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Editorial on the Research Topic

Current thoughts on the brain-computer analogy—All metaphors are wrong,

but some are useful

This project kicked off in the fall of 2020. There are two parts of the title of this Research

Topic—Special Issue. The first one evokes the issue raised by Turing (“Can machines think?”,

Turing, 1950), a question that we, the Editors, revisit reflecting our complementary multi-

disciplinary backgrounds (Evolutionary Biology, GM; Evo-Devo, PM; and Computer Science,

BM) and take it up again with a fresh start; this question made us realize how ripe the Brain-

Computer analogy has become for a reassessment. The complexity of the subject needed the

involvement of experts from the different fields that have been concerned with many related

problems, namely Natural Sciences (here Biology and Physics), Mathematics, Psychology and

Philosophy. Indeed, the Topic is certainly timely for, while this Issue was going to press, a number

of publications have appeared that tackle these very issues both in Sciences (Reynolds, 2022; Yang

and Lu, 2022) and Humanities (Kelty-Stephen et al., 2022).

The second part of the title paraphrases a well-known aphorism in Statistics: “Essentially,

all models are wrong, but some are useful” (George E. P. Box). This statement introduces the

“philosophical” part of this topic, viz. the semantic issue; in Turing’s words: “Canmachines think?

This should begin with definitions of the meaning of the terms ‘machine’ and ‘think’” (Turing,

1950). Indeed, both the Authors and the Editors of this Special Issue realized that a number

of other concepts, crucial to evaluate the Brain-Computer relationships, were in need of an

updated definition: machine (Bongard and Levin), computer (Danchin and Fenton; Richards

and Lillicrap), metaphor and analogy (Matassi and Martinez).

We started off by making a wishful list of relevant topics that would embrace a vast a

spectrum of disciplines concerned. These were: Brain architecture, evolution and functioning;

Neural Networks and Computational Neuroscience; Network Science (network evolution);

Computer Science; Information theory; Artificial Intelligence (AI); Game theory; Quantum
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brain—quantum computer; Evo-Devo; Neurobiology Experimental

research. In so doing, we hoped to stimulate a multi-, trans-, and

inter-disciplinary authorship of the articles in this Research Topic,

though we were fully aware of the controversies and debates that

could arise among scientists and technologists from such diverse

scientific backgrounds. Unsurprisingly, we did not fully succeed, and

a number of relevant topics had to be left missing from this SI (in

Italics in the list above).

Many other equally important disciplines were not included for

they would each deserve a full Research Topic: Consciousness/Mind,

Cognition, Behavior, Language, and Culture.

We have subjectively subdivided the articles in the Special Issue

into five subject-wise sections, following some close relationships

in their contents. Our groupings are (more details below): 1-

Historical Perspectives (Cobb), 2-Philosophical Implications (Brette;

Chirimuuta; Gomez-Marin), 3-Utility and limitations of the brain-

computer metaphor (Bongard and Levin; Danchin and Fenton;

Davis; Fraser et al.; Richards and Lillicrap; Roli et al.), 4- Extending

the concept of cognition (Gershenson), and 5-A new metaphor for

the brain, the internet (Graham).

The problem area is introduced in a first paper co-authored by

Matassi andMartinez (two of the three editors of this SI). The authors

introduce the Research Topic and provide a detailed review of the

other 12 contributions; this is complemented by a graphical summary

linking articles to selected concepts. Moreover, they analyze in detail

the distinction between metaphor and analogy, and offer a definition

for the latter. They introduce the notion of Brain and the related

evolutionary theories. The article closes with thoughts on creativity in

Science, for . . . “if we ask “can computers think,” next we ought to ask

“can computers create.” And the very act of creation (be it in sciences

or in the arts) stems from the awareness of the aesthetic element.”

Before summarizing the papers included in this SI, let us

consider, briefly, what is the problem area we are trying to deal

with in this issue. This introspection should provide us with a

reference mark in which the discussion takes place. Obviously,

we need to start by understanding what a metaphor is and what

purposes it serves, with the emphasis in one of the most productive

metaphors in science, the “Brain as a Computer.” History tells

us that the metaphor has been enriched or modified over time,

incorporating new concepts arising in different disciplines, from

neuronal physiology to circuit assemblies, information processing

and the genesis of complex systems.

1. Historical perspectives

The revolutionary studies of Cajal and Golgi brought us a

completely new view of the brain as a biological tissue. The intricate

nature of its unit connections (neurons and substructures) suggested

the possibility that the brain is actually a connected set of wires,

with complex architectures. Moreover, the discovery of chemical and

electrical connections between neurons reinforced the image of a

giant electrical device withmultiple, complex, switchingmechanisms.

The emergence of the information age, with the first devices able to

“compute” operations, was instrumental in bringing a new model of

the brain, understood as a complex computing device able to perform

logical functions. The history of some old and new metaphors for

the brain are nicely exposed by Cobb. This article introduces, from

a historical perspective, the current debates in the field, as reflected in

the next series of articles in this SI.

2. Philosophical implications

Metaphors are considered either as linguistic (semantic) or

cognitive devices, rooted in concrete brain structures, that help us

navigate the world. More than this, they help translate complex

descriptions into less cognitively demanding ones. Much research

is being conducted into the neurobiological basis of metaphoric

thinking, but this is a problem we will not touch on in this

introduction (see Gomez-Marin’s paper for further commentary). As

in other complex systems (e.g., the structure of the universe, the

prediction of weather or the behavior of large social groups), the study

of the brain has been subject to a series of reductionist descriptions.

In a suggestive paper, Chirimuuta comments on the assertion by

different authors that have hypothesized the brain and computers (or

any other complex artifact) as tractable using multi-level approaches.

However, as appealing the simile can be, Chirimuuta thinks that there

are several limitations that need to be accounted for, and she provides

us with a careful discussion of all of those. In a similar line, a major

concern of Brette’s is “What is a computer?” This is followed by a

reappraisal of the concept of “program.” In this context he discusses

the notions of algorithm and computation in the brain, and from a

philosophical perspective he asks: “what is a brain program”? and, if

true, “who gets to ‘program’ the brain?”. All those papers bring us to

the fundamental role of introducing concepts in our discussions, to

make themmeaningful. From the very concept of a metaphor to what

actually would do a “computerized” brain, all contribute to clarify the

terms of discussion.

3. Utility and limitations of the
brain-computer metaphor

Whether a metaphor has a practical utility depends very much

on what predictions it makes and how valid are the assumptions

that underlie the use of these metaphors. In a series of papers, we

are confronted with the idea of how computers (or its derivative

AI technologies) can imitate humans, or certain human capacities.

While the Bongard and Levin view is certainly optimistic, assuming

that modern/future machines can actually imitate humans, Danchin

and Fenton; Fraser et al.; Roli et al. point to some irreducible

properties that make the human mind, essentially, inimitable, thus

stating in different ways that brains are not digital computers. Davis

takes a more neutral position and just ask himself whether this is a

realizable possibility or not.

4. Extending the concept of cognition

When discussing the human mind, two concepts are normally

mentioned, that of “intelligence” and “cognition.” In an interesting

article Gershenson revisits the concept of intelligence as the result

of brain information processing. He suggests to use measures

of information as a tool to study cognitive systems, including

brains and computers. In addition, suggests looking at cognition

beyond the individual, and analyze cognition in collectives such as

insects’ swarms.
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5. A new metaphor for the brain, the
internet

More recently, some authors have pointed out the need to

incorporate the problematics of information flow and storage in

the brain within our models. Others have pointed to the idea that

our brains might be using quantum processes in cognition and

consciousness (Kerskens and López-Pérez, 2022). This has prompted

the incorporation of other, recent, models of the brain such as the

internet (Graham, this issue).

6. General conclusion

The use of metaphors has helped both scientists and lay men

to understand the brain functions in history. Whether they have

been accurate or misleading, they have provided us with tools to

interrogate the brain. Every period has had their favorite metaphor

to explain how this organ performs functions that allow us to

both comprehend and navigate the world. These metaphors have

an intricate relationship with current ideas of the matter and the

living, in most cases suggesting different mechanical similes for

our organs (i.e., the brain). Among the mechanical metaphors,

arguably, a very productive one has been that of equating brain

with a computer device. In recent decades this very last image

has changed (as always did), in parallel with our refinement of

computing technologies. The arrival of AI, with the possibilities

(sometimes overblown) for imitating humans, has generated a

heated debate on whether machines can imitate, and perhaps

substitute, humans in all endeavors, including those that rely

on creativity. We should expect that in the next few years, our

view of the brain as a computer will be completely transformed,

perhaps entering into an era in which brain and computer

performances will be indistinguishable. We asked ChatGPT (a

natural language processing tool driven by AI technology) for

an opinion: It agreed imitatively and wrote: “The brain-computer

analogy is a metaphor that has been used extensively in the field of

artificial intelligence and cognitive science to describe the relationship

between the human brain and computers. The metaphor suggests

that the brain can be thought of as a computer, and that the

way in which it processes information and solves problems can

be understood in terms of computer algorithms and hardware,

Etc.” Clearly, a rather cheap imitation of this Special Issue’s

esteemed editors!
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In this review essay, we give a detailed synopsis of the twelve contributions 

which are collected in a Special Issue in Frontiers Ecology and Evolution, based 

on the research topic “Current Thoughts on the Brain-Computer Analogy—All 

Metaphors Are Wrong, But Some Are Useful.” The synopsis is complemented 

by a graphical summary, a matrix which links articles to selected concepts. As 

first identified by Turing, all authors in this Special Issue recognize semantics 

as a crucial concern in the brain-computer analogy debate, and consequently 

address a number of such issues. What is missing, we believe, is the distinction 

between metaphor and analogy, which we  reevaluate, describe in some 

detail, and offer a definition for the latter. To enrich the debate, we also deem 

necessary to develop on the evolutionary theories of the brain, of which 

we  provide an overview. This article closes with thoughts on creativity in 

Science, for we concur with the stance that metaphors and analogies, and 

their esthetic impact, are essential to the creative process, be it in Sciences as 

well as in Arts.

KEYWORDS

neuroscience, computer science, semantics, metaphor, analogy, creativity, 
philosophy of science

1. Introduction

Drawing comparisons between Brains and Computers has been a long intellectual 
exercise carried out by Philosophers, Psychologists, Mathematicians, Physicists, Computer 
Scientists and Neuroscientists. While some authors have suggested that this is a vacuous 
discussion (they assume that brains are “obviously” computers), others believe that there 
are instances in the functioning of both systems that do not allow this easy jump to 
conclusions, meriting further analysis. Some of the confusions come from the fact that, 
according to some authors many researchers do not understand the fact that behaving 
intelligently does not mean being just an information processor (because computers seem 
to behave intelligently using processors it does not mean that “intelligence” and 
“information processing” are equivalent; opinion articulated by psychologist Robert Epstein 
assay “The empty brain” 2016). Others, however, think that the assignment of a name such 
as “computational system” to the brain is limiting and biases the way in which we see brain 
processes occurring, e.g., consciousness, awareness, or simply “making sense of the world.” 
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In this context, we  think that re-visiting the Brain-Computer 
analogy is still a very valid endeavor. Indeed, based on the 
Research Topic “Current Thoughts on the Brain-Computer 
Analogy—All Metaphors Are Wrong, But Some Are Useful” this 
Special Issue gathers 12 articles that deal with these problematics, 
all showing that the subject (or the debate) is still very much alive.

1.1. The research topic

From the very beginning, it was clear to us that the project was 
to be constructed according to the architecture of a network, since 
the main concepts around which it was conceived were 
interconnected at various degrees. We reasoned that the structure 
of such a network would favor “information” to be exchanged 
among nodes (disciplines, approaches, articles). This useful 
approach allowed us to view our subject (brain) and the 
approaches taken to study it as two manifestations of a similar 
phenomenon, and the reticular interconnection of nodes (ideas, 
approaches or physical entities) as the graphical expression of 
these connections.

The topics and concepts that we  saw as the “nodes of the 
network,” and which formed the foundation of the project, were 
the following: Conceptual points (Philosophy); Network Science; 
Complex systems (self-organization); Neural Networks and 
Computational Neuroscience (Artificial neural networks); 
Computer Science (distributed-centralized architectures; Church-
Turing thesis; computational complexity); Information theory 
(reliability-error checking; efficiency-vs-speed of information; 
information asymmetry); Game theory (decentralized neural 
architecture; asymmetric information distribution); Quantum 
brain—quantum computer; Artificial Intelligence (AI) and 
Artificial Life; Experimental and theoretical Neuroscience; brain 
evolution (evo-devo).

The historical development of the field, lead to the “obvious” 
realization that knowledge derived from Network Science (e.g., 
work by A-L. Barabasi, MEJ Newman, DJ Watts, and others) could 
contribute to understand how the brain works, interacts, manages 
task flexibly, and the underlying involvement of synaptic 
distribution, density and strength. Moreover, it has become clearer 
over time that network evolution could shed light on the 
evolutionary history of neural network architecture (and its 
governing principles; see for instance, Sterling and Laughlin, 
2017). The subject has been treated from diverse points of view, 
derived from the application of different intellectual approaches 
(cellular neuroscience, computational modeling, connectomic 
analysis, philosophy of neurosciences, etc.). These different 
approaches suggested alternatives views of the roles of networks 
in the functionality of the brain. Most of them would deal with the 
general problem of representation, though more recent 
developments have changed the focus on the flow of information 
(the routing). In this context, as we will see in one of the SI papers, 
the contribution by D. Graham identifies the mode(s) of function 

of the internet network as a new frame of reference to understand 
(aspects of) brain function.

Another essential issue related to network evolution 
we wanted to address in this SI was the role of self-organization 
and complex systems in shaping brain (any brain) architecture and 
its evolution (e.g., works by I. Prigogine and G. Nicolis, 
C. G. Langton, S. Kauffman, S. Kelso, P. Bak, S. H. Strogatz, 
C. Gershenson and F. Heylighen, R. Solé, and many others). 
Concepts such as “emergent properties” or “organizational levels” 
come to mind as relevant here.

Finally, being well aware that the relationships between Brain 
and Computer encompass a vast spectrum of topics from Natural 
Sciences, Mathematics, Computer Science, Psychology and 
Philosophy, we needed to narrow our scope: some of the topics 
we  opted not to deal with were Consciousness, Behavior, 
Language, and Culture.

Before dealing with the articles presented in this SI (see 
Table 1), and what they contribute to the debate, we revisit some 
critical, and necessary, concepts/topics: machine(s), metaphor and 
analogy in science, and brain(s). In the following text, the 
references belonging to this Special Issue are identified by a (*) as 
a superscript of the year of publication.

1.2. Semantics: Concepts and definitions

“I PROPOSE to consider the question, ‘Can machines think?’ 
This should begin with definitions of the meaning of the terms 
‘machine’ and ‘think’” (Turing, 1950). No doubt, Alan Turing had 
a clear understanding of the importance of semantics in this 
context. Likewise, all Authors and Editors of this Special Issue 
recognize semantics as a crucial concern in the brain-computer 
analogy debate.

Indeed, the authors identify a number of terms whose current 
definitions are “problematic,” and need therefore to be taken with 
caution. First and foremost, is the definition of “computer” (Brette, 
2022*; Richards and Lillicrap, 2022*). And the list continues with 
“computing” and “recursion” (Danchin and Fenton, 2022*), 
“algorithm” (Brette, 2022*; Richards and Lillicrap, 2022*; Roli 
et  al., 2022*), “computable function” (Richards and Lillicrap, 
2022*), “robot,” “program,” and “software” (Bongard and Levin, 
2021*), “information” (Cobb, 2021*; Gershenson, 2021*; Danchin 
and Fenton, 2022*), “Artificial Intelligence” (Roli et al., 2022*), 
“intelligence” (Gershenson, 2021*), “cognition” (Fraser 
et al., 2021*).

In the following, we are focusing on two specific, fundamental, 
issues: the definition of “machine,” and the distinction between 
“metaphor” and “analogy.” As for the former, in this Special Issue, 
Cobb mainly deals with images of the brain in history, and 
Bongard/Levin express their concern about an “outdated” view of 
term machine. In this paper, we  follow the history of how 
“different kinds of machines” have best represented the brain. As 
for the latter, the distinction between metaphor and analogy is 
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only touched on by Brette and Gomez-Marin. Consequently, 
we deem necessary to have a more detailed description of these 
concepts, which we deal with in turn, and offer a revised definition 
for the latter.

1.3. Machine(s)

Among neuroscientists there is a general opinion (sustained 
over decades of research) that what the brain “is” depends on how 
you  study it. We  live in a mechanical age, so we  study it as a 
machine. In this context, we should question ourselves, upfront, 
what machines are and how our view of them has changed over 
time. In this SI, Cobb and Bongard/Levin introduce us to the ways 
we came to understand machines, in the past and nowadays. The 
underlying rationale for discussing “machines” is that the method 
of study has determined always what we have learned about them 
and how we  have transferred these methodologies to study 
the brain.

For a long time, brains have been assimilated to certain kinds 
of “machines.” The idea can be traced back, for a solid articulation, 
to the Cartesian view of the World, understanding machines as 
any physical system capable of performing certain functions. 
Descartes’ body organs operate in purely mechanical fashion, and 
in this proposal, Descartes “creatively” adapted previous theories 
(Aristotle, Galen, etc.) to his own mechanistic program 
(Hatfield, 2012).

The form the machine analogy has taken over the years has 
suffered many transformations, adopting at every time the 
dominant mechanical view of the world (hydraulic, electrical or 
informational). In this SI, Cobb has revisited some of the historical 

views, with Bongard/Levin adding a perspective that includes 
recent developments in Artificial Intelligence. Interestingly, with 
the 20th century advancements in molecular biology, the machine 
analogy has been transferred from the whole tissue to the 
biochemical components that control its different functions. In 
this sense, the brain is equated to a soup/stew of highly 
coordinated chemical ingredients (molecular machines) that, 
ultimately, enable our rich psychological experiences. The whole 
field of neurochemistry, which foundations were laid in Europe, 
notably France and Germany, in the late 18th and early 19th 
centuries, with an important momentum gained in the 60 and 70’s 
of the 20th century (Boullerne et  al., 2020) is based on the 
assumption that interrelating chemistry and function in the 
nervous system is a most productive avenue to understand the 
brain (e.g., Brady et al., 2011).

From a functional perspective, over time our view of the brain 
has been transformed from a rather passive, fluid conducting 
device, to a more active, information processing one (a device able 
to compute; calculate in the original meaning). The computer 
(originally a person able to “compute” operations) was, and is in 
good part, understood as a mechanical device with certain 
properties (ability to store, retrieve, and process data). At this 
stage, it is relevant to consider that in spite that the English word 
“computer” is meant to signify (programmable machine that can 
store, retrieve, and process data; Encyclopedia Britannica) the 
different Romanic languages retain the original meaning of 
computers as a person who either organizes or computes datasets 
(e.g., “ordinateur, ordenador,” in French and Spanish). In any case, 
we now universally use the term as meaning a device, usually 
electronic, that processes data according to a set of instructions. 
In this context, it is worth to remember that a more precise 

TABLE 1 The articles in the Special Issue.

Article(*) Authors Title

0 Matassi G. and Martinez P. (**) The Brain-Computer Analogy – “a Special Issue”

1 Cobb M. A Brief History of Wires in the Brain

2 Gomez-Marin A. Commentary: Metaphors We Live By

3 Chirimuuta M. Artifacts and levels of abstraction

4 Brette R. Brains as Computers: Metaphor, Analogy, Theory or Fact?

5 Bongard J. and Levin M. Living Things Are Not (20th Century) Machines: Updating Mechanism Metaphors in Light of the Modern 

Science of Machine Behavior

6 Richards B. A. and Lillicrap T. P The Brain-Computer Metaphor Debate Is Useless: A Matter of Semantics

7 Fraser P., Solé R. and De las Cuevas G. Why Can the Brain (and Not a Computer) Make Sense of the Liar Paradox?

8 Roli A., Jaeger J., and Kauffman S. A. How Organisms Come to Know the World: Fundamental Limits on Artificial General Intelligence

9 Danchin A. and Fenton A. A. From Analog to Digital Computing: Is Homo sapiens’ Brain on its Way to Become a Turing Machine?

10 Davis M. The Brain-As-Computer Metaphor

11 Gershenson C. Intelligence as Information Processing: Brains, Swarms, and Computers

12 Graham D. Nine Insights From Internet Engineering That Help Us Understand Brain Network Communication

(*): The articles’ numbering in this Special Issue, from 1 to 12, is the one also used in the main text, and in Figure 1. (**): this paper.
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characterization of the computer was given early on by Mahoney 
in his historical review of computing in which the computer is 
being specifically defined as a fundamentally tripartite structure, 
which reflect the contributions of three historical disciplines 
concerned with the nature of this “machine/device” (electrical 
engineering; computer science and software engineering). 
Moreover, Mahoney clearly stated what those contributions were 
in the summary sentence: “between the mathematics that makes 
the device theoretically possible and the electronics that makes it 
practically feasible lies the programming that makes it intellectually, 
economically, and socially possible” (Mahoney, 1988).

Interestingly, and as a result of the inception of the information 
age (in the 1940’s), where information content and logical 
operations were introduced by logicians such as Alonzo Church 
and Alan Turing, the most salient analogy for the structure and 
function of the brain has been the computer, an instantiation of 
the so-called Turing machines (TM). The focus has changed from 
the instantiation of the machine to the underlying operative. In his 
seminal 1950 paper, Turing describes “machines” as those artifacts 
produced by “… every kind of engineering technique,” and suggests 
to identify them with “electronic computers” or “digital computers,” 
given the interest in his historical time in those devices (Turing, 
1950). He gives a definition of computer as a finite state machine 
(a mathematical model of computation). An extended quote from 
Turing seems appropriate here.

"A digital computer can usually be regarded as consisting of 
three parts: (i) Store [of information] … corresponding to the paper 
used by a human computer … [and] … the book of rules ", (ii) 
Executive unit [carries out calculations], (iii) Control [handles the 
correct use of instructions]. … digital computers … fall within the 
class of discrete state machines. … This machine could be described 
abstractly as follows. The internal state of the machine (which is 
described by the position of the wheel) may be q1, q2 or q3. There is 
an input signal i0 or i1 (position of lever). The internal state at any 
moment is determined by the last state and input signal according 
to the table [of instructions]. … These are the machines which move 
by sudden jumps or clicks from one quite definite state to another. 
… the digital computer … must be programmed afresh for each new 
machine which it is desired to mimic. This special property of digital 
computers … is described by saying that they are universal 
machines."Needless to say, not all brain-computer metaphors 
require traditional TM or von Neumann architectures. We now 
have parallel or quantum computing, for instance, and these 
modalities have enriched our view of what computers can do (see 
Kerskens and Lopez-Perez, 2022, suggesting that our brains use 
quantum computation). However, one particularly persistent (and 
relevant here) view of computing and brain functions emphasizes 
the parallel architectures that both utilize, breaking up problems 
into smaller units that are executed by different components, all 
communicating through a shared memory. Thus, when comparing 
computers and brains, a common inference is that both systems, 
essentially, rely on parallel processors. This is not an accurate 
representation of the similarities, and for a number of reasons. (i) 
Brains and computers use different orders of magnitude (6 or 7) 
of independent (computing) units. (ii) While processors in a 
computer are “all purpose,” the human brain has specific areas 
specialized in processing different kinds of input. (iii) There are 
big differences in reliability and adaptability between brains and 
computers (a concept linked to that of “reprogrammability” in 
both systems), where brains information-processing systems are 
intrinsically “noisy” (Faisal et  al., 2008) and this explains the 
differences in reliability and adaptability between them and the 
computers. (iv) Brains are fast at recognizing patterns from 
complex data, which (in many cases) are not possible by massive 
parallel computing systems (Hawkins and Blakeslee, 2004). These 
factors seem to suggest that parallel processing in the brain is 
never “truly” parallel and that reprograming in brains and 
computers rely on different network “reconfiguration” strategies 
(re-routing in machines versus neural plasticity in living systems). 
As the needs arise (e.g., “landscape modifications”), the 
adaptability of biological systems (e.g., brains) is a unique property 
derived from the plasticity of cell and circuit configurations, and 
a result of both genetic and epigenetic factors controlling birth, 
death and connectivity of brain neuronal sets.

In the following, we  return to the processing system and 
provide an “accessible” description of a Turing machine (TM) that 
should be useful to understand the metaphor used for the brain. 
Briefly, a TM, or an “automatic machine” as Turing called it 
(Turing, 1937), is an abstract idealized model of a simple kind of 

FIGURE 1

The Special Issue at a glance. The figure is a kind of [0,1] matrix 
that describes the 12 articles in this Special Issue by means of 20 
concepts (keywords) whose presence is denoted by a dot. The 
external column shows the number of Articles per concept (ND-
A), the external row the number of Concepts per articles [ND-C; 
i.e., the Node Degree (ND), the number of links per node, in the 
corresponding bipartite graph, not shown]. Articles are as follows: 
Cobb (1), Gomez-Marin (2), Chirimuuta (3), Brette (4), Bongard-
Levin (5), Richards-Lillicrap (6), Fraser (7), Roli-Jaeger-Kauffman 
(8), Danchin-Fenton (9), Davis (10), Gershenson (11), Graham (12). 
Abbreviations: TM-Turing machine; AI-Artificial Intelligence; 
ALife-Artificial Life.
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digital computer. The machine input is a string of symbols each 
one of them carried by a single cell on a linear tape. The machine 
possesses some sort of read-write scanning head that considers 
one cell at a time. It is an automatic machine (i.e., at any given 
moment, its behavior is completely determined by the current 
state and symbol, the “configuration,” being scanned). It is a 
machine capable of a finite set of configurations. A finite set of 
rules (i.e., the program representing the algorithm) instructs the 
machine what to do in response to each symbol (i.e., erase, write, 
move left, move right, do not move). In principle, for any function 
that is computable (i.e., a function whose values may be computed 
by means of an algorithm), there is a TM capable of computing it. 
This logically implies the property of imitating another machine, 
meaning that there is a Universal Turing Machine (UTM) capable 
of simulating any other TM performing different tasks, by reading 
the corresponding set of rules from the tape. This is the theoretical 
model of a programmable computer (for more details on TM-UTM, 
see Gershenson, 2021*; Danchin and Fenton, 2022*; Richards and 
Lillicrap, 2022*).

Given the definition of a TM, it soon became clear that the 
brain (or mind) could be equated to a computational system very 
similar to a TM, and with many of the mental processes very 
similar to computations performed by a TM. Some authors 
consider that this identification of brains with TM is too strong, 
and thus, an adherence to it is called the “hard position.”

This “hard position” is being criticized by other authors saying 
that neither the principles, nor the materials or the way they are 
utilized (or organized) in a brain can be equated to a TM, except, 
perhaps, in the way both perform arithmetic operations (some 
authors deem the whole comparison “vacuous”; see Epstein, 
2016). We are not going to delve on this problematic here, just 
want to stress the enormous influence that Turing machines have 
had, as computational neuroscientists have maintained (not all), 
for the last 80 years, in the view of brains as computer (working as 
a TM). This model was vindicated early on when neuroscientists 
realized that neurons were performing their physiological roles, 
firing action potentials, in a “all or none” fashion. This view was 
mostly promoted by Warren McCulloch and Walter Pitts in 1943, 
who also saw neural circuits in the brain as circuits of logical gates. 
Modern neuroscience has revealed more complex firing patterns, 
as well as complex patterns of firing regulation, adding nuances to 
the original McCulloch-Pitts view.

In the comparison between computers and brains, the 
semantics issue has often been raised, in one form or another. In 
particular, in the 80’s John Searle asked the question: “Can a 
machine ever be  truly called intelligent?” (Searle, 1984). The 
question was encapsulated in the well-known “Chinese room” 
argument. It suggests that however well one programs a computer, 
nonetheless the machine does not understand Chinese; it only 
simulates that knowledge, and therefore this behavior cannot 
be  equated with intelligence. Searle argues that his thought-
experiment underscores the fact that computers merely use 
syntactic rules to manipulate strings of symbols, but have no 

understanding of their meaning. The issue of “meaning” is not 
further explored here, though we recognize its enormous interest. 
Searle’s main conclusion was that passing the “Turing Test” is 
inadequate as an answer (see also Cole, 2020).

All in all, in spite of the historical fortunes (and misfortunes) 
of the brain-computer analogy, the use of this “metaphor” is 
widespread, a testimony of which can be found in the different 
papers of this special issue. The subject remains fertile and open 
for further discussions.

1.4. Metaphor and analogy in science

The definitions of metaphor and analogy, at least in English 
dictionaries and encyclopedias, serve well to illustrate how 
muddled these concepts still are, in spite of the massive literature, 
in both Science and Humanities, devoted to them. A telling 
example comes from the Merriam-Webster in which metaphor is 
defined as “a figure of speech in which a word or phrase literally 
denoting one kind of object or idea is used in place of another to 
suggest a likeness or analogy between them.”

The definition of the two concepts has been “adapted” in 
different branches of human knowledge. Here we  are only 
concerned with the meaning(s) of Metaphor and Analogy (M&A) 
in (western) scientific thought. As we will see in the following 
sections, in Science, and also in this SI, M&A are used as 
synonyms, yet they are not. Aware of this, in the title of this 
Research Topic (Current thoughts on the Brain-Computer 
analogy—All metaphors are wrong but some are useful) 
we intentionally, and provokingly, used metaphor and analogy as 
synonyms; and it is precisely in Science that the distinction is 
more conspicuous. This is the rationale for discussing in detail the 
issue in this section.

It is important to note, upfront, that some argue that metaphor 
and analogy have actually no place in science (for a discussion see 
Haack, 2019; Reynolds, 2022), though others claim that M&A are 
essential for scientific creativity (a position sustained in this 
article). According to Ziman “… scientific theories are unavoidably 
metaphorical” (Ziman, 2000), and it has been suggested that they 
are “the basis of our ability to extend the boundaries of human 
knowledge” (Yohan, 2012). Moreover, the aptitude for metaphorical 
and analogical reasoning is an essential part of human cognition. 
Undeniably, M&A have been a powerful way to communicate 
knowledge and consequently a powerful tool in education and 
learning. Just think of how many times we  use metaphorical 
language to convey concepts to students in our own teaching 
experience (Kovac, 2003). Scientific M&A can guide scientific 
discovery, hypothesis and theory, and plays also an important role 
in adapting scientific language to the world. As Kuhn put it 
“Metaphors play an essential role in establishing links between 
scientific language and the world” but what is crucial (see also 
section 3) is that “… Those links are not, however, given once and 
for all” (Kuhn, 1993). Then choosing the “right” metaphor may 
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be  regarded as part of scientists/teacher work and ultimately 
becomes a form of art (Haack, 2019). In the following, we discuss 
M&A in more detail, given the relevance we assign to them in the 
context of discussing our current images of the brain.

1.5. Metaphor

The literature on metaphor is overwhelming and definitions 
abound. Robert R. Hoffman reasons that scientific metaphors 
appear in a variety of different forms and serve a variety of 
functions, and it makes a rather exhaustive list of them (Hoffman, 
1985). One example for all, the “Tree of Knowledge.” In its various 
flavors over the centuries, it is certainly one of the founding 
metaphors of human civilization, not only of Science (Lima, 
2014). And, to an evolutionary biologist (like the two authors of 
this paper), there is hardly a more fundamental metaphor than the 
Tree of Life, which Darwin, and Lamarck (1809) before him, used 
to illustrate his theory of descent with modification and depicted 
in his “Diagram of diverging taxa” (Darwin, 1859, pp. 116–117 in 
6th edn). Indeed, the tree metaphor has been used in evolutionary 
biology ever since. However, and most notably, based on the 
regained awareness of the evolutionary impact of the phenomenon 
of gene flow between species (a.k.a. Horizontal/Lateral Gene 
Transfer) less than three decades ago, a new metaphor has 
emerged to account for the diversity of species: The Network of Life 
(Doolittle, 1999; Martin, 1999; Ragan, 2009). Incidentally, as an 
historical note, contrary to common knowledge, the network 
metaphor predates that of the branching tree. Indeed, it is dated 
1750 and credited to Vitaliano Donati, whereas the first use of the 
tree metaphor is attributed to Pallas in 1776 (cited in Ragan, 
2009). The example of the use of Trees and Networks in 
evolutionary biology is mentioned here specifically to emphasize 
that the two metaphors are complementary; we  consider this 
position as pivotal in our review essay for both trees and networks 
have been specifically used in modeling our ideas of the brain and 
its evolution (see also section 3).

As to the definitions of metaphors in science, for the sake of 
brevity, we single out two of them (JC Maxwell, and Lakoff and 
Johnson) adding three illustrative examples for a better  
understanding.

James Clerk Maxwell wrote “The figure of speech or of thought by 
which we transfer the language and ideas of a familiar science to one 
with which we are less acquainted may be called Scientific Metaphor” 
(Maxwell, 1870). This would refer to a “logical semantics” view of 
metaphors, very much used in science and everyday life.

However, and in the classical definition by Lakoff and 
Johnson, the concept of “mapping” is also introduced. This leads 
them to state that “The essence of metaphor is understanding and 
experiencing one kind of thing in terms of another” (Lakoff and 
Johnson, 1980). And also introduce the different idea that the 
“Metaphor is the main mechanism through which we comprehend 
abstract concepts and perform abstract reasoning … Metaphors are 
mappings across conceptual domains” (Lakoff, 1993a). Hence, 
metaphors “become” conceptual tools (aids in understanding). 

Therefore, as Humar put it “A metaphor links two domains by 
mapping attributes from one onto the other. Thus, metaphor is an 
act of transferring … [where] … the key terms, ‘target’ and ‘source’, 
were introduced by Lakoff and Johnson … For instance, the 
biological metaphor ‘genes are text’ links the source ‘text’ and the 
target ‘genes’” (Humar, 2021). Black (1962) points out, in this 
context, how similar is the “standardized” Oxford English 
Dictionary (OED)1 description of metaphor to the one described 
above: “The figure of speech in which a name or descriptive term is 
transferred to some object different from, but analogous to, that to 
which it is properly applicable; an instance of this, a 
metaphorical expression”.

Interestingly, the etymology of the term “metaphor” originates 
from the ancient Greek noun “metaphora” (μεταφορά), which is 
derived from the verb “metapherein” (μεταφέρειν), originally 
meaning “to transfer,” “to transform.” Or else, derived from μετα 
(over, beyond) and πηερειν (to carry). It all depends on what 
we mean by “transfer” or “carry beyond” in the above definitions; 
more precisely we may ask: What is being transferred?

Before delving into the next relevant concept of analogy, 
we need consider another rather problematic term which is very 
often linked or likened to metaphor: the concept of “model.” 
Often, in the scientific literature there is no clear distinction 
between model and metaphor. In fact, we think that a distinction 
needs be made, for clarity. Contrary to a metaphor, a model (a 
conceptual model) has for us a narrower scope and, being a 
hypothetical representation of a system, it aims at simulating and 
understanding reality (e.g., a biological model; see also Ziman, 
2000). Moreover, “… a model is, in its etymological and technical 
sense, a substantive thing which is the best or ideal representative of 
something else. All other uses of the word “model” are metaphorical 
extensions of this basic meaning” (Hoffman, 1985). Therefore, 
we see models as methods or representations aimed to understand, 
and predict, specific patterns.

To complete this section, we would like to propose a “concept” 
of metaphor that does not require, but accepts, the use of the 
mapping concept (but see section 1.6, below). The type of 
metaphor we have in mind is founded on a visual perception. It is 
the visual image that is the driver for scientific insight and 
provides educational power. As an example, we  identify three 
metaphors that best illustrate this idea: Adaptive Landscapes by 
Wright (1931), Epigenetic Landscapes by Waddington (1957), and 
the Gene Regulatory Network by Davidson and Peter (2015). For 
a recent, and more extensive, discussion of the use of metaphors 
in science, with its dangers and pitfalls, we refer to the excellent 
new book by Reynolds (2022).

1.6. Analogy

Metaphors may be a source for “analogies” (and “similarities”) 
and may guide building models. Among the definitions of analogy 

1 https://www.oed.com/view/Entry/117328?redirectedFrom=metaphor&
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given in the OED there are the following: (a) A comparison 
between one thing and another, typically for the purpose of 
explanation or clarification; (b) Biology: The resemblance of 
function between organs that have a different evolutionary origin. 
Our focus here is on the first, more general, definition.

Atran (1990) traces back the concept to Aristotle and his effort 
to compare structures and functions between man, other animals 
and plants; “… Aristotelian life-forms are distinguished and related 
through possession of analogous organs of the same essential 
functions.” Along the same line, the concept of “analogue” was 
introduced in comparative anatomy in 1843 and defined as “a part 
or organ in one animal which has the same function as another part 
or organ in a different animal” (Owen, 1843, p. 374). Atran brings 
us to a more generalized version of the analogy concept, also 
mentions the Newton’s concept of “Analogy of Nature” (ibid p. 
232) and points out that this analogy “… combines two older ideas: 
the theological “Chain of Being” through which Nature seeks Divine 
Perfection, and the unity of causal pattern in the macrocosm and 
the microcosm.”

But it is in her classic book that Mary Hesse describes in 
considerable detail both scientific models and analogies (Hesse, 
1970). A dialog is imagined between two men of science: 
Campbellian, who argues that analogies and “models in some sense 
are essential to the logic of scientific theories” and Duhemist, who 
denies it. Campbellian identifies three types of analogies: positive, 
negative and neutral. Two physical objects or systems have positive 
analogy based on their shared “properties”: “Take, for example, the 
earth and the moon. Both are large, solid, opaque, spherical bodies, 
receiving heat and light from the sun, …” yet, the same objects may 
differ in a number of respects: “On the other hand, the moon is 
smaller than the earth, more volcanic, and has no atmosphere and 
no water … there is negative analogy between them.” Neutral 
analogies are “properties of the model about which we do not yet 
know whether they are positive or negative analogies.” Note that 
Campbellian too is concerned with semantics: “But first let us agree 
on the sense in which we are using the word model.” Thus Hesse tells 
us that analogies can have specific “values”: positive, negative 
or neutral.

Humar has posed a dichotomy between “structural 
metaphors,” such as those described above and functional ones. In 
fact, “functional metaphors … draw attention to a similarity in 
function between a source and a target are also found in ancient 
scientific literature” (2021). And again, Gentner and Jezioreski 
(1993) contend that an underlying idea pervades the use of any 
concept of analogy “The central idea is that an analogy is a mapping 
of knowledge from one domain (the base) into another (the target) 
such that a system of relations that holds among the base objects also 
holds among the target objects. In interpreting an analogy, people 
seek to put the objects of the base in one-to-one correspondence with 
the objects of the target so as to obtain the maximal structural 
match.” More so, broadly speaking, Hoffman sees the distinction 
between the two concepts as a chicken-and-egg problem, analogy 
regarded as the “psychological egg” and metaphor the “chicken” 
(Hoffman, 1985, p. 348).

Finally, we suggest the use of two criteria, the structural and 
the functional in the very definition of analogy (in science), and 
indicate the latter as its most characterizing property. In doing so, 
we do link this definition of analogy with the Lakoff-Johnson 
definition of metaphor and its associated action of “transfer.” 
We think this definition of analogy is more pertinent (of practical 
importance) here because metaphors are not intended to provide 
a solution to a given problem, they have no explanatory power. In 
contrast, analogies do have an explanatory power, and enable to 
make connections to understand the structure/function of a given 
system based on the knowledge acquired on another system. A 
telling example for the “explanatory role” of analogy is the transfer 
of themata [sensu Holton, in Ziman (2000)] between different 
disciplines—for example, the notion of a “code” from information 
theory to molecular genetics.

1.7. Brain(s)

A key concept in this Special Issue is obviously that of a Brain, 
but how to define one? The brain, defined in simple terms, 
according to the Encyclopedia Britannica is: “the mass of nerve 
tissue in the anterior end of an organism.” The brain integrates 
sensory information and directs motor responses. While this 
mostly represent the vertebrate condition, the substitution of 
nerves by neurons would be  still a valid assertion. Brains as 
centralized structures are old, dating back to the origin of 
bilaterian animals in the Ediacaran Period (571 to 539 million 
years ago; Martinez and Sprecher, 2020). The coalescence of 
neurons in a pole of the larvae/animal allows a better, centralized, 
coordination of functions, and in that sense, brains have been also 
equated to “central processing units” (CPUs). How centralization 
has happened and the conditions that drove their appearance have 
been discussed before (see Martinez and Sprecher, 2020) and do 
not need a further discussion here.

Our ideas of the brain have changed radically over the 
centuries, mainly due to the lack of proper understanding of their 
physical constituents and the modes of functioning. Explanations 
have used the current metaphors that conformed the mechanical 
world at every age (see Cobb’s historical account in this SI). Most 
recently, and with the instantiation of computing devices and the 
rise of the information age, computing and information processing 
have been our reference mark when thinking about brains and 
their activities. The current view originated early in the 20th 
century, when the brain tissue was systematically analyzed under 
the microscope. The presence of isolated cells organized as neural 
nets contributed to the view of the brain as a “machine” dedicated 
to compute and process information.

The intricate nature of brain connections (neurons and 
substructures) suggested the possibility that the brain is actually a 
connected set of wires, with complex architectures (see Cobb, 
2020). Moreover, the discovery of chemical and electrical 
connections between neurons reinforced the image of a giant 
electrical device with multiple, complex, switching mechanisms. 
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It is the emergence of the information age, with the first devices 
able to “compute” operations, that led to a new model of the brain, 
which in addition to conducting electrical impulses, was 
assimilated to a complex computing device.

The integrative model of the neurons, with empirical data 
and modeling processes, was developed by pioneer 
cyberneticians/neurophysiologists Warren McCulloch and 
mathematician Walter Pitts (among others). McCulloch’s brand 
of cybernetics used logic and mathematics to develop models of 
neural networks that embodied the functioning of the brain in 
the workings of the brain (Pitts and McCulloch, 1947). How 
accurate is this model? The question has been a subject of 
intense debate, to which some of the papers in this issue refer 
(e.g., Davis, 2021*; Fraser et al., 2021*). Ideas about how the 
information is processed, the speed of neuronal communication, 
the role of the neuron in integrating inputs, the routing of 
information and the correlation between firing patterns and 
brain activities (i.e., mental activities), have all contributed to 
the debate on the validity of using “computer” metaphors for 
understanding different aspects of neuroscience. The debate is 
alive today as it ever was.

At the base of our utilization of metaphors for specific organ 
systems is the consideration that the activities of the organ as 
properties “define” the realm (domain) and the contents of the 
metaphors. In this sense, brains are equated to computers because, 
at least according to some authors, they are actually performing 
“computing” operations (see Chirimuuta, 2022*). However, there 
is not a unified agreement on the use of this metaphor (others are 
explored in this SI by Gomez-Marin and Graham), and this has 
led to a heated debate on the meaningfulness of using some 
specific metaphors in neuroscience (see a later discussion in 
this paper).

One of the key issues discussed by many authors interested 
in modeling the brain and its functions revolves around the 
nature of information flow and how input signals are 
transformed into output behaviors, including the routing 
problem (see Graham, 2022*; in preparation)2. This is linked 
to the idea that our brain does not function as a linear 
processor in which the flowing streams of information, from 
input data to output realization (behavior) are not 
unidirectional, a “one-way street.” Instead, many authors 
consider that the output of the brain’s processing is the result 
of some “emergent properties” not linearly derived from the 
original inputs, properties that are not “just” the result of 
simple operations (addition/subtraction) of inputs. Some of 
the problems not solved by the different physical models of the 
brain are linked to the capacities for self-reference in human 
brains, or more generally the awareness of our own existence 
(consciousness). These problems are not easily dispatched by 
models of emergence, and a proof of the complexity that 

2 Graham, D. (2022). Nine insights from internet engineering that help 

us understand brain network communication. Front. Comput. Sci. (in 

preparation). 

self-reference models have in computer science is shown by 
Fraser et al. in this SI. Once more, mathematical descriptions 
and observable reality are not easy to compare.

2. The 12 articles in the special 
issue

In this section, we  present our own summaries of the 12 
articles (see Table 1) in this Special Issue (SI), each of which (but 
one) has been endorsed by the corresponding author(s).

In Figure 1 we propose a graphical picture, a sort of a snapshot 
of the entire Special Issue, based on 20 concepts (keywords) 
we have arbitrarily selected. It is a kind of [0,1] matrix in which 
the presence of those concepts in a given paper is denoted by a 
dot. The usefulness of such a representation is self-explanatory. In 
the following, article summaries are listed by Authors’ names (and 
number in Figure 1).

We have chosen as the opening article of this Special Issue 
Matthew Cobb’s historical account of the metaphors used over the 
centuries to describe the brain and try to understand 
its functioning.

2.1. Cobb (1)

In the opening article of this Special Issue, Matthew Cobb, 
the author of the excellent book "The Idea of the Brain" (2020), 
provides a detailed and instructive history of the “wiring 
diagram” metaphor of the brain and explores its role, together 
with that of its associated metaphors, on the conception of the 
brain over the last two centuries.

His historical account of the use of metaphors for brain 
functioning starts in the 18th century stemming from 
mechanics, and the discovery of electricity (telegraph). Cobb 
identifies a drastic shift toward the end of 19th century with 
the appearance of " … the telephone exchange, where messages 
can be flexibly routed." In the 20th century" … two kinds of 
wiring diagram – that of the animal body and that of the computer 
– entered into dialogue" (McCulloch and Pitts, 1943; von 
Neumann, 1958).

In the 21st century, the connectomic projects, which are 
aimed at a complete description of the structural connectivity 
of the central nervous system, became prominent, in many 
respects. Cobb criticizes these approaches mainly because 
they produce a static representations of the nervous system. 
He thinks that we should proceed from small circuits 
(controlling specific behaviors) to the whole map of neuronal 
connections, and gives the example of the lobster’s stomach, 
whose processes are controlled by a few neurons, which has 
been studied (excruciatingly) for a long time, and for which 
we still do not have a full understanding. Moreover, quite 
rightly, Cobb points out that knowing the genome sequence 
cannot by itself explain the “functioning” of the corresponding 
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organism, likewise " … the wiring diagram itself could not 
explain the workings of the human mind."

Cobb mentions what is regarded as the most recent 
metaphor for brain function “cloud computing or the internet.” 
On the one hand he acknowledges that " … it embodies 
plasticity and distributed function into our conception of the 
brain," on the other hand, he points out its limits if the notion 
of robustness is taken into account" … the internet is designed 
to function even if key parts it removed, whereas some aspects of 
brain function can be decisively disrupted if particular areas are 
damaged." Interestingly, the internet metaphor will 
be explored in great detail by David Graham, in the last 
contribution of this Special Issue.

As a cautionary note, Cobb warns us about the limits of 
the use of these metaphors to study brain function, mainly 
" … because of the plasticity and distributed function of most 
nervous systems." The notion of brain plasticity is central to 
this Special Issue and alludes to the plasticity that nervous 
systems shown in individuals during their lives and linked 
to the processes of learning and memory acquisition.

The next three articles deal with conceptual issues, and are 
written by A. Gomez-Marin, M. Chirimuuta, and R. Brette. They 
tackle the problem of whether there is any foundation for the 
comparison between brains and computers. In different ways, 
they do that by interrogating the interrelated questions of what is 
a computer, how it can be characterized and the limitations that 
these characterizations, and their associated metaphors, have in 
our current understanding of both brains and computers.

2.2. Gomez-Marin (2)

Gomez-Marin introduces us to the well-known book 
"Metaphors we  live by" (1980), authored by the cognitive 
scientists George P. Lakoff and Mark Johnson. In this seminal 
work, the authors provide a detailed analysis of the nature of 
metaphors, suggesting that metaphors, which were once known 
as mere “linguistic devices” (semantics), are mostly “conceptual 
constructions” that shape the way we think and act. In a sense, 
as Gomez Marin points out, the semantic role for metaphors is 
secondary to their conceptual (cognitive) nature. Following 
Lakoff (1993b), metaphor mapping (from one conceptual 
domain to another) would occur independently of their 
linguistic expressions, so there is a priority status given to their 
cognitive function, over those expressed in language terms. Or 
put it another way: the conceptual structure of metaphor is 
given more weight than the structure of metaphoric language.

In this context, Gomez-Marin revisits the analogy of 
computers and brains. After a brief historical overview of the 
most pervasive ways in which brains and computers have 
been visualized, Gomez-Marin draws our attention to the 
lesser-known images of the brain such as holograms and 
radio sets. The latter suggests the intriguing possibility that 
“brains would not create thoughts but receive and filter them.”

Gomez-Marin summarizes his appraisal of metaphors 
with the advice that we apply them as pragmatic tools with 
the proviso that we should be always vigilant to avoid what 
he calls falling into a “metaphorical monoculture”, which 
would become “a burden” rather than “a blessing.”

2.3. Chirimuuta (3)

In a suggestive parallel, Chirimuuta comments on the 
assertion by different authors that the brain and computers 
(or any other complex artifact) could be made tractable by 
using multi-level approaches. These approaches use top 
down, functional characterizations of systems to compliment 
bottom up reductionist strategies. The important assumption 
is that the brain decomposes into relatively autonomous 
levels of organization, similar to the hardware-software 
distinction in computing.

However, as appealing the simile can be, Chirimuuta 
contends that several limitations need to be accounted for. (1) 
Low-level components (neurons in the brain) are not mere 
“hardware implementors” in brain information processing. In 
computers, the elements maintaining the physical integrity of 
the machine and the components performing information 
processing are different. Whether this separation occurs in the 
brain is far from clear. (2) Computers and artifacts are assembled 
differently. While computers are designed to ensure that high 
level functionality is relatively independent of variations in 
hardware the functionality of the brain may well depend on low 
level details often assumed to be irrelevant to cognition. 
Interestingly, the two alternatives are, again, assumed to be the 
products of two constructive methods: engineering, in the case 
of computers/artifacts, and evolution, in the case of brains. 
Chirimuuta, however, is concerned about oversimplifying the 
principles that govern the construction and functionality of 
complex biological systems, such as the brain.

2.4. Brette (4)

The question central to Brette and Richards/Lillicrap (see 
below) is a semantic one, they ask "What is a computer?" 
Brette states that both in common and technical usage a 
“computer” is thought of as a “programmable machine.” Then, 
while pointing out that in computer science there is no formal 
definition of computer, he draws our attention on the concept 
of “program” defined as " … a set of explicit instructions that fully 
specify the behavior of the system in advance (“pro-”, before; 
“-gram”, write)."

Moreover, and quite appropriately, Brette discuss the 
notions of algorithm and computation in the brain. At this 
point, two deep questions, both from evolutionary and 
philosophical perspectives: "what is a brain program"? and 
"who gets to "program" the brain?" The reasoning those 
entail, seem to lead to a logical consequence " … The brain 
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might not be  a computer, because it is not literally 
programmable." Offering a definition of metaphor and 
analogy, Brette concludes that the brain-computer 
metaphor seems to be of little use, if not misleading, for it 
provides, according to the author, a reductionist view of 
cognition and behavior. This conclusion contrasts sharply 
with that of Richards and Lillicrap.

The next contributions deal with different problematics arising 
from the brain-computer comparisons; whether these are semantic 
misunderstandings (formal definitions in the field) or with 
misleading assumptions of what a computer or a brain can do. The 
papers by Bongard and Levin and Richards and Lillicrap deal with 
a fundamental problem that affect all definitions. The definitions 
of concepts bear very much the stamp of the fields in which they 
are generated (e.g., computer science, engineering or 
neurobiology). This straightjacket affects the way we conceive the 
possibilities of what a computer or a brain can do. Revised versions 
of those concepts should liberate the concepts from the “semantic 
constrains” that those fields have imposed in them. Here, brain, 
computer and machines are the three examples analyzed in detail. 
In the following three papers, authored by Fraser et al., Roli et al., 
and Danchin and Fenton the subject of software (the running of 
algorithms) and how brains and computers deal with processing 
information is clearly put. All authors discuss the idea of to what 
extent Artificial Intelligence should be able to reproduce behaviors 
of living organisms. Irrespective of the general optimism in the 
possibilities of Artificial Intelligence, these authors introduce some 
cautionary notes; which cast some doubts on the real possibilities 
of “imitating,” for instance, human behaviors. “Agency” and “self-
reference” become clear stumbling blocks. One last paper in this 
section, authored by Davis, suggests a series of questions posed by 
the analogy, asking himself (and the people in the field) to what 
extend they have been answered and what the answers would add 
to the debate.

2.5. Bongard and Levin (5)

It has been assumed for a long time that life and machines 
are fundamentally different entities, and that the former can’t 
be reduced to the latter (see Nicholson, 2013). Bongard and 
Levin contend that this dichotomy is mostly based on an old 
conception of machine, a 17th to 19th century vision that 
doesn’t account for modern development in disciplines such 
as Artificial Intelligence, Bioengineering, etc. In this context 
the authors re-visit the problem and ask: “does a suitable 
machine metaphor apply sufficiently to biology to facilitate 
experimental and conceptual progress?.” The path toward 
understanding this goes from a clear definition of what a 
machine is, and the properties characterize them, to a critical 
appraisal of what modern science and technology tells us 
about those properties. Do these properties are clearly 

demarcated between alive (or evolved) and engineered 
“things”? In view of modern developments in the above-
mentioned sciences it becomes harder and harder to sustain 
a clear separation between these two “systems”, with borders 
becoming more fluid as modern engineering progresses. The 
authors emphasize the fact that the analysis of properties 
once associated to the living beings in newly developed 
machines clearly show that the boundaries between those, 
once considered unmistakably different systems, are 
nowadays becoming blurred. Several, and very detailed, 
examples are provided. At the end they try to provide a new 
working definition of machine that can accommodate all of 
our newly gained insights.

2.6. Richards and Lillicrap (6)

Richards and Lillicrap emphasize the fact the word 
"computer" is given different definitions in different 
disciplines, and specifically they contrast the definition 
used in computer science with the one used by academics 
outside computer science. According to this argument, 
much of the debate about the brain-computer metaphor 
would be just a matter of semantic disagreement. End of the 
debate. Is it so?

While the common usage of "computer" is 
straightforward—"human-made devices (laptops, 
smartphones, etc) that engage in sequential processing of inputs 
to produce outputs"—this is certainly not so for the notion in 
computer science. The authors carry out an in depth analysis 
of the notion of "computer" in computer science, definition 
based on two other notions, those of "algorithm" and 
"computable function." An "algorithm" can be informally 
defined as a sequence of finite logical steps that mechanically 
lead to the solving of a problem. A “computable function” is 
"any function whose values can be  determined using an 
algorithm." The formal definition of algorithm was developed 
independently by mathematicians Alan Turing and Alonzo 
Church in 1936–19837, and the authors introduce the 
Church-Turing Thesis.

The authors provide a formal definition of “computer”: a 
"physical machinery that can implement algorithms in order to 
solve computable functions." They stress that this definition "is 
important because it underpins work in computational 
neuroscience and AI." The authors also describe the 
applications of this definition to brains and discuss its limits.

In sum, Richards and Lillicrap invite us to contrast the two 
definition of "computer," inside and outside computer science. 
If one adopts the definition from computer science "one can 
… simply ask, what type of computer is the brain?" However, " … 
if one adopts the definition from outside of computer science then 
brains are not computers, and arguably, computers are a very 
poor metaphor for brains." End of the debate?
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2.7. Fraser et al. (7)

One of the properties associated to (human) brains is the 
capacity of being conscious of its own existence. This seems an 
obvious difference to any other standard machine, including 
computers. Fraser and collaborators (see Fraser et al., this issue) 
make a good case for this, by appealing to self-reference 
statements, which cannot be resolved by computers. The case is 
clearly stated: verbal statements like “the sentence presently being 
uttered is false” are being “understood” by our brains. A computer 
presented with it, however, enters into an “endless loop,” with no 
resolution. How do brains deal with the above paradox? Fraser 
et al. present an elegant dynamical model, in which brains are 
composed of interacting units (modules) moving through time 
(the strange loop model). The model suggests a way the brain has 
for dealing/resolving the paradox, and this is by extending the 
analysis of the inconsistency over time (deconvoluting it along 
this axis). Temporalizing the problem, the brain is able to cope 
with the paradox. This avoids the system (the brain) to enter into 
the endless loops that would characterize the response of 
a computer.

2.8. Roli et al. (8)

Roli, Jaeger and Kauffman put the focus on the fields of 
Artificial Intelligence (AI) and Artificial Life (Alife). The 
notions of Natural Intelligence and Artificial General 
Intelligence (AGI) are contrasted, the latter being defined as 
"the ability of combining 'analytic, creative and practical 
intelligence'." The ultimate goal of AI and ALife would be to 
create a computational or mechanical system (an AI-ALife-
agent; e.g., a robot) able to autonomously (i.e., without 
human intervention) identify, appraise and exploit new 
alternative opportunities (dubbed affordances) so that to 
evolve and innovate in ways equivalent to a natural organism 
(autonomous Bio-agent). Affordances are here defined as 
"opportunities or impediments on [a] path to attain a goal." The 
authors argue that AI-and ALife-agents cannot "evolve and 
innovate in ways equivalent to natural evolution" for current AI 
algorithms do not allow such capability (broadly dubbed 
“agency”) since they cannot transcend their predefined 
space of possibilities (determined by the human designer). 
Moreover, they show that the term “agency” refers to 
radically different notions in biology and AI research.

As possible objections to their position, the authors 
mention (i) deep-learning algorithms and (ii) unpredictability 
of AI systems (e.g., playing chess, composing music); they 
address and dismiss both.

Finally, citing the work of William Byers and Roger 
Penrose, the authors distinguish the capabilities of Natural 
and Artificial intelligence using the notion of creativity in 
mathematics, creativity "which does not come out of algorithmic 
thought but via insight," which is not formal and involves 
shifting frames.

2.9. Danchin and Fenton (9)

Danchin and Fenton's paper correlates notions from 
neurobiology and computer science. Parallels are also drawn 
between computing, genomics and species evolution. The focal 
point of the paper, made explicit in the title, is built around the 
concept of Turing Machine (TM); an entire section of the paper 
is devoted to it. Noteworthy, the TM concept is also transposed 
into biology.

In order to explore the potential analogies between brain 
and computer, an issue of semantics is addressed first: the 
definition of computing. The differences between analog and 
digital computing are contrasted, with emphasis on the fact 
that analog computation implements of a variety of feedback 
and feedforward loops, whereas digital algorithms make use 
of recursive processes. Recursion is a central concept in this 
essay; it is a characteristic feature of the digital world of a 
TM. Recursion allows one of the steps of a procedure (e.g., set 
of rules of the TM machine) to invoke the procedure itself. "A 
mechanical device is usually both deterministic and predictable, 
while computation involving recursion is deterministic but not 
necessarily predictable." The brain does certainly some sort of 
computation, and "with remarkable efficiency, but this calculation 
is based on a network organisation made up of cells organised in 
superimposed layers, which gives particular importance to the 
surface/volume ratio … This computation belongs to the family of 
analog computation" (A. Danchin).

In an extremely useful Table, the key features of a Turing 
Machine, a digital computer, and the human brain are 
compared. The authors conclude that brains are not digital 
computers. However, they speculate that the recent (in 
evolutionary time) invention of language in human history, 
and writing in particular (maybe around 6,000 years ago), 
might constitute a step toward the evolution of "the brain into 
a genuine (slow) Turing machine."

2.10. Davis (10)

Davis' short paper suggest a range of questions that bear 
into our use of brain computer analogies. His focus is on the 
programing of brain processes. What kind of algorithms use the 
brain to navigate the world? Would computers be able to 
simulate those? Davis suggest that modern use of optimization 
algorithms (network training) should provide an avenue, 
improving over the longer (older) numerical computations. 
He ends up by posing a provocative hypothesis: consciousness 
could play the role of an “interface to the brain’s operating 
system.” Definitely, questions that still remain unresolved in the 
fields of computer and Artificial Intelligence.

The paper by Carlos Gershenson introduces a different 
perspective to this SI by bringing to the fore the notion of 
intelligence, and collective (swarm) intelligence in particular and 
by linking it to the theory of information processing.
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2.11. Gershenson (11)

The main take of the MS is stated in its Title: the focus is 
on Intelligence that is studied in terms of information 
processing. This approach could be applied to brains (single 
and collective), and machines.

A major issue arises immediately: There is no agreed 
definition of intelligence; semantics again. Gershenson 
defines intelligence in terms of information processing: "An 
agent a can be described as intelligent if it transforms information 
… to increase its 'satisfaction' … Examples of goals are 
sustainability, survival, happiness, power, control, and 
understanding." In previous work, Gershenson suggested to 
use measures of information as a tool to study complexity, 
emergence, self-organization, homeostasis, and autopoiesis 
(Fernandez et al., 2014); here he aims to extend this approach 
to cognitive systems, including brains and computers.

Information, a new semantic challenge. Gershenson 
presents a definition of information quoting the classic work 
of Shannon. Our attention is drawn on the meaning of the 
message being transferred; in this context, the failure of 
Laplace daemon (and Leibniz mill for that matter) is 
instrumental in identifying a crucial, and much-overlooked 
notion (not only) in Biology: the existence of different scales, 
different frames of reference, which (ought to) modify the 
models and hypothesis for a given phenomenon. "Even with full 
information of the states of the components of a system, prediction 
is limited because interactions generate novel information.”

A stimulating comparison is offered between the intelligence 
of “the single brain” and the collective intelligence of swarms 
(groups of humans, animals, machines). In the case of insect 
swarms, which can be described as information processing 
systems, the processing is distributed. Gershenson compares 
the cognitive architectures of brains and swarms, and identifies 
a key feature distinguishing the two: "the speed and scalability of 
information processing of brains is much superior than that of 
swarms: neurons can interact in the scale of milliseconds, … insects 
interact in the scale of seconds, … [in practice,] this limits 
considerably the information processing capacities of swarms 
over brains."

Finally, “intelligence as information processing” is used as a 
metaphor to understand its evolution and ecology. The 
author's arguments about ecological (selective) pressures 
with respect to the evolution of intelligence and the 
complexity of ecosystems may be agreed or not.

In conclusion, while " … the brain as computer metaphor is 
not appropriate for studying collective intelligence in general, nor 
swarm intelligence in particular … " nonetheless since " … 
computation can be  understood as the transformation of 
information (Gershenson, 2012), “computers”, broadly 
understood as machines that process information can be a useful 
metaphor … "

Graham extends the comparison of brains and computers by 
introducing a further element of complexity. It is not a computer 

that needs to be compared to a brain; in fact, the functioning of 
the latter is better represented by a collection of interconnected 
computers (internet). He points to a relevant issue that is not 
solved by the proponents those that advance the “strong” brain-
computer analogy, and this is the problem of information routing 
(how the information flows within the brain and the computers; 
how is directed from the input site to the output resolution).

2.12. Graham (12)

Daniel Graham analyzes the appropriateness of the 
computer–brain metaphor (see also Graham, 2021); 
instantiated as what he calls the “representational” view of 
neural components. According to Graham, the analogy is 
useful but incomplete. Although he agrees that the brain 
performs some “computations”, he posits that brains 
themselves can be seen as the result of both representation 
and communication activities. The emphasis on pure 
mathematical operations in the brain, along with their 
translations in neuronal patterns of electrical spikes, does not 
provide a complete view of what happens inside brains as 
they perform tasks. One of the reasons for not supporting the 
strict computer–brain functional (representational) analogy 
is that it does not deal with the key problem of information 
flow within the neuronal nets of the brain. The routing of 
information and the remodeling of circuits transcend the 
limits of the computer analogy. Graham suggests the internet 
as a better image of our (or any) brain architecture and 
functional properties. The internet is constructed with clear 
routing protocols, with an efficient distribution of information 
(termed the small-network configuration, Sporns and Honey, 
2006; but see also Hilgetag and Goulas, 2016 for a critical 
view) and the continuous remodeling of their connectivity 
(plus growth). These properties should remind us of the way 
our brains seem to be constructed and how they route 
information, from external/internal inputs to higher 
integrative circuits and on to motor systems. Integrating 
views of signal processing and routing strategies should give 
us a more nuanced view of the activities of brains.

3. Discussion

3.1. The brain-computer analogy: “Cum 
grano salis”

Much the same way as scientific hypotheses, metaphors and 
analogies are transitory, always adjusting to technological advances. 
The Brain-Computer is usually referred to as a metaphor, but it 
should be thought of as an analogy instead. Indeed, here we are 
suggesting that metaphor and Analogy are two distinct concepts 
and must not be used as synonyms (see also above). While we think 
that a salient feature of a metaphor is a “visual insight” (an evocative 
visual image), the concept of analogy would be mainly associated 
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to the idea of “function.” In short, metaphors have no explanatory 
power, whereas analogies do, for the knowledge acquired on the 
functionality of a system can be transferred to an analogous one, 
thereby leading to understanding and discovery.

The Brain-Computer analogy has raised a harsh debate in the 
scientific community; some took it literally whereas the very 
meaning of analogies implies only a partial overlap of properties. 
In fact, it is very possible that analogies or metaphors are 
inescapable (and used regularly as cognitive tools; sensu Lakoff 
and Johnson, 1980; Gomez-Marin, 2022). Metaphors are rooted 
in things we know and/or manipulate. In this sense the only way 
to grasp what many things are is by describing the phenomena in 
terms we  understand. In this process from “the physical 
phenomenon” to “the understanding of it,” a metaphor/analogy 
always arise. We hypothesize that we can claim “as original” only 
those things apprehended by the senses (always assuming that our 
senses are not tricking us). Metaphors might be the only things 
that we “comprehend,” and this is because they are rooted in our 
sensible experiences. Kuhn himself seems to acknowledge the 
importance of metaphors when he claims: “Metaphors play an 
essential role in establishing links between scientific language and 
the world. Those links are not, however, given once and for all. 
Theory change, in particular, is accompanied by a change in some 
of the relevant metaphors and in the corresponding parts of the 
network of similarities through which terms attach to nature” (1993).

In this context, the wrong question to ask is if metaphors and 
analogies are actually useful or misleading. Quite appropriately, 
Yohan (2012) points out that “… No one can claim to know how 
metaphors work … how we form them, and how we decide whether 
they are successful or not.” Along the same line, we do believe that 
it is totally irrelevant, to their role in science, whether metaphors 
and analogies are “right or wrong.” This attitude being best 
exemplified by the famous Niels Bohr’s horseshoe anecdote (many 
similar versions are available on the internet): A friend asked if 
he believed in it. “Absolutely not! Bohr replied, but they say it works 
even if you do not believe in it.”

Usefulness seems a more appropriate adjective for metaphors; 
being as successful as they provide clues to the phenomena 
under analysis.

Moreover, from the mathematician’s standpoint, but easily 
translatable to any scientific discipline, William Byers maintains 
that “many important mathematical ideas are metaphoric in 
nature” and emphasizes “the close relationship between metaphors 
and ideas. A metaphor, like an idea, arises out of an act of creativity” 
(Byers, 2010, p.  240). Moreover, Byers points out that “… In 
general, most sweeping conjectures turn out to be “wrong” in the 
sense that they need to be modified during the period in which they 
are being worked on. Nevertheless, they may well be very valuable. 
The whole of mathematical research often proceeds in this way—the 
way of inspired mistakes. … Ideas that are “wrong” can still 
be valuable.”

A number of articles in this SI deal with the use of metaphors 
in a specific area of science, the interphase between neuroscience 
and computer science. In this context it is important to emphasize 
once more that the metaphors are essential, but also transitory, in 

the sense that more, newer, data to the formulation of others (or a 
more refined version of previous) that seem more suitable at the 
moment. In addition, and in the absence of new data piling up, 
sociological or epistemic changes could also be, at certain 
moments, fruitful sources of new metaphors. Moreover, 
Gershenson reminds us that “different metaphors can be useful for 
different purposes … and in different contexts” within a discipline. 
Utilizing a unique metaphor (as we explain below) might not 
be  the most productive avenue to explain certain complex 
structures, for instance the brain.

In the preceding paragraphs, we have proposed two features 
that may be useful to characterize and differentiate metaphor from 
analogy. In our view, a metaphor develops from a visual image, a 
picture that serves as creative force for scientific insight. Again 
with reference to mathematics, Ivar Ekeland stresses the 
relationship between mathematical ideas and “certain pictures” 
and the power of those pictures “… of certain visual representations, 
in the historical development of science … It is a power, in the early 
stages, to initiate progress, when the ideas it conveys are still creative 
and successful, and it becomes, later on, power to obstruct, when the 
momentum is gone and repetition of the old theories prevents the 
emergence of new ideas” (Ekeland, 1988, p. 9).

As Denis Nobles put it “… Different, even competing, 
metaphors can illuminate different aspects of the same situation, 
each of which may be correct even though the metaphors themselves 
may be incompatible. … Metaphors compete for insight, and for 
criteria like simplicity, beauty, creativity … Metaphor invention is 
an art not a science and, as with other art forms, the artist is not 
necessarily the best interpreter” (Noble, 2006). To these views 
we subscribe fully.

As for analogy, we think that the criterion of “function” could 
be  regarded as its most characterizing property, a property 
endowed with explanatory power. For example, in this SI, Daniel 
Graham proposes internet as a new metaphor for the Brain. 
According to our definitions (see above), in the case internet 
works both as metaphor and analogy.

To end this section, a cautionary note is warranted. Metaphors 
may be  inevitable and necessary to Science, because of 
psychological factors associated to learning or the search for 
explanations (Hoffman, 1980). The alternative to using metaphors 
would be a crude description of facts. In the philosophy of mind 
(or our discussion here) this would imply a “pure” description of 
physiological states in the brain. Whether there is any “information 
content” attached to this description, the authors of this review 
think there is very little, if any. We do not envision a productive 
substitute for the use of metaphors in science.

3.2. Theories of the brain

We would like to emphasize here the importance of 
considering the brain as a structure that can be  analyzed at 
“different scales,” where functions might be  distributed in 
particular domains and with the involvement of different 
components. In this sense we believe that it is wrong to search for 
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“an ultimate THEORY of the brain,” since a better description 
would have to accommodate explanations on how these levels of 
architectural organization (including the varied set of functional 
domains) are established and integrated. As explained below, it 
may be more appropriate to explore “different theories of the brain,” 
perhaps a more suitable name for the exploratory endeavor 
we propose next.

In this context we  would like to bring about a different 
perspective for analyzing the brain-computer analogy and this is 
through a systems approach in which the different levels of 
organization are candidates for specific analogies. We think that a 
theory that tries to analogize components (or modules, see below) 
should be more productive that a single theory encompassing 
such a complex structure as the brain. The underlying assumption 
here is that brains are the (non-linear) sum of components 
(modules) that are juxtaposed to perform, or facilitate, certain 
mental tasks. This is not a gratuitous assumption, since current 
data in the neurosciences, has proven the modularity of many of 
the structures in the brain, all products of evolutionary history. 
From the commonalities of neuronal subtypes to the conservation 
of specific neuronal circuits or the distribution of cortical areas, 
the brains of many animals share structures that were selected for 
specific functions and that are now recognized as homologous 
across taxa (Schlosser, 2018; Barsotti et al., 2021; Tosches, 2021).

In fact, brains, as any other organ or tissue, are organized at 
different levels, with modular blocks contributing to the next one; 
this suggests a parallel discussion between analogizing brain 
structures and the more classical discussion of biological 
homologies across scales (proteins, cells, organs, etc.).

In this framework, the fact that brains are organized in a series 
of hierarchical levels allows us to re-focus our attention on finding 
analogies that best represent different scales (i.e., a computer at 
one level, a radio at another, a hologram below, and an internet 
above, etc.). This does not imply setting aside the problem of the 
brain as a whole, just that it could be more productive finding 
good (useful) analogies of those, lower level, modules involved in 
its construction; and use modules as recognized functional units 
(e.g., neurons or neuronal circuits). A cautionary note needs to 
be  introduced here: we  are not claiming any strong/rigid 
interpretation of the brain modularity since we understand that 
there are clear instances of distributed function, and plasticity, 
plus the shifting localization of representations of stimuli over 
time. In fact, it is the distributed and flexible organization of 
modules what allows us for the integration of levels.

In a sense, and as explained by Cobb, our hypotheses on brain 
development and function have depended, at every historical 
time, on the current knowledge of the system. Hydraulic or 
electrical images of the brain were suggested at the time when 
discoveries were made on these areas; within and without the 
body. Calculations and algorithms promoted computational ideas 
of the brain, though, later on, of the neurons themselves (including 
the more recent idea that single neurons are doing complex 
computations at the synapsis). Analogies, sometimes, are exported 
from one level of analysis to another, with the computing image 

of whole brains or “single” synapsis as an obvious example. 
Similarly, the network analogy flows from the local connection of 
a few neurons (the reflex arc) to areas of the brain involved in 
specific tasks, to the whole brain or swarms of them.

To sum up what is explained above, we would like to suggest 
a reappraisal of the use of our analogies, so we  can better 
understand how every level is organized and, importantly, how the 
integration of different modules at a particular level contribute to 
generate (emergent) properties observed at the next higher level. 
Moreover, we  would encourage the introduction of different 
analogies that best represent the different levels of construction 
(avoiding, perhaps, the trap of overarching analogies explaining 
every single component in a complex system). Surely enough, 
we should notice here that “parts” in the construction of the living 
organism can be attributed to chance (drift), to physical–chemical 
laws (self-organizing), to emergent phenomena or to adaptive 
processes. All of these, constructional, principles bear no 
relationship with our purely structural view of the organism. Here 
we base our suggestion on the analysis of structures per se, at many 
levels, but not about their developmental assembly. Perhaps this 
last approximation can be considered in the future, in refined 
forms of our analogical search.

3.3. Creativity in science

Why are we  interested in creativity in the context of this 
Special Issue? Because if we  ask “can computers think,” next 
we  ought to ask “can computers create.” And the very act of 
creation (be it in sciences or in the arts) stems from the awareness 
of the esthetic element. Reflection on creativity, and its sources, 
has a long history. While philosophers are far from a consensus 
definition of what creativity is and what it entails (see Erden, 
2010), there are some tenets that are commonly recognized as 
pertaining to the creative act (freedom, potential, originality, etc.). 
Moreover, some philosophers also recognize that creation, in fact, 
it is a process with some specific requirements (McGilchrist, 
2021): (i) a generative faculty (allowing ideas to come about; 
recognizing patterns, etc.) (ii) a permissive element (generating 
the conditions for the ideas to develop), and (iii) a translational 
disposition (the insights carried over for a period up to the 
moment of the final “creative act”). These are not, per se, 
components of other (non-necessarily creative) process such as 
problem solving. In the latter sense, it has been manifested that 
“there is no algorithm behind creative processes.” What many 
authors agree upon is the fact that metaphors expand your creative 
thinking, and in that sense, the analysis of metaphors becomes a 
key component in understanding creativity in science. But how?

The analysis of metaphors and analogies relies on the 
understanding of its sources. Creativity is an obvious candidate. 
But what is the source of “true creativity” … in science? 
Undeniably, the history of science tells us that chance has played 
and will play an important role in scientific creativity. Aside from 
orthodox views, more innovative paths have been explored in 
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recent times. This is a subject that bears an important place in our 
discussion about the brain-computer metaphor.

But first we need to define what creativity is and what is the 
suggested relationship between creativity and metaphors?

In formal and natural sciences, the issue of creativity has been 
thoroughly discussed mainly in Mathematics and Physics. The 
mathematician William Byers distinguished two types of thought 
in mathematics: algorithmic (based on logical operations) defined 
as trivial and profound (deep) thought, defined as creative 
(Byers, 2010).

Byers asks a number of deep questions “Could a computer 
be programmed to distinguish between the trivial and the deep?” … 
“Can a computer do mathematics?” … “Is mathematics 
algorithmic?.” Therefore, and inevitably, he  is confronted with 
“THE question” first addressed by Turing in 1950: “Can a 
computer think?,” which, he says “… is equivalent to the question: 
Is [human] thought algorithmic?” If, following Byers again, “human 
creativity involves ideas, ambiguity, paradox, depth, and complexity” 
an act of creativity (a very rare event indeed) might be analogous 
to a biological evolutionary event, since (as some authors have 
pointed out), it is impossible to predict, a priori, how ideas will 
unfold in the future. Ideas seem to unfold over time, through 
culture (Gabora and Kaufman, 2010).

The mathematician Henri Poincaré, in asking “what is 
mathematical creation?” proposed the following: “The 
mathematical facts worthy of being studied are those which, by their 
analogy with other facts, are capable of leading us to the knowledge 
… Among chosen combinations the most fertile will often be those 
formed of elements drawn from domains which are far apart … 
Invention is discernment, choice” (Poincaré, 1910). The theoretical 
physicist Paul Dirac, followed an even more unconventional path 
designating the potent role of esthetics in scientific creativity (see 
below). We  share the opinion of those authors who think 
metaphors to be  invaluable to scientific creativity in that they 
permit to explore uncharted lands and offer new perspectives for 
expanding scientific knowledge.

Here we propose to consider another aspect of creativity that 
we think to be highly relevant, but still not fully appreciated: it is 
the feeling of emotion, of amazement (émerveillement, in French) 
the researcher may feel in front of a phenomenon (though 
Socrates and Plato linked it already to wisdom). This feeling might 
be necessary and sufficient to awaken the scientist and illuminate 
his/her thoughts. Moreover, and probably facilitated by 
“émerveillement,” we would also like to suggest that creativity in 
science might depend on the integration of views arising from 
different disciplines (as many scientists have stated when asked 
about their own work). In this context, we would speculate that 
“transferring metaphors” from one field to another could be a 
good source of new ideas, thus propitiatory of a creative act. 
Metaphors as tools for understanding in one field should be able 
to illuminate other aspects of reality, in another field. This mental 
“transferring” could be  productive, and, thus lead to 
“understanding” of unrelated phenomena.

In the context of the Brain-Computer analogy the comparison 
between human creativity and “AI creativity” arises spontaneously. 
And, the debate as to whether AI does and will play a role in 
human creativity is undeniably timely.

Obviously, human creativity is influenced by cultural 
traditions (context), or through the connections between very 
different ideas (i.e., from different/distant fields). This might 
suggest some intrinsic difficulties in imitating (the process of) 
human creativity with AI.

In a rather trivial way, and following the assertion above, 
we can state that computers are not creative, unable to produce 
“acts of creativity,” since creation might not be  a pure 
algorithmic process.

Indeed, supporting the preeminence of human creativity, 
Byers (2010) writes “… mathematical thought can be simple and it 
can also be complex but mostly it is nontrivial. Computer thought, 
on the other hand, even though it may be  very lengthy and 
complicated, is essentially trivial.” Along the same lines, Roli et al. 
support the notion that creativity in mathematics “… does not 
come out of algorithmic thought but via insight,” based on the 
argument that AI algorithms (being human devised) cannot 
identify, appraise and exploit (adapt to) new “environmental” 
alternatives (called affordances), to new frames of reference (Roli 
et al., 2022*).

Advocates of the potential of AI describe its performance, 
either in autonomous creative processes or with human 
intervention, mainly in fields such as writing, music, and painting 
(e.g., Zylinska, 2020; Jukebox, https://openai.com/blog/jukebox/), 
but also in scientific discovery (e.g., protein fold prediction via 
machine-and deep-learning techniques; see Gil et al., 2014 and 
Callaway, 2020).

Other authors sustain a more optimistic view of AI 
creativity (e.g., Boden, 2003; Forbes, 2020). These authors, 
following tenets of classical psychology (e.g., Boden, 1992), 
view creativity as having different sources and, thus, classify it 
as: combinatorial (combination of familiar ideas; e.g., poetic 
images), exploratory (arising within cultural traditions; e.g., 
cooking recipes), and transformational creativity (older rules 
are broken; e.g., cubism). While combinatorial and exploratory 
components are imitable by AI, the possibility of 
transformational creativity in computing seems a bit more 
problematic. Breaking rules seem to be a capacity specific to 
humans, since in the final acceptance of those new rules 
depends on a “value judgement” (only those outcomes that 
satisfy some new needs are incorporated). Of course, the 
possibility of having evolving programs (with selective regimes) 
are now a reality and this allows the possibility of 
“transformation.” Here again value is an important selective 
factor, which can hardly be  implemented (nowadays) by 
AI. We should be reminded that critical thinking is still central 
to the creative process and, while humans are able to scrutinize 
their ideas/creations, computers cannot. All in all, these authors 
seem to suggest the possibility of finally exorcizing Cartesian 
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dualism while establishing that the brain is, perhaps, a 
wonderfully subtle machine.

In spite of these, sometimes, entrenched opinions, what every 
scientist seems to agree upon is that with the current state of AI, 
our “machines” capabilities for imitating human creativity is still 
quite limited nowadays, though the future can change our views 
quite rapidly. All in all, creativity should be incorporated as a key 
concept when discussing metaphors such as that relevant to this 
Special Issue.

To end this review essay, we think it is important to mention 
the role of beauty (and esthetics in general) in scientific creativity.

Creativity and esthetics go hand in hand. Evaluation of 
creativity always requires a judgment of beauty. For instance, and 
according to a Kant’s classical statement: “aesthetics is not the goal 
of creativity but it is its essential component.”

Its crucial role in science has been recognized by a number 
of great mathematicians and physicists: G. W. Leibniz, 
H. Poincaré, A. Einstein, G. H. Hardy, P. A. M. Dirac, M. Gell-
Mann, to name just a few. In 1910 Poincare writes “… the feeling 
of mathematical beauty, of the harmony of numbers and forms, of 
geometric elegance. This is a true esthetic feeling that all real 
mathematicians know, and surely it belongs to emotional 
sensibility. Now, what are the mathematic entities to which 
we attribute this character of beauty and elegance, and which are 
capable of developing in us a sort of esthetic emotion?” (Poincaré, 
1910). In a famous and often quoted sentence Dirac boldly stated 
that “… it is more important to have beauty in one’s equations 
than to have them fit experiment” (Dirac, 1963). And in 
G. H. Hardy’s words: “The mathematician’s patterns, like the 
painter’s or the poet’s, must be beautiful.” Finally, the pervasiveness 
of the esthetics approach to human knowledge is epitomized in 
two extraordinarily powerful lines by the romantic English poet 
John Keats: “What the imagination seizes as beauty must be the 
truth” (1817) and “Beauty is truth, truth beauty. That is all ye 
know, and all ye need to know” (1884; in Keats, 2015). The 
relationships linking computer science, creativity and esthetics 
are explored in a recent review by Yang and Lu (2022), in which 
the authors also propose a framework that uses computational 
methods to connect creativity and esthetics.

It is fairly obvious that the meaning of the concept of beauty 
differs greatly among cultures, and also among individuals; this is 
trivial. Indeed, the commonly accepted stance is that the notion 
of esthetic quality is elusive. But here lies the problem, as 
metaphorically illustrated by the famous Bruegel’s painting “The 
blind conducts the blind”; everybody is looking for the “absolute” 

definition of beauty, and exactly this is the mistake. In contrast, 
the most crucial point is that, as far as science is concerned, all 
meanings and definitions of beauty are equivalent, and they all 
fulfill the same goal: to show the way to scientific discovery. 
Beauty is impossible to define because it lies in the eyes of the 
observer? Sure, but … “It does not matter!” for the chances for any 
esthetic criterion to be effective are not negligible at all. Likewise, 
for metaphors and analogies.
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A Brief History of Wires in the Brain
Matthew Cobb*
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Metaphors have formed a significant part of the development of neuroscience, often
linked with technology. A metaphor that has been widely used for the past two centuries
is that of the nervous system being like wires, either as a telegraph system or telephone
exchange, or, more recently, in the more abstract metaphor of a wiring diagram. The
entry of these terms into scientific writing is traced, together with the insights provided
by these metaphors, in particular in relation to recent developments in the study of
connectomes. Finally, the place of the wiring diagram as a modern version of Leibniz’s
“mill” argument is described, as a way of exploring the limits of what insight the metaphor
can provide

Keywords: wiring diagram, brain, neuroscience, history, metaphor

INTRODUCTION

Our changing understanding of brain function has involved the use of metaphors, often taken
from technology (Cobb, 2020). The role of metaphors in science has been studied by philosophers
(e.g., Lakoff and Johnson, 1980; Brown, 2003); metaphors shed light on phenomena but also frame
and sometimes limit how we can think about them. In this Perspective I explore the metaphor of
“wiring” in the brain, the insights it provides and the scientific and conceptual issues raised by this
metaphor, some of which go back to 18th century debates and are still unresolved today.

FROM HYDRAULICS TO THE TELEGRAPH

In the Western tradition, it was thought for millennia that movement was produced by a fluid
or spirit in the nerves, coming from the heart or, according to some minority views, the brain.
By the 1630s, when it was understood that the heart was merely a pump while the brain was
anatomically highly complex, Descartes suggested that movement and brain function occurred
through a hydraulic mechanism, similar to that he observed in moving statues in Parisian parks.
But sectioning nerves showed there was no such fluid. This left thinkers at a loss; in the 1670s the
pioneer microscopist Jan Swammerdam suggested that whatever moved down a nerve might be
like a vibration travelling down a plank of wood, but he could not suggest how this might work
(Swammerdam, 1758). At the time, most ideas about brain function used mechanical metaphors –
the term “impression”, still in everyday use, implied that stimuli pushed upon the structures of the
brain, leaving their shape – an impression. Despite their power and longevity, these ideas failed the
basic test of science – there was no evidence for them.

The mastery of electricity in the second half of the 18th century allowed precise experimentation
on both isolated nerves and eventually on the brain, leading to new, more informative metaphors
regarding brain function. It also had a contradictory effect – because the language of electricity is
based on watery metaphors (current, flow, etc.), aspects of our thinking of brain function are pulled
back to the old hydraulic metaphors. More significantly, with the development of the telegraph
system in the late 1830s a powerful parallel was drawn: the nervous system was described as being
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like a telegraph, while the telegraph system was seen as
the nervous system of the country. Both telegraph and
nerves involved near-instantaneous communication and they
both enabled action.

For the mid-century inventor Alfred Smee, the nervous system
was literally telegraphic: “In animal bodies we really have electro-
telegraphic communication in the nervous system. That which is
seen, or felt, or heard is telegraphed to the brain” (Smee, 1850).
Many thinkers suggested that the same kind of stuff was going
down both wires and nerves – “intelligence”, or as Dr. Spencer
Thomson put it: “the wires – nerves – convey the information
from all parts of the body” (Thomson and Smith, 1853).

A few years later, in 1863, the great German physiologist
Hermann von Helmholtz pointed out that nerves, like telegraph
wires, could produce all sorts of functions: “Nerves have often
and not unsuitably been compared to telegraph wires. according
to the different kinds of apparatus with which we provide its
terminations, we can send telegraphic dispatches, ring bells,
explode mines, decompose water, move magnets, magnetise iron,
develop light, and so on. So with the nerves.” (Helmholtz,
1875). Helmholtz argued that the differences in the activity of
different parts of the nervous system (for example, different
sensory modalities), were not due to what his teacher, Johannes
Müller, had called “the law of specific nerve energies”. Helmholtz
argued that all nerves carried the same kind of signal, and
that different sensations arose when the brain interpreted them
in different ways.

Thirty years later, Ramon y Cajal used the telegraph network
to explain the structure and function of a single neuron: “The
nerve cell consists of an apparatus for the reception of currents, as
seen in the dendritic expansions and the cell body, an apparatus
for transmission, represented by the prolonged axis cylinder, and
an apparatus for division or distribution, represented by the nerve
terminal arborisation.” (Cajal, 1894). Cajal even used wiring as
a way of explaining what was happening in the as yet unnamed
synapse: “current must be transmitted from one cell to another
by way of contiguity or contact, as in the splicing of two telegraph
wires” (Robinson, 2001).

Nevertheless, Cajal felt that the telegraph was not a precise
model for how the brain worked. Brains were plastic, unlike
the fixed telegraph: “A continuous pre-established network –
a kind of grid composed of telegraph wires in which neither
new nodes nor new lines can be created – is something
rigid, immutable, incapable of being changed, which clashes
with the widespread impression that the organ of thought is,
within certain limits, malleable and capable of perfection, above
all during its development, by means of well-directed mental
exercise.” (Cajal, 1894).

FROM SWITCHBOARDS TO WIRING
DIAGRAMS

Toward the end of the 19th century a new technology challenged
the rigid telegraph metaphor – the telephone exchange, where
messages can be flexibly routed. For French philosopher Henri
Bergson “the brain is no more than a kind of central telephonic

exchange: its office is to allow communication, or to delay it
. . . it really constitutes a centre, where the peripheral excitation
gets into relation with this or that motor mechanism” (Bergson,
1911). The telephone exchange metaphor is still occasionally used
in popular writing – for example, in 2014, Stanislas Dehaene
wrote: “consciousness is nothing but the flexible circulation of
information within a dense switchboard of cortical neurons”
(Dehaene, 2014). However, the limitations of the flexibility seen
in a switchboard – they do not even contain simple feedback
loops – mean that richer metaphors have often been favoured
over the last half century.

In the final years of the 19th century, planning and recording
the cabling of a telephone exchange, a telegraph system or even
a house led to the appearance of the term “wiring diagram”. In
1912 the British surgeon Deane Butcher used the metaphor of
wiring in a house to describe the innervation of a muscle cell
(Butcher, 1912), while one of the first applications of the term
“wiring diagram” to the nervous system came in 1922, by Harvard
psychologist Leonard Troland: “From the retina to the brain and
hence from the retina to the visual consciousness, the process of
seeing depends upon an extremely intricate telegraphic system. It
is essential that we should determine the “wiring diagram” of this
system for human beings and for any animal species, the visual
processes of which we may be studying.” (Troland, 1922).

The idea that form can cast light on function gained impetus
in the 1940s, following the influential but mistaken suggestion
by McCulloch and Pitts (1943) that different forms of synapse
expressed what they called “the immanent logic of the nervous
system”. With the development of computers following the work
of von Neumann, itself inspired by the logical concepts outlined
by McCulloch and Pitts, the two kinds of wiring diagram –
that of the animal body and that of the computer – entered
into dialogue. McCulloch explained his approach: “regarding the
anatomy of the nervous system as if it were a wiring diagram
and the physiology of the neuron as if it were a component relay
of a computing machine, we shall describe the brain in terms
thoroughly familiar to the electrical engineer whose business is
communication.” (McCulloch and Pfeiffer, 1949).

In the 1950s, the development of early computer models of
pattern recognition reinforced the idea of a parallel between
wiring in machines and humans. In 1958, psychologist Frank
Rosenblatt argued that “if one understood the code or “wiring
diagram” of the nervous system, one should, in principle,
be able to discover exactly what an organism remembers by
reconstructing the original sensory patterns from the “memory
traces” which they have left” (Rosenblatt, 1958). Nevertheless,
there were clear limits to the precision of the wiring diagram
metaphor, because of the plasticity and distributed function
of most nervous systems. As Pitts pointed out: “it is never
predetermined that a particular cell in a particular place shall
project to another particular cell in another particular place,
but only that all cells of a given type in a particular locality
shall connect (roughly) to cells in another definite locality”
(Pitts, 1955).

A more precise version of “wiring diagram” appeared with
the advent of valve-based electrical circuits in the early decades
of the 20th century. “Circuit diagrams”, which represent not
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only wires but also nodes corresponding to precise functions
(resistors, diodes, and so on) were soon applied with success to
electro-chemical models of neuronal membrane function (e.g.,
Cole and Curtis, 1939; Stadler, 2017). Circuit diagrams, with their
greater detail and implicit focus on function, rather than simply
on routing, suggest that the overall function of the circuit may be
understandable from structure.

However, until recently there were few worked examples of
such interpretations of biological circuit function due to lack of
anatomical and biochemical knowledge. For example, Bullock
and Horridge (1965), a monumental survey of invertebrate
nervous systems, contained few circuit diagrams, which rarely
went beyond specifying activation or inhibition at a particular
node (this had been a feature of diagrams of the brain since the
middle of the 19th century). Bullock and Horridge explained that
“little is actually known about specific neuronal connections”,
but that what was known “understandably encourages the
speculation that specified circuits of some complexity are a major
principle of neural function. For the most part, this is still a
theoretical area”.

To overcome these problems, some researchers focused on
extremely simple animal systems in which the organisation and
activity of single cells could be precisely described. By 1970, Eric
Kandel was using “wiring diagram” to describe his work on the
gill withdrawal reflex in Aplysia, both metaphorically and literally
(Kandel, 1970). Kandel was able not only to trace the neuronal
connections between the various parts of his favourite mollusc,
he used circuit diagrams to explain the functional relations
between the components. In the hands of Kandel and others, the
circuit diagram became simultaneously a metaphor, a description
and a hypothesis.

As Cajal and Pitts realised, part of the reason why a wiring
diagram – or a circuit – is not an entirely accurate description
of the nervous system is that the wires in your house or your
computer are fixed with precise connections (or they should
be), whereas in its detail the nervous system is imprecise
and plastic. Over the last few decades, some researchers have
used cloud computing or the internet as metaphors for brain
function, with neurons or groups of neurons forming distinct
functional subunits carrying out particular computations within
a distributed structure (e.g., Cazé et al., 2013). The advantage
of this relatively rare metaphor is that it embodies plasticity
and distributed function into our conception of the brain,
but explaining how exactly that distributed function works in
any given case remains a challenge. Furthermore, the limits
of this metaphor are quite evident: the internet is designed to
function even if key parts it removed, whereas some aspects
of brain function can be decisively disrupted if particular
areas are damaged.

CONNECTOMES

The wiring diagram metaphor became particularly widespread
with the development of various connectomic projects in the
21st century, even though the article that kicked off the interest
in mammalian connectomes (Crick and Jones, 1993) did not

refer to wiring diagrams at all. (The term connectome was
coined separately by two researchers in 2005 – Hagmann, 2005;
Sporns et al., 2005). Connectomic projects, which are aimed at a
complete description of the structural connectivity of the central
nervous system, can involve very different levels of resolution,
depending on whether they focus on neurons or nervous tracts.
For example, in 2009 the United States Human Connectome
Project, which uses brain scans to describe bundles of nerves
that connect brain regions, was claimed to represent “the wiring
diagram of the entire, living human brain” (Bardin, 2012). But
this map of macroconnections is a distinctly different kind of
wiring diagram from the first connectome to be established,
the 1986 cell-level description of Caenorhabditis elegans (White
et al., 1986) – half-jokingly described by Sydney Brenner’s
laboratory as “the mind of a worm” (White, 2013). Notably,
White et al. (1986) did not use the wiring metaphor once in the
340 pages of their article, preferring “circuitry”.

For the moment, there is no sign of either the wiring diagram
or circuit diagram metaphor going out of fashion. Even scientists
who are critical of the emphasis on connectomics happily use
the wiring diagram metaphor (e.g., Barack and Krakauer, 2021;
Gomez-Marin, 2021). For the moment there is little reason
why these metaphors should be dropped – they serve a useful
function for both scientists and the general public, explaining
anything from a connectome to a neural network in a simple
way and suggesting a link between structure and function. As
MIT neuroanatomist Lennart Heimer wrote in 1971: “In order to
arrive at a detailed understanding of how the brain works we need
a clear knowledge of this wiring diagram. Obviously the diagram
itself could not explain the workings of the human mind, but a
meaningful picture of the wiring system is a prerequisite for such
understanding” (Heimer, 1971).

The limits to the metaphor are those of all biological
metaphors – they are not exact descriptions of the phenomena in
question. But as long as those who use them realise that there is an
inevitable inexactitude at the heart of the image, no harm will be
done. For the moment there is no sign of scientists being trapped
by the confines of the wiring diagram metaphor, of missing
potential insights because of their commitment to the metaphor,
probably because “wiring diagram” is intrinsically loose and is
recognised as a metaphor, if only for the obvious reason that every
biologist knows that neurons are not wires. Future metaphors are
hard to predict, because experience suggests they will be based on
currently unknown technology. As a word of warning for those
with an appetite for new metaphors, use of novel technologies
as metaphors has not necessarily led to insight or to broad
takeup (e.g., the suggestion that memory functions fractally, like
a hologram – Pribram, 1969).

DISCUSSION

There is a further problem lurking within all representations
of the brain, be they metaphorical or literal. In 1974, the
psychologist Stuart Sutherland argued that even if we had “a
complete wiring diagram of an individual human brain including
a specification of the exact probabilities of synaptic transmissions
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occurring at all synapses and everything else necessary to
build an exact simulation of the system. (. . .) it could not
be claimed that we had succeeded in understanding how the
brain worked; we would merely have succeeded in simulating
its workings.” (Sutherland, 1974). In 2012 NIH chief Francis
Collins complained about the static representations produced by
connectome studies: “It’d be like, you know, taking your laptop
and prying the top off and staring at the parts inside, you’d be
able to say, yeah, this is connected to that, but you wouldn’t know
how it worked.” (Bardin, 2012).

This concern goes back to 1712, when the philosopher
Gottfried Leibniz argued that a detailed description of
the brain would not explain thought and perception,
just as seeing the components of a machine does not
explain how it works. This argument, which became
known as Leibniz’s Mill, has troubled thinkers and
scientists down the ages. A wiring diagram on its own
will not explain perception or virtually any other part of
behaviour – individual differences in synaptic strength and
organisation, which do not form part of a simple wiring
diagram, can produce individual differences in behaviour
(Stern et al., 2017).

In 1946, Yale physicist Roland Meyerott used the wiring
diagram metaphor to address this fundamental problem – the
link between structure and function:

“Many details of the functioning of the neural units are known,
but how, for example, the neural units are combined in the visual
area to enable the organism to locate an object seen and to act
accordingly is not explained by these observational techniques.
It is not likely that a “wiring diagram” of the nervous system
of an organism, even if it could be uniquely traced, can ever
yield this type of information. Since this is a problem involving
space and time intervals, a theory based on the properties of the
neural elements will be required in conjunction with a “wiring
diagram” in order to explain the behaviour of the organism”
(Meyerott, 1946).

The difficulty with using even a highly detailed wiring
diagram to accurately predict function can be seen from studies
of simple nervous systems. C. elegans worms at the same
developmental state produce different changes in the activity
of their synapses in response to starvation, leading to different
responses (Bhattacharya et al., 2019). This may be partly due

to subtle differences in individual connectomes that emerge
during development (Witvliet et al., 2021). The circuit composed
of 30-odd neurons that is found in the lobster’s stomach can
produce radically different behaviours, while the same behaviour
can be produced by very different circuits (Bargmann and
Marder, 2013). At the other end of the scale of brain complexity,
human brains show the same physical connectivity but different
functional configurations under anaesthesia and when awake
(Barttfeld et al., 2015).

In other words, wiring diagrams, no matter how complex,
are not enough. The issue highlighted by Meyerott remains: we
need a theory – or theories – to explain how neural networks
function. Our current theoretical approaches have been shaped
by the metaphor that has dominated our thinking about the
brain since the 1950s, which is that the brain is something like
a computer, carrying out computations that enable it to model
the present and predict the consequences of actions on future
states (Cobb, 2020). This metaphor clearly involves the “wiring
diagram” metaphor described here, with all its power and limits.
But a distinction between the two metaphors is beginning to
emerge – although “wiring diagram” retains its influence, over the
last decade or so some neuroscientists have become increasingly
uneasy with this starting point, expressing frustration at the
wave of anatomical, genetic and electrophysiological data we are
collecting without a theoretical framework (e.g., Sporns, 2015;
Churchland and Abbott, 2016; Frégnac, 2017). Starting at the
“top”, trying to develop a theory to explain the functioning of
the wiring diagram of the human or mammalian brain, seems to
me to be an error. Instead, we should attempt to develop such a
theory by studying small networks where we can know the precise
structural, functional and effective connectivity at a cellular level
and study their function using theoretical models (e.g., Friston
et al., 2013). Applying such a theory to the wiring diagram of
ourselves will be an immense challenge – the work of centuries,
I expect. Our current inability to understand the function of
the wiring in the lobster’s stomach – or in the worm, or in the
maggot’s brain – is a measure of the task before us.
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A Commentary on

Metaphors We Live By

Lakoff, G. and Johnson, G. (2003). Chicago, IL: The University of Chicago Press, p. 276.

Four decades ago, linguists and philosophers George Lakoff and Mark Johnson published an
influential book on the nature of metaphors. In Metaphors We Live By they argued that abstract
thought is mostly metaphorical (having a literal core extended by mutually inconsistent metaphors
and therefore incomplete without them), that metaphors are fundamentally conceptual (while
metaphorical language is secondary), and that metaphorical thought is ubiquitous, unavoidable,
largely unconscious, and grounded in everyday life. Despite the popular acclaim of the book and its
impact across academic disciplines, their claims met resistance as they challenged objectivist views
of meaning and language.

Two decades ago, in the afterword of the updated edition of their classic book, the authors
insisted on some persistent fallacies that contribute to a false view of what metaphors are and do.
Especially relevant to scientists is the mistaken idea that metaphors are just “a matter of words,”
namely, a way of speaking that can be shielded from rational thinking, and ultimately innocuous to
it. Such a fallacy is related to the belief that metaphors are mainly “a matter of definition;” “it is just
semantics” is stupid as a conversation stopper. After all, meaning is all that matters. Furthermore,
Lakoff and Johnson remarked that metaphors are natural phenomena, not mere arbitrary historical
contingencies or cultural constructions; they are grounded in the very bodily nature of our daily
cognitive pursuits.

Today, neuroscientists remain ensnared in disputes about whether brains are computers or not.
The debate about the appropriateness and obsolescence of the brain-computer analogy and its
pervading metaphorical use is alive and ticking. Of course, some will deem the exchange as useless,
while others will insist that, until we figure out what we mean by what we say, a proper scientific
discussion is defective or cannot even start.

Here, rather than poking the brain-as-computer blister again, I would like to walk through the
very brief history of the metaphorical brain, and then mention an alternative class of metaphors
that could offer fresh, offbeat, and even rebellious perspectives on our conception of that mushy
little thing called “the brain.”

Brains have been many things indeed. Four centuries ago, Descartes suggested that cerebral
hydraulic automata produced behavior by powering “animal spirits” thought the nerves. Nicolas
Steno cast the brain as a machine. Fountain metaphors gave way to clocks. Leibniz objected:
entering a brain as one enters a mill would reveal mechanical parts but nothing mind-like
whatsoever. In the time of Shelley’s Frankenstein, Galvani, and Volta explored the role of electricity
in animal bodies. Nerves turned into wires and brains into telegraphs. Neural plasticity soon
hindered the analogy. Cajal preferred natural images: trees, gardens, forests. For Darwin, thought
was a “secretion” of the brain. It was soon postulated that all animals, including humans, were
“conscious machines.” But machines would become animal-like too: electric dogs, clockwork
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Gomez-Marin Commentary: Metaphors We Live By

beetles, three-wheeled moths. With the theoretical articulation
and empirical implementation of feedback loops, the line
between biology and technology thinned. Pitts and McCulloch’s
“neural network” further blurred the distinction between the
natural and the artificial. The metaphor was turned inside-out:
computers were like brains, then brains became computers.
With information theory in place, code-breaking percolated
from the war to the lab. Physicalists stopped worshiping matter
and revered information instead, a notion as pervasive as
confounded. The brain has, thenceforth, been deemed as the
preeminent computational organ. Despite considerable progress
and obvious updates of the metaphor du jour (networks, the
internet, and so on), we have hardly gone much further.

The less told story of the idea of the brain involves other
images. A remarkably forgotten one, inspired by a fascinating
physical technique, is the hologram. The brain would be a
holographic information device. Modulating waves within a field,
a part could contain the whole, allowing for non-local memory
storage (the still elusive engram would be lost and found). Simple
metaphors can also be conceptually juicy. Consider a prism,
whereby light is reflected (perception as virtual action) and
refracted (embodiment and affect). Blue would not be created
in the prism but selected from the incoming beam. As Henri
Bergson put it, the brain would be the organ of attention to life,
whose main role is to receive, delay, and conduit movement,
carving out external images rather than producing them. From
this perspective, brains are more like radios than VR headsets.
This whole class of metaphors leads us back to William James’
foundational (and forgotten) distinction between brain function
as “productive” vs. “permissive.” The brain as a “reducing valve,”
in Aldous Huxley’s words, is an intriguing hypothesis that could
be investigated within the current renaissance of psychedelic
research. Brains would not create thoughts but receive and filter
them. These are other metaphors neuroscientists could live by.

It is also helpful to note that English is not the only language
spoken by human beings. The word computer is not universally
translated as such. A computer is still a “computer” in Italian,
Portuguese, or German. But in Catalan we say ordinador, which
we took from the French ordinateur. The same happens in
Spanish with ordenador (except outside of Spain, where people
say computadora). The story behind the choice of words is
peculiar. In 1955, the IBM marketing team in France decided
against branding their new product too similarly to existing
“calculators.” As a better (and shorter) name for “the new
electronic (programable) machine intended for information
processing,” they decided on ordinatrice électronique. Finally,
ordinateur settled as a trademark, percolating to current
language. Depending on the country, brains are pictured in the
image of a person who organizes or who computes. We can
remain lost in translation.

Like fish in the sea, we often fail to notice the entrenched
metaphors we swim in. Brains are not really any of those,
and yet treating brains as such can provide valuable insights
unless one does not erect one’s favorite image into an idol. As
Lewontin’s quote of Wiener and Rosenblueth puts it, “the price
of metaphor is eternal vigilance.” A metaphorical monoculture is
a burden rather than a blessing. Glossing George Box’s aphorism,
all metaphors are wrong (when literally taken), but all are useful
(when kept in their local domain of application). Screwdrivers
are handy, but not to eat soup. Entertaining other ways to
conceive what brains are, and what they do, is not only valuable
but necessary.

Moreover, in the light of Lakoff and Johnson’s thesis, honoring
the metaphorical nature of much of our scientific thinking frees
our imagination and allows us to deliberately explore the many-
sided nature of the brain. In the bigger picture, Metaphors We
Live By was a reaction to the tendency within the analytical
tradition to demote metaphors as either meaningless or simply
pragmatic vectors to literal meanings. The thesis of the book
was discordant with those provinces of the Western canon that
ascribe an immaculate purity to concepts, but also with the
skeptic relativism of postmodernist doctrines. The metaphors
we use shape what we can and cannot see, both under our
microscopes but also in the real world. When it comes to
understanding human mental life, the study of metaphors is
complementary to the study of brains themselves. As we think,
we live.
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Artifacts and levels of
abstraction
M. Chirimuuta*

Department of Philosophy, University of Edinburgh, Edinburgh, United Kingdom

The purpose of this article is to show how the comparison or analogy with

artifacts (i.e., systems engineered by humans) is foundational for the idea that

complex neuro-cognitive systems are amenable to explanation at distinct

levels, which is a central simplifying strategy for modeling the brain. The

most salient source of analogy is of course the digital computer, but I will

discuss how some more general comparisons with the processes of design

and engineering also play a significant role. I will show how the analogies,

and the subsequent notion of a distinct computational level, have engendered

common ideas about how safely to abstract away from the complexity of

concrete neural systems, yielding explanations of how neural processes give

rise to cognitive functions. I also raise worries about the limitations of these

explanations, due to neglected differences between the human-made devices

and biological organs.

KEYWORDS

philosophy of neuroscience, levels of abstraction, levels of explanation, analogy,
philosophy of cognitive science

Introduction

It is worth remembering that the very word organism comes to us via an analogical
transfer from the Greek word for tool (organon), and originally meant the property
of things comprising heterogenous parts that work together in a coordinated way—a
property pretty much captured by the word mechanism today (Cheung, 2006; Illetterati,
2014, p. 89). What this indicates is that even when drawing contrasts between organisms
and machines, organs and artifacts, the concepts we are using to theorize living beings
have originated through a process of comparison with objects that people have made. As
philosopher Martin Heidegger observed, “[p]erhaps it will take a long time to realize that
the idea of organism and of organic is a purely modern, mechanical-technical concept,
so that what grows naturally by itself is interpreted as an artifact that produces itself ”
(quoted in Nunziante, 2020, p. 12).

This special issue invites us to weigh up the claim that all metaphors are false but
some are useful. Incidentally, our notion of the useful, utility, is shaped by concept of
the tool—the tool is the paradigmatic useful thing. This connection is made obvious in
the French language, where the words for tool (outil) and useful (utile) are so similar.
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Thus, we have on the one hand, the root metaphor of the living
being (organism) as a system of tool-like components (organs),
and on the other, the question of whether metaphors gathered
from the making and employment of tools and machines is itself
a useful conceptual tool.

This essay will zoom in on one aspect of the comparison
between immensely complex nervous systems, and relatively
simple information processing machines: the idea that the
brain, like the computer, can be explained at distinct and
somewhat autonomous levels of analysis. I will account for the
utility of this analogy as due to its providing a simplifying
strategy for neuroscientists. The assumption that there is a
“high level” description of the brain which can be modeled
and comprehended in the absence of detailed knowledge of the
“low level” components is motivated by consideration of the
hardware/software distinction in computing. I will illustrate this
strategy via an exposition of David Marr’s well known system
of levels of explanation (section “Marr’s levels of explanation”).
We will then see how the levels framework is motivated by
analogies with machines, primarily computers, but also with the
procedures that people undertake when making devices, here
analyzing the influential ideas of Herbert Simon on hierarchical
complex systems (section “The artifact analogies”). A risk of
reliance on such analogies is that it leads to neglect of differences.
All analogies are imperfect, but sometimes researchers forget
this. The section “Limitations of the analogies” considers
the limitations of the analogy between messy “heterarchical”
biological systems and man-made designs that have a clearly
delineated modularized and leveled structure. To conclude, I ask
whether these limitations can be addressed through comparison
with more life-like machines—as suggested in this special issue
by Bongard and Levin (2021). I argue that their proposal
neglects the problem of opacity that comes with the introduction
of more complex machine models.

Immauel Kant is one philosopher whose account of
biological knowledge recognized that the comparison between
the workings of nature, and processes of engineering was
indispensable to the conceptualization of living beings: both
biology and engineering rely on functional notions, the
understanding of certain processes happening for the sake of
wider system-level goals. At the same time, he warned against
an anthropomorphism that comes with taking this as the
literal, ultimate truth about the natural world. He wrote in the
Critique of the Power of Judgment that, “we picture to ourselves
the possibility of the [biological] object on the analogy of a
causality of this kind—a causality such as we experience in
ourselves—and so regard nature as possessed of a capacity of its
own for acting technically” (Kant, 1790/1952, Part II p.5/§361;
Breitenbach, 2014). But as Illetterati (2014, p. 91) explains,
“these kinds of notions, even if necessary, seem to maintain a
sort of fictional character too: indeed, they have no justification
in things themselves, but neither do they have their origin in
mere human invention. They rather have their justification in

the way subjects necessarily understand living beings.” I think
that this is the right way to interpret machine analogies in
biology, and engineering metaphors more generally: they are
useful precisely because they allow scientists to figure nature in
human terms, which is why they are—strictly speaking—false.

Marr’s levels of explanation

As is well known, Marr’s framework is introduced in the first
chapter of his book, Vision (Marr, 1982, p. 25). The three levels
are:

1. Computational theory
2. Representation and algorithm
3. Hardware implementation

The “top level” computational theory gives an abstract
characterization of the performance of a system in terms of its
generating a mapping of an input to an output. In addition,
characterization at this level shows how that performance is
related to environmental constraints and behavioral goals. Thus,
the first level is to provide a functional characterization in both
senses of the word: explicating a mathematical input-output
mapping, and also illuminating the utility of the performance.
The middle level involves specification of the format for
representation of the inputs and outputs, and of the algorithm
that transforms one into the other. The bottom level describes
how the representations and algorithm are physically realized,
for example in the electronic components of a computer vision
system, or in the neurons of an animal’s retina.

In the next section I will say more about how analogies with
machines motivate this three-level system, and why they are
essential in the interpretation of it. Here we should note that
Marr’s proposal carries on from a discussion of the limitations
of reductionist approaches to explaining the visual system—
attempts to understand how neural activity gives rise to useful
perceptions of the environment by way of careful study of the
anatomy and physiology of neurons. In effect, the reductionist
is restricted to the bottom level of explanation. Marr (1982,
p. 27) describes this approach as equivalent in futility with the
attempt to understand bird flight just through the examination
of feathers. As he asserts in the preamble to the three levels,
“[a]lmost never can a complex system of any kind be understood
as a simple extrapolation from the properties of its elementary
components” (Marr, 1982, p. 19). The basic complaint against
reductionism is that this is a strategy that quickly gets
the investigator overwhelmed with details whose significance
cannot be assessed because she lacks knowledge of the overall
functionality of the system, and therefore has no working
hypothesis about how the elementary components contribute
to global properties and behavior. The shape of the forest is
invisible because there are so very many leaves. The introduction
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of the two additional levels of explanation allows for lines of
investigation that prioritize general questions about the system’s
functionality and operations independently of investigation
into implementational details. The upper two levels are levels
of abstraction away from the concrete, complicated material
system. Ideally, the results of these upper level investigations
provide a map of what to look for in the concrete system, and a
guide to interpreting the material details, even though the levels
are only “loosely related” (Marr, 1982, p. 25).

One of the virtues of Marr’s framework, highlighted by later
researchers, is that it offers this strategy for simplification.1

For example, Ballard (2015, p. 13) writes that it, “opened up
thinking about the brain’s computation in abstract algorithmic
terms while postponing the reconciliation with biological
structures.” Speaking of level schemas more generally, Ballard
emphasizes that, “[b]y telescoping through different levels, we
can parcellate the brain’s enormous complexity into manageable
levels” (2015, p. 18).

The artifact analogies

The general impression given by Marr’s presentation is that
he does not care to set a division between engineered and living
systems, between those that have (computational) functions,
properly speaking, and those for which it is only a heuristic
posit. A striking feature of Marr’s presentation is that in the
first instance it relies exclusively on examples of information
processing machines. Cases from within neuroscience are
mentioned only after a complete account of the three levels has
been given, without there being any comment on this transition.
The primary illustration of the levels comes by way of a cash
register, an adding machine. At the computational level, the task
is to find out “what the device does and why.” (Marr, 1982,
p. 22).2 This means specification of the arithmetical theory of

1 Of course, the details of Marr’s framework have been criticized by
later researchers, such as Love (2021), who argue for a greater number
of levels. Gurney (2009) proposes a four-level framework which is
incidentally more similar to one proposed by Marr in a 1976 technical
report.

2 To reinforce this point about the primacy of artifacts, note that Marr
does not use the neutral language of “things” or “systems” but refers
specifically to a “device” here. We find this also in the legend for the
summary table: “The three levels at which any machine carrying out
an information-processing task must be understood” (p. 25 emphasis
added). Cf. “the different levels at which an information processing
device must be understood before one can be said to have understood
it completely” (p. 24 emphasis added).
Later in the book, when again summarizing the three levels as applied
to the visual system, it is interesting that the terms “machine” and
“machinery” are still used:
“The human system is a working example of a machine that can make
such descriptions, and as we have seen, one of our aims is to understand
it thoroughly, at all levels: What kind of information does the human
visual system represent, what kind of computations does it perform to
obtain this information, and why? How does it represent this information,
and how are the computations performed and with what algorithms?

addition, as well as an account of the functional role of the
machine for adding up charges in a shop. We learn that the
second level characterization involves showing how numbers
are represented in the device (e.g., Arabic or Roman notation),
and specifying the algorithm used to work out the total bill. The
implementation level involves characterization of the “physical
substrate” which runs the algorithm. A point Marr (1982, p. 24)
emphasizes is that the same algorithm can be realized in very
different materials. This also goes for the relationship between
the top two levels: one and the same computational task can be
achieved by a range of different algorithms. This is why the levels
are only “loosely related” (p. 25)—a discovery at one level cannot
reliably pre-specify what will be found at the level below.

We might speculate that Marr leans on artifacts for purposes
of exposition just because the core concept of each of these
levels comes out especially clearly in cases like the cash register.
But then we ought to wonder why it is that it is harder to
get a grip on how to define these levels in neuroscience, even
though the framework is intended for use there. We can discern
a deeper reason for the primacy of machines in Marr’s exposition
if we consider Dennett’s observation that the three levels actually
schematize the stages taken in the engineering of a complex
information processing system. Dennett (1995, p. 682) writes,

Marr’s obiter dicta [passing words] on methodology gave
compact and influential expression to what were already
reigning assumptions in Artificial Intelligence. If AI is
considered as primarily an engineering discipline, whose
goal is to create intelligent robots or thinking machines,
then it is quite obvious that standard engineering principles
should guide the research activity:

first you try to describe, as generally as possible, the
capacities or competences you want to design,

and then you try to specify, at an abstract level, how you
would implement these capacities,

and then, with these design parameters tentatively or
defeasibly fixed, you proceed to the nitty-gritty of
physical realization.

The point here is that the three levels of explanation are
an expression of three broad steps in the forward engineering
of a machine with some functionality equivalent to a cognitive
capacity in an animal. It is then not surprising that the different

Once these questions have been answered, we can finally ask, How
are these specific representations and algorithms implemented in neural
machinery?” (Marr, 1982, p. 99).
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levels are more easy to illustrate with an example of reverse
engineering some such device.

The issue I am highlighting here is that artifacts are the
foundational cases for Marr’s framework, and the application to
neuroscience occurs via an analogical transfer to brains, systems
which are arguably similar to computing ones. Researchers
habitually think of brains, just like the artifacts, as taking
in inputs (e.g., from sensory organs), implementing some
algorithms, and sending an output (e.g., a motor command).3

The importance of this analogy comes out in Dennett’s
characterization of what his own approach has in common with
that of Marr and cognitive scientist Allen Newell, namely:

stress on being able (in principle) to specify the function
computed . . .. independently of the other levels.

an optimistic assumption of a specific sort of
functionalism: one that presupposes that the concept of
the function of a particular cognitive system or subsystem
can be specified (It is the function which is to be optimally
implemented.)

A willingness to view psychology or cognitive science
as reverse engineering in a rather straightforward way.
Reverse engineering is just what the term implies: the
interpretation of an already existing artifact by an analysis
of the design considerations that must have governed its
creation (Dennett, 1995, p. 683).

Dennett’s articulation of the reverse engineering
methodology, his design stance, comes with strict assumptions

3 E.g., Marcus and Freeman (2015, p. xiii):
“The brain is not a laptop, but presumably it is an information processor
of some kind, taking in inputs from the world and transforming them into
models of the world and instructions to the motor systems that control
our bodies and our voices.”
See Chirimuuta (2021, under contract) on why this practice should be
interpreted as resting on a loose analogy rather than strict functional
similarity between computer and brain.

of optimality and adaptationism in evolved systems that we
need not attribute to the scientific practice. In my view, the
essential point about the reverse engineering methodology is
that it treats the biological object by analogy with a man-made
thing, and in this way attempts to make it intelligible by showing
how it operates according to principles that make sense from
the perspective of a person designing things; in other words, by
treating it as if it were an artifact, the scientist can explain it in
terms of the practical rationality of causal means being used to
produce useful effects.

We should appreciate that there are two levels of analogy, so
to speak. Superficially, the analogy just holds between certain
organs of living bodies and man-made devices that have a
rough functional equivalence with them—the brain and a
computer, the heart and a pump. But the deeper and more
general point—the one spelled out by Kant—is that there is
an analogy being invoked between the systematic organization
of parts and processes through which organs generate their
functional effects, and the parts and processes set in place
by a human engineer in order for a device to achieve the
desired effect. An artifact is intelligible to the extent that its
operations are the manifestations of the instrumental rationality
through which its human makers have put components
together in order to achieve their goals. A similar kind
of intelligibility is tacitly assumed for the biological object.
This becomes clearer when we consider functional analysis,
which is a general schema for reverse engineering (see
Figure 1).

The link between this reverse engineering methodology
in cognitive and neuroscience, and simplification of the
brain becomes apparent if we focus on the importance of
encapsulation in functional analysis. When a system is described
in this way, the payoff is that at any given level of analysis
the component modules can be treated as black boxes whose
inner workings are either unknown or ignored, since the only
information relevant to the current level of analysis is the input-
output profiles of the modules. Descent to a lower level of

FIGURE 1

Reverse engineering is expressed schematically as performance of a functional analysis (Cummins, 1975, Cummins, 2000). The top level
function of the whole system is decomposed into sub-functions, which can themselves be explained in terms of the interaction of basic
functions. See also Bechtel and Richardson (2010) on the research strategy of functional decomposition, employed for investigating modular,
hierarchical systems.
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analysis involves opening the black boxes and seeing how their
inner workings can be accounted for in terms of the functional
capacities of their components. But for many explanatory
purposes, lower level details can safely be kept out of view, which
is why this methodology offers a handy simplification.

To illustrate this point, I will make use of an example from
computing given by Ballard (2015, p. 14ff.). Most people who
program computers only ever use a high level programming
language such as Python. But the terms of this high level
language are actually black boxes which unpack into more
complicated expressions in a lower level assembly language.
These lower level terms themselves unpack into instructions
in machine code. For a program to be carried out, it needs
to be translated down into lower level languages, “closer to
machine’s architecture.” But this is all done behind the scenes
and the ordinary coder can comfortably stick with description
of the computation in the compact, highest level language. The
point of Ballard’s example here is to argue that there is a tight
analogy between the computer and the brain, which he thinks
can be described similarly in terms of “levels of computational
abstraction.”

Crucially, the abstraction hierarchy is posited to be there
in the brain’s own representations of the extra-cranial world,
not just in those imposed upon it by a scientist. The proposal
is that the brain is a system that, at the top level of control,
ignores its own complexity, like a digital computer where the
execution of a piece of code is indifferent to micro-physical
fluctuations in the electronic hardware. Just as the programmer,
the controller of a computer, can govern the performances of
the machine while ignoring and remaining ignorant of its low-
level languages and physical workings, it is supposed that the
brain systems ultimately responsible for behavior employ an
abstract, high level system of representation that is invariant
to changes in the complex, low-level workings of the brain
and rest of the body. If this assumption holds, there are good
prospects for a relatively simple computational theory that
explains how the brain governs behavior, by way of these high-
level representations.

But why would neuroscientists think that this assumption
does hold, that the analogy between computer and brain
is tight enough? The intelligible organization of systems as
hierarchically arranged, encapsulated modules, or levels of
more or less abstract representations, can be found in artifacts
designed by humans, but its existence in the natural world
should not be taken for granted. As far as I can determine, the
foundational argument in support of this assumption comes
from another analogy put forward by Herbert Simon in the
“Architecture of Complexity” (Simon, 1962, 1969).4 In a tale

4 It is interesting that Marr (1982, p. 102) also makes the connection
between evolvability, intelligibility, and modular organization:
“This observation [of isolated visual processing] . . .. is fundamental to
our approach, for it enables us to begin separating the visual process

of two watchmakers, Simon describes how the production of a
complex system (a watch) is much more likely to be successful
if the production process occurs in stages, where sub-processes
in the production result in stable sub-components of the system
that are assembled together at a later stage. Simon then draws
an analogy between human manufacture and the evolution of
complex life forms. His point is that the likelihood of evolution
producing organisms of any complexity is vanishingly small
unless it is the case that it comes about via the evolution of
intermediate, self-standing forms that become the components
of more complex organisms. Hence, he argues, it must be the
case that evolved, as well as manufactured complex systems are
composed, hierarchically, of relatively independent sub-systems.
In these near decomposable complex systems, there is only a
weak frequency and strength of interaction horizontally between
the subsystems at any one level, and vertically across the levels
of organization. This means that the subsystems—the modular
components—can usefully be studied in isolation from the rest
of the system, and that the system can be studied at higher
levels of organization (which we can here equate to larger scales)
without attention to most of the lower level (i.e., small scale)
details. The optimistic upshot is that evolved complex systems
are scientifically intelligible through decomposition into levels
and components, and that this is an alternative to intractable
reductionist methodologies.5

Reductionist methodologies can be successful for relatively
simple systems. The task of the research is to acquire
sufficient information about the elementary components, and
their interaction, to yield an explanation of the behavior
of the whole system. This is a “flat,” as opposed to multi-
level, approach. Once there is enough complexity that the
amount of information about elementary components and the
interactions that can feasibly be dealt with (in models or
theory) is much less than what is required for explanation of
the system’s behavior, then a multi-level approach is needed.
The common virtue of all of the multi-level approaches
discussed above—from Marr, Ballard, and Simon—is that they
offer a guide for how to abstract away from low-level details
and how to set about work on top-down explanations when

into pieces that can be understood individually. Computer scientists call
the separate pieces of a process its modules, and the idea that a large
computation can be split up and implemented as a collection of parts
that are as nearly independent of one another as the overall task allows,
is so important that I was moved to elevate it to a principle, the principle
of modular design. This principle is important because if a process is not
designed in this way, a small change in one place has consequences
in many other places. As a result, the process as a whole is extremely
difficult to debug or to improve, whether by a human designer or in
the course of natural evolution, because a small change to improve
one part has to be accompanied by many simultaneous, compensatory
changes elsewhere. The principle of modular design does not forbid
weak interactions between different modules in a task, but it does insist
that the overall organization must, to a first approximation, be modular.”

5 See Bechtel and Richardson (2010) for further discussion of methods
for investigating near decomposable systems.
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bottom-up, reductionist approaches are intractable, even if
possible in principle. These three scientists are all advocates
of computational explanations of how the brain gives rise to
cognition, and this kind of explanation is favored because, they
argue, it does not require that much attention be paid to the
details of neurophysiology which would otherwise threaten an
overwhelming complexity.

An additional feature of computational explanations is
that they assert an equivalence between organic and artificial
systems, so long as they are computing the same functions. This
is known in philosophy as multiple-realization. A mechanical
cash register, an electronic calculator, and a human brain
region, can all be said to be doing the same computation
when adding up a particular sum, even though the physical
substrates are so different. The benefit of this for neuroscientific
research is that it justifies the substitution of actual neural
tissue with relatively simple computational models, such as
artificial neural networks (ANNs), as objects of investigation.
A goal of various neuro-computational research projects has
been to create models of brain areas in silico that will
yield confirmatory or disconfirmatory evidence for theories
of cognition and pathology, where traditional experimental
approaches are untenable because it is not possible to
make the required interventions on actual neurons. Even
though large ANNs are themselves rather complicated and
hard to interpret, they are at least more accessible to
(simulated) experimental interventions, such as lessoning of
individual nodes.

Aside from the specifics of computational explanation
(explanation via analogy between brains and computers), one
of the general implications of the artifact analogy is that the
nervous system is composed of relatively encapsulated working
parts (modules) or functional components. This also supports
the “black-boxing” of neural details. As Haugeland (1978, p. 221)
relates,

if neurons are to be functional components in a
physiological system, then some specific few of their
countless physical, chemical, and biological interactions
must encapsulate all that is relevant to understanding
whatever ability of that system is being explained.

One way to think about the importance of neuron
doctrines in the history of the discipline—theories that posit
individual neurons as the basic anatomical and functional
units of the nervous system—is that they facilitate this
simplifying strategy, even while departing from many of
the observable results on the significance of sub-neuronal
and non-neuronal structures and interactions.6 Moreover, we

6 See Bullock et al. (2005) and Cao (2014) on the empirical inadequacy
of the neuron doctrine. Barlow (1972) is a great example of its role in
explanatory simplification.

should note also that this black-boxing can be employed to
achieve abstract representations of functional components other
than individual neurons (e.g., Hawkins et al., 2017 model of
cortical columns).

Limitations of the analogies

I have argued that the dominant multi-level approaches
in neuroscience rest on the assertion of there being a close
similarity between the multi-level organization of artifacts
such as computers, and the brain, an evolved organ whose
organizational “plan” is far less well characterized than that
of the machine, and remains a matter of controversy. This
prompts consideration of the difficulties that the multi-level
approach faces, to the extent that the claim for similarity can
be challenged. If the comparison between brain and computer
is at best a loose analogy, in which the dissimilarities between
the two are of equal importance or even outnumber the
similarities, then the leveled approach might sometimes be a
hindrance in the project of explaining how brain activity gives
rise to cognition.

The first concern to bring up here is that the case for
encapsulation in the nervous system is fairly weak. This was
pointed out decades ago by Haugeland, in the passage following
on from the one quoted above:

[encapsulation] is not at all guaranteed by the fact that
cell membranes provide an anatomically conspicuous
gerrymandering of the brain. More important, however,
even if neurons were components in some system, that
still would not guarantee the possibility of “building
back up.” Not every contiguous collection of components
constitutes a single component in a higher level system;
consolidation into a single higher component requires a
further encapsulation of what’s relevant into a few specific
abilities and interactions—usually different in kind from
those of any of the smaller components. Thus the tuner,
pre-amp and power amp of a radio have very narrowly
specified abilities and interactions, compared to those of
some arbitrary connected collection of resistors, capacitors,
and transistors. The bare existence of functionally organized
neurons would not guarantee that such higher level
consolidations were possible. Moreover, this failure of a
guarantee would occur again and again at every level on
every dimension. There is no way to know whether these
explanatory consolidations from below are possible, without
already knowing whether the corresponding systematic
explanations and reductions from above are possible—
which is the original circularity (Haugeland, 1978, p. 221).

It is interesting that Haugeland focuses on the possibility
of a strong disanalogy between the organization of the nervous
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system, and that of a human-designed artifact, a radio. Whereas
it is a feature of the design of a radio that higher level sub-
components (the tuner, pre-amp and power amp) are made
up of careful arrangements of lower level sub-components
(resistors, capacitors, and transistors), and themselves have
narrowly specified capacities and input-output profiles, it should
not be assumed that collections of neurons consolidate into
higher level sub-components in this way, and that explanations
of the neural basis of cognition can safely be restricted to the
higher levels. I will now discuss two reasons to be skeptical that
the analogy holds. The first relates to the potential importance
of low-level activity, the second brings up the difference between
hierarchical, designed systems and evolved ones.

It is an open possibility that cognition is the product of
dense interactions across a number of levels or scales, and
is not restricted to a high level of computational abstraction,
as hypothesized by Ballard. The cognitive properties of the
brain may be enmeshed in its material details, in a way not
congenial to Marr’s vision of a there being computational and
algorithmic/representation levels that are only loosely related to
the implementational one. A reason to give credence to these
possibilities comes from consideration of the fact that biological
signaling, a general feature of living cells, is the omnipresent
background to neuronal functionality. The low level details
of neuronal activity can themselves be characterized as doing
information processing, and are not merely the hardware
implementors of the system’s global computations, or bits of
infrastructure keeping the system running. This is an argument
put forward by Godfrey-Smith (2016, p. 503):

This coarse-grained cognitive profile is part of what a
living system has, but it also has fine-grained functional
properties—a host of micro-computational activities in each
cell, signal-like interactions between cells, self-maintenance
and control of boundaries, and so on. Those finer-grained
features are not merely ways of realizing the cognitive profile
of the system. They matter in ways that can independently
be identified as cognitively important.

The point is that in an electronic computer there is a clean
separation of the properties of the physical components that
are there holding the device together, and the ones involved
specifically in information processing. This is how the machine
has been designed. Whereas in the brain this is not the case—
it is not clear cut which entities within the brain, and which of
their properties, are responsible for information processing, and
which are the infrastructural background.7 In addition to the

7 For example, glial cells—the very numerous kinds of brain cells that
do not generate action potentials—were long thought to be providing
metabolic support, but not involved in cognition. This does not appear
to be the case, but the challenge of integrating glia into computational
theory is immense (Kastanenka et al., 2019).

“coarse-grained” computations that might be attributed on the
basis of the whole animal’s psychology and behavior, Godfrey-
Smith argues that there are a countless number of “micro-
computational activities” in cells, which are not unrelated to
global cognition. If in the brain metabolism, cell-maintenance,
and global (i.e., person-level) cognitive functions are enmeshed
together, then low level material details about neural tissue,
such as the specific chemical structures of the many kinds of
neurotransmitter, and the thousands of proteins expressed at
synapses (Grant, 2018), probably do matter to the explanation
of cognition. They cannot be safely discounted with the same
confidence as merited in aeronautics, when air is treated as a
continuous fluid and molecular details are left unrepresented.8

We saw that Herbert Simon gives an in principle argument
for the existence of hierarchical organization in complex
living systems which would, if accepted, justify the exclusion
of low level details for the purposes of most explanations
of whole system behavior. However, the strict analogy this
argument supposes, between human manufacture and the
processes of evolution, calls for scrutiny. Bechtel and Bich
(2021) argue that hierarchical control structures, with their
neat pyramidal arrangement of superordinate and subordinate
levels, are less likely to evolve than heterarchical systems,
which have a more haphazard arrangement of horizontal and
vertical interconnections, meaning that one component of the
system is open to significant influence from components at
other levels (they are not just “loosely related”), and there
is no top-level locus of control, as posited by Ballard (2015,
p. 242) in his comparison between control in robots and
humans. The reason for the hypothesized predominance of
heterarchical systems is that evolution is not like a smooth,
linear, process of design and manufacture, but is full of processes
comparable with those engineers would call “tinkering” and
“kludging.”9 A common occurrence in evolution is that a
trait that is adaptive because serving one function is co-
opted for another, and so it is not obvious what the function
of the trait is in the subsequent system. Co-option and
functional multi-tasking are reasons why evolved systems have
the heterarchical character of interactions ranging across levels.
Generally speaking, to the extent that evolution is “inelegant”
and divergent from the designs that would be considered
rational and perhaps optimal by a human engineer, there is
an obstacle to understanding organic systems through reverse
engineering. This is a point made by Kitcher (1988) in relation

8 Lillicrap and Kording (2019) also argue against the comparison
between coarse-graining methods in physics and computational
explanation in neuroscience.

9 We should note here that Ballard’s representation of software
systems as neat and pyramidal is itself an idealization, since large
programs like Microsoft Word are themselves the result of years of
tinkering and kludging of previous versions of the code.
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to Marr’s levels, and is reiterated by these biologists more
recently:

deep degeneracy at all levels is an integral part of biology,
where machineries10 are developed through evolution to
cope with a multiplicity of functions, and are therefore
not necessarily optimized to the problem that we choose
to reverse engineer. Viewed in this way, our limitation in
reverse engineering a biological system might reflect our
misconception of what a design principle in biology is.
There are good reasons to believe that this conclusion is
generally applicable to reverse engineering in a wide range
of biological systems (Marom et al., 2009, p. 3).

Of course, Dennett is aware that the strong assumption
of optimality cannot be expected to hold in many cases,
but he would advocate for it as a first approximation: the
initial prediction is that the evolved system conforms to the
expectation based on optimality considerations, and then we
look for divergences from this prediction. In this way, reverse
engineering retains its heuristic value for biology.

However, we might become less sanguine about the value
of this strategy as a heuristic, the more we attend to the
worry that cases of conformity to the predictions based on
human design considerations are likely to be rare—the first
approximation is likely to be just too wide off the mark.
On signaling networks in living cells, Moss (2012) points to
research findings of everything “cross-talking” to everything
else. Such networks are nowhere near the ideal of a hierarchical
and near decomposable system. Application of a neat, leveled
explanatory framework would only be Procrustean. Both Moss
(2012) and Nicholson (2019, p. 115) point to a problem with the
wiring diagrams commonly used to represent such networks,
based on an analogy with electronic networks, because they
lead researchers to underestimate the dynamic nature of
these signaling pathways, in comparison with a fixed circuit
structure.11 There is a felt need for better analogies, but perhaps
they will not be available for the very reason that human
engineered systems—at least when they are intelligible enough
to usefully serve as analogies—are too fundamentally different
from the evolved ones.

A somewhat controversial view on what is distinctive
about natural systems, such that the assumption of near
decomposability does not hold, is that they show emergence,

10 It is interesting that these scientist use the term “machineries” to
refer to biological processes, even when their aim is to draw attention to
the limitations of reverse engineering.

11 “Perhaps the most significant barrier to appreciating the dynamic,
heterogeneous aspect of signaling complexes is the lack of a good
analogy from our daily experience. This contributes to a second related
problem, our inability to depict such interactions diagrammatically.
Indeed, the typical “cartoon” of signaling pathways, with their reassuring
arrows and limited number of states could be the real villain” (Mayer et al.,
2009, p. 6, quoted in Moss, 2012, p. 170).

meaning that higher level structures impose downward
causation on their component parts (Green, 2018). On this
view, living systems do have leveled architectures, though
radically different from the ones found in artifacts for which the
assumption of near decomposability does hold. It is interesting
to note that there are new frameworks for engineering, which
allow for machines to assemble themselves rather than be
constructed according to a transparent, rational plan. It has been
argued that some of these artifacts are not modular and near
decomposable, and that they may show emergence (see section
“Conclusion”).

To summarize, my considerations about the difference
between living systems and artifacts, boil down to
a concern about oversimplification. By making the
assumption that living systems such as the nervous system
have distinct levels of organization (without downward
causation), and using this to justify leveled frameworks
in neuroscientific explanation, the density and complexity
of brain interactions are most likely being vastly under-
estimated. Perhaps this does not matter for a range of
predictive and technical purposes, but it does undermine more
ambitious claims of level-based theories to be unlocking the
riddles of information processing in the brain. Potochnik
(2021, p. 24) states the general worry in a compelling
way:

our adherence to the levels concept in the face of the
systematic problems plaguing it amounts to a failure to
recognize structure we’re imposing on the world, to instead
mistake this as structure we are reading off the world.
Attachment to the concept of levels of organization has,
I think, contributed to underestimation of the complexity
and variability of our world, including the significance of
causal interaction across scales. This has also inhibited
our ability to see limitations to our heuristic and to
imagine other contrasting heuristics, heuristics that may
bear more in common with what our world turns out to
actually be like.

The prospect of alternative heuristics is the loaded question.
Better notions of levels may yet arise from multi-scale modeling
in systems biology. But it could well be that the over-
simplifications imposed by artifact analogies and traditional
level frameworks are indispensable for making such complex
biological systems intelligible to human scientists, given our
finite cognitive capacities. In which case, there may be no overall
improvement in the heuristics, because any attempts to get
closer to the actual complexity of the targets result in a loss
of tractability and intelligibility. In which case researchers can,
without condemnation, settle for the heuristics that they have,
but they should uncouple advocacy of their modest explanatory
utility from any stronger claims about brains being computers
or organisms being machines.
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Conclusion

In this special issue, Bongard and Levin (2021) argue,
against Nicholson (2019), that twenty first century machines,
such as deep convolutional neural networks (DCNN’s), do not
have the rigid, modular qualities that, according to Nicholson,
make them misleading as models for biological systems. What
Bongard and Levin do not consider is that the utility of
the analogies is likely to decline once reference is made to
self-organizing devices like DCNN’s, which do not have the
intelligibility of simpler, explicitly designed machines. While the
analogy between organisms and machines may become tighter,
with the development of machines that are more life-like—
that are not modular, and which lack a clear hardware/software
division—the motivation for drawing the analogies in the first
place may evaporate. For, I have argued in this essay that
the payoff of thinking about brains in terms of machine-
based comparisons is that it aids explanation by framing
the biological object in terms of transparent principles of
human-led design. Self-organizing machines lack this attractive
transparency. That machines would 1 day become inscrutable
was a situation long ago envisaged by one of the first
proponents of artificial intelligence and artificial life, John von
Neumann:

At the Hixon Symposium, finding himself taxed by
the neurophysiologists . . . for not stressing enough the
difference between natural and artificial automata, he
replied that this distinction would grow weaker over time.
Soon, he prophesied, the builders of automata would find
themselves as helpless before their creations as we ourselves
feel in the presence of complex natural phenomena (Dupuy,
2009, p. 142).

That said, we should not be tempted to conclude that self-
organizing, twenty first century machines are absolutely life-
like. The problem is that given our relative ignorance about
how they work, in comparison with classical machines, we risk
also being left in the dark about all the ways they too are
not like organisms.
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Whether electronic, analog or quantum, a computer is a programmable machine. Wilder
Penfield held that the brain is literally a computer, because he was a dualist: the
mind programs the brain. If this type of dualism is rejected, then identifying the brain
to a computer requires defining what a brain “program” might mean and who gets
to “program” the brain. If the brain “programs” itself when it learns, then this is a
metaphor. If evolution “programs” the brain, then this is a metaphor. Indeed, in the
neuroscience literature, the brain-computer is typically not used as an analogy, i.e., as an
explicit comparison, but metaphorically, by importing terms from the field of computers
into neuroscientific discourse: we assert that brains compute the location of sounds,
we wonder how perceptual algorithms are implemented in the brain. Considerable
difficulties arise when attempting to give a precise biological description of these terms,
which is the sign that we are indeed dealing with a metaphor. Metaphors can be both
useful and misleading. The appeal of the brain-computer metaphor is that it promises
to bridge physiological and mental domains. But it is misleading because the basis of
this promise is that computer terms are themselves imported from the mental domain
(calculation, memory, information). In other words, the brain-computer metaphor offers a
reductionist view of cognition (all cognition is calculation) rather than a naturalistic theory
of cognition, hidden behind a metaphoric blanket.

Keywords: brain-computer metaphor, algorithms, programs, philosophy, metaphors

WHAT IS A COMPUTER?

It is common to assert that the brain is a sort of computer. It goes without saying that no one believes
that people have a hard drive and USB ports. More broadly, a computer is a machine that can be
programmed. A program is a set of explicit instructions that fully specify the behavior of the system
in advance ( “pro-,” before; “-gram,” write). Computers can be programmed in many different
ways: procedural programming (a series of elementary steps, as in a recipe or the C language),
logic programming (using logical propositions as in the language Prolog), and so on. There can
be such things as “non-conventional” computers, parallel computers, analog computers, quantum
computers, and so on, which execute programs in different ways.

“Programmable machine” is both the common usage and the technical usage of “computer.”
Let us leave aside the concept of a “machine,” which would deserve specific treatment (see e.g.,
Nicholson, 2019; Bongard and Levin, 2021), and allow for an even broader definition: a computer is
a programmable thing. Computer science offers no formal definition of computer: it is the concept
of program that unifies much of theoretical computer science. In computability theory, a function
f is said to be computable if there exists a program that can output f(x) given x as an input. In
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computability theory, an undecidable problem is a decision
problem for which no program gives a correct answer, such as
the halting problem. Complexity theory examines the number
of steps that a program takes before it stops, and classifies
problems with respect to how this number scales with input size.
Kolmogorov complexity is the size of the shortest program that
produces a given object.

Richards and Lillicrap (2022) rightfully recommend to clarify
the exact definition of computer we use, and they offer “some
physical machinery that can in theory compute any computable
function.” Unfortunately, this definition hides the notion of a
programmable machine behind the vagueness of the phrase “can
in theory.” What does it mean that an object can do certain
things?

Consider a large (say, infinite) pile of electronic components.
For any computable function, one “can in theory” assemble
the elements into a circuit that computes that function. But
this does not make the pile of components a computer. To
make it a computer, one would need to add some machinery
to build a particular circuit from instructions given by the user.
Certainly, the electronic elements “can in theory” compute any
computable function, but in the context of computers, what is
meant by “can” is that the computer will compute the function
if it is given the adequate instructions, in other words it is a
programmable machine.

In the same way, the fact that any logical function can
be decomposed into the operations of binary neuron models
(McCulloch and Pitts, 1943) does not make the brain a computer,
because the brain is not a machine to assemble neurons according
to some instructions, as if neurons were construction blocks.
Thus, it is fallacious to assert that the brain is literally a
computer on the mere basis that formal neural networks can
approximate any function (Richards and Lillicrap, 2022), for
this would attribute computerness to a disorganized pile of
electronic components or to any large enough group of atoms,
and this is neither the common usage nor the technical usage in
computer science.

A DUALISTIC ENTITY

As pointed out by Bell (1999), the computer is a fundamentally
dualistic entity, where some machinery (“hardware”) executes
instructions (“software”) defined by an external agent. It is exactly
in this sense that Wilder Penfield, who discovered the cortical
homunculi (sensory and motor “maps” of the body on the cortex),
claimed that the brain is literally a computer (Penfield, 1975).
Penfield was a dualist: he considered that the brain is literally a
computer, which gets programmed by the mind.

Although modern neuroscience is deeply influenced by
Cartesian dualism, most neuroscientists do not embrace
this type of dualism (Cisek, 1999; Mudrik and Maoz,
2015; Brette, 2019). Therefore, it is generally not believed
that the brain gets literally programmed by some other
entity. Perhaps the brain-computer is “programmed by
evolution” or “self-programmed,” but these are rather vague
metaphorical uses. To give some substance to the statement

“the brain is a computer,” one needs to identify programs
in the brain, and a way in which these programs can be
changed arbitrarily.

For example, classical connectionism might propose that
the program is the set of synaptic weights, and that some
process may change these weights. This view, as any attempt
to identify a program in the brain, assumes that the brain can
be separated into a set of modifiable elements (software) and
a fixed set of processes (hardware) that act on those elements,
for otherwise the “program” would not unambiguously specify
what it does, i.e., would not be a program at all. But synaptic
weights are certainly not the only modifiable elements in the
brain. This hardware/software distinction is precisely what Bell
(1999) opposed because everything in the brain, or in a biological
organism, is “soft”: “a computer is an intrinsically dualistic entity,
with its physical set-up designed not to interfere with its logical
set-up, which executes the computation. In empirical investigation,
we find that the brain is not a dualistic entity.” A living organism
does not simply adjust molecular knobs: it continuously produces
its own structure, synapses, and everything else (Varela et al.,
1974; Kauffman, 1986; Rosen, 2005; Montévil and Mossio,
2015).

Furthermore, to make the case that the brain is a computer,
one must demonstrate that there is a way in which the brain’s
programs can be changed arbitrarily. The problem with this
claim is that it implies some form of agency. If not a distinct
mind, then who decides to change the program? One might
say that the brain is programmed by evolution to achieve
some goals, but unless we believe in intelligent design, we
know that evolution is not literally a case of programming
but rather the natural selection of random structural changes.
One might say that the brain “programs itself,” but it is not
straightforward to give substance to this claim either, beyond
the trivial fact that the structure of the brain is plastic. If this
plasticity follows some particular rules, then the “programs” that
the brain produces are in fact not arbitrary. And indeed, it is
not the case that a cat can “self-program” itself into playing
chess. Perhaps it might “in theory” be able to play chess, that
is, if we allow some fictional observer to rewire the cat’s brain
in certain ways, but this is not a case self-programming. In
the idea that the cat’s brain is a computer, there appears to
be a confusion of Umwelts (Gomez-Marin, 2019): an observer
might be able to “program” a cat’s brain in some sense, but the
cat itself cannot.

THEORY, ANALOGY, OR METAPHOR?

Therefore, it is not a fact that brains are computers. It might be a
certain type of dualist theory, or a fundamentalist connectionist
theory, but those theories are at odds with what we know about
the biology of brains. However, in most cases, the statement is
not taken literally in the neuroscience literature. Is it an analogy
or a metaphor? The distinction is that an analogy is explicit while
a metaphor is implicit. It might be occasionally stated that the
brain is like a computer, but a much more common case in the
neuroscience literature is that one speaks of sensory computation,
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algorithms of decision-making, hardware and software, reading
and writing the brain (for measuring and stimulating), biological
implementation, neural codes, and so on. These are clear cases
of metaphorical writing, borrowing from the lexical field of
computers without explicitly comparing the brain to a computer.

Metaphors can be powerful intellectual tools because they
transport familiar concepts to an unfamiliar setting, and they
have shaped the history of neuroscience (Cobb, 2020). The
linguists Lakoff and Johnson (1980) have shown that metaphors
pervade our language and shape the concepts with which we
think, even though we usually do not notice it (“to shape” in
this sentence and “to transport” in the previous one, both applied
to concepts). As the authors emphasized: “What metaphor does
is limit what we notice, highlight what we do see, and provide
part of the inferential structure that we reason with.” It is this
inferential structure that deserves closer attention. The brain-
computer metaphor might be a “semantic debate” (Richards and
Lillicrap, 2022), but meaning is actually important. What do we
mean when we say that the brain implements algorithms, and is
it true?

A DOUBLE METAPHOR

Before we discuss algorithms in the brain, it is useful to reflect
on why the brain-computer metaphor is appealing. The brain-
computer metaphor seems to offer a natural way to bridge mental
and physiological domains. But it is important to realize that
it does so precisely because computer words are themselves
mental metaphors. In the seventeenth century, a “computer”
was a person who did calculations (Hutto et al., 2018). Later
on, by analogy, devices built to perform calculations were called
computers. We say for example that computers have “memory,”
but memory is a cognitive ability possessed by persons: it is
people who remember, and then we metaphorically say that a
computer “memorizes” some information; but when you open
some text file, the computer does not literally remember what
you wrote. This is why Wittgensteinian philosophers point out
that “taking the brain to be a computer [. . .] is doubly mistaken”
(Smit and Hacker, 2014).

No wonder computers offer a natural way to describe how
the brain “implements” cognition: computers were designed with
human cognition in mind in the first place. For this reason, there
is a sense in which certain persons (but not brains, cats or young
children) might literally and trivially be computers: an educated
person can execute a series of instructions, for example the
integer multiplication algorithm. This trivial sense exists precisely
because the computer is modeled on a subset of human cognitive
abilities, namely doing calculations. But of course, the relevant
scientific question is whether all cognitive activity is of this kind,
that is, is a sort of unconscious calculation. In other words, the
brain-computer metaphor is a reductionist view of cognition,
which claims that all cognitive activity in all animal kingdom
(perception, decision, motor control, etc.) is actually composed
of elementary cognitive steps, these steps being those displayed
by educated humans when they calculate.

At the very least, this claim is not trivially true.

ALGORITHMS OF THE BRAIN

What do we mean when we say that the brain implements
algorithms? The textbook definition of algorithm in computer
science is: “a sequence of computational steps that transform the
input into the output” (Cormen et al., 2009). There are different
ways to define those steps, but it must be a procedure that
is reducible to a finite set of elementary operations applied in
a certain order.

What is not algorithmic is, for example, the solar system.
The motion of planets follows some laws, but it cannot be
decomposed into a finite set of operations. These laws constitute
a model of planet motion, not an algorithm. In the same way, a
feedback control system is not in general an algorithm (see e.g.,
van Gelder’s example of Watt’s centrifugal governor; van Gelder,
1995). Of course, some algorithms can be feedback control
systems, but the converse is not true.

In the same way, a model of brain function is not necessarily
an algorithm. Of course, some are. For example, networks
of formal binary neurons (McCulloch and Pitts, 1943) are
algorithmic. Each “neuron” is defined as a binary function and
a feedforward network transforms an input into an output by a
composition of such functions. The same applies to deep learning
models. Backpropagation is an algorithm too. But the Hodgkin-
Huxley model (Hodgkin and Huxley, 1952) is not an algorithm.
It is, as the name implies, a model: laws that a number of
physical variables obey.

Of course, the Hodgkin-Huxley model can be simulated by an
algorithm. But the membrane potential is not in reality changed
by a sequence of Runge-Kutta steps. More generally, the fact that
a relationship between two measurable variables is computable
does not imply that the physical system actually implements an
algorithm to map one variable to the other. It only means that
someone can implement the mapping with an algorithm.

Biophysical models of the brain are typically dynamical
systems. But dynamical systems are not generically algorithms,
and therefore asserting that the brain runs algorithms is a
particular commitment that deserves proper justification. To
justify it, one needs to identify elementary operations in the
brain. For example, the computational view of mind holds that
cognition is the manipulation of symbols, that is, the elementary
operations are symbolic operations (Pylyshyn, 1980; Shagrir,
2006). This leaves the issue of identifying symbols in the brain,
which is generally done through the concept of “neural codes,”
but this concept is problematic both theoretically and empirically
(Brette, 2019). Among other examples, Minsky (1988) attempted
to describe cognition in terms of elementary cognitive operations,
and Marr (1982) tried to describe vision as a sequence of
well-identified signal processing operations, with limited success
(Warren, 2012). More generally, it is not so obvious that behavior
can be entirely captured by algorithms (Dreyfus, 1978; Roli et al.,
2022).

The word “algorithm” is sometimes used in a broader sense,
to mean some kind of detailed quantitative description of brain
function. But this metaphorical use is confusing: not everything
lawful in the world is algorithmic. A quantitative description is a
model, not an algorithm, and there are many kinds of model.
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COMPUTATION IN THE BRAIN

Perhaps a less misleading term is “computation.” The brain might
not be a computer, because it is not literally programmable, and it
might not literally run algorithms, but it certainly computes: for
example, it can transform sound waves captured at the ears into
the spatial position of a sound source. But what do we mean by
that exactly?

If what we mean is that we are able to locate sounds, look
at their expected position and generally behave as a function
of source position, then should we not just say that we can
perceive the position of sound sources? The word “computation”
certainly suggests something more than that. But if so, then this
is not a trivial statement and it requires proper justification.
Perhaps what is meant is that perception is the result of a
series of small operations, that is, by an algorithm, but this is
far from obvious.

Perhaps we mean something broader: the brain transforms the
acoustic signals into some neural activity that can be identified
to source position, and that then leads to appropriate behavior
and percepts. But this assumes some form of separability between
an encoding and a decoding brain, which can be questioned
(Brette, 2019). Or perhaps “computation” is simply meant to
designate a transformation from sensory signals to some mental
entity that represents source position. The difference between
a computation and a mere transformation is then the fact that
the output is a representation, not just a value. As Fodor noted,
“there is no computation without representation” (Fodor, 1981).
But then we need to explain what “representation” means in
this context, for example that a representation has a truth
value (it is correct or not), and how representations relate
to brain activity.

Thus, it is not at all obvious in what sense the brain
“computes,” if it does, and the metaphorical use of the word tends
to bury the important questions.

CONCLUSION

Computers are programmable things. Brains are not—at
least not literally.

Except in rare Cartesian views where the mind is seen
to program the brain (Penfield, 1975), the brain-computer
metaphor is indeed a metaphor. Explicit formal comparisons
with computers are rare, but brain processes are often described
using words borrowed from the lexical field of computers
(algorithms, computation, hardware, software, and so on). It is
in fact a double metaphor, because computers are themselves
metaphorically described with mental terms (e.g., they memorize
information). This circular metaphorical relationship explains
why the metaphor is (misleadingly) appealing.

The brain-computer metaphor is a source of much confusion
in the neuroscience literature, in the same way as the “genetic
program” is a source of confusion in genetics (Noble, 2008).
“Computer” might be used metaphorically to mean something
complicated and useful. But computers run programs: what
programs are we referring to? Evolution? The connectome?
Neither is actually a program, and it is misleading to suggest
they are. “Algorithm” might be used metaphorically to mean
“laws” or “model.” But this is misleading: “algorithm” suggests
elementary operations and codes, which are not found in all
models, and certainly not obviously found in brains (Brette,
2019). “Computation” is used metaphorically, but what is meant
exactly is generally undisclosed: is it a claim about the algorithmic
nature of cognition? about representations? or simply about the
fact that behavior is adequate?

Once the meanings of these computer terms are properly
disclosed, the scientific debate might begin.
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MA, United States

One of the most useful metaphors for driving scientific and engineering progress has
been that of the “machine.” Much controversy exists about the applicability of this
concept in the life sciences. Advances in molecular biology have revealed numerous
design principles that can be harnessed to understand cells from an engineering
perspective, and build novel devices to rationally exploit the laws of chemistry, physics,
and computation. At the same time, organicists point to the many unique features
of life, especially at larger scales of organization, which have resisted decomposition
analysis and artificial implementation. Here, we argue that much of this debate has
focused on inessential aspects of machines – classical properties which have been
surpassed by advances in modern Machine Behavior and no longer apply. This
emerging multidisciplinary field, at the interface of artificial life, machine learning, and
synthetic bioengineering, is highlighting the inadequacy of existing definitions. Key
terms such as machine, robot, program, software, evolved, designed, etc., need to
be revised in light of technological and theoretical advances that have moved past the
dated philosophical conceptions that have limited our understanding of both evolved
and designed systems. Moving beyond contingent aspects of historical and current
machines will enable conceptual tools that embrace inevitable advances in synthetic
and hybrid bioengineering and computer science, toward a framework that identifies
essential distinctions between fundamental concepts of devices and living agents.
Progress in both theory and practical applications requires the establishment of a novel
conception of “machines as they could be,” based on the profound lessons of biology at
all scales. We sketch a perspective that acknowledges the remarkable, unique aspects
of life to help re-define key terms, and identify deep, essential features of concepts for a
future in which sharp boundaries between evolved and designed systems will not exist.

Keywords: biology, computer science, robot, artificial life, machine learning

“Can machines think?” This should begin with definitions of the meaning of the terms “machine” and
“think.”

– Alan Turing, 1950
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INTRODUCTION

Living things are amazing – they show resilience, purposeful
action, unexpected complexity. They have true “skin in the
game” – they actively care about what happens, and can be
rewarded or punished by experience. They surprise us at every
turn with their ingenuity, their wholism, and their resistance to
naïve reductionist approaches to analysis and control. For these
reasons, some (Varela and Maturana, 1972; Varela et al., 1974;
Rosen, 1985; Nicholson, 2012, 2013, 2014, 2019) have argued
against modern cell biology and bioengineering’s conceptions of
cells as machines (Diaspro, 2004; Davidson, 2012; Kamm and
Bashir, 2014). Are living things machines? Defining “life” has
proven to be notoriously difficult, and important changes in
how we view this basic term have been suggested as a means
of spurring progress in the field (Fields and Levin, 2018, 2020;
Mariscal and Doolittle, 2020). What is an appropriate definition
of “machine,” and does it apply to all, some, or no living forms
across the tree of life?

Although not unanimously accepted, a powerful view is that
all scientific frameworks are metaphors (Honeck and Hoffman,
1980) and the question should be not one of philosophy but
of empirical research: does a suitable machine metaphor apply
sufficiently to biology to facilitate experimental and conceptual
progress? Here we focus attention on common assumptions
that have strongly divided organicist and mechanist thinkers
with respect to the machine metaphor, and argue that stark
classical linguistic and conceptual distinctions are no longer
viable or productive. At the risk of making both sides of this
debate unhappy, we put our cards on the table as follows.
We see life from the organicist perspective (Gurwitsch, 1944;
Goodwin, 1977, 1978, 2000; Ho and Fox, 1988; Gilbert and
Sarkar, 2000; Solé and Goodwin, 2000; Belousov, 2008). We do
not hold reductionist views of the control of life, and one of us
(ML) has long argued against the exclusive focus on molecular
biology as the only source of order in life (Pezzulo and Levin,
2015, 2016) and the importance of multiple lenses, including a
cognitive one, on the problem of biological origins, causation,
and biomedical interventions (Manicka and Levin, 2019; Levin,
2020b). However, as often happens, advances in engineering
have overtaken philosophical positions, and it is important to
re-examine the life-as-machine metaphor with a fair, up-to-
date definition of “machine”. Our goal here is not to denigrate
the remarkable properties of life by equating them with 18th
and 19th century notions of machines. Rather than reduce the
conception of life to something lesser, we seek to update and
elevate the understanding of “machines,” given recent advances
in artificial life, AI, cybernetics, and evolutionary computation.
We believe this will facilitate a better understanding of both –
living forms and machines, and is an essential step toward
a near future in which functional hybridization will surely
erase comfortable, classical boundaries between evolved and
engineered complex systems.

Here, we make three basic claims. First, that the notion of
“machine” often used to claim that living things are not machines
tends to refer to an outdated definition of the term which
simply no longer fits. Thus, we have the opportunity (and need)
to update the definition of “machine” based on insights from

the information, engineering, and life sciences toward a better
understanding of the space of possible machines (Table 1). We
challenge relevant communities to collaborate on a better, more
profound definition that makes it clear which aspects fruitfully
apply to biological research. Indeed, many other terms such as
robot, program, etc. need to be updated in light of recent research
trends: these existing concepts simply do not “carve nature at
its joints” in the way that seemed obvious in the last century.
Second, that progress in the science of machine behavior and in
the bioengineering of tightly integrated hybrids between living
things and machines breaks down the simplistic dualism of life
vs. machine. Instead, we see a continuum of emergence, rational
control, and agency that can be instantiated in a myriad of novel
implementations, not segregating neatly into categories based on
composition (protoplasm vs. silicon) or origin story (evolved vs.
designed). Finally, we stress an emerging breakdown not only
of distinctions in terminology but of disciplines, suggesting the
merging of aspects of information sciences, physics, and biology
into a new field whose subject is embodied computation in a
very wide range of evolved, designed, and composite media at
multiple scales.

WHAT IS MEANT BY “MACHINE”?

To claim that living things are not, or are, machines, it is first
necessary to specify what is meant by a “machine” (Turing,
1950; Arbib, 1961; Lucas, 1961; Conrad, 1989; Davidson, 2012;
Nicholson, 2012, 2013, 2014, 2019). We view the main aspects
of a machine to refer to a device, constructed according to
rational principles that enable prediction (to some threshold of
accuracy) of their behavior at chosen scales. Machines constrain
known laws of physics and computation to achieve specifiable
functionality. In addition to this basic description, numerous
properties are often assumed and then used to highlight
differences from living forms. Let us consider some of these, to
understand to what extent they are based on fundamental aspects
of what is essential about the concept of machine, not merely
contingent aspects due to historical limitations of technological
capability. Each of the sections below focuses on one commonly
voiced claim regarding the definitions of “machine,” which we
think is in need of revision in light of advances in the science of
machine behavior.

Machines Are Independent: Life Is
Interdependent
The Turing machine, a theoretical construct of which all
computers are physical instantiations, demonstrated that a clear
demarcation exists between a machine and its environment: input
and output channels mediate between them. This conception of
machines also reaches back further, into the industrial revolution,
when mechanical devices formed a new class of matter alongside
those of inanimate, animate, and divine phenomena: from the
outset, machines were considered as something apart, both
from the natural world and from each other. In contrast,
living systems are deeply interdependent with one another,
simultaneously made and maker. Similarly, the Internet, and
now the Internet of Things, is demonstrating that more useful
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TABLE 1 | A summary of past differences between machines and living systems and proposed updates that blur the boundaries.

Properties of classical machines
that don’t apply to life:

Current and future machines are not distinguished
from life because:

Proposed new emphasis:

Structure is single-level Built as multi-scale systems of active, goal-seeking
components

Machines composed of parts with self-similar
structure and function

Described by a pre-determined list of
parts

Protean machines add or subtract components as
needed

Machines that make machines of increasing
complexity

Machines arise from a design
“blueprint”

Self-organizing systems modify their own structure on
the fly

Great emphasis on self-controlled allostasis

Tightly constrained operation toward
pre-determined functions

Goals are acquired and modified by AI and similar
systems

Godel, Turing, deterministic chaos, and other
limits apply to predictability and control in
machines just as they do in living forms

Highly efficient operation Noise is exploited, and fallibility of components are
expected

Achieving wholistic certainty from uncertain
parts.

Function can be interrupted and
restarted

Machines modify/improve/complexify their internal
structure on the fly

Synergies between useful function and dynamic
homeostasis

Behavior is predictable and linear Perverse instantiation and creativity increasingly result in
machines that are not predictable bottom-up

Machines that can perform a desired task in
increasingly diverse ways

machines can often be built by composing simpler machines
into ever-more complex interdependencies. Modern physical
machines are composed of vast numbers of parts manufactured
by increasingly interconnected industrial ecologies, and most of
the more complex parts have this same property.

Likewise, software systems have very long dependency trees:
the hierarchy of support software that must be installed in order
for the system in question to run. Software systems are often not
considered machines, but rather something that can be executed
by a particular class of machine: the Turing machine. However,
modern computer science concepts have blurred this distinction
between software and machine. A simple example is that of
a virtual machine, which is software that simulates hardware
different from that running the virtual machine software. This in
turn raises the question of whether there is a distinction between
simulating and instantiating a machine, but this deep question
will be dealt with in forthcoming work.

Moreover, some machines are now becoming part of highly
integrated novel systems with living organisms, for sensory
augmentation (Sampaio et al., 2001), brain-machine interfaces
(Danilov and Tyler, 2005; Shanechi et al., 2014), brain implants to
manage epilepsy, paralysis, and other brain states (Shanechi et al.,
2014; Alcala-Zermeno et al., 2020), performance augmentation
(Suthana et al., 2012; Salvi et al., 2020), and internal physiological
homeostatic devices [e.g., increasingly more intelligent devices
to manage context-specific, homeostatic delivery of insulin,
neurotransmitters, etc (Lee et al., 2019)]. Machines (such as
optogenetics interfaces with machine learning components)
can even be used to read memories or incept them directly
into biological minds (Shen et al., 2019a,b; Vetere et al.,
2019), bypassing traditional mechanisms of perception, memory
formation, and communication, to access the core of what it
means to be a sentient agent. These biohybrid machines require
a constellation of particularly dense software and hardware
support, maintenance and monitoring, since any cessation of

function could injure or mortally endanger a human wearer.
In their more exotic implementations, hybridized biological
tissue (including brains) with electronics provide a plethora of
possible constructs in which obviously alive components are
tightly interweaved, in both structure and function, with machine
components (Green and Kalaska, 2011; Wilson et al., 2013; Pais-
Vieira et al., 2015). The function, cognition, and status of these
hybrid systems make clear that no simple dichotomy can be
drawn between life and machine.

Machines Are Predictable: Life Is
Unpredictable
Intuitively, a useful machine is a reliable one. In contrast, living
systems must be noisy and unpredictable: a reliable organism
can be easily predated upon; a stationary species can be out-
evolved. But, emerging technologies increasingly achieve reliable
function by combining uncertain events in novel ways. Examples
include quantum computers and machine learning algorithms
peppered with stochastic events to ensure learning does not
become trapped in partial solutions (Kingma and Ba, 2014). We
are also now learning that unpredictability in the long run is often
the signature of particularly powerful technologies. Indeed, the
inability to predict the “killer app” for a new technology such
as a quantum computer or driverless cars is often a signature
of particularly disruptive technologies. The utility of surprising
machines has historical roots: Gray Walter’s physical machines
(Walter, 1950) and Braitenberg’s hypothetical machines were
capable of startlingly complex behavior despite their extreme
simplicity (Braitenberg, 1984). Today, robot swarms are often
trained to exhibit useful “emergent behavior,” although the global
behavior of the swarm may not be surprising, the irreducibility
of swarm behavior to individual robot actions is a new concept
to many roboticists (McLennan-Smith et al., 2020). Finally, the
ubiquity of perverse instantiation – automatically trained or
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evolved robots often instantiate the requested, desired behavior
in unexpected ways - in AI has been cited as a potentially useful
way of designing machines (Lehman et al., 2020).

Nicholson (2019) defined a machine as having four clear
specifications. For 21st century machines, it is becoming
increasingly difficult to write down a clear set of specifications
for them which spans all the possible ways in which they
may change, and be changed by their increasingly complex
environments. Instead, it is more useful to think about
specifications for the algorithms that then build machines much
more complex than the algorithms: canonical examples include
the “specification” of the backpropagation of error algorithm
that trains deep networks, and the traversal of a search space by
genetic algorithms.

Machines Are Designed by Humans: Life
Is Evolved
Almost all machines have a human provenance; whereas the
very definition of a living system is that it arose from an
evolutionary process. Somewhat surprisingly, economic theory
provided one of the first intuition pumps for considering the non-
human generators of machines: machines arise from the literal
hands of human engineers but also the “invisible hand” of a
free market; the latter set of pressures in effect “select,” without
human design or forethought, which technologies proliferate
(Beinhocker, 2020). More recently, evolutionary algorithms, a
type of machine learning algorithm, have demonstrated that,
among other things, jet engines (Yu et al., 2019), metamaterials
(Zhang et al., 2020), consumer products (Zhou et al., 2020),
robots (Brodbeck et al., 2018; Shah et al., 2020), and synthetic
organisms (Kriegman et al., 2020) can be evolved rather than
designed: an evolutionary algorithm generates a population
of random artifacts, scores them against human-formulated
desiderata, and replaces low-scoring individuals with randomly
modified copies of the survivors. Indeed, the “middle man” has
even been removed in some evolutionary algorithms by searching
for novelty rather than selecting for a desired behavior (Lehman
and Stanley, 2011). Thus, future agents are likely to have origin
stories ranging across a very rich option space of combinations
of evolutionary processes and intelligent design by humans and
other machines.

The cost of evolving useful machines, rather than designing
them by hand, is that that they are often inefficient. Like
organisms, evolved machines inherently include many sub-
functions exapted from sub-functions in their ancestral
machines, or mutations that copy and differentiate sub-functions
leads to several modules with overlapping functions. Nicholson
(2019)’s third necessary feature of machines is that they are
efficient: again, 21st century machines increasingly lack this
property. The increased use of evolutionary dynamics by
engineers, and the ability of both kinds of processes to give
rise to highly adapted, complex systems makes it impossible to
use evolved vs. designed as a clear demarcation between two
classes of beings.

An especially powerful blow to the conceit that machines
are the direct result of human ingenuity are machines that

make machines. Mass production provided the first example of
a machine — a factory – that could produce other machines.
John von Neumann postulated theoretical machines that could
make perfect copies of themselves, which in turn make copies
of themselves, indefinitely, assuming a constant supply of raw
building materials (von Neumann and Burks, 1966). Theory has
been partly grounded in practice by rapid prototyping machines
that print and assemble almost all of their own parts (Jones
et al., 2011). Similarly, many are comfortable with the idea
that the Internet, a type of machine, helps “birth” new social
network applications. Those applications in turn connect experts
together in new ways such that they midwife the arrival of
brand new kinds of hardware and software. Indeed, most new
technologies result from complex admixtures of human and
machine effort in which economic and algorithmic evolutionary
pressures are brought to bear. Indeed, one defensible metric of
technological progress is the growing number of intermediate
machine design/optimization layers sandwiched between human
ingenuity and deployment of a new technology.

Life Is Hierarchical and Self-Similar:
Machines Are Linearly Modular
Living systems exhibit similar structure and function at many
different levels of organization. As one example of self-similar
structure, at small scales, branching structures are not just self-
similar but even fractal. Another example is the interdependence
between hierarchical structure and function in the brain
(Sporns et al., 2000). Even more important is self-similar
function, in the sense of multi-scale competency, allostasis, or
homeostasis (Vernon et al., 2015; Schulkin and Sterling, 2019):
organelles, cells, organisms, and possibly species evolved adaptive
mechanisms to recover when drawn away from agreeable
environmental conditions or even placed in novel circumstances.
Machines are typically assumed to be hierarchical and modular
for sound engineering reasons, but self-similarity in machines is
less obvious. Although fractality is currently under investigation
in software (Semenov, 2020), circuit design (Chen et al., 2017),
and metamaterials (De Nicola et al., 2020), it is conspicuously
absent from other classes of machines. Thus, unlike the other
features considered in this section, self-similarity remains a
feature that, for now, does tend to distinguish living systems
from machines. It is important to note, however, that this is not
fundamental – there is no deep reason that prevents engineered
artifacts from exploiting the deep, multi-scale organization of
living organisms to improve problem-solving and robustness.
Although many current machines are highly modular and
efficient by design, machines produced by other machines
increasingly exhibit differing amounts and types of modularity.
Indeed artificially evolved neural networks (Clune et al., 2013)
and robots (Bernatskiy and Bongard, 2017) often lack modularity
unless it is directly selected for, and many exhibit inefficiencies
caused by evolutionarily duplicated and differentiated sub-
structures and sub-functions (Calabretta et al., 2000).

Autonomy at many scales is especially important with respect
to function, not only structure (Pezzulo and Levin, 2016; Fields
and Levin, 2017, 2020). Biological systems are holarchies in which
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each subsystem is competent in achieving specific goals (in the
cybernetic, allostatic sense) despite changing local circumstances
(Pezzulo and Levin, 2016). For example, a swarm of tadpoles
organizes its swimming in a circular pattern to ensure efficient
flow of nutrients past their gills. At the same time, individual
tadpoles perform goal-directed behaviors and compete with each
other, while their craniofacial organs re-arrange toward a specific
target morphology of a frog [able to pursue this anatomical
goal regardless of their starting configuration (Vandenberg et al.,
2012)], their tissues compete for informational and nutritional
resources (Gawne et al., 2020), and their individual cells maintain
metabolic and homeostatic and transcriptional goal states. Such
nested architecture of competing and cooperating units achieves
unprecedented levels of robustness, plasticity, and problem-
solving in novel circumstances (Levin, 2019; Levin, 2020a). It is
also likely responsible for the remarkable evolvability of living
forms, because such multi-scale competency flattens the fitness
landscape: mutations have fewer deleterious effects if some of the
changes they induce can be compensated by various subsystems,
allowing their negative effects to be buffered while the positive
effects accumulate. At present, this is a real difference between
how we engineer machines and how living things are constructed;
for now, defections of parts from the goals of the whole system
(robot “cancer”) are rare, but this will not be the case for long.
We expect near-future work to give rise to machines built on
the principles of multi-scale competency in a fluid “society” of
components that communicate, trade, cooperate, compete, and
barter information and energy resources as do living components
of an organism (Gawne et al., 2020).

Life Is Capable of Intelligence (And Free
Will, Subjectivity, Consciousness,
Agency, and Metacognition): Machines
Are Not; Indeed, They Never Will
Nowhere does the specter of Cartesian dualism loom more
prominently than in the debates about whether current machines
possess any of the cognitive and affective features usually
associated with higher animals, such as intelligence, agency, self-
awareness, consciousness, metacognition, subjectivity, and so on
(Cruse and Schilling, 2013). Indeed, the most intense debates
focus on whether machines will ever be able to attain one or
more of these internal states. As many have pointed out, the
stronger the claim that higher cognition and subjectivity is only
accessible to living systems, the stronger the evidence required
to prove that living systems possess them. It is still strongly
debated what aspects of the body organization are required for
these capacities, or even whether such phenomena exist at all
(Lyon, 2006; Bronfman et al., 2016; Dennett, 2017). Until such
time as firm definitions of these terms is arrived at, claiming them
as a point of demarcation between machines and life is an ill-
defined exercise. Moreover, it is now clear that composite, hybrid
creatures can be bioengineered with any desired combination
of living cells (or whole brains) and real-time optical-electrical
interfaces to machine-learning architectures (Grosenick et al.,
2015; Newman et al., 2015; Pashaie et al., 2015; Roy et al., 2017).
Because the living tissue (which houses the symbol grounding

and true “understanding”) closely interacts with the machine
learning components, forming a single integrated system, such
chimeras reveal that there is no principled way to draw a crisp
line between systems that have true subjectivity and those that
are mere engineered systems.

Machines are increasingly occupying new spaces on the
scale of persuadability, which ranges from low-level, physical
control that has to be applied to change the function of a
mechanical clock, to the use of experiences (positive or negative
reinforcement), signals, messages, and arguments that one can
use with agents of increasing cognitive sophistication. One way to
formalize this distinction is through the relative amount of energy
or effort used in an intervention compared to the change in
the system’s behavior. Messages, unlike physical pushes, require
relatively low energy input because they count on the receiving
system to do a lot of the hard work. If one wants a 200 kg
block of aluminum to move from point A to point B, one has
to push it. If one wants a 200 kg robot to make the same
journey, it may be sufficient to provide only a simple signal;
and if one is dealing with a human or complex AI, one could
even implement the move to occur in the future, in some
specific context, by providing a rational reason to do it (via
a low-energy message channel (Hoffmeyer, 2000; Pattee, 2001).
Modern autonomous machines require increasingly low-energy
interventions to produce useful work – a trend begun decades
ago by developments in cybernetics. Indeed, in their increasing
large-scale lability in the face of very subtle signals, they may get
closer to the edge of chaos that is so prevalent in biology (Hiett,
1999; Kauffman and Johnsen, 1991; Mora and Bialek, 2011).

Machines Can Be Studied in a
Reductionist Framework: Life Cannot
Until very recently, the very fact that machines could be rapidly
disassembled into their component parts, repaired or improved,
and then reassembled, was one of their primary advantages
over living machines such as domesticated animals or human
slaves. This modularity and hierarchy continues today in our
most complex technologies, like state-of-the-art computer chips,
which contain billions of transistors. Progress in circuit design
now requires reaching into the quantum realm (Preskill, 2018),
or enlisting DNA to store and transmit information (Chatterjee
et al., 2017). Reductionist approaches in Artificial Intelligence are
rapidly losing explanatory power as AI systems assume greater
complexity. Considering the weight of a particular synaptic
connection or a local neural cluster in a deep neural network
provides little understanding of the machine’s behavior as a
whole. Making progress in these domains may incur a cost of
not being able to guarantee how local behavior will resolve into
global behavior, like computation speed (a feature related to
the predictability issues discussed above). Instead, AI methods
may have to be enlisted to design such circuits. Ironically, the
AI methods and their products, like neural networks, are both
extremely resistant to reductionist analysis. As just one example,
although the most common form of training neural networks,
the backpropagation of error, is a simple mathematical technique,
one of the co-founders of this method and other AI “insiders”
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have admitted to being baffled at its surprising effectiveness
(Sejnowski, 2020). As for AI’s objects – neural networks – the
very nature of their immense interconnectivity frustrates most
attempts to summarize their global behavior by only referring
to the individual behavior of their edge weights. Indeed, the fact
that neural networks are modeled on biological nervous system
principles makes it unsurprising that they would exhibit many
biological features, including that of resistance to reductionist
analysis. Many machines, especially swarms, exhibit behavior that
requires the same techniques used to study cognition in biological
systems (Beer, 2004, 2014, 2015; Swain et al., 2012; Pavlic and
Pratt, 2013; Nitsch and Popp, 2014; Beer and Williams, 2015;
Slavkov et al., 2018; Valentini et al., 2018), and even relatively
straightforward machines are surprisingly resistant to analysis
using today’s analytical tools (Jonas and Kording, 2016).

Today’s and future autonomous machines, like living things,
will be subject to deterministic chaos (amplification of very small
differences in initial conditions), inputs from their environment
that radically affect downstream responses, highly complex
interactions of a myriad diverse internal parts, and perhaps
even quantum uncertainty (Thubagere et al., 2017). For the
most sophisticated agents, a high level of analysis (in terms of
motivations, beliefs, memories, valences, and goals) may be far
more effective than bottom-up prediction approach – much as
occurs in biology (Marr, 1982; Pezzulo and Levin, 2015, 2016).

If reductionist analysis is impossible for current and future
machines, what remains? A consortium of social scientists,
computer scientists and ethologists recently called for the
creation of a new field, “machine behavior,” in which the
best explanations of machines, and predictions of their
likely behavior, are a combination of wholistic methods
drawn from ethology, the social sciences, and cognitive
science (Rahwan et al., 2019). As just one example, most
modern deep learning analytic methods attempt to discover
pathological holistic behavior in neural networks, such as
bias. Then, these methods attempt to discover the likely
root cause of that behavior and rectify it, such as de-
biasing biased training data sets (Bolukbasi et al., 2016).
Indeed in many cases, the most effective explanations of
animal and human behavior stop far short of detailed
neurological, chemical or small-scale physical phenomena
(Noble, 2012). This call for wholistic thinking is partly intellectual
and partly pragmatic: we require compact, falsifiable and
predictive claims about how autonomous machines will act
in the world, in close proximity to humans. Such claims
provide a firm foundation for new knowledge, but also
for new legislation, regulation, and social norms. Finally,
the deeply social and, increasingly, biological components of
modern machines further complicate reductionist thinking:
extrapolating what a million people will do with a million
plows, given knowledge of a plow, is tractable. Predicting
what 3.8 billion people will do with 3.8 billion social
media accounts1, or an equivalent number of brain-computer
interactive devices, is not.

1The current estimate of people with social media accounts as of January 2020
(statista.com;bit.ly/2KSdA9U).

Nicholson (Nicholson, 2019) concluded his list of three
necessary features for machines – specificity, constraint, and
efficiency – with a fourth and final feature: non-continuity. By
this, he meant that machines could be halted, disassembled,
understood, repaired, and reassembled. As with the first three
features, 21st century machines are increasingly resistant to
reductionist manipulations as well as reductionist explanations
(Guidotti et al., 2019; Rudin, 2019). Put differently, modern
technologies only achieve utility when they are emplaced
appropriately into the technosphere; it is difficult or impossible
to describe their function independently of it.

Life Is Embodied: AIs Are Not
Above, we have considered increasingly untenable distinctions
between machines and living systems. Another commonly
voiced distinction inherited from Cartesian dualism, but one
which is also rapidly deteriorating in the face of advances
in technology, is that between embodied creatures and pure
(software-based) AI. The staying power of this distinction is
mostly due to its seeming intuitive nature: a living being (or
robot) acts directly on the world, and is affected by it; “AI”
are programs that run inside a computer and thus only impact
the world indirectly. The sharp separation between AIs, whose
essential nature is an algorithm (which can be run on many
different kinds of hardware) seems categorically different than
a living being which is defined by its particulars, in both
mind and body. It is curious that a discipline only 70 years
old should be so deeply cleaved along fault lines established
at the outset of Western thought, millennia ago. Much ink
has been spilled on this subject that we will not attempt to
summarize here; instead, we will highlight a few thrusts within
both disciplines that unintentionally or intentionally attempt to
close this gap.

“Embodied AI” has come to be associated with efforts to
run deep learning algorithms on autonomous robots (Savva
et al., 2019). However, these methods can be seen as deepening
rather than narrowing the brain/body distinction: In these
approaches, the robot’s form is usually a fixed shell, previously
designed by human engineers, controlled by the machine learning
algorithm. In contrast, there is a small but growing literature
on embodying intelligence directly into the body of the robot
(Nakajima et al., 2015), and in machine learning methods
that evolve robot bodies to enhance this and other forms
of intelligence (Powers et al., 2020). A small but growing
literature on robots capable of self-modeling also blurs the
distinction between embodied robots and non-embodied AI
methods. Attempts here focus on enabling a robot to model
its own body (Bongard et al., 2006; Kwiatkowski and Lipson,
2019), and model unexpected changes to that body such as
damage, using AI methods. In such systems, morphological
change is occurring alongside mental changes, such as improved
understanding of the robot’s current internal and external
states (Kwiatkowski and Lipson, 2019). Likewise, an important
distinction for the biosciences is between disciplines like zoology,
which focus on very specific examples of life, and the study
of deep principles of biological regulation [“life as it could
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be,” (Langton, 1995; Walker and Davies, 2013)] which, like AI
software, can be implemented in a wide range of media.

Machines Have Clear
Hardware/Software Distinctions: Life
Does Not
One of the most enduring technological metaphors applied to
organisms is that of DNA as software and cells as hardware. The
metaphor sometimes considers transcription and translation as
the interface between the two. In this guise, transcription and
translation serve as the biological equivalent of finite automata,
which translate code into physical changes imposed on the
world. Biological nervous systems acquire a similar metaphor by
extension, but here software is often considered to be electrical
activity in the brain. Software, as the name implies, is usually
restricted to “fluid” systems: chemical, electrical, or sub-atomic
dynamics. Hardware is instead usually applied to macroscale,
Newtonian, mechanical objects such as switches and relays
in artificial systems, and physiology in living systems. Several
advances in neuroscience and regenerative biology challenge
the claim that biology never exploits the software/hardware
distinction. For example, it has been argued that changes
in blood flow in the brain can convey information (Moore
and Cao, 2008), as does the function of astrocytes (Santello
et al., 2019) and neurotransmitters (Ma et al., 2016). The
non-electrical components of these structures and mechanisms
complicate extending the software metaphor to encompass
them. The hardware/software distinction is also blurring in
technological systems: increasingly specialized hardware is being
developed to support deep learning-specific algorithms (Haensch
et al., 2018), and the physics of robot movement can be
considered to be performing computation (Nakajima et al., 2015).
DNA computing further complicates the hardware/software
distinction: In one recent application (Chatterjee et al., 2017),
DNA fragments simultaneously house the “software” of a given
species yet also serve as logic gates and signal transmission
lines, the atomic building blocks of computer hardware. Robots
built from DNA (Thubagere et al., 2017) reduce the distinction
yet further (Thubagere et al., 2017). Moreover, recent work
on bioelectric control of regenerative setpoints showed that
planarian flatworms contain voltage patterns (in non-neural
cells) that are not a readout of current anatomy, but are a
re-writable, latent pattern memory that will guide regenerative
anatomy if the animal gets injured in the future (Levin et al.,
2018). These patterns can now be re-written, analogous to
false memory inception in the brain (Ramirez et al., 2013; Liu
et al., 2014), resulting in worms that permanently generate 2-
headed forms despite their completely wild-type genetic sequence
(Durant et al., 2017). This demonstrates a sharp distinction
between the machine that builds the body (cellular networks) and
the data (stable patterns of bioelectric state) that these collective
agents use to decide what to build. The data can be edited in real
time, without touching the genome (hardware specification).

Most recently, the authors’ work on computer-designed
organisms (Kriegman et al., 2020) calls this distinction into
question from another direction. An evolutionary algorithm was

tasked with finding an appropriate shape and tissue distribution
for simulated cell clusters that yielded the fastest self-motile
clusters in a virtual environment. A cell-based construction kit
was made available to the algorithm, but it was composed of just
two building units: Xenopus laevis epithelial and cardiac muscle
cells. The fastest-moving designs were built by microsurgery
using physical cells harvested from X. laevis blastulae. The
resulting organism’s fast movement, with anatomical structure
and behavior entirely different from that of normal frog larvae,
was thus purely a function of its evolved, novel shape and tissue
distribution, not neural control or genomic information. Such
an intervention “reprograms” the wild type organism by forcing
it into a novel, stable, bioelectric/morphological/behavioral state,
all without altering the DNA “software.” This inverts the normal
conception of programming a machine by altering its software
but not its hardware.

IMPROVING DEFINITIONS

Given the increasingly unsupportable distinctions between
machines and life discussed above, we suggest that updated
definitions of machine, robot, program, software, and hardware
are in order. The very fact that many of these systems are
converging makes delineating them from one another an
almost paradoxical enterprise. Our goal is not to etch in stone
precise new definitions, but rather to provide an update and
starting point for discussion of terms that often are used
without examination of their limitations. We emphasize aspects
that we hope summarize important emerging structure and
commonalities across these concepts. Wrestling with these
concepts helps identify previously unasked research questions
and unify research programs that previously were treated as
distinct with respect to funding bodies, educational programs,
and academic and industrial research environments.

Machine
Any system that magnifies and partly or completely automates
an agent’s ability to effect change on the world. The system
should be composed of parts several steps removed from raw
materials and should be the result of a rational, or evolutionary
(or both), design process. Importantly, a machine uses rationally
discoverable principles of physics and computation, at whatever
level (from molecular to cognitive), to achieve specific functions
and is controllable by interventions either at the physical level or
at the level of inputs, stimuli, or persuasion via messages that take
advantage of its computational structure. The definition would
include domesticated plants and animals (systems with rationally
modified structure and behavior), and synthetic organisms.
Machines often have exhibit information dynamics that enhance
an agent’s ability to effect change on the world. The agent may
be the entity who constructed the machine, or a third party.
Similarly, the agent need not be self-aware or even sentient.

We propose that physicality is not a requirement. Physicality
too easily becomes a seemingly obvious, Cartesian border
between one class of phenomena and another. Of more interest
are machines in which small-scale physical phenomena, such
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as quantum and electrodynamic forces in biological cells or
microscale robots, influence macroscale behavior, such as whole-
body motion or swarm intelligence. By removing the physicality
requirement, a machine may be a machine learning algorithm
that generates better machine learning algorithms or designs
robots or synthetic organisms.

Robot
A machine capable of physical actions which have direct
impacts on the world, and which can sense the repercussions
of those actions, and is partly or completely independent
of human action and intent. This definition is related to
embodiment and situatedness, two previous pillars supporting
the definition of robot (Pfeifer and Bongard, 2006). Crucially,
the property of being a robot is not a binary one, but rather a
spectrum – a continuum (independent of origin story or material
implementation). The determinant of where a given system
lands on the continuum is the degree of autonomous control
evidenced by the system (Rosen, 1985; Bertschinger et al., 2008).
A closely related continuum reflects the degree of persuadability
of the system (Dennett, 1987). On one end of the continuum
are highly mechanical systems that can only be controlled by
direct physical intervention – micromanagement of outcome by
“rewiring”. In the middle are systems that can be stimulated to
change their activity – they can be sent signals, or motivated
via reward or punishment experiences based on which they can
make immediate decisions. At the far end are systems in which
an effective means of communication and control is to alter the
goals that drive their longer-term behavioral policies – they can
be persuaded by informational messages encoding reasons, based
on which they will change their goals. The important variables
here are the causal closure of the system in its behavior (Rosen,
1974; Montevil and Mossio, 2015), and the amount of energy and
intervention effort that need to be applied to get the system to
make large changes in its function (the smaller the force needed to
affect the system, the more sophisticated the robot). A continuous
measure of the level of roboticism is required, to handle the
growing class of hybrids of biological and mechano-electronic
devices. For example, smart prosthetics, which are mostly under
human control via muscle activation or thought processes, are
less robotic than an autonomous car.

Program
A program is typically conceived as an abstract procedure that
is multiply realizable: different physical systems can be found or
constructed that execute the program. We see no need to alter this
definition, except to state that execution need not be restricted
to electrical activity in a computer chip or nervous tissue;
chemical (Gromski et al., 2020) and mechanical (Silva et al.,
2014) processes may support computation as well. However,
a couple of aspects are important for discussing programs in
biology. First, that programs do not need to be written by
humans, or be a linear one-step-at-a-time procedure – the kinds
of programs that (rightly) cause many to say that living things
do not follow programs. The set of possible programs is much
broader than that, and subsumes distributed, stochastic, evolved
strategies such as carried out by nervous systems and non-neural

cellular collectives. Indeed the question of whether something is
a program or not is relative to a scale of biological organization.
For example, genetic sequence is absolutely not a program with
respect to anatomical shape, but it is a program with respect to
protein sequence.

Software/Hardware
The common names for this technological pairing hint that
material properties are what distinguish software from hardware;
one can contrast the fluid flow of electrons through circuitry
or photons through photonic circuits (Thomson et al., 2016)
against the rigidity of metal boxes, vacuum tubes, and transistors.
However, another, operational interpretation of their etymology
is possible: it is harder to change hardware than software, but
examples abound of both, radical structural change (Birnbaum
and Alvarado, 2008; Levin, 2020a) and learning/plasticity at
the dynamical system level that does not require rewiring
(Biswas et al., 2021). Programmable matter (Hawkes et al.,
2010) and shape changing soft robots (Shah et al., 2020)
are but two technological disciplines investigating physically
fluid technologies. In one study the assumption that changing
hardware is hard was fully inverted: it was shown that a soft
robot may recover from unexpected physical injury faster if
it contorts its body into a new shape (a hardware change)
rather than learning a compensating gait [a software change;
(Kriegman et al., 2019)]. These distortions and inversions of the
hardware/software distinction suggest that a binary distinction
may not be useful at all when investigating biological adaptation
or creating intelligent machines. However, a continuous variant
may be useful in the biosciences as follows: a living system
is software reprogrammable to the extent that stimuli (signals,
experiences) can be used to alter its behavior and functionality,
as opposed to needing physical rewiring (e.g., genome-editing,
cellular transplantation, surgical interventions, etc.).

We suggest that the low-hanging fruit of specifiable,
constrained, efficient, and fully predictable 20th century
machines have now been picked. We as a society, and researchers
in several fields, can (and must) now erase artificial boundaries to
create machines that are more like the structures and processes
that life exploits so successfully.

AN EMERGING FIELD: RE-DRAWING
THE BOUNDARIES

“Computer science is no more about computers than astronomy
is about telescopes”

– Edsger Dijkstra

The differences that have been cited between living beings
and machines are generally ones that can (and will) be overcome
by incremental progress. And even if one holds out for some
essential ingredient that, in principle, technology cannot copy,
there is the issue of hybridization. Biological brains readily
incorporate novel sensory-motor (Bach-y-Rita, 1967; Sampaio
et al., 2001; Ptito et al., 2005; Froese et al., 2012; Chamola et al.,
2020) and information-processing (Clark and Chalmers, 1998)
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functions provided by embedded electronic interfaces or
machine-learning components that provide smart, closed-loop
reward neurotransmitter levels (Bozorgzadeh et al., 2016) or
electrical activity which can modulate cognition. Even if “true”
preferences, motivations, goal-directedness, symbol grounding,
and understanding are somehow only possible in biological
media, we now know that hybrid functional systems can be
constructed that are part living tissue and part (perhaps smart)
electronics (Reger et al., 2000; DeMarse and Dockendorf, 2005;
Hamann et al., 2015; von Mammen et al., 2016; Ando and
Kanzaki, 2020), presumably conferring all of those features onto
the system. No principled limits to functionalization between
living systems (at any level of organization) and inorganic
machinery are known; even if such limits exist, these ineffable
components of living things will still tightly interact with
engineered components through the interface of other biological
aspects of cells and tissues that are already known to be
closely interoperable with inorganic machine parts. Thus, we
visualize a smooth, multi-axis continuum of beings being made
of some percentage of parts that are uncontroversially biological
and the remaining percentage of parts that are obviously
machines (Figure 1). They are tightly integrated in a way that
makes the whole system difficult to categorize, in the same
way that molecular machines (e.g., ATPase motors or folding-
programmed DNA strands) work together to make living beings
that implement much more flexible, high-order behavior.

The near future will also surely contain systems in which
biological and artificial parts and processes are intermixed across
many levels of organization, and many orders of spatial and
temporal scales. This could include a swarm composed of robots
and organisms, and in which this admixture gradually changes
over time to respond to slow time scale evolutionary pressures:
the biological units reproduce and evolve, and the mechanical
units self-replicate and evolve. Each individual in the swarm
may itself be a cyborg capable of dynamically reconfiguring
its biological and artificial components, while each of its cells
may include more or less genetic manipulation. Where in
such a system could a binary dividing line between life and
artifice be placed?

Working as coherent wholes, such constructs make highly
implausible a view of strict life/machine dualism, in the same
way that the problem of explaining interaction vexed Descartes’
dualism between body and mind. Thus, the hard work of the
coming decades will be to identify what, if any, are essential
differences – are there fundamentally different natural kinds,
or major transitions, in the continuum of fused biological and
technological systems? At stake is a conceptual framework to
guide basic research and applied engineering in the coming
decades, which is essential given the exponential rate of progress
in capabilities of altering and hybridizing the products of biology
and computer engineering.

Familiar boundaries between disciplines may be more a relic
of the history of science than optimal ways to organize our
knowledge of reality. One possibility is that biology and computer
science are both studying the same remarkable processes, just
operating in different media. We suggest that the material
implementation and the back-story of a given system are not

sufficient information to reliably place it into a category of
machine vs. living being, and indeed that those categories may
not be discrete bins but rather positions in a multidimensional
but continuous space. By asking hard questions about the
utility of terminology whose distinct boundaries were calcified
centuries ago, a number of advantages will be gained. The obvious
trajectory of today’s technology will result in the presence of
novel, composite creatures that in prior ages could be safely
treated as fun sci-fi that didn’t have to be dealt with seriously.
Updating our definitions and clearly articulating the essential
differences between diverse types of systems is especially essential
given the aspects of bioengineering and machine learning
advances that cannot yet be foreseen.

THE INTERDISCIPLINARY BENEFITS OF
A NEW SCIENCE OF MACHINES

The biosciences have much to gain from a more nuanced, non-
binary division between life and machine, and the emergence
of the field of machine behavior. First, the fact that modern
machines are multi-scale, surprising systems that are often as
hard to predict and control as living systems (Man and Damasio,
2019; Rahwan et al., 2019) drives improvement in strategies for
reverse-engineering, modeling, and multi-level analysis. This is
exactly what is needed to break through complexity barriers
facing regenerative medicine and developmental biology (Levin,
2020a). For example, solving the inverse problem in biomedical
settings (what molecular-level features can be tweaked in order to
achieve large-scale outcomes, such as forming an entire human
hand via manipulation of gene and pathway activity in single
cells) (Lobo et al., 2014; Pezzulo and Levin, 2016) will likely
be advanced by the development of engineering approaches to
harness noise, unpredictability, and top-down programming of
goal-directed multiscale systems.

Second, grappling with issues of control, programmability,
agency, and autonomy helps biologists identify and refine
essential features of these concepts, freed from the frozen
accidents of evolution and the history of biology, where
contingent categories (e.g., “consisting of protoplasm”) offered
distinctions that were easy to use in every-day life but misleading
for a deeper scientific understanding. Asking how one can
implement intrinsic motivation (Oudeyer and Kaplan, 2007),
optimal control (Klyubin et al., 2005), and the ability to
pursue and set goals in synthetic constructs (Kamm et al.,
2018) will help reveal which aspects of living forms are the
wellspring of these capacities and which are contingent details
that do not matter.

Third, the engineering and information sciences offer many
conceptual tools that should be tested empirically for their
utility in driving novel work in basic biology, biomedicine, and
synthetic bioengineering. Modular decomposition, software-level
reprogrammability, embodied and collective intelligence (Sole
et al., 2016), morphological computation (Fuchslin et al., 2013;
Corucci et al., 2015), codes and encodings (Barbieri, 1998, 2018,
2019; Levin and Martyniuk, 2018), and much more. Finally, an
inclusive, continuous view of life and machines frees the creative

Frontiers in Ecology and Evolution | www.frontiersin.org 9 March 2021 | Volume 9 | Article 65072655

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-650726 March 10, 2021 Time: 15:49 # 10

Bongard and Levin Machine Behavior: Living and Non-living

FIGURE 1 | Multi-scale option space for possible living machines. (A) Two orthogonal axes define important aspects of any complex system: the degree of design
vs. evolution that created it, and the degree of amount of autonomy it is able to implement. We suggest that both of these principal components are not binary
categories (such as evolved vs. designed, mechanical vs. autonomous/cognitive) but rather continuous. Together, they form a 2-dimensional option space within
which a great variety of possible agents can be placed. (B) Importantly, such an option space exists at each level of organization (for example, the familiar biological
nested scales of cells, individual organisms, and hives/swarms), and each level comprising a complex agent could occupy a different position in the option space –
the levels can be independent with respect to how much evolution, design, and cognition they involve. For example, a given system could be in one corner of the
option space at the lowest level (e.g., contain cells that include highly predictable synthetic circuits), but be evolved and intelligent at the level of the individual, and at
the same time be part of a swarm containing a mix of designed and evolved agents made up of different elements elsewhere on the option space in (A).

capacity of bioengineers, providing a much richer option space
for the creation of novel biological systems via guided self-
assembly (Kamm and Bashir, 2014; Kamm et al., 2018). Advances
in this field even help address controversies within the biological
sciences, such as whether behavior and intelligence are terms that
can apply to plants (Applewhite, 1975; Trewavas, 2009; Garzon
and Keijzer, 2011; Cvrckova et al., 2016; Calvo et al., 2017).

Likewise, the breaking down of artificial boundaries between
the life and engineering sciences has many advantages for
computer science and robotics. The first is bioinspiration. Since
its cybernetic beginnings, researchers in Artificial Intelligence
and robotics have always looked to biological forms and functions
for how best to build adaptive and/or intelligent machines.
Notable recent successes include convolutional neural networks,
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the primary engine of the AI revolution, which are inspired by the
hierarchical arrangement of receptive fields in the primary visual
cortex (Krizhevsky et al., 2017); deep reinforcement learning,
the primary method of training autonomous cars and drones,
inspired by behaviorism writ large (Mnih et al., 2015); and
evolutionary algorithms, capable of producing a diverse set of
robots (Bongard, 2013) or algorithms (Schmidt and Lipson,
2009) for a given problem. However, bioinspiration in technology
fields is often ad hoc and thus successes are intermittent. What
is lacking is a systematic method for distilling the wealth of
biological knowledge down into useful machine blueprints and
algorithm recipes, while filtering out proximate mechanisms
that are overly reliant on the natural materials that nature had
at hand. The products of research in biology (e.g., scientific
papers and models) are often brimming with molecular detail
such as specific gene names, and it is an important task for
biologists to be able to abstract from inessential details of one
specific organism and export the fundamental principles of each
capability in such a way that human (or AI-based) engineers
can exploit those principles in other media (Slusarczyk et al.,
2012; Bacchus et al., 2013; Garcia and Trinh, 2019). Design of
resilient, adaptive, autonomous robotics will benefit greatly from
importing deep ideas discovered in the principles at work in the
biological software that exploits noise, competition, cooperation,
goal-directedness, and multi-scale competency.

Second, there is much opportunity for better integration
across these fields, both in terms of the technology and the
relevant ethics (Levin et al., 2020; Lewis, 2020). Consider the
creative collective intelligence that will be embodied by the
forthcoming integrated combination of human scientists, in silico
evolution in virtual worlds, and automated construction of living
bodies (Kamm and Bashir, 2014; Kamm et al., 2018; Kriegman
et al., 2020; Levin et al., 2020), working together in a closed
loop system as a discovery engine for the laws of emergent
form and function. All biological and artificial materials and
machines strike careful but different balances between many
competing performance requirements. By drawing on advances
in chemistry, materials science, and synthetic biology, a wider
range of material, chemical and biotic building blocks are
emerging, such as metamaterials and active matter (Silva et al.,
2014; Bernheim-Groswasser et al., 2018; McGivern, 2019; De
Nicola et al., 2020; Pishvar and Harne, 2020; Zhang et al., 2020),
novel chemical compounds (Gromski et al., 2020), and computer-
designed organisms (Kriegman et al., 2020). These new building
blocks may in turn allow artificial or natural evolutionary
pressures to design hybrid systems that set new performance
records for speed, dexterity, metabolic efficiency, or intelligence,
while easing unsatisfying metabolic, biomechanical and adaptive
tradeoffs. Machine interfaces are also being used to connect
brains into novel compound entities, enhancing performance
and collaboration (Jiang et al., 2019). If the net is cast wider,
and virtual reality, the Internet of Things, and human societies
are combined such that they create and co-create one another,
it may be possible to obtain the best of both, of all worlds.
This would not be the purely mechanistic World-Machine that
Newton originally envisioned, but closer to the transhumanist
ideal of a more perfect union of technology, biology, and society.

CONCLUSION

Living cells and tissues are not really machines; but then again,
nothing is really anything – all metaphors are wrong, but some
are more useful than others. If we update the machine metaphor
in biology in accordance with modern research in the science of
machine behavior, it can help deepen conceptual understanding
and drive empirical research in ways that siloed efforts based on
prior centuries’ facile distinctions cannot. If we do not take this
journey, we will not only be left mute in the face of numerous
hybrid creatures in which these two supposedly different world
interact tightly but will also have greatly limited our ability to
design and control complex systems that could address many
needs of individuals and society as a whole.

Are living things a computer (Wang and Gribskov, 2005;
Bray, 2009)? It is a popular trope that humans naively seek
to understand mind and life via the common engineering
metaphors of the age - hydraulics, gears, electric circuits.
However, this easy criticism, suggesting myopia and hyperfocus
on each era’s shiny new technology, is mistaken. The reason
such technologies are compelling is that they are showing us the
space of what is possible, by exploring newly discovered laws
of nature in novel configurations. Are cells like steam engines?
Not overtly, but the laws of thermodynamics that steam engines
helped us to uncover and exploit are as important for biology
as they are for physics. Cells and tissues are certainly not like
the computers many of us use today, but that critique misses
the point. Today’s familiar computers are but a tiny portion
of the huge space of systems that compute, and in this deeper,
more important sense, living things are profitably studied with
the deep concepts of computer science. Computer science offers
many tools to help make more profound our understanding
of the relationship between “minds and bodies” – physical
structures that facilitate and constrain robustness, plasticity,
memory, planning, intelligence, and all of the other key features
of life.

It is now essential to re-draw (or perhaps erase) artificial
boundaries between biology and engineering; the tight separation
of disciplines is a hold-over from a past age, and is not
the right way to carve nature by its joints. We live in a
universe containing a rich, continuous option space of agents
with which we can interact by re-wiring, training, motivating,
signaling, communicating, and persuading. A better synergy
between life sciences and engineering helps us to understand
graded agency and nano-cognition across levels in biology, and
create new instances (Pattee, 1979, 1982, 1989, 2001; Baluška
and Levin, 2016). Indeed, biology and computer science are
not two different fields; they are both branches of information
science, working in distinct media with much in common.
The science of behavior, applied to embodied computation in
physical media that can be evolved or designed or both, is a new
emerging field that will help us map and explore the enormous
and fascinating space of possible machines across many scales
of autonomy and composition. At stake is a most exciting
future: where deep understanding of the origins and possible
embodiments of autonomy help natural and synthetic systems
reach their full potential.
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It is commonly assumed that usage of the word “computer” in the brain sciences reflects

a metaphor. However, there is no single definition of the word “computer” in use. In

fact, based on the usage of the word “computer” in computer science, a computer is

merely some physical machinery that can in theory compute any computable function.

According to this definition the brain is literally a computer; there is no metaphor. But, this

deviates from how the word “computer” is used in other academic disciplines. According

to the definition used outside of computer science, “computers” are human-made

devices that engage in sequential processing of inputs to produce outputs. According

to this definition, brains are not computers, and arguably, computers serve as a weak

metaphor for brains. Thus, we argue that the recurring brain-computer metaphor debate

is actually just a semantic disagreement, because brains are either literally computers

or clearly not very much like computers at all, depending on one’s definitions. We

propose that the best path forward is simply to put the debate to rest, and instead,

have researchers be clear about which definition they are using in their work. In some

circumstances, one can use the definition from computer science and simply ask, what

type of computer is the brain? In other circumstances, it is important to use the other

definition, and to clarify the ways in which our brains are radically different from the

laptops, smartphones, and servers that surround us in modern life.

Keywords: neuroscience, psychology, computer science, brains, computers, Turing machines, parallel distributed

processing

1. INTRODUCTION

Computation has been a central feature of research in the brain sciences (neuroscience, psychology,
and cognitive science) for decades. Papers in the brain sciences are full of references to algorithms,
coding, and information processing (Diamant, 2008; Maass, 2016; Oteiza et al., 2017). At the same
time, there is a long and continuing history of debate around these words (Maccormac, 1986;
West and Travis, 1991; Smith, 1993; Vlasits, 2017). According to many scientists and philosophers,
computers are used as a metaphor to understand brains and this metaphor can be misleading or
counter-productive (Carello et al., 1984; Cisek, 1999; Epstein, 2016; Cobb, 2020). Throughout the
history of the brain sciences over the last 80 years, one can find researchers who comfortably use
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computational theory and language to explore and understand
brains (Marcus, 2015), as well as researchers who reject the use
of such concepts for use with brains (Epstein, 2016). Indeed,
the early dream of cognitive science in the second half of
the twentieth century depended on the links between brain
sciences and artificial intelligence (AI) (Newell, 1980; Simon,
1980; Pylyshyn, 1984; Hunt, 1989), yet the failure to make good
progress in AI in the 1970’s, 80’s, and 90’s, and the inability to
connect such systems convincingly to the brain sciences, led some
researchers to conclude that the “metaphor of the brain as a
computer” was broken at its foundations (Dreyfus and Hubert,
1992; Van Gelder, 1998). To this day, one can still find in equal
measure both brain scientists who use theories from computer
science (Kwisthout and van Rooij, 2020) and brain scientists who
argue against the brain as a computer metaphor (Brette, 2018).

However, closer inspection of the debates on this topic
reveal a fundamental misunderstanding between the participants
regarding the definition of the word “computer”. Indeed, many
of the entries in these debates do not grapple concretely with
the definition of the word “computer” before declaring either
way that the brain is or is not well-explained with computational
theory. To actually resolve this debate, it is helpful to bring the
definition of “computer” into clear focus.

Here, we argue that closer examination of the manner in
which both computer scientists and non-computer scientists use
the word “computer” indicates that there are at least two distinct
definitions in operation: (1) A definition from computer science
rooted in the formal concepts of computable functions and
algorithms. (2) A definition from outside of computer science
based on the electronic devices we use on a regular basis and
how they operate. To make matters worse, some neuroscientists,
cognitive scientists, and psychologists have a mixed familiarity
with the formal concepts from computer science that underpin
the first definition. This means that semantic debates stemming
from misaligned definitions are particularly apt to emerge in the
context of the brain sciences, leading to proponents on either side
who seem irreconcilable.

In this article, we clarify these two distinct definitions.
We show that if one adopts the definition from computer
science, then the question is not whether computers are a
good metaphor for brains, because brains arguably are literally
computers based on this definition. In contrast, if one adopts
the definition from outside of computer science then brains
are not computers, and arguably, computers are a very poor
metaphor for brains. Thus, the argument over whether or not
computers are a good or bad metaphor for brains is actually
just a matter of semantics. Under one definition, brains are
literally computers, whereas under another, they are clearly not.
There is, therefore, little utility in continuing these debates.
We close on a prescription for the brain sciences. We suggest
that the question for scientists should instead be: if we adopt
the definition from computer science, then what kind of a
computer are brains? For those using the definition from outside
of computer science, they can be assured that their brains work in
a very different way than their laptops and their smartphones—
an important point to clarify as we seek to better understand how
brains work.

2. MEANING AS USE

Before we discuss the different definitions of the word
“computer”, it is important that we clarify our approach to the
definitions and meanings of words. In this paper, we adopt a
perspective that focuses on the use of words for understanding
their meaning, and thus, their definition. Therefore, we will avoid
telling the reader that, for example, “computers are formally
defined as X, and everyone must adopt this definition”. Instead,
we will draw the reader’s attention to the ways in which the
word “computer” is in fact used in contexts inside and outside
of computer science, and proceed from there.

Briefly, the idea that we can best understand the meaning
of a word by looking at its use in context has a long
history in philosophy, perhaps best exemplified by the works of
Ludwig Wittgenstein. Wittgenstein argued in the Philosophical
Investigations that “in most cases, the meaning of a word is
its use” (Wittgenstein, 1953). This idea flies in the face of
many of our intuitive notions about how words work; like the
young Wittgenstein, many of us tend to think about meaning in
terms of correspondence, i.e., that “individual words in language
name objects and sentences are combinations of such names”
(Wittgenstein, 1953). But, in fact, meaning is crucially modified
by context and use, rather than corresponding to particular
objects, so the meaning of most words are fuzzy and impossible
to write down precisely and uniquely. Wittgenstein showed
how much confusion is generated by failing to pay attention
to how words are used in context and we believe that much
of the confusion around the question “Is the brain (like) a
computer?” results from just this sort of confusion. In particular,
the “computer as brain” debate often devolves into a semantic
disagreement generated by a mismatch in expectations between
two uses of the word “computer”, which we will clarify below.

Of course, it should be noted that there can be many working
definitions of the word “computer”, but only two that are
prominent and important in our context. The definition used
by computer scientists is important because it underpins work
in computational neuroscience and AI. And, at the same time,
the definition used by academics outside of computer science
is important because it’s the one that most writers in the brain
sciences intuitively reach for during these debates. As we’ll
see, someone operating with the computer science definition
who says that the “brain is a computer” is certainly correct.
Simultaneously, someone using the definition from outside of
computer science who says that “the brain is not a computer and
computers are not a good metaphor for brains” is also correct.
Thus, unless the time is taken to clear up the question of usage,
there’s bound to be disagreement with little ground given by
either side. As such, we must first explore these two distinct uses.

3. THE USE OF THE WORD “COMPUTER”

INSIDE COMPUTER SCIENCE

Here we will provide an overview of the definition of the
word “computer” based on the use of the word in computer
science. As we will describe, this use-based definition partly
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relies on the formal definition of the word “algorithm”. However,
the definition of “computer” derived solely from the formal
definition for “algorithm” is actually so broad as to be nearly
meaningless. Nonetheless, the use of the word “computer”
in computer science shows that computer scientists generally
mean something more restrictive than the formal definitions
would indicate. As we will show, the more restrictive, use-based
definition is still applicable to brains.

3.1. The Formal Definition of “Algorithm”

and The Church-Turing Thesis
Within computer science the formal definition for the word
“algorithm” dates back to the early twentieth century, before the
invention of modern computers and the discipline of computer
science as it exists today. Back then, what would become
computer science was essentially a branch of mathematics. Many
mathematicians at the time were concerned with questions
about a class of mathematical tools that they called “effective
methods”. An effective method is a finite recipe that one can
follow mechanically to arrive at an answer to some mathematical
problem (Copeland, 2020), e.g., long division is an effective
method for solving division problems with arbitrarily large
numbers. Today, we refer to effective methods as “algorithms”.
The intuitive definition of an algorithm is therefore as above:
a finite recipe that one can follow mechanically to arrive at
an answer to some problem (Cormen et al., 2009). But, we
also have a formal definition thanks to the work of those early
mathematicians. For example, in 1900, the mathematician David
Hilbert put forward a set of 23 problems to be solved in the
twentieth century, the 10th of which was “Can we develop an
algorithm for determining whether the roots of a polynomial
function are integers?” (Hilbert, 1902). Later, these types of
questions were expanded in scope to larger questions such as the
Entscheidungsproblem, which asks whether there is an algorithm
for determining whether any given statement is valid within an
axiomatic language (Hilbert and Ackermann, 1999).

It turned out that these mathematicians had stumbled onto a
very deep set of problems. As they began to explore algorithms
more and more, they started to wonder whether some problems
in mathematics, including Hilbert’s 10th problem and the
Entscheidungsproblem, did not in fact have any solution. The
way this is sometimes phrased is, are there problems that are
not “decidable”? A problem is “decidable” if and only if there
exists an algorithm for solving it (Cormen et al., 2009), and
there was a growing realization that some problems were likely
not decidable. Of course, mathematicians being mathematicians,
they desired a proof that an algorithm didn’t exist in such cases.
The problem was that at the time the definition of an algorithm
was the informal, intuitive definition above. Without a formal
definition of the word “algorithm” it was impossible to prove that
some problems were, in fact, not decidable.

This set the stage for the development of modern computer
science as we know it today. A pair of mathematicians, Alonzo
Church andAlan Turing, independently decided to try to develop
a formal definition for “algorithm” for the sake of developing
proofs related to the Entscheidungsproblem and decidability more

broadly (Church, 1936a,b; Turing, 1936). Church invented a
formal logical system he called lambda calculus, and defined an
algorithm as anything that could be done with lambda calculus
(Church, 1936a,b). Turing invented a mathematical construct
known as a Turing machine, and defined an algorithm as
anything that could be done with Turing machines (Turing,
1936). Both researchers used their definitions to show that there
was no solution to the Entscheidungsproblem. As well, while the
two researchers had developed what looked like very different
definitions, they turned out to be mathematically equivalent
(Turing, 1937). Continued work in computability theory, the
branch of computer science and mathematics concerned with
the study of decidable problems, has suggested that any attempt
to formalize the intuitive definition of algorithm will end up
being equivalent to lambda calculus and Turing machines (Cook,
1992, 2014; Copeland, 2020). As such, computer scientists today
largely accept an idea known as the Church-Turing thesis, which
states (very roughly), that any algorithm can be implemented
via a Turing machine, i.e., it proposes that we accept Church
and Turing’s definitions as given (Copeland, 2020). Thus, when
people seek a proof that there is no algorithm for some problem,
they often do so by proving that you can’t solve the problem with
a Turing machine (Cook, 1992).

Importantly for the discussion here, the formal definition
for an “algorithm” also gives rise to a formal conception of
the word “computer”. Specifically, computer scientists define a
“computable function” to be any function whose values can be
determined using an algorithm. A “computer” is then formally
physical machinery that can implement algorithms in order to
solve computable functions (though one may also take a slightly
more expansive approach Copeland, 1997). It’s worth noting that
this conception of what a computer is makes no reference to
human made artifacts, or electronics, or silicon chips, etc. And,
if we think back to the use of the word “computer” at the point
in history when Church and Turing were working, this makes
a lot of sense: “Computers” at this time were people whose
job was to sit down with pencil and paper and use effective
methods (i.e., algorithms) to solve various problems (e.g., to
integrate equations) (Grier, 2001). Clearly, these people were
computers according to the definition above, because they were
solving computable functions, even though they were of course
not human-made artifacts. Thus, the formal definition of the
word “algorithm” rests on the Church-Turing Thesis, and this
in turn provides us with a formal definition of “computable
functions”, which is what “computers” solve. And, none of this
has anything to do with the physical characteristics or internal
workings of the computer, only with its ability to physically
implement computable functions.

3.2. Limiting the Scope of the Formal

Definition in Practice in Computer Science
If we consider the definition above for “computer”, a problem
arises: this definition can be applied to almost any object in the
universe. Consider for a moment the fact that the movement
of objects in the world can be described by computable
functions, e.g., the parabolic curve of a thrown ball. As such,
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the definition that rests on the formal conception of algorithms
and decidability, when applied directly, tell us that all objects in
the world are computers, since they are physically implementing
computable functions. Put another way, if you wanted to
calculate a parabolic curve you could throw a ball and simply
track its movement, so in some sense, you could use the ball to
solve your mathematical problem, and it is thus a “computer”
solving your parabolic curve. Though this is formally correct
it is conceptually unsatisfying. What use is it for us to define
“computer” in this manner if it trivially renders most of the
universe and everything within it a computer?

In this instance, the use of the word becomes critical. Despite
the formal definitions, computer scientists rarely refer to thrown
balls as “computers”. Is that because computer scientists only
use the word to refer to electronic devices like our laptops
and smartphones? No, there are clear examples of references
in computer science to computers that are very different from
the typical digital computers we’re all familiar with, including
analog computers, quantum computers, stochastic computers,
DNA computers, and neuromorphic computers (Gaines, 1967;
Rubel, 1993; Adleman, 1994, 1998; Beaver, 1995; Paun et al.,
2005; Van Noort and Landweber, 2005; Elbaz et al., 2010; Ladd
et al., 2010; Furber, 2016; Schuman et al., 2017; Tsividis, 2018;
van de Burgt et al., 2018; Shastri et al., 2021). None of these
forms of computer operate like a laptop or smartphone; they
can use analog signals, stochastic operations, parallel calculations,
biological substrates, etc. And yet, the usage of the word
“computer” in such articles does not appear to be intended as
a metaphor. So, what then renders something a “computer” in
computer science, according to the way the word is used?

What we can see in research papers is that computer scientists
generally use the word “computer” to refer to any physical
machinery that can, in theory, implement any computable
function (per the definition above), i.e., a physical system that in
principle can serve as a “universal” computation device (Beaver,
1995; Van Noort and Landweber, 2005; Ladd et al., 2010). For
example, when Adleman (1994) closed his paper on DNA-based
computation he said, “One can imagine the eventual emergence
of a general purpose computer consisting of nothing more than
a single macromolecule conjugated to ribosome like collection of
enzymes that act on it”. Here, the key point is the words “general
purpose”. It is the potential for general purpose computation with
DNA that, we argue, makes computer scientists inclined to talk
about “DNA computers”, despite the fact that a macromolecule
conjugated to a ribsome like collection of enzymes would
engage in calculation in a very different manner than a modern
silicon chip.

Note also our use of the phrase “in theory”, above. Many
of the systems that computer scientists refer to as “computers”
cannot in practice implement any computable function due
to size, memory, time, noise, and energy limitations. So, for
example, quantum computers are not yet capable of computing
any computable function, but in theory they could, and so we
refer to them as “computers”. And, of course, a laptop is a
“computer” because it can be shown that the operations it utilizes
could theoretically implement any computable function, though
in reality some functions would take too long or require toomuch

memory (e.g., calculating the number of prime numbers less than

1010
1010

). In contrast, a thrown ball is limited to implementing
only those functions that describe its movement through space.
Thus, when computer scientists use the word “computer”, they
generally use it to refer only to physical machinery that could, in
theory, compute any computable function, which is by no means
applicable tomost things (Adleman, 1998; Elbaz et al., 2010; Ladd
et al., 2010; van de Burgt et al., 2018).

3.3. Applying the Definition From Computer

Science to Brains
Given the use-based definition above (physical machinery that
can implement any computable function in theory), are brains
computers? The answer for most scientists should be yes. First,
though there is disagreement in philosophy as to whether brains
are purely physical systems and whether their operations rely
solely on physical machinery, the perspective of physicalism is
widely accepted by brain scientists and we are not aware of any
brain scientists who doubt that the operations of the brain are
fundamentally physical. Second, with the aid of a pencil and
paper, a human brain can in theory implement any program that
one could implement with modern digital computers. The only
limits would be time and energy, which as noted, also apply to
other computers, like laptops. Even without pencil and paper, the
only real limit to a person implementing any computer program
is again the limits on their memory, time, and energy, not their
general capabilities, per se. Conceptually, we can perform all of
the same operations specified by the languages that we program
our laptops with. Third, and perhaps more importantly, if one
is concerned with practical implications for the brain sciences,
real neural circuits are in theory, likely capable of implementing
all of the functions that artificial neural networks (ANNs) can, if
not more. And, computer scientists have shown that ANNs can
implement any computable function (Hornik, 1991; Siegelmann
and Sontag, 1995). In other words, as long as real brains have the
same or greater capabilities than ANNs (again ignoring memory,
time, and energy constraints), then they are surely capable of
implementing any computable function.

Therefore, according to the use-based definition of
“computer” in computer science, brains are literally computers.
There is no metaphor. The claim here is not that brains work
anything like our laptops and smartphones. But the use-based
definition of “computer” in computer science isn’t “something
that works like a laptop or smartphone”—DNA and quantum
bits are very different from silicon chips. The definition of
“computer” is physical machinery that, in theory, can implement
any computable function, and brains meet this definition at
least as well as many of the other devices that we all refer to as
“computers” on a regular basis with no complaint and no hint
of a metaphor.

We should address here a few of the common misconceptions
that lead people to object to this line of logic. First, one of
the most common points of confusion is that some people
think that the formal definition based on the Church-Turing
thesis implies that to be a computer an object’s internal
machinery itself must operate in a similar manner to Turing
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machines (Fodor, 1981; Copeland, 2020). But, this is simply
a misunderstanding, as many types of computers (e.g., analog
computers or neuromorphic computers) do not operate like a
Turing machine. This misunderstanding may derive from the
fact that modern digital computers bear some resemblance to the
Turing machine formalism. But importantly, Turing machines
are just mathematical constructs—they are sets of rules, not
physical machines. Your laptop computer is no more a Turing
machine than it is a lambda calculus. Nothing about the way
computer scientists use the word “computer” demands that
the object work like a Turing machine—the object in question
must simply be capable of implementing the same functions as
Turing machines.

Second, another reasonably common claim is that brains
can’t be computers because they can solve problems that are
not decideable (Penrose, 1989; Siegelmann, 1995). We note
that no one has ever convincingly demonstrated that brains
can actually do this. However, importantly, this claim speaks
to the question of whether brains are literally computers, not
whether computers are a good metaphor for brains. As such,
though it is an interesting objection that warrants consideration,
it does not change our fundamental point, which is that there
is no metaphor in play when we apply the definition of the
word “computer” from computer science to brains. Finally,
another source of confusion can enter into the discussion
when simulations are discussed. We can, of course, simulate
aspects of how neural circuits work using digital computers.
And so, it has sometimes been believed that the claim that
brains are computers derives from our ability to simulate them,
and in turn, it has been (rightly) pointed out that the ability
to simulate something with a computer does not make that
thing a computer (Brette, 2018), e.g., we can simulate a ball
bouncing but that does not make a ball a computer. But, as
outlined above, it is not our ability to simulate neural circuits
that makes brains computers, it is their theoretical ability to
implement any computable function. Hence, the question of
simulation is actually irrelevant to the question of whether brains
are computers or not. The only relevant question is: Can brains
implement any computable function in theory? And we argue
that the answer is certainly “yes”.

4. THE USE OF THE WORD “COMPUTER”

OUTSIDE OF COMPUTER SCIENCE

All of this may be a bit surprising to many readers, because the
definitions of “computer” given above is not how the average
person, nor the average academic outside of computer science,
understands and uses this word. As such, we may ask for an
alternative definition of “computer”, one that aligns better with
the usage of people outside of computer science.

When most people speak of a “computer” today, they use the
word to refer to human-made electronic devices that can perform
complex mathematical calculations, display multimedia content,
and communicate with other similar devices. According to this
usage, a computer can be defined as something like “an electronic
appliance that we can use for calculation, communication, and

entertainment”. Obviously, this definition does not apply to
brains, nor would it serve as a particularly good metaphor either.

Within academia, there are also people in the brain sciences
and philosophy who are more knowledgeable about computers
(and brains) but who are still only partially familiar with the ideas
from computer science presented above. For these people, the
usage of the word “computer” often still centers on the human-
made electronic devices we are all familiar with, but it includes
some more details of how those devices work. Specifically, the
vast majority of modern digital computers are extensions of the
“Von Neumann architecture”, first developed by the polymath
JohnVonNeumann in the 1940’s (VonNeumann, 1993). Though
there have been changes to Von Neumann’s original design
(Godfrey and Hendry, 1993), some of his ideas are still central
to modern digital computers. These include the use of a central
processing unit (CPU) for sequential operations of arithmetic
logic, a control unit in the CPU that stores the sequence of
instructions for the CPU to perform, a random access memory
(RAM) module for storing intermediate calculations, and an
external memory (or “hard drive”) for long-term storage of
information. It’s interesting to note that Von Neumann’s designs
are reminiscent of how we define Turing machines, with an
internal state, and a step-by-step processing of input symbols
to produce output. Given this apparent similarity, many writers
use the word “computer” to mean something like “human-made
machines that have the qualities of Von Neumann architecture
machines, and which resemble aspects of Turing machines”
(Cisek, 1999; Epstein, 2016; Cobb, 2020). Hence, one can find
articles where people refer to computers and computation as
being necessarily sequential, or discrete, or restricted to passive
processing of a stream of inputs using a step-by-step program
(Van Gelder, 1998; Cisek, 1999; Brette, 2018, 2019; Cobb, 2020).
For example, Cisek (1999) notes the importance of control for
brains and animals, which he argues is ignored by the computer
metaphor for the brain, because it instead presupposes that
“...perception is like input, action is like output, and all the
things in-between are like the information processing performed
by computers.” His point here is that brains are not simply
taking inputs and producing outputs based on some internal state
(akin to the formalism of Turing machines), but rather, they are
constantly engaged in adaptive interactions for controlling the
body and the world in order to achieve specific ends. However,
control is something that people in computer science would
happily say computers can do (Arnǎutu andNeittaanmäki, 2003).
Thus, Cisek (1999)’s concern is less about “computers” as they are
defined in computer science, andmore about “computers” as they
are defined by those outside of computer science.

With the definition from outside of computer science in
hand, are brains computers? Most certainly not. Brains do
not use sequential processing—quite the opposite they use
massively parallel processing (Rumelhart et al., 1988). Brains
do not use discrete symbols stored in memory registers—they
operate on high-dimensional, distributed representations stored
via complex and incompletely understood biophysical dynamics
(Jazayeri and Ostojic, 2021). And, brains do not passively process
inputs to generate outputs using a step-by-step program—they
control an embodied, active agent that is continuously interacting
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with and modulating the very systems that generate the sensory
data they receive in order to achieve certain goals (Cisek, 1999;
Brette, 2019). Thus, with the definition from outside of computer
science we can say not only that brains are not computers, we
can also say that computers are poor metaphors for brains, since
the manner in which they operate is radically different from how
brains operate.

There are some complications to this that should be noted.
First, brains are capable of some forms of more traditional tasks
that our digital computers are good at, i.e., various forms of
discrete, sequential processing (Fodor, 1981; Marcus, 2015). For
example, people can do long-division, symbolic logic, list sorting,
etc. So, we might say that computers (according to the definition
from outside of computer science) can serve as reasonable
metaphors for some types of human cognition.Moreover, modern
digital computers are rapidly evolving to incorporate more
parallel, distributed, dynamic operations (Shukur et al., 2020),
and some engineers are actively trying to explicitly mimic the
operations of brains using “neuromorphic” chips (Furber, 2016;
Schuman et al., 2017; van de Burgt et al., 2018; Shastri et al.,
2021). These more modern forms of human-made computers
present some complications for the use-based definition of
“computer” from outside of computer science. Nonetheless,
if we are committed to the concept of use-based meaning,
then we can say that when some authors dismiss the brain-
computer metaphor (Carello et al., 1984; Cisek, 1999; Brette,
2018) they are using the word “computer” to mean something
more like traditional, Von Neumann architecture machines,
not neuromorphic chips, etc. And, as noted, such authors
are correct, brains are not very much like these traditional
digital computers.

5. DISCUSSION

Tying our two different threads together, we can conclude
that the question of whether brains are computers (or like
computers) is really a matter of semantics: it depends on
which definition you are using. If you adopt the definition of
“computer” based on how computer scientists use the word
(to refer to physical machinery that can theoretically engage in
any decidable computation), then brains are literally computers.
Alternatively, if we adopt the definition of “computer” based
on the usage from outside of computer science (to refer to
devices that sequentially and discretely process inputs in a passive
manner), then brains are not computers, and at best, computers
serve as a weak metaphor for only a limited slice of human
cognition. The message that we are providing here to the brain
sciences community is, we hope, very clear: brains are either
literally computers, or really notmuch like computers, depending
on the definition we employ. Thus, it is ultimately a matter
of semantics, and arguably, debates about the “brain-computer
metaphor” are not productive. We can simply stop engaging
in them.

It is worth noting that our argument here rests on an
important stance vis-à-vis the philosophy of science. Specifically,
we are assuming that scientists can and do use words and

concepts in a literal manner. This is in contrast to a potential
perspective that views all concepts as metaphors (Lakoff and
Johnson, 1980). Putting aside the larger philosophical debate that
would be possible on this matter, we wish here simply to clarify
and recognize that our perspective very much so rests on the
idea that there are non-metaphorical uses of words and concepts
in science.

The natural question that emerges from the realization that
the brain-computer metaphor debate is actually just a semantic
disagreement is to ask whether it matters which definition
of “computer” we adopt? Does it affect the brain sciences in
any meaningful way to adopt one definition or the other? In
particular, should the field be concerned with the definition from
computer science at all, given that it is not terribly intuitive and
not what most people in the brain sciences think of when they
hear the word “computer”?

We would argue that the definition we adopt is very
important, and both definitions should be considered. The usage
of “computer” in computer science can actually be very useful
for the brain sciences in some circumstances. The reason is
that when one realizes that brains are literally computers (in
the computer science sense of the word) then much of the
theory about computation from computer science is applicable to
brains. This connection is what opens up space in computational
neuroscience to explore the brain using conceptual tools from
computer science and AI, which has produced both important
insights in neuroscience (Richards et al., 2019) and advances in
AI (Hassabis et al., 2017). Indeed, asking the question, “What
sort of computer is the brain?”, is arguably the underpinning of
modern neural networks (Rumelhart et al., 1988), which have
been very useful for the brain sciences. Asking this question is
how we arrive at core concepts in computational neuroscience
such as parallel processing, content addressable memory, and
spike-based computation. Similarly, consider the question of
randomness in computation. Thanks to our understanding that
the brain is a computer we can apply concepts from computer
science, such as convergence and constraint satisfaction, to
better understand the normative importance of stochastic vesicle
release in neurons (Maass and Zador, 1999; Habenschuss et al.,
2013). Similarly, concepts from compression theory help us to
understand the nature of representations in the brain (Olshausen
and Field, 1996) and dynamic programming concepts used in
reinforcement learning help us to understand memory replay
(Mattar and Daw, 2018). More broadly, the inter-disciplinary
intersection between AI and the brain sciences depends on the
computer science definition of the word “computer”, and so,
if we reject this definition outright we risk shutting the door
on a very active field of research that has proven very fruitful
for both the brain sciences and AI. At the same time, it is
worth being vigilant and clear that brains do not work like our
laptops and smartphones, and these devices serve as a poor
metaphor for brains. So, depending on the audience and the
purpose of the work, sometimes we should adopt the definition
from outside of computer science, as long as we are clear on
what that definition of “computer” actually implies. There is
no single correct definition for “computer”—but we all must
be clear on what we mean when we write and speak. On this
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point, the vast majority of researchers across all disciplines must
surely agree.
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Ordinary computing machines prohibit self-reference because it leads to logical

inconsistencies and undecidability. In contrast, the human mind can understand

self-referential statements without necessitating physically impossible brain states. Why

can the brain make sense of self-reference? Here, we address this question by

defining the Strange Loop Model, which features causal feedback between two brain

modules, and circumvents the paradoxes of self-reference and negation by unfolding the

inconsistency in time. We also argue that the metastable dynamics of the brain inhibit

and terminate unhalting inferences. Finally, we show that the representation of logical

inconsistencies in the Strange Loop Model leads to causal incongruence between brain

subsystems in Integrated Information Theory.

Keywords: self-reference, cognition, consciousness, computation, causal structure, integrated information theory

1. INTRODUCTION

Are brains like computers? Can technological metaphors provide satisfactory explanations for the
complexity of human brains (and brains in general)? Before electronic computers became a reality,
some versions of the previous questions had always been there. In the seventeenth century, the
development of mechanical clocks and later on mechanical automata led to questions with far-
reaching philosophical implications, such as the possibility of creating a mechanical human and
an artificial mind (by René Descartes and others Wood, 2002). Later, brains and machines were
compared to electric batteries (since it became clear that electricity was involved in brain processes),
and early works by visionaries such as Alfred Smee represented brains and the activity of thinking in
terms of networks of connected batteries (Smee, 1850). Other network-level metaphors of the brain
such as telegraphs and telephone webs replaced the old ones, until the metaphor of the computer
prevailed in the 1950s (Cobb, 2020).

The computer was apparently the right metaphor: It could store large amounts of data,
manipulate them and perform complex input-output tasks that involved information processing.
Additionally, the new wave of computing machines provided an appropriate technological context
to simulate logical elements similar to those present in nervous systems. Theoretical developments
within mathematical biology by McCulloch and Pitts (1943) revealed one first major result: The
units of cognition—neurons—could be described with a formal framework. Formal neurons were
described in terms of threshold units, largely inspired by the state-of-the-art knowledge of real
neurons (Rashevsky, 1960). Over the last decades, major quantitative advances have been obtained
by combining neuron-inspiredmodels withmultilayer architecture (LeCun et al., 2015) and physics
of neuromorphic computing (Indiveri and Liu, 2015; Markovi et al., 2020). These developments
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are largely grounded in early theories (Rumelhart et al., 1986;
Fukushima, 1988) with novel hardware improvements and a
massive use of training data.

Despite the obvious success of computing and information
technology, we are still far from the dream of building or
simulating a truly intelligent system. To begin with, computers
and their abstract representation in terms of Turing machines are
highly modular, programmable and sequential (Arbib, 2012) (see
Figure 1). Instead, neural systems are the result of evolutionary
tinkering and selection that favored exploiting redundancy and
parallelism (Allman, 1999; Martinez and Sprecher, 2020). That
does not prohibit the existence of interesting links that help make
sense of brain in terms of Turing machines: Many functional
responses of brains are essentially sequential in nature, despite
the highly parallel integration that feeds serial (and slow)
cognitive task production (Zylberberg et al., 2011). Yet, the
most remarkable departure of brains from computers is probably
the presence of re-entrant circuits, i.e., the recursive exchange
of signals across multiple, parallel and reciprocal connections

FIGURE 1 | Computer vs. brain architecture. A topological analysis of (A) computer chips and (B) brains (visual cortex organization) reveals fundamental

dissimilarities. These include the strict modular organization of the former contrasted with the highly parallel, integrated architecture of the latter. The circuits

responsible for higher-order cognitive brain tasks display re-entrant feedback loops that are absent on the in-silico counterparts (compare with Figure 2). Image

adapted from Jonas and Kording (2017).

(Edelman, 1992). Indeed, some authors have posited that closed
feedback loops are crucial for conscious experience (Hofstadter,
1979; Oizumi et al., 2014). Are closed feedback loops the key for
a formal differentiation between brains and computers? Closed
feedback loops can allow for self-reference (Grim, 1993), and the
human brain is capable of self-referential inference. So this begs
the question: Why can the brain make sense of self-reference,
whereas a computer can’t?

We address this question by considering paradoxes of self-
reference and negation (Prokopenko et al., 2019). Studies in
logic, linguistics, and general philosophy for many centuries have
illustrated that when statements negatively refer to their own
features, contradictions follow in short order. This is made clear
from sentences such as:

The sentence presently being uttered is false. (1)

Taking this sentence at its word—supposing it to be true—we
find out it is false. However, taking it to be false, we are forced to
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conclude that it is true. When we assign truth values to sentences,
we classically assume that truth and falsity are mutually exclusive
and exhaustive, yet self-referential sentences appear to have over-
determined truth values (Priest, 2006, pp. 14–15): We are obliged
to evaluate them simultaneously as true and false, a contradiction.
This may compel the logician to use formal languages that block
such self-referential constructions to preserve their consistency
at the cost of limiting their expressiveness. Such a pursuit of
consistency is perhaps well-motivated in purely formal settings
such as mathematics, but self-reference is readily available within
natural language, and human minds are capable of formulating
and thinking about self-referential paradoxes and becoming
aware of their inconsistency.

Computers are incapable of resolving a paradox such as
sentence 1—they get caught in endless loops—, whereas the
brain can “reason” about this paradox. Let us examine the
latter statement by bringing forward some basic facts about the
workings of the brain. In the ordinary course of experience, our
state of mind may possess many subtle and composite features,
but we only ever occupy one such mental state at a time: There
are no “superpositions” of mental states. Furthermore, if we
take mental states to be somehow derivative of brain states (by
whatever account of the emergence of consciousness one prefers),
the deterministic or unitary evolution of physical systems given
by our best physical theories suggests that our brains only
ever occupy a single physical state.1 Whatever the mechanism
responsible for the emergence of mental states from brain states
is, surely the brain state that grounds the awareness of some
fact is different from the brain state that grounds the awareness
of its negation. Thus, occupying a mental state corresponding
to awareness of a contradiction would seem to be a physical
impossibility par excellence insofar as it would necessitate one’s
brain to be in two distinct states at once. Yet, upon interpreting
the sentence 1, the reader comes to think about a self-referential
statement and understand its contradictory nature, and so the
cognitive processing of self-referential statements is clearly not a
physical impossibility (nor do they get stuck in an unhalting cycle
of thoughts one might expect of a machine tasked with deciding
the truth value of such a sentence). How is this possible?

In this paper, we address this question by constructing a high-
level model of the brain, termed a Strange Loop Model (Section
2), from which we conclude that:

1. The brain makes sense of self-reference by spreading out
inconsistent truth values in time, thereby avoiding physically
impossible states (Section 3.1).

2. The representation of logical inconsistencies in the brain
leads to causal incongruence between brain subsystems
(Section 3.3).

3. The metastable dynamics of the brain and its interactions with
external stimuli inhibit and terminate unhalting inferences
(Section 3.4).

1Since the brain is fundamentally a quantum system, this physical state could be in

a superposition, but as Tegmark (2000) has shown, even neurons are sufficiently

macroscopic systems that decoherence would likely prevent quantum effects from

being relevant.

Statement 1 says that the brain represents and processes self-
referential sentences by treating their truth values as dynamical
quantities. It follows that the resulting contradictions are
unfolded in time, and thus do not require physically impossible
brain states. Statement 2 describes how this “unfolding” works:
Different parts of the brain yield disagreeing predictions about
the brain’s future states, and this disagreement is made apparent
by analyzing the causal feedback between these parts. This
disagreement is known in Integrated Information Theory (IIT)
as incongruence (Albantakis and Tononi, 2019). This causal
feedback is not encountered in Turing machines because they are
feed-forward systems. Statement 3 claims that the brain does not
succumb to halting problems when processing statements whose
truth values are undecidable, because the metastable nature of
brain dynamics precludes falling into lock-in states (Tognoli and
Kelso, 2014).

This paper is structured as follows. We present the Strange
Loop Model (SLM) of the brain (Section 2), and we use it
to represent self-referential inferences in the brain (Section 3).
Finally we conclude and discuss further directions (Section 4).

2. THE STRANGE LOOP MODEL

Here we present a high-level model of the brain by describing
it as a discrete dynamical system (Section 2.1), partitioning it
into functionally distinct modules (Section 2.2), and investigating
their causal structure (Section 2.3). The name originates from
Hofstadter (1979, 2007): Strange loops arise when, by moving
only upwards (or downwards) in a hierarchy, one encounters
oneself at the same place where one started.

2.1. Discrete Dynamics of Brain Modules
Here we describe the brain as a discrete dynamical network of
connectomic units (Sporns et al., 2005). We consider that n such
units (indexed i = 1, . . . , n), evolving in discrete time t ∈ Z,
and denote the state of unit i at time t by xti ∈ 6i, where 6i is
a finite state space. The state of the “brain” in the SLM at time t
is denoted

Bt = (xt1, . . . , x
t
n) ∈ 61 × . . .×6n = :6.

The dynamics of such a system are given by a transition function
T :6 → 6 so that Bt+1 = T (Bt) and we denote ith component
of T (Bt) by Ti(B

t) : = xt+1
i .

We consider a probability distribution p on6. For any z ∈ 6i,
the conditional probability (also denoted p) is defined as

p(z|Bt) =

{

1 if z = Ti(B
t)

0 else.

We suppose that all units are conditionally independent at any
given time t ∈ Z, so they satisfy:

p(Bt+1|Bt) =

n
∏

i=1

p(xt+1
i |Bt). (2)

Additionally, we suppose that the future state of the brain
depends only on the immediately preceding state (Markovianity),
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so that if t1 < t2 < · · · < T, the joint probability distribution
factors as

p(Bt1 ,Bt2 , . . . ,BT) = p(Bt1 )

T−1
∏

n=1

p(Btn+1 |Btn ). (3)

With this setup one may use the intervention calculus from
probabilistic causal modeling (e.g., as elaborated by Pearl, 2009)
to understand how connectomic units causally influence each
other. Following the exposition in Krohn and Ostwald (2017),
given any two subsystems X,Y ⊆ B, one defines the effect
probability pe, the joint cause-effect probability pce, and the cause
probability pc to be:

pe(Y
t|Xt−1) : = p(Y t|Xt−1)

pce(Y
t−1,Xt) : = q(Y t−1)p(Xt|Y t−1) (4)

pc(Y
t−1|Xt) : =

pce(Y
t−1,Xt)

∑

Y t−1∈6 pce(Y t−1,Xt)

where q(Y t−1) is the uniform distribution over the state space
of Y . The distribution pe(Y

t|Xt−1) indicates the extent to which
the current state of Y is an effect caused the previous state of X.
Likewise, pc(Y

t−1|Xt) indicates the extent to which the previous
state of Y was a cause of the current state of X.

2.2. Brain Process Modules
The brain carries out a wide array of distinct, though integrated
processes. While it is difficult to list and classify all of them, they
may be roughly partitioned into three general interconnected
categories: (i) pre-conscious processes, (ii) conscious processes,
and (iii) post-conscious processes.

Pre-conscious processes are those which occur independent
of conscious experience. The activity of the autonomic nervous
system is paradigmatic of this category. Though extremely
important for sustaining life, these functions are somewhat
irrelevant to our considerations and shall hence be ignored in
what follows.

Conscious processes are those which directly give rise to
conscious experience; that is, they govern the dynamics of the
neural correlates of consciousness, and include those responsible
for perception, the categorical discrimination thereof, awareness,
and short-term memory recall, among other things. They are
not to be conflated with the first-person subjective conscious
experiences to which these correlates are thought to somehow
give rise. At the physiological level, all we are concerned with are
the neural correlates of conscious experience and awareness; we
are agnostic as to how the mental states are determined by these
correlates, and therefore do not commit to any view about the
origins of consciousness as such.

Post-conscious processes are those which are not the primary
basis for conscious experience, but still depend on the correlates
of consciousness such as language processing and inference-
making. This class of brain functions is roughly equivalent to
cognitive processes2.

2It is worth mentioning that there may be some cognitive processes which

may be independent of conscious experience. We consider such processes to be

pre-consicous ones, and thus irrelevant to our analysis.

Each of these classes of brain processes has a reasonably well-
defined collection of physiological regions in the brain which
carry them out. Hence it is possible for us to conceptually
partition the brain into three physical “modules.” The important
feature of these modules is that they are deeply interconnected.
While it is hard to cleanly demarcate their physiological
boundaries, what is important for our purposes is not how to
carve up the brain into these modules, but the causal relations
between them.

In the SLM (cf. Section 2.1), we shall denote the
“consciousness” module by XCon ⊆ B and the individual
connectomic units that compose it by {xi}. Likewise, we shall
denote the “cognition”module byYCog ⊆ B and the connectomic
units that compose it by {yi}. The region of the brain that is
relevant for our purposes is the joint system XCon ∪ YCog.

2.3. Causal Feedback
We now argue that the brain modules XCon and YCog mutually
exhibit causal feedback.

To see that XCon causally influences YCog, note that cognitive
tasks are like computational tasks (broadly construed) which
take as their inputs the correlates of consciousness. For instance,
learning is a cognitive process that is informed by sensory stimuli.
Likewise, language processing is a cognitive process that begins
with a more abstract input of which the cognizing subject is
usually consciously aware. More generally, changing what a
person perceives or is conscious of affects how they make sense
of their perceptions and what sorts of inferences they will draw.

What does the causal relation from XCon to YCog look like? It
is known that a single neuron may participate in bringing about
many sorts of perceptions and experiences, and many different
neuronal states may correspond to one and the same perceptual
experience (as there is great degeneracy). Hence, one cannot
easily reduce a correlate of consciousness to an arrangement of
neurons. That is, the correlates of consciousness are not identical
to the state of XCon—they are only determined by XCon. More
specifically, the intrinsic network of causal influences withinXCon

determines these neural correlates (see Tononi and Edelman,
1998; Edelman, 2005; Park and Friston, 2013 for discussion).3

In order for cognition to take the correlates of consciousness as
inputs, the systemYCog must be connected to systemXCon in such
a way that the internal causal structure of XCon is “read off” of
its state and encoded directly into the states of the neurons of
YCog, which must encode features of the probability distributions
pe, pce, and pc of the subsystem XCon. Since we shall establish
that there are causal relations in both directions, to prevent
circularity, we suppose that YCog represents the intrinsic causal
structure of XCon as it appears when marginalized to XCon (i.e.,
ignoring correlations with YCog). Determining exactly how this
translation could be carried out would require a full account of
the emergence of conscious experience from the relevant causal
information which we do not have. However, one may view the

3While the dynamical evolution of the brain may be reduced to a description of

its individual neurons, and while its intrinsic causal structure is grounded in the

interactions of these neurons, the intrinsic causal structure is not robust against

small changes to the network architecture. It is in this way that neural correlates of

consciousness are not “reducible” to individual neurons.
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units of YCog as “simulating” the intrinsic causal structure of
XCon, and then carrying out an effective computing procedure
on this simulation—this simulation could be modeled with ideas
from hierarchical predictive processing which adopts a similar
organizational structuring of the brain (cf. Friston, 2005; Friston
and Kiebel, 2009; Clark, 2013). In summary, the causal relation
XCon → YCog is highly non-trivial.

What does the causal relation from YCog to XCon look like? On
its own, the system XCon gives rise to the moment-by-moment
passive perceptions present in the thinking subject’s conscious
experience. However, the content of conscious experience—at
least for humans—is not merely a passive stream of perception;
there is further underlying semantic content within these
perceptions of which we come to be aware by carrying out
cognitive tasks. While our perceptual apparatus may be capable
of carrying out discrimination tasks to categorize our perceptions
(e.g., such that we may become aware of the presence of “pain” or
“blue” and so on within a given experience), we also come to be
consciously aware of much richer structural and abstract features
as well. Deprived of all sensory input, themathematicianmay still
prove complex theorems structured by a sophisticated underlying
mathematical grammar and logic, but only if they are consciously
aware that they are doing so. To the extent that the thinking
subject may be conscious of the outcomes of their cognition—
which they certainly are in many cases—we see that there must
exist some non-trivial causal relation between YCog and XCon in
which the former causally influences the latter.

More specifically, acts of cognition may change the content
of conscious experience such that we may acquire understanding
of our perceptions, for instance by giving them grammatical
structure (over and above merely discriminating qualia), or by
carrying out introspection or higher inference-making. It is
through this process that one may go from a state of mind
of the form “it is the case that φ” to the state of mind
“I know that it is the case that φ.” Likewise, it is through
this process that one may go from the state of mind that
“it is the case that φ and φ → ψ” to the state of mind
“it is the case that ψ” (via inference by modus ponens). In
short, the outcomes of cognitive processes are re-integrated back
into the correlates of consciousness. This causal feedback via
simulation and re-integration between modules in illustrated in
Figure 2.

We have established that cognition causally influences the
content of conscious experience, and vice versa. This is not to
say, however, that cognition is itself “perceived.” In everyday
life, the content of our experience forms the basis of some
cognitive inference we may make and we become aware of
the outcome of this inference, but we never perceive the
inference itself. Indeed, even when one is proving mathematical
theorems, at most one is aware of what cognitive rules they
are applying when carrying out a deduction: they do not,
however, experience the application of these rules as such. This
illustrates that, while we argue that cognition causally influences
the course of conscious experience in a very strong way, it
is not itself directly responsible for conscious experience; the
neuronal basis for cognition is not itself populated with correlates
of consciousness, it merely interacts with these correlates in

a reentrant manner. In this sense, we may faithfully view the
cognitive module YCog as implementing feed-forward computing
procedures, e.g., through a neural network that is reintegrated
withXCon (such that inference making in its entirety is not merely
a computing procedure).

Formally, since both XCon and YCog causally influence one
another in a highly non-trivial manner, we expect that

p(Xt+1
Con|Y

t
Cog) 6= p(Xt+1

Con|X
t
Con) (5)

p(Y t+1
Cog |Y

t
Cog) 6= p(Y t+1

Cog |X
t
Con). (6)

Thus, the simulation of XCon encoded in YCog will generally not
be a faithful predictor of the future behavior of XCon, since it
ignores its own causal influence on this behavior. This is the
reason we suppose that YCog simulates the causal structure of
XCon as marginalized to XCon. In Box 1 we provide a concrete
realization of the SLM presented above model, as well as its
application to self-reference.

3. SELF-REFERENCE IN THE STRANGE

LOOP MODEL

Here we use the SLM to investigate how to make sense of self-
reference by unfolding the inconsistency in time (Section 3.1)
and provide some clarifying remarks (Section 3.2). Then we
show how logical inconsistency is transformed to incongruence
(Section 3.3), and argue that the brain does not get caught in
endless loops (Section 3.4).

3.1. Unfolding Self-Reference in Time
We now analyze how the intrinsic thought process of an agent
carrying out a self-referential deduction as given by the Inclosure
Schema (Box 2) would appear in the dynamical behavior of the
joint system XCon ∪ YCog. In formal logic, a deduction in a
given formal system is a sequence of grammatically well-formed
strings of symbols such that each string is either an instance of
an assumed axiom or premise, or is the result of the application
of a permitted rule of inference to previous lines in the sequence.
If one views a deduction as a dynamical time-dependent thought
process in which each line in the deduction corresponds to some
fact about which the thinking subject is aware, the sequential
ordering of the lines of the deduction may be interpreted as the
time ordering of a series of mental states (and thus, a constraint
of the compatible dynamics of the underlying brain states).

Given some statement φ, to say that an agent is aware of φ
at time t is to say that the physical state of Xt

Con grounds the
mental state of being aware of φ. One can actively perceive φ
by occupying such a mental state, or one can remember having
perceived φ at a previous time. Thus, there is an internal time
index τ ≤ t that tracks the time at which φ was perceived that
may differ from the time index of the state of XCon. If we denote
that class of all brain states that give rise to this mental state by
[φ], and index the time at which φ is thought to be (or have
been) perceived by [φτ ], we thus have Xt

Con ∈ [φt] if the thinking
subject is actively thinking about φ, and Xt

Con ∈ [φτ ] for τ < t if
they are recalling having thought about φ previously.
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FIGURE 2 | The causal relations XCon → YCog needed to simulate perceptions for inference-making, and YCog → XCon manifest in the awareness of the outcome of

cognitive processing.

BOX 1 | A concrete realization of the Strange Loop Model

To instantiate the SLM, suppose first that a mental state amounts to the awareness of some sentence in a formal language L. Such sentences carry an internal time

index τ : at physical time t, one may occupy a mental state of remembering some sentence φ at an earlier time (i.e., τ < t), they may anticipate being aware of φ

in the future (i.e., τ > t), or they may be aware of φ as a feature of the present experience (i.e., τ = t). We suppose that every pair (φ, τ ) is represented by a unit of

YCog. The mental state determined by the state of XCon is simulated by the elements of YCog via an injective map S :6X → {(φ, τ )|φ ∈ L, τ ∈ Z} where 6X is the state

space of XCon. That is, S takes the state of XCon to the unit of YCog that represents the corresponding mental state. The state of each unit y = (φ, τ ) ∈ YCog at time t is

given by yt = (at (y), st (y)) ∈ {0, 1} × {0, 1}, where at (y) = 1 if the thinking subject is consciously aware of y at time t, and it is 0 otherwise, and st (y) = 1 if the thinking

subject assigns truth to φ at time τ (i.e., if they think φ was/is/will be true at time τ ), and it is 0 otherwise. The state of YCog at time t is determined by:

yt = (at (y), st (y)) =

{

(1, 1) if y = S(X tCon)

(0, st−1(y)) if y 6= S(X tCon).

That is, to be aware of (φ, τ ) at time t is to think it to be true, and to think φ is false is to be aware of the truth of ¬φ. The state of YCog at time t+ 1 is determined by

the application of some inferential mechanism by YCog. If the thinking subject applies a rule of inference of the form {σ1, . . . , σk} ⊢ ψ , a
t (y) is updated so that one is

only presently aware of ψ , namely at+1(ψ , t+ 1) = 1, and at+1(φ, τ ) = 0 for φ 6= ψ and any τ . The transition rule for st is

st+1(ψ , t+ 1) =

k
∏

i=1

st (σi , t)

and st+1(φ, τ ) = st (φ, τ ) for all τ when φ is independent of ψ , and st+1(ξ , τ ) = st (ξ , τ ) for all τ 6= t + 1 and any ξ . Sentences containing ψ have their truth values

adjusted according with the change in the truth value of ψ , for example st+1(¬ψ , t+ 1) = 1− st+1(ψ , t+ 1) and st+1(φ ∧ ψ , t+ 1) = st+1(φ, t+ 1) · st+1(ψ , t+ 1) and

so on. We do not fully specify the transition rule for XCon, but we require that it be such that after such an inference, S(X t+1
Con ) = (ψ , t+ 1).

The self-referential paradox arises when one may assert that (at (φ, t1 ), s
t (φ, t1 )) = (at (¬φ, t2), s

t (¬φ, t2)) for t1 6= t2. But, as shown in Section 3.1, this scenario

is not challenging to understand; these are two different nodes of Y t
Cog, and there is no consistency requirement preventing this as a value assignment. Even if one

imposes consistency conditions at equal times, since these are unequal-time units, such conditions need not prohibit this behavior.

If φ and ψ are two formulas that are not logically equivalent
to one another, one might suppose that [φτ ] ∩ [ψτ ] = ∅. This
very general claim may be objected to in principle by noting, for
instance, that if φ and ψ are sufficiently complex, the thinking
subject may not always be immediately aware of their logical

(in)equivalence4. Nevertheless, it should be agreeable that there

4One might consider, for instance, the classic example due to (Descartes, 1993,

Meditation VI) of the chiliagon (a 1000-sided polygon). The thinking subject, it

may be argued, uses an identical mental representation to depict a polygon with
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BOX 2 | Diagonalization, self-reference and paradoxes

While self-reference and its paradoxical consequences arise in a wide range of settings, the construction of the self-referential statement leading toward contradiction

typically has a standard form, termed the Inclosure Schema; cf. Priest, 2002, Chapter 9.4). At a higher level of abstraction, this may be viewed as an instance of

Lawvere’s Theorem (Yanofsky, 2003; Lawvere, 2006; Roberts, 2021).

In plain language, the relevant actresses of the Inclosure Schema are the following. A predicate is a property that elements of a set may possess, and we

identify the predicate with its extension, i.e., with the set of elements that instantiate it. For example, the predicate “odd” of the set of natural numbers is the set

{1, 3, 5, 7, 9, . . .}. If a set x has property P, we write P(x), meaning that P(x) is true, i.e., x is in the extension of P. We will consider the collection of all sets V, and a

function 1 :V → V.

More formally, let ϕ and ψ denote two predicates that may apply to arbitrary sets (where “set” is meant in the sense of natural language, which is more expressive

than formal set theory at the cost of being inconsistent), and let 1 be a function on sets. Then self-reference occurs when:

1. Eϕ = {y|ϕ(y)} is a set, and ψ (Eϕ )

2. If x ⊆ Eϕ such that ψ (x), then 1(x) /∈ x and 1(x) ∈ Eϕ

Statement 1 says that the extension of the predicate ϕ is a set and is called Eϕ , and that Eϕ has property ψ . Statement 2 defines the features of 1, namely 1

takes sets with property ψ whose elements all have property ϕ to sets whose elements have property ϕ but are not contained in the original set. The contradiction

associated with self-reference appears when one applies condition 2 to the maximal subset, namely, Eϕ itself, from which it follows that 1(Eϕ ) ∈ Eϕ and 1(Eϕ ) /∈ Eϕ ;

a contradiction.

Let us see this argument in action by considering Russell’s paradox. In naïve set theory, the extension of any predicate is a set. Russell’s paradox is as follows:

suppose X is the set of all sets that do not contain themselves. Then if X ∈ X, by definition it follows that X /∈ X. However, if X /∈ X, then since X is the set of all

sets that do not contain themselves, we find X ∈ X; a contradiction. On the Inclosure Schema this paradox may be recast as follows. First, ψ is the predicate “is a

set,” ϕ is the predicate “does not contain itself,” and 1 is defined by 1(x) = {y ∈ x|y /∈ y}, i.e., it’s image is the set of all sets in x that do not contain themselves.

Since ψ is a predicate in naïve set theory, 1 is true and asserts that Eϕ exists and is the notorious “set of all sets that do not contain themselves.” Then if x is a set,

clearly 1(x) ∈ Eϕ . Likewise, if 1(x) ∈ 1(x), then by definition of 1, 1(x) /∈ 1(x) and so we must conclude 1(x) /∈ x. Thus 2 is also satisfied. But then setting x = Eϕ ,

this implies simultaneously that 1(Eϕ ) ∈ Eϕ and 1(Eϕ ) /∈ Eϕ ; a contradiction. This contradiction historically called for the reformulation set theory and was one of the

many factors leading to modern-day ZF axiomatic set theory. All other famous self-reference paradoxes may be articulated using this Inclosure Schema.

are no brain states that are simultaneously neural correlates of
the awareness of φ and also neural correlates of the awareness of
¬φ. This weaker hypothesis is all we shall require. Then, if the
thinking agent carries out a deductive inference whose sequential
lines are denoted {φn}, this corresponds to their brain undergoing
a dynamical evolution of the form:

Xt
Con ∈ [φ

τ (t)
0 ] → Xt+1

Con ∈ [φ
τ (t+1)
1 ] → Xt+2

Con ∈ [φ
τ (t+2)
2 ]

→ · · · → Xt+n
Con ∈ [φτ (t+n)

n ] (7)

where τ :Z → Z satisfies τ (t) ≤ t. While the individual lines
of a deduction correspond to mental states (and thus restricted
classes of brain states), the axioms and rules of inference from
which subsequent lines are produced do not reflect processes of
which one is consciously aware during such a thought process.
Rather, they reflect the cognitive rules that the thinking agent’s
brain may apply to the content of their experience in order
to bring about their subsequent mental states. In this way, the
axioms and rules of inference that enable one to formalize a
given deduction correspond in the underlying thought process
to processes implementations of cognitive processes via YCog (see
Box 1 for a concrete realization thereof).

To illustrate this, let us consider a simple example. Suppose
one sees a green apple before them. This perception, and
the discrimination of various features of this perception are

1000 sides as one with only 999 sides. Such mental representations, then, would be

given the same class of corresponding brain states, even if it is a logically different

object. Hence, logical inequivalence is inadequate for individuating mental states

(or brain states).

grounded in neural correlates that reside physiologically in the
brain module XCon at the present time t. Suppose, subsequently
(say, at time t + 1), that one remembers from their past
experiences that essentially all green apples have a sour taste. (Of
course, the inductive formation of such a generalized belief from
past memories is non-trivial, but it nevertheless happens.) This
association, then, of sour flavor with green apples in general is
something about which the thinking subject becomes consciously
aware, and hence forms part of their conscious experience.
Therefore, it is likewise encoded in the neural correlates of
consciousness present in XCon at time t + 1. From these two
perceptions, the thinking subject may apply modus ponens to
conclude that the apple they saw at time t would likely have had
a sour taste were they to eat it. The general rule ofmodus ponens,
however, is not something of which one has direct perception
when it is being implemented; making such inferences is a
higher cognitive process. The implementation of modus ponens,
therefore, is a process carried out by the brain module YCog.
Importantly, once this inference has been carried out, the subject
becomes aware of its outcome. Namely, at a subsequent time
(say, t + 2), they become consciously aware that, had they eaten
the apple, it would likely have tasted sour. This is the general
manner in which deduction may be realized as thought processes
implemented within our brain model.

We now apply this perspective to the linguistic processing of
self-referential statements via the Inclosure Schema (see Box 2).
The idea is to distinguish between the abstract logical results
and the thought processes obtained when a thinking subject
confronts an instance of self-reference and thinks about it over a
finite period of time. Logically speaking, the contradiction arising
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from a diagonalization argument is absolute; we do not contest
this. However, when we infer this contradiction—i.e., when the
dynamical behavior of a subject’s brain implements the thought
process that yields this contradiction—using diagonalization, we
do so in two temporally separate parts; first, we prove that1(x) /∈
x and conclude that 1(Eϕ) /∈ Eϕ . Then, at a later time, we
conclude that 1(Eϕ) ∈ Eϕ . The contradiction arises when we
remember at a third time that we had proven both of these two
facts separately.

Let us look at Tarski’s paradox to see this play out concretely,
following the exposition by Priest (2002). To begin, let T be a
“truth” predicate on sentences, i.e., for any sentence x, T(x) is
true if and only if x is true (this is called Tarski’s T-schema). Let ψ
denote definability such that ψ(X) is true for any set of sentences
X just in case there exists a sentence x which defines X as a set
(of sentences). If X is any definable set of sentences, let1(X) = α

where α = 〈α /∈ X〉 (here 〈·〉 is used to denote the proper name of
a sentence). That is, 1(X) is the sentence α which expresses that
α is not an element of the set of sentences X. Clearly, α is self-
referential. If an agent thinks about the T-schema, their thought
process might look like the following. First, one supposes that the
totality of all true sentences exists and is definable, that is, that
Tr : = {x | T(x)} is a set that may be defined by some sentence.
If X is definable (whence ψ(X) is true) and if X ⊆ Tr, we have in
the temporal framework described:

Time Inference Rule

t = 0 1(X ) ∈ X → 〈α /∈ X〉 ∈ X Definition of 1

t = 1 〈α /∈ X〉 ∈ X → 〈α /∈ X〉 ∈ Tr Comprehension in ZF

t = 2 〈α /∈ X〉 ∈ Tr → α /∈ X T-Schema

t = 3 α /∈ X → 1(X ) /∈ X Definition of 1

t = 4 1(X ) ∈ X → 1(X ) /∈ X Modus ponens (three times)

t = 5 1(X ) /∈ X → 1(X ) /∈ X Tautology

t = 6 (1(X ) ∈ X ) ∨ (1(X ) /∈ X ) → 1(X ) /∈ X Propositional logic

t = 7 (1(X ) ∈ X ) ∨ (1(X ) /∈ X ) Excluded middle

t = 8 1(X ) /∈ X Modus ponens on t = 6 and t = 7

t = 9 1(Tr) /∈ Tr Substitution of X = Tr to t = 8

t = 10 1(Tr) ∈ Tr Substitution of X = Tr to t = 1

t = 11 (1(Tr) ∈ Tr) ∧ (1(Tr) /∈ Tr) Propositional logic

Let us now look at the brain states that could in principle
produce the mental states associated with each line of this
deduction. We may rewrite the above inference as follows:

X0
Con ∈ [(1(X) ∈ X → 〈α /∈ X〉 ∈ X)0]

X1
Con ∈ [(〈α /∈ X〉 ∈ X → 〈α /∈ X〉 ∈ Tr)1]

X2
Con ∈ [(〈α /∈ X〉 ∈ Tr → α /∈ X)2]

X3
Con ∈ [(α /∈ X → 1(X) /∈ X)3]

X4
Con ∈ [(1(X) ∈ X → 1(X) /∈ X)4]

X5
Con ∈ [(1(X) /∈ X → 1(X) /∈ X)5]

X6
Con ∈ [((1(X) ∈ X) ∨ (1(X) /∈ X) → 1(X) /∈ X)6]

X7
Con ∈ [((1(X) ∈ X) ∨ (1(X) /∈ X))7]

FIGURE 3 | Unfolding self-reference in time can be imagined as unfolding a

circle many-times packed into a corkscrew, where the time dimension

corresponds to the long dimension of the corkscrew. Equivalently, it can be

imagined as the evolution of circularly polarised light.

X8
Con ∈ [(1(X) /∈ X)8]

X9
Con ∈ [(1(Tr) /∈ Tr)9]

X10
Con ∈ [(1(Tr) ∈ Tr)10]

X11
Con ∈ [((1(Tr) ∈ Tr)9 ∧ (1(Tr) /∈ Tr)10)11]

To prove a contradiction in time in a manner that could require a
physically impossible brain state, one would need to show that
Xt
Con ∈ [φt] and Xt

Con ∈ [¬φt] for a single t. This does not
happen. In this way, if we want to model deductive inferences
as processes carried out by a physical systems such as the brain
which evolves in time, we see that the contradictions appear not
directly, but spread out in time and then recalled, and so they
may be implemented by amachine such as the brain that operates
in time (Figure 3). In particular, we do not encounter the fractal
picture given in Grim et al. (1993).

Moreover, because it is possible to have Xt
Con ∈ [φt] and

Xt′

Con ∈ [¬φt
′
] at different times t 6= t′, we see that the brain

has on this model sufficient expressive power to treat truth values
as dynamically changing quantities. This may be contrasted with
Turing machines tasked with deciding truth values; the state of
such a machine may evolve in time, but the truth value it aims to
decide is static.

3.2. Clarifying Remarks
Let us make a few remarks on the conclusions reached so far.
We are not denying the logical contradiction that appears in the
above deduction. Indeed, what we have done here amounts to a
temporal version of what (Priest, 2002) calls parameterization; it
is a standard approach to avoid paradoxes, and in general, any
contradiction that is avoided by parameterization will reappear
at a higher level again when one analyzes the parameterized
formalism. However, this is irrelevant to our aims: what we
have shown is that an inference-making device that has a
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register that expresses its state of deduction in time (while
some auxiliary system carries out further inference-making tasks
leading to eventual update of the register) can effectively model
contradictory scenarios without existing in a contradictory state
itself. That is, there is never an instant where such a system need
occupy two different physical states simultaneously.

Extending this to our model of the brain, the “inference”
column label could be replaced with “the thought of
which the conscious agent is aware” at each given time,
while the “rule” column label could just as well be
interpreted as “the cognitive process being carried out in
the intermediate time window.” In this way, we have a
rough picture for how the brain could physically model
the contradictions that arise from self-reference paradoxes
(noting that the above proof for the contradiction in Tarski’s
paradox is of the generic diagonalization form) without
itself being in any strange superposition of disagreeing
physical configurations.

What makes this temporal parameterization technique useful
is that while in a purely logical setting, the relation between
subsequent lines in a deduction is strictly a logical one (with
no temporality and so forth), when represented on a physical
system, is no longer an abstractly logic relation, but is instead
a causal relation indicating an interaction between these two
brain modules we have discussed. In particular, it is a causal
relation which requires an intermediate physical process to
commence and terminate. Hence, there is an intermittent time,
and so the contradiction may be “stretched out” in time in the
appropriate sense. (This is analogous to the Kantian view of time
as a means for the thinking subject to experience contradictory
perceptions without an actual contradiction obtaining Kant,
1998, A32/B48).

3.3. Transforming Logical Inconsistency to

Incongruence
We now apply the IIT formalism (see Box 3) to the SLM, and
show how the logical inconsistency of self-referential paradoxes
is transformed to incongruence.

First observe that since the correlates of consciousness
were taken to reside in XCon, it is reasonable to suppose
that for any subsystem of the brain Z ⊆ B, if Z is
maximally irreducible while in some state Zt , it must be
the case that Z ∩ XCon 6= ∅. In most cases, Z will
simply be a subsystem of XCon. However, from Equation (5),
there will be some irreducible subsystems that overlap with
YCog as well. In particular, XCon ∪ YCog is expected to be
maximally irreducible.

Incongruence in IIT is defined as follows. For any system S,
given a pair of subsystems G,H ⊆ S, G and H are incongruent if
they make differing predictions about the past or future behavior
of some particular node z ∈ S (see Haun and Tononi, 2019;
Albantakis and Tononi, 2019, p. 5). This occurs, for instance,
if p(zt+1|Gt) 6= p(zt+1|Ht). When self-referential inferences are
made, if we suppose φ is thought about at time t, ¬φ is thought
about at t+1, and φt∧¬φt+1 is thought about at time t+2, then
it is because of the cognitive processes in YCog implemented at

time t and t + 1 that this is the case. In particular, if we presently
think some sentence is true, we expect that it will be true still at
the next instant, so that

p(Xt+1
Con ∈ [¬φt+1] | Xt

Con ∈ [φt],YCog)

is large, while

p(Xt+1
Con ∈ [¬φt+1] | Xt

Con ∈ [φt])

is small. However, YCog implements a rule of inference in

this transition, which causes Xt+1
Con ∈ [¬φt+1] to occur.

During self-referential inferences, not only do two different
subsystems disagree about the probabilities assigned to a
particular node’s future state (cf. Equation 5); rather, they assign
essentially opposite probabilities to the future behavior of the
subsystem spanned by all maximally irreducible subsystems.
Hence, incongruence arises in a strong way.

Put differently, causal incongruence in IIT offers a precise
sense in which the parts of a system fail to describe the
whole of the system, namely, taken separately, the parts
may disagree with one another about the descriptions they
provide. In the SLM framework, this is exploited as a feature:
it is this disagreement that enables the brain to represent
contradictions in the requisite manner needed to make sense of
self-referential statements.

3.4. Avoiding Unhalting Cycles
We now argue that the cyclic behavior of the SLM, as described
in Section 3.1, does not persist indefinitely (as it would for
an unhalting Turing machine). When the thinking subject gets
caught in a cognitive cycle of the same form, if their attention
is drawn away from the cyclic inference at hand, the cycle will
end. This is so because, as a thinking subject learns by repeating
a task many times, they devote less and less attention and focus
toward the task being learned (Kandel et al., 2013, Chapter 64).
In the present context, this means that if the thinking subject
cycles through the thought process associated with deriving
disagreeing truth values for a self-referential statement, they will
not get caught in a loop, but rather will pay less attention to
the inference upon subsequent iterations. Since the brain actively
monitors a large class of sensory stimuli and implements many
cognitive processes in parallel, as this attention diminishes, the
thinking subject is increasingly likely to refocus their attention
elsewhere. In short, if attention is a resource, the architecture
of the brain is such that the re-allocation of this resource
inhibits the ensuing feedback and makes infinite inferential
loops unstable.

This is analogous to binocular rivalry, where the subject’s
visual field is eventually changed, whence their visual sensations
escape from flowing toward lock-in states (Hohwy et al.,
2008; Clark, 2013), and to visual paradoxes, like the Necker
cube (where two alternative possible attractors are present) or
the recognition of ambiguous images (Inoue and Nakamoto,
1994; Kelso, 1995). This metastable behavior due to self-
reference can also be found in gene networks, where the
causal feedback associated with cross-regulatory interactions
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BOX 3 | Integrated Information Theory

Integrated Information Theory (IIT; see Oizumi et al., 2014; Tononi and Koch, 2015; Tononi et al., 2016) is a framework that seeks to provide a constructive account of

the origins of conscious experience by describing it as an emergent feature of causally integrated dynamical systems such as the brain. IIT begins by articulating those

features of conscious experience that one might take to be constitutive, and then identifies features of the causal structure of a dynamical system that qualitatively

realize these features (in a manner that can be made quantifiably precise via informational measures). A model of the IIT formalism is a dynamical system X (such

as the SLM) together with all of the probabilities of the form p(xt+1
i |X t ). From the causal probabilities defined in Equation (4), the IIT formalism defines measures to

quantify the extent to which a subsystem S ⊆ X cannot be causally reduced, e.g., to a pair of subsystems G and H with S = G ∪ H and the extent to which every

such S is causally integrated.

A state of a subsystem at some time is irreducible if and only if the probabilities that characterize its intrinsic causal structure cannot be exactly recovered by

partitioning it into subsystems. Irreducibility is quantified using an informational measure; those subsystems of X that realize the maximum of this measure for the

system X are called maximally irreducible. There are generally many different maximally irreducible subsystems.

According to IIT, only those subsystems that are maximally irreducible at a given moment contribute to consciousness at that moment, forming the instantaneous

correlates of consciousness. The manner in which a maximally irreducible subsystem contributes to consciousness is dictated by its causal probabilities which

populate points in a supposed space of qualia. The conscious experience realized by a physical substrate (a human brain or otherwise) is a byproduct of that

substrate’s maximally irreducible intrinsic causal structure. Here we do not assess the plausibility of IIT as a theory of consciousness; rather, we note that our SLM

can be recast within the IIT formalism straightforwardly.

can be spread in time or space leading to interesting
phenomena (Isalan, 2009).

4. CONCLUSIONS AND OUTLOOK

In this work, we have constructed a high-level discrete
dynamical model of the brain, termed the Strange Loop
Model (SLM; Section 2), in order to describe inference-
making, which uses causal feedback between conscious and
cognitive processes. We have used the SLM to model self-
reference and shown that logical inconsistencies unfold in
time (Section 3.1), and hence the contradictions dissolve, as
one never encounters inconsistent truth values simultaneously.
Rather, one deduces at different times that a sentence has
different truth values and then remembers having carried
out both such deductions. This flexibility enables the human
brain to model self-reference in a manner that is inaccessible
to usual computing devices by construction. We have also
applied the SLM within the context of IIT and shown that
logical inconsistencies are transformed into incongruences
(Section 3.3). Finally we have argued that, because the brain
is receptive to a wide range of different stimuli, and because
one devotes less attention to repetitive cognitive tasks as time
passes, these cyclic inferences are unstable are thus terminated
(Section 3.4).

The interaction between XCon and YCog via the
described causal feedback enables the human mind to
be aware of the outcomes of cognitive inferences, and
likewise further cognize about such an awareness. Put
differently, the causal feedback here described enables
the thinking subject to be aware of their own cognitive
processes, and to then make inferences about their own
cognition. This situation is reminiscent of universality
encountered in Turing machines, spin models and neural
networks (De las Cuevas, 2020).

Finally, we may compare the SLM with a Turing machine
or any other standard computing machine. Unlike an algorithm
running in a Turing machine, the processing carried out by the
SLM is not a deciding process, because it need not reach a static
truth value of a variable. Moreover, the only relevant features of
a Turing machine are its input–output functionality (that is, the
formal language it recognizes Kozen, 1997), whereas the intrinsic
causal structure of the brain is crucial. In this way, we conclude
that the process carried out by the brain and the computer
is different.
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Artificial intelligence has made tremendous advances since its inception about seventy

years ago. Self-driving cars, programs beating experts at complex games, and smart

robots capable of assisting people that need care are just some among the successful

examples of machine intelligence. This kind of progress might entice us to envision a

society populated by autonomous robots capable of performing the same tasks humans

do in the near future. This prospect seems limited only by the power and complexity

of current computational devices, which is improving fast. However, there are several

significant obstacles on this path. General intelligence involves situational reasoning,

taking perspectives, choosing goals, and an ability to deal with ambiguous information.

We observe that all of these characteristics are connected to the ability of identifying and

exploiting new affordances—opportunities (or impediments) on the path of an agent to

achieve its goals. A general example of an affordance is the use of an object in the hands

of an agent. We show that it is impossible to predefine a list of such uses. Therefore,

they cannot be treated algorithmically. This means that “AI agents” and organisms differ

in their ability to leverage new affordances. Only organisms can do this. This implies that

true AGI is not achievable in the current algorithmic frame of AI research. It also has

important consequences for the theory of evolution. We argue that organismic agency is

strictly required for truly open-ended evolution through radical emergence. We discuss

the diverse ramifications of this argument, not only in AI research and evolution, but also

for the philosophy of science.

Keywords: artificial intelligence (AI), universal turing machine, organizational closure, agency, affordance,

evolution, radical emergence, artificial life (ALife)

1. INTRODUCTION

Since the founding Dartmouth Summer Research Project in 1956 (McCarthy et al., 1955), the
field of artificial intelligence (AI) has attained many impressive achievements. The potential of
automated reasoning, problem solving, and machine learning has been unleashed through a wealth
of different algorithms, methods, and tools (Russell and Norvig, 2021). Not only do AI systems
accomplish to perform intricate activities, e. g., playing games (Silver et al., 2016), and to plan
complex tasks (LaValle, 2006), but most current apps and technological devices are equipped
with some AI component. The impressive recent achievements of machine learning (Domingos,
2015) have greatly extended the domains in which AI can be applied, from machine translation to
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automatic speech recognition. AI is becoming ubiquitous in
our lives. In addition, AI methods are able to produce some
kinds of creative artworks, such as paintings (Hong and
Curran, 2019), and music (Briot and Pachet, 2020); moreover,
GPT-3, the latest version of a deep learning system able to
generate texts characterized by surprising writing abilities, has
recently been released (Brown et al., 2020) surrounded by some
clamor (Chalmers, 2020; Marcus and Davis, 2020).

These are undoubtedly outstanding accomplishments.
However, each individual success remains limited to quite
narrowly defined domains. Most of today’s AI systems are
target-specific: an AI program capable of automatically planning
tasks, for example, is not usually capable of recognizing faces
in photographs. Such specialization is, in fact, one of the main
elements contributing to the success of these systems. However,
the foundational dream of AI—featured in a large variety of
fantastic works in science-fiction—is to create a system, maybe
a robot, that incorporates a wide range of adaptive abilities
and skills. Hence, the quest for Artificial General Intelligence
(AGI), computational systems able to connect, integrate, and
coordinate these various capabilities. In fact, true general
intelligence can be defined as the ability of combining “analytic,
creative, and practical intelligence” (Roitblat, 2020, page 278).
It is acknowledged to be a distinguishing property of “natural
intelligence,” for example, the kind of intelligence that governs
some of the behavior of humans as well as other mammalian and
bird species.

If one considers the human brain as a computer—and by
this we mean some sort of computational device equivalent to a
universal Turing machine—then the achievement of AGI might
simply rely on reaching a sufficient level of intricacy through the
combination of different task-solving capabilities in AI systems.
This seems eminently feasible—a mere extrapolation of current
approaches in the context of rapidly increasing computing
power—even though it requires not only the combinatorial
complexification of the AI algorithms themselves, but also of the
methods used to train them. In fact, many commentators predict
that AGI is just around the corner, often admonishing us about
the great (even existential) potentials and risks associated with
this technological development (see, for example, Vinge, 1993;
Kurzweil, 2005; Yudkowsky, 2008; Eden et al., 2013; Bostrom,
2014; Shanahan, 2015; Chalmers, 2016; Müller and Bostrom,
2016; Ord, 2020).

However, a number of serious problems arise when
considering the higher-level integration of task-solving
capabilities. All of these problems are massively confounded
by the fact that real-world situations often involve information
that is irrelevant, incomplete, ambiguous, and/or contradictory.
First, there is the formal problem of choosing an appropriate
metric for success (a cost or evaluation function) according
to context and the task at hand. Second, there is the problem
of identifying worthwhile tasks and relevant contextual
features from an abundance of (mostly irrelevant) alternatives.
Finally, there is the problem of defining what is worthwhile
in the first place. Obviously, a truly general AI would have
to be able to identify and refine its goals autonomously,
without human intervention. In a quite literal sense, it

would have to know what it wants, which presupposes
that it must be capable of wanting something in the
first place.

The problem of machine wanting has often been linked
by philosophers to arguments about cognition, the existence
of subjective mental states and, ultimately, to questions about
consciousness. A well-known example is John Searle’s work on
minds and AI (see, for example, Searle, 1980, 1992). Other
philosophers have attempted to reduce machine wanting to
cybernetic goal-seeking feedback (e. g., McShea, 2012, 2013,
2016). Here, we take the middle ground and argue that the
problem is rooted in the concept of organismic agency, or bio-
agency (Moreno and Etxeberria, 2005; Barandiaran et al., 2009;
Skewes and Hooker, 2009; Arnellos et al., 2010; Campbell, 2010;
Arnellos andMoreno, 2015; Moreno andMossio, 2015; Meincke,
2018). We show that the term “agency” refers to radically
different notions in organismic biology and AI research.

The organism’s ability to act is grounded in its functional
organization, which grants it a certain autonomy (a “freedom
from immediacy”) (Gold and Shadlen, 2007). An organism not
only passively reacts to environmental inputs. It can initiate
actions according to internal goals, which it seeks to attain by
leveraging opportunities and avoiding obstacles it encounters
in its umwelt, that is, the world as perceived by this particular
organism (Uexküll von, 2010; Walsh, 2015). These opportunities
and obstacles are affordances, relations between the living agential
system and its umwelt that are relevant to the attainment of its
goals (Gibson, 1966). Organismic agency enables a constructive
dialectic between an organism’s goals, its repertoire of actions,
and its affordances, which all presuppose and generate each other
in a process of constant emergent co-evolution (Walsh, 2015).

Our argument starts from the simple observation that
the defining properties of natural systems with general
intelligence (such as organisms) require them to take advantage
of affordances under constraints given by their particular
motivations, abilities, resources, and environments. In more
colloquial terms, general intelligences need to be able to
invent, to improvise, to jury-rig problems that are relevant to
their goals. However, AI agents (unlike biological ones) are
defined as sophisticated algorithms that process information from
percepts (inputs) obtained through sensors to actions (outputs)
implemented by effectors (Russell and Norvig, 2021). We
elaborate on the relation between affordances and algorithms—
defined as computational processes that can run on universal
Turing machines—ultimately arriving at the conclusion that
identifying and leveraging affordances goes beyond algorithmic
computation. This leads to two profound implications. First,
while it may still be possible to achieve powerful AI systems
endowed with quite impressive and general abilities, AGI cannot
be fully attained in computational systems that are equivalent
to universal Turing machines. This limitation holds for both
non-embodied and embodied Turing machines, such as robots.
Second, based on the fact that only true agents can harvest the
power of affordances, we conclude that only biological agents are
capable of generating truly open-ended evolutionary dynamics,
implying that algorithmic attempts at creating such dynamics in
the field of artificial life (aLife) are doomed to fail.
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Our argument proceeds as follows: In Section 2, we provide
a target definition for AGI and describe some major obstacles
on the way to achieve it. In Section 3, we define and contrast
the notion of an agent in organismic biology and AI research.
Section 4 introduces the crucial role that affordances play in
AGI, while Section 5 elucidates the limitations of algorithmic
agents when it comes to identifying and leveraging affordances.
In Section 6, we show that our argument also applies to embodied
AI agents such as robots. Section 7 presents a number of possible
objections to our argument. Section 8 discusses the necessity
of bio-agency for open-ended evolution. Finally, Section 9
concludes the discussion with a few remarks on the scientific and
societal implications of our argument.

2. OBSTACLES TOWARD ARTIFICIAL

GENERAL INTELLIGENCE

The proposal for the Dartmouth Summer Research Project
begins with an ambitious statement: “An attempt will be made to
find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and
improve themselves” (McCarthy et al., 1955). Over the 66 years
that have passed since this was written, the field of AI research
has made enormous progress, and specialized AI systems have
been developed that find application across almost all aspects
of human life today (see Introduction). However, the original
goal of devising a system capable of integrating all the various
capabilities required for “true machine intelligence” has not yet
been reached.

According to Roitblat (2020), the defining characteristics of
general intelligence are:

• reasoning and problem-solving,
• learning,
• inference-making,
• using common-sense knowledge,
• autonomously defining and adjusting goals,
• dealing with ambiguity and ill-defined situations, and
• creating new representations of the knowledge acquired.

Some of these capabilities are easier to formalize than others.
Automated reasoning, problem-solving, learning, and inference-
making, for example, can be grounded in the principles of formal
logic, and are reaching impressive levels of sophistication in
contemporary deep-learning approaches (Russell and Norvig,
2021). In contrast, the complete algorithmic formalization of
the other items on the list remains elusive. We will discuss
the problem of autonomously defining goals shortly. The three
remaining characteristics are not only hard to implement
algorithmically, but are difficult to define precisely in the first
place. This vagueness is of a semantic and situational nature: it
concerns the meaning of concepts to an agent, the knower, in
their particular circumstances.

For example, we have no widely agreed-upon definition of
what “common-sense knowledge” is. In fact, it is very likely that
there is no generalizable definition of the term, as “common
sense” represents a kind of perspectival knowing that depends

radically on context. It represents a way of reacting to an everyday
problem that is shared by many (or all) people at a given location
and time. It is thus an intrinsically situational and normative
concept, and its meaning can shift drastically across different
societal and historical contexts. What it would mean for a
computer to have “common sense” remains unclear: does it have
to act in a way that humans of its time and location would
consider commonsensical? Or does it have to develop its own
kind of computer-specific, algorithmic “common sense”? What
would that even mean?

Exactly the same problem affects the ability of AI algorithms to
create new representations of knowledge. Those representations
must not only correspond to some state of affairs in the world, but
must also be relatable, understandable, and useful to some kind
of knowing agent. They must represent something to someone.
But who? Is the task of AGI to generate representations for
human understanding? If not, what kind of sense does it make
for a purely algorithmic system to generate representations
of knowledge? It does not need them, since it does not use
visualizations or metaphors for reasoning and understanding.
Again, the semantic nature of the problem makes it difficult to
discuss within the purely syntactic world of algorithmic AIs.

Since they cannot employ situational knowledge, and since
they cannot represent and reason metaphorically, AI systems
largely fail at dealing with and exploiting ambiguities (Byers,
2010). These limitations have been identified and formulated
as the frame problem more than fifty years ago by Dreyfus
(1965) (see also Dreyfus, 1992). Today, they are still with us as
major obstacles for achieving AGI. What they have in common
is an inability of algorithmic systems to reckon with the kind of
uncertainty, or even paradox, that arises from context-dependent
or ill-defined concepts. In contrast, the tension created by such
unresolved states of knowing is often a crucial ingredient for
human creativity and invention (see, for example, Scharmer and
Senge, 2016).

Let us argue the case with an illustrative example. The
ability to exploit ambiguities plays a role in almost any human
cognitive activity. It can turn up in the most unexpected places,
for instance, in one of the most rule-based human activities—
an activity that we might think should be easy to formalize.
As Byers beautifully observes about creativity in mathematics,
“[a]mbiguity, which implies the existence of multiple, conflicting
frames of reference, is the environment that gives rise to new
mathematical ideas. The creativity of mathematics does not come
out of algorithmic thought” (Byers, 2010, page 23). In situated
problem-solving, ambiguity is oftentimes the cornerstone of a
solution process. Let us consider the mathematical riddle in
Figure 1: if we break ambiguities by taking a purely formalized
algebraic perspective, the solution we find is hardly simple.1 Yet,
if we change perspective and we observe the graphical shape of
the digits, we can easily note that what is summed up are the
closed loops present in the numeric symbols. It turns out that
the puzzle, as it is formulated, requires the ability to observe
from different perspectives, to dynamically shift perceptive and

1In the sense of a suitable model explaining the riddle. See Burnham and Anderson

(2002).
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FIGURE 1 | A riddle found by one of the authors in a paper left in the coffee room of a department of mathematics.

cognitive frames, mixing both graphical and algebraic approaches
for a simple solution.

Following Byers, we observe that even a strongly formalized
human activity—the process of discovery in mathematics—is not
entirely captured by an algorithmic search. A better metaphor
would be an erratic walk across dark rooms. As Andrew Wiles
describes his journey to the proof of the Fermat conjecture,2

the solution process starts from a dark room where we “stumble
around bumping into the furniture;” suddenly we find the light
switch and, in the illuminated room, we “can see were we
were”—an insight! Then, we move to an adjacent dark room
and continue this process finding successive “light switches” into
further dark rooms until the problem, at last, is solved. Each step
from one room to the other is an insight, not a deduction and not
an induction. The implication is fundamental: themathematician
comes to know a new world via an insight. The insight itself
is not algorithmic. It is an act of semantic meaning-making.
Roger Penrose makes the same point in the Emperor’s New
Mind (Penrose, 1989).

Human creativity, in all kinds of contexts, seems to
require frame-switching between metaphorical or formal
representations, alongside our capabilities of dealing with
contradictions and ambiguities. These are not only hallmarks
of human creative processes, but should also characterize
AGI systems. As we will see, these abilities crucially rely on
affordances (Gibson, 1966). Therefore, we must ask whether
universal Turing machines can identify and exploit affordances.
The initial step toward an answer to this question lies in the
recognition that affordances arise from interactions between an
agent and its umwelt. Therefore, we must first understand what
an agent is, and how the concept of an “agent” is defined and
used in biology and in AI research.

3. BIO-AGENCY: CONTRASTING

ORGANISMS TO AI AGENTS

So far, we have avoided the question how an AGI could
choose and refine its own goals (Roitblat, 2020). This problem
is distinct, but still tightly related to the issues of ambiguity
and representation discussed in the previous section. Selecting
goals has two aspects. The first is that one must motivate the
choice of a goal. One must want to reach some goal to have
a goal at all, and one must have needs to want something.
The other aspect is to prioritize some particular goal over a

2Nova interview, https://www.pbs.org/wgbh/nova/article/andrew-wiles-fermat.

set of alternatives, according to the salience and the alignment
of the chosen goal with one’s own needs and capabilities in a
given context.

Choosing a goal, of course, presupposes a certain autonomy,
i. e., the ability to make a “choice” (Moreno and Mossio, 2015).
Here, we must emphasize again that our use of the term “choice”
does not imply consciousness, awareness, mental states, or even
cognition, which we take to involve at least some primitive kind
of nervous system (Barandiaran and Moreno, 2008). It simply
amounts to a system which is capable of selecting from a more
or less diversified repertoire of alternative dynamic behaviors
(“actions”) that are at its disposal in a given situation (Walsh,
2015). All forms of life—from simple bacteria to sophisticated
humans—have this capability. The most central distinction to be
made here is that the selection of a specific behavior is not purely
reactive, not entirely determined by environmental conditions,
but (at least partially) originates from and depends on the internal
organization of the system making the selection. This implies
some basic kind of agency (Moreno and Mossio, 2015). In its
broadest sense, “agency” denotes the ability of a system to initiate
actions from within its own boundaries, causing effects that
emanate from its own internal dynamics.

Agency requires a certain type of functional organization.
More specifically, it requires organizational closure (Piaget,
1967; Moreno and Mossio, 2015), which leads to autopoietic
(i. e., self-making, self-maintaining, and self-repairing)
capabilities (Maturana and Varela, 1973, 1980). It also leads
to self-determination through self-constraint: by maintaining
organizational closure, an organism is constantly providing
the conditions for its own continued existence (Bickhard,
2000; Mossio and Bich, 2017). This results in the most basic,
metabolic, form of autonomy (Moreno and Mossio, 2015).
A minimal autonomous agent is a physically open, far-from-
equilibrium, thermodynamic system capable of self-reproduction
and self-determination.

Organisms, as autonomous agents, are Kantian wholes, i. e.,
organized beings with the property that the parts exist for and
by means of the whole (Kant, 1892; Kauffman, 2000, 2020).
“Whole” indicates that organizational closure is a systems-level
property. In physical terms, it can be formulated as a closure
of constraints (Montévil and Mossio, 2015; Moreno and Mossio,
2015;Mossio et al., 2016). Constraints change the dynamics of the
underlying processes without being altered themselves (at least
not at the same time scale). Examples of constraints in organisms
include enzymes, which catalyze biochemical reactions without
being altered in the process, or the vascular system in vertebrates,
which regulates levels of nutrients, hormones, and oxygen in
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different parts of the bodywithout changing itself at the time scale
of those physiological processes (Montévil and Mossio, 2015).

It is important to note that constraint closure does not
imply a fixed (static) network of processes and constraints.
Instead, organizational continuity is maintained if the current
closed organization of a system causally derives from previous
instantiations of organizational closure, that is, its particular
organized state at this moment in time is dynamically
presupposed by its earlier organized states (Bickhard, 2000;
DiFrisco and Mossio, 2020). Each successive state can (and
indeed must) differ in their detailed physical structure from the
current state. To be a Kantian whole, an autonomous system
must perform at least one work-constraint cycle: it must perform
physical work to continuously (re)constitute closure through new
as well as recurring constraints (Kauffman, 2000, 2003; Kauffman
and Clayton, 2006). Through each such cycle, a particular set
of constraints is propagated, selected from a larger repertoire
of possible constraints that all realize closure. In this way, the
system’s internal dynamics kinetically “lift” a set of mutually
constituting processes from the totality of possible dynamics.
This is how organizational closure leads to autopoiesis, basic
autonomy, and self-determination by self-constraint: the present
structure of the network of interacting processes that get “lifted”
is (at least to some degree) the product of the previous unfolding
of the organized network. In this way, organization maintains
and propagates itself.

However, one key ingredient is still missing for an agent
that actively chooses its own goals. The basic autonomous
system we described above can maintain (and even repair)
itself, but it cannot adapt to its circumstances—it cannot react
adequately to influences from its environment. This adaptive
capability is crucial for prioritizing and refining goals according
to a given situation. The organism can gain some autonomy
over its interactions with the environment if it is capable of
regulating its own boundaries. These boundaries are required for
autopoiesis, and thus must be part of the set of components that
are maintained by closure (Maturana and Varela, 1980). Once
boundary processes and constraints have been integrated into the
closure of constraints, the organism has attained a new level of
autonomy: interactive autonomy (Moreno and Mossio, 2015). It
has now become a fully-fledged organismal agent, able to perceive
its environment and to select from a repertoire of alternative
actions when responding to environmental circumstances based
on its internal organization. Expressed a bit more colloquially,
making this selection requires being able to perceive the world
and to evaluate “what’s good or bad for me,” in order to
act accordingly. Here, the transition from matter to mattering
takes place.

Interactive autonomy provides a naturalistic (and completely
scientific) account of the kind of bio-agency (and the particular
kind of goal-directedness or teleology that is associated with
it, Mossio and Bich, 2017), which grounds our examination of
how organisms can identify and exploit affordances in their
umwelt. But before we get to this, let us contrast the complex
picture of an organismal agent as a Kantian whole with the much
simpler concept of an agent in AI research. In the context of
AI, “[a]n agent is anything that can be viewed as perceiving its

environment through sensors and acting upon that environment
through effectors” (Russell and Norvig, 2021, original emphasis).
In other words, an AI agent is an input–output processing device.
Since the point of AI is to do “a good job of acting on the
environment” (Russell and Norvig, 2021), the internal processing
can be quite complicated, depending on the task at hand. This
very broad definition of an AI agent in fact includes organismal
agents, since it does not specify the kind of processes that
mediate between perception and action. However, although not
always explicitly stated, it is generally assumed that input-output
processing is performed by some sort of algorithm that can be
implemented on a universal Turing machine. The problem is
that such algorithmic systems have no freedom from immediacy,
since all their outputs are determined entirely—even though
often in intricate and probabilistic ways—by the inputs of the
system. There are no actions that emanate from the historicity
of internal organization. There is, therefore, no agency at all in
an AI “agent.” What that means and why it matters for AGI and
evolution will be the subject of the following sections.

4. THE KEY ROLE OF AFFORDANCES

Having outlined a suitable naturalistic account of bio-agency, we
can now revisit the issue of identifying and exploiting affordances
in the umwelt, or perceived environment, of an organism. The
concept of an affordance was first proposed by Gibson (1966)
in the context of ecological psychology. It was later adopted to
diverse fields of investigation such as biosemiotics (Campbell
et al., 2019) and robotics (Jamone et al., 2016). “Affordances” refer
to what the environment offers to an agent (in the organismic
sense defined above), for “good or ill.” They can be manifested
as opportunities or obstacles on our path to attain a goal. A
recent philosophical account emphasizes the relation between
the agent and its perceived environment (its umwelt), stating
that affordances guide and constrain the behavior of organisms,
precluding or allowing them to perform certain actions, showing
them what they can and cannot do (Heras-Escribano, 2019, p. 3).
A step, for instance, affords us the action of climbing; a locked
door prevents us from entering. Affordances fill our world with
meaning: organisms do not live in an inert environment, but “are
surrounded by promises and threats” (Heras-Escribano, 2019,
p. 3).

The dialectic mutual relationship between goals, actions,
and affordances is of crucial importance here (Walsh, 2015).
Affordances, as we have seen, require an agent with goals. Those
goals motivate the agent to act. The agent first chooses which
goal to pursue. It then selects an action from its repertoire
(see Section 3) that it anticipates to be conducive to the
attainment of the goal. This action, in turn, may alter the way the
organism perceives its environment, or it may alter aspects of the
environment itself, which leads to an altered set of affordances
present in its umwelt. This may incite the agent to choose an
alternative course of action, or even to reconsider its goals. In
addition, the agent can learn to perform new actions or develop
new goals along the way. This results in a constructive co-
emergent dynamic in which sets of goals, actions, and affordances
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continuously generate and collapse each other as the world of the
agent keeps entering into the next space of possibilities, its next
adjacent possible (Kauffman, 2000). Through this co-emergent
dialectic, new goals, opportunities, and ways of acting constantly
arise. Since the universe is vastly non-ergodic, each moment in
time provides its own unique set of opportunities and obstacles,
affording new kinds of goals and actions (Kauffman, 2000). In
this way, true novelty enters into the world through radical
emergence—the generation, over time, of opportunities and rules
of engagement and interaction that did not exist at any previous
time in the history of the universe.

A notable example of such a co-emergent process in a
human context is jury-rigging: given a leak in the ceiling, we
cobble together a cork wrapped in a wax-soaked rag, stuff it
into the hole in the ceiling, and hold it in place with duct
tape (Kauffman, 2019). In general, solving a problem through
jury-rigging requires several steps and involves different objects
and actions, which articulate together toward a solution of the
problem, mostly without any predetermined plan. Importantly,
jury-rigging uses only specific subsets of the totality of causal
properties of each object involved. Often, these properties do not
coincide with previously known functional features of the object.
Consider a tool, like a screwdriver, as an example. Its original
purpose is to tighten screws. But it can also be used to open a can
of paint, wedge a door open, scrape putty off the window, to stab
or poke someone (please don’t), or (should you feel so inclined)
to pick your nose with it. What is important to note here is that
any physical object has an indefinite number of alternative uses in
the hands of an agent (Kauffman, 1976). This does not mean that
its uses are infinite—even if they might be—but rather that they
cannot be known (and thus prestated) in advance.

Ambiguity and perspective-taking also play a fundamental
role in jury-rigging, as the goal of the task is to find suitable
novel causal properties of the available objects to solve the
problem at hand. The same happens in an inverse process, where
we observe an artifact (or an organism Kauffman, 2019), and
we aim at providing an explanation by articulating its parts,
along with the particular function they carry out. For example,
if we are asked what the use of an automobile is, we would
probably answer that it is a vehicle equipped with an engine
block, wheels, and other parts, whose diverse causal features
can be articulated together to function as a locomotion and
transportation system. This answer resolves most ambiguities
concerning the automobile and its parts by providing a coherent
frame in which the parts of the artifact are given a specific
function, aimed at explaining its use as a locomotion and
transportation system. In contrast, if one supposes that the
purpose of an automobile is to fry eggs, one would partition
the system into different sets of parts that articulate together in
a distinct way such that eggs can be fried on the hot engine
block. In short, for the inverse process with regard to artifacts
(or organisms) what we “see it as doing” drives us to decompose
the system into parts in different ways (Kauffman, 1976). Each
such decomposition identifies precisely that subset of the causal
properties of the identified parts that articulate together to
account for and explain “what the system is doing” according
to our current frame. It is critical to note that there is no

universal or unique decomposition, since the way to decompose
the system depends on its use and context (see also Wimsatt,
2007).

To close the loop of our argument, we note that the
prospective uses of an object (and hence the decomposition we
choose to analyze it) depend on the goals of the agent using
it, which, in turn, depend on the agent’s repertoire of actions
and the affordances available to it, which change constantly
and irreversibly over time. It is exactly because all of these
are constantly evolving through their co-emergent dialectic
interactions that the number of uses of an object remains
indefinite and, in fact, unknowable (Kauffman, 2019). Moreover,
and this is important: there is no deductive relation between the
uses of an object. Take, for example, an engine block, designed
to be a propulsive device in a car. It can also serve as the
chassis of a tractor. Furthermore, one can use it as a bizarre
(but effective) paper weight, its cylinder bores can host bottles
of wine, or it can be used to crack open coconuts on one of
its corners. In general, we cannot know the number of possible
uses of an engine block, and we cannot deduce one use from
another: the use as a paper weight abstracts from details that
can conversely be necessary for it to be used to crack open
coconuts. As Robert Rosen put it, complex systems invariably
retain hidden properties, and their manipulation can always
result in unintended consequences (Rosen, 2012). Even worse,
we have seen that the relation between different uses of a thing
is merely nominal, as there is no kind of ordering that makes it
possible to relate them in amore structured way (Kauffman, 2019;
Kauffman and Roli, 2021b).

This brings us to a cornerstone of our argument: when jury-
rigging, it is impossible to compose any sort of well-defined list
of the possible uses of the objects to be used. By analogy, it
is impossible to list all possible goals, actions, or affordances

of an organismic agent in advance. In other words, Kantian

wholes can not only identify and exploit affordances, but they

constantly generate new opportunities for themselves de novo.
Our next question is: can algorithmic systems such as AI “agents”
do this?

5. THE BOUNDED RATIONALITY OF

ALGORITHMS

In the introduction, we have defined an algorithm as a
computational process that can run on a universal Turing
machine. This definition considers algorithms in a broad
sense, including computational processes that do not halt.
All algorithms operate deductively (Kripke, 2013). When
implementing an algorithm as a computer program by means
of some kind of formal language (including those based
on recursive functional programming paradigms), we must
introduce specific data and code structures, their properties
and interactions, as well as the set of operations we are
allowed to perform on them, in order to represent the
objects and relations that are relevant for our computation.
In other words, we must provide a precisely defined ontology
on which the program can operate deductively, e. g., by
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drawing inferences or by ordering tasks for solving a given
problem. In an algorithmic framework, novelty can only be
represented combinatorially: it manifests as new combinations,
mergers, and relations between objects in a (potentially vast,
but predefined) space of possibilities. This means that an
algorithm cannot discover or generate truly novel properties
or relations that were not (at least implicitly) considered in
its original ontology. Therefore, an algorithm operating in a
deductive manner cannot jury-rig, since it cannot find new causal
properties of an object that were not already inherent in its
logical premises.

To illustrate this central point, let us consider automated
planning: a planning program is given an initial state and a
predefined goal, and its task is to find a feasible—and ideally
optimal—sequence of actions to reach the goal. What makes
this approach successful is the possibility of describing the
objects involved in the task in terms of their properties, and
of representing actions in terms of the effects they produce on
the world delimited by the ontology of the program, plus the
requirements that need to be satisfied for their application. For
the planner to work properly, there must be deductive relations
among the different uses of an object, which are exploited by the
inference engine to define an evaluation function that allows it
to arrive at a solution. The problem with the planner is that,
in general, there is no deductive relation between the possible
uses of an object (see Section 4). From the use of an engine
block as a paper weight, the algorithm cannot deduce its use as
a method to crack open coconuts. It can, of course, find the latter
use if it can be deduced, i. e., if there are: (i) a definitive list of
properties, including the fact that the engine block has rigid and
sharp corners, (ii) a rule stating that one can break objects in
the class of “breakable things” by hitting them against objects
characterized by rigid and sharp corners, and (iii) a fact stating
that coconuts are breakable.

The universe of possibilities in a computer program—
however, broadly construed—is like a world of LEGOTM bricks:
components with predefined properties and compositional
relations can generate a huge space of possible combinations,
even unbounded if more bricks can always be supplemented.
However, if we add scotch tape, which makes it possible
to assemble bricks without being constrained by their
compositional mechanism, and a cutter, which enables us
to cut the bricks into smaller pieces of any shape, then rules
and properties are no longer predefined. We can no longer
prestate a well-defined list of components, with associated
properties and relations. We now have a universe of indefinite
possibilities, and we are no longer trapped inside the formal
frame of algorithms. Formalization has reached its limits. What
constitutes a meaningful compositional relation becomes a
semantic question, depending on our particular circumstances
and the whims of our creative mind. Our possibilities may not
be infinite, but they become impossible to define in advance.
And because we can no longer list them, we can no longer treat
them in a purely algorithmic way. This is how human creativity
transcends the merely combinatorial innovative capacities of
any AI we can build today. Algorithms cannot take or shift

perspective and that is why they cannot leverage ambiguity for

innovation in the way an organismic agent can. Algorithms

cannot jury-rig.
At the root of this limitation is the fact that algorithms cannot

want anything. To want something implies having goals that
matter to us. We have argued in Section 3, that only organismic
agents (but not algorithmic AI “agents”) can have goals, because
of their being Kantian wholes with autopoietic organization
and closure of constraints. Therefore, nothing matters to an
algorithm. But without mattering or goals, an algorithm has no
means to identify affordances (in fact, it has no affordances),
unless they are already formally predefined in its ontology, or
can be derived in some logical way from predefined elements
of that ontology. Thus, the algorithm cannot generate meaning
where there was none before. It cannot engage in the process
of semiosis (Peirce, 1934, p. 488). For us to make sense of the
world, we must take a perspective: we must see the world from a
specific point of view, contingent on our nature as fragile, limited,
mortal beings which circumscribes our particular goals, abilities,
and affordances. This is how organismic agents generate new
frames in which to formalize posssibilities. This is how we tell
what is relevant to us fromwhat is not. Algorithms cannot do this,
since they have no point of view, and require a predefined formal
frame to operate deductively. To them, everything and nothing is
relevant at the same time.

Now, we must draw our attention to an issue that is often
neglected when discussing the nature of general intelligence: for
a long time, we have believed that coming to know the world is a
matter of induction, deduction, and abduction (see, for example,
Hartshorne and Weiss, 1958; Mill, 1963; Ladyman, 2001; Hume,
2003; Okasha, 2016; Kennedy and Thornberg, 2018). Here, we
show that this is not enough.

Consider induction, proceeding from a finite set of examples
to an hypothesis of a universal. We observe many black ravens
and formulate the hypothesis that “all ravens are black.” Observe
that the relevant variables and properties are already prestated,
namely “ravens” and “black.” Induction is over already identified
features of the world and, by itself, does not identify new
categories. In induction, there is an imputation of a property
of the world (black) with respect to things we have already
identified (ravens). There is however no insight with respect to
new features of the world (cf. Section 2). Let us pause to think
about this: induction by itself cannot reveal novel features of the
world—features that are not already in our ontology.

This is even more evident for deduction, which proceeds from
prestated universal categories to the specific. “All men are mortal,
Socrates is a man, therefore Socrates is a mortal.” All theorems
and proofs in mathematics have this deductive structure.
However, neither induction nor deduction by themselves can
reveal novel features of the world not already in our ontology.

Finally, we come to abduction, which aims at providing
an explanation of an observation by asserting an already
known precondition that is likely to have this observation as
a consequence. For example, if we identify an automobile as a
means of locomotion and transportation, and had decomposed
it into parts that articulate together to support its function as
a means of locomotion and transportation, we are then able to
explain its failure to function in this sense by a failure of one
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of its now defined parts. If the car does not turn on, we can
suppose the battery is dead. Abduction is differential diagnosis
from a prestated set of conditions and possibilities that articulate
to carry out what we “see the system as doing or being.” But there
is no unique decomposition. The number of decompositions is
indefinite. Therefore, when implemented in a computer program,
this kind of reasoning cannot reveal novel features of the world
not already in the ontology of the program.

To summarize: with respect to coming to know the world,
once we have carved the world into a finite set of categories, we

can no longer see the world beyond those categories. In other
words, new meanings—along with their symbolic grounding in
real objects—are outside of the predefined ontology of an agential
system. The same limitation also holds for probabilistic forms
of inference, involving, e. g., Bayesian nets (see Gelman et al.,
2013). Consider the use of an engine block as a paper weight,
and a Bayesian algorithm updating to improve engine blocks with
respect to functioning as a paper weight. No such updating will
reveal that engine blocks can also be used to crack open coconuts.
The priors for such an innovation could not be deduced, even in
principle. Similarly, Markov blankets (see, for example, Hipólito
et al., 2021) are restricted to pre-existing categories.

Organisms come to know new features of the world by
semiosis—a process which involves semantic meaning-making of
the kind described above, not just formal (syntactic) reasoning
through deduction, induction, or abduction. This is true of
mathematicians. It is also true of Caledonian crows who solve
problems of astonishing complexity, requiring sophisticated
multi-step jury-rigging (Taylor et al., 2010). Chimpanzees
learning to use tools have the same capacity to improvise (Köhler,
2013). Simpler organisms—down to bacteria—must have it too,
although probably in a much more limited sense. After all,
they are at the basis of an evolutionary process toward more
complex behavior, which presupposes the identification and
exploitation of new opportunities. Our human ontology has
evolved into a much more complex state than that of a primitive
unicellular organism. In general, all organisms act in alignment
with their goals, capabilities, and affordances (see Section 4), and
their agential behavior can undergo variation and selection. A
useful action—exploiting a novel affordance—can be captured
by heritable variation (at the genetic, epigenetic, behavioral,
or cultural level) and thus passed on across generations. This
“coming to know the world” is what makes the evolutionary
expansion of our ontologies possible. It goes beyond induction,
deduction, and abduction. Organisms can do it, but universal
Turing machines cannot.

In conclusion, the rationality of algorithms is bounded by
their ontology. However vast this ontology may be, algorithms
cannot transcend their predefined limitations, while organisms
can. This leads us to our central conclusion, which is both radical
and profound: not all possible behaviors of an organismic

agent can be formalized and performed by an algorithm—not

all organismic behaviors are Turing-computable. Therefore,

organisms are not Turing machines. It also means that true

AGI cannot be achieved in an algorithmic frame, since AI
“agents” cannot choose and define their own goals, and hence
exploit affordances, deal with ambiguity, or shift frames in ways

organismic agents can. Because of these limitations, algorithms
cannot evolve in truly novel directions (see Section 8 below).

6. IMPLICATIONS FOR ROBOTS

So far, we have only considered algorithms that run within
some stationary computing environment. The digital and purely
virtual nature of this environment implies that all features
within in must, by definition, be formally predefined. Its digital
environment, in its finite totality, is the ontology of an AI
algorithm. There is nothing outside it for the AI “agent” to
discover. The real world is not like that. We have argued in the
previous sections that our world is full of surprises that cannot
be entirely formalized, since not all future possibilities can be
prestated. Therefore, the question arises whether an AI agent that
does get exposed to the real world could identify and leverage
affordances when it encounters them.

In other words, does our argument apply to embodied Turing
machines, such as robots, that interact with the physical world
through sensors and actuators and may be able to modify
their bodily configuration? The crucial difference to a purely
virtual AI “agent” is that the behavior of a robot results from
interactions between its control program (an algorithm), its
physical characteristics (which define its repertoire of actions),
and the physical environment in which it finds itself (Pfeifer
and Bongard, 2006). Moreover, learning techniques are put to
powerful use in robotics, meaning that robots can adapt their
behavior and improve their performance based on their relations
to their physical environment. Therefore, we can say that robots
are able to learn from experience and to identify specific sensory-
motor patterns in the real world that are useful to attain their
goals (Pfeifer and Scheier, 2001). For instance, a quadruped robot
controlled by an artificial neural network can learn to control
its legs on the basis of the forces perceived from the ground,
so as to develop a fast and robust gait. This learning process
can be guided either by a task-oriented evaluation function,
such as forward gait speed, or a task-agnostic one that rewards
coordinated behaviors (Prokopenko, 2013), or both.

Does that mean that robots, as embodied Turing machines,
can identify and exploit affordances? Does it mean that robots,
just like organisms, have an umwelt full of opportunities and
threats? As in the case of stationary AI “agents,” the answer
is a clear and resounding “no.” The same problems we have
discussed in the previous sections also affect robotics. Specifically,
they manifest themselves as the symbol grounding problem and
the frame problem. The symbol grounding problem concerns the
issue of attaching symbols to sensory-motor patterns (Harnad,
1990). It amounts to the question whether it is feasible for a
robot to detect relevant sensory-motor patterns that need to be
associated with new concepts—i. e., new variables in the ontology
of the robot. This, in turn, leads to the more general frame
problem (see Section 2 and McCarthy and Hayes, 1969): the
problem of specifying in a given situation what is relevant for a
robot’s goals. Again, we run into the problem of choosing one’s
own goals, of shifting frames, and of dealing with ambiguous
information that cannot be formalized in the form of a predefined
set of possibilities.
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As an example, consider the case of a robot whose goal it
is to open coconuts. Its only available tool is an engine block,
which it currently uses as a paper weight. There are no other
tools, and the coconuts cannot be broken by simply throwing
them against a wall. In order to achieve its goal, the robot must
acquire information on the relevant causal features of the engine
block to open coconuts. Can it exploit this affordance? The
robot can move around and perceive the world via its sensors.
It can acquire experience by performing random moves, one
of which may cause it to hit the engine block, to discover that
the block has the property of being “hard and sharp,” which
is useful for cracking the nut. However, how does the robot
know that it needs to look for this property in the objects of
its environment? This is but the first useful step in solving the
problem. By the same random moves, the robot might move
the engine block, or tip it on its side. How can the robot
“understand” that “hard and sharp” will prove to be useful,
but “move to the left” will not? How long will this single
step take?

Furthermore, if the coconut is lying beside the engine block,
tipping it over may lead to the nut being cracked as well. How can
the robot connect several coordinated causal features to achieve
its goal, if none of them can be deduced from the others? The
answer is: it cannot. We observe that achieving the final goal

may require connecting several relevant coordinated causal

features of real-world objects, none of which is deducible

from the others. This is analogous to the discovery process in
mathematics we have described in Section 2: wandering through
a succession of dark rooms, each transition illuminated by the
next in a succession of insights. There is no way for the robot
to know that it is improving over the incremental steps of
its search. Once an affordance is identified, new affordances
emerge as a consequence and the robot cannot “know” in
advance that it is accumulating successes until it happens upon
the final achievement: there is no function optimization to
be performed over such a sequence of steps, no landscape
to search by exploiting its gradients, because each step is a
search in a space of possibilities that cannot be predefined.
The journey from taking the first step to reaching the ultimate
goal is blind luck over some unknown time scale. With more
steps, it becomes increasingly difficult to know if the robot
improves, since reaching the final goal is in general not an
incremental process.

The only way to achieve the robot’s ultimate goal is for it to
already have a preprogrammed ontology that allows for multi-
step inferences. Whether embodied or not, the robot’s control
algorithm can only operate deductively. But if the opportunity
to crack open coconuts on the engine block has been predefined,
then it does not really count as discovering a new causal
property. It does not count as exploiting a novel affordance.
Robots do not generate new opportunities for themselves

in the way organisms do. Even though engaging with their

environment, they cannot participate in the emergent triad

of goals, actions, and affordances (see Section 4). Therefore,
we must conclude that its embodied nature does not really
help a robotic algorithm to achieve anything resembling
true AGI.

7. POSSIBLE OBJECTIONS

We suspect that our argument may raise a number of objections.
In this section, we anticipate some of these, and attempt to
provide adequate replies.

A first potential objection concerns the ability of deep-
learning algorithms to detect novel correlations in large data
sets in an apparently hypothesis-free and unbiased manner.
The underlying methods are mainly based on complex network
models, rather than traditional sequential formal logic. When
the machine is trained with suitable data, shouldn’t it be able
to add new symbols to its ontology that represent the newly
discovered correlations? Would this not count as identifying and
exploiting a new affordance? While it is true that the ontology
of such a deep-learning machine is not explicitly predefined, it
is nevertheless implicitly given through the constraints of the
algorithm and the training scenario. Correlations can only be
detected between variables that are defined through an external
model of the data. Moreover, all current learning techniques
rely on the maximization (or minimization) of one or more
evaluation functions. These functions must be provided by the
designers of the training scenario, who thus determine the criteria
for performance improvement. The program itself does not have
the ability of choosing the goal of the task at hand. This even holds
for task-agnostic functions of learning scenarios, as they again
are the result of an imposed external choice. In the end, with
no bias or hypothesis at all, what should the learning program
look for? In a truly bias- or hypothesis-free scenario (if that is
possible at all), any regularity (even if purely accidental) would
become meaningful (Calude and Longo, 2017), which results in
no meaning at all. Without any goal or perspective, there is no
insight to be gained.

A second objection might be raised concerning the rather
common observation that AI systems, such as programs playing
chess or composing music, often surprise us or behave in
unpredictable ways. However, machine unpredictability does not
imply that their behavior is not deducible. Instead, it simply
means that we cannot find an explanation for it, maybe due
to a lack of information, or due to our own limited cognitive
and/or computational resources. For example, a machine playing
chess can take decisions by exploiting a huge repertoire of moves,
and this may produce surprising behavior in the eye of the
human opponent, since it goes far beyond our own cognitive
capacity. Nevertheless, the behavior of the machine is deductively
determined, ultimately based on simple combinatorics. More
generally, it is well-known that there are computer programs
whose output is not compressible. Their behavior cannot be
predicted other than actually running the full program. This
computationally irreducible behavior cannot be anticipated, but
it is certainly algorithmic. Due to their competitive advantage
when dealing with many factors, or many steps, in a deductive
procedure, AI “agents” can easily fool us by mimicking creative
behavior, even though their algorithmic operation does not allow
for the kind of semantic innovation even a simple organism is
capable of.

A third objection could be that our argument carelessly
ignores potential progress in computational paradigms and robot
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design that may lead to a solution of the apparently irresolvable
problems we present here. A common futurist scenario in
this context is one in which AI “agents” themselves replace
human engineers in designing AI architectures, leading to a
technological singularity—a technology which is far beyond
human grasp (see, for example, Vinge, 1993; Kurzweil, 2005;
Eden et al., 2013; Bostrom, 2014; Shanahan, 2015; Chalmers,
2016). We are sympathetic to this objection (although not
to the notion of a singularity based on simple extrapolation
of our current capabilities). Our philosophical approach is
exactly based on the premise that the future is open, and
will always surprise us in fundamentally unpredictable ways.
But there is no paradox here: what we are arguing for is
that AGI is impossible within the current algorithmic frame
of AI research, which is based on Turing machines. We are
open to suggestions how the limitations of this frame could be
transcended. One obvious way to do this is a biological kind of
robotics, which uses organismic agents (such as biological cells)
to build organic computation devices or robots. We are curious
(and also apprehensive) concerning the potential (and dangers)
which such non-algorithmic frameworks hold for the future. An
AGI which could indeed choose its own goals, would not be
aligned with our own interests (by definition), and may not be
controllable by humans, which seems to us to defy the purpose
of generating AI as a benign and beneficial technology in the
first place.

One final, and quite serious, philosophical objection to our
argument is that it may be impossible to empirically distinguish
between a sophisticated algorithm mimicking agential behavior,
and true organismic agency as outlined in Section 3. In this
case, our argument may be of no practical importance. It is
true that humans are easily fooled into interpreting completely
mechanistic behavior in intentional and teleological terms.
Douglas Hofstadter (2007), for example, mentions a dot of
red light that is moving along the walls of the San Francisco
Exploratorium, responding by simple feedback to movements
of the museum visitors. Every time a visitor tries to touch the
dot, it seems to escape at the very last moment. Even though
based on a simple feedbackmechanism, it is tempting to interpret
such behavior as intentional.3 Could we have fallen prey to
such an illusion when interpreting the behavior of organisms
as true agency? We do not think so. First, the organizational
account of agency we rely on not only accounts for goal-
oriented behavior, but also for basic functional properties of
living systems, such as their autopoietic ability to self-maintain
and self-repair. Thus, agency is a higher-level consequence of
more basic abilities of organisms that cannot easily be accounted
for by alternative explanations. Even though these basic abilities
have not yet been put to the test in a laboratory, there is no
reason to think that they won’t be in the not-too-far future.
Second, we think the account of organismic agency presented
here is preferable over an algorithmic explanation of “agency”
as evolved input-output processing, since it has much greater
explanatory power. It takes the phenomenon of agency seriously

3Regarding machine intentionality see also the work by Braitenberg (1986).

instead of trying to explain it away. Without this conceptual
framework, we could not even ask the kind of questions raised
in this paper, since they would never arise within an algorithmic
framework. In essence, the non-reductionist (yet still naturalist)
world we operate in is richer than the reductionist one in
that it allows us to deal scientifically with a larger range
of undoubtedly interesting and relevant phenomena (see also
Wimsatt, 2007).

8. OPEN-ENDED EVOLUTION IN

COMPUTER SIMULATIONS

Before we conclude our argument, we would like to consider
its implications beyond AGI, in particular, for the theory of
evolution, and for research in the field of artificial life (ALife).
One of the authors has argued earlier that evolvability and agency
must go together, because the kind of organizational continuity
that turns a cell cycle into a reproducer—the minimal unit
of Darwinian evolution—also provides the evolving organism
with the ability to act autonomously (Jaeger, 2022). Here, we
go one step further and suggest that organismic agency is a

fundamental prerequisite for open-ended evolution, since it
enables organisms to identify and exploit affordances in their
umwelt, or perceived environment. Without agency, there is
no co-emergent dialectic between organisms’ goals, actions,
and affordances (see Section 5). And without this kind of
dialectic, evolution cannot transcend its predetermined space
of possibilities. It cannot enter into the next adjacent possible.
It cannot truly innovate, remaining caught in a deductive
ontological frame (Fernando et al., 2011; Bersini, 2012; Roli and
Kauffman, 2020).

Let us illustrate this with the example of ALife. The
ambitious goal of this research field is to create models of
digital “organisms” that are able to evolve and innovate in
ways equivalent to natural evolution. Over the past decades,
numerous attempts have been made to generate open-ended
evolutionary dynamics in simulations such as Tierra (Ray,
1992) and Avida (Adami and Brown, 1994). In the latter
case, the evolving “organisms” reach an impressive level of
sophistication (see, for example, Lenski et al., 1999, 2003; Zaman
et al., 2014). They have an internal “metabolism” that processes
nutrients to gain energy from their environment in order to
survive and reproduce. However, this “metabolism” does not
exhibit organizational closure, or any other form of true agency,
since it remains purely algorithmic. And so, no matter how
complicated, such evolutionary simulations always tend to get
stuck at a certain level of complexity (Bedau et al., 2000;
Standish, 2003). Even though some complexification of ecological
interactions (e. g., mimics of trophic levels or parasitism) can
occur, we never observe any innovation that goes beyond what
was implicitly considered in the premises of the simulation. This
has led to some consternation and the conclusion that the strong
program of ALife—to generate any truly life-like processes in a
computer simulation—has failed to achieve its goal so far. In fact,
we would claim that this failure is comprehensive: it affects all
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attempts at evolutionary simulation that have been undertaken
so far. Why is that so?

Our argument provides a possible explanation for the failure
of strong ALife: even though the digital creatures of Avida, for
example, can exploit “new” nutrient sources, they can only do
so because these sources have been endowed with the property
of being a potential food source at the time the simulation was
set up. They were part of its initial ontology. The algorithm
cannot do anything it was not (implicitly) set up to do. Avida’s
digital “life forms” can explore their astonishingly rich and large
space of possibilities combinatorially. This is what allows them,
for example, to feed off other “life forms” to become predators
or parasites. The resulting outcomes may even be completely
unexpected to an outside observer with insufficient information
and/or cognitive capacity (see Section 7). However, Avida’s “life
forms” can never discover or exploit any truly new opportunities,
like even the most primitive natural organisms can. They cannot
generate new meaning that was not already programmed into
their ontology. They cannot engage in semiosis. What we
end up is a very high-dimensional probabilistic combinatorial
search. Evolution has often been likened to such intricate search
strategies, but our view suggests that organismic agency pushes
it beyond.

Organismic open-ended evolution into the adjacent possible
requires the identification and leveraging of novel affordances.
In this sense, it cannot be entirely formalized. In contrast,
algorithmic evolutionary simulations will forever be constrained
by their predefined formal ontologies. They will never be able to
produce any true novelty, or radical emergence. They are simply
not like organismic evolution since they lack its fundamental
creativity. As some of us have argued elsewhere: emergence is
not engineering (Kauffman and Roli, 2021a). The biosphere is
an endlessly propagating adapting construction, not an entailed
algorithmic deduction (Kauffman, 2019). In other words, the
world is not a theorem (Kauffman and Roli, 2021b), but a
neverending exploratory process. It will never cease to fascinate
and surprise us.

9. CONCLUSION

In this paper, we have argued two main points: (1) AGI is
impossible in the current algorithmic frame of research in
AI and robotics, since algorithms cannot identify and exploit
new affordances. (2) As a direct corollary, truly open-ended
evolution into the adjacent possible is impossible in algorithmic
systems, since they cannot transcend their predefined space
of possibilities.

Our way of arriving at these conclusions is not the only
possible one. In fact, the claim that organismic behavior is
not entirely algorithmic was made by Robert Rosen as early
as the 1950s (Rosen, 1958a,b, 1959, 1972). His argument is
based on category theory and neatly complements our way
of reasoning, corroborating our insight. It is summarized in
Rosen’s book “Life Itself ” (Rosen, 1991). As a proof of principle,
he devised a diagram of compositional mappings that exhibit
closure to efficient causation, which is equivalent to organizational

closure (see Section 3). He saw this diagram as a highly abstract
relational representation of the processes that constitute a living
system. Rosen was able to prove mathematically that this type
of organization “has no largest model” (Rosen, 1991). This has
often been confounded with the claim that it cannot be simulated
in a computer at all. However, Rosen is not saying that we
cannot generate algorithmic models of some (maybe even most)
of the behaviors that a living system can exhibit. In fact, it
has been shown that his diagram can be modeled in this way
using a recursive functional programming paradigm (Mossio
et al., 2009). What Rosen is saying is exactly what we are
arguing here: there will always be some organismic behaviors
that cannot be captured by a preexisting formal model. This
is an incompleteness argument of the kind Gödel made in
mathematics (Nagel and Newman, 2001): for most problems, it is
still completely fine to use number theory after Gödel’s proof. In
fact, relevant statements about numbers that do not fit the theory
are exceedingly rare in practice. Analogously, we can still use
algorithms implemented by computer programs to study many
aspects of organismic dynamics, or to engineer (more or less)
target-specific AIs. Furthermore, it is always possible to extend
the existing formal model to accommodate a new statement
or behavior that does not yet fit in. However, this process is
infinite. We will never arrive at a formal model that captures all
possibilities. Here, we show that this is because those possibilities
cannot be precisely prestated and defined in advance.

Another approach that comes to very similar insights to
ours is biosemiotics (see, for example, Hoffmeyer, 1993; Barbieri,
2007; Favareau, 2010; Henning and Scarfe, 2013). Rather than a
particular field of inquiry, biosemiotics sees itself as a broad and
original perspective on life and its evolution. It is formulated in
terms of the production, exchange, and interpretation of signs in
biological systems. The process of meaning-making (or semiosis)
is central to biosemiotics (Peirce, 1934). Here, we link this process
to autopoiesis (Varela et al., 1974; Maturana and Varela, 1980)
and the organizational account, which sees bio-agency grounded
in a closure of constraints within living systems (Montévil
and Mossio, 2015; Moreno and Mossio, 2015; Mossio et al.,
2016), and the consequent co-emergent evolutionary dialectic
of goals, actions, and affordances (Walsh, 2015; Jaeger, 2022).
Our argument suggests that the openness of semiotic evolution
is grounded in our fundamental inability to formalize and
prestate possibilities for evolutionary and cognitive innovation
in advance.

Our insights put rather stringent limitations on what
traditional mechanistic science and engineering can understand
and achieve when it comes to agency and evolutionary
innovation. This affects the study of any kind of agential system—
in computer science, biology, and the social sciences—including
higher-level systems that contain agents, such as ecosystems or
the economy. In these areas of investigation, any purely formal
approach will remain forever incomplete. This has important
repercussions for the philosophy of science: the basic problem
is that, with respect to coming to know the world, once we
have carved it into a finite set of categories, we can no longer
see beyond those categories. The grounding of meaning in real
objects is outside any predefined formal ontology. The evolution
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of scientific knowledge itself is entailed by no law. It cannot be
formalized (Kauffman and Roli, 2021a,b).

What would such a meta-mechanistic science look like? This
is not entirely clear yet. Its methods and concepts are only now
being elaborated (see, for example, Henning and Scarfe, 2013).
But one thing seems certain: it will be a science that takes agency
seriously. It will allow the kind of teleological behavior that is
rooted in the self-referential closure of organization in living
systems. It is naturalistic but not reductive. Goals, actions, and
affordances are emergent properties of the relationship between
organismal agents and their umwelt—the world of meaning they
live in. This emergence is of a radical nature, forever pushing
beyond predetermined ontologies into the adjacent possible.
This results in a worldview that closely resembles Alfred North
Whitehead’s philosophy of organism (Whitehead, 1929). It sees the
world less as a clockwork, and more like an evolving ecosystem,
a creative process centered around harvesting new affordances.

It should be fairly obvious by now that our argument heavily
relies on teleological explanations, necessitated by the goal-
oriented behavior of the organism. This may seem problematic:
teleological explanations have been traditionally banned from
evolutionary biology because they seemingly require (1) an
inversion of the flow from cause to effect, (2) intentionality, and
(3) a kind of normativity, which disqualify them from being
proper naturalistic scientific explanations.

Here, we followWalsh (2015), who provides a very convincing
argument that this is not the case. First, it is important to note that
we are not postulating any large-scale teleology in evolution—
no omega point toward which evolution may be headed. On the
contrary, our argument for open-endedness explicitly precludes
such a possibility, even in principle (see Section 8). Second,
the kind of teleological explanation we propose here for the
behavior of organisms and its evolution is not a kind of causal
explanation. While causal explanations state which effect follows
which cause, teleological explanation deals with the conditions
that are conducive for an organism to attain its goal. The goal
does not cause these conditions, but rather presupposes them.
Because of this, there is no inversion of causal flow. Finally, the
kind of goal-directed behavior enabled by bio-agency does not
require awareness, intentionality, or even cognition. It can be
achieved by the simplest organisms (such as bacteria), simply due
to the fact that they exhibit an internal organization based on a
closure of constraints (see Section 3). This also naturalizes the
kind of normativity we require for teleology (Mossio and Bich,
2017): the organism really does have a goal from which it can
deviate. That goal is to stay alive, reproduce, and flourish. All
of this means that there is nothing supranatural or unscientific
about the kind of teleological explanations that are used in our

argument. They are perfectly valid explanations. There is no need
to restrict ourselves to strictly mechanistic arguments, which
yield an impoverished world view since they cannot capture the
deep problems and rich phenomena we have been discussing
throughout this paper.

While such metaphysical and epistemological considerations
are important for understanding ourselves and our place in the
world, our argument also has eminently practical consequences.
The achievement of AGI is often listed as one of the most
threatening existential risks to the future of humanity (see, for
example, Yudkowsky, 2008; Ord, 2020). Our analysis suggests
that such fears are greatly exaggerated. No machine will want to
replace us, since nomachine will want anything, at least not in the
current algorithmic frame of defining a machine. This, of course,
does not prevent AI systems and robots from being harmful.
Protocols and regulations for AI applications are urgent and
necessary. But AGI is not around the corner, and we are not alone
with this assessment. The limits of current AI applications have
been questioned by others, emphasizing that these systems lack
autonomy and understanding capabilities, which we conversely
find in natural intelligence (Nguyen et al., 2015; Broussard, 2018;
Hosni and Vulpiani, 2018; Marcus and Davis, 2019; Mitchell,
2019; Roitblat, 2020; Sanjuán, 2021; Schneier, 2021). The true
danger of AI lies in the social changes and the disenfranchisement
of our own agency that we are currently effecting through target-
specific algorithms. It is not Skynet, but Facebook, that will
probably kill us in the end.
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The abstract basis of modern computation is the formal description of a finite state
machine, the Universal Turing Machine, based on manipulation of integers and logic
symbols. In this contribution to the discourse on the computer-brain analogy, we discuss
the extent to which analog computing, as performed by the mammalian brain, is like
and unlike the digital computing of Universal Turing Machines. We begin with ordinary
reality being a permanent dialog between continuous and discontinuous worlds. So
it is with computing, which can be analog or digital, and is often mixed. The theory
behind computers is essentially digital, but efficient simulations of phenomena can be
performed by analog devices; indeed, any physical calculation requires implementation
in the physical world and is therefore analog to some extent, despite being based on
abstract logic and arithmetic. The mammalian brain, comprised of neuronal networks,
functions as an analog device and has given rise to artificial neural networks that
are implemented as digital algorithms but function as analog models would. Analog
constructs compute with the implementation of a variety of feedback and feedforward
loops. In contrast, digital algorithms allow the implementation of recursive processes
that enable them to generate unparalleled emergent properties. We briefly illustrate
how the cortical organization of neurons can integrate signals and make predictions
analogically. While we conclude that brains are not digital computers, we speculate on
the recent implementation of human writing in the brain as a possible digital path that
slowly evolves the brain into a genuine (slow) Turing machine.

Keywords: recursion, cortical layers, micro-columns, learning, memory, algorithm

INTRODUCTION

The present essay explores key similarities and differences in the process of computation by
the brains of animals and by digital computing, by anchoring the exploration on the essential
properties of a Universal Turning Machine, the abstract foundation of modern digital computing.
In this context, we try to explicitly distance XVIIIth century mechanical automata from modern
machines, understanding that when computation allows recursion, it changes the consequences of
determinism. A mechanical device is usually both deterministic and predictable, while computation
involving recursion is deterministic but not necessarily predictable. For example, while it is possible
to design an algorithm that computes the decimal digits of π, the value of any finite sequence
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following the nth digit, cannot (yet) be computed, hence
predicted, with n sufficiently large. This implies that the
consequences of replacing feedback (a common principle in
mechanics) with recursion (a much deeper process, using a
program that calls itself) are not yet properly addressed because
they do not belong to widely shared knowledge. It is remarkable
that recursion, associated with appropriate energy management,
creates information (Landauer, 1961; Hofstadter et al., 1979).
How this happens has been illustrated by Douglas Hofstadter in
his book Gödel, Escher, Bach, An Eternal Golden Braid, as what he
named a “strange loop,” illustrated by a painting in an art gallery
representing a person contemplating the painting in that very
gallery. This illustration shows how a completely open new world
where paradoxes are the rule is emerging (Hofstadter, 2007).

However, this happens on condition that a material support
is involved, introducing a certain level of analogical information
even in electronic computers. This involvement of the basic
currencies of Reality other than information (mass, energy, space
and time) opens up computing to another universe. This has
consequences very similar to the result of Gödel’s demonstration
that arithmetic is incomplete: nothing in the coded integers used
in the demonstration can say, within the number system, that
there is a contradiction that can never be solved. It is only by
going outside the coded system (so as to be able to observe it) that
one can see the incompleteness. The very fact that the outcome
of the demonstration can only be understood outside the frame
of its construction—namely in a world where judgments exist—
introduced a certain level of analogical information into the
picture. The meaning of Gödel’s last sentence (I cannot be
proved) is not valid within the framework of the axioms and
definitions of Number Theory, but only when one looks at
Number Theory from the outside. Recursion is possible even in a
world where analogical computing dominates, and the structure
of the brain, organized in cortical layers, and through feedforward
and feedback loops, may well allow the development of this
procedure. However, the introduction of language, and of writing
in particular, could well allow the modern human brain to behave
like a Turing Machine, thus explaining how Homo sapiens could
generate demonstrations of the type of Gödel’s incompleteness
theorems (Hofstadter et al., 1979).

ANALOG AND DIGITAL COMPUTING

We use “digital” to describe information and computation
involving explicit numerical representations and manipulations,
no matter how the numbers are themselves represented.
In contrast, “analog” as it refers to neuronal information
representation and computation, means a biological or other
physical process like an action potential, that has another (i.e., is
analogous to some) representational meaning or manipulation.
In order to know whether thinking of the “brain as a computer”
is more than a metaphor, we need to agree on a description
of computing. We generally assume that computing involves an
abstract process, the manipulation of integers with the standard
rules of arithmetic. In this context the number three lies in an
abstract world, beyond the way it is denoted: trois in French,

drei in German, τρıα in Greek, in Chinese, etc. It belongs
to the abstract domain of “information.” This conception is
based on the assumption that information is a true physical
currency of reality (Landauer, 1996), along with mass, energy,
space and time, allowing us to work in the abstract domain
of digital computing. We must recognize, however, that the
very concept of information, although widely used as a word,
is not usually considered by biologists as an explicit physical
entity, although some synaptic physiologists may conjecture that
neural information is embodied in synaptic “strengths.” As a
consequence, when it comes to describing the role of the cell
or the brain in computation, we have to oscillate between deep
abstraction and concrete physiology. With a little more insight,
when we use electronic computers, we combine Number Theory
(Rosen, 2011) with the rules of logic, in particular Boolean logic
(Sikorski, 1969). The vast majority of computing approaches
are simply based on manipulation of bits. Computer users
create algorithms, by subsuming a binary frame of reference,
usually referred to as “digital” as a consequence of the way we
calculate in the decimal system. However, the construction of
relevant digital processing units asks for the understanding of
the consequences of recursion and therefore Number Theory.
Indeed, the consequences of Gödel’s theorems makes that it
remains impossible to design a processor which would be
“hacking-free.” This requirement is visible in constructs such as
those belonging to the class of Verifiable Integrated Processor
for Enhanced Reliability [VIPER, (Brock and Hunt, 1991)]. This
vision remains a very crude abstract view of what computing
is. It is based entirely on a discontinuous, discrete conception
of physical reality. In contrast, the material world behaves as
if it were continuous. In biology, the biochemical networks
used in synthetic biology constructs are based on processes that
amplify, synchronize, integrate signals and store information
in a continuous way. Even computers are not exempt from
the constraints imposed by the material world. The computer
you are using to read this text is a material machine, made
of components that have mass and obey the laws of physics.
For example, the rules of logic are implemented as thresholds
operating on continuous parameters, and even the very definition
of a threshold cannot be entirely digitized. For example, it
displays an inherent variability due to thermal noise. The history
of digital computing acknowledges that, in parallel with an
authentic shift toward a digital world possibly beginning with
the ENIAC in 1946, computing kept being developed with analog
devices (Misa, 2007).

In that sense, computation can be seen as both analog and
digital. The idea of analog computation is not new. It seems
to have been present very early, even in the ancient Greek
civilization. In Greek, αvάλoγoς means “proportionate” with
the notion that the due proportions associated with solving
a certain problem can be used to solve that same problem
via its simulation, not necessarily requiring understanding. The
efficiency of analog computing is strikingly illustrated by an
extraordinary device built more than 2,000 years ago, which
seems to work like an analog computer to calculate a large
number of properties of meteors in the sky, planets and stars, the
Antikythera Mechanism (Freeth et al., 2021).
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Today, the central processing unit that runs computers
manipulates electrons, not cogs, in an organized way. It does
not directly manipulate logical bits. How does the modern
computer, which is constructed with components that have mass
and space, perform its digital calculations? This may be a key
question in our quest for the interaction between the analog
world (that of matter with mass) and the digital world (that of the
abstract genomic sequences manipulated by bioinformaticians
for example) when we want to understand how the brain works.
The question is indeed at the heart of what life is all about. How
do we articulate the analog/digital interaction? We can recognize
at least two different physical processes taking place in the
electronic circuits of a digital computer. Continuous signals are
transformed into digital (in fact usually Boolean) computation
by: (1) exploiting the non-linearity of the circuits (transistors
are either off or saturated, capacitors are either empty or fully
charged). This entails that changes are rapid and large when
compared to thermal fluctuations and means that we introduce
thresholds such that a digital coding becomes reasonably robust.
(2) Error correction mechanisms, such as redundancy, to
overcome possible errors due to thermal electronic fluctuations.
Essentially, this is the result of combining careful design of the
basic electronic and physical phenomena with a coarse shaping
(in a sense, a “clustering”) and “constraining process” of the
physical observables.

A frightening example illustrates the dichotomy between
analog and digital information, not in the brain, but when we
see cells as computers making computers, with their genetic
program both analog, when it has to be accommodated within
the cell’s cytoplasm, and digital when it is interpreted as an
algorithm for the survival of a cell and construction of its
progeny. Viruses illustrate this dichotomy. Smallpox is a lethal
virus. The sequence of its genome (digital information) is
available, and can be exchanged via the Internet without direct
action on the analog setup of living organisms, hence harmless.
However, synthetic biology techniques (gene synthesis) allow this
digital information to “transmute” into the analog information of
the chemistry of nucleotides, regenerating an active virus. This
coupling makes the digital virus deadly (Danchin, 2002). The
difference between the textual information of the virus sequence
and the final information of the finished material virus illustrates
the complementarity between analog and digital computation.
The analog implementation is extremely powerful, and we will
have to remember this observation when exploring the way the
brain appears to compute.

Physiological experiments meant to illustrate the first steps
of computing in living systems are based on discrete digital
designs but implemented in continuous properties of matter,
such as concentration of ingredients. Typically, an early synthetic
implementation of computing in cells, the toggle switch,
consisted of the design of a pair of coding sequences of two genes,
lacI and tetR, with relevant regulatory signals where the product
of each gene inhibits the expression of the other (Gardner et al.,
2000). This is possibly the simplest circuit capable of performing
a calculation in a cell, in this case the ability to store one bit
of information. Other digital circuits have been built since, and
recent work has highlighted the level of complexity achieved by

digital biological circuits, where metabolic constraints blur the
picture. A deeper understanding of what happens in the cells
where this construct has been implemented shows that their
behavior is not fully digital (Soma et al., 2021). Cells, however,
can still be seen as computers making computers and this
performance can be described in a digital way (Danchin, 2009a).
When we discuss the algorithmic view of the cell, we implicitly
assume a digital view of reality. This is how we can introduce
information, through “bits,” i.e., entities that can have two states,
0 and 1. This is very similar to the way physics describes states as
specific energy levels, for example (and this can be seen when an
atom is illuminated, in the form of optically detected lines, which
allows researchers to characterize the nature of that particular
atom). However, because this oversimplified vision overlooks the
analog dimension of computation, it omits taking into account
material processes, such as aging for example, which requires
specific maintenance steps involving specific functions that are
rarely considered in digital machines [see (Danchin, 2015) and
note that, in computers, processors also do age indeed, with
important consequences on the computing speed and possibly
accuracy (Gabbay and Mendelson, 2021)].

Unlike digital circuits, where a species has only two states,
analog circuits represent ranges of values using continuous
ranges of concentrations. In cases where energy, resources and
molecular components are limited, analog circuits can allow
more complex calculations than digital circuits. Using a relatively
small set of components, Daniel et al. (2013) designed in cells
a synthetic circuit that performs analog computations. This
matches well with the common vision of synthetic biology, that
of a cell factory which allows the expression of complex programs
that can answer many metabolic engineering questions, as well
as the development of computational capabilities. The take-home
message of this brief discussion on the difference between analog
and digital computing is that, in order to calculate, it is not
necessary to do so numerically. Nature, in fact, appears as a dialog
between continuous and discontinuous worlds. Some reject the
idea of discontinuity. Forgetting about Number Theory, the
French mathematician René Thom emphasized the continuous
nature of the Universe and rejected the discontinuous view
proposed by molecular biology, such as the way in which the
genetic program is written as a sequence of nucleotides, acting
as letters in a linear text written with a four-letter alphabet.
He insisted on continuity even in the evolution of language
(Thom et al., 1990), a point of view that we will discuss at
the end of this essay. In summary, there are many facets of
natural computing that we need to be aware of if we are to
explore the brain computing metaphor (Kari and Rozenberg,
2008). We have seen how the Antikythera Mechanism was an early
attempt using analog computing, and this line of engineering
has been pursued over centuries. For example in 1836 a way
was proposed to solve differential equations using a thread
wrapped around a cylinder (Coriolis, 1836), and more recently
using analog computers (Hartree, 1940; Little and Soudack, 1965;
Barrios et al., 2019). Finally, after simulations of the behavior of
the neuronal networks hardware was created that implemented
analog computing into microprocessors (Wijekoon and Dudek,
2012; Martel et al., 2020).
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VARIATIONS ON THE CONCEPT OF THE
TURING MACHINE

Our digital computers are built according to an abstract vision,
the Turing Machine (TM), elaborated by Alan Turing in the
1930s and developed in descriptions intended to make it more
concrete by Turing and John von Neumann after the Second
World War. The “machine” is often seen as a device reading a
tape-like medium triggering specific behaviors, as we see them
performed by computers. This view is rather superficial. It does
not capture the key properties of the TM that created a general
model of logic and computation, including the identification
of impossibilities (Copeland, 2020). The machine is an abstract
entity and, as in all other cases where we consider information
as a genuine currency of physics, its implementation in objects
with mass will create a considerable number of idiosyncratic
constraints that can only be solved by what are sometimes called
“kludges” in hardware machines, i.e., clumsy but critical solutions
to a specific problem1 [(Danchin, 2021b)]. This necessary overlap
between information and (massive/spatial) matter creates the
immense diversity of life, explaining why we witness so many
“anecdotes” that interfere with our efforts to identify basic
principles of life. Examples range from various solutions to the
question opened by the presence of proline in the translation
machinery, because proline is not an amino acid (Hummels and
Kearns, 2020), to the need for a specific protease that cleaves off
the first nine residues of the ribosomal protein L27 in the bacterial
clade Firmicutes (Danchin and Fang, 2016), to macroscopic
extraordinary display of color and behavior in birds of paradise
(Wilts et al., 2014). It is important to remember that the way in
which machine states could be concretely implemented, which
marks the analog world, had no impact on the way the TM was
used to contribute to the mathematical field of Number Theory
(Turing, 1937). The “innards” of the machine were not taken
into consideration.

The TM is a finite-state machine. In manipulating an abstract
tape, it performs the following operations (the operations
performed by computers are conceptually the same, although
they appear to the general observer to be performed in a very
detailed and therefore less comprehensible manner):

• Changing a symbol in a finite number of places, after
reading the symbols found there (note that changing more
than one symbol at a time can be reduced to a finite number
of successive basic changes).
• Changing from the point which is being read to other

points, at a given maximum distance away in the message.
• Changing the state of the machine.

All this can be summarized as specified by a series of
quintuples, which each have one of the three possible following
forms:

pαβLq or pαβRq or pαβNq
where a quintuple means that the machine is in configuration
p, where symbol α is read, and is replaced by β to enter into

1https://www.theatlantic.com/technology/archive/2016/09/the-appropriately-
complicated-etymology-of-kluge/499433/

configuration q, while displacing the reading toward the (L)eft,
the (R)ight, or staying at the same (N)eutral place.

Several points need to be made here. The machine does
not just read, it reads and writes. The machine can move
forward, backward, and jump from one place to another. Thus,
despite the impression that it uses a linear strip marked by
sequences of symbols, its behavior is considerably more diverse.
This is important when considering genomes as hardware
implementations of a TM tape. For example, we tend to think
of the processes of transcription, translation and replication
as unidirectional, when in fact they are designed to be able
to backtrack and change the building blocks that they had
implemented in the forward steps, a process that is essential to
their activity. More complex processes such as splicing and trans-
splicing are also compatible with the TM metaphor. Furthermore,
the above description corresponds to the Universal Turing
Machine (UTM), which Turing showed to be equivalent to
any construction using a finite multiplicity of tapes in parallel.
A highly parallel machine can be imitated by a single-tape
machine, which is of course considerably slower, but with exactly
the same properties in terms of computational performance.

An essential point of the machine is that it is a finite-state
machine. Despite its importance, this point is often overlooked,
and it is here that the analogy between the cell or brain and a TM
needs to be critically explored. What are and where are the states
of the cell- (resp. brain-) machine located? Allosteric proteins
have well-defined states, usually an active and an inactive state,
and synapses are turned on or off, depending on the presence of
effective neurotransmission. Their activity depends on the state
of specific post-synaptic receptors, and often allosteric proteins
(Changeux, 2013). More complex views may also take space into
account, with the state of a protein or a complex defined by their
presence at specific locations such as mid-cell or at the cell’s poles
for bacteria, or particular dendritic compartments of neurons
(Hsieh et al., 2021). How do they evolve over time as the cell
(resp. brain) “computes”? Of course, the same question can be
asked of the hardware that makes up a computer, but in this
case this is generally a key function of its memory parts, with
specific addressing functions. We must also try to identify the
vehicles that carry the information. In standard electronics, this
role is played by electrons (with a specific role for the electric
potential, which can move extremely quickly with an effect at
long distance, whereas the physical movement of individual
electrons is always slow). In optoelectronics, photons are used
as information carriers, rather than electrons. What about cells?
One could assume, in fact, that in most cases the information
carriers are protons, which travel mainly on water molecules
(forming hydrogen bonds) and on the surface of macromolecules
and metabolites, also in forming hydrogen bonds (Danchin,
2021a). Part of the difficulty we have in visualizing what is going
on in the cell is that we do not know well how water is organized,
particularly around macromolecules, and how this might provide
a series of hydrogen-bond channels carrying information from
one place to another.

At this point the question becomes: how are the states of
the cell fixed locally, i.e., what type of memory is retained, for
how long and with which consequences? When we come to the
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way the brain computes, we will have to answer all these same
questions. In the case of neurons, the carriers of information
are primarily transmembrane potentials involving ionic currents
that are initiated from dendrites, accumulate at the soma of
neurons and after initiating action potentials propagate along the
axons. But this is only part of the story: at synapses (except for
electrical synapses), information is carried forward by specific
neurotransmitters that trigger both ionotropic and metatropic
neurotransmission, which introduces a strong coupling between
information transfers and cellular metabolism (Chen and Lui,
2021), a feature that may be difficult to reconcile with the actual
functioning of computers. It should be noted, however, that this
organization creates de facto a range of relevant time frames that
are considerably slower than the movements and state changes of
the entities subject to thermal noise. This allows even short-term
memories to be available for creation and recall without too much
interference from temperature (recall that thermal vibrations
typically occur in the femto-/pico-second range, while diffusion
of a neurotransmitter occurs in the micro-millisecond range).

To transpose the TM concept into biology, further
developments are needed in physics (what is information,
how to represent it, etc.) and perhaps in mathematics (is there a
need for mathematical developments other than number theory
and logic, which are the basis of the formal description of TM and
its parallel equivalents), in order to be able to embody it explicitly
in soft matter. It is worth noting that, despite progress, there has
not been much recent developments in Information Theories
since the time of Elements of Information Theory (Cover and
Thomas, 2006) and Decoding Reality: The Universe as Quantum
Information (Vedral, 2012). The main problem is simple: in
Turing’s description, nothing is said about the machine, which is
purely abstract, whereas it needs to be given some “flesh,” with
management of space, mass, time and energy.

Indeed, this tells us that there is a huge conceptual opportunity
for recording the informational state of the cell as a TM (not
only the transsynaptic cell membrane, cytoplasm, etc., but also
the conformation of the chromosome, for example), which is
much larger than the information carried by the genetic program
as described as a sequence of abstract nucleotides (Danchin,
2012). Therefore, the transcription/translation machinery of the
cell, as the concrete implementation of the mechanical part of
the TM, the one that decides to move the program forward
or backward, to read and write it, has enough opportunity to
store and modify its states (its information). This is probably
where the information retained by natural selection operates
when cells multiply (and no longer just survive). Living systems
can therefore act as information traps, storing for a time some
of the most common states of the environment. Indeed, one
might expect that what is involved in the machine’s “decision”
to progress (explore and produce offspring) is only a tiny subset
of its information. From this point of view, natural selection
seems to have a gigantic field of possibilities. We shall see that
the problem is even more difficult to solve if we consider the
brain. However, among the many features that characterize the
TM, including the fact that it is a finite-state machine, it seems
essential for systems that would ask to be recognized as a TM, to
present distinct physical entities between the data/program set,

and the machine that will interpret it into actions that modify the
states of the machine.

BESIDES ENZYMES AND TEMPLATES:
LEARNING AND MEMORY IN THE BRAIN

In 1949, Donald Hebb proposed that changes in the effective
strength of synapses could explain associative learning (or
conditioning, the process by which two unrelated elements
become connected in the brain when one predicts the other).
The idea was that the strength of a synapse could increase
when the use of that synapse contributed to the generation
of action potentials in the postsynaptic neuron (Hebb, 2002).
With the intention of representing by an adequate formalism
the learning phenomenon in the vertebrate central nervous
system, based on Hebb’s postulate, we have developed a theory
of learning in the developing brain. This theory, implemented
according to the axiomatic method, is placed within the general
theory of systems where the nervous system is represented by
a particular automaton. It is based on the idea of selective
stabilization of synapses, depending on their activity (Changeux
et al., 1973), phenomena that have been validated (Bliss and
Collingridge, 1993; Bear and Malenka, 1994). The key to this
vision (CCD model) is an epistemological premise: we seek
to account for the properties of neural systems by means of
a selective theory [in contrast with instructive theories, see
discussion in Darden and Cain (1989)].

Based on families of experimental observations, this work
restricted the study of memory and learning to neural networks
(thus neglecting neuroglia and other features of the nervous
system) and more specifically to the connections between
neurons, the synapses. It proposed that, in addition to the now
classic properties of networks traversed by impulses as found
in computers (with the numerical logic rules that this imposes,
as well as the feedback and feedforward loops), there is an
original characteristic of neural networks, namely the possibility
of a qualitative (and not only quantitative) evolution of synapses
according to their activity. For simplicity, the model postulated
that a synapse evolves, changing its state, in the graph:

where it passes during growth from a virtual state (V) to an
unstable, labile state (L), then, depending on its local activity and
the general activity of the posterior neuron, can either regress and
disconnect (D) or stabilize in an active form (S).

With these very general premises, it was shown that a neural
network is able to acquire the stable associative ability to
recognize the form of afferent signals after a finite time. This
memory and learning capacity comes from a transformation
of the connectivity during the operation of the network. Thus,
a temporal pattern is stored in the nervous network as a
geometric spatial form. Besides quantitative involvement of
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synapse efficiency, the main originality of the approach lies
in the fact that learning comes from the loss of connectivity.
Learning carves a figure in the brain tissue that is memorized
as a neural network. Moreover, even if the genetic constraints
necessary to code for the implementation rules of this learning
were very small, the system would nevertheless lead to the
storage of an immense amount of information: each memorized
event corresponds to a particular path traveling among the 1015

synapses of the network, so that the number of possible paths
(and thus of memorized events) is combinatorially infinite. The
only limit to our ability to learn—but it is a terribly constraining
limit—is the slow access to our brain by our sensory organs, as
well as the slow speed of the brain activity (as compared to that of
modern computers, for example).

The CCD model explored the role of selective stabilization in
learning and memory in the nervous system. This exploration
preceded the fashion for neural networks, but with a twist rarely
highlighted: living brain synapses evolved in such a way that they
could regress and irreversibly disconnect from their downstream
dendrite, making memorization irreversible at least for a time.
In contrast, in most artificial neural networks, the state of the
synapses is actually a quantitative feature that can revert to the
initial values if the training set is noisy [see for example the
initial model of the Perceptron (Lehtiö and Kohonen, 1978)].
As quantity is favored over quality, the latter has an important
consequence: the outcome of the learning process is considerably
sensitive to the length of the training period. The positive learning
outcome first increases in parallel with the training period, then
stabilizes and then gradually decreases if the training continues.

The role of neural networks has been and still is the subject
of a considerable amount of work. An important sequel was the
idea of Neural Darwinism proposed by Gerald Edelman (1987).
The central idea of this work is that the nervous system of each
individual functions as a selective system composed of groups or
neurons evolving under selective pressure as selection operates in
the generation of the immune response and in the evolution of
species. By providing a fundamental neural basis for categorizing
things, the aim of this hypothesis was to unify perception
(network inputs), action (network outputs) and learning. The
theory also revised our view of memory as a dynamic process of
re-categorization rather than a replicative storage of attributes.
This has profound implications for the interpretation of various
psychological states, from attention to dreams, and of course,
for the brain’s computational capacity. Many other models of
the links between memory, learning and computation have
been proposed in recent decades. Most of them are based on
neural networks, showing individual and collective behaviors
with interesting properties that are not discussed here [see some
eclectic examples in a vast literature (Dehaene and Changeux,
2000; Miller and Cohen, 2001; Mehta, 2015; Chaudhuri and Fiete,
2016; Mashour et al., 2020; Tsuda et al., 2020)].

To return to our question, can the brain be described
as a computer, the basic idea behind these developments is
that groups of neurons can allow the emergence of global
behaviors while respecting the local organization of specific
brain architectures. However, in general, this is mere conjecture,
as there is no explicit demonstration of the behavior of

the postulated structures. Nevertheless, this has triggered the
emergence of a multitude of artificial neural networks (ANNs)
that have developed metaphorically, independently of our
knowledge of the brain. It is therefore interesting to see briefly
how computation with neural networks has been implemented,
which may now lead to a re-evaluation of their renewed link
to brain behavior.

NEURAL NETWORKS

Simulation vs. Understanding
The work just mentioned is all centered on the interconnections
of neurons, with the key view that neural networks are the
objects that we should prioritize, before understanding the cell
biology of neurons. In an ANN, a neural program is given which
takes into account the “genetic” data (the “genetic envelope”) of
the phenomenon, the geometric data (essentially the maximum
possible graph of all connections compatible with the genetic
program, as well as, in some cases, the length of the axons in
the form of propagation delays of the nerve impulse between
one synapse and the next) and the operating data. Each neuron
displays an integration function which, depending on the multi-
message (afferent via the neuron dendrites), specifies the efferent
message and the evolution function which, for each synapse,
specifies its evolution toward a stable functional state which can
be quantified. Again, in the CCD model a key property was that
functioning under a genetically-programmed threshold led the
synapse to evolve toward a degenerated non-functional state,
thus disappearing as a connection. These processes depended on
the afferent multi-message, as well as on a temporal law taking
growth into account, i.e., the emergence of a new synapse in a
functional state. During the operation of the system, a realization
of the neural program is obtained at each time, which represents
the effective anatomy of the network at that instant as well as its
internal functioning.

Since it is quite difficult to understand the internal behavior
of networks, especially when they consist of a large number of
individual elements, neural networks have been studied mainly
by modeling. In the absence of precise biological data, it has
been necessary to propose hypotheses on the neural program
data, especially regarding the function and structure of synapses.
It has not yet been possible to create a detailed model of the
synapse based on plausible physicochemical assumptions, so very
approximate assumptions have been proposed for the integration
and evolution functions of the neuron. The consequence is
that, in general, the path followed is the development of ANNs
that do not really mimic authentic neural networks. They are
implemented as algorithms and then used with fast computers.
It should be noted that ANNs can be trained to perform
arithmetic operations with significant accuracy. Models of neural
arithmetic logic units keep being continuously improved (Schlör
et al., 2020). Whether such structures can be explicitly observed
in authentic neural circuits remains to be seen. They often
produce remarkably interesting results, but at a cost: it is not
possible to understand how they achieved their performance.
Many achievements made headlines, especially after AlphaGo
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beat European Go champion Fan Hui in 2015 and then Korean
champion Lee Sedol in 2016. This demonstrated that deep
learning techniques are extremely powerful. They continue to be
developed by improving the structures and functioning of various
networks (Silver et al., 2018; Czech et al., 2020). The use of these
neural networks is currently limited to image or shape analysis
or related diagnostic methods based on recognition of generally
imperceptible patterns. As classic examples, these networks are
used for making classes of objects, protein function prediction,
protein-protein interaction prediction or in silico drug discovery
and development (Muzio et al., 2021).

Unfortunately, successful predictions do not provide
an explanation of the underlying phenomena, but only a
phenomenological simulation of the process of interest, i.e., a
process aimed at reproducing the observables we have chosen of
a given phenomenon. These approaches, while extremely useful
for diagnostic purposes, are unable to distinguish correlation
from causation. To make the most of ANNs and use them
as an aid to discovery, the result of their operation must be
traceable in a causal chain. This restriction explains why legal
regulators, in particular in the European Union, now require
creators of AI-based models, often based on ANNs, to be able
to demonstrate the internal causal chain of their successful
models. This is understood as a way to associate prediction
with understanding [2 for an example of the way understanding
can be visualized in an AI model, see for example Prifti et al.
(2020)]. A major reason for the difficulty in tracing causality
is the sheer size of networks required to perform simple tasks.
For example, a simple visual image involves at least a million
neurons in object-related cortex and about two hundred million
neurons in the entire visual cortex (Levy et al., 2004). In this
context, understanding causal relationships is often related to the
ability of ANNs to generate systematic errors [see e.g., (Coavoux,
2021)], while error identification and correction is also important
as it relates to intrinsic vulnerabilities against attacks, with the
concomitant generation of spurious results (Comiter, 2019).

Neural Networks Organization: Cortical
Layers
The fundamental organization of the cerebral cortical circuit of
vertebrates remains poorly understood. In particular, it is not
fully clear whether the considerable diversity of neuron types
(Hobert, 2021) always form modular units that are repeated
across the cortex in a way similar to what is observed in the
cerebellum for example [Brain Initiative Cell Census Network
[BICCN], 2021; Farini et al., 2021; Kim and Augustine, 2021].
The cortex of mammals has long been perceived as different
from that of birds, in particular because in birds the folding of
the cortical surface is particularly marked, but it now appears
that the general organization in neuronal layers is quite similar
in both phyla (Ball and Balthazart, 2021). This may be related
to similar aptitudes in cognition/computation. There are so
many models and conjectures about the role of the brain tissue
organization that we had to make a choice for this essay. We will
use the description/conceptualization proposed by Hawkins and

2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

Blakeslee in their book On Intelligence. How a New Understanding
of the Brain Will Lead to the Creation of Truly Intelligent Machines
(Hawkins and Blakeslee, 2005) because it provides a compelling
description of how the brain might work, notwithstanding
the identification of new or alternative brain structures and
functions over time. The title of the book comes from the
idea that the cerebral cortex is composed of repeated micro-
columns of microcircuits stacked side by side that cooperate to
generate cognitive capacity. The book proposes that each of these
columns has a good deal of innate capacity (“intelligence”), but
only very partial information of the overall context. Yet, the
cortical columns work together to reach a consensus about how
the world works.

Hawkins and Blakeslee pictured the cortex: as a sheet of cells
the size of a dinner napkin, and thick as six business cards, where
the connections between various regions give the whole thing a
hierarchical structure. An important feature in this description
is its hierarchical organization, a feature identified as critical
since the early work of Simon (1991). The cerebral cortex of
mammals comprises six layers of specific neurons organized
into columns. Layers are defined by the cell body (soma) of
the neurons they contain (Shamir and Assaf, 2021). About two
and a half millimeters thick, they are composed of repetitive
units (Wagstyl et al., 2020). The strongest connections are
vertical, from cells in the upper layers to those in the lower
layers and back again. Layers seem to be divided into micro-
columns, each about a millimeter in diameter, which function
semi-independently, as we discuss below. The outermost layer
of the neocortex, Layer I, is highly conserved across cortical
areas and even species. It is the predominant input layer for
top-down information, relayed by a rich and dense network of
long-range projections that provide signals to the branches of
the pyramidal cell tufts (Schuman et al., 2021). Layer II, is an
immature neuron reservoir, important for the global plasticity
of the brain connections. Within the view of the CCD model,
it is an important place where synapses are expected to emerge
from a virtual to a labile state. This layer contains small pyramidal
neurons and numerous stellate neurons but seems dominated
by neurons that remain immature even in adulthood, being a
source of considerable plasticity (La Rosa et al., 2020). Pyramidal
cells of different classes are predominant in layer III. In addition,
multipolar, spindle, horizontal, and bipolar cells with vertically
oriented intra-cortical axons are present in this layer. It also
contains important inhibitory neurons and receives connections
from adjacent and more distant columns while projecting to
distant cortical areas. This layer has been explicitly implicated in
learning and aging (Lin et al., 2020). Layers I-III are referred to as
supragranular layers.

Layer IV is another site of cortical plasticity. It contains
different types of stellate and pyramidal cells, and is the main
target of thalamocortical afferents that project into distinct
areas of the cortex, with, at the molecular level, specific
involvement of phosphorylation regulatory cascades (Zhang
et al., 2019). The major cell types in cortical layer V form a
network structure combining excitatory and inhibitory neurons
that form radial micro-columns specific to each cell type.
Each micro-column functions as an information processing
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unit, suggesting that parallel processing by massively repeated
micro-columns underlies various cortical functions, such as
sensory perception, motor control and language processing
(Hawkins and Blakeslee, 2005; Hosoya, 2019). Interestingly, the
micro-columns are organized in periodic hexagonal structures,
which is consistent with the planar tiling of a layered
organization (Danchin, 1998). Individual micro-columns are
organized as modular synaptic circuits. Three-dimensional
reconstructions of anatomical projections suggest that inputs
of several combinations of thalamocortical projections and
intra- and trans-columnar connections, specifically those from
infragranular layers, could trigger active action potential bursts
(Sakmann, 2017). Layer VI contains a few large inverted and
upright pyramidal neurons, fusiform cells and a specific category,
von Economo neurons, characterized by a large soma, spindle-
like soma, with little dendritic arborization at both the basal
and apical poles, suggesting a significant role of bottom up
inputs (González-Acosta et al., 2018). This layer sends efferent
fibers to the thalamus, establishing a reciprocal interconnection
between the cortex and the thalamus. These connections are both
excitatory and inhibitory and they are important for decision
making (Mitchell, 2015).

Integrating Inputs and Outputs
The brain is connected to the various organs of the body. The
sense organs provide it with information about the environment,
while the internal organs allow it to monitor the states of
the body, both in space and in time. This family of inputs is
distributed in different areas of the brain, connected to cortical
layers organized to integrate these inputs and allow them to
drive specific outputs, in particular motor outputs (O’Leary
et al., 2007). In this general structural signal processing, signals
that reach a specific area of the brain connected to a given
receptor organ pass through other areas, with feedback signals to
connect to other sense organs. Locally, the integration structures
of the brain are the micro-columns covering the six layers just
described. The layered organization results in a limited number
of neurons that integrate signals from other layers and parallel
columns. In many cases signal integration may end up in a
single cell, giving rise to the disputed concept of “grandmother
cell,” individual neurons that would memorize complex signals,
such as the concept of one’s grandmother or famous individuals
like Halle Berry and Jennifer Aniston (Hawkins and Blakeslee,
2005; Quiroga et al., 2005, 2008; Bowers et al., 2019). To place
this controversy in perspective, note that even complex brains
can assign vital functions to individual neurons. For example,
the deletion of a single neuron in a vertebrate brain abolishes
essential behavior forever: the giant Mauthner cell, the largest
known neuron in the vertebrate brain, is essential for rapid
escape, so its loss means that rapid escape is also lost forever
(Hecker et al., 2020).

The details of the integration of the input signals have been
explored by Hawkins and Blakeslee, who provided an overview
with a plausible scenario. The idea is that the individual columns
are trained by experience via selective stabilization to represent
and memorize particular families of environmental features.
This implies that they encode invariant properties that can be

used as a substrate to store and make invariant “predictions”
(i.e., anticipation of future behavior) related to those particular
features, from top to bottom (layer I to layer VI). Now, when
the brain receives a particular input that matches one of these
predictions, rather than triggering the activity of all the columns
that represent similar features, it can be prompted to make
an explicit individual prediction via a feedforward input that
feeds the columns from the bottom up, consistent with the
anatomy of cortical layer VI (Figure 1). This view is illustrated by
Hawkins with the following image that shows how convolution
of top/down and bottom/up inputs may result in a meaningful
output. Imagine two sheets of paper with many small holes in
them. The holes on one paper represent the columns that have
active layer II or layer III cells, marking invariant predictions.
The holes on the other paper represent columns with partial
inputs from below. If you place one sheet of paper on top of
the other, some holes will line up, others will not. The holes
that line up represent the columns that should be active in
making a specific prediction. This mechanism not only allows
specific predictions to be made, but also resolves ambiguities in
sensory input. This bottom/up top/down matching mechanism
allows the brain to decide between two or more interpretations
and to anticipate events that it has never witnessed before.
Further developments of the modular organization of the animal
brain may have developed with the emergence of Homo sapiens,
resulting in specific amplification of new connection modules
(Changeux et al., 2021). This important behavior results from
an organization that combines the columns into layers with
overlapping lateral connections, a feature we explore later.

Synchronization
Finally, a critical feature for computation is the need for
synchronization of processes. Understanding how cortical
activity generates sensory perceptions requires a detailed
dissection of the function of time in cortical layers (Adesnik and
Naka, 2018). This is the case, for example, of the eye saccade
movement that controls vision, allowing proper positioning of
the retina to keep proper focus while the eye moves (Girard and
Berthoz, 2005). Synchronization is important not only with single
computing units but especially important when computing is
developed in parallel. For this reason it seems relevant, before
understanding whether brain computing can become digital,
to identify at least some families of synchronization processes.
Many regular waves, spanning a wide time frame, have been
identified in the brain, witnessing large scale synchronization
processes, particularly important for information processing in
virtually all domains including sensation, memory, movement
and language (Buzsáki, 2010; Meyer, 2018). Time keeping can
be achieved for example via coupling two autonomous dynamic
systems (Pinto et al., 2019). Recent work follows older work
where small populations with a feedback loop were shown to
mimic the behavior of authentic neural networks (Zetterberg
et al., 1978). In addition, the need to make use of the states that
have been stored requires a scanning process that is essential
to enable functions such as memory recall that is distinct from
encoding the information from experience (Dvorak et al., 2018).
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FIGURE 1 | Redrawn from Hawkins and Blakeslee (2005). Formation of a specific “prediction” in the cortex. The cortex is represented by six layers connecting
micro-columns. Generic “predictions” result from memories entered in the columns of the supragranular layers (see text) and triggered by interaction with the
environment in a top-down manner. To obtain a specific “prediction” that will result in a specific output, a family of anticipatory feedforward signals is input from the
lower layers in a bottom-up manner. The convolution of the descending and ascending signals produces the specific output.

Indeed, the neural oscillations observed in local field potentials
that result from spatially and temporally synchronized excitatory
and inhibitory synaptic currents (Buzsáki et al., 2012) provide
powerful network mechanisms to segregate and discretize neural
computations operating within a hierarchy of time scales such
as theta (140 ms) cycles, within which (30 ms slow gamma
and (14 ms fast gamma oscillations are nested and theta
phase organized. This temporal organization is intrinsic, arising
from the biophysical properties of the transmembrane currents
through ion-conducting channel proteins. The information
processing modes within and between cortical processing
modules that these oscillations enable are themselves controlled
by top-down synchronous inputs such as medial entorhinal
cortex-originating dentate spike events (Schomburg et al., 2014;
Dvorak et al., 2021). By hierarchically synchronizing synaptic
activations, the intrinsic biophysics of neural transmission
accomplishes a remarkable form of digitization. Continuous
inputs at the level of individual neurons are converted
into oscillation-delineated population synchronized activity
with digital features of a syntax for discretized information
processing (Buzsáki, 2010), disturbances of which result in
mental dysfunction (Fenton, 2015).

AN AUTOMATIC SCANNING PROCESS,
THE UNEXPECTED BENEFIT OF
FUZZINESS

As described above, large parts of the animal brain are organized
as an association of local micro-networks of similar structure,
arranged along planar layers and micro-columns. It is therefore
of interest to identify the basic units that might play a role in
this organization. Phylogenetic analyses are important in trying
to identify functions of neuronal structures that appear for the
first time in a particular lineage. Typically, at the onset of the
emergence of animals, a neuron was a kind of relay structure
that couples a sensory process to a motor process. At the very
beginning of the development of such structures during the
evolution of multicellular organisms, the role of neurons was
simply to couple sensing with the movement produced by distant

organs. However, this simple process is bound to have a variety
of undesirable consequences if it does not resolve its role within
a well-defined spatial and temporal framework. This means that
the sequence associating the presence of a signal to its physiologic
or motor consequence must be delimited in time and space.
A relevant design to ensure the quality of this process is to divert a
small part of the output to inhibit the effect of the upstream input,
in short, to achieve a homeostat (Cariani, 2009).

Homeostasis: The Negative Feedback
Loop
In his Neural Darwinism Edelman developed the concept of
“reentry,” a key mechanism for the integration of brain functions
(Edelman and Gally, 2013). This concept is based on the
idea that a small part of the output signal of a network is
diverted to the input region and fed back into the network
with a time delay. This phenomenon belongs to the family
of signals that ensure homeostasis. A central theme governing
the functional design of biological networks is their ability to
maintain stable function despite intrinsic variability, including
noise. In neural networks, local heterogeneities progressively
disrupt the emergence of network activity and lead to increasingly
large perturbations in low frequency neural activity. Many
network designs can mitigate this constraint. For example,
targeted suppression of low-frequency perturbations could
ameliorate heterogeneity-induced perturbations in network
activity. The role of intrinsic resonance, a physiological
mechanism for suppressing low-frequency activity, either by
adding an additional high-pass filter or by incorporating a slow
negative feedback loop, has been successfully explored in model
neurons (Mittal and Narayanan, 2021).

The cerebellum, with its highly regular organization and
single-fiber output from Purkinje cells, is a good example
of repetitive networks. Mutual inhibition of granule cells,
mediated by feedback inhibition from Golgi cells—much
less numerous than their granule counterparts—prevents
simultaneous activation. Granule cells differentiate by their
priming threshold, resulting in bursts of spikes in a “winner
take all” sequential pattern (Bratby et al., 2017). Taken together,
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the local implementation of networks with embedded feedback
loops as a strong output used to re-enter relevant cortical large
networks resulted in a pattern that was proposed to explain the
origins of consciousness and its scanning properties (Edelman
et al., 2011), and further extended into the Global Neuronal
Workspace hypothesis that attempts to account for key scientific
observations regarding the basic mechanisms of conscious
processing in the human brain (Mashour et al., 2020). These
views, where inhibition is crucial, are strongly supported by
the considerable importance of circuits comprising inhibitory
neurons. Inhibition in the cortical areas is implemented by
GABAergic neurons, which comprise about 20–30% of all
cortical neurons. Witnessing the importance of this negative
function, this proportion is conserved across mammalian species
and during the lifespan of an animal (Sahara et al., 2012).

Finally, the role of inhibition, which typically occurs locally
but is typically triggered by inputs from distant areas of the
brain, is particularly important for the discrimination of classes
of processes. When neural network excitatory inputs are both
mutually excitatory and also recruit inhibition globally, the motif
generates winner-take-all dynamics such that the strongest and
earliest neural inputs will dominate and suppress weaker and
later inputs, which in turn causes further enhancement of the
dominant inputs. The net result is not merely a signal-to-noise
enhancement of the dominant activity, but a network selection
and discretization of what would be otherwise continuously
variable activity. This motif is learned, improves with experience
and in the entorhinal cortex-hippocampal circuit is responsible
for learning to learn (Chung et al., 2021). The study of child
brain development shows that there is a progressive overlap of
organized responses to specific inputs (in the way objects and
then numbers are identified) with other types of input from,
for example, visual areas. The consequence of this overlap is
that “intuitive” conceptions, resulting from prior anchoring in
a particular environment, are barriers to conceptual learning.
This implies that the inhibition of these inputs is important
to allow the development of rationality (Brault Foisy et al.,
2021). Interestingly, this duality between intuition and rational
reasoning can be attributed to a difference between heuristics
and algorithmic reasoning (Roell et al., 2019), a feature that may
support the transition from a purely analog to a digital process.

Consequences of Imperfect Feedback:
Endogenous Scanning of Brain Areas
The phenomenon of consciousness suggests that the brain
generates an autonomous process that allows it to continuously
scan the network, extracting information to promote action,
at least during the waking period. It is therefore important to
propose conjectures about how this process is generated. Many
connection schemes using feedback or feedforward signaling are
well suited to enable homeostasis, but there is a particularly
simple one that seems to have interesting properties for
producing scanning behavior. Suppose that at some level sensory
inputs are split and thus follow parallel paths, only to be re-
associated and, for example, because one of the cells in one
path activates an inhibitory neuron, negatively controlling the

downstream neuron, and then activates the neurons in the other
path, subtracting one from the other only at the level of a specific
class of cells, with a XOR-like local network (Kimura et al., 2011;
Michiels van Kessenich et al., 2018). Measuring fine differences
is a way to extract subtle information from the environment
and make it relevant. Cells of the latter class are then assumed
to return one of the duplicated sensory inputs or intermediate
inputs corresponding to “modifications” of these inputs (see a
metaphoric illustration in Figure 2). If the difference read by the
cell integrating the commands from the two parallel pathways is
very small, the feedback inhibition command will have no effect;
if the difference is large, this command may cancel or reinforce
one of the upstream pathways, so as to cancel the difference,
thus resulting in homeostatic behavior. If the cell in the last
layer remains activated, it tends on the one hand to produce an
action via its connection to a motor center, and on the other
hand to correct the influence of the input system that leads it to
command the action.

Now, consider how these structures are built during brain
development. Living matter, unlike standard inorganic matter,
is soft matter. This intrinsic flexibility must be taken into
account when considering the fine architecture of authentic
neural networks. When we describe columns of cells organized
into a hexagonal planar structure, it cannot consist of structures
with precisely defined boundaries (Tecuatl et al., 2021). In
another level of fuzziness, involving time, the effectiveness of
individual synapses is not strictly defined, resulting in pervasive
synaptic noise (Kohn, 1998). Moreover, the individuality of each
synapse can only be programmed exceptionally as such: this
would require at least one gene per synapse, and remember that
there are at least 1015. This implies that there is considerable
variation in the temporal and spatial dependence of neuronal
connectivity. Rather than being an obstacle, this weakness gives
rise to a new strength: it is because neural networks cannot be
programmed exactly to create precise homeostatic structures that
they lead to the repetition of approximate structures that are
quasi-homeostatic, creating interactions with their neighbors that
can be used to implement emerging functions.

Indeed, such networks have the interesting property of being
able to trigger an automatic network scanning process. When an
input signal triggers a homeostatic response from one column
meant to inactivate it after a time, it inevitably activates the
response of adjacent columns to which it is connected because
of inevitable variation in dendrites and axons connections. In
turn, this initiates a homeostatic response evolved to silence
them. In so doing they now activate adjacent columns, thus
initiating a local scan of the memorized information stored in
those columns, progressing by contiguity as a wave. In line
with the notion of reentry, why not propose this process at the
origin of consciousness? This metaphoric vision developed into
a dialog between biology and the formal properties of syntactic
structures proposed by Noam Chomsky [see Danchin/Marshall
exchange in Modgil and Modgil (1987)]. Of course, an infinite
number of variations on this theme, playing on the differences
between nearly identical signals can act as a scanning process
that will recall memories via the sequential activation followed
by the inactivation of parallel structures. Since this process is
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FIGURE 2 | A representation of a unit cell for a quasi-homeostat. An input cell is connected to an array of duplicated column cells that inputs in a microcircuit
behaving as an XOR logic gate (blue) subtracting signals from the two parallel columns. A fraction of the network output is diverted to activate an inhibitory neuron
(red) that feedbacks to the origin of the duplicated columns. Since the corresponding connections cannot be coded individually, they will also connect to adjacent
columns and trigger their activity, initiating a scanning process.

spatially constrained by contiguity, it will give the recall of
memories a spatial component, such as we all experience when
we have to retrace our steps to find a memory that has just
escaped our attention.

THE COMPUTING BRAIN

A TM must separate the machine and the data/program
physically, noting that the data/program entity cannot be split
into specific entities but belongs to a single category, that is
processed by the machine to modify its state. Where does the
brain fit in this context? Can we distinguish between a set
of data/programs and the state machine that manages it? An
interesting observation from an interview by the Edge Magazine
with Freeman Dyson in 2001 gives us a hand in broadening our
discussion3. Freeman Dyson, as usual, is an extraordinary mind:
The two ways of processing information are analog and digital.
[.]. We define analog-life as life that processes information in
analog form, digital-life as life that processes information in digital
form. To visualize digital-life, think of a transhuman inhabiting
a computer. To visualize analog-life, think of a Black Cloud
[reference to the novel of Fred Hoyle (1957)]. The next question
that arises is, are we humans analog or digital? We don’t yet know
the answer to this question. The information in a human is mostly
to be found in two places, in our genes and in our brains. The
information in our genes is certainly digital, coded in the four-
level alphabet of DNA. The information in our brains is still a
great mystery. Nobody yet knows how the human memory works.
It seems likely that memories are recorded in variations of the
strengths of synapses connecting the billions of neurons in the
brain with one another, but we do not know how the strengths

3https://www.edge.org/conversation/freeman_dyson-is-life-analog-or-digital

of synapses are varied. It could well turn out that the processing
of information in our brains is partly digital and partly analog. If
we are partly analog, the down-loading of a human consciousness
into a digital computer may involve a certain loss of our finer
feelings and qualities.

An important feature that can be added to the question
posed by Dyson is that the brain, through its learning process,
constructs a hierarchical tree structure and symbolic links from
the data submitted to it (basically, it throws away most of
the data, condenses it into another form at a higher level of
abstraction to sort and order it). Capturing the involvement
of elusive information is difficult (we still do not have a
proper formalism to describe what it is). The most common
approach to tie information to energy has been proposed by
Rolf Landauer and Charles Bennett, with the understanding that
during computation, creation of information is reversible (hence
does not dissipate energy) while erasing memory to make the
result of computation stand out against the background costs
kTln2 per bit of information (Landauer, 1961; Bennett, 1988b). It
is well established that the brain consumes a considerable amount
of energy, but the relationships with information processing have
not been investigated in-depth.

The word “program,” often used loosely to describe the
concrete implementation of a TM, implies the anthropocentric
requirement of a goal. However, a TM does not have an objective,
it is “declarative,” i.e., it functions as soon as a tape carrying
a string of data is introduced into its read/write machinery.
Understanding how it works is therefore better suited to the
idea of data not program manipulation. The distinction between
data and program opens a difficult scene in the concept of
information. Data has no meaning in itself, whereas the program
depends on the context (Danchin, 2009b). This distinction is
evident in the cell where genetic information duplicated during
the process of DNA replication starts as soon as a DNA double
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helix meets a DNA polymerase machinery. This process does
not see the biological significance of the encoded genes or other
features of the DNA sequence. This has been well established
with Bacillus subtilis cells transformed with a cyanobacterial
genome that is faithfully replicated but not expressed, whereas
it drives the synthesis of an offspring when present in its parent
host (Watanabe et al., 2012). This distinction between Shannon-
like information (meaningless) and information with “value”
has been discussed for a long time under the name “semantic”
information [(Bar-Hillel and Carnap, 1953; Deniz et al., 2019;
Lundgren, 2019; Miłkowski, 2021), see also emphasis on the
requirement for recursive modeling to account for information
in the brain (Conant and Ashby, 1970)]. However, with the
exception of the idea of logical depth, proposed by Bennett in
1988 (Bennett, 1988a), there is still no well-developed theory
on the subject. We will restrict our discussion to the role
of data in the TM.

The possibility of moving from one set of data to a smaller
set, as illustrated in the functioning of cortical layers, is quite
similar to the measure proposed by Bennett when he illustrated
Landauer’s principle by the process of arithmetic division. In
this illustration, Bennett showed that this operation could be
implemented in a reversible way, leaving the remainder of the
division as its result (Bennett, 1988b). However, in order to bring
out the division remainder, to make it visible, it is necessary
to erase all the steps that led to the result: this is what costs
energy. What is indeed important is the sorting that allows the
relevant data to be isolated from the background. To carry out
a sorting, a choice, it is necessary to carry out a measurement,
as Herbert Simon pointed out in his decision theory (Simon,
1974). In living cells, this process is fairly easy to identify in the
process of discriminating between classes of entities, for example
young and old proteins. In this case, the question is how to verify
that the cell is measuring something before “deciding” to degrade
a protein. Many ways of achieving this discrimination can be
proposed. In a cell, the cleaning process could simply be a prey-
predator competition between proteins and peptidases. It could
be the result of spatial arrangement with producing or moving
proteins in a place where there are few degrading enzymes, or the
fact that when the proteins are functioning, they form a block, an
aggregate, that is difficult to attack. All these processes dissipate
energy at steps that specifically involve information management
(Boel et al., 2019). But what about neural networks?

There is no doubt that the brain manipulates information
and computes. But where are its states stored and how are they
managed? Discrimination processes can easily be identified in
the way the brain tackles its environment, but where do we find
specific energy-dependent processes underlying discrimination?
Furthermore, there does not seem to be any data/program entity
that can be exchanged between brains. Homo sapiens is perhaps
an exception, when true language has been established. Animal
communication may also make use of the same observation, but
less obviously, and certainly not if we follow the Chomskian
definition of language (Hauser et al., 2002). Sentences can be
exchanged between different brains, in a way that alters the
behavior of the machine that carries the brain: this is particularly
visible with writing, which is the metaphor used by Turing, but

it is certainly true as soon as writing is established, which makes
writing the benchmark of humanity.

WRITING: TOWARD A TURING
MACHINE?

We enter here a very speculative section of this essay, meant
to help generate new visions of the brain’s competence and
performance. In fact, while von Neumann and others invented
computers with mimicking the brain in mind, the brain does
not appear to behave as a TM. Table 1 compares the key
features of a Turing Machine, a computer, and the human brain
(Table 1). In case we accept that the brain could work as a
digital computer, several features of the digital world should be
highlighted as they should have prominent signatures. Among
those that have unexpected but recognizable consequences, we
find recursion (Danchin, 2009a) and this fits with the concept
of reentry. An original feature of the TM is that it allows
recursion. Recursion is built into numerical worlds when a
routine executes a program that calls itself. A consequence
of recursion, which was addressed by Hofstadter in his Gödel
Escher Bach (Hofstadter, 1999), is that it produces inherently
creative behavior (i.e., giving rise to something that has no
precedent), a feature commonly observed in the role of the
brain. This happens in cells, even before they multiply (especially
when they repair their DNA, during the stationary phase). The
digital life of the cell provides a recursive way to creatively
explore its future. Creation is also a key feature of TMs,
and brains. Consider the wiring diagram of the mammalian
brain comprised as it is of parallel cortico-striatal-thalamo-
cortical loops each specialized for motor, visual, motivational,
or executive functions (Alexander et al., 1986; Seger, 2006).
These canonical loops provide the essential circuitry for recursive
information processing, as observed in the creation of complex
abstract rules from simple sensory motor sequences (Miller and
Buschman, 2007). An elegant study stimulated the mossy fiber
component of the cerebellar circuity within the additional parallel
cortico-cerebellar-thalamo-cortical loop to causally demonstrate
recursion in the formation of a classically conditioned eyeblink
response (Khilkevich et al., 2018). Indeed, such recursion-
implementing circuity is widespread and characteristic of the
mammalian brain (Alexander et al., 1986).

Among the characteristics necessary to identify a TM is the
physical separation of the data/program from the machine that
interprets it. The data/program entity is illustrated as a string of
symbols, a purely digital representation. The metaphoric string
of the Universal TM can be embodied into a variety of strings
(parallelization is allowed). A brain, on the other hand, seems to
work with a completely different approach. There is no separate
program involved in its operation. It is simply “programmed”
by the interconnections between its active components, neurons.
The brain does not appear to fetch instructions or data from
a memory located in a well-defined area, decode and interpret
instructions etc. Neurons get input data from other neurons,
operate upon these data and generate output data that are fed to
receiving neurons. Memory is distributed all over the brain tissue.
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TABLE 1 | Some specific features of a Turing Machine, a computer, and
the human brain.

Turing
Machine

Computer Brain

Separation
data/machine

Yes Yes No in general
Yes for grammatical
language
performance and
numbering

Declaration Yes No (not yet) Yes

Prescription No Yes Yes in social
organisms

Digital Yes Yes Limited to
numbering and
language
performance

Analog No Yes for the
machine

Yes

Recursive Yes Yes Yes

States Finite Many finite states Unlimited, poorly
defined

Organizational
granularity

Two separate
levels

Multilevel Multilevel

Memory Past state RAM and ROM Distributed, limited
only by lifespan

Computation Algorithmic Algorithmic
(heuristics can be
implemented via
algorithms)

Heuristic and
algorithmic

This view is a bit oversimplified but it is enough to bring us to
the following questions. Do we find entities that can be separated
from the brain, extracted and reintroduced, in the way it works?
In an animal brain, the question is to understand what might play
the role of strings of symbols.

Separation has a considerable consequence: it requires some
kind of communication and exchange, which could occur
between parts of the brain. This feature was discussed in an
interesting essay by Julian Jaynes, where he surmised that
consciousness emerged from a dialog between coded sequences
between the brain hemispheres [our ancestors had “voices”
(Jaynes, 2000)]. While this vision is now obsolete, it points out
how this could be the first step of a pre-TM where the brain
exchanges strings of signals between hemispheres (contemporary
views consider areas rather than hemispheres, with particular
emphasis on inhibition) to generate novel information. In
fact, such phenomena have been experimentally demonstrated
by interhemispheric transfer and interhemispheric synthesis of
lateralized engrams, studies that exploited the ability to reversibly
silence one and then the other of the brain’s bilateral structures
(Nadel and Buresova, 1968; Fenton et al., 1995). This organization
of the cortex is also used by animals to map future navigation
goals (Basu et al., 2021). Alongside this evolution of information
transfer within the brain, strings of symbols could be exchanged
between brains, implying that the social brain is at the heart of
what is needed for a brain to become a TM. When language
comes into play (probably first through grammatically organized
phonemes and then through writing), part of the brain may

behave as a digital device, with important properties derived from
the corresponding TM scenario. This is what is happening now,
when you read this text: your brain behaves like a TM, and you
can modify the text, exchange it via someone else’s brain, etc.
In fact, some of this may already be true in the ability to see.
The images seen by the retina are in a way digitized via the
very construction of the retina as layers of individual cells, that
“pixelize” the image of the environment. It is not far-fetched to
assume that the processing of the corresponding information by
brain neural networks has retained some of the characteristics of
this digitization.

Before the invention of writing, making reusable tools would
also represent a primitive way of implementing a TM. Homo
sapiens is one of the very few animals to do so. In birds, tools
can be made, but tool reuse and tool exchange have rarely been
observed. It may therefore be that the genus Homo began to
build a TM-like brain, but that its actual implementation as
an important feature only appeared with complex languages
(i.e., with grammatical properties linked to a syntax of the
type described by Noam Chomsky) and, most importantly, with
the invention of writing. Looking again at the network layer
organization of the cortex, we can see that there is a certain
analogy between the simplest elements of syntactic structures and
this neural structure. The afferent pathways (and not the cells), all
constructed in the same way (but not identical), would represent
the nominal syntagm (with all that the numerous variants of
afferents, interferences, modifications can bring to meaning) and
the cells integrating their output commands, the verbal syntagm
(with all that this implies in terms of motor actions, including
imaginary ones, since by construction the verbal syntagm acts
on the nominal syntagm.) This is a gradual evolution, which
will certainly undergo further stages in the future. Invention of
language with its linear sequences of phonemes, when spoken,
and letters when written, would mark, in Homo sapiens the
transition moment when it behaved as a Turing Machine and
separate human beings from other animals. One caveat, though.
The emphasis here has been on one of the characteristics of the
TM, namely the physical separation of the data from the machine,
where data can be replaced by other data without changing
the specific nature of the machine. However, there is a second
essential characteristic of a TM: it is a finite state machine. It
would be difficult to accept that the brain behaves like such a
machine. Even its states are quite difficult to identify (although
progress in identifying the functioning of various areas may
provide some insight into the localized features of specific states).
It would be necessary to validate the hypothesis discussed here, to
couple the way writing is used with specific states. This remains
quite futuristic.

IN GUISE OF CONCLUSION: THE BRAIN
IS NOT A DIGITAL COMPUTER, BUT IT
COULD EVOLVE TO BECOME ONE

This essay is not intended to review the vast amount of work
exploring the computational capacity of the human brain. We
have extracted from the literature leads that have allowed us
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to find new answers to the question: is the brain a digital
computer? As a final clue, we could ask whether we can be
infected by a computer virus. It may sound far-fetched, but
yes, it is apparently possible, as we see with fake news or
memes that spread via social media. Both are, however, linked
to the language processing ability of the human brain. Social
media manage information with an explicit separation of data
and a machine. This observation is reminiscent of the way
the mind/body problem is asked: there is no “ghost in the
machine” (Ryle, 2009), but nobody would doubt that brain
manages information in a very efficient way. However, this
affirmation does not tell us whether this is made in an analog or
digital way. Nevertheless, the consequences for pedagogy of the
algorithmic vision are considerable. Learning to read by “gazing”
at written words is a matter of the brain’s as an analog device
vision, while reading by breaking words down into syllables is a
matter of digital vision. Forgetting the algorithmic nature of the
corresponding processes must have deep consequences in terms
of the organization of the brain, and possibly jeopardize long
term cognition abilities. It has been proposed that cells may act
as computers making computers, with an algorithmic description
of the cell’s behavior based on the way macromolecules are
synthesized, with the key role of the genetic code with the
algorithmic description of decoding (Danchin, 2009a). With the
view that the human brain might be on its way to become
a TM, Nature would have discovered twice the importance of

coding and recursion, in the emergence of cell life with the
discovery of the genetic code, first, and in the emergence of
writing, quite recently.
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The Brain-As-Computer Metaphor
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He thought he saw an elephant
That practiced on a fife
He looked again, and found it was
A letter from his wife

–Lewis Carroll1

I write as someone who is old (I’m approaching my 93rd birthday) and has a brain. While I
claim no expertise in brain science, I hope to suggest questions that might occur to a
computer scientist thinking about the brain. What little I have learned about the brain
comes from a few books (Patricia, 1986; Dennett, 1991; Hobson, 1994). I have also
benefited from lectures by Patricia Churchland, one of the authors.

Having an old brain is not wonderful; I can’t help but be aware of howmuch of what it could do when
I was twenty is gone. It is so slow. However, this does provide one advantage: Various stages of
processes that my brain carries out, that in past years would have gone by too quickly for me to have
noticed them, are now quite evident.2

1 DOES THE BRAIN USE ALGORITHMS?

I ask my friend: “Have you ever read anything by Turgenev?” Her negative reply comes with no
pause. Does her brain have a database of fiction she has read? Is her brain using a search algorithm? If
not, how else can we imagine this feat accomplished?

I ask: “What’s the name of the man you were seated next to at dinner last night?” She doesn’t
remember. A half hour later, while we were talking about something different, she says“I remember
now, Jerome’s his name. It just popped into my head.” If the brain used a search algorithm to do this,
might it be different from that of the previous example, a slower, but more methodical, procedure?

Can we imagine a device made from the brain’s “hardware” that can execute search algorithms?
Or arbitrary algorithms for that matter? In my (Davis, 2017), I emphasized that very little is needed
for Turing completeness. No doubt a universal computer could be built with the brain’s neurons.
However, it’s much less clear that one could evolve. The case of the genetic code in which amino acids
are coded by strings suggests that the possibility is not so far fetched. Also in fact, spoken and written
language are examples of arbitrary symbols representing objects, actions, and concepts.

Someone crosses a busy street, expertly weaving among the cars. Howwould one program a robot to do
this?Until recently, a process usingmuchnumerical computationwould be proposed.Nowadays, one could
consider the alternative of “training” amulti-level neural net for the purpose. It is certainly easier to imagine
brains doing something like this than carrying out a process involving a lot of arithmetic computation.
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A student is studying calculus, specifically integration. A
bunch of techniques are learned: change of variable,
integration by parts, partial fractions. How to decide which to
use when presented with a specific example? On the basis of their
own attempts as well as access to worked-out examples, students
can develop an intuition that guides them to the best choice of
technique. Is the student’s training like that of a neural net?

2 VISION AND OTHER BRAIN PRODUCTS
Scientists studying human vision have shown that what we “see”
is the result of complex data processing by the brain. Continuous
rapid eyeball motions send huge amounts of data to the brain
from which the brain produces the scene presented to us. Our
sense that we just see that which is before us is a brain product.
We actually “see” a sequence of converging edits (as Lewis Carroll
playfully suggests in the quoted excerpt in the heading). With my
slow old brain doing the work, early edits are sometimes of
sufficient duration that I “see” quite clearly something that isn’t
there, before the corrected version appears.

How much of our inner mental experience is similarly
illusory? Eighty years ago, I was approaching my thirteenth
birthday. I remember many things about my life and
experiences at that earlier time, but as we have learned, these
memories may be unreliable. I have a strong sense that the old
man writing this and that boy are different stages in life of the very
same person. But isn’t that very sense also a brain product?

3 DOES THE BRAIM HAVE AN OPERATING
SYSTEM?

Many years ago, there was a candy vending machine where I
worked. For health reasons, I needed to avoid being tempted by

its offerings. One day, passing the machine on my way frommy
office to the men’s room. I was strongly tempted because one of
my favorites, chocolate with almonds, had just become
available. I resolved to resist the temptation and thought no
more about it. As I walked back to my office from the toilet,
thinking about a mathematical problem, I noticed that I was
eating that delicious candy bar with no memory of having
bought it.

This story can be conceptualized as a struggle among three
brain processes, we may call: EatTheSweet, EatHealthy, and
DoMath. EatHealthy executes and stops EatTheSweet. Then
later, while DoMath is going at full blast, EatTheSweet sees its
chance and executes. What controls this? In a computer, it
would be the operating system that allocates resources to
processes and permits them to execute. One can certainly
imagine that the multitasking brain possesses some such
mechanism controlling its hundreds of processes, some
struggling for attention and resources. But an operating
system needs a user interface. And where and what is the
user?

Our sensation of consciousness and, in particular, our I-me
sense of ourself as an individual, have presumably evolved
because having them provides an evolutionary advantage. I
suggest that functionally, consciousness serves as an interface
to the brain’s operating system. And furthermore, that the I-me
sense, perhaps the most remarkable brain product, functions as
the user.
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There is no agreed definition of intelligence, so it is problematic to simply ask whether

brains, swarms, computers, or other systems are intelligent or not. To compare

the potential intelligence exhibited by different cognitive systems, I use the common

approach used by artificial intelligence and artificial life: Instead of studying the substrate

of systems, let us focus on their organization. This organization can be measured with

information. Thus, I apply an informationist epistemology to describe cognitive systems,

including brains and computers. This allows me to frame the usefulness and limitations

of the brain-computer analogy in different contexts. I also use this perspective to discuss

the evolution and ecology of intelligence.

Keywords: mind, cognition, intelligence, information, brain, computer, swarm

1. INTRODUCTION

In the 1850s, an English newspaper described the growing global telegraph network as a “nervous
system of the planet” (Gleick, 2011). Notice that this was half a century before Ramón y Cajal (1899)
first published his studies on neurons. Still, metaphors have been used since antiquity to describe
and try to understand our bodies and our minds (Zarkadakis, 2015; Epstein, 2016): humans have
been described as made of clay (Middle East) or corn (Americas), with flowing humors, like
clockwork automata, similar to industrial factories, etc. The most common metaphor in cognitive
sciences has been that of describing brains as computers (von Neumann, 1958; Davis, 2021).

Metaphors have been used in a broad range of disciplines. For example, in urbanism, there
are arguments in favor of changing the dominant narrative of “cities as machines” to “cities as
organisms” (Batty, 2012; Gershenson, 2013b).

We can have a plethora of discussions on which metaphors are the best. Still, being pragmatic,
we can judge metaphors in terms of their usefulness: if they help us understand phenomena
or build systems, then they are valuable. Notice that then, depending on the context, different
metaphors can be useful for different purposes (Gershenson, 2004). For example, in the 1980s, the
debate between symbolists/representationists (brain as processing symbols) (Fodor and Pylyshyn,
1988) and connectionists (brain as network of simple units) (Smolensky, 1988) did not end
with a “winner” and a “loser,” as both metaphors (computational, by the way) are useful in
different contexts.
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There have been several other metaphors used to describe
cognition, minds, and brains, each with their advantages and
disadvantages (Varela et al., 1991; Steels and Brooks, 1995;
Clark and Chalmers, 1998; Beer, 2000; Gärdenfors, 2000; Garnier
et al., 2007; Chemero, 2009; Froese and Ziemke, 2009; Kiverstein
and Clark, 2009; Froese and Stewart, 2010; Stewart et al.,
2010; Downing, 2015; Harvey, 2019). It is not my purpose to
discuss these here, but to notice that there is a rich variety of
flavors when it comes to studying cognition. Nevertheless, all
of these metaphors can be described in terms of information
processing. Since computation can be understood as the
transformation of information (Gershenson, 2012), “computers,”
broadly understood as machines that process information can be
a useful metaphor to contain and compare othermetaphors. Note
that the concept of “machine” (and thus computer) could also be
updated (Bongard and Levin, 2021).

Formally, computation was defined by Turing (1937). A
computable function is that which can be calculated by a
Universal Turing Machine (UTM). Still, there are two main
limitations of UTMs related to modeling minds (Gershenson,
2011a):

1. UTMs are closed. Once a computation begins, there is
no change in the program or data, so adaptation during
computation is limited.

2. UTMs compute only once they halt. In other words, outputs
depend on a UTM “finishing its computation.” Still, minds
seem to be more continuous than halting. Then the question
arises: what function would a mind be computing?

As many have noted, the continuous nature of cognition seems
to be closely related to that of the living (Maturana and
Varela, 1980; Hopfield, 1994; Stewart, 1995; Walker, 2014). We
have previously studied the “living as information processing”
(Farnsworth et al., 2013), not only at the organism level, but at
all relevant scales. Thus, it is natural to use a similar approach to
describe intelligence.

Note that the limitations of UTMs apply only for theoretical
computation. In practice, many artificial computation systems
are continuous, such as reactive systems. An example would be
an operating system, that does not precisely halt, but is always
expecting events (internal or external) and responding to these.

In the next section, I present a general notion of information
and its limits to study intelligence. Then, I present the advantages
of studying intelligence in terms of information processing.
Intelligence is not restricted to brains, and swarms are a classic
example of this, which can also be described as information
processing systems. Before concluding, I exploit the metaphor
of “intelligence as information processing” to understand its
evolution and ecology.

2. INFORMATION

Shannon (1948) proposed a measure of information in the
context of telecommunications, that is equivalent to Boltzmann-
Gibbs entropy. This measure characterizes how much a receiver
“learns” from incoming symbols (usually bits) of a string, based

on the probability distribution of previously known/received
symbols: if new bits can be completely determined from the
past (as in a string with only one repeating symbol), then they
carry zero information (because we know that the new symbols
will be the same as previous ones). If previous information is
useless to predict the next bit (as in a random coin toss), then
the bit will carry maximum information. Elaborating on this,
Shannon calculated howmuch redundancy is required to reliably
transmit a message over an unreliable (noisy) channel. Even
when Shannon’s purpose was very specific, the use of information
in various disciplines has exploded in recent decades (Haken,
1988; Lehn, 1990; Wheeler, 1990; Gell-Mann and Lloyd, 1996;
Atlan and Cohen, 1998; DeCanio and Watkins, 1998; Roederer,
2005; von Baeyer, 2005; Cover and Thomas, 2006; Prokopenko
et al., 2009, 2011; Batty et al., 2012; Escalona-Morán et al., 2012;
Gershenson, 2012, 2020, 2021b; Fernández et al., 2014, 2017;
Zubillaga et al., 2014; Haken and Portugali, 2015; Hidalgo, 2015;
Murcio et al., 2015; Amoretti and Gershenson, 2016; Roli et al.,
2018; Equihua et al., 2020; Krakauer et al., 2020; Scharf, 2021).

We can say that electronic computers process information
explicitly, as we can analyze each change of state and information
is encoded in a precise physical location. However, humans
and other animals process information implicitly. For example,
we say we have memories, but these are not physically at a
specific location. And it seems unfeasible to represent precisely
the how information changes in our brains. Still, we do process
information, as we can describe “inputs” (perceptions) and
“outputs” (actions).

Shannon assumed that the meaning of a message was agreed
previously between emitter and receiver. This was no major
problem for telecommunications. However, in other contexts,
meaning is not a trivial matter. Following Wittgenstein (1999),
we can say that the meaning of information is given by the use
agents make of it. This has several implications. One is that
we can change meaning without changing information [passive
information transformation; (Gershenson, 2012)]. Another is the
limits on artificial intelligence (Searle, 1980; Mitchell, 2019), as
the use of information in artificial systems tends to be predefined.
Algorithms can “recognize” traffic lights or cats in an image,
as they are trained for this specific purpose. But the “meaning”
for computer programs is predefined, i.e., what we want the
program to do. The quest for an “artificial general intelligence”
that would go beyond this limit has produced not much more
than speculations.

Even if we could simulate in a digital computer all the neurons,
molecules, or even elementary particles from a brain, such a
simulation would not yield something akin to a mind. On the
one hand, interactions generate novel information at multiple
scales, so we would need to include not only brain, but body
and world that interacts with the brain (Clark, 1997). Moreover,
such a simulation would require to model not only one scale,
but all scales relevant to minds (see below). On the other hand,
as mentioned above, observers can give different meanings to
the same information. In other words, the same “brain state”
for different people could refer to different “mental states.” For
example, we could use the same simple “neural” architecture of a
Braitenberg vehicle (Braitenberg, 1986) that exhibits phototaxis,
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but connect the inputs to different sensors (e.g., sound or odor,
instead of light), and the “meaning” of the information processed
by the same neural architecture would be very different. In a
sense, this is related to the failure of Laplace’s daemon: even
with full information of the states of the components of a
system, prediction is limited because interactions generate novel
information (Gershenson, 2013a). And this novel information
can determine the future production of information at different
scales through upward or downward causation (Campbell, 1974;
Bitbol, 2012; Farnsworth et al., 2017; Flack, 2017), so all relevant
scales should be considered (Gershenson, 2021a). An example
of downward causation can be given with money: it is a social
contract, but has a causal effect on matter and energy (physics),
e.g., when we extract minerals from a mountain. This action
does not violate the laws of physics, but the laws of physics are
not enough to predict that the matter in the mountain will be
extracted by humans for their own purposes.

In spite of all its limitations, the computer metaphor can
be useful in a particular way. First, the limits on prediction by
interactions are related to computational irreducibility (Wolfram,
2002). Second, describing brains and minds in terms of
information allows us to avoid dualisms. Thus, it becomes natural
to use information processing to describe intelligence and its
evolution. Finally, information can contain other metaphors and
formalisms, so it can be used to compare them and also to exploit
their benefits.

3. INTELLIGENCE

There are several definitions of intelligence, but not a single
one that is agreed upon. We have similar situations with
the definitions of life (De Duve, 2003; Aguilar et al., 2014),
consciousness (Michel et al., 2019), complexity (Lloyd, 2001;
Heylighen et al., 2007), emergence (Bedau and Humphreys,
2008), and more. These concepts could be said to be of the type
“I know it when I see it,” to quote Potter Stewart.

Still, having no agreed definition is no motive nor excuse
for not studying a phenomenon. Moreover, having different
definitions for the same phenomenon can give us broader
insights than if we stick to a single, narrow, inflexible definition.

Thus, we could define intelligence as “the art of getting away
with it” (Arturo Frappé), or “the ability to hold two opposed
ideas in mind at the same time and still retain the ability to
function. One should, for example, be able to see that things
are hopeless and yet be determined to make them otherwise”
(F. Scott Fitzgerald). Turing (1950) proposed his famous test to
decide whether a machine was intelligent. Generalizing Turing’s
test, Mario Lagunez suggested that in order to decide whether
a system was intelligent, first, the system has to perform an
action. Then, an observer has to judge whether the action was
intelligent or not, according to some criteria. In this sense, there
is no intrinsically intelligent behavior. All actions and decisions
are contextual (Gershenson, 2002). Like with meaning, the same
action can be intelligent or not, depending on the context and on
the judge and their expectations.

Generalizing, we can define intelligence in terms of
information processing: An agent a can be described as
intelligent if it transforms information [individual (internal) or
environmental (external)] to increase its “satisfaction” σ .

I have previously defined satisfaction σ ∈ [0, 1] as the degree
to which the goals of an agent have been fulfilled (Gershenson,
2007, 2011b). Certainly, we still require an observer, since we are
the ones who define the goals of an agent, its boundaries, its scale,
and thus, its satisfaction. Examples of goals are sustainability,
survival, happiness, power, control, and understanding. All of
these can be described as information propagation (Gershenson,
2012): In this context, an intelligent agent will propagate its
own information.

Brains by themselves cannot propagate. But species of animals
with brains tend to propagate. In this context, brains are parts of
agents that help process information in order to propagate those
agents. From this abstract perspective, we can see that such ability
is not restricted to brains (Levin and Dennett, 2020). Thus, there
are other mechanisms capable of producing intelligent behavior.

4. SWARMS

There has been much work related to collective intelligence and
cognition (Hutchins, 1995; Heylighen, 1999; Reznikova, 2007;
Couzin, 2009; Malone and Bernstein, 2015; Solé et al., 2016).
Interestingly, groups of humans, animals or machines do not
have a single brain. Thus, information processing is distributed.

A particular case is that of insect swarms (Chialvo and
Millonas, 1995; Garnier et al., 2007; Passino et al., 2008; Marshall
et al., 2009; Trianni and Tuci, 2009; Martin and Reggia, 2010),
where not only information processing is distributed, but also
reproduction and selection occur at the colony level (Hölldobler
and Wilson, 2008).

To compare the cognitive architectures of brains and swarms,
I previously proposed computing networks (Gershenson, 2010).
With this formalism, it can be shown that the differences
in substrate do not necessarily imply a theoretical difference
in cognitive abilities. Nevertheless, in practice, the speed and
scalability of information processing of brains is much superior
than that of swarms: neurons can interact in the scale of
milliseconds, and mammal brains can have a number of neurons
in the order of 1011 with 1014 synapses (several species have more
neurons than humans, including elephants and some whales,
orcas having the most and more than twice as humans). The
largest insect swarms that have been registered (locusts) are also
in the order of 1011 individuals (covering 200Km2). However,
insects interact in the scale of seconds, and only with their local
neighbors. In theory, it might not matter much. But in practice,
this limits considerably the information processing capacities of
swarms over brains.

Thus, the brain as computer metaphor is not appropriate for
studying collective intelligence in general, nor swarm intelligence
in particular. However, the intelligence of brains and swarms can
be described in terms of information processing, as an agent a can
be an organism or a colony, with its own satisfaction σ defined by
an external observer.
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Another advantage of studying intelligence as information
processing is that we can use the same formalism to
study intelligence at multiple scales: cellular, multicellular,
collective/social, and cultural. Curiously, at the global scale
(where we might reach a scale of 1011 humans later this century),
the brainmetaphor has also been used (Mayer-Kress and Barczys,
1995; Börner et al., 2005; Bernstein et al., 2012), although its
usefulness remains to be demonstrated.

5. EVOLUTION AND ECOLOGY

If we want to have a better understanding of intelligence,
we must study how it came to evolve. Intelligence as
information-processing can also be useful in this context, as
different substrates and mechanisms can be used to exhibit
intelligent behavior.

What could be the ecological pressures that promote the
evolution of intelligence? Since environments and ecosystems
can also be described in terms of information, we can say
that more complex environments will promote—through natural
selection—more complex organisms and species, which will
require a more complex intelligence to process the information
of their environment and of other organisms and species they
interact with (Gershenson, 2012). In this way, the complexity of
ecosystems can also be expected to increase though evolution.
It should be noted that we understand complexity as a balance
between order and chaos, stability and change (Packard, 1988;
Langton, 1990; Lopez-Ruiz et al., 1995; Fernández et al., 2014;
Roli et al., 2018). Thus, species cannot be too robust or too
adaptable in order to thrive in a complex ecosystem. This
certainly will depend on how stable or volatile the ecosystems
will be Equihua et al. (2020), but it is clear that organisms require
to match the variety that their environment poses (Ashby, 1956;
Gershenson, 2015) (see below).

These ideas generalize Dunbar’s (1993, 2003) “social brain
hypothesis”: larger and more complex social groups put a
selective pressure on more complex information processing
(measured as the neocortex to bodymass ratio), which gives
individuals more cognitive capacities to recognize different
individuals, remember who can they trust, multiple levels of
intentionality (Dennett, 1989), and so on. In turn, increased
cognitive abilities lead to more complex groups, so this cycle
reinforces the selection for more intelligent individuals.

One can make a similar argument using environments
instead of social groups: more complex ecosystems put a
selective pressure for more intelligent organisms, social groups,
and species; as they require greater information-processing
capabilities to survive and exploit their environments. This
also creates a feedback, where more complex information
processing by organisms, groups, and species produce more
complex ecosystems.

However, individuals can “offload” their information
processing to their group or environment, leading to a decrease
in their individual information processing abilities (Reséndiz-
Benhumea et al., 2021). This is to say that intelligence does

not always increase. Although there is a selective pressure for
intelligence, its cost imposes limits that depend as well on the
usefulness of increased cognitive abilities.

Generalizing, we can say that information evolves to have
greater control over its own production (Gershenson, 2012).
This leads to more complex information-processing, and thus,
we can expect intelligence to increase at multiple scales through
evolution, independently on the substrates that actually do the
information processing.

Another way of describing the same: information is
transformed by different causes. This generates a variety of
complexity (Ashby, 1956; Gershenson, 2015). More complex
information requires more complex agents to propagate
it, leading to an increase of complexity and intelligence
through evolution.

At different scales, since the Big Bang, we have seen an increase
of information processing through evolution. In recent decades,
this increase has been supraexponential in computers (Schaller,
1997). Although there are limitations for sustaining this rate of
increase (Shalf, 2020), we can say that the increase of intelligence
is a natural tendency of evolution, be it of brains, swarms, or
machines. This will not lead to a “singularity,” but to an increase
of the intelligence and complexity of humans, machines, and the
ecosystems we create.

6. CONCLUSION

Brains are not essential for intelligence. Plants, swarms, bacterial
colonies, robots, societies, and more exhibit intelligence without
brains. An understanding of intelligence (and life, Gershenson
et al., 2020) independently of its substrate, in terms of
information processing, will be more illuminating that focussing
only on the mechanisms used by vertebrates and other animals.
In this sense, the metaphor of the brain as a computer, is limited
more on the side of the brain than on the side of the computer.
Brains do process information to exhibit intelligence, but there
are several other mechanisms that also process information to
exhibit intelligence. Brains are just a particular case, and we can
learn a lot from them, but we will learn more if we do not limit
our studies to their particular type of cognition.
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Philosophers have long recognized the value of metaphor as a tool that

opens new avenues of investigation. By seeing brains as having the goal

of representation, the computer metaphor in its various guises has helped

systems neuroscience approach a wide array of neuronal behaviors at small

and large scales. Here I advocate a complementary metaphor, the internet.

Adopting this metaphor shifts our focus from computing to communication,

and from seeing neuronal signals as localized representational elements to

seeing neuronal signals as traveling messages. In doing so, we can take

advantage of a comparison with the internet’s robust and e�cient routing

strategies to understand how the brain might meet the challenges of network

communication. I lay out nine engineering strategies that help the internet

solve routing challenges similar to those faced by brain networks. The internet

metaphor helps us by reframing neuronal activity across the brain as, in part, a

manifestation of routing, which may, in di�erent parts of the system, resemble

the internet more, less, or not at all. I describe suggestive evidence consistent

with the brain’s use of internet-like routing strategies and conclude that, even

if empirical data do not directly implicate internet-like routing, the metaphor

is valuable as a reference point for those investigating the di�cult problem of

network communication in the brain and in particular the problem of routing.

KEYWORDS

computer metaphor, internet metaphor, systems neuroscience, theoretical

neuroscience, packet switching, brain dynamics, network communication,

computational neuroscience
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Metaphor consists in giving the thing a name which

belongs to something else.

Aristotle, Poetics xxi, tr. Bywater

Mathematics is the art of giving the same name to

different things.

Henri Poincaré, The Future of Mathematics, 1908

Introduction

Philosophers have long recognized that the development of

a new metaphor can encourage researchers to take unorthodox

ideas seriously (Bartha, 2022). In the sciences, new metaphor

can spur theorists to build classes of models different from those

that already exist. Each newmetaphor succeeds not by capturing

the exact workings of the analogized system but rather by

giving us a new vision of some otherwise unapproachable entity.

Theory in the physical sciences has been especially reliant on

insights from a succession of metaphors, each an improvement

on its predecessor: the container space metaphor for the physical

universe gives way to Einstein’s fabric of space time.

Metaphor is just as important if not more so to biological

theory. Its foundational idea, Darwinian evolution, was

crystalized in the metaphor of a tree. Darwin’s tree of life was not

literally a tree—all life does not spring forth from a single plant.

Instead, the metaphor brings together several key properties of

the system: rootedness, or the idea that the base of the system

of living organisms on earth has one or a small number of

main roots; divergence, or the idea that branches spread out

and bifurcate, but rarely inosculate (rejoin); and relatedness,

or the historical dependence and elaboration of distal twigs

on proximal branches. Though graphical depictions of various

proposals for the chain of life preceded Darwin, no one before

him had seen the problem in this way. The metaphor has

proven transformative. It remains in common use today even as

knowledge of phylogenetic complexity unknown to Darwin has

accumulated (Quammen, 2018).

We needed a metaphor for the brain, and
“the computer” has served us well

As attested by the present Research Topic articles—

and indeed most issues of any research journal in the

neurosciences—researchers rely on the computer metaphor

when studying the brain, even if they disagree about its

formulation and in what way it is useful (e.g., Richards and

Lillicrap, 2022). Historically, McCulloch and Pfeiffer (1949)

saw single neurons as a transistor in a “multi-gridded”

brain. Most prominently today, the metaphor inheres when

neuronal “representation” is seen as having the effect of

generating elements of Turing machine symbols and operations

(Richards and Lillicrap, 2022), or when neuronal tuning

properties are seen to serve as elements in a particular code (e.g.,

Olshausen and Field, 1996). One thing different instantiations

of the computer metaphor seem to have in common is that

they see things from the point of view representational elements

(see also Poldrack, 2021; Anderson and Champion, 2022; Brette,

2022; Hipólito, 2022; John, 2022). In this view, activity in a

given neuron embodies an act of representation in one form or

another (see e.g., Baker et al., 2022). A given pattern of activity in

neurons and/or across neuronal populations is seen to indicate

the brain’s invocation of a particular coding element (e.g., for

visual data, as a basis function, or as the features in some layer of

a convolutional neural network).

The “brain-as-representation machine” metaphor is also

made visible in works such as Gidon et al. (2022). These

authors propose a thought experiment regarding the nature

of consciousness and ask whether “replay” of neuronal signals

via external means is equivalent to an identical endogenous

experience. Whatever one thinks about the thought experiment,

it assumes brain function consists only of representational

processes, to the point where the authors illustrate the

procedure of the thought experiment with cartoon “play” and

“record” icons.

This view concretizes a particular understanding of the

brain’s goals, and facilitates the importation of ready insights,

tools, and methods from other fields, especially mathematics,

to attack the difficult problem of understanding the purpose

and meaning of neuronal signals. This effort has propelled the

field through a period of rapid advances in the 20th and 21st

centuries (Cobb, 2020; Lindsay, 2021). The metaphor helped

identify a problem to be solved, and offered a range of more

and less literal implementations to consider. Even as the limits

of the metaphor are probed, it retains value as an impetus and

sometimes a foundation for more precise understanding.

A new metaphor: The internet

As useful as the representational metaphor is, it cannot

capture all system goals when the system is as complex as

the brain. Brains instantiate many goals. For this reason, not

all signals extracted from the brain should necessarily be seen

to serve the goal of representation. Here I argue for another

class of metaphors that we can invoke in addition to other

metaphors: the internet (Danilova and Mollon, 2003; Graham

and Rockmore, 2011; Oka et al., 2015; Graham, 2021).

The internet and the brain are clearly different, just as

physical computers, and indeed Turing machines, are different

from the brain. But, taking inspiration from the history of

computational neuroscience and its metaphorical framework,

we can profit from considering the conceptual infrastructure

for communication on the internet as a point of reference to

the problem space of network communication in the brain.
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This can help us determine which neuronal signals relate to

communication and which to representation, and in what way

representation and communication relate to each other.

If neurons compute, there is of course a superficial

correspondence between the brain as a whole and the

internet, since both systems involve the networked linkage

of many localized computational units. But one can’t simply

wire computers together and expect them to communicate

reliably. Even the simplest computer networks of the Web

1.0 era required “phenomenally complex” network engineering

(Meyers, 2004). A comprehensive and cohesive conceptual

framework is needed to make it work.

In adopting the internet metaphor, we attempt to see

the brain from the point of view of messages, rather than

representational elements. In neuronal terms, this shift implies a

consideration not only of how neurons relate to environmental

inputs and behavioral outputs—“outside-in neuroscience”—

but especially a consideration of how neurons relate to each

other—an “inside out” approach (Buzsáki, 2019; Fields et al.,

2022; Mayner et al., 2022). More specifically, the goal is to

understand how the brain’s vast and interconnected network of

elements organizes message passing within itself by examining

a variety of possible schemes for communication (Graham

et al., 2020). This approach is consonant with other integrative

conceptions of brain function such as neural re-use (Steriade,

2004; Anderson, 2010), neuronal recycling (Dehaene, 2005),

computational flexibility (Pessoa et al., 2019), and emergence

(e.g., Varley and Hoel, 2022), among others, and can be seen as

a way to bring these related proposals together under a common

and more concrete framework.

Historically, the goal of understanding network

communication was an initial impetus for the cybernetics

movement and has antecedents going back at least to Spencer

(1896). Pavlov (1927) and Sherrington (1947) highlighted the

problem as well, in part by making a comparison with telephone

and rail networks. But the advent of the modern internet in the

second half of the twentieth century, based on the conceptual

underpinning of packet-switched networking, transformed

understanding of distributed network communication. This

development had ramifications far and wide, and brain science

soon took notice. Just ahead of the launch of NSFNet, Poggio

(1984) had begun to sketch out a fundamental role for routing

in the brain, using the existing ARPANET’s packet-switched

routing system as an analogy. Since that time, others have built

models of routing on brain networks, though such ideas do

not always explicitly reference the internet. These include the

dynamic routing model (Olshausen et al., 1993) and the notion

of routing by synchrony (also called communication through

coherence: Fries, 2005; Mishra et al., 2006; Nádasdy, 2010), with

additional routing-based insights being offered by Wolfrum

(2010) and Navlakha et al. (2018), among others. The present

work is an attempt to unify and advance these investigations via

a more systematic examination of the characteristics of effective

routing, and to point out some of the challenges inherent in

network communication. Of particular importance is how the

internet flexibly deals with interacting signals that make use of

shared resources.1

What is routing?

Routing systems govern how messages travel among nodes

that are connected by links. Internet protocol embodies one

routing strategy, while other strategies include those underlying

postal and traditional telephone systems. Routing is necessary

when communicating nodes are separated in space by distances

much larger than the size of a node, and when nodes are not

all directly connected to one another. As such, routing requires

a degree of mutual trust among nodes and a preparedness for

faults and errors.

Though it is implemented locally, routing allows nodes

across the network to select different targets across the network

at will (Graham, 2014). Routing presumes that some nodes can

receive messages over multiple incoming edges and transmit

them over multiple outgoing edges, based on some rules or

algorithms. In the case of converging inputs, routing rules

arbitrate among messages arriving on different incoming edges.

When outgoing edges diverge, routing serves to direct messages

on outgoing edge(s). Routing thus serves to manage congestion

and enable flexibility in message passing.

Routing strategies become irrelevant if the number of

incoming and outgoing edges at all nodes is the same and

messages arriving at a node on edge a always leave on edge b.

However, the term “node” in this case loses its meaning. Each

path of incoming and outgoing edges through the node can be

simplified in a network description as a single edge, and the node

and indeed the network as such disappears.

Routing processes in the brain

While brains can manage message flow by reorganizing

connectivity (e.g., Fauth and Tetzlaff, 2016), this process is too

slow to direct neuronal signals over millisecond, second, and

minute timescales. Even if changes in network structure do alter

message flow, routing processes are still necessary to achieve

reliable, selective communication. Thus, if it is at all sensible

to describe brains as networks composed of nodes and edges,

then we need to consider how to find and execute paths on an

essentially fixed network, and how signal interactions might be

managed in brains like ours that have no central controller.

1 Others have noted additional metaphorical links to how applications

on the internet, such as the World Wide Web, organize distributed

information (Varela et al., 2001; Gri�ths et al., 2007). However, these

applications do not relate to routing per se, which is the focus of the

current paper.

Frontiers inComputer Science 03 frontiersin.org

123

https://doi.org/10.3389/fcomp.2022.976801
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Graham 10.3389/fcomp.2022.976801

What evidence is there that brains need to perform routing

of the kind described here? Though directmeasurement of signal

flow over structurally identified neuronal networks is not yet

robustly achievable, there are many levels of organization where

the need for routing is apparent, and where suggestive evidence

of routing processes has been found.

In terms of brain region structural connectivity, there is

clearly the possibility of routing, even if it is not normally

described in this way. Treating regions as nodes, with messages

incoming and outgoing along white matter tracts, signals arising

in a given region—say V1—can be sent via axons originating

in layer 2/3 or 4 directly to other regions (say V2), or along

projections via the thalamus to other cortical regions (with

potential for modulation of these signals by the cortical target),

or to thalamus and back to a different part of V1, or to other

cortical areas, and then on to propagate to other destinations

(see e.g., Reichova and Sherman, 2004; Anderson and Martin,

2016). Routing in this core of the network can happen very

quickly: signals can be relayed on round-trips between thalamus

and cortex in as little as 9 milliseconds (Briggs and Usrey,

2007). Though white matter signals may arrive in structurally

segregated parts of a region, they stand a good chance of

interaction given the high interconnectivity within regions, and

therefore appear subject to some system of routing.

Brain imaging studies have given functional indications

of routing at the regional level. In humans, Cole et al.

(2013), found evidence that frontal and parietal areas flexibly

communicate with different modalities as well as other systems

(e.g., motor) at different times. Gerraty et al. (2018) found

evidence that striatal nuclei can selectively engage different

cortical targets in different behavioral contexts. Mechanisms

that allow this kind of routing may involve synchronization of

subthreshold oscillations between or among areas (Singer, 1999;

Fries, 2005; Womelsdorf et al., 2007; Nádasdy, 2010; Gisiger

and Boukadoum, 2011; Palmigiano et al., 2017; Javadzadeh

and Hofer, 2021; Boroujeni and Womelsdorf, 2022; Sakalar

et al., 2022). Oscillatory mechanisms may also contribute to

routing functions within regions (e.g., communication between

subpopulations in V1; Gray et al., 1989).

At the level of single neurons, the ability to route or

“steer” messages on different paths has long been posited

for single neurons (Waxman, 1972; Scott, 1977). Several

single neuron-level cortical mechanisms have recently been

observed that could dynamically manage incoming messages.

For example, input selection may be partly shaped by

exclusive-or (XOR) gating at dendrites (Gidon et al., 2020)

or via other dendritic gating mechanisms (Steriade and

Paré, 2007; Gollisch and Meister, 2010; Oz et al., 2021).

Steering via axon gating is also possible given considerable

axonal branching in cortex (Winnubst et al., 2019) which

has long been suspected to allow transmission control at

branch points. Axonal mechanisms of routing could also

involve axon-axon interactions (e.g., Epsztein et al., 2010).

Other mechanisms that could perform routing at the single

neuron level have been suggested such as ephaptic interactions

(Sheheitli and Jirsa, 2020); glia-mediated synapses (Möller

et al., 2007); and local spreading of neuroendocrine molecules

(Bargmann and Marder, 2013). Probabilistic modeling of signal

transmission among four neurons in hippocampus provides

suggestive evidence consistent of a highly flexible capacity

for routing in the brain (Nádasdy et al., 1999), though

this study’s results can be interpreted in other ways; see

Section Introduction and Box 1 for a detailed discussion of

this study.

To integrate and understand how these kinds of

neurobiological mechanisms may be deployed to perform

routing, it is helpful to consider the strategies and goals that led

to the construction of the modern internet. I offer nine insights

that helped make the modern internet possible and begin to

apply these ideas to the brain. The goal is to move toward

more concrete models and hypotheses, though these are yet to

be developed.

Nine insights from internet engineering applied
to network communication in the brain

Internet routing protocol specifies communication

procedures and standards across essentially all modern

computer and mobile device networks. However, the internet

is defined not so much by its physical implementation in

linkages among devices but rather as a set of rules governing

the treatment of messages. The core framework for internet

communications is the open systems interconnection (OSI)

model. The OSI model is not a theory rooted in basic

mathematics or physics. Rather, it comprises two broad

branches: (1) a conceptual architecture for overall engineering

design to route messages successfully and (2) a hierarchy of

protocol standards. The simplified “layers” of the OSI protocol

model are briefly summarized in Figure 1.

The design goals of the OSI model and their implementation

on the modern internet are especially relevant for the

study of processes of routing in the brain, or what

might be called “communicatory neuroscience.” The

following sections highlight strands of neurobiological

evidence that are suggestive of—but do not verify—

neuronal implementations of sophisticated routing

strategies in the mammal brain; two lines of evidence are

examined in more detail and framed as interrogatives in

Boxes 1, 2.

Insight 1: Routing must be flexible

The internet’s flexibility is its central goal. In terms of

function, any sender and receiver, no matter their degree

of separation on the vast network, can communicate at will
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FIGURE 1

A simplified conceptual design of the internet protocol stack,

based on the open systems interconnection (OSI) model.

Network topology determines the passage of messages across

the network between hosts. The flow of data across the network

is organized into conceptual layers. A message originates in the

application layer and descends by way of the transport layer and

internet layer to a physical layer link (e.g., wire or fiber-optic

cable). At intermediary routers, messages ascend only to the

internet layer, which plans out the message’s forward route. The

message then returns to the physical layer for onward travel.

This diagram omits the presentation layer and the session layer,

which are less relevant for our purposes, and can be seen as part

of the application layer.

with each other, as long as a limited set of protocol is

followed. Crucially, flexible communication is delivered over

shared resources. As Danilova and Mollon (2003) observe,

“The essential feature of the Internet is that it eliminates

the need for a dedicated cable between any particular

pair of computers that need to communicate.” Flexibility

is needed not only in who communicates with whom, but

also what path messages take once targets are chosen (see

Insight 2) and what kinds of information nodes exchange

(Insight 5). Achieving the overarching goal of flexibility shapes

all other features, and these features are described in the

remaining sections.

Flexibility is similarly fundamental to the brain. Full

interconnectivity is impossible: in the human brain, it would

require a 20 km-wide head (Nelson and Bower, 1990). Moreover,

the behaviors and tasks brains need to accomplish in the world

and the brain’s network infrastructure strongly suggest flexible

control of information flow (Kreiter, 2020; Safron et al., 2022).

The most well-developed models of neuronal mechanisms

for this kind of flexibility relate to perceptual invariances

(Olshausen et al., 1993; see also Wiskott, 2006) and attention

(e.g., Mishra et al., 2006) but other “outside-in” functions like

flavor perception, decision making, reasoning, problem-solving,

sociality, planning, language, creativity, and many others also

plainly require flexible management of information flow. The

brain’s routing strategies must support the accomplishment

of highly varied tasks based on highly varied inputs, and

do so on a network structure that is fixed in the short

term. To take one example, it is possible for the brain to

extract different information from the same scene or context

depending on one’s goal (Günseli and Aly, 2020). Likewise,

decision making, whether modeled as evidence accumulation

in frontal neurons (Gold and Shadlen, 2007), or as some other

“choosing” process, must include delivery of chosen outputs

to distinct neuronal subsystems along paths that were equally

viable before the decision was “made.” Flexibility may also

help the brain to reroute signals around focal lesions without

growing new connections (Zalesky et al., 2007; Fornito et al.,

2015).

From an “inside-out” perspective, flexibility is suggested

by the evidence noted above of selective targeting at the

regional level and by the fact that there are numerous short

paths between most pairs of regions (considered further

in the next section). At the single cell level, suggestive

but not conclusive evidence for flexible steering of signals

comes from the in vivo electrophysiological study of

Nádasdy et al. (1999) discussed in Box 1. However, tracing

signal propagation across neuronal networks with known

connectivity, which could provide more conclusive evidence of

flexible routing, remains an unsolved problem in neuroscience

(see Box 1).

Insight 2: Routing should take
advantage of network structure

The founders of the modern internet saw that network

topology and the design of routing protocol were inextricably

linked. The two key innovations that led to the internet—

distributed network architecture and packet-based protocol—

were conceived in tandem by Baran (1964); see also

Boehm and Baran (1964).2 I will deal with the effects of

network architecture first, and consider its packeted nature in

the next section.

Baran realized that a distributed network—one that

compromised between a star-shaped network and a lattice—

would allow short paths between almost any pair of nodes,

2 British researcher Donald Davies made essentially the same two

proposals, also in 1964.
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BOX 1 Evidence for flexible routing in hippocampal circuits?

In Nádasdy et al. (1999), extracellular tetrode recordings were obtained from hippocampal CA1 pyramidal layer neurons in 18 rats during sleep and conditioned

wheel running. Clustering was performed on multi-channel signals to identify four individual neurons. The researchers then used Monte Carlo models to track

temporal patterns of spikes as they appeared to propagate between four hippocampal neurons. In particular, they used shuffling of spike train patterns to identify

patterns of spike timing in different neurons that could not be reasonably explained as chance occurrences. They interpreted these spike trains as messages passed

from neuron to neuron, which allows one to trace their putative paths of propagation, bearing in mind that ground-truth connectivity was not measured. Some of

the results obtained from this analysis are shown in Figure 2.

FIGURE 2

Exchange of spike train messages among four neurons over time in the rat hippocampus during wheel running. Messages are seen to pass among

four neurons, labeled A–D. Colors indicate messages traveling on the same path. Horizontal axis indicates time (0–200ms). Data from Nádasdy

et al. (1999), figure redrawn from Buzsáki (2004).

Interpreting these signal transmissions as messages, as the authors do, single neurons appear to have the ability to direct signals on different paths to the same

or different targets. These patterns of message flow also vary systematically between behavioral conditions (see Figure 4 in Nádasdy et al., 1999). Arrival times of

spike train messages show both short and long delays (latencies), indicating that messages may travel over one or more intermediaries when traveling between the

measured neurons (some delays were over 100 milliseconds). It is important to note that each of the message paths suggested here is not a one-off, but is rather a

path observed at least a dozen times, which suggests that polysynaptic (multi-hop) transmission is reliable. In sum, one interpretation of these data is that the routing

protocol that controls this subnetwork allows all of the following flexible behaviors:

• Sending messages to different destinations.

• Sending messages on different paths to the same destination.

• Sending messages on a given route with a small or large variation in timing.

• All of the above on polysynaptic paths.

• Flexibly changing routing in different behavioral contexts.

As noted above, connectivity was not measured in this study. One certainly cannot rule out the possibility that the observed patterns are artifacts of analysis, or

epiphenomena. It could certainly be the case that cells not recorded from are driving the four cells studied. For example, a given “control” cell could produce a

particular spiking pattern, which could be relayed by four sets of intermediaries that provide different delays such that that pattern appears at its observed targets at

corresponding times. Yet this interpretation would not necessarily invalidate the view that the system is demonstrating flexible routing. Intermediaries would need

to faithfully transmit the control message of the spike train in mostly unaltered form and they would need to “protect” these messages from interference from other

incoming signals, all while being able to change control patterns reliably both within and across behavioral states. For a common control cell to generate different

patterns of delay in the four observed neurons, the intermediaries would need to dynamically change their latencies, and/or selectively direct messages on different

intermediary paths.

Nevertheless, the results of Nádasdy et al. (1999) are ambiguous. More than two decades after this study, it remains very difficult to trace signals as they traverse

multiple nodes of known connectivity in a brain network (see van der Meij and Voytek, 2018; Hodassman et al., 2022). Models that rely on inferring causality

linking separate measurements of structure and activation (e.g., Javadzadeh and Hofer, 2021) can be misleading (see, e.g., Mehler and Kording, 2018; Brette, 2019;

Bruineberg et al., 2021).

But though tracing signal propagation faces great procedural challenges, part of the reason why studies that directly trace signal propagation remain rare may be

that we have not yet fully appreciated the challenges of flexible routing. As a result, we have limited expectations about what neuronal signatures to expect. Often, we

see a neuron’s “job” as participating in a computation or representation, where correlations between predicted patterns of activity and observed activity in a given

context are seen as sufficient evidence that the brain is carrying out the proposed computation. Approaches like Nádasdy et al. (1999), on the other hand, see spike

trains as indications that there are messages to be propagated (see also Luczak et al., 2013; discussed in Insight 4; Grosmark and Buzsáki, 2016). In this view, some

aspect of a spike-based message passed between neurons maintains coherence as it propagates, though its structure may be subject to new transformations as it

travels—analogously to the way an internet data packet is wrapped in different containers at different points in its journey (e.g., frames and flows). Approaches that

build on this insight may lead to advances in our understanding.
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BOX 2 Could thalamo-cortical loops deliver message acknowledgments (ACKs)?

The thalamus lies near the center of the human brain, and appears to play the role of network backbone (see Hilgetag et al., 2016). Under the “higher-order relays”

picture of connections between thalamus and cortex (Sherman and Guillery, 1998, 2001, 2002; see Figure 3), the thalamus contains first-order relays (e.g., lateral

geniculate), which receive inputs from the sensorium (e.g., retina). First-order relays pass those inputs on to first-order cortical targets (e.g., V1), which reciprocate

back to the same area of the thalamus. The thalamus also contains higher-order relays such as the pulvinar, which receive input from first-order cortical territories,

and have connections back to those first-order areas, as well as connections to “higher-order” cortical areas (e.g., V2). In this way, information can travel widely in

the cortex in just a few hops via thalamic relays.

FIGURE 3

A schematic, hypothetical model under which thalamic relays provide ACKs over the “higher-order relays” organization of thalamo-cortical

circuits (Sherman and Guillery, 1998, 2001, 2002). Under the scheme proposed in the current paper, messages containing “content” are sent by

“driver” neurons, while “modulators” return ACK-like messages back to thalamic senders, either directly or by way of the thalamic reticular nucleus.

If the driver’s message is delivered successfully, modulator ACK messages would prevent resending. If a timely ACK is not received, a driver in

thalamus could be triggered to resend the missing message. Note that an ACK sent from cortex to thalamus confirming receipt implicitly confirms

that the message successfully traveled on an earlier leg from cortex to thalamus (since thalamic excitations are seen as signals relayed from

elsewhere), perhaps obviating the need for ACKs on the earlier leg. Figure adapted from Reichova and Sherman (2004).

Given the comparatively large distances traveled between cortex and thalamus and the possibility of spike failure (which is more common in long axons), as well

as other types of message loss or corruption, some system of delivery verification would seem appropriate for this core of the brain network. The conventional idea

that descending connections serve to “adjust the weights” of incoming signals (e.g., as a way to modulate attention) does not explain why long loops to the thalamus

would be required—weights could in principle be adjusted by local circuits in cortex itself, without the cost, delay, and risk of making a long projection back to the

thalamus. Instead, this architecture appears better suited to flexible and verifiable message passing among cortical areas via the thalamus.

Cortico-thalamo-cortical communication in the Sherman and Guillery picture is thought to be mediated by two parallel links that go in opposite

directions: (1) “driver” connections originate in higher-order thalamic nuclei, traveling to higher-order cortical areas (drivers are also considered to

include projections from first-order thalamic relays, such as LGN, to first-order cortical areas, such as V1, and projections from layer 5 of first-order

cortical areas to higher-order thalamic relays, such as pulvinar); (2) “modulator” projections originate in layer 6 of the areas targeted by higher-

order thalamic relay drivers, and descend to the thalamus to synapse onto the dendritic arbors of drivers (Sherman and Guillery, 1998, 2001, 2002).3

Drivers form a minority of inputs but are seen to deliver primary messages. Modulators are much more numerous, and can affect the likelihood of transmission of

driver signals but do not seem to alter the content of those signals (e.g., they do not change receptive field properties of first-order thalamic relays from LGN to V1;

Reichova and Sherman, 2004). Modulators also connect to the thalamic reticular nucleus, which can exert inhibitory influence on most connections between the

thalamus and cortex.

3 Signals also travel via far more numerous cortico-cortical connections within gray matter. These connections seem to be classifiable as drivers

or modulators (Sherman and Guillery, 2011) and could conceivably support an acknowledgment system that runs in parallel to the postulated

thalamocortical system. However, such direct, short-range cortico-cortical connections may be reliable enough to not require ACKs.

(Continued)
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BOX 2 (Continued)

By thinking of the brain in terms of messages and routing, we can sketch a scheme by which thalamic relays could provide ACKs. Messages containing “content”

are sent by drivers, while modulators return ACK-like messages back to thalamic senders, either directly or by way of the thalamic reticular nucleus. If the message

is delivered successfully, modulator ACK messages would prevent resending via inhibition. If a timely ACK is not received, a driver in thalamus could be triggered

to resend the missing message. In this scheme, ACKs are not performed to confirm receipt of driver messages sent from cortex to thalamus. This may be a sensible

strategy. An ACK sent from cortex to thalamus confirming receipt implicitly confirms that the message successfully traveled on an earlier leg from cortex to thalamus

(since thalamic excitations are seen as signals relayed from elsewhere). Too many ACKs can clog a system so providing ACKs on only half of each loop could make

better use of bandwidth. One would predict that a capacity exists in the thalamus (possibly in the reticular nucleus) for buffering in case ACKs are not received in

the thalamus and driver messages need to be resent.4

Matsuyama and Tanaka (2021) have recently found in vivo electrophysiological evidence of “switch-type” neurons in higher-order thalamic nuclei in primates that

produce strong bursts after initial visual-auditory stimulus presentation (flash and tone), but become suppressive with repetition (see also Guo et al., 2017; Sieveritz

and Raghavan, 2021). This kind of behavior could serve as a building block for a system of ACKs like that described here (see also Crabtree, 2018). However, more

detailed models than can be offered here are needed. Indeed, the message acknowledgment scheme proposed here is merely a first step toward a model under a

reconceptualization of brain networks as communication systems, which co-exist with computational architectures. The scheme is not a model in and of itself. It

should also be emphasized that a solution like ACKs might make sense in cortical-subcortical loops but would not make sense in, for example, spinal reflex arcs,

where motor fibers need not receive neural feedback from muscles, but can rather rely on sensory feedback directly.

but without central switchboards. Short characteristic path

length (i.e., low average shortest path length) would later be

recognized as a defining property of “small-world” networks,

along with high clustering (Watts and Strogatz, 1998). Routing

design can take advantage of networks with short paths

between nodes. On the modern internet, this is achieved

through backbone nodes and peering, i.e., building short cuts

between subnetworks to achieve robust interconnection of

diverse entities spread across large distances. Not only are

paths short on a distributed network, Baran realized, there are

usually multiple short paths available, allowing compensation

for lost nodes and links, as well as for changes in traffic

volume. The system is designed specifically so that, as new

conditions arise, new routes are chosen, even as network

structure remains the same. This has been termed “robust yet

fragile” behavior (Li et al., 2004; Doyle et al., 2005; Sneppen et al.,

2005).

In the brain, the connectomics movement has shown that

network architecture is also characterized by short average path

lengths between nodes (see, e.g., Sporns, 2012). Cortical areas

of the macaque monkey are on average about 1.5 hops from

each other, and in the mouse the value is closer to 1 (e.g.,

Knoblauch et al., 2016; Gǎmǎnut et al., 2018). The value for

the entire primate connectome is not known but I predict it

is around 3 or 4 for most pairs of neurons (see also Parsons

et al., 2022). This implies that a given brain component can

and does interact with most other components via redundant

short paths.

4 On the internet, nodes use bu�ers to perform queueing, or lining up

incoming messages in a small memory allocation based on when they

arrived, and directing them on the proper outgoing path one-by-one. In

the brain, hypothetical bu�ers might only need to store a single message,

and for only a brief period. Delay circuit-like mechanisms for such bu�ers

have been proposed (Goldman-Rakic, 1996; Funahashi, 2015), and some

models of connectome dynamics include node bu�ers (Mišić et al., 2014;

Fukushima and Leibnitz, 2022). Bu�ers remain hypothetical but with the

impetus of the internet metaphor, they invite further investigation.

Moreover, connectivity in the brain is redundant at multiple

levels. Populations of e.g., neurons tuned to the same feature

such as orientation columns, are usually connected to common

target populations. At the level of brain regions, the network

statistic of “communication efficiency” (Latora and Marchiori,

2001) gauges the number of parallel short paths between a given

pair of nodes. This and related measures [“search information”

based on the measure of Rosvall et al. (2005)] are found to

be accentuated in brain networks, and conducive to effective

communication, in comparison to randomly rewired networks

of the same degree sequence (see e.g., Avena-Koenigsberger

et al., 2017; Seguin et al., 2018).

However, in the brain, the existence of short paths implies

that signals passed between components stand a good chance of

interacting with each other en route, potentially in deleterious

ways. This problem necessitates systematic routing strategies.

The likelihood of signal interactions on networks is greatly

reduced if the network has a different architecture, such as

a lattice or a tree, but this would engender longer paths

(but note that some network architectures that differ from

that of the internet and that of the connectome, such as

random Erdos-Renyi graphs, also have short characteristic path

lengths). Shortest path measures are often used in network

neuroscience to evaluate the ways that network architecture

affects communication among nodes. However, shortest paths

are only short if there is no possibility of message interaction,

and therefore of errors, congestion, and delay. As Seguin

et al. (2019) have argued, it is implausible that the brain has

global awareness of network structure necessary for finding

all shortest paths (but see Mišić et al., 2015). But it is less

plausible still that the brain can always use shortest paths without

running into congestion. Instead, in the following sections, I

consider local, protocol-based approaches to management of

short (but not necessarily shortest) paths and specifically how

the internet packages messages and shares communication links.

These strategies can serve as potential points of reference for

how the brain achieves parsimonious and reliable movement

of messages.
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The internet has additional architectural motifs such as

scale-free architecture (Barabási and Albert, 1999; Caldarelli

et al., 2000) and rich clubs (Zhou and Mondragón, 2004;

Colizza et al., 2006). Brains show some of these motifs (e.g.,

Van den Heuvel and Sporns, 2011). However, wiring patterns

in the brain are diverse. We should expect that specialized

motifs will shape the design of the brain’s routing strategies.

But these motifs should co-exist with global rules and the

network-wide phenomenon of short average path lengths. In this

context message interactions must be managed. Because they

produce nonlinear effects, principled numerical simulations of

routing protocols on brain networks may help us uncover

novel relationships between network structure and message

interactions on networks (see Hao and Graham, 2020).

Insight 3: Routing can exploit shared
resources

The existence of routing presupposes that one has specified

the nature of a message. Paul Baran’s second insight related to

the structure of messages. He realized that message components

need not be sent in contiguous units of arbitrary size, the way a

phone conversation or a postal letter is. Instead, messages can

be divided up into equal-sized chunks—packets—and spread

through the network dynamically. This approach was married

to a strategy of sharing resources and treating everyone’s packets

as interchangeable. Sharing in this way requires a leap of faith

that “my” message parts won’t get lost among those belonging

to everyone else as they travel across the network, since no one

has exclusive access to intermediary links. Baran and others

deliberately imbued each part of the network with sharing and

with trust in the wider network—this is the “openness” of the

OSI model. Organizing the use of shared resources over an

open, small-world network is accomplished by a collection of

communication engineering tricks, which are described in the

remaining sections.

If communication resources in the brain are shared, as

connectome structure described in Insight 2 implies, the system

might need to employ solutions like those of the internet.

It is worth considering if a shared resources strategy is

consistent with the finding of “non-necessary” neurons in the

frontal lobe, whose activity correlates with task performance,

but which can be lesioned without noticeable effect on task

performance (Tremblay et al., 2022). This result does not

necessarily make sense from the point of view of optimal

representation/computation or information theoretic efficiency.

But it could fit into a routing framework. These neurons could

be providing shared paths for relevant signals to traverse. In

a distributed routing system with shared resources, no single

router is strictly necessary, since signals can be actively rerouted.

Removing one or several “non-necessary” nodes performing

routing may not lead to a visible effect. In Tremblay et al.

(2022) data, task performance-related activity peaks at different

latencies in the “non-necessary” areas compared to “necessary”

areas. This is consistent with a picture where different parts

of the network are capable of flexibly transmitting the same

messages over different paths.

Of course, much caution is due here. Without knowing

network structure, results like Tremblay et al. (2022) can’t on

their own provide direct evidence for shared resources. Sharing

may in fact be more important in the resource-limited and

metabolically costly cortical white matter networks (Mollon

and Danilova, 2019; Mollon et al., 2022) than in local cortical

circuits. Despite the difficulty of recordings from intracortical

white matter links at present (e.g., Li et al., 2016), a recognition

of the importance of these signals as potentially evidence for

shared resources could spur innovation in recording methods.

In any case, evidence from human brain imaging of neural

re-use (Anderson, 2010) and from neuroanatomy indicating

computational flexibility (Pessoa et al., 2019) seems consistent

with some level of shared resources in cortex.

Insight 4: Routing requires
self-awareness

If signals have the ability to interfere with each other in a

communication network that shares resources, each node would

do well to exploit knowledge of its network environment to

plan out a good route for messages it transmits. The system

as a whole requires a kind of self-awareness—an on-going

process for tracking network conditions and message deliveries.

Internet routers monitor local network status to ensure they

and their neighbors are aware of the existence of paths on

shared links and current traffic load over those links. All

devices wishing to join the network must support these core

mechanisms of network monitoring. Mechanisms include keep

alives which are regular heartbeat-like messages sent out by a

router to all of its network neighbors to let them know the

router is in service. There are also echo requests, which are

small probe messages sent to a specific address, which must be

reciprocated by the receiver, with all intermediaries reporting

transit times for each leg of the journey. Perhaps most important

of all are acknowledgments or ACKs, which are small return-

receipt messages sent in retrograde fashion after a tranche of

packets is successfully received. Note that these mechanisms

are superfluous in computers: schematically, connectivity—

e.g., two-way buses between processors and memory banks—is

simple and highly reliable. Consider messages from processors

to memory requesting stored data: the delivery of the data

itself serves as confirmation that the request was received.

Consequently, stand-alone computers do not generally require

components to monitor each other or confirm signal receipt.

The brain, however, would seem to require systems for

monitoring the operation of its communication network. Like
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the internet, such mechanisms would need to operate in

distributed fashion over a network whose components are

separated by comparatively long distances, suffer some degree

of errors, and must trust each other.

Subnetworks in the brain could use spontaneous activity as

a kind of keep alive-like message. In this scheme, spontaneous

firing facilitates message passing along the same routes as those

traveled by evoked signals. There is suggestive evidence of this.

Mohajerani et al. (2013) used voltage sensitive dyes in the

exposed cortex ofmice, combined with prior connectomicmaps,

to show that both spontaneous and stimulus-evoked activity

produced similar motifs of signal transmission. Mohajerani

et al. (2013) call this pattern of spontaneous activity a

“reverberation” of sensory signals, but perhaps it is better

conceived as a preparation for transmitting such signals in the

future. Spontaneous signals in this view serve as network status

messages. Complementing these results is a microelectrode

study in rat auditory cortex, Luczak et al. (2013), investigating

what they called “packetization.” Packets as defined in the study

were repeating sequences of spike trains in different recorded

neurons, much like the putative trajectories of Nádasdy et al.

(1999), but rather unlike internet protocol packets. Luczak et al.

(2013) found that spontaneous and stimulus evoked packets

were similar in structure (see Luczak et al., 2015). This finding is

consistent with the idea that neurons exchange content-bearing

messages and network status messages on the same footing and

over the same conduits. However, these findings are merely

suggestive and do not serve as direct evidence of a keep-alive

scheme. One intriguing avenue would be for experimentalists to

test whether individual neurons or groups of neurons reliably

pass signals on polysynaptic paths in ways that can be predicted

based on prior patterns of spontaneous activity from the target

of the path.

If patterns of transmission treat different types of messages

(i.e., stimulus-evoked “content” and spontaneous network

status signals) in similar ways, cortico-thalamic connection

architecture would seem to naturally possess properties

appropriate for providing delivery verification. Core brain

networks would also appear to have a need for such a function.

See Box 2 for a discussion of possible neuronal substrates in the

thalamo-cortical networks that could support ACKs.

These hypothetical mechanisms for network status

monitoring and delivery verification do not exactly mirror those

used on the internet. Nevertheless, the metaphorical framework

of the internet spurs us to conceptualize and investigate the

brain in new and potentially transformative ways, which could

help explain other puzzling problems at the core of brain

organization. For example, the notion of a self-aware system

of distributed, communicating elements offers a novel way to

approach processes of allostasis in the brain (e.g., Sterling, 2012;

Katsumi et al., 2022): the brain may need updates not only about

the nature of planned or performed action but also knowledge

of the network’s readiness to carry out such actions.

Insight 5: Routing should be
interoperable

Packaging all data into a standard size and structure,

i.e., packets, not only allows sharing of resources, it also

allows signals of different kinds—including messages with

representational “content,” as well as signals related to network

status monitoring, and other kinds of messages—to travel

together on the same network, all directed by the same routing

rules. The potential for any imaginable data to be put into a

packet was a basic part of ARPANET design, even though only

two functions, remote login and file transfer, were possible on

the original network, and indeed for decades afterward. Today

this vision has been realized.

In the brain, we know there is a fundamental interoperability

among cortical territories: for example, in sighted subjects,

primary visual areas begin processing tactile stimuli within

hours or days during blindfolding (Pascual-Leone and

Hamilton, 2001), and this activity supports enhanced tactile

sensitivity. This is not enough time to build extensive new

connectivity—nor, presumably, to change the system’s basic

routing strategy. The influences of the messages of touch and

their routing in vision processing systems were there all along

and appear interoperable with vision-related signals in this

part of the brain’s communication network. Indeed, practically

any real-world cognitive task requires integrating memories

or knowledge from different domains (see e.g., Zeki, 2020).

The requirement of interoperability applies not only between

systems that deal in messages of different functional kinds

but between systems of distinct phylogenetic ages, origins,

and structure, such as cortical regions with six cell layers

(isocortex/neocortex) and those with three or four layers

(e.g., paleocortex).

Interoperability can be achieved in part by obviating the

need to inspect or decode messages at most nodes. A router

doesn’t need to know what a packet contains. This is part

of the cleverness of the internet: content is dealt with by

senders and receivers, not by processing intermediaries. Could

the same be true for neurons of the cortex? Consider that a

“visual” neuron in V1 encoding an edge doesn’t “know” about

edges. Instead, it is responding based on inputs that traverse

a particular network of connections before arriving at that

neuron. However, its pattern of activity is often seen, under the

computing/representational metaphor, as evidence that visual

neurons do in fact “know” something about edges or faces or

motion, because their spikes can be predicted fairly well from,

e.g., deep learning models of visual representation (Yamins et al.,

2014). We can draw inspiration from the design of internet

routing to help us move beyond this kind of thinking. To

complement the computer metaphor-based framework, I argue

that we should start to consider things from the message’s

point of view: where a message originates, how it propagates
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and is transformed, how routing mechanisms deal with it and

ensure it takes an efficient, reliable path, and where and when it

is “delivered”.

Insight 6: Routing should be scalable

The principles that govern internet routing are fully scalable:

new links and nodes can be added gracefully, with modest

cost to network operation. Network communication systems

with topology and routing protocol that differ from those of

the internet have less graceful scaling. Circuit-switched systems

running on star-shaped networks, for example, risk overload

without carefully planned growth: intuitively, if your neighbor

adds a landline on a traditional telephone network, it will not

affect communication over your landline. However, if too many

new lines are added, switching stations risk running out of lines,

preventing anyone not already using a line from starting a call.

In contrast, the internet was specifically designed to scale upwith

modest cost and without central planning. Thanks to this design

insight, most facets of internet routing strategy have required

little fundamental modification even with rapid increases in

nodes, links, and traffic.

The brain also undergoes upscaling in both ontogeny

and phylogeny (though brains additionally experience network

downscaling in the form of pruning and cell death). We should

therefore expect a routing system in the brain that allows

graceful scaling of message-passing; the system should by its

nature avoid sharp discontinuities or precipitous changes, much

as the internet does. It also must deal with the costs to network

communication as it scales up.

Comparative investigations across mammals of different

brain sizes could provide evidence of the costs of scaling up

brain communication networks and could indicate a likely

underlying strategy, just as can be done with black-box routing

systems. As they scale up, brain divisions show consistent

relationships between regional volume and overall volume

(Finlay and Darlington, 1995), which are mediated by shifts in

neurodevelopmental timelines. Neuron numbers, neuron size,

neuron density, synapse numbers, and network topology scale

together in more complex ways. However, the net effect of

these relationships may have a global signature that reflects the

brain’s fundamental routing scheme. In particular, one could

examine costs related to transmission of intrabrain signals. If

these costs scale up monotonically but gradually in brains of

increasing size, this would suggest an internet-like system that

shares resources. In contrast, a routing system without shared

resources—analogous to circuit-switched telephone networks—

would show no increase in cost as the network grows since

links are exclusive. However, such a system would be at risk

of overload and could not scale organically. Cost in terms of

metabolism may be difficult to define and measure but may be

reflected in proxy measures. For example, the maximum speed

of transmission of messages over multi-hop paths (normalized

for distance traveled) could be such a proxy. All else being

equal, maximum speed under an internet-like routing scheme

would be hypothesized to slowly decrease (i.e., cost slowly

increases) in bigger brains. If we see no slow down with brain

size, this would be more consistent with a circuit-switched

system. Other proxies such as sparseness may offer purchase on

this question (see Graham, 2021). A detailed set of predictions

about interrelationships among brain scaling, routing strategy

and cost is outside the scope of the present paper but is

under development.

Insight 7: Routing should be e�cient

The internet would not have grown so gracefully if its basic

operation had been too energetically expensive. It continues

to succeed today despite massive network growth in part

because message transport over optical fibers is very efficient

(IEA, 2022). But beyond message transport, routing strategies

implemented at nodes can also grant efficiency, sometimes in

surprising ways.

Consider the back-off algorithm, a core tool found

throughout internet-like networks. These algorithms deal with

an ever-present problem: what to do when two messages

“collide” i.e., attempt to occupy the same frame or clock tick

at the input of, for example, an Ethernet router. When this

happens, both messages are destroyed. For each destroyed

message the router then essentially flips a coin—heads, a copy

of the message cached at its sender is allowed pass, tails, it

has to wait for the next tick. If a message collides on further

attempts and draws tails, it has to wait up to 2 ticks, then up

to 4 ticks, then up to 8 ticks. This algorithm is termed binary

exponential back-off. It results in an exponential distribution of

delays. The basic design principle of imposing randomized wait

times for colliding messages has been in place since the earliest

days of internet-based communication systems, starting with the

ALOHA packet-switched radio network in Hawaii (Kleinrock,

1976). Routinely injecting timing noise into message passing

systems remains a cornerstone of routing efficiency across the

internet. Notice that this is an example of an engineering

insight in communication that differs greatly from insights

exploited in the computer metaphor: adding timing noise at all

nodes would not have an obvious benefit for representational

systems (though deep learning systems do employ “drop-out”

for somewhat related purposes) but is demonstrably successful

when communication is the goal.

The possibility of something like exponential back-off in

the brain is worth consideration. The ubiquity of Poisson-like

spike generation in the mammalian cerebral cortex (see, e.g.,

Averbeck, 2009) produces exponentially-distributed interspike
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intervals (ISIs). If we see ISIs as delays, this behavior is consistent

with the brain performing exponential back-off as part of

its network communication strategy. If the brain uses similar

routing strategies as those described in this paper, exponentially-

distributed ISIs could serve to minimize the effects of collisions.

Though many processes generate exponential distributions, this

distribution is a hallmark of internet dynamics, so it is curious

that a similar distribution is found also throughout mammal

cortex. Exponentially-distributed ISIs are observed also for

spontaneous firing in cortex (Mazzoni et al., 2007) suggesting

that they are not due only to dynamics of stimulus experience

but also due to intrinsic factors. However, back-off algorithms,

like ACKs, require node buffers to allow resending, which

remain hypothetical in the brain (see Box 2).

We can take a wider view of efficiency. Progress in

understanding representational aspects of brain function

has been aided by efficiency arguments (e.g., Doi and

Lewicki, 2014), so a similar approach may be profitable

in terms of communication. It has long been clear that

transmitting signals down axons is very costly, leading to

wiring minimization models (see e.g., Cherniak et al., 2002;

Chklovskii and Koulakov, 2004). A recent estimate suggests

neuronal communication is in fact far more costly than neuronal

computation (Balasubramanian, 2021; Levy and Calvert, 2021).

With transmission already expensive, routing strategies in the

brain—whose costs were not considered in the estimate of Levy

and Calvert (2021)—must be shaped to a significant degree

by efficiency concerns. Sparse activity in time and space also

contributes to efficiency both on the internet and in the brain;

(see Graham, 2021; Graham and Rockmore, 2011) for further

discussion of the role of sparseness.

However, gauging the large-scale efficiency of routing

in the brain will be a major challenge because we lack a

mathematical formalism for describing information theoretic

limits on network communication. Shannon’s information

theory, which is widely invoked in studies of efficiency

in neuronal representations (e.g., Wainwright, 1999) applies

only to the case of “two-port” communication (Cover and

Thomas, 1991), i.e., point encoding and decoding with channel

noise. New approaches to the study of efficiency in network

communication broadly construed may be needed [see the

“network information theory” of El Gamal and Kim (2011);

see also Pastor-Satorras and Vespignani (2004), Sun et al.

(2015); and Amico et al. (2021)]. The problem in the network

case is that resources are shared. One needs to balance cost

and reliability when ongoing signal generation can influence

individual routing actions in very complex ways. The efficient

solutions the brain employs—if they can be determined, and if

they are in some sense optimal—may in fact help us understand

more fundamental principles of network information theory.

However, the internet’s demonstrable efficiency suggests that

basic principles of efficient network communicationmay already

be instantiated in its array of solutions.

Insight 8: Asynchronous routing can
simulate synchrony

Distributed strategies have advantages but also impose

constraints: the internet, for example, is fundamentally an

asynchronous communication system: senders and receivers

generally cannot establish complete, on-going circuits; full

“communion” is unachievable. However, because path lengths

are short and because delays on the network are miniscule by

human standards, a simulation of synchrony is possible. Human

senders and receivers readily perceive its real-time functions

(e.g., video chat) as synchronous and simultaneous.5

In the brain, anatomical and network distances are long

enough and propagation of neuronal excitations slow enough

that the system as a whole functions asynchronously, even if

our conscious experience makes it feel as if there is a fully

synchronous, delay-free “now” (see, e.g., Zeki and Bartels, 1998;

Hogendoorn, 2021). However, functions like object perception

may achieve short intervals of synchrony on subnetworks,

allowing faster and more coordinated action among dispersed

brain elements (Gray et al., 1989; Fries, 2005; Vezoli et al.,

2021; Uran et al., 2022).6 Elaborate systems of precisely-timed

delays are also a basic feature of cortical signaling, which helps

coordinate activity of asynchronous elements (Innocenti et al.,

2016).

Seemingly, routing in the brain, as on the internet, is

fundamentally asynchronous, but is capable of simulating

synchrony over short time scales among subgroups of nodes.

The internet’s solutions, such as content delivery networks

used by Netflix and others, which store multiple copies of a

given resource at different points on the network, are worth

considering in reference to brain networks.

Insight 9: Routing should be unified,
but can be modified locally

Despite being composed of billions of dispersed elements,

the internet is a unified entity. However, unity is not imposed

from a central controller. Instead, a common set of routing rules

5 However, even the short time delays of the internet can become

noticeable. In a Zoom meeting, try this experiment: One person starts

to clap at a slow tempo. Then others try to match the beat. Participants

often become 180 degrees out of phase with the reference clap.

6 The idea of synchrony in digital computation and communication

systems is not entirely equivalent to synchrony in dynamical systems of

the kind described by Vezoli et al. (2021) and others. In dynamical systems,

synchrony usually implies periodicity and occurs when oscillators

coordinate the timing of their actions. In digital computing, synchrony

means that one system can interfere with the concurrent operation of

another system, but there is not necessarily periodicity.
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is implemented locally, and the rules can be locally modified to

some extent as well. For example, subnetworks can prioritize

some packets over others, and novel devices and protocol can

be added so long as basic protocol is followed. A few network

services on the internet are organized centrally (e.g., the domain

name server) but this is largely a convenience for human end-

users. Basic operations of message transmission require no

central entity (nor human intervention: connectable devices can

now be found and added to the network automatically; Mišić

and Mišić, 2014). Even key services like time keeping, which

is performed centrally in a computer, are decentralized on the

internet using network time protocol. The internet does include

modular elements (e.g., autonomous systems), which can exert

specialized, central control over a domain (e.g., firewalls). But

each module must ultimately be compatible with the wider

network by way of common routers. And in the operation of

an autonomous system (AS), most of the same “tricks” found

in parts of the network outside the AS are employed internally

as well.

Protocol in the brain may likewise be a global phenomenon

where a relatively small set of rules apply equally throughout,

but can be modified. It is reasonable to first consider if there is

a single protocol for the whole mammal or vertebrate brain. A

patchwork of multiple, non-overlapping networks, each with its

own protocol, seems more characteristic of nerve nets (Dupre

and Yuste, 2017) than of highly structured and interconnected

brains like those of mammals, birds, and especially humans

(Hofman, 1988). But we should not rule out the possibility of

overlapping neural systems running on different protocol that

achieve widespread influence on the network but with limited

functionality, such as the fast emergency alert system centered

on brainstem nuclei.

Unified protocol in the brain could tolerate considerable

local variation and tuning in different regions. Different species

may also show specialization in routing. Local modification of

global routing rules may influence brain organization within

a species. The cortex is typified by “unity and diversity” of

structure, shown in, for example, its laminar and columnar

architecture (Schüz and Miller, 2002). In different brain

regions, variations in a set of conserved genes could shape

overall routing strategies. Through the effect of interactions

of these genes, small tweaks in units controlling how routing

“protocol” is implemented during neurodevelopment could

generate significant changes in brain dynamics and function,

just as small tweaks to cell growth can affect brain size (e.g.,

“late equals large” Finlay et al., 2010). With local alteration

in routing could come a diversity of function. Through

such mechanisms, distributed specializations of protocol in

different brain systems could be engineered without sacrificing

global integration. The same basic process may help shape

phylogenetic variation.

These insights allow us to imagine a rich problem space that

we can consider in relation to the study of the brain’s strategy

for network communication. Internet engineering provides a

collection of effective strategies that may be similar to those the

brain uses. However, a full description of the neuronal toolkit

that could implement the above functions is needed. Testable

hypotheses will need to be developed, and these will require

more precise models of possible neuronal substrates than I have

offered here.

Discussion

A good metaphor in scientific theory indicates the span

and orientation of a problem to be solved. Like a microscope

or an electrode, metaphor is a tool, one used in service of

theory, rather than experiment. Metaphor is not sufficient for

theory, but can be its precursor. Metaphor can help us get

to a place where we can specify quantities of interest and

understand why measuring those quantities and not others will

be meaningful. Technological metaphor, because it refers to

engineered systems with goals, is of special potential use since

biological organisms and their brains are shaped by evolutionary

“engineering.” We can ask, “what would be a good way to design

a neuronal system that must operate under certain conditions,

such as those that permit flexible exchange of signals across

a densely connected network?” The routing strategies of the

internet, a technological system that was specifically designed

to solve such problems, are worth consideration in relation to

this question.

Yet if we grant that the brain must perform flexible routing,

the endeavor to understand its strategies in light of the internet

still faces major difficulties. One is addressing, a key feature of

any routing scheme, which shapes all other features. Selective

communication presupposes the existence of an addressing

system, though explicit address “headers” may not be required

in the brain. Schemes that invoke synchronous oscillations

(e.g., Fries, 2005; Nádasdy, 2010) seem to obviate the need for

“headers” that travel with a message, but such schemes have

not yet dealt with how targets are selectively chosen, nor how

congestion could be managed. Indeed, these problems have

not been recognized. If headers are needed, spike timing could

conceivably carry this information: most paths are likely to be

only a few hops in length, so header information could be small.

However, detailed models of this kind have not been elucidated

let alone tested.

Metaphors can bemisleading, especially if taken too literally.

This is true not least for the computer metaphor. A physical

computer, unlike the brain, has a clock that strictly synchronizes

all operations, while a Turing machine requires infinite “tape”

on which to order symbols. The brain is obviously not a literal

internet either.

Nor can we say that the internet is the only good solution to

the problem of dynamic network communication. There exist

an unknown number of possible schemes. One can imagine
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communication systems that include multiple senders and/or

receivers where a “multi-message” of distributed chunks travels

on parallel paths; along similar lines, it may be better to think in

terms of “sources” and “sinks” of signal flow (Mohajerani et al.,

2013) rather than single copies of messages with a single path.

Part of the problem here is that we lack a grounding of network

communication theory in terms of basic mathematics. This is a

contrast with the view of brains as computers and representation

machines, where we understand the fundamental limitations

and possibilities thanks to the well-understood underlying

theories of functions and computability.

But the internet’s demonstrable success—through pandemic,

war, and malicious attack—suggests it embodies basic insights

regarding the organization and integration of flexible message

flow on large, complex, growing networks. Ultimately, a turn

toward the internet metaphor accords with the longstanding

desire to understand the integration of computational functions

in the brain, and how distributed signals are related and bound

to one another (e.g., Popper and Eccles, 1977). The internet

metaphor offers more precise language and deeper analogies

compared to earlier analogies of brain integration, such as

“workspaces” (Dehaene and Changeux, 2005; Baldauf and

Deubel, 2010), “bulletin boards,” (Baars, 1997; Goyal et al., 2021),

“puzzle pieces” (Chater, 2018; John et al., 2022), or reactions

involving “catalysts” and “bonding” (Varela et al., 1991). Brain

science stands to profit from considering the internet’s strategies

and solutions and from asking how the brain might solve

similar problems. An understanding of routing in the brain has

the potential to illuminate many aspects of brains, not least

the decipherment of neural codes, but also evolutionary and

developmental patterns, functional differentiation, neurological

conditions affecting large-scale brain intra-communication

(e.g., multiple sclerosis and epilepsy), as well as intelligence

and consciousness.
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