Current Thoughts on the Brain-Computer Analogy - All Metaphors Are Wrong, But Some Are Useful

  • 20k

    Total downloads

  • 209k

    Total views and downloads

About this Research Topic

Submission closed

Background

*** Already with several important authors confirmed, including Michael Levin, Alex Gomez-Marin, Matthew Cobb, Blake Richards, Bud Mishra, Stuart Kauffman & Ricard Solé ***


The title of this Research Topic paraphrases a well-known aphorism in statistics. There is an intentional and challenging mistake in it: Metaphor and Analogy are used as synonyms, yet they are not. In science, metaphors are not intended to provide a solution to a given problem and have no explanatory power. In contrast, Analogies do have this power and enable us to make connections to understand the functioning of a given system based on the knowledge acquired on another system. Much the same way as scientific hypotheses, Metaphors and Analogies are transitory, always adjusting to technological advances. The Brain-Computer is usually referred to as a metaphor, but it should be thought of as an analogy instead. This analogy has raised a harsh debate in the scientific community, with some taking it literally, whereas the very meaning of analogies implies only a partial overlap of properties.

The Brain is the product of about 600 million years of biological evolution, the Computer is a human-made artifact whose construction narrative started less than 200 years ago. In trying to understand what is usually regarded as the most complex structure in the Universe, metaphors and analogies might prove fruitful. For example, analogies and knowledge derived from Network Science may contribute to understand how (parts of) the brain(s) work, learn about its degree of flexibility, neural network structure, and the functional role of synaptic distribution and density. We may also ask if self-organization phenomena play a role in shaping Brain (any brain) architecture and evolution. Clearly, experimental research will be the checkpoint for all analogy-driven hypotheses. Indeed, single-neuron research suggests that certain neurons may function as complex, multi-unit processing systems, and dendrites may serve as nonlinear computing subunits (sort of "mini-brains").

The relationships between Brain and Computer encompass so vast a spectrum of topics from Natural Sciences, Mathematics, Psychology, and Philosophy that here we need to narrow our scope for this topic. By educated guess, a tentative list of the topics (and keywords) that will likely be discussed might be the following:

- Brain architecture, evolution, and functioning (adaptive response; self-organization; extended cognition)
- Neural Networks and Computational Neuroscience (Artificial neural networks)
- Network Science (network evolution; brain flexibility; self-organization)
- Computer Science (distributed-centralized architectures)
- Information theory (reliability-error checking; efficiency-vs-speed of information)
- Game theory (decentralized neural architecture; asymmetric information distribution)
- Quantum brain - quantum computer (Church-Turing thesis; Computational Complexity; Information Asymmetry and Costly Signaling)
- Neurobiology Experimental research (Single-neuron research; Loss-of-function experiments/CRISPR technology)
- Artificial Intelligence (Imitation games; Turing test for AI)

Many other equally important topics will not be included here, since they deserve a full Research Topic on their own: Consciousness/Mind, Cognition, Behavior, Intelligence, Language, and Culture.

We hope to stimulate a multi-, trans- and inter-disciplinary authorship of the articles in this Research Topic, though we are fully aware of the communication issues between scientists of such diverse scientific backgrounds.

In Matthew Cobb's words, "… the very fact that this debate is taking place suggests that we may indeed be approaching the end of the computational metaphor" (2020). Yet by the same token, one can reach the opposite conclusion, and hopefully so, for Metaphors - and Analogies to a lesser extent - are invaluable in enabling scientists to be more creative.

Keywords: Brain Evolution, Computer Science, Information Theory, Network Evolution, Neurobiology

Important note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Frequently asked questions

  • Frontiers' Research Topics are collaborative hubs built around an emerging theme.Defined, managed, and led by renowned researchers, they bring communities together around a shared area of interest to stimulate collaboration and innovation.

    Unlike section journals, which serve established specialty communities, Research Topics are pioneer hubs, responding to the evolving scientific landscape and catering to new communities.

  • The goal of Frontiers' publishing program is to empower research communities to actively steer the course of scientific publishing. Our program was implemented as a three-part unit with fixed field journals, flexible specialty sections, and dynamically emerging Research Topics, connecting communities of different sizes and maturity.

    Research Topics originate from the scientific community. Many of our Research Topics are suggested by existing editorial board members who have identified critical challenges or areas of interest in their field.

  • As an editor, Research Topics will help you build your journal, as well as your community, around emerging, cutting-edge research. As research trailblazers, Research Topics attract high-quality submissions from leading experts all over the world.

    A thriving Research Topic can potentially evolve into a new specialty section if there is sustained interest and a growing community around it.

  • Each Research Topic must be approved by the specialty chief editor, and it falls under the editorial oversight of our editorial boards, supported by our in-house research integrity team. The same standards and rigorous peer review processes apply to articles published as part of a Research Topic as for any other article we publish.

    In 2023, 80% of the Research Topics we published were edited or co-edited by our editorial board members, who are already familiar with their journal's scope, ethos, and publishing model. All other topics are guest edited by leaders in their field, each vetted and formally approved by the specialty chief editor.

  • Publishing your article within a Research Topic with other related articles increases its discoverability and visibility, which can lead to more views, downloads, and citations. Research Topics grow dynamically as more published articles are added, causing frequent revisiting, and further visibility.

    As Research Topics are multidisciplinary, they are cross-listed in several fields and section journals – increasing your reach even more and giving you the chance to expand your network and collaborate with researchers in different fields, all focusing on expanding knowledge around the same important topic.

    Our larger Research Topics are also converted into ebooks and receive social media promotion from our digital marketing team.

  • Frontiers offers multiple article types, but it will depend on the field and section journals in which the Research Topic will be featured. The available article types for a Research Topic will appear in the drop-down menu during the submission process.

    Check available article types here 

  • Yes, we would love to hear your ideas for a topic. Most of our Research Topics are community-led and suggested by researchers in the field. Our in-house editorial team will contact you to talk about your idea and whether you’d like to edit the topic. If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. 

    Suggest your topic here 

  • A team of guest editors (called topic editors) lead their Research Topic. This editorial team oversees the entire process, from the initial topic proposal to calls for participation, the peer review, and final publications.

    The team may also include topic coordinators, who help the topic editors send calls for participation, liaise with topic editors on abstracts, and support contributing authors. In some cases, they can also be assigned as reviewers.

  • As a topic editor (TE), you will take the lead on all editorial decisions for the Research Topic, starting with defining its scope. This allows you to curate research around a topic that interests you, bring together different perspectives from leading researchers across different fields and shape the future of your field. 

    You will choose your team of co-editors, curate a list of potential authors, send calls for participation and oversee the peer review process, accepting or recommending rejection for each manuscript submitted.

  • As a topic editor, you're supported at every stage by our in-house team. You will be assigned a single point of contact to help you on both editorial and technical matters. Your topic is managed through our user-friendly online platform, and the peer review process is supported by our industry-first AI review assistant (AIRA).

  • If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. This provides you with valuable editorial experience, improving your ability to critically evaluate research articles and enhancing your understanding of the quality standards and requirements for scientific publishing, as well as the opportunity to discover new research in your field, and expand your professional network.

  • Yes, certificates can be issued on request. We are happy to provide a certificate for your contribution to editing a successful Research Topic.

  • Research Topics thrive on collaboration and their multi-disciplinary approach around emerging, cutting-edge themes, attract leading researchers from all over the world.

  • As a topic editor, you can set the timeline for your Research Topic, and we will work with you at your pace. Typically, Research Topics are online and open for submissions within a few weeks and remain open for participation for 6 – 12 months. Individual articles within a Research Topic are published as soon as they are ready.

    Find out more about our Research Topics

  • Our fee support program ensures that all articles that pass peer review, including those published in Research Topics, can benefit from open access – regardless of the author's field or funding situation.

    Authors and institutions with insufficient funding can apply for a discount on their publishing fees. A fee support application form is available on our website.

  • In line with our mission to promote healthy lives on a healthy planet, we do not provide printed materials. All our articles and ebooks are available under a CC-BY license, so you can share and print copies.