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Since 2003, when spontaneous activity 
in cortical slices was first found to follow 
scale-free statistical distributions in size and 
duration, increasing experimental evidences 
and theoretical models have been reported 
in the literature supporting the emergence 
of evidence of scale invariance in the cortex. 
Although strongly debated, such results refer to 
many different in vitro and in vivo preparations 
(awake monkeys, anesthetized rats and cats, 
in vitro slices and dissociated cultures), 
suggesting that power law distributions and 
scale free correlations are a very general and 
robust feature of cortical activity that has 
been conserved across species as specific 
substrate for information storage, transmission 

and processing. Equally important is that the features reminiscent of scale invariance and 
criticality are observed at scale spanning from the level of interacting arrays of neurons all the 
way up to correlations across the entire brain. Thus, if we accept that the brain operates near a 
critical point, little is known about the causes and/or consequences of a loss of criticality and 
its relation with brain diseases (e.g. epilepsy). The study of how pathogenetical mechanisms 
are related to the critical/non-critical behavior of neuronal networks would likely provide new 
insights into the cellular and synaptic determinants of the emergence of critical-like dynamics 
and structures in neural systems. At the same time, the relation between the impaired 
behavior and the disruption of criticality would help clarify its role in normal brain function. 
The main objective of this Research Topic is to investigate the emergence/disruption of the 
emergent critical-like states in healthy/impaired neural systems.
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This Research Topic in “Frontiers in Systems Neuroscience” con-
tains a collection of original contributions and review articles on
the hypothesis that the normal, healthy brain resides in a critical
state. The hypothesis that brain activity, or specifically, neuronal
activity in the cortex, might be critical arose from the premise that
a critical brain can show the fastest and most flexible adaptation
to a rather unpredictable environment (for review see Chialvo,
2010). Over the last decade, numerous signatures of criticality
have been identified in brain activity. Some of the most striking
examples are the probability distributions of size and duration for
intermittent spontaneous activity bursts during ongoing activ-
ity in the cortex (Beggs and Plenz, 2003). These distributions
have been found to follow power laws, which are conserved
across species [rat: (Gireesh and Plenz, 2008); non-human pri-
mate: (Petermann et al., 2009; Yu et al., 2011); MEG: (Poil et al.,
2012; Palva et al., 2013; Shriki et al., 2013); EEG: (Meisel et al.,
2013); fMRI: (Tagliazucchi et al., 2012; Haimovici et al., 2013)]
and experimental preparations, spanning from reduced in vitro
models [i.e., acute and organotypic slices (Beggs and Plenz, 2003)
and dissociated cultures (Pasquale et al., 2008)] to in vivo animal
models (Gireesh and Plenz, 2008; Petermann et al., 2009; Ribeiro
et al., 2010). These scale-free activation patterns, called neuronal
avalanches, provide evidence for criticality in the brain.

The bold claim that the brain is critical has elicited a healthy
dose of skepticism and critique, often on technical grounds. For
example, power laws are ubiquitous in nature, can potentially
emerge from noise, and might not be particular to brain func-
tion (Touboul and Destexhe, 2010). This critique has refocused
the debate on the specific, shallow exponents found for avalanche
power laws, which demonstrate that unique, long-range spatial
correlations are introduced by these dynamics, which require pre-
cisely balanced, weak interactions that differ from noise (Klaus
et al., 2011). Similarly, discussion about the proper power law
model and functional fit (Clauset et al., 2009; Dehghani et al.,
2012) has highlighted the importance of careful identification of
power law cut-offs in avalanche distributions, and their correct
incorporation into appropriate statistical models (e.g., Langlois
et al., 2014; Yu et al., 2014). Importantly, alternative approaches
to avalanche dynamics using temporal scaling (Hardstone et al.,
2012) and spatial scaling of fluctuations in ongoing human brain
activity (Haimovici et al., 2013) have brought further support to
the hypothesis of criticality in the brain.

As evidenced in the contributions to this Special Topic issue,
the exploration and examination of brain activity in the frame-
work of criticality represents a highly active, ongoing field of
research. It has been shown that the distribution of silent
times between consecutive avalanches displays a non-monotonic
behavior (due to the slow alternation between up- and down-
states, Scarpetta and De Candia, 2014), with a power law decay
at short time scales (Lombardi et al., 2014). Further analyses
(Lombardi et al., 2012) demonstrate that avalanche size and inter-
avalanche silent times are correlated, and highlight that avalanche
occurrence exhibits the characteristic periodicity of θ and β/γ
oscillations. This observation is in line with pharmacological
results that connect nested oscillations and neuronal avalanches
in cortex (Gireesh and Plenz, 2008). Experimental observations
of long-term temporal correlations (Botcharova et al., 2014) in
fluctuations of phase synchronization in EEG and MEG signals
suggest that the driving mechanisms behind avalanche activity
are non-local, with all scales contributing to system behavior.
Indeed, an important “keyword” that characterizes such scale-
free systems is the presence of a critical point, indicating the
existence of a critical branching process as underlying structure
that sustains this kind of dynamics. As it emerges in Yu et al.
(2013), the ongoing resting activity in cortical networks organizes
close to an effective thermodynamic critical point, suggesting
the possibility that a critical state may in effect be described
by methodology from thermodynamic equilibrium. As reviewed
in Hesse and Gross (2014), a critical system displays optimal
computational properties, indicating that criticality has been evo-
lutionarily selected as a useful feature for the nervous system. The
progress in the field of criticality and brain dynamics is further
demonstrated by the fact that current discussions, rather than
rejecting criticality altogether, are often focused on the proximity
of brain dynamics to the critical point under different condi-
tions. Based on in vivo recordings of extracellular spiking activity
and modeling work, it has been concluded that the brain does
not reflect a critical state, but its emergent dynamics might self-
organize to a slightly sub-critical regime (Priesemann et al., 2014).
To reside in such a regime can be considered an advantage, since
it might prevent brain activity from becoming epileptic, which
has been associated with supercritical dynamics (Meisel et al.,
2012). Based on modeling (Tomen et al., 2014), it has been sug-
gested that cortical networks, by operating at the sub-critical to
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critical transition region, could dramatically enhance stimulus
representation.

Thus, if the brain works close to or at a critical point, it is
interesting to investigate the role of criticality on cognition and
long-term temporal correlations observed in behavioral studies
(Papo, 2014). Moreover, little is known about the causes and/or
consequences of a loss of criticality, and its relation with brain
diseases (e.g., epilepsy). The study of how pathogenic mecha-
nisms are related to the critical/non-critical behavior of neuronal
networks would likely provide new insights into the cellular and
synaptic determinants supporting the emergence of critical-like
dynamics and structures in neural systems. At the same time, the
relationship between disrupted criticality and impaired behavior
would help clarify the role of critical dynamics in normal brain
functioning. In this Research Topic, (Tinker and Perez Velazquez,
2014) studied whether power law scaling can be achieved in the
distribution of phase synchronization derived from MEG record-
ings, acquired from children with or without autism performing
executive function tasks. Interestingly, (Roberts et al., 2014) point
out an issue not well explored in previous works: i.e., that existing
models lack precise physiological descriptions for how the brain
maintains its tuning near a critical point. The authors claim that a
missing fundamental ingredient is a formulation of the reciprocal
coupling between neural activity and metabolic resources. Recent
findings are aligned with the author’s idea, which emerged from
the analysis of disorders involving severe metabolic disturbances
and altered scale-free properties of brain dynamics.

The hypothesis that cortical dynamics resides at a critical
point, at which information processing is optimized, has refo-
cused attempts to explain the tremendous variability in neuronal
activity patterns observed in the brain at all scales. Over the
last several years, this hypothesis has given rise to numerous
conferences and workshops on the brain and criticality (Plenz
and Niebur, 2014). The current Research Topic continues the
endeavor to explore one of the most exciting current concepts on
brain function.
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Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal
avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their
size and duration distribution, typical features of balanced systems in a critical state.
Recently it has been shown that the distribution of quiet times between consecutive
avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power
law decay at short time scales. This behavior has been attributed to the slow alternation
between up and down-states. Here we further characterize the avalanche process and
investigate how the functional behavior of the quiet time distribution depends on the fine
structure of avalanche sequences. By systematically removing smaller avalanches from the
experimental time series we show that size and quiet times are correlated and highlight
that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations,
which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates
that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger
ones are associated with slower θ and 1–2 Hz oscillations. In particular, large avalanches
corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency.
This temporal structure follows closely the one of nested θ − β/γ oscillations. Finally we
demonstrate that, because of the multiple time scales characterizing avalanche dynamics,
the distributions of quiet times between avalanches larger than a certain size do not
collapse onto a unique function when rescaled by the average occurrence rate. However,
when considered separately in the up-state and in the down-state, these distributions are
solely controlled by the respective average rate and two different unique function can be
identified.
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1. INTRODUCTION
During sleep or under anesthesia, as well as in vitro, ongoing
or spontaneous activity in cortex alternates between active peri-
ods with high probability of action potential firing and quiescent
periods characterized by sparse firing (Plenz and Aertsen, 1996;
Cossart et al., 2003; Cunningham et al., 2006; Hahn et al., 2006).
These extracellular spiking dynamics correspond to so-called up
and down-state fluctuations in the intracellular membrane poten-
tial of cortical neurons (Steriade et al., 1993; Plenz and Kitai,
1996; Wilson, 2008). During up- states, the intracellular mem-
brane potential is close to firing threshold allowing neurons to fire
action potentials in response to synaptic input. In contrast, the
membrane potential is more hyperpolarized during the down-
state leading to low probability of firing. The up-state is generally
considered a cortical network property that arises from the prop-
agation of activity among recurrently connected neurons (Plenz
and Kitai, 1996; McCormick et al., 2003; Wilson, 2008; Millman
et al., 2010). The resulting synaptic input depolarizes neurons
beyond threshold supporting and prolonging the up-state. In that
context, the up-state should be considered a metastable state, i.e.,
the membrane potential would rapidly decay to resting value,

if network mechanisms prevented the required excitability or
excitatory synaptic drive for individual neurons.

Conversely, down-states reflect relatively quiescent network
periods during which the membrane potential of most neurons
is close to or even lower than their resting value. Down-states
generally result from disfacilitation, i.e., a substantial reduction
or lack of excitatory drive in the network (Cowan and Wilson,
1994; Timofeev et al., 2001). Transitions to the down-state can
be caused by various mechanisms such as synaptic depression at
glutamatergic synapses (Stevens and Tsujimoto, 1995; Staley et al.,
1998), an increase of a factor inhibiting glutamate release, such as
nucleoside adenosine (Thompson et al., 1992), blockage of recep-
tor channels by the presence, for instance, of external magnesium
(Maeda et al., 1995), or spike adaptation, which arises from
the intracellular accumulation of calcium entering during the
action potential and opening potassium channels (Sanchez-Vives
et al., 2000). Transitions to the up-state are generally thought
to arise from non-linear amplification following recovery from
disfacilitation. For example, spontaneous single action poten-
tials, spontaneous miniature synaptic release, and recovery from
synaptic vesicle depletion, i.e., synaptic depression, can cooperate
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to a non-linear amplification of small amplitude signals leading
to the generation of larger depolarizing events rapidly transition-
ing the network to the up- state, as observed in cortical slabs
(Timofeev et al., 2000) and slice cultures (Plenz and Aertsen,
1996).

During up-states, which usually last up to several hundreds
of milliseconds, cortical neurons have been shown to fire irregu-
larly often during nested oscillations (e.g., Plenz and Kitai, 1996).
This highly variable firing pattern at short time scales of just a
few milliseconds, over the last decade, has been found to reflect
in fact a precise, scale-invariant organization of activity, so-called
neuronal avalanches (Beggs and Plenz, 2003; Mazzoni et al.,
2007; Gireesh and Plenz, 2008; Pasquale et al., 2008; Petermann
et al., 2009; Shriki et al., 2013). Neuronal avalanches are intermit-
tent bursts of activity cascades whose sizes and durations follow
power law statistics, a typical feature of systems at criticality
(Stanley, 1971). The statistics of time intervals separating suc-
cessive avalanches has been recently studied in the spontaneous
activity of rat cortex slice cultures (Lombardi et al., 2012). In
Lombardi et al. (2012), these intervals are called waiting times and
defined as the difference between the ending and starting time of
consecutive avalanches. Here and in the following we will adopt
a slightly different notation (Sanchez et al., 2002): We call quiet
times the time intervals between the ending and starting time of
consecutive avalanches, whereas we refer to waiting times as time
intervals between starting times of consecutive avalanches.

The quiet time distribution, is widely used in the stochas-
tic analysis of natural phenomena, such as earthquakes, solar
flares (de Arcangelis et al., 2006a), and rock fractures, where it
is usually called waiting time distribution. Indeed, for these phe-
nomena the waiting times, do not differ from quiet times because
event durations can be neglected and processes can be consis-
tently treated as point processes. For neuronal avalanches this
approximation is not always valid since the shortest quiet times
are comparable with some avalanche durations, as we will show
in the following. While numerous similarities between earth-
quakes and neuronal avalanches have been found (Plenz, 2012),
the quiet time distribution has only been incompletely analyzed
so far for avalanches. Of particular interest are the universal tem-
poral scaling features observed for earthquakes. Distribution of
earthquake waiting times, in which waiting times are restricted to
earthquakes above a given magnitude threshold, depend on the
threshold, but nevertheless collapse onto a universal, i.e., thresh-
old independent, function when waiting times are rescaled by the
average rate (Corral, 2004). This property reveals that seismic-
ity has a complex organization in time with universal properties:
the removal of small events by increasing the minimal detec-
tion threshold does not affect the fundamental organization of
earthquake occurrence.

The quiet time distribution of neuronal avalanches is char-
acterized by a peculiar non-monotonic behavior, with power
law decay followed by a local minimum and a more or less
pronounced peak at a characteristic slow time scale (Lombardi
et al., 2012). Numerical simulations suggest that such a distri-
bution reflects the alternation between up and down-states in
the network, which acts as a homeostatic mechanism control-
ling network excitability (Lombardi et al., 2012). In the current

work, we analyze the functional behavior of the quiet time dis-
tribution in relation to the structure of avalanche sequences. In
particular, we examine the relationship between quiet times and
avalanche sizes by studying the distributions P(�t; sc) of quiet
times between consecutive avalanches of sizes larger than a given
threshold sc and investigate whether the non-monotonic quiet
time distribution identified in cortex cultures exhibits the uni-
versal scaling features reported for waiting time distributions of
earthquakes. We first compare quiet and waiting time statistics
for neuronal avalanches. Then we show that, (1) the avalanche
process in the up-state is solely controlled by the average occur-
rence rate and the corresponding quiet time distribution has a
universal, i.e., sample independent, power law decay. By system-
atically removing smaller avalanches from the experimental time
series, (2) we then unveil correlations between sizes and quiet
times and highlight that avalanche occurrence exhibits some of
the characteristic periodicity of θ (4–15 Hz), β (15–30 Hz), and γ
(30–100 Hz) oscillations. Indeed, in place of the original power
law, we observe several peaks at short time scales when con-
sidering only avalanches with size s above a given threshold sc.
Therefore, close in time smaller avalanches are crucial for the
power law in the quiet time distribution of up-states to emerge.
We observe that these avalanches tend to be related to short quiet
times and fast β/γ oscillations, while larger avalanches are associ-
ated with slower θ and 1–2 Hz oscillations. In particular, we notice
a sort of hierarchical structure in avalanche sequences: In the
up-states, large avalanches occurring with θ frequency trigger cas-
cades of smaller avalanches corresponding to faster oscillations.
Finally we demonstrate (3) that the distributions P(�t; sc) of
quiet times between avalanches with size s above a given threshold
sc do not collapse if quiet times are rescaled by the average rate r =
1/〈�t〉. However, when the different temporal scales that govern
up and down-states are taken into account, a proper collapse can
be obtained. Specifically, the distributions P(�t; sc) in the up-
state and in the down-state show the same functional behavior if
quite times are rescaled by the respective average avalanche rate.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL SETUP
Coronal slices from rat dorsolateral cortex (postnatal day 0–2;
350 µm thick) are attached to a poly-D-lysine coated 60-
microelectrode array (MEA; Multichannelsystems, Germany) and
grown at 35.5 C in normal atmosphere in standard culture
medium without antibiotics for 4–6 weeks before recording.
Avalanche activity is measured from cortex-striatum-substantia
nigra triple cultures or single cortex cultures as reported previ-
ously (Beggs and Plenz, 2003). In short, spontaneous avalanche
activity is recorded outside the incubator in standard artificial
cerebrospinal fluid (ACSF; laminar flow of 1 ml/min) under sta-
tionary conditions for up to 10 h. The spontaneous local field
potential (LFP) is sampled continuously at 1 kHz at each elec-
trode and low-pass filtered at 50 Hz. Negative deflections in the
LFP (nLFP) were detected by crossing a noise threshold of −3
SD followed by negative peak detection within 20 ms. nLFP times
and nLFP amplitudes were extracted. Neuronal avalanches are
defined as spatio-temporal clusters of nLFPs on the MEA (Beggs
and Plenz, 2003). A neuronal avalanche consists of a consecutive
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series of time bins of width ε that contain at least one nLFP on
any of the electrodes. Each avalanche is preceded and ended by
at least one time bin with no activity. Without loss of generality,
the present analysis is done with width ε individually estimated
for each culture from the average inter nLFP interval on the array
at which the power law in avalanche sizes s, P(s) ∼ s−α , yields
α = 3/2. ε ranged between 3 and 6 ms for all cultures. Avalanche
size is defined as the sum of absolute nLFP amplitudes (µV) on
active electrodes or simply the number of active electrodes. Size
distributions are obtained using logarithmic binning for sizes
expressed in µV. A quiet time �t is defined as the time inter-

val between the ending time of an avalanche t
f
j and the starting

time ti
j + 1 of the following one, namely �tj = ti

j + 1 − t
f
j . A wait-

ing time δt is defined as the time interval between the starting
time of an avalanche ti

j and the starting time ti
j + 1 of the following

one, namely δtj = ti
j + 1 − ti

j . Quiet (waiting) time distributions
are obtained using logarithmic binning for quiet (waiting) times
expressed in ms.

2.1.1. Up and down-state
The following procedure is used to discriminate between up
and down-states. An up-state consists of a consecutive series of
avalanches separated by a quiet time �t shorter than �t∗, where
�t∗ is defined as the local minimum between the initial power
law regime and the local peak observed between 500 and 1000 ms.
Conversely, every quiet time longer than �t∗ belongs to a down-
state and a consecutive series of avalanches separated by quiet
times longer than �t∗ is considered a down-state. The mean rate
in the up-state is defined as rup = 1/〈�t〉up, whereas the mean
rate in the down-state is defined as rdw = 1/〈�t〉dw.

2.2. NUMERICAL MODEL
2.2.1. Network and dynamics
We consider N = 64000 neurons at random positions, character-
ized by their potential vi. Neurons are connected by a scale-free
network of synapses. More precisely to each neuron i we assign
an out-going connectivity degree, kouti ∈ [2, 100], according to
the degree distribution P(k) ∝ k−2 of the functional network
measured in Eguiluz et al. (2005). Choosing different network
topologies, the model exhibits the same scaling behavior of
avalanche size and duration distributions (de Arcangelis et al.,
2006b; Pellegrini et al., 2007; de Arcangelis and Herrmann, 2012).
The universality class of the neuronal avalanche process is the
one of the mean field branching process (Zapperi et al., 1995;
Lauritsen et al., 1996). To each synaptic connection we assign an
initial random strength gij ∈ [0.15, 0.3] and to each neuron an
excitatory or inhibitory character. Outgoing synapses are excita-
tory if they belong to excitatory neurons, inhibitory otherwise.
The network has a fraction pin of inhibitory synapses, which is
fixed. Each synapse is directed, meaning that it can be used by
neuron i to send a signal to neuron j but not viceversa. As a
consequence gij �= gji and in general out-degree and in-degree of
a neuron do not coincide. Therefore, once the network of out-
put connections is established, we identify the resulting degree
of in-connections, kinj , for each neuron j, namely we identify the
number of synapses directed to each neuron j. The number kinj

of in-going synapses can be considered as the dentritic tree of
neuron j. We then assume that each neuron j has a soma whose
surface is proportional to kinj .

Whenever at time t the value of the potential in neuron i
is above a certain threshold, vi ≥ vmax, the neuron fires and its
potential vi arrives at each of the kouti connected neurons. In
our simulations we use vmax = 6. However, as in every SOC-like
model, this parameter is not relevant and results are independent
of this particular choice.

For real neurons the production of neurotransmitters at the
presynaptic terminals, and then the charge entering the postsy-
naptic neuron, is controlled by the frequency of action potentials,
which depends on the integrated stimulation received by the neu-
ron. Here the integrated stimulation is given by vi, the membrane
potential of the firing neuron. Therefore, we assume that the total
charge qi that can enter into connected neurons is proportional
to vi · kouti . The change in the intracellular membrane potential of
the postsynaptic neuron j is proportional to the relative synaptic
strength gij/

∑
l gil,

vj(t + 1) = vj(t) ± vi · kouti

kinj

gij
∑kouti

l = 1 gil

. (1)

In Equation 1 it is assumed that the received charge is distributed
over the surface kinj of the soma of the post-synaptic neuron. The
plus or minus sign is for excitatory or inhibitory synapses respec-
tively. After firing, the neuron is set in a refractory state lasting
tref = 1 time step, during which it is unable to receive or transmit
any charge, and its membrane potential is set to vrest = 0.

2.2.2. Avalanche activity
When a neuron fires, it may bring to threshold some of the con-
nected neurons thus generating an avalanche, a cascade of activity
which propagates through the network involving a variable num-
ber of neurons. During an avalanche there is no further external
stimulation. As soon as no more neurons are able to fire, the
avalanche ends and size is recorded as the number of firing neu-
rons s, or, alternatively, as the sum s�V of all positive potential
variations (depolarizations) δv+

i occurred in the network, namely

s�V = ∑
i δv+

i . By definition a single neuron firing does not con-
stitute an avalanche. Avalanches are also characterized by their
duration T, which is defined as the number of iterations taken by
the activity propagation. The numerical time step for each iter-
ation corresponds to the real time between the triggering of an
action potential in the presynaptic neuron and the change of the
membrane potential in the postsynaptic neuron, therefore it is of
the order of 4–6 ms. After an avalanche ends, an external stimulus
triggers further activity in the system. Distributions of sizes and
durations are shown in Supplementary Figure 1.

2.2.3. Synaptic plasticity
We implement a Hebbian-like plasticity rule at the end of each
avalanche. The strength gij of the used connections is increased
proportionally to the membrane potential variation |δvj| of the
postsynaptic neuron j induced by the presynaptic neuron i during
the avalanche,

gij = gij + |δvj|/vmax, (2)
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whereas the strength of all inactive synapses is reduced by the
average strength increase per bond

�g =
∑

ij

δgij/NB, (3)

where NB is the number of bonds. We set a minimum and a
maximum value for the synaptic strength gij, gmin = 0.0001 and
gmax = 1.0. Whenever gij < gmin, synapse gij is pruned. Since cor-
tical plasticity such as long-term potentiation acts on time scales
of seconds to minutes, which is much longer than the duration of
avalanches, we apply the plasticity protocol for a certain num-
ber of stimulations and then study avalanche activity without
further changing synaptic strengths. Specifically, since we don’t
want to alter the scale-free connectivity of the initial network,
we apply plasticity rules until the first few synapses are pruned.
After this plastic adaptation the gij are distributed as shown in
Supplementary Figure 2.

2.2.4. Up-down state dynamics
Alternation between the up and down-state was simulated on the
basis of two concepts. First, the transition from one state to the
other has a high degree of synchronization. Second, a down-state
occurs when activity in the up-state reaches a level at which the
up-state can’t sustain itself anymore. Such a decrease in activity
can result from either the exhaustion of available synaptic vesi-
cles (Staley et al., 1998) or the increase of factors inhibiting their
release (Thompson et al., 1992). For simplicity, we assume that
the transition happens after a sufficiently large avalanche, which
causes a lack of available neurotrasmitters and a sufficiently strong
network inhibition.

Accordingly, at the end of each avalanche we measure its size
in terms of the sum of depolarizations δv+

i of all neurons, s�V . As

soon as avalanche is larger than a threshold smin
�V , s�V > smin

�V , the
system transitions into a down-state and neurons become hyper-
polarized proportionally to their previous activity; namely, we
reset

vi = vi − h · δvi. (4)

This rule models the local inhibition experienced by a neuron,
due to spike adaptation (Sanchez-Vives et al., 2000), adenosine
accumulation (Thompson et al., 1992), synaptic vesicles deple-
tion (Staley et al., 1998) or blockade of receptor channels by the
presence of external magnesium (Maeda et al., 1995). The down-
state ends whenever a new avalanche occurs, namely the system
transitions in an up-state. When in the up-state, all neurons fir-
ing in the previous avalanche of size s�V are set to the depolarized
value

vi = vmax(1 − s�V/smin
�V ) . (5)

This equation states that the neuron’s intracellular membrane
potential depends on the response of the whole network via s�V

and implements an homeostatic mechanism at the single neu-
ron level: When avalanche sizes s�V are close to the threshold
smin
�V , the ratio s�V/smin

�V is close to 1 and membrane potentials
are reset closer to a zero resting value, thus avoiding an explosive
growth of the following avalanche. Conversely, the network does

sustain the depolarized state of the single neuron and the mem-
brane potential stays closer to the firing threshold. We wish to
stress that this mechanism is driven by the whole network activity,
following the idea that the up-state in the cortex is a coopera-
tive network state (Wilson, 2008). Furthermore, it is in agreement
with measurements of the neuronal membrane potential, which
remains significantly depolarized in the up-state (Wilson, 2008),
and, at the same, keeps activity balanced. Through Equation (5),
the threshold smin

�V controls the level of excitability of the system.
At the network level, the high activity in up-states is sus-

tained by a stimulation which has a random value in the interval
du = [0, smin

�V/s�V ): After an avalanche, at each time step we ran-
domly choose a neuron and increase its membrane potential by
rad · du, where rad is a random number in the interval [0, 1). We
notice that the amplitude of du depends on past network activity
through the size of the previous avalanche s�V . As for Equation
5, the stimulation in the up-state is based on an homeostatic
principle: The larger the previous avalanche the smaller du and
viceversa.

Conversely, during the down-state, the system experiences a
general disfacilitation mimicked by weak random stimulation: At
each time step we randomly choose a neuron and increase its
membrane potential by a small constant quantity (30–40 smaller
than vmax). This drive reproduces the effect of the small depo-
larizations due to miniature potentials (minis) from spontaneous
synaptic release observed in the down-state (Timofeev et al.,
2001). The drive slowly brings the system back in an up-state not
correlated to past activity (Lombardi et al., 2012).

During the avalanche propagation the drive is stopped, as in
usual SOC models. This procedure implements the separation of
time scales between fast avalanche propagation and slow neuron
stimulation.

Equations 4 and 5 each depend on a single parameter, h and
smin
�V , which introduce a memory effect at the level of single neuron

activity and the entire system, respectively. In order to reproduce
the experimentally observed behavior we only need to control the
ratio R = h/smin

�V , as shown in Lombardi et al. (2012).

3. RESULTS
3.1. WAITING TIME AND QUIET TIME DISTRIBUTIONS
The definition of quiet time and waiting time is sketched in
Figure 1A and can be summarized in the following equality:

δtj = �tj + Tj, (6)

that is the jth waiting time is obtained summing up the jth
quiet time and the duration Tj of the jth avalanche. It follows
that δt 
 �t if the relation T � �t holds. In case of neu-
ronal avalanches durations T range from a few to few tens of
milliseconds (Figure 1B) and are then comparable with the short-
est �ts (Lombardi et al., 2012). As a consequence, we expect
quiet time and waiting time distribution to differ at short time
scales. In Figure 1 we show the distribution P(�t) of quiet times
between successive avalanches in six different cortex slice cultures
(Lombardi et al., 2012) and compare them to the corresponding
distributions P(δt) of waiting times. The quiet time distribution
has been extensively discussed in Lombardi et al. (2012), where
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FIGURE 1 | Distributions of duration T , quiet times �t and waiting

times δt for six cortex slice cultures. (A) Definition of avalanche, quiet
time and waiting time. nLFPs in the same time bin ε or consecutive bins
define an avalanche. Avalanche duration T is given by the number n of
consecutive non-empty bins times the bin amplitude ε, namely T = n · ε. A
quiet time �t is the time interval between the end of an avalanche and the
start of the following one. A waiting time δt is the time interval between
the start of an avalanche and the start of the following one. The following
equality holds: δt = �t + T . (B) Duration distributions. For better
comparison duration T is expressed in multiples of ε. The initial power law
regime extends for about one order of magnitude and is followed by an
exponential cutoff. (C) Distribution of quiet times: All curves show an initial
power law regime with an exponent μ ranging between −2.0 and −2.5. For
larger �t, distributions are characterized by a local minimum followed by a
more or less pronounced maximum at �t 
 1 − 2 s. Upper inset:
Distributions of waiting times. Lower inset: illustrative comparison between
quiet (cyan) and waiting (blue) time distribution for the blue curve in the
main panel. The two distributions only differ at short time scales where
durations are comparable to quiet times.

it was called waiting time distribution. Here we briefly recall
its main features, namely the power law behavior at short time
scales, from few to 200–300 ms, and a local maximum situated
at longer time scales, which leads to a peculiar non-monotonic
behavior. The initial power law decay indicates that avalanches
are temporally correlated if sufficiently close in time, which
requires a sustained synaptic and firing activity in the network,
namely an up-state. Conversely longer quiet times correspond to
down-states and sparse synaptic activity in the network.

This non-monotonic behavior, with the same general features,
can be still observed in the waiting time distributions (Figure 1C,
upper inset). However, the power law exponent is generally

slightly lower than the one measured for P(�t), as shown in the
lower inset of Figure 1C. On the other hand, for time intervals
larger than 200–300 ms, which are related to down-states, the two
distributions basically coincide (Figure 1C, lower inset), mean-
ing that, for this range of values, T � �t and δt 
 �t is a good
approximation. From 6 it follows that the waiting time distribu-
tion P(δt) results from the combination of two quantities, quiet
times and durations. While for long time scales P(δt) is domi-
nated by the former, at short time scales both of them contribute
to its functional behavior. In this range of values both �t and T
are power law distributed and add up to give again a power law:
Short durations significantly couple with short quiet times and,
due to lack of characteristic values, the net results is a power law
with a larger slope. Is this power law carrying the same informa-
tion as the statistics of time intervals without activity, i.e., quiet
times? Evidently it does not, for the following reason: Durations,
which are power law distributed, are not negligible and conclud-
ing that avalanches are temporally correlated from the power laws
in waiting time distribution would be misleading (Sanchez et al.,
2002). Indeed in Lombardi et al. (2012) only quiet time statistics
has been considered. Nevertheless, some specific information can
be extracted from waiting time distributions, as we will discuss in
the following.

3.2. TEMPORAL FEATURES OF UP AND DOWN-STATE
In Lombardi et al. (2012) we have used numerical simulations
to investigate the origin of the non-monotonic behavior in the
quiet time distribution and concluded that it arises from the slow
alternation of up and down-state. Accordingly, in this section we
systematically isolate each contribution to the overall quiet time
distributions (see Materials and Methods) and further investigate
the temporal features of these two network states.

In Figure 2A we show the experimental distributions of quiet
times between consecutive avalanches in the up-states (panel a)
(see Materials and Methods): After rescaling �t by the mean rate
rup in the up-state, distributions collapse onto a unique power law
with exponent μ 
 −2.2. This implies that the avalanche pro-
cess in the up-state is solely controlled by the average occurrence
rate and the corresponding quiet time distribution has a univer-
sal, i.e., sample independent, power law decay (Figure 2A). On
the other hand, down-states produce long quiet times mostly con-
tributing to the tail of the overall P(�t), exhibiting a distribution
with a characteristic value τd, as found numerically (Lombardi
et al., 2012). This behavior has a simple interpretation: The recur-
rence of up-states has a more or less pronounced characteristic
time. If the distribution of quiet times in the down-state is peaked
around a particular value τd and is sufficiently narrow, then a
non-monotonic behavior can be observed in the quiet time dis-
tribution of the entire avalanche activity. Although distributions
of quiet times in the down-states do exhibit common features
across samples, they do not generally collapse onto a unique func-
tion after rescaling δt by rdw, the mean rate in the down-state
(Figure 2B).

To complete the investigation of up and down-state tempo-
ral features, we consider the distributions P(Tup) and P(Tdw) of
up and down-state durations, respectively (Figure 3). Numerical
curves are over plotted with experimental results. We notice
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A

B

FIGURE 2 | Experimental distribution of quiet times in the up-state and

in the down-state. (A) Distribution of quiet times between successive
avalanches occurring in the up-state. The curves, rescaled by the mean rate
rup , show a universal power law scaling. The dashed line represents a
power law with exponent −2.2. (B) Distribution of quiet times between
successive avalanches occurring in the down-state. In this case, rescaling
by the mean rate rdw does not lead to a universal behavior.

here that, both numerically and experimentally, the two states
are characterized by time scales that differ by about one order
of magnitude. Moreover, their respective duration distributions
exhibit a distinct functional behavior. On average, the durations
of down-states are distributed around Tdw 
 2000 ms and the tail
of the distribution is well fitted by an exponential (Millman et al.,
2010). This property characterizes most of the analyzed samples
(Supplementary Figure 3). Conversely, the distribution P(Tup)
exhibits a tail compatible with a power law. However, in this case,
the power law behavior arises by averaging over many cultures
and does not necessarily characterize the up-state duration in
each culture (Supplementary Figure 4).

3.3. TEMPORAL STRUCTURE OF AVALANCHE PROCESS
We have shown that different quiet time distributions of distinct
experimental samples show a qualitatively similar behavior. In
particular, at short time scales, the distributions of quiet times are
all characterized by the same power law (Figure 2), a general and
robust feature of up-states. Here we go further in the characteri-
zation of the avalanche process and question how the functional
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FIGURE 3 | Distribution of durations of up-states (A) and down-states

(B) averaged over 100 configurations of a network of N = 64000

neurons with pin = 0.1 (black symbols). Experimental data are averaged
over all samples (green curves).

behavior of the distribution P(�t) depends on the fine structure
of avalanche sequences. In order to do that, we study the distri-
butions P(�t; sc) of quiet times between consecutive avalanches
of size larger than a given threshold sc. In this way we remove
smaller avalanches from the time series and analyze how the dis-
tribution changes as a function of sc. If the different distributions
P(�t; sc) collapse onto a unique function, then the temporal
properties of the avalanche process are invariant under the afore-
said removal procedure. This specific point will be addressed in
the next section.

In Figure 4 we show the distribution P(�t; sc) for different
values of sc. By removing avalanches we are making the time
series sparser and, as a result, we would expect the distribu-
tions P(�t; sc) to become broader and broader as we increase sc.
Indeed this effect is observed but it is minor for a wide range
of sc values, which suggests that large quiet times tend to sep-
arate large avalanches. On the contrary, as a main effect, we
observe that the distributions P(�t; sc) show peaks that were not
present in the original P(�t). These peaks become pronounced
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FIGURE 4 | Experimental quiet time distributions for different values of

the threshold sc on avalanche size. Already for sc = 80 µV, distributions
clearly exhibit one or more additional peaks. Beside the one at large time
scales, �t 
1000–2000 ms, which is related with the characteristic time of
up-state recurrence, at least one peak between 60 and 250 ms is always
visible on time scales originally characterized by the power law decay and
corresponds to the period of β or θ oscillations. This is particularly

pronounced in (B,C,D,F), less in (A,E). The distributions in (B,C) exhibit one
more peak around 500 ms, related to 2 Hz oscillations. It is worth to notice
that the probability P(�t) for �t corresponding to the θ (B,C,D,F) and 1–2 Hz
oscillations (A,B) is nearly a fixed point for this transformation. Insets:
Experimental distributions of waiting times δt, for different values of sc . In
this case one more peak appears around 20–30 ms, which corresponds to γ
oscillations.
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for values of sc larger than 40 µV and are either located at the time
scales within the power law regime or at very long quiet times.
The first peak appears at�t 
 40 − 60 ms (�tβ in the following)
and can be related to the period of β oscillations (Figure 4C). The
second one arises at�t ∈ [80, 250] ms (�tθ in the following) and
corresponds to the period of θ oscillations. This peak is visible in
all samples. In particular it is very pronounced in Figures 4B–D,F.
Quiet times around �tθ seem to play a special role with respect
to our removal process: While the probability increases with sc

for�t longer than�tθ and decreases for the shorter ones, it stays
nearly constant in a neighborhood of�tθ (Figures 4B–D,F). This
means that the ratio N(�tθ ; sc)/N(sc) 
 const, namely the num-
ber of quiet times corresponding to θ period scales with the total
number N(�t; sc). Since the number of avalanches larger than sc

is simply given by the number of quiet times plus one, then the
number Nθ (sc) of avalanches related to θ oscillations scales with
the total number N(sc) of avalanches, namely it decreases propor-
tionally to N(sc) for increasing values of sc. On the other hand, the
number of avalanches separated by longer and shorter quiet times
decreases slower and faster than N(sc), respectively. This point
can be understood as follows. If, for a given �t, the probability
P(�t; sc) increases (decreases) with sc (Figures 4B–D,F), then the
numerator of the ratio N(�t; sc)/N(sc) decreases slower (faster)
than the denominator and so does the corresponding number of
avalanches. Alternatively, one can look at the quantity N(�t; sc),
which we show in the Supplementary Figure 5, and notice that it
decreases faster for small than for large�ts. Therefore, long quiet
times tend to occur between large avalanches whereas shorter
quiet times tend to separate the smaller ones. From Figure 4 we
notice that, whenever the peak around �tθ is not pronounced
(Figures 4A,E), the �t characteristic of slow 1 Hz oscillations
between up and down-states plays the role of fixed point. Finally
a further peak appears at �t 
400-500 ms, which corresponds
to a ≈ 2 Hz oscillation (Figure 4B). This peak behaves as the
one at �tθ , namely it behaves as a fixed point for our removal
procedure.

Since avalanche durations and periods of fast oscillations are
of the same order of magnitude, in order to capture their relation
with avalanche sizes we have considered the distributions P(δt; sc)
of waiting times between consecutive avalanches of size larger sc,
which are shown in the insets of Figure 4. The picture emerg-
ing from the analysis of the quantity δt is basically the same we
have drawn looking at the quiet times, except for a peak corre-
sponding to the faster γ oscillations, which can be now clearly
observed in the insets of Figures 4A,B,D–F of Figure 4. The prob-
ability associated with this peak, which is situated at very short
δt, decreases with sc whenever it coexists with very pronounced
θ peaks (Figures 4B–D,F), indicating that, at least in this par-
ticular case, faster oscillations tend to be associated with smaller
avalanches.

To summarize, our removal procedure uncovers a rich tempo-
ral structure hidden behind the scale free behavior in the quiet
time distribution: Beside the characteristic time associated with
down-state duration, avalanche occurrence keeps the temporal
features of θ and β/γ oscillations. They jointly emerge in most
of the analyzed experimental samples (Figures 4B–D,F). While
short quiet times and fast β/γ oscillations tend to be associated

with smaller avalanches, slower oscillations are in general related
to larger avalanches, but without any characteristic size. Indeed,
varying the threshold sc in a range of values within the power law
regime of the size distribution P(s), typically between 30 µV and
400 µV (Figure 5B), the probability P(�t; sc) of �t associated
with θ (Figures 4B–D,F) or slower oscillations (Figures 4A,E)
remains nearly unchanged. In particular, the θ peak coexists with
a faster decrease of the probability of γ period, thus suggest-
ing that a sort of hierarchical structure for avalanche sequences,
which follows closely the temporal organization of nested θ −
β/γ oscillations: Within up-states, large avalanches occur with θ
frequency and trigger smaller ones in a faster γ cycle (Figure 5A).
Remarkably, within γ cycles the quiet times have no characteris-
tic value. Indeed the quiet time distributions do not show peaks
at very short time scales. Then, quiet times and durations, which
are both power law distributed, show a peculiar coupling in the

FIGURE 5 | Neuronal avalanches organize into a hierarchical structure

corresponding to temporal organization of nested θ − β/γ oscillations.

(A) During up-states large avalanches (blue bars) occur with θ frequency
and trigger smaller avalanches related to faster γ oscillations (green bars).
Here bar widths indicate durations: Avalanche start is at the right side of the
bar. Bar heights indicate sizes. Spacing between blue bars corresponds to a
θ period. Spacing between the starting points of green bars corresponds to
γ period. γ cycles do not show characteristic quiet times. Sizes s of
avalanches related to θ cycles tend to fall within the blue region of the size
distribution P(s) plotted in (B), whereas the ones corresponding to nested γ
oscillations fall within the green region. Therefore, the relationship between
avalanches and oscillations does not imply characteristic sizes. In particular,
for sc ≥ 80 µV, the number of avalanches Nθ related to θ cycles scales with
sc as the total number N of avalanches, namely Nθ /N 
 const. (B)

Distributions of avalanche sizes for the experimental samples in Figure 1.
Same color is used here for each sample.
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γ cycles. δts corresponding to these oscillations are short, which
implies that both T and�t are short. Considering the scaling rela-
tion between duration T and s (Friedman et al., 2012), this is the
same that saying small avalanches are associated with short quiet
times.

Figure 4 indicates that quiet times and avalanche sizes are
correlated. The analysis of the scatter plots between �t and the
relative previous and following avalanche also provides some evi-
dence that correlations exist (Supplementary Figures 6, 7). In
order to further validate this result, we reshuffle avalanche sizes
while keeping the sequence of starting and ending times fixed.
More precisely, we reassign to each avalanche a size taken at
random from the measured size distribution. Then, we apply
the same procedure described above. If no correlations existed
between sizes and waiting times, then we should still observe the
same peaks in the distributions P(�t; sc). As shown in Figure 6,
in this case no peaks emerge in the power law regime, which
implies that, in the up-state, waiting times are strongly corre-
lated with sizes. In particular, periods of θ , β, and γ oscillations
are correlated with sizes of corresponding avalanches. On the
other hand, for longer waiting times we observe the same qual-
itative behavior discussed for the original time series. Therefore,
we can state that correlations with avalanche sizes are weak, but
a more quantitative analysis is needed to exclude that they are
significant.

3.3.1. Up and down-state
From the analysis performed above it is evident that the func-
tional behavior of the quiet time distribution arises from the
superposition of many dynamic mechanisms. In Section 3.2 we
have argued that non-monotonicity results from the alternation
between up and down-state, which implies already two differ-
ent mechanisms governing avalanche activity at the short and
large time scales. Then we have shown that also the character-
istic times of θ , β, and γ oscillations enter in the process. As a
consequence, we do not expect the distribution P(�t; sc) being
controlled by a single parameter, as observed in other stochastic
time series (Corral, 2004). Indeed, rescaling the quiet times by the
mean avalanche rate r = 1/〈�t〉, does not lead to a collapse of the
curves onto a single one (not shown).

However, one can apply the same removal procedure sep-
arately to up and down-states and then rescaling quiet times
by the respective average occurrence rate, rup and rdw, in
order to find universal features for each of the two network
states. We start considering the distributions P(�t; sc) in the
down-state and we rescale them by rdw = 〈�t〉dw. As shown in
Figure 7, distributions collapse onto a unique function, which
shows a characteristic value and an exponential tail. This func-
tional behavior is common to all samples except the one in
Figure 7E, whose departure from an exponential could be inter-
preted as an effect of the very sharp peak at �t 
 1 s and
not as a result of a different dynamics in the down-state.
The existence of a universal function implies that the quiet time
distribution in the down-states is uniquely controlled by rdw. On
the other hand, following the same procedure for the up-state
does not provide a good data collapse (not shown). Peaks that
emerge at short �t after the removal of smaller avalanches, tell

us that avalanche occurrence in the up-state is not solely con-
trolled by one time constant, that is 1/rup. Nevertheless, here we
show that the distributions of quiet times shorter than �tθ are
solely controlled by rθup = 1/〈�t〉�t<�tθ , where 〈·〉�t<�tθ indi-

cates the average over �t < �tθ . Indeed, rescaling them by rθup
leads to a data collapse onto a unique function which follows a
power law with an exponent μ 
 −2 (Figure 8). This collapse is
particularly good in samples that show a clear power law behav-
ior for quiet times shorter than �t corresponding to θ and 1 Hz
oscillation period (Figures 8B–E,F). Conversely, curves do not
collapse whenever a further, shorter characteristic time is present
(Figure 8C).

We obtain a similar result for numerical distributions.
However, in this case removing avalanches according to their size
does not lead to many peaks at short quiet times, which implies
that there are only two characteristic time scales for numerical
avalanches. In this case, we just need to consider separately up
and down-state and rescale the quiet times by respective average
occurrence rate, rup and rdw. As shown in Figures 7E,F, 8E,F we
obtain a good data collapse in both cases.

4. DISCUSSION
The distribution of quiet times between consecutive avalanches
in cortex slice cultures displays a power law decay at short time
scales, namely from few to 200–300 ms, and is generally charac-
terized by a local maximum at longer quiet times, which leads
to a non-monotonic behavior. Numerical simulations show that
this non-monotonic distribution results from the slow alternation
between up and down-states (Lombardi et al., 2012). The model
suggests that in the up-state, where neurons mutually sustain
their spiking activity, network mechanisms act as a form of short-
term memory, which produces clusters of correlated avalanches
and thus gives rise to the initial power law regime in the quiet
time distribution. On the other hand, the synaptic activity dur-
ing down-state can be modeled as a random process that slowly
brings the system back into the up-state, with no memory of past
activity. Indeed numerical distributions exhibit an exponential
tail similar to the ones observed experimentally (Lombardi et al.,
2012).

Accordingly, here we have defined as up-state (down-state) a
consecutive series of avalanches separated by �t shorter (longer)
than the longest �t falling within the power law regime of P(�t)
and systematically evaluated the quiet time distribution for up
and down-state. We have shown that, while a power law with
exponent μ 
 −2 is a property of up-states in all analyzed sam-
ples, the recurrence of up-states has a characteristic time τd which
is sample dependent (
 1 s on average). Indeed, the lasting times
of down-states, which are simply quiet times between successive
up-states, are distributed around a certain value 1 s< T < 2 s, the
tail of the distribution being well fitted by an exponential. Since
the exponential behavior is characteristic of Poisson processes, we
conclude that consecutive up-states are basically not correlated.
Moreover, from the properties of Poisson processes it follows
that, given the sequence of quiet times �t between successive
up-states, the jumps, i.e., the differences between two consecutive
�ts, are also exponentially distributed. The distribution of jumps
is commonly used to characterize stochastic processes. It has been
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FIGURE 6 | Quiet time distributions evaluated for the reshuffled avalanche time series and for different values of the threshold sc on avalanche size.

In this case no additional peaks arise at short time scales. Distributions still exhibit peaks at longer time scales, as the ones shown in Figure 4.

analyzed for burst sequences in spontaneous activity of dissoci-
ated cultures of cortical neurons (Segev et al., 2002) and has been
approximated with a symmetric Levy distribution. While Levy is
indicative of self similarity in the process, spectral analysis was

consistent with long range temporal correlation. Beside differ-
ences with cultures considered here, discrepancies can be also due
to the definition of burst adopted in Segev et al. (2002), which
substantially differs from our definition of up-states.
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FIGURE 7 | Distributions of quiet times P(�t; sc ) in the down-state for

the experimental data samples of Figure 1C and the numerical samples

reproducing blue squares and red diamonds curve of Figure 1C.

Distributions are rescaled by the mean rate rdw in the down-state. In five of
the analyzed samples the tail of the distribution is well fitted by an

exponential (black dashed line in A–D,F). Numerical data are shown in (E,F)

together with the corresponding experimental curves of Figure 1C and
shifted by 1 order of magnitude to the left, for clarity. Numerical distributions
are averaged over 100 configurations of a network of N = 64000 neurons
with pin = 0.1.
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FIGURE 8 | Distributions P(�t < �tθ ; sc ) of quiet times shorter than �tθ

in the up-state for the experimental data samples of Figure 1C and the

numerical samples reproducing blue squares and red diamonds curve of

Figure 1C. �tθ is sample dependent and its value varies in the interval
[80,250] ms. Distributions are rescaled by the mean rate rθup. Numerical data

are shown in (E,F) together with the corresponding experimental curves of
Figure 1C and shifted by 1 order of magnitude to the left, for clarity.
Numerical distributions are averaged over 100 configurations of a network of
N = 64000 neurons with pin = 0.1 and are rescaled by rup . The dashed line is
a power law with exponent −2.2.
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We have shown that beside the characteristic recurrence time
τd between consecutive up-states, the analysis of quiet time distri-
butions is able to capture the presence of θ , β, and γ oscillations
in avalanche occurrence. The connection between nested oscilla-
tions and neuronal avalanches has been pointed out in Gireesh
and Plenz (2008). Investigation of spontaneous neuronal activity
in the rat cortex layer 2/3 has revealed that, during the second
week postnatal, bursts develop a temporal organization of higher
frequency oscillations, β and γ , nested into lower frequencies
θ oscillations, while the spatio-temporal organization of LFPs
is characterized by the scaling behavior of neuronal avalanches.
Here we have further enlightened the relation between avalanche
sizes and the temporal structure of the avalanche process. When
avalanches of all sizes are considered, the distribution of quiet
times in the up-state is scale free. On the contrary, disregarding
avalanches smaller than 
 80 µV, peaks corresponding to oscilla-
tions in θ , β, and γ frequency bands are clearly visible. Smaller
avalanches (60–160 µV) tend to be associated with shorter quiet
times and faster β/γ oscillations, larger ones to longer quiet times
and slower θ or 1–2 Hz oscillations. Of considerable interest is the
behavior of the θ and 1 Hz peaks under the removal procedure,
which are nearly independent of the threshold sc on avalanche
sizes: It doesn’t matter how many avalanches are removed, the
probability for quiet times around the period of θ or 1 Hz oscil-
lation does not change for a large range of sc values. Equivalently,
avalanches corresponding to these frequency bands are a con-
stant fraction of the total number, which implies that they have
no characteristic size. This suggests a special role in the tempo-
ral organization of spontaneous activity. In particular, we have
noticed that large avalanches occurring with θ frequency trig-
ger cascades of smaller avalanches corresponding to the higher
frequency oscillations, in a sort of hierarchy which is reminis-
cent of the temporal organization of nested θ − β/γ oscillations
(Gireesh and Plenz, 2008; He et al., 2010).

These results indicate that correlations between quiet times
and avalanche sizes could be relevant and deserve further inves-
tigation. This point is intimately related to the existence of
a universal scaling function for the distributions P(�t; sc). A
stochastic process for which such a universal function exists is
a fixed point of the transformation which has been illustrated
and performed in Section 3 (Corral, 2007). It can be shown that
the only process without correlations which is invariant under
this transformation is the Poisson process (Daley and Vere-Jones,
1988). More precisely, if sizes are independent of any other vari-
able, the removal of events is equivalent to a so called random
thinning and, under certain conditions, the resulting process con-
verges to a Poisson process. Here we have demonstrated that the
distributions P(�t; sc) do not collapse onto a unique function
when �t is rescaled by the average occurrence rate r. This is
because of the multiple time scales in avalanche dynamics, which
result from different mechanisms governing avalanche triggering
during up and down-states. Indeed distributions P(�t; sc) for the
down-state are simply controlled by the respective average rate:
When �t is rescaled by rdw, the distributions P(�t; sc) for the
down-state collapse onto the same curve with an approximately
exponential tail, which therefore implies that sizes of avalanches
separated by large quiet times are either independent or weakly

correlated, as well as sizes and quiet times. On the other hand,
in the up-state we observe that the peak associated with period
of θ oscillations and those corresponding to the β/γ scale dif-
ferently with sc and therefore cannot be controlled by the same
time scale, rup. In other words oscillations introduce additional
characteristic times in the up-state. However, we have shown that
the power law for short quiet times is universal and controlled
by 〈�t〉�t<�tθ . A similar analysis has been recently performed
for spike avalanches in freely behaving (FB) and anesthetized rats
(AR) (Ribeiro et al., 2010), where the quiet time distributions
show consistently a monotonically decreasing behavior. Universal
scaling features are observed for FB rats when quiet times are
rescaled by the average occurrence rate, whereas curves for AR do
not collapse onto a unique function. Our analysis suggests that
the different behavior between anesthetized and freely behaving
rats could be due to different dynamic mechanisms characterizing
spontaneous activity in AR.

Waiting time distribution and its universal features have been
widely investigated for earthquakes (Corral, 2004; de Arcangelis
et al., 2006a). In this case the distribution is not exponential,
but monotonic and solely controlled by r, except for correc-
tions at short waiting times (Bottiglieri et al., 2010). On the
other hand, many similarities between neuronal avalanches and
earthquakes can be recognized, which have suggested a com-
mon interpretation in term of self organized criticality (SOC).
SOC was originally proposed as an explanation for long range
correlations emerging in processes far from equilibrium (Tang
et al., 1988) and has rapidly become a useful interpretative scheme
for many stochastic natural phenomena that exhibit scale free
statistics. As for neuronal avalanches and earthquakes, in many
cases, e.g., solar flares (Boffetta et al., 1999), waiting time dis-
tributions are not exponential. Conversely, in the original sand
pile model introduced by Bak, Tang and Wiesenfeld (BTW) to
exemplify SOC idea, waiting times are exponentially distributed
(Boffetta et al., 1999) and this fact was used to question SOC
as an interpretation for solar flares (Boffetta et al., 1999) and
earthquakes (Yang et al., 2004). However, Paczuski et al. (2005)
have argued that an experimental sequence of bursts can arise
from a single avalanche observed at a finite detection threshold,
which would give rise to a power law in the waiting time distri-
bution of the BTW model. In addition, several different models
have been proposed in order to show that SOC-like dynam-
ics can provide temporal correlations among avalanches (Rios
and Zhang, 1999; Baiesi and Maes, 2006) and a non-exponential
distribution of waiting times (Sanchez et al., 2002; Lippiello
et al., 2005; Baiesi and Maes, 2006). In particular, it has been
shown that in the so called running sand pile (Sanchez et al.,
2002), waiting times between avalanches with size above a large
enough threshold are power law rather than exponentially dis-
tributed. Non-exponential waiting time distributions also arise
if avalanches are triggered on the basis of the entire history of
local stimulations (Lippiello et al., 2005). Here we have shown
that our model, inspired in SOC, is able to capture the pecu-
liar, non-exponential and non-monotonic behavior of the waiting
time distribution for neuronal avalanches recorded in cortex slice
cultures (Lombardi et al., 2012). Moreover, numerically generated
up and down-states, exhibit the same universal features found
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experimentally. This point is particularly important because it
indicates that the lack of universality in the waiting time distribu-
tion for spike avalanches in anesthetized rats (Ribeiro et al., 2010)
could be due to the coexistence of different dynamic mecha-
nisms, each one controlling ongoing activity at different temporal
scales. Indeed, in freely behaving rats, where no down-states are
observed, the waiting time distribution is controlled by the aver-
age occurrence rate (Ribeiro et al., 2010), which, for our model,
is equivalent to rup. From our simulations it emerges that the
crucial features of this temporal evolution are (1) the different
single neuron behavior in the two phases, namely the ability to
oscillate between a very depolarized and hyperpolarized state,
(2) the homeostatic mechanism driving activity in the up-state
and (3) the network disfacilitation following up-states. The good
agreement with experimental data indicates that the transition
from an up-state to a down-state has a high degree of synchro-
nization, whereas the onset of up-states is usually more gradual.
According to our numerical results, the alternation between up
and down-states is the expression of an homeostatic regulation
which, during a burst, is activated to control the excitability of the
system and avoid pathological behavior.
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The concept of the brain as a critical dynamical system is very attractive because systems
close to criticality are thought to maximize their dynamic range of information processing
and communication. To date, there have been two key experimental observations in
support of this hypothesis: (i) neuronal avalanches with power law distribution of size
and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations.
The case for how these maximize dynamic range of information processing and
communication is still being made and because a significant substrate for information
coding and transmission is neural synchrony it is of interest to link synchronization
measures with those of criticality. We propose a framework for characterizing criticality
in synchronization based on an analysis of the moment-to-moment fluctuations of phase
synchrony in terms of the presence of LRTCs. This framework relies on an estimation
of the rate of change of phase difference and a set of methods we have developed to
detect LRTCs. We test this framework against two classical models of criticality (Ising
and Kuramoto) and recently described variants of these models aimed to more closely
represent human brain dynamics. From these simulations we determine the parameters at
which these systems show evidence of LRTCs in phase synchronization. We demonstrate
proof of principle by analysing pairs of human simultaneous EEG and EMG time series,
suggesting that LRTCs of corticomuscular phase synchronization can be detected in the
resting state and experimentally manipulated. The existence of LRTCs in fluctuations of
phase synchronization suggests that these fluctuations are governed by non-local behavior,
with all scales contributing to system behavior. This has important implications regarding
the conditions under which one should expect to see LRTCs in phase synchronization.
Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness
facilitating rapid task-dependent shifts toward and away from synchronous states that
abolish LRTCs.

Keywords: criticality, long-range temporal correlations, phase synchronization, detrended fluctuation analysis,

oscillations, Kuramoto, Ising

1. INTRODUCTION
The concept of the brain as a dynamical system close to a critical
regime is attractive because systems close to criticality are thought
to maximize their dynamic range of information processing and
communication, show efficiency in transmitting information and
a readiness to respond to change (Linkenkaer-Hansen et al., 2001,
2004; Beggs and Plenz, 2003; Stam and de Bruin, 2004; Kinouchi
and Copelli, 2006; Sornette, 2006; Shew et al., 2009; Werner, 2009;
Chialvo, 2010; Beggs and Timme, 2012; Meisel et al., 2012; Shew
and Plenz, 2013).

A number of modeling studies have shed important light on
the behavior of neurally inspired systems close to their criti-
cal dynamical range (Kitzbichler et al., 2009; Shew et al., 2009;
Breakspear et al., 2010; Daffertshofer and van Wijk, 2011; Poil
et al., 2012). To date there have been two significant experimen-
tal observations suggesting that the brain may operate at, or near,

criticality. These are: (i) the discovery that the spatio-temporal
distribution of spontaneous neural firing statistics can be char-
acterized as neuronal avalanches with a power law distribution
of avalanche size (Beggs and Plenz, 2003) and (ii) the presence
of long-range temporal correlations (LRTCs) in the amplitude
fluctuations of neural oscillations, typically bandpassed MEG or
EEG (Linkenkaer-Hansen et al., 2001; Hardstone et al., 2012).
The mechanisms by which avalanches and LRTCs of oscillation
amplitude may maximize the dynamic range of information pro-
cessing and communication are still to be fully understood and
experimental and computational neuroscience data linking the
two phenomena are only just beginning to emerge (Plenz and
Chialvo, 2009; Poil et al., 2012).

Population coding approaches to neuronal information stor-
age and transmission show that both changes in the firing rate
and changes in neuronal synchronization and desynchronization
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of action potentials are required to indicate changes in signal
salience (Pfurtscheller, 1977, 1992; Singer, 1999; Baker et al.,
2001; Schoffelen et al., 2005). At a coarser spatio-temporal scale,
extracellular brain signals (local field potentials, corticography,
EEG, and MEG), which depend on recordings within the brain,
at the brain surface and at the scalp are observed to be quasi-
oscillatory (brain oscillations) and in the resting state contain
spectral peaks within distinct frequency bands sitting on a 1/f
decrease in power with increasing frequency (Buzsaki, 2006).
Brain oscillations both in the resting state and during task con-
ditions show short-range and long-range synchronization when
examined both from the phase and amplitude envelope perspec-
tives (Wang, 2010). Primarily neuroscience has focused on the
detection of synchronization between areas either at zero phase
lag, or with a fixed phase delay. This is in part a consequence of
the fact that the averaging necessary to extract evidence of signal
correlation requires a consistent phase relationship between the
two signals for at least some period of the recording.

Importantly, neural synchronization is weak and it fluctuates
spontaneously over time. A number of experiments have shown
neural synchronization to be consistently modulated by cognitive,
perceptual and motor tasks supporting the idea that synchro-
nization and de-synchronization within and across frequency
bands may play an important role in communication within
the nervous system (Conway et al., 1995; Farmer, 1998; Baker
et al., 1999; Singer, 1999; Pikovsky et al., 2003; Schoffelen et al.,
2005; Buzsaki, 2006; Doesburg et al., 2009; Fries, 2009; Akam
and Kullmann, 2010). Changing synchronization patterns may
indicate an evolution in the relationship and exchange of infor-
mation (Pikovsky et al., 2003). Neural synchronization can exist
between nearby and distant regions, across a range of time scales,
and can be characterized using a number of techniques based on
time- and frequency-domain techniques as well as mutual infor-
mation (Halliday et al., 1998; Schoffelen et al., 2005; Buzsaki,
2006; James et al., 2008; Brittain et al., 2009; Siegel et al., 2012).

Neuronal synchronization occurs when the mutual influence
of neurons on each other causes them to fire close together in
time. It is favored by oscillatory activity. Oscillators can be tipped
in and out of weak synchonization through shared noise, a phe-
nomenon first appreciated by Huygens (Pikovsky et al., 2003).
Therefore, weak yet variable synchrony between neuronal oscil-
lators may easily emerge within complex and highly interactive
neural networks. In this paper the term synchronization will be
used to encapsulate both zero and fixed phase lag synchrony but
also situations in which any non-trivial phase relationship exists
between signals. Importantly, we will introduce a new method-
ology to demonstrate that non-fixed yet non-random phase
relationships between signals are present in models of critical syn-
chronization and we will show that, in principle, the methodogy
can be applied to neural data in order to further explore the rela-
tionship between neural synchronization and systems operating
close to a critical regime.

Recent evidence supporting the idea of criticality in the
dynamics of the resting state brain activity and the appreci-
ation that synchronization is an important extractable prop-
erty of neural spatio-temporal dynamics has led researchers to
ask whether neuronal synchrony can have properties consistent
with a dynamical system at criticality. These approaches identify

power law distributions in neural synchronization where syn-
chronization has been defined as phase consistency between two
thresholded time series, e.g., see the phase lock interval (PLI)
measure and the lability of global synchronization (GLS) mea-
sure in Kitzbichler et al. (2009). These findings are of considerable
interest, however, the results supporting power law behavior of
PLI have been shown by the present authors to be vulnerable to
data pooling and therefore may not provide robust estimates of
critical synchronization in neural time series data (Botcharova
et al., 2012, see also Shriki et al., 2013).

As discussed above, LRTCs (these will be formally defined
in Section 2.3) exist in dynamical systems thought to operate
close to a critical regime (Linkenkaer-Hansen et al., 2001). They
are typically identified by the autocorrelation function of the
time series decaying in the form of a power law (Granger and
Joyeux, 1980). The detrended fluctuation analysis (DFA) tech-
nique allows a characterization of LRTCs through an exponent
similar to the Hurst exponent. DFA has been widely used in
order to demonstrate the presence of LRTCs in a number of
natural and human phenomena (see Peng et al., 1994, 1995a,b;
Stanley et al., 1994; Hausdorff et al., 1995; Bak, 1996; Robinson,
2003; Karmeshu and Krishnamachari, 2004; Wang et al., 2005;
Samorodnitsky, 2006; Hardstone et al., 2012, for examples). In
neurophysiology, the finding of LRTCs in amplitude fluctuations
of the bandpass filtered MEG and EEG (Linkenkaer-Hansen et al.,
2001, 2004) has inspired us to develop a methodological frame-
work that can be used to to verify the presence or absence of
power law scaling of detrended fluctuations and where power
law scaling is present to estimate and ascertain non-trivial DFA
exponents in the moment to moment fluctuations of phase syn-
chronization (quantified in terms of the rate of change of phase
difference time series) between pairs of neuronal oscillation time
series. It should be noted here that our focus on the rate of
change of phase difference time series means that our frame-
work is not reliant on the definition of (discrete) phase locking
events. It is therefore expected to contribute insights regard-
ing phase synchronization that corroborate or complement those
provided by the study of intermittency in phase synchronization
(e.g., Gong et al., 2007).

The methodology is tested as follows: (i) on synthetic time
series where their phase difference has known temporal properties
with a known DFA exponent. Using these simulations we demon-
strate the method’s ability to recover known DFA exponents in
the phase difference, and we test the method’s robustness to addi-
tive noise in such signals; (ii) the method is tested on two classical
models of criticality, Ising and Kuramoto (Ising, 1925; Onsager,
1944; Kuramoto, 1975, 1984), from which time series and their
pairwise phase differences can be extracted. The output of these
models is examined using our method for those parameter val-
ues that determine the sub-critical, critical, and super-critical
regimes. The classical Kuramoto model is tuned close to the phys-
iological β frequency range of MEG and EEG and examined with
additive noise. We show from this analysis that a rise in DFA
exponent associated with robust power law detrended fluctuation
scaling occurs close to the critical regimes of both the Ising model
and the Kuramoto model with noise.

We next use our methodology to examine a system of
Kuramoto oscillators, operating in a range of frequencies close
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to the physiological γ frequency range of MEG and EEG that
are connected through a network constructed based on empiri-
cal estimations of brain connectivity parameters with time delays,
noise and non-uniform connectivity (Cabral et al., 2011). From
these simulations, we determine the parameters at which this
system shows evidence of LRTCs in the rate of change of phase
differences and we relate the presence of LRTCs to the network’s
connectivity.

Finally, we demonstrate that in principle this methodology
may be applied to neurophysiological data through analysing
pairs of human EEG and EMG time series. These preliminary
results suggest that LRTCs can be detected in the phase syn-
chronization between oscillations in human neurophysiological
recordings.

We present and discuss our methodology in detail and we offer
an interpretation of its results in relation to the emerging litera-
ture on neural synchrony and criticality within neural systems.
We suggest that the existence of a valid DFA exponent in fluctua-
tions of a phase difference measure suggests that the fluctuations
are governed by non-local behavior, with all scales contributing
to system’s behavior.

2. MATERIALS AND METHODS
We seek to characterize the presence of LRTCs in the (time-
varying) phase difference between two time series. These time
series may be physiological signals such as EEG, MEG, or EMG,
time series extracted from a simulation or physical model, or data
recorded from other natural phenomena. Below, we present the
detail of the various components of our proposed methodology,
including a technique used to calculate phase differences, DFA
and the recently introduced ML-DFA method for validating the
output of DFA. Figure 1 illustrates the application of our method-
ology to neurophysiological data using two sample MEG time
series. We note that for these signals, we bandpassed filter the data
to a frequency band of interest, however, this step will be omitted
in model data considered further in the manuscript.

2.1. SIGNAL PHASE
The phase of a single time series s(t) is calculated by first finding
its analytic signal:

sa(t) = s(t) + H
[
s(t)

]
(1)

where H
[
s(t)

]
is the Hilbert transform:

H [s(t)] = p.v.

∫ ∞

−∞
s(τ )

1

π(t − τ )
dτ (2)

and p.v. indicates that the transform is defined using the Cauchy
principal value.

2.2. PHASE DIFFERENCE
The signal phase is defined such that it belongs to a range φ(t) ∈
[0, 2π ] or φ(t) ∈ [−π, π]. When a single oscillatory cycle is
completed the phase returns to its starting value. A time-varying
phase therefore has the properties of a sawtooth function (see
panel 3 in Figure 1). In order to turn the phase into a continu-
ous signal, the phase is unwrapped, so that at each discontinuity,

a value of 2π is added to the phase (Freeman and Rogers, 2002;
Freeman, 2004).

The phase difference φ1(t) − φ2(t) between two different time
series s1(t) and s2(t) is calculated using the respective Hilbert
transform of the signals H[s1(t)] and H[s2(t)] (Pikovsky et al.,
2003):

φ1(t) − φ2(t) = tan−1
{

H [s1(t)]s2(t) − s1(t)H [s2(t)]
s1(t)s2(t) + H [s1(t)]H [s2(t)]

}
(3)

Full synchronization between the two signals is indicated by a
constant difference in phase over some time period (Pikovsky
et al., 2003). The time series φ1(t) − φ2(t) is an unbounded pro-
cess because φ1(t) and φ2(t) themselves are unbounded as long as
the signals s1(t) and s2(t) continue to evolve as time increases. As
we shall use DFA, see Section 2.4, to assess the presence of LRTCs
and DFA in its standard form assumes a bounded signal, in this
paper, we characterize phase synchronization in terms of the time
derivative of the phase difference time series φ1(t) − φ2(t), i.e.,
the rate of change of the phase difference.

2.3. LONG-RANGE TEMPORAL CORRELATIONS
The autocorrelation function Rss(τ ) of a signal s(t) quantifies the
correlation of a signal with itself at different time lags τ (Priemer,
1990), formally:

Rss(τ ) =
∫ −∞

∞
s(t + τ )s̄(t)dt (4)

where s̄(t) is the complex conjugate of s(t) and therefore s̄(t) =
s(t) if s(t) is real-valued.

In signals with short-range or no dependence (Beran, 1994),
the autocorrelation function shows a rapid decay. Gaussian white
noise, for example, is a signal with no temporal dependence
because each successive value of the time series is independent
and thus its autocorrelation function decays exponentially. In
contrast, a slow decay of the autocorrelation function indicates
that correlations persist even across large temporal separations,
and this is referred to as long-range dependence (Beran, 1994).

If there is power law decay of the autocorrelation function,
namely:

Rss(τ ) ∼ Cτ−α (5)

where C > 0 and α ∈ (0, 1) are constants, and the symbol ∼
indicates asymptotic equivalence (Clegg, 2006), then the time
series is said to contain LRTCs. LRTCs are a subject of consid-
erable scientific interest. They have been detected in biological
data (Peng et al., 1994; Carreras et al., 1998; Willinger et al., 1999;
Linkenkaer-Hansen et al., 2001; Samorodnitsky, 2006; Berthouze
et al., 2010) and have been discussed within the context of
complex systems operating in a critical regime.

Applying a Fourier transformation to Equation (5), a similar
formulation exists for the spectral density of the signal (Clegg,
2006), with f representing frequency:

Gss(f ) ∼ Bf −β (6)
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FIGURE 1 | Step-by-step illustration of the proposed method. We use
two sample MEG signals from the left and right motor cortex, displayed
throughout panels 1–4 in red and blue, respectively. Panel 2 shows an
optional bandpass filtering step. In panel 3 the instantaneous phases of
the two time series are calculated using the Hilbert transform. Panel 4
shows the unwrapped phases leading to a time-varying phase difference
displayed in panel 5. In panel 6, the rate of change of this phase

difference is calculated. This step is illustrated using two plots, each
showing a different time scale in the x-axis. These two time scales
correspond to the minimum and maximum window sizes used in the
DFA analysis, see Section 2.4. Panel 7 shows the resulting DFA
fluctuation plot. The validity of this plot is determined using ML-DFA, see
Section 2.5. In this case, the validity of the DFA plot was confirmed,
with a DFA exponent of 0.57.

where β = 1 − α and is also related to the level of temporal
dependence.

The exponents α and β in Equations (5, 6) are connected to
the Hurst Exponent, H, by α = 2 − 2H and β = 2H − 1 (Beran,
1994; Taqqu et al., 1995).

In practice, finding the exponent α and β is not straight-
forward for an arbitrary signal. In the time-domain, α is best
approximated by the slope of the autocorrelation function in
the limit of infinite time lags τ where measurement errors are
also largest (Clegg, 2006). Similarly, in the frequency domain,

β is best approximated by the shape of the spectral density at
large frequency shifts f . Determination of the Hurst exponent for
non-stationary signals is not straightforward, and therefore, for
practical applications, the related property of self-similarity (see
below) is considered.

2.4. DETRENDED FLUCTUATION ANALYSIS
DFA may be used to determine the self-similarity of a time
series (Peng et al., 1994, 1995b). The application of DFA returns
the value of an exponent, which is closely related to the Hurst
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exponent (Beran, 1994; Clegg, 2006). DFA is often considered to
be applicable to both stationary and non-stationary data although
recent reports, e.g., Bryce and Sprague (2012), have suggested that
the ability of DFA to deal with non-stationary signals is over-
stated. In Section 2.5, we will describe our approach to mitigating
this concern.

To calculate the DFA exponent, the time series is first
detrended and then cumulatively summed. The root mean square
error is then calculated when this signal is fitted by a line over
different window sizes (or box sizes). Extensions of the tech-
nique can be used to fit any polynomial to each window, however,
here we only consider linear detrending. If the time series is self-
similar, there will be power law scaling between the residuals (or
detrended fluctuations) and the box sizes. In the log space, this
power law scaling yields a linear relationship between residuals
and box sizes, the so-called DFA fluctuation plot, and the DFA
exponent H is obtained using least squares linear regression. A
DFA exponent in the range 0.5 < H < 1 indicates the presence
of LRTCs. An exponent of 0 < H < 0.5 is obtained when the
time series is anti-correlated, H = 1 represents pink noise, and
H = 1.5 is Brownian noise. Gaussian white noise has an exponent
of H = 0.5.

When performing DFA on oscillatory signals, the smallest win-
dow length should be large enough to avoid errors in local root
mean square fluctuations, and it is typically taken to be sev-
eral times the length of a cycle at the characteristic frequency
in the time series (Linkenkaer-Hansen et al., 2001). If the mini-
mum window size is significantly smaller than this value, then the
fluctuation plot will typically contain a crossover at the window
length of a single period (Hu et al., 2001). However, for non-
oscillatory time series for which there is no characteristic tempo-
ral scale and there are rapid changes at each innovation, such as
Gaussian white noise or FARIMA time series (see Section 2.6.1),
a smaller window size may be used.

The maximum window size should encompass a significant
proportion of the time series yet contain sufficient estimates to
allow for a robust estimate of the average fluctuation magnitude
across the time series. It is typically taken to be N/10 where N is
the length of the data (Linkenkaer-Hansen et al., 2001).

In our application of DFA to neurophysiological and model
data, we use 20 window sizes with a logarithmic scaling and a
minimum window of 8 time steps for simulated data, and 1 s
for neurophysiological oscillations (sampled at 512 Hz, band-pass
filtered 15.5–27.5 Hz) providing for a minimum of 16 cycles
per second. Following Linkenkaer-Hansen et al. (2001) we take a
maximum window size of N/10 time steps where N is the length
of the time series.

2.5. ASSESSING THE VALIDITY OF DFA
As mentioned above, a self-similar process will produce a
power law relationship between the magnitude of the detrended
fluctuations and the box sizes. In DFA, this power law scaling
is characterized in terms of the linear scaling between the log
detrended fluctuations and the log box sizes (DFA fluctuation
plot). It is beyond the scope of this paper to argue the validity
of operating in the log domain (but see Clauset et al., 2006 for a
reasoned view as to why this may not be appropriate), however,

since the object of DFA is to find evidence for or against scaling
and because a valid DFA exponent can only be obtained when the
DFA fluctuation plot is indeed linear we have introduced a model
selection method for establishing the linearity of DFA fluctuation
plots (Botcharova et al., 2013).

Our arguments for adopting a more rigourous approach are
as follows: (i) there is no a priori means of confirming that a
signal is self-similar, (ii) a DFA fluctuation plot will necessarily
increase with window size, (iii) an exponent may be too easily
obtained through simple regression analysis producing a statis-
tically significant result with a high r2 value even though the
linear model may not best represent a given DFA fluctuation plot,
(iv) the discovery of an exponent >0.5 with a high r2 value may
lead to the incorrect conclusion that the signal is self-similar with
LRTCs.

Instead of a simple regression we use the model selection tech-
nique (ML-DFA) introduced in Botcharova et al. (2013) to deter-
mine whether a given DFA fluctuation plot is best-approximated
by a linear model. This is a heuristic technique, which has been
tested extensively and found to perform well in assessing linearity
in the fluctuation plots of the following time series: (i) those with
known combinations of short and LRTCs, (ii) self-similar time
series with varying Hurst exponent, (iii) self-similar time series
with added noise and (iv) time series with known oscillatory
structure, e.g., sine waves (Botcharova et al., 2013).

The technique fits the DFA fluctuation plot with a number of
different models (see below) and compares the fit of each model
using the Akaike Information Criterion (AIC), which discounts
for the number of parameters needed to fit the model. The DFA
exponent is accepted as being valid only if the best fitting model
is linear. We want to stress that this does not equate to stating
that the fluctuation plot is linear. Rather, we do not reject the
linear model hypothesis. In what follows, only those time series
for which the linear model hypothesis is not rejected (i.e., their
DFA fluctuation plot is best-fitted by the linear model) contribute
to the DFA exponents presented in the present paper and where
appropriate we indicate where linear scaling of the fluctuation
plot is lost.

The models included in ML-DFA are listed below
(see Botcharova et al., 2013 for a justification), with the ai

parameters to be found. The number of parameters ranges
between 2 for the linear model, and 8 for the four-segment spline
model.

Polynomial - f (x) = ∑K
i = 0 aixi for K = {1, . . . , 5}

Root - f (x) = a1(x + a2)1/K + a3 for K = {2, 3, 4}
Logarithmic - f (x) = a1log(x + a2) + a3

Exponential - f (x) = a1ea2x + a3

Spline with 2, 3 and 4 linear sections.

The first step of ML-DFA is to normalize the fluctuation
magnitudes with:

lFscaled = 100 × lF − lFmin

lFmax − lFmin
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where lFmin and lFmax are the minimum and the maximum values
of vector lF, respectively. A function L is then defined:

L =
n∏

i = 1

p(lns(i))lFscaled(i)

which is a product across all windows i, and which works in a
similar way to a likelihood function, where p(lns) represents the
function:

p(lns) =
∣∣f (lns)

∣∣
∑n

i = 1

∣∣f (lns)
∣∣

where f (lns) is the fitted model. Absolute values are used in order
to ensure that p(lns) remains in the range [0, 1], so that a function
is rejected if it falls below 0.

The next step is to apply a logarithm toL to produce a function
that is similar in form to a log-likelihood:

logL =
n∑

i = 1

lFscaled(i)logp(lns(i))

This is maximized to find the parameters ai necessary for f (lns). It
is worth mentioning that the application of the logarithm means
that the values belonging to lns are not equally weighted for all i.
The larger window sizes have a lower weighting, which is bene-
ficial because these estimates are also the least robust since they
have fewer samples associated with them.

Akaike’s Information Criterion (AIC) is then computed, which
is designed to prevent over-fitting—a situation that should in gen-
eral be avoided—by taking into account the number of param-
eters used (Akaike, 1974; Mackay, 2003). For a model using k
parameters, with likelihood function logL, the AIC is calculated
using the following expression:

AIC = 2k − 2logL + 2k(k + 1)

n − k − 1

where k is the number of parameters that the model uses (Akaike,
1974). An adapted formula was proposed by Hurvich and Tsai
(1989), which accounts for small sample sizes. The model which
provides the best fit to the data is that with the lowest value of
AIC. It is important to recall that the AIC can only be used to
compare models. It does not give any information as to how good
the models are at fitting the data, i.e., it is only its relative value, for
different models, that is important; and it would not be possible,
for instance, to compare AIC values obtained from different data
sets to each other.

2.6. METHOD VALIDATION
2.6.1. FARIMA processes
An Autoregressive Fractionally Integrated Moving Average model
(FARIMA) (Hosking, 1981) can be used to create time series with
self-similarity. The model provides a process that can easily be
manipulated to include a variable level of LRTCs within a signal,
from which DFA should return the exponent used to construct
the FARIMA process.

To construct a FARIMA process a time sequence of zero-
mean white noise is first generated, which is typically taken to
be Gaussian, and necessarily so to produce fractional Gaussian
noise. The FARIMA process, X(t), is then defined by parameters
p, d, and q and given by:

⎛

⎝1 −
p∑

i = 1

ϕiB
i

⎞

⎠ (1 − B)d X(t) =
⎛

⎝1 +
q∑

i = 1

ϕiB
i

⎞

⎠ ε(t) (7)

B is the backshift operator operator, so that BX(t) = X(t − 1) and
B2X(t) = X(t − 2). Terms such as (1 − B)2 are calculated using
ordinary expansion, so that (1 − B)2X(t) = X(t) − 2X(t − 1) +
X(t − 2). While the parameter d must be an integer in the ARIMA
model, the FARIMA can take fractional values for d. A binomial
series expansion is used to calculate the result:

(1 − B)d =
∞∑

k = 0

(
d

k

)
( − B)k

The left hand sum deals with the autoregressive part of the model
where p indicates the number of back-shifted terms of X(t) to
be included, ϕi are the coefficients with which these terms are
weighted. The right hand sum represents the moving average part
of the model. The number of terms of white noise to be included
are q, with coefficients ϕi. In the range |d| < 1

2 , FARIMA pro-
cesses are capable of modeling long-term persistence (Hosking,
1981). As we will only consider p = 1 and q = 1 throughout the
manuscript, we will refer to ϕ1 as ϕ and ϕ1 as θ . We set |ϕ| < 1,
|θ | < 1 to ensure that the coefficients in Equation (7) decrease
with increasing application of the backshift operator, thereby
guaranteeing that the series converges, and X(t) is finite (Hosking,
1981).

A FARIMA(0,d,0) is equivalent to fractional Gaussian noise
with d = H − 1

2 (Hosking, 1981). This produces a time series
with a DFA fluctuation plot that has been shown to be asymptoti-
cally linear with a slope of d + 0.5 (Taqqu et al., 1995; Bardet and
Kammoun, 2008). By manipulating the ϕ and θ parameters, the
DFA fluctuation plots can also be distorted.

2.6.2. Surrogate data
Two time series x1(t) and x2(t) can be constructed such that the
time derivative of their phase difference is a FARIMA time series
X(t) with a known DFA exponent (Hosking, 1981). Concretely,
we work backwards from the time series X(t) to which DFA is
applied. The phase difference of the two time series �(φ(t)) will
be the cumulative sum of X(t), which is discrete in this case:

�(φ(t)) =
t∑

s = 1

X(s)

The two phases φi(t) and φ2(t) of x1(t) and x2(t), respectively,
must be constructed to have a difference of �(φ(t)), or some
multiple of �(φ(t)) since DFA is unaffected by multiplying a

time series by a constant. We therefore set φ1(t) =
∑t

s = 1 X(s)
2fs

and
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φ2(t) = −
∑t

s = 1 X(s)
2fs

where fs takes the role of a nominal sampling

rate for the surrogate data.
Since the phase of a cosine signal is equal to its argument, the

two signals x1(t) and x2(t) are defined as:

x1 = cos

(
ω +

∑t
s = 1 X(s)

2fs

)

and

x2 = cos

(
ω −

∑t
s = 1 X(s)

2fs

)

where ω is a constant.
In what follows, we used ω = 1 and fs = 600. These values

were chosen in order to produce a smooth enough phase dif-
ference. This was necessary to prevent artifacts produced by the
Hilbert transform when applied to non-smooth data. When using
physiological data, a high enough sampling rate guarantees that
the signals will be smooth.

A hundred time series X(t) were generated using the algo-
rithm described in Hosking (1981) for each of the 11 DFA
exponents 0.5, 0.55, 0.6, . . . , 1. Each simulation contains 222 =
4194304 innovations. The value of the exponent of X(t) is
first computed, the two signals x1(t) and x2(t) are then con-
structed, and the phase analysis method is applied. Window
sizes used for application of DFA were logarithmically spaced
with a minimum of 600 time steps to correspond to fs and
maximum N/10 where N = 222 is the length of the time
series.

A further control analysis was performed in which a Gaussian
white noise time series ηi(t) was added to one of the signals,
namely,

x′
1(t) = cos(ω +

∑t
s = 1 X(s)

2
) + ηi(t)

before the phase analysis method was applied in order to recover
the DFA exponent of the phase difference X(t). This allowed
us to alter the signal-to-noise ratio of x1(t) in an additive way,
which we may suppose to be the case for noise in a neurophys-
iological time series. By applying the phase analysis method to
signals with additive noise, we were able to test the robustness
of the method to noisy data. In this analysis, first we will esti-
mate the extent to which the DFA exponent alters when noise
is added. Second, we will assess whether ML-DFA rejects those
DFA exponents that we know to contain noise, and if so, we
will quantify the level of noise at which exponents are no longer
valid.

2.7. MODEL SIMULATIONS
2.7.1. The Ising model
The Ising model is a model of ferromagnetism (Ising, 1925).
In two dimensions, the model is implemented on a lattice
(grid) of elements, or particles which represent a metallic sheet.
A temperature parameter controls the collective magnetiza-
tion (Onsager, 1944). The Ising model has been recently used

as a model for a two-dimensional network of connected and
interacting neurons (Kitzbichler et al., 2009).

Each element of the grid is assigned a spin pi, initially at ran-
dom, which takes a value +1 (spin up) or −1 (spin down). Spins
may switch up and down in time in a fashion influenced by both
the energy of the full system and by the spin configuration of
other neighboring elements. The energy of the system in a given
configuration of spins p is given by the Hamiltonian function
H(p) = −J�N

i,j = nn(i)pipj, where j is an index for the four elements
that are nearest neighbors nn of each element, i of the square grid.
The negative sign is included by convention. The average energy
of the system E =< H > where the symbol <> indicates taking
the expectation value.

The probability P of a given configuration occurring is
then proportional to P = e−H(p)/kT , where T is the tempera-
ture parameter and k is Boltzmann’s constant. The system may
switch into a new configuration if its associated probability
is higher or equal to that of the current configuration. The
Ising model is implemented using the Metropolis Monte Carlo
Algorithm (Metropolis et al., 1953).

At temperature T = 0, the system is highly ordered and corre-
sponds to a magnetic state (see Figure 2 for an example of an Ising
model lattice). With increasing temperature values, the proba-
bility of a spin changing increases. As the system temperature
increases the spins change more rapidly and the system becomes
increasingly disordered and corresponds to a non-magnetic state
(Figure 2A). The temperature value at which a transition occurs
between the magnetized and non-magnetized states is known as
the critical temperature Tc. At this temperature (see Figure 2B),
the system will have a large dynamic range and infinite correlation
length. However, in practice, this means that the system contains
spin clusters of all sizes, and correlations between elements of
an infinite system remain finite (Onsager, 1944; Daido, 1989).
In other words, the Ising model is predicted to have long-range
correlations between its elements at Tc.

The value of the critical temperature Tc was calculated for the
two-dimensional Ising model in Onsager (1944), and is given by
the solution to the equation

sinh

(
2J

kTc

)
= 1

In the implementation of the Ising model used here, the lattice
consists of 96 × 96 elements. The constants J and k are set to
J = 1 and k = 1 without loss of generality, which gives the critical
temperature Tc = 2

ln(1 + √
2)

≈ 2.269.

In order to obtain a time series from this spatial model, we
follow the procedure introduced by Kitzbichler et al. (2009).
Namely, the lattice is divided into a number of smaller square
lattices, which we refer to as sub-lattices, and a number of time
series are created by taking an average spin value for each sub-
lattice. Here, we use a sub-lattice size of 8 × 8 as in Kitzbichler
et al. (2009), but we also investigated other sub-lattice sizes
(results not shown) in order to verify that this choice of sub-
lattice size did not affect the results. Indeed, previous work by
Priesemann et al. (2009) suggests that the sub-sampling
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FIGURE 2 | The Ising model lattice at a single time point once steady state

has been reached for 3 different values of the temperature parameter. (A)

The Ising lattice at a cold temperature of 1.5. Almost all spins are aligned (white)
and there is little change across time. (C) The Ising lattice at a high temperature

of T = 105. The spins form a more or less random pattern across the lattice. (B)

The Ising lattice near critical temperature, T = 2.3. The lattice contains clusters
of spins that are both small and large. Note that these are snapshots and that
the spin structure of the model is best appreciated when evolving across time.

of a system may cause it to be mis-classified as sub-
critical or supercritical when it is in fact in a critical
state.

Pairs of time series, for every possible pairing of sub-lattices
belonging to the larger grid, were used as input signals for
the phase analysis method. For the sub-lattice of size 8 ×
8 considered here, 144 time series could be created allow-
ing for 10, 296 pairings. Each time series consisted of 64, 000
innovations.

2.7.2. The Kuramoto model
The Kuramoto model is a classical model of synchroniza-
tion (Acebrón et al., 2005; Chopra and Spong, 2005) and has been
used to study the oscillatory behavior of neuronal firing (Pikovsky
et al., 2003; Kitzbichler et al., 2009; Breakspear et al., 2010) among
many other biological systems.

The Kuramoto model describes the phase behavior of a system
of mutually coupled oscillators with a set of differential equations.
Each of N oscillators in the system rotates at its own natural fre-
quency

{
ωi, i = 1, . . . ,N

}
, drawn from some distribution g(ω).

However, it is attracted out of this cycle through coupling K,
which is globally applied to the system. Time t is taken to run
for T seconds of length dt = 10−3. The differential equation to
describe the phase of an oscillator is (Kuramoto, 1975, 1984):

φ̇i(t) = ωi(t) + K

N
�N

j = 1sin(φj(t) − φi(t)) (8)

Because the Kuramoto model provides an equation governing the
phase evolution of each oscillator in the system, there is no need
for the Hilbert transform to recover the phase time series and
therefore only the latter stages of the phase analysis method are
used (see steps 3–6 in Figure 1).

Kuramoto (1975) showed that the evolution of any phase φi(t)
may be re-expressed using two mean field parameters, which
result from the combined effect of all oscillators in the system.
Namely, we may write:

φ̇i(t) = ωi + Kr(t)sin(ψ(t) − φi(t)) (9)

where ψ(t) is the mean phase of the oscillators, and r(t) is their
phase coherence, so that:

r(t)eiψ(t) = 1

N

N∑

j = 1

eiφj(t) (10)

This crucially indicates that each oscillator is coupled to the oth-
ers through its relationship with mean field parameters r(t) and
ψ(t), so that no single oscillator, or oscillator pair drives the pro-
cess on their own. The oscillators synchronize at a phase equal
to the mean field ψ(t), and r(t) describes the strength of syn-
chronization, sometimes referred to as the extent of order in the
system (Strogatz and Mirollo, 1991; Bonilla et al., 1992). When
r(t) = 0, no oscillators are synchronized with each other. When
r(t) = 1, all oscillators are entrained with each other.

One solution to Equation (9) is r ≡ 0 for all time and coupling,
leaving each oscillator to evolve independently at its own natural
frequency. Using a limit of N → ∞, some further deductions can
be made, including the fact that when the natural frequency dis-
tribution g(ω) is unimodal and symmetric, another solution can
be found for ωi, with r(t) not equivalent to 0 (Kuramoto, 1975).
A critical bifurcation occurs for sufficiently high coupling, resem-
bling a second-order phase transition (Miritello et al., 2009) in
which the order parameter [here, r(t)] leaves zero and grows con-
tinuously with coupling (Strogatz and Mirollo, 1991; Dörfler and
Bullo, 2011). The coupling at the bifurcation is referred to as the
critical coupling Kc (Dörfler and Bullo, 2011).

In an infinite Kuramoto model, criticality is defined through
this point of bifurcation. For a finite system, however, the criti-
cal point can only be approximated by this theoretical value. One
defining characteristic of the critical coupling for the Kuramoto
system is that the greatest number of oscillators come into syn-
chronization at this value. In our study, we deal with finite-sized
implementations of the Kuramoto model, and we use this char-
acteristic as a marker of the onset of critical regime in addition
to the theoretical value Kc. Specifically, we use a measure char-
acterizing the onset of synchronization with increasing coupling
introduced by Kitzbichler et al. (2009). This is the change in the
“effective mean-field coupling strength,” �(Kr). If the value of
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Kr exceeds the difference between the natural frequency and the
mean phase ωi − ψ (in modulus), i.e., |ωi − ψ | < Kr, then oscil-
lator i will synchronize to the mean field (Mertens, 2011). Thus,
the value of K at which Kr increases maximally is the coupling
value at which the greatest number of oscillators are drawn into
the mean field.

In this paper, we consider the Kuramoto model with a noise
term added to the phase equation, namely, Equation (8) becomes:

φ̇i(t) = ωi(t) + K

N

N∑

j = 1

sin(φj(t) − φi(t)) + ηi(t) (11)

where ηi is a noise input taken to be uncorrelated Gaussian noise
with zero mean (

〈
ηi
〉 = 0) and covariance σ 2

i /T (
〈
ηi(t)

〉 〈
ηj(s)

〉 =
δijδ(t − s)σ 2

i /T) where δij is the Kronecker delta, δ(t − s) is the
Dirac delta function, σi is in radians and T = 1 s here.

This creates a richer structure in the oscillator dynamics, which
we suggest may better reflect coupling of neurophysiological oscil-
lators. Furthermore, it has been shown that addition of noise
increases the critical regime over a wider range of coupling val-
ues (Breakspear et al., 2010). This may allow for the fluctuations
of phase difference of a given oscillator pair to persist for longer
with increasing coupling before full synchronization is achieved.

Strogatz and Mirollo (1991) analytically derived a formula for
the critical coupling in an infinite Kuramoto model with added
noise Kc,noise. As the number of oscillators is inevitably finite,
this value is only an approximation to the true critical coupling
in the system, but we find it useful and it is displayed along-
side plots of �(Kr), which although originally introduced for a
noiseless model, remains a helpful marker of the effective critical
coupling in the Kuramoto model when noise levels are not too
large (Mertens, 2011).

In this study, we generated time series for 200 oscillators of
the Kuramoto model described by Equation (11). Each time series
was 6100-timestep long. The standard deviation σi was set to 0.32.
The distribution of natural frequencies was g(ω) ∼ N (44π, σω),
with standard deviation σω = 15. This corresponds to a normal
distribution centered around 22 Hz (which is a unimodal distri-
bution). In order to get an idea of the spread of the distribution,
the minimum natural frequency selected from this distribution
was 16.3 Hz and the maximum was 27.8 Hz. We selected this
frequency range because it spans the β-band of EEG, MEG, and
EMG oscillations (Farmer, 1998).

For these parameter values, the critical coupling Kc is equal to:

Kc = 2
√

2√
π
σω ∼ 23.93

The integral for Kc,noise is not analytically calculable for a normal
distribution g(ω) ∼ N , but empirical calculation yields:

Kc,noise ∼ 23.85

2.7.3. The Cabral model
The third model that we consider in this paper was developed
by Joanna Cabral and her colleagues, referred to as the Cabral

model. It is a modification of the Kuramoto model, combining the
dynamics of the Kuramoto oscillators with the network properties
observed in the human brain (Cabral et al., 2011).

The Cabral model includes a noise input to the Kuramoto
oscillators and situates the 66 oscillators on a connectivity matrix
with varying connection strengths and time delays based on
empirical measurements of 998 brain regions, which have been
down-sampled to 66 (Honey et al., 2009). The list of brain regions
considered in this model are given in the supplementary material
of Cabral et al. (2011) and are reproduced in the Appendix to the
present paper. Specifically, Equation (8) is modified to include a
connectivity term Cij between oscillators j and i, namely,

φ̇i(t) = ωi(t) + K

N
�N

j = 1Cijsin(φj(t − Dij) − φi(t)) + ηi(t)(12)

where ηi is the noise input previously introduced, and Dij is the
time delay associated with the link between oscillators j and i.
The matrix of delays D is extracted from a matrix of empirical
distances L between regions using:

Dij = 〈D〉 Lij

〈L〉

and is used to encode the length of time taken by neural activity
to traverse the connection space. The connectivity and distance
matrices (C and D, respectively) are shown in Figure 12. They
can also be visualized through the schematic diagram in Figure 3
in which the thickness and color of the lines represent the weights
of the connections between the oscillators denoting individual
brain regions. These weights are proportional to the number
of fibers that were empirically observed to connect the various
regions (Cabral et al., 2011, 2012). Brain regions may be identified
by their labels, the abbreviations of which are given in Table A1 in
the Appendix.

In Cabral et al. (2011), the model was used to generate time
series which were used as input to a hemodynamic model and
bandpass filtered. Each time series was 106 timestep-long, cor-
responding to 1000 s. The resulting time series were compared
to recordings of BOLD fMRI signals using Pearson’s correlation
coefficient and mean squared error to determine the parameter
values K and 〈D〉 that generated the time series which most closely
approximated the BOLD data.

In this model, there is no theoretically derived value of critical
coupling and �(Kr) is only a marker of effective change in cou-
pling that may or may not be critical. We interpret a rise in�(Kr)
as an increase in order of the system similar to that observed
by Kitzbichler et al. (2009).

The phase analysis method presented here was applied to
the Cabral model for coupling parameters K ranging from 1 to
20. We note that this encompasses K = 18, the value identified
by Cabral et al. (2011) as best approximating human brain resting
state BOLD fluctuations. Natural frequencies were drawn from
a normal distribution with g(ω) ∼ N (120π, σω) with standard
deviation σω = 5, which corresponds to a normal distribution
centered around 60 Hz in the γ frequency band. This was selected
because γ oscillations have been shown to play a significant
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FIGURE 3 | Schematic plot (top view) of the Cabral human brain model

showing the connections and connection weights between oscillators

which correspond to different brain regions. The weight of the
connection lines represent the strength of connectivity between the
oscillators. The darkest blue lines are the strongest 1% of connections. The
node colors represent oscillators, which model different brain regions as
detailed in Cabral et al. (2011). Colors are consistent for homologous
regions in the left and right hemispheres. Anterior and posterior, left and
right are shown.

part in the BOLD signal fluctuations (see Cabral et al., 2011 for
details).

The standard deviation σi of the noise input was set to 1.25.
It was found that values of σi < 3 did not significantly alter the
resulting parameter values of K and 〈D〉. The value 〈D〉 = 11 is
taken as in Cabral et al. (2011).

2.7.4. Clusters in the Cabral model
Cabral et al. (2011) identified a number of clusters of oscillators,
along with a set of 12 oscillators which are not part of a clus-
ter. These clusters are listed below in Table 1. In our analysis, we
considered how each of these different clusters contributed to the
overall behavior.

2.7.5. Disruptions to the Cabral model
In order to investigate the role of connectivity in sustain-
ing LRTCs of rate of change of phase difference, we modi-
fied the connectivity matrix C in the Cabral model in two
ways, as shown in Figure 4. First, beginning with the empiri-
cal connectivity matrix we deleted any connection that extended
from one hemisphere into the other. We preserved all the
other elements of the model’s connectivity and oscillator
characteristics.

Table 1 | Cluster information.

Clusters Oscillators Average weight Average degree

per node distribution

Cluster 1 7–17 0.29 19.09

Cluster 2 18–22 0.16 15.80

Cluster 3 23–26, 41–44 0.30 21.00

Cluster 4 27–40 0.34 21.71

Cluster 5 45–49 0.15 15.60

Cluster 6 50–60 0.27 18.73

Individual oscillators 1–6, 61–66 0.03 08.59

The 66 oscillators of the Cabral model can be separated into 6 clusters, based

on their mutual connectivity and distance matrix patterns, and a final set of 12

oscillators, which are not considered to belong to a cluster, but are grouped

together here for convenience. The table also states the average sum of weights

per node belonging to each cluster and the average number of connections per

node (both to 2 d.p.).

The second exploration involved a reconnection of the con-
nectivity matrix in a random arrangement, while preserving the
degree distribution and weight distribution of each oscillator by
an algorithm described in Gionis et al. (2007), Hanhijärvi et al.
(2009). Specifically, a list of the outgoing weights of each oscillator
was made alongside the node from which it extends. Two weights
were selected from this list. If they did not belong to the same
node, then the nodes were connected to each other with the asso-
ciated outgoing weights that were selected. These weights were
then deleted from the list. To continue the algorithm, two further
weights were selected. After the first step, it was necessary to check
at each iteration that the nodes were not already connected before
connecting them. If the nodes were connected, or if they were the
same node, new weights were selected from the list.

Analysis of the random connectivity model and comparison
of the results obtained from it to those derived from the discon-
nected hemisphere model and standard appropriately connected
model allowed us to determine the extent to which a realistic con-
nectivity matrix of the human brain predisposes the system to
LRTCs in the rate of change of the phase difference between the
oscillator pairs representing different brain regions.

2.7.5.1. A note on notation. From this point in the text, all
instances of oscillator phase φi(t) and r(t) will be written as φi

and r for ease of notation, unless stated otherwise. Any quantities
that are defined using the phases of one or more oscillators are
also implicitly functions of time, although the t is omitted for the
same reason.

2.8. NEUROPHYSIOLOGICAL DATA
Previously collected neurophysiological data were used to illus-
trate the application of the method (see James et al., 2008 for
full details). Briefly, EEG and EMG signals were simultaneously
recorded whilst a healthy adult subject performed a 2-min 10%
MVC (maximum voluntary contraction) isometric abduction of
the index finger of the right hand. The EMG was recorded using
bipolar electrodes situated over the first dorsal interosseous mus-
cle (1DI). The EEG was recorded using a modified Maudsley
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FIGURE 4 | Schematic plot (top view) showing the connections and

connection weights between oscillators belonging to two modifications

to the connectivity of the Cabral human brain model. (A) The left and right
hemispheres of the brain have been disconnected, but connections within each
hemisphere are left unchanged. (B) The connections and weights of each node
are assigned randomly, but the degree distribution and weight distribution at

each node is kept constant. The weight of the connection lines represent the
strength of connectivity between the oscillators. The darkest blue lines are the
strongest 1% of connections. The node colors represent oscillators, which
model different brain regions as detailed in Cabral et al. (2011) and are identical
to Figure 3. Colors are consistent for homologous regions in the left and right
hemispheres. Anterior and posterior, left and right are shown.

montage from 24 Ag/AgCl electrodes with impedance<5 k�. The
data were amplified and bandpass filtered 4–256 Hz and sampled
at 512 Hz. We analyzed EEG recorded from over the left senso-
rimotor cortex. The signal processing pathway was set out as in
Figure 1, including bandpass filtering in the β frequency range
(15.5–27.5 Hz).

3. RESULTS
3.1. SURROGATE DATA
The signals described in Section 2.6.2 were analyzed. The scat-
ter plot presented in Figure 5 shows the DFA exponents of the
rate of change of phase difference expected from the construc-
tion of a FARIMA time series with known parameters against
those recovered by applying the phase analysis method. The scat-
ter plot shows a strong linear relationship between the expected
and recovered exponents with a slope of 0.998. The fact that the
slope is slightly <1 indicates that the recovered exponent was
slightly under-estimated by our method. This minor tendency
will decrease the likelihood of false positive results.

As noise is added to a signal with a known DFA exponent
in its phase, the exponent of its phase is found to be reduced.
Figure 6 shows that as the noise level is progressively increased,
the percentage difference between the known DFA exponent and
that recovered by the method increases. When the noise level is

above one which causes the percentage difference between known
and recovered DFA exponent to exceed approximately 5% (note,
as shown in Figure 6, that this noise level depends on the expo-
nent, e.g., 0.1 for true DFA exponent of 1, 0.025 for exponent
of 0.75), no values are returned for the recovered DFA expo-
nent. This occurs because the recovered DFA exponents are not
considered to be valid by ML-DFA because their associated DFA
fluctuation plots are not best approximated by a linear model (see
Section 2.5).

As the noise level is increased further, and as it passes a level
of ≈0.3–0.4, noise dominates the signal and valid exponents are
once again obtained. These exponents are at or close to 0.5 regard-
less of the value of the known DFA exponents, indicating that the
phase relationship of the two signals s1(t) and s2(t) is dominated
by noise only.

3.2. THE ISING MODEL
Figure 7 shows the results for sub-lattices of size 8 × 8. At a high
temperature of T = 105, the average DFA exponent across all
pairwise comparisons is 0.57 (see magenta shaded bar). This value
is in excess of 0.5 expected for Gaussian white noise and indicates
that even at high temperatures there is order within the rate of
change of phase difference between pairs of lattice time series. As
the temperature is lowered the DFA exponent of the rate of change
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of phase difference increases steadily reaching a maximum of 0.65
at T = 2.55 (see magenta shaded bar) indicating maximal LRTC
just before the critical temperature is reached.

The change in mean DFA has to be seen within the context
of the validity of the DFA fluctuation plots. As the system cools

FIGURE 5 | Plot of the recovered against the true DFA exponent for

FARIMA time series. The relationship between recovered and true DFA
values is well-approximated by a linear trend with a slope of almost 1. The
error bars increase very slightly with increasing DFA exponent.

toward the critical point the validity of DFA exponents across all
pairwise phase differences drops abruptly. The first temperature
value for which <100% of the DFA plots are valid is T = 2.75
shown as magenta shaded bar. There is a large fall in DFA fluctua-
tion plot validity as the critical temperature is reached (56–34%).
This fall in validity reflects the onset of full synchronization
between a number of the time series. At the critical point, T =
Tc which occurs between T = 2.25 and T = 2.3 (see magenta
shaded bars) the validity is 34% of time series pairs with mean
DFA exponent of 0.64. As the Ising model cools below the critical
point the DFA validity in general falls and there are no valid DFA
fluctuation plots below T = 2.15. As discussed above this occurs
because of the loss of fluctuations in the rate of change of phase
difference due to full synchronization.

Results obtained for sub-lattice sizes of 32 × 32, 16 × 16, 12 ×
12, and 6 × 6 were found to be qualitatively consistent with the
results shown in Figure 7 (results not shown).

3.3. THE KURAMOTO MODEL
The group average results for the Kuramoto model are shown in
Figure 8. As can be seen, the peak average DFA exponent occurs
on average at K ≈ 22. The value of the average DFA exponent at
this coupling value is 0.65 with standard deviation 0.06, consis-
tent with the rate of change of phase difference showing LRTCs.
The peak DFA exponent occurs one coupling value later than the
peak of the�(Kr) measure, at K ≈ 21.�(Kr) represents the cou-
pling value at which the order parameter r increases most, and the
point of greatest oscillator coupling flux in the system (Kitzbichler
et al., 2009). The peak coupling value �(Kr) and the maximum

FIGURE 6 | True and recovered DFA exponents for noisy signals

with LRTCs. (A) Recovered DFA exponent values as noise is
progressively added. For each of the DFA exponents given in the
legend (box insert), a signal x ′

1(t) was constructed with a noise level
σ ∈ [0, 1], shown on the x axis. The phase synchrony analysis
method was applied to x ′

1(t) and x2(t). This was performed 100
times. For DFA exponents corresponding to DFA fluctuation plots that
were accepted as linear by ML-DFA, the average value for the 100
signal pairs is shown. There are no data points corresponding to the
intermediate noise level of ≈0.1 to ≈0.3 because all 100 DFA
fluctuation plots for signals with this noise level were determined to
be invalid by ML-DFA. (B) The % difference between recovered and

known DFA exponents as a function of the noise added to a signal
with a known DFA exponent in its phase. The data shown in this
plot is the same as that in (A), but it is expressed in terms of
the % difference between true and recovered DFA exponents rather
than the raw recovered value. Only noise levels of σ ∈ [0,0.1] are
shown. The colors represent different true DFA exponent values, as
indicated by the legend within the inserted box. The dashed line
indicates a 5% difference between known and recovered exponents.
When the difference between the known and recovered exponent
exceeded approximately 5% for any value of the true exponent, the
DFA fluctuation plot is not accepted as being linear by ML-DFA and
therefore the exponent is not shown on the plots.
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FIGURE 7 | Average DFA exponents of rate of change of phase

difference between pairs of time series generated by 8 × 8

sub-lattices of the 96 × 96 Ising model lattice. The temperature
parameter, T , is varied on the x axis. The average of the valid DFA
exponents is shown in pink, and the error bars are a single standard

deviation from the mean. The proportion of valid exponents, as calculated
by ML-DFA, is denoted by the vertical bars. The theoretical critical
parameter Tc is indicated by a red asterisk. A horizontal dashed line at
DFA exponent 0.5 is plotted to guide the eye. Validity bars that are
referred to in the text are highlighted in magenta.

DFA values are just less than the theoretical critical coupling of
the infinite Kuramoto system with noise Kc ≈ 23.85. Again, these
results must be understood in context of DFA fluctuation plot
validity which is 42% of the 199, 000 oscillator pairs at K ≈ 22.
Once full synchonization occurs between an individual pair of
oscillators, their phase difference takes a constant value. ML-DFA
detects the resulting loss of scaling by indicating that the DFA
fluctuation plot is no longer linear.

After the peak DFA at K ≈ 22, further increase in K eventually
causes full synchronization between all individual oscillator pairs.
Across the whole system, fewer than 10% of oscillator pairs yield a
valid DFA after the critical coupling is exceeded. When all oscilla-
tor pairs are synchronized with each other, the order parameter of
the system approaches its maximum level of 1 but the DFA fluc-
tuation measure of rate of change of phase difference is no longer
valid.

Analysis of the Kuramoto model with noise suggests that
LRTCs in the rate of change of phase difference between oscil-
lator pairs occur when the system is in a state of maximal flux just
prior to the onset of full synchronization.

3.3.1. Individual oscillators pairs
Further insights into the rate of change of phase difference fluctu-
ation behavior can be obtained from DFA of individual oscillator
pairs. Analysis of a set of 5 oscillator pairs is shown in Figure 9.
The top panel shows the change in DFA exponent with coupling
K for a pair whose initial frequencies are very close (0.001 Hz
apart). The bottom panel shows the changes in DFA exponent for
an oscillator pair with initial frequencies that differ by ≈7.0 Hz.
The middle panels show oscillator pairs with varying amounts of
initial frequency difference (increasing top to bottom). Non valid
DFA exponents are not plotted in the left hand panel but the right
hand panels indicate for each given pair linear DFA validity “yes”
or “no” for a given value of K. At low coupling K, the oscillators
do not interact with each other and each evolves at its own natural

frequency. The order in the system is low and the DFA exponent
≈0.5 reflects the additive noise which dominates the fluctuations
in the rate of change of phase difference. A DFA value of ≈0.5
is also evident in the average DFA (Figure 8). There is almost
100% validity across all pairs because white noise time series are
scale-free and therefore the DFA fluctuation plot obtained from
analysing them is expected to be linear (Figure 8).

As the coupling parameter K is increased, the DFA exponents
of each of the oscillator pairs rise until a peak is reached. The
value of K at which a maximal valid exponent is retrieved for
these peaks is related to the difference in natural frequencies of the
two oscillators as well as their interactions with the noise and the
mean field. Oscillator pairs which start further apart in frequency
terms develop full synchonization later than those whose initial
frequencies are close together. As K increases the DFA exponent of
the rate of change of phase difference increases. The pairs with the
strongest LRTCs on the basis of the highest DFA exponent value
prior to onset of full synchronization are those with the greatest
inital frequency difference. Increasing temporal order of the rate
of change of phase difference prior to full synchonization of these
pairs may indicate a state of pre-synchronization in these pairs.

3.4. THE CABRAL MODEL
For the Cabral model we present results regarding both the global
behavior of the system through average DFA exponents across
all possible pairs of oscillators (Figure 10) and the behavior of
the system at cluster level through average DFA exponents of
intra-cluster pairs of oscillators (Figure 11).

3.4.1. Global behavior
The model introduced by Cabral et al. (2011) is affected by rich
interplay between the connectivity and distance matrices as well
as the noise and natural frequency elements of the system. The
average valid DFA exponents for all oscillator pairings (n = 2145)
are shown in Figure 10 as the coupling in the system is increased.
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FIGURE 8 | Results of the phase synchrony analysis method when

applied to the Kuramoto model. There are 200 oscillators, with a mean
natural frequency of 22 Hz, and a standard deviation of natural frequencies of
15. The theoretical critical coupling Knoise when noise is added is marked with

a blue asterisk. The average DFA exponent, order parameter r , its difference
�(Kr ) and the proportion of valid DFA fluctuation plots from the full set of
199, 000 pairs are shown. Validity bars that are referred to in the text are
highlighted in magenta.

These average exponent values indicate the presence of LRTCs in
the rate of change of phase difference. The peak values of mean
DFA exponent correspond to peaks in the change in order para-
menter (�(Kr)) derived for the classical Kuramoto model and
the Kuramoto model with noise, see Kitzbichler et al. (2009) and
Figure 8. Such peaks occur when the system undergoes the great-
est change in synchronization. The peak in �(Kr) corresponds
closely to the coupling value that shows maximum mean DFA
exponent (K = 5 and 6, respectively—see Figure 10).

The number of pairings that yield valid DFA exponents in the
rate of change of their phase difference is equal to 100% when
there is no coupling in the system (magenta shaded bar at K =
0), but it falls as coupling is introduced (magenta shaded bar at
K = 1). At the coupling value of the DFA peak, K = 6, validity
is at 20%, which is higher than the neighboring coupling values
(magenta shaded bar at K = 6).

3.4.2. Cluster behavior
At coupling value K = 6, the value at which the global behav-
ior shows peak DFA value, the intra-cluster results indicate that
only cluster 4, consisting of oscillators 27–40, shows valid non-
trivial DFA exponents. These exponents are consistent with the
presence of LRTCs. This suggests that cluster 4 acts as an orga-
nizing force in the system when the system is in its greatest state
of flux, as demonstrated by a large increase in the order parame-
ter. This cluster corresponds to the most connected brain regions
listed in Table1 and Table A1 in the Appendix.

The connectivity and distance matrices for the Cabral model
are shown in Figure 12. The linear coupling between oscillators
for two values of K is shown in Figure 13. The central clus-
ter of oscillators with high levels of synchronization is evident
from the two correlation matrices. At K = 6 (Figure 13A), i.e.,
the value at which LRTCs are detected in the rate of change of

phase difference, the central oscillator cluster shows evidence of
synchronization but with Pearson correlation values of <1.0. As
K increases to 18, the value identified by Cabral et al. (2011) as
best approximating human brain resting state BOLD fluctuations,
it can be seen from Figures 10, 11 that the proportion of oscillator
pairs with valid DFA fluctuation plots is low (approximately 5%).
Those oscillator pairs that remain and show persistently valid
DFA fluctuation plots are predominantly individual oscillators
with low average weight per node (0.03) and low average degree
distribution (8.59). Their associated DFA exponent is on average
0.5 (see Figure 11). At K = 18, the Cabral model shows strong
cluster synchronization. In particular, the central cluster 4 (oscil-
lators 27–40) which contains homologous elements connected
across the corpus callosum shows Pearson correlation values close
to 1.0 indicative of full synchrony (Figure 13B). Therefore, the
results we obtained from the Kuramoto model with noise and
those derived from the Cabral model are similar. Both show valid
DFA fluctuation plots with LRTCs of the rate of change of phase
difference at a coupling value where �(Kr) is increasing and loss
of validity as full synchronization takes over. As discussed ear-
lier, “criticality” is not defined for the Cabral model but with
increasing K there is clearly a change in the system’s order which
is detected through our method.

Figure 14 shows the DFA exponents of the rate of change of
phase difference between individual pairs of oscillators in the
form of a symmetric lattice of size 66 × 66, where each element
in the lattice represents a brain region as detailed in Table A1 of
the Appendix. Figure 14A of this figure shows the importance
of the central cluster in generating LRTCs of phase synchroniza-
tion. Importantly it shows this cluster’s influence over many of
the other oscillators in the Cabral model. Cluster group 4 has the
greatest sum of weights per oscillator and the greatest number of
connections per oscillator (see Table 1). The correlation between
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FIGURE 9 | Representative relationship of DFA exponents to the

coupling parameter K for selected oscillator pairs in the Kuramoto

system. (A,C,E,G,I) Show the value of valid DFA exponents, while
(B,D,F,H,J) indicate whether the exponent is rejected as invalid by the

ML-DFA technique (N) or not (Y). The oscillator numbers and the differences
between their natural frequencies are recorded in the legend of (A,C,E,G,I).
The first number is the difference in natural frequency (in Hz), and the
subsequent pair of numbers identifies which oscillators are being analyzed.

the number of connections of a given oscillator and the average
DFA exponent of its rate of change of phase difference with all
other oscillators is 0.359, suggesting a relationship between oscil-
lators with large connectivity and those with large DFA exponents
in their pairwise phase difference.

3.4.3. Comparison of the three connectivity structures
In the Cabral model, the �(Kr) measure has its peak at coupling
value K = 6. Here, we compare the effects of the three connectiv-
ity matrices introduced in Section 2.7.5 on the DFA exponents of
the pairwise phase difference between oscillators at this coupling
value in Figure 14.

The empirical connectivity matrix showed large DFA expo-
nents indicating the presence of LRTCs at this coupling value for a
small number of hub oscillators belonging to cluster 4 (see above).
These oscillators have a high number of connections and large
weights associated with these connections (see Table 1). When the
two hemispheres are disconnected, we see no LRTCs in the DFA
exponents of the phase difference at this coupling value. When
the distance matrix is preserved, but the connectivity and associ-
ated weights are assigned at random, LRTCs are still present in the
DFA exponent of the phase differences between oscillators, but a
lower value of DFA exponent is obtained. There is no apparent
cluster formation when connectivity is random.
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FIGURE 10 | The average DFA exponents of phase synchrony as a

function of the coupling parameter, K , in the extended Kuramoto model

(Cabral et al., 2011). The model includes 66 oscillators at normally
distributed natural frequencies with mean 60 Hz and standard deviation
σi = 1.25. The connectivity and time delay matrices are set from empirical
values. The average of the valid DFA exponents is shown in magenta and the

proportion of valid exponents, as calculated by ML-DFA, are indicated by bars.
The Kuramoto model order parameter r is in blue, and the quantity �(Kr ) is in
cyan. The peak �(Kr ) has been used as an indicator of the effective critical
coupling. A horizontal line at DFA exponent 0.5 is plotted to guide the eye.
The proportion of valid DFA bars for K = 0, K = 1, and K = 6 have been
shaded in magenta.

FIGURE 11 | Average DFA exponent for intra-cluster pairwise phase

differences with increasing coupling parameter K . Where no DFA value
appears for a particular cluster, this indicates that there are no valid DFA
exponents for the pairwise phase difference within that cluster. The final

cluster, which is labeled individual oscillators, consists of a set of nodes that
do not fit into any of the clusters as determined by the connectivity and
distance matrices but are grouped together to demonstrate their relationship
with each other.

3.4.4. Neurophysiological data
Figure 15 illustrates the application of our phase synchrony anal-
ysis technique to the human neurophysiological data described
in Section 2.8. In this example, a valid DFA exponent of ≈0.6

was obtained for the rate of change of phase difference between
the simultaneously recorded EEG and EMG data during a steady
muscle contraction, indicative of the presence of LRTCs. Analysis
of amplifier noise and artificially generated noise time series using
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FIGURE 12 | Connectivity and distance matrices for the Cabral

model. Each oscillator number represents a brain region, which is
defined in Table A1 in the Appendix. An empty (white) element means
that the two regions are not connected. Regions are not connected to
themselves so that the diagonals are white. (A) Shows the pairwise
connection matrix C between the 66 oscillators. (B) Shows the matrix

of pairwise distances L between the brain regions that are represented
by the 66 oscillators. Matrix L is symmetric, however, matrix C is not
because the connection weights are normalized by row. The values
associated with the colors of the plots are defined by the color bars.
Red colors in (A) represent higher weights. Red colors in (B) represent
longer distance connections.

FIGURE 13 | Correlation matrices for all pairs of time series generated

by the Cabral model for two coupling values K . (A) K = 6 and (B)

K = 18, which corresponds to the oscillator correlation matrix in Cabral

et al. (2011). The plots show the value of the Pearson correlation
coefficient between all pairwise combinations of the 66 oscillators used
in the model.

processing steps identical to those for the EEG and EMG data
(signal processing pathway shown in Figure 1) resulted in a valid
DFA fluctuation plot but with exponent of 0.48 consistent with
uncorrelated noise.

4. DISCUSSION
The aim of this paper is to introduce a new methodology for
eliciting a marker of criticality in neuronal synchronization. This
methodology relies on the rate of change of the phase difference
between two signals as a (time-varying) measure of phase syn-
chronization. The presence of LRTCs in this quantity is proposed
as marker of criticality and is assessed using DFA in combina-
tion with the recently proposed ML-DFA, a heuristic technique
for validating the output of DFA. With these methods, we can
first determine the presence or absence of power law scaling using
ML-DFA and secondly the presence or absence of LRTCs in the
phase synchronization of two time series based on the value of

the DFA exponent. If the method returns an exponent of ≈0.5,
this indicates a phase relationship similar to white Gaussian noise,
however, if the DFA exponent is greater than 0.5, this indicates the
presence of LRTCs. Importantly, we can attribute significance to
the loss of power law scaling within the fluctuation plot and draw
conclusions based on an exponent value only when the expo-
nent has been recovered from plots that are judged to be valid
by ML-DFA.

4.1. SURROGATE DATA
It was found that the phase synchrony analysis method recovers
a known DFA exponent value in the rate of change of phase dif-
ference between two signals of surrogate data with a high degree
of accuracy (r = 0.998). When the structure of phase synchro-
nization was perturbed with an additive noise source, it was
found that a percentage difference between the true and recov-
ered DFA exponent of above approximately 5% noise caused DFA
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FIGURE 14 | DFA exponent of the rate of change of phase difference

between all pairs of oscillators in the Cabral model at coupling K = 6 in

three scenarios. (A) For the empirically observed connectivity matrix of the

Cabral model. (B) For a connectivity matrix representing disconnected
hemispheres. (C) For random connectivity. Empty (white) elements denote
pairs for which no valid DFA exponent was found.

exponents to be judged as invalid by ML-DFA. When the surro-
gate data was characterized by a DFA exponent close to 1, the
recovery of this exponent using DFA was more resistant to noise
when compared to surrogate data with a lower DFA exponent of
0.6 (Figure 6). In these simulations we used additive noise which
was included at the amplitude stage of the surrogate time series
prior to extraction of the phase using the Hilbert transform.

4.2. THE ISING MODEL
We had initially expected to see LRTCs in the Ising model only
in the vicinity of the critical parameter, and a DFA exponent of
0.5 when the energy in the system was large (disordered phase).
However, in applying our method to the Ising model, both of
these hypotheses were not fully realized. It was found that when
the temperature was increased to a very high level of T = 105, the
DFA exponent of the rate of change of phase difference did not fall
to 0.5, but remained at ≈0.57. This did not change when the tem-
perature was set to an even higher value of T = 1012. This was not
a finite size effect of the system, as the result held when larger lat-
tice sizes (up to 1000 × 1000) were used (results not shown). We
noted that when pure phase was analyzed, i.e., an uncoupled sys-
tem of Kuramoto oscillators, DFA exponents of 0.5 were obtained
as expected, and therefore, we cannot exclude the possibility that
the Hilbert transform induced artifacts may inject some order
into the resulting phase time series. However, within the Ising sys-
tem, the expectation of a DFA exponent of 0.5 at high T is based
only on our intuition concerning the operation of the system. As
all elements in the Ising lattice interact with their neighbors it is
possible that some temporal correlation in the rate of change of
phase difference may persist regardless of temperature value, and
this may be the cause of a DFA exponent above 0.5.

Importantly, we found that the DFA exponent was indicative of
LRTCs at critical temperature but was maximal at T = 2.55, just
in excess of the critical temperature. As can be seen in Figure 7,
the consistent change in the DFA value and the change in power
law scaling behavior indicates that the phase synchrony analysis
method is capturing an important behavior of the system close to
its critical regime. However, it is important to realize that unless

an experimental neuroscientific paradigm can be discovered that
produces similar consistent changes in this measure, neurophysi-
ological data will have to be intepreted with caution, i.e., we may
be able to state that for a given pair of neural oscillation time
series there exists power law scaling with a DFA exponent indica-
tive of LRTCs in the rate of change of their phase difference but we
may not know whether for this neural state there may exist other
higher (or lower) exponent values. In other words, the technique
may provide evidence that the system is ordered in ways that are
similar to systems nearing their critical regime but whether the
technique will pinpoint the most critical regime in a neural system
is open to question. We will consider this further in our discussion
of the results of analysing a Kuramoto system with noise.

Interestingly, the evolution of the DFA exponent with the
temperature parameter shares a key characteristic with that of
a recently published measure of information flow in the same
model (Barnett et al., 2013), specifically, an asymmetry around
the critical point, with a sharp rise in the metric as temperature is
increased toward the critical T = Tc and a gradual descent as the
temperature rises significantly. It would be of interest to further
assess the extent to which the proposed method captures infor-
mation flow in the system, e.g., through a comparison of both
methods when applied to the Kuramoto model.

4.3. THE KURAMOTO MODEL
In the Kuramoto model, the critical transition is characterized in
terms of a global order parameter which reflects the overall orga-
nization of the system. However, through our phase synchrony
analysis method we are able to make observations at a pair-wise
level of Kuramoto oscillators always bearing in mind that even
at the pair-wise level the result is influenced by the oscillators’
interactions with all other oscillators in the model. As individ-
ual Kuramoto oscillator pairs become fully synchronized, their
rate of change of phase difference no longer contains moment-
to-moment fluctuations and thus power law scaling in the DFA
measure is lost. This is an important consideration because it
emphasizes the difference between our method and more stan-
dard measures of neural synchrony. Methods for detecting neural
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FIGURE 15 | Illustration of the method with simultaneous EEG/EMG

data. (A,B) One second of simultaneously recorded EEG and EMG,
respectively. (C,D) The signals after bandpass filtering in the β range
16–24 Hz. (E) Rate of change of the phase difference between the two

bandpass filtered signals for 100 s. (F) DFA fluctuation plot for the rate of
change of phase difference time series in (E). The plot was determined to be
valid by ML-DFA with a DFA exponent of ≈0.60, indicating the presence of
LRTCs.

synchrony rely on phase consistency to allow averaging out of
fluctuations so that a measure of coupling (e.g., coherence and
phase coherence) is obtained. In contrast, the method introduced
in this paper is dependent on the fluctuations of the two phase sig-
nals and their interaction. Therefore, our method detects “order”
across time in the rate of change of phase difference rather than
phase consistency between two processes.

The phenomenon of loss of fluctuations at the onset of full
synchronization is well illustrated both for the global Kuramoto
model and for individual oscillator pairs extracted from the
Kuramoto model. In the global analysis the peak in the DFA expo-
nent occurs close to the observed peak of �(Kr) and at values of
K just below theoretical critical coupling value. At these values
of K, a power law scaling exists for the rate of change of phase

difference, and the DFA exponent of oscillator pairs with different
initial frequencies indicates the presence of LRTCs. At the onset of
full synchronization the number of oscillator pairs for which DFA
is valid drops yet those whose phase differences still possess fluc-
tuations continue to show LRTCs. Once the critical regime has
been fully crossed and the order parameter r approaches 1, the
DFA of the rate of change of phase difference is no longer valid
for any oscillator pair.

The LRTC behavior is also clearly explained as the coupling
value K decreases toward zero. As can be seen in Figure 8, the
DFA exponent of the pairwise rates of change of phase difference
decreases toward 0.5 and yet scaling remains valid. These changes
in DFA exponent are evident both on the global level in the aver-
age DFA and for individual oscillator pairs. At K = 0 the phases
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are independent from one another yet contain noise; thus the rate
of change of phase difference time series contains innovations that
are random across time with a DFA which is valid and returns the
expected exponent of 0.5.

4.4. ORDER WITHIN THE ISING AND KURAMOTO MODELS
In these models, temperature T (Ising) and coupling K
(Kuramoto) play a similar role in controlling the order within the
two systems, and the DFA validity and exponent results obtained
from analysis of rate of change of phase difference in both of
these models mirror each other. In the Kuramoto model, there
is a transition from an uncoupled to a synchronized state with
increasing K. Similarly in the Ising model, there is a transition
from a very ordered to a disordered system with increasing T. In
the human brain, we are not able to characterize the system by
incrementally tuning a parameter and observing the result, and
we are only privy to snapshots of the working system. However,
we can begin to understand the behavior of the brain within this
range of behaviors by comparing the DFA of the rate of change
of phase difference of pairs of neurophysiological signals to the
outcomes of these models of criticality.

4.5. THE CABRAL MODEL
We found that LRTCs exist in the rate of change of phase dif-
ference between oscillator pairs at parameter values close to
those at which the change in order, �(Kr), increases sharply.
Extrapolating from the Kuramoto model with noise, we suggest
that there are important changes in the order of the phase syn-
chronization of interacting oscillators in the Cabral model that
involve the presence of LRTCs when the order in that system is at
or close to a point of maximal change.

It is important to note that the value of r in the Cabral model
does not reach a level of 1 in the range of coupling values 0–20. It
approaches a level of ≈0.4 as K approaches 20 with maximal rate
of change at K ≈ 6. Further analysis of the Cabral model indicates
that r will gradually reach a value closer to 1 as K increases above
a value of 60, as seen in Figure 4 of Cabral et al. (2011). Cabral
focussed her attention on K = 18 at which point the model,
when fed through the Balloon-Windkessel hemodynamic model,
produced an output that closely matched the spatio-temporal cor-
relations seen in the BOLD signals of the resting state fMRI. We
find that at this value, there are no LRTCs detectable in the rate of
change of phase difference measure.

4.6. THE ROLE OF CONNECTIVITY IN THE CABRAL MODEL
Although most of results were obtained at K = 6, selected because
it is the peak of�(Kr), it is important to note that LRTCs exist for
a broader range of coupling values K. This finding agrees with a
recent study by Moretti and Muñoz (2013) in which the authors
demonstrated that a network with complex connectivity, such as
that of the Cabral model and, indeed, that of the brain, causes the
critical point to becomes a broader critical “region.”

Our examination of oscillator pairs belonging to a single clus-
ter, as defined in Cabral et al. (2011), indicates that the emergence
of LRTCs is determined primarily by oscillators belonging to clus-
ter 4 which has a large number of connections and a large sum
of connection weights. This cluster is located centrally, and it

contains four brain regions of particular importance to the resting
state network (Fransson and Marrelec, 2008; van den Heuvel and
Sporns, 2011). These are oscillators 33 and 34, which correspond
to the left and right posterior cingulate cortices, and oscillators 32
and 35 which represent the left and right precuneus. These central
brain regions are known to be important with a higher metabolic
activity than other regions during the resting state.

Importantly, we find that LRTC behavior of this cluster, and
its relationship to the other clusters in the network, is depen-
dent on trans-callosal left-right connectivity. Indeed, disruption
of the left-right trans-callosal connections resulted in a loss of
LRTCs in the rate of change of phase difference between time
series extracted from the central cluster 4 and the other oscilla-
tors in the Cabral network. Intuitively, those oscillators that are
connected to many other oscillators in the network will also influ-
ence the phases of a large number of other oscillators. When
these oscillators try to synchronize, we suggest that those that
are well connected will be subjected to conflicting phase inputs
from their neighbors and thus increased variation in their phase
fluctuations, yielding a larger DFA exponent. These variations
in fluctuation will in turn feed into the neighboring oscillators
and cause them to also have large variations in fluctuation as
they attempt to synchronize with their well-connected neigh-
bor. On the other hand, an oscillator that is poorly connected or
connected to just one other oscillator may have a more straight-
forward task of synchronizing with just this (albeit changing)
oscillator speed.

The LRTCs in the rate of change of phase difference were also
disrupted by randomization of connectivity, albeit less severely
than when the trans-callosal connections were severed. When
a random connectivity is assigned, no clusters exist and DFA
exponents are significantly reduced.

The results obtained from the phase synchrony analysis
method here may pave the way for potential future use of the
Cabral model in investigating specific pathological modifications
of connectivity and their effects on the time-varying synchroniza-
tion patterns between different brain regions. The method has the
potential to be used to trace some types of pathological synchro-
nization such as may arise in epileptic or Parkinsonian conditions
to any roots that they may have either in the connectivity, clus-
tering or noise input elements of the Cabral model and therefore
potentially also of the nervous system.

4.7. NEUROPHYSIOLOGICAL DATA
In order to show proof of principle, we have presented an exam-
ple of our method’s application to neurophysiological data, in
this case EEG and EMG simultaneously recorded during vol-
untary muscle contraction. It was through this experimental
paradigm that corticomuscular coherence (CMC) in the 16–
32 Hz (β) frequency range was first discovered by Conway et al.
(1995), Halliday et al. (1998) and shown to be the β frequency
common drive to human motoneurons first described by Farmer
et al. (1993). These preliminary results indicate power law scaling
in the DFA plot with a DFA exponent of ≈0.6.

It has been recognized through application of time-varying
coherence measures that CMC coherence fluctuates even when
a subject attempts to maintain the same motor output
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(Muthukumaraswamy, 2011). As discussed earlier, the techniques
introduced here allow us to focus on the fluctuations within the
phase coupling rather than on the averaged measure of cou-
pling. These preliminary results indicate that the fluctuations in
the rate of change of phase difference between simultaneously
recorded EEG and EMG show power law scaling and LRTCs
within the β frequency range. We suggest that the analysis of
instantaneous phase diffence of neurophysiological data using the
methods described in this paper will allow researchers to investi-
gate the coupling between signals in a way that will allow a new
appreciation of the relationship between neural synchrony and
other oscillator systems approaching their critical regime.

4.8. LRTCs IN RATE OF CHANGE OF PHASE DIFFERENCE AND THE
BRAIN

LRTCs have been associated with model dynamical systems that
show efficiency in learning, memory formation, rapid informa-
tion transfer, and network organization. The broad dynamical
range of which LRTCs are a marker acts to support these func-
tions (Linkenkaer-Hansen et al., 2001, 2004; Stam and de Bruin,
2004; Sornette, 2006; Shew et al., 2009; Chialvo, 2010; Werner,
2010; Beggs and Timme, 2012; Meisel et al., 2012). It has been
argued by a number of researchers that these properties if present
would be of major benefit to the functions that human brain
dynamics needs to support and there is now a literature that con-
nects the theory of critical systems with properties of human
brain dynamics (Linkenkaer-Hansen et al., 2001; Beggs and
Plenz, 2003; Kitzbichler et al., 2009; Shew et al., 2009; Chialvo,
2010).

In this paper, we focus on LRTCs, and because of the impor-
tance in neuroscience of brain oscillations and the concept of
communication through coherence, we make the link between
LRTCs and phase synchrony. We note that in the model sys-
tems that we have explored the highest valid DFA exponents were
recovered when the systems were close to their critical point but
in a slightly more disordered state than at exact criticality. We
explained this on the basis of full synchronization within our
model systems being a point at which the rate of change of phase
difference is lost (observed in Ising at T < Tc and in Kuramoto
for increasing K).

In neurophysiological systems, it is important to appreciate
that full synchronization of neural oscillators is a pathological
state (e.g., observed in the EEG and MEG of epileptic seizures
and in EMGs showing pathological tremor). The healthy resting
brain state therefore is characterized by weak and variable neural
synchrony which would be expected to show fluctuations (tempo-
ral innovations) in a measure of the change in phase synchrony,
i.e., the rate of change of phase difference. From the perspective
of brain dynamics (and muscle activation dynamics) the most
important constraints are to avoid pathological synchronization
whilst at the same time maintaining the potential for useful syn-
chronization. We suggest therefore that in the healthy state the
instantaneous phase difference between neural oscillators will
show power law fluctuation plots with a DFA exponent that is
either 0.5 or that will show LRTCs. If LRTCs are found in the rest-
ing state then they may represent an optimum state of readiness to
which the system can readily return if increased synchronization

occurs as a result of sensory stimulation, motor task, or cognitive
action. Such temporary changes in synchronization may occur in
order to support communication through coherence. The resting
state, however, is characterized by fluctuations of phase synchrony
that have LRTCs and represent the behavior of weakly coupled
oscillators whose synchrony can be modulated. The hypothesis
that the LRTCs of rate of change of phase difference of brain oscil-
lations may be altered through task is an experimentally tractable
question.

To conclude the evidence for the brain as a critical system con-
tinues to accrue. There is an important need to link the criticality
paradigm with the paradigm that attaches functional significance
to neural synchrony. The methodology presented in this paper
takes us some way toward this synthesis.
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APPENDIX

Table A1 | A list of the 66 brain regions which are represented by 66 oscillators in the Cabral model.

Abbreviation Region Oscillator number

Right Left

ENT Entorhinal cortex 1 66

PARH Parahippocampal cortex 2 65

TP Temporal pole 3 64

FP Frontal pole 4 63

FUS Fusiform gyrus 5 62

TT Transverse temporal cortex 6 61

LOCC Lateral occipital cortex 7 60

SP Superior parietal cortex 8 59

IT Inferior temporal cortex 9 58

IP Inferior parietal cortex 10 57

SMAR Supramarginal gyrus 11 56

BSTS Bank of the superior temporal sulcus 12 55

MT Middle temporal cortex 13 54

ST Superior temporal cortex 14 53

PSTC Postcentral gyrus 15 52

PREC Precental gyrus 16 51

CMF Caudal middle frontal cortex 17 50

POPE Pars opercularis 18 49

PTRI Pars triangularis 19 48

RMF Rostral middle frontal cortex 20 47

PORB Pars orbitalis 21 46

LOF Lateral orbitofrontal cortex 22 45

CAC Caudal anterior frontal cortex 23 44

RAC Rostral anterior cingulate cortex 24 43

SF Superior frontal cortex 25 42

MOF Medial orbitofrontal cortex 26 41

LING Lingual gyrus 27 40

PCAL Pericalcarine cortex 28 39

CUN Cuneus 29 38

PARC Paracentral lobule 30 37

ISTC Isthmus of the cingulate cortex 31 36

PCUN Precuneus 32 35

PC Posterior cingulate cortex 33 34

The abbreviations, full names, and oscillator numbers corresponding to the left and the right hemispheres are given for each brain region. The labels, brain regions,

and oscillator numbers used in the Cabral model.
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The neural criticality hypothesis states that the brain may be poised in a critical state at
a boundary between different types of dynamics. Theoretical and experimental studies
show that critical systems often exhibit optimal computational properties, suggesting
the possibility that criticality has been evolutionarily selected as a useful trait for our
nervous system. Evidence for criticality has been found in cell cultures, brain slices, and
anesthetized animals. Yet, inconsistent results were reported for recordings in awake
animals and humans, and current results point to open questions about the exact nature
and mechanism of criticality, as well as its functional role. Therefore, the criticality
hypothesis has remained a controversial proposition. Here, we provide an account of
the mathematical and physical foundations of criticality. In the light of this conceptual
framework, we then review and discuss recent experimental studies with the aim of
identifying important next steps to be taken and connections to other fields that should
be explored.

Keywords: self-organized criticality, brain, phase transition, dynamics, neural network

1. INTRODUCTION
The brain can be studied by two complementary approaches:
Bottom-up approaches start on the level of single neurons or
small groups of neurons, and then generalize upwards to the level
of the brain. Hypotheses on the macroscopic level are formed
based of the microscopic dynamics. For example, the observation
of resonance in electrophysiological recordings can predict oscil-
lations on the network level. By contrast, top-down approaches
start by considering the properties of the brain on the level of
brain areas or the whole brain, and infer downwards to the prop-
erties of its constituents. Hypotheses on the microscopic level are
formed based of the macroscopic dynamics. For example, corre-
lated activity in EEG recordings predicts a connection between
the underlying brain areas.

A central concept connecting the microscopic and macro-
scopic levels is criticality. In the investigation of neural criticality,
the word critical is used in the sense of statistical physics, which is
distinct from other meanings, including the colloquial use. In sta-
tistical physics, criticality is defined as a specific type of behavior
observed when a system undergoes a phase transition.

Physics characterizes the behavior of systems into qualitatively
different phases. This classification scheme has its origin in the
phases of classical matter, i.e., solid, liquid, and gaseous phase.
The different macroscopic properties of, say, ice, liquid water, and
steam can be explained by the microscopic forces between single
water molecules. The discovery of this connection inspired the
application of the concept of phases in a broader context and led
to the identification of many more phases and different types of
phase transitions.

To distinguish different phases, one considers macroscopic,
measurable properties of the system, so-called order parame-
ters. One then observes how these order parameters change as
an ambient property, the so-called control parameter, is varied.
In general, a smooth change in the control parameter leads to
a smooth change in the order parameters. However, there are
certain points where the values of the order parameters jump
or make sharp turns, see Figure 1. These points mark bound-
aries between different phases, and moving the control parameter
across such a boundary causes a phase transition. If the transi-
tion is marked by a jump in the order parameters of the system
(mathematically-speaking, a discontinuity in the phase diagram),
the phase transition is called discontinuous. Such transitions are
sometimes called transitions of first order. If the phase diagram
is continuous and the transition is marked by a sharp corner
(a point of non-differentiability), then the phase transition is
continuous (second order).

If a system has a continuous phase transition, then the sys-
tem can reside exactly at the transition point between two phases.
This state on the edge between two qualitatively different types of
behavior is called the critical state, and in this state the system is
at criticality. Because phase transitions usually break certain sym-
metries of the system, they often separate an ordered state from
a less ordered state. Critical states are therefore said to be on the
edge of chaos.

As we discuss in detail below, systems at criticality are
believed to have optimal memory and information process-
ing capabilities. This general theoretical prediction was ver-
ified in many specific models such as boolean networks
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FIGURE 1 | Phase plot. Network activity versus connectivity for the steady
state solution of Equation (1) (straight line) and a simulated network with
n = 500 (dashed line) or n = 100 (lower dashed line) neurons. A phase
transition is observed at z∗ (see main text) for the analytical solution with
infinite n, whereas the transition appears in finite systems at slightly higher
values of the control parameter and is smoothed out over a small interval.
In the event-based simulation of Equation (1), the steady state network
activity A was measured as A = sτ/nT , where s is the number of spikes
recorded during the time period T following an initial relaxation period, and
τ is the period over which the neuron remains active.

(Kauffman, 1984; Derrida and Pomeau, 1986), liquid state
machines (Langton, 1990), and neuronal networks (Maass et al.,
2002; Bertschinger and Natschläger, 2004), for a review also see
Legenstein and Maass (2007). These findings inspired the critical-
ity hypothesis, which proposes that the brain operates in a critical
state because the associated optimal computational capabilities
should be evolutionarily selected for.

Deviations from criticality could be symptomatic or causative
for certain pathologies. This may pave the way for new diagnos-
tics and treatments. For instance, Meisel et al. (2012) showed
that hallmarks of criticality disappeared during epileptic seizures.
Furthermore, insights into criticality in the brain could yield valu-
able design and operating principles for computation more in
general, for example for unstructured artificial systems such as
computers build from randomly-deposited nanowire memristors.

However, the criticality hypothesis is far from undisputed and
many open questions remain. In particular, for a system to be
at criticality, one parameter needs to be tuned exactly to the
right point. One can therefore ask how a complex dynamic and
variable system such as the brain can remain correctly tuned to
this state. For a plausible answer, first note that the theory of
phase transitions typically considers infinite systems. In large but
finite systems, phase transitions occur not at a single point, but
are smoothed out over a small parameter range. Instead of the
unique critical state, we find a small region that is not techni-
cally critical, but still retains many properties of criticality, see
Figure 1 (Moretti and Muñoz, 2013). However, even remaining
in this “critical” region should require mechanisms that actively
retune the brain. The general idea of systems tuning themselves to
critical states through active decentralized processes is known as
self-organized criticality (SOC) (Bak et al., 1988), and is illustrated
in Figure 2. After a burst of activity in this area in the 1990s, the

theory of self-organized criticality encountered some obstacles
and interest slowly subsided (Vespignani and Zapperi, 1998). It
was revived by Bornholdt and Rohlf (2000), who discovered an
elegant mechanism of self-organized criticality in networks and
already suggested it as a plausible mechanism for neural criticality.

The criticality hypothesis can thus build both on evolution-
ary arguments and on a plausible general mechanism that can
explain the self-organization to the critical state. Although inves-
tigated analytically and numerically for numerous toy models,
it is still unclear whether and how such a mechanism is imple-
mented in the brain. Evidence for criticality has been found in
experiments on cell cultures (e.g., Beggs and Plenz, 2003; Tetzlaff
et al., 2010), animals (e.g., Petermann et al., 2009; Hahn et al.,
2010) and humans (e.g., Kitzbichler et al., 2009; Meisel et al.,
2012). However, it has been pointed out that some evidence may
be misleading and could potentially be explained by alternative
mechanisms (Botcharova et al., 2012). Some experimental stud-
ies also report negative results where characteristics of criticality
were not observed in the neuronal activity (e.g., Bédard et al.,
2006; Dehghani et al., 2012, but see criticism in Yu et al., 2014).
In general, the relationship between the theoretical framework
and its biological realization remains unclear. While models have
demonstrated the plausibility of self-organized criticality in the
brain, it is not clear to which of the many conceivable phase tran-
sitions the brain organizes, if and how different forms of plasticity
drive the brain to this state, and whether different brain regions
organize independently. Resolving these questions could lead to a
much deeper understanding of neural criticality, explain appar-
ent contradictions in experimental findings, and open up new
connections with other fields.

Neural criticality has been reviewed in recent articles (Beggs,
2008; Kello et al., 2010; Beggs and Timme, 2012; Shew and Plenz,
2013; Marković and Gros, 2014) and is the topic of a contributed
volume (Plenz and Niebur, 2014). In this review, our aim is to
present a clear picture of the underlying concepts and ideas from
statistical physics and nonlinear dynamics. We do not attempt
to provide a comprehensive survey, but instead highlight specific
papers to illustrate general insights that are evident in much of the
recent literature. We first present a simple toy model that provides
the essential concepts in front of which much of the recent work
can be discussed. We then review self-organized criticality in ner-
vous systems with a special focus on the interaction of theoretical
and experimental work in this field. We point out several current
questions and connections to other phenomena. Because of the
emerging connections, we believe that the criticality hypothesis
inspires discussions and the development of tools for the analy-
sis of brain dynamics which will proof useful independent of the
validity of the hypothesis itself.

2. EXAMPLE OF A PHASE TRANSITION IN A NETWORK
Phase transitions and criticality can already be observed in simple
network models. In physics, such highly simplified models have
proven useful to distill the essence of a phenomenon, before inves-
tigating how this essence is reshaped through additional details
present in the real system.

Consider a large directed network of excitable nodes that can
be seen as a crude model of neurons. In average, each node has
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FIGURE 2 | The sandpile model. The classical thought experiment
motivating self-organized criticality is the sandpile model (Bak et al., 1988),
which was experimentally reproduced using rice piles (Frette et al., 1996).
Consider a pile of sand on a small table. Dropping an additional grain on the
pile may set off avalanches that slide down the pile’s slopes. The outcome
of the avalanche dynamics then depends on the steepness of the slopes.
Either all the sand will come to rest somewhere on the table or avalanches
continue until some grains fall off the table’s edge. In the former case, we
have added one grain to the pile, so in average the steepness of slopes has
increased. In the latter case, we have removed some grains from the pile,
so in average the steepness of slopes has decreased. In the long run, the
slopes evolve to a critical state where a single grain of sand that is dropped
is likely to just settle on the pile, but also has a non-negligible probability to
trigger a huge avalanche. This experiment already suggests that the critical
state is very sensitive to stimuli, because a small (internal or external)
variation can cause a large effect.

z outgoing links that can propagate activity to other nodes. In
analogy to neural systems, we refer to the source of a given link
as the presynaptic node and to the destination of a given link as
the postsynaptic node. For a given link, activity is not transmit-
ted instantaneously; instead, there is a small probability p that an
activation of the presynaptic node activates the postsynaptic node
in a small time interval of length τ . Active nodes decay back to the
inactive state within the same time interval.

Clearly, this model is excessively simplistic and omits many
additional effects and factors that are present in real nervous sys-
tems. However, as we show below, the model already contains all
ingredients to exhibit a phase transition, and thus provides us
with a simple model of a phase transition to play with.

Let us now try to understand the macroscopic dynamics of
the system based on its microscopic rules. We define the net-
work activity A(t) as the mean proportion of activated nodes at
time t. Higher values of A imply that there are more active nodes,
which can serve as sources of activity, but less resting nodes, which
can still be activated. Mathematically, we can capture the ensuing
dynamics by the differential equation

dA

dt
= − 1

τ
A

︸ ︷︷ ︸
inactivation

+ pz (1 − A)
1

τ
A.

︸ ︷︷ ︸
activation

(1)

The system approaches a dynamical equilibrium dA
dt = 0. Setting

the left hand side of Equation (1) to zero reveals two qualita-
tively different steady states. In one of them, the activity dies
out, A0 = 0, whereas in the other, a stable level of activity A0 =
1 − 1/pz is maintained. Generally, a system will only approach
steady states which are stable to small perturbations. Stability
analysis (Guckenheimer and Holmes, 1983) reveals that the sta-
ble state is the quiescent state for pz < 1 and the active state for

pz > 1, such that the activity is non-negative. We can thus say that
we observe an active state of the network when the connectivity z
is greater or equal than z∗ = 1/p.

Plotting the level of activity observed in the system’s long term
behavior, A0, as a function of the connectivity z reveals a typi-
cal phase diagram (Figure 1). In this context, the connectivity z is
the control parameter, and the activity A0 is the order parameter.
The diagram shows a subcritical quiescent phase and a supercrit-
ical active phase. The critical connectivity z∗ = 1/p corresponds
to a phase transition between these two phases. We note that even
in this simple model the relation between phase transitions and
symmetry breaking is evident. In the quiescent phase, all nodes
are in the same (inactive) state, whereas this symmetry is broken
in the active phase. In the quiescent phase, the system is com-
pletely static, whereas in the active phase, the individual nodes
are activated stochastically, and seemingly chaotically. The phase
transition point therefore marks the edge of chaos.

The analytical solution only holds for the limit of large net-
works. In small networks, network activity is difficult to sustain
near the critical point, where the sustained network activity is so
low that it easily dies out by chance. The abrupt change at the crit-
ical point is smoothed out and the observed phases are no longer
perfectly distinct (Figure 1). Analog effects are seen in any finite
system. In a large but finite system such as the brain, one would
therefore not expect to find a single isolated point that expresses
perfect criticality, but rather a small region that shows properties
of critical systems in an approximate sense.

We emphasize that the simple model discussed here only
exhibits one type of phase transition, the onset of activity.
Additionally, there can be many other types of phase transitions.
Another example that is commonly encountered in models, and
may be more relevant for neural information processing, is a
transition that marks the onset of synchronous (i.e., correlated)
activity in the network (e.g., Meisel and Gross, 2009; Yang et al.,
2012). One implication of the presence of such additional transi-
tions is that labels such as subcritical and supercritical can only be
applied with respect to a certain transition. For instance, a system
that shows activity, but not correlated activity, can be considered
supercritical with respect to the activity transition, but subcritical
with respect to the synchronization transition.

3. PROPERTIES OF PHASE TRANSITIONS
In the following, we discuss how phase transitions and critical
dynamics can be detected in experiments. The most direct evi-
dence for a phase transition is certainly provided by a phase
diagram (Figure 1) (Dickman et al., 2000). In this type of dia-
gram, the existence of a phase transition can be seen directly in
the response of the order parameter to variations of the con-
trol parameter. However, for creating such a diagram the control
parameter must be accessible (controllable) in the experimen-
tal setting. For instance, it is difficult to imagine an experiment
where the connectivity of the brain (our parameter z from above)
can be varied in vivo. Yet, it might be possible to control the
effective connectivity (e.g., pz) by pharmacological interventions
in in vitro experiments. Although some studies discussed below
report results for such modifications of control parameters, most
of the evidence for criticality comes from experiments that show
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criticality indirectly by the observation of certain hallmarks. In
this section, we discuss these hallmarks of criticality in the context
of the simple model introduced above.

One commonly used hallmark comes from the theory of
branching processes (Harris, 1963). Suppose we could observe
only a tiny portion of the system, which only rarely lights up with
(possibly spontaneous) activity. Under the assumption that the
connections are sufficiently short-ranged to be within our obser-
vation window, we can still estimate the number of secondary
activations that a given focal activation triggers, the so-called
branching parameter σ . In the subcritical phase, this number is
in average less than one. In the supercritical phase, the dynamics
persists in the system and thus there must be in average as many
activations as deactivations, which implies a branching parame-
ter of one. In a spatially extended system that is not too far in the
supercritical phase, a branching parameter greater than one may
be observed over short times in response to an artificial excitation.
Therefore, the observation of a branching parameter σ = 1 in
response to an artificial excitation in a sufficiently quiescent sys-
tem may be seen as evidence for criticality. However, compared to
other hallmarks, this evidence is relatively weak because a branch-
ing ratio of one does not necessarily imply critical dynamics, but
is also observed in supercritical states.

Another hallmark of criticality is related to the response of the
system to external stimuli. In our model, the sensitivity to inputs
(the dynamic range) is maximal at criticality. This can be shown
by considering the temporal development of a small perturbation
δ. The dynamical evolution of the perturbation of the steady state
A0 is given by inserting A0 + δ into Equation (1), which yields

dδ

dt
= ( −1 + pz (1 − (A0 + δ))

) 1

τ
(A0 + δ)

= − 1

τ

( ±(1 − pz)δ + pzδ2 )

≈ − 1

τ

( ±(1 − pz)δ
)
,

where the plus applies if z < 1/p and the minus otherwise.
The approximation in the last line holds for sufficiently small
perturbations. The resulting equation is a linear differential equa-
tion, which implies that after the perturbation the system relaxes
rapidly (exponentially) back to A0. In this case, the half-life of a
sufficiently small perturbation is |τ ln (2)/(1 − pz)|. Any memory
of the perturbation disappears therefore quickly. When the system
approaches criticality, pz → 1, such that the half-life increases.
At criticality, z∗ = 1/p, such that the first order term 1 − pz van-
ishes, and the approximation leading to the third line no longer
holds. In this case, the system relaxes only geometrically back to
the state A0, which means that the memory of the perturbation is
retained for a long time. This property is often called critical slow-
ing down. Let us emphasize that critical slowing down is not only
a property of the specific model considered here, but a general
feature of critical phase transitions in the dynamics of a system
(Scheffer et al., 2009). It lends critical systems a long memory and
may play an important role for their computational properties.

In the example system, we can also understand the emergence
of memory in the critical state on a microscopic level. Consider
a situation in which we artificially activate a small number of
neurons. We now ask how long the memory of this activation
lasts in the time evolution of the system. Let us first consider
a system in a subcritical state. Here, we already know that the
branching parameter is less than one and hence the initially acti-
vated neurons will activate only a smaller number of neurons
such that the signal from the initial activation quickly (i.e., expo-
nentially) decreases over time. Consider now a supercritical state.
We recognize that the branching parameter is equal to one, so
we expect that the initial artificial activation of the small group
of neurons triggers a cascade that stays in average roughly con-
stant in size. We could therefore naively expect that the memory
of the activation persists in the system. However, the truth is a
bit more subtle: While the cascade indeed persists, some of the
neurons involved in the cascade would have been activated any-
way due to the ongoing self-sustained activity of the system. Thus,
the difference between the artificially excited system and a sys-
tem where the artificial activation did not take place shrinks in
time; again the memory of the activation is lost exponentially.
By contrast, the critical system already has a branching param-
eter of one, allowing the cascade that we have set off to persist for
a long time, and it has also negligible background activity, allow-
ing the information transmitted by the cascade to persist without
interference.

The slowing down leads to another observable characteristic
of critical systems, called 1/f -noise, which is commonly observed
in nature (Hausdorff and Peng, 1996). If a critical system is con-
stantly perturbed by weak random inputs, the dynamics is a
superposition of a multitude of geometric responses. The power
spectrum of this noisy response then follows a power-law, which
means that the energy dissipated at frequency f is approximately
1/f α , where α is some constant. While every critical system
should exhibit power-law noise, the observation of this type of
noise alone does not constitute a proof of criticality, as it is also
observed in certain other processes (Cencini et al., 2000; Bédard
et al., 2006).

Power-laws appear in critical systems also in a different way.
Loosely speaking, phase transitions occur at the points where the
line between macroscopic and microscopic dynamics is blurred,
e.g., where avalanches initiated on the microscopic level become
so large that they affect the dynamics on the macroscopic level.
For several reasons this is only possible when the size distribu-
tion of avalanches obeys a power-law (Levy and Solomon, 1996).
Let us once again consider the simple model proposed above.
Since the branching ratio is one independent of the size of the
current avalanche, the probability distributions describing the
cascades of events downstream from an activated node are inde-
pendent of whether the node is the initial node that sparked the
avalanche or a node that is only activated as the result of a long
sequence of events. This is one aspect of the self-similarity found
in critical processes (Marković and Gros, 2014). The cascade
of subsequent activations caused by a given node is statistically
identical to the cascades of subsequent activations triggered by
the activated nodes. This in turn causes power-laws to appear
in many observables of the system. Thus, criticality is generally
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associated with the appearance of power-law distributions of the
form f (x) = Cx−α for many different observables.

The observation of power-laws in multiple observables with
consistent exponents constitutes a relatively strong proof for criti-
cality. Although it is often pointed out that also these relationships
could arise in non-critical systems, this criticism is much weaker
for microscopic observables than for macroscopically recorded
power-law noise. We note that some of the examples that are often
quoted for spurious are wrong. For instance, it is often held that
the Barabasi-Albert model (Barabási and Albert, 1999) leads to
networks with a power-law degree distribution but does not cor-
respond to a critical state. However, the Barabasi-Albert model
is indeed in a critical state that marks the transition between
exponential and star-like networks (Krapivsky and Krioukov,
2008).

A consequence of the blurring of the line between global
and local scales, and part of the reason for the appearance
of power-laws, is the so-called scale independence (Goldenfeld,
1992). This phenomenon captures the observation that critical
systems show similar patterns at all scales. For example, the shapes
of avalanches of any size resemble each other (Marković and Gros,
2014). As one approaches criticality, correlations occur between
distant parts of the system, which means that external pertur-
bations or spontaneous fluctuations can influence large parts of
the system. For instance, stimulations induce small avalanches
already in the subcritical region of our simple model. As we
slowly increase the connectivity, these avalanches get bigger and
bigger and reach the scale of the system at criticality. In this
case, the avalanches occur on all scales up to the system size,
which implies that the typical length of correlations diverges. If
we increase the connectivity further, activity in the system con-
tinues to increase, making simultaneous occurring avalanches
likely. As a node cannot be activated twice at the same time,
one of the avalanches effectively stops whenever two avalanches
reach the same node. These collisions between the avalanches
decrease long-ranged correlations and destroy the divergence of
the correlation length.

In summary, criticality occurs at phase transitions for which
the order parameter changes non-smoothly but continuously
with the control parameter. Proper phase transitions are an ideal-
ization only expected in the infinite size limit—in real systems, the
transition is less well defined and smoothed out over a finite inter-
val. At criticality, as well as in its proximity, the system dynamics
exhibits critical slowing down, and the distributions of observ-
ables and fluctuations follow power-laws. These hallmarks of
criticality lend critical systems their optimal information process-
ing and storage capabilities, reviewed by Shew and Plenz (2013).
Critical slowing down allows memories of dynamical patterns to
be retained for a long time (Beggs and Plenz, 2004; Haldeman
and Beggs, 2005; Chialvo, 2006; Chen et al., 2010; Kello et al.,
2010). Furthermore, criticality maximizes the dynamic range of
the response to inputs (Kinouchi and Copelli, 2006; Shew et al.,
2009) and the variability of the neuronal response (Shew et al.,
2011; Yang et al., 2012; Meisel et al., 2013). As scale-independent
systems naturally show both small and large activity patterns,
inputs can be processed in parallel, and integrated over the whole
system (Gutiérrez et al., 2011).

4. SELF-ORGANIZATION TO A CRITICAL BRAIN STATE
To observe criticality, a control parameter has to be tuned to its
critical value. In a variable system such as the brain, and with-
out an external observer, critical dynamics can only be conserved
by self-organized criticality (Bak, 1996), a constant tuning of the
control parameter by a decentralized internal mechanism. For
many systems with a critical phase transition, self-organized crit-
icality is easily implemented by a mechanism that increases the
control parameter in the subcritical phase and decreases it in the
supercritical phase.

We use the term control parameter also in self-organized criti-
cal systems although the control parameter is no longer controlled
externally, but by the system itself. To adjust the control param-
eter appropriately, self-organizing mechanisms have to evaluate
the current phase of the system from an internal perspective. In
the nervous system, the self-organization probably relies on the
dynamics of single neurons or synapses, and not on a global regu-
lation, e.g., by the endocrine system, because evidence for critical
brain dynamics is especially prominent in in vitro studies, where
the neurons are separated from the rest of the brain that could
act as global integrator. A central challenge is therefore to explain
how individual neurons or synapses can infer the phase from local
observations.

To decide whether the system is in the sub- or supercrit-
ical phase, the self-organizing mechanism has to evaluate the
global mean of the order parameter. However, as the information
accessible to a single neuron or synapse is necessarily local, it is
reasonable to expect that the global mean is approximated by a
temporal mean over the dynamics (Bornholdt and Rohlf, 2000).
To allow for an estimation of the global mean based on a tem-
poral integration of local observations, the change in the control
parameter has to be considerably slower than the dynamics of the
system. For example, in the sandpile model presented in the intro-
duction (Bak et al., 1988), criticality is only reached when the next
sand grain is dropped after any dynamics on the pile has ceased.
Self-organized critical systems show in general a time-scale sepa-
ration between changes in the system structure and changes in the
dynamics of the system (Vespignani and Zapperi, 1998).

Theoretical arguments seem to suggest that self-organized crit-
icality can be fully realized only in systems in which the control
parameter is conserved (Dickman et al., 2000). In the brain,
which is constantly subject to external input, the self-organization
never precisely reaches the critical point (Bonachela et al., 2010).
However, the characteristics of criticality, such as computational
capabilities and sensitivity, are already increased in the proxim-
ity of the critical point. Therefore, we use the term self-organized
criticality to refer both to neural networks which are right at
or sufficiently close the critical point, a state that has previously
been called self-organized quasi-criticality (Bonachela and Muñoz,
2009).

For the brain with its highly hierarchical and modular struc-
ture, it is likely that critical points generalize to critical regions
(Griffiths phases) (Moretti and Muñoz, 2013). This relaxes the
requirements on the tuning of the control parameter, which
could also be shown in a realistic model of neuronal network
dynamics (Rubinov et al., 2011). In modular systems, the global
phase transition is spread out because, for a certain range of
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the control parameter, some modules are still in the subcriti-
cal phase, while other modules are already in the supercritical
phase. Properties arising at criticality, such as power-law distri-
butions, large dynamic range and slowing down of the dynamics,
are approximately observed for any value of the control parame-
ter in this critical range. Dynamical states similar to criticality are
therefore likely whenever the self-organizing mechanism tunes
the control parameter to the proximity of this critical region.

Self-organization of plausible neural models to criticality was
demonstrated in a number of papers (e.g., Bornholdt and Rohlf,
2000; Levina et al., 2009; Meisel and Gross, 2009; Droste et al.,
2013). However, many questions remain. First, we do not know
which parameters in the brain are tuned to reach criticality. On a
microscopic scale, synaptic conductances seem to be a likely can-
didate. As a substantial change in the synaptic conductances is
only observed after several spikes, the plasticity acts on a slower
time-scale than the neuronal activity. This provides the time-scale
separation required for a robust tuning of the system to critical
states. A change in the synaptic conductances could directly influ-
ence the excitability of the synapse (basically the parameter p in
our simplified model), which is sufficient to tune the system to
criticality.

A change of individual synaptic weights, which translates
into an overall change in excitability, is only the simplest pos-
sible scenario. The excitability can also be changed directly by
mechanisms of homeostatic plasticity (Stewart and Plenz, 2008;
Droste et al., 2013). Other possible targets for sophisticated self-
organizing plasticity mechanisms are changes in the level of
micro-scale modularity, or of the heterogeneity in the system.
These factors, which we have ignored so far, affect the location
of critical points and can thus be used to tune the system to crit-
icality. The simple picture, in which exactly one global control
parameter is tuned, is thus misleading. In reality, the microscopic
changes in the system are likely to affect tens or hundreds of net-
work level quantities at the same time, which all act as possible
control parameters for phase transitions.

Another open question is to which critical state the network
organizes. While we have so far focused on the phase transi-
tion at the onset of activity, some evidence suggests the onset
of synchrony as a more likely candidate. Some insights into this
question can be gained based on the relation between the nature
of the transition at which the system resides and efficient coding
of information. For the activity transition considered so far, the
optimal computational properties are likely to be realized if the
information is presented in a rate code, where the activity of a
node represents directly an input. To achieve optimal informa-
tion representation for a synchronization code, where an input is
represented by synchronous activity, the system needs to be tuned
to the phase transition at the onset of synchronization.

In a system with many parameters, the term critical point is
misleading. From a mathematical perspective, the critical point
is a bifurcation point of the macroscopic dynamics, and as such
is characterized by its codimension, which is one in this case
(Kutsnetsov, 1998). What this means is that the critical point
is actually a manifold which has one dimension less than the
embedding parameter space. So, in a one-dimensional param-
eter space, i.e., when only one parameter is varied, the critical
point appears as a (zero-dimensional) point. However, in a

two-dimensional parameter space, where a second parameter
is varied, we find a (one-dimensional) line of critical points.
In a three-dimensional parameter space, criticality occurs on a
surface, and so on.

In complex networks, there is an abundance of parameters
that affect the dynamics, including for instance the mean degree
and mean outgoing link weights, which are often considered, but
also clustering coefficients, modularity, and abundances of larger
motifs. The precise number of parameters that play a role in neu-
ral criticality is hard to determine. However, let us point out that
the one dimensional picture (Figure 1), which is usually drawn,
is particularly misleading. Consider that in one dimension the
probability that two different phase transitions occur at the same
parameter value is of measure zero. However, in two parame-
ter dimensions, each phase transition occurs on a critical line in
the parameter space, and crossings between the lines are likely.
Thus, if there are two processes of plasticity that tune the sys-
tem to two different critical states, there is generally a possibility
to observe both forms of criticality at the same time. Some evi-
dence for such double criticality was already observed by Yang
et al. (2012) and Meisel et al. (2013). This can potentially explain
why characteristics of both activity (e.g., Beggs and Plenz, 2003,
2004) and synchronization (e.g., Linkenkaer-Hansen et al., 2001;
Kitzbichler et al., 2009) phase transitions have been observed
in experiments.

So far we have talked about the brain as a critical system.
However, there is at least the possibility that different regions of
the brain are tuned to criticality separately, and perhaps to dif-
ferent phase transitions. Working at the activity transition seems
particularly advantageous for the detection of weak stimuli, as it
allows a single spike to trigger a cascade of activity. On the other
hand, working at the synchronization phase transition appears
advantageous for cognitive processes.

5. EXPERIMENTAL EVIDENCE FOR THE CRITICALITY
HYPOTHESIS

The demonstration of self-organized criticality in the brain is
controversial. Several experimental studies support the critical-
ity hypothesis, others interpret their results in contradiction. In
this section, we discuss common measurements used to support
criticality in the brain and stress their potential shortcomings.

The best proof of criticality would be provided by a phase dia-
gram as in Figure 1, where the critical point appears as a kink in
the curve. However, in self-organized critical systems, the control
parameter is set by the dynamics itself. If the control parameter
is deviated experimentally, it starts to return to its critical value,
such that it cannot be set freely. However, if the return is suffi-
ciently slow, phase diagrams can be obtained approximately by
monitoring a suitable order parameter while the system relaxes to
the critical state.

In recent studies, most evidence for the criticality hypothe-
sis in experiments and simulations is based on power-laws. As
power-laws are expected in virtually every critical system, the exis-
tence of power-laws is a fundamental prerequisite for criticality,
but as such not sufficient to prove criticality. Power-laws have
been explained alternatively by different non-critical mechanisms
(Touboul and Destexhe, 2010; Marković and Gros, 2014), such as
filtered neural activity (Bédard et al., 2006; Bédard and Destexhe,
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2009), noise (Bonachela and Muñoz, 2009; Miller et al., 2009),
or noisy feed-forward structures amplifying small perturbations
(Benayoun et al., 2010). For an educational review on the topic
see Beggs and Timme (2012).

A major concern is the inference of power-law behavior from
data. When plotted on a log-log plot (Figure 3), power-laws fol-
low a straight line with a slope equal to their critical exponent α.
However, visual inspection of a diagram can lead to false positives
and it has been pointed out that conventional goodness-of-fit tests
are ill suited for power-laws (Newman, 2005). The identification
of power-laws is thus delicate and demands for advanced fitting
procedures because power-laws are difficult to differentiate from
other heavy-tail distributions (Clauset et al., 2009; Klaus et al.,
2011; Marković and Gros, 2014). Furthermore, power-laws are
truncated in systems of finite size (Bonachela et al., 2010) and
are influenced by subsampling (Priesemann et al., 2009; Ribeiro
et al., 2010; Priesemann et al., 2014; Ribeiro et al., 2014).

Most experimental and numerical studies on self-organized
criticality concentrate on the identification of neuronal avalanches
(Beggs and Plenz, 2003), i.e., bursts of activity that spread through
the network and are predicted to follow power-law distribu-
tions in certain critical states (e.g., Harris, 1963; Eurich et al.,
2002; Larremore et al., 2012). As the precise network topology
is often not known in experimental observations, events are con-
sidered as part of the same avalanche if they occur in temporal
and spatial proximity. This is justified in systems without long-
range connections. In this case avalanches form local wave-like
structures. If long-range connections are present it is difficult to
assign observed activity to a particular avalanche. Avalanches with
power-law size distribution can then still be present in the system
although no local outbreaks that follow a power-law distribution
are detected, which may explain why wave-like activity propaga-
tion is for example not observed in acute slices (Stewart and Plenz,
2006).

If the spontaneous activity and the stimulation rate are low,
which is the case in most models, one avalanche is temporally

FIGURE 3 | Scale independence of power-laws. Plotted is the power-law
f (x) = xα with α = −1.5 on a log-log plot, where x is some observable of
the system. Independent of the range or scale over which the distribution is
measured, power-laws with the same critical exponent are observed.

separated from the next. In this case, the size of the avalanche is
defined as the number of neurons activated by the initial stimula-
tion. In experiments, the definition is not straight-forward as the
time-scale separation between dynamics initiation and dynamics
progression is less clear (Shew et al., 2009; Ribeiro et al., 2010;
Priesemann et al., 2014). Instead, avalanches are declared sepa-
rated if the dynamics is interrupted for at least one pre-defined
time bin. The dynamics is evaluated based on specific events seen
in multi-electrode recordings, for example spikes or strong nega-
tive deflections of the local field potential (LFP). Resulting event
time series are binned and a sequence of consecutive active bins is
defined as avalanche, see Figure 4.

In models, in which a time-scale separation between dynamics
initiation and dynamics progression is given, the avalanche size
distribution is independent of the chosen threshold and bin size
(Priesemann et al., 2014), which is a consequence of the scale
independence of critical processes. In experimental data, how-
ever, avalanche size distributions depend on the chosen event
threshold and on the bin size used for the binning process
(Pasquale et al., 2008; Touboul and Destexhe, 2010; Priesemann
et al., 2013). The avalanche size distribution changes with the
bin size when subsampling introduces artificial pauses in sin-
gle avalanches and when the external input is large enough to
initiate multiple avalanches simultaneously (Priesemann et al.,
2014). Most studies use a bin size that fits the time that the neu-
ral signal takes to spread between electrodes (Beggs and Plenz,
2003; Stewart and Plenz, 2006; Pasquale et al., 2008), some stud-
ies also report power-law fitting for different bin sizes (Hahn
et al., 2010; Tetzlaff et al., 2010). As expected at criticality, neu-
ronal avalanches show further scale-free properties. Importantly,
the avalanche distributions overlap when rescaled by the number
of recording electrodes (finite-size scaling, Klaus et al., 2011; Yu
et al., 2013). Results are furthermore independent of the record-
ing electrode number and distance (Beggs and Plenz, 2003; Hsu
et al., 2008; Pasquale et al., 2008; Tetzlaff et al., 2010) and long
range spatial and temporal correlations can be shown (Petermann
et al., 2009; Hahn et al., 2010; Yu et al., 2013).

For LFP-recordings, critical neuronal avalanche distributions
are reported for various animals and brain regions, both in vitro
(Beggs and Plenz, 2003, 2004; Mazzoni et al., 2007; Pasquale et al.,
2008) and in vivo (Petermann et al., 2009; Hahn et al., 2010).
Neuronal avalanches can be formed by nested oscillations (slices
and anesthetized rat Gireesh and Plenz, 2008) and the variability
in the synchronization is maximal (Yang et al., 2012). The criti-
cal exponents of the avalanche size distributions (e.g., Beggs and
Plenz, 2003; Hahn et al., 2010; Klaus et al., 2011; Friedman et al.,
2012) fit theoretical predictions (e.g., Harris, 1963).

When spikes are evaluated, the picture is less consistent.
Power-law distributed avalanches were not observed in awake ani-
mals (Bédard et al., 2006; Dehghani et al., 2012; Priesemann et al.,
2014), which is consistent with theoretical models which predict
criticality in a resting state. Indeed there is some evidence that the
brain’s critical state deteriorates during wakefulness and recov-
ers during sleep (Meisel et al., 2013, compare also Priesemann
et al., 2013). In anesthetized animals or cultures, power-law dis-
tributions for the spiking activity can be observed (Hahn et al.,
2010; Ribeiro et al., 2010), but most recordings do not support
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FIGURE 4 | Avalanche analysis. Recordings are scanned for specific
events such as a negative deflection of the local field potential, which
results in a time series for every recording electrode. The event trains are
binned and a bin is declared as active (cross) if an event was registered at
least at one recording electrode. A suite of active bins is considered as
neuronal avalanche (bracket), whose size corresponds to the number of
events. For critical neuronal avalanches, the size distribution follows a
power-law with a critical exponent close to −1.5.

power-law fitting (Bédard et al., 2006; Hahn et al., 2010; Ribeiro
et al., 2010; Dehghani et al., 2012). Avalanche distributions as
observed for spiking activity can however be reproduced by sub-
sampling models implementing self-organized criticality with
increased external input and tuned to a slightly subcritical regime
(Priesemann et al., 2014). An alternative explanation for non-
critical avalanche distributions may be recordings that are biased
toward a specific subset of neurons, for example if cell types
with particularly clear spike shapes in the extracellular signal are
preferentially identified. Furthermore, it is questionable whether
we can expect hallmarks of criticality if just a few neurons are
recorded simultaneously, because criticality is intrinsically a net-
work effect. In many real-world systems, the scale-independence
breaks down if we get too close to the level of single dynamical
units.

Apart from properties of the critical state, implications of the
self-organization to criticality can be examined. For instance,
models of self-organized criticality reproduce developmental
phases of cell cultures. Starting from an unconnected state, the
temporal development of avalanche distributions in neuronal cul-
tures can be fitted by models of self-organized criticality (Tetzlaff
et al., 2010). Also slices from newborn rats of different ages show
a temporal development from subcritical to critical dynamics
(Gireesh and Plenz, 2008; Stewart and Plenz, 2008). Organotypic
cell cultures can develop to subcritical, critical or supercritical
states (Pasquale et al., 2008; Tetzlaff et al., 2010). Intriguingly, only
the critical cultures show scaling of the mean temporal profile of
avalanches, i.e., the data collapse when normalized appropriately
(Friedman et al., 2012). The scaling also predicts the relation-
ship between exponents, which is a strong indicator of criticality
(Friedman et al., 2012).

Recent results suggest that also in humans, brain dynam-
ics is close to criticality, yet slightly subcritical (Priesemann
et al., 2013, 2014), a possibility first raised by Pearlmutter and
Houghton (2009). Resting state dynamics from human brains

reveal events analogous to neuronal avalanches whose dynamics
fluctuate closely around criticality (EEG Allegrini et al., 2010,
fMRI Tagliazucchi et al., 2012, MEG Shriki et al., 2013, EEG
and MEG during rest and tasks Palva et al., 2013). The result-
ing critical exponents correlate with the critical exponents of the
long-range temporal correlations (Palva et al., 2013). Imaging
data suggests furthermore power-law noise because activity fluc-
tuations (e.g., EEG Novikov et al., 1997, ECoG Miller et al., 2009)
and correlation fluctuations (e.g., EEG and MEG Linkenkaer-
Hansen et al., 2001, fMRI and MEG Kitzbichler et al., 2009) follow
power-laws.

Correlations can also be used to construct functional connec-
tivity maps, whose power-law distributed properties might relate
to self-organized criticality (e.g., Eguiluz et al., 2005; Bassett et al.,
2006; Expert et al., 2010; Lee et al., 2010; Van De Ville et al., 2010).
For example, the duration distribution of functional connections
in EEG recordings follow power-laws, which are stable over sev-
eral states of consciousness (awake, loss of consciousness due to
anesthesia, and recovery) and frequency bands (Lee et al., 2010).

The criticality hypothesis predicts that sufficiently strong per-
turbations of the network dynamics should eliminate the power-
laws found in the previously cited studies. In the following,
we discuss studies showing that observed hallmarks of critical-
ity vanish in response to interventions that change the network
dynamics. Such deviations from criticality, and especially the sub-
sequent return of the network to a critical state, strongly support
criticality, since alternative explanations of power-laws based on
low level features, such as noise and filtering of neuronal tissue,
should be independent of the network dynamics.

Hallmarks of criticality are apparently destroyed during
epileptic seizures. Epileptic dynamics shows hallmarks of super-
critical states, and destroys power-laws observed in healthy brains
(Hobbs et al., 2010; Meisel et al., 2012). If the network adapts
to the supercritical state during the seizure, this may explain
reduced activity and a smaller critical exponent after the seizure
(Hsu et al., 2008). A self-organized criticality model suggests a
relation between epileptic activity and decreased neuronal con-
nectivity (Meisel et al., 2012). While it is thus tempting to equate
epileptic seizures with supercritical dynamics, care has to be taken
as seizures could very well be the result of another, overriding
mechanism that is not captured by current models of neural
self-organized criticality.

In contrast to epileptic seizures, pharmacologically induced
variations in activity do not always destroy power-law distributed
neuronal avalanches. In acute slices, the level of dopamine that
implies maximal activity coincides with critical avalanche size
distributions with a critical exponent of −1.5, while more or
less dopamine preserves the power-law distribution, but shows
steeper critical exponents (Stewart and Plenz, 2006). Steeper
exponents reduce the occurrence of large avalanches and spatial
correlations (Stewart and Plenz, 2006). Steeper critical exponents
are as well observed under reduced spontaneous activity due
to pharmacological interventions with a dopamine D1 receptor
antagonist (Gireesh and Plenz, 2008), but the same antagonist
can also suppress neuronal avalanches (Stewart and Plenz, 2006).
The application of acetylcholine, which increases the sponta-
neous activity, results in exponential avalanche distributions
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(Pasquale et al., 2008). Strong pharmacological interventions
can furthermore change the dynamical state of neural networks
via alterations of excitation or inhibition. As expected from the
idea that balanced excitation and inhibition are required for
critical brain dynamics, this eliminates the observed hallmarks of
criticality (Table 1).

The observation of variable exponents is interesting, as the
critical exponents of phase transitions are usually independent
of system features. This universality typically holds broadly even
across different systems. The exponent of −1.5 is a plausible result
as it is characteristic of the directed percolation universality class
into which many processes of activity propagation fall. Exponents
with a larger absolute value are more difficult to explain. While
a complex real world system can potentially exhibit such expo-
nents, it is also plausible that what is observed here is actually
the breakdown of the power-law as the system is pushed from the
critical state. If this occurs, the underlying distributions return to
exponential behavior and thus exhibit less large events. In a cer-
tain transition region around the critical state, they can therefore
easily be mistaken for steeper power-laws.

The premise of self-organized criticality is that the system is
able to tune itself back to the critical state after moderate per-
turbations. This reorganization to criticality after long-lasting
increases in inhibition has so far not been observed experimen-
tally (Tetzlaff et al., 2010). Over the duration of the experiment,
the network state does not adapt to decreased inhibition (Shew
et al., 2009). Even after the inhibition-decreasing drug is washed
out, neuronal slices take several hours to recover criticality (Shew
et al., 2009). This time-scale is consistent with reorganization on
a slow time-scale, for instance due to slow plasticity mechanisms
such as homeostatic plasticity.

In summary, evidence for self-organized criticality is provided
by critical neuronal avalanches in various animals, power-law
noise in brain imaging data, scale independence and finite-size
scaling. While power-laws can also be explained by alternative
hypothesis, deviations from criticality and subsequent reorga-
nization provide strong evidence for the criticality hypothesis.
Perhaps the most compelling evidence is not provided by any
individual study, but rather by the breadth of experimental results
which provide evidence for criticality in many different systems
using various approaches.

6. MODELS OF SELF-ORGANIZED CRITICALITY IN NEURAL
NETWORKS

Apart from direct experimental evidence, support of self-
organized neural criticality comes from a range of models which
show that self-organized criticality in the brain is plausible.

While simple model networks allow for analytical consid-
erations that show general features, the more complex models
convince with biological detail. Self-organized criticality can be
implemented robustly in networks ranging from simple, binary
units (e.g., Bienenstock and Lehmann, 1998; Bornholdt and
Rohlf, 2000; Bornholdt and Röhl, 2003) up to more biologi-
cally realistic integrate-and-fire neurons (e.g., De Arcangelis et al.,
2006; Levina et al., 2007, 2009; Meisel and Gross, 2009; Rubinov
et al., 2011), for which dynamical switching between subcritical
down-states and critical up-states can be observed (Millman et al.,
2010).

Several models reproduced experimental results on critical-
ity (e.g., De Arcangelis et al., 2006; Millman et al., 2010; Tetzlaff
et al., 2010; Meisel et al., 2012). Yet, if critical models are sug-
gested by parameter fitting based on experimental data, care has
to be taken because the estimation of model parameters shows an
intrinsic trend to apparently critical values because, around the
phase transition, the uncertainty of the estimate is minimized and
the amount of distinguishable models is greatest (Mastromatteo
and Marsili, 2011).

Most numerical studies simulate a network of identical model
neurons, where activity is regulated by the implemented adapta-
tion mechanism. The network dynamics is launched by an initial
stimulation of an arbitrary subset of neuron and analyzed after
a period that allows the network to self-organize. The adap-
tation changes microscopic parameters depending on a given
microscopic rule and depending on local measurements of the
dynamical state. Using plausible rules, it is then observed that one
order parameter of the system approaches the critical point.

If models use activity dependent rules, then the system can
self-organize to the critical point at the onset of activity, where
avalanche distributions follow power-laws. Inspired by the study
of branching processes, these mechanisms change the probability
with which activity is transmitted from one neuron to the next.
This can be realized either through a regulation of the synaptic
connection such as activity-dependent rewiring (Bornholdt and

Table 1 | Deviations from criticality due to unbalanced excitation and inhibition.

Alteration of Effect Network state Study

GABAA receptors Inhibition ↘ Supercritical Bimodal avalanche size distributions (cell cultures, Beggs and Plenz,
2003; Mazzoni et al., 2007; Gireesh and Plenz, 2008; Pasquale et al.,
2008; Shew et al., 2009, 2011; Yang et al., 2012, intact leech ganglia,
Mazzoni et al., 2007, and anesthetized rats, Osorio et al., 2010), with
enhanced synchronization (Pasquale et al., 2008; Yang et al., 2012), in
particular β-oscillations (Gireesh and Plenz, 2008; Yang et al., 2012), and
enhanced correlation (Mazzoni et al., 2007)

Number of inhibitory neurons Inhibition ↗ Subcritical Chen et al. (2010)

NMDA receptors (and AMPA in Shew
et al., 2009, 2011 and Yang et al.,
2012)

Excitation ↘ Subcritical Exponential avalanche size distributions (Mazzoni et al., 2007; Gireesh
and Plenz, 2008; Shew et al., 2009, 2011; Yang et al., 2012) with
decreased long-range correlations and large bursts (Mazzoni et al., 2007)
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Röhl, 2003; Tetzlaff et al., 2010), Hebbian (De Arcangelis et al.,
2006), short-term synaptic plasticity (Levina et al., 2007, 2009;
Millman et al., 2010), or, in a certain parameter range, spike-
timing dependent plasticity (STDP) (Rubinov et al., 2011); or
through a regulation of the neuronal excitability such as internal
homeostatic plasticity (Droste et al., 2013).

If the adaption rule is dependent on relative timing or
phase differences, the system can self-organize to the critical
point at the onset of synchronization. Using phase coherence as
order parameter, such models self-organize to criticality if the
connections are created and retracted as observed for synap-
tic rewiring during development, or if the strength of the
connections are changed as observed for STDP (Meisel and
Gross, 2009). STDP is thus a plausible mechanism that could
organize a system to both activity and synchronization phase
transitions.

Especially with mechanisms based on STDP, the models reach
biologically plausible network structures. They self-organize from
a highly connected state to a sparsely connected state, in which
only few strong synapses survive (Jost and Kolwankar, 2009;
Meisel and Gross, 2009). The resulting networks show power-
law distributed synaptic fluctuations (Shin and Kim, 2006) and
a scale-free network structure (Shin and Kim, 2006; Meisel and
Gross, 2009).

Most neuron models are rather simple, but the self-organized
criticality mechanisms also allow for the implementation of
certain more realistic properties. Models using intergrate-and-
fire neurons can implement delayed synaptic transmission
(e.g., Rubinov et al., 2011) and a refractory period, which
is thought to hinder back-propagation of neuronal avalanches
(e.g., De Arcangelis et al., 2006). In addition, integrate-and-fire
neurons can also have leaky membranes (Meisel and Gross, 2009;
Millman et al., 2010; Rubinov et al., 2011). Up to now, self-
organized criticality has not been reported for conductance-based
neuron models, probably because the network simulations are
constraint by the available computational power; limiting the
self-organization to criticality by restricting either network size
or simulation duration. Just one study reports that a network
of Hodgkin-Huxley model neurons self-organizes to a scale-free
network with STDP (Shin and Kim, 2006). The observation of
self-organized criticality across a wide range of neuron models
is intuitive as the critical state itself should be independent of
microscopic details.

Criticality and self-organized criticality can already be
observed in models with very simple dynamics as the toy model
proposed above. Nevertheless, many current models capture the
complex interplay between inhibitory and excitatory neurons
(De Arcangelis et al., 2006; Shin and Kim, 2006; Tetzlaff et al.,
2010). The resulting dynamics then depends only on the ratio of
inhibitory and excitatory connection strengths such that a regu-
lation of the excitatory connections is sufficient (Bienenstock and
Lehmann, 1998; Shin and Kim, 2006). The exact role played by
the balance of excitation and inhibition in the brain is poorly
understood. It can be shown mathematically that this interplay
in itself is not a prerequisite for criticality (Jost and Kolwankar,
2009). Nevertheless, the interplay between inhibition and excita-
tion could play an important role for the system’s computational
capabilities in the critical state.

A crucial ingredient for robust self-organized criticality is the
ability to sense the global state of the system based on local infor-
mation. For instance, concerning the activity transition, every
local neuron or synapse has a plasticity rule that increases or
decreases the unit’s activity. Self-organized criticality can only
be achieved if the increase is more frequently or more strongly
realized in the subcritical than in the supercritical state, and the
decrease in the supercritical state. Thus, on some level, the global
state has to be detectable on the local scale. Regarding activity,
this is much easier for the supercritical state than for the subcrit-
ical state. Even a single neuron or synapse that experiences a high
level of activity can conclude that the system is in the supercritical
state with high probability. Conversely, the absence of such activ-
ity, observed locally, does not necessitate a subcritical state on the
global level.

Because the subcritical state is difficult to recognize by a local
mechanism, it is likely that criticality in the brain is achieved by
a slow continuous increase of the control parameter, which is
then overcompensated by a decisive decrease once supercritical
dynamics is detected. Such an asymmetric regulation is imple-
mented in models inspired by short term synaptic depression,
where synaptic efficiency is abruptly decrease when a spike occurs,
and afterwards exponentially increased until the next spike occurs
(Levina et al., 2007, 2009; Millman et al., 2010), and in a model
inspired by calcium dependent development of axons and den-
drites with faster dynamics in the direction of subcritical states,
where the rate of the dendritic retraction was twice the rate of
the axonal outgrowth (Tetzlaff et al., 2010). The use of asym-
metric regulation was emphasized in a simpler model by Droste
et al. (2013). Since the dynamics on the subcritical side is slower,
the system spends more time on the subcritical side and thus,
in average, appears slightly subcritical, which is consistent with
experimental findings.

In general, we can expect that self-organized criticality in finite
systems drives the system slightly into the subcritical phase. For
the onset of synchronization, the local detection of synchrony
implies that some degree of synchrony exists in the system such
that the system must be in the supercritical state. By contrast,
the absence of synchrony observed locally does not imply that
the system is necessarily in the subcritical state as synchronous
dynamics may already exist elsewhere in the system. Again, we
expect that self-organization will drive the system to a slightly
subcritical state.

The finding that already highly simplified models reproduce
experimental results suggests fundamental properties of self-
organizing mechanisms for which implementation details do
not matter. The robustness of self-organization to criticality can
increase with system size, suggesting that self-organized criticality
is especially easily implemented in large neural networks (Levina
et al., 2007; Rubinov et al., 2011). While each of the models dis-
cussed here can be criticized in various ways, the observation of
robust self-organized criticality across a broad range of model-
ing assumptions and frameworks lends much credibility to the
criticality hypothesis.

7. DISCUSSION
If self-organized criticality is indeed fundamental for the func-
tioning of the brain, then we expect a link between self-organized
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criticality and other properties of the brain. In the following, we
speculate on the relation of self-organized criticality with sensory
input, learning and sleep.

Most studies of self-organized criticality have so far focused on
systems without input. However, to assess the impact of critical-
ity on the brain’s computational capabilities, inputs need to be
considered. Based on current results, it is likely that high levels of
input will cause hallmarks of criticality to disappear as internal
dynamics is replaced by externally triggered activity. Inputs are
considerably decreased in slice and cell cultures compared to in
vivo preparations, and the same probably holds for anesthetized
animals compared to awake animals (Beggs and Plenz, 2003;
Ribeiro et al., 2010; Touboul and Destexhe, 2010). It is there-
fore not surprising that most evidence for criticality comes from
these systems. Future experimental studies aiming to find hall-
marks of criticality should therefore likewise focus on low-input
situations.

In systems with strong input, the discussion of self-organized
criticality is conceptually more difficult as the definition of the
system now has to include a statistical model of inputs. While it
is still possible to define phases and phase transitions, the phase
transitions become harder to identify and critical states can easily
be mistaken for supercritical states. For instance, if we add inputs
to the toy model proposed above we always observe activity, even
in subcritical states.

In a situation where the brain is exposed to a significant level
of input, we would expect that self-tuning mechanisms fail as the
retuning mechanisms start to compensate for the input by regu-
lating activity down. The system thus departs from the state where
the internally generated dynamics is critical. Indeed, evidence for
critical brain dynamics decreases during prolongated periods of
wakefulness, and increases after a night of sleep (Meisel et al.,
2013). It is thus plausible that sleep is essential for retuning the
brain to the critical state where it can operate effectively.

Both experimental studies (e.g., Bassett et al., 2006; Bédard
et al., 2006; Hahn et al., 2010; Dehghani et al., 2012; Priesemann
et al., 2013, 2014) and models point to self-organization to a sub-
critical state close to criticality. Many authors have suggested that
this is a safety mechanism to prevent pathological supercritical
dynamics. From a theoretical point, another explanation appears
more plausible. Any finite real world system, subject to noise and
inputs, can only self-organize to critical states with given accu-
racy. Due to limitations in the sensing of the global state, systems
spend in average more time in the subcritical phase.

One property that is so far widely ignored in the literature is
the dimensionality of the underlying parameter space. In simple
systems that have only one control parameter the critical state is a
point. However, in general it is a manifold whose dimensionality
is less than the dimensionality of the parameter space. Technically,
the parameter space spanned by a complex network includes all
the individual link weights and is thus almost infinite. Even if we
only focus on the main macroscopic descriptors of networks we
can easily identify tens of parameters that can potentially affect
the dynamics and can be affected by the plasticity. If only ten such
parameters played a role in the real system the critical state would
still be a nine dimensional manifold and thus a huge parameter
space.

One implication of the high dimensionality of the critical
manifold is that the system can change and therefore learn while
remaining in the critical state. However, the connection between
learning and criticality goes apparently deeper than that. For
instance it has been claimed that self-organized criticality is essen-
tial for learning, for review see Hsu et al. (2008), but further
explorations of the detailed connection between learning and
criticality seem necessary.

Another implication of the high-dimensional parameter space
of complex networks is that the system can reside in multiple
phase transitions at the same time. Intriguingly, recent results
suggest that neural networks are organized to both the activity
and synchronization phase transition (e.g., Yang et al., 2012 for
organotypic slices, Meisel et al. (2013), or Linkenkaer-Hansen
et al. (2001); Kitzbichler et al. (2009) compared to Tagliazucchi
et al. (2012); Shriki et al. (2013) for brain imaging). Future mod-
eling work should address whether neural networks can support
multiple or simultaneous critical states.

A central question is whether the brain self-organizes to crit-
icality as a single system, or as a collection of many, potentially
overlapping, subsystems. While simulations consider predomi-
nantly homogeneous networks, anatomical features divide the
brain in clearly defined brain areas. Several authors stress the
possibility that different brain areas self-organize independently
(Bédard et al., 2006; Kitzbichler et al., 2009; Meisel and Gross,
2009; Priesemann et al., 2009; Meisel et al., 2012). If this is
confirmed the next logical questions are if all brain areas self-
organize to criticality, and if yes, do they all organize to the
same phase transition? Resolving these questions could greatly
strengthen the link between self-organized criticality and its
medical implications.

8. CONCLUSION
The neural criticality hypothesis is motivated by the relation-
ship between criticality and optimal computational properties.
The hypothesis is supported by experiments that observed hall-
marks of criticality for a wide range of animals from leech to
humans, over several states of consciousness, and on many dif-
ferent experimental scales from recordings of few neurons up to
the whole brain. However, the experimental evidence is still con-
troversial and more studies are needed to resolve major open
questions and rule out alternative explanations for the observed
phenomena. Based on the presently available work, we judge
self-organized as preferable over alternative explanations because
it provides an evolutionarily-motivated explanation for several
otherwise disconnected observation.

In addition to experiments, the criticality hypothesis is sup-
ported by models which demonstrate that the self-organization
to critical states in the brain is feasible and plausible. While these
models necessarily simplify the brain to various degrees, they
paint a consistent picture where essentially the same phenomenon
is observed independently of specific modeling assumptions.

The criticality hypothesis is intriguing because it opens new
perspectives in several areas. First, deviations from criticality
could be symptomatic of diseases of the central nervous sys-
tem (Meisel et al., 2012; Shew and Plenz, 2013). Understanding
self-organized criticality in the brain could thus lead to new
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diagnostic tools, and possibly treatments. Second, connections
are presently emerging which suggest that understanding criti-
cality in the brain could provide important insights into other
phenomena including sleep, learning, the root-causes of certain
diseases, and a deeper understanding of information processing.
Finally, several results which have been obtained in the context of
self-organized criticality in the brain suggest that criticality is a
prerequisite for efficient information processing in unstructured
systems. This could provide a general principle that is broadly rel-
evant beyond the field of neuroscience and could be valuable for
overcoming various challenges, from understanding swarm intel-
ligence (Ioannou et al., 2012) to constructing microprocessors
that process information using randomly-deposited nano-scale
components. We believe that these perspectives provide a strong
incentive for more experimental and theoretical work in the area
of self-organized criticality.
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Recent experimental and theoretical work has established the hypothesis that cortical
neurons operate close to a critical state which describes a phase transition from chaotic to
ordered dynamics. Critical dynamics are suggested to optimize several aspects of neuronal
information processing. However, although critical dynamics have been demonstrated
in recordings of spontaneously active cortical neurons, little is known about how these
dynamics are affected by task-dependent changes in neuronal activity when the cortex is
engaged in stimulus processing. Here we explore this question in the context of cortical
information processing modulated by selective visual attention. In particular, we focus
on recent findings that local field potentials (LFPs) in macaque area V4 demonstrate an
increase in γ -band synchrony and a simultaneous enhancement of object representation
with attention. We reproduce these results using a model of integrate-and-fire neurons
where attention increases synchrony by enhancing the efficacy of recurrent interactions.
In the phase space spanned by excitatory and inhibitory coupling strengths, we
identify critical points and regions of enhanced discriminability. Furthermore, we quantify
encoding capacity using information entropy. We find a rapid enhancement of stimulus
discriminability with the emergence of synchrony in the network. Strikingly, only a narrow
region in the phase space, at the transition from subcritical to supercritical dynamics,
supports the experimentally observed discriminability increase. At the supercritical border
of this transition region, information entropy decreases drastically as synchrony sets in. At
the subcritical border, entropy is maximized under the assumption of a coarse observation
scale. Our results suggest that cortical networks operate at such near-critical states,
allowing minimal attentional modulations of network excitability to substantially augment
stimulus representation in the LFPs.

Keywords: criticality, neuronal avalanches, phase transition, attention, synchronization, gamma-oscillations,

information entropy

1. INTRODUCTION
Self-organized criticality (SOC) is a property observed in many
natural dynamical systems in which the states of the system
are constantly drawn toward a critical point at which a phase
transition occurs. A variety of systems such as sandpiles (Held
et al., 1990), water droplets (Plourde et al., 1993), superconduc-
tors (Field et al., 1995), and earthquakes (Baiesi and Paczuski,
2004) exhibit SOC. In such systems, system elements are collec-
tively engaged in cascades of activity called avalanches, whose
size distributions obey a power-law at the critical state (Bak
et al., 1987). Scientists have long hypothesized that SOC might
also be a feature of biological systems (Bak and Sneppen, 1993)
and that criticality of dynamics is relevant for performing com-
plex computations (Crutchfield and Young, 1989; Langton, 1990).
Support was given by modeling studies showing that networks of
integrate-and-fire (IAF) neurons are able to display SOC (Corral
et al., 1995), and predicting that avalanches of cortical neurons
may belong to a universality class with a power-law exponent
τ = 3/2 (Eurich et al., 2002).

Experimental data indicates that cortical dynamics may indeed
assume a critical state: in 2003, Beggs and Plenz have shown

that neuronal avalanche size distributions follow a power-law
with τ = 3/2 in organotypic cultures as well as in acute slices
of rat cortex. The observed avalanche size distributions hereby
nicely matched the closed-form expressions derived for neural
systems of finite size (Eurich et al., 2002). Subsequently, the ability
of dissociated and cultured cortical rat neurons to self-organize
into networks that exhibit avalanches in vitro was presented
in Pasquale et al. (2008). Petermann et al. (2009) reported similar
avalanche size distributions in the spontaneous cortical activity in
awake monkeys. On a larger spatial scale, Shriki et al. (2013) pre-
sented scale-free avalanches in resting state MEG in humans. In
addition, recent studies address questions relating to, for example,
the rigorousness of statistical analysis (Klaus et al., 2011), sub-
sampling (Priesemann et al., 2009), and resolution restraints as
well as exponent relations (Friedman et al., 2012) in experimental
criticality studies.

Combined, such theoretical and experimental results con-
stitute the hypothesis that cortical neuronal networks operate
near criticality (Bienenstock and Lehmann, 1998; Chialvo and
Bak, 1999; Chialvo, 2004; Beggs, 2008; Fraiman et al., 2009).
What makes the criticality hypothesis especially compelling is
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the idea that a functional relationship may exist between criti-
cal dynamics and optimality of information processing as well
as information transmission (Bertschinger and Natschläger, 2004;
Haldeman and Beggs, 2005; Kinouchi and Copelli, 2006; Nykter
et al., 2008; Shew et al., 2009). However, the majority of neuronal
avalanche observations are of spontaneous or ongoing activity
in the absence of an actual sensory stimulus being processed
by the cortex. In addition, no experimental studies exist to date
which explore the criticality of neuronal dynamics in vivo in con-
junction with a specific behavioral task, or under changing task
demands.

Nevertheless, criticality describes the border between asyn-
chronous and substantially synchronous dynamics, and in the
field of vision research, synchronization has been studied
extensively as a putative mechanism for information process-
ing (von der Malsburg, 1994). Experimental studies demon-
strated that in early visual areas, oscillations in the γ -range
(about 40–100 Hz) occur during processing of a visual stimu-
lus (Eckhorn et al., 1988; Gray and Singer, 1989). Hereby mutual
synchronization between two neurons tends to become stronger
if the stimulus components within their receptive fields are more
likely to belong to one object (Kreiter and Singer, 1996), thus
potentially supporting feature integration. Furthermore, it has
been shown that selective visual attention is accompanied by a
strong increase in synchrony in the γ -band in visual cortical net-
works (Fries et al., 2001; Taylor et al., 2005). In this context,
γ -oscillations have been proposed to be the essential mecha-
nism for information routing regulated by attention (Fries, 2005;
Grothe et al., 2012). Moreover, recent studies have demonstrated
links between synchronized activity in the form of oscillations in
MEG (Poil et al., 2012) and LFP recordings (Gireesh and Plenz,
2008) and in the form of neuronal avalanches.

These findings motivated us to explore the potential links
between synchronization, cortical information processing, and
criticality of the underlying network states in the visual system. In
particular, we investigated the criticality hypothesis in the context
of γ -oscillations induced by selective visual attention. If visual
cortical networks indeed assume a critical state in order to opti-
mize information processing, such a state should be prominent
during the processing of an attended stimulus, since attention is
known to improve perception (Carrasco, 2011) and to enhance
stimulus representations (Rotermund et al., 2009).

Specifically, we will focus here on a structurally simple net-
work model for population activity in visual area V4. We will
first demonstrate that our model reproduces key dynamical fea-
tures of cortical activation patterns including the increase in
γ -oscillations under attention observed in experiments (Fries
et al., 2001; Taylor et al., 2005). In particular, we will explain
how attention enhances the representation of visual stimuli, thus
allowing to classify the brain state corresponding to a particu-
lar stimulus with higher accuracy (Rotermund et al., 2009), and
we will identify mutual synchronization as the key mechanism
underlying this effect.

Construction of this model allowed us to analyze dependencies
between network states and stimulus processing in a parametric
way. In particular, we were interested in whether such a net-
work displayed critical dynamics, and how they relate to cognitive

states. We inquired: Is criticality a “ground state” of the cortex
which is assumed in the absence of stimuli, and helps process
information in the most efficient way as soon as a stimulus is pre-
sented? Or is the cortex rather driven toward a critical state only
when there is a demand for particularly enhanced processing,
such as when a stimulus is attended?

For answering these questions, we (a) characterized the net-
work state based on neuronal avalanche statistics (subcritical,
critical, or supercritical), (b) quantified stimulus discriminabil-
ity, and (c) analyzed the richness of the dynamics (information
entropy of spike patterns) in the two-dimensional phase space
spanned by excitatory and inhibitory coupling strengths. Within
this coupling space, we identified a transition region where the
network undergoes a phase transition from subcritical to super-
critical dynamics for different stimuli. We found that the onset
of γ -band synchrony within the transition region is accompa-
nied by a dramatic increase in discriminability. At supercritical
states epileptic activity emerged, thus indicating an unphysiolog-
ical regime, and both information entropy and discriminability
values exhibited a sharp decline.

Our main finding is that cortical networks operating at
marginally subcritical states provide the best explanation for
the experimental data (Fries et al., 2001; Taylor et al., 2005;
Rotermund et al., 2009). At such states, fine modulations of
network excitability are sufficient for significant increases in
discriminability.

2. RESULTS
2.1. ATTENTION ENHANCES SYNCHRONIZATION AND IMPROVES

STIMULUS DISCRIMINABILITY
Our study is motivated by an electrophysiological experiment
(Rotermund et al., 2009) which has demonstrated that atten-
tion improves stimulus discriminability: While a rhesus monkey
(Macaca mulatta) attended to one of two visual stimuli simultane-
ously presented in its left and right visual hemifields, epidural LFP
signals were recorded in area V4 of the visual cortex. Power spec-
tra of the Wavelet-transformed LFPs display a characteristic peak
at γ -range frequencies between 35 and 80 Hz as well as a 1/f offset
(Figure 2A). For assessing stimulus discriminability, Rotermund
et al. used support vector machines (SVMs) on these spectral-
power distributions in order to classify the stimuli on a single trial
basis. A total of six different visual stimuli (complex shapes) were
used in the experiments, therefore, the chance level was around
17%. This analysis yielded two results which are central for this
paper:

1. Stimulus classification performance was significantly above
chance level even in the absence of attention (35.5% for the
V4 electrode with maximum classification performance).

2. Discrimination performance increased significantly (by 6.7%
for the V4 electrode with maximum classification perfor-
mance) when the monkey attended the stimulus inside the
receptive field (RF) of the recorded neuronal population.

In this study, we present a minimal model which allows us to
investigate putative neural mechanisms underlying the observed
data.
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2.2. REPRODUCTION OF EXPERIMENTAL KEY FINDINGS
The spectra recorded in the experiment are consistent with
neural dynamics comprising irregular spiking activity (the 1/f -
background) and oscillatory, synchronized activity in the γ -band.
In order to realize such dynamics in a structurally simple frame-
work, we considered a recurrently coupled network of IAF neu-
rons which is driven by Poisson spike trains. The network consists
of both excitatory and inhibitory neurons interacting via a sparse,
random coupling matrix with a uniform probability of a con-
nection between two neurons (for details see Section 4.1). The
strengths Jinh and Jexc of inhibitory and excitatory recurrent cou-
plings are homogeneous. While oscillatory activity is generated
as a consequence of the recurrent excitatory interactions, the
stochastic external input and inhibitory couplings induce irregu-
lar spiking, thus providing a source for the observed background
activity.

We consider this network as a simplified model of a neuronal
population represented in LFP recordings of area V4 and the
external Poisson input as originating from lower visual areas such
as V1. One specific visual stimulus activates only a subset of V4
neurons by providing them with a strong external drive while
the remaining V4 neurons receive no such input (Figure 1A).
We drove a different, but equally sized subset of V4 neurons
for each stimulus. Hence in a recording of summed population
activity (e.g., LFPs), where the identity of activated neurons is
lost, stimulus identity is represented in the particular connectivity
structure of the activated V4 subnetwork. We simulated a total of
N = 2500 neurons but kept the number of activated V4 neurons
fixed at Nactive = 1000 since every stimulus in the experiment was
approximately the same size. With this setup, we ensured that
the emerging stimulus-dependent differences in the network out-
put are a consequence of stimulus identity and not of stimulus
amplitude.

The variability of the couplings in our network mimics the
structure of cortical couplings, which are believed to enhance
certain elementary feature combinations [such as edge elements
aligned to the populations’ RF features (Kisvárday et al., 1997)]
while suppressing others. Consequently, there will be stimuli acti-
vating subsets of V4 neurons which are strongly interconnected,
while other stimuli will activate subsets which are more weakly
connected.

We simulated the network’s dynamics in response to Na = 6
different stimuli in Ntr = 20 independent trials. Comparable to
the experiments, LFP signals were generated by low-pass filter-
ing the summed pre- and postsynaptic V4 activity (Section 4.1.3).
We computed the spectral power distributions using the wavelet-
transforms of LFP time series.

For sufficiently large Jexc the neurons in the V4 population
were mutually synchronized, leading to a peak in the power spec-
tra at γ -band frequencies. The average frequency of the emergent
oscillations depends mainly on the membrane time constant τ
for the particular choice of external input strength. Averaged over
trials, these power spectra reproduced all the principal features
displayed by the experimental data (Figure 2). In particular, spec-
tra for individual stimuli differed visibly, with largest variability
observed in the γ -range. Since the identity of activated neu-
rons is lost in the population average, any differences in strength

FIGURE 1 | Network structure and analysis of spike patterns. We model
V4 populations using a randomly coupled recurrent network of mixed
excitatory (80%) and inhibitory (20%) integrate-and-fire neurons.
(A) Depending on their receptive field properties, a different set of V1
neurons are activated by different stimuli. Activated V1 neurons provide
feedforward input to V4 neurons j in the form of Poisson spike trains with
rate fmax . Consequently, a different, random subset of V4 neurons are
driven by external input for each stimulus. Recurrent connections within V4
are represented by the random, non-symmetric coupling matrix wji .
(B) Information entropy of the spike patterns generated by area V4 is
calculated using state variables xi . At the finest observation scale (K = 1),
xi consist of N-dimensional binary vectors, which represent whether each
neuron j fired a spike (1) or not (0) at a given point in time. For larger K , the
activity of K adjacent cells is summed to construct xi .

of the observed γ -oscillations can only be attributed to subnet-
work connectivity. This result has a natural explanation because
connection strength and topology strongly determine synchro-
nization properties in networks of coupled oscillatory units (see
for example Guardiola et al., 2000; Lago-Fernández et al., 2000;
Nishikawa et al., 2003).
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FIGURE 2 | Comparison of model dynamics to experimental recordings.

LFP spectral power distributions in (A) the experiment and (B) the model for
non-attended (left) and attended (right) conditions. In each case, spectra
averaged over trials is shown for 6 stimuli (different colors). In both (A,B) the
spectra for each stimulus is normalized to its respective maximum in the
non-attended case. Model spectra reproduce the stereotypical 1/f background

as well as the γ -peaks observed in the experimental spectra. Under attention,
γ -band oscillations become more prominent and spectra for different stimuli
become visibly more discriminable. (C) Single trial LFP time-series from the
model, illustrating the analyzed signals in the non-attended (top) and attended
(bottom) conditions. [Data shown in (A) is courtesy of Dr. Andreas Kreiter and
Dr. Sunita Mandon and Katja Taylor (Taylor et al., 2005)].

Differences in power spectra become even more pronounced
if a stimulus is attended. We modeled attention by globally
enhancing excitability in the V4 population. This can be real-
ized either by increasing the efficacy of excitatory interactions, or
by decreasing efficacy of inhibition. In this way, the gain of the
V4 neurons is increased (Reynolds et al., 2000; Fries et al., 2001;
Treue, 2001; Buffalo et al., 2010), and synchronization in the γ -
range gets stronger and more diverse for different stimuli while
the 1/f -background remains largely unaffected (Figure 2B). For
visualizing the effect of attention, single trial LFP signals corre-
sponding to attended and non-attended conditions for a specific
stimulus are given in Figure 2C. Note that the change induced
by attention does not need to be large; in the example in
Figure 2 inhibitory efficacy was reduced by 10% from jinh = 0.80
to 0.72.

The observed changes in the power spectra with attention
can be interpreted in terms of the underlying recurrent network
dynamics: each activated subnetwork has a particular composi-
tion of oscillatory modes, and enhancing excitability in such a
non-linear system will activate a larger subset of these modes
more strongly. This effect is enhanced by synchronization emerg-
ing at different coupling strengths for different stimuli. With a
further increase in the coupling, however, groups of neurons
oscillating at different frequencies will become synchronized at a
single frequency (Arnold tongues, Coombes and Bressloff, 1999),
which ultimately decreases the diversity of power spectra.

2.3. ENHANCEMENT OF STIMULUS DISCRIMINABILITY IS A ROBUST
PHENOMENON

The spectra in Figure 2B were generated using coupling parame-
ters Jexc and Jinh specifically tuned for reproducing the experimen-
tal data. However, the basic phenomenon is robust against large
changes in the parameters: Discriminability increase is coupled to
the emergence of strong γ -oscillations. To show this, we varied

the excitatory and inhibitory coupling strengths independently,
and quantified stimulus discriminability using SVM classification
for every parameter combination. When varying the inhibitory
efficacies, we used a step size that is proportional to the excita-
tory efficacy: Jinh = ε · Jexc · jinh for every point in the coupling
space where jinh is the inhibitory scaling factor. We set the upper
bound of excitation and the lower bound of inhibition so as
to avoid unphysiologically high firing rates due to the activa-
tion of all neurons, including those that did not receive external
input. Figure 3A shows the classification results in coupling space,
averaged over Nw = 5 independently realized random connectiv-
ity architectures of the V4 network. The coupling values used
for generating the spectra in Figure 2B are indicated by white
markers. Classification performance is 24.2% in the non-attended
(white cross) condition (significantly above chance level, ∼17%,
via a one-tailed binomial test with p < 0.005) and 32.8% in the
attended (white circle) condition. Notably, discriminability is sig-
nificantly above chance level only in a bounded region of the
parameter space. Within this region, relatively small increases in
excitatory, or decreases in inhibitory coupling strengths lead to an
acute discriminability enhancement.

This effect comes about in the following way: In networks
with low excitation and high inhibition, the dynamics are asyn-
chronous and the LFP spectra are dominated by the 1/f -noise.
In this case, every stimulus input is mapped to a network output
with similar spectral components and with a large trial-to-trial
variance. This severely impedes the ability to classify stimuli cor-
rectly. On the other hand, in networks with very high excitation
and low inhibition, synchronous activity dominates the dynamics
and epileptic behavior is observed. Mutual synchronization of the
activated V4 neurons leads to co-activation of the otherwise silent
V4 neurons which do not receive external input. This means that
every stimulus input is mapped to spike patterns where almost all
neurons are simultaneously active at all times. The corresponding
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FIGURE 3 | SVM test results and the discriminability index. (A) SVM
classification performance as a function of the excitatory coupling strength
Jexc and the inhibitory coupling scaling factor jinh (obeying
Jinh = ε · Jexc · jinh). The coupling values representing the non-attended and

attended conditions in Figure 2B are marked by a cross and a circle,
respectively. (B) Discriminability index in the coupling space for the same
spectra. For both (A,B), the strength of the background noise was
cmix = 0.2.

spectra have reduced trial-to-trial variability but are almost iden-
tical for different stimuli. Consequently, stimulus discriminability
reaches a maximum only in a narrow region of the parameter
space which is associated with the onset of synchrony.

It is necessary to point out that the absolute magnitude of
the SVM performance depends strongly on the background noise
(i.e., on the value of cmix) which constitutes the 1/f -background
in the spectra. For example, without the addition of the back-
ground noise (i.e., cmix = 0), SVM classification performance is
36.67% for the non-attended and 43.83% for the attended spectra
in Figure 2B. Nevertheless, the observation of a bounded region
of enhanced discriminability persists even in the absence of 1/f -
noise. This finding has an important consequence: It allows us
to identify coupling parameters which cannot explain the experi-
mental data regardless of the “real” noise level. Thus, it outlines a
specific working regime in which the model can reproduce both
of the experimental findings described in Section 2.1.

2.4. CHARACTERIZATION OF DYNAMICAL NETWORK STATES
Our findings indicate that a significant discriminability increase
correlates implicitly with the onset of synchronous dynamics. In
the following, we will focus on this network effect in more detail,
and investigate its ramifications for information processing in the
visual system.

In order to obtain a better understanding of the behavior of
the system, we implemented certain reductions to our simula-
tions. First, we excluded regions in parameter space where all
neurons not receiving external input became activated. For most
of the phase space, recurrent excitation is not strong enough
to activate these stimulus-nonspecific neurons. At the supercrit-
ical regions, where excitation is strong and neurons are firing
synchronously, however, these silent neurons become activated.
This effect further increases the average excitatory input strength
in the recurrent V4 population, leading to epileptic activity at
very high (biologically implausible) frequencies. Such a regime
would be highly unrealistic, since neurons in V4 populations
have well-structured receptive fields and are only activated by

specific stimuli (Desimone and Schein, 1987; David et al., 2006).
Therefore, we proceeded to isolate the activity of externally driven
subnetworks and focused our analysis on their output. This was
realized by limiting the number of neurons in the network to N =
Nactive = 1000 and by assigning different random coupling matri-
ces to simulate different stimulus presentations. Thus, distinct
network architectures stand for distinct stimulus identities.

When constructing the output signal, we now excluded the
background noise induced by the V1 afferents (i.e., we set cmix =
0), but note that the V4 neurons were still driven by this stochas-
tic, Poisson input. This segregation of V4 activity from back-
ground noise was necessary for the analysis of network dynamics,
in order to ensure that the observed variance of the LFP spectra
across trials originated in the V4 population.

In the reduced simulations, spikes propagated and impacted
the postsynaptic neurons’ membrane potentials instantaneously
(see Section 4.3). We also prevented neurons from firing twice
during an avalanche. These latter changes were introduced for
inspecting criticality in the system dynamics (described in detail
in Section 2.4.1), allowing us to quantify the number of neurons
involved in an avalanche event accurately.

Since SVM classification is a comparatively indirect method
for quantifying discriminability, employing classifiers which are
difficult to interpret, we introduce the discriminability index (DI)
as a simplified measure. The DI quantifies by how much, aver-
aged over frequencies, the distributions of LFP spectra over trials
overlap for each stimulus pair (see Section 4.2.3). As oscillations
emerge in network dynamics, trial-to-trial variability of the spec-
tra decrease (i.e., width of the distributions become narrower),
and the average spectra for each stimulus is more distinct (i.e.,
the means of the distributions disperse). Hence, DI provides
us with a meaningful approximation of the SVM classification
performance. We find that the DI yields a phase space portrait
(Figure 3B) similar to the SVM classification result (Figure 3A)
for the full network simulations.

In order to compute discriminability in the reduced simula-
tions, we used Ntr = 36 trials from each of the Na = 20 different
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stimuli. Simulations with the reduced network produce the same
qualitative behavior in phase space (Figure 4A), in the sense that
discriminability increase is only observed in a narrow region in
the phase space, located in the border between regimes with and
without strongly synchronous activity. Discriminability is maxi-
mized as oscillations emerge, and decays quickly in the regions
where epileptic behavior is observed as all neurons fire simulta-
neously. Combined with the experimental evidence, our findings
suggest that the cortex operates near a particular state where

FIGURE 4 | Discriminability of the LFP spectra in relation to the

avalanche statistics. (A) Discriminability index in the reduced simulations.
As in the full simulations (Figure 3B), stimulus discriminability increases
dramatically in a narrow region of the coupling space. (B) Avalanche size
distributions P(s) in the sub-critical (green), critical (blue), and super-critical
(red) regimes for a single stimulus. Insets show how the corresponding
avalanche duration distributions P(T ) and the mean avalanche sizes 〈s〉
conditioned on the avalanche duration T behave in the three distinct
regimes. The corresponding coupling parameter values are marked with
crosses in (A). (C) The values of the estimated power-law exponents τ , α,
and 1/σνz for each value of the excitatory coupling strength Jexc . The lines
mark the mean exponent at the critical point for each stimulus and the
corresponding colored patches represent the standard deviation over the
stimuli. The black dashed line shows the value of α computed using
Equation 3, by plugging in the other two exponents.

small modifications of excitability lead to substantial changes in
its collective dynamics.

However, time-averaged power spectra of local field poten-
tials are not well suited for characterizing different aspects of this
state. Since epidural LFPs are signals averaged over large neu-
ronal populations, dynamic features in spiking patterns become
obscured, and temporal variations in the network dynamics are
lost in the averaging process. In the following, we will go beyond
LFPs and focus on (a) the size distribution of synchronized events
(avalanche statistics), and (b) on the diversity and richness of
patterns generated by the network (measured by information
entropy).

2.4.1. Criticality of dynamics
The network dynamics can be classified into three distinct
regimes of activity characterized by their avalanche size distri-
butions: subcritical, critical, and supercritical (Figure 4B). In the
subcritical state spiking activity is uncorrelated, events of large
sizes are not present and the probability distributions P(s) of
observing an avalanche event of size s exhibit an exponential
decay. In the supercritical state, spiking activity is strongly syn-
chronous and avalanches spanning the whole system are observed
frequently. This behavior is represented in the avalanche size
distributions by a characteristic bump at large event sizes. The
critical state signifies a phase transition from asynchronous to
oscillatory activity and the corresponding avalanche size distri-
butions P(s) display scale-free behavior.

P(s) ∝ s−τ (1)

Even though power-law scaling of the avalanche size distributions,
combined with the sudden emergence of oscillatory behavior
in the system strongly suggest a phase transition in network
dynamics, it is not sufficient to definitively conclude that the sys-
tem is critical (Beggs and Timme, 2012; Friedman et al., 2012).
Therefore, for inspecting criticality in the network dynamics, we
have investigated the behavior of two other, relevant avalanche
statistics: the distribution P(T) of avalanche durations T and the
mean avalanche size 〈s〉 given the avalanche duration T, 〈s〉(T).
We find that both of these distributions follow a power-law for
intermediate values of T at the critical points (Figure 4B, insets).

P(T) ∝ T−α (2)

〈s〉(T) ∝ T1/σνz (3)

We observe that the behavior of P(T) within the phase space
is similar to that of P(s). In the subcritical regime, there are
only avalanches of short durations, and P(T) has a short tail.
In the supercritical regime, P(T) displays a bump at large event
durations. For 〈s〉(T), we observe scale-free behavior of the dis-
tributions in both subcritical and critical regimes. Again a bump
appears for large T at the supercritical regimes. In order to quan-
tify the power-law scaling of the avalanche size and duration
distributions we applied a maximum-likelihood (ML) fitting pro-
cedure (Clauset et al., 2009) and obtained an ML estimation
of the power-law exponent for every stimulus. We obtained the
power-law exponent of the mean size distributions conditioned
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on the avalanche duration using a least squares fitting proce-
dure (Weisstein, 2002). Notably, the exponents obtained from
the simulated dynamics fulfill the exponent scaling relationship
(Figure 4C)

α − 1

τ − 1
= 1

σνz
(4)

as predicted by universal scaling theory (Sethna et al., 2001;
Friedman et al., 2012).

As a goodness-of-fit measure for the avalanche size distribu-
tions, we employed the Kolmogorov–Smirnov (KS) statistic. The
KS statistic D averaged over all stimuli (i.e., network architec-
tures) is given in Figure 5A. However, for identifying points in
the phase space at which the network dynamics are critical, the
KS statistic is ineffective: Even in the transition region from sub-
critical to supercritical behavior, the avalanche size distributions
rarely display a perfect power-law which extends from the smallest
to the largest possible event size. Therefore, we introduced lower
and upper cut-off thresholds on the avalanche sizes during the
fitting process (see Section 4.3). While this procedure allowed us
to do better fits, it also lead to a large region of subcritical states
which had relatively low (and noisy) D-values. This presents a
predicament for automatically and reliably detecting the critical
points by searching for minima in the D-landscape. Furthermore,
we found that avalanche size distributions become scale-free at
different points in phase space for different stimuli (Figure 5B).
Therefore, the minima of the average KS statistic in Figure 5A are
not representative of the critical points of the system.

Visual inspections revealed that the subcritical avalanche size
distributions converge slowly to a power-law as inhibition is
decreased. At a critical value of inhibition, a phase transition
occurs and the bump characteristic of supercritical distribu-
tions appears abruptly. Consequently, it is trivial to determine
the transition regions graphically. We automatized this proce-
dure by using a binary variable γ , which assumes a value of
1 if a bump is detected in the avalanche size distributions (if

the distribution is supercritical) and 0 otherwise (if the distri-
bution is subcritical). Its mean 〈γ 〉 over all stimuli is given in
Figure 6A. We observed that there are clearly defined regions of
sub- and supercritical dynamics, where γ is 0 or 1 for all stimuli,
respectively. The points for which 0 < 〈γ 〉 < 1 define the transi-
tion region, where synchronization builds up rapidly for different
stimuli.

In Figure 6B the transition region is plotted together with the
discriminability index for comparison. We observe that the points
at which discriminability is enhanced are confined to the neigh-
borhood of the transition region. Discriminability is maximized
within the transition region, where the network dynamics are
supercritical for a subset of architectures and subcritical for the
remaining ones. This means that if cortical neurons were to max-
imize discriminability, a set of stimulus inputs would effectively
map to epileptic output activity. Such a scenario is not only phys-
iologically implausible, but actually pathological. Taken together,
these findings suggest that only marginally subcritical points, and
not ones within the transition and supercritical regions, qualify
for explaining the experimental observations.

Therefore we propose that the cortex operates at near-
critical states, at the subcritical border of the transition region.
Such near-critical states are unique in their ability to dis-
play significant discriminability enhancement under attention
while avoiding pathologically oscillatory dynamics. In addition,
strongly correlated activity is associated with encoding limita-
tions. However, neither the discriminability of LFP spectra, nor
the avalanche statistics considered putative, neurophysiologically
plausible decoding schemes used by downstream visual areas. To
address this issue, we next inspected the diversity of spike patterns
generated in the V4 network, and how this diversity behaves in the
neighborhood of the transition region.

2.4.2. Information entropy
We computed information entropy (Shannon, 1948) in order to
assess the diversity of V4 spike patterns generated in response to

FIGURE 5 | KS statistic as a measure of criticality. (A) KS statistic D of the
avalanche size distributions in the reduced network, averaged over all
stimulus presentations. Visual inspections reveal that the avalanche size
distributions P(s) are characteristically subcritical (exponential) for most
points in the coupling space with low D-values. The transition region

calculated using the γ measure is given in white. (B) KS statistic D as a
function of inhibitory coupling scaling factor jinh for two exemplary stimuli, a1

(blue) and a2 (red), illustrating how the D minima occur at different points in
the phase space for different stimuli (Jexc = 0.2 mV). The γ -transition region
is given in magenta.
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FIGURE 6 | Discriminability is enhanced in the region defining a

phase transition from subcritical to supercritical avalanche statistics.

(A) γ measure averaged over all stimulus presentations. The network
dynamics are subcritical for all stimuli in the regions of the phase
space where the mean 〈γ 〉 = 0, and supercritical in the regions where

〈γ 〉 = 1. A phase transition from subcritical to supercritical dynamics
takes place between these two regions, at different points for different
stimuli. This transition region where 0 < 〈γ 〉 < 1 is indicated by white
dots. (B) Comparison of the discriminability index (Figure 4A) and the
transition region.

stimuli within the coupling space. In doing so, we considered dif-
ferent scales on which read-out of these patterns, e.g., by neurons
in visual areas downstream of V4, might take place.

At the finest scale of observation, the read-out mechanism has
access to complete information about V4 spiking activity. In this
case, it can discriminate between spikes originating from distinct
presynaptic V4 neurons. At the coarsest observation scale, the
read-out mechanism is not capable of observing every individ-
ual neuron, but rather integrates the total V4 input by summing
over the presynaptic activity at a given time. To account for this,
we introduce a scale parameter K which reduces a spike pattern
X comprising spikes from N neurons to a representation of N/K
channels with each channel containing the summed activity of K
neurons (Figure 1B).

Figures 7A,B show how information entropy compares with
the transition region of the system for K = 1 (full representation)
and for K = N (summed activity over whole network). For each
inhibitory coupling, the value of the excitatory coupling which
maximizes information entropy is marked with a dashed line. For
both conditions, we see that information entropy displays a sharp
decline near the transition region. This behavior is consistent with
a phase transition toward a regime of synchronous activity as the
emergence of strong correlations attenuate entropy by severely
limiting the maximum number of possible states. In compari-
son to the finest scale of observation (K = 1), we find that the
maxima of information entropy are shifted to greater values of
excitation at the coarsest scale of observation (K = N = 1000).
Figure 7C shows how the maxima of information entropy evolve
as a function of observation scale K, converging onto near-critical
points. This effect arises because, as K increases, the points with
the greatest number of states in the network activity are shifted
toward the transition region. By construction, the number of pos-
sible states of X is finite, and the uniform distribution has the
maximum entropy among all the discrete distributions supported
on the finite set {x1, . . . , xn}. Hence, information entropy of the
spike patterns increases with both an increase in the number of

observed states and an increase in the flatness of the probabil-
ity mass function P(X) of the states. For the coarsest scale of
observation, P(X) is equivalent to the avalanche size distribu-
tions, and it is clear that a power-law scaling of these distributions
cover the largest range of states (Figure 4B). However, for large
jinh (jinh � 0.6), entropy maxima persist at moderately subcritical
regions. For large K, these regions are characterized by P(X) with
smaller supports but more uniform shapes than the P(X) near
the transition region. The flatness of these distributions, espe-
cially at small event sizes, causes the entropy maxima to appear
around Jexc = 1.8 mV, instead of being located at higher values of
excitation.

Combined, our results can be interpreted in the following way
for the two extreme conditions discussed:

1. If neurons in higher areas of the visual system perform a spa-
tial integration of the neuronal activity in the lower areas (K
large), V4 networks operating at near-critical regimes both
maximize information entropy and achieve significant dis-
criminability enhancement under attention.

2. If V4 neurons employ a more efficient encoding strategy,
where both spike times and neuron identities contain mean-
ingful information for higher areas (K small), entropy is
maximized by subcritical states with asynchronous dynamics.
In such a scenario near-critical states represent a best-of-both-
worlds optimization. At the subcritical border of the transition
region, onset of oscillations and discriminability enhance-
ment can manifest while avoiding a drastic loss in information
entropy.

3. DISCUSSION
In this paper we addressed the criticality hypothesis in the context
of task-dependent modulations of neuronal stimulus processing.
We focused, in particular, on changes in cortical activity induced
by selective visual attention. We considered recent findings that
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FIGURE 7 | Analysis of information entropy in V4 spike patterns.

Information entropy in coupling space for the finest observation scale
(K = 1) (A) and the coarsest observation scale (K = N = 1000)
(B) averaged over all stimuli. In (A,B), the dashed white lines indicate the
entropy maxima for each value of the inhibitory coupling scaling factor jinh.
The magenta dots mark the transition region. (C) The maxima of
information entropy for different observation scales K . Entropy maxima
converge toward the transition region (black) as K is increased.

γ -band oscillations emerge collectively with an enhancement
of object representation in LFPs in macaque area V4 under
attention (Rotermund et al., 2009). We reproduced these results
using a model of a visual area V4 population comprising IAF
neurons recurrently coupled in a random network. Attention
induces synchronous activity in V4 by modulating the efficacy
of recurrent interactions. In the model, we investigated the link
between experimentally observed enhancement of stimulus dis-
criminability, scale-free behavior of neuronal avalanches and
encoding properties of the network quantified by information
entropy.

We found that the emergence of γ -band synchrony is strongly
coupled to a rapid discriminability enhancement in the phase

space. Notably, we observed that discriminability levels compa-
rable to the experiments appear exclusively in the neighborhood
of the transition region, where network dynamics transition from
subcritical to supercritical for consecutive values of excitation for
different stimuli. This effect arises because synchronizability of
the network depends inherently on its connectivity structure, and
the strength of synchrony for different stimuli is most diverse near
and within the transition region. However, this also means that
information entropy displays a sharp decline as network activity
becomes strongly correlated for some stimuli, beginning within
the transition region and reaching a minimum in the supercriti-
cal regions. Therefore, we propose that cortical networks operate
at near-critical states, at the subcritical border of the transition
region. Such marginally subcritical states allow for fine modu-
lations of network excitability to dramatically enhance stimulus
representation in the LFPs. In addition, for a putative encoding
scheme in which higher area neurons integrate over the spik-
ing activity in local V4 populations (coarse observation scale),
near-critical states maximize information entropy.

3.1. ROBUSTNESS OF RESULTS
In this work we aimed to reproduce reproducing the characteris-
tic features of the experimental findings with an uncomplicated
model, in part due to considerations of computational expense.
The conclusions of this paper depend mainly on the facts that in
our model: (1) the emergence of synchronous spiking activity can
be described by a phase transition as a function of an excitabil-
ity parameter, and (2) synchronizability of the network depends
implicitly on the topography of its connections. Therefore, we
believe that as long as these requirements are met, discriminabil-
ity enhancement will correlate with a narrow choice of parameters
which generate near-critical dynamics. This will also be the case
in more complex and biologically plausible models which detail
different synchronization mechanisms which might be responsi-
ble for generating neural γ -activity (see, for example, the reviews
Tiesinga and Sejnowski, 2009; Buzsáki and Wang, 2012).

In fact, recent modeling work by Poil et al. (2012), which
employed a network consisting of IAF neurons with stochas-
tic spiking and local connectivity, reported a result which nicely
parallels our findings. For random realizations of their network
architecture, the greatest variance of the power-law scaling of the
avalanche size distributions was found near the critical points.
In this framework, different random realizations of network
connectivity were used to describe differences between human
subjects, and the authors concluded that their findings provide
an explanation for interindividual differences in α-oscillations in
human MEG.

3.2. PHYSIOLOGICAL PLAUSIBILITY
We simulated cortical structure employing a random network of
finite size, thus our model had a connectivity structure which var-
ied for different subpopulations of activated neurons. This setting
spared us any particular assumptions about the connection topol-
ogy of V4 neurons, which is still subject of extensive anatomical
research. In the brain, variability in connectivity of neurons in
a local population is not random, but signifies a highly struc-
tured global network. Such functional connectivity is exemplified
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in the primary visual cortex by long-range connections between
neurons with similar receptive field properties such as orienta-
tion preference (Kisvárday et al., 1997). These connections are
thought to serve feature integration processes such as linking edge
segments detected by orientation-selective neurons in V1 or V2
into more complex shapes, thus giving rise to the array of recep-
tive field structures found in V4 (Desimone and Schein, 1987;
David et al., 2006). In consequence, connection variability in the
brain is significantly higher than random. Specifically, the vari-
ance of degree distributions is higher, the synaptic weights are
heterogeneous, and the coupling structures are more anisotropic
than in our simulations. Hence connection variability across dif-
ferent local networks is not decreased as drastically when the
number of neurons is increased. In fact, assuming random vari-
ability implied a trade-off in our simulations: On the one hand,
increasing the number of neurons decreased diversity in activa-
tion patterns and pattern separability, while on the other hand,
it improved the assessment of criticality by increasing the range
over which avalanche events could be observed.

In addition, in our model, we posited that attention modulates
the efficacy of interactions, in order to reproduce the attention
induced gain modulation and γ -synchrony using a reduction-
ist approach. In biological networks, these effects may originate
from more complicated mechanisms. For example, previous stud-
ies have shown that such an increase in gain (Chance et al.,
2002) as well as synchronous activity (Buia and Tiesinga, 2006)
can be achieved by modulating the driving background current.
However, as described in Section 3.1, we expect our results will
persist in other models where the network dynamics undergo a
phase transition toward synchronous dynamics as a function of
the responsiveness of neurons which is enhanced by attention. As
an alternative to enhancing synaptic efficacy, we also tested a sce-
nario in which attention provided an additional, weak external
input to all neurons (results not shown). This led to qualitatively
similar findings, with a quantitatively different discriminability
boost.

Lastly, our current understanding of cortical signals strongly
suggests that LFPs are generated mainly by a postsynaptic con-
volution of spikes from presynaptic neurons (Lindén et al., 2011;
Makarova et al., 2014) and that even though other sources may
contribute to the LFP signal, they are largely dominated by
these synaptic transmembrane currents (Buzsáki et al., 2012).
We generate the LFP signal through a convolution of the sum
of appropriately scaled recurrent and external spiking activity. In
our model, this closely approximates the sum of postsynaptic cur-
rents to V4 neurons: We are considering a very simple model of
a small V4 population in which the postsynaptic potentials are
evoked solely by these recurrent and external presynaptic spikes;
degree distributions in the connectivity structure of the network
has a small variance; the recurrent synaptic strengths are homo-
geneous; and there is no stochasticity in the recurrent synaptic
transmission (i.e., every V4 spike elicits a postsynaptic poten-
tial in the V4 neurons it is recurrently coupled to). In addition,
there is no heterogeneity in cell morphologies or the location
of synapses, which are believed to influence the contribution of
each synaptic current to the LFP signal in cortical tissue (Lindén
et al., 2010). Combined, this means that each spike elicited by a

model V4 neuron has a similar total impact on the postsynaptic
membrane potentials, and the low-pass filtered spiking activ-
ity represents the postsynaptic currents well. Furthermore, even
though our model does not incorporate the full biological com-
plexity of cortical neurons, we believe that the particular choice
of constructing the LFP signal in our model is not consequen-
tial for our results. The increase in discriminability of the LFP
spectra originate primarily in the γ -band (both in the model and
the experimental data), and we assume that correlated synaptic
currents emerge simultaneously with correlated spiking activity,
as there is experimental evidence that spiking (multi-unit) activ-
ity is synchronized with the LFP signal during attention-induced
γ -oscillations (Fries et al., 2001).

3.3. DYNAMICS, STRUCTURE, AND FUNCTION
In order to scrutinize the role of synchrony in enhancing stimulus
representations, we considered an idealistic scenario: Each stimu-
lus activates a different set with an identical number of neurons,
so that without synchronization stimulus information encoded in
activated neuron identities would be lost in the average popula-
tion rate. By means of the different connectivities within different
sets, however, this information becomes re-encoded in response
amplitude and γ -synchrony. In principle, this concept is very sim-
ilar to the old idea of realizing binding by synchrony (von der
Malsburg, 1994), namely, using the temporal domain to represent
information about relevant properties of a stimulus, for exam-
ple, by tagging its features as belonging to the same object or to
different objects in a scene.

However, strong synchronization hurts encoding by destroy-
ing information entropy. This is visible in the dynamics in the
supercritical regime where ultimately all neurons do the same:
fire together at identical times. Therefore, synchronization is only
beneficial for information processing if additional constraints
exist: for example, a neural bottleneck in which some aspect of
the full information available would be lost, or a certain robust-
ness of signal transmission against noise is required and can be
realized by the synchronous arrival of action potentials at the
dendritic tree.

In our setting, this bottleneck is the coarse observation scale
where neuron identity information is lost by averaging over all
neural signals. In such a case, information entropy is maximized
as oscillations emerge at near-critical points. Although this situa-
tion is most dramatic for epidural LFPs that sum over thousands
of neurons, it may also arise in more moderate scales if neurons in
visual areas downstream of V4 have a large fan-in of their presy-
naptic connections. Naturally, this does not exclude the possibility
that such a bottleneck may be absent and that cortical encod-
ing can make use of spike patterns on finer spatial scales. This
would shift the optimal operating regime “deeper” into the sub-
critical regime, and away from the transition region. Nonetheless,
for this finer scale assumption, marginal subcriticality might rep-
resent a best-of-both-worlds approach. In particular, a penalty in
information entropy may be necessary to ensure a certain level
of synchronous activity required for other functionally relevant
aspects of cortical dynamics, such as information routing regu-
lated by attention via “communication through coherence” (Fries,
2005; Grothe et al., 2012).
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In general, coding schemes being optimal for information
transmission and processing always depends strongly on neural
constraints and readout schemes. Nevertheless, specific assump-
tions about stimulus encoding do not influence our conclu-
sion that the experimentally observed effects are unique to
near-critical dynamics.

3.4. OUTLOOK
In summary, our study establishes several, novel links between
criticality, γ -synchronization, and task requirements (attention)
in the mammalian visual system. Our model predicts that
the cortical networks, specifically in visual area V4, operate
at marginally subcritical regimes; task-dependent (e.g., atten-
tion induced) modulations of neuronal activity may push
network dynamics toward a critical state; and the experimen-
tally observed discriminability increase in LFP spectra can
be attributed to differences in the network structure across
different stimulus-specific populations. It remains for future
studies to explore these links in more detail, and provide
experimental support for our model’s predictions. With recent
advances in optogenetic methods and multielectrode record-
ing techniques, assessing avalanche statistics in behaving, non-
human primates with the required precision will soon be
possible.

4. MATERIALS AND METHODS
4.1. NETWORK MODEL
4.1.1. Structure and dynamics
The V4 network consists of N recurrently coupled IAF neurons
i = 1, . . . ,N described by their membrane potential V(t):

τmem
dVi(t)

dt
= − (Vi(t) − VR) + Jext

∑

k

δ(t − t′ik)

+ Jexc

Nexc∑

j = 1

wijδ(t − tjk) − Jinh

N∑

j = Nexc + 1

wijδ(t − tjk)

(5)

The membrane potential evolves according to Equation 5 where
every V4 neuron i has a resting potential VR = −60 mV
and generates an action potential when V crosses a threshold
Vθ = −50 mV. After spiking, V(t) is reset back to VR. We picked
the parameters to be representative of those of an average cortical
neuron (Kandel et al., 2000; Noback et al., 2005). We used a mem-
brane time constant of τmem = 10 ms. In Equation 5, tjk denotes
the k-th spike from V4 neuron j, and t′ik the k-th spike from V1
(external input) to V4 neuron i.

V4 neurons are primarily driven by the external (feedfor-
ward) input once a stimulus is presented (see Section 4.1.2).
Presynaptic V1 spikes have an external input strength
Jext = 0.1 mV.

Ninh V4 neurons are inhibitory (interneurons) and the remain-
ing Nexc are excitatory cells (pyramidal neurons). We assumed a
fixed ratio of ε = Nexc/Ninh = 4 (Abeles, 1991). The neurons are
connected via a random coupling matrix with connection prob-
ability p = 0.02 (Erdös-Renyi graph). Connections are directed
(asymmetrical), and we allow for self-connectivity. wij assumes

a value of 1 if a connection exists from neurons j to i, and is 0
otherwise. Global coupling strengths can independently be varied
by changing Jinh and Jexc.

Simulations were performed with an Euler integration scheme
using a time step of 
t = 0.1 ms. Membrane potentials of
V4 neurons were initialized such that they would fire at ran-
dom times (pulled from a uniform distribution) when iso-
lated and driven by a constant input current (asynchronous
state). We simulated the network’s dynamics for a period of
Ttotal = 2.5 s and discarded the first, transient 500 ms before
analysis.

4.1.2. Stimulus and external input
For comparison with the experimental data, we drove our net-
work using Na different stimuli. Specifically, we assumed that
each stimulus activates a set of neurons in a lower visual area
such as V1 or V2 whose receptive fields match (part of) the
stimulus (Figure 1A). These neurons in turn provide feedfor-
ward input to a subset of Nactive neurons in the V4 layer. We
realized this input as independent homogeneous Poisson pro-
cesses with rate fmax = 10 kHz. This situation is equivalent to
each activated V4 neuron receiving feedforward input from
roughly 1000 neurons, each firing at about 10 Hz during stimulus
presentation.

Since stimuli used in the experiment had similar sizes, we
assumed the subset of activated V4 neurons to have constant size
Nactive = 1000 for all stimuli. For each stimulus, we randomly
choose the subset of V4 neurons which were activated by feed-
forward input. With a total of N = 2500 neurons, these subsets
were not mutually exclusive for different stimuli. The remaining
N − Nactive neurons received no feedforward input. Each stimu-
lus was presented to the network in Ntr independent trials, and
the simulations were repeated for Nw independent realizations of
the V4 architecture wij.

4.1.3. Local Field Potentials (LFPs)
In the experiments motivating this work, spiking activity was not
directly observable. Only neural population activities (LFPs) were
measured by epidural electrodes. Likewise, using our model we
generated LFP signals U(t) by a linear superposition of spiking
activities of all neurons j in layer V4 and spiking activities of V1
neurons presynaptic to V4 neurons i, scaled by a mixing constant
of cmix = 0.2. This was followed by a convolution with an expo-
nential kernel Kexp (low-pass filter). In our network, this is a close
approximation of summing the postsynaptic transmembrane cur-
rents of the V4 neurons (Lindén et al., 2011; Buzsáki et al., 2012;
Makarova et al., 2014).

U(t) = Kexp(t, τk) ⊗
⎛

⎝
∑

jk

δ(t − tjk) + cmix

∑

ik

δ(t − t′ik)

⎞

⎠ (6)

Kexp(t, τk) = 1

τk
e−t/τk . (7)

We used a time constant of τk = 15 ms for the kernel and dis-
carded a period of 50 ms (∼3.3 τk) from both ends of the LFP
signal in order to avoid boundary effects.

Frontiers in Systems Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 151 | 70

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Tomen et al. How much synchrony is critical?

4.2. ANALYSIS OF NETWORK DYNAMICS
4.2.1. Spectral analysis
Mirroring the experiments, we performed a wavelet transform
using complex Morlet’s wavelets ψ(t, f ) (Kronland-Martinet
et al., 1987) for time-frequency analysis. We obtained the spectral
power of the LFPs via

p(t, f ) =
∣∣∣∣
∫ +∞

−∞
ψ(τw, f ) U(t − τw) dτw

∣∣∣∣
2

. (8)

In order to exclude boundary effects, we only took wavelet coef-
ficients outside the cone-of-influence (Torrence and Compo,
1998). Finally, we averaged the power p(t, f ) over time to obtain
the frequency spectra p(f ). This method is identical to the one
used for the analysis of the experimental data (Rotermund et al.,
2009). The power p(t, f ) of the signal was calculated in Nf = 20
different, logarithmically spaced frequencies f , in the range from
fmin = 5 Hz to fmax = 200 Hz.

4.2.2. Support vector machine classification
In order to assess the enhancement of stimulus representation in
the LFPs, we performed SVM classification using the libsvm pack-
age (Chang and Lin, 2011). The SVM employed a linear kernel
function and the quadratic programming method to find the sep-
arating hyperplanes. We implemented a leave-one-out routine,
where we averaged over Ntr results obtained by using Ntr − 1
randomly selected trials for each stimulus for training and the
remaining trial for testing.

4.2.3. Discriminability index
The discriminability index DI(Jexc, jinh) was defined as

DI = 1

Na(Na − 1)/2

1

Nf

1

Ntr

Na−1∑

i = 1

Na∑

j = i + 1

∑

f

∑

tr

erf(ZDI(f , tr, i, j)/
√

2)

2
+ 1

2
(9)

with

ZDI(f , tr, i, j) = |pi(f , tr) − pj(f , tr)|
σtr(pi(f , tr)) + σtr(pj(f , tr))

(10)

where σtr is the standard deviation of frequency spectra p over
different trials tr and erf( · ) is the error function. The assump-
tion underlying the DI measure is that, at a given frequency f ,
the magnitude of the LFP power distribution for different trials
tr is normally distributed. Discriminability of two stimuli thus
depend on how much the areas under their corresponding distri-
butions overlap. DI represents the mean pairwise discriminability
of unique stimulus pairs {i, j}, averaged over frequencies and tri-
als. For one particular frequency band, the DI measure is related
to the area-under-the-curve of a receiver-operator-characteristic
of two normal distributions. By this definition, DI is normalized
between 0.5 and 1, a higher DI indicating better discriminabil-
ity. Because of trials having a finite duration, however, DI has
a bias which took an approximate value of 0.69 in our simula-
tions (Figures 3B, 4A, 6B). In addition, since there are typically

frequencies which carry no stimulus information (e.g., the 110
Hz-band, see Figure 2B), DI is confined to values smaller than 1.

The discriminability index was further averaged over Nw inde-
pendent realizations of the coupling matrix in the full simu-
lations. In the reduced model, we ran the simulations for an
extended duration of Ttotal = 12 s. For computing DI, we then
divided the LFP time series into Ntr = 36 trials.

4.3. NEURONAL AVALANCHES
4.3.1. Separation of time scales
A neuronal avalanche is defined as the consecutive propagation
of activity from one unit to the next in a system of coupled
neurons. The size of a neuronal avalanche is equal to the total
number of neurons that are involved in that avalanche event,
which starts when a neuron fires, propagates through generations
of postsynaptic neurons, and ends when no neurons are activated
anymore. Avalanche duration is then defined as the number of
generations of neurons an avalanche event propagated through.
In such a system, the critical point is characterized by a scale-free
distribution of avalanche sizes and durations.

In simulations assessing avalanche statistics, recurrent spikes
were delivered instantaneously to all postsynaptic neurons for
proper separation of two different avalanches. This means that as
soon as an avalanche event started, action potentials were prop-
agated to all the generations of postsynaptic spikes within the
same time step, until the avalanche event ended. This corresponds
to a separation of timescales between delivery of external input
and avalanche dynamics. In this way we could determine the
avalanche sizes precisely, by “following” the propagation of every
spike through the network.

In addition, we implemented a basic form of refractoriness
which prevented a neuron from firing more than once during an
avalanche event (holding its membrane potential at VR after it
fired). Since each avalanche event took place in a single time step of
the simulations, this corresponded to each neuron having an effec-
tive refractory period equivalent to the integration time step 
t.

4.3.2. Analysis of criticality of dynamics
For each network realization, we obtained the probability P(s)
of observing an avalanche of size s by normalizing histograms of
avalanche sizes.

For every distribution P(s) obtained from our simulations, we
calculated a maximum-likelihood estimator τ̂ for the power-law
exponent τ using the statistical analysis described in Clauset et al.
(2009) for discrete distributions. For a comprehensive account of
the fitting method please see Clauset et al. (2009). To explain the
procedure briefly, we started by defining a log-likelihood func-
tion L(τ ). This quantifies the likelihood that the n empirical
avalanche size observations si (i = 1, . . . , n), which were recorded
during our simulations, were drawn from a perfect power-law
distribution with exponent τ .

L(τ ) = −n ln ζ (τ, smin) − τ

n∑

i = 1

ln si (11)

where

ζ (τ, smin) =
∞∑

n = 0

(n + smin)−τ (12)
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is the Hurwitz zeta function. For a set of τ -values in the interval
[1.1, 4], we computed L(τ ) (using Equation 11) and the value of
τ which maximized the log-likelihood was taken as the exponent
τ̂ of the power-law fit Pfit(s) ∝ s−τ̂ . During the fitting procedure,
we used a lower cut-off threshold smin = N/100 = 10 and an
upper cut-off threshold smax = 0.6N = 600. In other words, we
fit a power-law to the set of empirical observations in the inter-
val smin ≥ si ≥ smax. We repeated this fitting procedure to obtain
power-law exponents α for the avalanche duration distributions
P(T) ∝ T−α , using Tmin = 5 and Tmax = 30.

For clarity, it is important to point out that the ML analysis
described in Clauset et al. (2009) does not take into consideration
an upper cut-off in the empirical power-law distributions. One of
the reasons we used an upper cut-off threshold during fitting is
that the automated detection of critical points using the γ mea-
sure required us to fit a power-law exponent also to subcritical
and supercritical avalanche size distributions. Using the complete
tail of the distribution during the fitting procedure, for example
in supercritical regimes, would yield a bias toward lower expo-
nent estimates which would make it difficult to reliably detect
the bump at large event sizes. This would hinder the detection
of critical points using the γ measure, as it depends on an expo-
nent which reliably represents the behavior of the distribution
in the medium range of event sizes. More importantly, most of
the size and duration distributions we observed at critical points
displayed an exponential upper cut-off, as also observed in other
experimental and theoretical work (Beggs and Plenz, 2003; Beggs,
2008; Petermann et al., 2009; Klaus et al., 2011; De Arcangelis
and Herrmann, 2012). In statistics of neuronal avalanches, the
exact location of the cut-off threshold depends strongly on sys-
tem size and the duration of observations, and increasing either
will increase the number of sampled avalanches and shift the cut-
off threshold to higher values, but not make it vanish. In addition,
excluding the observations above a cut-off threshold reduced the
absolute magnitude of the log-likelihood function for all values
of τ (Equation 11), but the value of τ which maximized the log-
likelihood provided us with a better estimate of the exponent for
the middle range of the distributions where power-law scaling was
prominent.

We used a least squares fitting procedure to find the power-law
exponents for 〈s〉(T) (Weisstein, 2002), as it is not a probability
distribution, using Tmin = 2 and Tmax = 20. In this procedure,
the exponent 1/σνz of the function 〈s〉(T) ∝ T1/σνz is given by
the closed expression

1

σνz
= m

∑m
i = 1 ( ln Ti ln〈s〉i) −∑m

i = 1 ( ln Ti)
∑m

i = 1 ( ln〈s〉i)

m
∑m

i = 1 ( ln Ti)2 − (
∑m

i = 1 ( ln Ti))2
(13)

where m is the total number of points on the function 〈s〉(T),
Ti are the duration values of the points and 〈s〉i are the
corresponding 〈s〉 values.

The KS statistic D was computed using

D = max
s ≥ N/100

|F(s) − Ffit(s)| (14)

where F(s) and Ffit(s) are the cumulative distribution functions
(CDFs) of P(s) and Pfit(s), respectively.

We defined the transition region where the network dynam-
ics switch from sub-critical to super-critical statistics using the
binary variable indicator function γ .

γ =
{

1 if F(N) − F(0.6N − 1) > F′
fit(N) − F′

fit(0.6N − 1)

0 else
(15)

In Equation 15, F′
fit(s) = Ffit(s) F(N/100)

Ffit (N/100) . γ assumes a value of

1, signifying super-critical statistics, if the tail of the empirical
avalanche size distributions P(s > 0.6N) is heavier than that of
the fit. Additionally, we visually verified that the indicator γ works
well for describing the behavior of the distributions in coupling
space. The region in which its mean 〈γ 〉 over Na different stimuli
lies between 0 and 1 was termed the transition region.

4.4. COMPUTATION OF INFORMATION ENTROPY
We quantified information entropy H(X) using a state variable
X which represents the spiking patterns of V4 neurons at a given
time point t (Figure 1B). We construct the probability P(X = xi)
of observing a spike pattern xi using the Ttotal
t spike patterns
observed in one trial.

H(X) = −
∑

i

P(xi) log2 P(xi) (16)

Considering different read-out strategies of the information
encoded by V4 neurons in the higher visual areas, we computed
information entropy in different scales of observation K. These
scales were defined as follows (Figure 1B):

For the finest observation scale, K = 1, the state variable X
consists of N channels, representing N V4 neurons. Each channel
assumes a value of 1 if the corresponding neuron generated an
action potential at time t, and 0 otherwise. We randomly picked
the order in which different neurons were represented in X.

As we increase the observation scale K, X comprises N/K
channels, and each channel represents the sum of spikes from K
different neurons. For K > 1, we constructed X by adding up the
spiking activity of K consecutive neurons, while conserving the
aforementioned random order of neurons over the channels. At
the coarsest scale of observation, we sum over the activity of the
whole network (i.e., for K = 1000, X is a scalar in the interval
[0, 1000]).
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Criticality has emerged as a leading dynamical candidate for healthy and pathological
neuronal activity. At the heart of criticality in neural systems is the need for parameters
to be tuned to specific values or for the existence of self-organizing mechanisms. Existing
models lack precise physiological descriptions for how the brain maintains its tuning near
a critical point. In this paper we argue that a key ingredient missing from the field is a
formulation of reciprocal coupling between neural activity and metabolic resources. We
propose that the constraint of optimizing the balance between energy use and activity
plays a major role in tuning brain states to lie near criticality. Important recent findings
aligned with our viewpoint have emerged from analyses of disorders that involve severe
metabolic disturbances and alter scale-free properties of brain dynamics, including burst
suppression. Moreover, we argue that average shapes of neuronal avalanches are a
signature of scale-free activity that offers sharper insights into underlying mechanisms
than afforded by traditional analyses of avalanche statistics.

Keywords: criticality, mathematical models, metabolic resources, burst suppression, scale-free dynamics

INTRODUCTION
A substantial body of evidence now suggests that the brain oper-
ates near criticality. That is, analyses of healthy (Meisel et al.,
2013) and pathological (Roberts et al., 2014) brain activity yield
parameters lying near the cusp between stability and instability.
Such a state confers benefits of increased flexibility (Kinouchi and
Copelli, 2006; Shew et al., 2009), optimized information trans-
fer (Beggs and Plenz, 2003; Shew et al., 2011), and increased
storage capacity (Haldeman and Beggs, 2005; Shew et al., 2011).
However, the question of how the brain maintains criticality is
not clear. Prevailing theories posit various mechanisms but lit-
tle attention has been paid to unifying these. In this Perspective
Article, we argue that since existing mechanisms ultimately rely
on various forms of activity-dependent modulation, models that
integrate neuronal activity with metabolic resources present an
opportunity for unifying existing theories of neuronal criticality.
Moreover, we suggest that disambiguation of competing mod-
els would benefit from complementing traditional approaches of
calculating scaling exponents with analyses of the deeper scal-
ing properties encoded in average event shapes. This has been
employed successfully in physics, but has only recently found
traction in neuroscience.

COMPETING MECHANISMS IN MODELS OF CRITICAL BRAIN
DYNAMICS
Much of the attention on critical brain dynamics has centered
on neuronal avalanches in fluctuating local field potentials mea-
sured using small grids of electrodes (Beggs and Plenz, 2003;
Petermann et al., 2009; Priesemann et al., 2013), though signa-
tures of criticality have been detected in many other large-scale

measurements including MEG (Palva et al., 2013; Shriki et al.,
2013), EEG (Linkenkaer-Hansen et al., 2001; Palva et al., 2013;
Roberts et al., 2014), and fMRI (Haimovici et al., 2013). Modeling
efforts have tended to focus on spatial avalanches in networks
of spiking neurons, with relatively few analyses of criticality
in large-scale models relevant to EEG (Steyn-Ross et al., 1999;
Robinson et al., 2010; Aburn et al., 2012). Such models will be
crucial for describing the macroscopic scale accessible in human
studies.

Models of critical brain dynamics typically fall into two classes:
those with a tuning parameter and those that self-organize.
Models with a tuning parameter only exhibit critical dynamics
when the model parameters are set precisely at the critical state,
such as in branching processes (Beggs and Plenz, 2003; Haldeman
and Beggs, 2005) and in typical mean-field models (Steyn-Ross
et al., 1999). Parameter-setting mechanisms are outside the scope
of these models by design—presumably slow parameter mod-
ulations exist to set the parameters but these are not explicitly
modeled. In self-organizing models, the parameters evolve “nat-
urally” to the critical point, usually involving synaptic plasticity
based on either the strength of activity (De Arcangelis et al.,
2006; Levina et al., 2007) or spike timing (Meisel and Gross,
2009; Rubinov et al., 2011). Another means of self-organizing to
a critical point is to grow a network from scratch, with activity-
dependent plasticity governing the growth rules (Tetzlaff et al.,
2010). A common feature of self-organization in physics is a sep-
aration of time scales between the slow build-up of energy and
fast relaxation or dissipation—earthquakes are a classic example
(Sethna et al., 2001). While similar time-scale separations exist
in many neural models, an explicit link to energy (or at least a
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proxy for energy) is rarely made. We argue that such links will be
important for unifying various tuning mechanisms.

AVERAGE BURST SHAPES ARE SENSITIVE TO UNDERLYING
MECHANISMS
The proliferation of models exhibiting criticality has centered
on reproducing scale-free distributions of event sizes and dura-
tions seen empirically, with varying degrees of biological realism
versus abstraction. While criticality likely arises in more than
one context in the brain, it is also likely that there is room
to unify theories where they describe the same phenomenon.
Conversely, it is important to find ways of distinguishing between
competing mechanisms that do not necessarily perform equally
well in all settings. Disambiguating competing models is likely
hampered by the limited set of measures typically used when
benchmarking candidate models against empirical data. Power-
law exponents are the most widely used means of testing model
validity. However, multiple models can exhibit the same expo-
nents while having different mechanisms and avalanche shapes
(Sethna et al., 2001). Thus, average shapes are a sharper test
of competing theories—this has been particularly successful in
studies of ferromagnetism, where existing theories that repro-
duced correct exponents were shown to not reproduce the
correct shapes (Mehta et al., 2002). By moving beyond tradi-
tional analyses, average shapes reveal deeper mechanistic insights
(Zapperi et al., 2005; Papanikolaou et al., 2011). This approach
has recently been applied in neuroscience revealing a variety
of shapes in both data and models (Friedman et al., 2012;
Priesemann et al., 2013; Roberts et al., 2014). In particular,
invariance of average shapes across time scales is a strong indi-
cator of scale-free dynamics, while a scale-dependent change in
shape (such as asymmetry at long time scales, quantified with
skewness), hints at deviations from perfect scale-free behavior
that may not be visible in typical event statistics such as size
distributions.

Recently it was shown that burst suppression following
hypoxia exhibits a striking example of scale-free dynamics
(Roberts et al., 2014). Burst suppression occurs in various abnor-
mal brain states such as recovery from hypoxia and during
anesthesia, and is characterized by near-quiescent “suppressed”
periods punctuated erratically by large-amplitude “bursts” of
electrical activity. In post-hypoxic burst suppression, scale-
free properties vary across the recovery period, with scale-
free burst distributions prominent during the burst-suppression
phase, exhibiting stronger truncation upon the resumption of
healthy activity (Figure 1A). These statistical features appear
to relate closely to the pathophysiology, as they co-vary sig-
nificantly with later clinical outcome (Iyer et al., 2014). Since
criticality is usually associated with healthy states, existence in
neonatal burst suppression thus broadens criticality’s applica-
bility to at least one pathology, and suggests that the devel-
oping brain may provide a new window into critical brain
states.

Power-law scaling is also seen in duration distributions and
in the scaling relationship between sizes and durations, with
the exponents related in line with theories of crackling noise
(Roberts et al., 2014). But scaling exponents do not tell the

FIGURE 1 | Signatures of criticality in burst suppression EEG. (A)

Distributions of burst area (BA) for burst suppression (red) and later in
recovery (blue), with corresponding power-law fits (green and orange,
respectively). (B) Asymmetric average burst shapes for burst suppression
EEG over a range of durations (red to blue, shortest to longest). Inset: burst
skewness (�) as a function of duration T for burst suppression with linear
fit (red). (C) Symmetric average burst shapes from EEG recorded later
during recovery. Inset: burst skewness later in recovery. (D) Asymmetric
average burst shapes from the simple model showing resource depletion.
For more details see Roberts et al. (2014).

whole story. Scale-invariance of burst shapes is disrupted in
the burst-suppression phase, showing increasing leftward asym-
metry at long time scales (Figure 1B). Again, this feature of
metabolically-compromised cortex diminishes upon resumption
of healthy activity (Figure 1C, and cf. insets of panels B and C).
This scale-free signature is thus acutely sensitive to the patho-
physiology. In light of their success in explaining Barkhausen
noise in ferromagnetism (Sethna et al., 2001; Mehta et al.,
2002; Zapperi et al., 2005), where analysis of average shapes
led to the development of new models, we argue that average
shapes are under-utilized as a signature of scale-free dynam-
ics in neural systems. We hope that rigorous testing of models
against data will enable similar progress to that seen in the
study of ferromagnetism. Moreover, analysis of events themselves,
rather than coarse summary statistics, is underused in clinical
settings.

UNIFYING MECHANISMS OF SELF-ORGANIZATION VIA
BIOPHYSICAL MODELING OF RESOURCE CONSTRAINTS
Asymmetry of the average shape arises from history-dependent
effects (Zapperi et al., 2005; Roberts et al., 2014). A well-
established example in physics is the response of a ferromagnet
in a slowly changing external field (a classic, controllable exam-
ple of criticality). There, the external field aligns microscopic
domains in the magnet, but instead of gradually aligning
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in unison the individual domains flip suddenly and errati-
cally, triggering similar flips in their neighbors. This yields
a bursty signal termed Barkhausen noise, a striking exam-
ple of crackling noise (Sethna et al., 2001) with characteristic
asymmetric burst shapes that lean to the left. These shapes
were explained using a model with history dependence derived
from the dynamics of domain wall pinning (Zapperi et al.,
2005; Papanikolaou et al., 2011). For burst suppression in
post-hypoxic neonates, it was found that left-leaning bursts
(Figure 1D) arise from a simple model with activity-dependent
damping:

ẋ = −λx + ξ (t) , (1)

λ = α2

∫ t

−∞
e−α1(t−τ)x(τ )2dτ . (2)

Here, x represents neuronal activity, ξ is a Gaussian white
noise drive, λ is a damping constant, and α1 and α2 are con-
stants. This form was motivated by the fast-out slow-return
nature of the leftward asymmetry: damping is low at the begin-
ning of bursts but increases with the increasing activity in its
recent history. This is consistent with the post-hypoxic brain
being acutely sensitive to its constrained metabolic resources.
Although this is a simple phenomenological model, the cen-
tral idea of activity-dependent modulations is widely applicable.
For example, metabolic constraints have recently been incorpo-
rated into a cellular model to explain a different (non-scale-
free) type of burst suppression induced in adult EEG during
propofol anesthesia (Ching et al., 2012). Moreover, advanc-
ing technologies for measuring metabolic variables will yield
rich data sets prompting model development. Oxygen availabil-
ity has recently been shown to be tightly coupled to levels of
excitability in slice preparations (Hajos et al., 2009; Ivanov and
Zilberter, 2011), prompting calls to study the feedback loop
between activity and energy availability (Zilberter et al., 2010).
Such approaches may yield new insights into activity that requires
high metabolic load, such as the high-frequency gamma activ-
ity associated with higher cognitive functions (Kann, 2011).
Furthermore, live O2 monitoring enables unprecedented insight
into metabolic dynamics (Ingram et al., 2014), motivating new
models of seizure dynamics (Wei et al., 2014), complement-
ing models of ion concentrations (Cressman et al., 2009). This
last application is notable because brain dynamics have been
shown to deviate from criticality during seizures (Meisel et al.,
2012).

Thus, we argue that since signatures of scale-free dynam-
ics appear to be sensitive to metabolic disturbances, proper
understanding of these dynamics should parsimoniously describe
the underlying metabolic system to which the dynamics are
closely coupled. This allows the metabolic states to tune
the neuronal states. More concretely, typical models of the
form

ẋ = f (x, M, t)+ ξ(t), (3)

where M are parameters, can be extended to incorporate
dynamics for the slow evolution of M given by

Ṁ = εg(x, M, t), (4)

where ε is a small parameter determining the separation of time
scales. This formalism of slow parameter dynamics (not neces-
sarily metabolic) is widely used to model oscillatory systems such
as bursting in individual neurons (Izhikevich, 2000), EEG oscil-
lations in anesthesia (Liley and Walsh, 2013; Ching and Brown,
2014), and seizures (Jirsa et al., 2014). The bifurcations involved
in such oscillatory transitions are likely different from the critical
points responsible for scale-free dynamics, but the core approach
is valid for modeling all types of slow parameter changes, and
should be applied in studies of neuronal criticality. In our exam-
ple of post-hypoxic burst suppression, one could envisage three
time scales: fast neuronal dynamics on the order of tens of mil-
liseconds, slower dynamics governing activity-dependence within
bursts on the order of hundreds of milliseconds to seconds, and
very slow dynamics describing the recovery trajectory in and out
of burst suppression on the order of tens of minutes. Indeed
such a hierarchy of time scales in a phenomenological model suc-
cessfully explains many features of seizure dynamics (Jirsa et al.,
2014). On slower time scales still, we expect that another key tar-
get for such modeling will be the sleep-wake cycle, which is itself
fundamentally tied to slow homeostatic processes and known to
exhibit temporally-varying signatures of criticality (Meisel et al.,
2013; Priesemann et al., 2013).

More broadly, all mechanisms for slow parameter modulations
are tightly constrained by the need for the brain to optimize the
use of its resources. This view has been extraordinarily successful
in explaining the structure of brain networks in terms of mini-
mizing wiring costs (Bullmore and Sporns, 2012), yet has been
used only sparingly to study large-scale brain dynamics. The brain
evolved under the constraint of finite resources, so understanding
how this constraint shapes brain dynamics will likely tell us more
about the specific resource constraints, the resulting dynamics,
and how the brain may be organized to circumvent these restric-
tions. Most attention thus far has been devoted to overall activity
levels (Attwell and Laughlin, 2001), and even then most of the
brain’s energy expenditure remains unexplained (Raichle, 2006;
Buzsáki et al., 2007). We hypothesize that resource constraints not
only underpin activity-dependent modulations on micro- and
meso-scales, but collectively act to keep the brain near a critical
point on the macro-scale. That is, optimizing the balance between
the brain’s competing needs of being active while not squander-
ing its energy supplies seems consistent with self-organization to
a critical point. Failures of this balance lead to neurological dis-
orders (Meisel et al., 2012; Roberts et al., 2014), demonstrating
that studying pathological activity—particularly in metabolically-
demanding states—enables better understanding of healthy brain
states.

In sum, these considerations suggest new unifying principles
across the spectrum of criticality in neural systems as well as new
means of disambiguating between competing causal mechanisms.
Crucially, this approach also suggests a means of integrating data
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from emerging technologies that combine electrical, hemody-
namic, and metabolic imaging—a major upcoming challenge for
neuroscience.
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In self-organized critical (SOC) systems avalanche size distributions follow power-laws.
Power-laws have also been observed for neural activity, and so it has been proposed
that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo,
evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings
from awake rats and monkeys, anesthetized cats, and also local field potentials from
humans. We compared these to spiking activity from two established critical models: the
Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental
differences between the neural and the model activity. These differences could be
overcome for both models through a combination of three modifications: (1) subsampling,
(2) increasing the input to the model (this way eliminating the separation of time scales,
which is fundamental to SOC and its avalanche definition), and (3) making the model
slightly sub-critical. The match between the neural activity and the modified models held
not only for the classical avalanche size distributions and estimated branching parameters,
but also for two novel measures (mean avalanche size, and frequency of single spikes), and
for the dependence of all these measures on the temporal bin size. Our results suggest
that neural activity in vivo shows a mélange of avalanches, and not temporally separated
ones, and that their global activity propagation can be approximated by the principle that
one spike on average triggers a little less than one spike in the next step. This implies
that neural activity does not reflect a SOC state but a slightly sub-critical regime without
a separation of time scales. Potential advantages of this regime may be faster information
processing, and a safety margin from super-criticality, which has been linked to epilepsy.

Keywords: self-organized criticality, human intracranial recordings, spike train analysis, highly parallel recordings,

spiking neural networks, multiunit activity, cortex, monkeys

INTRODUCTION
Avalanches, earthquakes, and forest fires are all cascades of activ-
ity in otherwise quiescent systems (Gutenberg and Richter, 1944;
Bak et al., 1987; Drossel and Schwabl, 1992; Frette et al., 1996;

Measures, variables, and abbreviations: α, connection strength or synaptic
strength; β, scaling exponent (DFA); σ , branching parameter; σ ∗, estimated
branching parameter; τ , critical exponent of the avalanche size distribution; bs,
bin size; DFA, detrended fluctuation analysis; f(s), avalanche size distribution; f (s =
1, bs), frequency of avalanches of size s = 1 and their dependence on the bin size; h,
rate of input spikes, also called drive (Hz);<s>, mean avalanche size;<IEI>, aver-
age inter event interval; <IEI> = 1/R; N, number of sampled (model) neurons;
r, rate per unit (Hz); R, population rate (Hz); STS, separation of time scales.

Dickman et al., 2000). Most of the time, the size of these cas-
cades, or avalanches, is small, but sometimes avalanches are large
enough to span the entire system. The size s of an avalanche is
the number of units activated during a cascade, and interestingly,
the distribution f(s) of avalanche sizes in the systems mentioned
above precisely follows a power law:

f (s) ∼ s−τ (1)

where τ is the critical exponent. Critical exponents determine
the macroscopic behavior of a system, and indicate the system’s
universality class (Wilson, 1975).
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Power law distributions are characteristic for second-order
phase transitions, where the system is in a “critical” state. If the
system evolves to reach a critical state without fine-tuning of
control parameters, the system is termed self-organized critical
(SOC) (Bak et al., 1987; Jensen, 1998; Nagler et al., 1999; Beggs
and Plenz, 2003; Frigg, 2003; Beggs and Timme, 2012; Pruessner,
2012).

SOC models show avalanches or cascades of activity across
their units, which may arise from simple local interactions (Bak
et al., 1987; Drossel and Schwabl, 1992; Olami et al., 1992). These
avalanches can include all units in the system. However, most
avalanches are small or intermediate in size. Note that avalanches
of size one, i.e., only one unit is active and no further activity
is triggered, have the highest chance of occurring (see Equation
1). Overall, avalanches are not characterized by an average size,
i.e., the size distribution is scale-free, and only the true size of the
system restricts the avalanche size range.

In nervous systems, scale-free properties have been observed
in local field potentials (LFP), electro- and magnetoencephalo-
graphic (EEG, MEG) activity, and BOLD signals (Linkenkaer-
Hansen et al., 2001; Beggs and Plenz, 2003; Petermann et al.,
2009; Hahn et al., 2010; Ribeiro et al., 2010; Tetzlaff et al., 2010;
Friedman et al., 2012; Poil et al., 2012; Tagliazucchi et al., 2012;
Priesemann et al., 2013; Shriki et al., 2013). They have been found
in different preparations, ranging from cultures to in vivo prepa-
rations, and across different species and phyla: leeches, rats, cats,
monkeys, and humans (Linkenkaer-Hansen et al., 2001; Beggs
and Plenz, 2003; Mazzoni et al., 2007; Pasquale et al., 2008;
Petermann et al., 2009; Priesemann et al., 2009, 2013; Hahn et al.,
2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al.,
2012; Poil et al., 2012; Tagliazucchi et al., 2012; Shriki et al., 2013).
The prevailing hypothesis is that scale-free neural activity arises
from SOC behavior (Linkenkaer-Hansen et al., 2001; Beggs and
Plenz, 2003; Mazzoni et al., 2007; Beggs, 2008; Pasquale et al.,
2008; Petermann et al., 2009; Shew et al., 2009; Hahn et al., 2010;
Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al., 2012;
Poil et al., 2012; Tagliazucchi et al., 2012; Gal and Marom, 2013;
Shriki et al., 2013). However, there are also studies that reported
deviations from scale-free activity: Neural activity was shown to
exhibit sub-critical and super-critical behavior during develop-
ment in vitro (Pasquale et al., 2008; Tetzlaff et al., 2010; Friedman
et al., 2012); and there are also studies in which in vivo neural
activity appeared as sub-critical (Bedard et al., 2006; Priesemann
et al., 2013). Thus, healthy brains seem to be capable of organizing
themselves into a range of states that are not necessarily SOC.

Nevertheless, because neural activity from coarse scale mea-
sures (e.g., population spikes, LFP, MEG, BOLD) often do
show power law scaling, the same was expected for more
basic constituents of neural activity, namely the spiking activity.
Surprisingly, however, spike avalanches often deviated from
power law scaling (Bedard et al., 2006; Pasquale et al., 2008;
Hahn et al., 2010; Tetzlaff et al., 2010). In fact, to the best of our
knowledge, there is not a single study that demonstrated power
laws for spikes in awake animals. The deviations from power law
scaling in previous studies were attributed either to sub- or super-
critical states (Pasquale et al., 2008; Tetzlaff et al., 2010), or to
subsampling effects (Ribeiro et al., 2010). Subsampling refers to

the technical constraint that only a fraction of all neurons in a
given area can be measured. Subsampling can impede the obser-
vation of power law distributions in SOC models (Priesemann
et al., 2009, 2013; Ribeiro et al., 2010; Girardi-Schappo et al.,
2013) and hence a critical system can be misinterpreted as sub- or
super-critical (Priesemann et al., 2009). Therefore, subsampling
effects need to be taken into account when interpreting spike
avalanches.

An important property of SOC systems, which is potentially
absent in neural activity, is the separation of time scales (STS)
(Bak et al., 1987; Drossel and Schwabl, 1992; Clar et al., 1996;
Dickman et al., 2000; Pruessner, 2012; Hartley et al., 2013)
whereby pauses between avalanches last much longer than the
avalanches proper. For example, forest fires last for a much shorter
time than it takes to regrow the forest. Similarly, earthquakes
are much more rapid than the time it takes to build shear stress
through plate tectonics (Drossel and Schwabl, 1992; Clar et al.,
1996, 1999; Baiesi and Paczuski, 2004). Likewise, in the classical
sandpile model, scale-free avalanche distributions are observed
only if the grains are dropped at a low enough rate (Vespignani
and Zapperi, 1997, 1998). This low rate of external input, called
drive, is a necessary condition for the long pauses and hence for
SOC (Bak et al., 1987; Drossel and Schwabl, 1992; Clar et al., 1996;
Dickman et al., 2000; Pruessner, 2012; Hartley et al., 2013).

Neither the neural activity we analyzed here, nor that from
previous studies of neural avalanches showed STS: There were
no long pauses in the neural activity which could be seen as
natural separations between avalanches. Without such pauses,
unambiguous detection of the beginning and the end of an indi-
vidual avalanche is not possible. Hence, the method of temporal
binning had been introduced as a workaround (Beggs and Plenz,
2003) (Figure 1). Here, the choice of the bin size determines what
is considered to be a pause between avalanches. Consequently,
avalanche sizes necessarily change with the choice of the bin size
(see e.g., Beggs and Plenz, 2003; Priesemann et al., 2009, 2013;
Hahn et al., 2010). This implies that also the avalanche size distri-
butions and, more importantly, power law exponents change with
the choice of bin size (Beggs and Plenz, 2003; Priesemann et al.,
2013). This is in marked contrast to fully sampled SOC systems,
in which the power law exponents do not change under temporal
binning as a result of STS. These differences have to be considered
when comparing neural activity in vivo to that of classical SOC
models.

As indicated above, in classical SOC systems each avalanche
is separated from the next one by a long pause. In contrast, in
driven SOC systems, i.e., SOC systems without STS, avalanches
can meet, merge, intermingle, and split up: They form a mélange.
As we demonstrate in this paper, neural activity indeed resembles
such a mélange of avalanches instead of well-separated ones.

To investigate the differences between in vivo and model activ-
ity, we analyzed spike avalanches recorded in awake rats and mon-
keys, anesthetized cats, and LFP avalanches recorded in humans,
and compared these in vivo avalanches to avalanches from an
established SOC model (Bak-Tang-Wiesenfeld model) (Bak et al.,
1987; Dunkelmann and Radons, 1994; Priesemann et al., 2009,
2013), and to those from a stochastic branching model (Harris,
1963; Haldeman and Beggs, 2005).

Frontiers in Systems Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 108 |81

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Priesemann et al. Spike avalanches in vivo

FIGURE 1 | Definition of avalanches sizes, branching parameter σ ∗,

and their change with bin size. (A) To define avalanches, temporal
binning (boxes) is applied to a sequence of spikes (red dots and
diamonds). Empty bins are marked in blue. An avalanche is an ensemble
of spikes in a sequence of non-empty bins. Its size s is the total
number of spikes, as indicated above the bins. The branching parameter
σ ∗

i is the ratio between the number of spikes in one bin, divided by the
number of spikes in the previous bin, as indicated below the bins. If the
previous bin was empty, σi is “not defined” (nd). The estimated
branching parameter σ ∗ for an experiment is the average over all σ ∗

i , σ ∗

= <σ i>. (B) When increasing the bin size, the observed avalanches can
become larger, since pauses “disappear”. The branching parameter σ ∗
also changes with the bin size. (C) Under subsampling, only a fraction of
the units are recorded (red dots), while others are missed (gray). Thereby
subsampling can split a single avalanche into several parts. (A–C) In the
model, spikes are either triggered externally by some drive (red
diamonds), or they are evoked by presynaptic activity (red dots). If a
second avalanche is triggered while the first one is still active [last
avalanche in (A)], then the two avalanches cannot be told apart and are
evaluated as if they were a single one.

RESULTS
As a widely held belief states that mammalian nervous sys-
tems operate in a SOC state, we first briefly recapitulate
the theoretically expected avalanche statistics in this state by
example of a SOC model and a critical stochastic branch-
ing model. We then show that all of the analyzed neural
avalanches in vivo showed clear deviations from the expected
statistics.

The remainder of the results then demonstrates how two sim-
ple and neurophysiologically well-motivated conceptual changes
in the models can serve to align model and in vivo activity with
respect to a large set of measured quantities.

DIFFERENCES BETWEEN NEURAL DYNAMICS IN VIVO AND SOC
The first example model is a simple neural network model, which
is known to have SOC properties (Bak et al., 1987). Furthermore,
this SOC model has been shown to match LFP avalanches in mon-
keys and humans (Priesemann et al., 2009, 2013). In our study,
the model consisted of 2500 non-leaky integrate-and-fire neurons
arranged as a 50 by 50 grid with nearest neighbor connections
of synaptic strength α = 1 (see Methods). In this model, spikes

are either evoked by activity from presynaptic neurons, or by a
random external input to a neuron. This input is termed drive
and has a rate h. For h → 0 and α = 1, this model obeys local
energy conservation (Bonachela et al., 2010), and is equivalent
to the well-known SOC Bak-Tang-Wiesenfeld model (Bak et al.,
1987). h → 0 is necessary for a model to be SOC (Vespignani
and Zapperi, 1997, 1998; Dickman et al., 2000), because it guar-
antees the obligatory STS. h → 0 is implemented by applying
external input only when there is otherwise no activity in the
model. The input triggers an avalanche, i.e., a cascade of events.
The size s of an avalanche is defined as the total number of spikes
evoked by a single input spike. This model is known to show a
power law for f(s) with slope τ ≈ 1 (Figure 2A), and a cutoff at
s ≈ 1000 (Bak et al., 1987). This cutoff reflects the finite size of
the model (Bak et al., 1988; Kadanoff et al., 1989; Ktitarev et al.,
2000).

To later demonstrate that our conclusions are not specific to
the SOC model above, we simulated a second model, namely
a stochastic branching model (see Methods) (Harris, 1963;
Haldeman and Beggs, 2005). Like the SOC model, it was sim-
ulated with 2500 neurons, but in contrast to the SOC model,
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FIGURE 2 | Avalanche size distributions f(s) changed with the bin size for

the in vivo spike trains (D–F), and for the subsampled models (B,C,H,I).

(A) f(s) of the SOC model under full sampling did not depend on the bin size.
(B) Under subsampling (N = 100 neurons), f(s) of the same SOC model
changed with small bin sizes only. (C) In the driven model (h > 0) f(s) changed
for all bin sizes. h was chosen such that the population rate R of the 100

sampled model neurons matched R of the experiments (R ≈ 320 Hz). (D–F)

f(s) recorded in the hippocampus (awake rat), the visual cortex (anesthetized
cat), and the prefrontal cortex (awake monkey). (G–I) shows the same as
(A–C), but for a critical branching model instead of the SOC model. Dashed
lines indicate potential power law slopes to guide the eye. All f(s) are
logarithmically binned and f(s) is in absolute counts.

the k = 4 postsynaptic neurons were chosen randomly at each
step. Activity propagated stochastically, i.e., an active neuron acti-
vated each of its k postsynaptic neurons with probability p =
α/k. Like the SOC model, this model is critical for α = 1, and
sub- (super-) critical for α < 1 (α > 1). The critical stochastic
branching model with STS also showed a power law distribution
for f(s), but with a different critical exponent (τ = 1.5,
Figure 2G).

The results for the stochastic branching model and the SOC
model were qualitatively the same for all measures used below.
The similarity also held when the models were modified analo-
gously. Therefore, in the following, we mainly report results for
the SOC model.

Our critical models were contrasted with highly parallel
recordings from awake rats (hippocampus), awake monkeys (pre-
frontal cortex), and from an anesthetized cat (visual cortex
area 18). The avalanche distributions f(s) from these in vivo
spike recordings were all very similar, but clearly differed from
those obtained from the fully sampled critical models (compare
Figures 2D–F with A,G). In particular, the in vivo f(s) neither fol-
lowed a power law, in contrast to what is expected for a SOC
system, nor an exponential distribution, as would be expected
for independent Poissonian activity (Figures S1 and S2 show the
in vivo f(s) for each experiment in double-logarithmic and log-
linear scales, respectively). Quantitatively, the f(s) were best fit in
16 out of 17 experiments by a lognormal distribution
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f (s) ∼ e
− (ln(s)−μ)2

2σ2

with parameters μ = 0.89 ± 0.25 and variance σ 2 = 1.2 ± 0.1,
given a bin size of 1 average inter event interval (<IEI>) (see
Clauset et al., 2007; Priesemann et al., 2013 for details). Based
on these parameters the maximum of f(s) was at s = 0.87 ±
0.38 (mean ± SD), which means that f(s) was monotonically
decreasing. Two alternative distributions, namely stretched expo-
nentials and power laws with cutoff, also provided reasonable
fits, with likelihoods ∼1% worse than the one for the lognormal
distribution.

Interestingly, all in vivo avalanche distributions were similar
despite changes in the population rate R by a factor of 50 (from
37 to 1560 Hz) across the 17 experiments (Figures S1, S2).

Note that some of the f(s) of the rat experiments could also be
approximated by a power law, but at most for one selected bin
size (Figure S3A). When slightly changing the bin size, the f(s)
clearly deviated from power law scaling (Figure S3B). This is in
stark contrast to the behavior expected for SOC systems.

A second striking difference between critical models and
in vivo activity was that the in vivo f(s) changed with the bin size
across a range from 0.5 to 128 ms. The reason for the bin size
dependence was that in vivo recordings showed pauses of variable
length between the spikes, while SOC activity showed only the
long pauses between avalanches, which are due to STS. In order
to introduce pauses of variable length into the model avalanches,
one can apply subsampling and drop STS (see next two sections).

SUBSAMPLING INTRODUCES PAUSES AT SHORT TIME SCALES
Subsampling refers to the problem that we are far from being
able to sample all spikes from all neurons, even for a single brain
area (Figure 1C). Thus, for a careful comparison between in vivo
recordings and models, the activity from the models should be
subsampled in the same manner as in the experiments. Because
in each experiment around 100 neurons were recorded in paral-
lel, in the model we constrained the sampling also to N = 100
randomly chosen neurons out of the 2500. We fixed the subsam-
pling by the number of neurons, and not the fraction, because
running these critical models with millions of neurons is beyond
our computational capacities, and because the qualitative results
did not change in larger models, i.e., when decreasing the fraction
(see below).

When applying subsampling, the model avalanche size distri-
bution f(s) changed with bin size (Figures 2B,H). A change in
bin size affected f(s), because subsampling introduces apparent
pauses in a single avalanche (Figure 1C). These apparent pauses
were relatively short compared to the duration of an avalanche,
and compared to the pauses between avalanches on the full model
(by definition of STS). Therefore, when subsampling, f(s) changed
only with small bin sizes but stopped to change its shape with
larger ones (Figures 2B,H).

These results also held when using a larger model and sampling
the same number of neurons, i.e., a smaller fraction of neurons. In
this case, the distance and hence the traveling time of avalanches
between sampled neurons became larger and longer, and the inter
spike intervals became unrealistically long. Nonetheless, at large
bin size, a similar fraction of small avalanches was observed (due

to STS). As a consequence, f(s) also stopped changing like in
smaller models, and never became as flat as the in vivo f(s). Hence,
the behavior of a larger model was the same as that of smaller
ones, but on a longer time scale.

Subsampling the SOC model did not only introduce a depen-
dence of f(s) on the bin size, it also affected the cutoff of f(s).
Thereby, the absolute value of the cutoff became more similar for
the model and the in vivo f(s) (Figures 2B,H).

In sum, acknowledging subsampling effects in the model
allowed for a better match between the model and the in vivo
activity, but only for small bin sizes up to a few milliseconds. For
larger bin sizes, the in vivo f(s) continued to become flatter, while
the model f(s) stopped to change their shape. This indicated that a
modification to the model dynamics itself was necessary to match
in vivo activity.

AN INCREASE IN DRIVE RATE h CREATES A MÉLANGE OF AVALANCHES
We hypothesized that in vivo and SOC activity differed because
SOC models have STS (Vespignani and Zapperi, 1997, 1998;
Dickman et al., 2000), which is necessarily absent in vivo. STS
can be eliminated from the models by increasing the drive rate
h. We increased h in such a way that the model population
rate R matched the in vivo population rate under subsampling
(h = 0.02 Hz, and R = 320 Hz; single neuron rate r in the model:
r = R/N = 3.2 Hz). In this driven SOC model, the avalanches
were no longer separated by long pauses (Figure 3B). Instead, at
any point in time, avalanches could start, meet, intermingle, split
into branches, or die out (Figures 1, 3B). In such a mélange of
avalanches, single avalanches can no longer be tracked.

The mélange of avalanches in the driven model hardly showed
any pauses when all neurons were sampled (Figure 3B). However,
under subsampling, pauses were more frequent. Thus, sub-
sampling allowed for an extraction of apparent avalanches by
applying temporal binning (Figure 1). Note that these appar-
ent avalanches do not correspond to the avalanches observed
in classical SOC models in which avalanches are separated by
long pauses, and are thereby defined unambiguously. However,
the apparent avalanches from the driven models are conceptu-
ally the same as those extracted from in vivo recordings because
avalanches in both cases are extracted with the same method.

As expected for the driven, subsampled SOC model, f(s)
changed with all bin sizes (Figures 2C,I), and thereby resem-
bled the in vivo f(s) much better than the original SOC model
(Figure 2).

DRIVEN CRITICAL AND DRIVEN SUB-CRITICAL STATES
In the following, we address the question whether subsampling
and the elimination of STS is sufficient to match the model
activity with the in vivo activity, or whether it is necessary to
introduce in addition deviations from criticality.

To tune models away from criticality, we made use of the fact
that SOC and branching models are only critical in the con-
servative limit (α = 1) (Harris, 1963; Bonachela and Muñoz,
2009; Bonachela et al., 2010). Hence, by introducing dissipation
(α < 1) these models can be made sub-critical. In fact, the model
dynamics showed a smooth transition from the “driven SOC”
state (α = 1) to pure Poisson activity (α = 0) (Figures 3, 4) with

Frontiers in Systems Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 108 |84

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Priesemann et al. Spike avalanches in vivo

FIGURE 3 | The population spike rate of the (modified) SOC model

depended on the connection strength α and the rate of input spikes h
(drive). h and α were balanced such that the rate of each unit was r = 5 Hz,
except for (A), where α = 1 and h → 0 (SOC model). In (A), the broken
axes indicate that the pauses between subsequent avalanches are much
longer than the avalanche proper (separation of time scales). (B) α = 1,
h = 0.02 Hz, r = 5 Hz (driven SOC). (C) α = 0.95, h = 0.5 Hz, r = 5 Hz
(driven sub-critical). (D) α = 0, h = r = 5 Hz (Poisson). In (A–D), the
population rate time course is indicated in black; the scale bar indicates the
firing rate per neuron. Black dots show the spike raster from 100 randomly
chosen units; the blue background denotes pauses, i.e., none of the 2500
neurons spiked. Note the absence of pauses in (C,D).

decreasing α. In principle, a decrease in α also decreased the fir-
ing rate r of each unit. To still maintain a constant firing rate r,
a concomitant increase in the drive rate h was applied. In this
way, the model could make the transition from driven SOC to
Poissonian activity without a change in r (Figure 4, black line).
Given a fixed r, a decrease in α decreased the variability of the
models population rate (Figure 3).

To understand which network dynamics between driven criti-
cal and Poissonian accounted best for the in vivo spike avalanches,
we identified those measures in the model which depended most
sensitively on α under subsampling: α had a prominent effect
on the avalanche size distribution f(s), in particular how f(s)
depended on the bin size. We quantified this below using the
following avalanche measures: the mean avalanche size (<s>),
the frequency of avalanches of size s = 1 (f (s = 1)), and the esti-
mated branching parameter σ ∗. The way in which these measures
changed with the bin size depended sensitively on α. In addition,
we estimated the scaling exponent β of the “detrended fluctua-
tion analysis” (DFA) (Peng et al., 1994, 1995; Kantelhardt et al.,
2002). (Note that the scaling exponent (β) is often denoted as α
in the literature). The results of these analyses are presented in
detail below, and compared one by one to the in vivo results.

FIGURE 4 | In the model, the spike rate r of a unit depended on the

synaptic strength α and the rate of input spikes (h). With increasing h or
α, the rate of each unit increased. The black line indicates the parameter
combination of α and h, for which r = 5 Hz.

THE MEAN AVALANCHES SIZE
The mean avalanche size (<s>) from the subsampled model fol-
lowed a power law with increasing bin size for α = 1 (driven
SOC), and followed an exponential for α = 0 (Poissonian activ-
ity) (Figure 5A). For intermediate values of α, the relation
changed gradually.

For the experiments, the observed <s> at a given bin size
depended strongly on the population spike rate R that varied con-
siderably between experiments (R ranged from 37 Hz to 1.5 kHz).
To diminish the impact of R, we used a normalized bin size, i.e., a
bin size in units of average inter-event-intervals (1<IEI>= 1/R).
Using the normalized bin size, the <s> of all experiments over-
lapped (Figure 5A, gray lines). However, the<s> did not follow a
power law with changing bin size in vivo, in contrast to the driven
critical model. In fact, the in vivo <s> was best matched by the
<s> of the driven, sub-critical models (α ≈ 0.99). Thus, com-
paring the in vivo and model<s> indicated that spike avalanches
resembled a driven sub-critical regime more closely than a driven
SOC state.

THE FREQUENCY OF AVALANCHES OF SIZE ONE
The frequency of avalanches of size s = 1, f (s = 1, bs) quanti-
fies how f(s) decayed with the bin size (bs) at s = 1, i.e., how the
intercept of f(s) with the y-axis in Figure 2 changed. f(s) at s = 1
was equally spaced from bin size 1 to 32 ms for the driven critical
models under subsampling (Figures 2C,I) which is remarkable as
it corresponds to a power law behavior of f (s = 1, bs) for the
driven SOC model (black line in Figure 5B; note that the x-axis
here is in <IEI>, and 1 <IEI> = 2 ms in the model). For the
sub-critical models (α < 1), f (s = 1, bs) decayed more steeply
than a power law. For the Poissonian case (α = 0), it followed an
exponential. In this respect, f (s = 1, bs) and<s> showed similar
behaviors with α.

f (s = 1, bs) is a promising new measure to assess criticality
under subsampling, because in contrast to many other measures,
its behavior did not change with the subsampling strategy: For the
driven SOC model, it showed power law scaling independently
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FIGURE 5 | Two new avalanche measures. (A) The mean avalanche size and
(B) the frequency of avalanches with size s = 1, f (s = 1, bs), changed with the
bin size (bs) in the model (colored) and in the experiments (gray). The colored

lines show f (s = 1, bs) for the model with varying synaptic strength α. In the
model, the drive rate h was adjusted such that each neuron spiked with r ≈ 5 Hz.
In (B), f (s = 1, bs) was normalized such that f (s = 1, bs = 1<IEI>) = 1.

FIGURE 6 | The frequency of single events f (s = 1, bs). Decreased with
the bin size (bs) as a power law, independently of the subsampling set
in the driven SOC model (α = 1, r = 5 Hz). The subsampling set is indicated
in the right part of the figure. It was chosen as follows: blue f (s = 1, bs):
sampling 64 random units; green f (s = 1, bs): sampling 100 random units
(both, blue, and green units together); red and turquoise: sampling 8 × 8
units arranged in a grid with distance 1, and distance 5, respectively; pink
and beige: sampling 4 × 4 units with distance 1, and 5, respectively.

of the number and spatial arrangement of the sampled units
(Figure 6). However, the slope of the power law did change
due to the model’s next-neighbor topology: With smaller dis-
tances between sampled sites, the power laws became flatter
(red and pink traces in Figure 6). For the stochastic branch-
ing model, the same results held, but the power law slopes did
not change under subsampling, owing to the model’s random
topology.

The in vivo f (s = 1, bs) did not follow a power law (Figure 5B,
gray lines), and for most cases did not follow an exponential
dependency either (Figure 5B). The best approximation for the
in vivo f (s = 1, bs) was the driven, slightly sub-critical model
(α ≈ 0.99). This is in agreement with the results for <s>.

The precise value of α necessary to achieve the best match
between model and experiments potentially depended on a
number of factors (e.g., finite size effects). However, the main

result that <s> and f (s = 1, bs) observed in vivo followed nei-
ther a power law nor an exponential distribution excludes both,
critical and Poissonian states of operation.

THE BRANCHING PARAMETER σ

A widely used measure to estimate whether the in vivo avalanches
reflected a driven SOC brain state is the branching parame-
ter σ ∗, which has been used in many past studies about neural
avalanches to test whether the brain was SOC (Beggs and Plenz,
2003; Beggs, 2007; Plenz and Thiagarajan, 2007; Priesemann et al.,
2009, 2013; Shew et al., 2009; Klaus et al., 2011; Shriki et al.,
2013). The analysis of σ ∗ was initially inspired by the theory of
branching processes (Harris, 1963), in which σ = 1 guarantees
that a branching process is critical. Note, however, that estimating
σ ∗ from data may yield misleading results, because σ ∗ depends
on various factors such as the bin size (Beggs and Plenz, 2003;
Priesemann et al., 2013), the subsampling geometry (Priesemann
et al., 2009), and STS (i.e., h → 0 vs. h > 0). We next show how
σ ∗ depended on these factors in our models, and then use these
results to estimate whether the in vivo avalanches might reflect a
SOC state.

For the modified SOC model, we expect that σ equals α. For
the second model we used, i.e. the stochastic branching model,
we know by definition of the model that σ equals α. However,
when estimating σ ∗ in this model by applying temporal binning
to the model activity, finding the expected σ ∗ = α was the excep-
tion, not the rule (Figure S4; results were very similar to the ones
for the SOC model in Figure 7). In addition, σ ∗ changed with
the bin size, although the model parameter σ proper is obviously
bin size independent (Figures 7, S4). Although the estimated σ ∗
failed to approximate the true σ , σ ∗ may still be a viable approach
to compare model and in vivo activity in the following. Since the
results for both models were basically the same, we again focus on
the results for the modified SOC model.

With STS, σ ∗ always approached zero for large bin sizes inde-
pendently of model state and subsampling approach (dashed lines
in Figures 7A,B, S4). For intermediate bin sizes and under sub-
sampling, σ ∗ varied widely. σ ∗ tended to be smaller for smaller
α, but the absolute value of σ ∗ apparently cannot serve as an
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FIGURE 7 | The estimated branching parameter σ ∗ changed with bin

size. (A,B) In the model, σ ∗ depended on the synaptic strength α and the bin
size. For the driven model, the spike rate was fixed to r = 5 Hz (full lines),
while for the model with separation of time scales the drive was infinitesimal
small (h → 0; dashed lines). For h → 0 and α = 1, the model is SOC (black

dashed lines). (A) Results for the fully sampled model. (B) Results for
subsampling N = 100 neurons from the model. (C) σ ∗ for the spiking activity
recorded in monkeys, cats, and rats varied with the bin size, but was very
similar across species and experiments. It was well approximated by the
driven model with α = 0.98 (green line).

indicator for the state of the system (Figures 7A,B). Thus, under
most analysis conditions, the estimated σ ∗ did not show the
intended result (σ ∗ = α). Note that in theory, σ ∗ should not
change at all with the bin size.

Without STS (full lines in Figures 7A,B, S4), σ ∗ was ≤1 for
small bin sizes, ≥1 for intermediate bin sizes, and approximated
unity for large bin sizes – independently of the state of the model.
This shows that the widely held assumption that an estimated
σ ∗ > 1 (σ ∗ < 1) corresponds to a super-critical (sub-critical)
state of the system is likely incorrect, especially for the ubiquitous
scenario of subsampling.

Although the expected σ ∗ = 1 is neither unique to critical
systems, nor indicative of criticality, σ ∗ and its dependence on
the bin size still reflect the intrinsic dynamics of the system.
Therefore, comparing σ ∗ between in vivo and model activ-
ity may still help to indicate the state of the system. Note
that to estimate the in vivo σ ∗ we used the normalized bin
size (in <IEI>) to account for the different population rates
R in the experiments. σ ∗ was very similar across all experi-
ments (Figure 7C) despite a 50-fold difference in R. This indi-
cates once again that neural avalanches in vivo hardly dif-
fer across mammalian species (from rats to monkeys), across
brain structures (from hippocampus to prefrontal cortex), and
across cognitive states (from anesthetized to awake behaving
animals).

Given the complex dependence of σ ∗ on the bin size, how can
σ ∗ be used to estimate the precise state of the neural network?
First, for all in vivo avalanches, σ ∗ approximated unity for large
bin size (Figure 7C). However, this simply indicates that spiking
activity in vivo lacks STS. Second, the maximum of σ ∗ under sub-
sampling may be an indicator of the state. The maximum of σ ∗
increased with increasing α. For α = 1, σ ∗ showed a maximum
of ≈3 at bs ≈100 ms. [The same values held for the stochastic
branching model (Figure S4)]. For the experiments, the maxi-
mum value of σ ∗ was only around 1.4. Overall, the best match
for the in vivo σ ∗ was achieved by the driven, slightly sub-critical
models (α ≈ 0.98). This result is in line with the previous results
for f (s = 1, bs) and<s>.

FIGURE 8 | The exponent β of the DFA. Depended on the synaptic
strength α in the model (diamonds), and was affected by subsampling
(black: fully sampled model; green: subsampled model). For the
experiments, β (gray circles) and the respective mean values (gray bars)
ranged between 0.55 and 0.9.

THE SCALING EXPONENT β

In DFA, the scaling exponent β quantifies the memory decay
in a time series. β = 0.5 indicates that a time series has no
memory (uncorrelated); β ≈ 1 indicates 1/f (pink) noise; and
β ≈ 1.5 Brownian noise. We estimated β for the population rate
time series of the model (r = 5 Hz), and for each experiment.
As expected, under full sampling the model with α = 1 showed
β ≈ 1 (Figure 8, black diamonds); with decreasing α, β decreased
as well; and for α = 0 (Poisson), we found β ≈ 0.5. Qualitatively,
the same results held under subsampling, but β tended to be
underestimated (Figure 8, green diamonds).

The in vivo activity showed neither β = 1 nor β = 0.5, but β
ranged between 0.55 and 0.9. These β values correspond to those
of the sub-critical, driven model with 0.98 ≤ α < 0.999.

All the above measures indicated that driven, slightly sub-
critical models provided the best match to in vivo spike
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FIGURE 9 | Avalanche size distributions f(s) for in vivo spikes and for

spikes from the driven, sub-critical models. (A) f(s) of one awake
monkey. Dots indicate the raw f(s), while lines are the f(s) with
logarithmic binning. (B) f(s) for the driven, sub-critical models with
α = 0.99, and r = 5 Hz; model 1 denotes the modified SOC model (full

lines), and model 2 the stochastic branching model (dashed lines). (C)

f(s) of all in in vivo spike recordings (rat, cat, monkey), together with the
f(s) of the driven, subcritical models (same as in B). All bin sizes were in
average inter event intervals (<IEI>), and f(s) were normalized such that
f (s = 1, bs = 1):= 1.

avalanches. Most of these measures were derived from the
avalanche size distribution, and hence we expect a good match
between the in vivo f(s), and the f(s) of the driven models with
α ≈ 0.99. Indeed, given a normalized bin size, both sub-critical
models fitted the in vivo f(s) well (Figure 9). The small differences
for large s (s > 100) may potentially be overcome by applying
a more realistic drive instead of uncorrelated Poissonian drive,
for example one that reflects the statistics of neural activity (as
lined out here), or the statistics of our environment (Field, 1987;
Van der Schaaf and van Hateren, 1996; Simoncelli and Olshausen,
2001; Sinz et al., 2009).

LFP AVALANCHES IN HUMANS
Approximate power law distributions have been reported for
coarse measures of neural activity, such as population spikes,
LFP, EEG, MEG, and BOLD activity (Linkenkaer-Hansen et al.,
2001; Beggs and Plenz, 2003; Petermann et al., 2009; Hahn et al.,
2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al.,
2012; Poil et al., 2012; Tagliazucchi et al., 2012; Priesemann
et al., 2013; Shriki et al., 2013). In the following, we show
that also LFP recordings in humans indicate a driven, slightly
subcritical regime, despite their approximate power law scaling
of f(s).

LFPs were recorded using intracranial depth electrodes from
five human subjects. Each subject had between 44 and 63 record-
ing contacts implanted. From these recordings, we extracted
avalanches of enhanced activity (see Methods and Priesemann
et al., 2013). The LFP f(s) closely followed a power law
(Figure 10A), and the slope of the power law decreased with
increasing bin sizes. This is in contrast to SOC systems in which
the slope does not change with temporal binning (Figures 2A,G),
and indicates that LFP avalanches, like the spike avalanches, lack
clear STS.

In general, the LFP f(s) showed a better approximation to
power law scaling than any of the spike avalanche distribu-
tions (Figures 2, 10). Despite an approximate power law scaling
for f(s), all the other measures we used here [i.e., <s>, f (s =

1, bs), σ ∗, and β] indicated a sub-critical regime: The <s>
and the f (s = 1, bs) both deviated from power law scaling
(Figure 10B); the branching parameter did not show a pro-
nounced peak (Figure 11); and the scaling exponent β of the DFA
was smaller than unity (mean(β) = 0.6; Figure 7). This is in line
with our previous study on the same data (Priesemann et al.,
2013), and with our results for spiking activity. In sum, despite
approximate power-law scaling in f(s), all the other measures indi-
cated a driven, slightly sub-critical regime on the level of LFP
activity.

DISCUSSION
This study challenges the hypothesis that mammalian brains
operate in a SOC state, as has been repeatedly suggested
(Linkenkaer-Hansen et al., 2001; Beggs and Plenz, 2003;
Haldeman and Beggs, 2005; Levina et al., 2007a; Hsu et al.,
2008; Pasquale et al., 2008; Stewart and Plenz, 2008; Petermann
et al., 2009; Priesemann et al., 2009; Shew et al., 2009; Hahn
et al., 2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Poil et al.,
2012; Tagliazucchi et al., 2012; Shriki et al., 2013). Despite
these claims, evidence for SOC was found lacking for spik-
ing data, which are generally considered an important and
reliable marker of neural activity. To test the SOC hypothe-
sis, we therefore analyzed in vivo spiking activity from three
mammalian species and local field potential recordings from the
human brain using established measures of criticality, and also
novel ones that are robust to common shortcomings of exper-
imental data, such as subsampling. We particularly focused on
systematic changes of these measures with the choice of the
bin size.

Spike avalanches from rats, cats, and monkeys, and LFP
avalanches from humans showed deviations from the behavior
expected for SOC, thereby contradicting the SOC hypothesis.
To reproduce the in vivo results and provide potential explana-
tions for their deviations from SOC, we modified the models
capable of critical behavior. We found a close match between
in vivo and model behavior (1) if those models were subsampled,
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FIGURE 10 | (A) The size distribution f(s) of LFP avalanches from intracranial
depth electrodes in humans followed power laws. The slope of the power
laws changed with the bin size (see legend). The bin size was changed over
a 1000-fold range, from sampling resolution (400 Hz, i.e., 2.5 ms) to
“gluing” everything together at bs ≈ 2500 ms. The bin size closest to one
inter event interval is marked in purple (bs = 80 ms, see Methods). (B)

Neither the mean avalanche size (<s>), nor the frequency of avalanches of
size s = 1, f(s = 1, bs), showed a power law. Each line represents the
results for one recording session (<s> in black, f (s = 1, bs) in gray).

and (2) if the STS – a fundamental property of SOC sys-
tems – was eliminated, and (3) if the models were tuned to a
sub-critical regime. As these results generalized over two very
different models, we interpret results from the in vivo record-
ings here as evidence that mammalian nervous systems operate
in a driven, sub-critical regime. This regime, albeit not critical,
was, however, remarkably similar across species and experimental
conditions.

UNIVERSAL BEHAVIOR OF SPIKE AVALANCHE DISTRIBUTIONS
ACROSS RECORDING AREAS, VIGILANCE STATES AND SPECIES
The observed avalanche size distributions f(s) were similar across
species and recording areas (hippocampus in rats, visual cortex
in cats, prefrontal cortex in monkeys). A similar universality of
f(s) across recording areas has been reported by Ribeiro and col-
leagues (hippocampus, somatosensory cortex, and visual cortex
in rats) (Ribeiro et al., 2010). Thus, avalanche activity seems to

FIGURE 11 | The estimated branching parameter σ ∗ from the LFP

avalanches in humans changed with the bin size. Each of the lines
shows the results for one recording session. (+) indicates σ ∗ = 1 and
bs = 80 ms ≈ 1 <IEI> to guide the eye.

be independent of the function and the precise anatomy of an
area. This might either indicate that avalanches are not a sen-
sitive measure of neural dynamics, or that activity propagation
must follow principles that are independent of the specific role
that a brain area plays in information processing. The first argu-
ment is not likely applicable, since avalanches change under data
shuffling and they sensitively reflect the correlation structure in
the data (e.g., Figure 1 in Priesemann et al., 2013). The second
argument might indeed hold. Hence, the challenge is to identify
the principle that gives rise to these apparently universal spike
avalanche distributions. This principle may in fact be very simple.
As discussed below, our modified SOC model, as well as a simple
branching model, suggests that on average one spike gives rise to
a little less than one subsequent spike, and that quiescence in the
population activity is prevented by “input spikes” which trigger
avalanches at a low rate. This principle differs from SOC, where
one spike on average gives rise to exactly one subsequent spike,
and the rate of input spikes approaches zero (STS). As a conse-
quence, SOC activity shows only one avalanche at a time, while
the driven, slightly sub-critical regime shows instead a mélange of
avalanches.

EMPIRICAL AVALANCHE DISTRIBUTIONS RULE OUT THE CRITICAL
AND THE POISSON STATES
Let us first summarize the conclusions that can be drawn from
the analyses of the in vivo spike avalanches alone, without refer-
ring to modeling. For f(s), neither was the power law scal-
ing found, that is characteristic for SOC, nor did the novel
measures (f (s = 1, bs), <s>) support the hypothesis of criti-
cal behavior. Thus, the hypothesis that spike avalanches show
signs of SOC can be ruled out. In addition, we can rule out
the hypothesis of largely independent Poissonian behavior of
the spiking units (that is often used in models), because in
this case the avalanche distributions should have shown expo-
nential behavior, which was not observed. We therefore con-
clude that spiking activity is neither (self-organized) critical nor
Poissonian.
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LIMITATIONS OF THE MODELS AND MEASURES
The SOC model used here was admittedly simple – it comprised
neither inhibitory connections nor leakage in the neurons; synap-
tic connections had a homogeneous nearest-neighbor topology
and were all of identical strength α. We chose this model because
the basic variant (σ = 1, h → 0; i.e., the Bak-Tang-Wiesenfeld
model; Bak et al., 1987) is extensively studied in the context of
SOC (De Menech et al., 1998; Jensen, 1998; Vespignani et al.,
1998; Dickman et al., 2000; Dhar, 2006; Pruessner, 2012). The
second model we used was a stochastic branching model (Harris,
1963; Haldeman and Beggs, 2005). It was set up to be compa-
rable to the SOC model, but had a random topology, and the
activity propagated stochastically with p = α/k. In this model,
the number of connections k hardly affected the results (see also
Haldeman and Beggs, 2005).

For both models, the avalanche dynamics was qualitatively
similar. Hence, the model results were not specific to the topology
(local vs. random), the number of connections k, and the pre-
cise spike propagation mechanisms (deterministic vs. stochastic).
In contrast, implementing leaky model neurons may hinder SOC
altogether (Bonachela and Muñoz, 2009; Bonachela et al., 2010).
This in itself is an argument against the hypothesis that neural
activity is SOC, but it could still be “quasi-critical” (Bonachela
and Muñoz, 2009; Bonachela et al., 2010). However, our results
indicate sub-criticality.

We note that the power law scaling observed for the novel mea-
sures (f (s = 1, bs), <s>) in the critical models has not been
derived analytically yet. However, in both critical models the
novel measures showed power law scaling despite the different
topology and the different spike propagation rules, and hence
we expect this behavior to be characteristic for critical dynamics.
Still, for now these measures can only be used as tools to compare
model and in vivo dynamics, and not for determining scaling laws.

ON THE PLAUSIBILITY OF EXTERNAL DRIVE
Spike and LFP avalanches recorded in rats, cats, and primates
were best matched by a driven sub-critical model. The drive in
the model consisted of input spikes, i.e., of spikes not caused by
presynaptic spikes from within the model. Given their impor-
tance for a successful match between in vivo and model activity,
we may ask what the in vivo counterpart of the input spikes in
the models could be. In vivo, such input spikes can be provided
by at least three sources—by sensory input elicited by stimuli
in the outside world, from brain structures other than the one
under consideration, or by internal activation which presumably
occurs spontaneously. Such spontaneous activity can for exam-
ple be generated by pacemaker cell activity (Selverston, 2008;
Longtin, 2013), or vesicle fusion at a presynaptic terminal with-
out a preceding spike (Fredj and Burrone, 2009). With all these
known input sources in vivo, it came as no surprise that the model
required input spikes (i.e., drive) to be able to match in vivo
activity.

INPUT SPIKES MOST LIKELY DO NOT CONSTITUTE A LARGE FRACTION
OF THE OBSERVED ACTIVITY
The fraction of “input spikes” (drive) among all the spikes of the
model is negligible at criticality (α = 1). This fraction, given a

constant spike rate r, increases with tuning toward sub-criticality
(α < 1), until all spikes are input spikes in the Poisson state
(α = 0), and none arises from synaptic transmission. For exam-
ple, in the driven, slightly sub-critical model (α = 0.99), only one
in ∼3600 spikes was an input spike. To illustrate this number,
imagine a neuron that spikes with a rate of 1 Hz. This neuron
fires spontaneously (i.e., an “input spike”) only once an hour.
This example is simplistic, because it assumes that the input is
homogeneous, however, it illustrates well that the fraction of
input spikes (from the external world, other brain structures, or
of stochastic origin; see above) in the driven, sub-critical regime
that reproduced the in vivo findings is extremely small compared
to the overall level of activity.

CONCEPTUAL CONSIDERATIONS ON THE ANALYSIS OF NEURAL
AVALANCHES AND THE CRITICAL STATE
While we have so far discussed how in vivo spike avalanches sug-
gest a driven sub-critical regime of operation for mammalian ner-
vous systems, several neglected but important conceptual issues
with the analysis of neural avalanches surfaced in this study. These
are discussed in the following.

THE TERM “AVALANCHE” REFERS TO DIFFERENT ENTITIES IN SOC
MODELS AND IN THE ANALYSIS OF NEURAL DATA
Although it is rarely fully acknowledged, the term “avalanche”
refers to different entities for activity in SOC models and for
neural activity. In SOC models, an avalanche is a cascade of
events that originates from a single input event (Bak et al., 1987).
Subsequent avalanches are always separated by pauses (STS). In
contrast, for neural activity, avalanches are defined using tem-
poral binning (Beggs and Plenz, 2003), because neural activity
lacks clear pauses that could naturally serve to define the begin-
ning and end of an avalanche. Such avalanches can be defined
on any spike time series, irrespective of its origin. Consequently,
“binning-dependent avalanches” do not correspond to classical
SOC avalanches. Although these two types of “avalanches” are
different entities, it is customary to use the same term when
referring to any one of them. In the present study, we analyzed
the “binning-dependent” avalanches in both cases, in the driven
models and in the in vivo activity. This justifies a comparison
between model and in vivo activity, and was also necessary as
binning-dependent avalanches are the de-facto standard in the
analysis of neural systems, although previous studies frequently
alluded to SOC avalanches.

AVALANCHE DEFINITIONS IN HIGHLY PARALLEL RECORDINGS
For neural activity, avalanches are commonly defined using tem-
poral binning, and this definition relies on pauses. We can expect
that physiologically relevant pauses (i.e., pauses of a few ms) van-
ish in spike recordings, when activity of a large number of neurons
is recorded in parallel. For example, if each neuron spikes with
1 Hz, sampling only 100 neurons in parallel would frequently pro-
duce pauses that are several milliseconds long. However, when
sampling thousands or even millions of such neurons, pauses
would probably be absent. Without pauses, neither the classical
nor the binning-dependent avalanche definition is applicable, and
consequently, alternative approaches to assess criticality have to
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be established. Currently, these approaches threshold the activ-
ity and thereby introduce pauses (e.g., Spasojević et al., 1996;
Papanikolaou et al., 2011; Poil et al., 2012). As an alternative
approach, we propose to apply systematic subsampling. Both
approaches allow using the binning-dependent avalanche defini-
tions again.

CAN WE DETERMINE A SPECIFIC CRITICAL EXPONENT FOR NEURAL
DATA?
Avalanche size distributions of critical branching processes have
an exponent of τ = 1.5 (Harris, 1963). Since branching processes
have some resemblance with propagation of neural activity, it was
hypothesized that neural avalanches should also show τ = 1.5.
Indeed, τ = 1.5 has been observed (Beggs and Plenz, 2003, 2004;
Stewart and Plenz, 2008; Hahn et al., 2010; Priesemann et al.,
2013), but only for specific bin sizes. For example, Beggs and
Plenz showed in their seminal work that τ = 1.5 holds for one
specific bin size (4 ms), but when changing the bin size from 1
to 16 ms, the exponent decreased from 2 to 1.2 (Beggs and Plenz,
2003). Similarly, for the LFP avalanches shown here, τ = 1.5 was
observed only for a bin size of ∼80 ms, and with varying the
bin size from 2.5 ms to ∼2.5 s, the exponent changed from 3
to 1 (Figure 10A) (Priesemann et al., 2013). Changes in τ were
also observed in the driven, subsampled SOC model (Figure 2C).
Thus, drive and subsampling may underlie the variation of τ
in experiments as well. However, irrespective of its origin, it is
an open question how to reconcile the variation of τ in neu-
ral data with the fixed τ in critical systems. One proposal is to
use a specific bin size for neural data, namely one average inter-
event-interval (<IEI>) (Beggs and Plenz, 2003). However, there
is no theoretical underpinning yet why this bin size should be
preferred over others, and even for using this bin size, τ was
found to be 1.8 in spike avalanches in anesthetized cats (Hahn
et al., 2010), instead of 1.5. Thus, in neural data, there is not
a unique τ , and therefore there is no specific critical exponent
for neural activity, which would allow to link neural activity to a
universality class.

Since neural avalanche distributions change with the bin size
(Beggs and Plenz, 2003; Priesemann et al., 2009, 2013; Benayoun
et al., 2010; Hahn et al., 2010), we side with Benayoun et al., who
“do not read any significance into the particular slope observed.
[. . . ] In our view, any good model of neural avalanches must
reproduce the variability in the observed slope of the power law
with temporal bin width.” (Benayoun et al., 2010) Though we
here did not observe power laws for the in vivo f(s), our model
could reproduce the in vivo spike f(s) and their change with tem-
poral binning. It could also reproduce the bin-size dependent
changes of novel and established measures of avalanche dynam-
ics (f (s = 1, bs), <s>, σ ∗, DFA exponent). To the best of our
knowledge, this is the first model that matched not only the
avalanche properties for a single bin size, but also their changes
with changing bin size.

SUBSAMPLING EFFECTS IN THE ASSESSMENT OF CRITICALITY
Subsampling is unavoidable in spike avalanche recordings in vivo,
and is helpful when comparing neural activity to model activity
(Priesemann et al., 2009). However, subsampling was also shown

to complicate criticality analysis because it can distort avalanche
measures (Priesemann et al., 2009, 2013; Ribeiro et al., 2010).
To overcome this problem, we here developed avalanche mea-
sures that are not distorted by subsampling. One example is the
bin size dependence of the frequency of avalanches of size one
(f (s = 1, bs)). This measure robustly showed power-law scal-
ing in the driven SOC states, and exponential scaling in the
Poisson state, independent of subsampling strategies (Figure 6).
Therefore, we propose to use f (s = 1, bs) as a robust measure for
criticality analysis.

Subsampling effects can appear very strong if one uses a fixed
bin size, e.g., 1 ms as in Ribeiro et al. (2014). We used instead
a normalized bin size, which accounts for the problem that the
population rate R changes with the number of sampled neurons.
Using a normalized bin size diminished subsampling effects, and
also allowed for a comparison to the in vivo recordings.

FINITE SIZE EFFECTS IN CRITICALITY ASSESSMENT
The finite size of the critical models limited the correlation
lengths in space and time and thereby caused the cutoff in f(s)
(Figures 2A,G). In analogy, the finite size is expected to also have
caused – in the driven critical models – the cutoff at large bin size
in the novel measures (f (s = 1, bs),<s>). Since finite size effects
decrease with increasing system size, and since the in vivo spikes
were recorded in a far larger system than our model spikes, finite
size effects are unlikely to account for the deviations from power
law scaling found for the in vivo activity.

In critical models, the finite size can change the value of α,
for which the model is critical. For example, Eurich et al. (2002)
showed for their model that the critical α depended on the model
size L as αcrit = 1 − L−0.5. Thus, their finite size models with α →
1 were super-critical and showed peaks in their f(s). This was not
the case for our critical models. Our models, in contrast, appeared
to be slightly sub-critical at α = 1. This is probably due to the
open boundary conditions we used in contrast to Eurich et al.
Hence, since the finite size made our models at most sub-critical
but not super-critical, there is no concern that the observed match
of model and in vivo results at values of α < 1 is due to finite size
effects.

DIFFERENT TYPES OF CRITICAL PHASE TRANSITIONS EXIST
To better understand criticality and potential deviations from it,
it is also important to define which type of criticality one refers
to. Critical phase transitions can occur for example for the tran-
sitions from order to chaos (Bertschinger and Natschläger, 2004;
Haldeman and Beggs, 2005; Boedecker et al., 2012; Lizier, 2013),
from non-oscillatory to oscillatory regimes (Linkenkaer-Hansen
et al., 2001; Poil et al., 2012), from replay to non-replay of spatio-
temporal patterns (Scarpetta and de Candia, 2013), and from a
regime with finite to one with potentially infinite avalanche sizes
(Bak et al., 1987; Drossel and Schwabl, 1992; Olami et al., 1992;
Eurich et al., 2002; Beggs and Plenz, 2003; Haldeman and Beggs,
2005; Levina et al., 2007a,b, 2009), as known from branching
processes (Harris, 1963). One study has found that the transitions
to chaos and to potentially infinite avalanches coincide in their
model (Haldeman and Beggs, 2005), but it is unclear whether this
finding generalizes to other systems. We here want to emphasize
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that our model showed a transition to potentially infinitely large
avalanches.

CONSEQUENCES FOR INFORMATION PROCESSING AND STABILITY OF
BRAIN DYNAMICS
After having discussed evidence from in vivo spike avalanche dis-
tributions for a driven, sub-critical mode of operation, and after
having clarified conceptual issues, we now turn to the question
of what consequences these findings may have on information
processing and dynamic stability in the mammalian brain.

SUB-CRITICALITY, SUPER-CRITICALITY, AND STABILITY
Criticality is characterized by a power-law distribution of its
avalanche sizes. This indicates that avalanches of any size can
occur; even close to infinite-size avalanches may occur, provided
that the system is large enough to sustain them. Infinite-size
avalanches do occur in the super-critical regime, and have been
linked to epileptic seizures (Hsu et al., 2008; Meisel et al., 2012).
Such infinite avalanches produce runaway activity, and could
thereby impair normal brain activity. Therefore, it is unlikely that
it would be good for a normally functioning brain to be super-
critical. Sub-criticality, in contrast, never shows infinitely large
avalanches, and thus offers a safer regime for brain operation.
Thus, a slightly sub-critical regime allows the brain to avoid run-
away activity, while still allowing moderate activity propagation,
and maintaining most of the possible computational advantages
that come with criticality (Haldeman and Beggs, 2005; Kinouchi
and Copelli, 2006; Beggs, 2008; Shew et al., 2009; Shew and Plenz,
2013).

DRIVE AND INFORMATION PROCESSING
There may be good reason why neural activity in vivo does
not show a STS for its avalanches: When eliminating the STS,
avalanches run in parallel, meet, and intermingle. Thereby, the
rate of computations may be increased compared to the SOC
state. In addition, the presence of multiple, potentially interact-
ing avalanches, may enable collision-based computation, which is
one fundamental way of information modification (Lizier, 2013).
Thus, a driven state may increase the rate and capacity of neural
information processing in vivo.

CONCLUSIONS
Our analysis of in vivo data indicated that the mammalian brain
is not SOC because in vivo spiking activity differed fundamentally
from activity expected for SOC. Instead, the mammalian brain
apparently self-organizes to a slightly sub-critical regime with-
out an STS. Mechanistically, such a driven, sub-critical regime
shows a mélange of avalanches, while SOC systems, in contrast,
are characterized by temporally separated avalanches. Operating
in a slightly sub-critical regime may prevent the brain from tip-
ping over to super-criticality, which has been linked to epilepsy.
Regarding computational capabilities, which have been reported
to be optimal for SOC, a slightly sub-critical regime only deviates
little from SOC and therefore its computational capabilities may
still be close to optimal, while the non-zero drive in general may
allow for a higher rate of information processing. Taken together,
a driven, slightly sub-critical regime may strike a balance between

optimal information processing and the need to avoid runaway
activity.

METHODS
SELF-ORGANIZED CRITICAL MODEL
The SOC neural network model we used here is the Bak-Tang-
Wiesenfeld model (Bak et al., 1987), and modified versions of
it. Translated to a neuroscience context, the model consisted of
2500 non-leaky integrate and fire neurons. A neuron i spiked if its
membrane voltage Vi(t) reached a threshold�:

If Vi(t) > �, Vi(t + 1) = Vi(t) − 4

� was set to � = 0 for convenience. Note that the choice of
� does not change the activity of the model at all. The model
neurons were arranged on a 2D lattice, and each neuron was con-
nected locally to its four next neighbors, i.e., the coupling strength
αij = α for all four next neighbors of neuron i, and αij = 0 else.

Vi(t + 1) = Vi(t) +
∑

j

αij · δ(t − Tj) + H(t)

The time t was updated in ms (i.e., 1 ms effective synaptic delay).
Tj denoted the spike times of neuron j, and H(t) was a func-
tion which set a neuron above threshold with a certain Poisson
rate h. h represented the “drive” in the context of SOC. Note
that the neurons at the edges and corners of the grid had only
3 and 2 neighbors, respectively. This model is equivalent to the
well-known Bak-Tang-Wiesenfeld model (Bak et al., 1987) if
h → 0 and α = 1. In contrast, for α = 0, the model represented
independent Poisson units which spiked with rate r = h.

Subsampling (Priesemann et al., 2009) was applied to the
model by sampling the activity of 100 randomly selected neu-
rons only, and neglecting the activity of all other neurons. To
simulate specific subsampling effects, the sampled neurons were
not chosen randomly, but arranged in specific configurations (see
Figure 6, right part). Here the sampled neurons were arranged to
have very small or very large distances. For the small distances,
4 × 4 or 8 × 8 neurons from a compact, central subset were sam-
pled (Figure 6, red and pink), and for the large distances, 4 × 4
or 8 × 8 neurons with distance 5 grid units between them were
sampled (Figure 6, turquoise and beige).

STOCHASTIC BRANCHING MODEL
In addition to the SOC model, we also simulated a classical
stochastic branching model. In this model, a branching process
(Harris, 1963; Haldeman and Beggs, 2005) was mapped on a grid
of neurons. An active neuron activated each of its k postsynap-
tic neurons with probability p = α · 1/k. As in the SOC model,
this model was critical for α = 1 in the infinite size limit, and
subcritical (supercritical) for α < 1 (α > 1). In contrast to the
SOC model, here the postsynaptic neurons were assigned ran-
domly at each step. The other parameters were analogous to the
SOC model: The model had 2500 neurons with k = 4 connections
each, and α and h were balances such that neurons spiked with
r = 5 Hz (except if h → 0). The open boundary conditions were
implemented by defining pdiss = 0.001 as the probability that a
neuron projected “outside of the grid,” i.e., the probability that an
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activation of a postsynaptic neuron was not effective. Note that
pdiss > 0 makes the model slightly subcritical. Subsampling was
implemented in the same manner as in the SOC model. Note
however that spatial distances have no meaning in this model
because of its random topology. Results for this model were qual-
itatively similar to those of the SOC model. Therefore, we usually
reported the results of the SOC model only.

EXPERIMENTS
We evaluated spikes from recordings in three different species,
namely in rats, cats and monkeys. The rat experimental proto-
cols were approved by the Institutional Animal Care and Use
Committee of Rutgers University (Mizuseki et al., 2009). The
cat experiments were performed in accordance with guidelines
established by the Canadian Council for Animal Care (Blanche,
2009). The monkey experiments were performed according to the
German Law for the Protection of Experimental Animals, and
were all approved by the Regierungspräsidium Darmstadt. The
procedures also conformed to the regulations issued by the NIH
and the Society for Neuroscience.

The spike recordings from the rats and the cats came from
the NSF-founded CRCNS data sharing website (Blanche, 2009;
Mizuseki et al., 2009). In brief, in rats the spikes were recorded in
CA1 of the right dorsal hippocampus during an open field task.
We used the first data set of each animal (ec013.527, ec014.277,
ec015.041, ec016.397), and from rat “ec014” we also used a sec-
ond data set (ec014.333). The five datasets provided sorted spikes,
i.e., {37, 77, 32, 58, 58} single units and {4, 8, 8, 8, 8} multi units,
respectively. However, since the identity of a unit does not matter
for the definition of neural avalanches (see below), the single- and
multi-unit activity was combined to one set of spike times. More
details on the experimental procedure and the datasets proper can
be found on Mizuseki et al. (2009).

For the spikes from the cat, neural data were recorded by Tim
Blanche in the laboratory of Nicholas Swindale, University of
British Columbia, and downloaded from the NSF-funded CRCNS
Data Sharing website (Blanche, 2009). We used the data set pvc3,
i.e., recordings in area 18 which contain 50 sorted single units
(Blanche and Swindale, 2006). We used that part of the experi-
ment in which no stimuli were presented, i.e., the spikes reflected
spontaneous activity in the visual cortex of the anesthetized cat.
Details on the experimental procedures and the data proper can
be found in Blanche and Swindale (2006); Blanche (2009).

In the monkey experiments, spikes were recorded simultane-
ously from up to 16 single-ended micro-electrodes (ø = 80μm)
or tetrodes (ø = 96μm) in lateral prefrontal cortex of three
trained macaque monkeys (M1: 6 kg ♀; M2: 12 kg ♂; M3: 8 kg♀). The electrodes had impedances between 0.2 and 1.2 M� at
1 kHz, and were arranged in a square grid with inter electrode dis-
tances of either 0.5 or 1.0 mm. The monkeys performed a visual
short term memory task with on average 80% correct behav-
ioral responses which required them to memorize a sample object
and to compare a test stimulus presented after a delay of 3 s to
memory content. The monkeys indicated via differential button
press whether test and sample stimuli matched or not. Each trial
consisted of a 1 s long baseline, 500–900 ms sample stimulus pre-
sentation, a delay of 3 s and a response interval lasting throughout

a 2 s test stimulus presentation. More details of the experimental
procedure can be found in Pipa et al. (2009). In total, we ana-
lyzed spike data from 11 experimental sessions comprising almost
12.000 trials. In M1 and M2 we recorded four sessions each, and
in M3 we recorded 3 sessions. 6 out of 11 sessions were recorded
with tetrodes (2/4, 4/4, and 0/3 from M1, M2, and M3, respec-
tively). Spike sorting on the tetrode data was performed using
a Bayesian optimal template matching approach as described in
Franke (2011) (see Franke et al., 2010 for an earlier version)
using the “Spyke Viewer” software (Pröpper and Obermayer,
2013). On the single electrode data, spikes were sorted with a
multi-dimensional PCA method (Smart Spike Sorter by Nan-Hui
Chen).

MEASURES
Avalanches in SOC systems are cascades of spikes triggered by a
single external spike (Bak et al., 1987). An avalanche can span
the entire system, but can also affect just a few sites before it dies
out. By definition, in SOC models subsequent avalanches are sep-
arated by pauses that are much longer than the avalanches proper
(STS) (Bak et al., 1987; Pruessner, 2012). This means that a new
avalanche is only triggered after the previous one has long died
out. In SOC systems, several avalanche characteristics, such as the
distribution of sizes and durations, follow scaling laws, known
from the framework of “renormalization theory” (Stanley, 1971,
1999; Sethna et al., 2001; Dhar, 2006). In the following, we define
the avalanche measures and describe the expected scaling laws for
the SOC model and the critical stochastic branching model.

The avalanche size s is the total number of spikes in an
avalanche. The avalanche size distribution f(s) is its frequency
of avalanche sizes, and p(s) refers to the respective probability
distributions. f(s) follows a power law in SOC systems:

f(s) ∼ s−τ

τ is the critical exponent and depends on the SOC model. For the
SOC model we use here (α = 1 and h → 0), τ ≈ 1 (Bak et al.,
1987; Priesemann et al., 2009), and for the critical branching
model τ = 1.5 (Harris, 1963; Haldeman and Beggs, 2005).

The definition of avalanche sizes in the driven models (h > 0)
and in vivo relied on temporal binning (Beggs and Plenz, 2003),
since these systems lacked STS. When applying temporal bins to a
spike train, the avalanche size was defined as the total number of
events in subsequent, non-empty time bins (Figure 1). Stating it
differently, an avalanche is by definition the activity in a sequence
of full bins, and is preceded and followed by an empty bin. With
this definition, f(s) changed with the bin size (Figure 1).

As stated above, f(s) changed with the bin size. To quan-
tify the bin-size dependent changes of f(s), we used the mean
avalanche size (<s>), and the measure f (s = 1, bs), i.e., the bin
size dependence of the frequency of avalanches of size s = 1.

A common measure to characterize neural avalanches is the
branching parameter. In a branching process, the branching
parameter σ defines whether activity expands (σ > 1) or dies out
(σ < 1) (Harris, 1963). Between these two regimes, at σ = 1, the
branching process is critical (Harris, 1963). In analogy, the σ ∗
was estimated from spike trains using temporal binning as follows

Frontiers in Systems Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 108 | 93

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Priesemann et al. Spike avalanches in vivo

(Beggs and Plenz, 2003; Priesemann et al., 2009): σ ∗
i is the num-

ber of events in time bin ti divided by the number of events in
time bin ti − 1. The average over all σ ∗

i (for which the number
of events in ti − 1 is not zero) is defined as the estimated branch-
ing parameter σ ∗ (Figure 1) (Beggs and Plenz, 2003; Priesemann
et al., 2009). Note that σ ∗ depends on the bin size, and may fail to
provide the intended results (see Results and Discussion).

Detrended fluctuations analysis (DFA) (Peng et al., 1994,
1995; Kantelhardt et al., 2002) quantifies long-range correla-
tions in a time-series, which also dominate SOC systems. We
applied DFA to the time course of the summed population activ-
ity. The summed population activity is the total number of
spikes across all neurons at each sampling step. For the DFA, we
used analysis window widths from 24 to 211 ms. Smaller win-
dow widths could not be used because of the limited sampling
resolution, and for windows larger than 2 s the power law scal-
ing broke down, and this impeded the estimation of the DFA
exponent β.

It sometimes is helpful to measure the bin size not in abso-
lute time (e.g., milliseconds), but in “average inter event intervals”
(<IEI>). The <IEI> is the inverse of the population rate R, i.e.,
the rate of all units together, independent of their origin. In con-
trast to the population rate R, the rate of a single unit is denoted
with r.

LFP RECORDINGS IN HUMANS
We evaluated LFP which were recorded with intracranial depth
recordings in humans. We used the very same data and analysis
methods as in Priesemann et al. (2013), and we used the results
from all vigilance states combined, because we already showed
that the differences with vigilance states were small (Priesemann
et al., 2013). We analyzed data from five subjects [3 females (aged
21, 23, and 27), two males; (aged 25 and 48)] with refractory
partial epilepsy undergoing pre-surgical evaluation. The sub-
jects were hospitalized between February 2005 and March 2007
in the epilepsy unit at the Pitié-Salpetrière hospital in Paris.
All patients gave their informed consent and procedures were
approved by the local ethical committee (CCP). Each patient was
continuously recorded during several days (duration range: 9–20
days; mean duration: 16 days) with intracranial and scalp elec-
trodes (Nicolet acquisition system, CA, US). Depth electrodes
were composed of 4–10 cylindrical contacts (2.3-mm long, 1-
mm in diameter, 10-mm apart center-to-center), mounted on
a 1 mm wide flexible plastic probe. Pre and post implantation
MRI scans were evaluated to anatomically locate each contact
along the electrode trajectory. The placement of electrodes within
each patient was determined solely by clinical criteria. Signals
were digitized at 400 Hz. The five subjects were implanted with
(44, 48, 50, 50, and 63) intracranial LFP recording sites. In total
seven recording sites were excluded from the analysis due to
artifacts and thus we used (44, 48, 45, 50, and 61) recordings
sites for data evaluation. All LFP were low-pass filtered at 40 Hz
(4th order butterworth, MATLAB) to reduce the impact of line
noise.

To analyze the neuronal avalanches for these LFP data in
the same manner as the spike data, we extracted binary events
from the LFP. These binary events represent phases of enhanced

synaptic activity. To extract these events, we calculated the area
under the positive deflection lobes between two zero crossings of
the LFP (Figure 2 in Priesemann et al., 2013). As LFP-voltages
reflect current flows via Ohm’s law, this time integral, or area
under the voltage curve, is proportional to the total amount
of displaced charges and hence describes the departure from
equilibrium (charge neutrality) quantitatively—in contrast to
simple voltage peaks. To obtain binary events from the LFP, we
applied a threshold to the area values under the LFP deflec-
tion lobe. The threshold was selected such that each recording
site in each interval of constant vigilance state had the same
event rate r = 1/4 Hz. In contrast to our first paper with these
data (Priesemann et al., 2013), we here used only one value
for r, and combined the results for all vigilance states from
wakefulness to deep sleep, since neither r nor the different vig-
ilance states affected the results qualitatively (Priesemann et al.,
2013).

For the avalanche analysis in the humans, we used a bin size
either in units of average inter event intervals (<IEI>) or in ms.
The <IEI> is a function of the event rate r and the number
of electrode contacts N, <IEI> = 1/(r · N) = 1/R. Since r was
fixed and N did not vary much across patients, the following
approximation holds: 1 <IEI>≈ 80 ms.
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Behavioral studies have shown that human cognition is characterized by properties such
as temporal scale invariance, heavy-tailed non-Gaussian distributions, and long-range
correlations at long time scales, suggesting models of how (non observable) components
of cognition interact. On the other hand, results from functional neuroimaging studies
show that complex scaling and intermittency may be generic spatio-temporal properties of
the brain at rest. Somehow surprisingly, though, hardly ever have the neural correlates
of cognition been studied at time scales comparable to those at which cognition
shows scaling properties. Here, we analyze the meanings of scaling properties and the
significance of their task-related modulations for cognitive neuroscience. It is proposed
that cognitive processes can be framed in terms of complex generic properties of brain
activity at rest and, ultimately, of functional equations, limiting distributions, symmetries,
and possibly universality classes characterizing them.

Keywords: scaling, multifractals, ageing, weak ergodicity breaking, symmetry, fluctuation-dissipation theorem,

cognitive neuroscience, resting state

INTRODUCTION
Ideally, cognitive psychology aims at providing a description of
the space of cognitive processes, the nature of each of them,
and the way they interact. Cognitive processes are unobservable
regimes of an underlying dynamical system. However, they can be
reconstructed by considering that sequences of observable quan-
tities, sampled during the execution of controlled cognitive tasks,
are the output of this system.

In behavioral studies, the underlying system is construed as
a black box function, with given tasks, supposed to summon
given cognitive processes, as inputs, and observable behavioral
performance as outputs.

Typically, a quantitative description of cognitive processes
consists in calculating means and standard deviations of trial-
averaged performance measures, implicitly assuming an under-
lying Gaussian distribution (which is completely described by its
first two moments), and statistical independence of the various
trials.

However, the results of numerous behavioral studies [see
(Kello et al., 2010) for a review] cannot be reconciled with
Gaussian distribution functions. Power-law distributions and
temporal scaling have consistently been found for relatively short
time series (∼102–103 time points) (Gilden, 2001) of inter-trial
fluctuations in performance levels, although finer temporal scales
have also been considered, particularly for motor tasks (Cabrera
and Milton, 2002; Diniz et al., 2011).

Behavioral scaling laws contain important information about
cognitive function, viz. on how (non observable) components
of cognition interact (Holden et al., 2009). For instance, power-
law scaling of trial-to-trial performance variations has been taken
to arise from multiplicative interactions among interdependent

processes, suggesting that the mechanisms through which pro-
cesses interact to give rise to cognitive performance may be no
less fundamental than single components’ functioning principles
(Holden et al., 2009; Ihlen and Vereijken, 2010).

The scaling properties appear to be modulated in a task-
specific way. For example, increasing task difficulty accelerates the
transition from 1/f to white noise in decision-making time series
(Correll, 2008; Grigolini et al., 2009).

Cognitive function is naturally understood as originating from
brain activity, and quantitatively characterized in terms of the
brain properties associated with the execution of given cognitive
tasks. Cortical activity adds spatial and temporal scales unavail-
able in behavioral studies, so that scaling can be assessed within
single process realizations.

The brain generates fluctuations with complex scaling proper-
ties (Novikov et al., 1997; Linkenkaer-Hansen et al., 2001; Gong
et al., 2002, 2007; Freeman et al., 2003; Bianco et al., 2007;
Suckling et al., 2009; Freyer et al., 2009), even in the absence of
exogenous perturbations or changes in parameters controlling its
activity. Only few experimental studies (Linkenkaer-Hansen et al.,
2004; Popivanov et al., 2006; Buiatti et al., 2007; Bhattacharya,
2009; He et al., 2010; Ciuciu et al., 2011, 2012; Zilber et al., 2012)
investigated the scaling properties of task-related brain activity, or
their relationship with behavioral ones (Monto et al., 2008; Palva
et al., 2013; Kello, 2013).

The aetiology and functional meaning of brain fluctuation
scaling have been discussed at length. For example, the presence of
spatial and temporal inverse-power law correlations is often taken
to suggest that the brain lives near a second order phase transition,
a condition optimizing information processing and storage, and
dynamic response (Chialvo, 2010).
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Papo Functional significance of complex fluctuations

Here, instead, we discuss ways in which fluctuation properties
can be used as metrics making cognitive function observable.

A RANDOM WALK AROUND BRAIN ACTIVITY’S SPACE
To garner a physical intuition of the meaning of brain fluctua-
tions one can think of brain activity as the motion of a random
walker making steps of size x at given times t, or, in the continuous
limit, of a diffusing macroscopic particle in a complex high-
dimensional space, subject to viscous friction, with a time scale
τm, and driven by an additive random force with a characteristic
time τη (Hsu and Hsu, 2009).

The relationship between τm and τη determines how the sys-
tem evolves in this complex space, including traveled distances,
velocity, degree to which the space is visited, time to reach a
given target point, system’s memory of its own trajectory within
the landscape, relationship between spontaneous and task-related
activity, and ultimately how microscopic fluctuations renormalize
to give rise to observable macroscopic statistical properties (Papo,
2013b).

If spontaneous fluctuations were Markovian, with Gaussian
δ-correlated noise, and τη � τm, the particle would undergo
normal diffusion: the step length would be taken from the
Maxwell-Boltzmann equilibrium distribution, and the mean-
square distance (MSD) traveled by the particle would scale
linearly with time

〈|x(t)|2〉 ∼ t. Under general conditions,
the first passage time from a prescribed phase space domain
would be characterized by a universal distribution, independent
of the jump length distribution (Sparre Andersen, 1953). For
t � τm, the temporal autocorrelation of velocity fluctuations
would behave as C(τ ) ∼ exp (−t/τm), with a unique character-
istic time τm. The dynamics would hop without memory from
one configuration to another, eventually visiting the whole phase
space.

However, the properties of observed brain fluctuations are
inconsistent with the Markovian approximation (Fraiman and
Chialvo, 2012). Spontaneous fluctuations show temporal and
spatial scale-free statistics (Novikov et al., 1997; Linkenkaer-
Hansen et al., 2001; Gong et al., 2002; Stam and de Bruin,
2004; Expert et al., 2010; van de Ville et al., 2010). The
MSD scales as

〈|x(t)|2〉 ∼ t2ν with ν �= 1/2, so that its diffu-
sion is anomalous, and indeed even strongly anomalous (Suckling
et al., 2009; Ciuciu et al., 2011, 2012; Zilber et al., 2012),
with the q-th moments scaling as

〈|x(t)|q〉 ∼ tqν(q), with ν(q) �=
const (Castiglione et al., 1999). Appropriately rescaled average
temporal fluctuations collapse onto universal scaling functions
(Sherrington, 2010; Friedman et al., 2012; Shriki et al., 2012).

Exponential relaxation is replaced by complex scaling, e.g.,
of a Mittag-Leffler type (Bianco et al., 2007), with stretched
exponential relaxation at microscopic scales (t < τ ), and inverse
power-law scaling C(τ ) ∼ τ−α, for t � τ , so that, for α ≤ 1, the

correlation time τC = ∫ ξ
0 C(t)dt diverges, leading to a scale-free

process with memory. The system undergoes ageing (Bianco et al.,
2007): correlations are time-inhomogeneous, with a dependence
on the time of application of a given field, history-dependent
(Sherrington, 2010), and weakly non-ergodic (Bianco et al.,
2007), as some phase space region may take extremely long times
to be visited (Bouchaud, 1992).

Activity shows statistical and dynamical intermittency: on the
one hand, although large-scale fluctuations are approximately
Gaussian, non-Gaussian fluctuations appear at higher frequencies
(Freyer et al., 2009). On the other hand, activity is characterized
by alternating laminar and turbulent phases (Gong et al., 2007;
Allegrini et al., 2010, 2011).

UNDERSTANDING BRAIN FLUCTUATIONS
The statistical and dynamical properties of brain fluctuations
contain information on the structure of the functional space
within which brain dynamics evolves, and on the style, as it
were, with which brain dynamics explores its dynamic repertoire
(Ghosh et al., 2007; Deco et al., 2011; Betzel et al., 2012).

FROM SINGLE STEPS TO COMPLETE WALKS
Scaling laws indicate that the walker takes steps of all sizes, from
local to extremely long jumps.

More importantly, probability distributions contain infor-
mation on how observable large-scale outcomes arise from
the interactions of many small-scale processes (Frank, 2009).
Observed probability distributions can be thought of as repro-
ducible macroscopic features emerging from the sum of highly
fluctuating individual elements. It is natural to see this sum as rep-
resenting the temporal aggregation of fluctuations within a given
time-window.

The central limit theorem (CLT) ensures that the limit distri-
bution of the sum of a large number of random variables is a
stable law. The law is Gaussian if the variables are independent
and have finite variance. For correlated or infinite variance fluc-
tuations, the CLT ought to be generalized, and the stable law is not
Gaussian but Lévy. Importantly, in the latter the largest term is of
approximately the same order of magnitude of the sum, indicat-
ing that extreme events dominate the underlying process (Laguës
and Lesne, 2008).

From a dynamical view-point, the CLT accounts for normal
diffusion and the time dependence of the MSD (or the walker’s
position), while generalized CLTs result in anomalous diffusion,
which differs both in relaxation speed, and in the probability
distribution’s shape, even at very long times.

Probability distributions can be seen as resulting from the
iteration of some action on them. For instance, stable laws are
fixed points of the convolution operation. Somehow equiva-
lently, fluctuation distributions can be understood as asymptotic
behaviors emerging as the system is coarse-grained and rescaled
(Hochberg and Pérez-Mercader, 2003). Scale-free distributions
are fixed points of a renormalization flow, and universality classes
are their basins of attraction. The surface comprising the mod-
els flowing into the same fixed point separates the space into
phases, corresponding to different macroscopic phenomenolo-
gies (Laguës and Lesne, 2008). Universality can be understood in
terms of relevant and irrelevant operators, depending on the con-
sequence they have on the statistical behavior (Laguës and Lesne,
2008).

Probability distributions can also be seen as solutions to spe-
cific problems expressed e.g., by differential equations (Barenblatt
and Zel’dovich, 1972). For instance, probability distributions
are solutions of the Fokker-Planck equation of evolution of the
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particle’s transition probabilities, under given information con-
straints (Jaynes, 1957). For the linear diffusion equation, the
solution is a time-evolving spatial Gaussian probability function
maximizing the Shannon entropy. Correlated anomalous diffu-
sion is governed by a nonlinear Fokker-Planck equation whose
exact stationary solutions are probability distributions maximiz-
ing Tsallis generalized entropy (Borland, 1998).

EMERGENCE OF STRUCTURE: MEMORY, TEMPORAL ORDER, AND
NON-LOCALITY
Correlations are propagators, whose characteristic length ξ con-
stitutes an active time window within which all points are some-
how related to each other.

A Markovian system has perfectly elastic almost instantaneous
relaxation and no memory: the time axis tends to be infinitely
fragmented, so that activities of overall duration L are temporally
disordered (L � ξ).

Brain fluctuations’ loss of scale separation allows micro-
scopic randomness to renormalize and become macroscopically
detectable (Grigolini et al., 1999): correlated driving noise and
cross-scale relationships produce temporally ordered structures
(L ∼ ξ), so that activity at a given time point is temporally non-
local, and not easily divorced from that occurring within the
scaling range.

With temporal scaling, fluctuations no longer have a character-
istic time; more than to a multiplicity of scales {τi}, the emphasis
shifts to some relationship between them. The brain’s functional
heterogeneity introduces a spatial distribution of time scales {σi}
inducing a structure S. Eventually, the studied dynamics is a field
φ
(−→s , t

) ∈ �, where � = {φ} is a space of systems, endowed
with a spatio-temporal structure {S ∗ 
}, with arbitrarily com-
plex topological properties (Zaslavsky, 2002), and which can
become observable through a wealth of collective state variables
X ∈ X.

The structure {S ∗ 
} is a dynamical system in the space of
fields φ, relating representations of the process at different scales
(Friedrich et al., 2000; Bacry et al., 2001; Longo et al., 2012). For
instance, at any given scale λ within the scaling range, the prob-
ability P(x, t) that the particle traveled a distance x at time t can
be thought of as the convolution of the distribution P�(x, t)
at the coarsest scale � and a probability distribution G(.),
not necessarily a power-law (Chainais et al., 2005), expressing
the relationships across time scales (Castaing et al., 1990). For
scale-invariant processes, P(x, t) = t−νF(x/tν), G collapses into
a single point, and is simply the scaling exponent ν. Scale invari-
ance breakdown indicates that P(x, t) is specified by a complex
spectrum of scaling exponents.

The set of renormalization operators is endowed with some
structure, e.g., a multiplicative semi-group structure, and a
covariance property comparable to that of tensors under the
action of rotations, with scale invariance replacing Galilean
invariance and fractal geometry the Euclidean one (Lesne, 2008a).
In turn, scaling laws can be seen as the statistical properties pre-
scribed by the symmetries of a (semi)group on the time-scale
space (Borgnat et al., 2003).

Altogether, the presence of complex fluctuations allows treat-
ing brain activity as a physical object, defining subparts, and

relationships among them, and ultimately using theoretical
physics tools such as functional analysis and algebra to charac-
terize them.

VELOCITY AND OPERATIONAL TIME
The presence of scaling can be interpreted in dynamical terms in
various ways.

Furthermore, the Lamperti transform establishes a bijec-
tive correspondence between self-similar processes on R

+ and
stationary processes on R (Flandrin et al., 2003). Self-similar
solutions reflect a uniform propagation regime (Barenblatt and
Zel’dovich, 1972), and the system can be seen as moving at con-
stant velocity, given by the scaling exponent (Sornette, 2004),
whereas the breakdown of exact self-similarity indicates that the
propagator is not time-stationary.

The scaling properties also define an intrinsic time of the pro-
cess. This can be seen by considering that the random walk of
brain activity has a waiting-time distribution (WTD) between
jumps scaling as a power-law. The WTD defines an internal oper-
ational time, which can grow sub- or super-linearly with physical
time (Sokolov and Klafter, 2005). Without multiplicative interac-
tions, operational and physical time coincide. Multiplicative cross-
scale interactions bias the WTD so that, local probability densities
become time-dependent and intermittent, and time translational
invariance is broken (Crisanti and Ritort, 2003). The observed
Mittag-Leffler fluctuation distribution (Bianco et al., 2007) may
in fact stem from the process intermittent subordination with
internal time.

DYNAMICAL REGIMES AND FLUCTUATION DISSIPATION
RELATIONS
Brain fluctuation properties help relating two only seemingly
antagonistic aspects of brain activity: spontaneous and task-
induced brain activity. For Gaussian δ-correlated fluctuations,
the fluctuation-dissipation theorem (FDT) ensures that the sys-
tem’s integrated response χ(t, t′) at time t to an external field
applied at time t′ and the autocorrelation function CX(t, t′)
of the unperturbed system are linked by the temperature T of
the bath with which the system is in equilibrium (Kubo, 1966).
Translated in terms of brain activity, the FDT would establish
an equivalence between stimulus-evoked and spontaneous brain
fluctuation correlations (Papo, 2013c).

Complex multiscale fluctuations suggest that thermalization
happens simultaneously at widely different timescales, so that the
FDT in its classical form is not expected to hold (West et al.,
2008). For systems with the type of intermittency observed for
brain activity, the linear response is anomalous even with simple
stimuli (Silvestri et al., 2009; Allegrini et al., 2010). The way the
FDT is violated and the ingredients necessary to recover it can be
used in various ways as descriptors of brain activity.

First, the properties of ongoing fluctuations define the form
of the generalized FDT holding for brain activity and, in fine, the
way stimulus information is transferred to the brain. The pres-
ence of correlated noise affects the particle’s transport properties
and corresponding dynamics (Machura and łuczka, 2010), and
information transfer is maximized when stimuli and brain fluc-
tuations display similar scaling properties (Allegrini et al., 2007;
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West and Grigolini, 2010; Aquino et al., 2011). Moreover, scaling
exponents mark dynamical transitions between qualitatively dif-
ferent response regimes (Burov and Barkai, 2008).

Second, the nature of FDT violation helps understanding at
what scales correlations and memory start playing a role, and cor-
rectly characterizing the underlying dynamics by specifying the
additional degrees of freedom necessary to recover Markovianity
(Zwanzig, 2001).

Finally, effective temperatures, i.e., what a thermometer
responding on the time scale at which the system slowly reverts to
equilibrium would measure, which may be used to derive a gen-
eralized FDT (Cugliandolo et al., 1997), constitute intrinsic time
scales of the system. Fluctuations ultimately identify a spatial dis-
tribution of scale-dependent relationships between spontaneous
and stimulus-induced brain activity, quantifying the extent to
which each scale deviates from equilibrium (Papo, 2013a). This
reflects the fact that a path realizes qualitatively different diffusion
processes at different temporal and the spatial scales.

TASK-RELATED MODULATIONS
Because most complex scaling properties are presumably generic,
psychologists are primarily interested in the extent to which cog-
nitive activity may affect them. Furthermore, precisely because
they are generic, task-induced modulations of these properties
represent powerful descriptors of the underlying processes.

CROSS-OVERS AND SYMMETRY CHANGES
Numerous cognitive tasks have been shown to modulate the
scaling exponents of brain fluctuation probability functions
(Linkenkaer-Hansen et al., 2004; Popivanov et al., 2006; Buiatti
et al., 2007; He et al., 2010; Ciuciu et al., 2011, 2012; Zilber et al.,
2012). Task demands also appear to enhance data collapse and
universality of brain fluctuations (Bhattacharya, 2009).

Cognitive demands may push brain activity toward the basin
of attraction of adaptively advantageous probability distributions.
Cognitive function would be tantamount to designing a driving
noise function making the system’s stationary distribution equal
a desired target one. Moreover, insofar as power laws are solutions
of functional equations, rather than frequency or amplitude mod-
ulators, cognitive processes may be conceptualised as operators
acting upon the functional form of brain activity.

A still poorly explored possibility is that these modulations
represent cross-overs between universality classes. This would
allow classifying observed cognitive function as operators act-
ing on symmetries (Lübeck, 2004). Renormalization flows would
represent generalized dynamic pathways within the functional
space, and universality classes a partition of this space, quan-
tifying robustness with respect to control parameter variations
(Lesne, 2008a,b).

Whether and how cognitive demands act on brain activity’s
symmetries is a deserving matter (Freeman and Vitiello, 2006;
Buice and Cowan, 2009). For instance, the transition from mono-
to multifractal distributions has been reported at the late stages
of various fracture phenomena (de Arcangelis and Herrmann,
1989; Kapiris et al., 2004). However, whether spontaneous activ-
ity is temporally scale-free (van de Ville et al., 2010) or breaks
down scale invariance (Ciuciu et al., 2011, 2012; Wink et al., 2012;

Zilber et al., 2012) is still an open debate. Existing discrepancies
may stem from the order parameter used to evaluate scaling, e.g.,
whether it is local or has prominent spatial extension, as hetero-
geneity and disorder may directly affect the scaling exponents.

The shrinking of the multifractal spectrum associated with
performance of cognitive tasks may amount to selecting a set
of complex patterns from the available repertoire, or to mod-
ifying the rate at which these patterns are re-edited across the
system (Kenet et al., 2003; Betzel et al., 2012). On the other hand,
stimuli drive neural activity away from criticality (Kohen-Kashi
Malina et al., 2013), an action reminding the interruption of age-
ing caused by an external field forcing a glassy material (Kranz
et al., 2010). In this sense, one may interpret multifractality as a
sign of ageing (Allegrini et al., 2004).

STEERING WITHIN THE PHASE SPACE
As they modulate the temporal scaling of fluctuations, cognitive
demands affect the temporal organization of brain activity and
the corresponding operational time.

The observable outcome could come in the form of a modula-
tion of cross-over scales, e.g., the time scales at which fluctuations
start converging to a Gaussian distribution, varying the likeli-
hood of large scale events (Mantegna and Stanley, 1994), the
length interval over which activity can be considered a Markov
process, the time scale of the transition from microscopic to
macroscopic dynamics (Aquino et al., 2007), or the degree of non-
ergodicity, corresponding to different ways of visiting the state
space (Lomholt et al., 2013).

Furthermore, stimulus-induced modulations of temporal cor-
relations may induce phase transitions in first-passage times
(Carretero-Campos et al., 2012) and in response regimes (Burov
and Barkai, 2008), and may influence fluctuations’ transition to
scaling, while endogenous activity likely affects the WTD scaling
properties (Aquino et al., 2011).

Finally, cognitive demands may bias either the probabilities
or the occurrence times of the walker’s jumps (Allegrini et al.,
2004), and therefore the operational time associated with a given
process.

CONCLUSIONS
We addressed the question of whether and how brain fluctuations
help describing non observable cognitive processes.

That observed behavior is a product of brain activity is a matter
of general consensus. Here, we further proposed that the former
can be described in terms of the generic properties of the latter,
such as scaling regimes and their basins of attraction, symme-
tries (not only scale invariance), FDT violations. Ultimately, it is
tempting to conceive of observed behavior as a macroscopic prop-
erty emerging from the renormalization of microscopic brain
fluctuations.

Such characterization of the action of cognitive demands on
brain activity affords a wealth of order parameters through which
activity becomes observable, each representing a cut, in differ-
ent dimensions and scales, of the same underlying space. More
generally, it allows a conceptualization whereby cognitive pro-
cesses operate upon the structure of brain activity, producing
effects observable from various perspectives (e.g., structural or

Frontiers in Systems Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 112 | 100

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Papo Functional significance of complex fluctuations

dynamical). Eventually, this shapes a functional space for which
internal structure, and transition and combinatory rules can be
extracted.

Finally, it is important to warn that these descriptions do not
unambiguously characterize the aetiology of fluctuation prop-
erties, as similar scaling properties may stem from qualitatively
different generators (Magdziarz et al., 2009; Meroz et al., 2013;
Thiel et al., 2013) which may be difficult to distinguish with a
finite amount of data (Grigolini, 2008).
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Complex collective activity emerges spontaneously in cortical circuits in vivo and in vitro,
such as alternation of up and down states, precise spatiotemporal patterns replay, and
power law scaling of neural avalanches. We focus on such critical features observed in
cortical slices. We study spontaneous dynamics emerging in noisy recurrent networks of
spiking neurons with sparse structured connectivity. The emerging spontaneous dynamics
is studied, in presence of noise, with fixed connections. Note that no short-term synaptic
depression is used. Two different regimes of spontaneous activity emerge changing the
connection strength or noise intensity: a low activity regime, characterized by a nearly
exponential distribution of firing rates with a maximum at rate zero, and a high activity
regime, characterized by a nearly Gaussian distribution peaked at a high rate for high
activity, with long-lasting replay of stored patterns. Between this two regimes, a transition
region is observed, where firing rates show a bimodal distribution, with alternation of up
and down states. In this region, one observes neuronal avalanches exhibiting power laws
in size and duration, and a waiting time distribution between successive avalanches which
shows a non-monotonic behavior. During periods of high activity (up states) consecutive
avalanches are correlated, since they are part of a short transient replay initiated by noise
focusing, and waiting times show a power law distribution. One can think at this critical
dynamics as a reservoire of dynamical patterns for memory functions.

Keywords: criticality, phase transition, STDP, associative memory, spatiotemporal pattern replay, neural

avalanches, up and down states

1. INTRODUCTION
Spontaneous cortical activity, i.e., ongoing activity in the absence
of sensory stimulation, can show very complex collective features,
with, in some cases, the membrane potential making sponta-
neous transitions between two different levels called up and down
states (Steriade et al., 1993; Cowan and Wilson, 1994; Cossart
et al., 2003; Shu et al., 2003). This alternation of “down states”
of network quiescence and “up states” of generalized spiking and
neuronal depolarization, have been observed to occur sponta-
neously in a variety of systems and conditions, both in vitro (Plenz
and Kitai, 1998; Cossart et al., 2003; Shu et al., 2003) and in vivo
during slow-wave sleep, anaesthesia and quiet waking (Petersen
et al., 2003; Luczak et al., 2007) The precise mechanism by which
these up states transitions occur is still unclear, but it seems to rely
on network mechanisms (Cossart et al., 2003). Up states transi-
tions are almost abolished by pharmacological blockers such as
glutamate receptor antagonists (Cossart et al., 2003; Shu et al.,
2003) and totally abolished by glutamate and GABA receptor
antagonists (Cossart et al., 2003).

Results on in vitro and in vivo up states has suggested that this
spontaneous activity occurred in a highly structured way, with

repeating spatiotemporal patterns of cellular activity (Cossart
et al., 2003; Luczak and MacLean, 2012). Because of their stereo-
typed spatio-temporal dynamics, it has been conjectured that
network up states are circuit attractors (Cossart et al., 2003).
Transitions between down and up states can also be evoked
by sensory stimulation (Petersen et al., 2003), and interestingly
evoked activity patterns are similar to the up states produced
spontaneously (Luczak et al., 2007). Also in vitro, in thalamo-
cortical slices, the patterns of activity evoked by thalamic stimula-
tion were similar to the patterns of activity that occurred during
the up states spontaneously (Luczak and MacLean, 2012).

Many experimental results, both in cell cultures and slices as
well as in vivo (Gireesh and Plenz, 2008; Petermann et al., 2009;
Ribeiro et al., 2010; Plenz, 2012; Haimovici et al., 2013), have also
supported the idea that the brain operates near the critical point
of a phase transition (Plenz and Thiagarajan, 2007 ; Chialvo, 2010;
Plenz, 2012; Tagliazucchi et al., 2012; Yang et al., 2012; Plenz,
2013; Shew and Plenz, 2013). Neuronal avalanches, i.e., cascade of
activity with power law distribution of size and durations (Beggs
and Plenz, 2003; Mazzoni et al., 2007; Plenz and Thiagarajan,
2007 ; Pasquale et al., 2008; Plenz, 2012), are only one of the
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observed proprieties suggestive of criticality. Criticality is very
advantageous for the brain, in terms of optimization of dynamical
range, information transmission and capacity (large repertoire of
diverse activity patterns) (Kinouchi and Copelli, 2006; Deco et al.,
2013; Shew and Plenz, 2013).

All these intriguing results on spontaneous dynamics support
the long-lasting hypothesis that brain can move in a landscape
with multiple dynamical attractors, and that up states may be
the result of the system falling in one of these attractors. From
this point of view, the spontaneous fluctuations between up
and down state may be the signature of the system posed at a
non-equilibrium phase transition, where system fluctuates in the
landscape, and flexibly switches from one state to another. Several
models have been proposed as explanations for the avalanche
power law distributions that emerge in spontaneous cortical
activity (Kinouchi and Copelli, 2006; Levina et al., 2007; Plenz
and Thiagarajan, 2007 ; de Arcangelis and Herrmann, 2010;
Millman et al., 2010; Lombardi et al., 2012, in preparation; Yang
et al., 2012; Scarpetta and de Candia, 2013), and many have dis-
cussed the emergence of up and down states in terms of attractor
states of a dynamical systems (Holcman and Tsodyks, 2006; Parga
and Abbott, 2007; Millman et al., 2010), or self-organized criti-
cality (Lombardi et al., 2012, in preparation). To get bistability, in
Parga and Abbott (2007) IF neurons were augmented with a non-
linear membrane current, while in Holcman and Tsodyks (2006)
and Millman et al. (2010) the crucial role of activity-dependent
short-term synaptic depression was pointed out. For example in
the attractor model discussed in Holcman and Tsodyks (2006) the
mean time the network spends in the down state is comparable to
the mean time it takes for the synapses to recover from a certain
depressed activity.

In this paper, we study a model that captures not only the
emergence of neural avalanches and up and down states, but
also additional features of spontaneous activity, such as the stable
recurrence of particular spatiotemporal patterns. In particular,
recurrence of spatiotemporal patterns has been observed within
up states (Luczak and MacLean, 2012, and refs therein), and also
neuronal avalanches seem to be highly repeatable, and can be
clustered into statistically significant families of activity patterns
that satisfy several requirements of a memory substrate (Beggs
and Plenz, 2004; Stewart and Plenz, 2006; Gireesh and Plenz,
2008). The model is a network of leaky integrate-and-fire (LIF)
neurons, whose connections have synaptic strengths designed in
order to store in the network a set of spatiotemporal patterns. The
network shows two distinct regimes, a regime of collective replay
activity for high connection strength or high noise, and a regime
of no activity for low connection strength or low noise. Between
these two distinct regimes, it appears a region where noise is
able to switch between periods of quiescence (down states) and
periods of high rate coherent activity (up states). At a finer tem-
poral scale, within up states, one observes neural avalanches with
power law size and duration distributions. In this model, fluc-
tuations between up and down states emerge even in absence of
short-term depression, or of any kind of single neuron bistability.
It’s a network effect, the results of a structured connectivity, that
produce multiple dynamical attractors. Near the non-equilibrium
phase-transition separating the two regimes in which the network

remains permanently in either the up or the down state, one
observes high fluctuations, induced by noise, with emergences
of transient up states. The mean time the network spends in the
down or in the up state is related to noise intensity and connection
strength.

2. MATERIAL AND METHODS
2.1. THE MODEL
We model the neurons as leaky integrate-and-fire (LIF) units. The
postsynaptic membrane potential of neuron i, when the neuron
does not emit a spike, is given by the equation

dVi(t)

dt
= −Vi(t)

τm
+ Ii(t)

C
, (1)

where τm is the characteristic time of the membrane, C the mem-
brane capacity, and Ii(t) the total current input to neuron i. The
input is given by

Ii(t) =
∑

j

∑

ti < tj<t

Qij

τs
e−(t − tj)/τs +

∑

ti < t̂i<t

Q̂i

τs
e−(t − t̂i)/τs (2)

where tj are the spike times of neuron j, Qij is the total charge
released at the synapse between neuron i and j, τs is the char-
acteristic time of the synapse, t̂i are the times of noise events
releasing a random charge Q̂i at some point of the membrane
of neuron i, and the sum is extended to the spikes tj and noise
events t̂i between the last spike ti of neuron i, and the present time
t. Defining Jij = Qij/[C(1 − τs/τm)] and Ĵi = Q̂i/[C(1 − τs/τm)],
we therefore have (Gerstner et al., 1993; Gerstner and Kistler,
2002)

Vi(t) =
∑

j

∑

ti < tj<t

Jij ε(t − tj) +
∑

ti < t̂i<t

Ĵi ε(t − t̂i) (3)

where ε(t) = e−t/τm − e−t/τs . When the potential Vi(t) reaches
the threshold value�i, the neuron i emits a spike, and its potential
is reset to the base value Vi = 0. In the present paper we set the
same threshold �i ≡ � for all the neurons, τm = 10 ms, τs = 5
ms, we extract the times t̂i of noise events from a Poissonian dis-
tribution with a rate ρ = 1 ms−1 for each neuron, and extract Ĵi

from a Gaussian distribution with zero mean and standard devi-
ation

√
α
ρ

∑
j J2

ij . The constant α, which has the dimension of a

rate, sets the “noise level” of the network.
The synapse strengths Jij are held fixed during the simulation

(no short term plasticity). They are set at the beginning with
a “learning procedure” (Scarpetta et al., 2001, 2002; Scarpetta
and Marinaro, 2005; Scarpetta and Giacco, 2012; Scarpetta
et al., 2013), inspired to spike time dependent plasticity (STDP)
(Markram et al., 1997, 2011). During this initial “learning proce-
dure,” we store P patterns in the network connections. A pattern
μ = 1, . . . , P is a phase-coded spike train of period Tμ, with one
spike per neuron and per cycle, where the activity of neuron i is
given by

xμi (t) =
∞∑

n = −∞
δ
[
t − (tμi + nTμ)

]
. (4)
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The times tμi are given by

(
φ
μ

i
2π

)
Tμ, where φμi are phases chosen

randomly in [0, 2π) and then kept fixed, that give the “order of
spiking” of neurons within pattern μ. Therefore, during the ini-
tial learning procedure, the network is forced to replay pattern μ,
and the connections evolve due to STDP, so that in the interval
[−T, 0] the change in the connection Jij is given by

δJij = Hi

(
Tμ

T

) 0∫

−T

dt

0∫

−T

dt′ xi(t)A
(
t − t′

)
xj
(
t′
)

= Hi

∞∑

n = −∞
A
(

tμj − tμi + nTμ
)
. (5)

where Hi is a constant depending on the postsynaptic neuron i
that sets the strength of the connections, Tμ

T is a normalization
factor, xj(t) is the activity of the presynaptic neuron at time t,
and xi(t) the activity of the postsynaptic one. In STDP, the learn-
ing window A(τ ) is the measure of the strength of the synaptic
change when a time delay τ occurs between pre and post-synaptic
spikes. The window A(τ ) is the one introduced and motivated
by Abarbanel et al. (2002), with the same parameters used in
Abarbanel et al. (2002) to fit the experimental data of Bi and Poo
(1998), see Figure 1. This function satisfies the balance condi-
tion

∫∞
−∞ A(τ )dτ = 0. Notably, when A(τ ) is used in Equation

(5) to learn phase-coded patterns with uniformly distributed
phases, then the balance condition assures that the sum of the
connections on the single neuron

∑
j Jij is of order 1/

√
N, and

therefore, it assures a balance between excitation and inhibition
(Scarpetta et al., 2010). Note that, as we are studying a network of
excitatory neurons, the negative connections have to be thought
as connections mediated by fast inhibitory interneurons. When
multiple phase-coded patterns are stored, the learned connections
are simply the sum of the contributions from individual patterns,

FIGURE 1 | The kernel A(τ ) used in Equation (5), given by

A(τ ) = ape−τ/Tp − aDe−ητ/Tp if τ > 0 and A(τ ) = apeητ/TD − aDeτ/TD if

τ < 0, with ap = [1 + ηTp/TD ]−1, aD = [η + Tp/TD ]−1, Tp = 10.2 ms,

TD = 28.6 ms, and η = 4.

namely,

Jij =
P∑

μ= 1

δJμij . (6)

Throughout the paper we use a number of neurons N = 3000, a
period Tμ = 333 ms, and a number of patterns P = 2. Moreover
we use two values for the strengths Hi of the connections in
Equation (5). A value H0 for “normal” neurons, and a value
H1 = 3H0 for “leader neurons,” that are chosen for each pat-
tern μ as a fraction of 3% of the neurons that have consecutive
phases, for example the lowest phases in the interval [0, 2π).
Note that the values of H0 are expressed in units of the thresh-
old � of the neurons. The role of these few “leader” neurons,
with higher incoming connection strenghts, is that of collect and
amplify activity initiated by noise, and give rise to a cue able to
initiate the short collective replay.

After the learning procedure, we perform a pruning proce-
dure, by which only a fraction of the N(N − 1) connections Jij

survives. Namely, for each neuron i, we take all the incoming con-
nections Jij, and separately consider the positive (excitatory), and
the negative (inhibitory) ones. As for the positive ones, we delete
a fixed fraction f +

prune of them that have the lowest value. Then,

we delete a fraction f −,i
prune, that can depend on the neuron i, of

the negative connections that have the lowest (absolute) value,

choosing f −,i
prune so that the sum of the incoming connections to

neuron i at the end is as close as possible to zero. Throughout the
paper we use f +

prune = 70%. As a consequence, at the end of the
pruning process, about 12% of the N(N − 1) connections sur-
vived as positive connections, and 27% as negative connections,
with statistical fluctuations of order of 1/

√
N. After the learning

and pruning procedure is applied, the dynamics of the network
is studied with the connections Jij fixed, that is we do not apply
STDP nor short term depression.

3. RESULTS
We studied the dynamics of the network with N = 3000 neu-
rons as a function of two parameters, the parameter H0 setting
the strengths of the connections, and the parameter α setting the
noise level. The former is expressed in units of the threshold� of
the neurons, while the latter has dimensions of ms−1. We started
with a network with all the potentials Vi(0) = 0, and let the sys-
tem evolve subjected to Equation (1). We discarded the first 60 s of
the dynamics, to avoid considering the transient, and analyzed the
dynamics for a total of 107 spikes, or 1200 s, whichever condition
was met before1. The simulated time was therefore between 180
and 1200 s, depending on the average spiking rate of the neurons.
For each value of the pair of parameters H0 and α, we average
the results over four realizations of the patterns, that is of the
quenched random phases φμi .

3.1. SPIKING RATE DISTRIBUTION AND DYNAMICAL REGIMES
In Figure 2A we show the average spiking rate in Hz per neuron,
as a function of the noise level α and the connection strengths

1This is the time appearing in Equation (1), not the CPU time needed to
perform the simulations, that ranged between 1 and 5 h.
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H0. While the average rate increases continuously as either of
the parameters is increased, the distribution of the rates in a
finite interval of time changes qualitatively. We bin the time
in 1 ms intervals, evaluate the rate in Hz per neuron for every
interval, and compute the distribution of the rates. For low
connection strength, or low noise, the distribution is nearly expo-
nential (see Figure 3A), with an average rate lower than 2 Hz.
For high connection strength and high noise, the distribution
is nearly Gaussian (see Figure 3C), with an average rate higher
than 13 Hz. In an intermediate region the distribution is bimodal
(see Figure 3B), and shows both peaks, one exponential at low
rates, and one Gaussian at high rates with a minimum in the dis-
tribution. This three different regimes are shown in Figure 2B
with different colors. The intermediate bimodal regime resem-
bles the phase coexistence observed in a first order equilibrium
phase-transition, even though in our case the transition is a
non-equilibrium one.

The qualitative difference in the distribution of the spiking
rates, corresponds to a different dynamical behavior. At low rates,
when the distribution is nearly exponential with a maximum at
zero rate, the dynamical behavior is dominated by noise. The
potential of neurons is governed by a Ornstein–Uhlenbeck pro-
cess, and with some probability crosses the threshold giving rise to
a spike, that is not able, however, to generate a spreading activity

in the network (Figure 4A). On the other hand, in the high
rate regime, the noise triggers the replay of one of the patterns
encoded in the network (Figure 4C). In this case, once the replay
of the pattern has started, the noise is not able to stop it, so that
the replay is permanent2. The intermediate regime, correspond-
ing to a bimodal distribution of the rates, is shown in Figure 4B.
In this case the noise is able to start the replay of a pattern, but
also to stop it, so that the activity is intermittent, and resembles
the experimentally observed alternation of up and down states.
The firing rate is high in the “up” state (during short replays)
and is low during “down” states, therefore the distribution of the
rates is bimodal. The corresponding region, shown with green
dots in Figure 2B, separates the regimes of permanent collective
replay of spatiotemporal pattern (red) and the region of qui-
escence with low activity (yellow). Such non-equilibrium phase
transition has been recently studied in a similar model (Scarpetta
and de Candia, 2013, 2014) showing that in the region where
the order parameter, which measures the similarity between
spontaneous dynamics and the stored dynamic patterns, passes

2Note that, once the replay of the pattern has started, it is able to sustain itself,
provided the synaptic strengths are larger than some threshold (Scarpetta
et al., 2010; Scarpetta and Giacco, 2012), so that with a suitable triggering
it is possible to observe the continuous replay of the pattern down to α = 0.

FIGURE 2 | (A) The average spiking rate in Hz per neuron, as a function of
the noise level α and the connection strengths H0. (B) Shape of the firing rate
distribution: nearly exponential (yellow), nearly Gaussian (red), or bimodal
(green). The letters on the plot mark the points whose rate distribution is
shown in Figure 3, and whose activity is shown as a raster plot in Figure 4.

As a function of the noise level α and the connection strengths H0 we
identify a region with bimodal rate distribution with alternation of up and
down states (green), which separates the two distinct regimes of low nearly
exponential firing rate (yellow) and the regime with nearly Gaussian high
firing collective activity (red).

FIGURE 3 | Distribution of the spiking rates on time intervals of 1 ms, for (A) H0/� = 0.207, α = 0.04 ms−1, (B) H0/� = 0.221, α = 0.06 ms−1,

(C) H0/� = 0.250, α = 0.08 ms−1. These parameters correspond to the points marked with the letters A, B, and C in Figure 2B.
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from zero to one, the fluctuations of the order parameter are
maximized.

Note that the replay of a pattern appears in the raster plot of
Figure 4 as a sawtooth, when the neurons are sorted on the verti-
cal axes in the order of the pattern that is being replayed. On the
other hand, it appears as completely random when the neurons
are sorted in another way, for example in the order of a pattern
that is not being replayed. The alternation of states seen in the
raster plot in the bimodal region (Figure 4B) resembles the alter-
nation of up and down states observed to occur spontaneously.
Notably, as reviewed in Luczak and MacLean (2012), there are
experimental evidences that during the up states often neurons
activate in a surprisingly similar sequential order, reproducing
default spatiotemporal patterns.

3.2. AVALANCHES SIZE AND TIME DISTRIBUTION
In the intermediate regime, where the network alternates between
up and down states, we observe that inside the periods of high
firing rate (up states), at a finer level, the activity is made of a
series of cascades or “avalanches,” separated by short drops in

the rate. Cortical activity cascades that follow precise power laws,
i.e., neural avalanches, have been observed experimentally during
spontaneous cortical activity in vitro and in vivo (Plenz, 2012, and
references therein).

Experimentally neural avalanches are defined in terms of local
field potential recorded at electrodes, that average the activity of
many neurons. In our model, we have to distinguish between the
few spikes generated by noise, that we want to characterize as
no activity, and the spikes generated when a collective pattern is
replayed, that represent instead an activity in the network. Due to
the separation we have seen on the global spiking rates, with rates
lower than 2 Hz corresponding to no activity, and rates larger than
13 Hz representing the collective replay of a pattern, we iden-
tify “avalanches” as consecutive time bins with a rate higher than
a threshold Rmin = 7 Hz. Successive time bins are concatenated
until an empty bin (rate lower then Rmin) is reached, at which the
concatenation process stops.

We define the size of an avalanche as the total number of
spikes, that is the integral of the rates over the avalanche dura-
tion. In Figure 5 we show the distribution of the sizes (A) and

FIGURE 4 | Raster plots for the same three set of parameters of Figure 3.

The same identical spike train is shown two times, in the up and down panel,
corresponding to two different sorting of the neurons on the vertical axis. The
sorting order is done according to the order of pattern number 2 in the upper
panels, while sorting is done with respect to pattern number 1 in the lower
panel. Emergence of collective dynamics which replays one of the pattern
appears in the raster plot like a sawtooth, if the neurons are sorted on the
vertical axes in the order to the same pattern that is being replayed. Low rate
activity is shown in (A), corresponding to the nearly exponential rate

distribution shown in Figure 3A. Alternation of states of quiescence with
states of higher activity is shown in (B), corresponding to Figure 3B. During
the states of higher activity a collective coherent replay of one of the two
stored patterns emerges. In this regime the noise is able to initiate a short
collective replay of a pattern, and also to stop it. In the picture (B) we can see
that both patterns are initiated intermittently, a short replay of pattern 2 is
followed by a quiescence period and then by a short pattern 1 replay. Raster
plot in picture (C) shows a regime with stable attractors, with permanent
replay of pattern 2.

FIGURE 5 | The size (A) and duration (C) distribution of the avalanches for H0 = 0.221, α = 0.06, point B in Figure 2B. In (B) we show the dependence of
the size distribution on the threshold rate Rmin.
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durations (C) of the avalanches for H0/� = 0.221, α = 0.06,
that corresponds to point B in Figure 2B. Note that the distribu-
tions are well described by power laws, with exponent 3/2 for the
sizes and 2 for the durations, as experimentally observed (Plenz,
2012). Such a behavior is quite robust, and is observed generi-
cally in the region of the non-equilibrium transition between the
replay and non-replay of spatiotemporal patterns (Scarpetta and
de Candia, 2013). It does not depend on the precise value of the
Rmin chosen. Indeed, as shown in Figure 5B, the size distribution
follows approximately the same power law in a range of Rmin from
Rmin = 5 Hz to Rmin = 9 Hz.

3.3. WAITING TIMES BETWEEN AVALANCHES AND UP AND DOWN
STATES

We have computed the distribution P(
t) of the waiting times
between successive avalanches. In Figure 6A we show the distri-
bution for synaptic strength H0/� = 0.214, 0.221, and 0.228,
and noise α = 0.06 ms−1, in the region where the rate distri-
bution is bimodal. The middle (red) curve at H0/� = 0.221
corresponds to point B in Figure 2B. The distribution presents
a regime between 10 and 50 ms characterized by a power law with
exponent −3, preceded by a regime with a lower slope. For times
larger than 50 ms, the distribution shows a broad plateau, that is
longer the lower the noise, or the strength of the connections.

A power law regime in the waiting times between avalanches
has been observed also experimentally, for example in freely
behaving rats (Ribeiro et al., 2010), or in cortical slices (Lombardi
et al., 2012, in preparation). The second regime, corresponding to
large waiting times, is also observed in Lombardi et al. (2012, in
preparation).

The power law regime corresponds to waiting times between
successive avalanches within the same up state. The power law in
the distribution indicates temporal correlation, i.e., that consec-
utive avalanches belonging to the same up state are correlated.
Indeed in our model the up state is the result of the system falling
in one of the many metastable spatiotemporal pattern attractors,
corresponding to a collective replay activity. The large bump at
long times in the waiting time distribution is related on the other
hand to down states, that is intervals in which the network does
not replay any of the encoded patterns.

We have plotted data of Figure 6A also in an alternative way.
While P(
t)δt is the probability of observing a waiting time
between 
t and 
t + δt, in Figure 6B we plot P̄(
t), where
P̄(
t)δλ is the probability of observing a waiting time between

t and
t(1 + δλ). Note that P̄(
t) = P(
t)
t. With this alter-
native definition, the distribution becomes non-monotonic, with
a pronounced maximum at high values of 
t, and the exponent
of the initial power law becomes −2.

In Figure 7 we show the distribution P(
t) in the region of
high activity, marked in red in Figure 2B. In this case the replay
of the pattern becomes continuous, and therefore the plateau at
long times, in the distribution of waiting times, disappears. The
distribution therefore shows only the power law regime, as shown
in Figure 7, corresponding to the point in phase space marked
with letter C in Figure 2B. On the other hand, in the region of low
activity, marked in yellow in Figure 2B, avalanches become very

FIGURE 7 | The distribution of waiting times P(�t) in the region of

high activity, for H0/� = 0.250, α = 0.08 ms−1 (point C in Figure 2B). In
this case the plateau at high values of the waiting time, corresponding to
down states, disappears, because the replay of the patterns becomes
continuous, and only the power law, corresponding to the concatenation of
correlated avalanches inside an up state, is observed.

FIGURE 6 | (A) Waiting time distribution P(
t) between avalanches, for
H0/� = 0.214, 0.221, and 0.228, and α = 0.06 ms−1, that is for parameters
where the rate distribution is bimodal. The middle curve (red) for

H0/� = 0.221 corresponds to point B in Figure 2B, while the green and blue
curves to points next to point B to the right and to the left. (B) Same data of
(A), with a different definition of the probability distribution P̄(
t) (see text).
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sparse, so that the distribution of waiting times is different from
zero only for very long times, and in this case the initial power law
regime disappears.

As in Lombardi et al. (2012), we define the up states as periods
of high activity characterized by the concatenation of consecutive
avalanches with waiting times lower than Tmax = 50 ms, the max-
imum time falling inside the power law regime of waiting times.
Successive avalanches are concatenated until a waiting time larger
than Tmax is reached, at which the concatenation process stops.
Similarly, down states are defined as a concatenation of waiting
times larger than Tmax. An isolated avalanche preceded and fol-
lowed by a waiting time larger than Tmax does not stop the down
state.

In Figure 8 we show the distribution of the durations of down
and up states, for the same parameters of Figure 6. The distri-
bution of durations of down states (Figure 8A) is well fitted by
an exponential (continuous lines in the figure), showing that the
transition from down to up states is controlled by a Poissonian
probability, due to the noise focusing that triggers a replay of
one of the patterns encoded in the network. On the other hand,
the distribution of durations of up states cannot be fitted by an
exponential as well as the one of down states, except for a nar-
row interval at large times. Indeed, one observes an excess of

durations around 100 ms, that corresponds in the model to the
duration of one period of the replayed pattern. Moreover, when
one approaches the region of parameter space where the replay
of the patterns becomes continuous, the distributions show sig-
nificant deviations from the exponential also for large times, and
could be better fitted by a stretched exponential. This is apparent
going from blue to red and green curves in Figure 8B, that are
all in the bimodal region, but get closer and closer to the region
of self-sustained replay. Note that, when one goes deep inside
the region of self-sustained replay, no down states are observed
in practice, and up states last for a time of the order of the
experimental time.

3.4. BEHAVIOR IN PRESENCE OF SHORT TERM DEPRESSION
It has been conjectured that the alternation between up and
down states depends crucially on the short term synaptic depres-
sion (STSD). As we have shown, in our model this instabil-
ity between up and down states is present even in absence
of short term depression, and is due instead to the particular
structure of connections, that are far from being random. Such
structure determines in the network a large transition region
of phase space, where there is a co-presence of both dynami-
cal attractor states, corresponding to the replay of the patterns

FIGURE 8 | Distribution of the durations of down (A) and up (B) states, for the same parameters of Figure 6. Continuous lines are exponential fits to the
distributions. Durations of down states are well fitted by an exponential, while durations of up states show some deviations both at short and at large times.

FIGURE 9 | (A) Distribution of the rates, evaluated as in Figure 3,
in absence of STSD for H0/� = 0.221 (point B in Figure 2), and
in presence of STSD for H0/� = 0.221 and 0.231. (B) Raster plot

of the network with STSD, in the case of H0/� = 0.231 and
τr = 10 ms. Alternation of up and down states is similar to the
case of Figure 4B.
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encoded, and the attractor corresponding to quiescence of the
network.

However, as short term depression is present in real synapses
in the brain, we show here that it does not invalidate the behav-
ior displayed by the model considered here, but changes only
the parameters, such as the strength of connections, where the
transition region appears. We have added STSD in the model,
implementing a dynamics on the connections Jij according to the
equation

dJij

dt
= 1

τr
(J0

ij − Jij),

where J0
ij are the connections given by Equation (6), and τr = 10

ms is the recovery time of synapses. Moreover, we depress Jij by a
factor fstsd = 0.5, every time the presynaptic neuron j fires a spike.

In Figure 9A, we show the distribution of the rates, evaluated
as in Figure 3, in absence of STSD for H0/� = 0.221 (point B
in Figure 2), and in presence of STSD for H0/� = 0.221 and
0.231. Note that, for the same synaptic strength at rest, the effect
of STSD is to lower the fraction of time in which the network is
in the up state. However, for a slightly higher H0/�, the distri-
bution is very similar to the one without STSD. In Figure 9B, we
show the raster plot in the case of H0/� = 0.231 and τr = 10 ms,
showing a behavior very similar to the one displayed in Figure 4B,
with the alternation of up and down states, and of different pat-
terns replayed in the up states. Therefore, the effect of STSD is to
slightly shift the region of the phase space in which the transition
is observed.

4. DISCUSSION
Our model is the first, to our knowledge, that describe both
neural avalanches, recurrences of spatiotemporal patterns, and
alternation of up and down states, in a single minimal model.

Differently from our previous work (Scarpetta and de Candia,
2013) here we study a sparse connectivity, which is a results of a
competitive pruning process applied after the learning procedure.
Moreover while we previously introduced heterogeneity in the
network topology using neurons with different spiking thresh-
olds, here we show that avalanches initiation may be initiated
by the interplay between miniatures noise and the heterogene-
ity in the strengths of connections, in agreement with recent
experimental results (Orlandi et al., 2013).

The model shows a region of low activity, with Poissonian
spiking rate, and a region of high activity, characterized by the
continuous replay of one of the multiple attractors stored in the
network connections, depending on the value of synaptic strength
and noise intensity. In the region of phase space separating these
two regimes, one observes an alternation of periods of quies-
cence (down states) and periods of high correlated activity (up
states), corresponding to an intermittent replay of the patterns.
At a finer temporal scale, up states are made of a sequence of
avalanches, showing power law distribution of sizes and dura-
tions. In this model the alternation of up and down states does not
depend on a kind on neuron bistability, nor on synaptic depres-
sion, but is rather a network effect, the result of a structured
connectivity, that produces multiple dynamical attractors, and

of the fact that at the non-equilibrium phase transition the net-
work dynamics fluctuates between different metastable basins of
attraction.

Therefore, such complex dynamics appears at a dynamical
transition between disordered Poissonian activity, and an ordered
permanent dynamical state. In such region, the network is able to
respond to external inputs in a flexible way, switching effectively
between different modes of operation, corresponding to the dif-
ferent basins of attraction, that may be connected to functionally
relevant behavior.
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As it has several features that optimize information processing, it has been proposed
that criticality governs the dynamics of nervous system activity. Indications of such
dynamics have been reported for a variety of in vitro and in vivo recordings, ranging
from in vitro slice electrophysiology to human functional magnetic resonance imaging.
However, there still remains considerable debate as to whether the brain actually
operates close to criticality or in another governing state such as stochastic or oscillatory
dynamics. A tool used to investigate the criticality of nervous system data is the
inspection of power-law distributions. Although the findings are controversial, such power-
law scaling has been found in different types of recordings. Here, we studied whether
there is a power law scaling in the distribution of the phase synchronization derived
from magnetoencephalographic recordings during executive function tasks performed
by children with and without autism. Characterizing the brain dynamics that is different
between autistic and non-autistic individuals is important in order to find differences that
could either aid diagnosis or provide insights as to possible therapeutic interventions in
autism. We report in this study that power law scaling in the distributions of a phase
synchrony index is not very common and its frequency of occurrence is similar in the
control and the autism group. In addition, power law scaling tends to diminish with
increased cognitive load (difficulty or engagement in the task). There were indications
of changes in the probability distribution functions for the phase synchrony that were
associated with a transition from power law scaling to lack of power law (or vice
versa), which suggests the presence of phenomenological bifurcations in brain dynamics
associated with cognitive load. Hence, brain dynamics may fluctuate between criticality
and other regimes depending upon context and behaviors.

Keywords: autism, synchrony, power law, criticality, bifurcations, magnetoencephalography

INTRODUCTION
Much is being discussed today about the possible critical
dynamics of brain activity and its close relatives complexity
and emergence. The appealing characteristics of criticality (for
comprehensive introductions to the field, see Christensen and
Moloney, 2005; Sornette, 2004), derived from early theoretical
and computational work indicating the optimization of infor-
mation processing and adaptability in general at the “edge of
chaos” (Packard, 1988; Langton, 1990), fostered a tremendous
interest in the application of these concepts to nervous system
function (concisely reviewed in Beggs, 2007; Chialvo, 2010; Shew
and Plenz, 2013), for, after all, whereas brain cells (glia and
neurons) perform individually relatively simple computations, in
their collective activity in the brain, cell networks achieve com-
plex operations leading to adaptive behaviors. Critical dynamics
generally show scale-invariant organization (similar fluctuations
occurring at all spatio-temporal scales) which can be described
by scale-invariant metrics. Of these metrics, power laws in the
distribution of characteristics of the system (for instance the

size of events or inter-event intervals) have been considered as
typical signatures of criticality. Encouraged by early experimental
observations reporting the celebrated 1/f power spectrum scaling
(Pritchard, 1992; Georgelin et al., 1999), neuroscientists launched
an intense investigation to study the presence of power laws
in experimental recordings of all types, from in vitro systems
to in vivo recordings. However, during these investigations, no
consensus on the interpretation of power law scaling has emerged
and many misunderstandings are currently apparent (Beggs and
Timme, 2012). Most notably, while the presence of power laws is
commonly thought to be associated with complexity, this associa-
tion has only been formally demonstrated to occur in equilibrium
statistical mechanics in systems near bifurcations. In addition,
there are many means by which a system may display power laws
(Mitzenmacher, 2004; Clauset et al., 2009; Marković and Gros,
2014) and some have little to do with complex dynamics.

Keeping these considerations in mind, we have assessed the
possible presence of power-law scaling in a phase synchronization
index of magnetoencephalographic brain recordings in children
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with and without autism during performance of two executive
function tasks. Characterizing the difference in brain dynamics
between autistic and non-autistic individuals is motivated by
the potential to find differences that could either aid diagnosis
or provide insights as to possible therapeutic interventions in
autism. Autism and related disorders (autism spectrum disorders,
ASD) are accompanied by different styles of brain information
processing, reflected in some particular behavioral features of
individuals with ASD. The Austrian psychiatrist Kanner (1943)
described autism as “. . .the inability to experience wholes without
full attention to the constituent parts” (even though it seems that
the term autism was coined in 1911 by the Swiss psychiatrist
Eugen Bleuler, who used it to describe the “withdrawal into one’s
inner world”). Ideas proposed to explain the behavioral traits in
ASD have mostly been on the psychological level of description,
such as the weak central coherence hypothesis (Frith, 1989). With
the advent of new analytical methods to scrutinize brain dynam-
ics, especially the analysis of synchrony and “connectivity”, these
ideas have been “translated” into neurophysiological notions such
as disconnection amongst brain circuits. Yet, the debate still
continues regarding the possible hyper or hypo-connectivity in
autistic brains.1 What seems conceivable is that the brain coor-
dination dynamics differs in ASD brains from others, for it is
the coordinated activity of transiently formed cell assemblies that
underlie cognition (von der Malsburg, 1981; Flohr, 1995; Bressler
and Kelso, 2001; Kelso, 2008; Pérez Velázquez and Frantseva,
2011). Thus, studies aimed at assessing brain coordinated activity
could be of relevance in the field.

Our study uses magnetoencephalographic (MEG) recordings
done in two groups, children with and without ASD, performing
two different executive function tasks. In our analysis, we calcu-
lated a synchronization index and studied whether the index’s
empirical density function (edf) displayed power law scaling.
Specifically, we looked for different expressions of power law
scaling between the two groups of children and the two executive
tasks. We found that power law scaling was not common and
its frequency of occurrence was decreased when the cognitive
load of the test was high. This difference between tasks was
seen in both groups of children but little inter-group variation
was observed. We discuss implications of these findings in the
Discussion section.

MATERIALS AND METHODS
PARTICIPANTS
Data were drawn from a larger sample of children enrolled in
previous studies (Pérez Velázquez et al., 2009; Teitelbaum et al.,
2012). Sixteen control children (7 females) and 15 children (1
female) diagnosed with high functioning autism (Asperger syn-
drome) participated in the study. The children’s parents provided
informed consent for the protocol approved by the Hospital for
Sick Children Review Ethics Board. Age range was between 7 and
16 years. Patients met the criteria for ASD based on DSM-IV
and were evaluated by the psychologists in the Autism Research

1see for instance http://sfari.org/news-and-opinion/news/2013/autism-
brains-are-overly-connected-studies-find for recent perspectives on the
topic

Unit of the Hospital for Sick Children or were recruited from
the Geneva Center for Autism and Autism Ontario. Age-matched
control children had no known neurological disorders. Cognitive
abilities were measured using the Wechsler Abbreviated Scale
of Intelligence (WASI), as reported previously (Pérez Velázquez
et al., 2009). The data analyzed in this study corresponded to 14
children (7 in each group) for the Stroop task and 25 children (12
in the ASD group) in the auditory attention task.

MAGNETOENCEPHALOGRAPHIC RECORDINGS
MEG recordings were acquired at 625 Hz sampling rate, using
a CTF Omega 151 channel whole head system (CTF Systems
Inc., Port Coquitlam, Canada), as previously described (Pérez
Velázquez et al., 2009). Head movement was tracked by measuring
the position of three head coils every 30 ms, located at the nasion,
left and right ear, and movements less than 5 mm were considered
acceptable. Sensors used in the analyses are depicted in Figure 1,
and were located over the following cortical areas: left and right
frontal (LF, RF), left and right parietal (LP, RP), and left and
right temporal (LT, RT). We chose these cortical areas as they are
associated with executive functions and relatively mutually distant
in space.

EXECUTIVE FUNCTION TASKS
Stroop color-word test
The color Stroop interference paradigm is a commonly used test
of inhibition (Stroop, 1935), in which the participant names
the colors of the ink in which words are written. It consists
of a list of color words written in congruent color (e.g., the
word “green” written in green color), and follows with a list in
incongruent color (e.g., the word “green” written in red color).
It is well established that processing the content of the word is
more automatic than processing the color of the word. Therefore,
in the incongruent condition, the individual needs to inhibit the
response of word naming that competes with the response of color
naming. In our experimental MEG set-up, words were presented
to participants via a video projector, and the children’s responses
were monitored on-line to check for errors. Besides the congruent
(termed “Congruent ink” in this study) and incongruent condi-
tions (“Incongruent ink”), we also conducted a baseline condition
(“Black-ink”) in which participants named the color words writ-
ten in black ink, where interference effects were expected to be
much lower or absent. Ninety four words were presented for each
condition (Black-ink, Congruent-ink, and Incongruent-ink), the
time interval between words was 2.5 s.

Auditory attention task
The auditory task included two conditions with varying atten-
tional requirements. In the simple reaction to stimulus, that is,
a “low attention” condition (which we term “No attend” in this
work) the participants heard repeated identical auditory tones
and were instructed to press the response button to every tone.
In the auditory oddball condition (“Attend” condition), that
required attention to a deviant tone amongst otherwise common
tones, participants pressed the response button only after hear-
ing a deviant tone. In this way, the “low-attention” condition
mainly reflected sensory registration of auditory stimuli, and the
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FIGURE 1 | Average magnitude of phase synchrony in the auditory
attention task. Upper head-plot depicts the MEG sensors used in the study,
grouped as left frontal (LF), right frontal (RF), left parietal (LP), right parietal
(RP), left temporal (LT) and right temporal (RT). The bar graphs represent the
average of the phase synchrony index R (described in Section Materials and
Methods) between two groups of sensors, and for each of the three

conditions of the task: the baseline (“control”) condition, the attend and
no-attend to the deviant tone (“Attend” and “NotAttend” respectively). For
clarity, eight sensor pairs are represented (same trend was present in the rest
of combinations). Note the slight increase in synchrony during task
performance, more evident in the non-ASD group, at central frequency of 10
Hz, in the upper bar graphs (see details in the Results section).

oddball condition reflected decision-making based on an auditory
distinction. The baseline recording for this task was a period of
30–60 s when individuals were asked to remain quiet and did not
receive any auditory input. Tones were presented binaurally with
a 750 ms inter-stimulus interval. MEG recording time was 5 min
for the low-attention and oddball conditions. There were 400 of
the same stimuli presented in the low-attention condition. There
were equally 400 stimuli presented in the oddball condition, of
which 30% were deviant tones.

PHASE SYNCHRONIZATION ANALYSIS
Visual inspection of the MEG recordings for artifacts was done
during the acquisition and off-line before the analysis to remove
sensors with artifacts or repeat the acquisition. Recordings were
initially band-passed using a FIRLCS filter with a band-pass
of ±2 Hz around a “central frequency”. The band-pass filter-
ing done before the extraction of the oscillation phase removes
eye blink artifacts (which tend to appear in frontal sensors)

because these last around 300–400 ms, which is ∼2.5–3.3 Hz
in terms of frequencies. Since in our study the lowest fre-
quency studied is 10 ± 2 Hz, we can consider that eye blinks
are not affecting our results. In this study, we used four cen-
tral frequencies, 10, 18, 26 and 32 Hz, thus covering the range
8–34 Hz. The reason to choose these frequency bands is that
they cover most of the ranges from α to lower γ that have
been attributed to cognitive task performances. In addition, due
to some limitations with the extraction of the phase using the
Hilbert transform, especially the advice to have about 20 points
per characteristic period of the oscillation (see page 367 in
Pikovsky et al., 2001), phase synchrony was not assessed past
34 Hz.

On these band-passed signals, the Hilbert transform was
applied and successive values of instantaneous phases were
derived from the corresponding analytic signal. These phase
series were then analyzed using sliding windows extracting the
Mean Phase Coherence Statistic between two MEG recording
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channels as described in Mormann et al. (2000). Briefly, we use
the analytic signal approach, employing the Hilbert transform
to estimate instantaneous phases and calculate phase locking
between two MEG recording channels (sensors), as previously
described (Garcia Dominguez et al., 2005, 2007). With noisy data,
phase synchronization has to be defined in a statistical sense:
two signals are phase synchronized if the difference between their
phases is bounded over a selected time window, that is, if it
clusters around a single value (Pikovsky et al., 2001). A measure of
this is the circular variance (CV) of the phase differences ∆θ(t),
or alternatively, the coefficient R = 1 CV, which can also be
expressed as:

Rjk = | < exp(i1θjk(t)) > |

Here |·| denotes the norm and < · > the mean value. 1θjk(t) =
θj(t)− θk(t) are the series of phase differences between the ana-
lytic signals of series indexed by j and k (each index j and k refer
to one signal, that is, one MEG sensor time series) over a given
time window. The value of R varies from 0 to 1, the higher the
value the tighter the clustering of the phase differences 1θ about
a single mean value; that is, the closer the R-value to 1 the more
synchronized the signals.

To estimate the mean synchrony index in the Stroop task,
as described in detail in Pérez Velázquez et al. (2009), averages
of the values of the synchronization index R were computed
from stimulus presentation to the moment near the individual’s
response, about 0.45–0.6 s after stimulus presentation in the
Stroop task. The precise time to calculate the average varied
slightly from individual to individual because the time to answer
was variable and the average of the synchrony index was taken
from the time of stimulus presentation to just before the subject’s
response. For this purpose, the minimum time for each response
of the individual rather than the mean of each subject’s distribu-
tion of reaction times was taken. All 282 trials (94 words × 3
conditions) were used for the analysis. The “baseline” was the
initial list of words written in black ink. The results derived
from the estimations of the magnitude of synchrony in this task
were reported in Pérez Velázquez et al. (2009). In the present
study, those synchronization indices estimated in the previous
study were used to construct the edf to be analyzed as described
below.

For the auditory attention task data, synchrony between two
cortical sensor groups (those aforementioned above and shown in
Figure 1) was computed, as in the Stroop task, using the average
of all sensor combinations between the regions. For example,
we selected 6 left parietal sensors and 6 right temporal sensors
and formed 36 inter-group pairs. For each task condition, the
synchrony values between these 36 sensor pairs were averaged to
define the average synchrony index between the two sensor groups
at each time point. Unlike in the Stroop task, in this case the
synchrony index was not calculated phase-locked to the stimulus
presentation, rather was calculated in a sliding window of 1 s
for the whole 5 m recording (this is reasonable as attention, in
this task, is supposed to be continuous and not intermittent).
This derived average was then compared between subject groups
and between conditions, and was used to obtain the empirical
distribution functions.

TESTING POWER LAW DISTRIBUTION
We used the method described in Janczura and Weron (2012),
which is based on the asymptotic properties of the edf. Details
and validation of the procedure can be found in that article. We
used the edf (the sample estimate of the cumulative distribu-
tion function) of the phase synchronization index rather than
probability densities (pdf) because the former is not as biased
as the pdf in terms of binning the data points that is required
to construct a pdf but not an edf, and in general tests on edf
are more powerful than those done on pdf (Newman, 2005).
Especially, it has been documented that the cdf is more accurate
to fit power laws (Dehgani et al., 2012). To construct the edf, the
values of the R index were not further averaged in the Stroop
task because the values represented the average from stimulus
presentation to the moment near the individual’s response in
the time periods mentioned in the previous paragraph on phase
synchrony analysis. In the auditory task, the R-values, computed
in a sliding window as mentioned above, were averaged in 1-s
windows to reduce the number of data points (otherwise we
would have 625 points per second, as we used a 625 Hz acquisition
rate, that would result in a very large number of data points for
the 5 m MEG time series and for all sensor combinations) and to
make it more comparable to the Stroop task data. In total and for
each individual and each task, the number of data points (that is,
the R-values corresponding to the sensor combinations) used to
derive the edf was 864 in the Stroop task, 4437 in the attention
task, and 387 in the “baseline” for the attention task (because here
the recordings were of shorter duration).

In brief, Janczura and Weron’s MATLAB algorithm
(CI_powertail.m) estimates confidence intervals of a specified
significance level (set at 0.05 in this study) for a power law fitted
to a certain range of the edf. The logarithmic plots (Figures 2
and 3) represent 1-edf on the y-axis and the data on the x-axis.
The ranges used in our study to fit the tail power law were (unless
otherwise stated in the text) to the largest 5–1% values for the
“attend” and “no attend” conditions of the auditory task, and
25–2.5% in the baseline condition of the auditory task and for
the Stroop task. The ranges had to differ because of the different
number of data points as detailed above. When the power law
was fitted to central regions of the edf, the range was 70–25%.

To assess possible phenomenological bifurcations (Kuehn,
2011), we estimated whether two pdfs of the R indices were
statistically different using the two-sample Kolmogorov-Smirnov
test, with the null hypothesis that the two data sets are from the
same continuous distribution.

RESULTS
In order to inspect characteristics of the phase synchrony proba-
bility distribution function or the edf, a computation of the phase
synchrony index, described in Section Materials and Methods,
was done first. It should be noted, as discussed below in the
Discussion section, that our synchrony analysis among MEG
sensors reflects population-scale levels of activity in large cellular
ensembles, mostly a combination of synaptic potentials and neu-
ronal action potentials (Toga and Mazziotta, 2002), thus the
synchrony index in reality represents correlated phases among the
MEG sensors. The average magnitude of the synchrony revealed
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FIGURE 2 | Examples of the pdf and its characteristics. (A) and (B), pdf
of the synchrony index and the edf corresponding to the baseline and the
“not attend” conditions of one individual (non-ASD) performing the auditory
attention task. In the right-hand side graphs, the logarithmic plots of the edf
versus the data (R-values) are presented. Dashed red lines indicate 95%
confidence for a power law, showing the presence of outliers in B. Note as
well the change in the pdf, becoming almost bimodal in B, and as well the
possible presence of a power law regime in the middle of the edf. Fitting
the power law in this middle range (70–30% of the values, see Section
Materials and Methods for ranges used), the exponent found was 2.4. (C)
Data collected from another individual (non-ASD) during performance of the
Stroop task, showing the presence of outliers in the tail during the
incongruent color condition.

few differences between the ASD and the control (non-ASD)
group during task performance. The most notable difference
is that the slight increase in synchrony during performance of
the auditory attention task was more evident in the non-ASD
group, as presented in Figure 1 for the central frequency of 10
Hz. Note that the synchrony index between two sensor groups
tends to augment from the “control”, or baseline, to the “attend”
condition in both ASD and non-ASD participants, and that it
is already higher than baseline in the “no-attend” condition.
Apparently, only the fact that participants had to perform a
task either paying or not paying attention to deviant tones as
instructed, already changes the brain synchrony patterns. In
contrast, and shown as well in Figure 1, no apparent repro-
ducible change in synchrony is detected when evaluated at 32
Hz (or at 26 Hz, not shown). The increase in the synchrony

FIGURE 3 | Upper graphs correspond to one subject (ASD) performing
the auditory attention task, illustrating that the tail power law
characteristics disappear during the attend condition. The inset on the
right-hand side graph is the log-linear plot, suggesting that the edf has more
pronounced exponential characteristics rather than power law features.
Lower plots are from another subject (non-ASD) showing the presence of
outliers in both conditions of the auditory task, but more numerous in the
“attend” condition (circled). As in Figure 2B, the middle part (70–40%) of
the edf in the “Attend” condition could be fit to a power law with exponent
3.4.

index R associated with task performance was observed when
phase synchrony was computed at central frequencies of 10 and
18 Hz, and the relative changes during task performance, between
the “baseline” and “attend” condition, were an increase of
13.1 ± 5.6% and 5.54 ± 4.6% for the non-ASD group at 10
and 18 Hz respectively, and 4.4 ± 3.5 and (a decrease of) −0.6
± 1.9% for the ASD group. Thus it seems that it is around the
α-frequency range (10± 2 Hz) where the tendency to enhance the
magnitude of phase synchrony amongst the MEG sensors assessed
is more pronounced. Note that, in the ASD group, the magnitude
of synchrony at 32 Hz is highest in the parietal sensors (LP-
RP) regardless of task condition, as indicated as well in previous
studies (Pérez Velázquez et al., 2009; Teitelbaum et al., 2012).
Comparison of the number of errors (deviant tones not detected)
committed during the performance of the oddball task (“attend”
condition) did not significantly differ between the two groups,
although there was a trend for worse performance by those with
ASD (ASD mean of 12.25 ± 13 errors; control group mean of
10.1± 7.3).

The changes in synchrony during the Stroop task were
reported in Pérez Velázquez et al. (2009), so it will not be
reproduced here. Briefly, significant increases in the magnitude of
the synchrony index were observed in the non-ASD participants
during the “incongruent” condition, but no apparent change in
synchrony between conditions was detected in the ASD group.
The behavioral results of this task are also reported in that paper:
the difference in the errors committed (reading the word rather
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than naming the color in the incongruent condition) between the
two groups of children was not significant even though, as found
in the attention task, there was a tendency to make more mistakes
in the case of ASD subjects (average of 5± 4.8 errors for the ASD
participants versus 2.68± 2.5 errors in the control group).

Whereas the averaged magnitudes of synchronization provide
certain information regarding brain dynamics, in addition to
presenting the averages it is also informative to inspect the whole
pdf of the magnitudes of synchrony, and this was our main
purpose in the present study. As is well known, when pdfs are not
Gaussian the central tendencies (median, most probable value,
average) will differ, so which one to use is a matter of convenience
or taste, thus inspecting characteristics of the whole pdf, especially
the tails, provides a more complete picture than averages and
variances alone. Figure 2 shows two pdfs of the synchronization
index evaluated at 26 Hz for one subject performing the auditory
task, Figure 2A is that derived from the baseline condition and
Figure 2B for the “no-attend” condition. Note the differences in
shape, one (“no-attend”) being bimodal, differences that can be
quantified by a Kolmogorov-Smirnov (KS) test (in this case the
difference is very significant: p < 0.0001). The logarithmic plot
of the edf (or rather 1-edf, as noted in Section Materials and
Methods) is represented in the same figure, and these were used
to assess the presence of power law in the tails, as explained in
Section Materials and Methods. Note that some power laws could
be present not in the tails of the distribution but in the middle,
as in Figure 2B (the straight segment in the middle), however
this was uncommon (less than 45% of inspected edfs). Power
laws in the tails were not too frequently found either. Tables 1
and 2 provide the abundance of power laws found in the tails:
in average in the non-ASD group, these were present in 27.9%
(auditory task) and 32.1% (Stroop task) of those evaluated, and
in the ASD group the averages were 35% (auditory task) and
39.3% (Stroop). Other values are presented in the tables, where
it can be seen a disappearance of tail power law characteristics
with increasing task cognitive effort, an effect seen in both tasks.

Figure 2C shows the loss of tail power law (appearance of outliers)
in the “incongruent ink” condition of the Stroop task, the more
demanding of the three in that task. Perhaps because of this
effect, notice in Tables 1 and 2 that, for the “baseline” conditions
in both tasks, the frequency of tail power laws is greater in the
baseline condition for the auditory task (60.5% of instances),
when children were asked to remain relaxed, whereas in the
Stroop task (36.4% of instances) the cognitive load was higher as
they had to read a list of words in black ink. Thus, less power law
features are associated with more cognitive effort. The Discussion
section contains comments on why the power law regime in the
synchrony distribution is less frequent as cognitive load increases.
Representative examples are presented in Figures 2 and 3. Even
when power laws could not be fitted, there were more outliers as
cognitive effort increased, depicted in Figure 3 (lower graphs) and
quantified in Table 1 (“points out of PL”). It is worth noticing
that rather than power laws, some of the edfs had exponential
characteristics, as shown in Figure 3, upper graph inset.

The tendency to change in pdf characteristics (as represented
in Figure 2) is suggestive of a critical transition, what is
known as phenomenological bifurcations (Kuehn, 2011),
that describe changes in the probability density functions
in random dynamical systems. To quantitatively assess the
difference between pdfs in each condition of the tasks, KS
tests were used. Of 388 pdfs evaluated, including all children
and all tasks (thus 388/2 = 194 transitions, one “transition”
here means going from one task condition, say “congruent
ink”, to the next, “incongruent ink”), changes between pdfs
were significant (p < 0.05) 52.1% of times, but were more
abundant when there was a transition from power-law to
non-power law (or vice versa) characteristics (53.9% of the
times) than when there was no such transition (39% of the
times). This difference was more pronounced in the data
corresponding to the Stroop task (47.2% of instances for power
law to non-power law, and 25% for the other case) than in
the auditory attention task. These observations suggest that

Table 1 | Presence of tail power law (PL) regimes in the distribution of the synchronization index during the auditory attention task.

Baseline Not attend Attend

Control group (n = 13) Percentage PL 57.4% 12.5% 15.4%
Points out of PL 4 ± 3 13.2 ± 9.7 14.5 ± 9

ASD group (n = 12) Percentage PL 64.1% 20.8% 25.5%
Points out of PL 2.1 ± 1.8 11.6 ± 7.8 10.6 ± 8.5

Total (n = 25) Percentage PL 60.5% 16.7% 20.2%

Data points outliers (“Points out of PL”) are more numerous as the attentional demand increases, from baseline to the “Attend” condition (lower plots in Figure 3

depict one example).

Table 2 | Presence of tail power law (PL) regimes in the distribution of the synchronization index during the Stroop color-word task.

Black ink Congruent ink Incongruent ink

Control group (n = 7) Percentage PL 46.4% 25% 25%
ASD group (n = 7) Percentage PL 25.9% 39.3% 32%
Total (n = 14) Percentage PL 36.4% 32.1% 28.6%
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a bifurcation, manifested as a change in the characteristics
of the pdf, may take place when increasing cognitive
load of a task.

DISCUSSION
Critical dynamics, the behavior of extended systems near a phase
transition where scale invariance prevails, has been proposed for
nervous system activity as it has several features that optimize
information processing (Beggs, 2007; Shew and Plenz, 2013),
and this notion has been taken with such enthusiasm that the
field is currently in the grip of an explosion of fecundity. Indi-
cations of such dynamics have been reported for a variety of
in vitro and in vivo recordings, ranging from in vitro slice elec-
trophysiology to human functional magnetic resonance imaging.
However, there still remains considerable debate as to whether
brains really operate close to criticality rather than, for instance,
stochastic or oscillatory dynamics. One sign of criticality that
has become a favorite is the inspection of power-law distribu-
tions in nervous system data, and such power-law scaling has
been reported associated with different types of recordings, even
though some studies failed to find clear evidence. Here, we
studied whether there is a power law scaling in the distribution
of the phase synchronization derived from magnetoencephalo-
graphic recordings during executive function tasks performed
by children with and without ASD. Our observations suggest
that power law scaling of phase synchrony indices derived from
MEG recordings is not very common in both ASD and non-
ASD groups and its frequency of occurrence tends to diminish
with increased cognitive load/effort as children performed the
tasks. There were indications of changes in the phase synchrony
probability distribution functions associated with a transition
from power law scaling to lack of power law, perhaps suggesting
the presence of phenomenological bifurcations in brain dynamics
associated with cognitive load. Hence, the observations of power
law and other (exponential) scaling regimes plus the signs of
phenomenological bifurcations, further support the metastability
of brain dynamics and suggest that some brain areas experience
critical transitions.

Our studies are based on the calculation of a phase syn-
chronization index from MEG recordings that reflect large-scale
activity, at the collective level, in extensive cellular ensembles. The
synchrony index thus represents correlated activity in brain areas
over which the sensors locate. There are certain limitations worth
noting. Perhaps principally, the signals detected may summate at
nearby MEG sensors, depending on the intensity of the source,
causing multiple sensors to contain similar activities. To minimize
summation of signals, the areas of sensors chosen were not direct
neighbors. These sensors were chosen as well because the cortical
areas over which they are located are associated with sensorimotor
transformations (Binkofski et al., 1999). Estimating the time
series at the source level (in brain tissue) is a solution to overcome
the summation at neighboring sensors, and while some methods
to derive the signals at the sources have been reported in the
literature, source reconstruction adds another level of complexity
to the analysis and may even yield spurious results, as it is an “ill-
posed mathematical problem” (Gross et al., 2013), mainly because
assumptions must be made about the origin and location of the

expected sources in order to properly constrain the solution to the
problem, and thus there is bias as it is not trivial to choose what
brain areas could be expected to account for the brain dynamics.
With these considerations in mind, our analyses are performed at
the sensor level and the conclusions we draw from them focus on
relative changes without focusing on specific cortical areas.

Traditional scientific reporting methods normally use averages
and variances, which tend to hide the variability and fluctuations
in data sets. Thus, a complementary approach is the observation
of the full pdf. As evidenced in the figures, power law scaling
could always be found in some segments of the edf, a well-known
feature as few real-world distributions follow a power law over the
entire range (Newman, 2005). This imposes a certain arbitrary
constraint, in that one must choose a range of values at which
the power law may hold, choice that is not trivial when using
empirical data, and thus the scaling exponent will vary depending
on the chosen data points. It is known as well that two or more
power law regimes with different exponent may be present in
the same distribution. To make things more complicated, the
exponent values depend on sampling and several other aspects
(Priesemann et al., 2009; Touboul and Destexhe, 2010; Marković
et al., 2013). For all these reasons, we do not emphasize the
values of the exponents in our work, nevertheless we note that
the values of the exponent, either in the tail or in the middle
of the distribution are larger than 2 (see legends of Figures 2B
and 3, where a power law approximated to the middle part of
the edf provided exponents >2). Because the classical exponent
associated with self-organized criticality is 1, the celebrated 1/f
scaling (Bak et al., 1988; Pritchard, 1992), exponents larger than
1 may not be associated with this phenomenon. High values of
exponents have been recently reported in recordings from cat,
monkeys and humans (Touboul and Destexhe, 2010; Dehgani
et al., 2012), hence the matter of self-organized criticality in
nervous system activity remains unclear at the present time.
Nevertheless our study is not intended to present evidence for
self-organized critical dynamics in brain synchronization, rather
to inspect certain properties of the distributions of our synchrony
index associated with performance of executive function tasks in
two groups of individuals. In instances where power law regimes
co-exist with others (e.g., exponential) in the distributions of
synchrony magnitudes, it could be hypothesized that this is a
sign of the metastability of brain dynamics, a notion proposed
by several authors (Bressler and Kelso, 2001; Fingelkurts and
Fingelkurts, 2004; Kelso, 2008; Pérez Velázquez and Frantseva,
2011; Deco and Jirsa, 2012; Kelso et al., 2013). Incidentally, one
of the first early proposals of the brain as “organ whose natural
state is one of unstable equilibrium” is due to William James in
his 1879 essay “Are we automata?” published in Mind, 4, 1–22.

One aspect that, in principle, could be concluded from our
study is that the power law features become less frequent as tasks
require more effort/cognitive component. Since we investigated
the edf of a synchronization index amongst MEG sensors, and if
we assume these indices represent correlated activity in brain areas
over which the sensors are positioned as expounded above, power
law scaling then denotes that synchrony has no characteristic
scale, and the absence of power law indicates that there are char-
acteristic scales in synchrony; in the case of the (right-hand side)
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tails of the distribution, the absence of power law features means
that there appear some especially high values of the magnitude of
synchrony, perhaps because of the change in coordinated activity
in certain cortical areas associated with task performance. Thus,
the possible reason why we observed decrease incidence of power
law regimes as cognitive effort augments can be explained by the
associated enhanced synchronization needed to perform the task.
In fact, Figure 1 indicates a tendency to increase synchrony during
task performance. Equally, in the Stroop task, it was previously
reported (Figures 1 and 2 in Pérez Velázquez et al., 2009) an
increase in the magnitude of phase synchrony going from the
baseline (“black ink”) to the “incongruent” condition (that is,
the most difficult of the three conditions in that task) only for
the non-ASD group, and consequently, notice in Table 2 the
reduced occurrence of tail power laws for this group as task
difficulty increased, but not for the ASD set. If some specific
cortical areas become more synchronous, this will result in high
values of the magnitude of synchrony (our R index) and therefore
the loss of scale-free features. Heavy tails have been associated
with small world features (Feldt et al., 2011), that applied to
our studies would suggest there are highly “connected” cortical
regions whereas most have low connections. Or more accurately,
because phase synchrony as evaluated here is not really a measure
of connectivity but a correlation between phases of oscillations,
those results could be interpreted as few regions with highly cor-
related phases of the oscillations (cautionary notes on the notion
of “connectivity” derived from these types of analyses have been
presented elsewhere, Perez Velazquez, 2012). It is of interest that,
in experiments in vitro, enhancing excitation using blockers of
GABAergic transmission results in deviations from the neuronal
avalanche power law observed in unperturbed brain slices (Beggs
and Plenz, 2003). It is conceivable that this in vitro manipulation
shares similar neurophysiological features with increasing cogni-
tive effort, perhaps increased activity/excitation in some cortical
regions, and therefore both results, in vitro and ours in vivo, are
complementary.

In our study we have not emphasized the possible associ-
ation of the observed power law regimes and self-organized
criticality, because, as noted above, it is still inconclusive that
power law scaling is directly related to self-organized criticality
in nervous systems. Indeed, features of critical dynamics emerge
in various situations even when the dynamics are not critical, as
shown in networks that possess a hierarchical modular structure
(Friedman and Landsberg, 2013) or a noisy feedforward structure
(Benayoun et al., 2010). While indications of criticality derived
from “neuronal avalanches” of activity (Beggs and Plenz, 2003) or
the scaling of fluctuations in functional brain imaging (Fraiman
and Chialvo, 2012) have been reported, other studies have cast
some doubt as to the methods used to assess power laws in
brain recordings (Clauset et al., 2009; Dehgani et al., 2012). For
instance, Touboul and Destexhe (2010) observed that sometimes
the scaling behavior is a consequence of the thresholding method,
which applies to amplitude-based recordings. There is doubt too
as to the generic character of this presumed criticality in nervous
tissue (Bédard et al., 2006; Beggs and Timme, 2012). To compli-
cate matters, power laws can be generated in a variety of manners
(Reed and Hughes, 2002; Marković and Gros, 2014). Nevertheless,

our finding of some signs of phenomenological bifurcations most
commonly associated with transitions from power law to non-
power law regimes, may suggest that, in some instances, our
MEG recordings display signatures of possible phase transitions
and thus provides a, perhaps indirect, support for criticality in
some instances. The observation that power law regimes are
not frequently seen may present another indication of criticality,
because in principle it is only at the bifurcation point when power
laws should be apparent, but once the transition has taken place,
other regimes can be present; this is an important point, many
times overlooked, mentioned in Beggs and Timme (2012). To
stress it again, what has been demonstrated beyond doubt is that
in systems at thermodynamic equilibrium power laws are found
only near bifurcations, but in far from equilibrium conditions,
this remains unclear. In view of what we, and others, have
been reporting with regards to the apparent mixture of regimes,
especially exponential (which is related to Poisson-type stochastic
processes) and power-law scaling, brain recordings may represent
the activity of coupled oscillator phenomena (Perez Velazquez et
al., unpublished observations) in stochastic settings (Teramae and
Tanaka, 2004; section 1.5 in Pérez Velázquez and Frantseva, 2011).
For instance, Reed and Hughes (2002) reported that randomly
observed stochastic processes exhibit tail power laws, and Deco
and Jirsa (2012) proposed that resting state networks in the brain
emerge as structured noise fluctuations in a multistable attractor
landscape.

In terms of synchronization in the brain, the presence or
absence of characteristic scales makes sense according to what
has been found regarding, for instance, the stability of cer-
tain functional nets derived from EEG recordings (Chu et al.,
2012), phenomenon which would require characteristic scales
if we assume those stable nets are almost always functionally
“connected”, whereas scale invariance makes sense too as many
brain nets have to be loosely or very transiently coordinated,
and especially when analyzing such recordings like MEG or
EEG representing global, collective activities in myriad of cells.
These neurophysiological features would support the varied
dynamic behaviors of brain networks and in general metastable
dynamics.

We have used phase synchronization in this study to evaluate
power law scaling, instead of others most commonly used such
as the size of bursts or number of spikes in neuronal avalanches.
It is difficult to ascertain what type of metric is the best suited
to characterize collective brain dynamics, but synchronization
has two advantages. First, it seems to be a reasonable metric to
scrutinize collective network dynamics, and it is and has been very
widely used to study cognition and brain pathologies. The second
advantage over other metrics that have been used in this type of
studies is that a threshold is not needed to define the character-
istic to be analyzed (it was mentioned above the problem with
threshold-based methods to assess power law regimes, Touboul
and Destexhe, 2010). Using different metrics to scrutinize for crit-
icality will be crucial in the future, considering the controversies
with the study of neuronal avalanches.

To conclude, a few comments on what these results may
indicate about ASD brain dynamics. It was noted in the
Introduction section the current debate about the classical notion
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of “underconnectivity” in view of recent observations suggesting,
if something, the opposite. Since the time when specific changes in
brain dynamics were proposed to account for ASD cognitive fea-
tures, including the temporal binding deficit (Brock et al., 2002)
and disruptions of coordinated timing in cellular activity and
associated synchronization dynamics (Herbert, 2005; Uhlhaas
and Singer, 2007), many reports have appeared indicating, some-
times, contrasting evidence. This should not be surprising if we
consider the wide spectrum of autistic syndromes, and of course
the great variety in the experimental and analytical methods
used to assess brain dynamics. In our study, no main differences
were found comparing the ASD and the non-ASD participants,
other than a tendency to exhibit more synchrony in non-ASD
individuals when performing the tasks, thus having in general less
frequent power law features than in the ASD data (see percentages
in the tables). Thus, the current assortment of observations seems
to indicate that, as we already noted in previous publications
(Pérez Velázquez and Frantseva, 2011; Garcia Domínguez et al.,
2013; Pérez Velázquez and Fernández Galán, 2013), it may not be
a matter of more or less connectivity in the ASD brain, rather a
different type of brain coordinated activity that manifests in the
particular information processing characteristics and associated
special cognitive style of individuals with autism.
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Thermodynamic criticality describes emergent phenomena in a wide variety of complex
systems. In the mammalian cortex, one type of complex dynamics that spontaneously
emerges from neuronal interactions has been characterized as neuronal avalanches.
Several aspects of neuronal avalanches such as their size and life time distributions
are described by power laws with unique exponents, indicating an underlying critical
branching process that governs avalanche formation. Here, we show that neuronal
avalanches also reflect an organization of brain dynamics close to a thermodynamic
critical point. We recorded spontaneous cortical activity in monkeys and humans at
rest using high-density intracranial microelectrode arrays and magnetoencephalography,
respectively. By numerically changing a control parameter equivalent to thermodynamic
temperature, we observed typical critical behavior in cortical activities near the actual
physiological condition, including the phase transition of an order parameter, as well as
the divergence of susceptibility and specific heat. Finite-size scaling of these quantities
allowed us to derive robust critical exponents highly consistent across monkey and
humans that uncover a distinct, yet universal organization of brain dynamics. Our results
demonstrate that normal brain dynamics at rest resides near or at criticality, which
maximizes several aspects of information processing such as input sensitivity and dynamic
range.

Keywords: neuronal avalanches, LFP, MEG, critical exponents, phase transition

The cerebral cortex of the mammalian brain consists of tens of
billions of neurons with interactions among them that exist at
many scales ranging from local microcircuits, to cortical areas,
and even across the entire cortex. These myriads of neuronal
interactions underlie various brain functions including motion,
perception, and cognition (Abeles et al., 1993; Vaadia et al., 1995;
Rodriguez et al., 1999; Singer, 1999). Understanding the general
principles governing these interactions and how they give rise to
emergent properties of information processing is one of the most
challenging questions in systems neuroscience.

For several decades, concepts and tools developed in statistical
physics have addressed the collective behavior of complex systems
by studying the interactions among the constituent microscopic
system components. Of the many states a complex system might
adopt, the critical state at thermodynamic equilibrium has been
extensively studied and this state might be particularly rele-
vant for the brain. Microscopically, the critical state represents
exquisitely balanced interactions among all system components
(Stanley, 1999). Macroscopically, such balanced interactions poise
the system at a transition between two contrasting phases (quan-
tified by the order parameter, M) and give rise to a number
of non-trivial emergent properties, including the divergence of
the sensitivity to external perturbations (quantified by the sus-
ceptibility, χ), and internal complexity/diversity (quantified by
the specific heat, C; Stanley, 1987; Binney et al., 1992; Sornette,
2006). For the cortex, these quantities have intuitive meanings
in terms of neuronal information processing. χ reflects the input

sensitivity of the system (Newman and Barkema, 1999), C reflects
the dynamic range of neuronal populations in representing inputs
(Tkacik et al., 2009; Macke et al., 2011), and M measures the over-
all neuronal activity level. The maximization of χ and C achieved
at criticality can thus be interpreted as optimizing input sensitiv-
ity (Houweling and Brecht, 2007; Huber et al., 2008; Shew et al.,
2009) and dynamic range (Shew et al., 2009; Tkacik et al., 2009;
Macke et al., 2011), respectively. At the same time, the changes
of M, i.e., the overall activity level, may reflect state changes of
the brain, such as transitions between sleep and wakefulness or
between focused attention and inattention (Cohen and Maunsell,
2009; Mitchell et al., 2009; Vyazovskiy et al., 2009; Harris and
Thiele, 2011; Grosmark et al., 2012).

Importantly, near the critical state, those emergent behav-
iors do not depend on the specific microscopic realization of a
system. It has been shown that a multitude of systems can be cat-
egorized into a small number of “universality classes” based on
only a few parameters, i.e., so called “critical exponents” (Stanley,
1987, 1999; Binney et al., 1992; Sornette, 2006). Within individual
classes, apparently different systems follow the same quantitative
rules. A major question thus arises, whether such universality of
critical behavior, encountered when studying physical systems,
might also include biological complex systems such as the cortex
that evolved to process information.

Recent studies of neuronal avalanches strongly suggest that
neuronal interactions, both at the mesoscopic scale (within tens
of mm2 of cortical tissue; Beggs and Plenz, 2003; Petermann
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et al., 2009) as well as macroscopic level (across the entire cor-
tex; Allegrini et al., 2010; Tagliazucchi et al., 2012; Palva et al.,
2013; Shriki et al., 2013), may position the cortex at or near a
non-equilibrium critical state in order to optimize information
processing (Kinouchi and Copelli, 2006; Rämö et al., 2007; Shew
et al., 2009, 2011; Yang et al., 2012). Neuronal avalanches are
intermittent cortical activity cascades that spontaneously form in
the normal brain. During an avalanche, spontaneous activation
of one neuronal group can trigger consecutive activations of other
neuronal groups within just a few milliseconds and the propaga-
tion of such activity spans both spatial and temporal domains.
This propagation is well-described by a non-equilibrium criti-
cal branching process, which successfully explains some of the
functional advantages of neuronal avalanches (Beggs and Plenz,
2003; Shew et al., 2009, 2011; Yang et al., 2012). However, it is
currently unclear if neuronal avalanches indicate cortical dynam-
ics close to a critical state in the equilibrium thermodynamic
sense and, if so, what universality class this form of cortical
activity might belong to. The current study is aimed to address
these questions and their potential functional implications for the
brain.

MATERIALS AND METHODS
LOCAL FIELD POTENTIAL (LFP) RECORDINGS IN MONKEYS
All experiments were carried out in accordance with NIH
guidelines for animal use and care. The protocol was
approved by the Animal Care and Use Committee of the
National Institute of Mental Health. Ongoing LFP activity
was recorded from two adult monkeys (Macaca mulatta).
Multi-electrode arrays (10 × 10; 400 μm inter-electrode dis-
tance; 1 or 0.6 mm electrode length; BlackRock Microsystems)
were chronically implanted in the left pre-motor (Monkey
1) or prefrontal (Monkey 2) cortex (Figure 1A). Twenty to
thirty min of ongoing LFP (1–100 Hz) signals were simul-
taneously obtained from each electrode while the animals
were sitting alert in a primate chair but not engaged in any
behavioral task. For more experimental details, see Yu et al.
(2011).

MAGNETOENCEPHALOGRAPHY (MEG) RECORDINGS IN HUMAN
SUBJECTS
All experiments were carried out in accordance with NIH
guidelines for human subjects. Ongoing brain activity

FIGURE 1 | Identifying avalanche dynamics in LFP signals. (A) Lateral
view of the macaque brain showing the position of the multi-electrode array
(square, not to scale) in pre-motor (Monkey 1; blue) and prefrontal (Monkey 2;
orange) cortex. PS, Principal Sulcus; CS, Central Sulcus. (B) Example period
of continuous LFP at a single electrode. Asterisks indicate peaks of negative
deflections in the LFP (nLFPs) that pass the threshold (Thr., broken
line; −2.5 SD). (C) Identification of spatiotemporal nLFP clusters and
corresponding spatial patterns. Left: nLFPs that occur in the same time bin or
consecutive bins of length �t define a spatiotemporal cluster, whose size is

given by its number of nLFPs (two clusters of size 4 and 5 shown; gray area).
Right: Patterns represent the spatial information of clusters only. (D,E)

Neuronal avalanche dynamics are identified when the sizes of activity
cascades distribute according to a power-law with slope close of −1.5. Four
distributions from the same original data set (solid line) using different areas
(inset), i.e., number of electrodes (n), are superimposed. The power-law
distributions vanish for shuffled data (broken lines). A theoretical power-law
with slope of −1.5 is provided as guidance to the eye (gray, broken line). (D)

is reprinted from Yu et al. (2011).
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(∼30 min) was recorded from 3 healthy female partici-
pants. The sampling rate was 600 Hz, and the data were
band-pass filtered between 1 and 150 Hz. The sensor array
consisted of 275 axial first-order gradiometers. Two dys-
functional sensors were removed, leaving 273 sensors in
the analysis. Analysis was performed directly on the axial
gradiometer waveforms. For more details, see Shriki et al.
(2013).

AVALANCHE ANALYSIS
Negative deflections in the LFP (nLFPs) were detected by applying
a threshold at −2.5 standard deviations (SDs) of the LFP fluctu-
ations estimated for each electrode separately (Figure 1B). Such
a threshold is based on the non-linear relation between nLFP
amplitudes and ability of local neuronal groups to synchronize
with other, spatially separated ones (Thiagarajan et al., 2010; Yu
et al., 2011). The nLFP peak times were then binned using a time
window, �t. Results shown are based on �t = 2 ms (Monkey 1)
and 4 ms (Monkey 2) but they are similar across a wide range
of �t (2–16 ms tested). Spatiotemporal clusters of nLFPs, i.e.,
avalanches, were defined by consecutive bins such that each bin
contained at least one nLFP at any site in the selected group
(Beggs and Plenz, 2003). The size of a cluster, s, was defined as
the number of nLFPs in the cluster (Figure 1C). Similar analy-
sis was applied to identify avalanches from the MEG recordings,
for which a threshold at −3.0 SD of the MEG waveforms was
used to detect significant neuronal events. The time window �t
was 1.67 (1 × sampling period; subject 1) or 3.34 ms (2 × sam-
pling period; subjects 2, 3). For more details, see Shriki et al.
(2013). Avalanche patterns were obtained by collapsing all time
bins within an avalanche to form a corresponding spatial pattern
σ = (σ1, σ2, . . . , σn), where n is the number of recording sites,
i.e., system size, included in the analysis and σi = 1 if at least one
nLFP occurred at site i and σi = −1 otherwise (Figure 1C).

USING THE DICHOTOMIZED GAUSSIAN (DG) MODEL FOR ESTIMATING
PATTERN PROBABILITIES Pi

The DG model is a useful tool for capturing the statistics of
binary neural activity patterns (Amari et al., 2003; Macke et al.,
2009, 2011; Yu et al., 2011). It applies a threshold to multivariate
Gaussian variables: yi = 1 when ui > 0 and yi = −1 otherwise,
where u = (u1, u2, . . . , un) ∼ N (δ, λ), δ is the mean and λ

is the covariance of the Gaussian variables. In order to match
the rate, r, and covariance, �, of the observed binary variables,
i.e., avalanche patterns, δ and λ need to be adjusted according
to δi = �−1(ri) and λij as the solution for �ij = �2(δi, δj, λij)
– �(δi) � (δj), where � and �−1 are the cumulative proba-
bility function of a Gaussian distribution (� for 1-dimensional
and �2 for 2-dimensional) and its inverse function, respectively.
An implementation of the model in MATLAB can be found
in Macke et al. (2009). The pattern probabilities for the DG
model were obtained by calculating the cumulative distribution
of multivariate Gaussians (MATLAB function mvncdf ).

FITTING A POWER-LAW TO THE SIZE DISTRIBUTION
The exponent of the best fitting power-law, was estimated by
minimizing the Kolmogorov–Smirnov (KS) distance between the

empirical distribution and a power-law distribution (Klaus et al.,
2011). The KS distance (DKS) was defined as

DKS = max
s

|CDFemp (s)− CDFpower − law (s) |, (1)

where s is the pattern size and CDFemp and CDFpower−law rep-
resent the cumulative distribution function for the empirical
size distribution and the power-law function used for fitting,
respectively.

INFERRING pi FOR DIFFERENT VALUES OF T
To predict the pattern probabilities pi for different values of the
fictitious temperature, T, it is useful to express the state proba-
bility as a function of interactions that occur at different orders
(Nakahara and Amari, 2002; Amari et al., 2003). Let the pattern
probability be p(σ), where σ = (σ1, σ2, . . . , σn) and σn = {1,−1},
representing the states of individual components. Generally, we
can write p(σ), using the full log-linear expansion, as

p (σ) = 1

Z
exp

⎛

⎝
∑

i

θiσi+
∑

(i<j)

θijσiσj+
∑

(i<j<k)

θijkσiσjσk+ · · ·
⎞

⎠,

(2)

where Z is the normalization factor and θ characterizes differ-
ent orders of interactions. The full log-linear expansion and its
lower-order approximations have been widely used in character-
izing neuronal interactions (Schneidman et al., 2006; Yu et al.,
2008; Ohiorhenuan et al., 2010).

Next, we define θ = θ0/T, where θ0 represent the
intrinsic interaction strength that does not depend on T. If

we denote E (σ) = −
(∑

i θ
0
i σi +∑

(i<j) θ0
ijσiσj +∑

(i<j<k)

θ0
ijkσiσjσk + · · ·

)
, Equation 2 can be rewritten as

p (σ) = 1

Z
exp

(−E (σ)

T

)
. (3)

We can then use the single histogram method (Ferrenberg and
Swendsen, 1988; Newman and Barkema, 1999) to infer pi for dif-
ferent T, an approach that was used for modeling natural image
statistics (Stephens et al., 2013) and was also recently introduced
to neuroscience (Tkacik et al., 2009). Specifically, if pi denotes
the probability of any given pattern i and Ei the corresponding
E, Equation 3 changes to

pi = 1

Z
e−Ei/T (4)

Setting T = 1 for the original recording, Equation 4 can be
expressed as

pi (1) = 1

Z (1)
e−Ei , (5)

which enables us to compute pi for different T as

pi (T) = 1

Z
e

−Ei
T = 1

Z

[
Z (1) pi (1)

] 1
T = Z (1)1/T

Z
pi (1)

1/T (6)
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The normalization factor is determined by considering∑
pi(T) = 1.

COMPUTING THE SPECIFIC HEAT, SUSCEPTIBILITY, AND ORDER
PARAMETER
The specific heat, C, is:

C = 1

n

∂U

∂T
=
〈
E2

i

〉− 〈Ei〉2

nT2
, (7)

where n is system size, U ≡ 〈Ei 〉 = ∑
piEi and Ei can be cal-

culated according to Equation 4. Given n and T, C reflects the
variance of log (pi), a useful metric for quantifying the capacity
of the system to represent information (Tkacik et al., 2009; Macke
et al., 2011).

The order parameter, M, is defined as:

M = 1

n

2n∑

i = 1

pimi, (8)

where mi = ∑n
j = 1 σi

j. σ
i indicates that the value of σ is taken

from the ith pattern. M has a very intuitive meaning for a cortical
system—it reflects the overall activity level of the system.

Finally, the susceptibility χ is a measure of the sensitivity of the
system to small external perturbations. χ is defined as the change
rate of M when a small external field H is applied:

χ = ∂M

∂H

∣∣
H = 0 =

〈
m2

i

〉− 〈mi〉2

nT
(9)

The field H exerts its effect by changing the preference of the
units to be active or not, i.e., their likeliness to be involved in
an avalanche. Specifically, applying H is equivalent to adding a
term of H�σi to the Hamitonian (E). For cortical dynamics, H
can be thought as an approximation of a local perturbation, e.g.,
making a single or small group of neurons to fire [analog to flip-
ping a single spin in a model; see Newman and Barkema (1999)
and/or a weak common input from, e.g., distant cortical areas or
sub-cortical brain structures].

FINITE SIZE SCALING (FSS) ANALYSIS
At the thermodynamic limit (n → ∞), a critical system can be
identified by power-law behaviors of its macroscopic quanti-
ties, including the correlation length ξ (a characteristic distance
beyond which correlations diminish), specific heat C, magnetiza-
tion M and susceptibility χ. These quantities follow a power-law
relation as a control parameter, such as the thermodynamic tem-
perature T, approaches a critical value Tc, with specific critical
exponents ν, α, β, and γ, respectively:

ξ ∼|t|−v (10)

C ∼|t|−α (11)

M ∼|t|−β (12)

χ ∼|t|−γ (13)

where t = (T − Tc)/Tc. In principle, one could directly measure
these relations to determine whether and when the system will be
critical, i.e., to determine Tc, and, at the same time, estimate all
critical exponents.

The complication comes with the fact that real systems are
finite in size. This so called “finite size effect” causes the system’s
behavior to deviate from the thermodynamic limit. A standard
procedure in statistical physics to solve this problem is Finite Size
Scaling (FSS; Binney et al., 1992; Newman and Barkema, 1999).
By analyzing the behavior of systems with different sizes, FSS
extrapolates the behavior for the thermodynamic limit and to
estimate Tc and critical exponents. Briefly, we can choose a unique
set of critical exponents to scale Equations 10–13 with different
linear sizes of the system L = d

√
n, where d is the dimensional-

ity, and then collapse the curves obtained for all sizes. Specifically,
t needs to be scaled by L1/ν, whereas C, M, and χ are scaled by
L−α/ν, Lβ/ν, and L−γ/ν, respectively. The critical exponents (ν,
α, β, and γ) and Tc that achieve the collapse are equivalent to
those expected for a measurement made at the thermodynamic
limit (see Appendix for detailed derivation). We identified the
best collapse by minimizing the distance among all functions with
different sizes using numerical optimization (MATLAB function
fminsearch). Initial conditions for optimization were systemati-
cally changed according to a grid search method within a large
parameter space and the resulting values for exponents were sta-
ble. These values were also stable for different values of T to
perform FSS. Results reported were based on T = 0.5 − 2.5.

MEASURING GOODNESS OF COLLAPSE
For different system sizes i, the dependency of a system param-
eter, e.g., susceptibility χi, on T was obtained. To quantify how
well such a series of functions can be collapsed by FSS, we com-
pared the “closeness” of them before (without scaling) and after
the collapse (the best results achieved by numerical optimiza-
tion). Specifically, the goodness of collapse (GC) is indicated by
the ratio of mean squared deviation (MSD) after and before
the collapse, i.e., GC = MSDafter/MSDbefore. Formally, MSD =〈〈
(χi − χ)2

〉
T

〉
i
, where χ is the point-wise average over all system

sizes, 〈〉T indicates the average across the range of T and 〈〉i indi-
cates the average across system sizes. Smaller GC indicates better
goodness of collapse.

RESULTS
AVALANCHE DYNAMICS AT THE MESOSCOPIC SCALE
We first investigated neuronal avalanches at the mesoscopic scale
(Beggs and Plenz, 2003; Petermann et al., 2009; Hahn et al.,
2010; Ribeiro et al., 2010; Yu et al., 2011). Ongoing neuronal
activity in two monkeys was recorded with 10 × 10 high-density
micro-electrode arrays chronically implanted in superficial lay-
ers of cortex (Figure 1A). Significant negative local field potential
deflections (nLFPs), which indicate synchronized activity of local
neuronal populations (Petermann et al., 2009; Yu et al., 2011),
were detected using an amplitude threshold of –2.5 SDs of the
LFP calculated for each electrode (Figure 1B). A spatiotemporal
nLFP cluster was identified if nLFPs on the multielectrode array
occurred within the same or consecutive time bins of width �t
(Figure 1C). Importantly, the cluster size s, defined as the number
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of nLFPs in a cluster, distributed according to a power-law with
an exponent close to −1.5. Moreover, the distribution exhibited
scale-free behavior, i.e., the power-law and its slope were stable
for different system size n, whereas the cut-off changed system-
atically with n (Figures 1D,E). This power-law demonstrates that
ongoing cortical activity at rest in awake monkeys organizes as
neuronal avalanches (Beggs and Plenz, 2003; Petermann et al.,
2009). It indicates the presence of significant correlations in neu-
ronal activity among cortical sites and, accordingly, is destroyed
when the times of nLFPs are shuffled randomly (Figures 1D,E,
broken lines).

CHARACTERIZATION OF THE CRITICAL BEHAVIOR
Next we investigated whether neuronal avalanches reflect a cor-
tical state close to criticality in the sense of a thermodynamical
equilibrium. Our approach is based on a method similar to
Monte Carlo simulations (Newman and Barkema, 1999). First,
we estimated the probability pi of individual configurations in
the system based on actual recordings. For an equilibrium sys-
tem, those probabilities would give a complete characterization
of the system’s behavior. Then, we infer the changes of pi with
the change of a control parameter, T, which is considered to be
equivalent to thermodynamic temperature. Finally, we compute
various macroscopic properties including susceptibility, specific
heat, and an order parameter, as a function of T to judge if the
actual T (the one associated with the original recording) is close
to the critical point.

More specifically, we define the configurations or states of the
system by the spatial avalanche patterns, obtained by collaps-
ing the spatiotemporal avalanche patterns along the temporal
domain. This mapping ignores the internal temporal structure of
individual avalanches. Each avalanche is originally represented by
an n by m activity matrix, where n is the number of electrodes and
m is the temporal duration of the avalanche. The activity matrix
is then turned into an n-component binary vector where an elec-
trode is set to 1 if it participates at least once in the avalanche
and to −1 otherwise [Figure 1C, see also Methods and Yu et al.
(2011)]. The finite duration of the recording limits the direct esti-
mation of pattern probabilities pi to n ∼ 10. Therefore, in order
to estimate pi for larger n, we take advantage of a parametric
model, the Dichotomized Gaussian (DG) model (Amari et al.,
2003; Macke et al., 2009, 2011; Yu et al., 2011), which considers
only the observed first-order (event rate) and second-order (pair-
wise correlations) statistics. This model estimates pi of avalanche
patterns more accurately than directly measuring it from the
limited data [Figure 2; see also Yu et al. (2011)]. Due to the expo-
nential increase in possible configurations with increasing n, we
restrict the calculation of pi to n = 20. In total, we analyzed four
20-electrode sub-groups recorded from each of the two monkeys.

After obtaining pi for the condition in which the actual
recording was taken, we introduce a control parameter T, which
changes both the likelihood of a given site to participate in an
avalanche and the correlation among activities between different
sites (Binney et al., 1992; Newman and Barkema, 1999). T is
similar to the thermodynamic temperature and allows us to
systematically estimate the system’s behavior for conditions dif-
ferent from the recorded, physiological condition. To infer pi for

FIGURE 2 | The DG model predicts state probability more accurately

than direct sampling. (A) Observed probability pi (thirty 10–electrode
sub-groups) is plotted against the prediction made by direct sampling and
the DG model. Solid line indicates equality. The comparison is based on
2-fold cross-validation (Yu et al., 2011). (B) JS divergence (Yu et al., 2011)
between the observed and predicted probabilities of spatial avalanche
patterns for the same thirty 10–electrode groups shown in (A). Linked dots
are the results obtained by direct sampling and the DG model for the
same group. The DG model has significantly smaller JS divergence
(21% reduction, p < 10−5, paired-sample signed rank test).

different T, we use the single histogram method (Ferrenberg and
Swendsen, 1988; Newman and Barkema, 1999), which accurately
predicts behavior of equilibrium system for different values of the
control parameter. We note that the equilibrium assumption for
the data is supported by the stable size distribution of avalanches
over time (Figure 3) and the demonstration of detailed balance
(Figure A1; see Appendix for more details). If we set T at which
the actual recording was taken to be 1, it can be shown that,
pi(T) = 1

Z pi (1)
1/T where pi(T) is the state probability with the

thermodynamic temperature T and Z is a normalization factor
(Methods). After obtaining pi for a wide range of T, we use
finite size scaling (FSS) analysis (Newman and Barkema, 1999)
to investigate whether the avalanche state (T = 1) is close to a
thermodynamic critical point, i.e., if the critical “temperature”
Tc ≈ 1. We first analyzed the thermodynamic quantities χ, C,
and M as functions of T for different system sizes (n = 12 − 20;
Figure 4). Those functions measured for different n will be scaled
according to a unique set of Tc and critical exponents to test
if they can be collapsed. Specifically, T needs to be scaled by
L1/ν(T − Tc)/Tc, where L = d

√
n and d is the dimensionality

of the system. χ, C, and M need to be scaled by L−α/ν, Lβ/ν,
and L−γ/ν, respectively. Achieving such a collapse implies that,
at the thermodynamic limit, the system has a critical point at
Tc, which is characterized by the divergence of χ and C and
the phase transition of M. To illustrate this, we consider the
collapse of χ, which implies that, at Tc, the scaled quantity of χ,
i.e., L−γ/νχ, is a constant. When n → ∞, L−γ/ν = n−γ/νd → 0
because γ/νd > 0 (see below). Therefore, a finite product of
L−γ/ν and χ implies χ → ∞. We find an excellent collapse up
to n = 20 (Figure 4). Importantly, the values of Tc estimated
by the FSS method are close to 1 (Table 1), suggesting that
ensembles of neuronal avalanches are organized at the vicinity
of a thermodynamic critical point. In addition to Tc, FSS also
estimates the critical exponents, including ν, α, β, and γ. They
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FIGURE 3 | Stability of the power law size distribution during the

recording. (A) Avalanche pattern size distribution of the whole recording
(30 min) plotted in a double-logarithmic scale. ε, exponent of the best
fitting power law to the distribution. Avalanche pattern was identified
based on the activities recorded in the whole array (91 channels,
Monkey 1). (B) The full dataset as analyzed in (A) was split into 10
consecutive, non-overlapping segments, each of which lasted for 3 min.

Avalanche pattern size distributions were calculated for individual segments
and plotted (color coded). (C) The original dataset as analyzed in (A) was
shuffled in time (i.e., the sequence of activities was randomized) to
eliminate temporal dependencies and split into ten consecutive,
equal-sized segments. Avalanche pattern size distributions were calculated
for individual segments and plotted (color coded). In (B) and (C), ε is
represented as mean ± s.d. (across all segments).

FIGURE 4 | Critical behavior in susceptibility, specific heat, and order

parameter observed for neuronal avalanches at the mesoscopic level,

i.e., recorded by LFPs. Susceptibility (A), specific heat (B), and order
parameter (C) are plotted as a function of T for system size n = 12–20
(color code). Left: Original non-scaled functions. Right: Corresponding
collapse using FSS analysis. Scaled quantities plotted as a function of
t = (

T − Tc
)
/Tc , L = d√n, where d is the dimensionality of the system.

Critical exponents: α, β, γ, and ν. We note that the peaks for the scaled
variables χ and C are not expected to be at the location of L1/νt = 0.

characterize how χ, C, and M change as a function of T at the
thermodynamic limit. We find that ν ≈ (0.8 − −0.9)/d, α ≈ 0.7,
β close to 0 and γ close to 1. These results are consistent across
the datasets obtained from two monkeys (Table 1).

AVALANCHE DYNAMICS AT THE MACROSCOPIC SCALE
Seeking to extrapolate from these results, we applied the FSS anal-
ysis to neural dynamics manifested at the macroscopic scale—the
whole human brain—measured by MEG. In Figure 5, we show
that ongoing neuronal activity in human MEG reflects neu-
ronal avalanches, which reconfirmed our recent finding (Shriki
et al., 2013). Despite the dramatically different spatial scales
between the LFP and MEG signals from monkeys and humans
(>10,000-fold difference in recording areas), we found strik-
ingly similar behavior for the activity measured across the entire
human cortex when the control parameter, T, and system size,
n, change (Figure 6). Again, FSS analysis suggests that Tc ≈ 1
for the macroscopic system (Table 1). The results were consis-
tent across different human subjects and, importantly, both Tc

and the critical exponents of MEG recordings are very similar to
those obtained from the LFP recordings (Figure 7). Such similar-
ity, in terms of both the scaling behavior, i.e., collapse of curves,
and critical exponents, strongly suggests a universal organization
that underlies neuronal interactions at various spatial scales.

VALIDATING THE FSS METHOD THROUGH A SIMPLE MODEL
Next, we investigated a simple and understandable model, and
exemplified the sensitivity of FSS analysis to distinguish critical
from non-critical system dynamics. To this end, we used the DG
model in which all elements were embedded in a ring configura-
tion. Each element had a well-defined “distance” to every other
element (Figure 8A). We set the covariance of hidden variables
(Methods) i and j, λij, as a Gaussian function of the distance

rij between them: λij = λmax exp

[
− 1

2

(
rij

ω

)2
]

, where λmax is the

maximal covariance and ω is the SD of the Gaussian function.
For the limit of ω → ∞, all λij become identical and criticality is
ensured (Macke et al., 2011). Conversely, decreasing ω to 0 drives
the system to an independent state (Figure 8B).

We applied the FSS method to this system. To facilitate the
analysis, system sizes were set to be n = 6–10. In Figures 8C–F,
we plot the goodness of collapse, estimation of Tc, and criti-
cal exponents as a function of ω. We found that for this model,
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Table 1 | Critical temperature Tc and critical exponents νd , α, β, and γ estimated using finite size scaling analysis (FSS) for eight 20-eletrode

sub-groups in two monkeys (M1, M2) and six 20-sensor sub-groups in three human subjects (H1–H3).

Subject Group T c (χ) νd (χ) γ T c (C) νd (C) α T c (M) ν d (M) β

M1 A 1.13 0.88 1.04 1.15 0.92 0.72 1.16 0.84 −0.028

B 1.12 0.86 1.00 1.14 0.90 0.72 1.14 0.84 −0.021

C 1.12 0.86 0.98 1.14 0.88 0.72 1.13 0.84 0.001

D 1.12 0.86 1.02 1.15 0.88 0.73 1.16 0.80 −0.03

M2 A 1.10 0.82 1.05 1.14 0.84 0.71 1.16 0.76 −0.03

B 1.11 0.90 1.10 1.13 0.96 0.71 1.13 0.84 0.001

C 1.10 0.84 1.06 1.14 0.84 0.71 1.12 0.78 0.001

D 1.11 0.82 1.05 1.15 0.86 0.72 1.13 0.78 0.000

H1 A 1.16 0.84 1.20 1.22 0.86 0.67 1.20 0.74 0.0006

B 1.20 1.04 1.18 1.23 1.06 0.64 1.24 0.96 −0.02

H2 A 1.17 0.82 1.21 1.22 0.84 0.68 1.20 0.74 −0.0007

B 1.18 0.98 1.17 1.22 1.00 0.66 1.20 0.92 −0.0003

H3 A 1.14 0.82 1.09 1.17 0.86 0.67 1.16 0.78 0.0007

B 1.18 0.98 1.02 1.20 1.00 0.65 1.17 0.98 0.0001

Arguments in brackets indicate that Tc and νd were estimated by applying FSS to susceptibility χ , specific heat C and order parameter M, respectively.

FIGURE 5 | Power law size distribution of neuronal avalanches

recorded with MEG for the human brain at resting state. (A) Neuronal
avalanche dynamics are identified when the sizes (s) of all clusters
distribute according to a power law with slope close of −1.5 (the results for
subject 2 are shown here). Four distributions from the same original data
set using different areas (insets), i.e., number of MEG sensors (n), are
superimposed. (B) The whole array of sensors (gray dots) and two
sub-groups of sensors that were used for finite-scaling analysis (red dots)
are illustrated. Top, sub-group (A); bottom, sub-group (B). The sub-groups
were identical across all three subjects.

the deviation from the critical state (ω = ∞) is detectable for
ω <7∼8. Given that all r ≤ 5, we consider the sensitivity of
the FSS for detecting deviations from criticality as satisfactory.
We note that with increasing system sizes in the analysis, even
higher sensitivity will be achieved. We also compared these results
with real data (n = 6–10) and found that the actual results we
obtained for cortical activities are very close to a true critical state
(Figures 8C–F), further supporting the previous results that neu-
ronal avalanches represent a cortical state close to thermodynamic
criticality.

CORRELATION STRUCTURE IN NEURONAL AVALANCHE DYNAMICS
The results based on this simple model also provide testable pre-
dictions for the empirical data. First, if we remove all correlations

in activities between cortical sites, the critical behavior observed
in the original data should be abolished. To test this prediction,
we used independent Poisson processes to generate nLFPs at the
empirically measured rate for each cortical site. χ, C, and M were
then calculated as a function of T and n in the same way as for the
original data. As expected, all three quantities did not depend on
system size anymore and thus did not show any scaling behavior
(Figure 9). Another important prediction is that the original data
should contain long-range spatial correlations. In Figure 10, we
plot the correlation G, defined as Gij = 〈

σiσj
〉− 〈σi〉

〈
σj
〉
, as a func-

tion of the Euclidian distance r between sites i and j in both linear
and log-log coordinates. We found that the correlation slowly
decreases with increase in distance and that the rate of decay fur-
ther decelerates at larger distance. As a result, for an increase in
distance by one order of magnitude, the correlation decreases by
less than 50% (Figures 10A,B), demonstrating that fluctuations
in activity between very distant cortical sites are still correlated.
For critical systems, theory predicts that the decay in spatial cor-
relation should be a power law function with an exponent close
to zero, which ensures the existence of long-range correlations
(Binney et al., 1992). In line with theory, the spatial correla-
tions in monkey 1 and those with distance >1 mm in monkey 2
exhibit a linear tendency in log-log coordinates, with exponents
of −0.24 ± 0.05 (Figures 10C,D). The 10 × 10 recording array
with interelectrode distance of 0.4 mm limits our investigation of
the spatial correlation function to roughly one order of magni-
tude from 0.4 to 4.5 mm of distance. On the other hand, 4.5 mm
already captures a relatively large distance within one cortical area
of a macaque’s brain. A more definitive conclusion about whether
a power law is a good approximation awaits future studies with
the capability to record from a much wider spatial extent. It is
interesting that the data and the model with ω = ∞ share the
same set of critical exponents (Figures 8E,F), despite their dif-
ferences in correlation structure. Whereas G was constant in the
model (for ω = ∞), it changed systematically as a function of r
in the data. Consequently, all patterns with the same size were
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FIGURE 6 | Critical behavior in susceptibility, specific heat, and order

parameter observed for neuronal avalanches in the human brain at

macroscopic level, i.e., recorded with MEG. Susceptibility (A), specific
heat (B), and order parameter (C) are plotted as a function of T for system
size n = 12–20 (color code). Left: Original non-scaled functions. Right:
Corresponding collapse using FSS analysis. Scaled quantities are plotted as
functions of “reduced temperature,” t = (

T − Tc
)
/Tc ,L = d√n, where d is

the dimensionality of the system. Critical exponents: α, β, γ, and ν.

equally probable in the model (Macke et al., 2011), whereas these
probabilities differed in the data by up to 2 orders of magnitude.
Therefore, the fact that the model and the data share the same
set of exponents is non-trivial, suggesting that they belong to the
same universality class.

RELATION BETWEEN THE POWER-LAW SIZE DISTRIBUTION AND
THERMODYNAMIC CRITICALITY
The equilibrium critical behavioral revealed here is not simply
implied by the power-law distributed avalanche sizes. This can
be demonstrated by studying the probability p0 of the quiescent
state, i.e., all sites are inactive. This probability is not constrained
by the power-law distribution in avalanche patterns (because it
leads to divergence for a power-law), but nevertheless is impor-
tant in order to obtain proper scaling and collapse using FSS.
In the original data, p0 decreased in a unique way with increase
in system size n (Figure 11). When p0 was changed randomly
with n, the functions could not be collapsed anymore despite the
preservation of the power-law in size distribution (Figure 12).
Furthermore, we know that a system is not required to have

FIGURE 7 | Tc and critical exponents α, β, γ, and ν estimated using

finite size scaling analysis in two monkeys and three human subjects.

Four (two) different 20-electrode/sensor sub-groups were analyzed for each
monkey (human) dataset resulting in the sample size of 8 (6). Values are
mean (center circle) ± s.d. (error bars omitted for s.d. smaller than center
circle).

power-law distributed avalanche sizes in order to exhibit fea-
tures of equilibrium criticality. For example, Macke et al. (2011)
has shown that for a system with (1) higher order interactions
and (2) infinite correlation length, thermodynamic criticality is
ensured, regardless of the pattern size distribution. Although the
power-law size distribution is not necessarily associated with ther-
modynamic criticality, by testing a wide range of T, we found
that the particular value of T that minimizes the distance from
a power-law and the actual distribution is very close to 1 (0.99
± 0.03; mean ± SD across eight sub-groups from 2 monkeys
for the best fitting power-law and 1.03 ± 0.10 for the power-
law with slope −1.5; Figure 13), demonstrating that there is a
unique “temperature” associated with the avalanche dynamics.
Given that there is no trivial relation between the power-law size
distribution and the thermodynamic criticality, our finding that
cortical dynamics exhibit these two features simultaneously is
intriguing.

DISCUSSION
Our results suggest that neuronal avalanches at both mesoscopic
and macroscopic scales manifest a cortical state near thermody-
namic criticality. The critical exponents found are highly con-
sistent among different subjects and are reasonably consistent
across the two different scales and species. Our results are reminis-
cent of the well-known fact that, near the critical state, emergent
behaviors do not depend on the specific microscopic realiza-
tion of a system and, therefore, a multitude of systems can be
categorized into a small number of universality classes based
on their critical exponents (Stanley, 1987, 1999; Binney et al.,
1992; Sornette, 2006). Our results thus suggest a general princi-
ple governing the collective behavior of cortical activities across
spatial scales.

METHODOLOGICAL CONSIDERATIONS
We demonstrated previously that the nLFP correlates with local
neuronal synchrony and increased spiking activity from local
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FIGURE 8 | Validating the FSS method by a simple model. (A) All
elements are configured in a ring and the distance between any adjacent
elements is 1. (B) the covariance of the hidden variables in the DG model,
λ, is plotted as a function of the distance, r, that separates corresponding
elements for different choices of the standard deviation of a Gaussian
function, ω. (C–F) Goodness of collapse, Tc and critical exponents
measured for various systems are plotted against ω (open circles). In all
systems, λmax and mean event rate were set such that when ω = ∞, the
average covariance and the event rate match what we empirically observed
for Monkey 1. Corresponding results obtained from actual data for Monkey
1 (averaged across four sub-groups) are shown for comparison
(broken lines).

neuronal populations (Petermann et al., 2009; Yu et al., 2011).
However, the exact spatial extent of the LFP is still debated. While
some studies suggest that the LFP reflects neuronal activities
within the vicinity of the microelectrode (<0.2 – 0.4 mm radius;
Katzner et al., 2009; Xing et al., 2009), some evidence has been
provided that even distant (>1 mm) neuronal activities might
contribute to the LFP due to volume conduction (e.g., Kajikawa
and Schroeder, 2011). Similar concerns are also related to MEG
signals, as one sensor of the MEG can detect signals generated by
multiple sources. A question thus arises as to what extent linear
mixing of signals from different sources might affect the results
presented in the current study? In general, volume conduction
and/or signal mixing cannot produce genuine critical behavior.

FIGURE 9 | Shuffled data does not exhibit scaling behavior. Original
data was the same as shown in Figure 4. At T = 1, we calculated the
individual pattern probabilities based on independent Poisson processes to
generate nLFPs with the same empirically measured rate for each cortical
site. Using the same method applied to original data, we calculate χ, C, and
M as functions of T. In contrast to the original data, the curves for systems
of different sizes are almost identical for χ (A), C (B), and M (C). For visual
clarity, curves with different sizes have different widths.

FIGURE 10 | Correlation function for avalanche activities. Pair-wise
covariance, G, of nLFP activities is plotted against the physical distance
between the corresponding recording sites. (A,B) Linear coordinates. (C,D)

Double-logarithmic coordinates. G is normalized by the value of the G(0.4),
i.e., the covariance with the nearest neighbor. In all panels, the data are
represented by circles and red lines indicate the best power law fit. The
range of power-law fitting is either all possible distances (monkey 1) or
r > 1 mm (monkey 2). ε, the exponent of the best fitting power law.

Criticality relies on long-range correlations that emerge from cas-
cades of local interactions. That is, the activity of unit A affects
unit B, which in turn affects unit C, and so on. As a result, the
activity of unit A will be correlated (with some temporal delay)
with a distant unit X (Stanley, 1999). If measured interactions
solely arose from volume conduction and/or signal mixing, the
activity of a local unit will not causally affect nearby units and,
therefore, causal chains of interactions cannot form. Accordingly,
volume conduction and/or linear signal mixing should not lead
to the appearance of critical dynamics. We verified this statement
by modeling volume conduction in a 10 × 10 array configuration,
in which even fairly strong volume conduction fails to reproduce
long-range correlations as observed in our neuronal data (see
Appendix Figure A2). Furthermore, the FSS method we used here
to identify criticality is robust to a potential contribution from
volume conduction. This can be easily seen in the ring model we
used to identify scaling collapse. Introducing volume conduction
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FIGURE 11 | Change in the probability of the quiescent state as a

function of system size in the data. For 4 sub-groups analyzed in
monkey 1, probability of the quiescent state measured for the original data
(blue) is plotted as a function of systems size (from 1 to 20). Probability of
the quiescent state measured for corresponding shuffled data (orange) is
plotted for comparison. Shuffled data were obtained by randomizing the
activity sequence for individual electrodes, which eliminates the correlation
among different electrodes but preserves the probability of being active for
all electrodes.

FIGURE 12 | Dissociation between the scaling/collapse and the

power-law size distribution. Pattern probabilities of the original data (as
shown in Figure 4) were modified so that the probability for the quiescent
state, p0, was set randomly from a uniform distribution (0, 1) while the
probabilities for all other states were renormalized, i.e., pi = pi/(1 − p0).
Therefore, the power-law size distribution was preserved. (A), Specific
heat, C, is plotted as a function of T for system size n = 12 – 20 (color
coded). (B) No collapse can be achieved.

into the ring model is equivalent to an increase in ω, which con-
trols the spatial extent of covariance between nearby elements.
Our simulations demonstrated that even strong volume conduc-
tion (ω = 5) failed to produce the critical behavior as observed in
our neuronal data (cf. Figure 8). These analyses suggest that our
conclusions are unlikely to be affected by volume conduction or
signal mixing.

A recent study (Mastromatteo and Marsili, 2011) reported
that experimental data might falsely imply criticality due to (1)
the limitation of finite sampling and (2) the bias introduced
when choosing parameters to achieve best accuracy in the infer-
ring procedure. However, neither aspect applies to the current

FIGURE 13 | Size distributions of avalanche patterns computed for one

20-electrode sub-group (taken from data set in Figure 1D) for different

T and plotted in double logarithmic coordinates. T changes from 0.5 to
1.5 with a step of 0.05. Distribution at T = 1 is marked by red. Inset:
Kolmogorov–Smirnov distance (DKS, a goodness-of-fit measure) between
the actual pattern size distributions and best fitting power law (purple) or
power law with slope −1.5 (blue) is minimized for T ≈ 1.

study. The pair-wise correlation we observed for nLFPs that con-
stitute neuronal avalanches are within the range of 0.2 – 0.6
(Pearson’s r) and, given our sample sizes, the margin of error
is <0.05 (95% confidence interval). Therefore, our sample sizes
were large enough to infer even lower or higher correlation
strengths [indicating larger distances from the critical state, see
Mastromatteo and Marsili (2011)], if they actually existed in the
system. This suggests that the proximity to a critical state is a
true feature of the cortex. Furthermore, in the current analy-
sis, no parameter for analyzing the data was chosen according
to the criterion of inferring accuracy. Taken together, the cur-
rent results are robust, in light of the known methodological
biases.

SUGGESTIONS OF A NEW UNIVERSALITY CLASS FOR THE RESTING
BRAIN
One of the key steps in our analysis was the use of the single his-
togram method to infer system behavior for different values of the
control parameter T. This is a well-established method and has
been widely applied to study various empirical systems and mod-
els at, or close to equilibrium (Tkacik et al., 2009; Macke et al.,
2011; Stephens et al., 2013). Using the same method, Stephens
et al. (2013) recently found that the spatial pattern of natural
images contains indications of criticality. Macke et al. (2011)
found that if a system exhibits higher-order interactions, its spe-
cific heat will diverge as long as the correlation does not decay
as a function of the distance. In a study of spiking activities in
salamander retina (Tkacik et al., 2009), it was found that the
maximal heat capacity increased with system size and the corre-
sponding T(Tpeak) approaches 1. This was suggested as evidence
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for criticality (Tkacik et al., 2009). Heat capacity, though, is an
extensive quantity and thus, an increase in heat capacity with
increasing system size is difficult to interpret. It does not necessar-
ily indicate an increase in specific i.e., normalized, heat capacity.
Furthermore, without a sound extrapolation of Tpeak for n → ∞,
it is difficult to give an accurate estimation of Tc. In the cur-
rent study, we took several steps to avoid such ambiguities. First,
specific heat C was analyzed directly. More importantly, we used
FSS to estimate both Tc and the critical exponents, providing a
quantitative characterization of the system’s behavior.

Interestingly, the critical exponents derived for the cortical
activities are different from those that are commonly found in
physics such as the Ising model, Heisenberg model or Spherical
model (Binney et al., 1992). Cortical activity has distinctive fea-
tures, including a currently unknown dimensionality and a spe-
cial structure of higher-order interactions (Yu et al., 2011), which
may underlie its unique critical exponents. We also notice that the
value of β is close to zero, which in some cases indicates that the
phase transition is a discontinuous one (Achlioptas et al., 2009).
However, recently it was found that some continuous phase
transitions have β so close to zero that it is practically indistin-
guishable from a discontinuous one (Riordan and Warnke, 2011).
To further elucidate this issue, future work with approaches that
can analyze much larger systems, i.e., larger n, would be needed
to increase the precision in estimating Tc and critical exponents.

NON-EQUILIBRIUM AND EQUILIBRIUM PERSPECTIVES OF NEURONAL
AVALANCHE DYNAMICS
Our current approach did not address the organization of activi-
ties within individual avalanches. It has been previously demon-
strated that such activities can be effectively understood in the
framework of a critical branching process (Beggs and Plenz,
2003; Shew et al., 2009, 2011; Friedman et al., 2012; Yang et al.,
2012). That approach considers the spatiotemporal organization
of events (nLFPs) that occur in an avalanche to be the result of bal-
anced cascades and correctly predicts the power-law distribution
in avalanche size with the exponent of –1.5. The critical branch-
ing process is a well-studied, non-equilibrium critical condition,
which belongs to the universality class of directed percolation
(Buice and Cowan, 2007). By collapsing the temporal dimension,
we compressed the spatiotemporal pattern of neuronal cascades
into spatial-only patterns and thus ignored the non-equilibrium
cascading process in our present study. At the same time, we ana-
lyzed the ensemble of all cascades as a whole. Thus, our approach
focused on the organization of avalanche activities at a different
level. With this regard, the current results provide a complemen-
tary view to better understand cortical dynamics, suggesting a
highly organized, hierarchical organization of cortical activity. We
propose that cortical dynamics are organized close to criticality
from both the non-equilibrium, branching process perspective
and the equilibrium thermodynamic perspective. The former is
indicated by a power-law size distribution, whereas the latter is
indicated by Tc close to 1. Interestingly, recent studies that inves-
tigated large scale (across the entire brain) neuronal dynamics
have also reported evidence for criticality in an equilibrium as
well as non-equilibrium context (Deco and Jirsa, 2012; Haimovici
et al., 2013; Shriki et al., 2013). Future studies to investigate how
the brain can achieve both types of criticality, at different spatial

as well as temporal scales hold great promise to uncover a more
complete picture of cortical dynamics.

For the non-equilibrium critical state characterized by power-
law probability distributions, theoretical as well as empirical stud-
ies have revealed functional advantages for neuronal information
processing (Kinouchi and Copelli, 2006; Rämö et al., 2007; Shew
et al., 2009, 2011; Tsubo et al., 2012; Yang et al., 2012). The
equilibrium, thermodynamic criticality also has direct functional
implications. From an information-theoretical point of view, the
maximal specific heat, i.e., maximal variance of log(pi), implies
largest dynamic range for population coding (Tkacik et al., 2009;
Macke et al., 2011). This is also consistent with the finding that
the dynamics of the brain reach highest signal complexity near
the equilibrium criticality (Deco and Jirsa, 2012). The maximal
susceptibility has an even more straightforward interpretation:
it means that cortical networks have obtained largest sensitiv-
ity to small perturbations. This may play an essential role in
allowing the organism to be able to detect and respond to sub-
tle environmental changes. Such a high sensitivity of cortical
networks has been demonstrated empirically for both spiking
activity (Houweling and Brecht, 2007; Huber et al., 2008) and
neuronal population activity reflected in the LFPs (Shew et al.,
2009). The current results provide new insights into these intrigu-
ing phenomena of cortical dynamics.

POTENTIAL FUNCTIONAL ROLE OF THE CONTROL PARAMETER T IN
THE BRAIN
In systems studied in statistical mechanics, increasing the tem-
perature T drives the system toward a state of higher activity
and weaker effective interactions among the system compo-
nents. Similar changes in activity and interactions have also been
observed in the brain, specifically the cortex. For example, an
increase in firing rate that is accompanied by a decrease in pair-
wise correlation has been documented in transitions from a less
vigilant state to a more vigilant state, e.g., from sleep to wake-
fulness (Vyazovskiy et al., 2009; Grosmark et al., 2012) and from
an inattentive to an attentive state (Cohen and Maunsell, 2009;
Harris and Thiele, 2011; Mitchell et al., 2009). These observa-
tions suggest that there might be intrinsic neural mechanisms
for adjusting cortical states roughly along the same dimension as
changing T.

It is well-known that neuromodulators, such as acetylcholine
(ACh) and dopamine (DA) produce numerous diverse effects
at the receptor, synaptic transmission, and single neuron level
(Picciotto et al., 2012; Tritsch and Sabatini, 2012). On the other
hand, when studying the effect of e.g., ACh in the context of
cortical state changes (Himmelheber et al., 2000; Jones, 2005;
Brown et al., 2011), effects brought about by an increase in the
tone of ACh are quite reminiscent of the effects of increasing T
in our framework. In particular, ACh drives cortical networks
toward a state of high activity and weak coupling both in vitro
(Chiappalone et al., 2007; Pasquale et al., 2008) and in vivo
(Goard and Dan, 2009; Thiele et al., 2012). Similarly, the neuro-
modulator dopamine was shown to control neuronal avalanche
dynamics via an inverted-U profile typical for the regulation
of working memory (Stewart and Plenz, 2006). At moderate
dopamine D1-receptor stimulation, neuronal avalanche dynam-
ics was established, whereas lower or higher receptor stimulation
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abolished avalanche dynamics and reduced the number of local
synchronized events reminiscent of weaker coupling between
neurons.

The control parameter T might not capture the effects of
changing the balance of fast excitation to fast inhibition (E/I)
in a network. Experimentally, it has been shown that a proper
E/I balance is required to maintain avalanche dynamics in cor-
tical networks (Beggs and Plenz, 2003; Shew et al., 2009, 2011;
Yang et al., 2012). Neuronal simulations have demonstrated
that such proper E/I balance, in addition, establishes long-
range temporal correlations in the network (Poil et al., 2012)
as identified in the human EEG (e.g., Linkenkaer-Hansen et al.,
2005; Montez et al., 2009). An increase in excitation, e.g., by
reducing inhibition, increases activity. However, it also leads
to an increase, not a decrease, in coupling (Shew et al., 2009,
2011).

CONCLUDING REMARKS
By studying neuronal avalanches in non-human primates and
human subjects, we demonstrated that ongoing resting activ-
ity in the cortex organizes close to a thermodynamic critical
point. We derived the cortical equivalents of the three parame-
ters, including susceptibility, specific heat capacity and an order
parameter that are commonly used in statistical mechanics to
capture the behavior of systems near a thermodynamic critical
point. By investigating the scaling behavior of these parameters
we uncovered a potentially new universality class for the brain
and propose that this endows cortical networks with maximized

input sensitivity and dynamic range for representing informa-
tion. Our results reveal, in a quantitative manner, how the
interactions among individual neurons in cortex collectively give
rise to emergent behavior that is highly non-trivial. With ever
increasing capacity of monitoring activities of large neuronal
networks, we anticipate that the framework provided here will
be instrumental for understanding how cortical states are reg-
ulated through myriads of neuronal interactions to optimize
information processing.
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APPENDIX
A. EXAMINING THE ASSUMPTIONS ABOUT STATIONARITY AND

EQUILIBRIUM
Thermodynamic equilibrium implies that the macroscopic prop-
erties of the system keep stable and do not change with time.
As the distribution of avalanche sizes captures the essential fea-
ture of cortical dynamics (Beggs and Plenz, 2003; Petermann
et al., 2009; Shew et al., 2009, 2011; Yang et al., 2012), we exam-
ined the stability of this size distribution. In Figure 3 (main
text), we show that the avalanche size distribution, measured
for 10 consecutive, equal-sized segments of recording, is sta-
ble across the whole recording period (30 min). To contrast this
with the true equilibrium condition, we shuffled the original
avalanche raster (i.e., randomized its sequence) and repeated
the same analysis. The variability of the estimated power law
exponent, ε, across all segments is small for both the original
and shuffled datasets. F-test statistics also revealed no signif-
icant difference in the variance of ε between the two condi-
tions (p = 0.13), suggesting a stable organization of the system
over time.

Secondly, we demonstrate that the data satisfy two crucial
criteria that will lead to equilibrium: (1) detailed balance (micro-
reversibility) and (2) accessibility/ergodicity (Binney et al., 1992).
Detailed balance is achieved in a system if the following relation
holds: pipi→j = pjpj→i, where i and j are possible states (config-
urations) of the system; pi is the probability of states i and pi→j

is the transition probability from state i to state j. For avalanche
patterns defined by clustering a period of activity flanked by qui-
escent periods before and after it (Beggs and Plenz, 2003), it
is clear that the detailed balance strictly holds for systems with
arbitrary sizes. As in this condition, every transition from a qui-
escent state (i.e., all sites are inactive) to an active state (i.e.,
at least one of the sites is active) would be accompanied by a
reverse of that transition. In other words, the system will sat-
isfy pqpq→i = pipi→q, where q is the quiescent state and i is
any active state. Such a feature, combined with the fact that all
pi→j = 0 when i and j are both active states, ensures the detailed
balance.

To study whether the detailed balance still holds when we
release these constraints set by the rules that identify avalanches,
we examined the relation between pipi→j = pjpj→i in the data
with quiescent periods removed. In such case, both constraints,
i.e., the symmetrical transition from a quiescent state to an active
state and zero transition probability between active states, are
removed. In Figure A1, we plotted the measured pipi→j against
pjpj→i for systems with different sizes (n = 2–5). Overall, the data
points are fairly close to the identical line, suggesting the fulfill-
ment of the equality. For comparison, we constructed a shuffled
data set, in which the sequence of avalanche patterns was random-
ized. For this shuffled data set, any possible temporal dependency
was removed so it is in a truly equilibrium state and, therefore, ful-
fills the detailed balance. The same analysis was then performed
for the shuffled data and we found that the results are similar to
those from the original data, indicating that the deviation from
the identical line for the original data is largely due to finite
sampling, and not due to a violation of the detailed balance. To
quantify this effect, we computed the ratio r = Ddata/Dshuffled,

FIGURE A1 | Detailed balance approximately holds for the data with

quiescent periods removed. For differently sized systems (n = 2–5),
empirically measured pi pi→j is plotted against pj pj→i for both the original
data (blue) and shuffled data (red). For every size, 100 different systems
(i.e., different combinations of electrodes) were analyzed. The solid lines
represent equality. r is a measure of the distance from the equality, relative
to that of the shuffled data (see Appendix text A for details). It is
represented as mean ±s.d. (across 100 systems). (A–D), system size
equals 2, 3, 4, and 5, respectively.

where

D = 2
∣∣pipi→j − pjpj→i

∣∣
pipi→j + pjpj→i

(A1)

We found that for n > 2, this ratio is very close to one (Mann–
Whitney U test, p > 0.05), indicating that the violation to the
detailed balance is sufficiently small so it is not detectable within
the current recording length. Due to the lack of sufficient data, the
direct check of detailed balance cannot be performed for larger
systems (n >> 5). However, with the results we obtained for n =
2–5, and given the fact that with the increase of system size, expo-
nentially more samples would be needed to detect the same level
of violation, it is clear that the detailed balance among the active
states, i.e., avalanche patterns, should be a good approximation
for even larger systems.

Regarding the accessibility/ergodicity assumption, it requires
that from any given state, the system should be able to evolve
(after a sufficiently long time) to any other state. Although the
direct test for ergodicity is not possible due to limited length of the
recording, the power-law distribution in avalanche sizes provides
strong empirical evidence to support it. Such a heavy-tailed dis-
tribution indicates that even large systems can visit configurations
that cover all possible avalanche sizes.
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FIGURE A2 | Volume conduction does not introduce long-range

correlations. In a simulated 10 × 10 array configuration, we introduce
volume conduction by mixing the independent signals from nearby sites
according to S′

i = ∑
wij Sj , where S represents independent signals

from individual site and S’ represents the signals after mixing. The

mixing weight wij = exp

[
− 1

2

(
rij
ω

)2
]

, where rij is the distance

between site i and j. (A) Spatial configuration of the simulated array.
(B–D), For an example site (the red square in A), the mixing weight
wij (color corded) with different spatial extend (ω) are shown, with the
reference to the whole array. (E) Correlation, G, between mixed
activities are plotted as a function of the separation distance for
different ω (color-coded). To facilitate comparison, G is normalized by
the correlation between the nearest neighbors, i.e., r = 1.

Taken together, various empirical tests strongly suggest that
the stationarity and even the equilibrium assumption can be
considered a reasonable first approximation for our data.

B. ANALYTICAL DERIVATION OF FINITE SIZE SCALING METHOD
For readers who are not familiar with the finite size scaling, we
illustrate the method using susceptibility χ as an example. In the
vicinity of the critical temperature Tc, χ can be expressed as a
function of correlation length ξ.

χ = ξγ/v (A2)

In finite size system, correlation length ξ is comparable to system
size L, and therefore has a cut off. Consequently, χ also has a cut
off. If we use ξ to represent the correlation length at the thermo-
dynamic limit, then the cut off takes place when ξ > L. Then, we
can rewrite χ as

χ = ξγ/vχ0(L/ξ), (A3)

which satisfies the conditions above. Then define

χ0(x) ∼ χγ/v, for x < 1

χ0(x) ∼ c, otherwise,where c is a constant. (A4)

Therefore, when the system size is finite,

χL = ξγ/v(L/ξ)γ/v = Lγ/v, (A5)

And the correlation length is comparable to the system size.
Otherwise, when the system size is infinite, the correlation length
is actually ξ,

χ = cξγ/v. (A6)

Now we can rewrite the equation in order to remove ξ, because we
do not know its exact value, and also to introduce a dimensionless
function χ̄(x), which will be the scaling function for χL

χ = ξγ/vχ0
(
L |t|v)

= ξγ/vχ0

[(
L1/v |t|)v

]

= |t|−γχ0

[(
L1/v |t|)v

]

= Lγ/vL−γ/v |t|−γ χ0

[(
L1/v |t|)v

]

= Lγ/v (L1/v |t|)−γ
χ0

[(
L1/v |t|)v

]
. (A7)

Set x = L1/v|t|, which will be the scaling variable

χ = Lγ/vx−γχ0(x
v) (A8)

Define scaling function χ(x) = x−γχ0(xv), then

χ = Lγ/v χ(L1/v |t|). (A9)

Note when ξ ∼ L,

χ(x) = x−γχ0(x
v)

= (
L1/v |t|)−γ

χ0

[(
L1/v |t|)v

]

= L−γ/v |t|−γ χ0
(
L |t|v)

= L−γ/v |t|−γ c
(
L |t|v)γ/v

= L−γ/v |t|−γ cLγ/v |t|γ
= c (A10)
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Thus, the scaling function is a constant and independent of the
system size.

The scaling function also can be written as

χ
(
L1/v|t|) = L−γ/v|t|−γc

(
L|t|v)γ/v

= L−γ/v (|t|−γ
)γ/v

c

(
L

|t|−v

)γ/v

(A11)

Recall ξ ∼|t|−v, so we have

χ
(
L1/v|t|) = L−γ/v ξγ/vc

(
L

ξ

)
γ/v (A12)

Also recall, when system size is finite,

χL = ξγ/v(L/ξ)γ/v, (A13)

So

χ
(
L1/v|t|) = L−γ/vχL = c (A14)

From Eq. A14, we can measureχL(t) for various system sizes L in
a temperature range close to Tc, and rescale χL(t) by L−γ/v for
each L to obtain the scaling functionχ(L1/v|t|), with L1/v|t| as the
scaling variable. If we choose the correct Tc , ν and γ, the scaling
functions for different system sizes will fall on the same curve.
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