 4 1 1 1 2 1 1 1 1 1 1 2 1 1 1 2 30 9 2 1 3 4 20 86 89 7 10 6 3 88 93 3 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 1 23 1 1 21 1 3 5 5 7 1 9 3 2 2 4 1 4 6 1 3 3 1 1 3 2 1 12 5 3 2 1 1 1 1 2 1 2

4 160 1 8 100 7 1 177182 24 40 4 2 1 3 2 2 1 13 1 21 21 1 1 1 1 1 2 6 8 1 1 3 2 2 1 1 1 2 2 2 11 9 45 8 3 3 13 10 6 26 8 3 1 7 7 3 1 1 1 9 4 1 3 1 1 4 3 2 1 5 1 12 16 45 79 3 7 4 8 9 1 3 3 21 2 2 1 1 1 1 1 1 9 1 1 6 23 26 3 1 1 2 3 33 681 1 2 1 1 57 13 297 10 486516 2 5 45 1

3 1 1 2 1 1 5 4 1 1 3 1 1 21 1 1 1 1 2 1 1 1 2 1 1 2 1 1 6 1 4 1 3 2 2 2 1 1 2 1 1 4 9 3 14 3 7 11 4 2 6 5 8 9 20 13 49 31 7 16 6 2 78 1 1 1 1 1 1 1 1 1 8 3 2 3 2 1 1 1 1 1 59 14 3 6 2 4 4 27 1 1 1 2 14 2 1 1 2 2 3 1 1 1 6 1 2

1 7 1 10 34 5 3 1 3 1 11 14 1 1 1 10 7 3 1 3 16 16 11 2 5 5 5 1 2 5 1 1 2 1 2 1 1 1 1 1 1 1 1 33 17 4

1 5 2 1 5 5 1 3 2 1 1 14 9 1 1 1 5 2 6 1 6 15 19 1 3 2 4 5 2 4 3 1 6 4 2 4 1 1 1 1 16 15 1 4

1 6 5 25 1 1 1 1 6 15 1 1 1 5 5 4 3 10 11 1 2 7 2 5 2 1 2 2 1 1 1 1 3 2 1 2 30 13 4

1 5 1 2 1 1 1 1 1 1 1 14 27 2 2 15 20 1 1 1 1 1 1 17 1 3 18 9 8 2 2 1 4 1 1 1 1 1 1 2 3 9 1 3 9 1 1 2 7 1 75 3 8

1 1 3 1 12 1 1 2 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 2 2 1 2 3 1 1 4 1 3 1 1 1 1 6 1 1 2 2 2 44 1 21

1 1 3 2 1 22 1 6 1 1 1 1 2 6 6 1 2 5 6 2 2 1 1 1 3 1 1 2 4 2 2 1 9 1 9 1 7 2 1

22 1 4 1 4 7 1 14 20 1 3 1 4 13 4 1 14 9 2 7 1 1 1 1 2 1 2 2 2 1 1 1 1 1 8 1 12 136 1 2 29

1 1 4 1 1 1 1 1 2 3 1 1 2 4 1 3 1 5 8 3 1 1 2 2 3 1 2 5 1 1 2 1 2 9 24 19 2 3 4 5 3 4 1 1 4 6 3 2 1 2 2 1 2 1 1 1 1 1 3 11 2 1 3 5 2 12 20 1 10 9

4 4 2 2 1 1 2 7 7 3 3 4 1 1 10 19 1 10 19 26 19 1 2 2 2 3 1 1 1 2 1 13 1 4 4 1 43 9 1 32

1 1 1 2 1 1 1 9 1 1 1 4 1 5 1 1 1 1 1 1 25 34 4 1 3 1 1 6 1 6 2 1 2 1 52 49 73 93 2 1 2 3 3 2 1 1 2 1 1 4 2 2 2 10 9 1 2 3 12 33 22 66 59 30 19 17 9 2 1 3 2 2 1 1 1 1 2 2 2 1 2 1 4 1 1 1 2 1 1 1 3 2 2 1 2 3 2 1 1 1

1 1 1 2 1 2 3 4 5 2 2 24 1 2 5 8 2 13 5 3 3 1 1 2 1 2 1 1 1 1 65 54 6 2 2 1 6 2 1 2 8 1 3 1 1 4 1 1 2 4 15 20 97 79 1 2 4 2 7 2 1 1 2 4 2 1 2 1 2 1 1 1 3 9 24 14 63 70 66 52 41 23 1 6 1 1 1 1 1 2 1 2 5 2 2 2 1 1 2 1 5 1 2 1 1 1 1 3 2 1 1 2 2 4 2 5 1 3 1 5 3

1 1 1 3 2 1 1 1 4 1 1 15 4 2 6 4 2 1 1 1 54 54 3 3 1 1 3 1 2 5 1 1 1 1 17 27 62 74 2 2 2 3 1 2 1 1 1 1 4 21 17 64 62 53 43 22 13 1 3 2 1 1 1 7 1 2 1 1 2 1 3 1 1 1 1 4 1 1 1 2 2 10

1 1 2 2 2 3 2 1 1 7 1 1 1 3 4 2 2 11 5 1 2 2 9 4 1 1 2 39 55 8 6 3 3 1 1 1 2 3 1 1 3 1 1 2 1 1 2 16 13 108134 2 1 4 12 6 1 7 2 1 1 1 2 1 1 1 1 1 6 11 1 4 38 32 82 64 38 50 60 69 1 1 1 1 2 1 2 2 7 2 6 2 2 1 1 5 1 1 2 3 1 5 1 3 4 5 3 4 8 3 4 1

1 24 1 1 1 2 1 1 6 1 1 1 1 1 1 7 6 5 1 2 2 1 1 1 1 23 36 2 7 7 1 1 2 1 1 1 1 2 1 1 3 4 4 1 2 3 1 12 19 145146 4 11 3 7 4 11 6 2 1 1 3 1 1 1 1 10 12 1 1 1 2 16 80 50 48 55 28 38 94 84 1 2 4 1 2 1 1 2 2 1 1 1 2 1 1 5 5 6 2 5 1 5 4 4 1 1 3 1 7 7 2 2 3 1 1 1 2 8 11 4

1 2 1 1 1 1 1 1 1 1 2 1 2 1 3 2 3 1 1 1 1 1 1 1 2 3 25 1 1 1 2 1 1 1 1 1 1 1 4 1 6 2 91 83 2 1 4 8 6 5 2 1 1 2 2 1 2 1 1 10 28 1 4 77 69 7 14 6 12 67 87 1 2 1 1 3 2 1 1 1 1 3 8 1 4 2 1 2 2 2 2 3 12 1 10 13 2 1 1 1 1 1 2 1 4 8 2 6 2 2 2 1 3 3 1 1 2 1 5 1 2 3 3 2 1

2 2 2 1 2 3 1 3 2 2 2 3 1 1 15 1 33 1 2 2 4 3 7 1 1 3 2 1 1 1 4 1 1 1 1 1 1 8 10 21 1 2 1 4 2 1 2 1 1 5 3 5 1 1 3 2 4 3 4 1 3 2 1 15 13 161123 2 6 1 10 12 4 2 2 2 1 1 2 1 2 2 1 1 1 20 15 2 2 6 3 3 19 149112 14 30 22 30 94 115 2 1 5 1 2 1 1 1 1 1 8 1 1 1 2 1 1 1 1 35 1 1 2 13 2 1 9 7 3 1 1 6 3 6 4 3 7 3 2 4 6 8 1 5 5 5 1 2 2 2

1 1 1 1 1 2 2 4 5 1 1 2 3 3 1 1 1 2 1 1 1 2 3 2 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 10 3 4 2 3 1

1 3 1 1 2 1 1 1 3 1 3 1 3 1 1 2 1 1 2 1 1 1 1 2 3 3 1 1 1 2 5 2 1 4 3 6 1 2 1 6 1 1 11

1 1 2 3 1 1 1 1 1 1 1 1 1 2 2 4 3 1 1 2 2 5 3 2 1

1 2 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 2 3 2 1 11

1 1 1 1 1 1 1 1 1 1 1 1 1

2 7 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

31 3 1 2 7 1 1 2 1 2 4 3 3 2 3 5 1 2 1 3 2 1 2 2 1 1 1 2 2 2 5 4 1 4 3 3 1 5 3 6 1 2 3 2 2 1 7 6 4 2 2 7 1 1 4 1 6 2 1 1 1 11 18 8 7 7 4 2 2 1 6 2 3 1 11 3 5 2 5 1 2 1 3 5 1 6 23 1

1 2 5 2 9 8 1 4 5 2 1 1 1 2 1 1 1 1 2 1 2 1 2 2 1 1 1 7 3 1 2 1 3 2 4 8 6 5 14 1 4 1 4 7 3 4 2 2 7 1 1 1 3 4 2 3 2 3 2 2 5 15 3 1 28

20 4 1 1 1 1 4 1 3 1 1 1 3 2 1 1 3 1 1 4 1 2 1 2 1 1 2 1 1 2 3 2 1 2 1 1 2 5 8 16 6 1 2 3 3 3 1 3 6 17 4 2 2 4 1 2 2 4 2 1 2 1 2 2 16 6 21

1 1 1 1 2 1 1 1 1 3 1 1 2 1 1 3 8 1

1 1 1 1 1 1 1 2 1 1 1 2 6 5 1 4 8 1 1 1 2 1 4 1 1 2 2 1 3 2 2 1 1 2 2 8 7 1 1 2 1 1 1 1 1 3 1 2 3 1 1 3 11 34 1 1 1 1

1 1 1 1 1 2 3 1 2 1 1 1 2 1 3 3 1 2 2 4 4 1 1 3 2 1 4 1 1 1 1 1 1 4 19 1 2 1

1 1 1 1 1 1 3 2 1 1 1 2 1 1 4 11 1 1 2 4 3 2 1 2 5 1 1 1 1 1 16 12 5 1 1

1 1 1 1 1 2 2 1 4 5 1 3 6 4 1 2 1 1 1 2 1 1 1 1 2 6 17 1 2

1 1 1 1 1 2 1 1 1 4 1 1 1 1 3 4 1 1 1 1 2 8

1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 6

7 1 1 1 2 1 1 1 1 8 1 6 1 1 4 1 3 4 1 2 3 3 1 8 4 1 1 14 4 11 4 8 10 18 1 2 4 1 1 1 1 1 1 1

1 6 1 1 1 8 18 1 2 6 5 3 12 1 1 2 2 1 5 2 3 1 2 17 7 17 15 13 31 7 1 1 1 1 3

5 1 1 1 1 1 3 3 4 3 1 3 1 4 1 3 7 10 1 1 1 1 1

1 4 1 1 1 1 1 6 1 1 1 1 2 2 1 1 1 1 2 1 9 1

4 1 14 1 1 1 3 1 1 1 1 2 1 3 1 2 1 1 1 1 3 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 4 1 11

14 1 7 2 1 2 1 1 1 1 1 1 1 4 1 1 1 1 1 1 2 1 1

5 1 2 1 1 1 1 1 1 1 2 1 4 1 3 1 1 3 1 2 1 1

1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 2 1 5 1 1 1 1 2 1 2

1 1 1

1 23 136 48 2 3 4 1 3 1 1 1 3 1 1 1 1 2 1 21 5 2 1 8 12 4 1 1 3 9 5 5 4 4 4 5 4 2 7 9 4 3 2 2 2 2 1 1 6 1 3 1 1 1 2 4 9 11 2 4 7 7 53 39

1 1 1 8 19 13 1 1 2 1 1 4 6 1 1 2 1 1 2 1 1 1 4 2 4 1 2 1 2 1 1 1 5 1 6 13

1 12 21 1 4 1 2 2 4 3 7 3 3 2 3 19 11 1 1 4 2 1 1 1 1 3 1 1 1 1 8 2 4 1 1 1 5 2 1 1 6 4 6 7

1

1

1 1 1 1

1 2 1 3 1 2 2 2 1 1 18 8 2 2 1 3 2 10 1 1 1 12 9 13 12 2 19 26 14 4 5 2 4 4 1 2 1 1 7 1 1 1 1 2

1 1 9 1 44 31 3 4 1 1 1 1 1 20 22 7 1 1 2 8 2 1 4 1 7 1 130 40 32 16

2 8 7 1 10 61 1 1 3 21 2 2 2 1 1 1 1 1 2 3 1 1 1 1 3 1 1 2 1 15 11 10 1 2 11 8 2 1 2 9 1 1 139 35 37 28 1 2

3 1 1 4 3 6 2 3 3 61 1 2 3 5 21 6 29 14 10 11 44 13 4 5 10 14 17 22 27 3 7 1 1 1 1 4 4 4 1 5 4 17 22 45 1 10 84 34 66 45 59 30 94 118 1 177 149 5 2 2 2 3 1 1 1 1 1 1 2 3 8 1 4 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 4 1 2 2 12 1 9 1 1 7 6 8 14

2 2 1 1 5 1 13 1 1 27 1 2 1 1 1 3 2 1 2 1 2 2 1 6 1 1 1 4 343 4 2 2 1 1 1 1 1 1 2 1 1 1 3 5 2 4 2 3 3 7 3 7 1 3 2 10 5 4 6 8 3 1 32 28 23 27 39 25 21 16 22 9 12 24 18 18 18 12 12 332 83 5 106 3 96 9 8 7 4 10 6 6 11 1 1 6 2 3 2 1 3 1 1 1 1 1 2 1 1 1 4 1 2 1 1 1 1 2 3 2 1 4 1 1 1 1 10 3 4 3 11 7 5 1 33 1 2 8 2 25 2 3 8 2 1 3 3 3 6 2 2 5 11 6 3 7 18 1 1

1 1 1 4 3 1 1 1 1 1 2 1 1 1 2 1 1 3 1 2 8 4 1 1 1 1 2 1 1 2 1 1 1 1 2 1 4 1 2 1 2 1 1 2 1 1 1 1 1 1 4 1 1 17 6 1 1 1 11 14 12 1 7 2 2 2 1 1 1 3 2 3 1 6

5 2 12 2 1 1 1 1 1 1 1 1 1 3 1 2 4 3 1 3 8 3 3 1 5 5 5 2 2 2 1 1 2 1 1 1 1 1 1 1 5 6 1 15 19 4 1 1 2 11 9 4 1 1 1 2 1 1 2 1 1 3 3 1

1 1 1 1 2 1 2 2 5 2 1 1 14 7 45 2 12 3 11 3 10 1 2 1 1 1 2 2 1 1 1 1 1 1 2 19 21 4 1 4 7 7 2 1 8 1 19 9 1 1 1 1 3 1 1 2 25 22 16 16 8 2 5 1 2 1 1 92 85 80 2 21 9 19 1 1 1 1 2 1 48 1

1 2 5 1 7 3 1 1 2 1 1 2 2 1 1 1 3 14 1 1 7 1 2 1 2 1 2 1 2 1 1 1 1 3 2 2 1 1 1 1 2 1 1 6 1 3 1 1 2 4 14 4 2 7 3 6 2 1 1 2 3 2 2 6 1 2 2 1 4 1 1 3 1 3 1 1 1 3 2 1 1 3 1 4 1 2 12 23 57 55 11 4 7 4 3 8 40 20 14 3 5 5 1 36 157 1 37 3 6 30

10 1 2 10 8 1 1 1 2 2 1 1 1 2 3 1 1 1 4 2 3 4 54 62 3 2 66 2 1 3

21 10 11 3 3 1 1 2 1 1 1 3 1 3 2 1 1 1 1 5 1 1 3 1 1 1 1 8 1 3 1 4 5 5 42 36 3 6 51 3 7 1 2 3

66 1 26 9 5 1 1 1 3 1 1 6 1 8 55 2 2 1 1 2 4 7 1 3 2 4 6 1 1 3 38 36 46 50 59 62 49 35 53 64 48 50 60 71 42 37 25 29 8 6 39 202 1 13 104 83 64 87 68 95 1 7 40 5 39 36 19 26 20 36 21 34 53 55 75 16 57 31 48 40 3 2 47 82 26 52 20 6 1 2 85 2 1 4 1 2 2 1 5 5 1 16 34 2 110 1 15 1 11 3 8 1 2 2 1 3 5 7 1 1 1 1 1 1 1 1

145 9 1 17 3 1 9 2 6 12 12 41 1 33 19 26 39 49 55 58 63 60 66 40 18 16 28 36 39 67 60 14 19 215 68 1 342 107 184 2 54 52 66 53 8 4 35 36 1 32 93 91 82 18 31 117 9 14 7 209389 47 69 150154 4 471 3 2 1 1 1 2 1 25 78 4 1 7 3 1 1 6 1 2 572 2 2 1 1 36 1 60 1 1 4 8 1 1 1 1 1

9 2 1 1 1 5 1 1 1 23 3 26 4 23 12 2 7 1 1 26 29 15 11 14 17 15 10 9 20 19 11 13 20 11 11 3 10 2 2 46 1 5 6 1 7 15 13 2 28 5 12 2 13 13 20 13 2 9 33 16 33 36 31 25 10 1 17 10 18 54 40 18 2 2 2 19 1 8 1 2 1 9 4 3 107 2 2 8 2 3 1 1 2 31 1 4 1 2 1 1 3 2 1 1 2 1 5 4

9 1 1 1 9 1 1 5 5 3 10 3 7 7 11 6 2 5 2 6 9 4 7 4 2 66 7 4 1 42 1 2 1 1 6 24 11 16 18 2 52 7 2 1 19 30 1 6 1 1 1 44 1 3 1 1 2 2 3 1

24 2 3 1 1 1 1 4 1 2 1 8 8 1 1 1 5 2 7 12 10 6 8 8 16 12 10 11 9 10 17 12 2 11 15 1 2 1 6 1 6 2 11 6 2 5 6 4 2 3 6 9 10 5 15 1 6 6 1 13 10 4 2 2 3 1 6 1 1 1 1 2 4 1 1 1 1 1 2 2 1 1

1 1 1 30 8 1 1 10 1 1 2 21 1 1 9 8 5 5 2 4 1 1 3 15 24 12 1 40 24 17 17 28 7 12 13 31 20 9 8 26 22 12 10 12 6 1 11 37 15 2 15 42 7 34 14 22 9 35 15 4 24 1 44 16 6 23 14 19 2 6 20 25 27 7 34 34 37 34 2 6 2 8 27 35 1 19 3 4 2 1 1 1 1 1 1 2 5 1 1 5 2 1 28 2 1 1 68 20 8 1

55 9 2 1 1 2 3 4 2 1 7 5 60 3 4 11 19 4 4 1 1 2 2 1 55 62 48 55 41 53 54 63 51 59 55 40 55 65 50 63 32 51 12 11 230 82 1 70 156 198 49 92 136 29 61 2 6 24 34 44 37 36 23 37 80 71 77 15 67 48 68 63 16 3 271166 31 118 82 214 6 8 2 3 7 3 1 2 1 1 9 1 3 2 1 1 1 1 2 1 1 1 1 1 1 1

29 2 1 1 1 2 2 1 24 5 1 3 3 3 1 3 6 41 1 1 1 18 1 1 6 63 36 39 34 35 49 48 46 48 54 45 40 50 64 40 48 26 21 12 17 128 5 68 36 77 212 18 92 13 44 49 28 4 13 11 30 16 25 4 19 46 41 35 45 36 38 63 11 58 66 209 45 34 99 119 1 37 7 1 1 2 3 7 1 1 1 21 5 1 1 1 3 1 2 2 1 1 2 2 2 1 1 5 1 5 1 1

31 10 2 1 12 2 1 2 3 2 76 1 1 3 1 2 1 14 14 18 35 16 40 25 24 28 30 32 28 11 14 16 27 22 23 12 4 103 70 105 9 85 1 20 75 17 92 72 1 27 17 6 18 12 9 1 9 39 45 47 39 12 32 30 3 33 134 83 22 19 122 58 2 1 1 251 2 4 1 2 1 1 2 57 1 3 2 1 2 1 15 1 25 1 1 1 1 10 2 1 1 1 1 1 1

16 1 1 9 2 2 1 1 14 1 1 2 1 1 2 12 24 13 40 2 1 1 3 5 21 15 11 16 17 15 17 11 10 13 18 11 11 19 12 6 15 15 35 4 3 66 33 97 20 3 52 43 6 73 9 17 27 32 14 8 23 37 16 67 16 39 18 37 57 2 7 29 10 1 6 11 1 1 2 2 1 1 1 1 1 2 2 2 5 1 2 1 55 1 4 10 34 3 1 1 1 3 1 1 1 2 1 4 6

61 4 2 1 1 14 4 1 1 4 1 2 1 1 1 4 4 106 1 6 3 2 1 1 2 6 43 16 19 12 3 3 10 40 58 58 52 69 58 66 76 71 66 49 65 54 48 60 21 73 6 5 273 7 1 271 143 90 13 10 69 85 2 3 25 29 33 34 20 19 16 39 44 87 99 5 83 32 97 102 6 7 227117 11 5 66 98 2 2 5 1 4 11 1 2 1 2 1 1 1 2 4 1 1 44 1 1 3 1 4 1 1 1 8 1

2 96 42 1 2 2 2 3 2 1 3 5 4 194 2 8 6 13 6 8 1 91 59 86 57 63 79 60 74 102 57 66 50 68 59 64 77 53 76 58 28 3 68 12 4 107128155 2 127 7 5 90 109 10 8 27 23 30 32 26 15 37 98 78 75 33 95 30 116 61 16 121259 36 31 73 155 3 1 4 89 1 1 4 20 13 21 1 1 277 21 3 9 3 5 4 2 1 6 1 2 2 1

29 1 1 1 3 1 1 2 5 3 48 1 4 2 9 2 1 1 48 27 48 22 41 47 48 54 59 42 46 39 41 61 26 59 35 21 27 10 6 51 47 162 50 109110 36 83 89 96 1 6 2 43 20 25 23 18 8 15 55 54 63 19 52 33 59 43 9 73 178 27 21 46 84 4 88 6 1 4 2 3 17 60 1 2 1 4 1 2 1 1 1

2 74 1 9 23 1 9 7 1 4 2 2 1 1 5 2 25 3 9 15 3 6 2 19 25 50 132 160 74 1 19 18 15 12 14 11 30 33 11 8 33 4 18 12 66 76 5 38 42 3 99 1 1 2 25 2 3 12 16 1 3 43 1 1 2 1 5 1 188 1 3 11 1

2 22 4 7 5 16 8 1 3 1 1 5 2 1 39 19 23 19 15 33 28 92 24 34 18 25 23 25 16 19 40 29 2 1 5 130 6 3 10 4 4 1 40 47 1 30 16 8 7 21 11 1 10 31 42 26 17 29 33 36 9 1 22 67 21 10 49 56 7 1 2 1 4 2 2 2 1 4 1 2 1 2 12 2 2 1 1 2 1

23 11 6 2 5 3 3 8 1 1 1 1 61 4 10 1 3 3 5 4 6 21 2 64 38 45 44 54 65 55 46 66 66 41 42 32 38 32 53 15 21 7 54 82 134 81 51 88 1 29 17 101 8 70 5 8 5 22 29 31 33 31 17 32 38 62 74 27 62 38 54 82 5 6 161 99 16 112147 2 4 4 1 22 5 4 2 2 1 4 4 3 2 1 1 3 3 3 2 1 1 1 1 8 2 1 1 1 4 1 1

73 2 1 2 2 25 3 1 7 1 7 1 6 1 1 1 26 92 55 31 33 4 37 27 21 43 47 67 46 15 57 46 32 36 49 68 23 149 158 183140 3 166 16 146 91 75 54 55 7 24 28 21 28 19 20 83 66 76 27 50 35 54 89 8 10 271322137115164130 1 1 1 1 3 2 1 4 5 1 3 6 2 24 59 4 5 10 9 2 2 1 2 65

1 42 1 9 3 22 14 1 2 1 1 4 1 4 52 11 8 3 40 23 38 11 29 34 33 14 27 28 32 15 24 34 12 28 17 40 6 7 45 57 75 6 44 4 5 117 37 6 13 19 11 12 2 2 56 26 53 14 55 18 46 56 1 1 129125 46 37 121119 31 3 3 1 4 2 2 1 1 1 1 1 2 47 4 1 3 5 1 3 1 1 1 2 1 5 1

1 67 14 1 2 1 3 4 1 2 12 3 1 56 1 1 18 17 21 25 21 34 92 26 33 22 25 52 27 22 29 35 15 22 5 6 135 7 2 3 84 8 86 117 3 4 20 1 81 4 2 29 15 18 27 25 7 21 17 33 25 8 49 17 38 32 8 1 21 106 10 20 44 65 7 6 2 3 1 4 1 3 25 10 38 1 1 2 1 52 2 1 1 1 1 1 1 1 4 7

1 34 58 32 1 4 2 12 5 23 14 6 19 1 2 8 1 1 3 1 1 48 78 3 43 11 28 32 2 41 81 54 31 61 77 54 1 37 42 12 24 39 51 28 27 11 241 1 221 79 18 117 84 51 114 2 39 31 44 25 19 20 69 75 105 14 82 11 76 59 8 5 140184 86 35 116131 3 1 3 1 6 1 1 4 2 1 1 6 9 10 21 9 3 1 1 1 1 4 4 1 97 2 1 4 1 1 4 1 1 1 3 1 1

5 1 1 5 1 2 7 1 2 12 2 1 1 5 8 6 9 6 6 5 5 3 6 7 34 5 1 1 3 13 11 3 2 9 5 10 4 21 4 1 22 13 2 1 1 4 1 4 1 1 2 1 3 3 1 3 11 1 1 1 1 1 1 4 1 1

1 6 1 37 7 1 1 3 11 8 1 14 3 1 1 1 4 9 1 1 1 2 1 1 31 20 17 20 21 39 36 17 41 47 34 17 35 21 4 24 41 23 7 10 11 2 114134233 4 2 71 62 3 3 117 1 13 2 22 24 70 14 10 5 6 38 54 12 63 16 29 49 3 7 70 129 27 34 27 104 1 88 1 3 5 6 1 2 1 1 3 1 1 1 1 4 1 1 1 2 2 5 8 85 2 1 2 3 3 3 2 5 1 6 1 3 2

2 31 1 1 5 2 1 2 2 4 8 9 85 1 10 14 15 1 17 74 48 56 38 57 68 59 56 93 20 62 49 51 53 51 64 71 92 16 27 318 24 69 13 296 13 103 3 193 12 68 6 4 15 2 26 24 40 8 38 61 85 55 35 84 47 87 73 12 233206 38 50 126153 245 27 1 2 2 1 26 3 2 7 2 3 1 8 26 25 13 1 1 1 1 2 1 2 9 2 1 2 2 23 1 1 1 2 1 1 1 2 2 1 1 1 1

3 30 19 29 2 15 1 15 14 1 1 1 1 5 25 106 1 5 1 93 70 89 47 205 79 76 51 82 72 72 67 92 75 32 46 45 59 28 49 172235 57 128 51 9 143 55 127143 32 108 6 6 13 16 46 23 36 17 30 113130 94 38 90 35 94 127 21 26 390326 73 109320256 1 1 1 1 2 15 1 1 3 2 2 2 1 1 1 1 13 1 1 2 1 1 1 10 3 12 2 1 9 59 1 1 2 12 1

2 4 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 4 1 1 1 3 7

1 60 2 11 4 1 1 1 13 1 2 1 9 2 100 1 5 1 2 1 5 56 31 47 39 37 50 40 14 45 22 31 34 28 34 30 25 12 88 75 1 125154 11 220 26 4 33 26 12 7 31 8 18 16 126 60 54 69 9 3 10 130161 45 43 142 75 1 2 283 44 32 21 15 1 1 5 12 13 9 7 1 93 5 13 5 48 1 2 1 7 1 8 1 10 1 1 1 2 2 2 177 27 1 5 2 1 1 2 2 1

1 167 7 1 1 2 1 1 3 1 5 2 4 85 1 5 2 1 1 2 9 8 55 31 69 56 52 39 82 56 44 33 49 70 49 34 38 42 109 6 2 120 9 102 7 3 17 12 1 71 30 15 2 19 31 18 8 33 6 2 38 90 55 7 46 7 85 65 18 9 78 93 15 14 80 50 8 2 2 184 57 1 1 1 2 1 1 1 1 1 75 18 1 2 10 8 1 3 1 1 7 2 4 2 4 2 1 9 365 8 3 4 5 1 1 3 1 1 1 17 6 2 1

24 1 12 4 2 1 97 1 66 3 1 1 59 2 2 9 1 27 35 33 22 23 43 39 46 48 34 29 17 37 37 25 30 23 42 12 8 35 17 75 2 47 67 5 1 11 4 10 2 9 57 35 48 57 29 49 59 47 124256 61 51 79 83 147 4 1 1 1 1 3 1 1 1 1 1 1 3 1 1 5 3 3 1 1 1 2 1 1 1

8 28 1 3 1 6 3 12 5 51 1 1 11 3 4 9 12 2 1 33 28 27 24 45 32 47 34 34 39 35 22 35 41 28 33 22 13 6 4 114 129 59 3 2 86 77 5 87 16 2 9 11 6 9 15 5 2 11 29 58 27 31 13 27 35 2 5 205 48 22 16 79 56 1 3 1 130 1 1 4 1 3 37 2 6 5 3 2 1 3 5 3 1 1 1 1 2 2 2 44 8 1 2 1 1 1

6 47 1 1 2 3 1 1 21 1 7 5 10 3 8 4 14 23 33 27 40 40 39 25 43 29 25 17 27 21 17 23 13 22 1 4 5 16 169 95 68 1 80 1 28 13 20 16 15 8 21 8 5 13 27 52 40 46 11 36 28 2 98 47 26 36 58 57 1 181 14 2 22 6 5 5 2 1 1 1 1 1 1 2 1 3 1

72 1 4 1 1 18 2 1 4 1 18 3 6 1 162 15 12 2 4 1 2 1 6 1 1 52 41 31 34 25 53 48 39 52 56 27 46 27 20 30 84 6 19 2 12 57 1 1 72 77 55 1 10 93 2 27 5 8 8 34 37 33 49 22 14 10 44 17 54 58 36 43 55 45 2 30 175 31 68 46 1 98 45 1 13 5 12 1 5 3 5 1 2 2 1 25 2 2 1 2 8 10 3 1 1 1 20 1 1 1 7 8 2 3 1 1 3 2 1 1 2 1 1 1 1 1 1 106 6 1 1 1 12

2 26 1 6 4 1 2 1 2 1 5 2 2 41 3 7 16 1 11 2 9 6 2 4 5 1 4 1 39 25 39 33 37 46 56 45 42 36 35 32 42 39 35 38 2 15 4 1 48 1 102 86 6 101 73 68 27 4 76 12 9 7 8 14 8 4 9 48 48 18 30 19 57 35 2 168 84 13 8 81 99 1 1 147 1 1 1 4 2 7 4 1 1 1 1 1 3 1 3 1 1 1 1 2 1 1 2 1 1 3 2 1 1 2

9 1 1 45 1 1 5 11 1 1 1 3 3 6 61 1 10 10 8 24 6 3 17 5 7 7 1 4 6 1 6 46 35 26 18 27 33 32 27 39 28 22 27 34 26 29 21 15 10 7 7 146 2 143 8 2 6 7 2 136 9 5 8 18 26 22 29 22 34 12 38 29 41 36 59 43 54 40 6 98 7 35 9 81 54 3 9 1 124 1 4 11 1 4 3 2 7 14 5 3 25 1 70 1 5 2 2 5 2 6 3 3 2 5 2 4 1 1 2 1 1 1 1 2 1 10 1 1 1 1 1 1

74 1 11 1 5 5 35 1 3 4 1 3 6 2 11 3 7 9 1 28 39 43 20 25 36 39 39 39 36 39 17 26 42 26 25 14 16 10 6 2 67 61 2 2 1 1 46 1 64 2 17 16 12 18 24 18 2 35 52 46 37 14 29 39 33 3 60 55 87 38 5 54 68 16 1 19 1 1 2 3 3 12 1 1 2 1 1 1 4 2 2 56 4 1 6 1 1

2 14 1 31 1 2 4 37 2 10 16 1 6 78 8 1 2 3 6 11 6 2 9 2 1 13 1 1 118 71 54 49 63 80 85 49 68 67 54 57 41 118 52 60 34 39 7 16 237 16 211 13 4 107 1 66 45 68 72 11 29 33 44 23 28 3 48 67 90 67 66 75 91 52 12 11 16 102 52 56 98 1 106 1 11 11 2 21 5 34 1 1 1 1 1 1 1 1 2 1 2 4 2 6 2 1 1 1 1 2

3 14 55 2 3 16 2 1 10 1 5 56 2 1 1 10 9 2 2 2 4 3 2 2 2 3 4 65 52 44 41 42 47 57 66 46 56 36 38 34 34 42 36 21 38 12 4 145 1 5 74 117 135 1 1 3 27 28 24 13 27 15 20 35 58 59 52 39 31 69 62 1 8 90 98 33 55 65 130 6 1 3 9 2 1 2 2 1 1 1 1 1 3 4 2

1 2 2 12 1 12 2 1 2 3 3 18 1 4 1 7 13 5 6 55 6 1 1 1 1 1 38 24 39 24 40 33 27 29 30 41 28 25 16 47 22 76 19 28 9 12 1 31 95 71 15 49 5 12 1 1 81 143 41 5 1 9 9 26 18 13 9 14 57 79 48 3 54 25 67 37 2 5 179 29 47 24 85 131 1 60 2 1 1 1 2 7 4 4 6 1 4 12 1 1 2 1 2 2 1 2 2 1 2 3 1 3 35 7 3 2 1 4 5 7 5 2

2 19 2 1 10 3 3 21 1 1 39 1 1 2 11 22 33 38 32 57 59 60 40 44 40 40 37 42 31 59 17 32 9 10 4 49 20 43 3 41 5 39 26 25 70 22 2 8 2 12 28 23 22 5 28 34 50 58 1 63 23 73 5 8 13 34 52 11 2 36 67 2 157 1 1 1 4 4 1 6 4 1 3 2 10 3 2 1 1 2 2 33 11 2 2 6 1 4 1

51 4 2 3 3 5 2 15 4 17 5 7 1 1 1 1 8 18 36 24 29 35 25 25 26 38 29 16 33 66 32 30 22 37 13 19 74 201 4 28 39 94 7 3 2 3 25 13 7 5 25 29 39 34 44 27 27 51 14 11 99 88 69 18 13 52 2 6 5 7 2 1 2 1 2 6 1 4 5 1 1 1 95 1 2 1 2 1 1 8

3 13 3 32 1 1 26 2 1 2 112 1 2 1 15 2 58 60 38 51 57 58 45 72 56 61 72 45 34 56 55 54 32 20 18 8 52 93 31 63 15 14 61 16 53 58 1 1 3 12 40 17 26 1 45 62 94 129 19 76 49 94 59 42 18 84 75 15 98 100 151 5 4 4 1 1 1 9 1 5 1 4 13 16 2 35 6 9 1 1 1 1 2 1 1 3 1 2 6 12 31 3 1 1 1 1 1

1 1 2 1 1 1 1 1 1 1 1 1 4 1

5 65 1 1 1 2 1 1 1 19 6 96 4 1 1 3 5 39 49 47 54 101 57 65 53 48 58 63 80 66 54 57 44 8 136 42 89 101 3 66 250 5 84 158 3 3 67 36 17 27 32 23 6 30 101149 95 29 68 31 136 27 1 110 99 1 16 76 87 91 1 3 1 2 11 1 1 4 1 1 9 5 1 1 1 1 1 1 1 2 1 2 1 5 8 1 1 1 1 1 1 1 2 145 1 1 3

21 6 3 1 1 1 19 50 1 8 7 2 40 49 69 104 66 73 78 70 74 60 63 50 66 65 66 44 42 51 108 32 115240 58 119137139 54 50 1 5 4 6 1 8 8 22 15 22 7 30 78 135 77 40 66 34 76 50 13 28 150 77 23 54 98 96 1 2 1 304 1 25 1 1 2 2 2 2 4 10 2 4 35 81 22 2 2 3 1 5 4 7 2 3 1 1 1 2 1 2 1 3 1 29 96 1

3 41 1 1 1 1 25 2 9 24 26 3 14 4 37 27 29 18 20 22 14 13 17 13 18 17 1 25 1 3 4 21 4 3 1 46 35 3 1 1 3 14 12 10 1 6 46 22 8 13 25 14 30 13 13 2 12 49 3 40 37 57 1 3 1 2 13 1 1 1 1 3 2 2 5 2 8 2 3 2 1 5 1

1 2 1 2 1 2 2 3 1 3 2 1 1 1 1 1 1 1 1 1 2 3 1 1 2 1 1 1 3 2 1 1 2 1 1

1 5 1 1 2 2 8 18 17 17 18 12 25 6 8 17 25 16 18 13 15 8 22 7 15 1 3 1 4 2 32 1 9 7 2 1 45 1 1 9 8 13 5 8 51 4 9 16 26 5 13 19 15 27 6 13 2 2 8 5 1 2 1 1 1 1 1 5 23 2 1 1 1 1 1 1 9

1 30 2 2 36 1 37 28 4 24 8 72 28 39 30 35 26 39 11 33 29 32 42 32 4 1 39 2 1 13 8 1 59 4 30 2 3 1 11 17 4 13 6 12 48 17 29 11 22 20 44 3 3 12 95 77 1 31 51 83 1 1 1 3 6 2 3 1 2 2 1 1 5 1 4 1 1 4 1 7 6 1 1 25 1 54 84 1

4 1 110 2 2 2 2 15 4 18 17 5 3 1 2 1 2 53 12 5 44 13 4 29 23 42 35 75 40 32 40 23 46 29 22 53 12 20 10 6 117 68 195 2 3 95 11 2 54 38 17 5 18 17 23 6 6 49 31 56 1 50 10 59 36 1 4 117140 65 20 56 95 2 3 6 2 1 16 1 1 1 1 2 5 2 4 5 5 1 1 2 95 13 2 2

1 41 2 2 16 5 1 26 1 2 1 1 37 24 25 26 27 30 36 41 46 43 37 24 45 27 25 27 12 14 10 8 11 130 9 1 126 7 46 76 1 4 9 18 21 31 25 1 18 34 40 26 16 46 39 35 6 2 126 2 49 7 16 28 1 1 6 3 1 4 1 2 1 1 3 1 1 2 1 2 1 1 10 3 9 26 1 1

26 2 29 2 4 5 1 12 4 1 1 3 1 1 2 4 108 52 39 10 3 3 1 4 1 23 21 22 21 21 24 26 22 18 16 25 17 30 21 29 22 17 14 14 5 13 67 46 2 121 77 56 35 2 39 39 1 29 24 21 14 9 29 43 10 58 22 34 20 46 44 1 7 127 60 4 35 65 22 5 1 3 9 6 4 3 1 1 1 11 1 10 1 1 1 1 7 1 1 6 3 7 9 7 29 8 2

1 6 17 1 14 10 1 2 4 1 1 1 6 8 8 14 1 1 5 3 1 1 2 1 13 21 7 9 13 22 12 24 21 13 13 16 11 19 7 6 4 9 7 5 1 96 4 91 36 4 3 17 43 47 63 2 8 6 10 15 20 7 12 25 30 35 13 50 17 25 9 1 57 33 7 2 38 51 20 2 6 1 3 2 3 2 1 1 2 3 1 1 3 2 21 1 1 1 5 2 2 1 1 6 3 3 1 16 2 9 26 1

1 1 1 1 3 4 4 1 1 2 3 1 3 4 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 2 14

1 1 1 14 1 3 1 3 1 141 1 2 1 8 9 7 8 22 4 4 1 17 1 101103116111117127117129132136101133107122101130 38 47 25 27 176 26 1 117 49 56 81 32 1 62 55 132 13 6 21 42 42 36 12 22 97 145 63 33 93 41 69 56 40 29 51 95 133116 1 1 4 1 2 2 4 1 6 13 1 3 1 3 4 1 1 2 8 2 1 1 1 3 1 1 3 1 1 2 4 4 2 26 4 1 1

4 1 12 10 2 1 2 13 42 2 17 4 4 1 36 9 167 1 1 6 2 8 4 1 2 1 48 70 43 28 51 52 36 50 37 57 41 27 46 61 42 33 64 72 62 57 37 15 108 17 24 83 6 1 22 5 12 9 22 4 38 48 65 195 65 55 60 49 98 88 54 34 29 15 16 21 1 1 2 113 14 29 31 5 1 2 2 1 1 1 1 4 1 10 1 14 4 11 18 3 1 11 48 2 40 1 1 1 2 9 3 3 7 6 195 8 10 2

11 2 3 3 13 59 11 5 2 1 6 1 33 92 68 101 21 15 1 4 1 1 6 1 1 1 1 4 52 1 2 13 11 10 7 17 1 1 29 90 51 1 8 3 1 1 2 1 1 2 4 5 2 6 14 12 22 3 125 63 1

23 2 1 2 1 1 4 2 2 2 1 3 1 1 1 3 4 1 4 1 15 1 58

1 7 2 1 35 1 1 33 27 4 2 1 1 1 1 5 1 9 9 8 11 1 20 24 20 56 30 10 1 4 6 31 17 16 1 2 1 3 3 2 1 4 4 3 17 1 4 1 19 12 3

O
S
N

s
P
N

s

OSNs PNs

P
re

s
y
n
a
p
ti

c
 N

e
u
ro

n
s

Postsynaptic Neurons

L
N

s

LNs

A B

FIGURE 1 | Massive number of feedback loops in the Antennal Lobe. (A) Antennal Lobe circuit involving OSNs (darker colors), PNs (brighter colors) and LNs

(transparent white). Select OSNs, PNs and LNs are shown. (B) The adjacency matrix of the connectivity graph of the neurons in the AL, with all OSNs expressing the

same OR merged into a single neuron group node, and all PNs in the same glomerulus merged into a single neuron group node. Matrix elements indicate the number

of synapses from a presynaptic neuron (or neuron group) to a postsynaptic neuron (or neuron group). Magenta block on top right: submatrix of the feedforward

connectivity from OSNs to PNs in each glomerulus. Green block on the top: submatrix of the feedforward connectivity from OSNs to LNs. Blue block on the bottom:

submatrix of the connectivity from PNs to LNs. Red block on the left: submatrix of the feedback connectivity from LNs to OSNs. Yellow block on the right: submatrix

of the feedback connectivity from LNs to PNs. White block in the middle: submatrix of the connectivity between LNs.

1.3. A Programmable Ontology
Encompassing the Functional Logic of the
Fruit Fly Brain Circuits
Traditionally, ontologies formally define the classification of
the anatomical structure of the Drosophila nervous system and
the ownership relationships among anatomical entities (Costa
et al., 2013; Lazar et al., 2021). However, existing ontologies
lack computational primitives/motifs, such as feedback loops
that can be more readily associated with the functional role of
brain circuits.

Furthermore, characterizing the functional logic of sensory
circuits calls for modeling the environment (“the input”) the
fruit flies live in. The object structure of the space of natural
sensory stimuli that the fruit flies constantly sample has not
been discussed in the formal ontology of the fly brain anatomy.
Although natural stimuli have been widely used in sensory
neuroscience (Egelhaaf et al., 2002; Tootoonian et al., 2012;
Jeanne et al., 2018), the modeling of the object structure of the
environment (Lazar et al., 2022) has often been neglected in
the neuroscience literature at large. The aforementioned object
structure is, however, essential in defining, characterizing and
evaluating the functional logic of brain circuits.

The goal of the work presented here is to accelerate the
discovery of the functional logic of the fruit fly brain circuits.
Programmability, in the age of connectomics/synaptomics, is
key. Expanding the scope of the classical ontology to encompass
the natural sensory stimuli and the functional logic of the

Drosophila brain circuits bridges the gap between the two fields
and greatly benefits both. To boot, a programmable ontology will
provide a language not only for describing but also for executing
the functional modules of, for example, the large number of
cell types, the massive number of feedback loops observed in
brain circuits, which contribute to making brain function more
transparent. We believe that this programmable ontology will
provide the foundation for exploring the functional logic of

the brain.
The proposed programmable ontology is tightly integrated

with the workflow of the interactive FlyBrainLab (Lazar et al.,

2021) computing platform, as elaborated in Figure 2.

The workflow in Figure 2 consists of 3 steps. First, 3D
visualization (see Section 6) of fly brain morphology data is
explored and candidate anatomical structures defining functional
units and modules (Figure 2 left) identified. Second, the
candidate biological circuits are mapped into executable circuits
that provide an abstract representation of the circuit in machine
language (Figure 2 middle). Third, the devised executable
circuits are instantiated for the interactive exploration of their
functional logic with a highly intuitive graphical interface for
configuring, composing and executing neural circuit models
(Figure 2 right, see Section 6).

The main rationale for the tight integration of the
programmable ontology into the FlyBrainLab workflow of
discovery is to fully anchor it onto biological data and the
worldwide literature that describes it. FlyBrainLab fully supports

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 853098177

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 2 | The workflow of discovery of the functional logic of the fruit fly brain. Left: 3D visualization and exploration of fly brain data. Middle: Creation of executable

circuits. Right: Interactive exploration of the functional logic of executable circuits.

the programmability of the ontology while easily supporting
various computational schemes used for interrogating the
functional logic of brain circuits.

2. EXPLORING THE MORPHOLOGY OF
CELL TYPES AND FEEDBACK CIRCUITS

Recent releases of large-scale connectomic/synaptomic
datasets have enabled experimental and computational
neuroscientists to explore neural circuits in unprecedented
detail. As Figure 2 suggests, understanding the functional logic
of fruit fly brain circuits starts with the exploration of fly brain
connectome/synaptome datasets. To efficiently explore these
datasets requires, however, knowledge of both the biological
nomenclature and programming tools. These skills are often
limited to members of their respective communities. For
example, neurobiologists who design new experiments often
lack in-depth programming skills to efficiently explore these
datasets. Even computational neuroscientists who perform
neural circuit simulations may find the need to learn more recent
database query languages that go beyond simple operations such
as retrieving neurons by name. Computer scientists, working
on the next generation of artificial neural networks that are
informed by biological neural circuits, need to set aside a
significant amount of time to learn the biological nomenclature.

To close the programming gap, we developed the natural
language query interface NeuroNLP (Ukani et al., 2019;
Lazar et al., 2021) to support highly sophisticated English
queries of Drosophila brain datasets, including morphology
and position of neurons (cell type map), connectivity between
neurons (connectome) and distribution and type of synapses
(synaptome). Moreover, NeuroNLP provided the first open
neurophysiology data service for the fruit fly brain (activity
map). However, the NeuroNLP rule-based query engine could
only map pre-designed sentence structures into database queries,
thereby limiting its usage. In particular, users unfamiliar with the
nomenclature used in a dataset may have found it difficult to
query for particular cell types.

In what follows, we introduce NeuroNLP++, a substantially
upgraded NeuroNLP web application, that alleviates these

limitations and helps users to explore fruit fly brain datasets
with free-form English queries. In Section 2.1, we introduce the
capabilities of the NeuroNLP++ application. In Section 2.2, we
demonstrate the use of NeuroNLP++ to explore the morphology
and graph structure of the cell types in the AL. In Section 2.3, we
demonstrate how to use NeuroNLP++ to query feedback loops.

2.1. Key Capabilities of NeuroNLP++

Expanding upon the NeuroNLP query interface (Ukani et al.,
2019; Lazar et al., 2021), NeuroNLP++ provides two additional
key advances. First, NeuroNLP++ interprets and answers free-
form English queries that are well beyond the natural language
capabilities of NeuroNLP. Second, NeuroNLP++ not only
visualizes neuron/synapses but also links them to the worldwide
fruit fly brain literature.

This is achieved by associating descriptive terms of neurons
of the fruit fly brain available in the open literature with
connectomic datasets. For example, NeuroNLP++ integrates cell
types or lineages from the Drosophila Anatomy Ontology (DAO)
(Costa et al., 2013) and matches them against neurons in the
Hemibrain connectome dataset (Scheffer et al., 2020). Given a
query, NeuroNLP++ then employs state-of-the-art document
retrieval techniques (Karpukhin et al., 2020) to find cell types
whose description match the description in the query (see also
Section 6).

These descriptions are reflected in the query results of
NeuroNLP++ in response to a question also mentioned in
the caption of Figures 3A,B. Here, we started by asking “what
neurons respond to carbon dioxide?”. The query results, in the
form of a list of the most relevant cell types, are displayed on the
left of the NeuroNLP++ user interface, as shown in Figure 3B.
Each entry lists the name of the cell type, a link to the DAO,
as well as a description of the cell type. It also includes a UI
button for adding to the workspace the neurons associated with
the entry. The first query result, magnified in Figure 3A, includes
names and synonyms of the V glomerulus projection neurons, as
well as their ontological description along with specific entries to
the relevant literature.

In Figures 3C,D, we present more examples of NeuroNLP++
queries. In Figure 3C we asked “which neurons are associated
with water reward?,” and in Figure 3D “what cell types are there

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 853098178

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 3 | NeuroNLP++ user interface and query results. (A) Typical results displayed in the Info Panel of the NeuroNLP++ application in response to the query

“which neurons respond to carbon dioxide?”. (B) The user interface of NeuroNLP++ with the Info Panel on the left and 3D visualization workspace on the right. (C)

Results to the query “which neurons are associated with water reward?" with the first few relevant entries added to the workspace. (red) PAM13 neurons, (yellow)

PAM14 neurons. (D) Results to the query “what cell types are there in lateral horn?” with the first few entries added to the workspace. (red) AD1b5 neurons, (green) LH

centrifugal neurons, (cyan) AD1d2 neurons, (orange) PV5a1, (white) PD2a5 neurons.

in lateral horn.” The query results revealed a variety of cell types.
These may provide a starting point for exploring novel cell types
associated with other neuropils and can guide additional rule-
based queries. The two examples here can be found as live demos
in the NeuroNLP++ application.

Compared with using NeuroNLP and other connectome-

driven web services such as Neuprint (Clements et al., 2020),
users benefit from employing NeuroNLP++ in several ways.

First, with NeuroNLP++ neurons can be queried in ways that

are not limited to the specific naming in a dataset. For example,

a neuron may be named differently in different research papers,

while a specific name is used in the Hemibrain dataset. Without

knowing the specific name the neuron is called in the working
dataset, the user may not be able to find with NeuroNLP the cell
type by using a namementioned in the literature. This knowledge
of the nomenclature is not necessary when using NeuroNLP++.
In addition, multiple matched results with descriptive answers
alleviate the problem with naming ambiguity in English queries,
when, for example, an abbreviation of the neuron name can refer
to different cells in different brain regions.

Furthermore, NeuroNLP++ complements the specific
sentence structure required by NeuroNLP. While the pre-
designed sentence structure allows for querying neurons
precisely by their properties, NeuroNLP++ allows questions to

be more “open ended”. For example, querying cell types is not
limited to their names, but a user can ask questions such as “what
types of local neurons are in the antennal lobe?” and “what are
the ring neurons?.”

Finally, NeuroNLP++ provides more context for the neurons
searched in connectomic datasets by providing links to the
worldwide literature associated with cell types. This will provide
users, particularly those unfamiliar with the cell type literature, a
convenient way of exploring prior knowledge.

2.2. Exploring the Morphology and Graph
of Cell Types With NeuroNLP++

In addition to natural language querying capabilities,
NeuroNLP++ provides an interactive Graph View application
that displays the current neurons in the workspace at the
neuronal or cell type level (see Section 6). While the morphology
of neurons is often cluttered in the 3D visualization, Graph View
helps sort out the connections between the neurons displayed.

Here we use NeuroNLP++ to explore the morphology and
Graph View to visualize the circuit diagram of several glomeruli
in the AL. We started by asking “what are the cell types of the
DL5 glomerulus”. The cell type Graph View of the neurons in the
DL5 glomerulus is depicted on the left in Figure 4A. Here, the red
and the yellow nodes represent the OSNs and PNs, respectively,

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 853098179

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 4 | Free-form English queries of the AL with NeuroNLP++. (A) Result to the query “what are the cell types of the DL5 glomerulus?”, consisting of the OSNs

with axons that arborize the DL5 glomerulus (red) and the PN with dendrites in the DL5 glomerulus (yellow). (left) Cell type connectivity graph of the visualized neurons.

(right) Morphology of the retrieved neurons. (B) Result to the query “what are the cell types of the DM4 glomerulus?”, in addition to (A), consisting of the OSNs (orange

with axons that arborize the DM4 glomerulus and the adPNs (cyan) and vPNs (blue) with dendrites in the DM4 glomerulus. (left) Cell type level connectivity graph of the

resulting neurons. (right) Morphology of the retrieved neurons. (C) Results to the query “what are the patchy local neurons?”, in addition to (B). The resulting LNs are in

pink. (left) Cell type connectivity graph of the visualized neurons. (right) Morphology of the retrieved neurons.

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 853098180

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

and the arrow from the red to the yellow node indicates that
the OSNs provide inputs to the PNs. The colors in Graph View
match those in the 3D morphology visualization. Graph View
is also interactive, allowing users to highlight the corresponding
neurons in the 3D visualization.

We then asked “what are the cell types in the DM4
glomerulus”. The resulting neurons are added to the workspace
and their cell type graph is depicted in Figure 4B. These
include the OSNs (orange) that project into the DM4 glomerulus
and two types of PNs, namely adPNs (cyan) that project to
both the MB and LH, and vPNs (blue) that only project to
the LH. The graph also confirms that the two glomeruli run
in parallel.

Finally, we asked “what are the patchy local neurons?”. Patchy
local neurons, typically arborize in a large number of glomeruli
of the AL. They were first discovered in a light microscopy
study of local neurons; information about their connectivity with
neurons inside the glomeruli is lacking (Chou et al., 2010). The
neurons obtained in response to our query are shown in white
in Figure 4C, together with the cell type graph of the entire
circuit. The connectivity graph suggests the presence of strong
feedback components within and between the two otherwise
disjoint glomerular circuits.

To explore the diversity of LNs in the AL, we needed to
classify cell types based on their morphology. We launched the
query “what are the types of local neurons in the antennal
lobe?.” NeuroNLP++ provides a complete list of the currently
known LN types in the AL. In Supplementary Figure S1 in
Supplementary Material, we list all these LN types, the number
of neurons of each type, and an example morphology of neuron
type. The morphology of the neurons is colored by their
glomerular arborization. The graph structure of a typical LN of
each cell type is summarized in the matrix depicted on the right.

2.3. Exploring the Morphology of Feedback
Circuits With NeuroNLP++

As discussed above, feedback loops are major targets of the study
of the functional logic of the fruit fly brain. Consequently, in
addition to querying cell types, we also built into NeuroNLP++
capabilities to query for neurons that belong to specific
feedback loops.

Different feedback loops can be described as entities in the
DAO. This enables NeuroNLP++ to search for feedback loops
with English queries. We identified different types of feedback
loops for each glomerulus (see Section 6) and further identified
a number of specific feedback loops consisting of local neurons.
For example, a circuit consisting of LNs that receive inputs from,
and provide feedback to, OSNs but has no interaction with PNs, is
named here an OSN-LN-OSN feedback loop. Similarly, a circuit
consisting of LNs that receive inputs from, and provide feedback
to, PNs but has no interaction with OSNs is named a PN-LN-
PN feedback loop. A circuit consisting of LNs that receive inputs
from and provide feedback to both OSNs and PNs is named an
OSN/PN-LN-OSN/PN feedback loop.

To query for feedback loops associated with OSNs and PNs in
the DL5 glomerulus, i.e., starting from Figure 4A, we requested:

“show available feedback loops.” Figure 5 depicts two different
types of feedback loops in response to this query.

In Figure 5A, we added the 19 LNs (pink) that form the PN-
LN-PN feedback loop. From Graph View, we confirm that these
feedback loops are only associated with the DL5 PNs (yellow) but
not OSNs (red) node. The arrows into the adPN node indicate
the feedback pathway from LNs into the adPN. In Figure 5B,
we added the 26 LNs that form feedback loops with both OSNs
and PNs. From Graph View we note that these LNs (pink) form
feedback loops with both OSNs (red) and PNs (yellow) nodes.

Concluding, by establishing the NeuroNLP++ natural
language query interface for exploring the morphology of
fruit fly brain circuits, we effectively created an ontology
of the fruit fly brain consisting of the existing anatomical
ontology, the connectome/synaptome datasets and the published
worldwide literature. Moreover, we provided visualization tools
for extracting what are thought to be functionally significant
circuits. NeuroNLP++ represents a step toward a more
intuitive and natural way of extracting information from large
connectome/synaptome datasets that are relevant for the in-
depth study of the functional logic of brain circuits. In addition,
the capability to anchor the queried connectome/synaptome
data onto the published worldwide literature provides much
needed awareness of the prior existing knowledge regarding
these circuits.

3. CREATING A PROGRAMMABLE
ONTOLOGY OF THE FRUIT FLY BRAIN

Our goal in this section is to demonstrate how the framework
of the ontology outlined in the previous section can be further
enriched and extended to encompass the key stimulus and
processing elements needed for exploring the functional logic of
the fruit fly brain circuits. Overall, the resulting ontology will
be programmable from the ground up. Programmability calls
for i) employing spaces of stimuli whose basic objects can be
computationally modeled and identified, and ii) constructing
brain circuit models using simple executable building blocks
that are composable based on rules built upon and informed by
biological entities such as cell types and feedback loops.

The significance of modeling the space of stimuli for
characterizing the I/O of functional circuits arises throughout the
early sensory systems, e.g., in early olfaction (Jeanne et al., 2018),
vision (Egelhaaf et al., 2002), audition (Tootoonian et al., 2012),
mechanosensation (Tuthill and Wilson, 2016), etc. The odorant
space and the visual field are examples that come to mind. See,
for example, Lazar et al. (2015) and Lazar and Yeh (2020).

Given the current connetomic datasets, we shall describe here
how some of the better characterized neuropils can be modeled
and constructed through a process of composability. Due to space
limitations, we will only present in what follows a methodology
of a receptor-centric modeling of the space of odorant stimuli, as
well as a methodology for devising the olfactory processing in the
antenna and the antennal lobe of the fruit fly brain. How to apply
the same general methodology to other neuropils of the fruit fly
brain entails a set of challenges that will be addressed elsewhere.

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 853098181

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 5 | Exploring feedback loops with NeuroNLP++. The result to the query “show available feedback loops” when starting from Figure 4A with OSNs with

axons that arborize the DL5 glomerulus and PNs with dendrites in DL5 glomerulus. (A) PN-LN-PN feedback loop (receives inputs from and only feeds back to PNs).

(red) OSNs. (yellow) PNs. (pink) LNs. (B) OSN/PN-LN-OSN/PN feedback loop (LNs receive inputs from both OSNs and PNs and provide, respectively, feedback to

them). (red) OSNs. (yellow) PNs. (pink) LNs.

3.1. Receptor-Centric Modeling the Space
of Odorant Stimuli
To fully characterize the functional logic of a sensory circuit
calls for modeling the environment the studied organism
lives in, a rather difficult undertaking. To model the
environment, we first have to define the space of odorant
stimuli. The space of odorant stimuli has never been
discussed in the context of a formal ontology of the fruit
fly brain anatomy. It is often neglected in the neuroscience
literature, but essential in defining, characterizing and
evaluating the functional logic of brain circuits involved in
odor processing.

The Chemical Abstracts Service (CAS) registry has currently
156 million organic and inorganic substances registered
(Morgan, 1965). Distinguishing between odorants in the CAS
registry seems to be a problem of enormous complexity (Tran
et al., 2019). How does the fly approach this problem? As a
first step in the encoding process, the odorant receptors bind
to the odorants present in the environment and that are of
interest to the fly. The adult fruit fly has some 51 receptors
whose binding and dissociation rates to/from odorant molecules
characterize their identity. In addition to odorant identity, the
odorant concentration amplitude is another key feature of the
odorant space.

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2022 | Volume 16 | Article 853098182

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

The odorant space considered here consists of pure and
odorant mixtures. Pure odorants are mostly used in laboratory
settings for studying the capabilities and the function of the
early olfactory circuits. Odorant mixtures widely arise in the
living environment. Following (Lazar and Yeh, 2020), the identity
of an odorant can be modeled by a 3D tensor pair (b, d).
The 3D tensor b with entries [b]ron is called the odorant-
receptor binding rate and models the association rate between
an odorant o and a receptor of type r expressed by neuron
n (see also Figure 6). The 3D tensor d with entries [d]ron
denotes the odorant-receptor dissociation rate and models the
detachment rate between an odorant o and a receptor of type
r expressed by neuron n (see also Figure 6). We denote the
odorant concentration waveforms as the vector u(t), where
[u]o(t) denotes the concentration amplitude of odorant o, o =
1, 2, · · · ,O. The odorant concentration can be any arbitrary
continuous waveform (see also Figure 6). For a pure odorant O,
[u]o(t) = 0, o 6= O. A set of odorant waveforms modeled by the
tensor trio

(

b, d,u(t)
)

is graphically depicted in Figure 6. Often,
for simplicity, the binding rate [b]ron and the dissociation rate
[d]ron, for a given odorant o and a given receptor-type r, are
assumed to take the same value for all neurons n = 1, 2, ...,N,
expressing the same receptor-type r.

Note that the elements of the odorant space are not
defined by the (largely intractable) detailed/precise chemical
structure of the odorants. Rather, they are described by the
rate of activation/deactivation between odorants and olfactory
receptors. The tensor trio determines what types of sensors
(olfactory receptors) will be activated by a certain odorant, and
the level of activation will be jointly governed by the identity
and the concentration waveform amplitude of the odorant. More
precisely, for a single odorant, the overall activation of the sensors
is determined by the value of the odorant-receptor binding rate
modulated by the odorant concentration profile (Lazar and Yeh,
2020).

3.2. Building the Antenna Circuit With OSN
Cell Types
The antenna circuit of the early olfactory system of the fruit
fly consists of approximately 2,500 parallel Olfactory Sensory
Neurons (OSNs) that are randomly distributed across the surface
of the maxillary palps and antennae. In what follows, we will
refer to the set of all OSNs on one side of the fruit fly
brain as an antenna/maxillary palp (ANT) local processing
unit (LPU).

The OSNs, depicted in Figure 6 (right) in groups based on the
olfactory receptors (ORs) that they express, form parallel circuits.
For simplicity, we assumed that the number of OSNs expressing
the same receptor-type is N. OSNs in the same group are said to
be of the same cell type.

For each OSN, the odorants are first transduced by an
olfactory transduction process (OTP) that depends on the
receptor-type (Lazar and Yeh, 2020). Each of the generated
transduction currents drive biophysical spike generators (BSGs)
that produce spikes at the outputs of the antennae (see Section
6). Note that unlike the OTP whose I/O characterization depends

on the receptor-type, the BSGs of OSNs expressing different
receptor-types are assumed to be the same.

3.3. Composing the Antennal Lobe Circuits
With Cell Types and Feedback Loops
The overall goal of this section is to develop a methodology
for modeling and constructing circuits of arbitrary complexity
of the Antennal Lobe. The methodology demonstrated here is
generalizable to the other neuropils in the early olfactory system
of the fruit fly brain, including the mushroom body and the
lateral horn; due to space limitations, the application of this
methodology to the other neuropils of the early olfactory system
will be presented elsewhere.

3.3.1. Modeling Individual Glomeruli of the Antennal

Lobe Circuit
As sketched in Figure 4, the AL exhibits a glomerular structure.
Each glomerulus is primarily driven by the feedforward
connections between the OSNs expressing the same OR and the
corresponding PNs. As already mentioned, in addition to OSNs
and PNs, LNs are the third cell type in each glomerulus. Although
the modeling of glomeruli presented in this section is rather
general, the concrete examples given below revolve around the
DM4 and DL5 glomeruli.

To model a glomerulus, we closely followed the connectomic
data provided by the Hemibrain dataset (Scheffer et al., 2020).
In what follows the emphasis will be on showing how to
extract/model the connectivity among cell types. We created a
circuit diagram as depicted in Figure 7E. Here we abstracted the
group of OSNs with axons that arborize the glomerulus as a
single OSN (cell type). Similarly, we abstracted the group of PNs
with dendrites in the same glomerulus as a single PN (cell type)
(trivially obtained for DL5 since this glomerulus features a single
PN). We only considered here the PNs that send their axons to
both the MB and LH, and, thereby, primarily omit the vPNs with
axons that only arborize the LH but not the MB. As shown in
Figure 4C for the DM4 glomerulus, the omitted PNs typically
receive inputs from other PNs rather than OSNs.

Since the OSN axon terminals and PN dendrites arborize the
respective glomerulus, their synaptic connections with LNs must
also occur within the same glomerulus. This is detailed in the
examples in Figures 7A–D for the DL5 glomerulus. OSNs with
axons arborizing in the DL5 glomerulus are shown in green, the
PN with dendrites arborizing the same glomerulus is shown in
blue, and 4 different LNs are shown in magenta, respectively.
The locations of synapses between the OSNs and the LNs, and
between the PN and the LNs are respectively shown in colored
circles. The LN in Figure 7A receives inputs from the OSNs (cyan
dots), provides inputs to the OSNs (red dots), receives inputs
from the PN (yellow dots) and provides inputs to the PN (white
dots). The LN in Figure 7B does not provide inputs to the OSNs;
the LN in Figure 7C lacks PN inputs; the LN in Figure 7D does
not synapse onto and receives no inputs from the OSNs shown.

Therefore, in the circuit diagram of the glomerulus in
Figure 7E, we included 4 types of connections between OSNs and
LNs and between PNs and LNs, including i) LNs presynaptically
linked with OSN axon terminals, ii) LNs receiving inputs from

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 853098183

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 6 | Elements of the odorant space are defined by the odorant-receptor binding rate, dissociation rate and concentration amplitude tensor trio [b,d, u(t)]. For a

given neuron n = 1, 2, ...,N, the binding rate and dissociation rate values are, respectively, denoted by [b]ron and [d]ron, for all r = 1, 2, ...,R, and o = 1, 2, ...,O. Single

and/or odorant mixtures interact with the receptors expressed by the Olfactory Sensory Neurons in the Antenna (right).

OSN axon terminals, iii) LNs providing inputs to PNs, and iv)
LNs receiving input from PN dendrites. Within the glomerulus,
however, we do not specify the exact LNs that carry out these
interactions. Rather, we define 4 ports (see the magenta blocks
in Figure 7E): i) LNs (→OSNs), ii) LNs (←OSNs), iii) LNs
(→PNs), and iv) LNs (←PNs), corresponding to, respectively,
the 4 types of connections mentioned above. The connections
from/to the specific LNs will be defined through these ports. All
the LNs that connect to each port carry out the specific port
connectivity pattern within the glomerulus.

The innervation of an LN within a glomerulus can then be
graphically composed using the 4 ports. There are 15 different
patterns of port connectivity within a glomerulus, that we call
LN port connectivity patterns. We use a 4 digit binary code to
represent this connectivity, according to the left-right order of
the ports in Figure 7E. For example, if an LN receives inputs from
OSNs and provides feedback to the same OSNs, but has no input
from or output to PNs, then we call this port connectivity pattern
“1100.” The number of occurrences of each port connectivity
pattern according to the Hemibrain dataset can be found in
Supplementary Table S1 in Supplementary Material. Note that
a single LN can engage into different port connectivity patterns
with different glomeruli.

If the LN innervation in a glomerulus follows the port
connectivity pattern 11xx, xx11 or 1xx1, then the said LN is
considered to form a feedback loop within the glomerulus.
Eight out of 15 port connectivity patterns are associated with
feedback, and they are shown in Figure 7E. The rest of the
port connectivity patterns are only involved in feedback across
glomeruli (see below).

3.3.2. Modeling and Constructing Interconnected

Glomeruli of the Antennal Lobe Circuit
For individual glomeruli, we have introduced 4 ports whose
composability in the form of port connectivity patterns allow
us to construct local feedback circuits. Here, we introduce
composition rules of interconnected glomeruli that are also
based on port connectivity patterns. The composability of
port connectivity patterns enable scaling to multiple glomeruli.
Furthermore, their programmability strengthens the reach of
exploration of the functional logic of models of brain circuits.

To compose the “wiring diagram” of glomeruli, we define
feedback motifs using the port connectivity patterns that an LN
links and that belong to distinct glomeruli. Here, we provide a
number of example feedback motifs based on two interconnected
glomeruli, as depicted in Figure 8C.

The first example feedback motif is based on LNs that link the
port connectivity pattern 0011 of each of the 2 glomeruli. This is
denoted LN2 in Figure 8C. An instance of such an LN is depicted
in Figure 8A. The second example feedback motif is an LN that
links the port connectivity pattern 1111 of each of the 2 glomeruli.
An instance of such LN is depicted in Figure 8B (omitted in
Figure 8C). Continuing to do so, we can create a collection of
such feedback motifs based on combinations of port connectivity
patterns. Note that the patterns are not necessarily the same on
both glomeruli.

Composability also allows us to create feedbackmotifs that are
not present in the connectome but that can still be of interest in
studying the computational role of certain feedback loops. For
example, the feedback motif presented as LN1 in Figure 8C has
the port connectivity pattern 1100 of each of the 2 glomeruli.

Finally, we define a feedback motif LN3 that models the port
connectivity between LNs. The LN3s do not receive or feedback
to either OSNs or PNs. Rather, they connect only with the other
feedback motifs.

4. EXPLORING THE FUNCTIONAL LOGIC
OF FEEDBACK CIRCUITS IN THE
ANTENNAL LOBE

In this section, we present an approach for exploring the
functional logic of feedback circuits of the fruit fly brain. This
pertains to the third column of the workflow diagram of Figure 2.
Specifically, we present here the interactive exploration of the
AL following the previous sections where the morphology of
the AL feedback circuits has been explored (Section 2) and
single as well as pairwise interconnected glomeruli modeled
and constructed (Section 3) (see also the second column of
Figure 2).

We describe a programming library for instantiating
examples of Antennal Lobe cell types and feedback circuit
motifs abstracted from connectome data with customizable

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2022 | Volume 16 | Article 853098184

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 7 | Composability of the port connectivity of LNs within a glomerulus. (A–D) Examples of LNs with different port connectivity patterns in the DL5 glomerulus.

(A) 1111, (B) 0111, (C) 1110, and (D) 0011 (see also (E)). (magenta) LN, (green) the OSNs that project to DL5 glomerulus, (blue) the PN that innervates the DL5

glomerulus, (cyan dots) locations of OSN-to-LN synapses, (red dots) locations of LN-to-OSN synapses, (yellow dots) locations of PN-to-LN synapses, (white dots)

locations of LN-to-PN synapses. (E) Schematic diagram of a single glomerulus circuit. (bottom) The blocks at the very bottom of the glomerulus represent the

feedforward circuits. (top) LNs with different port connectivity patterns. Port connectivity patterns that have less than 50 occurrences in the Hemibrain dataset are

omitted (see also Supplementary Table S1 in Supplementary Material).

parameters of neurons and synapses. We demonstrate
in Section 4.1 the use of this circuit library in exploring
the I/O of a single glomerulus and in Section 4.2 for a
pair of interconnected glomeruli. In Section 4.3, we then
provide an example of scaling the methodology presented
here for exploring the functional logic of the entire
AL circuit.

4.1. Exploring the Functional Logic of
Feedback Circuits of a Single Glomerulus
in Isolation
For clarity in the presentation and simplicity in evaluation, in

this section we build upon the composability of LNs within a

glomerulus detailed in Section 3.3 and shown in Figure 7.

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 853098185

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 8 | An abstraction of glomerular feedback circuits with 3 feedback motifs. (A) An LN that is presynaptic and postsynaptic to the PNs, but not to OSNs, in

both DL5 and DM4 glomeruli. (magenta) the LN, (blue) a PN with dendrites arborizing the DL5 glomerulus, (orange) a PN with dendrites arborizing DM4 glomerulus,

(yellow dots) locations of PN-to-LN synapses, (white dots) locations of LN-to-PN synapses. (B) An LN that is presynaptic and postsynaptic to the OSNs and PNs in

both DL5 and DM4 glomeruli. Color is the same as in (A) and additionally, (cyan dots) locations of OSN-to-LN synapses, (red dots) locations of LN-to-OSN synapses.

(C) A circuit diagram of two glomeruli with 3 feedback motifs. Feedback motif LN1 corresponds to the port connectivity patterns 1100 of each of the two glomeruli.

Feedback motif LN2 corresponds to the port connectivity patterns 0011 of each of the two glomeruli, e.g., (A). Feedback motif LN3 models the bidirectional

connectivity between LN1 and LN2.

In Figure 9, we evaluate the I/O behavior of the DM4 and DL5
glomeruli separately and in isolation for different compositions
of feedback motifs. We outline how the presence of different
feedback motifs can jointly or individually alter the PN output of
the glomeruli. In our experimental setup, the number of OSNs
and PNs, as well as the number of synapses between a given

OSN and PN are configured using the data from the Hemibrain
connectome dataset.

In Figures 9A,C, we evaluate and compare the DM4
glomerulus response due to different compositions of feedback
motifs.We added to the single DM4 glomerular circuit composed
of the OSNs, PN and three feedback motifs: LN1, LN2, and LN3

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 853098186

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 9 | Characterization of PN responses of the single (isolated) DM4 and DL5 glomerular circuits. (A) DM4 PN steady-state firing rate across different constant

odorant concentration levels. (dashed black) No LN is present. (green) Only LN1 feedback motif is present. (red) Only LN2 feedback motif is present. (orange) LN1 and

LN2 feedback motifs are present. (blue) LN1, LN2 and LN3 feedback motifs are present. (B) DL5 PN steady-state firing rate across different constant odorant

concentration levels. LN2 feedback motifs in both (A,B) are assumed to be excitatory. (C) DM4 PN steady-state firing rate when LN2 feedback motifs are assumed to

be inhibitory. (D) DL5 PN steady-state firing rate when LN2 feedback motifs are assumed to be inhibitory.

(see also Section 6). Results shown in Figure 9A were obtained
assuming that the output of the feedback motif LN2 is excitatory,
while for those in Figure 9C the output of the feedbackmotif LN2
is inhibitory.

For constant odorant concentration waveforms, the steady-
state firing rates of the corresponding PNs are displayed in
Figure 9A (see also Section 6). For the range of modulated
affinity values, if the glomerulus is configured without any
feedback loops, then the PN is driven immediately to saturation
(Figure 9A dashed black curve). The addition of the feedback
motif LN1, that presynaptically inhibits OSNs, results in a
sigmoidal PN spiking rate for the tested range of odorant
concentration values (Figure 9A green curve). We also note
that the addition of the feedback motif LN2 alone, either with
excitatory or inhibitory output, does not directly contribute to
regulating the PN response, and results in a saturation level
similar to the circuit without feedback (Figures 9A,C red curves).

We evaluated next the effect of the composition of feedback
motifs. The orange curves in Figures 9A,C depict the responses
of DM4 PNs when feedback motif LN2 with, respectively,
excitatory and inhibitory outputs is added to the circuit with the
feedback motif LN1 already present. Finally, we added feedback

motif LN3 to the previous setup and stimulated it externally with
a 20 nA current source. Injecting an external current enabled
us to explore how activation of this feedback motif affects the
responses of the DM4 PNs; this results in regular spiking in
LN3 and suppression of both feedback motifs LN1 and LN2.
However, the suppression of LN2 causes a larger effect and thus a
net decrease in the PN spiking rate. These simple explorations
demonstrate the effect different feedback loop compositions
might have on the responses of the one-glomerulus circuit.

Evaluations with the same set of compositions were performed
on the feedback circuit of the DL5 glomerulus (Figure 9B where
output of LN2 is excitatory and Figure 9D where output of
LN2 is inhibitory). Here, we observed similar contributions from
different compositions of the feedback motifs as in the case of
the DM4 glomerulus. Results for DM4 and DL5 if the output of
LN2 is inhibitory are shown in Figures 9C,D, respectively. As
expected, in this scenario, removing feedback motif LN2 causes
a higher spike rate of the PN. An indirect suppression of LN2
through stimulation of LN3 similarly raises the spike rate of
the PN.

The comparison of the PN outputs using different feedback
motifs (Figures 9A–D) shows that i) the feedback motif LN1

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 853098187

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

is essential for the circuit to be stable under a large range of
concentration amplitude values, ii) the addition of the feedback
motif LN2 amplifies the steady-state PN spike rate response given
the presence of the feedback motif LN1, and feedback motif LN3
controls the contribution of LN1 and LN2 to the I/O behavior of
the circuit.

4.2. Exploring the Functional Logic of
Feedback Circuits of a Pair of
Interconnected Glomeruli
For clarity in the presentation and simplicity in evaluation, we
shall use in this section the feedback circuit motif examples of
the pair of interconnected glomeruli presented in Section 3.3 and
detailed in Figure 8.

In Figure 10, we evaluated a circuit consisting of a pair of
interconnected DM4 and DL5 glomeruli. A circuit diagram of the
interconnected DM4 and DL5 glomeruli is shown in Figure 10A.
The number of OSNs and PNs in these two glomeruli, and the
number of synapses between these two types of neurons are
configured according to the Hemibrain dataset. Following the
motifs we explored in Figure 8, we then added five feedback
circuit motifs: 1 LN1 each connecting to only DM4 and DL5,
1 LN2 each connecting to only DM4 and DL5, and 1 LN3
bidirectionally connected to LN1 and LN2 (see also Section 6).

In Figures 10B,C, we show the average spike rate of,
respectively, the DM4 PN and DL5 PN as a function of the
input value. Mirroring Figure 9, we consider compositions of
different feedback circuit motifs. As in Figure 9, we find that
the addition of LN1 alone produces the lowest spiking rate
(Figures 10B,C red mesh). Similarly, the addition of LN2 alone
produces the highest spiking rate due to lack of presynaptic
inhibition from LN1 (Figures 10B,C green mesh). When we
added feedback motif LN2 in addition to feedback motif LN1,
the excitatory nature of the LN2 loop resulted in a spike rate
increase by a small amount when compared with the DM4
glomerulus with only the feedback motif LN1 (Figures 10B,C
blue mesh). Finally, by adding the feedback motif LN3 to the
previous setup, the spike rate for the DM4 or DL5 glomerulus
increases with the affinity of the receptors expressed by the
OSNs projecting into the respective glomerulus. Note that,
an increase in the odorant amplitude waveform of the OSNs
projecting to one of the glomeruli also affects the spike rate
of the other through the feedback motif LN3 (Figures 10B,C
black mesh).

4.3. Circuit Library for Exploring the
Functional Logic of the Massive Number of
Feedback Loops in the Antennal Lobe
With models of OSN and PN cell types, LN feedback
motifs, single and pairwise interconnected glomeruli, a
methodology to address the composibility of feedback circuits
has emerged that can be generalized to the entire AL. In
particular, the morphological LN types described in Section 2.3
provide a blueprint for connecting multiple glomeruli via
the LNs. Figure 11A depicts one such LN that innervates
more than 20 glomeruli. In Supplementary Figure S1 in

Supplementary Material, we list all these morphological
LN types identified in the Hemibrain dataset, the number
of neurons of each type, and an example neuron-type
morphology. The morphology of the neurons is colored by
their glomerular arborization.

To model the entire AL feedback circuit, we define glomeruli
as parallel channels (Scott and Dahanukar, 2014) each exposing 4
ports that were depicted in Figures 7E, 8. The ports and the LNs
form a crossbar as depicted in Figure 11B, where the crossbar
“intersections” are marked with black dots. The connections of
each LN with the ports of glomeruli are determined by the matrix
listed on the right of Supplementary Figure S1. LNs also form
a second crossbar associated with each glomerulus, depicted in
Figure 11B, where the crossbar “intersections” are marked with
gray dots. The exact connectivity pattern can be constructed
through compositions.

To formally address composability of the circuit models of
the programmable ontology, we introduce here a circuit library,
called FeedbackCircuits, for exploring the functional logic of
the massive number of feedback loops (motifs) in the fruit fly
brain. While the library is generic and can applied to any local
processing unit of the fly brain, we highlight here its capabilities
in constructing and exploring the AL feedback circuit models
described in Section 3.

First, the FeedbackCircuits Library provides tools for
interactively visualizing and exploring the feedback loops in the
AL circuit operational on the FlyBrainLab computing platform
(Lazar et al., 2021) (see Section 6 for details).

Second, the FeedbackCircuits Library enables users to
instantiate an executable circuit of the feedback circuit model in
two ways. An executable circuit can be instantiated according
to a connectome dataset. For example, any circuit explored
via NeuroNLP++ can be loaded into an executable circuit
directly. It can also be instantiated according to the abstraction
of feedback motif examples provided in Section 3.3 (see
also Section 6).

While the connectivity pattern of neurons can be extracted
from connectome datasets, users can also define higher level
objects, such as glomeruli of the AL (see also Section 6). Within
a chosen object, the characteristics of the executable models,
such as the dynamics of neurons of different cell types, are
specified by the user. For example, users can specify all OSN to
PN connections to execute commonly-used models of synaptic
dynamics. Every instance of such synapses, residing in the
connectome dataset, will be automatically assigned the specified
dynamics. Similarly, all LN to OSN connections can be specified
to act presynaptically on OSN axon terminals (Lazar et al.,
2020).

Finally, different LN feedback motifs can be flexibly
configured, stimulated or ablated in the FeedbackCircuit Library
and their individual and combined effect on the AL outputs can
be evaluated.

The FeedbackCircuits Library provides easy-to-customize
loader and visualization functions to explore the I/O behavior of
the antennal lobe circuit. This process can be repurposed for a
wide variety of neuropils, including the mushroom body and the
lateral horn of the early olfactory system.

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 853098188

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

A B C

FIGURE 10 | Characterization of DM4 PN and DL5 PN responses of a circuit consisting of interconnected DM4 and DL5 glomeruli. (A) A circuit diagram of the

interconnected DM4 and DL5 glomeruli. Toward the bottom, the blue nodes represent ports to and from DM4/DL5 OSNs/PNs. Each gray node corresponds to a

specific LN in the Hemibrain dataset. Only connectivity between the gray nodes and the blue nodes are shown in the diagram. (B) DM4 PN steady-state firing rate and

(C) DL5 PN steady-state firing rate as glomeruli are subject to different concentration modulated affinity values. For both (B,C): (red) Only LN1 feedback motifs are

present. (green) Only LN2 feedback motifs are present. (blue) LN1 and LN2 feedback motifs are present. (black) LN1, LN2 and LN3 feedback motifs are present.

5. DISCUSSION

5.1. A Programmable Ontology
Encompassing the Functional Logic of the
Brain
Existing neuroscience-centered ontologies, including those of the
fruit fly (Costa et al., 2013), the rat/mouse (Paxions and Watson,
2013; Swanson, 2018; Wang et al., 2020) and the human (Sunkin
et al., 2012) brain, mainly focus on neuroanatomical structures,
hierarchies and nomenclature. Description of entities or relations
that have functional significance is rare and is kept at behavioral
or cognitive level (Poldrack and Yarkoni, 2016).

While describing the structure of the brain is certainly a first
step in the quest of understanding brain function, it is far from
being sufficient. Thus, an ontology of the brain can not end with
the description of anatomical data. Rather, the anatomical entities
and relations have to be augmented with insights characterizing
the functional logic of brain circuits.

In this paper, we presented a programmable ontology that
expands the scope of the current ontology of Drosophila brain
anatomy (Costa et al., 2013; Lazar et al., 2021) to encompass
the functional logic of the fly brain. The programmable ontology
provides a language not only for modeling circuit motifs but also
for programmatically exploring their functional logic. To achieve
this goal, we tightly integrated the programmable ontology
with the workflow of the interactive FlyBrainLab computing
platform (Lazar et al., 2021). In effect, the programmable
ontology, embedded into the FlyBrainLab, has grown into
a programming environment operating with access to a
plethora of datasets, containing models of sensory space, the
connectome/synaptome including cell types/feedback loops and
neuronal/synaptic dynamics. The programmable ontology has
the “built in” capability for evaluating the functional logic
of brain circuits and for comparing their behavior with the
biological counterparts.

To provide a language for defining functional circuit
motifs anchored onto biological datasets and the worldwide
literature, we developed the NeuroNLP++ web application
that supports free-form English query searches of ontological
entities and references to these in the published literature
worldwide. NeuroNLP++ enables circuits to be composed
using connectomic/synaptomic data in support of the
evaluation of their function in silico. To bridge the gap
between the existing Drosophila Anatomy Ontology dataset
and the Hemibrain connectome morphology dataset, we
associated with each ontological entity the corresponding
neurons in the morphology dataset. The DrosoBOT Engine,
in conjunction with the rule-based NLP engine, represents a
first step toward providing a unified and integrated view of
connectomic/synaptomic datasets and of the fruit fly brain
literature worldwide.

In our programmable ontology the modeling of the space
of sensory stimuli is explicitly included. We note that, e.g., the
space of odorants has not been discussed in formal ontologies of
the fly brain anatomy, although it plays a key role in defining,
characterizing, and evaluating the functional logic of brain
circuits. Here, the odorant space is modeled by a 3D tensor trio
that describes the interaction between odorants and olfactory
receptors, rather than by the (largely intractable) detailed/precise
chemical structure of the odorants. Defining odorants and
odorant mixtures as well as their interactions with olfactory
receptors is an important step of this program.

By augmenting the ontology with the space of odorant objects
and by providing an English query web pipeline for exploring
structural features of the architecture of the early olfactory brain
circuits, we are now in a position to evaluate the functional logic
of these circuits in their full generality. The program of research
presented here, due to space limitations, only sets the stage
to modeling and exploratory computational evaluation of the
early olfactory system. Clearly, an extension to the other sensory

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 853098189

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 11 | A circuit diagram modeling the entire AL circuit. (A) Morphology of an LN, its innervation of glomeruli and its connectivity to the glomeruli it innervates.

The neurites in each glomerulus are colored differently, and from left to right: 1) Each color indicates the glomerulus the LN arborizes. 2) The arbors of the LN in each

glomerulus are colored in red with saturation proportional to the number of synapses with the OSNs with axons arborizing in that glomerulus, i.e., redder indicates

higher number of synapses. 3) The arbors of the LN in each glomerulus are colored in red with saturation proportional to the number of synapses onto the OSNs with

axons arborizing in that glomerulus. 4) The arbors of the LN in each glomerulus are colored in red with saturation proportional to the number of synapses with the PNs

in that glomerulus. 5) The arbors of the LN in each glomerulus is colored in red with saturation proportional to the number of synapses onto the uPNs in that

glomerulus. (B) Schematic diagram of the glomeruli and the massive number of feedback circuits in the AL.

modalities is in order. In particular, the early vision system (Lazar
et al., 2015) and the central complex (Givon et al., 2017; Lazar
et al., 2021) are our next candidates.

5.2. Construction of Circuit Motifs With the
FeedbackCircuits Library
Detailed connectomic datasets, such as the Hemibrain dataset,
reveal a massive number of nested feedback loops among
different cell types. Dissecting the role of these feedback circuits
is key to the understanding the model of computation underlying
the Local Processing Units (LPUs) of the fruit fly brain.

The methodology underlying the FeedbackCircuits Library we
advanced here has wide reaching implications for studying the
massive feedback loops that dominate all regions/neuropils of the
fruit fly brain.

The FeedbackCircuits Library brings together the available

Drosophila connectomic, synaptomic and cell type data, with

tools for 1) querying connectome datasets that automatically

find and incorporate feedback pathways, 2) generating interactive

circuit diagrams of the feedback circuits, 3) automatic derivation
of executable models based on the composition of feedback
motifs anchored on actual connectomic data, 4) arbitrary

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2022 | Volume 16 | Article 853098190

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

manipulation (and/or ablation) of feedback circuits featured
by an executable interactive circuit diagram, and 5) systematic
characterization and comparison of the effect of different
feedback loops on the I/O behavior of arbitrary brain circuits.

We have demonstrated the capabilities of the
FeedbackCircuits Library using circuits of the DM4 and
DL5 glomeruli of the Drosophila antennal lobe constructed,
based on the Hemibrain dataset, either in isolation or pairwise
interconnected. We have also demonstrated a methodology for
constructing, exploring and characterizing the contribution of
individual feedback motifs as well as their compositions. The
entire AL feedback circuit can be readily constructed with the
approach we outlined.

The work presented here represents the beginning of an
in-depth study of feedback motifs and their functional logic.
By outlining the programmable ontology and demonstrating
its workflow in exploring the functional logic of brain circuit
from fly brain data, we advanced an accelerated path for the
exploration and discovery of the functional logic of the fruit
fly brain.

Studies of the functional logic of sensory processing
neuropils such as the medulla and the mushroom body
are currently limited to the feedforward pathways (Yang
and Clandinin, 2018; Borst et al., 2020; Modi et al.,
2020), although these circuits exhibit strong feedback
components (Nern et al., 2015; Eschbach et al., 2020;
Lazar et al., 2021). Our methodology paves the way
for deeper investigations into the composition of such
feedback circuits.

6. MATERIALS AND METHODS

In this section, we present the details of the methodology for
the exploration of the morphology of massive feedback circuits,
modeling odor signal processing in the early olfactory system,
and the interactive exploration of the antennal lobe as a network
of glomeruli.

For creating the tools underlying the programmable
ontology we used extensive capabilities to query datasets and
build executable circuits, query the antennal lobe circuitry
using these as well as customized tools, constructing and
evaluating the feedback circuits with the FeedbackCircuits
Library, and mapping glomeruli and their compositions into
executable circuits.

6.1. Exploring the Morphology of Cell
Types and Feedback Circuits
6.1.1. The NeuroNLP++ Web Application
NeuroNLP is a web application that supports the exploration of
fruit fly brain datasets with rule-based English queries (Ukani
et al., 2019; Lazar et al., 2021). To enhance the user experience
when asking questions that are well beyond the current
capabilities of NeuroNLP, we devised the NeuronNLP++ brain
explorer (https://plusplus.neuronlp.fruitflybrain.org). Figure 12
depicts the software architecture of theNeuroNLP++ application.
In addition to the backend servers supporting the NeuroNLP

web application (NeuroArch Server and NeuroNLP Server with
rule-based NLP Engine Ukani et al., 2019; Lazar et al., 2021),
NeuroNLP++ is supported by the DrosoBOT Engine (see
below), i.e., an additional backend of the NeuroNLP Server.

A free-form English query submitted through NeuroNLP++
that cannot be interpreted by the rule-based NLP engine is
redirected to DrosoBOT. DrosoBOT responds with a list of
ontological entities that are most pertinent. Each entry in the
list includes the name of the cell type, a link to the Drosophila
Anatomy Ontology containing references to the entities in
question (Costa et al., 2013), and a description of the cell type
as well as relevant entries to the worldwide literature (see also the
NeuroNLP++ window in Figure 3A). Each entry also includes
buttons to add, pin and unpin the neurons in the 3D visualization
workspace. The morphology of the neurons is retrieved from
the NeuroArch Database (Givon et al., 2015) via the NeuroArch
Server and displayed using custom visualization in the browser
(Ukani et al., 2019; Lazar et al., 2021) (see Figure 12).

In addition to using DrosoBOT to resolve free-form English
queries, NeuroNLP++ includes an application called Graph
View that allows users to visualize the graph representing the
connectivity of neurons in their workspace at neuronal or cell
type level. Once the GraphView button is pressed, NeuroNLP++
retrieves the connectivity of all the neurons in the workspace,
with an additional capability to filter out the connections that
have less than N synapses, where N ≥ 0. A graph is then plotted
in the workspace using the sigma.js library.

For neuronal level graph, each node represents a single neuron
in the visualization workspace, and the edge between two nodes
indicates a positive number of synaptic connections between the
corresponding neurons. For a cell type level graph, each node
represents a cell type that may abstract multiple neurons in the
visualization workspace. An edge indicates that there exists at
least 1 synaptic connection between neurons in the two cell types.
In addition, the graph in Graph View is interactive. Hovering
the mouse on a node highlights the corresponding neuron or all
neurons of the same cell type in the 3D visualization. The graph
can be further individually rearranged.

6.1.2. The DrosoBOT Engine
DrosoBOT is a natural language processing engine that 1)
parses free-form English queries pertaining to entities available
in an ontological dataset (Costa et al., 2013), and 2) provides
morphological data from a connectome dataset (Scheffer et al.,
2020) already associated with each ontological entity.

Given a free-form English query, DrosoBOT first uses DPR
(see below) to retrieve relevant passages in the query as
context candidates, and then uses PubMedBERT, fine-tuned
on the Stanford Question Answering Dataset, to find possible
answers to questions pertaining to a collection of Drosophila-
specific ontology terms and their descriptions. Here DPR is
the dense passage retriever trained on the Natural Questions
dataset (Kwiatkowski et al., 2019) that uses real anonymized
queries issued to Google and annotated answers from the top
5 Wikipedia articles. PubMedBERT is the Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2018)

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2022 | Volume 16 | Article 853098191

https://plusplus.neuronlp.fruitflybrain.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 12 | Software architecture of the NeuroNLP++ web application. The frontend application communicates with three backend servers: a NeuroArch Server

that hosts a NeuroArch Database of fruit fly brain datasets, a NeuroNLP Server that runs the rule-based NLP Engine, and, an additional NeuroNLP Server that runs

the DrosoBOT Engine.

model with biomedical domain-specific pre-training (Gu et al.,
2021) from abstracts on PubMed.

In addition, for specific cell types, DrosoBOT implements a
modular lexical search subsystem that uses domain knowledge
to improve search results when specific keywords of cell
types are asked. We make use of this system to improve the
search results for the Antennal Lobe, which requires biological
nomenclatures such as “DM4” to be detected not as typos but as
important structures.

To bridge the gap between existing ontology and connectome
datasets, we associated with each ontological entity the
corresponding neurons in the Hemibrain dataset based on the
names of the entities and their synonyms after searching through
all possible matches in theDrosophilaAnatomy Ontology (DAO)
dataset (Costa et al., 2013). We then created a graph with nodes
consisting of both names of entities in the DAO and names of
neurons. An edge is created between two nodes with a matching
term. After finding the ontological term relevant to the English
query from the first step, we then retrieved the names of the
neurons that are the graph neighbors of the ontological entity,
and finally retrieved the neurons from the database.

For the AL, starting with the terms for cell types and
abstractions in Costa et al. (2013) and expanding these to include
references to all cell types so that all common synonyms are
accounted for (for example, PNs, OSNs, glomeruli and LNs), we
facilitated the specification of Antennal Lobe circuits through
queries. Here we provided the capability to add relevant groups
of neurons such as new glomeruli and local neurons in only
a few searches and button presses. We also added the names
of all glomeruli as special “keywords" whose association with
the Antennal Lobe is automatically detected if present in a
search query.

6.1.3. Morphology and Graph Abstractions of Cell

Types in the Antennal Lobe
The morphology of OSNs, PNs and LNs is retrieved, as shown in
Figure 4, by using NeuroNLP++. Graph abstractions of OSNs
and PNs are obtained by invoking the cell type level algorithm of
Graph View.

The full list of morphological LN-types in the Antennal
Lobe is presented in Supplementary Figure S1 in
Supplementary Material. Each row depicts an instance

Frontiers in Neuroinformatics | www.frontiersin.org 18 June 2022 | Volume 16 | Article 853098192

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

of LN-type, the name of the LN-type as defined in the
Hemibrain dataset, and the number of instances of LN-types.
The connectivity of the shown instances of LNs with OSN
and PNs arborizing in each of the 51 olfactory glomeruli is
represented as a matrix on the right. The matrix entries are the
number of synaptic connections of the LNs from/to OSNs and
PNs. Here, we employed custom code to retrieve synaptome
information directly from the NeuroArch Database.

6.1.4. Morphology and Graph Abstractions of

Feedback Circuits in the Antennal Lobe
To identify feedback loops in the AL, we extracted from the
Hemibrain dataset (stored in the NeuroArch Database) the
number of synapses between each LN-type and each type of
OSNs and PNs. Here, we only considered a synapse if both its
presynaptic and postsynaptic sites are identified at a confidence
level higher than 70%. An LN forms an OSN-LN-OSN feedback
loop if it receives a total of more than 5 synapses from all the
OSNs and provides a total of more than 5 synapses to all the
OSNs, and it has less than 5 synapses with all the PNs. Similarly,
we consider that an LN forms a PN-LN-PN feedback loop if it
receives from and provides to all the PNs a total of more than
5 synapses and has less than 5 synapses with all the OSNs. The
LNs identified with each type of feedback loop in a glomerulus
are then associated with an ontological entity that is accessible by
DrosoBOT for document retrieval.

6.2. Creating the Programmable Ontology
of the Drosophila Brain
We tightly integrated the programmable ontology of the fruit fly
brain into the workflow of the interactive FlyBrainLab computing
platform depicted in Figure 2 (Lazar et al., 2021).

To improve the support of the visualization of the fly brain
morphology, we integrated using NeuroNLP++ the Drosophila
anatomical ontology with the connectome/synaptome data of
the Hemibrain dataset. In the FlyBrainLab workflow shown in
Figure 2 this integration factors into the first step of the left.

The programmable ontology provides a methodology to
define abstractions of fly brain circuits and create executable
circuit diagrams as described in the second step of the
FlyBrainLab workflow shown in Figure 2. FlyBrainLab provides
the support for the visualization and user interaction with
executable circuit diagrams.

Finally, programmability of the ontology is supported by the
FlyBrainLab in the third step of the workflow to configure,
compose and execute neural circuit models and to evaluate their
functional logic.

6.2.1. Receptor-Centric Modeling of the Space of

Odorants
To construct odorant objects as elements of the space of odorants,
we employed the receptor-centric Odorant Transduction Process
(OTP) model developed in Lazar and Yeh (2020). In steady-state,
the estimated affinity tensor b/d with entries [b]ron/[d]ron, for
all r = 1, 2, ...,R, o = 1, 2, ...,O and n = 1, 2, ...,N, matches
the spike rate response of the OTP model with the spike rate
of the neurophysiology recordings (Hallem and Carlson, 2006)

obtained in response to a constant amplitude waveform of 110
different odorants. Detailed data can be found in the olfactory
transduction circuit library OlfTransCircuit available at https://
github.com/FlyBrainLab/OlfTrans (Lazar et al., 2021).

6.2.2. Modeling/Constructing Individual Glomeruli in

the Antennal Lobe Circuit
As a first step in modeling an individual glomerulus, we first
extracted all OSNs with axons arborizing a glomerulus and all the
PNs that innervate that glomerulus.

To abstract the connectivity patterns of the LNs leading to
the circuit diagram in Figure 7, we inspected all 311 LNs in
the Hemibrain dataset (Scheffer et al., 2020). Of these, 226
LNs have more than 10 synapses in the right hemisphere AL.
We only considered a synapse if both its presynaptic and
postsynaptic sites are identified at a confidence level higher
than 70% in the Hemibrain dataset. For each of these LNs,
we counted the number of synapses they make, presynaptically
and postsynaptically, with partner OSNs as well as PNs in each
glomerulus. If the total number of synapses within a glomerulus
is less than 5, we deem the port connectivity pattern to be 0000,
i.e., no connections. The first digit of the 4-digit binary code is 1
if the number of LN to OSNs synapses is larger than 5. Similarly,
the second digit is 1 if the number of synapses the LN receives
from OSNs is larger than 5. The third digit is 1 if the number of
LN to PNs synapses is larger than 5. Similarly, the fourth digit is
1 if the number of synapses the LN receives from PNs is larger
than 5.

After inspecting all 226 LNs that innervate the right AL in
the hemibrain dataset (Scheffer et al., 2020), we listed in the 2nd
column of Supplementary Table S1 in Supplementary Material

the number of instances each port connectivity pattern occurs
across 51 olfactory glomeruli. For the DM4 and DL5 glomeruli,
the number of occurrences of each port connectivity pattern is
listed in the 3rd and 4th column, respectively.

6.2.3. Modeling/Constructing a Pair of

Interconnected Glomeruli in the AL
The modeling of interconnected glomeruli starts with the
initialization of isolated glomeruli as described above. LN1s
and LN2s feedback motifs can then be easily composed across
glomeruli. Composition of the resulting feedback loops with LN3
leads to an interconnect of two glomeruli. These are very simple
composition rules that open new directions in exploring the
functional logic of interconnected glomeruli.

6.3. Exploring the Functional Logic of the
Feedback Circuits in the Antennal Lobe
6.3.1. Interactively Exploring Circuit Diagrams With

the FeedbackCircuits Library
The FeedbackCircuits Library mentioned earlier in Section 4.3
was developed in Python and designed to be integrated into the
FlyBrainLab ecosystem for constructing feedback circuits and
exploring their function.

The FeedbackCircuits Library provides tools for interactively
visualizing and exploring the feedback loops of the AL model
circuits that are operational on the FlyBrainLab computing

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2022 | Volume 16 | Article 853098193

https://github.com/FlyBrainLab/OlfTrans
https://github.com/FlyBrainLab/OlfTrans
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

FIGURE 13 | Exploring the feedback loops between the DL5 and DM4 glomeruli using an interactive circuit diagram generated by the FeedbackCircuits Library. (A)

Users can generate a circuit diagram for any glomerulus consisting of OSNs, PNs, and LNs grouped according to the feedback connectivity pattern described in

Figure 7E, such as the diagram here for the DL5 glomerulus. (B) The generated diagrams are interactive in the FlyBrainLab platform. Hovering over the neurons on

the diagram (right) shows their partners, and highlights them in the diagram and in the corresponding 3D morphology (top left); clicking disables/enables them for

program execution (bottom left). Here, the user is currently hovering over the Hemibrain neuron with identifier 1702323388, which shows its partners in the green

block on the top right window and highlights it on the morphology in the top left in green.

Frontiers in Neuroinformatics | www.frontiersin.org 20 June 2022 | Volume 16 | Article 853098194

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

platform (Lazar et al., 2021). Figure 13A depicts an automatically
generated circuit diagram of the DL5 glomerulus. This circuit
diagram is a schematic of the glomerulus model shown in
Figure 7E and is based, for OSNs and PNs, upon the Hemibrain
connectome dataset (Scheffer et al., 2020). LNs are grouped
into blocks according to their port connectivity patterns with
respect to a given glomerulus (here, DL5). The circuit diagram
is fully operational in the FlyBrainLab platform; the interactive
user interface is shown in Figure 13B. On the top left is
the NeuroNLP 3D visualization window for displaying the
morphology of neurons. At the bottom left a Jupyter notebook
for code execution is displayed. The circuit diagram allows
users to inspect the morphology of neurons in the NeuroNLP
window by clicking on the ones displayed. For example, in
Figure 13B (right), we zoomed into the LNs that exhibit the
port connectivity pattern 0101. By clicking on the neuron whose
Hemibrain ID is 1702323388, the LN in green is highlighted
in Figure 13B (top left). Hovering also highlights all connected
neurons, such as the one with Hemibrain ID 1825789179 in
Figure 13B (right). The interactive circuit diagram provides
an intuitive means of constructing feedback motifs from
connectome data.

6.3.2. Evaluating the Role of Feedback Circuits in a

Single Glomerulus
As already briefly mentioned above, to construct the DM4
glomerulus feedback circuits with the FeedbackCircuits Library,
we created a DM4 glomerulus object that includes all the
OSNs and PNs and their connections according to the
Hemibrain dataset. We then add feedback motifs LN1,
LN2, and LN3 from Figure 8C. The construction of the
DL5 glomerulus including the feedback motifs follows a
similar procedure.

To model the odorant transduction process of the OSNs, we
followed the OTP model in Lazar and Yeh (2020). The axon
hillock of OSNs, PNs and LNs is given by the Connor- Stevens
point neuron model (Connor and Stevens, 1971). All synapses
are modeled as a variation of the α synapse. We also modeled
the presynaptic effect of LNs onto the OSN axon terminal. A
detailed description of the dynamics of the olfactory transduction
process, neurons and synapses can be found in Section 2 of
Supplementary Material. The configured model circuits were
executed on the Neurokernel Execution Engine (Givon and
Lazar, 2016). Neurokernel supports the execution of spiking
and/or analog neuron models.

To evaluate the feedback motifs, we swept through all possible
concentration-modulated affinity values, defined as [b]ron/[d]ron·
[u]o, where [b]ron/[d]ron is the affinity odorant o with the
receptor r expressed by OSN n, and [u]o is the constant
concentration waveform of odorant o presented to OSN n.

6.3.3. Evaluating the Role of Feedback Circuits

in/Between a Pair of Glomeruli
To construct the feedback circuit interconnecting a pair of
glomeruli (e.g., DM4 and DL5), we started with two independent
circuits, with feedback motifs LN1 and LN2, that only innervate

a single glomerulus. We then composed these two independent
circuits across the two glomeruli, and added a feedback motif
LN3 that connects to each LN1 and LN2 in both directions.
Instead of stimulating LN3 externally, we assumed that synapses
from LN1 and LN2 to LN3 are excitatory, and the output of LN3
is inhibitory.

The olfactory transduction, axon hillock and synaptic models
of the interconnected pair of glomeruli are the same as the ones
of the single glomerulus above, and their dynamics are described
in detail in Section 2 of Supplementary Material.

To evaluate the feedback circuit of the pair of interconnected
glomeruli, we swept through constant inputs on a grid of
concentration-modulated affinity values associated with the
odorant receptor of OSNs with axons that arborize the DM4
and DL5 glomeruli, respectively. PN responses to the inputs with
values on lines crossing the origin can be used to characterize the
responses to the odorants of interest.

6.3.4. Modeling and Constructing the Massive

Feedback Circuits of the AL
Composition of the circuit diagram of the entire AL in Figure 11

comes in three steps. First, OSNs and PNs and their ports from/to
LNs are constructed for each glomerulus according to Figure 7,
where the glomeruli are depicted as cylinders at the bottom of
Figure 11B. Second, for each glomerulus, we also configure the
connectivity patterns of the LNs, as described in Section 4.3.
This forms the local crossbar between all LNs and the ports of
a glomerulus and is depicted, e.g., on the top right of Figure 11B,
as 4 vertical lines. Finally, by connecting the local crossbars
from all glomeruli with the innervation pattern of each LN, we
obtain a hierarchical crossbar between LNs and the ports of
the glomeruli. The hierarchical crossbar provides the flexibility
to configure the routing of interconnections across glomeruli,
either by using the port connectivity patterns of LNs extracted
from connectome data (see also Supplementary Figure S1 in
Supplementary Material), or by any variations/ablations thereof
for testing and evaluating the functional logic of the AL circuit.

CODE AVAILABILITY STATEMENT

NeuroNLP++ web application is available at https://
plusplus.neuronlp.fruitflybrain.org. It is also available as a
Docker machine image for standalone installations. The
FeedbackCircuits Library is available as a Python package
at https://github.com/mkturkcan/FeedbackCircuits. The
FeedbackCircuits Library includes a number of example
Jupyter notebooks that help users explore its functionality. For
installation of FlyBrainLab, refer to Lazar et al. (2021).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.fruitflybrain.org. The NeuroArch
Database hosting publicly available Hemibrain dataset that are
used in the exploration and validation in this paper can be
downloaded from https://github.com/FlyBrainLab/datasets.

Frontiers in Neuroinformatics | www.frontiersin.org 21 June 2022 | Volume 16 | Article 853098195

https://plusplus.neuronlp.fruitflybrain.org
https://plusplus.neuronlp.fruitflybrain.org
https://github.com/mkturkcan/FeedbackCircuits
https://www.fruitflybrain.org
https://github.com/FlyBrainLab/datasets
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

AUTHOR CONTRIBUTIONS

AL contributed to conceptualization, developing research
directions, investigation, methodology, writing—original
draft, writing—review and editing, resources, supervision,
funding acquisition, and project administration. MT
contributed to conceptualization, software, validation,
investigation, visualization, methodology, writing—original
draft, writing—review and editing. Developed NeuroNLP++
and the FeedbackCircuits library. Performed evaluation of
the AL feedback circuit. YZ contributed to conceptualization,
developing research directions, validation, investigation,
visualization, methodology, writing—original draft, writing—
review and editing, funding acquisition, and project
administration. All authors contributed to the article and
approved the submitted version.

FUNDING

The research reported here was supported by AFOSR under
grant #FA9550-16-1-0410, DARPA under contract #HR0011-19-
9-0035 and NSF under grant #2024607.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
constructive comments to improve the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.853098/full#supplementary-material

REFERENCES

Bakken, T. E., Jorstad, N. L., Hu, Q., Lake, B. B., Tian, W., Kalmbach, B. E., et al.

(2021). Comparative cellular analysis of motor cortex in human, marmoset and

mouse. Nature 598, 111–119. doi: 10.1038/s41586-021-03465-8

Borst, A., Haag, J., and Mauss, A. S. (2020). How fly neurons compute

the direction of visual motion. J. Compar. Physiol. A 206, 109–124.

doi: 10.1007/s00359-019-01375-9

Chiang, A.-S., Lin, C.-Y., Chuang, C.-C., Chang, H.-M., Hsieh, C.-H., Yeh, C.-

W., et al. (2011). Three-dimensional reconstruction of brain-wide wiring

networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11.

doi: 10.1016/j.cub.2010.11.056

Chou, Y.-H., Spletter, M. L., Yaksi, E., Leong, J. C. S., Wilson, R. I., and Luo, L.

(2010). Diversity and wiring variability of olfactory local interneurons in the

Drosophila antennal lobe. Nat. Neurosci. 13, 439–449. doi: 10.1038/nn.2489

Clements, J., Dolafi, T., Umayam, L., Neubarth, N. L., Berg, S., Scheffer, L.

K., et al. (2020). neuprint: analysis tools for em connectomics. bioRxiv.

doi: 10.1101/2020.01.16.909465

Connor, J. A., and Stevens, C. F. (1971). Prediction of repetitive firing behavior

from voltage clamp data on an isolated neurone soma. J. Physiol. 213, 31–53.

doi: 10.1113/jphysiol.1971.sp009366

Costa, M., Reeve, S., Grumbling, G., and Osumi-Sutherland, D. (2013).

The Drosophila anatomy ontology. J. Biomed. Semantics 4, 32.

doi: 10.1186/2041-1480-4-32

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805. doi: 10.48550/arXiv.1810.04805

Egelhaaf, M., Kern, R., Krapp, H. G., Kretzberg, J., Kurtz, R., and Warzecha, A.-K.

(2002). Neural encoding of behaviorally relevant visual-motion information in

the fly. Trends Neurosci. 25, 96–102. doi: 10.1016/S0166-2236(02)02063-5

Eschbach, C., Fushiki, A., Winding, M., Schneider-Mizell, C. M., Shao, M., Arruda,

R., et al. (2020). Recurrent architecture for adaptive regulation of learning in the

insect brain. Nat. Neurosci. 23, 544–555. doi: 10.1038/s41593-020-0607-9

Givon, L. E., and Lazar, A. A. (2016). Neurokernel: an open source

platform for emulating the fruit fly brain. PLoS ONE 11, e0146581.

doi: 10.1371/journal.pone.0146581

Givon, L. E., Lazar, A. A., and Ukani, N. H. (2015). Neuroarch: A

graph db for querying and executing fruit fly brain circuits. Zenodo.

doi: 10.5281/zenodo.44225

Givon, L. E., Lazar, A. A., and Yeh, C.-H. (2017). Generating executable

models of the Drosophila central complex. Front. Behav. Neurosci. 11, 102.

doi: 10.3389/fnbeh.2017.00102

Grünert, U., and Martin, P. R. (2020). Cell types and cell circuits in

human and non-human primate retina. Prog. Retin Eye Res. 78, 100844.

doi: 10.1016/j.preteyeres.2020.100844

Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., et al. (2021).

Domain-specific language model pretraining for biomedical natural language

processing. ACM Trans. Comput. Healthcare 3, 1–23. doi: 10.1145/3458754

Hallem, E. A., and Carlson, J. R. (2006). Coding of odors by a receptor repertoire.

Cell 125, 143–160. doi: 10.1016/j.cell.2006.01.050

Harris, J. A., Mihalas, S., Hirokawa, K. E., Whitesell, J. D., Choi, H., Bernard, A.,

et al. (2019). Hierarchical organization of cortical and thalamic connectivity.

Nature 575, 195–202. doi: 10.1038/s41586-019-1716-z

Huang, Y.-C., Wang, C.-T., Su, T.-S., Kao, K.-W., Lin, Y.-J., Chuang, C.-C., et

al. (2019). A single-cell level and connectome-derived computational model

of the Drosophila brain. Front. Neuroinform. 12, 99. doi: 10.3389/fninf.2018.

00099

Hulse, B. K., Haberkern, H., Franconville, R., Turner-Evans, D. B., Takemura, S.-

,y., Wolff, T., et al. (2021). A connectome of the Drosophila central complex

reveals network motifs suitable for flexible navigation and context-dependent

action selection. Elife 10, e66039. doi: 10.7554/eLife.66039

Jeanne, J. M., Fişek, M., and Wilson, R. I. (2018). The organization of

projections from olfactory glomeruli onto higher-order neurons. Neuron 98,

1198.e6–1213.e6. doi: 10.1016/j.neuron.2018.05.011

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., et al. (2020).

Dense passage retrieval for open-domain question answering. arXiv preprint

arXiv:2004.04906. doi: 10.18653/v1/2020.emnlp-main.550

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., et al.

(2019). Natural questions: a benchmark for question answering research. Trans.

Assoc. Comput. Linguist. 7, 453–466. doi: 10.1162/tacl_a_00276

Lamme, V. A., Supèr, H., and Spekreijse, H. (1998). Feedforward, horizontal, and

feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8, 529–535.

doi: 10.1016/S0959-4388(98)80042-1

Lazar, A. A., Liu, T., Turkcan, M. K., and Zhou, Y. (2021). Accelerating with

flybrainlab the discovery of the functional logic of the Drosophila brain in

the connectomic and synaptomic era. Elife 10, e62362. doi: 10.7554/eLife.

62362

Lazar, A. A., Liu, T., and Yeh, C.-H. (2020). “An odorant encoding machine

for sampling, reconstruction and robust representation of odorant identity,”

in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (Barcelona: IEEE), 1743–1747.

Lazar, A. A., Liu, T., and Yeh, C.-H. (2022). The functional logic of

odor information processing in the Drosophila antennal lobe. bioRxiv.

doi: 10.1101/2021.12.27.474306

Lazar, A. A., Ukani, N. H., Psychas, K., and Zhou, Y. (2015). A parallel processing

model of the Drosophila retina. Zenodo. doi: 10.5281/zenodo.30036

Lazar, A. A., and Yeh, C.-H. (2020). A molecular odorant transduction

model and the complexity of spatio-temporal encoding in the Drosophila

antenna. PLoS Comput. Biol. 16, e1007751. doi: 10.1371/journal.pcbi.10

07751

Frontiers in Neuroinformatics | www.frontiersin.org 22 June 2022 | Volume 16 | Article 853098196

https://www.frontiersin.org/articles/10.3389/fninf.2022.853098/full#supplementary-material
https://doi.org/10.1038/s41586-021-03465-8
https://doi.org/10.1007/s00359-019-01375-9
https://doi.org/10.1016/j.cub.2010.11.056
https://doi.org/10.1038/nn.2489
https://doi.org/10.1101/2020.01.16.909465
https://doi.org/10.1113/jphysiol.1971.sp009366
https://doi.org/10.1186/2041-1480-4-32
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1016/S0166-2236(02)02063-5
https://doi.org/10.1038/s41593-020-0607-9
https://doi.org/10.1371/journal.pone.0146581
https://doi.org/10.5281/zenodo.44225
https://doi.org/10.3389/fnbeh.2017.00102
https://doi.org/10.1016/j.preteyeres.2020.100844
https://doi.org/10.1145/3458754
https://doi.org/10.1016/j.cell.2006.01.050
https://doi.org/10.1038/s41586-019-1716-z
https://doi.org/10.3389/fninf.2018.00099
https://doi.org/10.7554/eLife.66039
https://doi.org/10.1016/j.neuron.2018.05.011
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1016/S0959-4388(98)80042-1
https://doi.org/10.7554/eLife.62362
https://doi.org/10.1101/2021.12.27.474306
https://doi.org/10.5281/zenodo.30036
https://doi.org/10.1371/journal.pcbi.1007751
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lazar et al. A Programmable Ontology

Li, H., Janssens, J., De Waegeneer, M., Kolluru, S. S., Davie, K., Gardeux, V., et

al. (2021). Fly cell atlas: a single-cell transcriptomic atlas of the adult fruit fly.

bioRxiv. doi: 10.1101/2021.07.04.451050

Modi, M. N., Shuai, Y., and Turner, G. C. (2020). TheDrosophilamushroom body:

from architecture to algorithm in a learning circuit. Ann. Rev. Neurosci. 43,

465–484. doi: 10.1146/annurev-neuro-080317-0621333

Morgan, H. L. (1965). The generation of a uniquemachine description for chemical

structures-a technique developed at chemical abstracts service. J. Chem. Doc. 5,

107–113. doi: 10.1021/c160017a018

Nern, A., Pfeiffer, B. D., and Rubin, G. M. (2015). Optimized tools for

multicolor stochastic labeling reveal diverse stereotyped cell arrangements

in the fly visual system. Proc. Natl. Acad. Sci. U.S.A. 112, E2967–E2976.

doi: 10.1073/pnas.1506763112

Ohyama, T., Schneider-Mizell, C. M., Fetter, R. D., Aleman, J. V., Franconville, R.,

Rivera-Alba, M., et al. (2015). A multilevel multimodal circuit enhances action

selection in Drosophila. Nature 520, 633–639. doi: 10.1038/nature14297

Paxions, G., and Watson, C. (2013). The Rat Brain in Stereotaxic Coordinates.

Elsevier Academic Press. Available online at: https://www.elsevier.com/books/

the-rat-brain-in-stereotaxic-coordinates/paxinos/978-0-12-391949-6

Poldrack, R. A., and Yarkoni, T. (2016). From brain maps to cognitive ontologies:

informatics and the search for mental structure.Ann. Rev. Psychol. 67, 587–612.

doi: 10.1146/annurev-psych-122414-033729

Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-,y., Hayworth, K. J.,

et al. (2020). A connectome and analysis of the adult Drosophila central brain.

Elife 9, e57443. doi: 10.7554/eLife.57443

Scott, C. A., and Dahanukar, A. (2014). Sensory coding of olfaction and taste.

Behav. Genet. Fly 2, 49. doi: 10.1017/CBO9780511920585.005

Shapson-Coe, A., Januszewski, M., Berger, D. R., Pope, A., Wu, Y., Blakely, T., et al.

(2021). A connectomic study of a petascale fragment of human cerebral cortex.

bioRxiv. doi: 10.1101/2021.05.29.446289

Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C.

L., et al. (2012). Allen brain atlas: an integrated spatio-temporal portal for

exploring the central nervous system. Nucleic Acids Res. 41, D996–D1008.

doi: 10.1093/nar/gks1042

Swanson, L. W. (2018). Brain maps 4.0–structure of the rat brain: An

open access atlas with global nervous system nomenclature ontology

and flatmaps. J. Compar. Neurol. 526, 935–943. doi: 10.1002/cne.

24381

Takemura, S.-y., Xu, C. S., Lu, Z., Rivlin, P. K., Parag, T., Olbris, D. J., et al.

(2015). Synaptic circuits and their variations within different columns in the

visual system of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 112, 13711–13716.

doi: 10.1073/pnas.1509820112

Tasic, B., Yao, Z., Graybuck, L. T., Smith, K. A., Nguyen, T. N., Bertagnolli, D., et

al. (2018). Shared and distinct transcriptomic cell types across neocortical areas.

Nature 563, 72–78. doi: 10.1038/s41586-018-0654-5

Tootoonian, S., Coen, P., Kawai, R., andMurthy,M. (2012). Neural representations

of courtship song in the Drosophila brain. J. Neurosci. 32, 787–798.

doi: 10.1523/JNEUROSCI.5104-11.2012

Tran, N., Kepple, D., Shuvaev, S., and Koulakov, A. (2019). “Deepnose: Using

artificial neural networks to represent the space of odorants,” in Proceedings of

the 36th International Conference on Machine Learning, Vol. 97 (PMLR), 6305–

6314. Available online at: http://proceedings.mlr.press/v97/tran19b/tran19b.

pdf

Tuthill, J. C., and Wilson, R. I. (2016). Mechanosensation and adaptive motor

control in insects. Curr. Biol. 26, R1022–R1038. doi: 10.1016/j.cub.201

6.06.070

Ukani, N. H., Yeh, C.-H., Tomkins, A., Zhou, Y., Florescu, D., Ortiz, C. L., et al.

(2019). The fruit fly brain observatory: from structure to function. bioRxiv.

doi: 10.1101/580290

Wang, Q., Ding, S.-L., Li, Y., Royall, J., Feng, D., Lesnar, P., et al.

(2020). The allen mouse brain common coordinate framework: a

3d reference atlas. Cell 181, 936.e20–953.e20. doi: 10.1016/j.cell.202

0.04.007

Yang, H. H., and Clandinin, T. R. (2018). Elementary motion

detection in Drosophila: algorithms and mechanisms. Ann.

Rev. Vis. Sci. 4, 143–163. doi: 10.1146/annurev-vision-0915

17-034153

Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M.,

Milkie, D., et al. (2018). A complete electron microscopy volume of

the brain of adult Drosophila melanogaster. Cell 174, 730.e22–743.e22.

doi: 10.1016/j.cell.2018.06.019

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Lazar, Turkcan and Zhou. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 23 June 2022 | Volume 16 | Article 853098197

https://doi.org/10.1101/2021.07.04.451050
https://doi.org/10.1146/annurev-neuro-080317-0621333
https://doi.org/10.1021/c160017a018
https://doi.org/10.1073/pnas.1506763112
https://doi.org/10.1038/nature14297
https://www.elsevier.com/books/the-rat-brain-in-stereotaxic-coordinates/paxinos/978-0-12-391949-6
https://www.elsevier.com/books/the-rat-brain-in-stereotaxic-coordinates/paxinos/978-0-12-391949-6
https://doi.org/10.1146/annurev-psych-122414-033729
https://doi.org/10.7554/eLife.57443
https://doi.org/10.1017/CBO9780511920585.005
https://doi.org/10.1101/2021.05.29.446289
https://doi.org/10.1093/nar/gks1042
https://doi.org/10.1002/cne.24381
https://doi.org/10.1073/pnas.1509820112
https://doi.org/10.1038/s41586-018-0654-5
https://doi.org/10.1523/JNEUROSCI.5104-11.2012
http://proceedings.mlr.press/v97/tran19b/tran19b.pdf
http://proceedings.mlr.press/v97/tran19b/tran19b.pdf
https://doi.org/10.1016/j.cub.2016.06.070
https://doi.org/10.1101/580290
https://doi.org/10.1016/j.cell.2020.04.007
https://doi.org/10.1146/annurev-vision-091517-034153
https://doi.org/10.1016/j.cell.2018.06.019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 13 July 2022

doi: 10.3389/fninf.2022.855765

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2022 | Volume 16 | Article 855765

Edited by:

Padraig Gleeson,

University College London,

United Kingdom

Reviewed by:

Ján Antolík,

Charles University, Czechia

David Dahmen,

Helmholtz Association of German

Research Centres (HZ), Germany

*Correspondence:

Carlos Enrique Gutierrez

carlos.gutierrez@oist.jp

Received: 15 January 2022

Accepted: 30 May 2022

Published: 13 July 2022

Citation:

Gutierrez CE, Skibbe H, Musset H and

Doya K (2022) A Spiking Neural

Network Builder for Systematic

Data-to-Model Workflow.

Front. Neuroinform. 16:855765.

doi: 10.3389/fninf.2022.855765

A Spiking Neural Network Builder for
Systematic Data-to-Model Workflow
Carlos Enrique Gutierrez 1*, Henrik Skibbe 2, Hugo Musset 1 and Kenji Doya 1

1Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 2 Brain Image

Analysis Unit, RIKEN Center for Brain Science, Wako, Japan

In building biological neural network models, it is crucial to efficiently convert diverse

anatomical and physiological data into parameters of neurons and synapses and to

systematically estimate unknown parameters in reference to experimental observations.

Web-based tools for systematic model building can improve the transparency and

reproducibility of computational models and can facilitate collaborative model building,

validation, and evolution. Here, we present a framework to support collaborative

data-driven development of spiking neural network (SNN) models based on the

Entity-Relationship (ER) data description commonly used in large-scale business

software development. We organize all data attributes, including species, brain regions,

neuron types, projections, neuron models, and references as tables and relations within

a database management system (DBMS) and provide GUI interfaces for data registration

and visualization. This allows a robust “business-oriented” data representation that

supports collaborative model building and traceability of source information for every

detail of a model. We tested this data-to-model framework in cortical and striatal

network models by successfully combining data from papers with existing neuron and

synapse models and by generating NEST simulation codes for various network sizes.

Our framework also helps to check data integrity and consistency and data comparisons

across species. The framework enables the modeling of any region of the brain and is

being deployed to support the integration of anatomical and physiological datasets from

the brain/MINDS project for systematic SNN modeling of the marmoset brain.

Keywords: spiking neural networks, computational brain modeling, neural simulation, web application, data-to-

model workflow, collective intelligence

1. INTRODUCTION

Large amounts of diverse brain data are being generated from multiple brain science projects
around the world (Markram et al., 2011; Okano et al., 2016; Abbott, 2021). However, to understand
the functions of the brain, it is necessary to integrate such diverse experimental data as neural
networkmodels and to analyze dynamics and information transfer through systematic simulations.
As an approach to effectively utilize experimental data, projects are promoting development of
tools for brain modeling, such as the virtual brain (Sanz Leon et al., 2013), NetPyNE (Dura-Bernal
et al., 2019), the Brain modeling toolKit (Dai et al., 2020), NEST Desktop (Spreizer et al., 2021),
or PhysioDesigner (Asai et al., 2012). Besides that, a range of tools has been proposed as well
for facilitating model description and supporting workflow-related processes, such as NeuroML
(Gleeson et al., 2010), Mozaik (http://neuralensemble.org/docs/mozaik), SNNtoolbox (Rueckauer
et al., 2017), Nengo (Bekolay et al., 2014), pypet (Meyer and Obermayer, 2016), NeuroManager
(Stockton and Santamaria, 2015), and others.

198

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.855765
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.855765&domain=pdf&date_stamp=2022-07-13
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:carlos.gutierrez@oist.jp
https://doi.org/10.3389/fninf.2022.855765
https://www.frontiersin.org/articles/10.3389/fninf.2022.855765/full
http://neuralensemble.org/docs/mozaik

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

In building realistic brain models, it is necessary to
systematically incorporate experimental data, published
data in the literature, parameters from prior models, and
theoretical or mechanistic assumptions (Figure 1). Because most
models have uncertain parameters, tuning them by comparing
simulated model behaviors and experimental observations
and/or functional assumptions is also an essential process
in modeling. Performing such model building and systematic
verification bymaintaining traceability of the bases for parameter
settings is essential for accountability, reproducibility, and future
revision (evolvability) of the model.

SNNbuilder (https://snnbuilder.riken.jp) is a web-based
collaborative tool for data-driven modeling by spiking neural
networks (SNN). It allows the collection and management of
model parameters of any region of the brain for any species, by
virtue of its generic data representation using tables, attributes,
and relations in a common database.

SNNbuilder uses neuron and synapse models following the
state-of-the-art neural network simulator NEST (Hahne et al.,
2021) and manages the data-to-model passage using a set of
transfer functions to generate neural parameters and connection
rules. Partial data are completed automatically with default
values, while alternative and multiple data items from different
sources and users are combined as a collective estimation. Model
parameters can be specified as “fixed” or “to-optimize” values,
as well as assumptions or prior values. Every value is linked to
references for traceability.

SNNbuilder creates a model description as a JSON (JavaScript
Object Notation) file with full specifications and data modalities,
including desired behaviors labeled as “objectives.” The

FIGURE 1 | SNNbuilder conceptualization. Different data modalities are loaded through web GUI. The model builder manages the data-to-model process, generating

files for systematic simulation (optimization is not included in the current release). This agile process allows the evolution of models.

framework also generates simulation code in PyNEST (the
python bindings of the NEST simulator) for building and
simulating SNN models.

SNNbuilder allows an agile modeling workflow, with a
primary focus on model specifications. Starting with the main
parameters, a model can be created, systematically tested,
and can gradually evolve with further data and collaborative
contributions. The framework is designed as a web-based,
multi-user application with an intuitive graphical user interface
(GUI). Considering other tools, as far as we know, SNNbuilder
constitutes the first attempt in offering a shared place wheremany
users get together for building collaboratively common models.
This is a straightforward way to organize users toward one of
the most challenging and important tasks: modeling the complex
network of the brain in a thoroughly sustainable manner.

Japan’s Brain/MINDS project (Brain Mapping by Integrated
Neurotechnologies for Disease Studies, https://brainminds.jp/
en/; Okano et al., 2016) is building a multi-scale marmoset
brain map with structural and functional imaging. Images are
obtained from diffusionMRI, systematic tracer injections (Skibbe
et al., 2019; Gutierrez et al., 2020; Watakabe et al., 2021), and
many types of fluorescent calcium imaging. SNNbuilder seeks
to integrate such diverse, large-scale data into computational
modeling, and open data and tools from other brain projects.

2. DESIGN

SNNbuilder is designed as a “web-app,” developed using .NET
and C#, an open-source developer platform. Its database runs on
MySQL, an open-source relational database management system

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2022 | Volume 16 | Article 855765199

https://snnbuilder.riken.jp
https://brainminds.jp/en/
https://brainminds.jp/en/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

FIGURE 2 | The generic ER (entities and relations) data model (A) is able to capture specifications of any region of the brain for any species. Closely related entities

are shown as linked groups (color code). The modeling workflow (B) runs on GUI. Inputs correspond to research publications, modeler expertise, connectomic data,

and models from NEST simulator. Specifications are stored in the database. A builder function performs data mapping as NEST parameters using either transfer

functions or direct assignment, creates a model description file, and generates code for simulation.

(DBMS). The selection of a web environment for brain modeling,
responds to the importance of the internet as a common shared
space that enables users to access from remote locations, perform
modeling tasks transparently, and share up-to-date models. For
straightforward online collaboration, a login system manages
accesses and permissions (see section 3.10).

2.1. Design Principles
From its conceptualization, the framework takes into account
modeling principles, as follows:

Fairness and transparency: our framework allows linking
model parameters with experimental data, database entries,
or scientific publications. References as DOIs (digital object
identifier) or URLs can be recorded for every detail of a model.
Model descriptions and simulation codes are open to the research
community through the web app.

Reproducibility: the framework provides automatic
generation of simulation code. Models can be re-built with
different choices of source data, and results can be reproduced
by simulation of generated codes.

Sustainability: upon the emergence of new papers or
experimental data, SNNbuilder allows model updates, such as
parameter additions, modifications, and deletions. Rather than
building a model for just one point in time, our framework
facilitates sustained model evolution.

Collective action: similar experimental studies may produce
dissimilar data in different laboratories and at different times.
Our framework allows the loading of several values for the same
data attribute. In such a way, better parameter settings may be
selected by collective contributions from various modelers.

2.2. From Brain Biology to Database
Structure
Depending on the region of the brain, degrees of detail and
scale, SNN models can incorporate various types of neurons and
synapses, as thousands, millions, or billions of components. For
that reason, we designed a generic database to support a diversity
of models, species, scales, and growing data.

To set up a comprehensive database structure for any
model of the brain, we first identified, from brain biology,
the most important generic objects that “produce” data,
similar to specifying the main components and features on
software development projects. We described those “data
provider” objects and their relations as entities with multiple
data attributes and connections using Entity-Relationship (ER)
modeling (Chen, 1976, 2002). ER modeling is commonly used
in software engineering for the representation of business needs
and processes and provides a business-recognized framework to
define the information structure of a relational database.

From our analysis, six main entity groups were identified
(Figure 2A):

• SNN models: the description of a brain circuit or region to be
modeled for a certain species.

• Neuronal data: neuron types or neural populations, including
relevant anatomical, morphological, and physiological
characteristics.

• Connectomic data: projections between neural populations,
along with anatomical and morphological details of
network wiring.

• Citations and modeling notes: for reporting
origins of data (references), such as DOIs or

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2022 | Volume 16 | Article 855765200

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

FIGURE 3 | SNNbuilder GUI. (A) Left: front-end for species selection and model creation. Right: the modeling workflow is organized by option tabs. (B) Left: data

requirements for neurons include numbers, PSP, dendrite characteristics, firing rates, and NEST neuron parameters. Right: projection specifications incorporate

axonal properties, bouton counts, receptor locations, redundancy, synapses, and NEST synapse parameters.

other URLs, and recording memos over the
modeling workflow.

• Neural simulator models: a generic structure to manage data
attributes of neuron and synapse models of a neural simulator,
like NEST.

• Simulations: for specification of multiple simulations,
including stimuli and recordables.

Entities and relations were created in MySQL as tables with
primary and foreign keys to preserve data integrity and
consistency. The database design applies to any other relational
DBMS as well.

3. MODEL BUILDING WORKFLOW

The modeling workflow runs on the GUI (Figure 2B), allowing
database updates in real time. The process begins by selecting

a species, creating a new model instance by the option “Build
a new model” and adding a description of the targeted neural
circuit or brain region (Figure 3A left). At this initial step,
the system generates a “model id” for identifying uniquely
the model.

Model scale, in relation to biological size, is also specified.
Whereas, modelers indicate realistic anatomical data, such as
numbers of neurons, bouton counts, axonal domains, a scale
parameter adjusts all numbers at code generation time. The scale
is relevant for implementation purposes; however, limitations on
the reducibility of network sizes (Van Albada et al., 2015) indicate
the importance of realistic numbers of neurons and synapses.
Given the available computational resources, small scales may
run on laptops or desktop computers, while large scales run
on servers.

After the initial settings, model specifications (input
data) are required (Figure 3A right): details of neural

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2022 | Volume 16 | Article 855765201

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

populations, projections or connectivity data, and models
from NEST simulator.

3.1. Neural Populations
A neural population is created by an insert operation. This
records the population name (or cell type), its excitatory or
inhibitory regime, and if available, a related image. Further
data requirements are arranged in a tabbed document interface
(Figure 3B left), organized as Liénard and Girard (2014), as
below:

• Number: the number of neurons N within a nucleus at a real
scale, considering a single brain hemisphere.

• Signaling: this refers to the neurotransmitter receptor
type (AMPA and NMDA for excitatory/glutamate
neurotransmitter, GABA for inhibitory/gaba
neurotransmitter) of the neuron. Likewise, the PSP (post-
synaptic potential) amplitude or change Vn (mV) caused
by a single spike mediated by a neurotransmitter n to the
membrane potential at the location of the receptor (synapse),
and its rise time tVn (ms).

• Dendrite extent: the average maximal extent l (µm) of the
neuronal dendritic field.

• Dendrite diameter: the mean diameter d (µm) of neuronal
dendrites along their entire lengths.

• Firing rate: a biologically plausible range [φs
0,φ

s
1] of the neural

population mean firing rate (Hz) for different states s: resting
state, excitation (or functional) state, maximum activity, and
disease condition. Firing rate is considered a cost function (or
objective) and labeled accordingly (see data flags). The future
work will consider the integration of an optimization process
(see Current limitations).

• Other parameters: parameters of a selected NEST neuron
model. Every neural population is paired to a NEST model
by an “import from model” operation that selects the neuron
model and recalls NEST parameters with default values. After
the import, parameter values can be updated. See section 3.3
for more details.

• Objectives/Metrics: it corresponds to user defined objectives
and metrics. A configurable set of objectives is available in the
main menu (Figure 7.3), including, for example, coefficient
of variation, inter-spike interval, fano factor (Rajdl et al.,
2020), and other arbitrary targets. In this tab section, multiple
objectives can be selected and their target values or metrics
specified, including the related references. Objectives/metrics
are later generated as comments on the simulation script (see
Current limitations).

3.2. Projections
An insert operation facilitates data-entry for model connectivity.
Projections link the source and target neural populations created
in the previous step. Their connectivity is defined by connection
rules specified per source-target pair. Further data requirements
are organized in a tabbed document interface as well (Figure 3B
right), with a structure similar to Liénard and Girard (2014):

• Connection rule: it defines the connectivity modality based
on NEST connection rules for spatially-structured networks.

Indegree- and outdegree-based rules are made available and
probability-based, such as constant probability and distance-
depended Gaussian probability rules. Transfer functions (see
Appendix A) define the indegree and outdegree parameters,
whereas a constant probability or SD parameters can be
specified by GUI in the case of probability-based rules.

• Axon organization: source-target connection type can be
focused or diffused, so synapses are taken from (or made to)
neurons within narrow or wide spatial domains, respectively
(i.e., a circular or spherical mask). The domain refers to the
mean radius (mm or in units relative to the spatial organization
of neurons) of a circle (sphere) approximating the 2D shape
(3D-volume) of axonal arbors.

• Percentage of projection neurons: the proportion of neurons
P ∈ [0, 100]% in the source population with axons connecting
the target population.

• Bouton number: the mean number of axonal varicosities (or
boutons) α where synapses may occur. A biologically plausible
range is defined for the sake of exploration; thus, bouton
counts are considered as “to-optimize” parameters (see Data
flags and Current limitations).

• Receptor location to soma: the mean distance r to the
soma of synaptic receptors along dendrites, expressed as
a proportion of dendrite extent l. It takes values within
ranges for exploration: proximal r ∈ [0, 0.2), medial r ∈

[0.2, 0.6), and distal r ∈ [0.6, 1]. It is considered a “to-
optimize” parameter (see Current limitations). This parameter
is used to calculate an attenuation of the connection weights
(see Transfer functions). Specifying r as “None” removes
attenuation from connection weights.

• Redundancy (Girard et al., 2020): the mean number ρ of
contacts made by axons on each dendritic tree. It is a number
between [1, ν], with ν being the total number of synapses
converging on a single neuron. Redundancy can be used to
adjust the number of connections and their strength, especially
for scaled-down model simulations (see Appendix A: Transfer
functions).

• Synapse: records the communication delay (ms) (or axonal
delay) of a projection and the corresponding connection
weight. If defined, synapse data overwrite the default values
of the selected NEST synapse model (see Appendix A:
Connection weight).

• Other parameters: parameters of a selected NEST synapse
model. Similar to the case for neural populations, every
projection is paired to a NEST model by an “import from
model” operation that transfers parameters with default values
to the projection for further update. See the section “Models of
a neural simulator” for more details.

3.3. Models of a Neural Simulator
SNNbuilder uses neuron and synapse models following those
of NEST (Hahne et al., 2021), a state-of-the-art simulator for
SNN models that focuses on accurate dynamics, varieties of
network structure, and scalability for large-scale simulation.
NEST provides more than 50 neuron models, over 10 synapse
models, and an active support and global community.

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2022 | Volume 16 | Article 855765202

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

FIGURE 4 | Data load. (A) Left: NEST models are incorporated using JSON format data entry in the edit-box area. The required format is shown in the dark

background area. Right: after data loading, parameter default values can be updated. (B) Import function for connectomic data. Left: connectome nodes and edges

are mapped as neuronal populations and projections, respectively; thus, input data are prepared as two JSON files. Center: options for data loading include a file

upload or import-from-URL functions. The dark background area shows an example of the required format. Right: after loading to the database, neurons and

projections can be explored and updated.

Parameters from NEST neuron or synapse models can be
added using the insert or import functions. The latter reads
a JSON formatted NEST model from a web edit-box and
imports parameter names, descriptions, and default values to the
database. The GUI allows manual data-entry or “cut and paste”
commands (Figure 4A left). The data structure for neuron and
synapse models is generic at the database level (Figure 4A right),
so it can support several neural simulators.

3.4. Data Sources for Modeling
At the time of this report, paper surveys, identification, and
manual loading of parameter values are the main activities for
model specification at SNNbuilder. Nevertheless, its “online”
condition supports potential integration with resources available
over the internet, for example, knowledge graphs, public
databases, or web services that provide data on-demand, for
example, connectomic data (see section 5 and Supplementary

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2022 | Volume 16 | Article 855765203

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

Figure B.1). Connectomes are frequently generated as open
sources for the advancement of science. Tracer studies, DTI
(diffusion tensor image)-based fiber tracking, and functional
MRI (magnetic resonance image) data are frequently arranged as
region-level (mesoscale data) connectome matrices, where nodes
correspond to brain regions and edges to their connections.

To allow such data integration from external sources,
our system is prepared to import connectomic data from
remote URLs or file-upload. The connectomic data must
be provided in JSON format and separated into two files
(Figure 4B left) for mapping: (i) nodes as neural populations,
with specifications (if available) such as population name,
number, excitatory/inhibitory regime, and others; and (ii)
edges as projections, including available specifications for the
axonal delay, connection weight, and others. These functions
are available in the GUI (Figure 4B center). They provide a
straightforward way for incorporating connectomic data and
rapidmodel creation.Moreover, after importing, the user can add
additional specifications, implement modifications, assign NEST
neuron models, and other improvements (Figure 4B right). It is
also possible to integrate different data scales (micro, meso, and
macro). Data import reduces manual work considerably.

3.5. Data Flags
Flags label characteristics of the data. By default, high-confidence
and frequently reported data are considered “fixed parameters,”
such as neuron numbers, dendrite extent, and diameter, post-
synaptic potentials, etc. Parameters, such as axonal bouton
counts, and average location of synapses along dendritic trees
are considered “to-optimize parameters” and defined as ranges of
values for exploration. In the case of multiple entries for the same
parameter, a “deactivated” flag is available to “remove” outliers
and low-confidence values (Figure 8.11). Several activated
parameters are possible, a collective “contribution” is calculated
in such a case. For multiple numerical values, the average
is used (Supplementary Figure B.2); in the case of non-
numerical multiple values (categories), the appearance frequency
is computed as an important index, with the highest frequency
value as the collective outcome.

Electro-physiological constraints, such as mean firing rates,
are defined as intervals of plausible neural activity, and labeled
as “objective functions,” crucial for comparisons with simulated
neural activity (see Current limitations).

Flag assignment depends on modeler criteria. It is
recommended to distinguish between well-known data and
poorly documented or inconsistent data from different sources.

3.6. References and Notes
Paper survey-based data entry allows recording of relevant
parameter values and data providers and references for
traceability. SNNbuilder enables acknowledgment of every detail
attached to a model using DOIs or other URLs. Source
publications can be accessed and examined directly from the
framework GUI (Supplementary Figure B.2).

In addition, the GUI includes edit-boxes for digital notes,
memos, or comments at every web tab of the workflow. Thus,

free-text recording into the database facilitates the creation of a
“diary” or “logs,” a common practice among researchers.

3.7. Network Viewers
The GUI enables listing and navigating through model
specifications, such as neurons and projections; however, to
explore a model as a whole, viewers are also helpful (Figure 5).
A graph-viewer visualizes neuronal populations as boxes (nodes),
and projections as edges linking the boxes. The interactive nature
of the viewer enables graph exploration and content retrieval
from the database.

An additional viewer implements a 2D-matrix visualization
for the exploration of connectivity data, such as source
and target populations, axonal delays, spatial connection
domains, and other network-wiring details. This interface allows
straightforward modification of connection weights.

3.8. Simulation Settings
Model simulation criteria are specified by GUI. The main
specifications include a description of the simulation, the time
resolution (ms), the simulation time (ms), and the number
of computational threads. In addition, a common spatial
domain for neuron positioning is defined for the sake of
consistency and robust simulations in NEST. This version
of SNNbuilder supports spatial boundaries (minimum and
maximum coordinate values) for randomly and uniformly
organized neuron positions in 2D or 3D. Since multiple
simulations can be specified for a certain model, different spatial
arrangements can be tested.

Specifications of connection weight values might result
weak in relation to other parameter values, like membrane
resistances, for driving network dynamics during simulation;
or too strong, leading to extreme network activity. In those
cases, a multiplicative factor affecting the absolute value of all
synaptic weights can be defined by the user, called synaptic
scaling gain. In this way, simulations can be performed while
maintaining, relatively, the specified connection strengths of the
neural network model.

Besides simulation settings, details of the stimuli and
recordable are also defined. Several simulations can be specified;
however, only one should be activated by assigning the
corresponding data flag for code generation. Otherwise, the first
active simulation is considered at the PyNEST script.

3.8.1. Stimuli

Stimuli are designed as independent spike trains from NEST
Poisson generators (see Current limitations) and specified by
GUI (Figure 9.26). A Poisson generator is created per target
population with configurable firing rate (Hz), connection weight,
axonal delay (ms), and the start and stop times (ms) of the
stimulation, along with its scope. The scope refers to either
Poisson spikes trains are sent to all neurons in the target (global
scope) or to a spatially-bounded subset of neurons. The spatial
bounds are defined by a point (position coordinates) and a
radius parameter, which determines the neurons within a circle
or sphere under the stimuli.

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2022 | Volume 16 | Article 855765204

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

FIGURE 5 | Network viewers. Graph (left) and matrix (right) viewers for exploration of model specifications with interactive data retrieval (area enclosed by blue lines).

The latter enables selecting a connection within the matrix and upgrading its weight.

3.8.2. Recordables

There exist two NEST-based recordable options for spikes and
membrane potential that define what gets recorded during
simulation time. Multiple recordable can be specified, with
a single one targeting a single neural population. Spike-type
recordable stores the spike times of all neurons at the target
population; while membrane potential-type recordable selects,
at random, a single neuron for recording the evolution of its
membrane potential. Recordables generate, automatically, output
data files.

3.9. Model Description and Code
Generation
The workflow’s final step corresponds to procedures for
organizing SNNbuilder output. This includes the generation of
a comprehensive list of model specifications, parameter passage
to NEST models, and the generation of simulation code for
creating neural populations, recording devices, network wiring,
and stimuli.

Automatic generation of code is practical for immediate
testing, different model configurations, and versions. High-level
programming skills are not required and modeling time is used
mainly for definition of biological constraints.

Model description and simulation code files are made
available through 3 sequential processes (Figure 9.27)
implemented in Flask (Grinberg, 2018), a python-based
web development framework, and executable on GUI:

(1) Get parameters: for a particular model, this process runs
SQL (structured query language) queries on the database and
gathers the previously specified data for that model. Retrieved

data are converted to python dictionaries and arranged in
a single JSON file as the model description. In this step,
queries make use of the data-flag specifications to filter
parameters and compute collective contributions. Parameter
values labeled as “deactivated” are not considered. In the case
of multiple numerical values loaded for a specific parameter,
the average value is considered as the collective outcome
(Supplementary Figure B.2) and computed at query time. In
the case of multiple categorical data, category frequencies are
calculated as an “importance index.” The most weighted index
is selected for parameter initialization. Queries may retrieve
dictionaries with “None” records for parameters with no available
data. In such cases, default settings are assigned in the next step.

(2) Code build: a builder function takes the JSON file
generated at 1) applies transfer functions (see Appendix A) and
the specified scale and creates the simulation script in PyNEST
for NEST 3. For robust simulations, the builder generates
straightforward lines of code (LOC) in the following sequence:

• Initialization: includes LOC for importing the necessary
python packages. NEST kernel initialization, and the
definition of global variables.

• Creation of neural populations: the process takes parameter
values and creates LOC for initialization of neural populations.
Parameters from (1) are mapped to NEST neuron and synapse
models, updating default values. NEST defaults remain when
“None’s” are present at parameter specifications. Neuron
numbers are adjusted based on the defined scale parameter.
Signaling and PSP values set up neuron receptors and synaptic
delays. Neuron positions are created in 2D or 3D space, by
using a uniform random distribution, within spatial bounds

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2022 | Volume 16 | Article 855765205

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

defined at the simulation settings. Given the specified NEST
neuron model and its parameters, LOC for the creation of the
neural population is generated.

• Network building: this takes network-wiring details from
specifications at (1). For connected population pairs,
parameters are mapped to NEST synapse models and
connection dictionaries, and LOCs are created for connection
rules. For more details on connection weight definition and
connection rule parameters, see Transfer functions (Appendix
A).

• Stimuli, recordables, and simulation: given the specified
stimuli and targets, the process generates LOCs for the
creation of Poisson spike-train generators and initialization
of their firing rates, spatial scope, and other parameters.
Additional LOC for the creation of recording devices
of neuronal activity (spikes) or membrane potentials are
also included. Finally, the process creates LOC for NEST
simulation commands with a defined biological time.

The tool does not include on-line code execution or execution
management on its first release (see Current limitations and
Discussion).

(3) File download: this takes the results from 1 (model
description as JSON file) and 2 (simulation code as python script
file), packs them into a zip file, and delivers them. Although
the python script runs stand-alone, the specification file is
made available for future parameter optimization (see Current
limitations).

3.10. Collective Intelligence
The online and centralized database aspects of our approach
allow a modern form of collaboration called “collective
intelligence.” SNNbuilder is designed for multi-user access.
Another important feature is the assignment of multiple values
for the same parameter. Diverse input values for a single
parameter improve its reliability (Supplementary Figure B.2),
see Data flags and Model description and code generation
sections). Over time, settings evolve to better values through
different contributions of more users and new data, gradually
converging to the most realistic ones.

These characteristics promote “collective intelligence,” where
humans (and computers) working together act much more
intelligently in a collective way than individually (Malone,
2018). As demonstrated by crowd-sourcing experiences
(Brabham, 2013), a “bigger brain” works better than a small
one. By this collaboration scheme, better models of the
brain can be collectively built and shared online across the
scientific community. In addition, SNNbuilder includes
functions for maintaining digital notes or memos (see
Reference and notes section), available at every tab of the
GUI (Supplementary Figure B.2). In this way, users can record
and share comments, questions, and logs over the workflow.

To support this scheme, the application implements a login
system for user identification and automatic labeling (tags) of
user contributions. When a model is created (Figures 3A, 7.3),
the owner has the choice to “open” the model to the community;
in that case, multiple users can visualize, add or update records,

and generate simulation code. Otherwise, the model remains
close, and only the owner can access it to perform updates. Every
record is owned by a specific user. Security rules disable the
deletion of different user contributions; thus, only self-owned
records can be removed or disabled.

3.11. Current Limitations
The present release of our work reports some limitations not yet
solved or implemented.

Specifications are mainly fixed parameter values (numerical,
categorical, or descriptions). Detailed models may require
distribution-based values for some parameters, such as
connection weights, synapse locations, resting membrane
potentials, which are not yet included (see section 5). Complex
experimental settings or detailed models may require the
incorporation of functional-based metadata for setting up
neuronal parameters and connectivity features; however, our
application does not support that aspect.

The firing rate specifications can take numerical values and
description tags indicating the “state” related to the neural
activity, for example, resting, excitation, and disease states;
however, the state is not linked to a certain stimulation protocol
for its effective simulation. In the present release, states are
enabled only for the characterization of the targeted activity.

Specifications of a model cannot be re-used by other
models. SNNbuilder considers constantly evolving models; thus,
parameter history is not maintained and the latest specifications
are taken at code-generation time. Model versioning is not
implemented (see Discussion). Data modifications, additions
and deletions from multiple users are not tracked over the
building workflow; however, ownership records are maintained
for acknowledgment of the different contributions.

The current version of our tool provides a subset of the
available NEST connection rules. Stimuli are defined using
Poisson spike trains, there is no other stimulus modality
implemented. Optimization is also not yet included; nevertheless,
the database structure was designed to support an optimization
engine (see Discussion). The system allows the import of
connectomic data; however, the data require preparation in a
specific JSON format (see section 5). Furthermore, there is no
functionality for accessing HPC resources; therefore, simulation
code cannot be executed within SNNbuilder. Code execution
steps are managed by the user.

4. MODELING EXAMPLES

We tested SNNbuilder by building two models: a balanced
cortical network (Brunel, 2000) showing self-sustained
asynchronous-irregular (SSAI) activity (Kriener et al., 2014) and
a model of the mouse striatum (Hjorth et al., 2020) reproducing
resting state activity (Figure 6).

4.1. Self-Sustained Network
Networks of spiking neurons can show SSAI firing under a
certain balance of excitatory and inhibitory transmission, with no
need for random background input. We reproduced a cortical
network model with excitatory and inhibitory populations

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2022 | Volume 16 | Article 855765206

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

FIGURE 6 | Example models. (A) Cortical network simulations with different values of the coupling strength between excitatory and inhibitory populations. Strong

coupling allows self-sustained asynchronous irregular activity (SSAI) after stimulus offset (1,000 ms). A single change of the receptor location (synapse) to soma, from

proximal to distal (plot at bottom), reduces SSAI lifetime. (B) Striatal microcircuitry. Rasters correspond to baseline activity of the striatal nuclei (0–1,000 ms), as well as

activity triggered by a strong cortical input (1,000–1,500 ms). Single neuron voltage traces are shown for the same simulation (bottom).

(Brunel, 2000) and explored the generation and duration of SSAI
state based on examples from Kriener et al. (2014).

The model was built following the steps below:

• Login to SNNbuilder (https://snnbuilder.riken.jp)
(Figure 7.1).

• Select the target subject, for example, rodent (Figure 7.2).
• Create a model instance using “Build a new model” option

(Figure 7.3).
• Specify a model name, scale, and other descriptions

(Figure 7.4).
• Select the model name (Figure 7.5) to show tabs for model

details (Figure 7.6).

• Select “insert” in the “neurons” tab to load data for neural
populations (Figure 7.7).

• Create excitatory and inhibitory neural populations
(Figure 7.8).

• Input additional data required in several tabs (Figure 7.9).
• In “Number,” specify Nexc = 10, 000 and Ninh = 2, 500 for

excitatory and inhibitory neurons respectively (Figure 8.10).
• Specify post-synaptic potentials (PSPs) for excitatory (AMPA)

and inhibitory (GABA) receptors as alpha-functions with a
common value of tVn = 0.5ms (rise time of the synaptic
function), and PSP amplitudes Vexc = J and Vinh = gJ
(Figure 8.11). This allows exploration of relative inhibitory

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2022 | Volume 16 | Article 855765207

https://snnbuilder.riken.jp
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

FIGURE 7 | Model creation at SNNbuilder. 1. Login system. 2. Selection of species (subject). 3. “Build a new model” option. 4. Initial specifications. 5. The created

model is listed at the front-end. 6. Tabs for modeling workflow. 7. “Insert” option at “Neurons” tab. 8,9. Required specification for neuronal populations.

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2022 | Volume 16 | Article 855765208

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

FIGURE 8 | Neuronal population specifications. 10. Number of neurons. 11. Receptors, PSP amplitudes, and rise times. 12,13. Dendrite characteristics. 14. “Import

from model” option. 15,16. Selection of a NEST model and migration of default parameters.

strength by activating a single pair (i.e., dotted square at
Figure 8.11) as a “fixed parameter” while “deactivating”
others.

• Set generic values for the neuronal dendritic extent lx =

600µm (Figure 8.12) and dendrite diameter dx = 1.6µm
(Figure 8.13).

• Implement neural populations as multi-synapse LIF (leaky
integrate-and-fire) neurons by the option “import from
model” at “Other parameter” tab (Figure 8.14). This enables
the selection of a NEST neuron model (Figure 8.15) and
transfer of parameters with default values to the neural
populations (Figure 8.16).

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2022 | Volume 16 | Article 855765209

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

FIGURE 9 | Projection and simulation specifications. 17. “Insert” option at “Projections” tab. 18. Data requirements for network wiring. 19. Axonal organization. 20.

Percentage of neurons at source projecting to target. 21. Bouton counts. 22. Synapse location to soma. 23. Redundancy parameter. 24. “Insert” option at

“Simulations” tab. 25. Simulation settings. 26. Stimuli to target populations. 27. Model description file and simulation script generation.

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2022 | Volume 16 | Article 855765210

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

• Specify connectivity details using the “Projections” tab, with
the “insert” function (Figure 9.17).

• Link source and target neural populations and add
connectivity specifications by navigating the additional
tabs (Figure 9.18).

• Set axonal organization as “diffuse” (Figure 9.19), with a wide
spatial domain, in order to emulate random networks in
which neurons are independently connected with an equal
probability ǫ.

• Define the percentage of source neurons projecting to the
target population as 100% (Figure 9.20).

• Assume ǫ = 0.1 to define bouton counts from projections
at excitatory neurons as α{exc,inh}→exc = ǫ × Nexc, and at
inhibitory neurons as α{exc,inh}→inh = ǫ × Ninh (Figure 9.21).

• Specify the synaptic location to soma rx as “proximal” for
establishing a minimal PSP attenuation, with a distance within
20% of a generic dendritic extent (Figure 9.22).

• Set a generic redundancy value ρ = 1 (Figure 9.23).
• Implement projections as NEST static synapse models, with

default parameter values, similar to the NEST neuron’s case
(Figure 8.15).

• Create a simulation using the “insert” function (Figure 9.24),
specify time resolution dt = 0.1ms, simulation time for
2, 000ms, and spatial organization of neurons in 2D-space with
coordinates (x, y) randomly generated between [0, 1] and other
features (Figure 9.25).

• Add stimuli for the first 1,000ms as independent Poisson spike
trains of constant rate (Figure 9.26).

• Generate model descriptions and simulation code in three
sequential steps: get parameters, code building, and files
download (Figure 9.27).

Simulations run with different values of J and g (Figure 6A), for
example, J = {1.1, 1.4} and g = 4 showed different network
activities after stimulus offset. While the lifetime for J = 1.1 was
almost zero, J = 1.4 sustained the firing rate, allowing a longer
lifetime. Thus, a stronger coupling strength drove the network
over the whole simulation time. As reported in Kriener et al.
(2014), the SSAI state showed highly irregular spiking activity,
with neurons switching between periods of silence or low firing
rate, and short bursts or elevated rates, while the average activity
of the neural population persisted over the simulation time. It is
worth noting that values of J and g are not directly comparable to
those reported by Brunel (2000) and Kriener et al. (2014), since
attenuation is applied on the PSP strengths based on dendrite
parameters (see Transfer functions in Appendix A).

As an additional test, for the latter parametrization, we
observed that the SSAI state is affected by a single change in
neuron’s morphology: a “distal” location rx of the receptors
in relation to the soma (Figure 9.22) shortened SSAI lifetime
(Figure 6A). SNNbuilder easily enabled model changes and code
generation for straightforward analyses.

4.2. Striatal Microcircuitry
Rodent local striatal microcircuitry has recently been modeled
(Hjorth et al., 2020) using the NEURON simulator (Carnevale
and Hines, 2006); however, such simulation involves heavy

computations due to detailed cell morphologies. We aimed to
replicate these results using point-process neurons, which are
computationally much less expensive for systematic analysis of
model dynamics.

A network was built following data from Hjorth et al. (2020),
comprised of 38,237 direct striatal projection neurons (dSPN),
38,237 indirect striatal projection neurons (iSPN), 1,047 fast-
spiking (FS) interneurons, 644 low-threshold spiking (LTS)
interneurons, and 886 cholinergic interneurons (ChIN). All
neuronal types were implemented as LIF with AMPA and GABA
receptors, with PSPs modeled as alpha-functions with specific
amplitude values for each connection. PSPs were specified
as connection weights at the projection synapse parameters,
rather than at the neuron receptor level. The axonal delay
was assumed generic for all the connections, equal to 0.2ms.
Neuron parameters, such as membrane time constant, threshold,
and resting membrane voltage were taken from Johansson and
Silberberg (2020).

Neurons were uniformly distributed in a 1mm3 volume,
matching the neuronal density in the striatum (Rosen and
Williams, 2001). Connections were created using a fixed in-
degree rule and a spherical mask with size based on axonal and
dendritic field diameters. Other connection-related parameters,
such as bouton number, the distance between soma and synapse,
and the number of synapses from a single source were also taken
and calculated by Hjorth et al. (2020).

Two levels of external input were modeled in the network: the
first 1,000 ms of simulation correspond to 2 Hz glutamatergic
baseline activity from the cortex and thalamus. In order to
simulate synaptic input, all neurons were assumed to have
150 AMPA synapses, all receiving independent inputs that
can be modeled as a 300 Hz Poisson spike train, similar to
what is described in Hjorth et al. (2009). The next 500 ms
correspond to higher-level cortical activity, defined as an 8Hz
glutamatergic input, and modeled as a 1,200 Hz Poisson spike
train superimposed on the baseline input train, after which
baseline activity is restored.

The workflow final step, the code generation, provided
a python script for simulations. An optimization step, not
implemented by the current SNNbuilder release, was performed
for this modeling example (see Current limitations). Both local
(inhibitory) and external input (excitatory) weights to each
population were optimized simultaneously, using grid search
and a custom multi-objective function: for each population
and for each stimulation regime, a target range of plausible
firing rates was defined, and error was defined as the
normalized distance to the center of that interval. The set
of weights that minimized this error was then selected, with
the firing rates of all populations matching those described in
Hjorth et al. (2020).

The optimization process, first, found weights that yielded
good behavior for the baseline activity (from 0 to 1,000 ms,
Figure 6B). Once optimized, these values were active during
the whole simulation (from 0 to 1,500 ms). Then, new Poisson
generators were introduced corresponding to a higher level of
cortical activity (from 1,000 to 1,500 ms) and whose weights were
optimized while keeping the baseline ones fixed.

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2022 | Volume 16 | Article 855765211

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

A raster plot of the network activity after optimization is
shown in Figure 6B and voltage traces (mV) of single neurons,
in which the two levels of activity are distinguishable.

5. DISCUSSION

Modeling the brain is a challenge that requires collective
effort. Large-scale cohesion of researcher knowledge, ideas,
publications, and experimental data can be realized on the
internet, where humans are hyper-connected, constituting a
convenient frame for brain modeling. We have designed
SNNbuilder as a web-application to support the collaborative
building of sustainable, renewable, and scaleable SNN models.

The introduced framework organizes specifications to model
any region of the brain through a straightforward GUI
(Figure 3). Anatomical, morphological, and physiological data
are systematically loaded and updated, and their passage as
neural and synaptic parameters is managed by transfer functions
(see Appendix A). A generic relational database (Figure 2A)
is designed to accommodate accumulating data and includes
references and notes to accurately acknowledge data sources and
to trace model details (Supplementary Figure B.2). SNNbuilder
workflow (Figures 3, 7, 8, 9) was tested on two model examples:
a self-sustained asynchronous irregular network and a model of
mouse striatal circuitry (Figure 6).

Major data sources are scientific publications. Paper surveys
require the identification of relevant parameters for modeling,
which is time-consuming for humans. Efforts are ongoing
to extract data from a large collection of literature and to
store the data in open databases. For example, Bjerke et al.
(2020) standardized and quantified information about cellular
parameters in the murine basal ganglia from public repositories,
and Tripathy et al. (2014) extracted electrophysiological
properties of diverse neuron types from existing literature. The
desired future extension is SNNbuilder compatibility with open
database sources, not only for consuming plain data but also for
incorporating automatic discovery of parameters by text-mining
algorithms and knowledge-graph building.

Compatibility with resources, such as EBRAINS,
Brain/MINDS, and NeuroML, are crucial for improving
the modeling process. We aim for SNNbuilder-to-application
and SNNbuilder-to-databases compatibility, so system input(s)
and output(s) can be shared and integrated. A preliminary
effort corresponds to the SNNbuilder capability to import NEST
models and connectomic data from JSON files, including
remotely located files for the latter case (Figure 4 and
Supplementary Figure B.1). By this functionality, upon the
opening of data, marmoset connectomic retrieval by a web
service at Brain/MINDS is possible in the short term. This will
provide full or partial data for loading, automatically, neurons
and projections in SNNbuilder. An architecture composed of
web-services or APIs for straightforward access to SNNbuilder
data and models, and web-services for data consumption from
open sources (Supplementary Figure B.1) is required and
considered as future challenge. Moreover, an important standard
supporting data sharing across brain projects is Neurodata

Without Borders (NWB, Teeters et al., 2015; Rübel et al., 2021).
SNNbuilder management of inputs/outputs in NWB format will
be considered as well in future releases.

New system functions and features are required as well
and included in future work, especially needed for building
complex experimental settings and detailed models. For example,
parameter definition based on distributions, stimuli protocols
associated with objectives or metrics, integration of functional-
related metadata, re-use of parameters from other models,
new transfer functions and more connection rules, model
versioning and history tracking, online simulation management,
and parameter optimization.

Our generic database structure supports the future
implementation of an optimization engine. Optimization
will preserve parameters labeled as “fixed” while exploring “to-
optimize” parameters within defined value intervals, assessing
model activity against data labeled as “objectives.” The generic
character of data-to-model conversion will allow comparisons
across species as well, since models for different subjects
along with their simulation results can be compared on the
same dimensions.

A further challenge is code generation for multiple simulators,
which may require the development of new mapping processes
(transfer functions). On this, compatibility with NeuroML, a
simulator-free approach for model description may provide
strong advantages. Currently, the SNNbuilder model description
in JSON format corresponds to dictionaries listing the
specifications. That output could be prepared in compatible XML
(Extensible Markup Language) format, following the standard
NeuroML. Model description in NeuroML enables simulations
on different tools, avoiding code generation/preparation for
multiple simulators. Having that advantage, model specifications
can be prepared to target biophysical neuron models and
complex networks; thus, SNNbuilder may support the state-of-
the-art NEURON simulator. Our database will be extended in
such a case, for the inclusion of new data entities like detailed
morphology and ion channels.

SNNbuilder plans to enable online simulation and result
analytics, by simulating models on the server and visualizing
results via the web-browser, as shown in Spreizer et al. (2021).
That will facilitate immediate building-testing iterations for
an intuitive understanding of model dynamics. Big spike data
could be loaded into the database and meticulously queried
and plotted for better interpretation of results. While small
simulations could be triggered instantly, large simulations can
be prepared and dispatched for high-performance computing, as
shown in Feldotto et al. (2022). SNNbuilder straightforward code
generation may include job scripts for the setup and simulation
of large-scale models on the Fugaku supercomputer (Sato et al.,
2020), as well on collaborative simulation infrastructures like
Fenix from EBRAINS (Alam et al., 2019). Compatibility
with distributed computational resources facilitates the
access and usage of services and is included in our future
challenges.

As an introductory video from the International Brain
Initiative observed, “It takes the world to understand the
brain. It is the most complex organ in the human body”

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2022 | Volume 16 | Article 855765212

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

(Adams et al., 2020). Understanding the brain requires not
only biological data but also tools to enable the engagement
of a diversity of researchers, with different backgrounds and
opinions, to support independent, free contribution of ideas.
Our framework supports that collaboration for modeling the
brain.

DATA AVAILABILITY STATEMENT

SNNbuilder is currently running on the internet and is available
at: https://snnbuilder.riken.jp. A test user for tool exploration
and code generation of existing models is available (user: testuser
password: snnbuilder). For full privilege users, please send a
request to carlos.gutierrez@oist.jp. Source code and data base
structure are available upon request. The authors of this work
are open to discussion and collaboration. Feedback for improving
our work is gladly welcome and appreciated.

AUTHOR CONTRIBUTIONS

CG designed and developed SNNbuilder, modeled a self-
sustained network example, and ran simulations. HS helped with
the framework compatibility with Brain/MINDS connectomic
data, and GUI design. HM modeled the striatal circuitry
example, ran simulations and optimizations, and supported
debugging. KD helped with SNNbuilder concept, design,
and future integration within the International Brain
Initiative (IBI). All authors contributed to the writing of
the manuscript.

FUNDING

This research was supported by the Collaboration Research for
Development of Techniques in Brain Science Database Field

and the Collaborative Technical Development in Data-driven
Brain Science grants from RIKEN Center for Brain Science, the
program for Brain Mapping by Integrated Neurotechnologies
for Disease Studies (Brain/MINDS) JP18dm0207030 and
21dm0207001 from the Japan Agency for Medical Research and
Development (AMED), the Post-K Application Development
for Exploratory Challenges (hp160266, hp170251, hp180223,
and hp190157) from Ministry of Education, Culture, Sports,
Science and Technology of Japan (MEXT), the KAKENHI Grant
16H06563 from Japan Society for the Promotion of Science
(JSPS), and internal funding from the Okinawa Institute of
Science and Technology Graduate University to KD.

ACKNOWLEDGMENTS

We appreciate the support from Joona Pulliainen and Siang
Sheng Jheng from the OIST Scientific Computing and Data
Analysis section for providing a development web-server,
computing resources, and technical support. We thank Tomomi
Shimogori and Yoshihiro Okumura from the Center for Brain
Science RIKEN for supplying a production web server, and
computational resources for SNNbuilder public deployment. We
express our gratitude to Genexus Japan (https://www.genexus.
jp), for making available an academic license of their product
to accelerate web-system development. We thank Ryoji Furugen
(http://polymorph.jp) for his contribution to the graphical
interface. Big thanks to Jean Lienard and Benoit Girard for their
advice on brain modeling and parametrization.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.855765/full#supplementary-material

REFERENCES

Abbott, A. (2021). How the world’s biggest brain maps could transform

neuroscience. Nature 598, 22–25. doi: 10.1038/d41586-021-02661-w

Adams, A., Albin, S., Amunts, K., Asakawa, T., Bernard, A., Bjaalie, J.

G., et al. (2020). International brain initiative: an innovative framework

for coordinated global brain research efforts. Neuron 105, 212–216.

doi: 10.1016/j.neuron.2020.01.002

Alam, S., Bartolome, J., Bassini, S., Carpene, M., Cestari, M., Combeau, F.,

et al. (2019). “Fenix: distributed e-infrastructure services for ebrains,” in

International Workshop on Brain-Inspired Computing (Cetraro: Springer),

81–89.

Asai, Y., Abe, T., Okita, M., Okuyama, T., Yoshioka, N., Yokoyama, S., et al.

(2012). “Multilevel modeling of physiological systems and simulation platform:

physiodesigner, flint and flint k3 service,” in 2012 IEEE/IPSJ 12th International

Symposium on Applications and the Internet (Izmir: IEEE), 215–219.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a python tool for building large-scale functional brain

models. Front. Neuroinform. 7, 48. doi: 10.3389/fninf.2013.00048

Bjerke, I. E., Puchades, M. A., Bjaalie, J. G., and Leergaard, T. B. (2020). Database

of literature derived cellular measurements from the murine basal ganglia.

Scientific Data 7, 1–14. doi: 10.1038/s41597-020-0550-3

Brabham, D. C. (2013). Crowdsourcing. Cambridge, MA; London: MIT Press.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory

and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.

doi: 10.1023/A:1008925309027

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:

Cambridge University Press.

Chen, P. P.-S. (1976). The entity-relationship model–toward a unified view of data.

ACM Trans. Database Syst. 1, 9–36. doi: 10.1145/320434.320440

Chen, P. P.-S. (2002). “The entity relationship model–toward a unified view of

data,” in Software Pioneers (Berlin; Heidelberg: Springer-Verlag), 311–339.

Dai, K., Gratiy, S. L., Billeh, Y. N., Xu, R., Cai, B., Cain, N., et al.

(2020). Brain modeling toolkit: an open source software suite for

multiscale modeling of brain circuits. PLoS Comput. Biol. 16, e1008386.

doi: 10.1371/journal.pcbi.1008386

Dura-Bernal, S., Suter, B. A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez,

F., et al. (2019). Netpyne, a tool for data-driven multiscale modeling of brain

circuits. Elife 8, e44494. doi: 10.7554/eLife.44494

Feldotto, B., Eppler, J. M., Jimenez-Romero, C., Bignamini, C., Gutierrez,

C. E., Albanese, U., et al. (2022). Deploying and optimizing

embodied simulations of large-scale spiking neural networks on hpc

infrastructure. Front. Neuroinform. 16, 884180. doi: 10.3389/fninf.2022.

884180

Girard, B., Lienard, J., Gutierrez, C. E., Delord, B., and Doya, K. (2020). A

biologically constrained spiking neural network model of the primate basal

Frontiers in Neuroinformatics | www.frontiersin.org 16 July 2022 | Volume 16 | Article 855765213

https://snnbuilder.riken.jp
https://www.genexus.jp
https://www.genexus.jp
http://polymorph.jp
https://www.frontiersin.org/articles/10.3389/fninf.2022.855765/full#supplementary-material
https://doi.org/10.1038/d41586-021-02661-w
https://doi.org/10.1016/j.neuron.2020.01.002
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1038/s41597-020-0550-3
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1145/320434.320440
https://doi.org/10.1371/journal.pcbi.1008386
https://doi.org/10.7554/eLife.44494
https://doi.org/10.3389/fninf.2022.884180
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutierrez et al. A SNN Builder for Systematic Data-to-Model Workflow

ganglia with overlapping pathways exhibits action selection. Eur. J. Neurosci.

53, 2254–2277. doi: 10.1111/ejn.14869

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,

et al. (2010). Neuroml: a language for describing data driven models of neurons

and networks with a high degree of biological detail. PLoS Comput. Biol. 6,

e1000815. doi: 10.1371/journal.pcbi.1000815

Grinberg, M. (2018). Flask Web Development: Developing Web Applications With

Python. Sebastopol, CA: O’Reilly Media, Inc.

Gutierrez, C. E., Skibbe, H., Nakae, K., Tsukada, H., Lienard, J., Watakabe,

A., et al. (2020). Optimization and validation of diffusion mri-based

fiber tracking with neural tracer data as a reference. Sci. Rep. 10, 1–18.

doi: 10.1038/s41598-020-78284-4

Hahne, J., Diaz, S., Patronis, A., Schenck, W., Peyser, A., Graber, S., et al. (2021).

Nest 3.0. Zenodo. doi: 10.5281/zenodo.4739103

Hjorth, J., Blackwell, K. T., and Kotaleski, J. H. (2009). Gap junctions

between striatal fast-spiking interneurons regulate spiking activity and

synchronization as a function of cortical activity. J. Neurosci. 29, 5276–5286.

doi: 10.1523/JNEUROSCI.6031-08.2009

Hjorth, J. J., Kozlov, A., Carannante, I., Nylén, J. F., Lindroos, R., Johansson, Y.,

et al. (2020). The microcircuits of striatum in silico. Proc. Natl. Acad. Sci. U.S.A.

117, 9554–9565. doi: 10.1073/pnas.2000671117

Johansson, Y., and Silberberg, G. (2020). The functional organization of

cortical and thalamic inputs onto five types of striatal neurons is

determined by source and target cell identities. Cell Rep. 30, 1178–1194.

doi: 10.1016/j.celrep.2019.12.095

Kriener, B., Enger, H., Tetzlaff, T., Plesser, H. E., Gewaltig, M.-O., and Einevoll,

G. T. (2014). Dynamics of self-sustained asynchronous-irregular activity in

random networks of spiking neurons with strong synapses. Front. Comput.

Neurosci. 8, 136. doi: 10.3389/fncom.2014.00136

Liénard, J., and Girard, B. (2014). A biologically constrained model of the whole

basal ganglia addressing the paradoxes of connections and selection. J. Comput.

Neurosci. 36, 445–468. doi: 10.1007/s10827-013-0476-2

Malone, T. W. (2018). Superminds: The Surprising Power of People and Computers

Thinking Together. Little: Brown Spark.

Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., et al.

(2011). Introducing the human brain project. Procedia Comput. Sci. 7:39–42.

doi: 10.1016/j.procs.2011.12.015

Meyer, R., and Obermayer, K. (2016). pypet: a python toolkit for data

management of parameter explorations. Front. Neuroinform. 10, 38.

doi: 10.3389/fninf.2016.00038

Okano, H., Sasaki, E., Yamamori, T., Iriki, A., Shimogori, T., Yamaguchi, Y.,

et al. (2016). Brain/minds: a japanese national brain project for marmoset

neuroscience. Neuron 92, 582–590. doi: 10.1016/j.neuron.2016.10.018

Rajdl, K., Lansky, P., and Kostal, L. (2020). Fano factor: a potentially

useful information. Front. Comput. Neurosci. 100, 569049.

doi: 10.3389/fncom.2020.569049

Rosen, G. D., and Williams, R. W. (2001). Complex trait analysis of the mouse

striatum: independent qtls modulate volume and neuron number. BMC

Neurosci. 2, 1–12. doi: 10.1186/1471-2202-2-5

Rübel, O., Tritt, A., Ly, R., Dichter, B. K., Ghosh, S., Niu, L., et al. (2021).

The neurodata without borders ecosystem for neurophysiological data science.

bioRxiv. doi: 10.1101/2021.03.13.435173

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.00682

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,

McIntosh, A. R., et al. (2013). The virtual brain: a simulator of primate brain

network dynamics. Front. Neuroinform. 7, 10. doi: 10.3389/fninf.2013.00010

Sato, M., Ishikawa, Y., Tomita, H., Kodama, Y., Odajima, T., Tsuji, M., et al. (2020).

“Co-design for a64fx manycore processor and “fugaku”,” in SC20: International

Conference for High Performance Computing, Networking, Storage and Analysis

(Atlanta, GA: IEEE), 1–15.

Skibbe, H., Watakabe, A., Nakae, K., Gutierrez, C. E., Tsukada, H., Hata, J.,

et al. (2019). Marmonet: a pipeline for automated projection mapping of the

common marmoset brain from whole-brain serial two-photon tomography.

arXiv preprint arXiv:1908.00876. doi: 10.48550/arXiv.1908.00876

Spreizer, S., Senk, J., Rotter, S., Diesmann, M., andWeyers, B. (2021). Nest desktop,

an educational application for neuroscience. eNeuro 8, ENEURO.0274-21.2021.

doi: 10.1523/ENEURO.0274-21.2021

Stockton, D. B., and Santamaria, F. (2015). Neuromanager: a workflow analysis

based simulation management engine for computational neuroscience. Front.

Neuroinform. 9, 24. doi: 10.3389/fninf.2015.00024

Teeters, J. L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., et al.

(2015). Neurodata without borders: creating a common data format for

neurophysiology. Neuron 88, 629–634. doi: 10.1016/j.neuron.2015.10.025

Tripathy, S. J., Savitskaya, J., Burton, S. D., Urban, N. N., and Gerkin, R. C. (2014).

Neuroelectro: a window to the world’s neuron electrophysiology data. Front.

Neuroinform. 8, 40. doi: 10.3389/fninf.2014.00040

Van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalability of

asynchronous networks is limited by one-to-one mapping between

effective connectivity and correlations. PLoS Comput. Biol. 11, e1004490.

doi: 10.1371/journal.pcbi.1004490

Watakabe, A., Skibbe, H., Nakae, K., Abe, H., Ichinohe, N., Wang, J., et al. (2021).

Connectional architecture of the prefrontal cortex in the marmoset brain.

bioRxiv. doi: 10.1101/2021.12.26.474213

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Gutierrez, Skibbe, Musset and Doya. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 17 July 2022 | Volume 16 | Article 855765214

https://doi.org/10.1111/ejn.14869
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1038/s41598-020-78284-4
https://doi.org/10.5281/zenodo.4739103
https://doi.org/10.1523/JNEUROSCI.6031-08.2009
https://doi.org/10.1073/pnas.2000671117
https://doi.org/10.1016/j.celrep.2019.12.095
https://doi.org/10.3389/fncom.2014.00136
https://doi.org/10.1007/s10827-013-0476-2
https://doi.org/10.1016/j.procs.2011.12.015
https://doi.org/10.3389/fninf.2016.00038
https://doi.org/10.1016/j.neuron.2016.10.018
https://doi.org/10.3389/fncom.2020.569049
https://doi.org/10.1186/1471-2202-2-5
https://doi.org/10.1101/2021.03.13.435173
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.48550/arXiv.1908.00876
https://doi.org/10.1523/ENEURO.0274-21.2021
https://doi.org/10.3389/fninf.2015.00024
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.3389/fninf.2014.00040
https://doi.org/10.1371/journal.pcbi.1004490
https://doi.org/10.1101/2021.12.26.474213
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

www.frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	Neuroinformatics of Large Scale Brain Modelling
	Table of Contents
	Editorial: Neuroinformatics of Large-Scale Brain Modelling
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs
	1. Introduction
	2. Materials and Methods
	2.1. The NeuronGPU Library
	2.2. The Spike-Delivery Algorithm
	2.3. The Potjans-Diesmann Cortical Microcircuit Model
	2.4. The AdEx-Neurons Balanced Network Model
	2.5. The Izhikevich-Neurons Balanced Network With STDP Synapses

	3. Results
	3.1. Simulation of the Cortical Microcircuit Model
	3.2. Simulation of the AdEx-Neurons Balanced Network Model
	3.3. Simulation of the Izhikevich-Neurons Balanced Network With STDP Synapses

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Granular layEr Simulator: Design and Multi-GPU Simulation of the Cerebellar Granular Layer
	Introduction
	Materials and Methods
	Overview of the Cerebellar Granular Layer Model
	The Neurons Models
	The Synapses Models
	The Network Connectivity

	The Granular layEr Simulator
	Network Design
	Serial and Parallel Network Simulation
	Graphical User Interface

	Results and Discussion
	Neuron Placement and Connection Analysis
	Computational Results
	Memory Occupancy
	Scalability Analysis
	Comparison With the State of the Art
	Limits and Future Works

	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	BOLD Monitoring in the Neural Simulator ANNarchy
	1. Introduction
	2. The Balloon Model
	2.1. The Classic Balloon Model
	2.2. The Two-Input Balloon Model

	3. BOLD Monitor
	3.1. ANNarchy Neural Simulator
	3.2. General Concept
	3.3. A Simple Example
	3.4. BOLD Model Definition

	4. Example Use Cases
	4.1. Model Description
	4.2. Normalization for Resting-State Activity
	4.3. The Effect of Different Source Variables
	4.4. Computational Time Analysis

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Extracting Dynamical Understanding From Neural-Mass Models of Mouse Cortex
	1. Introduction
	2. Methods
	3. Results
	3.1. What Dynamical Features Drive High Model Performance?
	3.1.1. Interpreting Simulated Dynamics in Terms of Bifurcation Diagrams
	3.1.2. Resolving Inter-regional Differences in Inputs

	3.2. Understanding Heterogeneity in Local Dynamical Rules
	3.2.1. Levels of Excitation and Inhibition Perturb Bifurcation Diagrams
	3.2.2. Understanding Mouse Cortical Model Dynamics Constrained by Excitatory and Inhibitory Cell Densities

	4. Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	The Case for Optimized Edge-Centric Tractography at Scale
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	5. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	EDEN: A High-Performance, General-Purpose, NeuroML-Based Neural Simulator
	1. Introduction
	1.1. The EDEN Simulator
	1.2. Qualitative Comparison of Neural Simulators

	2. Methods and Materials
	2.1. EDEN Overview
	2.2. Usability Through Native NeuroML Support
	2.3. Performance and Flexibility Through Code Generation
	2.4. EDEN Concepts
	2.4.1. Work Items
	2.4.2. Code and Data Signatures
	2.4.3. Data Tables and Table-Offset Referencing

	2.5. Implementation
	2.5.1. Structure of the Program
	2.5.2. Model Analysis and Code Generation
	2.5.2.1. Signature Deduplication for Identical Compartments

	2.5.3. Model Instantiation
	2.5.4. Simulation Loop
	2.5.5. Numerical Methods
	2.5.6. Running on Multi-Node Clusters
	2.5.6.1. Synapse-Instantiation Stage
	2.5.6.2. Send-List Exchange Stage
	2.5.6.3. Synapse Fix-Up Stage
	2.5.6.4. Communication at Run-Time

	3. Results
	3.1. Evaluation of Functional Correctness
	3.1.1. Evaluation Through Single-Neuron Models
	3.1.2. Evaluation on Neural Network Models

	3.2. Computational Performance Analysis
	3.2.1. Overview
	3.2.2. Simulated Networks
	3.2.2.1. The GCL Network
	3.2.2.2. The M1 Network
	3.2.2.3. The CGoC Network

	3.2.3. A Note on Numerical Methods & Performance
	3.2.4. Benchmark Results

	4. Discussion
	4.1. Current Neural-Simulator Challenges
	4.2. The EDEN Potential and Next Steps

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Exploring Parameter and Hyper-Parameter Spaces of Neuroscience Models on High Performance Computers With Learning to Learn
	1. Introduction
	1.1. State of the Art

	2. Methods
	2.1. Concept of L2L
	2.2. Parallel Executions in the L2L Framework
	2.3. Workflow Description

	3. Results
	3.1. Use Case 1: Digit Classification With NEST
	3.1.1. Description of the Simulation Tool
	3.1.2. Optimizee: Spiking Reservoir Model
	3.1.3. Fitness Metric
	3.1.4. Optimizer: EnKF
	3.1.5. Analysis

	3.2. Use Case 2: Fitting Electrophysiological Data With Arbor
	3.2.1. Description of the Simulation Tool
	3.2.2. Optimizee: Morphologically-Detailed Single Cell
	3.2.3. Fitness Metric
	3.2.4. Optimizer: Evolutionary Algorithm
	3.2.5. Analysis

	3.3. Use Case 3: Foraging Behavior With Netlogo and NEST or SpikingLab
	3.3.1. Description of the Simulation Tools
	3.3.2. Optimizee: Simulated Ant Brain
	3.3.3. Fitness Metric
	3.3.4. Optimizer: Genetic Algorithm
	3.3.5. Analysis

	3.4. Use Case 4: Fitting Functional Connectivity With TVB
	3.4.1. Description of the Simulation Tools
	3.4.2. Optimizee: Whole Brain Simulation
	3.4.3. Fitness Metric
	3.4.4. Optimizer: Multi-Gradient Ascent
	3.4.5. Analysis

	3.5. Use Case 5: Solving the Mountain Car Task With OpenAI Gym and NEST
	3.5.1. Description of the Simulation Tools
	3.5.2. Optimizee: Spiking Feed-Forward Policy Network
	3.5.3. Fitness Metric
	3.5.4. Optimizer: Genetic Algorithm
	3.5.5. Analysis

	4. Discussion and Future Work
	4.1. Choice of Fitness Function and Optimizer
	4.2. Outlook

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	Supplemental Data
	References

	NNMT: Mean-Field Based Analysis Tools for Neuronal Network Models
	1. Introduction
	2. Workflows and Architecture
	2.1. Basic Workflow
	2.2. Model Workflow
	2.3. Structure of the Toolbox

	3. How to Use the Toolbox
	3.1. Installation and Setup
	3.2. Stationary Quantities
	3.2.1. Response Nonlinearities
	3.2.2. Firing Rates of Microcircuit Model

	3.3. Dynamical Quantities
	3.3.1. Transfer Function
	3.3.2. Power Spectrum
	3.3.3. Sensitivity Measure

	3.4. Fitting Spiking to Rate Model and Predicting Pattern Formation
	3.4.1. Setting the Working Point by Changing Network Parameters
	3.4.2. Parameter Mapping by Fitting the Transfer Function
	3.4.3. Linear Stability Analysis of Spatially Structured Model With Delay

	4. Discussion
	4.1. Comparison to Other Tools
	4.2. Use Cases
	4.3. Limitations
	4.4. How to Contribute and Outlook

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	A. Appendix
	A.1. Siegert Implementation
	Inhibitory Regime
	Excitatory Regime
	Intermediate Regime
	Deterministic Limit

	A.2. Transfer Function Notations

	A Robust Modular Automated Neuroimaging Pipeline for Model Inputs to TheVirtualBrain
	Introduction
	Method
	Structural Sub-Pipeline
	Parcellation
	Segmentation
	Defining Regions of Interest for fMRI and dMRI Sub-Pipelines

	Functional Magnetic Resonance Imaging Sub-Pipeline
	Field Map Correction
	Resting-State fMRI
	Task-Based fMRI

	Diffusion Sub-Pipeline
	Distortion Correction With Synthesized B0
	Tractography

	Compatibility With TheVirtualBrain
	Imaging-Derived Phenotypes
	Quality Control Report
	The Brain Imaging Data Structure
	Developed Software
	GitHub Repository and Documentation
	Installation and Singularity Container
	Technical Features

	Results
	Usage
	Quality Control Procedures and Quality Control Report Usage
	Structural Sub-Pipeline Quality Control
	Functional Sub-Pipeline Quality Control
	Diffusion Sub-Pipeline Quality Control

	Utility of New Imaging Derived Phenotypes and Other Summary Statistics

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Programmable Ontology Encompassing the Functional Logic of the Drosophila Brain
	1. Introduction
	1.1. Challenges in Discovering the Functional Logic of Brain Circuits in the Connectomic/Synaptomic Era
	1.2. Modeling the Functional Logic of Fruit Fly Brain Circuits With Cell Types and Feedback Loops
	1.3. A Programmable Ontology Encompassing the Functional Logic of the Fruit Fly Brain Circuits

	2. Exploring the Morphology of Cell Types and Feedback Circuits
	2.1. Key Capabilities of NeuroNLP++
	2.2. Exploring the Morphology and Graph of Cell Types With NeuroNLP++
	2.3. Exploring the Morphology of Feedback Circuits With NeuroNLP++

	3. Creating a Programmable Ontology of the Fruit Fly Brain
	3.1. Receptor-Centric Modeling the Space of Odorant Stimuli
	3.2. Building the Antenna Circuit With OSN Cell Types
	3.3. Composing the Antennal Lobe Circuits With Cell Types and Feedback Loops
	3.3.1. Modeling Individual Glomeruli of the Antennal Lobe Circuit
	3.3.2. Modeling and Constructing Interconnected Glomeruli of the Antennal Lobe Circuit

	4. Exploring the Functional Logic of Feedback Circuits in the Antennal Lobe
	4.1. Exploring the Functional Logic of Feedback Circuits of a Single Glomerulus in Isolation
	4.2. Exploring the Functional Logic of Feedback Circuits of a Pair of Interconnected Glomeruli
	4.3. Circuit Library for Exploring the Functional Logic of the Massive Number of Feedback Loops in the Antennal Lobe

	5. Discussion
	5.1. A Programmable Ontology Encompassing the Functional Logic of the Brain
	5.2. Construction of Circuit Motifs With the FeedbackCircuits Library

	6. Materials and Methods
	6.1. Exploring the Morphology of Cell Types and Feedback Circuits
	6.1.1. The NeuroNLP++ Web Application
	6.1.2. The DrosoBOT Engine
	6.1.3. Morphology and Graph Abstractions of Cell Types in the Antennal Lobe
	6.1.4. Morphology and Graph Abstractions of Feedback Circuits in the Antennal Lobe

	6.2. Creating the Programmable Ontology of the Drosophila Brain
	6.2.1. Receptor-Centric Modeling of the Space of Odorants
	6.2.2. Modeling/Constructing Individual Glomeruli in the Antennal Lobe Circuit
	6.2.3. Modeling/Constructing a Pair of Interconnected Glomeruli in the AL

	6.3. Exploring the Functional Logic of the Feedback Circuits in the Antennal Lobe
	6.3.1. Interactively Exploring Circuit Diagrams With the FeedbackCircuits Library
	6.3.2. Evaluating the Role of Feedback Circuits in a Single Glomerulus
	6.3.3. Evaluating the Role of Feedback Circuits in/Between a Pair of Glomeruli
	6.3.4. Modeling and Constructing the Massive Feedback Circuits of the AL

	Code Availability Statement
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Spiking Neural Network Builder for Systematic Data-to-Model Workflow
	1. Introduction
	2. Design
	2.1. Design Principles
	2.2. From Brain Biology to Database Structure

	3. Model Building Workflow
	3.1. Neural Populations
	3.2. Projections
	3.3. Models of a Neural Simulator
	3.4. Data Sources for Modeling
	3.5. Data Flags
	3.6. References and Notes
	3.7. Network Viewers
	3.8. Simulation Settings
	3.8.1. Stimuli
	3.8.2. Recordables

	3.9. Model Description and Code Generation
	3.10. Collective Intelligence
	3.11. Current Limitations

	4. Modeling Examples
	4.1. Self-Sustained Network
	4.2. Striatal Microcircuitry

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back cover

