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Editorial on the Research Topic

Past Reconstruction of the Physical and Biogeochemical Ocean State

INTRODUCTION

Knowledge of the ocean’s physical, biogeochemical and ecosystem state and variability is crucial for
understanding the evolution of our climate system and better predicting its future. However, the sparseness
and inhomogeneous distribution of observations hinder the creation of sound 4-dimensional
reconstructions of the past (for an overview of ocean observing systems see the Research Topic
Oceanobs’19: An Ocean of Opportunity). Instead, we must rely on a combination of ocean modeling
and data analysis to infer past changes. Over the last decade the quality of ocean reanalyses has improved
mainly thanks to advances in data assimilationmethods andmore quality-controlled observation data sets.
Reanalyses provide the best-possible state estimate by assimilating observations into a dynamical model
(Balmaseda et al., 2015; Masina and Storto, 2017; Storto et al., 2019). In addition, advanced statistical
mapping methods (e.g., objective or variational analysis) provide observation-based gridded fields whose
resolution depends on the amount of available data (among many Cheng et al., 2017, Ishii et al., 2017;
Boyer et al., 2018). For many variables, particularly biogeochemical, the lack of observations more strongly
limits the spatial and temporal resolution of these gridded products (Fennel et al., 2019).

The Research Topic gathers contributions aiming at reconstructing the past physical, sea ice and
biogeochemical state of the ocean using models in combination with data. Ocean reanalyses and
observation-mapping are proposed to further our knowledge, to demonstrate their use in supporting
various applications, and to increase confidence in these reconstructions within the scientific
community. The products and applications described in this topic provide a foundation for their
use in ecosystem-based management, policy advice to support mitigation and adaptation strategies,
and in the identification of pathways towards a sustainable ocean.

CONTRIBUTIONS

Reanalyses
Ocean reanalyses are today an important tool for science-based studies and climate investigations.
They are also used to initialize prediction systems from sub-seasonal to decadal time scales and to
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support observational network monitoring. In the framework of
the Copernicus Marine Environment Monitoring Service
(CMEMS), validated global and European regional eddy-
resolving physical and biogeochemical reanalyses are produced
for several purposes. In this Research Topic we present four new
products which all serve the scientific purpose for providing
reliable and accurate estimates of the interannual variability
and trends of the global ocean and sea-ice state (Jean-Michel
et al.), the Mediterranean physical (Escudier et al.) and
biogeochemical (Cossarini et al.) state and the Black Sea
physics (Lima et al.). These products represent a step forward
towards our understanding of the mechanism of uptake and
redistribution of natural and anthropogenic carbon dioxide and
heat by the ocean, as well as the quantification of the induced
changes in its physical (e.g. reduced ventilation, increased
stratification, etc.) and biogechemical (e.g. acidification,
deoxygenation) state. The increasingly higher resolution of
ocean reanalyses combined with improved data assimilation
methods and observation abundance make them well-suited to
represent also the mesoscale variability of surface dynamics. In
addition, the reanalyses have strong assets which may serve
regional or sub-basin applications and downstream services in
support of the blue economy of coastal countries.

Climatologies and Observations-Based
Products
In addition to the model-based reanalysis products, two
categories of observation-based products include climatologies
(mean state and seasonal cycle) and monthly (or higher
frequency) gridded fields covering many years. Global
(Shahzadi et al.) and high resolution regional (Lee et al.)
temperature and salinity climatologies derived from irregularly
distributed historical observations by means of traditional or
more advanced objective analysis techniques are essential and
valuable products. The new climatologies benefit from the
increased availability of temperature and salinity profiles
derived from the Argo program in the 21st century and
provide regional ocean products able to represent mesoscale
variability similar to altimetry-derived surface current
products. Temperature and salinity climatologies serve
different purposes, such as initializing and validating
numerical ocean models and understanding climate anomalies.

A limitation of observation-based products is that one needs to
formulate a statistical relationship to extrapolate the information
contained in the observations in space and to other variables (e.g.
using an EOF analysis). In Oke et al., such relationships are
computed from a static model covariance matrix, using the
ensemble optimal interpolation (EnOI) data assimilation
technique. The EnOI is implemented using an ensemble that
includes anomalies for multiple space- and time-scales:
mesoscale, intraseasonal, seasonal, and interannual. However,
unlike in reanalysis, the model is not run in between the
assimilation step (offline assimilation).

In the work by Alvera-Azcarate et al. combining at least three
satellites has been shown to improve the representation of ocean
color variability at 1 km resolution over the Greater North Sea

during the period 1998–2020. The multidecadal product allows
an analysis of interannual variability and the indication of an
earlier spring bloom tendency in the North Sea.

Applications
Using reanalyses and observation-based gridded fields at high
spatial resolution is necessary to resolve the mesoscale variability
and its contribution to the ocean dynamics and thermodynamics.
By means of an eddy detection technique, Bonaduce et al. show
that mesoscale eddies represented in a Mediterranean reanalysis
represent a significant contribution of the ocean dynamics in the
Mediterranean Sea as they account for a large portion of the sea-
surface height variability at temporal scales longer than 1 month
and for the kinetic energy both at the surface and at depth.
Furthermore, temperature anomalies driven by long-lived eddies
can affect up to 15–25% of the monthly variability of the upper
ocean heat content in the Mediterranean basin.

Yang et al. investigated the contribution of mesoscale ocean
eddies to the Atlantic meridional heat transport (MHT)
variability, which in turn drives the decadal climate changes
recently observed in the North Atlantic and found that the
increase of eddy population due to the increase of horizontal
resolution in an eddy-resolving global reanalysis (Jean-Michel
et al.) does not affect the MHT anomalies significantly.

An alternative to the deterministic production of eddy-
resolving reanalyses and observation-based products is the
generation of coarser resolution ensemble of reanalyses which
allows for uncertainty estimation and optimization of poorly-
constrained model parameters. The ensemble approach is
particularly valuable for example in data-sparse region such as
the Antarctica, where Iovino et al. showed that an eddy-
permitting ensemble of reanalyses is capable to reproduce the
observed regional spatial and temporal variability of different sea-
ice classes (marginal and pack ice).

In another contribution, Singh et al. demonstrated the ability
of ensemble data assimilation methods (dual one step ahead
smoother) to provide high-quality and improved biogeochemical
(BGC) parameters that strongly reduce model bias within an
Earth system model by assimilating salinity and temperature
profiles and surface biogeochemical (Phytoplankton, Nitrate,
Phosphate, Silicate, and Oxygen) observations.

PERSPECTIVES

Model-based and observation-based past reconstructions of the
ocean state are complex products which will benefit from the
information of the integrated observing system, and the arrival of
new datasets from satellites (e.g., Surface Water and Ocean
Topography mission) and in situ observations (e.g., Deep Argo
and BGC Argo). Questions of how to mitigate discontinuities in
the observation spectrum will be central to better integrate all the
components of the observing system and make the best use of
ocean observations also improving quality control procedure.

A key activity for ocean or coupled reanalyses is their use by
the climate community to estimate the past and present energy,
water and carbon budgets (among many Abraham et al., 2013,
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von Schuckmann et al., 2018; Meyssignac et al., 2019), and to
provide uncertainty of these estimates. It is thus important to
further investigate their ability to provide accurate and reliable
estimates of the interannual variability and trends of essential
climate variables through continuous evaluation and
development of refined data assimilation techniques and
multi-model ensemble approaches. The novelty of the methods
used for the products presented in this Research Topic includes:
combining objective analysis with model based covariance,
multiscale optimisation approach, eddy-resolving reanalyses,
the verification of eddy characteristics and phytoplankton
from remote sensing data, and the estimation of model
parameters to reduce model biases.

The challenges that this community is facing span from the
need to progress in the context of coupled earth system
reconstructions (Baatz et al., 2021), which also require to
improve assimilation methods to include the non-Gaussian
distributions of biogeochemical and sea-ice observations, to
the need of dealing with data-sparse regions and periods to
respond to the demand for longer time series and backward in
time extensions. These kinds of products are now expected to

inform on past and near-present oceanic conditions to supply
ocean monitoring indicators with a reliable accuracy, be used to
track the health signs of the ocean and changes in line with
climate change, and serve policy-makers to implement and adapt
environmental strategies. The demand by end-users for products
with higher spatial and temporal resolution, especially in coastal
regions experiencing increasing threats, adds new challenges
involving the difficulties of taking into account the
multivariate assimilations of physical and biogeochemical
variables, to account for tides, waves, accurate bathymetry, and
in general a more realistic representation of coastal hydrological
processes.
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Combining Argo and Satellite Data
Using Model-Derived Covariances:
Blue Maps
Peter R. Oke1*, Matthew A. Chamberlain1, Russell A. S. Fiedler1, Hugo Bastos de Oliveira2,
Helen M. Beggs3 and Gary B. Brassington3

1CSIROOceans and Atmosphere, Hobart, TAS, Australia, 2IntegratedMarine Observing System, University of Tasmania, Hobart,
TAS, Australia, 3Bureau of Meteorology, Melbourne, VIC, Australia

Blue Maps aims to exploit the versatility of an ensemble data assimilation system to deliver
gridded estimates of ocean temperature, salinity, and sea-level with the accuracy of an
observation-based product. Weekly maps of ocean properties are produced on a 1/10°,
near-global grid by combining Argo profiles and satellite observations using ensemble
optimal interpolation (EnOI). EnOI is traditionally applied to ocean models for ocean
forecasting or reanalysis, and usually uses an ensemble comprised of anomalies for
only one spatiotemporal scale (e.g., mesoscale). Here, we implement EnOI using an
ensemble that includes anomalies for multiple space- and time-scales: mesoscale,
intraseasonal, seasonal, and interannual. The system produces high-quality analyses
that produce mis-fits to observations that compare well to other observation-based
products and ocean reanalyses. The accuracy of Blue Maps analyses is assessed by
comparing background fields and analyses to observations, before and after each analysis
is calculated. Blue Maps produces analyses of sea-level with accuracy of about 4 cm; and
analyses of upper-ocean (deep) temperature and salinity with accuracy of about 0.45
(0.15) degrees and 0.1 (0.015) practical salinity units, respectively. We show that the
system benefits from a diversity of ensemble members with multiple scales, with different
types of ensemble members weighted accordingly in different dynamical regions.

Keywords: ocean observations, Argo, satellite observations, ensemble data assimilation, ocean properties, ocean
reanalysis

1 INTRODUCTION

There are many gridded products that use Argo and other data to produce global estimates of
temperature and salinity at different depths1. These products can be grouped under two broad
categories: observation-based and model-based. Most observation-based products are coarse-
resolution (e.g., Ridgway et al., 2002; Roemmich and Gilson, 2009; Guinehut et al., 2012;
Locarnini et al., 2013; Schmidtko et al., 2013; Zweng et al., 2013, with horizontal grid spacing of
0.5–1°). Model-based products, here restricted to ocean reanalyses that assimilate observations into
an ocean general circulation model, include systems with coarse-resolution (e.g., Kohl and Stammer,
2007; Yin et al., 2011; Balmaseda et al., 2012; Köhl, 2015), some that are eddy-permitting (e.g., Carton
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and Giese, 2006; Carton and Giese, 2008; Ferry et al., 2007), and
others that can be regarded as eddy-resolving (e.g., Oke et al.,
2005; Oke et al., 2013c; Artana et al., 2019).

An important difference between all of the observation-based
products is their assumptions about the background error
covariance. All systems use some variant of objective analysis,
and they all represent the influence of topography and land on the
background error covariance in different ways. Some
observation-based products are climatologies, including a
mean state and seasonal cycle (e.g., Ridgway et al., 2002;
Locarnini et al., 2013; Zweng et al., 2013), and others include
monthly (or weekly) fields and span many years (e.g., Roemmich
and Gilson, 2009; Guinehut et al., 2012; Good et al., 2013;
Schmidtko et al., 2013; Ishii et al., 2017). Most observation-
based products perform calculations on pressure surfaces (e.g.,
Roemmich and Gilson, 2009), but a few operate on isopycnal
surfaces (e.g., Schmidtko et al., 2013). Most observation-based
products use only Argo data (e.g., Roemmich and Gilson, 2009),
or Argo data plus other in situ data (e.g., Ridgway et al., 2002).
Systems that use both in situ and satellite data are less
common—Guinehut et al. (2012) is a notable exception. A
compelling feature of observation-based products is that they
usually “fit” observations quite well. But a possible limitation of
this group of products is that most are coarse-resolution, and
most don’t exploit all of the available observations (most don’t use
satellite data; though again Guinehut et al. (2012), is an
exception).

Like observation-based products, perhaps the most
important difference between the model-based products is
also how each system estimates the background error
covariance. Some systems use objective analysis (e.g.,
Carton and Giese, 2008), some use variational data
assimilation (e.g., Kohl and Stammer, 2007; Köhl, 2015),
and some use ensemble data assimilation (e.g., Oke et al.,
2013c; Artana et al., 2019). A compelling feature of model-
based products is that virtually all systems combine Argo data
with other in situ data and satellite data, and all produce
gridded estimates of all variables—even variables that are not
systematically observed, such as velocity. Moreover, model-
based products yield estimates that are somewhat dynamically-
consistent, including the influence of topography, land, surface
forcing, and ocean dynamics. Most systems are not precisely
dynamically-consistent, since most do not conserve properties
during the assimilation step, when the model fields are
adjusted to better match observations. However, on the
down-side, model-based products often “fit” observations
relatively poorly (Oke et al., 2012; Balmaseda et al., 2015;
Ryan et al., 2015; Shi et al., 2017), and many systems are
hampered by model-bias (e.g., Oke et al., 2013c).

Blue Maps version 1.0, presented here, is intended to exploit
the strengths of both groups of systems, delivering a product with
the accuracy of an observation-based product, with the
comprehensive ocean representation of a model-based system.
We show here that Blue Maps produces gridded estimates with
greater accuracy than model-based products, and with more
versatility than observation-based products.

This paper is organised with details of the analysis system
presented in Section 2, results in Section 3, an analysis and
discussion in Section 4, and conclusions in Section 5.

2 ANALYSIS SYSTEM

The name, Blue Maps, is intended to acknowledge the origin of
the data assimilation system used here—developed under the
Bluelink Partnership (Schiller et al., 2020); acknowledge the
statistical category for the method—a Best Linear Unbiased
Estimate (BLUE); and acknowledge that the tool is intended
for deep-water applications (Blue water). The method used to
produce analyses for Blue Maps is Ensemble Optimal
Interpolation (EnOI; Oke, 2002; Evensen, 2003), and the code-
base is EnKF-C (Sakov, 2014), implemented with the EnOI
option. Variants of EnOI are widely used to perform ocean
reanalyses and forecasts on global scales (e.g., Oke et al., 2005;
Brassington et al., 2007; Oke et al., 2013c; Lellouche et al., 2013;
Lellouche et al., 2018; Artana et al., 2019) and regional scales (e.g.,
Counillon and Bertino, 2009; Xie and Zhu, 2010; Oke et al., 2013a;
Sakov and Sandery, 2015). Arguably the most important elements
of any configuration of EnOI, or an Ensemble Kalman Filter (the
“optimal,” but more expensive, “parent” of EnOI) are the
ensemble construction, the ensemble size, and the localisation
length-scales. To understand this, consider the simplified analysis
equation:

wa � wb + winc (1)

� wb +∑
i�1

n

ci(x, y).Ai(x, y, z), (2)

where w is the state vector (here, this is temperature, salinity, and
sea-level on a 1/10° grid), A is the ensemble of model anomalies, c
is the weights of the ensemble members, superscripts a, b, and inc
denote analysis, background, and increment fields; subscripts i
denote the ith ensemble member; n is the ensemble size; and x, y,
and z are dimensions in space (z is the vertical dimension).

To understand the importance of the ensemble construction,
recognise that the increments of the state winc, are constructed by
projecting the background innovations (the differences between
the observations and the background field) onto the ensemble.
Projections are made for each horizontal grid point, using only
observations that fall within the localisation radius. These
projections yield two-dimensional maps of ensemble weights c,
for each ensemble member (note that these are two-dimensional
because the system uses horizontal localisation, and not vertical
localisation). From Eq. 2 it is clear that the ensemble is
important—determining the features that can be represented
in the increment field. If some feature is absent in the
ensemble—say, for example, there are no ensemble members
with anomalies associated with an eddy in some particular region,
increments resembling anomalies associated with an eddy cannot
be sensibly constructed with a linear combination of those
members for that region. The ensemble should include
anomalies that reflect the adjustments needed to bring the

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6969852

Oke et al. Blue Maps

9

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


background field into closer agreement with the assimilated
observations.

To understand the importance of the localisation radius, note
again that for the projections at each horizontal grid point, only
observations that fall within the localisation radius are used, and
that the influence of an observation on that projection is reduced
with distance from that grid point. If the localisation radius is too
short—perhaps shorter than the typical distance between
observations—then there may be insufficient observations to
reliably perform the projection for a given grid point. This can
result in increments with spatial scales that are not resolved by the
observing system, effectively introducing noise to the analyses.
Conversely, if the localisation length-scale is too long, then there
may be too few degrees of freedom (depending on ensemble
size—see below) for each projection to “fit” the observations (e.g.,
Oke et al., 2007). For ensemble-based applications, the
localisation function is effectively an upper-bound on the
assumed background error covariance. The effective length-
scales in the ensemble-based covariance can be shorter, but
not longer, than the localisation function.

To further understand the importance of the ensemble size,
considering Eq. 2. If the ensemble is too small to “fit” the
background innovations, then the quality of the analyses will
be poor, yielding analysis innovations (differences between the
observations and analysis fields) that are large. The assimilation
process is somewhat analogous to the deconstruction of a time-
series into Fourier components; or the approximation of some
field by projecting onto a set of basis functions, using a least-
square fit. Extending the analogy of the Fourier transformation, if
the full spectrum is permitted, then all the details of an unbiased
time-series can be represented. But if only a few Fourier
components are permitted, then the deconstruction will deliver
an approximation. If the Fourier components are chosen
unwisely, excluding some dominant frequencies for example,
then the deconstructed signal may be a very poor
approximation of the original time-series. In the same way, to
allow for an accurate assimilation, the ensemble must have a
sufficient number and diversity of anomaly fields to permit an
accurate projection of the background innovations.

Guided by the understanding outlined above, for any
application, it is preferable to use the largest possible ensemble
size. This is usually limited by available computational resources
(e.g., Keppenne and Rienecker, 2003). If the ensemble is too small,
then a shorter localisation radius is needed, to eliminate the
impacts of spurious ensemble-based covariances that will degrade
the analyses (e.g., Oke et al., 2007). If the localisation radius is too
large, then there may be insufficient degrees of freedom for each
projection, and the analyses will not “fit” the observations with
“appropriate accuracy.” By “appropriate accuracy,” we mean that
analyses “fit” the observations according to their assumed errors
(i.e., not a perfect fit, but a fit that is consistent with the assumed
observation and background field errors—the target for any Best
Linear Unbiased Estimate; e.g., Henderson, 1975). These factors
require a trade-off, and some tuning.

What’s the status-quo for the ocean data assimilation
community? It’s typical for EnOI- or EnKF-applications for
ocean reanalyses or forecasts to use an ensemble size of

100–200 (e.g., Xie and Zhu, 2010; Fu et al., 2011; Sakov et al.,
2012; Oke et al., 2013c; Sakov and Sandery, 2015). By some
reports, an ensemble of greater than 100 is regarded as a large
ensemble (e.g., Ngodock et al., 2006, 2020). Moreover, such
applications typically use localisation length-scales of
100–300 km (e.g., Fu et al., 2011; Sakov et al., 2012; Oke et al.,
2013c; Sakov and Sandery, 2015; Lellouche et al., 2018; Artana
et al., 2019). Importantly, most of the quoted-localisation length-
scales use a quasi-Gaussian function with compact support
(Gaspari and Cohn, 1999). This function reduces to zero over
the quoted length-scale; and so the e-folding scale for these
applications is typically about one third of the stated length-
scale. These systems all assimilate in situ data and satellite data. In
situ data are dominated by Argo, with nominally 300 km between
profiles, and satellite data includes along-track altimeter data,
with typically 100 km between tracks. For most cases, the
e-folding length-scale of the localisation length-scales—and
hence the background error covariance—is shorter than the
nominal resolution of these key components of the global
ocean observing system. This seems to be a feature of ocean
reanalysis and forecasts systems that has long been over-looked
by the ocean data assimilation community.

For contrast to the typical configuration for ocean reanalyses,
summarised above, consider the key elements of a widely-used
observation-based product. Roemmich and Gilson (2009)
describe an analysis system that maps Argo data to construct
gridded temperature and salinity on a 1°-resolution grid. They
perform objective analysis on different pressure levels
independently, and estimate the background error covariance
using a correlation function that is the sum of two Gaussian
functions—one with an e-folding length-scale of 140 km, and one
with an e-folding scale of 1,111 km. Furthermore, Roemmich and
Gilson (2009) elongate the zonal length-scales at low latitudes.
Their choice of background error correlation was reportedly
guided by characteristics of altimetric measurements (Zang
and Wunsch, 2001). This set-up uses much longer length-
scales than most model-based products, and projects
observations onto a coarser grid.

For Blue Maps, we calculate weekly analyses of temperature,
salinity, and sea-level anomaly (SLA) by assimilating
observations into a background field that is updated using
damped persistence. The horizontal grid is 1/10°-resolution,
and the vertical grid increases with depth, from 5 m spacing at
the surface to 150 m at 1,500 m depth. Starting with climatology,
using the 2013 version of the World Ocean Atlas (WOA13;
Zweng et al., 2013; Locarnini et al., 2013), consecutive analyses
are calculated:

wa
j � wb

j + K(y −Hwb
j ), (3)

where

wb
j � 0.8wa

j−1 + 0.2wc
j , (4)

where K is the gain; y is a vector of observations;H is an operator
that interpolates from state-space to observation-space; the
superscript c denotes climatology (for time of year), and the
subscript j denotes the time index. The gain matrix K depends on
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the assumed ensemble-based background error covariance and
the assumed observation error covariance (here assumed to be
diagonal, with diagonal elements given the values of assumed
observation error variance). EnKF-C calculates analyses using a
localisation method called local analysis (Evensen, 2003; Sakov
and Bertino, 2011; Sakov, 2014), using a localisation function that
is quasi-Gaussian (Gaspari and Cohn, 1999). The weighted sum
of the analysis field and climatology, in Eq. 4, is equivalent to
damped persistence, with an e-folding timescale of approximately
14 days.

Observations assimilated into Blue Maps include profiles of
temperature and salinity, satellite Sea-Surface Temperature
(SST), and along-track SLA. The only in situ data used here is
Argo data (Roemmich et al., 2019), sourced from the Argo Global
Data Acquisition Centres, and include only data with Quality
Control flags of one and two (meaning data are good, or probably
good; Wong et al., 2020). The assumed standard deviation of the
observation error for Argo data is 0.05°C for temperature and 0.05
practical salinity units (psu) for salinity. The instrument error of
Argo temperature data is 0.002°C and for salinity is 0.01°psu
(Wong et al., 2020), so the larger errors assumed here include a
modest estimate for the representation error (e.g., Oke and Sakov,
2008). SLA data are sourced from the Radar Altimeter Database
System (RADS Ver. 2, Scharroo et al., 2013), and include
corrections for astronomical tides and inverse barometer
effects. The assumed standard deviation of the observation
error for SLA is 3 cm for Jason-2 and Jason-3, 4 cm for Saral,
5 cm for Cryosat2, and 10 cm for Sentinal-3A. SST data includes
only 9 km AVHRR data (May et al., 1998), sourced from the
Australian Bureau of Meteorology (Dataset accessed 2015-01-01
to 2018-12-31 from: Naval Oceanographic Office, 2014a; Naval
Oceanographic Office, 2014b; Naval Oceanographic Office,
2014c; Naval Oceanographic Office, 2014d). The assumed
standard deviation of the observation error for AVHRR SST is
0.37–0.47°C (Cayula et al., 2004). These observation error
estimates are used to construct the diagonal elements of the
observation error covariance matrix, used in Eq. 3 to construct
the gain matrix.

For any given application of EnOI, it is not always clear how to
best construct the ensemble. But given the importance of this
element of the data assimilation system, careful thought is
warranted. If it is obvious that the errors of the background
field will most likely align with a certain spatial- and temporal-
scale, then this is likely to be a good starting point. For example,
for an eddy-resolving ocean reanalysis, we might expect the errors
of the background field to be mostly associated with eddies—and
specifically the formation, evolution, properties, and locations of
eddies. These elements of an eddy-resolving ocean model are
mostly chaotic, and so particular events are not well predicted by
a model without data assimilation. For an ocean reanalysis, we
might also expect that the model is likely to realistically reproduce
variability on longer time-scales, without requiring much
constrain from observations. For example, the seasonal cycle
in a free-running model is usually realistic, as are anomalies
associated with interannual variability (e.g., Oke et al., 2013b; Kiss
et al., 2019). Perhaps anomalies on these scales needn’t be
included in an ensemble for an ocean reanalysis. For the series

of Bluelink ReANalysis (BRAN) experiments, we were guided by
this principle, and used an ensemble that represented anomalies
associated with the mesoscale (e.g., Oke et al., 2008; Oke et al.,
2013c). In the most recent version of BRAN, Chamberlain et al.
(2021a; 2021b) demonstrated significant improvements using a
two-step, multiscale assimilation approach. They found that by
using an ensemble of interannual anomalies, they eliminated the
model bias that plagued early versions of BRAN (e.g., Oke et al.,
2013c). Chamberlain et al. (2021a; 2021b) also showed the
benefits of using longer localisation length-scales and a larger
ensemble. The configuration of EnOI for Blue Maps has
benefitted from lessons learned by Chamberlain et al. (2021a;
2021b).

Unlike an ocean reanalysis, for Blue Maps, there is no
underpinning model to represent a seasonal cycle, or
interannual variability in response to surface forcing. In this
case, there are only two ways that a seasonal cycle can be
reproduced in the analyses: by the damping to climatology
(Eq. 4), or by the assimilation of observations (Eqs. 1–3).
Similarly for intraseasonal and interannual variability, these
signals can only be introduced into the analyses by the
assimilation of observations. We have therefore taken a
different approach to the ensemble for Blue Maps (compared
to BRAN), and we explore the performance of the system with
several different ensembles. Specifically, we compare the
performance of Blue Maps for six different configurations
(Table 1). Each ensemble is constructed from a 35 years run
(1979–2014) of the version three of the Ocean Forecasting
Australian Model (OFAM3, Oke et al., 2013b) forced with
surface fluxes from ERA-Interim (Dee and Uppala, 2009). One
configuration is similar to early versions of BRAN (e.g., Oke et al.,
2008; Oke et al., 2013c; Oke et al., 2018), using a 120-member
ensemble that includes anomalies that reflect high-frequency and
short-scale (i.e., the short mesoscale) anomalies—hereafter
experiment HFSS (High Frequency, Short Scale). Three
configurations use a 120-member ensemble, with anomalies
that include High-Frequency Long-Scales (HFLS; including the
large mesoscale, intraseasonal, and seasonal scales), Low-
Frequency Short-Scales (LFSS; including the large mesoscale
and interannual scales), and Low-Frequency Long-Scales
(LFLS; including large mesoscale, seasonal, and interannual
scales) anomalies. Members in each ensemble are constructed
by calculating anomalies for different spatiotemporal scales. The
specific details are summarised in Table 1. Ensemble members
for HFLS, for example, are calculated by differencing 3 month
averages from 13-month averages (Table 1), with four members
generated from each year for the last 30 years of a 35-year free
model run, with no data assimilation. One configuration that
combines all three ensembles with the longer time- and space-
scales (LFSS, HFLS, LFLS—child ensembles)—yielding a 360-
member multi-scale ensemble, hereafter MS360 (parent
ensemble). To help determine the relative impacts of ensemble
size (360 vs 120) and multi-scales, we also include an experiment
with 40 members from the HFLS, LFSS, and LFLS
ensembles—yielding a 120-member multi-scale ensemble
(MS120). This approach of including multiple space- and
time-scales for an EnOI system is similar to the configuration
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described by Yu et al. (2019), and is similar to the multi-model
EnOI approach described by Cheng and Zhu (2016), Cheng et al.
(2017). We consider some characteristics of these
ensembles below.

The standard deviation of the salinity anomalies at 250 m
depth are shown for each 120-member ensemble in Figure 1. This
field quantifies the assumed background field error for the EnOI
system. The most salient aspect of this comparison is the
difference in amplitude of the standard deviations, with much
larger values for LFSS and LFLS, compared to HFSS and HFLS.
Both HFSS and HFLS also include vast regions of very small
values. In those regions of very small assumed background field

errors, the assimilation of salinity observations may have only a
small impact. In the limit that we assume the background field
error is zero—assimilation of data will have no impact at all
(because we assume the background field is perfect). The
average value for the HFSS, LFSS, HFLS, and LFLS ensemble
for salinity at 250 m depth is 0.02, 0.06, 0.03, and 0.06 psu
respectively. Because LFSS and LFLS assume a larger
background field error, using the same observation error
estimates, the experiments with these ensembles should (in
theory) “fit” the observations more closely than the
experiments using the HFSS and HFLS ensemble. In practice,
as discussed above, this also depends on whether the anomalies

TABLE 1 | Summary of experiments, including the name of each experiment/ensemble, descriptors of the dominant spatiotemporal scales represented, details of the
ensemble construction, ensemble size (n)m and localosation radius (LOCRAD, in km). Under ensemble construction, d, m, and y refer to days, months, and years; and
Seas is seasonal climatology; and describe how ensemble members are constructed. For example, 1 d–2 m, means 1-day minus 2 month centered-averages; 3–13 m,
means 3 month centered-average minus a 13-month centered-average. For each 120-member ensemble, four members are calculated for each year, using fields from
30 years of a 35-year model run. For MS120, 40 members from each of the child ensembles (HFLS, LFSS, and LFLS) are used. The localisation radius refers to the
distance over which the localising function reaches zero.

Experiment/Ensemble Dominant Scales Ensemble construction n Locrad (km)

HFSS Short mesoscale 1 d–2 m 120 300
LFSS Mesoscale + interannual 1 m–seas 120 900
HFLS Mesoscale + intraseasonal + seasonal 3–13 m 120 900
LFLS Mesoscale + interannual + seasonal 3 m–25 y 120 900
MS120 Multi-scale [HFLS40 LFSS40 LFLS40] 120 900
MS360 Multi-scale [HFLS LFSS LFLS] 360 900

FIGURE 1 | Standard deviation of the anomalies (ensemble spread) of salinity at 250 m depth for the (A) HFSS, (B) LFSS, (C) HFLS, and (D) LFLS ensemble. The
white numbers overlaying the coloured fields report the 10 × 10° average for the standard deviation for each area.
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in each ensemble are well-suited to “fit” the background
innovations (from Eq. 2).

Examples of the anomalies for temperature at 250 m depth,
showing the first three ensemble members for each ensemble, are
presented in Figure 2. Several differences between the ensembles
are immediately evident. Like the standard deviations for salinity
at 250 m depth, the amplitudes of anomalies for temperature at
250 m depth are much smaller in the HFSS and HFLS ensembles
compared to the LFSS and LFLS ensembles. This is because the
HFSS and HFLS do not include anomalies associated with
interannual variability. All of the ensembles include
anomalies that we might associate with eddies—showing
many positive and negative anomalies on eddy-scales in
eddy-rich regions. Close inspection shows that the mesoscale
features are smallest in the HFSS ensemble, compared to the
other ensembles. The LFSS and LFLS ensembles include zonal
bands of significant anomalies, between 20–30°S and 40–50°S,
and broad regions of non-zero anomalies at low latitudes. We
associate these bands of anomalies with interannual variability.
The HFLS ensemble includes some zonal bands of anomalies,

with smaller amplitude, between about 40 and 10°S, that we
interpret as seasonal anomalies.

Based on the salient characteristics evident in Figures 1, 2, we
might expect quite different results using HFSS compared to
LFSS, HFLS, and LFLS; and we equally might expect many
differences between LFSS compared to HFLS and LFLS.

The length-scales evident in the ensemble fields are also used to
guide the localisation length-scales (Table 1). For HFSS, the length-
scales are short, and so we only test the system using a length-scale of
300 km (with an effective e-folding length-scale of about 100 km). For
LFSS, HFLS, LFLS, M120, and MS360, the anomalies in the ensemble
include broader-scale features. These ensembles may warrant length-
scales exceeding 1,000 or even 2000 kms. Here, we’re constrained by
computational resource, and we settle for experiments with a
localisation length-scale of 900 km (with an effective e-folding
length-scale of about 300 km). Additionally, Figure 2 also shows
that the length-scales inHFLS and significantly shorter than LFSS and
LFSS. This suggests that there may be some benefit in using different
length-scales for different ensemble members in the MS120 and
MS360 experiments. Unfortunately, this is option is not available

FIGURE 2 | Examples of anomalies from the first three ensemble members for the (A–C) HFSS ensemble, (D–F) LFSS ensemble, (G–I) HFLS ensemble, and the
(J–L) LFLS ensemble.
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in EnKF-C (Sakov, 2014), but we note that scale-dependent
localisation has been used in the context of four-dimensional
ensemble-variational data assimilation for Numerical Weather
Prediction (e.g., Buehner and Shlyaeva, 2015; Caron and Buehner,
2018).

3 RESULTS

3.1 Comparisons with Assimilated Data
Blue Maps has been run for six different experiments (Table 1) to
produce weekly analyses over a 4-year period (1/2015–12/2018).

Time series of the mean absolute difference (MAD) between
observations and analyses (analysis innovations) and
observations and background fields (background innovations)
for each experiment are presented in Figure 3. This shows the
global average for each variable using data within 3 days of each
analysis. The averages in both time and space are shown in
Table 2 for background and analysis innovations.

The results in Figure 3 show that the system’s performance for
all experiments is relatively stable. There are a few points in time
with unusually large innovations. For SLA, there appears to be
one of two times when there is large background innovations
(e.g., mid-2015, and mid-2016); and for salinity below 500 m

FIGURE 3 | Time-series of MAD between observations and analyses (dashed lines) and background fields (solid lines) for different experiments, for observations
within 3 days of each analysis. Results are shown for (A) SLA, (B) SST, and (C, E, G) temperature and (D, F, H) salinity for different depth ranges, as labeled on the
vertical axes. The legend for different experiments is shown in panel (H).

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6969857

Oke et al. Blue Maps

14

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


depth, there are three times when the innovations spike (mid-
2015, late-2016, and early-2017). We expect that these anomalies
are caused by assimilation of bad data.

For SLA and upper-ocean fields, Figure 3 shows that there is a
seasonal cycle in the performance, with analysis and background
innovations slightly larger in austral winter. For deep temperature
and salinity, the innovations also show a small, quasi-linear
reduction in time.

For SLA, smallest analysis innovations are found in HFSS and
MS360, indicating that analyses fit the observed SLA equally well
for both experiments. But the background innovations are
notably larger for HFSS compared to MS360. This indicates
that although the analyses in HFSS fit the observations with
similar accuracy to MS360, it seems that HFSS includes some
unrealistic features that result in larger differences with the next
background field. We interpret this as a case of over-fitting in
HFSS, and attribute this to the small length-scales in the HFSS
ensemble (Figure 2) and the short localisation length-scale used
for the HFSS experiment (Table 1). This result for SLA, is
similar to other variables, where HFSS analysis innovations are
most similar to MS360 of all the experiments, but with HFSS
consistently producing the largest background innovations.
This is most clear for temperature and salinity in the depth
ranges of 0–50 m and 50–500 m (Figure 3). For these metrics,
the HFSS analysis innovations are the smallest of all
experiments - providing analyses with the best fit to
observations—but the HFSS background fields are the largest
of all experiments—providing analyses with the worst fit to
observation of the experiments presented here. These metrics

TABLE 2 | Time-average of the global MAD between observations and
background fields (top group; titled background innovations)) and between
observations and analysis fields (bottom group, titled analysis innovations), for
observations within 3 days of each analysis (a 6 days time-window) for SLA (m),
SST (°C), temperature (T, °C) and salinity (S, psu). Metrics for T and S are
shown for all depths shallower than 2000 m, for 0–50 m, 50–500 m, and
500–2000 m.

Background innovations

HFSS HFLS LFSS LFLS MS360 MS120

SLA 0.050 0.053 0.050 0.051 0.046 0.050
SST 0.361 0.361 0.360 0.353 0.340 0.349
T (<2,000 m) 0.461 0.407 0.424 0.414 0.407 0.406
T (<50 m) 0.525 0.484 0.487 0.478 0.465 0.470
T (50–500 m) 0.583 0.524 0.532 0.520 0.515 0.507
T (>500 m) 0.168 0.165 0.163 0.154 0.147 0.156
S (<2,000 m) 0.0719 0.0637 0.0656 0.0639 0.0637 0.0625
S (<50 m) 0.123 0.110 0.114 0.111 0.112 0.109
S (50–500 m) 0.0825 0.0722 0.0741 0.0723 0.0721 0.0705
S (>500 m) 0.017 0.016 0.017 0.016 0.015 0.016

Analysis innovations

HFSS HFLS LFSS LFLS MS360 MS120

SLA 0.032 0.045 0.040 0.040 0.031 0.040
SST 0.146 0.185 0.179 0.163 0.118 0.152
T (<2,000 m) 0.115 0.130 0.183 0.168 0.130 0.157
T (<50 m) 0.108 0.228 0.221 0.203 0.150 0.189
T (50–500 m) 0.134 0.220 0.210 0.192 0.150 0.180
T (>500 m) 0.082 0.111 0.103 0.093 0.076 0.089
S (<2000 m) 0.012 0.014 0.021 0.019 0.014 0.018
S (<50 m) 0.012 0.029 0.027 0.025 0.017 0.023
S (50–500 m) 0.014 0.025 0.024 0.022 0.016 0.021
S (>500 m) 0.009 0.011 0.011 0.010 0.008 0.009

FIGURE 4 | Profiles of MAD between observations and analyses (dashed lines) and observations and background fields (solid lines) for (A) temperature and (B)
salinity. Profiles are shown for different regions (coloured lines) and for the global average (black). The inset in panel (B) shows the regional partitioning. Results are for the
MS360 experiment. Only observations made within 2 days of each analysis time are included in these calculations.
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are quantified in Table 2, where the HFSS analyses show the
smallest analysis innovations, but the largest background
innovations for most variables.

Weighing up both the analysis and background innovations
reported in Figure 3 and in Table 2, we conclude that the best
performing experiment is clearly MS360. It’s interesting that
MS360 outperforms the child ensembles of LFSS, HFLS, and
LFLS for every metric. It is also worth noting that for most
metrics, MS120 outperformed LFSS, HFLS, and LFLS, leading us
to conclude that the diversity of anomalies in the multi-scale

ensemble experiments is beneficial. Furthermore, we find that
MS360 outperformed MS120 on all metrics, demonstrating the
benefit of increased ensemble size. We will explore why this is the
case below, in Section 4.

Profiles of MAD for temperature and salinity innovations are
presented in Figure 4, showing averages over the entire globe, and
for each basin for the MS360 experiment only. Figure 4 includes
both profiles for MAD for analysis and background innovations.
For both temperature and salinity, the analysis innovations for
MS360 are small, showing mis-fits to gridded observations of less

FIGURE 5 | Map of the MAD between (A,C) observations and background fields (BG; 7 days after each analysis), and between (B,D) observations and analyses
(AN) for (A,B) SLA and (C,D) SST. Results are for the MS360 experiment. Only observations made within 2 days of each analysis time are included in these calculations.
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than 0.1°C for temperature for most depths, and less than 0.01 psu
for salinity for most depths. For context, recall that the assumed
observation errors for in situ temperature and salinity are 0.05°C
and 0.05 psu, respectively. For the background innovations for
temperature (Figure 4A), the MAD is largest at around 100 m
depth, the average depth of the thermocline. The largest
background innovations in the upper ocean are in the Indian
Ocean and the equatorial and South Atlantic Ocean. Below about
200 m depth, the largest background innovations are in the North
Atlantic Ocean. For salinity profiles (Figure 4B), the MAD is
largest at the surface for most regions, with the largest mis-fits in
the Atlantic and Indian Oceans. Like temperature, the largest
background innovations below about 300 m depth are in the
North Atlantic Ocean. The smallest background innovations for
salinity are in the upper ocean are in the Southern Ocean.

Maps of the MAD of background and analysis innovations for
SLA and SST are presented in Figure 5 for MS360. As expected,
the largest innovations for SLA are in the eddy-rich regions,
namely the western boundary current (WBC) extensions and

along the path of the Antarctic Circumpolar Current (ACC). SLA
innovations are also larger off Antarctica, where there are fewer
SLA observations. For SST, there are also local maxima of
innovations in each WBC region; and there are larger values
north of about 30°S, with the largest values at the northern-most
latitudes of the grid.

Maps of the MAD of background and analysis innovations for
temperature and salinity at depths of 10, 100, 200, and 1,000 m
depth are presented in Figures 6 and 7, respectively for MS360.
The maps for temperature and salinity at corresponding depths
show similar structures, with local maxima and minima in
approximately the same regions. At 10 m depth, the largest
innovations are in the WBC regions and in the eastern
Tropical Pacific. At 100 m depth, in addition to larger values
in WBCs, there are also larger values for all longitudes in the
tropical bands for each basin. This is where the pycnocline has the
strongest vertical gradient, and so any mis-placement of analysed
isopycnal depths has a large penalty for MAD of temperature and
salinity. At 200 m depth, there is evidence of a band of higher

FIGURE 6 | Map of the MAD between (A,C,E,G) observations and background fields (7 days after each analysis), and between (B,D,F,H) observations and
analysis fields, for temperature at (A,B) 10 m, T10; (C,D) 100 m, T100; (E,F) 200 m, T200; and (G,H) 1,000 m depth, T1000. Results are for the MS360 experiment.
Only observations made within 2 days of each analysis time are included in these calculations.
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innovations nearer the center of each ocean basin at mid-
latitudes. For the South Pacific, this band of higher
innovations may relate to the decadal variability identified by
O’Kane et al. (2014). At 1,000 m depth, the innovations are small
everywhere, with modest local maxima in WBC regions.

3.2 Comparisons with Independent Data
For the comparisons presented above, the analyses of the
background innovations can be considered as independent
validation, since this involves comparisons between Blue Maps
analyses and observations that have not been used to construct an
analysis. However, for the comparisons of in situ temperature and
salinity, the observations are mostly from Argo floats. Because
Argo floats drift slowly, this means that the “independent”
comparisons (based on the background innovations) almost
always involves comparisons between background fields with
observations in locations where data was recently assimilated.
As a result, we might suspect that these comparisons provide
an optimistic assessment of the accuracy of the analysis system.
We therefore seek an additional, truly independent
assessment here.

For an independent assessment, we compare analyses of
temperature and salinity with non-Argo data from eXpendable
BathyThermographs (XBTs; temperature only), Conductivity-
Temperature-Depth (CTD) measurements from ship-borne
surveys, moorings (mostly the tropical mooring arrays), and
from sensors mounted on marine mammals (mostly in the
Southern Ocean, near the Kerguelen Plateau). We source these
data from the Coriolis Ocean Dataset for ReAnalysis CORA
(CORA, versions 5.0 and 5.1; Cabanes et al., 2013). The
global-averaged profiles of the MAD for 1/2015–12/2017
(CORA data are not currently available post-2017) are
presented in Figure 8. For temperature, this mostly includes
data from sensors mounted on marine mammals in the Indian
Ocean section of the Southern Ocean, the tropical mooring
arrays, and a small number of XBT transects and CTD
surveys (Figure 8A). For salinity, this is mostly marine
mammals and the tropical moorings. The coverage of non-
Argo data for this comparison is not truly global, with vast
amounts of the ocean without any non-Argo data available.
Despite the poor coverage, this comparison provides some
assessment against truly independent observations. This

FIGURE 7 | As for Figure 6, except for salinity.
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comparison indicates that the differences between Blue Maps
analyses and non-Argo (independent) observations are about the
same amplitude as the background innovations, presented in
Figure 4—slightly higher for salinity. This indicates that misfits
with independent data for temperature are largest at about 100 m
depth, with values of about 0.8°C; and for salinity are largest at the
surface, with value of about 0.3 psu.

Considering the analysis innovations reported in Table 2 and
presented in Figures 3–8, we conclude that the gridded estimates
of ocean temperature, salinity, and sea-level in Blue Maps have
comparable accuracy to observation-based products. Here, we
summarise the estimated errors and data-misfits reported
elsewhere in the literature for a widely-used gridded SLA
product (Pujol et al., 2016), SST product (Good et al., 2020),
and temperature and salinity product (Roemmich and Gilson,
2009). For SLA, Pujol et al. (2016) report that the standard
deviation of error of a 1/3°-resolution gridded SLA product
(DUACS DT2014) ranges from 2.2 cm in low-variability
regions, to 5.7 cm in high-variability regions (their Table 2).
For SST, Good et al. (2020) show that the misfits between
gridded SST and Argo match-ups to range from about 0.3
and 0.5°C between 2015–2018 (their Figure 11). For sub-
surface temperature, Li et al. (2017) report that misfits
between gridded temperature (for Roemmich and Gilson,
2009) and independent in situ data from tropical moorings
average about 0.5°C, with largest misfits of about 0.8°C at 100 m
depth (the surface) and about 0.2°C at 500 m depth (their
Figure 9). For salinity, Li et al. (2017) report that misfits

between gridded salinity (for Roemmich and Gilson, 2009)
and independent in situ data from tropical moorings average
about 0.1 psu, with largest misfits of about 0.2 psu at the surface
and about 0.02 psu at 500 m depth (their Figure 10). For each
gridded variable, the reported accuracy of these observational
products are comparable to the accuracy of Blue Maps analysis
fields. We therefore maintain that the accuracy of Blue Maps
analyses is comparable to other widely-used observation-based
products.

3.3 Example Analyses
To demonstrate the scales represented by Blue Maps analyses, we
show some examples of anomalies of sea-level, temperature, and
salinity in Figures 9, 10. These examples demonstrate the
abundance and amplitude of mesoscale variability in the maps.
Anomalies that are obviously associated with eddies are evident in
the SLA fields (Figures 9A, 10A) throughout most of the regions
displayed. Signals of these eddies are also clearly evident in the
anomalies at 250 m depth, and in some regions (e.g., along the
path of the ACC—particularly near the Kerguelen Plateau,
Figures 9D,E; and in the eddy-rich parts of the Tasman Sea,
Figures 10D,E). Regions of broad-scale anomalies are also
evident, including high sea-level, and cold and fresh anomalies
in the western, equatorial Pacific (Figures 9A–C). The maps also
show deep salinity anomalies at 1,000 m depth between 20 and
30°S in the Indian Ocean, and along the path of the ACC
(Figure 9). Of course, the anomalies displayed here are on
depth levels, and so the relative contributions from heaving of

FIGURE 8 | Profiles of global-averaged MAD between analyses (fromMS360) and non-Argo with-held observations (black), analyses and assimilated observations
(red), and background fields and assimilated observations (blue), for (C) temperature and (D) salinity, from 1/2015–12/2017. The top panels show the locations of non-
Argo (A) temperature and (B) salinity observations; and the numbers in the title are the number of respective observations. The non-Argo data includes XBT (temperature
only) and CTD; plus sensors on marine mammals (MAM) and moorings (MOR).
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the water column and changes in ocean properties from
climatology are unclear. Assessment of this aspect of the
analyses is important and interesting, but is not addressed in
this study.

4 ANALYSIS AND DISCUSSION

4.1 Understanding the Performance of the
MS360 Ensemble
An exciting and intriguing result reported in Section 3 is the
superior performance of MS360 compared to LFSS, HFLS, and
LFLS—the child ensembles. In this case, the performance of the
larger parent ensemble (MS360) is not just marginally better than

each of the child ensembles—the difference is quite
significant—particularly for the analysis innovations. For many
metrics, the MAD for the analysis innovations are up to 30–35%
smaller in MS360, the child ensemble experiments (22–36%
smaller for salinity at 50–500 m depth, for example, Table 2).
Here, we seek to understand why the experiment with the MS360
ensemble performs so much better. Based on comparisons
between the innovations reported in Figure 3 and in Table 2,
we suggested above that both the ensemble size and the diversity
of anomalies in the multi-scale analyses are important. We aim to
explore this further below.

To understand how the MS360 experiment uses ensemble
members from each of the child ensembles, we analyse the
ensemble weights (from Eq. 2) for 52 analyses—one for each

FIGURE 9 | Examples of gridded fields from MS360, showing anomalies of (A) sea-level, (B) temperature at 250 m depth, (C) salinity at 250 m depth, (D)
temperature at 1,000 mdepth, and (E) salinity at 1,000 mdepth. Fields are shown for March 16, 2015. The title of each panel reports theminimum,maximum, andmean
of the field displayed. Anomalies are with respect to seasonal climatology from WOA13 (Locarnini et al., 2013; Zweng et al., 2013) and the mean sea-level field from
OFAM3 (Oke et al., 2013b).
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week—during 2015. We then calculate the fraction of the
increment that can be attributed to each child ensemble by
calculating a partial sum of the weighted ensemble members
(from Eq. 2), using only the members for each child ensemble.
We show a map of the average fraction of increment explained by
each child ensemble for temperature at 250 m depth, and also
present the zonally-averaged profiles, in Figure 11. The results
show that in different regions, each child ensemble is given a
different relative weight. For all examples in Figure 11, anomalies
in LFLS are combined to produce the largest fraction (about 60%)
of the increments for almost all latitudes.We show that anomalies
from LFSS are dominant in each WBC region, where there is
correspondingly low weight assigned to anomalies from LFLS.
This provides a clear indication that different types of ensembles
are warranted in different dynamical regimes. Another example
of this is in the South Pacific, where there is a band of high values

for LFLS extending from the southern tip of South America and
extending towards central eastern Australia. Although not
perfectly aligned, this is reminiscent of the path of quasi-
decadal anomalies identified by O’Kane et al. (2014). There
are also different bands where HFLS has relatively higher
weight—particularly at low latitudes in the Pacific and Atlantic
Oceans, and along the path of the ACC south of Australia. This
analysis provides a detailed and complex picture of the relative
weights assigned by the EnOI system to each child ensemble. The
key message we take away from this analysis, is that different
types of anomalies are assigned different weights in different
regions.

The analysis of the relative fraction of increment explained by
each child ensemble in MS360 (Figure 11), confirms that the
relative weights of the anomalies in the different child ensembles
varies for different dynamical regimes. This result has a number

FIGURE 10 | As for Figure 9, except for the tasman sea.
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of implications. Recall that EnOI requires an explicit assumption
about the background field errors. Specifically, the construction of
the stationary ensemble for EnOI requires the ensemble to be
generated by constructing anomalies for some space- and time-
scales—here summarised in Table 1 (column three therein).
Almost all applications of EnOI in the literature invoke a
single assumption about the background error covariance to
construct the ensemble. The only exceptions that we are aware
of are presented by Cheng and Zhu (2016), Cheng et al. (2017),
and Yu et al. (2019). Here, we show that we achieve a much better
result when several different assumptions are made together, and
a diversity of ensemble members are combined to construct
analyses. Moreover, the results presented here indicate that a
different assumption about the background field errors is
warranted for different regions.

Another element of Blue Maps that differs from most other
applications of EnOI is the use of longer localisation length-
scales. For five of the experiments presented here, a 900 km
localisation length-scale is used (Table 1). To demonstrate the
impact of this aspect of the configuration, we present examples of
ensemble-based correlations between temperature at a reference

location and nearby temperature, in Figure 12. To understand
the impact of localisation, consider the profiles in Figure 12A, for
example. For this case, the un-localised ensemble-based
correlation (red) closely matches the localised ensemble-based
correlation profile using a 900 km localisation function (green),
but is significantly different from the localised ensemble-based
correlation profile using a 250 km localisation function (blue). If
the localisation function with the shorter length-scale is used,
then the ensemble-based correlations are heavily modified. By
contrast, if a localisation function with the longer length-scale is
used, then the ensemble-based correlations are virtually un-
modified within several hundred kilometres of the reference
location. As a result, using the longer length-scales permits
more of the structures—such as the anisotropy—of the
ensemble-based correlations to be used for the data
assimilation. Whereas, using the short length-scale
localisation function, more of the details are eliminated, and
the correlation used degrades towards a quasi-Gaussian
function (like most objective analysis systems). In this way,
some of the benefits of EnOI are lost when a shorter length-
scale is used. The other examples presented in Figure 12
demonstrate the same relationships. We have looked at
equivalent fields to these for many other regions. The
results in Figure 12 are similar to many regions poleward
of about 15°N and S. In the equatorial region, the unlocalised
correlations are much longer (several thousand kilometres in
some cases). For those tropical regions, a longer localisation
length-scale is warranted—but we cannot afford to implement
this computationally, due to memory requirements, to assess
the performance.

4.2 Development Experiments
The development of Blue Maps has involved a large number of
trial experiments that produced mixed results. Not all of the
results from this series of experiments can be reported here in
detail. But some of the findings from those experiments will be
summarised here, since they may be of interest to the community.
The first configuration of Blue Maps used the same configuration
as the 2016 version of BRAN (Oke et al., 2018). This was similar
to the HFSS experiment reported here. However the HFSS
experiment includes a few modifications. Early results used
persistence for the background field—not damped persistence
(Eq. 4). The quality of the analyses degraded in time, with noisy
fields emerging and growing in amplitude. It appears that there
are insufficient observations to constrain a series of analyses
without damped persistence and without an under-pinning
model. Damped persistence was adopted thereafter. Many
experiments were performed with damping to climatology
using an e-folding time-scale in the range of 7–90 days. The
best overall performance—based on the analysis and background
innovations—was found using damping with an e-folding time-
scale of 14-days. This time-scale is used in all experiments
described in this paper. Damped persistence is commonly used
for SST analyses. For example, the Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA), produced by the
UKMet Office, uses damped persistence with an e-folding
timescale of 30 days for ice-free regions (Donlon et al., 2012;

FIGURE 11 | Average fraction of increment explained for temperature at
250 m depth, for each child ensemble, including (A) LFSS, (B) HFLS, and (C)
LFLS, in the MS360 experiment. The zonal averages for LFSS (blue), HFLS
(red), and LFLS (green) are shown in panels (D–F). Averages are
calculated from 52 analyses during 2015.
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Fiedler et al., 2019; Good et al., 2020). Similarly, the operational
SST analysis produced by the Canadian Meteorological Centre
(CMC) uses damped persistence with an e-folding timescale of
58 days (Brasnett, 2008; Brasnett and Colan, 2016).

Even using damped persistence, small-scale noise still
appeared in analyses in some regions. Close examination of
the ensemble fields showed that there were noisy fields in
most ensemble members. As a consequence, these noisy
features appear in the analyses, according to Eq. 2. We
eliminated these small-scale features by spatially smoothing of
the ensemble fields. This was implemented here (for all
ensembles) using a simple horizontal diffusion operator (that
applies a spatial smoothing with a footprint of 1x1°). We now
understand that a similar approach to smooth the ensemble has
long be used for the French ocean reanalysis, as reported by
Artana et al. (2019), for GLORYS (the GLobal Ocean ReanalYses
and Simulations).

Other experiments explored the sensitivity to localisation
length-scale. The results with longer length-scales generally
performed better, with fewer fictitious features that are not
resolved by the observations. Computational limitations
prohibited us from testing the system with longer length-scales.

Some of the lessons learnt during the development of Blue
Maps may be of interest to the ocean data assimilation
community. Apparently many of the features identified in the
early experiments during this development are present in BRAN

experiments (e.g., small-scale noise in analyses). But it appears
that when fields with these artefacts are initialised in a model, the
model efficiently disperses many of the artificial features, and they
are not clearly evident in the resulting reanalysis fields (which are
often daily-means). Surely, inclusion of these fictitious features -
albeit small in amplitude—will degrade the quality of ocean
reanalyses. For Blue Maps, these features were easily identified,
because there is no model to “cover” over the unwanted features.
We plan to apply the learnings from the development described
here, to future versions of BRAN.

5 CONCLUSION

A new observation-based product that adapts a data assimilation
system that has traditionally been used for ocean forecasting and
ocean reanalysis is presented here. The new product is called Blue
maps. BlueMaps is tested here by producing weekly analysis over a 4-
year period (1/2015–12/2018). We compare the performance of Blue
Maps for six different configurations, using different ensembles. The
best performance is achieved using a 360-member multi-scale
ensemble (MS360) that includes anomalies from several different
spatiotemporal scales. For that configuration, analyses of sea-level that
are within about 4 cm of observations; and analyses of upper-ocean
(deep) temperature and salinity that are within about 0.45 (0.15)
degrees and 0.1 (0.015) psu respectively. These misfits are comparable

FIGURE 12 | Ensemble-based correlations between temperature at 250 m depth at 32°S and 157°E in the Tasman Sea, and temperature and salinity at the same
depth and longitude, but at nearby longitudes using different ensembles: (A,F) MS360, (B,G) LFLS, (C,H) HFLS, (D,I) LFSS, and (E,J) HFSS. Each panel includes the
un-localised ensemble-based correlation (in red), the localised ensemble-based correlation, multiplied by the 250 km localisation function (blue) and multiplied by the
900 km localisation function (green). Also shown in panels (A) and (F) are the correlations functions with a 250 km (blue-dashed) and 900 km (green-dashed) using
the formulation used here and defined by Gaspari and Cohn (1999). The location of the reference point is also shown in panels (A) and (F) with a vertical grey line.
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to ocean reanalysis systems that are underpinned by an ocean model.
For example, the 2020 version of the Bluelink ReANalysis (BRAN
2020, Chamberlain et al., 2021a), fits data to within about 0.17–0.45°C
and 0.036–0.082 psu (smallest values are for misfits of observations
and analysis; largest values are misfits of observations and 3 days
“forecasts”). GLORYS12V1 (Lellouche et al., 2019, see their Figure 5B),
version 2020, fits the data to within about 0.41°C and 0.061 psu. For
equivalent metrics, Blue Maps fits data to within 0.17–0.41°C and
0.014–0.064 psu (smallest values are for misfits of observations and
analysis; largest values are misfits of observations and 7 days “damped
persistence”). Compared to observation-based products, Blue Maps
also compares well. Li et al. (2017) present results from a 1°-resolution
product and includes an inter-comparison with other observation-
based products. They show that their system performs comparably to
analyses produced by Roemmich and Gilson (2009), and a number of
other coarse-resolution products. The profiles of analysis-observation
misfits in Figure 4, for Blue Maps, show much smaller mis-fits than
observational products presented by (Li et al., 2017, e.g., their Figure 4).

We show that the superior performance of the Blue Maps
configuration using the ensemble with multiple spatiotemporal
scales is because of the larger ensemble size (120 compared to
3,670), longer length-scales (compared to most other EnOI
applications), and the diversity of ensemble anomalies. We
conclude that different assumptions about the system’s background
error covariance are warranted for different regions.We recognise that
the ensemble with 360 members—although larger than most other
global applications of EnOI—is still not large. Indeed, the most
extreme demonstration of the benefits of a truly large ensemble is
presented by Miyoshi et al. (2015), who presented some very
impressive results using a 10,240-member ensemble for numerical
weather prediction. We suspect further improvements may be
achieved if a larger, more diverse ensemble is used. This suggestion
will be explored in future experiments with Blue Maps and with
BRAN. Future developments of Blue Maps will also likely include
explicit analyses of mixed layer depths, biogeochemical parameters
(e.g., backscatter), and will include a calculation of weekly fields for a
longer period (probably from 2000 to present).
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Development of High-Resolution
Regional Climatology in the East/Japan
Sea With a Primary Focus on
Meridional Temperature Gradient
Correction
Jae-Ho Lee and You-Soon Chang*

Department of Earth Science Education, Kongju National University, Kongju, South Korea

In this study, we developed a new high-resolution regional climatology (0.1° by 0.1° by 19
levels) in the East/Japan Sea. National Centers for Environmental Information and Korea
Oceanic Data Center already released the regional climatology of East Asian seas including
the East/Japan Sea with 0.1° by 0.1° resolution. It provides a reliable temperature and
salinity structure compared to previous 1° or 0.25° climatologies. However, this study
found an abnormal meridional temperature gradient problemwhen calculating geostrophic
currents based on this new climatology. Geostrophic currents show a strong repetitive
eastward flow along the 1° latitudinal band especially in the East/Japan Sea, which
corresponds with abnormal meridional temperature gradients at the same areas. This
problem could be related to the objective analysis procedure generating the high-
resolution climatology. Here, we reproduced a high-resolution climatology without the
abnormal meridional temperature gradient problem by using the optimal interpolation
method. Results show that themeridional gradient problem can partly be attributed to both
the use of the World Ocean Atlas background field on the 1° grid, and the spatial
distribution of World Ocean database observation data; however, these are not the
primary causes. We corrected the abnormal temperature gradient by increasing the
meridional decorrelation length scale without losing the meso-scale feature in the East/
Japan Sea, as shown by the wavelet analysis. Improvement of the new gridded field is also
validated by using serial hydrographic data and the altimetry-derived surface current
product.

Keywords: regional climatology, East/Japan Sea, horizontal temperature gradient, objective analysis, optimal
interpolation, geostrophic current

INTRODUCTION

The World Ocean Atlas (WOA) has been developed by the National Centers for Environmental
Information (NCEI) to describe the three-dimensional temperature and salinity structures of the
world ocean. It has served as initial and boundary conditions of ocean circulation models and
validated ocean remote sensing data. The original WOA produced in 1982 (Levitus, 1982) was
continuously updated through 1994 (NOAA, 1994), 1998 (NOAA, 1998), 2001 (Levitus, 2002;
hereafter WOA01), 2005 (Levitus, 2006; hereafter WOA05), 2009 (Levitus, 2009; hereafter WOA09),
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2013 (Levitus, 2013; hereafter WOA13), and 2018 (Boyer et al.,
2018; hereafter WOA18) as the latest observations became available
[https://www.ncei.noaa.gov/products/world-ocean-atlas]. However,
WOAs except for recent versions (WOA13 and WOA18) have
been produced with a spatial resolution of 1° × 1° on 33 vertical
standard depth levels, hence they depict only the general
temperature and salinity structure of large-scale in the
global ocean.

Boyer and Levitus (1997) first improved the spatial resolution
of ocean climatology with 0.25°; however, noise problems
associated with spare data coverage were identified by a later
study (Chang and Chao, 2000). By employing an additional
smoothing scale, Boyer et al. (2005) developed a reliable 0.25°

climatology; NCEI climatology is frequently updated and
continues to be widely used. Gridded data from a Generalized
Digital Environmental Model (GDEM) maintained by the U.S
Navy has also been used as the other climatology with the same
0.25° intermediate-resolutions (Carnes, 2009; Carnes et al., 2010).
Recent WOAs (WOA13 and WOA18) have 102 standard depth
levels and are presented on 1° and 0.25° grids due to the increasing
observing system in the 21st century. World Ocean Experiment-
Argo Global Hydrographic Climatology (WAGHC), a new global
ocean hydrographic climatology version with 0.25° grids, has also
been generated on isobaric and isopycnal surface (Gouretski,
2018, 2019).

However, these climatologies with 0.25° intermediate
resolutions are still inadequate for detailed regional-scale
studies. Chang and Shin (2012) developed a high-resolution
0.1° grid climatology, however their study area was confined to
the southwestern coastal area of the East/Japan Sea. Therefore, it
is necessary to improve the spatial resolution of oceanic
climatology ensuring preservation of data quality and wider
regional-scale analysis of target regions.

In the 21st century, on account of the successful international
Argo project [http://www.argo.net], available temperature and
salinity profiles rapidly increased, enabling NCEI to develop and
release high-resolution regional climatologies. The new regional
climatologies include nine major regions; the Southwest North
Atlantic, Northwest Atlantic, GIN Seas, Northern North Pacific,
Northeast Pacific, Nordic Sea, Arctic Ocean, Gulf of Mexico, and
East Asian seas [https://www.ncei.noaa.gov/regional-ocean-
climatologies].

In particular, the East Asian Seas Regional Climatology
(EASRC) was developed from the collaboration between the
NCEI and Korea Oceanic Data Center (KODC). The study
area extends from 115 to 143°E and 24 to 52°N including the
East China Sea, Yellow Sea, Bohai Sea, East/Japan Sea, northern
Philippine Sea, and the adjacent Northwest Pacific Ocean
(Johnson and Boyer, 2015). It has various versions for annual,
seasonal, and monthly mean periods on 1, 0.25, and 0.1° latitude-
longitude grids.

Since these regional climatologies were newly developed, it is
imperative that detailed assessments are provided. Chang and
Shin (2014) reported the vertical gradient problem of the EASRC,
which was showing an anomalous density inverse in coastal
regions, related to the weakness of most isobarically-averaged
climatologies (Gouretski, 2008; Gouretski,2 019). In this study, we

also found another problem related to an abnormal meridional
temperature gradient, particularly in the East/Japan Sea. The
East/Japan Sea is a semi-enclosed marginal sea, considered a
miniature ocean because of various oceanographic processes such
as subpolar fronts, meso-scale eddies, and coastal upwelling (Kim
et al., 2001). Therefore, it is important that we present a detailed
hydrological structure of this area.

Figure 1A shows the altimetry-derived surface current field
around the East/Japan Sea in February, provided by AVISO
(Pascual et al., 2006). AVISO-Archiving, Validation and
Interpretation of Stellite Oceanographic data provided by the
Center National d’Etudes Spatiales (CNES) is an objective
analysis product based on satellite altimeters. It provides surface
current data derived from absolute dynamic topography with 0.25°

by 0.25° resolution. Figure 1B presents geostrophic current derived
from temperature and salinity gridded fields of the EASRC. Both
products offer an accurate depiction of the general current patterns
such as the strong nearshore branch of the Tsushima current and
the Ulleung eddy system. However, the EASRC failed to present an
appropriate position of the cold eddy near the Wonsan Bay as
compared to AVISO data. Another difference is that the EASRC
presents strong, recurring zonal current flows along the 38, 39, and
40°N latitudinal bands. The vector correlation coefficient between
the two data from 37 to 41°N was appeared 0.52. With regards to
horizontal temperature distribution, the EASRC illustrates both the
large and small-scale features in the East/Japan Sea (Figure 2A).
However, when calculating temperature difference in the
meridional direction at 0.1° latitude interval (dT/dy), a strong
meridional temperature gradient was observed between 38 and
41°N at almost each latitudinal interval of 1° (Figure 2B). The
averaged meridional temperature gradient is −0.35, −0.39, −0.65,
and −0.33°C/km at 38, 39, 40, and 41°N, respectively, which
corresponds to the abnormally repetitive zonal current in this
area as shown in Figure 1B.

Therefore, this study reproduced and evaluated the same high-
resolution field without this meridional gradient problem by
using the optimal interpolation (OI) method. This problem
has been observed in all seasons, but henceforth, this study
will present the spatial distribution in February, when this
problem is most evident.

The following section provides the data used, and details about
the OI method implemented in this study. Results presents the
meridional gradient patterns generated from several different OI
versions. Summary and Discussion discusses the results and
provides an overall summary.

DATA AND METHODS

Data
This study used in situ World Ocean Database 2013 (hereafter
WOD13) and gridded WOA13 data, which is the same as the
recent version of the EASRC. All data are collected from NCEI as
well. In the WOD13, we used the following datasets: Ocean
Station Data (OSD), Mechanical Bathythermographs (MBT),
Expendable Bathythermograph Data (XBT), High resolution
Conductivity-Temperature-Depth (CTD), Drifting Buoy Data
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(DRB), Moored Buoy Data (MRB), Profiling Floats Data (PFL),
Undulating Ocean Recorder Data (UOR), and Glider Data (GLD),
https://www.ncei.noaa.gov/products/world-ocean-database) subject
to the Quality Control (QC) procedure based on the NCEI
technical report (Boyer and Levitus, 1994) and previous research
(Chang et al., 2009).

First, theQC flag check ofWOD13 data was performed and only
good data were used in this study. Duplication and range checks for
position, date, and pressure levels were carried out in the next step.
Data that deviated from the standard range of temperature and
salinity were eliminated and the density inversion check was also
performed. WOD13 data includes observed level data and
interpolated to a set of 102 standard levels. This study used
standard level data observed from 1955 to 2012. We used a total
of 1,443,820 profiles and 27,278 profiles have been rejected through

the QC process. We also used the monthly mean of the WOA13
with a spatial resolution of 1° × 1° on 24 vertical levels from the
surface to a depth of 1,500 m as background data to interpolate it
even in areas where observations were scarce. It is to be noted that
WOAwas used similar to datasets on every 1° × 1° grid of the entire
study area, eliminating the possibility of spatial imbalance in the
final product. In this study, an objective analysis field for 19 vertical
levels was generated using WOA13 with a 1° resolution and
WOD13 observation data.

Method
In order to generate gridded temperature and salinity field at each
depth, we employed the OI method as follows. The objective
estimate (T(S)obj) of the temperature (salinity) at each grid point
of standard depths is given by

FIGURE 1 | (A) Altimetry-derived surface current from AVISO and (B) geostrophic currents from EASRC in February.

FIGURE 2 | (A) Horizontal temperature distribution and (B) meridional temperature gradient at the surface of EASRC in February.
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T(S)obj � 〈d〉 + ω · (d − 〈d〉) (1)

where d � [d1, . . . ,dn]; it denotes the set of historical observed
WOD13 and gridded WOA13 temperature (salinity) profiles on
the grid point being interpolated and 〈d〉 denotes the mean value
of the set d within the influence radius. This term is a simple
arithmetic mean with no weight applied.

Each historical WOD13 data (d) can be separated into a true
signal (s) and some random noise (η), and the signal and noise
variance of the data can be approximated from the relationship
d � s + η (Fukumori and Wunsch, 1991). The signal variance is
approximated by s � (1/N)∑

i
(di − 〈d〉)2, where N is the number

of data points; The noise variance is estimated from the data
difference of neighboring stations; it is calculated as
η � (1/2N)∑

i
(di − dj)2, where dj is the data point that has the

shortest distance from di; further ω is the weighting matrix,
expressed as ω � Cdg · [Cdd + I · 〈η2〉]−1 (McIntosh, 1990),
where I denotes the identity matrix, Cdg denotes the data-grid
covariance matrix, and Cdd denotes the data-data covariance
matrix which are expressed as:

Cdgi(x, y) � 〈s2〉 · exp{ − [Dx2i,g/Lx
2 + Dy2i,g/Ly

2]} (2)

Cddi,j(x, y) � 〈s2〉 · exp{ − [Dx2i,j/Lx
2 + Dy2i,j/Ly

2]} (3)

The covariance used in this study is a function of the spatial
length scale (Lx, Ly), where Dx and Dy are the spatial
distances between the observed data (subscripted with i)
and the grid point (subscripted with g) in zonal and
meridional directions, respectively. If the number of data
(N) is small, there will be a higher weight toward <d> rather
than weighting matrix.

RESULTS

Reproduction of Meridional Gradient
Problem
In order to investigate the possible cause of the meridional
temperature gradient problem shown in the EASRC, similar
meridional temperature gradient patterns must initially be
reproduced.

The EASRC employed search passes within three circles of
different radii (211, 155, and 111 km) to obtain a better
representation of the objective analysis (OA) fields in this
area, utilizing the response function of Barnes (1964). This
study applied the same influence radius as the EASRC, but
failed to represent any similar meridional temperature
gradient problems, which may be related to differences in
the OA method and datasets used after the QC procedure.
Alternately, through multiple sensitivity experiments, an
influence radius as 211 km in the longitudinal and 111 km
in the latitudinal direction was set to reproduce the meridional
temperature gradient problem. Several previous studies using
the OI method applied a horizontal anisotropy scale, with Lx
being greater than Ly, to reflect the predominant zonal
currents in the ocean interior (Bohme and Send, 2005;
Chang and Shin, 2012).

Figure 3 shows the OI result with a 0.1° grid resolution using
both WOA13 and WOD13. The spatial distribution of
temperature is very similar to that of the EASRC (Figure 2A),
particularly with respect to the shape of the isothermal line and
polar front position (Figure 3A). As for the meridional
temperature gradient (dT/dy) shown in Figure 3B, strong
negative values less than −0.2°C/km appeared at every 1° grid
interval, from latitudes 38 to 41°N, with a minimum of about
−0.6°C/km at 40°N. The average meridional temperature gradient
by latitude was −0.32°C/km at 38°N, −0.37°C/km at 39°N,
−0.77°C/km at 40°N, and −0.30°C/km at 41°N, which is similar
to the mean temperature gradient of the EASRC (Figure 2B).
This result indicates that the OI field generated by this study
suitably reproduces the problem in the EASRC as shown in
Figure 2B. We will further investigate the possible cause of
the meridional temperature gradient problem, and provides
the optimal OI fields without the same problem.

Effect of WOA13
We hypothesized that this abnormal meridional repetitive pattern
was connected to the 1° by 1° grid WOA13 background data.
Therefore, we generated a new OI field with the same influence
radius using only WOA13 data (Figure 4). The spatial
temperature distribution (Figure 4A) is smoother than in
Figure 3A. Repetitive meridional gradient values less than
−0.2°C/km can clearly be observed from latitudinal bands 38
to 41°N in Figure 4B. This anomalous pattern could be caused by
the increased weight of WOA13 data at every 1° grid during the
OI process for the generation of 0.1° high-resolution data.

To rectify this, the WOA13 background data was reproduced
on a regular 0.1° by 0.1° grid by using the linear interpolation
method, and then OI was applied again (Figures 4C,D).
Consequently, the temperature distribution was similar to the
result using the 1° grid WOA13 data as previously shown in
Figure 4A. However, the abnormal repetitive patterns of the
meridional temperature gradient at 1° intervals clearly
disappeared (Figure 4D). This implies that the abnormal
meridional gradient problem can be corrected by using a
relatively high-resolution climatology, such as WOA with a
0.25° resolution, GDEM, or WAGHC, rather than a 1° grid
background field.

When the irregular in situWOD13 data was supplemented for
the OI process, it complicated the temperature distribution
(Figure 4E). Interestingly, the abnormal meridional
temperature gradient appeared again with a 1° grid meridional
interval (Figure 4F).

Effect of WOD13
Based on the results depicted in Figure 4, we concluded that the
repetitive temperature gradient pattern at 1° interval is affected
not only by WOA13 data with a regular 1° grid but also by
randomly distributed WOD13 data. In Figure 5, we regenerated
OI fields just from WOD13 data and investigated its spatial
distributions.

Figures 5A,B show data distribution and the latitudinal
change of the amount of data within the influence radius. A
total 949 profiles were estimated within the influence radius of
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136° E, 40° N. This position was selected because the largest
meridional gradient value was noted at this latitude. Figures
5C,D show the spatial distribution of temperature and the
meridional temperature gradient, respectively. The
temperature distribution is similar to Figure 3A and the
abnormal repetitive temperature gradient pattern at a 1°

interval is also similar to that of Figure 3B. At the central
latitude of 40° N, a total of 141 profiles were estimated within the
zonal influence radius of 211 km. The number of data repeatedly
increased at 1° intervals (see red bars in Figure 5B). Most ship
observations were performed along the designated observation
line, which ran predominantly along either latitudinal or
longitudinal line. Consequently, the trend of number of
observations along latitudinal lines being abundant remains
consistent (see Figure 9). Thus, it is expected that the
repetitive meridional temperature gradient pattern with 1°

interval is closely related to the weighting of repetitive data
numbers located at 1° grid intervals.

By randomly extractingWOD13 data of up to 20 profiles along
0.1° latitudinal intervals within the influence radius shown in
Figures 5E,F, we produced another OI field. Figures 5G,H
represent the temperature distribution and meridional
gradient, respectively. Although data numbers constantly
provided within the influence radius of every latitudinal band,
results show that temperature distribution is similar to the
previous version and that the repetitive gradient pattern still
exists, but with decreased magnitude.

To confirm the weak relationship between spatial
distributions of WOD13 data and the meridional gradient
problem, this study generated another OI field using
WOA13 data projected to a WOD13 position (Figure 6).
Consequently, the temperature distribution is similar to the
result obtained using WOA13 data with a regular 0.1° grid as
previously shown in Figure 4C. In addition, the repetitive
meridional gradient pattern at 1° grid intervals disappeared,
which is consistent with the results shown in Figure 4D. We

thereby confirmed that the cause of the meridional gradient
problem is not closely related to the spatial distribution of
WOD13 data.

Effect of Influence Radius
Since this abnormal meridional gradient was reproduced
accurately when we applied a horizontal anisotropy scale, we
performed a sensitivity experiment with several influence radii
having the same value in the zonal and meridional directions.
Figures 7A,B depict the results of the new OI with an influence
radius of 111 km in both zonal and meridional direction, based
on the same two data (1° griddedWOA13 and irregularWOD13).
Compared to Figure 3 which uses the same data except for a
longer influence radius in the zonal direction, temperature
distribution is more complicated especially along the 10°C
isothermal line. However, the repetitive gradient pattern still
exists, and is related to the same meridional influence radius
of Figure 3.

When we used the same 211 km influence radius in the zonal
and meridional directions as shown in Figures 7C,D, the spatial
distribution was similar to that of the existing OI results shown in
Figure 3. In this case, repetitive patterns with a 1° interval in the
meridional directions were significantly reduced. The same
tendency was exhibited in the OI result using a 311 km radius
circle (Figure 7F), but showed a smoother temperature
distribution (Figure 7E).

One of the advantages of high-resolution climatology is its
capacity to reproduce various meso-scale features. However, the
smoothing effect due to the increased influence radius can lead
to their disappearance. Therefore, we performed a wavelet
analysis to determine the spatial variability of meso-scale
features from the EASRC and various OI results, with the
exception of the case using 111 km influence radius
(Figure 7). Wavelet is a method of analyzing spectral
characteristics over a period of time; however, in this study,
we used it to analyze the characteristics of space by applying

FIGURE 3 | (A) Horizontal temperature distribution and (B)meridional temperature gradient at surface in February. This is a new optimal interpolation product with
0.1° resolution using both 1° gridded WOA13 and irregular WOD13. Influence radius applied was 211 km (zonal) and 111 km (meridional).
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distance instead of time. The southwestern (northeastern) part
of the East/Japan Sea was defined as the first (last) data position
and the number of data position was increased in the meridional
direction. In order to focus on the meso-scale features, we
extracted the sea surface temperature anomaly (SSTA) by
230 km high-pass filtering.

Figure 8A shows the spectral density function of the SSTA in
the EASRC. Figure 8B indicates the spatial-averaged spectral
density function with a 95% confidence level. In the spatial-
averaged spectral density function, a peak is appeared at a
diameter of approximately 160 km which satisfies a 95%
confidence level.

FIGURE 4 | The same as Figure 3 except for (A, B) only 1° griddedWOA13, (C, D) only linear interpolated 0.1° WOA13, and (E, F) both 0.1° gridded WOA13 and
irregular WOD13.
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For the new OI data, with an increased influence radius of
211 km in a meridional direction (Figure 7C), we performed the
same analysis; the results are presented in Figures 8C,D. This, in
contrast with the original EASRC in Figures 8A,B, shows similar
results indicating the most significant peak on the meso-scale
with a diameter of about 160 km within the 95% significant
confidence level. Interestingly, the magnitude of the spatial-
averaged spectral density function (0.58) is stronger than that

of EASRC (0.55) in the 95% confidence level. In the original
EASRC, various meso-scale features were not simulated due to
the meridional temperature gradient problem. However, the new
OI data with the influence radius of a circle of 211 km simulated
various meso-scale features and solved the meridional
temperature gradient problem.

As expected, another OI field using 311 km influence radius
did not exhibit a peak in the spatial averaged spectral density

FIGURE 5 | (A)Data position and (B) latitudinal change of the number of data within the influence radius of 136°E, 40°N, (C) horizontal temperature distribution, and
(D) meridional temperature gradient by using only the irregular WOD13. Bottom panels provide the same information as the upper panels except for reduced WOD13
data that was randomly extracted for up to 20 profiles along 0.1° each latitudinal band within the influence radius.

FIGURE 6 | (A) Data position, (B) horizontal temperature distribution, and (C)meridional temperature gradient at the surface in February by using 0.1° WOA13 that
was projected to a WOD13 position.
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function around 160 km within the 95% confidence level, and its
amplitude was significantly reduced due to the smoothing effect
(Figures 8E,F).

Therefore, OI results obtained by applying a circle of 211 km
influence radius (hereafter “new OI”) in Figures 7C,D, 8C,D

showed that the abnormal temperature gradient problem has
been resolved, and that the spatial variability in the meso-scale
was well simulated. This result cannot prove that the new OI
exhibits a real resolution of 0.1° that is a finer thanmeso-scale. We
generated additional OI field using shorter period data for recent

FIGURE 7 | The same as Figure 3 except for three different influence radii. (A, B) The influence radius applied were 111 km, (C, D) 211 km, and (E, F) 311 km,
respectively.
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20 years and investigated the spatial variability, but it also
revealed the maximum spectral density around 160 km (not
shown). It is inferred that the resolution of spatial variability
will be more affected by the average period (less than monthly
mean) rather than duration of data used. Therefore, it may be
impossible to produce the monthly mean climatology simulating
a fine scale about 0.1° in this area, which will be investigated in the
further separate study.

Validation
We verified the EASRC and new OI field based on serial
hydrographic lines that have been observed at the same
position for a long time. One of the serial observation datasets
was obtained from the 102, 103, 104, 105, 106, and 107 lines
provided by the National Institute of Fisheries Science’s Korea
Oceanographic Data Center (NIFS/KODC) (the six lines of

southwestern East/Japan Sea shown in Figure 9). The others
represent the PM and G line data provided by the Japan
Metrological Agency (JMA) (two lines of eastern East/Japan
Sea shown in Figure 9). They have been simply averaged at
each station from 1983 to 2010 for NIFS/KODC data and 1997 to
2010 for JMA data, respectively.

Figure 9 shows the spatial distribution of temperature in
February, along the observational lines at 10 m depth obtained
from long-term mean serial hydrographic data (Figure 9A), the
EASRC (Figure 9B), and new OI fields with no meridional
gradient problem generated by this study (Figure 9C). Since
the surface data was relatively insufficient compared to the 10 m
data shown in Figure 9A, verification was performed at 10 m
instead of at the surface.

Both the EASRC (−0.61°C) and new OI (−0.44°C) show cold
bias compared to the observation, which might be associated with

FIGURE 8 | (A) Wavelet spectrum for sea surface temperature anomaly using Morlet wavelet with 95% significant confidence level (black line) in February of the
EASRC and (B) spatial-averaged wavelet power spectrum with 95% significant confidence level (dotted line). The same information except for OI results are set to (C, D)
211 km and (E, F) 311 km.
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an averaged period (Figures 9D,E). Both our climatologies
contained many observations made before 1983 and 1997 based
onWOD13 since 1955, therefore they reflect fewer of the recent sea
warming signals in the East/Japan Sea. The root mean square error
(RMSE) of the EASRC was 0.82°C, and the RMSE of the new OI
was calculated to be 0.67°C. Thus, it was shown that the newOI was
relatively similar to the observed data than the EASRC. This
improvement is generally observed in different seasons (August)
and depths (100m depth) (see Supplementary Figures S1–S3).
The objective of this study is to resolve the meridional temperature
gradient problem as shown in the EASRC, rather than provide a
synthetic assessment for the climatology, hence further detailed
analysis is beyond the scope of this paper.

We also computed the geostrophic flow by using the new OI
temperature and salinity profiles (Figure 10). The strong abnormal
zonal flow that appeared in the original EASRC field has been
significantly reduced. The East Korea Warm Current and the cold
eddy near the Wonsan Bay were also resolved, and are now
comparable to the AVISO data, as previously shown in Figure 1.
The vector correlation coefficient between AVISO and the new OI
was 0.54, showing a higher correlation than with the EASRC (0.52).

FIGURE 9 | Spatial distribution of temperature and the bias with respect to serial observation at 10 m depth in February. [(A)Observation, (B) EASRC, (C) new OI,
(D) EASRC-OBS, (E) new OI-OBS].

FIGURE 10 | Spatial distribution of geostrophic currents from the newOI
in February.
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SUMMARY AND DISCUSSION

This study found abnormal meridional temperature gradients from
the East Asian Seas regional high-resolution climatology developed
byNCEI andKODC and reproduced a similar high-resolution field
by using the OI method. We used both WOD and WOA data to
consider areas where observation data were insufficient.

In the results obtained using the OI method, the abnormal
temperature gradient problem was partly related to the use of the
WOA background field at the 1° grid. This problem was alleviated
by employing a relatively high-resolution climatology
background field less than 1° grid. In addition, it was
significantly influenced by WOD data. When we examined the
distribution of WOD data, we found that the number of data
repeatedly increases along the 1° interval latitude band; however,
this was not the main cause for the meridional temperature
gradient problem. This problem was eliminated by increasing
the influence radius in the meridional direction with respect to
the existing influence radius. However, the EASRC data showing
meridional temperature gradient problem also used similar
circles with radii of 211, 155, and 111 km. Hence, it was
inferred that changing the influence radius could not be a
major solution for other OA products using different methods.

When we calculated the geostrophic current with the new OI field
with the circle of 211 km influence radius, we found that strong zonal
flows of 1° intervals are significantly reduced and they are similar to
altimetry-derived surface current products.Moreover, spectral analysis
using wavelet transform confirmed that despite the increased radius of
influence in the zonal direction, the new OI maintains meso-scale
variability suitably well compared to the original EASRC.

The latitudinal bands showing the strong repetitive meridional
gradient pattern generally correspond to the movement of the polar
front in the East/Japan Sea. Therefore, it is necessary to consider the
interannual variability of the polar front when generating the
monthly mean climatological fields. An improved climatological
mean field can be produced when the effect of bottom topography
reflecting potential vorticity change, and vertical gradient correction

are considered (Chang and Shin, 2012; Chang and Shin, 2014).
Moreover, this study including all NOAA climatologies produced
the climatology mean field based on isobaric interpolation.
Gouretski (2018), Gouretski, (2019) emphasized that the isobaric
interpolation method produces “artificial water masses” in high-
gradient regions. Since mixing processes in the actual oceanic
environment occur along an isopycnal surfaces, if the isopycnal
interpolation method is used instead of the isobaric interpolation
method, an improved climatologymean field can be produced.More
detail analyses are expected in this regard, via subsequent research.

In this study, this problemwas solved by a different OAmethod
from the EASRC. Therefore, we could not find a fundamental
solution to the problem that emerges in the EASRC. Figure 11
shows spatial temperature distribution and the meridional gradient
for the all the East Asian seas in the EASRC. Repetitive meridional
gradient patterns are also found in the Yellow Sea and the East
China Sea, but not in the southern part of Japan including the
Northwestern Pacific. Therefore, to accurately complete the high-
resolution climatology of the East Asian seas, it is necessary to
analyze the features of each area (the East/Japan Sea, the Yellow
Sea, the East China Sea, and the Northwestern Pacific) by applying
different OA methods, including different radii of influence, and
employing additional quantitative estimations.
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Supplementary Figure 1 | Spatial distribution of temperature and the bias with
respect to serial observation at 100 m depth in February. [(A) Observation, (B)
EASRC, (C) new OI, (D) EASRC-OBS, (E) new OI-OBS].

Supplementary Figure 2 | The same as Supplementary Figure S1 except serial
observation is at 10 m depth for August.

Supplementary Figure 3 | The same as Supplementary Figure S1 except serial
observation is at 100 m depth for August.
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The Copernicus Global 1/12° Oceanic
and Sea Ice GLORYS12 Reanalysis
Lellouche Jean-Michel 1*, Greiner Eric2, Bourdallé-Badie Romain1, Garric Gilles1,
Melet Angélique1, Drévillon Marie1, Bricaud Clément1, Hamon Mathieu1,
Le Galloudec Olivier1, Regnier Charly1, Candela Tony1, Testut Charles-Emmanuel 1,
Gasparin Florent1, Ruggiero Giovanni 1, Benkiran Mounir 1, Drillet Yann1 and
Le Traon Pierre-Yves1,3

1Mercator Ocean International, Ramonville Saint Agne, France, 2Collecte Localisation Satellites, Ramonville Saint Agne, France,
3Ifremer, Plouzané, France

GLORYS12 is a global eddy-resolving physical ocean and sea ice reanalysis at 1/12°

horizontal resolution covering the 1993-present altimetry period, designed and
implemented in the framework of the Copernicus Marine Environment Monitoring
Service (CMEMS). The model component is the NEMO platform driven at the surface
by atmospheric conditions from the ECMWF ERA-Interim reanalysis. Ocean observations
are assimilated by means of a reduced-order Kalman filter. Along track altimeter sea level
anomaly, satellite sea surface temperature and sea ice concentration, as well as in situ
temperature and salinity vertical profiles are jointly assimilated. A 3D-VAR scheme provides
an additional correction for the slowly-evolving large-scale biases in temperature and
salinity. The performance of the reanalysis shows a clear dependency on the time-
dependent in situ observation system. The general assessment of GLORYS12
highlights a level of performance at the state-of-the-art and the capacity of the system
to capture the main expected climatic interannual variability signals for ocean and sea ice,
the general circulation and the inter-basins exchanges. In terms of trends, GLORYS12
shows a higher than observed warming trend together with a slightly lower than observed
global mean sea level rise. Comparisons made with an experiment carried out on the same
platformwithout assimilation show the benefit of data assimilation in controlling water mass
properties and sea ice cover and their low frequency variability. Moreover, GLORYS12
represents particularly well the small-scale variability of surface dynamics and compares
well with independent (non-assimilated) data. Comparisons made with a twin experiment
carried out at 1/4° resolution allows characterizing and quantifying the strengthened
contribution of the 1/12° resolution onto the downscaled dynamics. GLORYS12
provides a reliable physical ocean state for climate variability and supports applications
such as seasonal forecasts. In addition, this reanalysis has strong assets to serve regional
applications and provide relevant physical conditions for applications such as marine
biogeochemistry. In the near future, GLORYS12 will be maintained to be as close as
possible to real time and could therefore provide relevant and continuous reference past
ocean states for many operational applications.

Keywords: ocean and sea ice reanalysis, data assimilation, high-resolution model, ocean variability, operational
oceanography, Copernicus marine service
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INTRODUCTION

The CopernicusMarine Environment Monitoring Service (http://
marine.copernicus.eu, hereafter referred to as Copernicus Marine
Service or CMEMS) provides regular and systematic reference
information on the physical state, variability and dynamics of the
ocean, sea ice and marine ecosystems, for the global ocean and the
European regional seas. This capacity encompasses the provision
of consistent retrospective data records for recent years
(reprocessing and reanalysis) (Le Traon et al., 2019). There is
a growing need to assess the state and health of the ocean to
support climate and marine environment policies. CMEMS
Ocean State Reports and related Ocean Monitoring Indicators
have been developed to answer these needs (von Schuckmann
et al., 2020). They rely on continuous and high quality time series
from reanalyses and reprocessed observations, which go up to real
time. CMEMS users also regularly ask for long time series of data
that can be used to provide a statistical and qualitative reference
framework for their applications.

Ocean reanalyses aim at providing the most accurate past state
of the ocean in its four dimensions. Several research fields are
involved: processing of observations from satellites and in situ
instruments, numerical modeling and data assimilation.
Assimilating observations into an ocean model is not a recent
issue. The use of historical data quickly found pragmatic solutions
of good quality (Carton and Hackert, 1989). The models of the
time were not very sophisticated, without ice and even without
taking into account salinity or high latitudes. The first revolution
came with the development of satellite altimetry, allowing
observing the mesoscale globally. It already appeared that it
would be necessary to have models with sufficient spatial
resolution to resolve inter-basin exchanges; the problem of the
altimetric reference height needed to assimilate the altimeter data
was also raised (Greiner and Perigaud, 1994). The next revolution
came more gradually with the rise in power of supercomputers. It
became possible to have an ocean model resolution that solved
the first Rossby radius, and to introduce more physics (Barnier
et al., 2006). As atmospheric forcing progressed in parallel, the
significant biases of the first models became less troublesome. The
third revolution came with the deployment of the Argo global
array of profiling floats and the capability to observe the three-
dimensional ocean in near real time. This opened the door to the
development of global operational oceanography (Dombrowsky
et al., 2009; Le Traon, 2013).

In the meantime, climatic coupled simulations were produced
to predict the evolution of the earth climate due to global
warming. They had to be validated over the observed period
(Coupled Model Intercomparison Project: Meehl et al., 2000).
Ocean reanalyses thus came into play to provide a reliable
reference state of the recent period characterized by a rapid
sea level rise of about 3 mm/yr compared to the centennial
trend of 1 mm/yr (Carton et al., 2005). As coupled ocean-
atmosphere-ice simulations progressed, the capability to
produce meaningful seasonal forecasts was demonstrated. It
then became important to have a comprehensive global
physical ocean state, including sea ice, to initialize seasonal
forecasts (MacLachlan et al., 2015), to provide boundary

conditions for regional models having higher resolution and
smaller-scale physical processes (Tranchant et al., 2016), and
to force biogeochemical models (Gutknecht et al., 2016).

While it was obvious that a minimum spatial resolution was
essential to resolve inter-basin exchanges (Indonesian
Throughflow, Gibraltar and Fram Straits), it was soon
acknowledged that high horizontal resolution was necessary to
properly represent western boundary currents (Hewitt et al.,
2016) and intense jets such as the Gulf Stream (Chassignet
and Xu, 2017). Resolution is also important for resolving fine
structures at high latitudes and thus linking mid-latitudes to the
polar oceans. Hewitt et al. (2020) show that the explicitly
represented or parameterized ocean mesoscale affects not only
the mean state of the ocean but also climate variability and future
climate response, particularly in terms of the Atlantic Meridional
Overturning Circulation. The study of the melting of the polar ice
caps will undoubtedly benefit from the contribution of high
resolution circulation. The resolution of mesoscale eddies and
the western boundary currents has reduced sea surface
temperature biases, improved ocean heat transport, created
deeper and stronger overturning circulation and enhanced the
Antarctic Circumpolar Current (Hewitt et al., 2016). Thoppil
et al. (2011) also show that increased resolution reduces the deficit
of turbulent kinetic energy in the upper and abyssal ocean relative
to surface drifting buoys and deep current meters.

An increase in the resolution results in a corresponding
increase in turbulence. This causes the appearance of small
vortices or filaments that are observed but not necessarily well
placed. This leads to uncertainty in the simulations and this is
how the ensemble approach recently appears in the world of
ocean reanalysis (Zuo et al., 2019). The ensemble does not help to
correctly position the vortices but gives uncertainties on the
positions and also on unobserved variables. A set of four
global ocean reanalyses based on NEMO has first been used
byMasina et al. (2017) to assess interannual variability and trends
in surface temperature or sea level, as well as other variables that
are difficult to observe directly (transport, kinetic energy). Since
2016, the Copernicus Marine Service has been producing and
disseminating the ensemble mean and standard deviation of
those four global ocean reanalysis produced at eddy-permitting
resolution for the period from 1993 to present, called GREP
(Global ocean Reanalysis Ensemble Product) (Storto et al.,
2019a). This dataset offers the possibility to investigate the
potential benefits of a multi-system approach and, in
particular, the added value of the information on the ensemble
spread, implicitly contained in the GREP ensemble, for
temperature, salinity, and steric sea level studies. This
approach is essential to identify robust features of reanalyses,
but also the shortcomings of observation or assimilation systems
(Balmaseda et al., 2015). Uncertainty information is crucial for
ocean climate monitoring at both global and regional levels. For
example, this uncertainty is important for downscaling or
regional climate projection studies. Fortunately, Storto et al.
(2019a) show that the error of GREP is consistent with that of
high resolution products. In other words, a high-resolution
reanalysis is well complemented by an uncertainty estimate
obtained using a lower-resolution ensemble.
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It is also becoming increasingly urgent to close the ocean’s mass
and heat balances. But high resolution favors local assimilation
methods, and this makes it difficult to impose global constraints
(Storto et al., 2017). This is all the more difficult as the oceanic and
atmospheric observation networks vary over time. When we start
integrating the model, we may see waves being triggered or
potential energy being converted into kinetic energy if we start
from rest. Transient signals resulting from the imbalance between
initial conditions, model dynamics and forcingmay appear and last
for several years. The reaction of the system when the first altimeter
observations are assimilated (late 1992) is referred to as the
altimeter shock. Hamon et al. (2019) show that a large part of
this problem comes from errors in the reference height or mean
dynamic topography (MDT) that must be added to the sea level
anomalies in order to compare them with the absolute height
simulated by the model. This introduces an error that is not
compensated for by a large number of in situ observations. On
the contrary, there is a regular decrease in the amount of XBTs
profiles which reaches a minimum around 1997. This favors the
development of a bias over several years, initiated by the altimeter
shock and superimposed to the bias of the model without
assimilation. On the other hand, altimetry data assimilation can
correct some T/S biases in regions where theMDT is unbiased (e.g.,
Antarctic Circumpolar Current). The development of the Argo
network from 2003 onwards allows a significant improvement in
the observation of the ocean above 2,000 m, whichmakes it possible
to correct the biases that may exist in the system. But the onset of
the Argo network can also introduce spurious variability or trends
in the system, which need to be characterized and distinguished
from real climate variability or trends.

In recent years,MercatorOcean has steadily improved its physical
reanalysis of the global ocean by refining the ocean model, the
assimilation scheme and the assimilated data sets. The last upgrade
concerned a 1/4° eddy-permitting reanalysis covering the altimetry
era 1992 onwards (Garric et al., 2018) called GLORYS2V4 (hereafter,
G2V4) and which is one member of GREP. In order to propose a
global eddy-resolving physical reanalysis in the framework of
CMEMS, activities have been carried out at Mercator Ocean to
develop the GLORYS12 reanalysis, covering the same period and
based on the current real-time global forecasting high-resolution
CMEMS system. To keep a homogeneous quality over the entire
period, GLORYS12 is restricted to the altimetry era since the
observational network before the altimeters’ arrival is not
informative on mesoscale. Several scientific studies have already
investigated thoroughly local ocean processes by comparing the
GLORYS12 reanalysis with independent observations campaigns
(e.g., Artana et al., 2018; Artana et al., 2019a; Poli et al., 2020;
Chenillat et al., 2021; Verezemskaya et al., 2021). The objective of this
paper is to provide some hindsight about the global behavior of the
reanalysis compared to assimilated or independent observations,
with a review of the strengths andweaknesses. Based on comparisons
with extra experiments (lower horizontal resolution, same horizontal
resolution but without data assimilation) and sometimes with GREP,
this work aims at informing on the scientific value of the global high-
resolution ocean reanalysis GLORYS12.

The paper is organized as follows. The main characteristics of
the GLORYS12 reanalysis are described in Description of

GLORYS12. Results of the scientific and statistical evaluation,
including comparisons with assimilated and independent
observations, are given in General Assessment. The behavior of
the reanalysis in terms of interannual variability and long-term
trends is analyzed respectively in Eddy Kinetic Energy Time
Evolution and Trends and Evolutions of Temperature, Salinity
and Sea Level. Lastly, Summary and Conclusion contains a
summary of the scientific assessment, as well as a discussion
of the improvements planned for a future version of the global
high-resolution Mercator Ocean reanalysis.

DESCRIPTION OF GLORYS12

The ingredients of the GLORYS12 reanalysis are largely those of
the current real-time global CMEMS high-resolution forecasting
system PSY4V3 (Lellouche et al., 2018). However, compared to
the forecasting system, GLORYS12 starts in December 1991
(October 2006 for PSY4V3) using temperature and salinity
fields from the EN4.2.0 monthly gridded climatology (Good
et al., 2013), benefits from the use of reanalyzed atmospheric
forcing instead of analyses and forecasts and higher-quality
reprocessed observations, and includes refined data
assimilation procedures (e.g., three-dimensional T/S in situ
seasonal observations errors computed from PSY4V3).

The ocean and sea ice general circulation model is based on the
NEMO platform (Madec and The NEMO Team, 2008). The
horizontal grid is quasi-isotropic with a resolution of 1/12°

(9.25 km at the equator and around 4.5 km at subpolar latitudes)
and 50 vertical levels, with the spacing increasing with depth (22 levels
are within the first 100m leading to a vertical resolution of 1m in the
upper levels and 450m at 5,000m depth). The ocean model is driven
at the surface by the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA-Interim atmospheric reanalysis (Dee et al.,
2011). A 3 h sampling of atmospheric quantities is used to reproduce
the diurnal cycle. Momentum and heat turbulent surface fluxes are
computed from the Large and Yeager (2009) bulk formulae.
Moreover, due to large known biases in precipitations and
radiative fluxes at the surface, a satellite-based large-scale correction
is applied to the ERA-Interim precipitations and radiative fluxes.
Corrections are made towards the Passive Microwave Water Cycle
(PMWC) satellite product (Hilburn, 2009) for precipitations and
towards the NASA/GEWEX Surface Radiation Budget 3.0/3.1
product (Stackhouse et al., 2011) for shortwave and longwave
fluxes, except poleward of 65°N and 60°S due to the poor
reliability of such satellite-based estimates at high latitudes.

As the Boussinesq approximation is applied to the model
equations, conserving the ocean volume and varying its mass, the
simulations do not properly directly represent the global mean
steric effect on the sea level. For improved consistency with
assimilated satellite observations of sea level anomalies, which
are unfiltered from the global mean steric component, a globally
diagnosed mean steric sea level trend is added at each time step to
the modeled dynamic sea level. Lastly, in order to avoid mean sea-
surface-height drift due to the large uncertainties in the water
budget closure, the following two corrections to the freshwater
forcing fields were applied: 1) the surface freshwater global budget
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was set to an imposed seasonal cycle (Chen et al., 2005), with only
spatial departures from the mean global budget being kept from
the forcing, and 2) a trend was imposed to the surface mass
budget to represent the freshwater input into the ocean (from
glaciers, land water storage changes, Greenland and Antarctica
ice sheets mass loss). Note that two different values over two
different time periods were used to estimate the acceleration of
melting over the last two decades, 1.31 mm/yr for the period
1993–2001 and 2.2 mm/yr for the period 2002-present. These
values were the latest estimates made available by the IPCC-AR13
(Church et al., 2013) at the time the reanalysis was set up. This
term is implemented as a surface freshwater flux in the open
ocean areas populated with observed icebergs.

Different types of observations are assimilated using a
reduced-order Kalman filter derived from a singular evolutive
extended Kalman (SEEK) filter (Brasseur and Verron, 2006) with
a three-dimensional multivariate background error covariance
matrix and a 7 day assimilation cycle (Lellouche et al., 2013).
Reprocessed along-track satellite altimeter missions sea level
anomalies (SLA) from CMEMS (Pujol et al., 2016), satellite
AVHRR sea surface temperature (SST) from NOAA, Ifremer/
CERSAT sea ice concentration (Ezraty et al., 2007), and in situ
temperature and salinity (T/S) vertical profiles from CMEMS
quality controlled CORA database (Cabanes et al., 2013; Szekely
et al., 2019) are jointly assimilated. In addition to the Argo data,
the CORA database includes temperature and salinity vertical
profiles from the sea mammal database (Roquet et al., 2011)
which is a precious source of observations at high latitudes, where
in situ observations are scarce. A “hybrid”MDTwas also used as a
reference for altimeter data assimilation. This hybrid MDT is
based on the CNES-CLS13 MDT (Rio et al., 2014) with some
adjustments (Hamon et al., 2019) made using high-resolution
analyses, updates to the GOCE geoid made since the CNES-
CLS13 MDT was produced, and an improved post-glacial
rebound model (also called a glacial isostatic adjustment).

A separate monovariate-monodata SEEK analysis is carried
out for the assimilation of the sea ice concentration, in parallel to
the multivariate-multidata analysis for the ocean. The two
analyses are completely independent. Sea ice concentration
observation errors were imposed at 25% for concentrations
close to zero and 5% for concentrations of the order of 100%.
These errors associated with sea ice concentration retrievals
follow the findings from Ivanova et al. (2015). For all values
within this interval, the observation error is estimated using a
simple linear interpolation between the two extreme values. For
the update of sea ice thickness in the model, the proportional
mean thickness analysis update from Tietsche et al. (2013) with a
similar proportionality constant of 2 m is adopted in order to
control somewhat the sea ice volume. In other words, for a sea ice
concentration update (analysis increment) of 1%, the mean sea
ice thickness is changed by 2 cm.

In addition to the multivariate reduced-order Kalman SEEK
filter, GLORYS12 employs a 3D-VAR scheme, which takes into
account cumulative three-dimensional T/S innovations over the
last or the past few months in order to estimate large-scale T/S
biases when enough T/S vertical profiles are available. The aim of
the bias correction is to correct the large scale, slowly-evolving

error of themodel whereas the SEEK assimilation scheme is used to
correct the smaller scales of the model forecast error. Temperature
and salinity are treated separately because temperature and salinity
biases are not necessarily correlated. The bias correction is fully
effective under the thermocline, away from density gradients.
Lastly, these bias corrections are applied as tendencies in the
model prognostic equations, with a one-month or a few months
timescale. From January 2004, as Argo observations become
available, a steep increase of the number of T/S vertical profiles
can be diagnosed. This is why the 3D-VAR bias correction is
performed on a 3 month window until the end of 2003, and
starting in 2004, it is reduced to a 1 month window with many
more observations covering all oceans, giving access to reliable
information on the monthly variability of the subsurface ocean.

From a technical point of view, GLORYS12 was run on 54
nodes (1,296 processors) of Meteo France BULL machine from
December 1991 to December 2019. A 7 day simulation takes
about 4 h of elapsed computer time, including SEEK and 3D-
VAR analyses. Note that this requires 14 days of model run
because of the additional model integration over the 7 day
assimilation window due to the use of incremental analysis
update to inject corrections into the model compared to a
more “classical” model correction where increment would be
applied on one time step (see Figure 4 in Lellouche et al., 2013).
This means that a total of about 8 months of computer time was
necessary to perform the GLORYS12 reanalysis simulation. This
illustrates that the development of a global high-resolution ocean
reanalysis in a timely manner is currently a challenge and remains
dependent on computing resources.

Moreover, in the development phase of GLORYS12, two other
twin numerical simulations were performed starting from the same
initial condition as GLORYS12 and run until the end of 2016. The
first one is a free simulation (without any data assimilation,
hereafter F12) maintaining the same ocean model tunings, and
the second one (hereafter G4) only differs from GLORYS12 by the
spatial resolution (from 1/12° to 1/4°). Inter-comparisons between
the three simulations were then carried out on the common period
(1993–2016) in order to better analyze and try to quantify on the
one hand, the impact of data assimilation, and on the other hand
the added value of high resolution.

GENERAL ASSESSMENT

This section gives a quality assessment of the different
simulations, including comparisons with the assimilated
observations as well as with independent (i.e. not assimilated)
observations. There, one can find some statistics using
observation minus background model first trajectory (called
“innovation”) and observation minus “best” second model
trajectory or analysis (called “residual”).

Comparison With Temperature and Salinity
Vertical Profiles
The existence of global biases or drifts in temperature and salinity
is first checked using assimilation diagnostics (mean innovations
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FIGURE 1 | Assimilation diagnostics with respect to the vertical temperature and salinity profiles over the 1993–2016 period. Mean misfits (observation minus
background model first trajectory) for temperature (A,E) and for salinity (B,F) and RMS misfits for temperature (C,G) and for salinity (D,H). Left panels (respectively right
panels) concern GLORYS12 (respectively F12). These scores are averaged overall seven days of the data assimilation window, with a mean lead time equal to 3.5 days.
Units are °C for temperature and psu for salinity.
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and root mean square (RMS) of innovations) as a function of time
and depth (Figure 1). These departures from the assimilated
observations are computed before the observations are
assimilated, and thus before the SEEK correction is applied.
They are shown here on global average, in order to assess the
global behavior of the system. The comparison between the left
(GLORYS12) and right (F12) panels highlights the beneficial
impact of the data assimilation performed in GLORYS12. The
biases (mean misfit) and the errors (RMS misfits) are

considerably reduced for temperature and salinity from F12 to
GLORYS12. The system F12 without data assimilation exhibits a
warm bias in the first 200 m over the 1993–2016 period and a cold
bias in the 300–1,000 m layer appearing from around 1998. For
the salinity, a fresh bias is present at the surface which is stronger
in the 1990s, while a very strong salty bias appears in the first
500 m and increases in time (Figures 1E,F). These biases are
reduced in GLORYS12, but they slightly remain in the form of a
seasonal bias in temperature, showing a potential error in the

FIGURE 2 | Time series over the 1993–2016 period of the 0–2,000 m RMS difference between the model analysis (best model trajectory) and the in situ T/S
observations from the CORA database for GLORYS12 (in red), F12 (in orange), G4 (in blue) and Levitus WOA13 climatology (in black): (A) Temperature (units in °C), (B)
salinity (units in psu). Time series of the number of available observations appear in grey.
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stratification above 100 m (Figures 1A,C). The temporal
evolution of the GLORYS12 salinity bias is given in Figure 1B
and shows a clear dependency of the data assimilation system on
the in situ observations availability, with a strong reduction of the
error in the second half of the period, after 2004 and the onset of
the Argo network.

From a more integrated point of view, Figure 2 shows the
ability of the different systems GLORYS12, F12 and G4 in
reproducing observed temperature and salinity in the
0–2,000 m layer. For that, we checked time series of the RMS
difference between the model and the observations for
temperature and salinity where observations are available in
the water column. We compare also the observations to the

LevitusWOA13monthly temperature (Locarnini et al., 2013) and
salinity (Zweng et al., 2013) climatology. We first note that the
vertically integrated accuracy of GLORYS12 is very similar to that
of G4, even if GLORYS12 slightly outperforms G4 throughout the
1993–2016 period. Between 1993 and 2002, departures from in
situ observations are around 0.75°C for temperature and 0.2 psu
for salinity. The average accuracy reaches 0.45°C in temperature
and 0.1 psu in salinity during the Argo period, thanks to the
increase of the number of observations assimilated in G4 and
GLORYS12. For salinity, the statistics are very noisy before 2004
due to very sparse data that are not representative of the global
state of the oceans. The departure between climatology and
observations is an indicator of the minimum performance that

FIGURE 3 | Time evolution of SLA data assimilation statistics averaged over the whole domain: (A) data number, (B)mean innovations, (C)RMS of the SLA data (in
black), RMS of residuals (in red), RMS of residuals divided by RMS of SLA observations (in light grey, with the scale on the right). The scores are averaged over all seven
days of the data assimilation window, with a lead time equal to 3.5 days. Units are cm.
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the system must achieve. G4 and GLORYS12 temperatures are
both significantly more accurate than the climatological
temperature throughout the period. For salinity, the reanalysis
clearly outperforms the climatology only after 2013, when the
number of observations has doubled since the beginning of the
Argo era. The free simulation F12 nearly always exhibits far lower
scores than the climatology. The only exception takes place when
F12 captures the very strong El Niño-Southern Oscillation
(ENSO) signal in temperature in 1997/1998, and thus F12 is
closer to in situ observations than the climatology can be during
these two years, even on global average. The F12 RMS differences
reach in 2016, 1°C for temperature and 0.2 psu for salinity, twice
the RMS departures obtained with GLORYS12. Worse, we can
observe a tendency for these errors to increase between 2008 and
2016, showing the drift of the system without data assimilation.

Comparison With Satellite Sea Level
Anomaly
The assimilation of sea level anomalies together with the MDT is
crucial for the realism of the reanalysis’s ocean circulation. The
statistics in Figure 3 use innovations and residuals coming from
the sea level anomalies data assimilation. Residuals include the
analysis correction injected into the model using incremental
analysis update. The scores are averaged over all 7 days of the data
assimilation window, which means the results are indicative of
the average performance of GLORYS12 over the 7 days, with a
mean lead time equal to 3.5 days.

The number of assimilated SLA observations (Figure 3A)
varies with the number of altimeters in-flight throughout the
period 1993–2016. This 24 year period involves eleven different
altimeters. Following TOPEX-Poseidon in September 1992, the
constellation has grown from one to six satellites flying
simultaneously, even if we can notice a temporary decrease
between 2005 and 2010.

The biases are weak in the 1990s, as the mean innovations vary
around zero (Figure 3B). However, from 2004, a bias is
diagnosed, which tends to increase and reaches 1 cm at the
end of the period, with peaks varying from 1 cm or even 2 cm
at times. This means that GLORYS12 tends to become too low in
comparison with altimetry by about 0.25 mm per year. This bias
is predominantly associated with the orbit standard used in the
assimilated sea level anomalies (Taburet et al., 2019, their
Figure 8B). Despite this bias, the reanalysis is close to
altimetric observations with a residual RMS difference of the
order of 5.5 cm on global average (Figure 3C, red curve). This
RMS difference is consistent with the a priori prescribed
observation error, which is equal to the sum (in variance) of
the SLA instrumental error (about 2 cm on average) plus the
MDT error (about 5 cm on average, with the largest values being
located on shelves, along the coast and mesoscale activity or sharp
front areas). This good performance is partly due to the use of the
“Desroziers” method (Desroziers et al., 2005) to adapt the
observation errors online, which yields more information from
the observations being used (see Lellouche et al. (2018) for more
details). Moreover, the model is able to explain the observed
signal Figure 3C, black curve) as shown by the ratio of RMS

residual to RMS data (Figure 3C, light grey curve), which
decreases with time and converges towards a value much less
than one. The performance of GLORYS12 remains stable and
even improves while the variance of observations increases.

Comparison With Satellite Sea Ice
Observations: Mean State and Low
Frequency Variability
This section focuses on the ability of GLORYS12 to reproduce the
mean state, expressed in terms of the mean seasonal cycle,
interannual variability and trends over the 1993–2016 period,
of spatially integrated quantities such as sea ice extent and volume
and amount of open waters within the sea ice pack. The sea ice
extent is usually defined as the area of ocean with a sea ice
concentration of 15% or more. Sea ice area is the total area
covered only by sea ice and is always less than the extent. The
difference gives the amount of open water in the ice pack. The
latter quantity then represents both the presence of leads within
the sea ice pack and the marginal ice zone (MIZ) close to the ice
edge. This quantity is collectively referred to as “leads” in the
subsequent text.

To assess the overall consistency with observations we
compare modelled sea ice extent and leads to the
observational product CERSAT assimilated in GLORYS12, and
to the mean of the ensemble of three observational products
(CERSAT, NOAA/NSIDC, and OSI-SAF) which provides an
estimate of the observational error. The NOAA/NSIDC passive
microwave sea ice concentration climate data record (CDR) is an
estimate of sea ice concentration that is produced by combining
concentration estimates from two algorithms developed at the
NASA Goddard Space Flight Center: the NASA Team algorithm
(Cavalieri et al., 1997) and the Bootstrap algorithm (Comiso,
2000). The final CDR value is the highest between concentrations
estimated by Bootstrap and NASA Team. OSI-SAF (Ocean Sea
Ice Satellite Application Facilities), produced by EUMETSAT and
distributed by CMEMS, is currently assimilated by the Arctic and
in the PSY4V3 monitoring and forecasting systems of CMEMS.
These two latter observational products are the datasets most
widely used by the sea ice community. Other sea ice
concentration algorithms exist and the subsample of products
used in this paper is not sufficient to fully assess the uncertainty of
the observations (e.g., Ivanova et al., 2015).

Arctic Ocean
In the Arctic Ocean, compared to the assimilated CERSAT data,
GLORYS12 has a larger sea ice extent during winter time and a
similar extent during summer time (Figure 4A). GLORYS12 sea
ice extent largely remains in the spread of the observation based
products, an ensemble in which CERSAT represents the member
having the least sea ice extent. GLORYS12 constantly stays in the
lower bound of the GREP product which shows a constant
overestimation with a large spread during summer time.
GLORYS12 favorably reduces the amplitude of the sea ice
extent seasonal cycle simulated by F12. Similar conclusions are
found with the sea ice concentration variable (not shown). The
increase of resolution (GLORYS12 versus G4) has no visible
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impact on the mean state (seasonal cycle), the interannual
variability and the trend of sea ice extent, leads and volume
(Figure 4).

The presence of open waters within the GLORYS12 sea ice pack
is much larger than in the assimilated CERSAT data (Figure 4B).
This is particularly true during the melting season (June-August),
period of the maximum of the surface covered by the MIZ, where
GLORYS12 shows an excess of half a million km2 during July.
However, the large spread of the observation based products all
along the year indicates large uncertainties in sea ice concentration
algorithms retrievals. This is particularly true during summertime
where this spread represents nearly the same amount of MIZ
estimated by CERSAT. CERSAT data represents the lower bound
of the large spread of the observations and GLORYS12 matches
particularly well the ensemble mean of the observations. The
spread shown around the GREP mean ensemble (Figure 4B)
highlights how different physical parameterizations and/or
assimilation methods within the four members of GREP can
impact the representation of open waters within the Arctic sea
ice pack.

F12 simulates a larger surface covered by leads and MIZ all
through the year compared to GLORYS12. The assimilation of

sea ice concentration therefore tends to reduce the presence of
open water within the sea ice pack. The methodology for the
mean analysis update of sea ice thickness adopted in GLORYS12
results in a general thicker sea ice cover compared to F12.
Comparisons with in situ data in the Western Basin
(Figure 5B) and in the Central Basin (Figure 5C) confirm a
general thicker ice in GLORYS12. The unrealistic piling up of sea
ice thickness in the Beaufort Gyre present in all GLORYS
reanalysis (Chevallier et al., 2017; Uotila et al., 2019) is also
present in GLORYS12. Comparisons with Cryosat-2 in January
2014 (Figure 5A) show an overestimation of the order of almost
1 m in the area. This overestimation is confirmed by comparisons
with in situ data from the BGEP campaign (Figure 5B). This ice
build-up prevents efficient melting and ends up with generally
thicker sea ice conditions in summertime. This phenomenon
occurs as soon as the assimilation of sea ice concentration data is
activated, e.g. during summer 1993. Comparisons with Cryosat-2
also show that this unrealistic ice accretion in the Western Basin
is accompanied, however, by thinner sea ice conditions in Central
and Eurasian basins (Figure 5A). Comparisons with in situ data
from the NPEO campaign confirm the presence of thinner ice in
GLORYS12 in the Central Arctic Basin (Figure 5C).

FIGURE 4 | Arctic Ocean–Mean seasonal cycle (1993–2016) of (A) Sea ice extent, (B) Sea ice leads, and (C) Volume. Interannual monthly variability of (D) Sea ice
extent and (E) Sea ice volume. Units are in million km2 for sea ice extent and leads and in million km3 for sea ice volume. GLORYS12 (red), F12 (orange), G4 (blue), GREP
(dark grey with the spread in light grey), mean observations (dark cyan with the spread in cyan) among CERSAT (black), NOAA/NSIDC (not shown) and OSI-SAF (not
shown).
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Nevertheless, GLORYS12 improves the too thin sea ice cover
found in F12 in the Central Arctic Basin, e.g. in areas of multi-
year ice types. The resulting total sea ice volume is improved
compared to the previous Mercator Ocean reanalysis system
G2V4 (Chevallier et al., 2017; Uotila et al., 2019) and
compares better with PIOMAS data (Schweiger et al., 2011).
Over the same period (1993–2016), the seasonal cycles of
GLORYS12, F12, G2V4 and PIOMAS have respective
minimums and maximums of 9.8 and 25 million km3, 6.9 and
25.5 million km3, 13.2 and 28.3 million km3, and 9.4 and 25.7
million km3.

The large spread in the sea ice volume present in the GREP
multi-model product again reflects the impact of the disparity in
assimilation methods and parameterizations applied in these
reanalyses (Figure 4C).

CERSAT data show a significant (95%-level confidence) and
negative trend in sea ice extent at a rate of −79 900 km2/yr and
observation based products at a rate of −77 300 km2/yr. The
simulation without assimilation F12 already reproduces this
negative linear trend with a somewhat overstated rate of −86
850 km2/yr. Both reanalyses (GLORYS12 and G4) with
respectively −85 320 and −84 000 km2/yr trends, favorably
reduce this strong loss of surface covered by sea ice in the
Arctic Ocean. With −89 400 km2/yr, the GREP ensemble
mean has a stronger trend compared to GLORYS12. The
spread among GREP members narrowed somewhat after 2010,
a period marked by a succession of historic summer lows. These
latter results are similar to those presented in the GREP-based
Ocean Monitoring Indicators (OMI) sea ice extent (https://
marine.copernicus.eu/access-data/ocean-monitoring-indicators/
northern-hemisphere-sea-ice-extent-multi-model-ensembles).
The weak interannual trends of the surface covered by leads and
MIZ found either with the reanalysis or with the observations are
not significant and are therefore not discussed.

The most important differences between GLORYS12 and F12
are in the reproduction of interannual variability and trend in sea

ice volume. The strong accumulation of ice that became thick in
the late 1990s and early 2000s shown in GLORYS12 is not in F12
(Figure 4E). The resulting trend is consecutively more
pronounced in GLORYS12 than in F12, respectively −465 900
and −380 800 km3/yr. These trends can be compared with that of
PIOMAS from about −427 100 km3/yr over the same period
(1993–2016). Once again, the spread present in GREP product at
this lower frequency variability highlights the large uncertainty in
the representation of Arctic sea ice volume by the different
reanalysis products (Chevallier et al., 2017).

Antarctica
As for the Arctic Ocean, GLORYS12 and G4 reanalyses have very
similar results in Antarctica. F12 faces a consistent bias found in
manymodels (Roach et al., 2018) and simulates a sea ice cover with
too low sea ice concentrations throughout the year (not shown). As
a result, and under unknown triggering effects, a first window
through the sea ice occurred in winter of 1997 in eastern part of the
Weddell Sea and started to transfer energy during winter between
the ocean and the atmosphere. This energy exchange broke the
stratification present at the surface, e.g. warm and salty waters
overlaid by fresh surface waters, and started to homogenize the
water column by vertical motions. The unusual presence of these
relatively warmer waters on the surface prevented the formation
and presence of ice locally. This phenomenon has persisted from
one year to the next and spread to wider areas. The ice cover could
never return to its normal extent, especially in winter (Figure 6A).
Thanks to the assimilation of sea ice concentration, GLORYS12
avoids this behavior and keeps a seasonal cycle very comparable to
observations (Figure 6A). GLORYS12 exhibits a sea ice extent very
close to the observations with, however, and as in the Arctic, a
tendency to have a slightly higher extent, particularly in winter.
Further, GLORYS12 sea ice extent is within the spread of the GREP
ensemble.

As in the Arctic, the CERSAT data (extent and leads), are the
lowest estimates of all observations. The lead observations spread

FIGURE 5 | (A) Differences of sea ice thickness between GLORYS12 and Cryosat-2 data (Ricker et al., 2014). Model versus observations plots of sea ice drafts on
a linear scale with GLORYS12 (red) and F12 (orange) and in situ observations from (B) BGEP (Beaufort Gyre Exploration Project, (Krishfield et al., 2014)) campaign, (C)
NPEO (North Pole Environment Observatory, (Drucker et al., 2003)) campaign.
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is much larger than that of GREP and even reaches 2 million km2

in the spring, the equivalent of the total lead area estimated by
CERSAT. GLORYS12 sea ice extent and surface of leads are
within the spread of the GREP ensemble. The Antarctic sea ice
extent in spring 2016 attained a record minimum (Turner et al.,
2017) for the 1993–2016 period, presenting an abrupt departure
from the slowly but steadily expanding until several monthly
record high in 2014. Combined with this high variability, the
resulting weak positive trend found in all reanalyses and all
observations is not significant (95%-level confidence). This
non-significance is in agreement with the study of Yuan et al.
(2017).

Large-Scale Dynamics
Meridional Heat Transport and Inter-Basin Volume
Exchanges Transports
Large-scale ocean transports play a major role in the Earth
Climate. Various estimates of global heat and mass transports
at key sections have already been calculated from direct ocean
hydrographic sections (Talley et al., 2003), from theWorld Ocean
Circulation Experiment based on the inversion of hydrographic
data (e.g., Ganachaud and Wunsch, 2003; Lumpkin and Speer,
2007), and from ocean reanalyses (e.g., Stammer et al., 2004;
Haines et al., 2012; Valdivieso et al., 2017). More recently, Bricaud
et al. (2018) gave estimations of volume transports through key
sections from GREP and of meridional heat transport (MHT)
based on the 1/4° reanalysis G2V4 and its associated free run for
the three major basins (global, Atlantic and Pacific+Indian). In
this section, we provide estimations of GLORYS12, G4 and F12
MHT and volume transports through key sections and compare
them to observation-based estimates and to GREP product.

Given large uncertainties linked with the oceanic observations
sampling, Figure 7 shows a good agreement of transport estimates
between volume transports through different sections from GREP
product and from Lumpkin and Speer (2007) (Figure 7A) with a
median value of the relative error of 30%, and the same diagnostics
for GLORYS12, F12 and G4 (Figure 7B).

GLORYS12 reanalysis transport at Drake Passage has been
particularly and extensively studied in Artana et al. (2019b). The
authors show that GLORYS12 estimates are within recent
observation-based estimates (8 Sv larger than Koenig et al.
(2014) estimate and well below the estimate of 173.3 ±
10.7 Sv using measurements from the cDrake project
(Donohue et al., 2016)) and especially emphasizes that
accurately assessing the absolute transport through Drake
Passage remains a challenge. However, with respectively
156.9 ± 4.5 and 154.6 ± 4.8 Sv, GLORYS12 and G4
transports at Drake Passage are very close to each other and
considerably reduce the transport estimate compared with that
from the simulation without assimilation F12. Artana et al.
(2019b) have shown that the mean volume transport of
GLORYS12 over 1993–2010 (157 ± 3 Sv) is similar to a nine-
ensemble mean of 152 ± 19 Sv over the same period from lower
resolution global reanalyses (resolution ranging from 1° to 1/4°,
five are of European origin using varying versions of the NEMO
ocean, three are American and one is Japanese) (Uotila et al.,
2019). Antarctic Circumpolar Current (ACC) transports in both
GLORYS12 and G4 are in the spread of the GREP NEMO-based
ensemble but remain in the upper bound of this set of estimates.
It is also larger than Lumpkin’s estimates.

Compared to the canonical climatological estimation of 0.8 Sv
from Woodgate et al. (2006), the Bering Strait transport is larger
in both GLORYS12 and G4 (1.3 Sv). Both GLORYS12 and G4
estimates are closer to the most recent estimates, which show that,
over the last decade, volume transport in Bering Strait has been
steadily increasing and is now well above 1 Sv (Woodgate,2018).
Both GLORYS12 and G4 estimates (1.3 Sv) favorably reduce the
too strong F12 transport (1.43 Sv).

As the only deep water passage to the Arctic Ocean, transports
through Fram Strait determine to a large extent the exchanges
between the North Atlantic and the Arctic Ocean. With
respectively, 1.9 ± 0.7, 2.4 ± 0.7, and 2.4 ± 0.7 Sv, GLORYS12,
G4 and F12 are close to the canonical observation-based estimates
of ∼2 Sv from Fahrbach et al. (2001). At Fram Strait and at the

FIGURE 6 | Antarctica - Same as Figure 4 for mean seasonal cycle (1993–2016) of (A) Sea ice extent, (B) Leads, and (C) interannual monthly variability of sea ice
extent. The simulation F12 is not shown in panels (B,C).
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Greenland-Iceland-Scotland section, GLORYS12 transports are
identical to GREP estimations.

Generally, GLORYS12, G4 and all reanalyses included in
GREP provide transport estimates that are higher than values
deduced from observations, whether at high latitudes, as just
mentioned, or at tropical latitudes (Indonesian Throughflow and
meridian sections at 30°N and 30°S, Figure 7A).

Meridional heat transports for the three major basins
(Figure 8) are estimated using 5 day mean fields in order to
avoid aliasing errors found with monthly mean sampling
(Crosnier et al., 2001). MHTs in GLORYS12 and G4 are in
general very close to each other. In Global and Pacific-Indian
basins, GLORYS12 and G4 differ at the Equator where a strong
gradient is present in their respective MHT. For the Global basin,
the MHT peak at 5°N is 1.2 PW for GLORYS12 and 1.6 PW for

G4. For the Pacific-Indian basin, the MHT peak at 5°N is 0.2 PW
for GLORYS12 and 0.7 PW in G4. In the Atlantic basin, they
differ at 40°N, where MHT is 1.2 PW for GLORYS12 and 1.4 PW
in G4. Compared to G4, GLORYS12 then simulates higher MHT
northward poleward transport in regions with strong gradients
(equatorial dynamics and Gulf Stream current). Conversely,
GLORYS12 displays lower values in the [40°S–60°S] latitude
band of the Antarctic Circumpolar Current (ACC) fronts
compared to G4 estimates.

GLORYS12 and G4 MHTs greatly differ from F12 in the
Southern subtropical gyres with a significant stronger northward
heat transport in the [40°S–20°N] latitude band. This results in a
weaker poleward heat transport by Southern tropical gyres in
reanalyses than in the simulation without assimilation. While this
weakening is more consistent with the error bars in the Atlantic, it

FIGURE 7 |Mean volume transport and its variability for the 1993–2016 period from (A) Lumpkin (in black) and GREP 1/4° ensemble product (in grey) and from (B)
GLORYS12 (in red), F12 (in orange) and G4 (in blue). Units are in Sv.
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drives heat transport out of the error bars in the Indo-Pacific.
However, the error bars proposed by Ganachaud and Wunsch
(2003) or Lumpkin and Speer (2007) are very large, particularly in
the tropical band of the Atlantic Basin.

In GLORYS12 and G4, the Global and the Pacific-Indian
basins equatorial MHT gradient is stronger than in F12. The
current interpretation is that those peaks are overestimated due to
spurious velocities induced in particular by the assimilation of
SLA (and MDT) in the equatorial region (Gasparin et al., 2021).
For the Global basin, F12 MHT is lower than GLORYS12 and G4
MHTs in the [40°S–0°] latitude band and close to lower values of
the hydrographic estimates, whereas GLORYS12 and G4 MHTs
are close to the upper values of the hydrographic estimates. For
the Atlantic basin, F12 MHT is lower than GLORYS12 and G4
MHTs in the [30°S–20°N] latitude band and close to lower values
of the hydrographic estimates, whereas GLORYS12 and G4
MHTs are close to the middle values of the hydrographic
estimates. For the Pacific-Indian basin, F12 MHT is lower
than GLORYS12 and G4 MHT in the [30°S–0°] latitude band
and close to middle values of the hydrographic estimates, whereas
GLORYS12 and G4 MHTs are close to the upper values of the
hydrographic estimates.

Moreover, the time mean state and interannual-decadal
variability of the North Atlantic ocean since 1993 have been
assessed in Jackson et al. (2019). The authors show that
GLORYS12 is able to reproduce the main aspects of the
circulation including convection, AMOC and gyre strengths,
and transports.

Velocity Validation Against Drifter’s Estimation
In this section, we use velocity observations from surface drifters
(that are not assimilated) to assess the level of performance of
GLORYS12 qualitatively. To avoid contamination by the windage
due to a drogue loss (Grodsky et al., 2011), we use the drogued-
only 15 m drifter dataset coming from the CMEMS in situ
Thematic Assembly Centre (Rio and Etienne, 2019). Model
counterparts of the drifter’s velocities are interpolated at the

right time and averaged over the 2003–2016 period. Results at
15 m (Figures 9A,B) are very similar to those from the CMEMS
real time system (Lellouche et al., 2018). The general circulation
with major currents is well represented. The main shortcoming
concerns the tropical Pacific South Equatorial Current which is
too strong in GLORYS12. It has been shown that this was mainly
due to a bias in the reference height for the altimetry (Hamon
et al., 2019). It can also be noted that the ACC is slightly too
strong near the surface. We now use estimated velocities at 900 m
derived from Argo profiling floats when drifting at their parking
depth (Lebedev et al., 2007). Comparisons in panels C and D of
Figure 9 show a good general agreement between the
observations and GLORYS12. The ACC has the right intensity
at this depth. This is consistent with Thoppil et al. (2011) results
which show that high-resolution model and data assimilation
improve the representation of fine structures at depth at high
latitude. The only notable differences concern the striations of the
equatorial band (Cravatte et al., 2017) which are slightly
underestimated and not reproduced at the right latitude by
GLORYS12.

Ocean Variability
Eddy Kinetic Energy
In order to estimate the mesoscale activity present in GLORYS12,
comparisons of geostrophic Eddy Kinetic Energy (EKE) deduced
from GLORYS12 and from F12, G4 and the L4 CMEMS DUACS
gridded product (Taburet et al., 2019) have been performed over
the 2007–2016 period. These comparisons are made over the last
10 years of the 1993–2016 period to ensure that the simulations,
in particular F12, have reached a state of equilibrium (see Eddy
Kinetic Energy Time Evolution). Geostrophic EKEs of
GLORYS12, F12, and G4 are deduced from daily sea surface
height (SSH) from which geostrophic velocities are computed.
Geostrophic EKE of the DUACS product is calculated directly
from the daily geostrophic velocities included in the product.

Figure 10 shows the geostrophic EKE for GLORYS12 (panel
A), and the differences against the three others estimates:

FIGURE 8 | Mean Meridional Heat Transport for the 1993–2016 period for Global Ocean (A), Atlantic Ocean (B) and Pacific + Indian Oceans (C). GLORYS12 is
plotted in red, F12 in orange, G4 in blue, GREP ensemble product in grey and hydrographic estimates in black. Units are PW.
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GLORYS12 minus DUACS (panel B), GLORYS12 minus F12
(panel C) and GLORYS12 minus G4 (panel D). We observe very
realistic structures in GLORYS12. All the large dynamic systems
are very well represented (Western Boundary Currents (WBCs),
Agulhas recirculation, Leeuwin Current, ACC). Compared to
DUACS, the differences in the major currents are small.
However, we observe a higher level of EKE almost everywhere
of 25–50 cm2/s2. DUACS shows stronger EKE levels at some
specific locations, such as the equatorial band (10°S–10°N) and
towards Madagascar. These departures from DUACS are
consistent with that depicted by Chassignet and Xu (2017) for
models at 1/25° and 1/50° resolution without data assimilation.
The authors show that using proper temporal and spatial filtering,
similar energy levels can be found between different databases.
Still, the direct comparison with the EKE derived from the
DUACS maps remains complex because DUACS maps do not
include the smaller space and time scales that are filtered out
through the mapping procedure. In particular, DUACS
underestimates the EKE by more than 20% in the mid and
high latitudes (Le Traon and Dibarboure, 2002).

Comparing GLORYS12 to F12, one can observe strong
differences, especially in the WBCs where the incorrect

positioning of the currents in the free simulation creates large
dipoles on the difference map. These differences show that data
assimilation helps positioning better the main observed currents
in GLORYS12. Almost everywhere, except the ACC, the energy
level in GLORYS12 is significantly higher than the energy level in
F12, with differences varying from 50 to 150 cm2/s2. This means
data assimilation potentially adds information everywhere in the
model dynamics, with a strong signature in EKE. It is important
to mention that the EKE level in F12 is of the same order of
magnitude than that of other simulations with equivalent
resolution and without data assimilation, as presented in
Chassignet et al. (2020) (not shown). The increase of EKE in
GLORYS12 does not correct a potential underestimation of the
energy level by F12. GLORYS12 can add new information such as
the breakdown of internal waves, but can also limit the
attenuation of mesoscale activity in F12 via the assimilation of
the SLA. Nevertheless, in the ACC, F12 is more energetic than
GLORYS12. The reason of this difference is still not explained
and requires further investigations. The comparison between
GLORYS12 and G4 shows a general increase in the EKE level
with increasing resolution. This overall increase is approximately
10%. The stronger EKE in GLORYS12 is an expected direct effect

FIGURE 9 | Panels (A,B): mean zonal velocity at 15 m over the 2003–2016 period for GLORYS12 (A) and observations (B). Observations come from drogued-only
subsurface drifters (Rio and Etienne, 2019). Panels (C,D): mean zonal velocity at 900 m over the 2003–2016 period for GLORYS12 (C) and observations (D).
Observations come from estimated velocities derived from Argo profiling floats (Lebedev et al., 2007). Units are m/s.
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of the increase of resolution, allowing the representation of small
structures.

Quantification of Energy Gain
To go further in the understanding of the energy level in
GLORYS12, a spectral analysis is performed in order to
quantify the energy gain in GLORYS12 SST analyses (with
respect to G4 and F12) at different spatial scales. A local
spectral decomposition was made on SST from daily model
outputs during the year 2013, which is a neutral year
considering the North Atlantic Oscillation and ENSO indices.
Moreover, working over a single year has the advantage of
avoiding mixing structures placed differently according to
climatic indices.

For each point of a regular subsampling of the GLORYS12
model grid (one point in ten), a mean power spectral density
(PSD) is obtained by averaging the results over the four main
directions S-N, W-E, SW-NE, and NW-SE. In practice, the
decomposition is performed using the one-dimensional SST
signal over the four 1,000 km synthetic continuous tracks
centered on the regular subsampled grid points. In order to
avoid sampling issues, G4 outputs have been first interpolated
on the same grid as GLORYS12. This methodology is directly
derived from that of Dufau et al. (2016), used for spectra
calculation along altimetry tracks. As expected, the overall

average results confirm that GLORYS12 contains more energy
at finer scales (not shown). We also find that G4, F12, and
GLORYS12 have roughly the same energy at large scales but
the difference between GLORYS12 and the two other
configurations tends to increase towards the smaller scales.
The difference between GLORYS12 and G4 are less than 20%
around 200 km. The difference between GLORYS12 and F12 is
about 20% near 55 km.

Focusing on the typical length scale of the mesoscale activity
(50–250 km range), Figure 11 shows that the power gain is evenly
distributed over the entire ocean. Panels (A–C) show the local
percentage of power in the mesoscale band normalized by the
total power (in the 20–980 km band) for G4, GLORYS12 and F12
respectively. The comparison between the maps highlights the
local change in the slope of the PSD (not shown). Except for the
equatorial area, constrained mainly by large-scale atmospheric
phenomena, it appears that the SST in GLORYS12 is the most
energetic in the mesoscale part of the spectrum. Given the
logarithmic behavior of the energy spectrum, the average
difference of one percent between the power fraction of the
mesoscale energy of GLORYS12 and G4 remains significant.
The data assimilation has also a small effect on the mesoscale
power fraction. Thus, GLORYS12 is uniformly more energetic
than F12 in the global ocean, except the Northern part of the
Atlantic.

FIGURE 10 | Geostrophic Eddy Kinetic Energy over the 2007–2016 period for GLORYS12 (A) and differences against the three others estimates: GLORYS12
minus DUACS product (B), GLORYS12 minus F12 (C) and GLORYS12 minus G4 (D). Units are cm2/s2.
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FIGURE 11 | Power fraction in the mesoscale (50–250 km) band normalized by the total power in the 20–980 km band for G4 (A), GLORYS12 (B) and F12 (C) SST
in year 2013. Units are %.
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EDDY KINETIC ENERGY TIME EVOLUTION

Three-dimensional average EKEs can also be assessed from
GLORYS12, F12, and G4 daily velocity fields. Figure 12A
shows the temporal evolution of the three-dimensional mean
of monthly EKEs deduced from velocity. No observation
comparison is available since a three-dimensional total EKE
cannot be deduced from the observations. Consistently with
the surface geostrophic component (Figure 10), GLORYS12 is
more energetic compared to G4 and F12. The average value is

equal to 14 cm2/s2 for GLORYS12, 10 cm2/s2 for F12 and 8.5 cm2/
s2 for G4. Simulations start from rest and a first stabilization of the
energy level occurs after 1 year for the simulations with data
assimilation (GLORYS12 and G4) and after 3 years for F12,
corresponding to the spin up time needed for model
simulations to reach their energetic equilibrium. The seasonal
cycle is well marked in all time series and after the first three years,
important interannual variations are present, as in 1997–1998
with the strong ENSO event which induced a strong decrease of
the global EKE.

FIGURE 12 | (A) Three-dimensional mean of monthly Eddy Kinetic Energy (in cm2/s2) for GLORYS12 (in red), F12 (in orange), G4 (in blue). (B) Monthly mean of
spatial variance of daily SST (in blue), monthly (thin black) and yearly (thick black) mean of spatial variance of daily wind divergence, and yearly mean of SST (in red).

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 69887617

Jean-Michel et al. Copernicus 1/12° GLORYS12 Oceanic Reanalysis

55

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


However, time series exhibit two main discontinuities. The
first one occurs in the three simulations at the beginning of 2002
with an increase of energy until 2007. The strongest signature is
observable in F12 with a change of mean state from 7 to 10 cm2/
s2. From 2002, an increase in the amplitude of the seasonal cycle is
also observed in all simulations, where the intra-annual
amplitudes change from 1 to 2 cm2/s2. As this change of the
system mean state is observed in the simulation F12 without data
assimilation, it can therefore only come from atmospheric
forcing. A deeper study of ERAinterim is needed to
understand the behavior of GLORYS12, F12, and G4.
ERAinterim is an atmospheric reanalysis derived from an
atmospheric general circulation model with data assimilation
but having boundary conditions at the interfaces of the
atmosphere. In particular, ERAinterim uses a SST estimated
from observations. The spatial resolution of SST products used
during the production of ERAinterim changed from 1° to 0.5°

(Dee et al., 2011) and this change induces modification of
atmospheric circulation (Parfitt et al., 2017). Figure 12B (blue
curve) shows the evolution of the spatial RMS of SST (a monthly
mean has been applied to the daily data). The change of SST
resolution in January 2002 is well marked with the increase
reflecting the increase in variability. This change in the
boundary condition of the reanalysis induces a change in the
atmospheric fields and a modification of the wind field. Different
mechanisms for adjustments of atmosphere to the oceanic small
scales are described in many studies (e.g., Lindzen and Nigam,
1987; Hayes et al., 1989; Chelton et al., 2001; Spall, 2007; Minobe
et al., 2008; Small et al., 2008; Renault et al., 2017). These local
circulations do not appear on large-scale wind fields. It is
therefore necessary to consider local circulations. These latter
can be obtained by different filtering methods, but energy scales
will depend on the filtering. If the divergence or rotational wind is
considered, the smallest spatial variations of wind will be
highlighted. The black curve in Figure 12B shows the spatial
variability of the ERAinterim wind divergence. In 2002, the
variations of wind divergence exhibit an increase at the same
time of RMS SST variation. This demonstrates the atmospheric
response to the SST change. After 2014 there is a strong increase
which seems related to the increase in global average SST
(Figure 12B, red curve). The increase in SST leads to more
instabilities of the atmospheric column and therefore more
divergence. However, this does not entirely translate into the
energy transmitted to the ocean model. In summary, the increase
in SST resolution in January 2002 results in an increase in small-
scale variability in the atmospheric reanalysis winds, and part of
this wind variability increase is transmitted to GLORYS12, F12,
and G4. The second discontinuity occurs in 2004 where a strong
and rapid increase is present in GLORYS12 (2.5 cm2/s2 in
6 months) and one to a lesser extent in G4 (1 cm2/s2). No
sudden increase at this date is observed in F12. This suggests
that the source comes from data assimilation. In order to take into
account the increase of the number of assimilated in situ T/S
vertical profiles from January 2004 (see Figure 2), the time
window in which the 3D-VAR bias correction is performed
was reduced from 3 to 1 month in both G4 and GLORYS12.
It would therefore seem that this reduction in the time window,

combined with the increase in the number of assimilated in situ
observations, creates an increase in energy and therefore changes
the regime state of the system. This increase in energy is much
more pronounced in GLORYS12 than in G4, due to the ability of
GLORYS12 to create realistic mesoscale features.

TRENDS AND EVOLUTIONS OF
TEMPERATURE, SALINITY AND SEA LEVEL
Time Evolution of Temperature and Salinity
Anomalies
Figure 13 shows the time evolution of temperature and salinity
anomalies over the whole domain for F12, GLORYS12, and G4.
An anomaly for a specific date is defined as the difference between
the value at this current date and the initial state of the simulation.
Note that for this diagnostic, the interannual signal has been
removed using a digital time filter. GLORYS12 and G4 reanalyses
show a warming in the 0–1,000 m layer (Figures 13C,E). It is a
little too strong according to the mean misfits shown on
Figure 1A. The freshening in the first 1,500 m (which occurs
notably in the ACC) before Argo is present in G4 and to a lesser
extent in GLORYS12 (Figures 13D,F). From the beginning of the
year 2004, this freshening is strongly reduced in G4 and turns into
a saltening in the first 200 m. This can be linked to the change in
the time window to compute the T/S bias correction and by the
increase in the number of assimilated profiles. Before the arrival
of Argo floats in large quantity at the start of 2004, G4 and to a
lesser extent GLORYS12 did not seem able to correct the salinity
bias that had set in. GLORYS12 has a better behavior in salinity
because the fronts are much better resolved in GLORYS12 than in
G4, in particular the polar front which is poorly positioned in G4
(not shown). January 2002 seems to be a crucial date for F12
which presents a strong cooling in temperature in the
200–1,000 m layer, spreading at depth afterwards
(Figure 13A). This behavior can be correlated to the change
in the atmospheric fields discussed in Eddy Kinetic Energy Time
Evolution. Moreover, the F12 simulation without data
assimilation shows a strong salinity drift in the first 500 m
(Figure 13B).

Sea Level Time Evolution
Of particular importance for sea level trends, along-track
altimetric observations from various missions are assimilated
in GLORYS12 and G4, together with in situ temperature and
salinity profiles and other observations. Altimetric observations
capture sea level trends due to land ice mass loss and land water
storage changes, in addition to trends due to sterodynamic sea
level changes (e.g., Gregory et al., 2019). As mentioned in the
description of the ocean model in Description of GLORYS12, a
global mean sea level (GMSL) trend is added at each time step to
the modeled dynamic sea level. This added GMSL signal is
composed of the diagnosed global mean steric sea level change
and of a barystatic (land ice related, Gregory et al., 2019) sea level
trend of 1.31 mm/yr over 1993–2001 and of 2.20 mm/yr over
2002–2016. The GMSL change is added to all simulations, prior
to data assimilation for GLORYS12 and G4. In assimilated
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FIGURE 13 | Time evolution of temperature (in °C, left panels) and salinity (in psu, right panels) anomalies over the whole domain for F12 (top panels A,B), for
GLORYS12 (middle panels C,D) and for G4 (low panels E,F). An Anomaly for a specific date is defined as the difference between the value at this current date and the
value at the initial state. The interannual signal has been removed using a digital time filter.
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altimetric sea level observations, no correction has been applied
for the drift of T/P-A over 1993–1998 (e.g., Beckley et al., 2017;
Legeais et al., 2019), but regional GIA-related trends have been
subtracted from the altimetric observations before assimilation
(based on Peltier, 2004).

In terms of GMSL rise, G4 and GLORYS12 are in close
agreement with altimetry (Figure 14). Yet, after 2004, G4
tends to better represent the seasonal cycle of GMSL changes
than GLORYS12. The GMSL rise trend is also in closer agreement
with altimetric observation (3.00 mm/yr over 1993–2016) in G4
(2.90 mm/yr) than in GLORYS12 (2.77 mm/yr). Although the
barystatic sea level trend is added to the modelled sea level in all
simulations (see Description of GLORYS12), the correct partition
between the steric and barystatic components of GMSL changes is
not yet ensured in GLORYS12 and G4. According to Figure 1A,
there is an excess of heat storage around 100 m. As a result, the
barystatic sea level trend is not fully retained in the system.
Assimilation of altimetric sea level therefore leads to a too large
global mean steric sea level rise in both G4 and GLORYS12. In
GLORYS12, the global mean thermosteric sea level trend over
2005–2016 is 2.43 mm/yr (averaged over areas sampled by
altimetry, Figure 15A). Thus, thermal expansion explains 70%
of the GMSL trend of 3.20 mm/yr over the same period in
GLORYS12, while it should only account for around 40% of
the GMSL trend (Oppenheimer et al., 2019). As a result, the actual
barystatic sea level trend in GLORYS12 over 2005–2016 is
0.77 mm/yr, instead of the 2.20 mm/yr added to the modelled
sea level over 2002–2016. The issue in the separation of the
barystatic and steric components of GMSL can be illustrated with
the drop of around 5 mm in the altimetry derived GMSL in 2011
(Figure 14). This observed drop in GMSL is related to the 2010/
11 El Niño event that led to more precipitation over Australia,
northern South America and Southeast Asia. The corresponding
ocean to land mass transfer increased the land water storage and
accordingly decreased GMSL for months as the corresponding
water was retained in endorheic basins (e.g., Boening et al., 2012).
GLORYS12 and G4 also show a drop in GMSL in 2011. As only a

barystatic sea level trend was added to GLORYS12 and G4,
assimilation of altimetric data translated this mass signal into
a steric signal, with an overall ocean cooling and contraction.

Finally, the free simulation F12, where no GMSL correction is
applied, exhibits a very low GMSL rise (0.75 mm/yr over
1993–2016, Figure 14), highlighting the benefits from data
assimilation to represent GMSL changes. The steric part of
GMSL rise in F12 is close to zero in the 1990s and then drops
to negative values (cooling (see Time Evolution of Temperature
and Salinity Anomalies and Figure 13A), especially in the
Southern Ocean (not shown)), explaining the low GMSL trend
in F12.

At regional scales, sea level trends over the 1993–2016 period
in GLORYS12 are in close agreement with sea level trends
inferred from the CMEMS reprocessed and gridded altimetry
product (Figures 15A,B). The main patterns of sea level trends
observed by altimetry (e.g., Forget and Ponte, 2015; Dangendorf
et al., 2019) are captured in the reanalysis, with the largest trends
in the western tropical Pacific, northwestern Pacific, northern
Southern Ocean, and the lowest trends in the subpolar North
Atlantic, off Alaska, in the eastern tropical Pacific and in the
southern most parts of the Pacific sector of the Southern Ocean.
Regional sea level trend differences between the GLORYS12
reanalysis and the reference altimetric datasets remain small as
they do not exceed ±2 mm/yr in the majority of the ocean
observed by altimetry (the average local uncertainty in sea
level trends over 1993–2019 from altimetry is 0.83 mm/yr,
Prandi et al., 2021). Over the global ocean (covered by
altimetry), the trend differences between GLORYS12 and
altimetry have a median value of −0.26 mm/yr and a standard
deviation of 0.60 mm/yr. Two main regional patterns can be
distinguished in the regional sea level trend differences in
Figure 15C. The pattern around Australia could correspond to
the rate of change of the geoid (Peltier, 2004) as no regional GIA
correction has been applied to altimetric data, while a two-
dimensional trend GIA correction has been added to the
modelled sea level trend. The pattern in the eastern Pacific

FIGURE 14 | Global mean sea level monthly time series for the CMEMS gridded reprocessed altimetric dataset (007_048, in black), GLORYS12 (in red), F12 (in
orange) and G4 (in blue). The global mean steric sea level of GLORYS12 is also shown (dashed red line). The same ocean mask has been used when computing the
global mean. Only points with valid monthly means in altimetric sea level data along the whole 1993–2016 period have been used in the global mean.
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FIGURE 15 | Regional sea level trends over the 1993–2016 period (in mm/yr) for (A) the CMEMS gridded reprocessed altimetric dataset (007_048), (B)
GLORYS12, (C)GLORYS12 minus altimetric dataset, (D)GLORYS12minus F12, (E)GLORYS12 minus G4. The global mean sea level trend has not been removed. No
GIA correction has been applied to altimetric trends in panel (A). Note the different ranges covered by the color bars in panels (C,E).
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could be related to the Pacific Decadal Oscillation (e.g.,
Hamlington et al., 2014). In GLORYS12, the largest regional
sea level trends are found in the Arctic Ocean, reaching locally
more than 25 mm/yr (Figure 15B). Averaged over the entire
Arctic Basin, excluding the Canadian Archipelago, the mean sea
level trend is 3.2 mm/yr (higher than the global mean). However,
observed sea level trends from altimetry are not available yet over
the whole Arctic Ocean making it difficult to evaluate the
GLORYS12 sea level trends in this region. Rose et al. (2019)
estimates the sea level trend over the Arctic Ocean to 2.2 mm/yr
over 1991–2018. However, their estimate covers the 65°N–81.5°N
domain, excluding the northernmost area (with no continuous
data) where GLORYS12 reaches the highest sea level trends. A
comparison of regional steric sea level trends over the European
seas from GLORYS12 and regional reanalyses produced and
distributed by CMEMS is provided in Storto et al. (2019b).
The comparison pinpoints that differences between
GLORYS12 and regional reanalyses mostly stem from the
freshwater budget representation.

Data assimilation clearly and strongly improves the
representation of regional sea level trends. Differences in sea
level trends between GLORYS12 and F12, highlighting the impact
of data assimilation in the reanalysis, are shown in Figure 15D.
Using altimetry as a reference dataset (Figure 15A), the spatial
standard deviation of sea level trend differences in F12 is 6.9 mm/
yr, while it is an order of magnitude lower, 0.6 mm/yr, in
GLORYS12. The largest differences are found in the Southern
Ocean, reaching more than 10 mm/yr, and in the North Atlantic,
with a dipole across the Gulf Stream with differences reaching
more than ±5 mm/yr. In the Southern Ocean, the negative sea
level trends in F12 are related to the strong cooling and the
unrealistic loss of sea ice cover of the region in the free simulation,
as described in Time Evolution of Temperature and Salinity
Anomalies. The significant biases in sea level trends in F12 in
the Southern Ocean and in the North Atlantic Ocean have been
broadly corrected through data assimilation in GLORYS12.

Increasing the ocean model resolution from 1/4° to 1/12° in the
two assimilative systems does not strongly impact regional sea
level trends. Differences between GLORYS12 and G4 are shown
in Figure 15E. Using altimetry as a reference dataset
(Figure 15A), the spatial standard deviation of sea level trend
differences in G4 is 0.62 mm/yr, very close to the 0.60 mm/yr in
GLORYS12. Themain differences are located in the Arctic Ocean,
in regions of high EKE (WBC, Southern Ocean) (Figure 15E).
The comparison between Figure 15C and Figure 15E show a
zonal band around 45°S of underestimated trends in the
Southeastern Pacific in G4.

SUMMARY AND CONCLUSION

A detailed evaluation of the global Mercator Ocean reanalysis
GLORYS12 at 1/12° is presented here over the 1993–2016 period,
based on comparisons with observations as well as inter-
comparisons with sister simulations. In general, GLORYS12
provided a realistic representation of key oceanic quantities
such as sea level, water mass properties, mesoscale activity or

sea ice extent. This high-resolution reanalysis allows us to
document oceanic variability on a large range of scales going
from meso to global and from daily to decadal scales over the
altimetry period (1993-present). As the first European high-
resolution global reanalysis, GLORYS12 outperforms its sister
simulations at lower horizontal resolution (1/4°) or at the same
resolution but without data assimilation, even though it slightly
suffers from the unregular evolution of the in situ global ocean
observing system despite adapting assimilation procedures. For
instance, the representation of temperature and salinity is
strongly impacted by the arrival of the global Argo array in
2004 reducing the departures from in situ observations by a factor
of 2. Note that F12 presents some flaws and improving the
configuration shared by the free and the assimilation run
could improve the reanalysis.

Comparison with altimetry demonstrates that the SLA
variability is well-represented by GLORYS12, with a residual
error which is consistent with observation error. Mesoscale
activity provided by altimetry is superimposed to the MDT,
used as a reference level for altimetry assimilation. The major
source of error in sea level comes from the uncertainty of the
MDT (Hamon et al., 2019). This mean quantity is fundamental
for reanalyses assimilating altimetry, because it constrains the
mean circulation of the model. This is especially important to
properly represent the mean paths of the Gulf Stream, of the
Kuroshio, or of the North Atlantic Current which are mainly
constrained by the fronts in the MDT. Uncertainty in the MDT
can perturb energy balances (e.g., Vidard et al., 2009; Gasparin
et al., 2021), and further investigations are fully required to
improve the accuracy of the MDT and make the best use of
altimetry data without generating collateral issues.

The energy level in GLORYS12 is broadly consistent with
observations as seen in surface currents, although few zonal
currents are too strong (ACC, western Pacific South Equatorial
Current). A slightly higher magnitude of GLORYS12 compared
to DUACS product or to its lower resolution sister simulation is
likely due to the coarser horizontal resolution of these latter
estimates, which cannot represent the full energy spectrum
embedded in GLORYS12. Currents at 900 m depth are
realistic except for tropical striations (Cravatte et al., 2017)
which are sometimes misplaced. These positive results show
that high horizontal resolution is determinant to resolve small-
scale structures at high latitudes and thus linking mid-latitudes to
the polar oceans (Hewitt et al., 2016). The increased resolution
allows better representing finer SST features, especially in the
mesoscale range (Thoppil et al., 2011). The assimilation brings
energy in this particular range whereas the difference between
GLORYS12 and F12 becomes negligible towards the diffusion
scales of the model. Note that the energy gains from both the
horizontal resolution and the data assimilation are fairly uniform
across the global ocean, except in the equatorial area, potentially
due to the predominance of the wind-driven dynamics. The time
evolution of the monthly EKE clearly highlights two major
discontinuities, which result from changes in the ERAinterim
atmospheric forcing in 2002 and in the in situ observing system in
2004. The issue seen in 2002 should be resolved in the next
reanalysis version using 1) the new atmospheric reanalysis ERA5,
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which does not seem to include such variations, and 2) an
atmospheric boundary layer model to force the oceanic model
(Brivoal et al., 2020; Lemarié et al., 2021). However, further
investigations are required to overcome the discontinuity in
2004, resulting from the modification of the 3D-VAR bias
correction time window to take into account the increase in
the number of in situ T/S vertical profiles due to the arrival of the
Argo array.

As key aspects of the large-scale circulation, inter-basins
exchanges of volume in GLORYS12 are larger compared to
observation-based estimates and compared to others
reanalyses. Note that the impact of the increased horizontal
resolution is not dominant since G4 estimates are similar to
GLORYS12. Data assimilation improves transports through
sections, by favorably reducing excessive volume transports of
the twin simulation F12. In terms of heat transport, GLORYS12
estimates compares better than G4 to observation-based
estimates. Note that the large volume transport in GLORYS12
(as in G4) induces sharp and strong heat transports on the
equatorial region and on the Gulf Stream, which are not seen
in the F12 simulation without assimilation and in the GREP
product.

Assessing the representation of the deep ocean is quite
complex given that long-term and regional deep ocean
observations are not available yet. Unexpected behavior in the
Tropical Indian and North East Atlantic basins have been
identified and might be due to errors and/or strong climatic
signals (Southern Oscillation Index and North Atlantic
Oscillation) during the first decade of the reanalysis. However,
one should remain cautious about the validity of the low
frequency of GLORYS12 in deep part of these two regions.
There is an unrealistic cooling in F12 south of 60°S which
occurs rapidly from 2001 in Weddell and Ross seas, and near
Amery Ice Shelf. On the contrary, GLORYS12 presents an
unbroken time series, made up of the usual climatic signals of
the region (not shown).

GLORYS12 captures well the low frequency variability
(interannual and long-term variability) of the sea ice extent
both in the Arctic and Antarctic Oceans. The assimilation of
sea ice concentration improves the seasonal cycle of the Arctic sea
ice extent but, in the same time, weakens the presence of leads and
creates thicker ice. The representation of the sea ice cover is also
significantly improved in Antarctica, where the model alone has
difficulties in stabilizing the coupling between the sea ice and the
ocean underneath. Estimates of leads andMIZ are found larger in
models than in observations, but note that MIZ remains a zone of
larger error and uncertainty in both models and observations.
The horizontal resolution has no impact on the mean state,
interannual variability and trends of sea ice quantities such as
extent and volume. Several improvements are expected in the
future with a more advanced sea ice model towards the SI3/LIM
platform with the possibility to represent the ice in different
categories (Rousset et al., 2015), and the assimilation of sea ice
thickness with the aim of improving and better controlling the sea
ice volume.

The evolution of GMSL in GLORYS12 and G4 is in agreement
with that from altimetric data. However, decomposing the steric

and mass components of GMSL rise shows that the reanalyses
have a too large steric component. The dominant source of error
in sea level comes from the uncertainty in the MDT (Hamon
et al., 2019). The issue of correctly adding and retaining the
barystatic sea level rise in the reanalysis (Storto et al., 2017) with a
correct mass/steric separation during data assimilation will be
addressed in the next reanalysis to be produced by Mercator
Ocean (with the inclusion of monthly corrections of GMSL
instead of a trend). The reanalyses clearly outperform the free
simulation which shows a modest sea level rise mostly due to a
large cooling of the Southern Ocean. Regional sea level trends are
correctly represented in GLORYS12 and G4. Data assimilation
clearly and strongly improves the representation of regional sea
level trends. This is especially true in the Southern Ocean, where
the large negative sea level trends in F12 caused by a strong
cooling and unrealistic loss of sea ice cover have been corrected
through data assimilation in GLORYS12.

Several key developments on the reanalysis system should
significantly improve the performance of the next version of
GLORYS12. First, the latest versions of NEMO (Madec et al.,
2019) will allow to have access to a more coherent Bulk
formulation (Brodeau et al., 2017) compared to that used in
atmospheric reanalyses, and to the latest wind-current coupling
parameterization of Renault et al. (2020) and/or to a boundary layer
model (Brivoal et al., 2020; Lemarié et al., 2021) dedicated to high
resolution ocean coupling atmosphere. In addition, the use of a
four-dimensional approach with the data assimilation scheme will
also allow an improvement in the spatiotemporal continuity of
mesoscale structures, particularly when assimilating SST swath data.
This should also benefit to the Tropical Instability Waves in the
tropics. Another interesting ingredient, which is currently being
implemented in the Mercator Ocean assimilation scheme, is to
perform the analysis in a smoothing mode (Cosme et al., 2010),
allowing taking into account observations outside the time window
of the current assimilation cycle. This can be applied for a reanalysis
and could be efficient in reducing errors, especially in regions where
the observations have very heterogeneous spatial coverage in time.
Other evolutions are expected to benefit GLORSYS12, such as the
inclusion of waves (Law Chune and Aouf, 2018) improving surface
currents with a change in vertical physics or a refined MDT
allowing to better represent the equatorial dynamics (Gasparin
et al., 2021). GLORYS12 was initialized only 1 year before the
assimilation of the altimetry, which seems insufficient for the model
to damp all the transients related to the initialization. To further
reduce the shock of initialization and the propagation of artificial
tropical waves, a 3 year spin-up before assimilating altimetry can be
considered. Similar to the flux correction in Magnusson et al.
(2013), a systematic correction of the seasonal cycle, estimated
over the Argo period and applied for the full reanalysis period, will
be introduced to overcome the discontinuity due to the arrival of the
Argo array.

The GLORYS12 reanalysis is a complex system resulting from
extensive efforts combining information and developments from
observations, assimilation andmodelling communities. Given the
strengths and weaknesses of the reanalysis mentioned in the
present work, it is essential to intensify GLORYS12 evaluation for
several reasons:
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(i) GLORYS12 benefits from the information of the integrated
observing system, and its evolution will continue with the
arrival of new datasets from satellites (e.g., Surface Water
and Ocean Topography mission) and in situ observations
(e.g., Deep Argo). Questions of how to mitigate
discontinuities in the observation spectrum will be central
to better integrate all the components of the observing
system and make the best use of ocean observations.

(ii) The scientific value of GLORYS12 has been already
demonstrated in regional and global studies but also to
force regional physical and biogeochemical models. For
that reason, any improvements in GLORYS12 should
benefit the wider ocean community.

(iii) A key activity for global ocean reanalyses is their use by the
climate community to estimate the past and present energy
budgets. It is thus important to further investigate the ability
of GLORYS12 to provide an accurate estimate of the sea level
and heat budgets, through refined data assimilation
techniques conserving essential energy balances.

(iv) GLORYS12 is now expected to inform on past and near-present
oceanic conditions to supply ocean monitoring indicators, used
to track the health signs of the ocean and changes in line with
climate change. This information serving policy-makers to
implement and adapt environmental strategies will be
routinely available (monthly scale). Careful data analyses are
needed to ensure that each element of the value chain will allow
high quality information at such high frequency delivery.

We plan to continue developing modelling and assimilation
techniques to provide the best estimate of global oceanic
stratification and circulation at high resolution, to refine the
description of key quantities, and to evaluate them by
comparing with assimilated and independent datasets.
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A new global ocean temperature and salinity climatology is proposed for two time periods:
a long time mean using multiple sensor data for the 1900–2017 period and a shorter time
mean using only profiling float data for the 2003–2017 period. We use the historical
database of World Ocean Database 2018. The estimation approach is novel as an
additional quality control procedure is implemented, along with a new mapping
algorithm based on Data Interpolating Variational Analysis. The new procedure, in
addition to the traditional quality control approach, resulted in low sensitivity in terms
of the first guess field choice. The roughness index and the root mean square of residuals
are new indices applied to the selection of the free mapping parameters along with
sensitivity experiments. Overall, the new estimates were consistent with previous
climatologies, but several differences were found. The cause of these discrepancies is
difficult to identify due to several differences in the procedures. To minimise these
uncertainties, a multi-model ensemble mean is proposed as the least uncertain
estimate of the global ocean temperature and salinity climatology.

Keywords: global ocean climatologies, temperature analysis, salinity analysis, data interpolating variational
analysis, quality control, multi-model ensemble

1 INTRODUCTION

Defining the climatological state of the ocean is a formidable task. Climatology can be defined
as the study of the statistics of environmental variables that characterise the ocean’s physical
and biochemical state. The focus of this work is on estimating the monthly mean values of
temperature and salinity in the global ocean using data derived from historical observational
records. Climatology is an essential input to numerical ocean models in terms of initialization
and validation, and is intrinsically useful for understanding climate anomalies.

Standardising historical observations is a major challenge in climatological studies, in terms
of metadata and quality control. The observations are collected from numerous sources and
contain various errors. Thus, a robust quality control procedure is essential before any kind of
analysis is conducted. Interpolating or mapping the observations is also major step in
estimating climatologies. As defined by Daley (1993): “Spatial analysis is the estimation by
numerical algorithm of state variables on a three-dimensional regular grid from observations
available at irregularly distributed locations.” These numerical algorithms are based on
theoretical and statistical assumptions that have significantly evolved over the past
20 years. Such techniques are referred as interpolation schemes.

Our analysis is based upon the World Ocean Data (WOD) archive of temperature and salinity
profiles, which is probably the most comprehensive archive of data collected in the 20th century. The
database already contains quality flagged profiles, which are described later in the paper. We applied
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another layer of quality checks to this, which were found to be
significant as they eliminate further outliers.

The first global ocean gridded climatology, referred to as the
World Ocean Atlas (WOA), was proposed by Levitus (1982) and
is the basis for all subsequent estimates. The WOA has been
regularly updated every 4 years since 1994. WOA uses the basic
interpolation schemes defined by Barnes (1964). We use the latest
WOD18 and WOA18 updates (Garcia et al., 2018), and
(Locarnini et al., 2019; Zweng et al., 2019). The WOCE
(World Ocean Circulation Experiment) Argo Hydrographic
Global Ocean Climatology [WAGHC, Gouretski (2019)] is
another global ocean climatological estimate and is the first to
be produced at isopycnal and isobaric levels. The WAGHC
interpolation scheme is based on Objective Analysis (OA)
following Gandin (1960). In this study, we propose a new
climatology developed within the framework of the
SeaDataCloud project (Simoncelli et al., 2021) and computed
with the Data Interpolating Variational Analysis [DIVAnd,
(Brasseur, 1991), Troupin et al. (2012), and Barth et al.
(2014)]. The SeaDataCloud global climatology is available
from the SeaDataNet web catalog 1 together with its relative
Product Information Document (Shahzadi et al., 2020),
(Shahzadi et al., 2020). Hereafter, it will be referred as SDC
climatology, and a climatology using the Objective Analysis (OA)

interpolation scheme of Bretherton et al. (1976), for the first time
adapted to the global ocean by Jia et al. (2016), referred to as
B-OA (Bretherton et al., 1976).

An obvious question is why another climatology is required.
Climatologies are based on different observational datasets and
use different interpolation schemes, so they address uncertainties
in different ways. The specific interpolation of observations across
land-sea boundaries represents a common uncertainty. Most
established interpolating algorithms do not naturally consider
objective methods that prohibit the use of observations across
land-sea boundaries, which is an important characteristics of our
algorithm. To show deviations between climatological
interpolating algorithms at the land-ocean interface, we
analyzed the differences among climatologies around
peninsulas. For example, in the Isthmus of Panama, a narrow
land area between the Caribbean Sea and the Pacific Ocean,
observations could be misinterpreted, as they span unconnected
ocean water masses. Figure 1 gives a comparison of the four
available climatologies, and it is clear that they give very different
estimates. In Figure 1C the B-OA shows that salinity spreads
from the Pacific to the Atlantic along the Columbian coast. By
contrast, Figure 1D demonstrates that the SDC climatology
completely suppresses the contamination of the Caribbean Sea
with Pacific Ocean salinities and vice-versa. However, in
WAGHC and WOA, despite the use of the separate first guess
fields across the Isthmus (Tim Boyer personal communications,
and an anonymous reviewer), low salinity anomalies are reported

FIGURE 1 | January salinity near the Panama Isthmus. (A) WOA18 estimate (correlation length � 214 km, using all data from WOD18), (B) WAGHC (correlation
length � 333 km, signal to noise ratio � 0.5, using data from WOD13, in particular Ocean Station Data, Conductivity Depth Temperature, Profiling Floats and
Autonomous Pinniped, with additional data from the AlfredWegener Institute, Bremerhaven, and from other institutions in Canada), (C)B-OA estimate (correlation length
� 300 km and observational error variance � 0.3), and (D) DIVAnd estimate (correlation length � 300 km and noise to signal ratio equal to 0.5).

1https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html.
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for the Caribbean Sea, which are not present in the other gridded
products. As the interpolation scheme and first guess field are
computed separately in each basin in these two estimates then
salinity variations among these estimates could be due to different
observations used or the interpolation scheme. Another
difference between climatologies is evident along the Louisiana
coasts of the Gulf of Mexico, where the Mississippi river outflow
dominates, which could be due to the algorithm, the first guess or
the volume of data used in the analyses. Climatologies may
therefore differ both qualitatively and quantitatively in general
and specific aspects. DIVAnd objectively solves the problem of
the interpolation of oceanographic observations across land
boundaries, but it is similar to other statistical models as it
makes assumptions about the statistical distribution
parameters of the ocean variables of interest. Thus, a multi-
model ensemble of all available climatologies is likely to provide a
more accurate solution, as demonstrated later in this paper.

The main objective of this study is to estimate a global ocean
climatology using DIVAnd, after applying proper quality control
to the historical dataset. The additional quality control algorithm
we use is defined in section 2.1. Sensitivity experiments are also
conducted for interpolation parameters such as the signal to noise
ratio and the field correlation length. Finally, the results are
compared with the WOA18 and WAGHC datasets. Those for
the B-OA are disregarded because they are similar to the results
for the WAGHC.

In section 2, the historical datasets used for climatology are
reviewed together with the quality control procedure. The
interpolation scheme and the implementation domain,
together with the choices of the interpolation parameters, are
discussed in section 3. Monthly mean temperature and salinity
fields are compared with those of other climatologies in the
section 4 while the section 5 concludes the paper.

2 HISTORICAL DATASETS

Two climatology versions were estimated based on two datasets
extracted from the World Ocean Database 18 [WOD18, Garcia
et al. (2018)]. Dataset1 (see Table 1) uses multiple platforms,
such as bottle data from Ocean Station Data (OSD) and
Conductivity Temperature and Depth (CTD) from ship
surveys, Mooring Buoys (MRBs) and Profiling Floats (PFLs).
MRB profiles are only distributed across the equatorial and
tropical regions, while CTD, OSD and PFL profiles cover the
global ocean domain. The data from other available platforms
were not used because we considered corresponding
measurements of temperature and salinity and an
approximately equal number of profiles for the surface and
the upper pycnocline. Thus, Expendable Bathythermograph

(XBT) and Mechanical Bathythermograph (MBT) data were
disregarded because only temperature measurements were
available. Drifting Buoy (DRB), and Surface-Only (SUR) data
were also not selected because the recordings for these are only
taken at the surface, and Autonomous Pinniped
Bathythermograph (APB) and gliders (GLD) were not used
because they consist of high temporal resolution measurements
that are not considered appropriate for climatological estimates.
The observations selected for Dataset1 cover 1900 to 2017 and
the climatology estimated from this dataset is referred to as
SDC_V1.

Dataset2 (see Table 1) only contains PFL profiles, which are
from autonomous vehicles equipped with several oceanographic
sensors. This contains data from manufacturer floats such as
PLACE, MARVOR, SOLO and APEX. The Argo program
launched in 2000 revolutionised ocean observations, and such
floats have since become numerous in all of the world’s ocean
basins. In Dataset2, only profiling floats from 2003 to 2017 were
considered, and the majority of PFLs were APEX floats. PFL
measurements before 2003 were not considered because these are
affected by problems such as pressure drift (Barker et al., 2011),
offsets in the salinity due to biofouling (Wong et al., 2003),
(Owens and Wong, 2009) and transmission errors. We therefore
only selected consolidated profiles from 2003 to 2017 to avoid
erroneous observations. The volume of PFL data from the last
15 years exceeds the data available from all other platforms, as
shown in Figure 2.

2.1 Additional Quality Control Procedure
WOD implements two types of quality control checks,
represented by different quality flags: first an individual
value flag (WODf) for each measured point in the vertical
for checking systematic errors in the observations; and second
a profile flag (WODfp) that denotes a statistical quality check,
as explained in Locarnini et al. (2019). In the following text,
WODf and WODfp are together referred to as WOD QC.
Uncertainties in the ocean historical observations are sum of
gross errors and representativeness errors as pointed by Janjić
et al. (2018) and Cowley et al. (2021) which defined it as Type
A and Type B uncertainty. A more sophisticated automated
quality control procedures has been achieved during the last
years by the International Quality-Controlled Ocean
Database (IQuOD) v0.1. Further IQuoD v0.1 contains only
temperature profiles with the uncertainty estimate of gross
error (Type A) while quality control of representativeness
error (Type B) was out of the scope of the project as
mentioned by Cowley et al. (2021). Therefore, we felt there
is a need of Additional QC (AQC) to remove the observations
containing representativeness error (Type B) and we
implemented it as follow:

TABLE 1 | Number of profiles and measurements in Dataset1 and Dataset2.

Dataset Name Temperature profiles Temperature measurements Salinity profiles Salinity measurements

Dataset1 6,012,750 803,362,255 5,265,504 757,320,791
Dataset2 1,658,955 384,430,391 1,557,989 362,928,173

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 7113633

Shahzadi et al. Global Ocean Climatology

68

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


i) The domain is divided into 5× 5° boxes, wheremean and standard
deviations (std) are computed and used as thresholds in step (ii).

ii) Data outside 2 std in each box is eliminated and the procedure
is repeated until convergence is achieved, which is denoted
when no data are greater in value than the std level.

The AQC is iterative, unlike the WOD QC, and it is applied
after the WOD QC is considered. The numbers of observations
before and after the application of the AQC are given in Figure 3.
Distribution of salinity observations (January) at surface before
and after the application of AQC are shown in Supplementary
Figure S5 in supplementary material. The application of AQC
has eliminated the observations with representative error which
were still present with WOD18, i.e. (WODf and WODfp) QC.
The application of AQC eliminates less than 15% of the total
profiles.

3 INTERPOLATION SCHEME

DIVAnd is based on the Variational Inverse Method (VIM) and
applied on a curvilinear orthogonal grid using a finite difference
scheme (Barth et al., 2014). This method is equivalent to Optimal
Interpolation (OI), and the main difference between DIVAnd and
OI is in the consideration of land boundaries, as explained in the
introduction.

In DIVAnd, the cost function is minimised and contains three
terms: the misfit between the observations and the reconstructed
Field; the regularity or smoothness constraint; and the advection
constraint. This cost function can be written as:

J[ϕ] � ∑
N

i�1
μi[di − φ(xi, yi)]2 + ‖φ − φb‖2 + Jc(φ), (1)

where di are the observations at the location (xi, yi), φ is the target
field in the regular grid, or the analysis, φb is the first guess field or
“background” and μi are weights derived from specific error
estimates (Troupin et al., 2012) and the correlation length L,
which are described later. Jc is the advection constraint, in which
variable gradients are assumed along the coasts only, thus
imposing no normal flux of temperature and salinity across
land-sea boundaries. The smoothness constraint is defined as:

FIGURE 2 |Number of profiles from the four measuring platforms used in this study and extracted fromWOD18: Ocean Station Data (OSD); Moored Buoys (MRB);
Conductivity Depth Temperature (CTD); and Profiling Floats (PFL).

FIGURE 3 | Number of observations (Temperature) using WOD QC and
AQC for Dataset1 and Dataset2: January (top); August (bottom).
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‖φ − φb‖2 � α2∫
Ω
(∇∇φ : ∇∇φ + α1∇φ.∇φ + α0φ

2)dΩ, (2)

The non-dimensional form of the cost function is:

~J[ϕ] � ∑
N

i�1
μiL

2[di − φ(xi, yi)]2 + ∫
~Ω
(~∇~∇φ: ~∇~∇φ

+ α1L
2 ~∇φ.~∇φ + α0L

4φ2)d ~Ω + Jc(φ),
(3)

: is generalisation of the scalar product of two vectors and is
defined as

∇∇φ : ∇∇φ � ∑
i

∑
j

(z2φ/zxizxj)(z2φ/zxizxj). (4)

In DIVAnd the following values are assumed:

α0L
4 � 1

α1L
2 � 2

α2 � 1

μiL
2 � 4π

σ2

ϵ2i

(5)

Equation 5 shows that μ is defined as the ratio of signal variance
σ2, which is considered the background error variance of the
observations, ϵ2i . For more details of the solution method, see
Barth et al. (2014).

The best estimate or analysis depends on the values of two key
parameters, the correlation length L and the Noise to Signal ratio
(N/S), i.e., 1μi Eq. 5. Large values of the correlation length indicate a
larger number of weighted average observations in the estimate of
the field at each grid point, resulting in a smoother field, while

smaller values will allow for smaller-scale feature resolution,
resulting in a noisier field.

Large N/S of imply larger analysis field deviations from the
observations, or conversely, the analysis field is closer to the
background field. However, small values of N/S mean that the
analysis field is closer to the observations relative to the first guess
field. We denote this parameter to always be less than one so the
observations are more important than the background. As
discussed in the following sections, the importance of the
background is limited in our analysis due to the AQC used.

3.1 Horizontal and Vertical Analysis Domain
The global domain for the analysis extends from 0°E to 360°W
and from 80°N to −80°S. The grid spacing is 1

4
° in latitude and

longitude. The bathymetry is specified from the GEBCO 30” data
(IOC and IHO, 2003). We consider 45 (surface to 6000m) and 36
(surface to 2000m) non-uniform depth layers in this analysis for
SDC_V1 and SDC_V2, respectively, as listed in Table 2.

We considered a vertical discretization consisting of 10 m
layers around the nominal vertical depth of the analysis, as
reported in Table 2. This prevents vertical smearing of the
vertical temperature and salinity gradients, and unrealistic
thermocline and halocline results being obtained. In addition,
we avoid the use of data far from the interpolation level as the
profiles may have vertical data gaps.

To better resolve the upper thermocline structure, a larger number
of layers are defined from the surface to 500m, and the remaining
levels are at distances of 100m between 500m and 1900mdepth and
of 500m between 1900m and 6,000m. Data are grouped inmonthly
time steps and all data collected during the month contribute equally
to the estimate of the monthly climatology.

TABLE 2 | Depth layers used for SDC climatology: the nominal depth is selected at the middle of each layers. The levels for SDC_V1 extend from 5 m to 6,000 m and for
SDC_V2 from 5 to 2000 m.

No Nominal Depth(m) Layer No Nominal Depth(m) Layer

1 5 0–10 24 370 365–375
2 10 5–15 25 400 395–405
3 20 15–25 26 450 445–455
4 30 25–35 27 500 495–505
5 40 35–45 28 600 595–605
6 50 45–55 29 700 695–705
7 60 55–65 30 800 795–805
8 70 65–75 31 900 895–905
9 80 75–85 32 1,100 1,095–1,105
10 90 85–95 33 1,300 1,295–1,305
11 100 95–105 34 1,500 1,495–1,505
12 120 115–125 35 1700 1,695–1705
13 140 135–145 36 1900 1895–1905
14 160 155–165 37 2,200 2,195–2,205
15 180 175–185 38 2,700 2,695–2,705
16 200 195–205 39 3,200 3,195–3,205
17 220 215–225 40 3,700 3,695–3,705
18 240 235–245 41 4,200 4,195–4,205
19 260 255–265 42 4,700 4,695–4,705
20 280 275–285 43 5200 5195–5205
21 300 295–305 44 5700 5695–5705
22 320 315–325 45 6,000 5995–6,005
23 340 335–345
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3.2 Background Fields
The choice of the first guess field or background field may be
important when data are irregularly spaced both horizontally and
vertically. Two types of backgrounds were tested in this study.
The first, Background1, is a vertical profile corresponding to a
spatial mean of observations over the entire global ocean
(Figure 4) for Dataset1. The second, Background2, is
estimated by using the DIVAnd obtained from Background1,
a correlation length of 1,000 km and a N/S ratio of 0.5. Similarly
to Background1 several authors have taken zonal averages of
observations and used it as first guess for climatologies (Levitus,
1982). However, averaging water masses across the deep portions
of different ocean basins that are completely disconnected on the
timescales of 100 years give rise to high standard deviations in
deep waters. Notwithstanding these limitations and the simplicity
of the first guess, the use of DIVAnd and AQCmakes the analysis
quite insensitive to the background as shown below.We select the
background according to the computed climatology residuals,
calculated as:

ri(xoα, yoβ, zc) � H(θic(xk, yj, zp)) − yo(xoα, yoβ, zc) (6)

where (xk, yj, zp) are the m, n, q grid points of the three
dimensional interpolating grid, respectively, yo(xoα, yoβ, zoc)
are the observations at α, β, c points and θic is the i − th
climatology under consideration. H is the bilinear
interpolation or observational operator that interpolates the
climatology to the observational point. ri is clearly an estimate
of the error of the climatology at the observational grid points,
due to the smoothing carried out by the interpolation scheme and
all of the assumptions within the numerical scheme.

Figures 5A,B show the Root Mean Squares(RMS) of residuals
of the SDC_V1 analysis conducted using Background1 and the

WOD QC. Figures 5C,D shows the difference of the residuals
between the climatologies computed with Background2 and
Background1. The difference is visible and quantitatively
significant.

However, when AQC is used, as shown in Figures 5E,F the
background does not appreciably change the climatological
estimate. The AQC eliminates outliers or non-representative
data, which reduces the sensitivity of the analysis to the
background specification. The quality of the input dataset
determines the influence of the background on the estimate: if
only the WOD QC input dataset is used, i.e., outliers/non-
representative data are left in, the choice of background
becomes more important and the difference between residuals
using different backgrounds is large, particularly for salinity.
Thus, we conduct our analysis for both Dataset1 and Dataset2
with Background1.

3.3 Sensitivity Experiments for DIVAnd
Parameter Choices
Selecting the correlation lengths L and N/S for a global ocean
domain is challenging. The global ocean contains a multiplicity of
scales. Therefore, a single L value could either overly smear the
general circulation fronts (such as the western boundary
currents) or contaminate the climatology with mesoscale
eddies or other higher frequency processes. L has previously
been estimated using the data itself, by binning the data and
fitting analytical curves (Nittis et al., 1993). However, in the global
ocean the data is so non-uniformly spaced that the L estimation
quality of different ocean areas will be very different. Thus, we
take a new view of the traditional approach and use equal L values
for every location, as in WOA18 (Locarnini et al., 2019).

FIGURE 4 | Background1(spatial mean of data at each layer) for SDC_V1 computed from Dataset1: Temperature (A); and Salinity (B).
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We conducted several sensitivity experiments to select
reasonable values using L values ranging from 100 to 1,000 km
and N/S values from 0.1 to 50.

A roughness index is defined as the mean of the derivative of
field in the two directions as:

RI � 1
N

∑
n,m

i,j�1

��������������
(Δxi f )2 + (Δyj f )2

√
(7)

where Δ is the finite difference derivative in the latitudinal and
longitudinal directions, xi is the grid spacing in the longitudinal
direction and yj in the latitudinal direction, and N � n p m is the
total number of the interpolating grid points.

RI gives a measure of the spatial scale of the field. For example,
a field with mesoscale features will have high RI values while a
smoother field with large-scale features will have low values. We
do not find that using the Rossby radius of deformation and/or its

corresponding wavelength can correctly define the correlation
length for a climatology. The correlation length is the result of
many propagating waves in the ocean, which combine to form a
mean field that is necessarily smooth. Thus, a roughness index or
its inverse, a smoothness index, is a better choice for establishing
the correlation length of the interpolating algorithm in terms of
the wavelength of the primary process that creates the
climatology. Many climate indices are in fact “smoothed” to
extract basic long-term signals.

As expected, for large L values the analysis gives a small RI
value, as shown in Figure 6. We also establish that the RI should
not exceed the standard deviation (std) of the data itself, as shown
by the dotted blue line in Figure 6. The criteria of accepting a
value of RI less than the field STD evidently only eliminates L at
100 km, varying slightly with depth. The “elbow” of all of the
curves lies between 0.4 and 0.6 for the N/S ratio, and thus we
select 0.5. When selecting this N/S value and taking an RI equal to

FIGURE 5 |Residual and residuals difference for Temperature (A,C, E) and Salinity (B,D,F) at 5 m usingWODQCwith choice of Background1. RMS of residuals in
(A) 0.69°C, and (B) 0.94PSU. Difference of residuals with Background2 and Background1 usingWODQC, RMS of residuals in (C) 0.02°C, and (D) 0.03PSU. Difference
of residuals of Background2 and Background1 using AQC, RMS of residuals in (E) 0.02°C, and (F) 0.01PSU.
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approximately half of the field STD, we obtain a value for L of
300 km.

4 DISCUSSION

We conducted temperature and salinity mapping with a
correlation length of 300 km and an N/S of 0.5 for Dataset1
and Dataset2 for all depths and months. Figure 7 shows the
mapped temperature and salinity fields for Dataset1 for January
at different depth levels. The fields are masked if the analysis
errors are greater than 30% (relative to the field standard
deviation). We find that the Pacific area still suffers from a
scarcity of data, in addition to the deep ocean.

SDC_V1 is a longer-term average while SDC_V2 is an
estimate of the last 15 years. The difference between these
two estimates is shown in Figure 8. SDC_V2 is warmer and
more saline than SDC_V1, and the root mean square (RMS)
difference varies from 0.4° to 0.5 °C and 0.7 to 0.6 PSU for
temperature and salinity, respectively. To better quantify the
sign of the differences we computed the global mean bias of
salinity and temperature in Figure 9. The negative mean bias at
the surface indicates that SDC_V2 is less saline than SDC_V1.
This might be due to the last 15 years (2003–2017) increase of
freshening of surface waters with respect to the (1900–2017)
time period. However such freshening does not go subsurface
due to buoyancy effects. In the subsurface at the contrary,
SDC_V2 is more saline than SDC_V1 and we argue that this
is allowed by compensating effects between high tempratures
and high salt in the equation of state, as described by Chen et al.
(2019).

4.1 Validation Using Other Climatologies
Validating the analysis is an essential step, as it indicates the
reliability of the results. We validate our results using theWOA18
and WAGHC (isobarically averaged version) climatological

estimates because they have similar interpolating grids at 1/4°

resolution. Other climatologies might exist but at lower space and
time resolution. The main source of data in WAGHC is from
WOD13, and in particular OSD, CTD, PFL and APB. Additional
data were obtained from the Alfred Wegener Institute,
Bremerhaven, and from various institutions in Canada for the
period between 1900 and 2016 (Gouretski, 2018). The data
considered in WOA18 are profiles from OSD, CTD, PFL,
MRB, Mechanical Bathythermographs, Digital
Bathythermographs, Expendable Bathythermographs, moored
and drifting buoys, gliders, undulating oceanographic
recorders (UOR), pinniped mounted CTD sensors and
surface-only data (Locarnini et al., 2019) and (Zweng et al.,
2019). WOA18 monthly climatology is computed from surface
to 1500 m on 22 depth levels at a spatial resolution of 0.25 over
the 6 decades of 1955–1964, 1965–1974, 1975–1984, 1985–1994,
1995–2004 and 2005–2012. While seasonal fields are computed
for deeper depth from surface to 6000 m on 57 depth levels. We
understand the climatologies are done for different periods but
we argue that a comparison is a first step to check consistency
between them.

To compute the differences between the climatologies, we
interpolated the WOA18 time average fields over the 6 decades
on the DIVAnd analysis grid using linear interpolation, and
similarly for WAGHC. Supplementary Figures S1–S4 in the
supplementary material show that differences are localised and
are maximum in dynamically active regions such as along the
Gulf Stream, the South equatorial current, the Gulf of Guinea,
the Bay of Bengal, etc. Moreover, largest differences are found in
the Arctic region that might be mainly due to different
observational data sets used. We have also added several
Supplementary Tables S1–S14 in the supplementary
material evaluating the BIAS and the RMSD of salinity and
temperature computed as the spatial average of the differences
between the climatologies in different layers for the equatorial
regions (-10°S to 10°N), north and south Atlantic, Pacific (11°N

FIGURE 6 | Roughness Index of SDC_V1: Temperature (left) and Salinity (right) for January at 5m for different CL and N/S (dotted blue line represents the
standard deviation of in-situ observations).
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to 80 °N) and (-80°S to -9°S), respectively, and Indian Ocean
(20°N to -40°S). SDC_V1 has a positive bias with respect to
WOA and a negative bias for WAGHC for both temperature
and salinity at all the depths in all regions. Maximum differences
are found at surface and thermocline depths. Further, larger
temperature differences are noticed in the north and south

Atlantic, and Indian ocean for WOA, while WAGHC has
maximum differences in the north Atlantic region. Maximum
temperature differences are found in equatorial Atlantic and Pacific
for WOA while for WAGHC maximum RMSD is found in
Atlantic ocean. Overall, the comparison of RMSD values shows
larger differences for both temperature and salinity with WOA as

FIGURE 7 | Temperature (A,C,E,G) and Salinity (B,D,F,H) climatology for January at 5m, 900m, 1050m and 3700m, respectively, from SDC_V1.
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compared to WAGHC that is probably due to the fact the
interpolation scheme SDC and WAGHC are similar.

Moreover, Hovmoller diagram was constructed for the
horizontal spatial average of the RMS differences between
WOA18 and WAGHC. Figure 10 shows that the largest RMS
temperature differences are found with SDC_V1 at the
thermocline depth for both WOA18 and WAGHC, but the

differences are more prominent with WOA18. We argue that
this difference at the thermocline is due to the different
interpolations of the observational profiles at the levels, which
create potential anomalies or simply different data being used.
The differences in salinity are greater in the surface layer and for
the summer months, probably due to the different number of
profiles used.

FIGURE 8 | January mapping differences between SDC_V2 and SDC_V1 for Temperature with RMSD (A) 0.4°C, (C) 0.39°C, (E) 0.08 °C, (G) 0.04 °C, and Salinity
with RMSD (B) 0.66PSU, (D) 0.05PSU, (F) 0.01PSU, and (H) 0.01PSU at 5m, 100m, 900m and 1500m, respectively.
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4.2 Ensemble Mean Climatology
In the previous section we reveal some of the differences between the
four climatological estimates. Such uncertainties are due to the
characteristics of the selected input dataset, the specific background
and statistical interpolation algorithms, and the type of quality control
applied.As for numericalmodels, amulti-model statistical estimate can
reduce the errors of specific quality assessment indices. Thus, a diverse
combination of climatological estimatingmethods can provide the best
estimate of the climatological state of the ocean. Ensemble
methodologies have been proposed in the past for the
reconstruction of atmospheric temperatures (Krishnamurti et al.,
1999) and for climatologies of global ocean salinities (Liu et al.,
2020). Furthermore it is well knwon that ensemble mean is a
commonly used post-processing methodology for reanalyses
(Frankcombe et al., 2018) and climate projections (Solomon et al.,
2007). In these works, it is shown that the ensemble mean is a
statistically better estimate of the truth, so we have applied this to
the different global ocean climatologies. The multi-model ensemble
mean will reduce the uncertainties associated with the statistical
ensemble mean estimate. Our multi-model ensemble climatology is
the ensemble mean of four climatologies WOA, WAGHC, and
SDC_V1 and SDC_V2. Each member of the ensemble is
considered to be a different climatology derived from a different
statistical interpolating model, and the ensemble mean of these
models should be superior to that of any of the single models

within a particular evaluation score (Krishnamurti et al., 1999). The
evaluation score applied is derived from the comparison between the
ensemble mean residual and each single climatology residual.

The climatology multi-model ensemble mean, θEc (x, y, z) is
defined as:

θEc (x, y, z) � ∑
N

i�1

θic(x, y, z)
N

, (8)

The residual defined in Eq. 6 contains various sources of errors in
addition to the difference between the climatology and the observations.
We assume first that the climatological estimate is the sum of true
climatological value and the interpolation errors, so-called ϵH:

H(θic(xk, yj, zp)) � H(θic(xk, yj, zp))T + ϵH. (9)

Moreover, the observations itself are sum of true observational
values and errors, ϵo:

yo(xoα, yoβ, zc) � yo(xoα, yoβ, zc)T + ϵo, (10)

Finally, the residuals in the Eq. 6 can now be decomposed as
follows:

ri(xoα, yoβ, zc) � H(θic(xk, yj, zp))T + ϵH − yo(xoα, yoβ, zc)T − ϵo
(11)

FIGURE 9 | Global mean bias profile (difference between SDC_V2 and SDC_V1) for (A) Temperature and (B) Salinity during January.
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Thus the residuals are the sum of the differences between the true
climatology and the true observational values plus the two different
types of errors. We call this synthetically residual errors. A lower
residual error is not a necessary condition for a high quality climatology

butwe argue that it is a sufficient criteria. A climatological estimatewith
lower residual will be considered as a better estimate.

The resulting vertical profile is denoted by ~r(z) and is
defined as:

FIGURE 10 | Hovmoller diagram of the root mean square difference between SDC_V1 and WOA for (A,C) and SDC_V1 and WAGHC for (B,D). Left panels give
temperature and right panels salinity.

FIGURE 11 | Standard deviation of anomaly residuals ~r i for available climatological estimates (θ i
c) (dashed lines), average of the four residuals (continuous blue line)

and standard deviation of ensemble mean climatology residuals (black continuous line).
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~ri(zc) �
������������������������

∑
M,L

α,β�1

(ri(xoα, yoβ, zc) − �ri(zl))2
M p L

√√
. (12)

where M p L is the number of horizontal observational grid
points.

Figure 11 shows the ~ri. The ensemble residual STD is the
second lowest, confirming that themulti-model ensemble mean is
a good estimate of the climatology. The lowest values are achieved
by SDC_V1, but we argue that this is due to the fact that we
computed the residuals directly from the dataset used to generate
the SDC_V1 climatology.

5 SUMMARY AND FUTURE WORK

Two versions of a global ocean climatology for temperature and
salinity were estimated using a new interpolation scheme,
DIVAnd, which enables a better assessment of coastal
constraints. We demonstrated that an additional quality
control is required to produce a good quality climatology. Two
backgrounds were analyzed: a spatial mean of observations in the
horizontal and an analysis conducted with a very large correlation
length of 1000 km and N/S of 0.5. The results show that if pre-
processing is carried out using the AQC procedure, the resulting
analysis field is less dependent on the choice of the background
field (see Figure 5).

In addition, ours is the first study in which the selection
of DIVAnd parameters is deduced from a new roughness
index (RI), which quantifies the degree of smoothness of
the analysis as a function of the correlation length and N/S
values.

When comparing the SDC_V1 climatology with WOA and
WAGHC we find reasonable agreement, but also significant
differences in terms of the thermocline and surface layers. The
SDC_V1 climatology is closer toWAGHC thanWOA18 in terms
of both temperature and salinity. One reason could be connected
to the fact that the OA parameters used and the technique itself
are similar to DIVAnd. Currently available historical datasets
enable an almost complete reconstruction of the global ocean
fields. However, data gaps still exist, and differences among
interpolation schemes and input dataset quality control lead to
significant uncertainties in the climatological estimates. For the
first time, we have demonstrated that a multi-model ensemble of
different climatologies can produce low residual error compared
to each single climatological estimate.

Future work can consider the application of the improved
quality control procedure developed in Shahzadi et al. (2021)
using a regime-oriented division instead of regular 5° square
rectangles in a global domain. An optimised choice of DIVAnd

parameters that are different for each level may improve the
results. A validation with independent datasets such as satellite
observations or a randomly subsampled input dataset will enable
an assessment of whether the analysis under- or over-fits the
observations. Further as pointed by Lozier et al. (1994), an
isopycnal climatology using DIVAnd is required to avoid the
artificial mixing water masses.
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Ocean reanalyses are becoming increasingly important to reconstruct and provide
an overview of the ocean state from the past to the present-day. In this article,
we present a Black Sea reanalysis covering the whole satellite altimetry era. In the
scope of the Copernicus Marine Environment Monitoring Service, the Black Sea
reanalysis system is produced using an advanced variational data assimilation method to
combine the best available observations with a state-of-the-art ocean general circulation
model. The hydrodynamical model is based on Nucleus for European Modeling of
the Ocean, implemented for the Black Sea domain with a horizontal resolution of
1/27◦ × 1/36◦, and 31 unevenly distributed vertical levels. The model is forced by the
ECMWF ERA5 atmospheric reanalysis and climatological precipitation, whereas the sea
surface temperature is relaxed to daily objective analysis fields. The model is online
coupled to OceanVar, a 3D-Var ocean data assimilation scheme, to assimilate sea level
anomaly along-track observations and in situ vertical profiles of temperature and salinity.
Temperature fields present a continuous warming in the layer between 25 and 150 m,
where the Black Sea Cold Intermediate Layer resides. This is an important signal of the
Black Sea response to climate change. Sea surface temperature shows a basin-wide
positive bias and the root mean square difference can reach 0.75◦C along the Turkish
coast in summer. The overall surface dynamic topography is well reproduced as well as
the reanalysis can represent the main Black Sea circulation such as the Rim Current and
the quasi-permanent anticyclonic Sevastopol and Batumi eddies. The system produces
very accurate estimates of temperature, salinity and sea level which makes it suitable for
understanding the Black Sea physical state in the last decades. Nevertheless, in order
to improve the quality of the Black Sea reanalysis, new developments in ocean modeling
and data assimilation are still important, and sustaining the Black Sea ocean observing
system is crucial.

Keywords: variational data assimilation, past reconstruction, eddy-resolving reanalysis, climate change, ocean
monitoring indicators
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INTRODUCTION

The Black Sea is the largest land-locked basin in the world with an
area of 4.2× 105 km2, a volume of 5.3× 105 km3 and a maximum
depth of 2200 m (Özsoy and Ünlüata, 1997). It is connected to
the Marmara Sea and Azov Sea through the straits of Bosphorus
and Kerch, respectively. It is an estuarine basin, characterized by a
positive net freshwater balance, mainly due to the outflow of some
of the largest European rivers such as the Danube and Dniepr,
and a high-rate of precipitation which in total exceeds the total
evaporation most of the time over the basin (Kara et al., 2008;
Volkov and Landerer, 2015). The resulting salinity of about 18
psu in the upper layer forms a strong stratification all over the
basin where a saltier water of Mediterranean origin, crossing the
Marmara Sea and the Bosphorus Strait, becomes the major source
of ventilation for the anoxic lower layer (Ünlülata et al., 1990;
Stanev and Beckers, 1999; Stanev et al., 2001). Another main
characteristic of the Black Sea is the Cold Intermediate Layer
(CIL) formed at the depth of the winter convection (Özsoy and
Ünlüata, 1997). The upper layer circulation of the Black Sea is
dominated by the Rim Current, a quasi-permanent cyclonic jet
following the bottom topography which interacts with several
anti-cyclonic eddies (e.g., Batumi and Sevastopol) along its
pathway in the basin (Oguz et al., 1993; Korotaev et al., 2003).

The evolution of remote sensing has been crucial to
understand some of the above-mentioned Black Sea processes,
since it provides high temporal and spatial resolution
observations (Korotaev et al., 2001). Kubryakov and Stanichny
(2015) investigated the seasonal and interannual variability
of the Black Sea eddies and found a relationship between the
eddy properties and the intensity of the Rim Current using
altimeter observations. In addition, sea surface temperature
observations have helped to detect recent warming in the Black
Sea as a response of climate change (Ginzburg et al., 2004;
Shapiro et al., 2010; Mulet et al., 2018). However, the major
challenge for studying the ocean dynamics in the Black Sea is
the historical scarcity of sub-surface observations. Although
this situation has been improved in the recent years with the
first deployment of Argo floats after 2002 (Grayek et al., 2015),
the number of in-situ observations significantly increased only
after 2010. For instance, profiling floats contributed to the
detection of a recent warming in the Black Sea and the reduction
of the cold-water content in the CIL (Akpinar et al., 2017;
Stanev et al., 2019).

Numerical ocean models represent a powerful complementary
tool to investigate the three-dimensional state of the Black
Sea circulation in time in absence of dense observations. Kara
et al. (2005) used an eddy-resolving model to investigate the
effects of ocean turbidity on upper-ocean circulation features
including sea surface height and mixed layer depth. From a
56-year model simulation, Miladinova et al. (2017) revealed
that temperature has a seasonal cycle at the surface, decreasing
with depth down to the CIL. Next, the same simulation was
used to investigate the formation and changes of the CIL
and revealed that the cooling capacity of the CIL is highly
variable and decreased drastically in the last decade of the
simulation (Miladinova et al., 2018). Gunduz et al. (2020) related

the reduced events of CIL formation in recent years to the
amplified response to climate change of the Black Sea. Although
current ocean models are highly sophisticated, including
improvements in parameterization of physical processes of
unresolved scale and incorporating numerical techniques that
are optimal for ocean regions dynamically different, they still
have some limitations and incorporate uncertainties from several
sources (Lima et al., 2019). Therefore, they are not completely
appropriate for providing accurate ocean monitoring indicators
when used alone, nor to fully study the oceanic dynamics
in the Black Sea.

Ocean reanalyses reconstruct the ocean state with a long
integration of an ocean model constrained by atmospheric
surface forcing and observations via data assimilation (Haines,
2018; Storto et al., 2019a). They provide a four-dimensional time
series of the ocean state to study ocean dynamics and unravel
sources and impacts of ocean variability. Ocean reanalyses can
also provide initial and boundary conditions to other models
as in downscaling simulations (de Souza et al., 2020) and
uncoupled seasonal forecast initializations (Balmaseda, 2017).
In the Black Sea, Knysh et al. (2011) conducted a pioneering
investigation utilizing an ocean reanalysis. They applied a simple
data assimilation scheme to ingest available in-situ observations
from 1971 to 1993.

In this work we present a Black Sea reanalysis (BS-REA)
that covers the altimeter era starting from 1993 until 2018. This
reanalysis system has been continuously developed in the scope
of the Copernicus Marine Environment Monitoring Service
(CMEMS, Le Traon et al., 2019) since 2016 (Lima et al., 2020b).
It is based on an eddy-resolving ocean model coupled with an
advanced data assimilation scheme, which is very innovative
for the Black Sea region. Here, we present a recently upgraded
version in both model and data assimilation components, which
we believe will help the community for a better understanding
of the physical properties and dynamics of the Black Sea. Our
objective is to ensure the best representation of the sea circulation
and its thermohaline structure, as well as to provide more
accurate ocean monitoring indicators that can help to understand
the Black Sea response to climate change.

This article was organized as follows: in section 2 we outline
the BS-REA configuration in detail; in section 3 we present the
main characteristics of the BS-REA and discuss the results, and
finally in section 4 the conclusions are drawn.

BS-REA CONFIGURATION

Ocean Model
The present BS-REA hydrodynamic model is configured for the
Black Sea region (the Azov Sea is not included) and it is based
on NEMO v3.6 implicit free-surface implementation (Madec and
The Nemo team, 2016), with a horizontal resolution of 1/27◦
in the zonal direction and 1/36◦ in the meridional direction,
and 31 unevenly spaced vertical z-levels. This horizontal spatial
resolution is chosen in order to have the same cartesian resolution
in latitudinal and longitudinal directions, around 3 km at the
model domain latitudes, which is conformed to an eddy-resolving
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scale; the Rossby radius of deformation in the Black Sea is
approximately 20 km (Hallberg, 2013). The BS-REA horizontal
spatial domain is shown in Figure 1.

The model is forced by the ECMWF ERA-5 atmospheric
reanalysis (Hersbach et al., 2020) at the surface with a 0.25◦ of
spatial resolution and 1-hour time frequency. The atmospheric
forcing variables are: the zonal and meridional components of 10
m wind (in m s−1), total cloud cover (in %), 2 m air temperature
(in K), 2 m dew point temperature (in K) and mean sea level
pressure (in Pa). Precipitation (in kg/m2 s) over the basin is
obtained from GPCP rainfall monthly database (Adler et al.,
2003; Huffman et al., 2009), from which monthly climatological
means are estimated considering the period 1979–2019. The
momentum, heat and water fluxes are computed at the air-
sea interface based on the bulk formulae originally developed
for the Mediterranean Sea (Castellari et al., 1998; Pettenuzzo
et al., 2010) and applied as in the Black Sea forecasting system
(Ciliberti et al., 2020).

The model bathymetry is based on the GEBCO gridded
dataset at 30” resolution1 in the Black Sea basin. The bathymetry
is improved around the Bosphorus Strait with a high-resolution
dataset, extensively described in Gürses (2016). Once acquired
the high-resolution dataset, an optimal barycentric interpolation
method is used to interpolate scattered bathymetric data on the
regular spatial grid. The coastline is revised to account for and
properly represents the coastal peculiarities and structures in the
basin by using the NOAA shoreline dataset2. The river locations
are remapped considering the new bathymetry.

For the river runoff, we use a monthly climatological mean
estimate for the period 1960–1984 and provided by the SESAME

1https://www.gebco.net/
2https://www.ngs.noaa.gov/CUSP

project (Ludwig et al., 2009). The total number of rivers
is 72, including the major ones such as Danube, Dnieper,
Rioni, Dniester, Sakarya and Kizilirmak. The Danube runoff
is distributed over five grid points to better represent its
major branches, i.e., Chilia, Sulina, St. George. This special
treatment accounts that the Chilia is the greatest one with three
sub-branches. One is located in the south, in the Romanian
territory, while the other two are in Ukraine. Sulina and St.
George are located in the larger Danube floodplain, which
occupies around 3500 km2. Thus, the distribution of the Danube
discharge over its three main branches follows Panin et al.
(2016); the Chilia spread 52% of the total discharge, while the
remaining 48% is distributed in the Sulina (20%) and St. George
(28%) branches, respectively. The salinity of the river waters is
assumed to be zero.

Since the current model configuration of the BS-REA has
closed lateral boundaries, the Bosphorus Strait net transport
is parameterised as a river by means of surface boundary
conditions while temperature and salinity are relaxed to a
previous estimate. The net transport is computed iteratively
from a simulation and a series of assimilation runs. A first
iteration, which is a simulation, adopts a monthly climatology
(Kara et al., 2008) and integrates for the whole reanalysis
period. Then, every following iteration imposes the net outflow
corrected by E-P-R estimates from the previous one in order
to balance the water budget; evaporation (E) is model-derived
and depends on each integration whereas precipitation (P) and
river runoff (R) are monthly climatology as described above.
In the BS-REA, a final correction, estimated from the CMEMS
SSALTO/DUACS Delayed-Time Level-4 sea level anomalies
measured by multi-satellite altimetry observations (Taburet et al.,
2019), is applied to the freshwater balance at a single grid
point adjacent to the Bosphorus Strait in order to impose

FIGURE 1 | Black Sea spatial domain and bathymetry. The red lines indicate the sea level anomaly along-track and green dots indicate the T and S in situ profiles
available for data assimilation within the 4-day observation window on 18 October 2018.
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the observed trend and variability in the mean sea surface
height. T and S are relaxed toward a monthly climatological
profile computed from a high-resolution multi-year simulation
(Aydoğdu et al., 2018), to properly represent the water mass
properties exchanged between the Mediterranean and Black Seas
via the Bosphorus Strait. This relaxation is applied at five grid
points surrounding the location of the Bosphorus Strait with a
time frequency of 1 hour.

Finally, we restore the SST over the basin to the
gridded CMEMS SST product (Buongiorno Nardelli et al.,
2013). The restoring is done by added a damping term
to the surface heat flux with a constant coefficient of
dQ/dT =−200 W/m2/K.

Observations
The BS-REA assimilates sea level anomaly (SLA), temperature
and salinity observations. The specific products assimilated are:
(i) in-situ T/S profiles from both SeaDataNet3 (Pecci et al., 2020)
and CMEMS NRT in-situ product (von Schuckmann et al., 2016)
and (ii) along-track sea level anomaly from all available missions,
pre-processed and distributed by the CMEMS Sea Level TAC
(Taburet et al., 2019). For SLA assimilation, the choice of the
mean dynamic topography (MDT) is a key point and can impact
the quality of results (Yan et al., 2015). In BS-REA, a model-
based MDT is computed using a 20-year (1993–2012) mean of
sea surface height derived from a model integration with the
assimilation of T and S profiles only.

The in-situ instrumental errors assume different values for
T and S and vary in the vertical dimension based on statistics
derived from Ingleby and Huddleston (2007), whereas the
in-situ representation errors vary horizontally on the model
grid according to previous model statistics with respect to
observations and adopt same values for T and S. Both
components of in situ errors are constant over time. For SLA
observations, the instrumental error is set to 4 cm, and the
representation errors monthly and spatially vary following Oke
and Sakov (2008).

Data Assimilation Scheme
The data assimilation scheme is the OceanVar (Dobricic and
Pinardi, 2008; Storto et al., 2011), a three-dimensional variational
(3D-Var) assimilation algorithm. The 3D-Var scheme aims to
iteratively find an optimal analysis field, xa, that minimizes a cost
function (Eq. 1).

J =
1
2
δxTB−1δx +

1
2
(
Hδx− d

)TR−1 (Hδx− d
)

(1)

δx = x− xb, where x is the unknown ocean state, equal
to the analysis xa at the minimum of J, xb is the background
state, d = y−H (xb) is the misfit between an observation
y and its modeled correspondent (in the observation space)
where H, the observation operator, maps the model fields
at the observation location. The method accounts for the
background and observation uncertainties through the error
covariance matrices B and R, respectively. The observational

3http://www.seadatanet.org

error covariance matrix R is diagonal in the observation space and
includes the sum of instrumental and representation errors and
an error component according to the time of each observation
with respect to the analysis time, i.e., the observation error
is multiplied by a weight depending on the absolute temporal
distance between observation and analysis.

OceanVar was originally developed for the Mediterranean
Sea (Dobricic and Pinardi, 2008) and later extended to global
ocean applications (Storto et al., 2011, 2014). In OceanVar, in
order to avoid the inversion of the B matrix and to precondition
the minimization of the cost function, the B matrix is defined
as B = VVT , in which V is decomposed in a sequence of
linear operators: V = VηVhVv. Hence the V operator is used
to model the background error covariance matrix and includes
correlations among variables and each of its linear operators
are described below. In addition, a new control variable v is
used for the minimization step by considering the transformation
v = V + δx and thereby δx = Vv; the superscript “+” indicates a
generalized inverse. The inclusion of the control variable in Eq. 1
results in a rearranged cost function, as follows:

J =
1
2

vtv +
1
2
(
HVv− d

)TR−1 (HVv− d
)

(2)

Thus, the variational cost function is solved with the
incremental formulation (Courtier, 1997) and the pre-
conditioning of the cost function minimization is achieved
through a change-of-variable transformation from the physical
(Eq. 1) to the control space (Eq. 2).

OceanVar is a multivariate scheme, i.e., the state vector, x, can
contain the following model state variables: T, S, SLA u and v.
However, only the first three variables are employed in the present
BS-REA implementation; each control vector element is a linear
combination of SLA, T, S. The assimilation of in situ profiles
includes a background quality-check according to Eq. 3,

d2

σ2
b + σ2

o
> α (3)

which rejects observations in the case the square departure from
the background (d2) exceeds the sum of the background (σ2

b) and
observation (σ2

o) error variances by a threshold value (α). This
threshold is currently set to 11 for both S and T.

For the minimization of J, the balance of the two terms
in Eq. 2 defines the shape and magnitude of the analysis
increments. The Vv operator consists of background-error T
and S vertical covariances that are extracted empirically from a
model integration with the assimilation of T and S profiles using
the full model resolution; the same above-mentioned integration
that is used to compute the model-based MDT. The daily
temperature and salinity anomalies with respect to the monthly
mean are calculated to generate a set of monthly EOFs (Empirical
Orthogonal Functions, only the first 15 modes are retained).
Vh represents horizontal correlations that are modeled through
a first-order recursive filter (Farina et al., 2015), with a fixed
correlation length-scale of 20 km. Determined by Vη, the SLA is
covaried with T and S through a balance model (dynamic height)
that imposes local hydrostatic and geostrophic balance among
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T, S, and SLA increments (Storto et al., 2011), according to the
equation:

ρ0gδη +

∫ 0

−hb

gδρ (T, S)dz = δpb (4)

where δη and δρ are, respectively, the sea level anomaly and
density increments, so that δρ is integrated in the vertical from
the bottom depth hb to the surface. The ρ(T, S) relation is
calculated with the 1980 United Nations Educational, Scientific
and Cultural Organization (UNESCO) International Equation of
State (IES 80; Fofonoff and Millard, 1985). We assume a “level of
no motion” at 1000 m, which corresponds to the depth h∗ where
horizontal velocities are considered practically zero. This implies,
through geostrophy, that the corresponding pressure increment
δp∗h vanishes too, which results in the equation:

H (x− xb) = −
1
ρ0

∫ 0

−h∗
δρ (x− xb)dz (5)

Once the analysis increments are computed with OceanVar,
the method of incremental analysis update (IAU) is used to
spread the analysis increments in the first time-steps during the
model initialization (Bloom et al., 1996). As a further reading on
the data assimilation scheme, we refer to Dobricic and Pinardi
(2008) and Storto et al. (2011).

Bias Correction
All data assimilation systems are affected by biases due
to imperfect numerical models, inaccurate observations and
limitations in the assimilation scheme itself (Dee, 2005). From
a previous experiment with the assimilation of T, S, and SLA,
we detected the evolution of systematic biases in T and S over
time periods with very sparse in situ observations. For example,
we have noticed drifts in temperature below 300 m starting in
1996 when the number of in situ profiles drastically reduces
while altimeter observations are available. Since such drift was
not present in another experiment with the assimilation of only
in situ profiles, we conclude that it was generated by the SLA
assimilation conducted alone.

In order to prevent those drifts, BS-REA employs a large-scale
bias correction (LSBC) below 300 m throughout integration. The
LSBC is formulated as:

dx
dt
= M (x)− L

(
b
)

(6)

We define the estimated bias b = x− xclim as the difference
between the instantaneous temperature and salinity fields with
respect to T and S climatologies, which is computed for the
period 1993–2018 from the above mentioned experiment that
assimilates only in situ profiles; dx

dt denotes the T and S tendencies,
whereas M (x) represents all dynamical and thermodynamical
processes and boundary conditions involving T and S during the
NEMO integration. The operator L is the estimator of the model
bias. It consists of a low-pass spatial filter, configured to filter out
spatial scales shorter than 20 km, and is formulated as a first-
order Shapiro filter (Shapiro, 1970) that uses 250 iterations. The
final bias is subtracted from the tendency, as in the incremental

algorithm (Bloom et al., 1996) with a relaxation coefficient of
1200 days in order to not deplete the seasonal variability.

Numerical Experiments: Strategy and
Setup
Following a spin-up of 5 years (1988–1992) with T and S
assimilation, the BS-REA starts from 1993, as soon as the
altimeter observations are available, with an assimilation cycle
of 2-days. That is, if the model initializes at time t, the
next analysis is performed at time t + 2. The observation
window is 4 days centered at the analysis time, i.e., each cycle
includes observations from 2 days before and after the analysis
time. Table 1 summarizes the main aspects of the BS-REA
configuration, which are also described in Lima et al. (2020a).
For comparison, we also present a control experiment, covering
the same period of BS-REA, with exactly the same set up for
air-sea interaction, such as the same atmospheric forcing and
heat flux correction using the analyzed SST, but without data
assimilation and LSBC.

RESULTS AND DISCUSSION

In this section we present the assessment of the BS-REA.
Estimated Accuracy Numbers (EAN), which include bias
and root mean square difference (RMSD), are computed
using the daily outputs of the reanalysis and compared to
observations using a quasi-independent approach since the
validation is done by comparing the daily-averaged BS-
REA fields with respect to both assimilated and rejected
observations. Moreover, we provide ocean monitoring
indicators such as the temperature, salinity, and ocean

TABLE 1 | BS-REA main configurations.

Model resolution 1/36o
× 1/27o

Vertical coordinates 31 Z levels

Temporal coverage 1993–2018

Spin up 1988–1992 with T/S data assimilation

Atmospheric forcing ERA5 (1 h; 0.25 degree)

DA frequency 2 days

Observation window 4-day centered at the analysis time

SST relaxation CNR-CMEMS SST L4 REP

in situ TS assimilation SeaDataNet and CMEMS NRT in situ
TAC

SLA assimilation CMEMS sea level along-track REP
product for the European seas

Mean Dynamic Topography Model-based
Time-averaged SSH (1993–2012) from
an integration with the assimilation of
only in situ T and S

SLA instrumental errors 4 cm

SLA representation errors Monthly 2-D fields
Oke and Sakov (2008)

In situ instrumental errors Ingleby and Huddleston (2007)

In situ representation errors Static 2-D field

Initialization Incremental analysis update (IAU)

Recursive filter Correlation length-scale of 20 km

Large Scale Bias Correction Below 300 m
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heat content anomalies for the Black Sea. Finally, we
describe the sea level and upper circulation based on
the BS-REA results.

BS-REA Evaluation
In Figure 2, the seasonal maps of the SST bias and RMSD are
shown. There is a predominance of positive SST bias all over
the basin while a negative bias manifests in limited zones such

as the western Anatolian coast in summer and autumn, in river
influenced areas in the northwestern shelf during the whole year
and in the vicinity of the Azov Sea except in spring. The BS-
REA exhibits the lowest RMSD in spring, whereas the highest
RMSDs are reached in summer and autumn. For instance, the
RMSD exceeds 0.75◦C along the upwelling region centered at
33◦E (Sur et al., 1994; Özsoy and Ünlüata, 1997) in the Turkish
coast, where we believe that overestimated surface winds from

FIGURE 2 | Seasonal maps of the mean bias (left) and RMSD (right) of the SST (oC) with respect to the satellite SST-L4 products over the period between 1993 and
2018. From top to bottom: winter, spring, summer, and autumn.
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TABLE 2 | EAN estimations for BS-REA and the control experiment without data
assimilation.

RMSD BIAS

Control BS_REA Control BS-REA

SST ◦C 0.32 0.33 0.08 0.08

T ◦C (0–10 m) 0.97 0.59 −0.25 0.01

T ◦C (10–100 m) 1.50 0.63 0.51 −0.03

T ◦C (100–500 m) 0.35 0.07 0.23 0.001

T ◦C (500–1500 m) 0.09 0.07 0.08 0.05

S PSU (0–10 m) 0.66 0.41 0.20 −0.02

S PSU (10–100 m) 0.77 0.16 0.54 0.001

S PSU (100–500 m) 0.28 0.09 −0.07 0.01

S PSU (500–1500 m) 0.02 0.01 0.001 −0.002

SLA m 3.67 2.25 0.00

Note that the comparison between model and observation SLA includes a bias
removal in such a way the bias should always be 0.

the atmospheric dataset may intensify the upwelling events in
summer and autumn.

In general, BS-REA performs better than the control
experiment in terms of bias and RMSD (Table 2). The only
variable where it is similar or even slightly lower is the SST which
is strongly controlled by the atmospheric forcing and the SST
relaxation, both of which are the same in the two experiments.
For temperature, the highest RMSDs for the layer 10–100 m
are 0.63◦C and 1.50◦C for BS-REA and the control, respectively.

While the control experiment has a negative bias of −0.25◦C in
the upper layers, BS-REA retains a quite reduced positive bias of
0.01◦C.

In Figure 3, we show the vertical temperature error and bias
profiles for different subregions in the Black Sea. The RMSD
is relatively higher in the northwestern region (dark blue) that
is under the influence of the Danube River where a maximum
RMSD close to 2.25◦C arises around the thermocline. The other
two regions with relatively large errors are the northeastern (light
blue) and southwestern ones (green), which, respectively, may be
related to the absences of the Azov Sea and an open Bosphorus
Strait in the BS-REA configuration. Bias profiles manifest the
largest discrepancies with the observations above 40 m where
there is a predominance of a negative bias (above −0.5◦C),
except in the northwestern region affected by a positive bias.
The Hovmöller diagrams of the temperature bias and RMSD
(Figure 4, upper panels) reveal a clear seasonal pattern such that
the values are low (high) in winter (summer). The highest errors
are in the thermocline, where the prevalence of negative biases
is evident each summer from 10 m down to 60 m. There is an
evident lack of in-situ observations between 1997 and 2003 in
the Black Sea which limits the reanalysis system to be constrained
only by altimeter observations for a long time period.

BS-REA shows significant improved skills also for salinity
with respect to the control experiment (Table 2). The RMSD
is reduced in the entire water column from 0.66 PSU to 0.41
PSU (0.77 PSU to 0.16 PSU) in 0–10 m (10–100 m). The bias is
also decreased from surface down to 500 m, mainly in the layer

FIGURE 3 | Vertical profiles of the root mean square deviation (left panel), bias (middle panel), and number of observations (right panel) for temperature (◦C) for
different subdomains in the Black Sea, by comparing the BS-REA results against in situ profilers in the Black Sea domain from 1 January 1993 to 31 December 2018.
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10–100 m where the BS-REA bias is 0.001 PSU. BS-REA presents
a slightly negative bias of−0.02 PSU in 0–10 m.

The vertical error profiles for different regions show that BS-
REA represents with less quality the salinity above 20 m, in

particular in the northwestern region (Figure 5). In this region,
the RMSD overcomes 1.2 PSU at surface and the bias reaches
−0.2 PSU at around 10 m depth. This is probably due to the
limitation of imposing monthly climatological runoff such as

FIGURE 4 | Monthly Hovmöller diagrams of bias (left) and root mean square difference (right) computed against observations of temperature in ◦C (top) and salinity
in PSU (bottom) available in the Black Sea domain from 1 January 1993 to 31 December 2018.

FIGURE 5 | Vertical profiles of the root mean square deviation (left panel), bias (middle panel) and number of observations (right panel) for salinity (PSU) for different
sub-domains in the Black Sea, by comparing the BS-REA results against in situ profilers in the Black Sea domain from 1 January 1993 to 31 December 2018.
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for the Danube River, which may cause a poor representation
of salinity close to the river mouth. Unfortunately, we do not
have a long and uninterrupted time series of river discharges for
the Black Sea to be used for a more accurate parameterization.
In deeper levels, the salinity RMSD is relatively higher only
in the southwestern region in the layer 60–100 m where the
RMSD exceeds 0.4 PSU. This may be due to the parameterization
of the Bosphorus Strait in the current model configuration
in which we relax the model towards a climatology from a
model simulation. Nevertheless, bias is low in the southwestern
Black Sea and comparable to other regions. Hovmöller diagrams
show that both salinity bias and RMSD remain low over time
(Figure 4, bottom panels). However, we note large RMSD that
may exceed 1.5 PSU near the surface, mainly during some
temporal intervals before 2008.

The mean RMSD of sea level anomaly is 2.25 cm for BS-
REA which corresponds to a reduction of ∼39% with respect
to the control (Table 2). Time series of SLA RMSD present
a continuous reduction of the values during the first years of
BS-REA integration. Error values fluctuate around 2 cm since
2005, whereas the control error ranges between 3 and 4 cm,
sometimes exceeding 4 cm (Figure 6). Horizontal maps of RMSD
reveal minor seasonal differences with the largest values close
to the shelf areas (not shown), where there is a dominance of
the mesoscale activities along the Rim Current. For example,
relatively high errors can be found in the Crimean Peninsula,
where there is a regular activity of the Sevastopol eddy, and
in the southeastern region, which is related to the presence of
the Batumi eddy. These eddies are quasi-stationary anticyclonic
features that have been examined in the Black Sea (Kubryakov
and Stanichny, 2015; Kubryakov et al., 2018).

Temperature and Salinity Trends
This section examines the time variability of temperature and
salinity as well as their trends for the whole BS-REA period
(1993–2018) and its latest 14 years (2005–2018).

Initially, the basin-averaged temperature time series shown
in Figure 7 demonstrate a high seasonal variability in 0–25 m,
with values above (below) 20◦C (7.5◦C) in most of the summers
(winters). The seasonal signal weakens between 25 and 150 m and

disappears below 150 m. The temperature trends are estimated in
two different periods (1993–2018 and 2005–2018) and indicate an
overall warming of the basin especially in the period 2005–2018
with a decreasing trend in deeper layers. The values are 0.083◦C
year−1 (0.12◦C year−1) in 0–25 m and reduce to 0.0041◦C
year−1 (0.0092◦C year−1) in 150–300 m for the period 1993–
2018 (2005–2018). For comparison, Ginzburg et al. (2004) used
satellite measurements to reveal a positive trend of 0.09◦C year−1

in sea surface temperature over the years 1982–2000. Miladinova
et al. (2017) did not detect a significant trend in the SST from
model simulations considering the period 1960–2015, whereas
the temperature at 200 m indicated a positive trend of 0.005◦C
year−1. BS-REA warming is more noticeable starting from 2005,
especially in the 150–300 m layer, where instead a negative trend
between 1993 and 2001 is reproduced by the reanalysis. BS-
REA also presents a continuous warming in the layer 25–150
m, where the Black Sea CIL resides. In response, the CIL almost
disappeared in recent years as is discussed in the next paragraph.
Stanev et al. (2019) reached a similar result using observations.

Figure 8 (top left panel) shows the time evolution of basin
mean temperature and the 8◦C isotherm is chosen to track
the Black Sea CIL over time. The CIL formation is related to
the water cooling during the winter season and its presence is
evident continuously until 2008. From 1993 to 2000, the CIL
resides from surface down to ∼100 m. There is a weakening
of the CIL in 2001 when the temperature exceeds 8◦C in most
of the water column. The CIL forms again in 2002 but not
as strong as in the previous years so that the 8◦C isotherm
occupies depths above 75 m. The pattern completely changes
after 2008, when the temperatures clearly increase in such a
way that the CIL disappears most of the time. Between 25 and
150 m the temperature increase (shown in Figure 7) reflects
a trend value of 0.045◦C year−1 for the period 2005–2018, by
revealing a faster warming of the Black Sea over recent years.
Degtyarev (2000) also noted a positive temperature trend of
0.016◦C years−1 in a less thick layer (50–100 m) from 1985
to 1997. After 2008, the formation and presence of the CIL is
observed only in 2012 and, to a lesser extent, in 2017. Figure 8
(bottom left panel) shows the basin mean temperature anomaly
with respect to a reference climatology evaluated from the same

FIGURE 6 | Time series of sea level anomaly RMSD by considering the results of BS-REA (blue) and control experiment (orange) against sea level anomaly
along-track observations in the Black Sea domain. The shaded area and the right axis correspond to the number of observations.
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FIGURE 7 | Time evolution of the basin-averaged temperature in ◦C computed from BS-REA in different layers: 0—25 m (top), 25–150 m (central), and 150–300 m
(bottom). The dashed lines are the linear trends for the period 1993–2018 (black) and 2005–2018 (red), mean trend values are also reported in the figures (bottom
right corner).

FIGURE 8 | Time versus depth diagrams of the monthly basin-averaged temperature in ◦C (top left), anomaly of temperature in ◦C (bottom left), monthly
basin-averaged salinity in PSU (top right), and anomaly of salinity in PSU (bottom right). The monthly anomaly estimates considered the climatological period
1993–2014 of each corresponding month. The blue dashed line indicates the mean position of the 8◦C isotherm (top left), whereas the dashed black line represents
the isoline of 19.5 PSU (top right) and null anomaly (bottom panels).

reanalysis in the period 1993–2014. The temperature anomaly
is mostly negative before 1999, while during the period 1999–
2008, it shows a clear annual variability in the upper 250 m,
fluctuating between negative and positive values around the
reference baseline. Since 2009, there is a predominance of positive
anomalies so that values exceed 1.5 ◦C at upper layers, which

again supports the Black Sea warming and disappearance of the
CIL during recent years. Reports based on previous versions
of BS-REA also found a surface warming and an increase
in the ocean heat content of the Black Sea in the past few
years (Mulet et al., 2018; Lima et al., 2020c) which will be
discussed in section 3.3.
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FIGURE 9 | Time evolution of the basin-averaged salinity in PSU computed from BS-REA in different layers: 0–25 m (top), 25–150 m (central), and 150–300 m
(bottom). The dashed lines are the linear trends for the period 1993–2018 (black) and 2005–2018 (red), mean trend values are also reported in the figures (bottom
right corner).

In Figure 9, similar analyses for salinity reveal that salinity
trends reduce in depth and are higher during the most recent
period (2005–2018) especially in surface layers. Trends are 0.0068
PSU year−1 (0.0359 PSU year−1) in 0–25 m, decrease to 0.0062
PSU year−1 (0.0131 PSU year−1) in 25–100 m and finally to
0.0029 PSU year−1 (0.005 PSU year−1) in 150–300 m during
the period 1993–2018 (2005–2018). For comparison, Miladinova
et al. (2017) identified different salinity trends at the surface
(negative), upper (weaker negative) and main halocline (positive)
for the period 1960–2015. The time evolution of salinity shows
well-defined layers, such that mean values are less than 18.5 PSU
above 50 m, reach 20–20.5 PSU at 100 m and exceed 21.5 PSU
in deeper waters down to 300 m (Figure 8; top right panel).
Above 50 m, salinity anomalies, evaluated with respect to a
reference climatology from the same reanalysis in the period
1993–2014 exhibit periods that alternates with the predominance
of positive and negative anomalies: anomalies are positive until
the beginning of 1998, mostly negative from 1998 to 2011,
and again positive starting from 2012 (Figure 8; bottom right
panel). A notable characteristic is the presence of larger positive
anomalies from 2016, which indicates a recent salinization in the
sea. In 50–100 m, large negative anomalies are present in 2004–
2005, whereas maximum positive anomalies are seen in 2011.
After 2016, salinity anomalies are only positive.

Ocean Heat Content
The investigation of the Black Sea ocean heat content follows
Lima et al. (2020c), who defined the ocean heat content like

anomalies with respect to the reference period of 2005–2014,
following the equation below:

OHC =
∫ z2

z1

ρ0cp (Tm − Tclim)dz (7)

with ρ0 equal to 1020 kg m−3 and cp equal to 4181.3 J kg−1◦C −1

are, respectively, the density and specific heat capacity; and dz
indicate the a certain ocean layer limited by the depths z1 and z2;
Tm corresponds to the monthly average temperature and Tclim is
the climatological temperature of the corresponding month.

In this study the ocean heat content is estimated as the
deviation from the reference period of 1993–2014. A clear
positive trend of 0.11 W m−2 characterizes the 0–10 m layer
(Figure 10). Above this trend, warm peaks appear in the second
half of the year 1994, less intense in 1996 and increased again
in 2010 and 2012. The highest positive peak occurs in the 2018
autumn. As thicker layers are considered, the trends increase,
whereas time series present a lower variability over time; for the
period 1993–2018, trends are 0.45 W m−2, 0.81 W m−2 and
0.83 W m−2, respectively, in 0–50, 0–200, and 0–1000 m. For
comparison, trends are also estimated for the period 2005–2018
and reveal higher values down to 200 m as compared to Lima et al.
(2020c) (Table 3), which may be related to the different period
(2005–2014) that they used to estimate the reference climatology.
Considering thicker layers, it becomes clear that an increase in
ocean heat content weakens the CIL like in 2001, whereas its
decreasing favors the CIL restoration like in the years 2012 and
2017, as is viewed in Figure 8 (top left panel). In 2012, times
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FIGURE 10 | Monthly basin-averaged of the ocean heat content anomalies (in 109 J m−2) estimated for the BS-REA. The monthly ocean heat content anomalies are
defined as the deviation from the climatological ocean heat content mean (1993–2014) of each corresponding month. Mean trend values are also reported in the
figures (bottom right corner).

series for 0–10 m exhibits colder waters already in 2011 that
appear in 2012 only when layers as thick as 50 m are considered,
which indicates that colder waters moved from surface in 2011
to generate the CIL in 2012 (Figure 10). A migration of colder
and saltier water from surface to deeper layers also produced a
signature in the temperature and salinity anomalies (Figure 8;
bottom panels). A less intense CIL formation occurred in 2017
and again a water cooling in the 0–10 m layer is evident in the
previous year, 2016.

Spatial maps of yearly depth-integrated ocean heat content
anomalies (0–200 m) show a predominance of negative values
from 1993 until 1998 (Figure 11). Lowest values are found in
1993 at the margins of the basin. In 1999, positive values appear
mostly in shallow regions at the basin borders, but also in deeper
regions like along the Rim Current pathway near the Crimean
Peninsula. In this region, positive values may be associated

with the presence of the Sevastopol eddy, a quasi-stationary
anticyclonic eddy located close to the Crimean Peninsula. The
pattern changes completely in 2001 and 2002, when the ocean

TABLE 3 | Trends estimations together with the 95% confidence interval (in
brackets) for the ocean heat content anomaly (W m−2) from BS-REA and Lima
et al. (2020c) for the period 1993–2018 and 2005–2018.

1993–2018 2005–2018

BS-REA BS-REA Lima et al. (2020c)

0–10 m 0.105 (0.013) 0.089 (0.032) 0.063 (0.038)

0–50 m 0.452 (0.038) 0.482 (0.087) 0.447 (0.131)

0–200 m 0.814 (0.045) 0.922 (0.103) 0.880 (0.181)

0–1000 m 0.834 (0.044) 1.049 (0.102) 1.082 (0.175)
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FIGURE 11 | Yearly depth-integrated (0-200 m) ocean heat content anomalies (in 109 J m−2) estimated for the BS-REA and defined as the deviation from the
reference period of 1993–2014. Black isoline indicates the 200 m isobath.

heat anomaly assumes positive values in a large part of the basin,
which brings a weakening of the Black Sea CIL in these years
(see also Figure 8; top left panel). In the period from 2003 to
2006, there is again a predominance of negative values, except in
2004, when a prevalence of positive values is viewed in the central
region. Since 2007, the warming signal is very clear in such a way
that the ocean heat content anomalies achieve the highest positive
values near the Crimean Peninsula in 2010, near the Bulgarian
and Turkish coasts in 2016 and in the southeastern region in
2013, 2015 and 2018. However, this continuous warming is
interrupted in 2012 and less explicitly in 2017, years in which

a replenishment of the CIL is verified, as is also shown in
Figure 8.

Surface Topography and Upper Layer
Circulation
Figure 12 shows annual and seasonal mean sea surface height
(SSH) fields overlaid by the upper 100 m depth-averaged velocity.
The mean SSH varies spatially, i.e., low values dominate the
inner basin while the shelf and coastal zones have high values.
Similar formation persists when the signal is decomposed into
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FIGURE 12 | Mean sea surface height and 100 m depth average velocity derived from the BS-REA evaluated for the whole period 1993-2018 (top panel) and each
season considering the climatological period 1993–2018.

its seasonal components. In winter and spring, the negative
values of SSH extend to the easternmost coast. In summer and
autumn, the western basin presents similar SSH properties while,
in the eastern basin, the negative values are more restricted to
the inner basin.

The upper layer Black Sea circulation structures are consistent
with the SSH gradients showing a seasonal variability with the
only exception of the permanent Rim Current encircling the
entire basin and forming a large-scale cyclonic gyre. The mean
upper layer circulation develops around the Rim current together
with the Batumi gyre in the easternmost basin and smaller scale
eddies along the Anatolian coast. The Rim current bifurcates into
two branches after the Crimean Peninsula with a smaller one
recirculating in the northwestern shelf and merges back to the
main branch around 30.5◦E. The Rim current accelerates along
the Turkish coast around 32◦E, then detaches from the shelf and
penetrates into the deep basin before going again close to the

coast around 35.5◦E. In winter, the eastern and western gyres are
less defined. Following the Rim Current, the Batumi anticyclonic
eddy is well defined in summer, seems to be more confined near
the Georgia coast in autumn, but it is less apparent in winter and
spring. Next, the presence of Sevastopol anticyclonic eddy is very
clear near the southwest of the Crimean Peninsula in spring and
summer, whereas it is less distinguishable in winter and autumn.
All these circulation patterns are consistent with the previous
estimates described in Oguz et al. (1993); Özsoy and Ünlüata
(1997), Korotaev et al. (2003) and Gunduz et al. (2020).

CONCLUSION

The BS-REA system shows very satisfactory skills compared to
the model simulation, which highlights the importance of using
data assimilation to improve the model representation. BS-REA

Frontiers in Marine Science | www.frontiersin.org 14 September 2021 | Volume 8 | Article 71097393

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-710973 August 31, 2021 Time: 12:15 # 15

Lima et al. A Multidecadal Reanalysis for the Black Sea

also has the ability to represent the main Black Sea circulation,
the Rim Current, as well as the mesoscale features in the Black
Sea, such as the quasi-stationary anticyclones Sevastopol and
Batumi eddies, respectively, near the Crimean Peninsula and
southeastern region. Notwithstanding, the BS-REA has shown a
reduced ability to represent the impact of Danube waters on the
sea, which is possibly due to the current model configuration such
as the application of monthly climatological runoff. Furthermore,
the absence of the Bosphorus and Kerch straits negatively impacts
the BS-REA representation in regions adjacent to the Azov
and Marmara Seas.

The system is very suitable for understanding the physical
state of the Black Sea in recent years and allows to obtain more
accurate ocean monitoring indicators for the sea, which are
important to understand its response to climate change. The
temperature analyses have indicated a recent faster warming
of the Black Sea that has impacted its CIL formation. Since
2009, the disappearance of CIL is evident, although some
weaker CIL sporadic events are detected in 2012 and 2017.
Additional investigations show a relative reduction in the
ocean heat content in these years, which coincides with the
reemergence of the CIL.

Trends in temperature, salinity and ocean heat content reveal
a warming and salinification of the Black Sea, especially in the
past few years. However, since trends based on short records are
very sensitive to the beginning and end values of the time series
and cannot in general reflect long-term climate trends, longer
time series are needed to confirm these tendencies. This requires
a continuous improvement of the BS-REA system through
new developments in ocean modeling and data assimilation
together with the maintenance of the Black Sea ocean observation
system. In addition, for future work, we consider comparing our
results with global models such as those from the Ocean Model
Intercomparison Project (Lin et al., 2020; Chassignet et al., 2020)
and global ocean reanalyses (Storto et al., 2019a,b), which can also
allow us to quantify uncertainties through an ensemble of model
results in the Black Sea.

In order to further improve the reanalysis, the next
generation of the Black Sea systems will include a revision
of the hydrodynamical core and new capacities from the data
assimilation scheme. Regarding the core model, the new version
will use higher resolution in vertical (e.g., from 31 to 121 z-levels
with partial steps) and upgrade to NEMO v4.0. The Bosphorus
Strait is going to be represented as an open boundary thanks
to the inclusion of the Marmara Sea box in the numerical
grid: it will ingest the high-resolution model solutions provided

by the Unstructured Turkish Straits System (U-TSS, Ilicak
et al., 2021) - T, S, SSH, U, V - with the scope to optimally
interface the Black Sea with the Mediterranean Sea. Such new
developments, together with the revision of the land forcing and
data assimilation scheme to account for high resolution EOF, will
be part of the new Black Sea forecasting system (Ciliberti et al.,
2021) that entered in service in May 2021 and will be uptaken by
the BS-REA in the near future.
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Ünlülata, Ü., Oğuz, T., Latif, M. A., and Özsoy, E. (1990). “On the physical
oceanography of the Turkish Straits,” in The Physical Oceanography of Sea
Straits. NATO ASI Series (Mathematical and Physical Sciences), Vol. 318, ed. L. J.
Pratt (Dordrecht: Springer), 25–60. doi: 10.1007/978-94-009-0677-8_2

Volkov, D. L., and Landerer, F. W. (2015). Internal and external forcing of sea level
variability in the Black Sea. Clim. Dyn. 45, 2633–2646. doi: 10.1007/s00382-
015-2498-0

von Schuckmann, K., Le Traon, P. Y., Alvarez-Fanjul, E., Axell, L., Balmaseda, M.,
Breivik, L. A., et al. (2016). The copernicus marine environment monitoring
service ocean state report. J. Oper. Oceanogr. 9(Suppl. 2), s235–s320. doi: 10.
1080/1755876X.2016.1273446

Yan, C., Zhu, J., and Tanajura, C. A. S. (2015). Impacts of mean dynamic
topography on a regional ocean assimilation system. Ocean Sci. 11, 829–837.
doi: 10.5194/os-11-829-2015

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.
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Satellite-derived estimates of ocean color variables are available for several decades now

and allow performing studies of the long-term changes occurred in an ecosystem. A daily,

gap-free analysis of chlorophyll (CHL) and suspended particulate matter (SPM, indicative

of light availability in the subsurface) at 1 km resolution over the Greater North Sea during

the period 1998–2020 is presented. Interannual changes are described, with maximum

average CHL values increasing during the period 1998–2008, a slightly decreasing trend

in 2009–2017 and an stagnation in recent years. The typical spring bloom is observed to

happen earlier each year, with about 1 month difference between 1998 and 2020. The

duration of the bloom (time between onset and offset) appears also to be increasing with

time, but the average CHL value during the spring bloom does not show a clear trend.

The causes for earlier spring blooms are still unclear, although a rising water temperature

can partially explain them through enhanced phytoplankton cell division rates or through

increased water column stratification. SPM values during winter months (prior to the

development of the spring bloom) do not exhibit a clear trend over the same period,

although slightly higher SPM values are observed in recent years. The influence of sea

surface temperature in the spring bloom timing appears to be dominant over the influence

of SPM concentration, according to our results. The number of satellites available over

the years for producing CHL and SPM in this work has an influence in the total amount

of available data before interpolation. The amount of missing data has an influence in the

total variability that is retained in the final dataset, and our results suggest that at least

three satellites would be needed for a good representation of ocean color variability.

Keywords: spring bloom phenology, remote sensing, ocean color, chlorophyll, suspended particle matter, North

Sea, DINEOF

KEYPOINTS

- Analysis of 23 years (1998–2020) of daily satellite-based chlorophyll and suspended particulate
matter products in the Greater North Sea using DINEOF (Data Interpolating Empirical
Orthogonal Functions).

- Description of changes in spring bloom phenology, with earlier blooms observed through time.
- The number of satellites used to obtain the data has an influence on retained variance, with at
least 3 satellites needed for a correct representation of variability.
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1. INTRODUCTION

The North Sea is a semi-enclosed shallow shelf sea in
northwestern Europe, and it is one of the most productive
seas in the world (Ducrotoy et al., 2000). It is surrounded
by heavily populated countries with important industrial and
agricultural activities, resulting in large quantities of nutrients
and pollutants being added to the North Sea through riverine
inputs (Ducrotoy et al., 2000). As a result, the North Sea has
suffered from eutrophication issues during several decades (e.g.,
Desmit et al., 2020; Xu et al., 2020; Friedland et al., 2021).
Despite de-eutrophication policies implemented since the 1990s,
such as the EU Marine Strategy Framework Directive (MSFD)
which aims at reaching a Good Environmental Status (GES)
in European waters, the North Sea still receives relatively high
nutrient inputs (nitrogen and phosphorous, Van der Zande
et al., 2019b). This results in intense phytoplankton blooms
occurring every year between March and October, with the
southern parts of the North Sea, shallower and more affected
by industrial and agricultural activities, presenting more intense
blooms (Lancelot et al., 2005; Rousseau et al., 2013; Desmit et al.,
2015, 2020). Phytoplankton blooms are at the basis of the marine
food web, driving biogeochemical cycles, producing oxygen and
acting as a carbon pump (Xu et al., 2020). Phytoplankton
spatial and temporal dynamics can be influenced by several
factors, including the availability of nutrients and light, water
temperature, and grazing (Capuzzo et al., 2017; Xu et al., 2020).

Spring bloom onset in the open ocean typically occurs when
turbulent mixing decays, causing convection to stop (Ferrari
et al., 2015). On well-mixed environments, spring bloom onsets
typically when the upper mixed layer is shallower than a given
critical depth (Huisman et al., 1999). Some studies point out
to a shift in the timing of the spring bloom in the North
Sea to earlier dates in recent years (e.g., Desmit et al., 2020).
While the causes for this are not completely understood, Hunter-
Cevera et al. (2016) point to temperature-induced changes in
phytoplankton cell-division rates as a possible cause. Increasing
temperature trends observed in the North Sea (Høyer and
Karagali, 2016) can therefore contribute to earlier phytoplankton
blooms. Chlorophyll concentration (CHL) is used as a proxy
for phytoplankton concentration, and Suspended Particulate
Matter (SPM) is directly related to the amount of light that is
available for primary producers (Capuzzo et al., 2015). Ocean
color properties have been routinely measured from satellite for
several decades (e.g., Sathyendranath et al., 2019), which allows
for long-term studies. In order to assess the changes that have
occurred in CHL and SPM in the North Sea, long-time series
of daily data must be used (Philippart et al., 2010). Considering
different hydrodynamic regions can also help understand how
physical properties like currents and stratification influence the
distribution of CHL and SPM (Capuzzo et al., 2017).

Interannual changes in CHL and SPM have been studied in
the North Sea by several authors (e.g., Fettweis et al., 2007, 2014;
Philippart et al., 2010; Capuzzo et al., 2015; Desmit et al., 2020)
using in situ and/or satellite data. In situ data are sparse and long
term series are very difficult to maintain. On the other hand,
satellite data are affected by the presence of clouds or quality

flagging (e.g., low sun angle in higher latitudes) that limit the
amount of measurements. Gap-free estimates are needed when
assessing long-term changes in the total concentration of CHL
and SPM in coastal waters, for example in support of the MSFD
in European waters. CHL time series are therefore used as an
indicator for eutrophication (Ferreira et al., 2011), and satellite-
derived gap-free CHL offer the temporal and spatial coverage
necessary for such monitoring activities (Van der Zande et al.,
2019b).

DINEOF (Data Interpolating Empirical Orthogonal
Functions, Beckers and Rixen, 2003; Alvera-Azcárate et al.,
2005) is an EOF-based technique that is used to interpolate
missing data (due, for example, to the presence of clouds) in
satellite data sets. It has been used in numerous works, with
ocean color variables (e.g., Sirjacobs et al., 2011; Alvera-Azcárate
et al., 2015), sea surface temperature (Alvera-Azcárate et al.,
2005) or sea surface salinity (Alvera-Azcárate et al., 2015) among
others and has shown to be reliable even with high amounts of
missing data (e.g., Alvera-Azcárate et al., 2005, 2009).

The main objective of this work is to assess the spatial and
temporal dynamics of CHL and SPM of the Greater North
Sea over a period of 23 years (1998 to 2020) using a gap-free
high spatial (1 km) and temporal (daily) satellite dataset. This
analysis covers a wide area and the gap-free analysis allows
for a better estimation of changes in CHL and SPM both in
time and space. The spatial and temporal variability of these
reconstructed variables will be assessed, with special attention to
the timing of the spring bloom and how it has changed over the
period of study. The dataset is composed of a varying number of
satellite sensors, providing us with insight on the influence of the
number of available satellites in the variability retained in the final
product. Section 2 describes the satellite data used, the domain of
study, and the reconstruction approach using DINEOF. Section 3
contains a brief description of the reconstruction results and the
EOF basis obtained. Section 4 discusses the timing of the spring
bloom onset and how it has changed over the considered period.
Conclusions are provided in section 5.

2. MATERIALS AND METHODS

2.1. Study Area
The domain of study is shown in Figure 1, and covers the
North Sea and the easternmost part of the North Atlantic
Ocean, from 48◦N to 66◦N and from 8◦W to 12◦E. The
bathymetry in this region is very varied, from the shallow
plains of the southern part of the North Sea, with depths
of less than 50 m, to depths of more than 3,000 m north
of the Faroe Islands. Within the shallow parts of the North
Sea, the Norwegian channel surrounding Norway reaches up
to 700 m. In the center of the North Sea, the Dogger
bank is a shallow sandbank that extends over several tens of
kilometers and is a productive fishing ground (e.g., Kröncke,
2011).

Circulation in the North Sea is mainly cyclonic, under
the influence of prevailing westerly winds (Winther and
Johannessen, 2006; Sündermann and Pohlmann, 2011). The
main water inflow pathways are located at the northern part
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of the domain between the British Isles (mainly Shetland)
and Norway, and in a lesser degree through the English
Channel. Water also flows directly from the Atlantic Ocean
toward the Baltic Sea through the Norwegian Channel.
Tides are mainly semi-diurnal and follow also a cyclonic
path in the North Sea (Sündermann and Pohlmann,
2011; Vindenes et al., 2018). The strong tidal currents
result in strong mixing, specially in the shallower parts
of the southern North Sea (Sündermann and Pohlmann,
2011).

2.2. Satellite Data
Generating reliable satellite estimates of CHL in optically
complex coastal waters is still challenging. Many algorithms
exist and give quite different performances for different
optical conditions. For this reason, we applied the approach
of Lavigne et al. (2021) who defined the limits of applicability
of three popular and complementary algorithms: (1) the OC4
blue-green band ratio algorithm (O’Reilly et al., 1998) which
was designed for open ocean waters; (2) the OC5 algorithm
(Gohin et al., 2002) which is based on look-up tables and
corrects OC4 overestimation in moderately turbid waters;
and (3) a near infrared-red (NIR-red) band ratio algorithm
(Gons et al., 2002) designed for high turbid waters. This
approach allows automatic pixel-based switching between
the most appropriate algorithms for a certain water type.
Additionally, the neural-net approach FUB-WEW (Free
University of Berlin Water processor, Fub v4.01, Schroeder
et al., 2007) was used for the Kattegat region due to its high
color dissolved organic matter concentration. Source products
were obtained from publicly accessible archives: the Copernicus
Marine Environment Monitoring Service (CMEMS), European
Space Agency (i.e., ODESA) and other data providers (i.e.,
IFREMER). More details can be found in Van der Zande
et al. (2019b). The SPM products were generated by applying
the approach of Nechad et al. (2010) to the OC-CCI Remote
Sensing Reflectance (Rrs) product obtained from CMEMS
(OCEANCOLOUR_ATL_OPTICS_L3_REP_OBSERVATIONS
_009_066, CMEMS data portal). All daily satellite products
were generated with a spatial resolution of approximately 1 km,
resulting in a matrix of 1913× 1639 pixels in space for each day.
The winter months December and January were excluded from
the analysis as no ocean color products were available over a
large part of the Greater North Sea due to low sun angle which
complicates atmospheric correction procedures.

2.3. DINEOF
The CHL and SPM datasets were reconstructed using DINEOF
(Data Interpolating Empirical Orthogonal Functions, Beckers
and Rixen, 2003; Alvera-Azcárate et al., 2005). DINEOF
calculates the expected value for the missing data based on the
spatio-temporal information contained in the dataset, using a
series of EOFmodes. EOFs provide an efficient way of calculating
the main modes of variability of a dataset, in order of increasing
explained variance (von Storch and Zwiers, 1999). However,
EOFs should not be directly calculated on uncomplete data,
and DINEOF provides a way to overcome this and provide

an estimate for the missing data at the same time. DINEOF
calculates an EOF basis from the initial gappy data, by initiating
the missing data to the average value of the matrix as first
guess. As the matrix is demeaned to work with anomalies for
the EOF decomposition, the initial missing data are in fact
initialized with a value of zero. Using this matrix with zero
at the missing locations, the first EOF (i.e., the main mode)
is calculated. The missing data values are then recalculated
using the EOF basis, obtaining an improved guess for those
values. The process is iterated until convergence is reached
for the missing data values. The number of EOF modes is
increased (first one EOF, then the two first EOFs, and so on).
Normally there can be as many EOF modes as the temporal
size of the matrix being reconstructed (considering time as
the smallest dimension, which is typically the case in satellite
datasets). However, higher order EOFs contain a very small
fraction of the total variability and may contain also noise
and other transient errors, so in order to avoid retaining that
information in the final product and to keep the computing time
reasonable, only a truncated EOF series is used. The optimal
number of EOFs that are retained for the final reconstruction
of the missing data is determined by cross-validation: about
2-3% of valid data (i.e., not missing) are marked as missing
data, and at each step DINEOF calculates the error between the
initial data and the expected value provided by the EOF basis.
The cross-validation data are taken in the form of clouds (as
explained in Beckers et al., 2006) to better represent the nature of
missing data in satellite images. DINEOF has been used in many
previous works, and can be applied to variables like sea surface
temperature and winds (Alvera-Azcárate et al., 2007), sea surface
salinity (Alvera-Azcárate et al., 2016), chlorophyll (Huynh et al.,
2020), etc.

Images with more than 98% of missing data were removed
prior to the DINEOF reconstruction, which effectively removes
mostly data from December and January. After removal of these
images, there is still a very high amount of missing data, specially
at high latitudes. As an example, the percentage of missing data
for years 1998 and 2018 is shown in Figure 2. The percentage
of missing data in 2018 is lower than in 1998 because of the
availability of more satellite systems and sensors in recent years,
namely MODIS, VIIRS and Sentinel-3 for recent years compared
to only SeaWiFS in 1998 to 2002. The temporal distribution of
the percentage of missing data (panel a of Figure 2) shows lower
amounts of missing data during summer months, although on
average there is always at least 60% of the domain with no data.
Such a high amount of missing data makes it impractical to
quantify the inter-annual variability with high confidence, and
therefore an interpolation to reconstruct these gaps is necessary.

Given the large size of the domain and the long time series
that is being used in this work, each year has been reconstructed
separately. Because December and January are not included in
the analysis due to their high percentage of missing data, there
is no continuity problem between each year. Making a separate
analysis for each year also ensures that the EOF basis used for
the reconstruction is not dominated by the main seasonal cycle.
The data are transformed using a natural logarithm before the
DINEOF analysis to ensure a distribution closer to a normal one.
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FIGURE 1 | Domain of study with bathymetry (in m). The contours in the northwest part of the domain correspond to the 1,000, 2,000, and 3,000 m depth. DB

shows the location of the Dogger Bank.

2.4. Determination of Spring Bloom Onset
Date
In order to assess the timing of the spring bloom in the North
Sea and if this timing has changed through the years, we have
used a threshold method following (Brody et al., 2013). The
median of the North Sea CHL concentration is determined
for every year and the date on which the concentration of
CHL first reaches a value 5% above this median is chosen
as the date the spring bloom starts. Other suggested methods
in Brody et al. (2013), like the maximum rate of change

in CHL growth, reflect the moment in which the bloom
is already well underway and not in its starting phase. A
30-day Gaussian filtered time series is used to avoid short-
term variations influencing in the calculation of the spring
bloom timing.

3. DINEOF RESULTS

In this section the main results obtained with DINEOF are
presented. The reconstruction for each year has a different
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FIGURE 2 | Percentage of missing data in the domain of study. (A) Spatially averaged percentage of missing data in the initial time series (black) and with a 30-day

Gaussian low-pass filter (blue). (B) Temporal average of the percentage of missing data for 1998 (year with the highest average percentage of missing data). (C)

Temporal average of the percentage of missing data for 2018 (year with the lowest average percentage of missing data).

number of optimal EOFs depending on factors like the
available data, the cloud coverage and the structures that are
observed in the initial data (i.e., when no clouds or other
missing data obscure them). For example, in the reconstruction
of the CHL dataset in 1998 (the year with the maximum
percentage of missing data), 5 EOFs were found optimal to
reconstruct the missing data by DINEOF. For 2004, with
a low percentage of missing data, 13 EOFs were found as
optimal by DINEOF. For the SPM reconstructions, the minimum
number of EOFs retained was 5 (for 2008) and the maximum
was 19 (for 2009).

3.1. Validation
The multi-year dataset (both the original cloudy data and the
DINEOF reconstruction) have been used in the frame of the EU-
funded JMP-EUNOSAT project (Joint Monitoring Programme
of the Eutrophication of the North Sea with Satellite data), to
assess the use of satellite data to monitor the eutrophication in

the North Sea with the help of satellite data, and a thorough
validation has been realized in that project (Van der Zande
et al., 2019a). The quality of the DINEOF reconstruction has
been therefore assessed in the frame of the JMP-EUNOSAT
project. The satellite-based CHL observations were compared to
in situ observations collected in national monitoring programs.
Differences between in situ and satellite CHL observations
were quantified based on direct match ups within the in situ
data archive. Considering all available data, the uncertainty is
estimated with the Mean Absolute Difference (MAD) resulting
in a value of 1.89 µg/l, which corresponds to a Mean Absolute
Percentage Difference (MAPD) of 45.26%. The satellite products
tend to overestimate CHL values when CHL is less than
1µg/l resulting in a slope of 0.64 and a relative high scatter
(r2 = 0.60) around the 1:1 line for higher CHL values.
Validation of the DINEOF gap-filled products was performed
with daily match up study using Dutch monitoring data ranging
from clear to very turbid water conditions. Dutch monitoring
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data consisted of ship-based water samples collected between
1998 and 2016 in the Dutch coastal zone available at https://
waterinfo.rws.nl/. Only surface samples (maximum depth of
3 m) analyzed using the HPLC method were accepted. The
match-up analysis between the daily satellite CHL products and
available in-situ CHL observations was performed following the
approach of Bailey and Werdell (2006) allowing a maximum
time difference of 2 hours. Applying the DINEOF technique
results in a significant increase of available match ups (from
216 to 755) without strongly changing the correlation statistics
(MAD original: 2.47 µg/l; MAD DINEOF: 2.83 µg/l, Figure 3)
showing the potential of this approach to improve satellite-
based observations for regions where satellite data availability
is limited.

3.2. Example of Short-Term and
Small-Scale Variability
An example of the reconstructed CHL data is shown in Figure 4,
with a sequence of 5 days in May 2018 (with 5-day intervals
to avoid showing too similar images). This sequence has been
chosen because a CHL bloom is happening in the northernmost
part of the domain, and the currents have advected the CHL
which serves as a tracer for mesoscale eddies. These eddies are
partially visible in the initial data, and the reconstruction is able
to retain that kind of variability, even in a part of the domain
that has a very large amount of missing data. In the central part
of the North Sea, between Scotland and Norway, an elongated
bloom is seen, which fades with time. This feature is also retained
in the DINEOF reconstruction. Only one every 5 days is shown
in Figure 4 for clarity, but intermediate dates also contributed
to the final reconstruction and the shaping of the meso- and
small-scale variability.

The same dates are also shown for SPM in Figure 5. Large
SPM concentrations are found in the shallower regions in the
southern half of the domain, which seem to decrease with time.
The variability in the northern part of the domain is not as clearly
observed in the initial SPM but the reconstruction seems to retain
these scales as well. A high SPM concentration feature develops
south of the Faroe Islands and in general we can appreciate that
the concentration of SPM increases in the northern part of the
domain during these days. The spatial and temporal variability
retained by the DINEOF reconstruction is similar to what is
observed in the initial data.

3.3. EOF Modes
The EOF modes that are provided by DINEOF have also been
inspected for CHL (Figure 6) and SPM (Figure 7). In general,
the first three modes display the same general patterns for all
years, with obviously differences in small-scale patterns and
intensity. As an illustration of the patterns represented in these
modes, Figure 6 shows the first 4 EOF spatial and temporal
modes in 2008 for CHL. The first EOF mode contains the
seasonal variability due mainly to the spring bloom, as indicated
by the first temporal mode showing a maximum in spring.
The first spatial EOF mode has a larger amplitude along the
coastal regions. The second EOF mode still shows a signal at
the beginning of the year, indicating the CHL activity linked to

the spring bloom, although this time in the center region of the
North Sea. The third EOF appears to show the activity linked
to blooms at higher latitudes, occurring for example around the
Faroe Islands and peaking later in the year in the months of
July and August. The fourth EOF is also included to show the
smaller spatial and temporal variability included in the higher
order modes.

For SPM we only show the first 2 modes, as the higher order
ones include small-scale variability and are therefore much more
variable from year to year. Figure 7 shows the SPM spatial and
temporal modes for 2008. The first spatial mode shows a larger
amplitude in the southern coastal regions, which are shallower
and receive large riverine discharges. The plume of the Thames
river is also clearly seen, with high SPM values reaching several
hundreds of km from its source. Maximum values, as expected,
are found during the winter months (Figure 7). The second EOF
mode highlights the central region of the North Sea, with higher
SPM values again in winter. The southern coastal zones and the
open sea waters in the north show a similar amplitude which
peaks during summer months.

Given the high amount of data being analyzed, the correlation
between the different EOF modes for the CHL data were
also calculated. The aim was to examine in which years the
CHL patterns are more similar to each other and which years
the patterns of CHL are more different. Figure 8 shows the
correlation between each year and all other years, for the first
CHL EOF mode. The correlation matrix shows a diagonal with
a correlation of 1 (correlation of each year CHL to itself),
and symmetric values off the diagonal, with higher values for
years with stronger correlation between them. The correlation
between the first mode among all years is high (always higher
than 0.8), as expected, since this mode shows the seasonal
cycle as seen for example in Figure 6. However, we can also
observe that there is a higher correlation among specific periods:
the 1998–2001 period, the 2002–2012 period, the 2013–2016
period and the 2017–2020 period. As shown in Figure 2,
the number of satellites used to compute the CHL data has
been different through time, and this has an influence in the
amount of missing data. The clusters of correlation shown in
Figure 8 correspond well to changes in the total number of
satellites available. Figure 8 also shows in the bottom panel
the percentage of variability explained by the EOFs used in
the DINEOF reconstruction, and this also reflects the changes
in the number of satellites: analyses in years with one or two
satellites have lower retained explained variability than years
with three satellites. A similar result was observed in the first
SPM EOF (not shown). This result seems to suggest that the
availability of at least three ocean color satellites, providing
better data coverage, results in improved representation of the
variability by interpolation techniques, and sets up a target on the
minimal requirements for a correct measurement of the ocean
color variability.

3.4. Interannual Variability
A spatial average of the daily CHL and SPM products over
the whole domain has been performed to assess interannual
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FIGURE 3 | Scatterplots of in situ and satellite CHL observations for the Netherlands using the JMP-EUNOSAT CHL archive, without (left) and with DINEOF

interpolation (right). The relationship between both data sets are described by the Mean Absolute Difference (MAD), Mean Absolute Percentage Error (MAPD). The

determination coefficient (r2) and the slope characterizes the regression (adapted from Van der Zande et al., 2019b).

FIGURE 4 | Example of CHL (µg/l) on 15, 20, 25, and 30 May 2018 for the initial data (top) and corresponding DINEOF reconstruction (bottom).

variability, and the time series has been filtered using a 30-
day Gaussian low-pass filter (Figure 9). A large interannual
variability in the average CHL value as well as in the strength

of the spring peak can be observed. The reasons for this
interannual variability are numerous, including variations in
water temperature, water turbidity and nutrient availability
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FIGURE 5 | Example of SPM (mg/l) on 15, 20, 25, and 30 May 2018 for the initial data (top) and corresponding DINEOF reconstruction (bottom).

(Desmit et al., 2020). The European Marine Strategy Framework
Directive (MSFD), implemented in 2008, requires the European
member states to achieve Good Environmental Status (GES),
limiting for example the amount of nutrients that are shed to the
rivers by agricultural activities. One of the consequences of this
limitation in nutrients would be a decrease in the eutrophication
of the North Sea, and in Figure 9 (top panel) it can indeed be
observed that the average CHL concentration has decreased since
2008, with a stagnation, and even a slight increase, in recent years
(2017–2020). Friedland et al. (2021) observed a decrease in CHL
levels in the North Sea during the 2005–2012 period using an
ensemble model simulation, and attributed this to a decrease in
nutrient load from rivers into the North Sea. The highest CHL
concentration in the average satellite time series of Figure 9 was
reached in the spring bloom of 2008 (with 2.46 µg/l). The lowest
concentration of CHL during the spring bloom in this same
figure is observed in 2017 with 1.5 µg/l.

SPM time series (Figure 9, middle panel) shows a large
variability in the winter values (with the time series starting in
February of each year), when SPM reaches its highest values.
Years like 2002, 2008, and 2014 show very high winter SPM
concentrations, and in general the winter SPM average values
have been higher in the periods 2002–2008 and 2014–2020 than
in the rest of the time series. Minimum values are reached during
summer months (Figure 9), when mixing and resuspension

decreases. The interannual variability of the minimum values is
not as high as the variability observed in maximum values.

4. SPRING BLOOM ONSET

Following the threshold method described in section 2.4, we
have calculated the date on which spring bloom starts each year.
The dates of the spring bloom onset are shown in Figure 10.
Despite interannual variability, there is a clear tendency at sooner
spring bloom onset dates in recent years, i.e., the spring bloom
appears to start on earlier dates. The trend toward earlier dates
is significant with a p-value of 4.13e-05. A similar finding was
already observed by Desmit et al. (2020) although their study
was limited to the southern North Sea and used in situ data (i.e.,
the spatial extension was smaller). The date of the spring bloom
onset has decreased 1.5 days per year in average over the studied
period. The reasons for a change on the date of spring bloom
onset can be varied. In the North Sea, as in the global ocean,
water temperature has been increasing over the last decades as
a result of climate change. For example, Desmit et al. (2020)
reported an increase of the sea surface temperature in the North
Sea of ∼ 0.035◦C yr−1 using in situ data from 1971 to 2014,
and Høyer and Karagali (2016) found a 0.037◦C yr−1 increment
for the North Sea from 1982 to 2012 using a reanalysis product.
Using CMEMS “European North West Shelf/Iberia Biscay Irish
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FIGURE 6 | First four spatial CHL EOF modes for 2008 (top two rows) and first four temporal CHL EOF modes for 2008 (bottom two rows).
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FIGURE 7 | First two spatial SPM EOF modes for 2008 (top) and first two temporal SPM EOF modes for 2008 (bottom).

Seas - High Resolution L4 Sea Surface Temperature Reprocessed”
Sea Surface Temperature (SST) satellite product, the daily average
SST over the domain of study was calculated for the years 1998–
2019 (last year available for this product at the moment of
access), as shown in Figure 9. A warming of 0.31◦C has been
calculated from 1998 to 2019, or 0.015◦C yr−1. This value differs
from the others found in the references mentioned, but this
difference can be attributed to the different spatial domains,
periods considered and products used. All results however point
at an increasing water temperature in the North Sea over the
last decades. If nutrients are not limited, higher temperatures
can accelerate phytoplankton cell division rates (e.g., Edwards
et al., 2016; Hunter-Cevera et al., 2016), contributing to earlier
blooms. The effect of rising temperature must be accompanied
by a stratification of the water column to favor earlier blooms.

The time of the spring bloom ending was also calculated
following the opposite criterion as for the onset, i.e., the date
on which the concentration of CHL first goes below the yearly

median plus 5%. This is used to assess the duration of the
spring bloom (time between onset and offset). While there is
a high year-to-year variability in the duration of the spring
bloom (Figure 11), a tendency toward longer blooms can be
observed in more recent years, although this trend is not
statistically significant. The years with longer bloom periods
typically have a slow growing or weaning periods, as in 2013 and
2004, respectively (examples shown in Figure 11), causing the
bloom period to be longer. Longer spring bloom periods do not
mean higher CHL peaks or stronger blooms, and no significant
correlation has been found between the strength of the peak
(calculated as the difference between the maximum CHL value
attained each year and the median value) and the duration of
the bloom.

The average CHL concentration between the onset and offset
of the bloom (Figure 12 top panel) shows increasing values
during the period 1998–2008 and then a decreasing trend. Values
in the 2017–2020 period are similar to what was observed during
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FIGURE 8 | (Top) Correlation between each year first EOF CHL mode and all the other years. (Bottom) Percentage of explained variance retained in the DINEOF

interpolated dataset.

the early 2000s. Therefore, having spring blooms earlier in the
year does not impact the average amount of CHL during the
bloom. The amount of SPMduring the winter months (February-
March, as January is not used in our analysis because of the low
availability of data) does not show a significant trend, but values
appear in general to be higher during recent years. Studies of
the influence of water clarity on phytoplankton growth reveal
different results depending on the region. Several works (e.g.,
Capuzzo et al., 2015; Opdal et al., 2019; Wilson and Heath,
2019) found that light availability for phytoplankton growth has
decreased on average in the North Sea during the XXth century
through an increment of SPM. Philippart et al. (2013) on the
other hand have found no significant increase or decrease of
turbidity over four decades in theWadden Sea (southeastern part
of the North Sea). Our results do not show a clear trend in the
average SPM concentration over the Greater North Sea over the
period of study, so we cannot conclude that light availability has
had an influence in the spring bloom onset date.

The time of maximum CHL concentration during each year
bloom period has been also calculated (Figure 12 bottom panel).
As the date of spring bloom onset has shifted to earlier dates,
we could expect a similar shift in the peak of the bloom. While
we can observe a general decrease in Figure 12 the variability
is also high, specially during 2002–2013. The maximum CHL

concentration during recent years (2014–2020) is reached 1–2
weeks earlier than what was observed in the early 2000s. While
the linear trend over all the years is not significant (p = 0.07), it
would be worth revisiting this when more data become available,
to determine if there is a shift in the date when the spring bloom
reaches its maximum.

The data presented show that the spring bloom in the Greater
North Sea has shifted to earlier dates during the last 23 years,
with the maximum CHL value probably occurring also in earlier
dates. Bloom duration shows high variability but appears to
have become longer, but the average amount of CHL during
the spring bloom period does not show a clear trend over
time, indicating that the blooms have not become stronger nor
weaker due to the shift in time. From all the analyses shown
in Figures 10–12, only the date on which the spring bloom
starts each year (i.e., Figure 10) shows a statistically significant
trend. SPM values during winter months show also higher values
during more recent years, although there is a lot of variability in
these data. Higher SPM would imply lower CHL or later spring
bloom onset dates as more turbid waters hinder light availability
for primary producers. We therefore suggest that the role of
increasing water temperature has had a stronger effect in spring
bloom onset date than SPM concentration. However, given the
large size of the domain of study, multiple factors are probably
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FIGURE 9 | (Top) CHL Spatial average over the whole domain of Figure 1 during the 23 years of the study. (Middle) SPM averaged over the same region. Data from

December-January is not plotted. (Bottom) SST spatial average over the whole domain. The thin black line shows the 1-yr running mean. Different colors for each

year are used to ease comparison between variables for a given year. This color scheme is used in other multi-year figures in this work to ease comparison.

FIGURE 10 | Date on which the CHL concentration reaches the annual median value for the first time each year. The solid black line shows a linear fit to the dates,

with r = 0.75 and a p-value of 4.1267e-05.
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FIGURE 11 | Top: spring bloom duration in days for each year of the study. Middle and bottom rows, the domain-averaged CHL (in blue) and SPM (in red) with a

30-day low pass filter. The dates at which the bloom starts and ends (black dots) as determined by the median threshold method. Years 2000, 2004, 2013, and 2014

are given as examples.

responsible for the observed change in spring bloom onset date,
with the relative influence of each factor probably varying in
each region.

5. CONCLUSIONS

We have performed a daily, gap-free reconstruction of
chlorophyll (CHL) and suspended particulate matter (SPM) in
the Greater North Sea region over the period 1998 to 2020 with a
spatial resolution of 1 km. Missing data have been reconstructed
using DINEOF (Data Interpolating Empirical Orthogonal
Functions). The mesoscale variability observed in the initial,
gappy data (eddies, fronts, Thames river plume) are retained
in the final datasets, demonstrating the high resolution of the
reconstructed data. Both the initial and reconstructed data were

validated in Van der Zande et al. (2019b) and showed a correct
level of accuracy. The EOF modes used for the reconstruction
show that, in general, the southern part of the domain has the
largest variability. This is due in part to the shallower depths, and
the largely urbanized coasts of this region which result in more
nutrients reaching the coastal waters through river run-off.

The interannual variability was observed to be high, with
changes in year-to-year CHL and SPM annual cycle, as well as
their maximum and minimum values. Maximum CHL values
obtained during the spring bloom have increased during the
period 1998–2008, and show a decrease during 2008–2017. The
maximumCHL appears to be slightly increasing again during the
period 2017–2020.

This work has shown that the start date of the spring bloom
occurs earlier every year in the North Sea, with starting dates in
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FIGURE 12 | (Top) Average CHL during the spring bloom period each year. (Middle) Average SPM during February and March. (Bottom) Time at which the

maximum CHL concentration is reached each year.

2020 about 1 month earlier than in 1998. Earlier spring bloom
dates have been described in the southern part of the North Sea
using in situ data (Desmit et al., 2020), and our study has shown
this trend on a global scale covering the Greater North Sea, using
satellite data. Increasing water temperatures can explain at least
in part this trend, although it remains unclear what the role of
the SPM has been. The SPM average concentration in February-
March each year does not show a clear trend that could help
explain the earlier dates of the spring bloom.

Another major conclusion of this work is related to the use of
a variable number of satellites in long-term ocean color analyses,
and the impact of this number in the final product. The number
of satellites used to compute CHL and SPM has an impact in
the amount of explained variance by the EOF modes used in
DINEOF, as more satellites provide also a better spatio-temporal

coverage of all scales of variability. In order to retain a large
amount of the initial variability, at least three satellites measuring
ocean color are required. Periods with only 1 or 2 satellites
showed a lower amount of percentage of retained variance in
the final, interpolated product. This result sets up a target on the
minimal number of satellites that would be needed for a correct
measurement of the ocean color variability, specially in zones
with a high amount of clouds and other sources of missing data.

Analysis of long time series of CHL and SPM data are
necessary to understand the impact of human activities on
the ecosystem. Using gap-free satellite data at high spatial
resolution is necessary to resolve the small-scale variability
that contributes to the net variations of CHL and SPM, and
our DINEOF analysis of these variables has been shown to
provide enough detail to resolve these structures. Due to the
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large size of the domain of study, with shallow waters in
the southern, highly populated region, an open connection
to the Atlantic Ocean to the North, and the opening to
the Baltic sea to the East, the factors influencing spring
bloom phenology can be also multiple. Future work should
address the changes observed in sub-regions of the North Sea,
like the Southern North Sea, the Norwegian channel or the
Faroe Islands.
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Ocean Mesoscale Variability: A Case
Study on the Mediterranean Sea From
a Re-Analysis Perspective
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The mesoscale variability in the Mediterranean Sea is investigated through eddy detection
techniques. The analysis is performed over 24 years (1993–2016) considering the three-
dimensional (3D) fields from an ocean re-analysis of the Mediterranean Sea (MED-REA).
The objective is to achieve a fit-for-purpose assessment of the 3D mesoscale eddy field. In
particular, we focus on the contribution of eddy-driven anomalies to ocean dynamics and
thermodynamics. The accuracy of the method used to disclose the 3D eddy contributions
is assessed against pointwise in-situ measurements and observation-based data sets.
Eddy lifetimes ≥ 2 weeks are representative of the 3Dmesoscale field in the basin, showing
a high probability (> 60%) of occurrence in the areas of the main quasi-stationary
mesoscale features. The results show a dependence of the eddy size and thickness
on polarity and lifetime: anticyclonic eddies (ACE) are significantly deeper than cyclonic
eddies (CE), and their size tends to increase in long-lived structures which also show a
seasonal variability. Mesoscale eddies result to be a significant contribution to the ocean
dynamics in the Mediterranean Sea, as they account for a large portion of the sea-surface
height variability at temporal scales longer than 1 month and for the kinetic energy
(50–60%) both at the surface and at depth. Looking at the contributions to ocean
thermodynamics, the results exhibit the existence of typical warm (cold) cores
associated with ACEs (CEs) with exceptions in the Levantine basin (e.g., Shikmona
gyre) where a structure close to a mode-water ACE eddy persists with a positive
salinity anomaly. In this area, eddy-induced temperature anomalies can be affected by
a strong summer stratification in the surface water, displaying an opposite sign of the
anomaly whether looking at the surface or at depth. The results show also that temperature
anomalies driven by long-lived eddies (≥ 4 weeks) can affect up to 15–25% of the monthly
variability of the upper ocean heat content in the Mediterranean basin.

Keywords: fit-for-purpose assessment, regional ocean re-analysis, Mediterranean Sea, eddy detection and
tracking, 3D mesoscale field, eddy-induced anomalies
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1 INTRODUCTION

Mesoscale eddies can originate nearly everywhere in the ocean, and
typically exhibit different properties (e.g., heat, salt, carbon) with
respect to their surroundings, which can be transported as they
move around the ocean (Chelton et al., 2007; Chelton et al., 2011b;
Zhao et al., 2018). At the surface, mesoscale eddies are identified
from satellite altimetry data, where depression (elevation) in the sea
level anomaly (SLA) field reveals a cyclonic (anticyclonic) structure
(Chelton et al., 2011a). Although only the surface expression of
mesoscale eddies is visible in remote sensing measurement of SLA
and sea-surface temperature (SST), they are three-dimensional
(3D) structures that can reach down into the pycnocline.
Temperature and salinity anomalies induced by eddies tend to
be opposite depending on the polarity of an eddy: cyclones (CE)
versus anticyclones (ACE) (Gaube et al., 2013; Dong et al., 2014;
Raj et al., 2016; Raj et al., 2020). Mode-water eddies represent a
substantial exception to this general rule (Barceló-Llull et al., 2017;
Zhang et al., 2017; Shi et al., 2018). Schütte et al. (2016) show the
existence of ACEswith both negative SST and salinity anomaly and
positive ones. Pegliasco et al. (2015) observed ACEs with a lens-like
structure of isopycnals in the eastern boundary upwelling regions.
In this context, eddy-detection systems (e.g., Dong et al., 2012;
Petersen et al., 2013; Xu et al., 2014; Faghmous et al., 2015; Frenger
et al., 2015; Lin et al., 2015) are an ad-hoc diagnostic tool designed
to isolate mesoscale features, track them in time, and exclusively
analyze the parcel of water trapped inside. These systems can
disentangle the “anomalous” content dragged by eddies, that can
differ from the ambient waters, in terms of nutrient concentration,
tracers, and energetic component. Combining multiple observing
system networks, from in-situ and remote-sensing, it is now
possible to investigate eddy-induced anomalies in water mass
structures, estimate ocean heat, and salt transport by advective
trapping (e.g. Gaube et al., 2013; Dong et al., 2014), and hence infer
the quasi-3D structure of the non-linear features. Conversely, the
representation of ocean mesoscale dynamics is strongly limited by
the spatial coverage and temporal sampling of a given satellite
mission (e.g., Bonaduce et al., 2018; Chen et al., 2021). Moreover,
the temporal and spatial co-location with the available Argo
profiling floats in certain areas of the ocean is affected by
uneven data coverage and sampling frequency (e.g., Liu et al.,
2020), which can represent a shortcoming to investigate the
properties of water masses induced by the occurrence of 3D eddies.

These limitations can be overcome by exploiting the synergy
between multiple observing systems and ocean model dynamics.
Ocean re-analyses combine information from multiple observing
networks (e.g., satellite altimetry and Argo profiling floats) with
ocean model dynamics and atmospheric forcing through
multivariate data assimilation methods (Storto et al., 2019) to
obtain optimized 4D estimates of the state of the ocean. These are
non-linear, dynamically-reconstructed ocean fields that
outperform observation-only reconstructed products in several
crucial climate indexes (Wunsch and Heimbach, 2014;
Balmaseda et al., 2015), as well as in the representation of the
small-scale variability at depth (Cipollone et al., 2017).

The objective of this work is to achieve a fit-for-purpose
assessment of the representation of the 3D structure of

mesoscale eddies in a regional ocean reanalysis for the
Mediterranean Sea.

In this area, eddies have a deep and stable structure, penetrating
well below the mixed layer depth down to 400–500 m (e.g., Fusco
et al., 2003). Their structures are almost stationary, mainly trapped
between the most prominent ocean currents of the basin (e.g.,
Pinardi et al., 1997; Pinardi and Masetti, 2000; Pinardi et al., 2015),
thus behaving like a preferred energetic pathway to transform
potential into eddy kinetic energy (EKE) and mixing deep and
surface water (e.g., Rubio et al., 2009). A mere look at surface
physics only would be a too coarse approximation, and it is
therefore crucial to have access to the full 3D eddy structure,
for any quantitative estimate of anomalous flow and the impact on
ocean circulation and water masses. The features of the ocean
circulation in the Mediterranean Sea have been investigated so far
from either models or observations. A fundamental contribution to
the understanding of ocean general circulation and mesoscale
dynamics in the Mediterranean Sea was made by the Physical
Oceanography of the Eastern Mediterranean Group, based on
innovative observational strategy and pioneering numerical
simulations (e.g., Robinson et al., 1992; Robinson and
Golnaraghi, 1993; Robinson et al., 2001). Comparing the
geostrophic velocities derived from satellite altimetry missions
(ERS-1 and TOPEX/Poseidon; Ayoub et al., 1998) and ocean
currents from numerical experiments, Pinardi and Masetti
(2000) emphasized the influence of the eddy field on large scale
circulation. Pinardi et al. (2015), considering ocean currents from
model re-analyses over 2 decades, achieved a new schematic of
ocean circulation in the Mediterranean Sea, and underlined how
cyclonic and anticyclonic gyres in the northern and southern parts
of the basin, respectively, characterize the large scale circulation.
Observations and model-based activities were carried out by
Marullo et al. (2003) to investigate the variability of the mixed
layer in the Levantine basin driven by the Rhodes and Ierapetra
Gyres. Fernandez et al. (2005) studied the interannual eddy-driven
variability and showed that it is persistent and evolves slowly,
independently of the annual cycle of the atmospheric forcing. The
anomalies in the circulation patterns can happen not only in the
top layers but also in deeper layers, which are hardly related to the
changes in the atmospheric forcing. Escudier et al. (2016) described
the 3D structure of the western Mediterranean basin eddies by
using several eddy-resolving model simulations and satellite
altimetry. Considering a similar spatial domain, Mason et al.
(2019) compared global and regional operational models to
obtain new insight into the 3D eddy properties. Mkhinini et al.
(2014) studied a long-lived eddy in the eastern part of the basin
analyzing 2D altimetry maps. Well-known stationary eddies in the
Levantine basin were the subject of specific oceanographic
campaigns (Ioannou et al., 2017; Mauri et al., 2019; Velaoras
et al., 2019).

In this work, we focus on the Mediterranean basin to
investigate the entire 3D mesoscale field that emerges from an
eddy-resolving ocean re-analysis. In particular, we look at the
surface and 3D signatures of the non-linear eddy structures and
their contributions to the kinetic energy in the ocean and the
vertical structure of water masses. The consolidated ocean re-
analysis considered in this work (Simoncelli et al., 2019) is
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implemented in the region at a horizontal resolution of 1/16°

(Oddo et al., 2014; Tonani et al., 2015) which provides an
excellent playground in terms of resolution and eddy population.

The renalysis dataset explored covers 24 years (1993–2016) of
daily averaged fields with a grid spacing of about 6–7 km (the exact
spacing varies according to latitude). Although sub-mesoscale
processes, not presently included in the circulation model, are
known to have an impact on mesoscale fronts and vortexes (Haza
et al., 2012; Sasaki et al., 2014), this resolution is sufficient to sustain
turbulence generated by the model itself at the first baroclinic
wavelength or coming from assimilation procedure increments. In
this sense, theMediterranean region is fully resolved both at spatial
(Hallberg, 2013) and temporal scale, i.e., eddies can be followed in
time with daily sub-sampling while their typical lifetime ranges
between several days and few months.

The paper is organized as follows: Section 2 describes the
ocean re-analysis and eddy detection algorithm considered to
characterize the 3D mesoscale structures in the Mediterranean
Sea. Section 3 assesses the accuracy of the methodology by
comparing with observations and describes the eddy
contributions to ocean dynamics and water masses structure
(thermodynamics). Section 4 summarizes and provides
conclusions to this work.

2 MATERIALS AND METHODS

2.1 Mediterranean Re-Analysis
The version of MED-REA used in this work (Simoncelli et al.,
2019) relies on a fully eddy-resolving horizontal resolution
(6–7 km) ocean general circulation model (OGCM), based on
the Nucleus for European Modelling of the Ocean (NEMO;
Madec, 2016) and implemented in the Mediterranean region
(Oddo et al., 2009; Oddo et al., 2014). The system is extensively
validated against in-situ and remote-sensing observations and, up
to 2020 provided also operational services within the framework
of the Copernicus Marine Environment and Monitoring Service
(CMEMS). The MED-REA is forced by the 6-h, 0.75° horizontal-
resolution Era-Interim atmospheric re-analysis (Dee et al., 2011)
from the European Center for Medium-Range Weather Forecast
(ECMWF) and global ocean monthly mean climatology fields
(Drévillon et al., 2008) are considered as lateral open boundary
conditions (Oddo et al., 2009). The assimilative system considers
the most updated and best quality flagged observational records
of temperature (T), salinity (S), and sea surface height (SSH),
retrieved from a variety of observational networks (both from in-
situ and remote-sensing observations), which are ingested into
the system during the numerical integration, through a 3D
variational (3D-VAR; Dobricic and Pinardi, 2008) data
assimilation scheme, to obtain an ocean synthesis which has
the potential to provide more accurate information than
observation-only or model-only based ocean estimations (e.g.,
Heimbach et al., 2019). We explore MED-REA daily outputs of
SSH, zonal and meridional currents, ocean temperature, and
salinity over a 24-year period (1993–2016) to investigate the
mesoscale eddies in the Mediterranean region, through
innovative eddy detection and tracking methods.

2.2 Methods
In this Section, we exploit a three-dimensional eddy-detection
system (Cipollone et al., 2017) capable of constraining 3D
mesoscale structures simultaneously through static and
dynamic features (see Supplementary Appendix SA). The
system has been improved to extract the “anomalous” eddy
content in contrast to its non-homogeneous surrounding
water. Eddy and background values are extracted at the same
time thus removing any potential bias coming from calculations
based on climatological fields or spatial smoothing. The accuracy
of the method is assessed against in-situ observations in one
specific region of the Mediterranean Sea (MED) where a number
of Argo profiling floats (Good et al., 2013) are present both within
and outside of the eddy (∼500 floats during the period
2008–2010).

The background to the observed eddy-driven anomalies are
defined in the temperature and salinity fields. We consider eddy-
specific temporal and spatial scales to define the properties of the
surrounding water masses, which are then considered as a
reference for estimates of the anomalies induced by the
mesoscale 3D features. A detailed description of the eddy
detection and tracking algorithm is given in Supplementary
Appendix SA.

2.2.1 Definition of Spatial Anomaly in Presence of
Non-Homogeneous Background
The notion of “anomaly” generally refers to a certain
phenomenon or signal that departs from a “standard”
background field and brings therefore a non-zero information
content (e.g., Wilks, 2011). While the anomalous behaviour is
simple to detect by inspection qualitatively, on the other hand, it
is not always obvious how to more quantitatively define what
should be retained in the background and what should contribute
to the anomaly. In oceanography, climatological fields are often
used as a proxy for the identification of “standard” behaviours.
The time average is therefore used as a spatial smoother and
therefore the main stationary, cyclical phenomena are retained in
the background term, i.e., the total field Q may be expressed as:

Q(t, x, y) � �Q(mod(t,Δt), x, y)clim + Qanom(t, x, y) where

�Q(i, x, y) � 1
N

∑
N

j�1
Q(j ∗ Δt + i, x, y) with i ∈ [1,Δt]

N � int[dim(t)/Δt] (1)

where Δt represents the length of the temporal cycle (typically
1 year), �Q is the background stationary part, and Qanom is the
turbulent component containing the anomalous signal to extract.
In the context of mesoscale variability, Eq. 1 can be considered a
first-order approximation that suffers the possible presence of trends
and strong bias due to the fact that the climatological background
can be far from the actual background for a specific year. In Mason
et al. (2019) andGaube et al. (2014) a spatial Gaussian smoother with
a half width of 6° is used to remove the mesoscale variability and
define the background. In the following, we employ a bias-free
method where the anomaly is calculated with respect to the local
“surrounding” waters at the eddy perimeter (Figures 1A–F). The
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calculation of anomaly is based on the creation of a background field
that mimics a continuous tracer field in the absence of eddy, by
replacing it with “surrounding” waters. However, these
“surrounding” waters can be not as homogeneous as expected. In
an area of strong density gradient or close to the coast, it is not
unusual for an eddy to have a heterogeneous perimeter, with
opposite sides floating in water that can differ by several degrees.
In this case, the choice of the “surrounding” water cannot be a
unique value, the use of the mean of the perimetral annulus could
generate a background value that is, discontinuous at the eddy
border and largely depending on the exact location and extension
of the perimeter. Such a perimeter can change during time, extending
more in the cold/warm part of the region, thus changing
substantially the reference mean. In the current methodology, to
avoid any artifacts coming from the definition of “surrounding”
waters, each inner point of the eddy is filled with values
“extrapolated” from the closest perimetrical points (Figure 1).
The inner (eddy) annulus closest to the eddy perimeter is filled
first, each point is replaced with the mean value of the closest ocean
points (up to four points) from the eddy perimeter. When the first

inner annulus is filled, the algorithm proceeds with the second inner
annulus till the eddy center. The background obtained in this case
does not have any discontinuity at the eddy perimeter. The spatial
structure of the anomaly is rather robust depending on the local
boundary values avoiding possible non-local effects coming from
temperature values that differ at the other side of the eddy.

The overall procedure is shown in Figure 1: once the eddy is
detected (a), the algorithm removes the corresponding area in the
tracer field (b), and extrapolates the border values to fill the missing
area (c and d) thus generating a possible background field (e). The
anomaly (f) is then calculated with respect to such field as follows:

Qanom(t, x, y) � Q(t, x, y) − 〈Q〉back(t, x, y) (2)

where the interpolation starts from the eddy contour using the
closest ocean points out of the eddy, and proceeds inside to obtain
a background guess 〈Q〉back (t, x, y). The method reduces to a
minimum the inclusion of spurious biases coming from a sub-
optimal definition of the background field and the impact of
seasonal variability. A second benefit is that the overall results are
pretty stable as a function of the eddy lifetime. The inclusion of

FIGURE 1 | Calculation of the eddy anomaly: (A) original temperature field with an eddy detected and delimited by its perimeter (black line). Vectors correspond to
ocean currents. (B) The parcel of water delimited by the perimeter is masked. (C) and (D) Temperature values outside the perimeter are extrapolated inside themask (see
Section 2) to define the background field (E). 4) The anomaly (F) is finally obtained as the difference between the original tracer field and the background.
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spurious eddies would lead to an underestimation of the eddy
anomaly content, being inner and outer water similar and the
spatial anomaly close to zero. Another source of underestimation
can come from the fact that the detected perimetral water
partially overlaps with the anomaly itself (Figure 1). In the
following Section, the method is applied in a case study and
compared with observations to assess the overall skill.

3 RESULTS

In this Section we first validate the eddy-detection method used to
investigate eddy-driven three-dimensional anomalies, looking at a
specific case study in the Levantine basin, which is the area of the
Mediterranean Sea characterized by prominent mesoscale features
of the ocean circulation (e.g., Alhammoud et al., 2005). We then
continue describing the 3D mesoscale field that emerges from the
analysis of eddy-driven content in Mediterranean re-analysis.

3.1 A Case Study: The Shikmona Gyre Area
The sparsity of profiling data usually prevents an instantaneous and
direct measure of the 3D eddy anomaly content. Such a measure
requires the sampling of at least two different profiling floats at the
same time; one trapped inside the eddywhile the other acts as a probe
mapping the surroundings. Thanks to the recent deployment of the
array of Argo profiling floats an increasing number of such dual
observations are becoming freely available. We select an area in the
Levantine basin well documented by several different types of
observations and for which there can be found some long-lasting
measurements of two or more profilers with one profiler effectively
trapped by the quasi-stationary structure that usually occurs in that
area. These data are taken from the Met Office EN4 dataset that
gathers quality-controlled subsurface ocean temperature and salinity
profiles (v4.2.1; Good et al., 2013). The area is delimited by the green
box shown in Figure 2A and corresponds to the area where a quasi-
stationary mode-water ACE generally occurs. This eddy has recently
been well documented by two cruises in Mauri et al., 2019 that show
the peculiar characteristics with saltier and warmer temperature at
depth. The measure of the temperature anomaly profile from
observations is calculated only when two or more profilers occur
within the target area on the same day, with one float trapped within
the eddy. The identification of trapped observations usually relies on
the analysis of altimetry maps, reconstructed from along-track
satellite retrievals (Dong et al., 2014; Zhang et al., 2016), which
entails an eddy-detection performed on a two-dimensional SLA field.
Floats are considered trapped if they profile inside the SLA-eddy
pattern. In our study, on the other hand, a profile is considered
trapped if it occurs inside the 3D eddy structure detected from the
MED-REA. The use of a 3D ocean re-analysis allows assessment of
whether the eddy anomaly estimated in the model (Teddy − Tback), is
also measured by the profilers (Tobs

eddy − Tobs
back). The density plot in

Figure 2A shows the number of “trapped” observations inside eddies
longer than 14 days, covering the period 2008–2010, while the
contours show the probability of an eddy to appear in that region.

Anticyclonic eddies are typically warm-core at depth, however the
sharp warming of sea surface water that occurs in the East-
Mediterranean sea changes the picture. Figures 2B,C show the

temperature anomaly calculated using the eddy detection system
applied to the MED-REA and in-situ ARGO observations,
respectively. For each panel, three different temporal averages are
displayed: the first panel shows the time-series of monthly anomaly
from 2008 to 2011, the second corresponds to the monthly
climatology of the anomaly, while the third shows the vertical
mean profile of anomaly only in the presence of an eddy. The
water trapped by ACE is generally warmer at depth, however
starting from August, a dipole-like structure of the anomaly tends
to appear both in the MED-REA and in the observations. The water
trapped in August is colder at the top and warmer at the bottom.
During fall, the cold anomaly tends to drift down reaching about
100m inwinter before disappearing. The same trend can be seen both
in the observations and in the re-analysis, but the method tends to
underestimate the anomaly in magnitude compared to the
observations. Here it is worth keeping in mind that the algorithm
evaluates the total anomaly by averaging over the eddy area, while
observations are point-wise measurements. Calculating the anomaly
using the model temperature at the observation positions, the model-
based anomaly profiles closely follow those in the observations, as it
can be noticed by comparing black and red lines in Figure 2C. Note
that although the EN4 dataset is not directly assimilated, Argo profiles
are assimilated during the ocean re-analysis integration.

Such a peculiar structure of the anomaly inside the eddy can be
visually inspected in the temperature field of August 2008. Figure 3
shows the zonal sections of the temperature field for the re-analysis
and an observation-derived product, called ARMOR3D (Guinehut
et al., 2012; Mulet et al., 2012), at the eddy position. ARMOR3D is a
statistical three-dimensional reconstruction of several physical
variables that employs only observations (T, S, SST) at a
resolution of 1/4°. The presence of a cold-core at the top and a
warm one at the bottom (300m) is present in the two datasets. In
ARMOR3D the center of the eddy is moved slightly north and is
larger compared to the re-analysis, probably due to the dataset’s
coarser resolution. The same picture can be seen looking at the
vertical temperature profiles from in-situ observations for the same
month (Figure 3C). Mauri et al. (2019), analysing the data of two
cruises in late 2016 and comparing them with satellite SST data,
observe that in August the SST at the core of the eddy is colder than
the perimetral water, while at depth the situation reverses. The colder
SST signal tends to disappear during fall. The authors suggest that
such behavior is probably due to the stiffening of the thermocline in
the Eastern Mediterranean Sea in August. The rapid increase of the
temperature at the surface leads to an environmental temperature
that is, now warmer than the one inside the eddy, where the water
parcels tend to be more vertically homogeneous and thermalize
slowly. Moreover, despite the anticyclonic behaviour the salinity is
higher inside the eddy (Mauri et al., 2019) and reflects its mode-
water nature. This is also seen by analyzing the re-analysis with our
detection method, as in Figure 8, while the other anticyclones
typically show fresher water inside.

3.2 Eddy Population
It is very well-known that the number of detected eddies can
largely change according to the technical details of the detection
system in use, and it is therefore extremely important to quantify
the impact of possible spurious (or missed) eddies detected on the
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final results. An eddy miss would lead to underestimating the
eddy-driven anomaly in the region; in Section 3.1 the vertical
temperature anomaly is compared with the one extracted from
point-wise Argo observations in the Shikmona area to estimate
the accuracy. A second possible misrepresentation comes from
the detection of false-positive eddies that could potentially spoil
the calculation of the anomaly. To reduce the impact of such
events, in addition to the use of stringent conditions on rotation,
lifetime, and depth (see Supplementary Appendix SA), the
anomaly content is here defined with respect to the eddy
surrounding environment (see Section 2.2.1). The stability of

the anomaly signal as a function of the lifetime is also presented to
support the results. Therefore the exact numbers in the
population should not be taken as an absolute reference but
rather as a relative one, comparing results for different lifetimes.

Eddy population is defined in terms both of the occurrence
and persistence of non-linear structures in the Mediterranean
basin. Different lifetimes are shown to stress the contribution of
eddies that preserve their properties while spanning over different
temporal scales.

During the 24 years analysed, the number of eddies does not
seem to show any global statistically-significant trend. Transient

FIGURE 2 | (A) Number of “eddy-trapped” observations over the period 2008–2010 considering eddies with lifetime ≥ 2 weeks occurring in the Shikmona gyre
area (green frame). Black contours show the eddy probability density from the MED-REA, i.e., the probability to find an eddy in the specific area. (B) Three plots showing
respectively: the time-series of eddy temperature anomaly from the MED-REA, its monthly climatology, the overall mean of temperature anomaly profile. (C) same as (B)
for Argo profiling floats. In this panel, the average anomaly from observations (black dotted line) is compared with the average anomaly from MED-REA values,
extrapolated at the observation positions (red line).

FIGURE 3 | Panels (A) and (B) show the monthly zonal sections of temperature in the Shikmona gyre area (green-box in Figure 2) for August 2008 extracted from
two products MED-REA and ARMOR3D respectively. (C) Temperature profiles calculated from in-situ observations occurring in the region (Figure 2) during the same
month. In-situ profiles are gathered both inside (trapped) and outside the eddy.
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eddies/patterns, living a few days only, contribute to the high-
frequency variability in the statistics where short-living eddies are
included. The population of short-living eddies is probably affected
by the strength of transient wind and the variability ofmixed-layer-
depth. Patterns whose vertical extension is not stably deeper than
themixed layer depth contribute to this day-by-day variability. The
impact of the variability generated by short-living eddies is out of
the scope of the present study that is, mainly focused on the stable
signal generated by eddies rather than their variability. Eddies
lasting more than 2 weeks are characterized by an average
thickness of ∼400 m and by a radius of 45 km (Figure 4), while
anti-cyclonic structures are significantly deeper than cyclonic
eddies (Table 1). The average eddy diameter and depth tend to
increase with the lifetime, reducing the impact of transient eddies
that usually are smaller and shallower. Themaximumof deepening
occurs in winter when the water is less stratified, while eddies are
shallower during summertime, following the variability of the
mixed layer depth. Atmospheric forcings can also play a role in
the year-by-year variability of long-living eddies as well as sporadic
events connected to thermohaline circulation changes (Roether
et al., 2014). The conservation of angular momentum is likely to
play a role in the opposite seasonality of horizontal and vertical
extension: smaller, deeper eddies in winter tend to become larger
and shallower in summer.

The bottom panel in Figure 4A shows the percentage of eddy
population as a function of their minimum lifetime (in abscissa)
starting from eddies living more than 7 days. The population

reduces from 50 to 20% down to 2.5% for structures living longer
than 2 weeks, 1 month, 2-months, respectively.

The mean spatial distribution of eddies longer than
14 days, is shown in the upper-right panel (Figure 4) as
the probability of eddy occurrence (density probability).
The areas of the main quasi-stationary eddies are well
represented with more than 60–70% probability. The mean
spatial distribution of eddy polarity weighted by the eddy
density is shown in the lower-left panel (Figure 4). We use
eddy density as a weight to remove low-density areas that
show strong polarity, but that are not statistically reliable: e.g.,
eddy polarity tends to zero in low-density areas or areas with
high-density but weak polarity.

A strong polarity signal is retained by the well-known quasi-
stationary eddies. The overall mesoscale polarity field agrees well
with the knowledge of Mediterranean surface/subsurface
circulation (e.g., Pinardi et al., 1997) and observations of
mesoscale variability (Fusco et al., 2003).

Non-linear features with lifetimes ≥ 2 days were considered
as a reference to assess the eddy population as a function of the
lifetime. In particular, the ratio between the number of eddies
detected at the relevant lifetime and those in the reference
provides evidence about the portion of the eddy population
that tends to dissipate over different temporal scales. Figure 5
shows the percentage of un-dissipated eddies, obtained
considering 3D non-linear features with lifetimes longer
than 14 and 28 days, compared to the reference (lifetime ≥

FIGURE 4 | Eddy statistics for the Mediterranean Sea: (A) Number of eddies, eddy diameter (km) and eddy depth (m) as a function of lifetime and years. The eddy
depth is also given as function of 1 month long lived cyclonic/anticyclonic structures. Eddy decay (% pop.) as a function of lifetime. Probability of eddy occurrence (B) and
CE versus ACE (C); frames show the areas of the Alboran, North Tyrrhenian, Ierapetra (red frames), and Shikmona (green frame) gyres.
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2 days). In the Figure, a value of 50% means that, for a specific
lifetime, the eddy population is half of the total number of
eddies with lifetimes ≥ 2 days. It is evident that the eddy
population in the Mediterranean Sea is well described by
eddies lasting at least 14 days, while long-lived (≥ 28 days)
features tend to persist in the eastern part of the basin. Starting
from those results, mesoscale structures with lifetimes ≥
14 days were taken into account to look at the 2D
expressions and 3D structure of the eddy population in the
Mediterranean Sea.

3.3 Dynamic Contributions
In this Section, we investigate the contribution of mesoscale
eddies to ocean dynamics by looking at their signature in the
SSH variability and EKE. Eddy detection methods rely on the
surface expression of mesoscale features. Those can be identified
from satellite altimetry maps as elevations (ACE) and
depressions (CE) of the sea surface. As such, it is interesting
to understand how the SSH variability can be influenced by
eddies at temporal and spatial scales which depend on the eddy
structures and lifetimes. Figure 6 shows the percentage of the
variance of the SSH variability explained by eddies, over the
period 1993–2106. The results were obtained by comparing the
initial SSH fields with the background (Section 2) and
considering eddy lifetimes ≥ 14 and 28 days. The values are
expressed as the percentage decrease of the variance in the
background with respect to the initial fields. A value of 50%
means that the variance of the SSH fields in the background has

halved with respect to initial fields. The results clearly show how
the signature of mesoscale eddies characterizes the SSH
variability. Eddies with a lifetime ≥ 14 days (left panel)
explain more than 50% of the variance of the signal both in
the western Mediterranean Sea (e.g., Alboran Gyre and the
Tyrrhenian Sea) and in the Levantine basin, where the largest
values were observed in the occurrence of the Ierapetra, Mersa
Matruh and Shikmona gyres. It is interesting to notice that long-
lived eddies (≥ 28 days; right panel) show similar values, thus
indicating that mesoscale features characterize the SSH
variability over temporal scales longer than months.

A 3D eddy detection method allows to depict both the
horizontal and vertical structure of the mesoscale features and
to quantify their contribution to the ocean dynamics, as long as
the EKE vanishes in the water column due to dissipation. To
assess how the mesoscale variability observed at the ocean
surface projects into the 3D ocean circulation, in this Section
we look at the EKE driven by the non-linear eddies. Following
the approach proposed by Cipollone et al. (2017), who
extended the formulation of relative kinetic energy in
Chelton et al. (2011b) to take into account 3D structures,
we consider the relative EKE (REKE) to represent the fraction
of ocean kinetic energy carried by eddies in space and time (see
Supplementary Appendix SB for further details). Figure 7
shows the REKE associated with mesoscale eddy lifetime ≥
14 days, both considering their surface expression (left panel)
and 3D structure. At the surface, the REKE was up to the order
of ≥ 50% looking at the dominant mesoscale features in the

TABLE 1 | Average number of eddies persisting per day, their mean depth and mean diameter as function of lifetime and type (ACE/CE).

Lifetime greater than Average number per
day (ACE/CE)

Average
depth (m) (ACE/CE)

Averaged diameter (km)
(ACE/CE)

2 days 89 (49/40) 334 (381/275) 82 (80/84)
14 days 50 (28/21) 402 (454/331) 88 (85/93)
1 month 28 (16/12) 450 (507/371) 92 (86/100)
2 months 9 (5/4) 512 (602/412) 98 (88/109)

FIGURE 5 | The percentage of un-dissipated eddies, considering non-linear structures with lifetimes of at least 14 days (A) and 28 days (B), compared to those
with a lifetime of at least 2 days during the 24-year period 1993–2016.
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Mediterranean basin. The results in Section 3.2, show average
eddy depths of 500 m (Table 1). The latter was used as a
reference depth to consider 3D eddy contributions. Looking at
vertically integrated REKE values, it is possible to appreciate
the differences between the western and eastern parts of the
Mediterranean basin. The largest REKE values were observed
in the occurrence of the Pelops (ACE), Ierapetra (ACE),
Rhodes (CE), Mersa Mathru (ACE), Shikmona gyres (ACE).
Those are well-known quasi-stationary mesoscale features in
the Levantine Basin (e.g., Pinardi et al., 2005), reaching
hundreds of meters into the water column (e.g., Fusco
et al., 2003). The absolute EKE values (cm2/s2) driven by
eddies occurring in specific areas of the Mediterranean Sea
(red and green boxes in Figure 4) are shown in Table 2. In
particular, the largest REKE values (30–40%) at depth were
observed in the areas of the Ierapetra and Shikmona gyres.
This is in line with the typical characteristic of ACEs,
associated with pycnocline depressions, which tend to
penetrate deeper in the water column compared to CEs
(e.g., Rhines, 2001).

Eddy Driven 3D Anomalies and
Thermodynamic Contributions
ACE and CE are typically associated with warm and cold
temperature anomalies (e.g., Dong et al., 2014). Cyclonic
eddies induce negative anomalies of temperature and/or
positive anomalies of salinity and therefore positive anomalies
of density. This is because cyclones tend to uplift the pycnocline.
The effect is the opposite for anticyclonic eddies which lower the
pycnocline. The maximum of the anomalies is also deeper for
anticyclones. The lowered pycnocline in anticyclones will create a
maximum of the temperature anomaly below the mean depth of
the pycnocline whereas an uplifted pycnocline in cyclones will
create a minimum above. This behaviour can be reflected in the
mesoscale eddies of the western Mediterranean, for example, in
the Alboran and Tyrrhenian Seas, while interesting departures
can be observed in the eastern part of the basin.

Panels in Figure 8 show the ACE/CE anomalies for different
variables and selected regions: Alboran gyre (ALB), Shikmona
area (SHIK), Ierapetra gyre (IERA), and North Tyrrhenian Gyre
(NTG), as depicted in Figure 4. For each region, we separate

FIGURE 6 | The percentage of variance of sea-surface height variance explained by eddies. The panels show the percentage of variance explained by eddies with a
lifetime of 14 (A) and 28 days (B), during the 24-year period from 1993 to 2016.

FIGURE 7 | REKE at the surface (A) and the 3D structure to 500 m (B) expressed in percentage (%). The panels are obtained over a 24-year period, from 1993 to
2016, for eddies with a lifetime geq 14 days.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7248799

Bonaduce et al. Mesoscale Variability in the Mediterranean Sea

121

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


contributions fromACE and CE eddies and calculate the anomaly
in T, S, rotational velocity (vR) and REKE. The monthly time
series of the anomaly is then shown from 1993 to 2016 together
with the monthly climatology of the anomaly and the mean
anomaly profile inside the eddy. While the monthly climatology
includes also months without eddies and provides the mean
anomaly for each month, the last mean profile shows different
information being calculated only in the case the eddy is present.
This can be seen as the typical signature of the eddy in the case of
its appearance at a specific depth.

In the western part of the basin, the Alboran gyre, made of at
least two semi-permanent structures which tend to be
predominant according to the seasons (e.g., Escudier et al.,
2016), plays a fundamental role in modulating the entrance of
the Atlantic waters into the Mediterranean Sea (Pinardi et al.,
2015). Here we focus our attention on the westernmost
anticyclonic structure (hereafter referred to as ALBO), which
resides in the Alboran Sea irrespective of the season considered
(Figure 4). As expected looking at ACEs, the ALBO shows specific
properties characterized by warmer (fresher) temperature (salinity)
anomalies. Looking at the temporal evolution (1993–2016) of the
eddy-driven anomalies (left panels) it is also possible to investigate
their contributions over different seasons. In Figure 8, central
panels show the eddy-driven anomalies as a climatology. Salinity
anomalies in ALBOwere negative fromDecember to April, around
0.2 psu. The Alboran Sea is characterized by fresher Atlantic waters
at the surface and denser water at the bottom exiting the
Mediterranean Sea. Water masses stratification varies seasonally,
due to wind-driven circulation and solar radiation, and it is
typically higher during summer in the Mediterranean Sea. The
water masses trapped in ALBO showed positive salinity anomalies
at the surface and negative at depth down to 200 m from May to
September.

In the northern Tyrrhenian gyre, a large quasi-stationary CE
eddy is almost continuously present. This eddy induces negative
anomalies of temperature and positive anomalies of salinity,
uplifting the pycnocline and tending to strengthen in late
summer/autumn exceeding the −0.5°C value.

The REKE profile is typical of a bowl-shape eddy while
tracer anomalies can reach down to ∼150 m that can be
interpreted as the eddy “trapping depth,” usually defined as
the vertical extent of the trapped fluid inside the eddy (e.g.,
Chaigneau et al., 2011). No relevant ACE are detected in this
region. The peculiar eddy-driven temperature anomaly profile
of the Shikmona ACE is already discussed in the dedicated
Section and compared with the literature results. This ACE is a
mode-water eddy that differs from the standard ACE showing
a positive anomaly in salinity, as demonstrated by two recent

field campaigns (Mauri et al., 2019). The rotational speed that
constrains the water masses trapped by the eddy is about
0.2 m/s in all the seasons, being almost uniform down to
300 m. The REKE profiles show that it contributes to the
EKE of the regions with more than 30% down to 300 m. In
the exact position of the eddy, the percentage can rise to
60–70% as seen in the map of REKE (Figure 7).

The sector in the Ierapetra region (Figure 4) is characterised by
high-mesoscale activity with a strong quasi-stationary ACE,
continuously detected in almost all the months. The presence of
such ACE has been demonstrated in several oceanographic cruises
and analysing satellite altimetry data (Ioannou et al., 2017; Ioannou
et al., 2019). It can be inferred that a positive temperature anomaly,
higher than 0.5°C, persists in all the seasons at depth. The same
mechanism that generates a negative summertime temperature
anomaly in the Shikmona ACE, and described in the dedicated
Section, seems to be present in this area. In the late summer/autumn
season the SST in the Eastern Mediterranean sea is characterized by
abrupt heating that stiffens the stratification and leads to an
environmental temperature that in a short time becomes higher
than water temperature in the ACE. The latter tends to be more
uniform acting against the stratification, i.e., the temperature inside
ACE is rather homogeneous while the environmental one is strongly
stratified and generates the vertical dipole structure in the anomaly
content. The standard ACE behavior is recovered in winter and
spring. Such dipole is not seen in the salinity, which shows mainly
negative and very shallow anomalies compared to the temperature.
Looking at the REKE anomaly, it is interesting to notice that the
profile differs from the bowl-shape structure typically associated with
NTG CE and reaches a trapping depth of 200m. During 2008 the
ACEs were deeper, and also the salinity anomaly at depth tended to
change sign. This is in line with the results obtained by Velaoras et al.
(2014) who, looking at thermohaline circulation in the Cretan Sea,
observed a large outflow of dense waters from the Aegean to the
Cretan Sea over the period 2007–2009. The authors argued that this
was an Eastern Mediterranean Transient (EMT; Roether et al., 2014;
Pinardi et al., 2019) - like event connected to thermohaline
circulation changes, instead of being driven by atmospheric
forcings or water fluxes. The CE in the same regions shows an
opposite behavior of ACE although the anomaly is smaller in
magnitude (0.2°C).

Mesoscale eddies can act as gateways for heat absorption and
loss in the ocean. It is then interesting to quantify how eddy-
driven anomalies affect the ocean heat content (OHC). At a depth
range between 0 and 700 m, the OHC in the Mediterranean Sea
was in the order of 109 J m−2 (basin integral over the period
1993–2016; not shown), in agreement with the already existing
estimates for the Mediterranean basin (von Schuckmann et al.,

TABLE 2 | Absolute value of EKE trapped by the eddies occurring in different regions of the Mediterranean Sea and averaged over different depths. Eddies with lifetime
greater than 2 weeks are used.

Average depth Alboran ACE/CE cm2/s2 IERA ACE/CE cm2/s2 Shikmona ACE/CE cm2/s2 NTG ACE/CE cm2/s2

Surface 1.6/2.3 6.8/1.4 1.6/0.9 1./0.6
0–100 m 1.2/2.1 6.9/1.3 1.9/0.8 1./0.5
0–200 m 1.1/2.1 6.6/1.2 2/0.7 0.9/0.5
0–500 m 1.1/2.0 6.5/1.2 2.2/0.7 0.7/0.4
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FIGURE 8 | Time series of eddy-driven anomalous profile calculated in different regions (North Tyrrhenian Gyre–NTG, Shikmona area–SHIK, Ierapetra region–IERA,
and Alboran Gyre–ALBO) for different variables: (A) temperature, (B) salinity, (C) rotational velocity, and (D)REKE. In the IeraPetra region, both ACE and CE contributions
are shown. For each time series, the monthly climatology of the anomalous profiles and themean eddy anomalous profiles are also shown. The latter is not averaged over
months without eddies, only trapped waters contribute.
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2016; Iona et al., 2018). Considering those initial estimates as a
reference, Figure 9 shows the OHC anomalies obtained
considering long-lived eddies (≥ 4 weeks). In particular, the
values are expressed as a percentage (%) of total ocean heat
content monthly standard deviation, obtained integrating MED-
REA ocean temperature fields over different depth ranges.
Considering a depth range between 0 and 100 m, the

mesoscale contributions to the OHC in the Mediterranean Sea
were in the order of 20%. Positive (negative) contributions
reflected the characteristics of ACE (CE) eddies, acting as
warm (cold) cores and thus underlying their role in
modulating the magnitude OHC in the upper ocean. As
already discussed in Section 3.3, a maximum depth of 500 m
was selected to look at 3D eddy-driven anomalies. At this depth

FIGURE 9 | Eddy-driven ocean heat content anomalies versus depth derived from MED-REA temperature fields. The panels show the results obtained over a 24-years
(1993–2016) period considering eddies with a lifetime of at least 4 weeks. Values are expressed as a percentage (%) of total ocean heat content monthly standard deviation.

FIGURE 10 | (A) Example of one-week-long eddy population detected in 1 day. (B) Schematic illustration of vertical change in orbital velocity. (C) Examples of
relative vertical profile (green) generated by the rotational velocity vR (red color) for cyclonic (solid line) and anti-cyclonic (dashed) eddy at each vertical level. The relative
vertical profile shows the vertical inner shape of the eddy defined by its area at each vertical level, normalized by the area at the surface. It is therefore always 1 at the
surface and 0 at the bottom; the vertical line going from 1 to 0 corresponds to the eddy shape segmented by the detection system.
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range, contributions up to 15% were observed in the occurrence
of the most prominent mesoscale features.

4 CONCLUDING DISCUSSION

The eddy population in the Mediterranean Sea was investigated by
means of eddy detection and tracking algorithms applied to the 3D
dimensional ocean fields from MED-REA over a 24-year period
(1993–2016). In particular, we focused on the contributions to
ocean dynamics and thermodynamics of eddy-induced anomalies.
Mesoscale eddies are non-linear features of the circulation showing
properties that may differ from the surrounding waters as a
function of their spatial and temporal scales.

To remove any bias arising from the use of a climatological
background, in this work eddy-driven anomalies were defined
with respect to the non-homogeneous surrounding waters.

The accuracy of the method, to disclose the 3D mesoscale
contributions, was assessed against Argo profiling floats trapped
by eddies as well as from the observation-based data sets
(i.e., ARMOR3D).

The eddy population in the Mediterranean Sea was characterized
according to the occurrence and persistence of non-linear structures.
Tracking the eddies, the results showed that structures living≥ 2 weeks
are representative of the 3D mesoscale field in the basin, showing a
high probability (> 60%) of occurrence in the areas of the main quasi-
stationary eddies. The emerging mesoscale polarity (ACEs/CEs) field
was in line with previous model and observation-based studies
(Pinardi et al., 1997; Fusco et al., 2003; Escudier et al., 2016) with
an average thickness of∼400m and a radius of 45 km. The results also
showed the dependency of eddies size and thickness to polarity and
lifetime. ACEs were significantly deeper than CEs and the average
eddy diameter and thickness tended to increase in long-lived
structures. Eddy thickness shows also seasonal variability: eddies
tend to be shallower in stratified waters during summer and
deeper during winter. Looking at eddies as a function of their
lifetime, the results showed how the eddy population decreases to
20% considering long-lived structures (e.g., ≥ 1month). The
contribution of mesoscale eddies to the ocean dynamics was
assessed by investigating their surface expression and 3D structure.
At the surface, the signature of mesoscale features explained most of
the variance of the SSH field, showing significant contributions at
temporal scales longer than 1month. Mesoscale eddies drive a large
portion of the kinetic energy in the Mediterranean Sea, and REKE
values were larger than 50–60% both at the surface and at depth (e.g.,
in the area of Shikmona gyre).

Vertical profiles of velocity and REKE are shown for several areas
and the trapping depth is discussed. Looking at the contributions to the
ocean thermodynamics, the results exhibit the existence of typicalwarm
(cold) cores associated with ACEs (CEs), with the relevant exception in
the area of the Shikmona gyre that shows a structurewhich is closer to a
mode-water ACE eddy with a positive salinity anomaly. This result
seems to be confirmed by several oceanographic cruises (Mauri et al.,
2019). The vertical temperature anomalies of eastern Mediterranean
eddies are affected by a strong summer stratification in the surface
water, showing an opposite sign of the anomaly whether looking at
surface or at depth. A dedicated comparison against Argo floats in the

Shikmona area has been performed to confirm such behavior together
with a comparisonwith observation-only ocean reconstructions. In late
2008, there is a deepening of the Ierapetra gyre that coincides with a
well-known large outflow of dense waters from the Aegean sea (EMT-
like event, Velaoras et al., 2014).

Mesoscale contributions to ocean thermodynamics were assessed
looking at the OHC. The results show that the temperature
anomalies of long-lived eddies (≥ 4 weeks) account for up to the
15–25% of the OHC monthly variability in the upper ocean.

During the development of this work, a new high-resolution (1/
24°) realization of the MED-REA was achieved, and it is currently
distributed through the CMEMS data portal (Escudier et al., 2020).
New approaches, based on machine-learning (ML) methods, to
detect and reconstruct mesoscale structures from observations
(e.g., Moschos et al., 2020) and models (George et al., 2021)
were also developed recently. In this sense, the proposed
method can represent the foundation for creating training data
sets for ML-based and transfer-learning methods (e.g., Kadow
et al., 2020) to reconstruct the 3D mesoscale field in the ocean
emerging from the synergy between multi-platform observations
and multiple eddy-resolving ocean syntheses.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors on request.

AUTHOR CONTRIBUTIONS

AB and AC conducted all the analyses and wrote the paper. JJ and
JS reviewed the whole manuscript. RR and AA commented on a
preliminary draft and contributed to finalizing the manuscript.

FUNDING

This collaborative study was supported through the Bjerknes Center
for Climate Research (BCCR) initiative for strategic projects.

ACKNOWLEDGMENTS

We acknowledge the CINECA award under the ISCRA initiative
for the availability of high-performance computing resources and
support. The analyses were also performed using the
highperformance computer at Helmholtz Zentrum Hereon. JS
gratefully acknowledges the support by the H2020 Project
IMMERSE.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feart.2021.724879/
full#supplementary-material

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 72487913

Bonaduce et al. Mesoscale Variability in the Mediterranean Sea

125

https://www.frontiersin.org/articles/10.3389/feart.2021.724879/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2021.724879/full#supplementary-material
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


REFERENCES

Alhammoud, B., Béranger, K., Mortier, L., Crépon, M., and Dekeyser, I. (2005).
Surface Circulation of the Levantine Basin: Comparison of Model Results
With Observations. Prog. Oceanography 66, 299–320. doi:10.1016/
j.pocean.2004.07.015

Ashkezari, M. D., Hill, C. N., Follett, C. N., Forget, G., and Follows, M. J. (2016).
Oceanic Eddy Detection and Lifetime Forecast Using Machine Learning
Methods. Geophys. Res. Lett. 43, 234–312. doi:10.1002/2016GL071269

Ayoub, N., Le Traon, P.-Y., and De Mey, P. (1998). A Description of the
Mediterranean Surface Variable Circulation From Combined Ers-1 and
Topex/poseidon Altimetric Data. J. Mar. Syst. 18, 3–40. doi:10.1016/s0924-
7963(98)80004-3

Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi, L., et al.
(2015). The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper.
Oceanography 8, s80–s97. doi:10.1080/1755876X.2015.1022329

Barceló-Llull, B., Sangrà, P., Pallàs-Sanz, E., Barton, E. D., Estrada-Allis, S. N.,
Martínez-Marrero, A., et al. (2017). Anatomy of a Subtropical Intrathermocline
Eddy. Deep Sea Res. Oceanographic Res. Pap. 124, 126–139. doi:10.1016/
j.dsr.2017.03.012

Bonaduce, A., Benkiran, M., Remy, E., Le Traon, P. Y., and Garric, G. (2018).
Contribution of Future Wide-Swath Altimetry Missions to Ocean Analysis and
Forecasting. Ocean Sci. 14, 1405–1421. doi:10.5194/os-14-1405-2018

Chaigneau, A., Le Texier, M., Eldin, G., Grados, C., and Pizarro, O. (2011). Vertical
Structure of Mesoscale Eddies in the Eastern South Pacific Ocean: A Composite
Analysis from Altimetry and Argo Profiling Floats. J. Geophys. Res. 116.
doi:10.1029/2011JC007134

Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M. (2011a).
The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic
Chlorophyll. Science 334, 328–332. doi:10.1126/science.1208897

Chelton, D. B., Schlax, M. G., and Samelson, R. M. (2011b). Global Observations of
Nonlinear Mesoscale Eddies. Prog. Oceanography 91, 167–216. doi:10.1016/
j.pocean.2011.01.002

Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A. (2007). Global
Observations of Large Oceanic Eddies. Geophys. Res. Lett. 34, L15606.
doi:10.1029/2007GL030812

Chen, G., Chen, X., and Huang, B. (2021). Independent Eddy Identification With
Profiling Argo as Calibrated by Altimetry. J. Geophys. Res. Oceans. 126,
e2020JC016729. doi:10.1029/2020JC016729

Cipollone, A., Masina, S., Storto, A., and Iovino, D. (2017). Benchmarking the
Mesoscale Variability in Global Ocean Eddy-Permitting Numerical Systems.
Ocean Dyn. 67, 1313–1333. doi:10.1007/s10236-017-1089-5

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al.
(2011). The ERA-Interim Reanalysis: Configuration and Performance of the
Data Assimilation System. Q.J.R. Meteorol. Soc. 137, 553–597. doi:10.1002/
qj.828

Dobricic, S., and Pinardi, N. (2008). An Oceanographic Three-Dimensional
Variational Data Assimilation Scheme. Ocean Model. 22, 89–105.
doi:10.1016/j.ocemod.2008.01.004

Doglioli, A. M., Blanke, B., Speich, S., and Lapeyre, G. (2007). Tracking Coherent
Structures in a Regional Ocean Model With Wavelet Analysis: Application to
Cape basin Eddies. J. Geophys. Res. 112. doi:10.1029/2006JC003952

Dong, C., Lin, X., Liu, Y., Nencioli, F., Chao, Y., Guan, Y., et al. (2012). Three-
dimensional Oceanic Eddy Analysis in the Southern california Bight from a
Numerical Product. J. Geophys. Res. 117, a–n. doi:10.1029/2011JC007354

Dong, C., McWilliams, J. C., Liu, Y., and Chen, D. (2014). Global Heat and Salt
Transports by Eddy Movement. Nat. Commun. 5, 3294. doi:10.1038/
ncomms4294

Drévillon, M., Bourdallé-Badie, R., Derval, C., Lellouche, J. M., Rémy, E.,
Tranchant, B., et al. (2008). The GODAE/Mercator-Ocean Global Ocean
Forecasting System: Results, Applications and Prospects. J. Oper.
Oceanography 1, 51–57. doi:10.1080/1755876X.2008.11020095

Duo, Z., Wang, W., and Wang, H. (2019). Oceanic Mesoscale Eddy Detection
Method Based on Deep Learning. Remote Sensing 11, 1921. doi:10.3390/
rs11161921

Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., et al.
(2020). Mediterranean Sea Physical Reanalysis (Version 1) [Data Set].

Copernicus Monit. Environ. Mar. Serv. (Cmems). doi:10.25423/CMCC/
MEDSEA_MULTIYEAR_PHY_006_004_E3R1

Escudier, R., Renault, L., Pascual, A., Brasseur, P., Chelton, D., and Beuvier, J.
(2016). Eddy Properties in the Western Mediterranean Sea From Satellite
Altimetry and a Numerical Simulation. J. Geophys. Res. Oceans 121, 3990–4006.
doi:10.1002/2015JC011371

Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar, V.
(2015). A Daily Global Mesoscale Ocean Eddy Dataset from Satellite Altimetry.
Sci. Data. 2, 150028. doi:10.1038/sdata.2015.28

Fernández, V., Dietrich, D. E., Haney, R. L., and Tintoré, J. (2005). Mesoscale,
Seasonal and Interannual Variability in the Mediterranean Sea Using a
Numerical Ocean Model. Prog. Oceanography 66, 321–340. doi:10.1016/
j.pocean.2004.07.010

Frenger, I., Münnich, M., Gruber, N., and Knutti, R. (2015). Southern OCean Eddy
Phenomenology. J. Geophys. Res. Oceans 120, 7413–7449. doi:10.1002/
2015JC011047

Fusco, G., Manzella, G. M. R., Cruzado, A., Gačić, M., Gasparini, G. P., Kovačević,
V., et al. (2003). Variability of Mesoscale Features in the Mediterranean Sea
from Xbt Data Analysis. Ann. Geophys. 21, 21–32. doi:10.5194/angeo-21-21-
2003

Gaube, P., Chelton, D. B., Strutton, P. G., and Behrenfeld, M. J. (2013). Satellite
Observations of Chlorophyll, Phytoplankton Biomass, and Ekman Pumping in
Nonlinear Mesoscale Eddies. J. Geophys. Res. Oceans 118, 6349–6370.
doi:10.1002/2013jc009027

Gaube, P., McGillicuddy, D. J., Chelton, D. B., Behrenfeld, M. J., and Strutton, P. G.
(2014). Regional Variations in the Influence of Mesoscale Eddies on Near-
Surface Chlorophyll. J. Geophys. Res. Oceans 119, 8195–8220. doi:10.1002/
2014jc010111

George, T. M., Manucharyan, G. E., and Thompson, A. F. (2021). Deep Learning to
Infer Eddy Heat Fluxes From Sea Surface Height Patterns of Mesoscale
Turbulence. Nat. Commun. 12, 1–11. doi:10.1038/s41467-020-20779-9

Good, S. A., Martin, M. J., and Rayner, N. A. (2013). EN4: Quality Controlled
Ocean Temperature and Salinity Profiles andMonthly Objective AnalysesWith
Uncertainty Estimates. J. Geophys. Res. Oceans 118, 6704–6716. doi:10.1002/
2013JC009067

Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y. (2012). High
Resolution 3-D Temperature and Salinity fields Derived from In Situ and
Satellite Observations. Ocean Sci. 8, 845–857. doi:10.5194/os-8-845-2012

Hallberg, R. (2013). Using a Resolution Function to Regulate Parameterizations of
Oceanic Mesoscale Eddy Effects. Ocean Model. 72, 92–103. doi:10.1016/
j.ocemod.2013.08.007

Haza, A. C., Özgökmen, T. M., Griffa, A., Garraffo, Z. D., and Piterbarg, L. (2012).
Parameterization of Particle Transport at Submesoscales in the Gulf Stream
Region Using Lagrangian Subgridscale Models. Ocean Model. 42, 31–49.
doi:10.1016/j.ocemod.2011.11.005

Heimbach, P., Fukumori, I., Hill, C. N., Ponte, R. M., Stammer, D., Wunsch, C.,
et al. (2019). Putting it All Together: Adding Value to the Global Ocean and
Climate Observing Systems With Complete Self-Consistent Ocean State
and Parameter Estimates. Front. Mar. Sci. 6, 55. doi:10.3389/
fmars.2019.00055

Ioannou, A., Stegner, A., Le Vu, B., Taupier-Letage, I., and Speich, S. (2017).
Dynamical Evolution of Intense Ierapetra Eddies on a 22 Year Long Period.
J. Geophys. Res. Oceans. 122, 9276–9298. doi:10.1002/2017jc013158

Ioannou, A., Stegner, A., Tuel, A., LeVu, B., Dumas, F., and Speich, S. (2019).
Cyclostrophic Corrections of Aviso/Duacs Surface Velocities and its
Application to Mesoscale Eddies in the Mediterranean Sea. J. Geophys. Res.
Oceans. 124, 8913–8932. doi:10.1029/2019JC015031

Iona, A., Theodorou, A., Sofianos, S., Watelet, S., Troupin, C., and Beckers, J.-M.
(2018). Mediterranean Sea Climatic Indices: Monitoring Long-Term Variability
and Climate Changes. Earth Syst. Sci. Data. 10, 1829–1842. doi:10.5194/essd-
10-1829-2018

Kadow, C., Hall, D. M., and Ulbrich, U. (2020). Artificial Intelligence Reconstructs
Missing Climate Information. Nat. Geosci. 13, 408–413. doi:10.1038/s41561-
020-0582-5

Lin, X., Dong, C., Chen, D., Liu, Y., Yang, J., Zou, B., et al. (2015). Three-
Dimensional Properties of Mesoscale Eddies in the South china Sea Based
on Eddy-Resolving Model Output. Deep Sea Res. Part Oceanographic Res. Pap.
99, 46–64. doi:10.1016/j.dsr.2015.01.007

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 72487914

Bonaduce et al. Mesoscale Variability in the Mediterranean Sea

126

https://doi.org/10.1016/j.pocean.2004.07.015
https://doi.org/10.1016/j.pocean.2004.07.015
https://doi.org/10.1002/2016GL071269
https://doi.org/10.1016/s0924-7963(98)80004-3
https://doi.org/10.1016/s0924-7963(98)80004-3
https://doi.org/10.1080/1755876X.2015.1022329
https://doi.org/10.1016/j.dsr.2017.03.012
https://doi.org/10.1016/j.dsr.2017.03.012
https://doi.org/10.5194/os-14-1405-2018
https://doi.org/10.1029/2011JC007134
https://doi.org/10.1126/science.1208897
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1029/2007GL030812
https://doi.org/10.1029/2020JC016729
https://doi.org/10.1007/s10236-017-1089-5
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1016/j.ocemod.2008.01.004
https://doi.org/10.1029/2006JC003952
https://doi.org/10.1029/2011JC007354
https://doi.org/10.1038/ncomms4294
https://doi.org/10.1038/ncomms4294
https://doi.org/10.1080/1755876X.2008.11020095
https://doi.org/10.3390/rs11161921
https://doi.org/10.3390/rs11161921
https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1
https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1
https://doi.org/10.1002/2015JC011371
https://doi.org/10.1038/sdata.2015.28
https://doi.org/10.1016/j.pocean.2004.07.010
https://doi.org/10.1016/j.pocean.2004.07.010
https://doi.org/10.1002/2015JC011047
https://doi.org/10.1002/2015JC011047
https://doi.org/10.5194/angeo-21-21-2003
https://doi.org/10.5194/angeo-21-21-2003
https://doi.org/10.1002/2013jc009027
https://doi.org/10.1002/2014jc010111
https://doi.org/10.1002/2014jc010111
https://doi.org/10.1038/s41467-020-20779-9
https://doi.org/10.1002/2013JC009067
https://doi.org/10.1002/2013JC009067
https://doi.org/10.5194/os-8-845-2012
https://doi.org/10.1016/j.ocemod.2013.08.007
https://doi.org/10.1016/j.ocemod.2013.08.007
https://doi.org/10.1016/j.ocemod.2011.11.005
https://doi.org/10.3389/fmars.2019.00055
https://doi.org/10.3389/fmars.2019.00055
https://doi.org/10.1002/2017jc013158
https://doi.org/10.1029/2019JC015031
https://doi.org/10.5194/essd-10-1829-2018
https://doi.org/10.5194/essd-10-1829-2018
https://doi.org/10.1038/s41561-020-0582-5
https://doi.org/10.1038/s41561-020-0582-5
https://doi.org/10.1016/j.dsr.2015.01.007
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Liu, Z., Liao, G., Hu, X., and Zhou, B. (2020). Aspect Ratio of Eddies Inferred From
Argo Floats and Satellite Altimeter Data in the Ocean. J. Geophys. Res. Oceans.
125, e2019JC015555. doi:10.1029/2019JC015555

Madec, G. (2016). NEMO Ocean Engine Publisher. Institut Pierre-Simon Laplace
(IPSL).

Marullo, S., Napolitano, E., Santoleri, R., Manca, B., and Evans, R. (2003).
Variability of Rhodes and Ierapetra Gyres During Levantine Intermediate
Water Experiment: Observations and Model Results. J. Geophys. Res. 108.
doi:10.1029/2002JC001393

Mason, E., Ruiz, S., Bourdalle-Badie, R., Reffray, G., García-Sotillo, M., and Pascual,
A. (2019). New Insight into 3-d Mesoscale Eddy Properties From Cmems
Operational Models in the Western Mediterranean. Ocean Sci. 15, 1111–1131.
doi:10.5194/os-15-1111-2019

Mauri, E., Sitz, L., Gerin, R., Poulain, P.-M., Hayes, D., and Gildor, H. (2019). On
the Variability of the Circulation and Water Mass Properties in the Eastern
Levantine Sea Between September 2016-August 2017. Water. 11, 1741.
doi:10.3390/w11091741

Mkhinini, N., Coimbra, A. L. S., Stegner, A., Arsouze, T., Taupier-Letage, I., and
Béranger, K. (2014). Long-Lived Mesoscale Eddies in the Eastern
Mediterranean Sea: Analysis of 20 Years of AVISO Geostrophic Velocities.
J. Geophys. Res. Oceans. 119, 8603–8626. doi:10.1002/2014JC010176

Moschos, E., Schwander, O., Stegner, A., and Gallinari, P. (2020). Deep-SST-
Eddies: A Deep Learning Framework to Detect Oceanic Eddies in Sea Surface
Temperature Images. In ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing. (ICASSP), 4307–4311. doi:10.1109/
icassp40776.2020.9053909

Mulet, S., Rio, M.-H., Mignot, A., Guinehut, S., and Morrow, R. (2012). A New
Estimate of the Global 3D Geostrophic Ocean Circulation Based on Satellite
Data and In-SituMeasurements.Deep Sea Res. Part Topical Stud. Oceanography
77-80, 70–81. doi:10.1016/j.dsr2.2012.04.012

Oddo, P., Adani, M., Pinardi, N., Fratianni, C., Tonani, M., and Pettenuzzo, D.
(2009). A Nested Atlantic-Mediterranean Sea General Circulation Model for
Operational Forecasting. Ocean Sci. 5, 461–473. doi:10.5194/os-5-461-2009

Oddo, P., Bonaduce, A., Pinardi, N., and Guarnieri, A. (2014). Sensitivity of the
Mediterranean Sea Level to Atmospheric Pressure and Free Surface Elevation
Numerical Formulation in NEMO. Geoscientific Model. Development under
Rev. doi:10.5194/gmd-7-3001-2014

Pegliasco, C., Chaigneau, A., and Morrow, R. (2015). Main Eddy Vertical
Structures Observed in the Four Major Eastern Boundary Upwelling
Systems. J. Geophys. Res. Oceans. 120, 6008–6033. doi:10.1002/
2015jc010950

Petersen, M. R., Williams, S. J., Maltrud, M. E., Hecht, M. W., and Hamann, B.
(2013). A Three-Dimensional Eddy Census of a High-Resolution Global Ocean
Simulation. J. Geophys. Res. Oceans. 118, 1759–1774. doi:10.1002/jgrc.20155

Pinardi, N., Cessi, P., Borile, F., and Wolfe, C. L. P. (2019). The Mediterranean Sea
Overturning Circulation. J. Phys. Oceanography 49, 1699–1721. doi:10.1175/
jpo-d-18-0254.1

Pinardi, N., Korres, G., Lascaratos, A., Roussenov, V., and Stanev, E. (1997).
Numerical Simulation of the Interannual Variability of the Mediterranean Sea
Upper Ocean Circulation. Geophys. Res. Lett. 24, 425–428. doi:10.1029/
96gl03952

Pinardi, N., and Masetti, E. (2000). Variability of the Large Scale General
Circulation of the Mediterranean Sea From Observations and Modelling: a
Review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 153–173. doi:10.1016/
s0031-0182(00)00048-1

Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo, P., et al.
(2015). Mediterranean Sea Large-Scale Low-Frequency Ocean Variability and
Water Mass Formation Rates From 1987 to 2007: A Retrospective Analysis.
Prog. Oceanography 132, 318–332. doi:10.1016/j.pocean.2013.11.003

Pinardi, N., Zavatarelli, M., Crise, A., and Ravioli, M. (2005). “The Physical,
Sedimentary and Ecological Structure and Variability of Shelf Areas in the
Mediterranean Sea,”. The Sea. Editors A. R. Robinson and K. H. Brink, Vol. 14.

Raj, R. P., Johannessen, J. A., Eldevik, T., Nilsen, J. E. Ø., and Halo, I. (2016).
Quantifying Mesoscale Eddies in the Lofoten basin. J. Geophys. Res. Oceans.
121, 4503–4521. doi:10.1002/2016JC011637

Raj, R. P., Halo, I., Chatterjee, S., Belonenko, T., Bakhoday-Paskyabi, M.,
Bashmachnikov, I., et al. (2020). Interaction Between Mesoscale Eddies and

the Gyre Circulation in the Lofoten basin. J. Geophys. Res. Oceans. 125,
e2020JC016102. doi:10.1029/2020JC016102

Rhines, P. B. (2001). “Mesoscale Eddies,” in Encyclopedia of Ocean Sciences. Editor
J. H. Steele (Oxford: Academic Press), 1717–1730. doi:10.1006/rwos.2001.0143

Robinson, A. R., and Golnaraghi, M. (1993). Circulation and Dynamics of the
EasternMediterranean Sea; Quasi-Synoptic Data-Driven Simulations.Deep Sea
Res. Part Topical Stud. Oceanography. 40, 1207–1246. doi:10.1016/0967-
0645(93)90068-x

Robinson, A. R., Leslie, W. G., Theocharis, A., and Lascaratos, A. (2001).
Mediterranean Sea Circulation. Encyclopedia ocean Sci. 3, 1689–1705.
doi:10.1006/rwos.2001.0376

Robinson, A. R., Malanotte-Rizzoli, P., Hecht, A., Michelato, A., Roether, W.,
Theocharis, A., et al. (1992). General Circulation of the Eastern Mediterranean.
Earth-Science Rev. 32, 285–309. doi:10.1016/0012-8252(92)90002-b

Roether, W., Klein, B., and Hainbucher, D. (2014). The Eastern Mediterranean
Transient. Geophys. Monogr. 202, 75–83. doi:10.1002/9781118847572.ch6

Rubio, A., Barnier, B., Jord, G., Espino, M., and Marsaleix, P. (2009). Origin and
Dynamics of Mesoscale Eddies in the Catalan Sea (Nw Mediterranean): Insight
from a Numerical Model Study. J. Geophys. Res. Oceans. 114, C06009.
doi:10.1029/2007jc004245

Sasaki, H., Klein, P., Qiu, B., and Sasai, Y. (2014). Impact of Oceanic-Scale
Interactions on the Seasonal Modulation of Ocean Dynamics by the
Atmosphere. Nat. Commun. 5, 5636. doi:10.1038/ncomms6636

Schütte, F., Brandt, P., and Karstensen, J. (2016). Occurrence and Characteristics of
Mesoscale Eddies in the Tropical Northeastern Atlantic Ocean. Ocean Sci. 12,
663–685. doi:10.5194/os-12-663-2016

Shi, F., Luo, Y., and Xu, L. (2018). Volume and Transport of Eddy-Trapped Mode
Water South of the Kuroshio Extension. J. Geophys. Res. Oceans. 123,
8749–8761. doi:10.1029/2018JC014176

Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P., et al.
(2019). Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics) [Data
Set]. Copernicus: Monitoring Environment Marine Service (CMEMS).
doi:10.25423/MEDSEA_REANALYSIS_PHYS_006_004

Storto, A., Alvera-Azcárate, A., Balmaseda, M. A., Barth, A., Chevallier, M.,
Counillon, F., et al. (2019). Ocean Reanalyses: Recent Advances and
Unsolved Challenges. Front. Mar. Sci. 6, 418. doi:10.3389/fmars.2019.00418

Tonani, M., Balmaseda, M., Bertino, L., Blockley, E., Brassington, G., Davidson, F.,
et al. (2015). Status and Future of Global and Regional Ocean Prediction
Systems. J. Oper. Oceanography 8, s201–s220. doi:10.1080/
1755876x.2015.1049892

Velaoras, D., Krokos, G., Nittis, K., and Theocharis, A. (2014). Dense Intermediate
Water Outflow From the Cretan Sea: A Salinity Driven, Recurrent
Phenomenon, Connected to Thermohaline Circulation Changes. J. Geophys.
Res. Oceans. 119, 4797–4820. doi:10.1002/2014JC009937

Velaoras, D., Papadopoulos, V. P., Kontoyiannis, H., Cardin, V., and Civitarese, G.
(2019). Water Masses and Hydrography During April and June 2016 in the
Cretan Sea and Cretan Passage (Eastern Mediterranean Sea).Deep Sea Res. Part
Topical Stud. Oceanography 164, 25–40. doi:10.1016/j.dsr2.2018.09.005

von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L., Balmaseda, M.,
Breivik, L.-A., et al. (2016). The Copernicus Marine Environment Monitoring
Service Ocean State Report. J. Oper. Oceanography 9, s235–s320. doi:10.1080/
1755876X.2016.1273446

Wilks, D. S. (2011). “Empirical Distributions and Exploratory Data Analysis,” in
Statistical Methods in the Atmospheric Sciences of International Geophysics.
Editor D. S. Wilks (Academic Press), Vol. 100, 23–70. doi:10.1016/B978-0-12-
385022-5.00003-8

Wunsch, C., and Heimbach, P. (2014). Bidecadal Thermal Changes in the Abyssal
Ocean. J. Phys. Oceanography 44, 2013–2030. doi:10.1175/jpo-d-13-096.1

Xu, C., Shang, X.-D., and Huang, R. X. (2011). Estimate of Eddy Energy
Generation/Dissipation Rate in the World Ocean From Altimetry Data.
Ocean Dyn. 61, 525–541. doi:10.1007/s10236-011-0377-8

Xu, C., Shang, X.-D., and Huang, R. X. (2014). Horizontal Eddy Energy Flux in the
World Oceans Diagnosed From Altimetry Data. Sci. Rep. 4, 5316. doi:10.1038/
srep05316

Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., et al. (2016). Observed 3D
Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the
South China Sea. Sci. Rep. 6, 24349. doi:10.1038/srep24349

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 72487915

Bonaduce et al. Mesoscale Variability in the Mediterranean Sea

127

https://doi.org/10.1029/2019JC015555
https://doi.org/10.1029/2002JC001393
https://doi.org/10.5194/os-15-1111-2019
https://doi.org/10.3390/w11091741
https://doi.org/10.1002/2014JC010176
https://doi.org/10.1109/icassp40776.2020.9053909
https://doi.org/10.1109/icassp40776.2020.9053909
https://doi.org/10.1016/j.dsr2.2012.04.012
https://doi.org/10.5194/os-5-461-2009
https://doi.org/10.5194/gmd-7-3001-2014
https://doi.org/10.1002/2015jc010950
https://doi.org/10.1002/2015jc010950
https://doi.org/10.1002/jgrc.20155
https://doi.org/10.1175/jpo-d-18-0254.1
https://doi.org/10.1175/jpo-d-18-0254.1
https://doi.org/10.1029/96gl03952
https://doi.org/10.1029/96gl03952
https://doi.org/10.1016/s0031-0182(00)00048-1
https://doi.org/10.1016/s0031-0182(00)00048-1
https://doi.org/10.1016/j.pocean.2013.11.003
https://doi.org/10.1002/2016JC011637
https://doi.org/10.1029/2020JC016102
https://doi.org/10.1006/rwos.2001.0143
https://doi.org/10.1016/0967-0645(93)90068-x
https://doi.org/10.1016/0967-0645(93)90068-x
https://doi.org/10.1006/rwos.2001.0376
https://doi.org/10.1016/0012-8252(92)90002-b
https://doi.org/10.1002/9781118847572.ch6
https://doi.org/10.1029/2007jc004245
https://doi.org/10.1038/ncomms6636
https://doi.org/10.5194/os-12-663-2016
https://doi.org/10.1029/2018JC014176
https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004
https://doi.org/10.3389/fmars.2019.00418
https://doi.org/10.1080/1755876x.2015.1049892
https://doi.org/10.1080/1755876x.2015.1049892
https://doi.org/10.1002/2014JC009937
https://doi.org/10.1016/j.dsr2.2018.09.005
https://doi.org/10.1080/1755876X.2016.1273446
https://doi.org/10.1080/1755876X.2016.1273446
https://doi.org/10.1016/B978-0-12-385022-5.00003-8
https://doi.org/10.1016/B978-0-12-385022-5.00003-8
https://doi.org/10.1175/jpo-d-13-096.1
https://doi.org/10.1007/s10236-011-0377-8
https://doi.org/10.1038/srep05316
https://doi.org/10.1038/srep05316
https://doi.org/10.1038/srep24349
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Zhang, Z., Zhang, Y., and Wang, W. (2017). Three-Compartment Structure of
Subsurface-Intensified Mesoscale Eddies in the Ocean. J. Geophys. Res. Oceans.
122, 1653–1664. doi:10.1002/2016JC012376

Zhao, J., Bower, A., Yang, J., Lin, X., and Penny Holliday, N. (2018). Meridional
Heat Transport Variability Induced by Mesoscale Processes in the Subpolar
North Atlantic. Nat. Commun. 9, 1124. doi:10.1038/s41467-018-03134-x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The handling editor declared a past co-authorship with several of the authors
AB, AC.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Bonaduce, Cipollone, Johannessen, Staneva, Raj and Aydogdu.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 72487916

Bonaduce et al. Mesoscale Variability in the Mediterranean Sea

128

https://doi.org/10.1002/2016JC012376
https://doi.org/10.1038/s41467-018-03134-x
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
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Romain Escudier1*†, Emanuela Clementi 1, Andrea Cipollone1, Jenny Pistoia1,
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Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy, 4Department of Physics and Astronomy, University of Bologna,
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In order to be able to forecast the weather and estimate future climate changes in the
ocean, it is crucial to understand the past and the mechanisms responsible for the ocean
variability. This is particularly true in a complex area such as the Mediterranean Sea with
diverse dynamics like deep convection and overturning circulation. To this end, effective
tools are ocean reanalyses or reconstructions of the past ocean state. Here we present a
new physical reanalysis of the Mediterranean Sea at high resolution, developed in the
Copernicus Marine Environment Monitoring Service (CMEMS) framework. The
hydrodynamic model is based on the Nucleus for European Modelling of the Ocean
(NEMO) combined with a variational data assimilation scheme (OceanVar). The model has
a horizontal resolution of 1/24° and 141 unevenly distributed vertical z* levels. It provides
daily and monthly temperature, salinity, current, sea level and mixed layer depth as well as
hourly fields for surface velocities and sea level. ECMWF ERA-5 atmospheric fields force
the model and daily boundary conditions in the Atlantic are taken from a global reanalysis.
The reanalysis covers the 33 years from 1987 to 2019. Initialized from SeaDataNet
climatology in January 1985, it reaches a nominal state after a 2-years spin-up. In-situ
data from CTD, ARGO floats and XBT are assimilated into the model in combination with
satellite altimetry observations. This reanalysis has been validated and assessed through
comparison to in-situ and satellite observations as well as literature climatologies. The
results show an overall improvement of the comparison with observations and a better
representation of themain dynamics of the region compared to a previous, lower resolution
(1/16°), reanalysis. Temperature and salinity RMSD are decreased by respectively 14 and
18%. The salinity biases at depth of the previous version are corrected. Climate signals
show continuous increase of the temperature and salinity, confirming estimates from
observations and other reanalysis. The new reanalysis will allow the study of physical
processes at multi-scales, from the large scale to the transient small mesoscale structures
and the selection of climate indicators for the basin.

Keywords: ocean, mediterranean sea, reanalysis, numerical modelling, observations, data assimilation, multi-scale
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1 INTRODUCTION

Reanalysis is a crucial tool to understand the events of the past
and help us find the underlying processes that should be
represented by the numerical models. Reanalysis products are
computed by constraining a numerical model with available
observations using data assimilation. They have been used
extensively in ocean sciences (Storto et al., 2019) as they
provide 4D fields that correspond to the best estimate of the
ocean state. Atmospheric models and observations are
introduced into the system through the surface forcings, ocean
physics through the ocean global circulation model (OGCM) and
finally the data assimilation scheme adds the ocean observations.

Ocean reanalyses were initially computed to monitor and
understand climate change (e.g., Carton and Santorelli 2008).
They also allow to study important signals and processes that
cannot be observed completely such as deep water formation
(e.g., Somot et al., 2016), subsurface and bottom circulation
(Pinardi et al., 2015) or the overturning circulation (Pinardi
et al., 2019). In addition, subregional models need the
reanalyses as initial conditions and boundary conditions. In
the Mediterranean Sea, there are different models that uses the
Mediterranean reanalysis for their setup such as the Adriatic
Forecasting System (Oddo et al., 2005), the Sicily Channel
Regional Model (Olita et al., 2012), the Tyrrhenian Sea
Forecasting (Vetrano et al., 2010) or the Western
Mediterranean OPerational forecasting system (WMOP, Juza
et al., 2016).

The Mediterranean Sea is a challenging area with a strong
anthropogenic pressure due to the density of human population
living along its coasts (Hulme et al., 1999). It is therefore crucial to
study and understand the climate in this region and it has been
flagged as a hotspot for climate change (Giorgi, 2006). In this
semi-enclosed sea, many fundamental processes that occur in the
global ocean happen at a smaller scale, often called a miniature
ocean (Bethoux et al., 1999; Tsimplis et al., 2006). Examples of
these processes are mesoscale dynamics (Robinson et al., 2001;
Mkhinini et al., 2014; Escudier et al., 2016), deep convection
(MEDOC Group et al., 1970; Houpert et al., 2016), cascading
(Dufau-Julliand et al., 2004) or the overturning circulation in the
basin (Pinardi et al., 2019). The increased understanding and
upgrade of ocean forecasting products depends on the ability to
maintain the observing system and the progressive inclusion of
relevant processes in numerical models, especially in view of the
climate challenges facing the Mediterranean Sea (Tintoré et al.,
2019).

The first effort to compute a reanalysis for the Mediterranean
Sea was made by Adani et al. (2011). This reanalysis used the
OPA numerical model (Océan PArallélisé, Madec et al., 1997) on
a 1/16° regular horizontal grid (Tonani et al., 2008). Evolutions of
this reanalysis became a product in Copernicus Marine
Environment Monitoring Service (CMEMS), which represents
the previous version of the reanalysis presented here (Simoncelli
et al., 2016; Simoncelli et al., 2019). It will be hereafter referred as
MEDREA16. Another reanalysis (MEDRYS) was created to
address mainly the issue of inconsistency in the atmospheric
forcing (Hamon et al., 2016). For this product, special attention

was given to the atmospheric forcing using consistent and higher
resolution data. It showed the importance of the atmospheric
forcing to fully resolve the dynamics.

In this paper, we present a new reanalysis of the
Mediterranean Sea physical state performed in the framework
of CMEMS for the period 1987–2019 (Escudier et al., 2020).
CMEMS objective is to provide regular information on the ocean
state for the global ocean and European regional seas such as the
Mediterranean (Le Traon et al., 2019). In order to fulfill this
mission, they offer freely available descriptions of the current
ocean state (analysis), predictions of the situation 10 days ahead
(forecast), and the provision of consistent retrospective data
records (reprocessing and reanalysis). The new reanalysis is
part of the latter for the Mediterranean region and is the
current available product on the CMEMS website: https://
marine.copernicus.eu/. It is a significant upgrade from the
previously available product in CMEMS (MEDREA16) and it
will address some issues that were encountered such as biases in
the deeper layers (Juza et al., 2015). The new reanalysis, computed
on a 1/24° horizontal grid, will be hereafter called MEDREA24.

After describing all the elements of the system, we will assess
its performance by comparing it to observations, evaluate the
climate signals from the reanalyses and finish with a discussion
on the results.

2 DESCRIPTION

2.1 Numerical Model
The oceanic equations of motion of the Mediterranean physical
system are solved by an Ocean General Circulation Model
(OGCM) based on NEMO (Nucleus for European Modelling
of the Ocean) version 3.6 (Madec et al., 2017). The code is
developed and maintained by the NEMO-consortium.

NEMO has been implemented in the Mediterranean at 1/24° x
1/24° horizontal resolution and 141 unevenly spaced vertical
levels (thickness is 2 m in the upper layers and does not exceed
100 m in the deepest layers) with a baroclinic time step of 240 s (the
barotropic time step is 2.4 s). This reanalysis benefits from several
modeling upgrades that were included during the last years in the
CMEMS Mediterranean operational analysis and forecast system
described in Clementi et al. (2017). The model covers the whole
Mediterranean Sea and also extends into the Atlantic in order to
better resolve the exchanges with the Atlantic Ocean at the Strait of
Gibraltar (see Figure 1). On the other side, the Dardanelles inflow
is parameterized as a river and the climatological net inflow rates as
well as the salinity values are taken from Kourafalou and
Barbopoulos (2003). The topography is created starting from
the GEBCO 30arc-second grid (Weatherall et al., 2015), filtered
(using a Shapiro filter) andmanually modified in critical areas such
as: islands along the Eastern Adriatic coasts, Gibraltar andMessina
straits, Atlantic box edge.

The NEMO code solves the primitive equations using the
time-splitting technique which allows the external gravity waves
to be explicitly resolved with non-linear free surface formulation
and time-varying vertical z* coordinates. The advection
scheme for active tracers, temperature and salinity, is a mixed
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up-stream/MUSCL (Mono-tonic Upwind Scheme for
Conservation Laws; Van Leer 1979), originally implemented
by Estubier and Lévy (2000) and modified by Oddo et al.
(2009). The vertical diffusion and viscosity terms are a
function of the Richardson number as parameterized by
Pacanowski and Philander (1981). The model interactively
computes air-surface fluxes of momentum, mass, and heat.
The bulk formulae implemented are described in Pettenuzzo
et al. (2010) and are currently used in the Mediterranean
operational system Tonani et al. (2015). A detailed description
of other specific features of the model implementation can be
found in Oddo et al. (2009, 2014).

The vertical background viscosity and diffusivity values are set
to 1.2e−6m2/s and 1.0e−7m2/s respectively, while the horizontal
bilaplacian eddy diffusivity and viscosity are set respectively equal
to −1.2e8m4/s and − 2e8m4/s. A quadratic bottom drag coefficient
with a logarithmic formulation has been used according to
Maraldi et al. (2013) and the model uses vertical partial cells
to fit the bottom depth shape.

The hydrodynamic model is nested in the Atlantic within the
global reanalysis C-GLORSv5 (Storto and Masina, 2016).

C-GLORSv5 runs at eddy-permitting resolution (1/4°

horizontal resolution and 50 vertical levels) and is corrected
by a variational data assimilation system (OceanVar) that
assimilates in-situ observation from United Kingdom Met
Office Hadley Centre EN3/EN4 dataset (Good et al., 2013)
together with along-track altimetric satellite observations
processed by the DUACS multimission altimeter data
processing system and also available as CMEMS product
(SEALEVEL_GLO_PHY_L3_REP_OBSERVATIONS_008_062).
Heat and freshwater fluxes are constrained through nudging
schemes towards sea-surface temperature observations supplied
by NOAA (Reynolds et al., 2007) and sea surface salinity from OI
EN4 dataset (Good et al., 2013). A large-scale bias correction
(LSBC) scheme is also included to correct the model tendencies.

The initial conditions for MEDREA24 are taken from a
temperature and salinity monthly climatology computed from
monthly averages (named SDN_V2aa, Simoncelli et al., 2015)
produced within It has been calculated utilizing the extensive
historical in situ data set from 1900 to 1987. We considered only
observations before 1987 to compute the initial condition because
we did not want the climatology to be affected by the Eastern

FIGURE 1 | Domain and bathymetry of MEDREA24 (in meters). Position of the river input are in red.

TABLE 1 | Comparison with Previous reanalysis.

MEDREA16 MEDREA24

model Resolution 1/16° (5–6 km) horizontal 72 vertical levels 1/24° (4.5 km) horizontal 141 vertical levels
Bathymetry Modified DBDB1 (1 min) Modified GEBCO (30arc-sec)
Physical model NEMO v3.2 linear free-surface, Z coordinates NEMO V3.6 non-linear free-surface, Z* coordinates
River inputs 7 with Q>100m3/s (climato) 39 with Q>50m3/s (climato)
Lateral Boundaries Monthly climatological fields from GLO-MFC 1/4° Daily mean fields from CGLORS REA 1/4°

Atmospheric forcing ERA-INTERIM (0.75°, 6 hrs) ERA5 (0.25°, 1 h)

assimilation System Dobricic and Pinardi (2008) from Storto et al. (2016)
EOF 20 seasonally and regionally varying from 3 years simulation 50 seasonally and spatially varying from 32 years reanalysis
Observations Merged database: SeaDataNet/MyOcean/CMEMS New merged database: SeaDataNet/CMEMS
SST nudging −40 W/m2/K constant Gaussian around 00:00 (max � -110 W/m2/K)
Period 1987–2018 1987–2019 (running)

outputs Released variables T, S, SSH, UV T, S, SSH, UV, MLD, Tb
File frequency Daily, monthly Daily, monthly, hourly (SSH, SSUV)
Daily outputs centered at 00:00 UTC centered at 12:00 UTC
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Mediterranean Transient (EMT, see Malanotte-Rizzoli et al.,
1999).

The model is forced by momentum, water and heat fluxes
interactively computed by bulk formulae using the ERA5
reanalysis dataset (30 km horizontal resolution and hourly time
frequency, Hersbach et al., 2020) and the model surface
temperatures (details of the air-sea physics are in Tonani et al.,
2008). The water balance is computed as Evaporation minus
Precipitation and Runoff. The evaporation is derived from the
latent heat flux, the precipitations are provided by ERA5, while
the runoff of the 39 rivers implemented is provided by monthly
mean climatological datasets. We use the Global Runoff Data Centre
dataset (Fekete et al., 1999) for the Po, Ebro, Nile and Rhône rivers;
the dataset from Raicich (1996) for: Vjosë and Seman rivers; the
UNEP-MAPdataset (Demiraj et al., 1996) for the Buna/Bojana river;
and finally the PERSEUS dataset (Report, 2015) for the remaining 32
rivers: Piave, Tagliamento, Soca/Isonzo, Livenza, Brenta-
Bacchiglione, Adige, Lika, Reno, Krka, Arno, Nerveta, Aude,
Trebisjnica, Tevere/Tiber, Mati, Volturno, Shkumbini, Struma/
Strymonas, Meric/Evros/Maritsa, Axi-os/Vadar, Arachtos, Pinios,
Acheloos, Gediz, Buyuk Menderes, Kopru, Manavgat, Seyhan,

Ceyhan, Gosku, Medjerda, Asi/Orontes. The river runoff has a
non-zero salinity to avoid a salinity drift. This value is set at 15
PSU for most rivers except for the Po (18 PSU), the Rhône (25 PSU),
the Ebro (30 PSU) and the Nile (8 PSU). More details about the
runoff can be found in Delrosso (2020).

Sea Surface Temperature (SST) fields, described in the next
section, are used for the correction of surface heat fluxes with a
Gaussian relaxation coefficient dQ/dSST applied around
midnight since the observed dataset corresponds to the
foundation SST (which is equivalent to the SST at midnight).
The maximum of this coefficient is 110Wm−2K−1. Table 1
summarizes the MEDREA24 configuration and the
corresponding setup for MEDREA16.

2.2 Observations
The SST data used to correct the heat fluxes in the numerical model
are L4 interpolated fields from CMEMS (CMEMS product name is
SST_MED_SST_L4_REP_OBSERVATIONS_010_021). This is an
optimally interpolated satellite-based estimate of the foundation
SST in theMediterranean Sea and adjacent NorthAtlantic box over
a 1/24° resolution grid. This product is built from a consistent

FIGURE 2 | Examples of correlations computed from the EOF on two model grid points for two different months: January on the upper row and July on the lower
row. On each row, the left is the correlation obtained between temperatures (and salinities) at different model levels, the center is the correlation between temperature
and salinity at different levels and the right is the correlation between SSH and temperature (or salinity).
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reprocessing of the level-3 (merged multi-sensor, L3) climate data
record provided by the ESA Climate Change Initiative (CCI) and
Copernicus Climate Change Service (C3S) initiatives, but also
includes an adjusted version of the AVHRR Pathfinder dataset
version 5.3 to increase the input observation coverage (Buongiorno
Nardelli et al., 2013; Pisano et al., 2016). This product is the result
of a merge of several sensors documented extensively in its
documentation (see on CMEMS website).

The 3DVar system described below assimilates the along-track
sea level anomalies (SLA) from satellite altimetry. This reprocessed
data over the European region, using all available satellites, is also
provided through CMEMS project by the DUACS multimission
altimeter data processing system (CMEMS product name is
SEALEVEL_EUR_PHY_L3_REP_OBSERVATIONS_008_061).
The product provides the different corrections applied to the data
as separate variables which allows us to choose not to apply the
Dynamic Atmospheric Correction (DAC) since the NEMO

configuration uses a free surface equation that accounts for the
atmospheric pressure effect (Dobricic et al., 2012; Oddo et al.,
2014). It was also chosen to use unfiltered SLA to avoid the
filtering of physical signal and let the assimilation system handle
the resulting noise. For each track and each pass of the satellite the
mean bias over the whole uninterrupted track between the
observation and the model value is removed from the
innovation. This enables to avoid lingering large scale
atmospheric effects and other uncorrected signal.

The system also assimilates in-situ temperature and
salinity profiles for the whole period. These profiles come
from CTD (“Conductivity Temperature and Depth”, ship
measurements), XBT (Expendable bathythermograph) and
ARGO floats (profiling floats). They are obtained by
merging the data from CMEMS historical NRT in-situ
observations (CMEMS product name is
INSITU_GLO_NRT_OBSERVATIONS_013_030) into the

FIGURE 3 | Insitu error profiles used in the data assimilation. Top panels are temperature errors while bottom panels are salinity. Errors for XBT, CTD and ARGO
floats are respectively plotted on the left, center and right columns.
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database of in-situ observations from SeaDataNet (https://
www.seadatanet.org/). We found out that both datasets were
missing some good observations and by merging the two we
obtain a larger database (around 30% more data after
preprocessing). The merging procedure removes profiles
from CMEMS that were already in SeaDataNet. The
resulting database is then pre-processed before the
observations are introduced into the system. First, only the
physical profiles for ARGO (first profile of the day in the
CMEMS database) are kept. From this sensor, profiles with
gap in thermocline (more than 40 m in the first 300 m) are
removed. Only data with quality check value of 1 (good data)
are retained and temperature values must be within (0–35)°C
and salinity within (0–45) PSU. If the data has no recognized
type, it is considered a CTD if there are salinity values in the
profile, XBT otherwise. For CTD data, only ascending profiles
are selected. All measurements above 2 m are discarded (for
ARGO and XBT). 17% of data is rejected with the above
pre-processing. Finally, a vertical subsampling is performed to
keep no more than 3 observations per model level.

For the evaluation of the performance of the reanalysis,
assimilated observations were compared to the model outputs
as quasi-independent observations. Fully independent
observations take the form of fixed mooring time series of
temperature and salinity as well as tide gauges measurements.
This data comes from the European Marine Observation and
Data Network (EMODnet, https://emodnet.ec.europa.eu/).
Interpolated 2D daily maps of satellite altimetry are also used
in the validation to generate the Eddy Kinetic Energy (EKE) maps
and compare them to the reanalysis outputs. These maps are
obtained from the CMEMS database (CMEMS product name is
SEALEVEL_MED_PHY_L4_REP_OBSERVATIONS_008_051)

and are estimated by an optimal interpolation method,
merging the measurements from the different available
altimeter missions.

2.3 Data Assimilation
The OceanVar data assimilation scheme (Dobricic and Pinardi,
2008) is a variational scheme in which the slowly evolving vertical
part of temperature and salinity background error covariances is
represented by monthly climatological spatially varying empirical
orthogonal functions (EOFs), whilst their horizontal part is
assumed to be Gaussian isotropic depending only on distance.
In the horizontal direction, we apply the isotropic covariances,
because we assume that, due to the large variability of parameters
at the high horizontal resolution of the model, it could become
very difficult to correctly estimate the complex structures of the
horizontal background error covariances by a set of
climatological EOFs.

2.3.1 Principles
In the 3DVar formulation of the data assimilation, we need to
minimize a cost function J that represents the distance between
the analysis and both the background state (the physical model
outputs) and the observations. The incremental formulation of
J is:

J(δx) � 1
2
δxTB−1δx + 1

2
[H(δx) − d]TR−1[H(δx) − d] (1)

where B and R are the background- and observation-error
covariance matrices. δx � x − xb with x the ocean state, i.e., the
analysis at the minimum of J, and xb the background state. In
our formulation, we want to correct temperature, salinity and
sea surface height so the ocean state is x � (T, S, η). H is the

FIGURE 4 |Monthly RMSD (A) and bias (B) of SST (in °C) for the two reanalyses and the hindcast when compared to satellite SST. The first model layer is used for
the model SST.
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observation operator and d is the innovation
vector (background minus observations in the observation
space).

We assume that B can be written in the form B � VVT.
Then using the change of variable δx � Vv, the cost
function can be written (Control Variable Transformation or CVT):

J(v) � 1
2
vvT + 1

2
(HVv − d)TR−1(HVv − d) (2)

The CVT provides a way to represent error covariances
without explicitly constructing the background-error
covariance matrix B. The gradient of the cost function becomes:

J′ � v − VTHTR−1(HVv − d) (3)

The matrixV is decomposed into a series of linear operators as
follows:

V � VηVHVV (4)

FIGURE 5 |Monthly temperature RMSD (A) and bias (B) (in °C) for the two reanalyses and the hindcast when compared to observed profiles for different layers. The
values of RMSD/bias for the whole period are indicated in the legend. The shaded area represents the number of observations for each month (axis is on the right).
Note the different y-axis in the different layers.
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In Equation 4 the linear operator VV transforms coefficients
which multiply vertical EOFs into vertical profiles of
temperature and salinity defined at the model vertical levels,
VH applies horizontal covariances on fields of temperature and
salinity, Vη covaries the SSH increments with three-
dimensional salinity and temperature increments using
dynamic height formulation (Cooper and Haines, 1996;
Storto et al., 2011).

In the formulation of Equation 1, the fully nonlinear
observation operator is used only once for computing the
initial departures employing the background fields closer to
the observation time (FGAT). The tangent-linear model is
used for updating the cost function at each iteration according
to the new model state, while the adjoint model is used for
mapping the new observation departures back onto the control
space for the gradient computation. Their linearization is

FIGURE 6 |Monthly salinity RMSD (A) and bias (B) (in PSU) for the two reanalyses and the hindcast when compared to observed profiles for different layers. The
values of RMSD/bias for the whole period are indicated in the legend. The shaded area represents the number of observations for each month (axis is on the right).
Note the different y-axis in the different layers.
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performed around the background fields closer to the observation
time. A hybrid-parallel version of OceanVar (similarly to
Cipollone et al., 2020) with a standard formulation of the cost
function (Eq. 1 and Eq. 2) without other penalty terms is used.

2.3.2 B Matrix
The vertical covariance operator VV is composed of 50 monthly
climatological trivariate EOFs that were computed from the daily

anomalies of a previous 32 years run with data assimilation. These
EOF are computed at eachmodel grid point and we apply a vertical
localization (Gaussian with length scale of 800 m) to avoid spurious
covariances between upper and lower layers. In order to have more
independent profiles, we selected only profiles every 5 days. This
means that, for example, we use 192 profiles at each location to
compute the EOF of the month of January (6 days in each of the
32 years). 50 EOF are enough to reproduce the variability at more

FIGURE 7 | Vertical temperature [(A), in °C] and salinity [(B), in PSU] diagnostics for the two reanalyses and the hindcast when compared to observed profiles for
the whole period (1987–2019). The diagnostics were computed on the model layers and the right panel present the number of observations used. The vertical scale is
increased on the plot for the first 150 m to better see the upper layers values.
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than 99.9% (not shown). As an illustration, Figure 2 presents the
correlation between different levels of the model and different
variables that come from the 50 EOF computed for two different
months at two different points of theMediterranean Sea. The effect
of the vertical localization is visible as the correlations tend towards
zero between two levels that are far apart. In the first location and
month, temperature and salinity have negative correlation in the
first 40 model levels while the second location has a positive
correlation for the first 20 model levels. The same procedure
adopted for covarying T and S can be extended to include SSH.
The correlation obtained in this case is also here plotted (right
panels) as information. It is worth stressing that this correlation is
purely empirical and can therefore potentially destroy the
hydrostatic equilibrium of the water column. In the current
version of the reanalysis, we covaried SSH with T and S
through a balance operator that will be discussed later.
Developments are in place to include also the unbalanced part
(from the EOF) in the next version of the system.

The second component of the V operator is the recursive filter
(VH). This filter follows the design of Dobricic and Pinardi (2008)
to propagate the information of the increment in the horizontal
direction. We use a correlation length scale of 15 km which

represents the typical Rossby radius of the basin and perform
4 iterations of the first-order filter that are sufficient to reproduce
the Gaussian shape with a good degree of accuracy (Dobricic and
Pinardi, 2008; Farina et al., 2015).

Finally, the last operator is the dynamic height operator Vη.
This operator is used to get the SLA anomaly from the
temperature and salinity profiles and vice-versa. The method,
described in Storto et al. (2011), uses the local hydrostatic
adjustment that relies on the vertical integration of density
from a “no motion” level where it is assumed that the
horizontal pressure gradient is almost zero. This level is fixed
at 1,000 m in our configuration and consequently SLA
observations in regions where the maximum depth is less than
1,000 m are discarded.

2.3.3 R Matrix
For the covariance error matrix of observations, we assume that
the observations are uncorrelated and thus the matrix is diagonal.
The information needed is then the variance of the observation
error. This error eo is the sum of the measurement or instrument
error eμ and the representativity error er that is made when we put
the continuous ocean into a gridded field: eo � eμ + er. While the
former is relatively easy to get from sensor manufacturers, the
second is more difficult as it depends on the model grid and local
dynamics. To estimate the full observation error, we then used the
method prescribed in Desroziers et al. (2005). This iterative
method estimates the observation errors by using the
innovations and residuals from repeated runs of the system.
We first prescribed the errors used in the previous system and
then iterated using errors estimated from the formulae in
Desroziers et al. (2005). When the errors are no longer
changing (3 iterations in our case), we have obtained an
estimation of eo.

Figure 3 presents the final vertical profile of the observation error
standard deviation that we obtained for the different platforms that we
assimilate (XBT, CTD, and ARGO floats). We apply these profiles of
error in thewhole domain,meaning that there is no space dependency
and only seasonal and vertical dependency. For the temperature, the

FIGURE 8 | Time evolution of the monthly RMSD of SLA (in cm) for the two reanalyses and the hindcast. The SLA is taken where the ocean is deeper than 1,000 m
as it is done for the assimilation. In grey is the number of observations used for this diagnostic.

TABLE 2 | Summary of estimated RMSD compared to observations for the whole
Mediterranean Sea. The value is for MEDREA24 and the percentage in
parenthesis is the change from MEDREA16.

Temperature (°C) Salinity (PSU)

Profiles Whole column 0.54 (−14%) 0.17 (−18%)
0–10 m 0.66 (−9%) 0.47 (−19%)
10–100 m 0.84 (−13%) 0.21 (-19%)
100–500 m 0.28 (−18%) 0.08 (-20%)
500–1,500 m 0.11 (−36%) 0.04 (-33%)

Moorings 0.98 (−3%) 0.74 (0%)

SSH (cm)

Altimetry 3.2 (−8%)
Tide gauges 6.7 (−21%)
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error profiles are similar with a strong seasonal variability in the
thermocline region.We can note that the salinity error for the CTD is
much higher in the surface than ARGO error. This is because CTD
observations are much more coastal and model salinity in these
locations can diverge strongly from observations due to rivers
outflow. The observations error then reflects this discrepancy.

For the SLA assimilation, the observation error is fixed to be
constant in time and space. The satellites have different
instrument error but the differences are assumed to be small
and therefore we can use the same error as a first approximation.
The value of this observation error is set to 3 cm and was estimated
using sensitivity experiments. These experiments were performed
for 2 years (2004–2005) and the analysis global statistics as well as
the study of well documented mesoscale events resulted in the
value of 3 cm and the use of unfiltered SLA variable in the dataset

proving to better represent the regional features with lower error.
The estimation from the formula in Desroziers et al. (2005)
confirms that 3 cm is a good guess for the total error.

The system implements a background quality check procedure
that rejects observations whose square departure exceeds a certain
number of times the sum of the observational and background-
error variances. For the ith observation, the observation retention
criterion reads

yi −Hi x
b( )( )

2
≤ c σ2o,i + σ2b,i[ ] (5)

with σ2o,i and σ
2
b,i the observation and background-error variances,

in observation space, and c the quality check threshold. In order
to be conservative and remove very few observations while still
rejecting observations that really diverge from the model

FIGURE 9 | Time evolution of heat content [(A), in °C] and salt content [(B), in PSU] in different layers for both reanalyses and the hindcast. These are averaged over
the whole Mediterranean Sea.
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trajectory, we decided to use c � 64 for SLA observations and c �
100 for in-situ profiles after performing a sensitivity study.

3 ASSESSMENT

To evaluate the quality of the reanalyses, the daily model outputs
have been bi-linearly horizontally interpolated at each
observational position considering the four closest model grid
points and then linearly vertically interpolated. These
interpolated outputs (Ymodel) are then compared to the
observations measurements (Yobs) and we compute the Root
Mean Square Difference (RMSD) and bias as:

RMSD �
�����������������
∑Nobs Ymodel − Yobs( )2

Nobs

√

,

bias � ∑Nobs Ymodel − Yobs( )
Nobs

(6)

The observations used in the validation assessment are mostly
from the same datasets used for the data assimilation. However,
since the assimilation is performed at the end of the day, the
evaluation is done before each observation is assimilated (the
increment is applied on the following day) and thus it can be
considered as quasi-independent.

To provide another reference, a hindcast, run of the numerical
model without data assimilation or SST relaxation, is also
presented (hereafter called MEDHIND24).

3.1 Sea Surface Temperature
The time evolution of the RMSD and bias of the comparison with
SST observations from satellites is shown in Figure 4. For the SST
diagnostics, the observations are not fully independent as the SST
observations are used to correct the heat fluxes in NEMO (see
Numerical Model).

Both MEDREA16 and MEDREA24 present a positive bias,
meaning that the first layer of the model is warmer than the SST
observations. This bias is positive in the whole basin (not shown).
However, it is decreasing with time as the model gets closer to the
observed SST values. The RMSD also decreases with time as a

consequence of the diminishing bias. The new reanalysis has
consistently a smaller bias and RMSD than MEDREA16 in
summer when the difference is the largest. The RMSD value
over the whole period is 0.78°C for the previous reanalysis and
0.65°C for the new one. This improvement is attributed to the
atmospheric forcing fields (ERA5) that perform better in the
region compared to the previous version (ERA-INTERIM). The
hindcast SST RMSD and bias is higher than the reanalysis
showing that the relaxation to the SST observations is having
the intended effect.

3.2 Temperature
In this section, we compare the model outputs with temperature
profile measurements from CTD, XBT, and ARGO floats. These
observations are assimilated but, as mentioned before, their
values are compared to the model daily outputs before the
observation is assimilated.

The time evolution of the monthly RMSD for different layers
of the whole Mediterranean domain is reported in the of
Figure 5A. The RMSD is highest in the 10–100 m depth layer
with highly seasonal variability and largest values in summer. The
shallow layer (0–10 m) also presents a seasonal signal with high
values in summer. This is clearer in the most recent years (after
2010) when there is a more constant time coverage of the
observations due to the ARGO floats. Deeper layers have very
little seasonality and also present a very low variability after 2010.
MEDREA24 performs consistently better than MEDREA16,
especially at depth and in the most recent years. A possible
reason for this improvement is that, in MEDREA16, there were
less assimilated profiles and virtually no assimilated observation
below 1,000 m.

Looking at the bias in Figure 5B , this improvement at depth is
associated to a reduction of a negative bias. This figure also shows
less temporal variability of the bias inMEDREA24 in all the layers
confirming the better skill of this version. In this reanalysis there
is no persistent bias that we can detect at any layer. We note that
in January 2000, there is a spike in the RMSD with a
corresponding negative bias. This comes from “bad
observations” where a whole campaign of observations in the
Western Mediterranean is present in the observation dataset but

FIGURE 10 | Time series of area averaged ocean heat content anomaly in the Mediterranean Sea, and integrated over the 0–700 m depth layer. Time series are
based on different data products. The mean profile is in black and the grey shaded area corresponds to the ensemble spread.
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the values of temperature (around 28°C at the surface) suggest
that these observations were made in summer.

A more detailed view of the vertical comparison and the
comparison with the hindcast outputs is offered in the top
panels of Figure 7. It clearly shows the improvement of the
new reanalysis compared to MEDREA16 in temperature at all
depths, especially in the deep ocean. Below 200 m, the remaining
bias is largely reduced in MEDREA24. The hindcast results show
that the reduction of the bias can be largely attributed to data
assimilation. The maximum error is found in the thermocline, at
around 30 m, in both reanalyses and corresponds to the peak in
summer in the time evolution. It is hypothesized that this error is
due to an imperfect vertical mixing scheme that results in errors
in the position of the thermocline during this season. The bias
maximum is slightly below the depth of the maximum error, at
around 50 m, and positive, indicating a possible overestimation of
the mixed layer thickness as the temperature is stratified during
summer period and the water column is well mixed during
winter season. As seen in Figure 5, this bias is however greatly
reduced in the more recent years. Between 20 and 200 m, both
reanalyses present a resulting positive bias due to the summer
overestimation of the temperature shown in the previous
picture. In the upper layers, the error is very similar between
the two experiments but the bias has an opposite sign. This
discrepancy should come from data assimilation or more likely
the heat flux correction by the observed SST since the hindcast
shows a similar bias as MEDREA16. Indeed, in the previous
section, the SST from satellite was consistently lower than the

model SST resulting in relaxation toward cooler SST. The
atmospheric forcing could have also an impact as the
atmospheric fields are different with MEDREA24 using the
more recent hourly fields from ERA5 whereas MEDREA16
uses 6-hourly fields from ERA-INTERIM. An internal
evaluation of the ERA5 fields showed lower values of 2 m
temperature in summer and an increase of the averaged
cloud cover all year over the Mediterranean in comparison
with ERA-Interim. This can explain part of the reduction of
the positive bias in the surface layers as, which is highest in
summer (see Figure 5).

3.3 Salinity
The daily model estimates are here compared to the salinity profiles
fromCTD surveys and ARGO floats. Themonthly time evolution of
the RMSD for different layers is shown in Figure 6A. The highest
error is found in the upper layers as 0.47 PSU and 0.58 PSU for the
new and the old reanalysis, respectively. At all the layers, there is a
strong variability in the early years that is reduced significantly in the
ARGO era when there is a much better coverage of the region. The
error is consistently decreased with the new reanalysis with the
largest improvement in the deep layers.

Bias evolution (Figure 6B) confirms the decrease of variability
in the later years. Below 50 m, the increase of the error of the
MEDREA16 is shown to be related to a positive salinity bias. On
average, the bias is improved in MEDREA24 except in the near
surface where the average value is higher. However, at the surface,
the bias of the new reanalysis does not appear to be consistent and

FIGURE 11 | Average currents from MEDREA24 at 15 m (A) and between 200–300 m depth (B) for the period 1987–2019.
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fluctuates in time pointing that this average value may not be
significant.

The vertical distribution of these diagnostics is specified in the
bottom panels of Figure 7, with the hindcast values added for
comparison. They confirm that the error is consistently reduced
at all depth. The bias is largely reduced at depth too, especially
below 1,000 mwhere the previous reanalysis had a bias. Increased
vertical resolution and a more realistic representation of the
freshwater inputs, achieved thanks to the increased number of
rivers (from 7 to 39, Delrosso 2020) implemented in the new
reanalysis, the use of higher spatial and temporal precipitation
data, and the improved nesting in the Atlantic Ocean by means of
daily open boundary conditions from a global model (instead of
monthly climatological fields), could have concurred in the
improved representation of the salt budget of the basin. The
hindcast salt content (Figure 7) still presents some bias at depth
and these are corrected by the assimilation of profiles. In the case
of MEDREA16, very few observations were assimilated below
1,000 m. We notice that in the first 10 m, the previously
mentioned (see Figure 6) larger positive bias in the new
reanalysis. Horizontal maps of the bias (not shown) seem to
indicate that it is related to an underestimation of the low salinity
near the rivers and may be related to the non-zero salinity
imposed for the river inflow.

3.4 Sea Level Anomalies
The monthly RMSD with SLA observations is reported in
Figure 8. Again, this is a quasi-independent evaluation as

these observations are ingested by the system to correct itself
after the evaluation is done.

Both reanalyses boast similar skill with respect to this
observational dataset with an error value of 3.2 cm until 2013.
Then they start to diverge and the new reanalysis MEDREA24
continues with this behavior whereas MEDREA16 shows a
decrease of skill. This is due to the fact that the older
reanalysis did not assimilate all the satellites present in this
period. Over the whole period, the new reanalysis presents a
8% decrease of the error (from 3.5 to 3.2 cm).

Table 2 presents a summary of the RMSD of the new
reanalysis with respect to observations along with the
percentage difference compared to the previous reanalysis skill.
It highlights the improvement brought by the new reanalysis at
least on this particular skill assessment. On the table the RMSD
evaluated comparing with fixed moorings surface temperature
and salinity and with tide gauges SSH. Considering the moorings
temperature and salinity, the new reanalysis does not show
significant skill improvements when compared with the
previous one. It is to be noted that this comparison is very
coastal and near the surface and thus quite limited.
Considering the comparison with tide gauges, the reanalysis
sea level shows an error of 6.7 cm which is larger than the sea
level anomaly error (3.8 cm) computed using altimeter data since
tide gauges are located close to the coast but there is an
improvement relative to the previous reanalysis (21% decrease
of RMSD). In general, the improved skill of the new reanalysis
when comparing to fixed and not assimilated data, is mostly due

FIGURE 12 | Mean SSH and associated geostrophic currents for MEDREA24 during the period 1993–2019 (A) and Mean Dynamic Topography (B) used for the
SLA assimilation. A global constant has been removed in the basin in both plots.
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to improvement of the numerical model as the hindcast skill (not
shown) is quite similar.

4 CLIMATE SIGNAL

4.1 Heat Content
The ability of the system to represent climate signals is evaluated
looking at the heat content in different layers of the ocean. This
heat content, computed as the volume-averaged temperature in
different layers from both reanalyses and the hindcast, is
presented in Figure 9A showing an overall increase of
temperature during the considered period in the whole water
column.

In the upper 20 m, this signal is mostly dominated by a strong
seasonal cycle. The new reanalysis presents a marginally stronger
seasonal amplitude (1.30°C vs 1.25°C) with warmer summers. The
hindcast has an intermediate seasonal amplitude (1.28°C) with
warmer winters, meaning that the assimilation contributes to the
cooling of winters. This signal is also modulated by large
interannual variability and a positive trend. The interannual
variability is similar for all experiments and not negligible and
for example, between 1990 and 1992 there is a decrease of 2°C.
The standard deviation for the interannual signal is 0.16°C for all
the curves. Concerning the trend, we get 0.026°C/year (0.023°C/
year) increase of temperature for MEDREA24 (MEDREA16).
The hindcast trend at the surface is slightly weaker (0.022°C/year).

In the layer below (200–600 m), the seasonal signal drops
completely with an amplitude below 0.01°C for both reanalyses.

The new reanalysis presents a steady increase of temperature
modulated by some interannual variability. The other reanalysis
however saw a larger drop of temperature from 1992 to 1994
followed by a stronger positive trend later. The drop around 1993
is not reproduced in the hindcast. In the end, the computed trend
for both is equal to 0.013°C/year over the period while the
hindcast presents a trend twice as large.

The decreased temperature in the early 90s is also noticeable in
the deeper layer (600–1,500 m) for MEDREA16 although it
occurs at a later date (after 1993) and more gradually. In
MEDREA24, there is no drop of temperature but the trend is
reduced after this period while the hindcast heat content keeps
increasing at the same pace. Around the end of the simulation,
MEDREA16 catches up with the estimation from the new
reanalysis, probably thanks to the assimilated observations. As
shown in Figure 5, the new reanalysis estimate is closer to the
observations and the previous one had a cold bias. The trends are
respectively 0.002°C/year and 0.005°C/year for MEDREA16 and
MEDREA24 (the hindcast trend is 0.01°C/year).

In the bottom layer, both reanalyses have first a phase of
warming followed by a period of relative stability. However, the
new reanalysis warming phase is longer, lasting until around 2005
and there is still some lighter warming afterwards. The hindcast
presents a weaker and constant warming in the deep ocean.

The accuracy of the heat content variations in the new
reanalysis can be assessed by comparing it to other products.
This is done in the CMEMS OMI (ocean monitoring inticators
https://marine.copernicus.eu/access-data/ocean-monitoring-
indicators) where the heat content deviation from a reference

FIGURE 13 | Average geostrophic EKE (in cm2. s−2) computed from MEDREA24 SSH (A) and altimetry interpolated maps (B) for the period 1987–2019.
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period (1993–2014) integrated over the 0–700 m depth layer is
computed for global reanalyses and observation-only based
products. This is reproduced in Figure 10 where the estimates
from global reanalyses (GLORYS, C-GLORS, ORAS5 and
FOAM, from the CMEMS product GLOBAL_REANALYSIS_
PHY_001_031) and MEDREA24 are plotted alongside estimates
from observation based products (CORA and ARMOR3D). The
ensemble mean ocean heat content anomaly time series over the
Mediterranean Sea shows a continuous increase in the period
1993–2018 at rate of 1.5 ± 0.2W/m2 in the upper 700 m. After
2005 the rate has clearly increased with respect to the previous
decade, in agreement with Iona et al. (2018). The picture confirms
that MEDREA24 is well within the ensemble of estimates and is
actually the one that is closest to the mean of all products (lowest
RMSD).

4.2 Salt Content
The salt content time evolution in different layers for both
reanalyses and the hindcast is reported on Figure 9B.

On the first layer, from the surface to 200 m, as with
temperature, we observe a seasonal cycle with saltier waters in
winter and fresher in summer. However, it accounts for less of the
total variability in salt content (58%) than in heat content (97%)
in both reanalyses. The salt content is slowly decreasing from
1987 to 2005 when there is a sharp increase followed by a slow
increase of salt in the basin. Despite some small differences, the
interannual variations are similar in both reanalyses. The
hindcast, however, shows a quite different behavior before
2005. This hints that the assimilation of in-situ observations
has a large effect in the salt content interannual variability for
the upper layers. The trend is respectively 0.007 PSU and 0.005
PSU for MEDREA16 and MEDREA24 reflecting that the older
reanalysis had a more pronounced decrease at the start and then
increase at the end of the period.

On the layer below, there is no more perceivable seasonal cycle
and the signal is dominated by interannual variability. Both
timeseries present similar characteristics with a trend of 0.0038
PSU/year (MEDREA16) and 0.0032 PSU/year (MEDREA24). As
in the heat content, there is a drop of salinity in 1992 in
MEDREA16. This dip is no longer present in the new dataset.
It is unclear what was the source of this behavior and therefore
why it is not seen in the new reanalysis. As seen in the heat
content, the trend for the hindcast is twice as large and the
assimilation helps avoiding the non-realistic drifts.

In the deeper layer, the drift in the old reanalysis that we
already discussed is evidenced with a trend twice higher (0.004
PSU/year) than in the new reanalysis. This trend was not realistic
and is here corrected as shown in the previous section (Figure 7
for example). In 2018, a new initial condition for the extension of
the timeseries corrected this bias partially but was not sufficient.
For this layer, the hindcast trend is similar to the assimilated run,
meaning that the correction of the trend is related to the change in
the physical model.

At the bottom of the basin, a similar analysis can be made with
the new reanalysis correcting the bottom drift in salinity and the
new trend is now 0.0026 instead of 0.0057 PSU/year. Now, the
trend of the hindcast is too low compared to the other

experiments and this explains the negative bias in the deeper
layers found in Figure 7.

The changes in temperature and salinity content also have an
impact on the mixed layer depth (MLD) in the basin.
MEDREA24 MLD climatology is quite consistent with
estimations from observations (see the QUID documentation
on the CMEMS website for more details, Escudier et al., 2016).
Looking at the mean mixed layer depth in convection areas
reveals that the new reanalysis has stronger deep convection
thanMEDREA16 but also the hindcast (not shown), showing that
the corrections of temperature and salinity have a strong impact
on this variable. This will be analyzed and described more in
depth in a further study.

4.3 Currents
The average circulation of MEDREA24 is presented in Figure 11
on the surface and on the sub-surface (200–300 m). It shows that
the new reanalysis is able to correctly reproduce the main
currents and circulation. A full description of the circulation
can be found in Pinardi et al. (2015) but here we will point out the
main features.

At the surface, the water coming from the Atlantic flows
through the Gibraltar Strait and forms the two Alboran gyres
in the Alboran Sea. The Eastern gyre is smaller in amplitude as it
is only semi-permanent. Then the Algerian current that
transports this water along the African coast is strong and
narrow in the western part and less intense and defined in the
eastern part due to the high mesoscale activity and the large
anticyclonic eddies that modulate the mean current. South of
Sardinia, the current is joined by a current coming from the
North along the Sardinia western coast and flows eastward along
the Tunisia coast toward the Tyrrhenian Sea. A part of this
current then continues eastward along the Northern Sicilian
coast, another loops around the South-Western Tyrrhenian
Gyre and the rest crosses the Sicily Strait. From the first part,
a relatively strong current flows on the surface through the
Messina Strait between Sicilia and Italy’s mainland while there
is a weak circulation northeastward along the Italian coast. In this
Tyrrhennian Sea, the other known gyre is the Northern
Tyrrhenian Gyre (Artale et al., 1994) which is strongly
reproduced in the model. From this gyre, the waters passing
through the Corsica channel join the Gulf of Lion gyre and more
specifically the northern part of it, the Northern current. This is a
relatively strong current that follows the Southern coast of France
and even extends along the Spanish Catalan coast, which is better
reproduced in this version of the reanalysis. The Balearic current
forms the beginning of the return part of the gyre flowing along
the Northern coast of the Balearic Islands. In the Ibiza channel,
there should be two current, one northward and the other
southward (Heslop et al., 2012) and the reanalysis only has a
northward current joining the Balearic current. Back at the Sicily
Strait, the Algerian current branches into two currents, one
southward (Sicily Strait Tunisian Current) and the other
eastward along the Southern Sicily coast (Atlantic Ionian
Stream, AIS). Both currents then meet a large anticyclonic
gyre in the Southern part of the Ionian Sea (Sirte gyre in
Pinardi et al., 2015). A part of the AIS meanders northward
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until both branches join into the Cretan Passage Southern
Current (CPSC). North of this current, the Pelops Eddy (or
Pelops Gyre) and the Western Cretan Eddy (Mkhinini et al.,
2014) are represented. The CPSC then goes northward to become
the Mid-Mediterranean Jet (MMJ, Golnaraghi and Robinson
1994) to form the Mersa Matruh gyre. The Southern
Levantine current (SLC) follows the African coastline,
bordering the Shikmona gyre in the eastern part of the basin
and going northward around Cyprus to become the Asia Minor
Current. This current turns southward when arriving at Crete
forming the Rhodes gyre on the east and the IeraPetra gyre on the
west. In the Aegean Sea, the main currents form a cyclonic
circulation around the sea.

The subsurface circulation (bottom of Figure 11) corresponds
to the circulation of the Levantine Intermediate Water. Starting
from the Levantine Sea where the LIW is formed, the Shikmona
and Mersa-Matruh gyres are also well defined. The flow follows
the surface currents northward along the middle eastern coast
and then westward like the Asia Minor current. Then both the
Pelops Eddy and the Western Cretan Eddy will modulate the
western propagation of the LIW. Some of the current goes
northward to the Adriatic Sea and then south-westward along
the Italian coast to the Sicily coast. The rest is flowing southward
then westward on a coastal current that follows the Sirte gyre
southern part. Both branches then join in the Sicily Strait where
the highest velocities (0.2 m/s) are reached. The LIW is then
advected towards the southern coast of France either in the
Tyrrhenian Sea or along the western coast of Sardinia and
Corsica. The Northern Current then propagates these waters
south-westward to the Balearic Sea where they either turn east
along the Balearic Current to circle around the Balearic Islands or
they flow through the Ibiza Channel. Then they continue
westward along the Spanish coast to reach the Gibraltar Strait.

It is difficult to evaluate quantitatively the differences in the
mean circulation with respect to the previous reanalysis and an
in-depth analysis is outside of the scope of this section. However,
we can highlight some improvements in the surface (see Figure 3
of Pinardi et al., 2015) such as the Algerian current that is
stronger and closer to the coast, the Northern current that
reaches further in the Balearic Sea, the clearer separation in
three branches south of Sicily (with current coming from the
now open Messina Strait), a better representation of the Western
Cretan Eddy or the Mersa Matruh gyre that has a better defined
structure. As for the subsurface circulation, less is known about it
but we can note that the gyres in the Eastern basin are more
clearly defined and, in the Western basin, the Northern current
goes further west also at depth.

Another view of the surface currents is presented in Figure 12.
Here the averaged Sea Surface Height (SSH) over the altimetry
time period is shown with the resulting geostrophic currents
computed from the geostrophic equilibrium. In the figure, the
Mean Dynamic Topography (MDT) from Rio et al. (2014) is
plotted below as “reference”. This MDT is computed using a
numerical model as a first guess and then combining it with all the
available observations of the currents. This plot allows to clearly
see the circulation and especially the various gyres that were
discussed above. The modelized mean SSH is smoother than the

MDT but displays very similar structures. Some differences can
be found in both circulations such as the situation in the Aegean
Sea where the model has a more accurate representation of the
circulation (see Olson et al., 2007 for an independent estimation).

To characterize the mesoscale activity in the new reanalysis,
the average Eddy Kinetic Energy (EKE) over the whole period is
represented in Figure 13. This EKE was computed from the SSH
of the model as well as the SSH from altimetry maps. It allows to
estimate the skill of the model keeping in mind the flaws and
shortcomings of the altimetry interpolated maps. Indeed, these
maps come from an optimal interpolation and therefore the fields
are smoothed. In the Alboran Sea, the reanalysis has an eddy
activity at the entrance from the Gibraltar Strait and along the
entering current. This higher mesoscale activity close to the coast
was also found in a high resolution regional model of the Alboran
Sea (Peliz et al., 2013). Altimetry maps do not have the capability
to resolve these small coastal eddies. In the Algerian current,
similar levels of EKE is found in both datasets with the reanalysis
having more coastal mesoscale activity. The Northern part of this
sub-basin highlights stronger differences with almost no activity
in the altimetry maps whereas the reanalysis shows mesoscale
variability along the Northern current and in the Balearic Sea.
The explanation for this is that the Rossby radius is smaller there
than in the Southern part and thus the eddies are smaller
(Escudier et al., 2013, 2016). Filtered and interpolated
altimetry maps are thus not able to reproduce these structures.
In the Tyrrhenian Sea, the EKE is highest around the Northern
Tyrrhenian Gyre in both maps but, in the model, the current
flowing north of Sicily also presents a stronger EKE. The model
EKE in the Adriatic Sea contours the surface currents while the
altimetry maps show no mesoscale activity. Here again, the
smaller eddies due to a smaller Rossby radius can be the
reason behind this discrepancy. In the Eastern part of the
basin, the model differs from the remote sensing data with
higher EKE along the coast and the coastal surface currents
that compose the main cyclonic circulation. The strongest
mesoscale activity is found around the Iera-Petra eddy
location for both. However, in the altimetry product,
variations in the eddy intensity are stronger and there is a
clear trace in the EKE. This means that the reanalysis is not
capable of fully reproducing the variability of this eddy. The
Aegean Sea is a region that is difficult to observe with altimetry
due to the high density of islands, therefore the higher EKE in the
model is expected. Overall, the model and the observation
datasets present similar patterns and most differences can be
explained by the fact that the model can resolve smaller scales
than the interpolated maps of altimetry.

5 DISCUSSION

This paper describes a new reanalysis of the Mediterranean Sea that
was produced in the framework of CMEMS. The new, higher
resolution reanalysis shows good skill in the diagnostics
performed and represents a significant improvement with respect
to the previous version. The positive surface bias in SST is reduced, as
well as the negative bias of temperature in the deeper layers.
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Concerning salinity, the biases below 500m are now largely removed.
The RMSD when compared to observations is reduced for all
variables. The heat content evolution is consistent with
observations and other estimates from global models. The surface
and sub-surface currents correspond to previous knowledge and the
surface EKE is comparable to what is observed with satellite altimetry.

There is still some bias observed in the comparison with satellite
SST, even though it is reduced in the new version. This positive bias
however is not present in the upper layers when compared to in-situ
temperature profiles where it is instead negative. This discrepancy
hints that the observed profiles are underestimated in the
assimilation and that they do not agree with satellite SST. This
issue with SST could come from a difference between the model SST
we use, the model first layer temperature value, and the SST from
satellite observations which is the night SST, so-called foundation
SST. These may not be exactly the same and then introduce some
biases in temperature at the surface.

The evaluation of the system ismainly done with the same in-situ
observation dataset that was prepared for the assimilation. However,
as mentioned, the model is evaluated before the observation is
ingested. We can mention that all the diagnostics were also
performed with a different database (EN4, Good et al., 2013) and
the results are the same, confirming that the assessment does not
depend on the specific dataset used. Completely independent
observations are difficult to find as we want to assimilate all the
good quality available observations. The comparison with fixed
moorings shows relatively high errors for these coastal and sparse
measurement and no difference between the two reanalyses.
Comparisons with drifters can be made but these have to be
treated carefully and some high order diagnostics such as
presented in Bouffard et al. (2014) are outside of the scope of
this paper.

Concerning the increased error in temperature around 30m
depth, an issue which was also present in the previous version, it is
believed to be related to the vertical mixing in the model. Part of this
error has been corrected but is still the highest error in temperature.
The step forward to improve the model will then be to use a better

parametrization of the vertical mixing and the introduction of tides
(barotropic and internal) that may affect this process.

This new reanalysis offers a new estimate, more accurate, of
the Mediterranean Sea circulation and characteristics. We have
shown that its heat content is consistent with other analysis and
that the higher resolution allowed to better reproduce the eddy
kinetic energy of the geostrophic velocity field with respect to
altimetry. The salinity in the deep layers has been corrected and
corresponds more closely the observed values. In the future, this
reanalysis could be used to study processes such as the
overturning circulation or the deep convection in the different
basins (i.e. Pinardi et al., 2019; Somot et al., 2016) as well as initial
and boundary conditions for nested modeling studies at sub-
regional scales.
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Ocean reanalyses integrate models and observations to provide a continuous and
consistent reconstruction of the past physical and biogeochemical ocean states and
variability. We present a reanalysis of the Mediterranean Sea biogeochemistry at a
1/24◦ resolution developed within the Copernicus Marine Environment Monitoring
Service (CMEMS) framework. The reanalysis is based on the Biogeochemical Flux
Model (BFM) coupled with a variational data assimilation scheme (3DVarBio) and
forced by the Nucleus for European Modeling of the Ocean (NEMO)–OceanVar
physical reanalysis and European Centre for medium-range weather forecasts (ECMWF)
reanalysis ERA5 atmospheric fields. Covering the 1999–2019 period with daily
means of 12 published and validated biogeochemical state variables, the reanalysis
assimilates surface chlorophyll data and integrates EMODnet data as initial conditions,
in addition to considering World Ocean Atlas data at the Atlantic boundary, CO2

atmospheric observations, and yearly estimates of riverine nutrient inputs. With the
use of multiple observation sources (remote, in situ, and BGC-Argo), the quality of the
biogeochemical reanalysis is qualitatively and quantitatively assessed at three validation
levels including the evaluation of 12 state variables and fluxes and several process-
oriented metrics. The results indicate an overall good reanalysis skill in simulating
basin-wide values and variability in the biogeochemical variables. The uncertainty in
reproducing observations at the mesoscale and weekly temporal scale is satisfactory for
chlorophyll, nutrient, oxygen, and carbonate system variables in the epipelagic layers,
whereas the uncertainty increases for a few variables (i.e., oxygen and ammonium)
in the mesopelagic layers. The vertical dynamics of phytoplankton and nitrate are
positively evaluated with specific metrics using BGC-Argo data. As a consequence of
the continuous increases in temperature and salinity documented in the Mediterranean
Sea over the last 20 years and atmospheric CO2 invasion, we observe basin-wide
biogeochemical signals indicating surface deoxygenation, increases in alkalinity, and
dissolved inorganic carbon concentrations, and decreases in pH at the surface.
The new, high-resolution reanalysis, open and freely available from the Copernicus
Marine Service, allows users from different communities to investigate the spatial and
temporal variability in 12 biogeochemical variables and fluxes at different scales (from
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the mesoscale to the basin-wide scale and from daily to multiyear scales) and the
interaction between physical and biogeochemical processes shaping Mediterranean
marine ecosystem functioning.

Keywords: Mediterranean Sea, biogeochemistry, reanalysis, data assimilation, multi-level validation, multi-scale
variability

INTRODUCTION

Optimal integration of physical-biogeochemical observations
and models is becoming increasingly urgent to support both
scientific and broader environmental communities. This urgency
has emerged from the necessity of quantifying the current
characteristics and trends of physical and biogeochemical states
at global or regional scales (Fennel et al., 2019), including
estimates of the carbon cycle, acidification, primary production,
and oxygen and nutrient availability. Given their basin-wide,
regular, and seamless spatial and temporal coverage, multidecadal
reanalyses can constitute a robust basis to compute meaningful
and specific environmental indicators that describe the states
and trends of key biogeochemical features (e.g., essential climate
and ecological variables; Bojinski et al., 2014; Miloslavich
et al., 2018), fluxes, and processes that cannot be completely
and extensively observed (e.g., the flux of CO2, primary
production, and carbon sequestration). These indicators may
support environmental state assessment and monitoring of
climate change, and its impact on marine ecosystems, following
national or international directives [e.g., European Marine
Strategy Framework Directive (MSFD), UNEP/MAP]. From this
perspective, the EU Copernicus Marine Environment Monitoring
Service (CMEMS) has developed ocean monitoring indicators
(OMIs), defined as trends and variability indexes of key marine
variables computed for the global ocean and European seas
(von Schuckmann et al., 2016, 2018, 2020). At the global scale,
OMIs for the ocean biogeochemistry presently account for
pH, chlorophyll, CO2, nitrate, and oxygen minimum zones,
whereas in most regional seas, only the surface chlorophyll
OMI extracted from reprocessed satellite ocean color data
is available.

As a semienclosed sea with a complex orography, the
Mediterranean Sea exhibits high variability in physical (Pinardi
and Masetti, 2000; Pinardi et al., 2015), biogeochemical,
and biological characteristics (Siokou-Frangou et al., 2010).
Additionally, intense anthropogenic pressure (Hulme et al., 1999;
Micheli et al., 2013) and effects of climate change (Giorgi, 2006)
make the Mediterranean Sea a challenging research area, as
multiple signals at different scales interact. While basin-wide
physical tendencies have been presented (Escudier et al., 2021 and
references therein), biogeochemical tendencies are absent and
mostly related to single variables (e.g., chlorophyll). Few long-
term basin-scale signals of ecosystem changes have been reported
for the Mediterranean Sea considering ocean color and in situ
data. For example, using surface chlorophyll concentrations
retrieved from satellite data, Colella et al. (2016) analyzed the
1998–2009 period and reported significant positive trends in
most of the western Mediterranean and Rhodes gyre areas
and negative trends in the northern Adriatic Sea. A slightly

contrasting result was reported by Salgado-Hernanz et al. (2019)
and by the CMEMS ocean monitoring product (Sathyendranath
et al., 2018) that showed a positive (negative) trend in the western
(eastern) Mediterranean subbasin based on an extended period
of the reprocessed satellite dataset. Interannual variability in the
dissolved oxygen concentration and a link between ventilation
change signals in eastern and western Mediterranean deep waters
and two major subbasin climatic shifts, i.e., the Eastern and
Western Mediterranean Transients (EMT between 1995 and
2001, and WMT between 2004 and 2006, respectively), were
recently highlighted (Li and Tanhua, 2020; Mavropoulou et al.,
2020). Focusing on limited areas and periods (given the length
of in situ time series), changes in the deep oxygen concentration
have been reported for the Levantine basin (Sisma-Ventura et al.,
2021), Gulf of Lions (Coppola et al., 2018), southern Adriatic
Sea (Lipizer et al., 2014), and southern Aegean Sea (Velaoras
et al., 2019). Additionally, acidification tendency signals have
been observed in the western (Gibraltar Strait; Flecha et al., 2015)
and eastern Mediterranean Sea (Cretan basin; Wimart-Rousseau
et al., 2021), whereas changes in carbonate system variables [e.g.,
an increase in alkalinity and dissolved inorganic carbon (DIC)
concentrations] have been indirectly estimated in relation to
climate change and anthropogenic pressure (Schneider et al.,
2010; Touratier and Goyet, 2011; Álvarez et al., 2014; Wimart-
Rousseau et al., 2021).

Reanalyses can fill observational gaps, providing a three-
dimensional, basin-wide, and seamless dataset to investigate
temporal and spatial variability on a variety of scales. However,
producing a physical–biogeochemical reanalysis is not a trivial
task (Park et al., 2018), given the uncertain representativeness
of the coupling between physical and biogeochemical processes
(particularly vertical transport and consequent effects on the
nutricline shape), the limited amount of biogeochemical data
(both for assimilation and validation), and the multivariate
nature of the biogeochemical state, which includes the complex
links between observed (sparse) and simulated (many, in
principle) variables. Thus, assessment of the quality of reanalysis
products is of paramount importance considering their potential
multiple uses (Hernandez et al., 2018). Model validation can
be accomplished at different levels (Hipsey et al., 2020),
providing uncertainty estimation for modeled variables at
different spatial and temporal scales (Stow et al., 2009)
and quantifying the modeling capability in terms of the
reproduction of ecosystem processes (e.g., Salon et al., 2019;
Mignot et al., 2021).

At the Mediterranean basin scale, while long-term simulations
with a good performance in reproducing certain specific
aspects are available (Lazzari et al., 2012; Macias et al., 2014;
Guyennon et al., 2015; Richon et al., 2018; Di Biagio et al.,
2019), biogeochemical reanalyses are quite rare. Through the
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assimilation of ocean color data in a POLCOMS-ERSEM
reanalysis at a 1/10◦ resolution, Ciavatta et al. (2019) derived a
specific eco-regionalization based on phytoplankton functional
types. Within the CMEMS framework, a reanalysis at a 1/16◦
horizontal resolution covering the period from 1999 to 2014
and assimilating ocean color chlorophyll data was made available
in 2016 (Teruzzi et al., 2016), and annually extended until
2018 (Teruzzi et al., 2019a). This low-resolution reanalysis
has been adopted to investigate the surface nutrient trend
(von Schuckmann et al., 2018), the positive trend of the
CO2 air-sea flux (von Schuckmann et al., 2018), and the
multidecadal variation in primary production and its relationship
with mixing events in the North–Western Mediterranean Sea
(Cossarini et al., 2020).

In the present study, we describe a novel version of the
CMEMS biogeochemical reanalysis product covering the 1999–
2019 period, with a spatial resolution as high as 1/24◦ horizontally
and 125 vertical levels, based on the most advanced version
of the Mediterranean Sea Biogeochemical Flux Model system
(MedBFM) operationally employed in CMEMS for short-term
prediction purposes (Salon et al., 2019). Additionally, the
biogeochemical reanalysis includes the latest update of the
assimilation scheme (Teruzzi et al., 2018) of ocean color data
(Colella et al., 2021) and off-line coupling with the latest release of
a physical reanalysis (Escudier et al., 2021). The reanalysis results
are available as daily and monthly 3D fields of 12 biogeochemical
variables and fluxes through the CMEMS service.

This study is organized as follows: section “Materials
and Methods” describes the MedBFM model setup, the
upstream data considered to perform the reanalysis, and the
validation framework. Section “Reanalysis Validation” presents
the main results in terms of multilevel validation. The temporal
tendencies and variability emerging from the reanalysis data
are provided in section “Reanalysis Variabilities and Trends.”
A discussion on the reanalysis quality and long-term tendency
and conclusions are outlined in sections “Discussion” and
“Conclusion,” respectively.

MATERIALS AND METHODS

Modeling Framework
The reanalysis of the Mediterranean Sea biogeochemistry at
a horizontal resolution of 1/24◦ (approximately 4 km; the
model domain is shown in Figure 1), covering the period
1999–2019, was produced with an upgraded version of the
MedBFM model system, as detailed and assessed with regard
to quality in Salon et al. (2019). In summary, MedBFM
was built over the coupling between the OGS transport
model (OGSTM), the BFM (Lazzari et al., 2010, 2012, 2016;
Cossarini et al., 2015a; Vichi et al., 2020, and references
therein), and the 3DVarBio variational scheme that assimilates
surface chlorophyll concentrations (Teruzzi et al., 2014, 2018,
2019b). The BFM describes the biogeochemical cycles of carbon
and macronutrients (nitrogen, phosphorus, and silicon) in
terms of dynamic interactions among the dissolved inorganic,
living organic, and non-living organic compartments. Recent

MedBFM upgrades, including the assimilation of BGC-Argo
float data and biooptical components, have been described
in Cossarini et al. (2019) and Terzić et al. (2019, 2021),
respectively. MedBFM is coupled off-line with the CMEMS
Mediterranean Sea physical reanalysis system (Escudier et al.,
2021), which has provided the necessary fields at a daily
frequency for 21-year integration (currents, temperature, salinity,
diffusivity, wind, and solar radiation) to force tracer transport,
dependency of biochemical kinetics on the temperature, and
air-sea interactions.

The setup of the biogeochemical component, in addition to
that of the physical component, is reported in Table 1. Among the
listed elements, a relevant dependency is the atmospheric CO2
partial pressure, which increased almost linearly from 370 ppm
in 1999 to 410 ppm in 2019 (data obtained from the ENEA
Lampedusa station; Artuso et al., 2009). The nutrient inputs are
imbalanced between the two main basins (i.e., the eastern basin
receives almost 70% of the loads) and with atmospheric inputs
higher than the nutrient discharges originating from rivers.
Indeed, the nitrogen inputs into the western and eastern basins
reach 41.4 and 39.8× 109 mol yr−1, respectively stemming from
air deposition, and 10.1 and 34.7× 109 mol yr−1 stemming from
rivers, respectively. The western and eastern basin phosphorus
inputs are 0.53 and 0.67 × 109 mol yr−1 originating from the
atmosphere and 0.16 and 0.69 × 109 mol yr−1 originating from
rivers, respectively (Ribera d’Alcalà et al., 2003; van Apeldoorn
and Bouwman, 2012).

Although the boundary conditions data [i.e., Atlantic
boundaries retrieved from the World Ocean Atlas and GLobal
Ocean Data Analysis Project (GLODAP), and nutrient inputs
obtained from Perseus] are climatological, the atmospheric
(ERA5 data) and ocean dynamics forcing data (Escudier et al.,
2021) are daily data, and the assimilated biogeochemical data
(surface chlorophyll; Teruzzi et al., 2018) are weekly data,
thus driving the high-frequency dynamics of the 21-year long
reanalysis model simulation.

Validation Framework
To assess the reanalysis quality, we extended the CMEMS
validation metrics framework (Hernandez et al., 2009, 2015,
2018), which was inspired by the GODAE Ocean View initiative
(now OceanPredict), by including a set of ecosystem process-
based metrics (Salon et al., 2019). Drawing from the multilevel
validation framework proposed by Hipsey et al. (2020), we
proposed three levels of skill performance metrics applicable to
12 state variables and model fluxes depending on the availability
of observations:

• Level 1: Model outputs are compared with climatological
references (observational datasets or literature reviews)
to quantify the model capability to reproduce basin-wide
spatial gradients and mean annual values and average
vertical profiles on a subbasin scale (i.e., based on GODAE
Class 1 metrics);
• Level 2: Model outputs are compared with observations at

the same time and locations (match-ups) to quantify
the model capability to reproduce the observed
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FIGURE 1 | Subdivision of the model domain in sub-basins used for the validation of the reanalysis. According to data availability and to ensure consistency and
robustness of the metrics, different subsets of the sub-basins or some combinations among them can be used for the different metrics:
lev = lev1 + lev2 + lev3 + lev4; ion = ion1 + ion2 + ion3; tyr = tyr1 + tyr2; adr = adr1 + adr2; swm = swm1 + swm2. The gray line defines the bathymetric contour at
200 m. Blue dots represent open sea observations of nitrate from EMODnet_int data collection (period 1999–2016). Green lines correspond to trajectories of
BGC-Argo floats with chlorophyll observations (period 2013–2018). Red dots with numbers correspond to main river mouth positions: Nile (1), Ebro (2), Po (3),
Rhone (4), Vjosë (5), Seman (6), Buna/Bojana (7), Piave (8), Tagliamento (9), Soča/Isonzo (10), Livenza (11), Brenta-Bacchiglione (12), Adige (13), Lika (14), Reno (15),
Krka (16), Arno (17), Nerveta (18), Aude (19), Trebisjnica (20), Tevere (21), Mati (22), Volturno (23), Shkumbini (24), Struma/Strymonas (25), Meric/Evros/Maritsa (26),
Axios/Vadar (27), Arachtos (28), Pinios (29), Acheloos (30), Gediz (31), Buyuk Menderes (32), Kopru (33), Manavgat (34), Seyhan (35), Ceyhan (36), Gosku (37),
Medjerda (38), Asi/Orontes (39).

TABLE 1 | Setup of the biogeochemical reanalysis and its off-line coupling with the physical component reanalysis.

Physical component
Escudier et al. (2021)

Biogeochemical component
Teruzzi et al. (2021)

Bathymetry Modified GEBCO 30 arc-sec Modified GEBCO 30 arc-sec

Spatial coverage and resolution 17.3◦W, 36.3◦E; 30.187◦N, 45.98◦N 9.0◦W, 36.3◦E; 30.187◦N, 45.98◦N

1/24◦ horizontal 1/24◦ horizontal

141 uneven distributed vertical levels 141 uneven distributed vertical levels (first 125 levels till the 4500 m depth used
in the biogeochemical component)

Time coverage 1993–2019 + spin-up 1999–2019 + spin-up

Model NEMOv3.6 non-linear free-surface; rescaled vertical
coordinates (z*)

OGSTM-BFMv5 with non-linear free-surface and rescaled vertical coordinates
(z*)

Data assimilation OceanVar (Dobricic and Pinardi, 2008) 3DVarBio (Teruzzi et al., 2019b)

Assimilated observations T/S Vertical profiles, SLA along track altimeter
(Storto et al., 2016)

Weekly maps of surface chlorophyll from satellite (Colella et al., 2021)

SST nudging Gaussian around midnight (max = –110 W/m2/K)

Kd (light absorption factor) Weekly from CMEMS OC data (Terzić et al., 2021)

Initial conditions SeaDataNet Climatological T and S EMODnet climatological profiles of nitrate, phosphate, silicate, alkalinity,
dissolved inorganic carbon and oxygen for 16 sub-basins; reference values for
the other state variables (Salon et al., 2019)

Atm. forcing ECMWF ERA5 (0.25◦, 1 h) Solar radiation (1 h); wind (daily)

Nitrogen and phosphorus air deposition (Ribera d’Alcalà et al., 2003); air pCO2

from ENEA Lampedusa station (Artuso et al., 2009)

River input 39 rivers with runoff > 50m3/s including input from
the Dardanelles Strait (treated as a river)

39 rivers with runoff > 50m3/s including input from the Dardanelles Strait
(treated as a river)

Climatological monthly runoff from Perseus
FP7-287600 dataset D4.6

Nitrogen and phosphorus loads from Perseus FP7-287600 dataset D4.6 (van
Apeldoorn and Bouwman, 2012); alkalinity and DIC loads from runoff multiplied
by reference freshwater concentration (Kempe et al., 1991; Copin-Montégut,
1993; Meybeck and Ragu, 1997)

Atlantic boundary Boundary at 20◦W; data from CGLORS REA 1/4◦

daily fields
Boundary at 9◦W; climatological profiles of nitrate, phosphate, silicate, alkalinity,
dissolved inorganic carbon and oxygen from WOA2018 (Garcia et al., 2019)
and GLODAP (Olsen et al., 2016, 2019)

Further details can be found in Escudier et al. (2020) and Teruzzi et al. (2021). The symbol “*” in the “z*” expression commonly refers to rescaled vertical coordinates.
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spatial-temporal variability due to mesoscale and high-
temporal dynamics (i.e., based on GODAE Class4 metrics;
Hernandez et al., 2018);
• Level 3: The model capability is evaluated to reproduce

key biogeochemical emergent properties using specific
process-based metrics and BGC-Argo data (Salon et al.,
2019; Feudale et al., 2021). The metrics for nutrient
vertical dynamics include the nitracline depth computed
as the depth at which the nitrate concentration reaches
2 mmol/m3 (NITRCL). The metrics for the system
productivity include the chlorophyll concentration and
depth of the winter bloom layer (WBL), the maximum
chlorophyll concentration, and depth of the deep
chlorophyll maximum (DCM), and the depth of the
subsurface oxygen maximum (OXYMAX).

Most Level 1 and 2 metrics are spatially evaluated for 16
Mediterranean sea subbasins (Figure 1), in the open sea region
(defined as the area with a depth greater than 200 m), and for
the full water column in selected layers, i.e., 0–10, 10–30 m (for
certain metrics these layers are merged into a single layer, namely,
0–30 m), 30–60, 60–100, 100–150, 150–300, 300–600, and 600–
1,000 m. In the coastal areas, the reanalysis accuracy can be
assessed only for surface chlorophyll using the CMEMS satellite
product and for other variables and a few subbasins according
to in situ data availability. The 16 subbasins synthesize the
heterogeneity in the Mediterranean Sea into homogeneous areas,
considering previous bioregionalization analyses (D’Ortenzio
and Ribera d’Alcalà, 2009; Ayata et al., 2018; Di Biagio et al., 2020;
El Hourany et al., 2021; Novi et al., 2021).

The skill performance metrics include the bias, root mean
square of the differences between the model output and
observations (RMSD). Even if other more robust and non-
parametric skill metrics and diagrams (Jolliff et al., 2009; Stow
et al., 2009) could be preferable for certain variables (e.g.,
variables not normally distributed), we preferred to adopt the
same skill metrics (i.e., applying the CMEMS validation standard;
Hernandez et al., 2018) for all variables and validation levels to
enhance the comparability and communicability of the results.

The variables and their validation levels are listed in Table 2
along with a list of the reference data used. In particular,
the EMODnet data collections (Buga et al., 2018) integrated
with additional oceanographic cruises (references in Cossarini
et al., 2015a; Lazzari et al., 2016), hereinafter referred to as
EMODnet_int, include 12,257 observations for nitrate, 17,323
observations for phosphate, 104,910 observations for dissolved
oxygen, and approximately 4,000 observations for the DIC and
alkalinity covering the 1999–2016 period. The CMEMS ocean
color product (Colella et al., 2021) comprises daily L3 chlorophyll
maps from 1999 to 2019, whereas the surface ocean CO2 Atlas
Database (SOCAT) dataset (Bakker et al., 2016) includes 6,500
surface pCO2 observations over the 1998–2018 period.

Regarding the ocean color dataset, since assimilation was
performed once a week, the above skill performance computation
was performed before the surface chlorophyll maps were
assimilated. Hence, this dataset could be considered a quasi-
independent dataset.

Finally, a quality-checked dataset of BGC-Argo float profiles
obtained from Coriolis/Ifremer (Thierry et al., 2018; Argo, 2021)
was provided stemming from a number of chlorophyll (53),
bbp700 (54), oxygen (53), and nitrate (23) float sensors for the
2014–2019 period. The bbp700 data were converted into carbon
biomass data with the relationship proposed by Bellacicco et al.
(2019).

Net primary production (NPP) and flux of CO2 across the
air-sea interface validation were based on estimates published in
Bosc et al. (2004); Colella (2006), Siokou-Frangou et al. (2010),
and Lazzari et al. (2012) in regard to the former process and
D’Ortenzio et al. (2008); Melaku Canu et al. (2015), and von
Schuckmann et al. (2018) regarding the latter process. In the
“Results” section, we present the different validation levels for
the selected variables and provide a synthesis of representative
normalized skill indicators for all variables, layers, and subbasins.
However, to refine uncertainty error estimates at the local scale
(e.g., error maps, where available), complementary information
is provided in the Quality Information Document contained in
the CMEMS catalog (Teruzzi et al., 2021).

Statistical Methods
The reanalysis results were analyzed to estimate different scales
of temporal variability, including the overall average, range of the
seasonal cycle (difference between the minimum and maximum
monthly average values), overall temporal variability (standard
deviation of the time series), interannual variability (standard
deviation of the annual averages), and trend slope (C-1 method
by removing fixed seasonal cycles; Vantrepotte and Mélin, 2009).
The significance of the trend slope was assessed with the t-test at
a p-level of 0.025.

RESULTS

Reanalysis Validation
The next three sections (Level 1 Validation to Level 3
Validation) illustrate the application of the three validation
levels, thereby providing examples of the comparison between
the observations and model results. Although these three
sections illustrate the accuracy of the model in terms of
RMSD and bias, thus revealing the different spatial and
temporal comparison scales, section “Synthesis of the Reanalysis
Validation” presents an overall synthesis of the accuracy
of all variables and levels using normalized metrics, which
allows us to assess the reanalysis quality against a common
reference (i.e., the observed variability in each variable at the
different levels).

Among the 12 variables of the published reanalysis dataset,
chlorophyll, nitrate, and oxygen were the only variables
covering all three validation levels, basically due to the large
amount of data recently made available in BGC-Argo float
profiles. BGC-Argo data were also considered to validate
the phytoplankton biomass, but only at Level 2. Phosphate,
ammonium, and carbonate system variables (pH, alkalinity,
DIC, and pCO2) satisfied Levels 1 and 2, basically considering
data retrieved from the EMODnet_int and SOCAT repositories,
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TABLE 2 | Reference datasets used for the 3-level validation.

Variable Level 1 Level 2 Level 3

Chlorophyll CMEMS-OC
climatology

CMEMS-OC daily
maps
BGC-Argo profiles

BGC-Argo profiles

Phytoplankton
biomass

BGC-Argo profiles

Net primary
production

Literature estimates

Phosphate In situ climatology EMODnet in situ

Nitrate In situ climatology EMODnet in situ
BGC-Argo profiles

BGC-Argo profiles

Oxygen In situ climatology EMODnet in situ
BGC-Argo profiles

BGC-Argo profiles

Ammonium In situ climatology EMODnet in situ

pH on total scale In situ climatology EMODnet in situ

Alkalinity In situ climatology EMODnet in situ

DIC In situ climatology EMODnet in situ

pCO2 at sea
surface

In situ climatology EMODnet in situ
SOCAT

CO2 flux at air-sea
interface

Literature estimates

Note that both “in situ climatology” and “EMODnet in situ” refer to EMODnet_int data set. Up to three quarters of pH and in situ pCO2 observations were reconstructed
using CO2sys software (Sharp et al., 2020) with available DIC, ALK and other regulatory information (i.e., temperature, salinity and concentration of phosphate and
silicate).

whereas NPP and air-sea CO2 flux were validated at Level 1
only (Table 2).

Level 1 Validation
To illustrate the applicability of Level 1 validation, in this section
we provide a quality assessment of surface chlorophyll, NPP,
and alkalinity, whereas a global overview of the normalized
skill indicators based on the mean annual spatial distribution is
provided in section “Synthesis of the Reanalysis Validation” for
10 state variables (thus, excluding NPP and CO2 flux).

In terms of surface chlorophyll, Figure 2 shows a good
agreement between the climatological maps extracted from
the reanalysis and satellite datasets. The model can correctly
reproduce the basin-wide zonal gradient, spatial heterogeneity
at the subbasin scale, and coastal-off shore patterns in the areas
most affected by terrestrial inputs (Po, Rhone, Ebro, and the
Nile), external inflow into straits (Gibraltar and Dardanelles),
and shallow eutrophic areas (Gulf of Gabes). The subbasin mean
values, annual cycles, and interannual variability are consistent
with those provided by satellite observations (not shown; please
refer to Teruzzi et al., 2021).

Net primary production is a measure of the net uptake
of carbon by phytoplankton groups (the gross primary
production minus fast-release processes, e.g., respiration).
The lack of extensive datasets of NPP observations constrains its
quality assessment to a qualitative evaluation of the reanalysis
consistency against previous estimations published in the
scientific literature (Supplementary Table 1). We observe
that the average NPP estimates (i.e., ranging from 100 to 170
gC/m2/y across the different subbasins, as shown in Figure 3)
agree with basin-wide estimations (the maps in Figure 8 in

Lazzari et al., 2012 and Figure 13 in Bosc et al., 2004) and with
published values for the reference subbasins (Supplementary
Table 1). The reanalysis outcomes for the Ionian and Levantine
subbasins appear slightly higher than previous estimates
(Supplementary Table 1).

Given the sparse and uneven distribution in time and
space of the reference in situ EMODnet_int data, the mean
surface variables obtained in the reanalysis can be compared
with climatological maps, reconstructed following the approach
described in Cossarini et al. (2015a). In the case of alkalinity
(Figure 4), the surface basin-wide gradient and subbasin-scale
spatial variability are consistently reproduced in the reanalysis
with a correlation of 0.95. Comparing the reanalysis to the
EMODnet_int climatology at the basin scale, an overestimation
occurs in the 0–150 m layers (between 20 and 30 µmol/kg),
decreasing to less than 10 µmol/kg below 150 m, and an
RMSD value of 40 µmol/kg is observed in the surface layer,
decreasing to 20–30 µmol/kg below 300 m and maintaining
a constant value of approximately 12 µmol/kg in the deeper
layers (Supplementary Figure 1; the normalized skill indexes
at all levels and subbasins are shown in Supplementary
Figure 2, respectively).

Level 2 Validation
To illustrate the applicability of Level 2 validation, we provide a
quality assessment of selected variables (i.e., phosphate, nitrate,
oxygen, and pH) in this section, whereas a summary of Level
2 validation of all variables is provided in section “Synthesis
of the Reanalysis Validation.” All these variables were validated
by matching model results with collected EMODnet_int data
and in terms of nitrate and oxygen, with BGC-Argo float
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FIGURE 2 | Averaged annual maps of surface chlorophyll (in log-scale) from reanalysis (A) and from the CMEMS-OC multi-sensor satellite data (B). The average is
computed considering the period 1999–2019 over the layer 0–10 m for the reanalysis results.

vertical profiles, and the skill scores are comprehensively reported
in terms of RMSD at the different layers and subbasins
(Figures 5G, 6).

Good agreement is found both in terms of mean phosphate
values and the spread (Figures 5A–C), and variability in the
upper layer, whereas the reanalysis tends to underestimate
phosphate over EMODnet_int in deep layers (below 500
m), especially in the western subbasins (Figures 5D–F).
Quantitatively, the uncertainty, expressed as RMSD computed
at the subbasin scale for the different vertical layers, varies, on
an average, between 0.03 and 0.06 mmol/m3 in the 0–300 m
layer, increasing to 0.08 mmol/m3 below 300 m, and the RMSD is
greater in the western subbasins (Figure 5G). Generally, Level 2
uncertainty is higher than that related to the mean annual value
(i.e., level 1), which ranges from 0.02 to 0.04 mmol/m3 in the
0–300 m layer and reaches 0.07 mmol/m3 below 300 m.

The nitrate skill in regard to Level 2 validation (Figure 6A) is
similar to that of phosphate, namely, a very good performance in
the upper layer that decreases with depth, with underestimation
in the western subbasins and lower variability than the reference

value. The average uncertainty, based on EMODnet_int, varies
between 0.7 and 1.5 mmol/m3 in the 0–300 m layer, increasing to
1.7 mmol/m3 below 300 m. While the surface errors are similar
among the subbasins, the western subbasins exhibit a higher
uncertainty than do the eastern subbasins in the deep layers.
Level 2 validation of nitrate was also conducted by matching
the reanalysis results with BGC-Argo data, providing a similar
picture but with slightly different values, namely the average
RMSD value varies between 0.41 and 0.62 mmol/m3 in the upper
60-m layer, increases to 0.73 mmol/m3 in the 60–100 m layer,
remains smaller than 2 mmol/m3 in the 100–600 m layer, and
increases to 2 mmol/m3 in the 600–1000 m layer (Figure 6D).

The two datasets are self-consistent and robust [the
EMODnet_int quality was reported by Buga et al., 2018, and the
BGC-Argo quality control (QC) protocol was provided by Bittig
et al., 2019] and capture different levels of variability, namely
a broader range of values encompassing sparse observations in
time and space over two decades in terms of EMODnet_int and
a series of profiles closely located in time and space capturing
mesoscale and short-term dynamics, but covering only the last
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FIGURE 3 | Map of the net primary production vertically integrated and contour of the sink fluxes at 500 m depth of POC (red contour) and PIC (black contour).

5 years in terms of BGC-Argo. Thus, by separately employing
these two validation datasets, we reveal a slightly lower reanalysis
uncertainty when matched with the more localized (i.e.,
capturing mesoscale weekly dynamics within limited areas)
BGC-Argo float data than that when matched with the broader-
ranging (in value terms) and more dispersed (in terms of its
spatial and temporal coverage) EMODnet_int dataset.

The amount of EMODnet_int oxygen data is one order of
magnitude larger than that of nutrient data, which supports a
more reliable uncertainty estimation. While the surface layer
is very well simulated (Figures 6B,E), the reanalysis tends to
overestimate the oxygen observations, with a positive bias of
approximately 20 mmol/m3 below 300–400 m (Supplementary
Figure 1). Small errors in oxygen at the surface (e.g., RMSD
values between 5 and 13 mmol/m3; Figure 6E) confirm that the
high-temporal resolution temperature dynamics at the mesoscale
(Escudier et al., 2021), which drive saturation and biological
production, are generally suitably reproduced. In the deep layers,
the reanalysis does not fully capture the oxygen dynamics
due to the observed bias, and the uncertainty increases in
the mesopelagic zone of the water column, specifically in the
western subbasins, where it overcomes 30 mmol/m3. The oxygen
from BGC-Argo floats indicates a reanalysis skill assessment
similar to the EMODnet_int-based metrics (Figure 6B), with the
RMSD values generally increasing with depth, particularly in the
western subbasins.

Qualitatively, the reanalysis correctly reproduces the observed
pH values and the spatial (both horizontal and vertical) variability
(Supplementary Figure 1). Quantitatively, the uncertainty in
reproducing high-temporal frequency observations, expressed
as RMSD, remains relatively constant along the water column,
varying between 0.01 and 0.04 pH units, with high RMSD values

in the Alboran Sea and marginal seas (Adriatic and Aegean, as
shown in Figure 6C). In addition to the model inaccuracy linked
to specific and local conditions in marginal seas, the model-
observation mismatches are possibly related to the inaccuracy of
the reconstruction method of in situ pH observations based on
other carbonate system variables, which can reach as high as 0.005
pH units (Álvarez et al., 2014).

Level 3 Validation
The increasing availability of BGC-Argo data has allowed us
to design fit-for-purpose metrics that quantify the model skill
in reproducing specific emergent properties of biogeochemical
dynamics and their seasonal variability (please refer to Salon
et al., 2019; Feudale et al., 2021; Mignot et al., 2021).

Given the general quasi-stationary trajectory of BGC-Argo
floats in the Mediterranean Sea (e.g., the red points in the
upper panel of Figure 7), qualitative comparison of the
temporal evolution of model-float vertical profiles of nitrate
and oxygen (Figure 7, second and third rows; for chlorophyll,
please refer to the example in Salon et al., 2019) provides an
outlook capturing seasonal and monthly variations due to local
physical (e.g., vertical mixing) and biological (e.g., phytoplankton
bloom) dynamics.

In addition to the quantification of model-observation
mismatches with classical metrics, we computed different quality
assessment metrics to assess the model capability to reproduce
emergent characteristics of the vertical structure, as defined in
section “Validation Framework.” Examples of emergent vertical
characteristic metrics for nitrate (the nitracline depth; NITRCL)
and oxygen (the depth of the oxygen maximum; OXYMAX) are
reported in the lower panels of Figures 7A,B. With regard to the
specific nitrate float (Figure 7A), we observed that the model
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FIGURE 4 | Mean alkalinity maps at surface (layer 0–30 m) in the period 1999–2019 produced by the reanalysis (A) and the climatology from EMODnet dataset at 1◦

resolution (B).

tends to generate a lower nitrate vertical gradient (the model
surface values are overestimated and the values below 200 m are
underestimated; upper panels), whereas the model skill increases
after March 2014, as further verified by the improvement in
the integrated value and correlation (Figure 7A, middle panels).
Despite the surface bias, the model attains a good skill in
reproducing the nitracline depth (NITRCL in Figure 7A) during
the whole period, indicating how the interaction between vertical
physical and biological dynamics, which determines the profile
shape separating nutrient-rich deep waters from depleted surface
waters, is suitably simulated by the model.

The epipelagic seasonal dynamics of the oxygen profile
measured by floats (Figure 7B) are characterized by a
spring surface maximum, summer surface deoxygenation and
penetration into the euphotic layer, and winter mixing. These
dynamics are qualitatively well represented by the model, with a
simulated oxygen maximum depth during the penetration period
but with systematically overestimated values below the euphotic
layer. The model performs very well in reproducing surface
values, mostly driven by saturation (the red dots in the third
row of Figure 7B), while integrated values are overestimated by
approximately 10 mmol/m3 (INTG 0_200m; the fourth row of

Figure 7B). Interestingly, the divergent evolution of the 0–200
m integrated oxygen values after January 2014 suggests either a
possible model flaw or a drift in BGC-Argo float data considering
that quality assessment of BGC-Argo variables is continuously
progressing (Bittig et al., 2019).

Once computed for all available BGC-Argo float data and
comprehensively captured with RMSD in the selected subbasins,
the metrics quantify the model skill in the reproduction of the
seasonal dynamics of the emergent properties of biogeochemical
processes. The reanalysis reproduces the depth of the DCM (i.e.,
with an uncertainty of approximately 15–20 m, Table 3), which
varies between 60 m (western basins) and 120 m (eastern basins,
Lavigne et al., 2015). Slightly higher uncertainty is computed for
the modeled depth of the WBL, at approximately 30 m, while
the intensity of chlorophyll peak values (CHLMAX and winter
maximum values) is reproduced with an uncertainty lower than
0.2 mg/m3. The uncertainty increases to 0.3 and 0.5 mg/m3

in the south-western Mediterranean (swm) and north-western
Mediterranean (nwm), respectively, with the latter subbasin
already addressed by Salon et al. (2019), which is basically related
to the MedBFM limits in reproducing local dynamics under
stratified conditions. Then, Table 3 reports that the RMSD value
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FIGURE 5 | Level 2 validation for phosphate based on the match-ups between model results and reference EMODnet_int dataset for three sub-basins (nwm, ion
and lev) in the open sea. (A–C) Density plots of model (RAN) and EMODnet_int (REF) match-ups; (D–F) vertical profiles for reanalysis (RAN, black) and reference
dataset (REF, red); n. of match ups are 10,774 (nwm), 1,410 (ion) and 1623 (lev); (G) RMSD (mmol/m3) computed for selected vertical layers and for each sub-basin
(white boxes correspond to data unavailability).

for the nitracline depth (NITRCL) varies between 30 and 40 m,
whereas the accuracy of the depth of the oxygen maximum is
on average 25 m, which is a reasonably good result considering
the dispersion in these ecosystem features (refer to Figure 7 and
Supplementary Figure 1) resulting from the interaction between
vertical transport and mixing and biological processes.

Synthesis of the Reanalysis Validation
To provide an overall view of the reanalysis uncertainty at
the different levels of validation, we derived two normalized
indicators for the model variables from the metrics presented in
the previous sections, including a cost function, defined as the
ratio between the absolute bias and the standard deviation of the
observations σO (qualified as very good if lower than 1, good if
ranging from 1 to 2, reasonable if ranging from 2 to 5, and poor if

higher than 5; Moll, 2000), and RMSD normalized with σO, which
should ideally be lower than 1 when the model predictions of
individual observations are better than the average observation
values (i.e., conceptually the model efficiency index defined in
Stow et al., 2009).

Figure 8 shows a synthesis of validation Levels 1 and 2,
mainly considering the surface layer of the Mediterranean Sea.
The indicators extended to all subbasins and vertical layers
are shown in Supplementary Figures 2–4. The cost function
at Levels 1 and 2 is lower than 1 for all the variables in the
upper layer (Figures 8A–C), thus demonstrating an overall
very good quality of the reanalysis in reproducing values and
variability linked to basin-wide dynamics. The cost function
values remain well below 1 in all layers and deteriorate only
in the two deepest layers (Supplementary Figure 2, top).
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FIGURE 6 | Validation (RMSD metric) for nitrate (A,D), oxygen (B,E), and pH (C) based on the match-ups between model results and reference data sets
EMODnet_int (upper panel) and BGC-Argo (lower panel). White boxes correspond to data unavailability.

Among the subbasins, the Alboran Sea (alb), southwestern
Mediterranean Sea (swm1), northern Tyrrhenian Sea (tyr1),
and eastern Levantine (lev4) exhibit at least four variables
for which the cost function value exceeds 1 in certain layers
(Supplementary Figure 3), e.g., the carbonate system variables
in the far eastern subbasins and nutrients in the subbasins
close to the Atlantic boundary, which are affected by possible
systematic biases.

The model also achieves an overall good skill when quantified
with the normalized RMSD at both Levels 1 and 2 in the surface
layer, with the exception of ammonium at Levels 1 and 2 and
the average values of chlorophyll, phytoplankton biomass, and
oxygen in the euphotic layer at Level 2 computed based on BGC-
Argo data (Figure 8C). Considering all layers, ammonium and
oxygen below 100 m exhibit values higher than 1 in more than
three layers (Supplementary Figure 2, bottom). Phosphate in
the upper layers and DIC and alkalinity below 150 m attain very
low values of the standard deviation of the observations driving
normalized RMSD values that are higher than 1 in at least two
layers for each variable.

Even if less robust because of the fewer number of available
observations, the normalized RMSD computed for the subbasins
and layers provide useful indications of possible model flaws
(Supplementary Figure 4). Nutrients in the western subbasins
in the deepest layers and carbonate system variables in the most
eastern subbasins are the most frequent cases with normalized
RMSD values above 1. As already mentioned, ammonium is by
far the least accurately modeled variable, while oxygen below
300 m attains values higher than 1 in at least 12 subbasins
(Supplementary Figure 4).

Among the subbasins, the northern Tyrrhenian Sea (tyr1),
which exhibits a high variability and is a transitional area (as
reported in several regionalization analyses, e.g., Ayata et al.,
2018; Di Biagio et al., 2020), reveals a normalized RMSD value
higher than 1 for at least four variables in several layers.

Reanalysis Variabilities and Trends
Mean Spatial and Temporal Variabilities
The reanalysis provides an overall view of the average spatial
and temporal variabilities in the biogeochemical state of the
Mediterranean Sea over the past two decades. The spatial
variability at the basin scale is computed as the range of
the average annual subbasin values, whereas the average
temporal variability is computed as the mean range (i.e.,
throughout the 21-year simulated period) between the minimum
and maximum subbasin monthly average values (Figure 9
and Supplementary Table 2). The selected subbasins reveal
a typical zonal Mediterranean gradient, while the marginal
seas (Adriatic and Aegean Seas), which are characterized by
important anomalies (Teruzzi et al., 2021), are not shown in
Figure 9.

Certain variables (e.g., alkalinity and DIC) are characterized
by a higher spatial than temporal variability. In terms of
nutrients such as nitrate and phosphate, even when the spatial
variability is notable, the variability in the seasonal cycle at
the surface in several western subbasins can reach as high
as the spatial variability. The spatial variability in nutrients
remains a peculiar signature of the subsurface layers (i.e.,
below 100 m), where the seasonal cycle is narrow and the
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FIGURE 7 | Examples of level-3 validation for nitrate (A) and oxygen (B) based on the comparison between BGC-Argo floats and model. From top to bottom, panels
are: trajectory of the BGC-Argo float (red dots) with deployment position (blue cross); Hovmöller diagrams of nitrate (mmol/m3) and oxygen (mmol/m3) concentration
from float data (2nd row) and model outputs (3rd row) matched-up with float position for the period of float life; selected skill indexes for model (solid line) and float
data (dots): surface nitrate and oxygen (SURF, 4th row; with oxygen saturation, red dots), vertical average of nitrate in the 0–350 m layer and of oxygen in the 0–200
m layer (INTG, 5th row), correlation between vertical profiles (CORR, 6th row), and depth of the nitracline and of the oxygen maximum (NITRCL, blue; OXYMAX, 7th
row).

TABLE 3 | Metrics computed for the level-3 validation.

RMSD of metrics Avg. n. of available profiles per month

NITRCL1 (m) WBL (m) DCM (m) CHLMAX (mg/m3) CHL0-200 (mg/m3) OXYMAX (m) NIT CHL OXY

swm – 32 20 0.29 0.05 28 – 8 7

nwm 32 38 14 0.50 0.12 14 7 23 31

tyr 31 24 17 0.18 0.06 16 6 7 7

adr – 24 15 0.18 0.05 80 – 5 2

ion 45 28 17 0.13 0.06 24 9 22 11

lev 32 30 21 0.15 0.05 35 15 22 11

Details of the metrics are in the text. Aggregated sub-basins are considered, and statistics computed when at least two profiles per month are available.

Mediterranean reveals two distinctive conditions separated by
the Sicily channel (Figure 9). In marine ecosystems, ammonium
is generally produced by remineralization processes of organic
matter and rapidly assimilated by plankton or oxidized into
nitrate. Reanalysis ammonium, which exhibits a relatively high
level of uncertainty (Figure 8), tends to reach zero below the
euphotic layer and indicates a seasonal variability that exceeds
the spatial variability.

Chlorophyll simulation achieves a good skill (Figure 8)
and captures important spatial and temporal signals, which
have already been reported in the literature (Lavigne et al.,
2015; Barbieux et al., 2019), the enhanced seasonal cycle in
both the surface (i.e., winter/spring blooms, especially in the
western regions) and subsurface (50–150 m, with DCM onset
from April to October) layers and significant spatial variability
both in terms of the zonal gradient and vertical displacement
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FIGURE 8 | Synthesis of validation Level 1 and 2 for 10 reanalysis variables with related emergent properties metrics in terms of the cost function (blue) and
normalized RMSD (green): (A) Level 1 computed for the whole Mediterranean Sea 10–30 m layer (surface for chlorophyll summer and winter values, and for pCO2).
Level 2 computed comparing reanalysis with (B) satellite (for surface chlorophyll summer and winter values) and EMODnet_int for the whole Mediterranean Sea 0–30
m layer and with (C) BGC-Argo for chlorophyll, phytoplankton biomass, nitrate and oxygen 0–200 m averaged values.

of the subsurface chlorophyll maximum (Figure 9). At the
surface, the oxygen temporal variability reaches as high as
approximately 50–60 mmol/m3 following the seasonal saturation
cycle, with important spatial differences among the subbasins
attributed to the spatial gradient of the surface temperature
(Escudier et al., 2021). In the subsurface layer, biological activity
drives the variability associated with a maximum at a depth
from approximately 50–100 m (i.e., just above the DCM), and
important spatial differences are associated with the different
levels of productivity in the various subbasins, with the western
subbasins being more productive and shallower than are the
eastern subbasins.

Trends During the 1999–2019 Period
Trends were evaluated considering the simple, fixed-seasonal
cycle (as shown in Figure 9) C-1 method (Vantrepotte and Mélin,
2009) based on the monthly time series for the 16 subbasins.

Trends were computed for certain important layers (e.g., surface,
subsurface, or vertically integrated) and variables to provide a
general view of the different scales of variability in the euphotic
layer. Figure 10 shows values of the trend slope considering
an arbitrary range based on either the seasonal or interannual
variability (Supplementary Table 2), and highlights when trends
are inferred in addition to the statistical significance.

Chlorophyll generally attained very low trends, either positive
or negative, mostly not significant. Indeed, considering the
surface (CHLsurf), only the Adriatic Sea (adr1) and southern
Ionian (ion2) exhibit positive and negative significant trends,
respectively. However, when the trends were computed based on
vertically integrated values (CHL0−200 m), a generally positive
(negative) trend characterizes the western (eastern) subbasins.
Consistent with the negative trend of chlorophyll in the eastern
Mediterranean Sea, the annual vertically integrated primary
production reveals very small negative values in the eastern
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FIGURE 9 | Spatial and temporal variability for selected variables: oxygen (A), chlorophyll (B), ammonium (C), phosphate (D), nitrate (E), DIC (F), alkalinity (G), pH
(H). For each variable, mean annual average profiles for sub-basins along the zonal direction (colored solid lines) and mean seasonal cycle within each sub-basin
(colored shaded areas) are plotted.

subbasins and an absence of long-term signals in the western
subbasins, except the north-western Mediterranean (nwm). The
negative trend values seem mostly associated with a decrease in
the summer productivity, whereas the productivity of the winter
bloom (NPPwinter) increases in the western subbasins due to
the presence of a larger number of intense winter blooms with
enhanced vertical mixing in the second part of the reanalysis with
respect to the initial period, as reported in Cossarini et al. (2020).
However, the limited length of the reanalysis (i.e., 21 years)
might influence the robustness of the above trend analysis when
the interannual variability is high (i.e., the trend slope values
are generally lower than 10% of the interannual variability, as
indicated in Supplementary Table 2). While a negative trend in
the surface layer nitrate occurs in most of the subbasins, in the
case of phosphate the trend is practically null and not significant.
Most of the eastern subbasins and several western subbasins
indicate a very small but significant tendency for oxygen [(−0.05,
−0.10) mmol/m3/y], which corresponds to a decrease in the
oxygen content of approximately 1.0–2.0 mmol/m3 during the
simulated period.

Significant trends for all carbonate variables were obtained for
the whole Mediterranean Sea. In particular, the two prognostic
model variables (alkalinity and DIC) exhibit positive trends
in the eastern subbasins that are higher than those in the
western subbasins: at 1.5 and 0.7 µmol/kg/y, respectively, for

the alkalinity and 2 and 0.6 µmol/kg/y, respectively, for DIC.
While the DIC and alkalinity variations impose opposite effects
on pH, which is a diagnostic variable of the carbonate system,
the overall effect revealed by the reanalysis is a pH decrease at a
rate of approximately 0.0006–0.0012 y−1 (higher in the eastern
subbasins). Finally, a significant trend of the CO2 air-sea flux is
detected, with values ranging from 0.05 to 0.15 (mmol/m2/d)/y,
with the highest values in the western subbasins.

Temporal Evolution and Trend of the Carbonate
System Variables
One of the most relevant signals in the present reanalysis dataset
is the impact of the increase in the atmospheric CO2 partial
pressure, which affects the carbon sink in the marine system.
Despite the very high seasonal cycle, the Mediterranean Sea
exhibits nearly neutral conditions, with a mean annual value
of 0.35 (0.24 in open sea areas only) mmol/m2/d in the 2010–
2019 period (Figure 11). However, we observe a possible shift
in CO2 behavior between a net source and a net sink over the
last two decades, at least in the open sea areas, as a consequence
of the increase in atmospheric CO2. It should be noted that
the dynamics in coastal areas that are simulated as net sinks of
atmospheric CO2 are highly uncertain due to the uncertainty
in terrestrial inputs and the impact of benthic and coastal
biogeochemical dynamics (Borges et al., 2006; Cossarini et al.,
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FIGURE 10 | Trend slope values for selected variables in the 16 sub-basins. Color scale range is adapted considering the range of variability or mean values of each
variable (scale factor is provided together with the variable unit). The symbol ∗ marks significant trend (t-test at p-level of 0.05).

2015b). Regarding the spatial variability, the model exhibits
strong CO2 uptake (ingassing) in the nwm subbasin, Adriatic,
and Aegean Seas and CO2 outgassing in the south-eastern
Mediterranean (Figure 11B). Hotspots of CO2 atmospheric
uptake occur in areas of dense water formation (Pinardi et al.,
2015), fostering the carbon pump mechanism in marginal areas
(Cossarini et al., 2017). Considering the marine carbon cycle
functioning in the open sea areas, primary production is a
key component that, in addition to constituting the base of
oceanic food webs, contributes to atmospheric CO2 sequestration
through CO2 fixation and subsequent organic carbon sinks
(Siegel et al., 2014; Morrow et al., 2018). We provide the mean
annual value of the integrated NPP, together with an estimation
of the sink of particulate organic carbon (POC) and particulate
inorganic carbon (PIC) at a depth of 500 m (Figure 3). According
to the BFM formulation (Lazzari et al., 2016; Vichi et al.,
2020), NPP is determined as photosynthesized carbon minus
respiration and fast-release carbon due to a lack of nutrients for
biomass synthesis. While organic carbon is produced through
mortality and grazing of all plankton groups, the dynamics of PIC
(i.e., calcite) comprise calcite precipitation by coccolithophores
(parameterized as the mortality of nano-flagellate functional
types multiplied by a PIC:POC ratio factor of 1; Krumhardt et al.,
2017) and the dissolution process (Morse and Berner, 1972).

The zonal trophic gradient of primary production reflects
a sink of particulate carbon, where the carbon export of the
western subbasins was double that of the eastern subbasins.
The particulate organic and inorganic carbon exports are similar

across the western subbasins, with values of approximately
0.1–0.3 g/m2/y, whereas the PIC sink seems to be the
dominant carbon export process in the eastern subbasins, where
coccolithophores are recognized to increase eastward in the
Mediterranean basin and could be the relevant phytoplankton
group (Siokou-Frangou et al., 2010; Oviedo et al., 2015). Carbon
sequestration in the deep layers is approximately 10–20% of
atmospheric CO2 absorption. No significant temporal tendency
was detected in the sinks of POC and PIC, suggesting that
the increase in carbon accumulation in the deepest layers (not
shown) was mostly related to the downward diffusion/transport
of DIC from the surface rather than an alteration in the model
internal biogeochemistry.

DISCUSSION

This study describes a 1999–2019 reanalysis of the Mediterranean
Sea biogeochemistry produced within the CMEMS framework.
Combined with related physical reanalysis (Escudier et al., 2021),
biogeochemical 3D daily and monthly fields are open and
freely available through the CMEMS web portal.1 A robust and
rigorous validation is a critical point to inspire user confidence
toward model products (Hernandez et al., 2018; Hipsey et al.,
2020). Through the three-level validation framework (section
“Reanalysis Validation”), the Mediterranean biogeochemical

1marine.copernicus.eu
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FIGURE 11 | Monthly time evolution (thin lines) and its moving average (thick lines) of CO2 air-sea flux (A) in the western and eastern Mediterranean Sea, Adriatic
and Aegean Seas. Map of the mean annual CO2 air-sea flux (B). Positive values indicate sink of atmospheric CO2.

reanalysis was demonstrated to constitute a valid multiscale
product that can be applied to investigate variability at different
temporal and spatial scales (refer to the examples in the Ocean
State Report, von Schuckmann et al., 2016) and can serve as
qualified boundary conditions for subregional high-resolution
model systems (refer to the example in Bruschi et al., 2021).
To our knowledge, this is the first time that different levels
of validation have been achieved in a reanalysis of the
Mediterranean Sea biogeochemistry, quantifying the uncertainty
in as many as 12 variables: chlorophyll, phytoplankton biomass,
NPP, phosphate, nitrate, oxygen, ammonium, pH, alkalinity, DIC,
sea surface pCO2, and air-sea CO2 flux.

As thoroughly outlined by Hipsey et al. (2020) and
demonstrated in specific cases within the CMEMS regional
forecasting system (as an example, Gutknecht et al., 2019; Salon

et al., 2019), biogeochemical data availability is an important
constraint for model validation since different variables exhibit
varying uncertainty levels on the basis of the availability of
reference data. Therefore, our proposed framework offers a
degree of confirmation (Oreskes et al., 1994) concerning the
different spatial-temporal variability scales determined by the
availability of observations specific to various datasets.

One caveat regarding the robustness of the present analysis
is that surface chlorophyll comparison at Levels 1 and 2
was performed with the same satellite observations previously
assimilated, which is a common procedure in skill assessment
of assimilative systems (Gregg et al., 2009). Nevertheless, as
mentioned, the model is evaluated before the observations are
assimilated. Hence, the metrics provide an assessment of the skill
performance in regard to short-term temporal dynamics. Among
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the 10 model variables compared to the EMODnet dataset, three
variables were further compared with the BGC-Argo dataset.
These two validations were kept separate to ensure consistent
accuracy in the calculations, given the relatively different spatial
and temporal coverage levels and QC procedures between
the EMODnet and BGC-Argo data. Furthermore, the BGC-
Argo floats provide observations at high vertical and temporal
resolutions, allowing us to compute time series of the vertical
properties of oxygen, chlorophyll, and nitrate (in the three-level
validation framework).

Generally, our validation results revealed the good model
performance and certain flaws in the reanalysis. The impact of
the accuracy of the climatological Atlantic boundary, the low
spatial variability in the initial conditions (i.e., a single profile
for each subbasin), and the possible imbalance between deep
ventilation and mesopelagic mineralization processes could be
the reason for the model errors in the western subbasins and
the deep-layer values for nutrients and oxygen (i.e., nitrate and
phosphate underestimation and oxygen overestimation in the
mesopelagic layer, with a larger error in ammonia, as shown
in Figures 6–8, and Supplementary Figures 2–4). Additionally,
a possible excess evaporation effect could be the cause of the
alkalinity overestimation in the eastern subbasins, causing a slight
overestimation of the pH (Figure 6). However, it should be noted
that the alkalinity trend is fairly well aligned with the salinity
trend, as described in Escudier et al. (2021), highlighting that
the slight alkalinity overestimation could be attributable to a
possible error in the initial conditions (stemming from the 1999
to 2016 EMODnet_int climatology, which might already include
part of the trends).

Focusing on the epipelagic layer, where the accuracy is higher
than that in the mesopelagic layer, the reanalysis reproduces
certain long-term tendencies that occur in the Mediterranean Sea
as a response to changes in atmospheric forcing. The increase
in heat content (Escudier et al., 2021) and the increase in
atmospheric CO2 (Artuso et al., 2009) are the main drivers of
the detected significant changes in oxygen at the surface and
carbonate system variables.

Indeed, the trend of oxygen is compatible with the decrease
in oxygen solubility due to the estimated increase of 0.7◦C in
the sea surface temperature over the last two decades (Escudier
et al., 2021). However, it should be noted that the mesopelagic
layer (i.e., 300–700 m) instead indicates a positive significant
trend of approximately 0.5 mmol/m3/y (not reported), which
we hypothesize is caused by a possible missing respiration
term in the BFM model formulation, as also reported in Reale
et al. (2021). Thus, the reanalysis yields an accumulation of
10 mmol/m3 that affects its quality in the deeper layers (Figure 6
and Supplementary Figure 4).

The positive alkalinity trend could be linked to the long-
term change in the water balance (refer to Skliris et al., 2018),
which has also caused an increase in the 0–200 m layer salt
content of approximately 0.15 PSU over the last 20 years
(Escudier et al., 2021).

A constant and spatially homogeneous increase in the
atmospheric pCO2 value from 370 to 410 ppm during
the 1999–2019 period caused a positive increase in the

sink of atmospheric CO2. The simulated values are in
line with those already published for the Mediterranean
Sea (von Schuckmann et al., 2018) and reveal how the
Mediterranean has become a net sink of atmospheric CO2
over the last 20 years. Excess of evaporation over runoff
and precipitation combined with the increase in atmospheric
CO2 absorption determined the trend of DIC in the upper
layer, with values ranging from 0.6 to 2 µmol/kg/y. The use
of climatological boundary conditions throughout the entire
duration of the simulation might have partially hampered
the positive tendency of the long-term evolution of alkalinity
and DIC in the southern areas of the western Mediterranean
Sea, mostly influenced by Atlantic inflow. Consequently, lower
pH trends were simulated in the western subbasins, where
conversely, the increase in the CO2 sink is 50% larger,
suggesting an increase in the net export of carbon through the
Gibraltar Strait.

The simulated trend of acidification (0.0006–0.0012 pH units
y−1; higher in the eastern subbasins) agrees with previously
estimated global acidification trends (e.g., 0.0016 pH units y−1;
Gehlen et al., 2020; Kwiatkowski et al., 2020), and is confirmed
by the regional observations reported in Flecha et al. (2015) for
the Gibraltar Strait over the 2012–2015 period (i.e., an annual pH
variation of −0.0044 ± 0.00006) and in Wimart-Rousseau et al.
(2021) for the north-western Levantine basin (i.e., an annual pH
variation of−0.0024± 0.0004).

We also confirmed specific long-term tendencies already
unveiled by satellite and model results for chlorophyll (Salgado-
Hernanz et al., 2019) and winter primary production (Cossarini
et al., 2020). The consistency in surface chlorophyll tendency
should not be surprising since this is an assimilated variable.
Even though there is no consensus on significant trends or
regime shifts in ventilation (Li and Tanhua, 2020; Mavropoulou
et al., 2020), the negative trend in nitrate appears to be linked to
the impact of chlorophyll satellite assimilation on non-limiting
nutrients (Teruzzi et al., 2014). Indeed, in late winter and early
spring, the assimilation of satellite chlorophyll observations
mainly acts to correct bloom overestimation, thereby nearly
uniformly reducing the phytoplankton concentration in the
euphotic layer. The negative trend of nitrate occurs due
to the consequent reduction in phytoplankton nitrogen
remineralization. Even if this phenomenon might be a spurious
tendency, the reduction is much lower than the mean value (i.e.,
approximately 1% over the two simulated decades) and far below
that of the variable error (refer to the previous section).

As a general remark, it should be noted that some of the values
of these trends, even if significant in several cases (i.e., in specific
subbasins), are very low and affected by the length of the time
series of the reanalysis, which cannot be extended toward the past
beyond the start of the European Space Agency (ESA)–Climate
Change Initiative (CCI) satellite time series.

The reanalysis was produced with the primary focus of
providing the best 3D estimate of the biogeochemical state of
the Mediterranean Sea, integrating the most recent upstream
data made available within CMEMS and other communities,
including the assimilation of surface chlorophyll data, the
atmospheric and hydrodynamic physical forcing, and the
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biogeochemical boundary conditions. Robust validation of the
12 variables constituting the reanalysis dataset offers users a
measure of the accuracy at different spatial and temporal scales.
Our approach highlighted large-scale changes, whereas unveiling
specific impacts on the biogeochemical features of changes in
water circulation and water mass movements (Malanotte-Rizzoli
et al., 2014; Schneider et al., 2014) is left to subsequent papers.
In particular, changes and accuracy of the circulation fields are
examined in Escudier et al. (2021), and specific analyses can
be addressed in the future given the availability of physical and
biogeochemical reanalysis data in CMEMS.

Furthermore, our comprehensive validation approach
highlighted possible model errors, such as nutrients and
oxygen in the mesopelagic-bathypelagic layers, that should be
considered before drawing conclusions concerning the analysis
of intermediate and deep Mediterranean waters. Thus, important
multidecadal signals, such as the presence of a deep dissolved
oxygen variability linked to shifts with a multidecadal signal
(Mavropoulou et al., 2020) or bathypelagic negative oxygen
trends (Sisma-Ventura et al., 2021), when compared with the
reanalysis, could help to improve the next generation of reanalysis
products, shifting the focus of biogeochemical analysis from the
epipelagic layer to the meso and bathypelagic layers.

CONCLUSION

A new and high-resolution biogeochemical reanalysis of the
Mediterranean Sea is presented, and the resultant dataset of daily
and monthly 3D fields of 12 variables and ecosystem fluxes is
freely available from the CMEMS web portal. In summary:

• The new reanalysis integrates several novel elements:
ERA5 atmospheric forcing, coupling with the new 1/24◦
physical reanalysis, updated versions of the BFM model
and biogeochemical variational assimilation scheme, and
several updated observational datasets for assimilation and
validation purposes.
• As a result of the developed three-level validation

framework, robust skill assessment of the 12 considered
variables offers CMEMS users a measure of accuracy
at different spatial and temporal scales. The estimated
accuracy of the reanalysis is high for all variables, except
ammonium, and the validation is successfully extended to
certain emerging properties describing ecosystem processes
(e.g., DCM and the depth of the nitracline and subsurface
oxygen maximum) using the BGC-Argo dataset. A certain

degradation in the quality of oxygen and nutrient estimates
is reported in the deep layers.
• The reanalysis represents a consistent reconstruction of the

Mediterranean Sea biogeochemical state and its multiscale
variability over the last two decades, quantifying the
impact of external and atmospheric forcing on basin-scale
tendencies toward surface deoxygenation and acidification,
in agreement with previous works.
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The role of eddies in the North Atlantic decadal variability is investigated in this study
by using two ocean reanalyses, including an eddy permitting (or eddy poor) reanalysis
with horizontal resolution of 0.25 degree and 75 vertical levels and an eddy resolving (or
eddy rich) reanalysis with horizontal resolution of 1/12 degree and 50 vertical levels. The
prominent mid-1990s warming and post-2005 cooling trend as part of the North Atlantic
decadal variability is well displayed in both reanalyses with no significant difference
between them. The main driver of the mid-1990s warming and post-2005 cooling trend
is the increase and reduction of the meridional ocean heat transport showing similar
patterns in both reanalyses. The relative contribution of the heat transport anomalies
from eddies to the total heat transport anomalies is slightly larger in eddy resolving than
in eddy permitting ocean reanalysis. However, the total mean ocean meridional heat
transport increases by 10% in eddy resolving reanalysis with respect to eddy permitting
reanalysis and is mainly due to the associated increase of the mean states (temperature
and velocity). Therefore, the increase of eddy population due to the increase of horizontal
resolution, found by comparing the two datasets, does not affect the MHT anomalies
significantly and, consequently, the North Atlantic decadal variability. It is found that the
importance of the model horizontal resolution for the North Atlantic decadal variability
depends on the interaction between the eddies (small scale) and the mean state (large
scale) at decadal time scales. Although the fast increase of computational power will
allow soon for eddy-resolving predictions, the need to use high resolution modeling
tools for decadal predictions depends on the importance of initialization methods and
the interaction between small scale and large-scale variabilities. This study has pivotal
implications for the development of North Atlantic decadal prediction systems.

Keywords: eddies, North Atlantic, decadal variability, reanalyses, meridional heat transport, eddy-large scale
interaction

INTRODUCTION

The North Atlantic is an important region displayed with prominent decadal variability
phenomena. Robson et al. (2016) show that the rapid warming in the mid-1990s and cooling from
2005 to 2016 in the eastern subpolar gyre region (SPG) are part of the decadal variability in the
North Atlantic. In terms of the mid-1990s rapid warming, several studies have been devoted to
study the oceanic and atmospheric processes that are responsible for this abrupt climate change
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by using observations, climate model simulations and decadal
prediction experiments (Robson et al., 2012, 2016; Yeager et al.,
2012; Delworth et al., 2016). Ocean reanalyses for the first
time are used to study the mid-1990s rapid warming by Yang
et al. (2016). The role of data assimilation is investigated
therein, showing that the ingestion of observations through data
assimilation improves the mean state of the North Atlantic, while
the mid-1990s rapid warming event is well represented in both
control run (without data assimilation) and ocean reanalysis.

The mechanisms that are responsible for the mid-1990s
warming have been proposed in an extensive body of studies
(Haìtuìn et al., 2005; Bersch et al., 2007; Sarafanov et al., 2008;
Herbaut and Houssais, 2009; Häkkinen et al., 2011; Robson
et al., 2012, 2016; Yeager et al., 2012; Delworth et al., 2016;
Yang et al., 2016). One of the main drivers of Atlantic variability
is the North Atlantic Oscillation (NAO) showing an abrupt
change between winters of 1994/1995 and 1995/1996 from a
positive to a negative phase. The advection of warm water due
to the gyre circulation and the strengthening of the Atlantic
Meridional Overturning Circulation (AMOC) accompanied by
increasing Meridional Heat Transport (MHT) that results from
the change of the NAO are responsible for the mid-1990s rapid
warming in the SPG region (Haìtuìn et al., 2005; Bersch et al.,
2007; Sarafanov et al., 2008; Robson et al., 2012, 2016; Yeager
et al., 2012; Delworth et al., 2016; Yang et al., 2016). A recent
study by Robson et al. (2016) shows a reversal in the North
Atlantic temperatures trend, turning from warming to cooling
around 2005, and the concomitant weakening of the ocean
circulation associated with a reduction of MHT due to the
occurrence of low-density surface waters in the Labrador Sea.
The mid-1990s warming and post 2005 cooling in the North
Atlantic are prominent manifestations of decadal variability in
the North Atlantic Ocean, where changes in the MHT play
a significant role. This prominent decadal variability is also
demonstrated in the sea level change in the North Atlantic
(Chafik et al., 2019). There is indeed evidence of significant
predictability in the North Atlantic sector displayed by decadal
prediction experiments, associated with the use of ocean analyses
as initialization products (Matei et al., 2012; Bellucci et al., 2013,
2015; Polkova et al., 2019a,b).

Along with numerical and technological developments, the
spatial and temporal resolution of climate models has been
increasing (Haarsma et al., 2016), allowing the delivery of eddy-
resolving (e.g., 1/12 degree resolution) global datasets for large
scale climate studies. The primary question we would like
to address in this study is the relative role of eddies in the
North Atlantic decadal climate variability. More specifically we
investigate the contribution of mesoscale ocean eddies to the
MHT variability, which in turn drives the decadal climate changes
recently observed in the North Atlantic.

The contribution of eddies to the ocean MHT has been
investigated in several studies (Roemmich and Gilson, 2001;
Jayne and Marotzke, 2002; Qiu and Chen, 2005; Aoki et al.,
2013; Treguier et al., 2017; Zhao et al., 2018; Docquier et al.,
2019; Sun et al., 2019; Delman and Lee, 2020). For example, a
latest estimation using Argo and altimetry observations shows
that the eddy heat transport is mainly located within the top

1,000 m and accounts for half of the total heat transport at
45◦S and one third at 35◦N (Sun et al., 2019). Model studies
show that with the increase of model resolution the total MHT
increases (Treguier et al., 2012; Grist et al., 2018; Docquier
et al., 2019), mainly due to the change of time-mean circulation
rather than the eddy component (Treguier et al., 2012). However,
previous studies have mainly focused on the role of eddies in
the climatology of the total MHT at a certain time period.
The impact of model resolution on the MHT variability that is
responsible to the North Atlantic decadal variability has been
overlooked to the best of the authors’ knowledge. Additionally,
the eddy MHT has been explored by using either observations
or numerical model simulations. In this study our goal is to
investigate the role of eddies in the Atlantic MHT variability
by using ocean reanalyses at different model resolutions (1/4
and 1/12 degree).

Ocean reanalyses have been used in several climate studies
(Storto et al., 2016; Yang et al., 2016) and climate change
monitoring owing to their temporal and spatial consistency
of data coverage and dynamically consistent estimates of
the ocean states compared to either observations or climate
models. Complementing ocean general circulation models with
data assimilation has indeed shown to greatly improve the
representation of eddies (population, life and extension) with
respect to free-run models even in eddy-permitting comparisons
in the North Atlantic (Cipollone et al., 2017). Likewise, transports
representation has been demonstrated to be better reproduced
than in ocean simulations (Jackson et al., 2016, 2018). This study
will shed light on the importance of eddy-induced MHT in the
large-scale climate variability.

DATA AND METHODS

In this study we use two sets of global ocean reanalyses produced
by Mercator Ocean International including the Global Ocean
Reanalysis 2 version 4 (GLORYS2V4, hereafter G4, Storto et al.,
2019) at 1/4 degree (eddy permitting), and the Global Ocean
Reanalysis 12 version 1 (GLORYS12V1, hereafter G12, Lellouche
et al., 2021) at 1/12 degree horizontal resolution (eddy resolving),
both covering the period from 1993 to 2016. A robust validation
of these products can be found in quality information documents
(Garric and Parent, 2017; Drèvillon et al., 2021a).

The details of the production of G4 are given in Garric and
Parent (2018). Here we provide a brief introduction of G4. The
ocean dynamic model of the G4 is the Nucleus for European
Models of the Ocean version 3.1 (NEMO 3.1, Madec, 2008)
coupled with the thermodynamic-dynamic Louvain-la Neuve Sea
Ice Model version 2 (LIM2, Fichefet and Morales Maqueda,
1997). The horizontal grid of NEMO is based on a tripolar grid
with 1/4 degree of horizontal resolution and 75 depth levels.
The momentum, heat and freshwater fluxes driving the ocean
are calculated based on Large and Yeager (2004) bulk formulas
by using atmospheric variables from the ECMWF ERA-Interim
atmospheric reanalysis (Dee et al., 2011). The initial conditions
are from the United Kingdom Met office EN4 objective analyses
(Good et al., 2013) version 4.0.2 for temperature and salinity
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FIGURE 1 | The mean climatology of top 700 m (T700) temperature computed for the 1993–2016 period (A) in G4, (B) in G12, (C) in EN4, (D) the difference
between G12 and G4, (E) the difference between G4 and EN4, (F) the difference between G12 and EN4, (G) The T700 averaged in the box area shown in panel (A).
Areas with differences that do not pass t-test 95% confidence interval are marked with light gray crosses.

and the sea ice initial conditions come from National Snow and
Ice Data Center (NSDIC) bootstrap products (Comiso, 2000).
The data assimilation scheme is the reduced order Kalman filter
based on the SEEK formulation (Pham et al., 1998), named
as Système d’Assimilation Mercator version 2 (SAM2) and a

three-dimensional variational (3D-Var) bias correction scheme
is used to correct large-scale temperature and salinity biases
(Lellouche et al., 2018). The surface observations assimilated
into G4 include satellite-based sea level anomaly and SST and
temperature and salinity profiles from CORA 4.1 in situ database
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FIGURE 2 | Top 700 temperature (T700) linear trend (unit: ◦C per decade) (A) from 1993–2004 in G4, (B) from 2005 to 2016 in G4, (C) from 1993–2004 in G12, (D)
from 2005 to 2016 in G12, (E) from 1995–2016 in EN4, (F) from 2005–2016 in EN4 and (G) T700 anomaly respect to 1993–2016 mean averaged in the boxed
regions (35 N–65 N. 10 W–50 W) shown in panel (A) for G4 (black), G12 (red) and EN4 (green). In panels (A–F) regions that do not pass t-test 95% confidence
interval are marked with light gray cross.
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FIGURE 3 | Eddy kinetic energy (EKE) climatology (1993–2016) in (A) G4 and (B) G12 at the surface, (C) the surface EKE difference between G12 and G4, (D) EKE
at 40◦W in G4, (E) EKE at 40◦W in G12 (F) the difference between G12 and G4 from surface to 1,200 m at 40◦W. The analysis is based on monthly data. In panels
(E,F) areas with values that do not pass t-test 95% confidence interval are indicated with light gray crosses (Unit: log m2/s2 for EKE and m2/s2 for EKE differences).

provided by the Copernicus Marine Environment Monitoring
Service (CMEMS) (Szekely et al., 2015). Sea ice concentrations
from IFREMER/CERSAT products (Ezraty et al., 2007) are
also assimilated.

The main difference between G12 and G4 is the resolution
of the ocean model. As G4, the ocean model of G12 is
based on NEMO 3.1 but with the horizontal resolution of
1/12 degree and 50 vertical levels. Further to the resolution,
the two reanalyses differ for the precipitation dataset toward
which the atmospheric fluxes are corrected (PMWC and
GPCPV2.2 for G4 and G12, respectively). The initial conditions
and restoring climatology for Gibraltar and Bab-El-Mandeb
straits come from EN4.2.0 for G12 and EN4.0.2 for G4
respectively. Details of the G12 configuration are described in

Drèvillon et al. (2021a) and the detailed differences between G4
and G12 are described in Drèvillon et al. (2021b).

The method to calculate the eddy component of MHT follows
the traditional scale separation approach, as schematized below:

v = v+ v′ (1)

T = T + T′ (2)

in which T represents ocean temperature and v represents ocean
meridional velocity. The v and T are time mean of v and T for the
whole time period (1993–2016); and v

′

and T′ are the deviation
from the time mean. We follow Crosnier et al. (2001), and use 5-
day fields, in order to secure an accurate estimate of MHT. The
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FIGURE 4 | Total mean meridional heat transport (vT, black lines) and decomposition (vT blue lines and v′T ′ red lines) in G4 (dashed lines) and G12 calculated with
5-day data.

decomposition of vT for calculating MHT is as follows:

vT = vT + v
′

T + vT′ + v′T′ (3)

Therefore, the total MHT and decomposition of MHT are
calculated according to Equation 4:

ρ0CP

∫ 0

−H

∫ λE

λW

vTdxdz = ρ0CP

∫ 0

−H

∫ λE

λW

vTdxdz

+ρ0CP

∫ 0

−H

∫ λE

λW

vT
′

dxdz + ρ0CP

∫ 0

−H

∫ λE

λW

v′Tdxdz

+ρ0CP

∫ 0

−H

∫ λE

λW

v′T′dxdz (4)

The quantities ρ0 and Cp are seawater density (1, 020 kgm−3)
and heat capacity (4,000 Jkg−1C−1), respectively.v and T are
the meridional velocity and ocean temperature as stated in
Equation 1. H is the ocean depth, and λE and λW are
the longitude of the eastern and western boundaries of the
ocean basin. On the right-hand side of Equation 1, the first
term (vT) represents the contribution of the mean advection
of mean temperature, the second term (v′T) represents the
anomalous advection of mean temperature, the third term (vT′)is
the mean advection of temperature anomalies and the last
term (v′T′) is the contribution of co-variation of anomalous
current and anomalous temperature (eddy covariance) to the
total ocean MHT.

For simplicity, we omit the integration symbols in the heat
transport equation (Equations 5–7). The mean meridional heat
transport for the whole time period (1993–2016) vT is composed
of vT and v′T′, described as below:

vT = vT + v′T′ (5)

The anomaly MHT respect to the mean for the period of 1993–
2016 and the decomposition becomes:

vT − vT = vT + vT
′

+ v
′

T + v
′

T
′

− (vT + vT ′ + v′T + v′T ′ ) (6)

in which the first term on the right side is canceled by the
fifth term, and the sixth and seventh terms are 0. Then for the
anomalies we have

vT − vT = vT
′

+ v
′

T + (v
′

T
′

− v′T ′) (7)

The eddy explained variances (EEV) are calculated as

EEV =
var(MHTT)− var(MHTL)

var(MHTT)
(8)

in which MHTT indicates the total Meridional Heat Transport
(MHT), MHTL

means the MHT contributed by large scale processes and var
is the variance function.

RESULTS

The North Atlantic Decadal Variability
First, we calculated the climatology (Figure 1) of the upper 700 m
averaged temperature (T700) in the North Atlantic Ocean in
two ocean reanalyses G4 (1/4 degree horizontal resolution), G12
(1/12 degree horizontal resolution) and EN4 objective analysis
(EN4.2.1, 1 degree resolution). EN4 objective analysis is from
United Kingdom Met Office (Good et al., 2013). Climatological
maps of T700 show that in the North Atlantic Ocean, the upper
ocean is generally warmer in G12 than in G4 (Figure 1D).
Meanwhile, the mean climatology of T700 in G4 and G12
(Figures 1E,F) is warmer than EN4. Due to the prominent
decadal signal in the eastern SPG region, we have calculated
the time series of T700 in all three datasets over the box
(35◦N–65◦N, 10◦W–50◦W) following Robson et al. (2016) for
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FIGURE 5 | Meridional heat transport anomaly vT − vT and decomposition v′T, v T′, (v
′

T
′

− v′T ′) in G4 (A,D,G,J) and in G12 (B,E,H,K) calculated with 5-day data.
(unit: PW) The differences between G12-G4 are shown in panels (C,F,I,L), and areas with values that pass t-test 95% confidence interval are indicated in thick
contours.

the period 1993–2016. It shows that in the eastern SPG region
T700 is warmer in G12 than G4 by 0.16◦C and EN4 by 0.27◦,
respectively (Figure 1G).

The linear trend associated with the T700, calculated over
for the (1993–2004) and (2005–2016) periods from G4, G12
and EN4, are shown in Figures 2A–F. A prominent warming
trend during the period of 1993–2004 and a cooling trend during
the period of 2005–2016 in the eastern North Atlantic subpolar
gyre region is evident in both G4 and G12 reanalyses, and as
well as in EN4. Here the linear trend of T700 is based on

yearly data. The time series of the annual mean T700 anomaly
(Figure 2G), computed with respect to the 1993–2016 baseline
and basin averaged over the (35◦N–65◦N, 50◦W–10◦W) box
in the subpolar gyre (as indicated in Figures 2A–F), shows
a consistent linear warming before 2005 and cooling trend
after 2005. G4 and G12 show consistent results with EN4, an
observation-only estimates, which has been used in previous
studies (see Robson et al., 2016) in terms of temperature
variability in the North Atlantic Ocean. The distribution of
warming and cooling signals is slightly different in G12, G4,
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FIGURE 6 | Meridional heat transport anomaly and the anomalies induced by large scale process and mesoscale processes in G4 (A,C,E) and G12 (B,D,F),
differences between G4 and G12 (G,H,I) calculated with 5-day data. In panels (G,H,I), areas with values that pass t-test 95% confidence interval are indicated in
thick contours (unit: PW).

and EN4 mainly due to the representation of eddy features
of the ocean state. However, the temporal variability is very
similar in G12, G4 and EN4 (Figures 1G, 2G). The increase of
horizontal resolution alters the mean state of the ocean in terms
of temperature (Figure 1) most likely due to better representation
of the eddy features in high resolution reanalyses.

In order to have a more in-depth view on the impact of the
resolution, we analyzed the eddy kinetic energy (EKE) in G4 and
G12 (Figure 3). At the surface, the mean EKE displays a larger
amplitude in G12 than in G4. The eddy active areas in G12 extend
further north and east compared to G4 and the amplitude of EKE
is stronger in the North Atlantic current pathway in G12 than
in G4 (Figure 3C). In order to inspect the subsurface structure
of EKE in the two reanalyses (Figure 3) we select a meridional
section at 40◦W, a region where the surface signature of the
EKE shows a wide latitudinal extent in both G4 and G12. The
subsurface EKE in G12 is stronger and its signature penetrates
deeper than in G4 (Figure 3F). As for the temperature, the

average EKE in the box shown in Figure 2 (35◦N–65◦N, 10◦W–
50◦W) for the top 700 m shows that EKE increases by 30% in G12
compared to G4 (not shown here). The EKE difference in G12
and G4 implies that the model resolution has an impact on the
eddy activity (increasing of EKE) in contrast to the minor impact
on the T700 variability.

The North Atlantic Meridional Ocean
Heat Transport
As previous studies have shown, decadal variability in the
North Atlantic Ocean (including episodes such as the mid-1990s
warming and the post-2005 cooling in the subpolar gyre region)
is largely associated with changes in the meridional ocean heat
transport (Robson et al., 2016; Yang et al., 2016).

First, we have investigated the total mean MHT in G12 and
G4 for the whole time period (1993–2016). The total mean
MHT (vT) (Figure 4) in G12 is larger than in G4 especially
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FIGURE 7 | (A) The temporal variance of MHT anomalies in G4 and G12 (B) Eddy explained MHT variance in G4 and G12 calculated as shown in Equation 8. The
values have been multiplied by 100. (C) MHT anomalies averaged for the warm period (1993–2004) and the contribution from meso-scale eddies.

at eddy active latitudinal bands (35◦N–40◦N), where the eddy
heat transport is the largest (Treguier et al., 2017), implying that
with the increase of spatial horizontal resolution, the total mean
MHT vT increases (Figure 4, black lines). The increase of total
mean MHT is not only located at the eddy active regions but
over the whole North Atlantic basin (here 30◦N–60◦N). The
decomposition of the total mean MHT shows that the main
contributor to the increase in G12 comes from the time mean
field (vT) for all latitude bands. The mean contribution of the
mean field for the time period 1993–2016 (calculated as vT)

to the total MHT (vT) shows a 10% increase from 669 TW
in G4 to 738 TW in G12 at 40◦N. The differences between
G12 and G4 in terms of the attribution to the eddy covariance
contribution to the total MHT plays a minor role (red lines),
and the mean eddy covariance contribution (calculated as v′T′)
to the total MHT at 40◦N for the whole time period (1993–2016)
increases from 43 ± 6 TW in G4 to 46 ± 10 TW in G12. This
finding is consistent with previous studies (Hecht and Smith,
2008; Treguier et al., 2012) showing that the total mean MHT
increases with enhanced horizontal resolution due to the change
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of the time mean field instead of the change of eddy component
and the change of representation of bathymetry, air-sea flux with
resolution contribute to the change of the mean state. As shown in
Figure 1, the mean T700 in G12 is warmer than in G4, supporting
that the time-mean field (T) difference is one of the main factors
that is responsible for the total increase of MHT.

The impact of the resolution on the mean state of the
meridional mass transport in terms of meridional velocity (v)
is assessed through first Atlantic Meridional Overturning
Circulation (AMOC) stream function. Supplementary
Figures 1, 2 shows that the mean AMOC in G12 is stronger than
in G4. Observations from the 26◦N RAPID array (Srokosz and
Bryden, 2015) for the 2005–2016 period yield a 16.8 Sv estimate,
while G4 and G12 display a 16.3 Sv and 17.4 Sv amplitude,
respectively. The mean gyre circulation (diagnosed via the
barotropic stream function) slightly strengthens (Supplementary
Figure 3) with the increase of horizontal resolution, meaning that
the mean meridional velocity field (v) increases with horizontal
resolution along with mean temperature field (T) increases
corroborating the evidence that the time mean ocean states (vT)
increase is the main factor for the total MHT increases.

The MHT anomalies that drive the mid-1990s warming and
post-2005 cooling trend in the North Atlantic Ocean in G4 and
G12 are calculated by subtracting the mean climatology from
1993–2016 and the decomposition of the MHT anomalies is
shown in Figure 5. A prominent increase and reduction of MHT
in G4 and G12, consistent with the mid-1990s warming and
post-2005 cooling trend of T700 in the North Atlantic Ocean, is
evident. The decline of the MHT in G4 begins around year 2005,
in the 45◦N–50◦N latitude range and extends to the subtropical
regions with time. In G12, instead, the reduction of MHT starts
around year 2007 in the mid-latitudes and has a sharper decrease
around 2008/2009, extending to the subtropical region. The
difference between MHT anomalies in G12 and G4 shows that
MHT anomalies have a stronger variability in G12 compared
to G4. The decomposition (Figure 5) of the MHT evolution
reveals that the anomalous advection of mean temperature (v′T)
is the main contributor to the MHT anomalies in both G4 and
G12. The advection of temperature anomalies due to the mean
flow (vT′) plays a minor role in the MHT variability in both
reanalyses. Despite the smaller contribution to the total MHT
variability compared with the change of ocean circulation, the
eddy-eddy correlation term (v′T′) shows similar variability to the
total MHT change, and contributes to the mid-1990’s warming
and the post-2005 cooling.

In order to further investigate the role of eddies in the
MHT, we separate the whole field (T and v) into large scale
and eddy scale processes (calculated by subtracting the large
scale from the full field) by applying a Shapiro spatial filter
with a 10 degree frame window following Zhao et al. (2018).
The MHT anomalies, MHT anomalies induced by large scale
and MHT anomalies induced by mesoscale processes are shown
in Figure 6. The major contribution of the MHT anomalies
are induced by large scale processes in both G4 and G12.
However, eddies contribute to both MHT warming and cooling
anomalies that are related to the decadal variability. The variance
of MHT (Figure 7A) shows that the eddy activity is mainly

located in the 35◦N to 45◦N latitudes band for both G12
and G4. However, in G12 the largest variance is localized at
around 38◦N, while in G4 the variance is overall weaker than
in G12 but spread across a wider latitude band. The eddy-
explained variance (see section “Data and Methods”) in MHT
anomalies in both G4 and G12 (Figure 7B), confirms that
over the 35◦N–45◦N latitudes band the eddies are very active
in both G4 and G12, consistent with Figure 4A. The most
prominent difference between G4 and G12 is at higher latitudes
(45◦N–55◦N) where eddies explained more variances in G12
than G4 (Figure 7B). Further analysis (Figure 7C) focusing
on the warming period, 1993–2004 (cold period from 2005–
2016 is not shown because they are out of phase to have zero
sum for anomalies), shows that large scale processes contribute
more to the mean heat transfer anomalies for the warming and
cooling period in G4 than in G12. On the other hand, eddies
contribute relatively more to the mean heat transfer anomalies
in G12 than in G4.

In general, the MHT variability in G12 and G4 show similar
evolutions, especially during warming and the post-2005 cooling
phase, with slightly larger amplitudes in G4. The contribution
associated with different components (v′T, vT′ and v′T′) of
the total MHT anomalies in both G4 and G12 is very similar,
with the anomalous advection of mean temperature as the
lead contributor, followed by the eddy-eddy correlation term,
and finally the mean advection of temperature anomalies as
the smallest contributor. This indicates that the North Atlantic
decadal variability, here mid-1990s warming and post-2005
cooling period, is reproduced in both eddy-permitting (G4) and
the eddy-resolving (G12) reanalyses, associated with the increase
and decrease of the poleward heat transport. The relative role
of eddies in terms of the contribution to the MHT anomalies is
slightly more prominent in the eddy-resolving reanalysis (G12)
compared with the eddy-permitting reanalysis (G4), especially at
higher latitude (45◦N–55◦N).

CONCLUSION AND DISCUSSION

In this study we investigate the role of eddies in the North Atlantic
decadal variability by using two ocean reanalysis products with
different spatial resolutions. One reanalysis (G4) features a 1/4
degree horizontal resolution (eddy-permitting) and 75 vertical
levels while the other one (G12) features a 1/12 degree horizontal
resolution (eddy-resolving) and 50 vertical levels. Here we focus
on the mid-1990s warming and post-2005 cooling in the North
Atlantic Ocean as part of the North Atlantic decadal variability
(Robson et al., 2016). The results show that both ocean reanalyses
represent the prominent mid-1990s warming and post-2005
cooling trend (Top 700 m temperature, Figure 1) in the North
Atlantic with minor differences between the two reanalyses.
A linear warming trend of 0.48◦C in G4, 0.53◦C in G12 for the
mid-1990s period, and a cooling trend of −0.54◦C in G4 and
−0.53◦C for G12 per decade for the post-2005 period suggests
a minor role of spatial resolution on the inter-annual variability.
However, the mean state of the North Atlantic Ocean does
change after increasing the horizontal resolution, as revealed by
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comparing climatological patterns of T700, ocean circulation and
EKE (the latter, both at surface and sub-surface) in G4 and G12.

The analysis of the poleward ocean heat transport shows
a similar variability of the total MHT signal in both G4
and G12. The main contributor to the total MHT change
in both reanalyses is the anomalous advection of mean
temperature (v′T) associated with the weakening of the AMOC
strength (Supplementary Figures 1, 2) and North Atlantic gyre
circulation (Supplementary Figure 3) consistent with previous
studies (Msadek et al., 2014). The quantitative analysis of the
eddy contribution to the total MHT variability, which is the
focus of this study, shows that the contribution of eddy MHT
to the total MHT variability is slightly larger in the eddy-
resolving than in the eddy-permitting reanalysis. Additionally,
G12 shows a 10% increase in the total mean MHT compared
to G4 and the decomposition of the total MHT suggests that
the main factor is the increase of mean circulation and mean
temperature, as also discussed in other studies (Hecht and Smith,
2008; Treguier et al., 2012).

Overall, our intercomparison of G12 and G4 shows that the
change in the resolution mostly affects the climatological features,
while the decadal variability signal is relatively less affected with
eddies playing slightly larger role in G12. However, the increases
of resolution has a larger impact on the poleward heat transport
at the higher latitude. One point in this study we have to bear
in mind is that G12 has higher horizontal resolution but lower
vertical resolution compared with G4. Thus, with the future
new 1/12 degree ocean reanalyses (G12) the results could be
slightly different.

The implications of this study go beyond the North Atlantic
mid-1990s and post-2005 cooling event. The North Atlantic
displays prominent decadal fluctuations. Understanding the
underlying mechanisms and improving the skill of decadal
predictions in the North Atlantic sector is a very active and
promising area of research for the climate prediction community.
Previous studies have shown that an accurate initialization of
the ocean state is key for making skillful predictions of the
North Atlantic variability (Msadek et al., 2014) and ocean
reanalyses have been used as initial conditions for decadal
prediction experiments (Bellucci et al., 2013, 2015). This study
confirms the reliability of ocean reanalyses as initial conditions
for decadal predictions even with eddy-permitting (and eddy
rich) resolution.

The fast development of computational power will pave the
way to high-resolution decadal prediction systems. However, the
importance of model resolution needs to be evaluated in order
to optimize the usage of the resources. This study focusing on
the North Atlantic Ocean shows that the increase of resolution
affects the mean state of the ocean but has no significant impacts
on the decadal scale variability. However, the interaction between

eddies (small scale) and the mean state (large scale) needs to
be explored further in order to understand the importance
and usefulness of high resolution for decadal predictions and
initialization strategies, which will be a vital research area that
the climate community needs to pursue in the coming years or
decades in order to improve decadal prediction skill.
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Global ocean reanalyses provide consistent and comprehensive records of ocean and sea
ice variables and are therefore of pivotal significance for climate studies, particularly in data-
sparse regions such as Antarctica. Here, for the first time, we present the temporal and
spatial variability of sea ice area in the ensemble of global ocean reanalyses produced by
the Copernicus Marine Environment Monitoring Service (CMEMS) for the period
1993–2019. The reanalysis ensemble robustly reproduces observed interannual and
seasonal variability, linear trend, as well as record highs and lows. While no consensus
has been reached yet on the physical source of Antarctic-wide ice changes, our study also
emphasizes the importance of understanding the different responses of ice classes,
marginal ice zone (MIZ) and pack ice, to climate changes. Modifications of the distribution
of MIZ and pack ice have implications for the level of air/sea exchanges and for the marine
ecosystem. Analysis of the spatial and temporal variability of ice classes can provide further
insights on long-term trends and help to improve predictions of future changes in Antarctic
sea ice. We assess the ability of the reanalysis ensemble to adequately capture variability in
space and time of the MIZ and pack ice area, and conclude that it can provide consistent
estimates of recent changes in the Antarctic sea ice area. Our results show that the
Antarctic sea ice area agrees well with satellite estimates, and the hemispheric and regional
sea ice area variability are properly reproduced on seasonal and interannual time scales.
Although the ensemble reanalysis product tends to slightly overestimate MIZ in summer,
results show that it properly represents the variability of MIZ minima and maxima as well as
its interannual variability during the growing and melting seasons. Our results confirm that
Global Reanalysis Ensemble Product is able to reproduce the observed substantial
regional variability, in regions covered by marginal ice.

Keywords: Antarctic sea ice, marginal ice zone, pack ice, ocean reanalyses, GREP

INTRODUCTION

Antarctic sea ice plays a critical role in the polar and global climate and ecosystems, modulating the
exchanges of momentum, gases and heat between the ocean and the atmosphere. A deep knowledge
of sea ice variability is necessary for adequately simulating these fluxes and thus for climate
modelling. In stark contrast to the Arctic, where sea ice has declined significantly in all areas
and seasons (e.g., Parkinson and Cavalieri, 2012; Serreze and Stroeve 2015; Onarheim et al., 2018),
Antarctic sea ice has not experienced a drastic and continuous decline during recent decades. Satellite
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records show a slight increasing trend in total annual-mean
Antarctic sea ice extent (SIE) at a rate of ~1.5% per decade for
the 1979–2015 period, with modest increases in the maxima and
minima (Turner et al., 2015; Comiso et al., 2017), albeit individual
regions experienced much larger gains and losses that almost
offset each other overall (Parkinson, 2019). After record maxima
successively occurred in 2012, 2013, and 2014, Antarctic sea ice
decreased below the long-term average in 2015, with
unprecedented record low minima in 2016, 2017 and 2018
(Parkinson, 2019). However, the recent decrease does not
signify a change in the sign of the long-term trend, which
remains positive over the period 1979–2019, though with
lower magnitude compared to the 1979–2015 trend (Wachter
et al., 2021).

Understanding this quasi-stable situation in Antarctic sea ice
and its link to climate change is still a significant scientific
challenge (Kennicutt et al., 2015). Rather than by a single
mechanism, the long-term sea ice variability is driven by a
combination of processes, such as local changes in the
atmospheric dynamics and wind patterns (e.g., Holland and
Kwok, 2012; Meehl et al., 2016; Vichi et al., 2019; Blanchard-
Wrigglesworth et al., 2021), shifts in the dominant modes of
large-scale atmospheric circulation in the southern hemisphere
(Stammerjohn et al., 2008), changes in the vertical structure of the
near-surface water column (Goosse and Zunz, 2014; Venables
and Meredith, 2014), changes in ice albedo feedback (Riihelä
et al., 2021), ice-ocean feedbacks (Goosse and Zunz, 2014; Frew
et al., 2019), and variability of the ice sheet water discharge
(Bintanja et al., 2013; Haid et al., 2017; Pauling et al., 2017). These
processes combine in different ways at regional scales. Significant
regional contrasts and variability are nested within the Antarctic-
wide changes: while the Ross and Weddell Seas dominate the
overall upward trend, the Amundsen-Bellingshausen Seas have
undergone a considerable decrease (Massom and Stammerjohn,
2010; Parkinson, 2019). High-magnitude seasonal variability is
also disguised in long-term expansion of total sea ice cover: a
complex seasonal pattern of trends emerges across the regions,
with positive expansion trend in one season and negative in
another (Holland, 2014; Hobbs et al., 2016; Parkinson, 2019).
Considering the spatial and seasonal heterogeneity of trends, the
Antarctic-wide changes could not aid in the attribution of those
trends. The focus instead should be on the regional and seasonal
variability which may give a better understanding of the long-
term changes in Antarctic sea ice area.

While changes in total sea ice at different spatial/temporal
scales remain puzzling, it is likely that these changes also affect the
distribution and variability of ice classes in different ways (Stroeve
et al., 2016; Iovino et al., 2022). Here, we define ice classes to
distinguish between consolidated pack ice and the marginal ice
zone (MIZ). Understanding how the spatial patterns of different
ice classes change may help to elucidate the mechanisms
contributing to the expansion of Antarctic ice in some regions
and contraction in others (Maksym et al., 2012). In spite of the
large winter cover, sea ice around Antarctica forms a vast field of
small broken ice floes, with compact and consolidated ice
remaining all year around only in a few coastal regions (e.g.,
Holland et al., 2014). The MIZ is highly dynamic and its response

to climate variability differs from the inner pack ice: it undergoes
faster melting due to a larger lateral melt rate (Tsamados et al.,
2015), responds more easily to winds and current forcing
(Manucharyan and Thompson, 2017; Alberello et al., 2020),
and is highly vulnerable to waves and swell (Kohout et al.,
2014). The MIZ is fundamental for climate dynamics and
polar ecosystems, given its roles as a region of intense
atmosphere-sea ice interactions and as a physical buffer
between the consolidated pack ice zone and the effects of open
ocean dynamics (e.g., Squire 2007). Monitoring changes of the
MIZ environment can help us understand the associated changes
in the climate system. An accurate assessment of Antarctic MIZ
variability is still missing, as well as a deep insight into how ice
conditions correlate with atmospheric fields and surface oceanic
waves (Meylan et al., 2014, Sutherland and Balmforth 2019). The
MIZ can be operationally defined through sea ice concentration
(SIC) thresholds as the transitional region between open water
and consolidated pack ice, where the ocean is covered by SIC
between 15 and 80% (e.g., Pauling et al., 2017).

There is growing demand for comprehensive records of the
historical ocean state. Ocean Reanalyses (ORAs) represent an
essential tool to monitor long-term variability of various climate
indices, especially in areas with sparse data such as the Antarctic
Ocean. Observations alone can not reasonably reproduce
consistent and homogeneous time series of three-dimensional
gridded fields of ocean and ice parameters. Model simulations, on
other hand, can provide somewhat accurate information
regarding the ocean and ice mean states and variability,
despite being prone to errors related to model formulation,
initialization and forcing. A number of experiments with
global ocean-sea ice models were carried out in the framework
of the Coordinated Ocean-ice Reference Experiments (CORE-II)
and the Ocean Model Intercomparison Project (OMIP), albeit
with little focus on sea ice performance in polar regions (e.g.,
Downes et al., 2015; Farneti et al., 2015; Tsujino et al., 2020). Most
CORE-II models are found to underestimate Antarctic SIC in
summer and reproduce the sea ice edge further south compared
to observations (Downes et al., 2015). The OMIP simulations
reproduce a very wide range of models spread in sea ice
concentration and volume, with ratios of the maximum to the
minimum reaching a factor of two to three (Tsujino et al., 2020).
Inaccurate representation of sea ice and a large spread across
model output is due to the fact that these model systems are not
constrained by observations through data assimilation schemes.
The advantage of ORAs with respect to observation-only
products and ocean models, is the combination of ocean/sea
ice models and observational data sets driven by atmospheric
forcing. The errors from models and forcing datasets are reduced
through assimilation of observations. Ocean reanalyses are a
fundamental tool for climate investigation, as indicated by the
large number of studies that make use of them. Within the Ocean
Reanalyses Intercomparison Project (Balmaseda et al., 2015),
several exercises were undertaken to study the variability of
many well-constrained ocean fields, such as steric sea level
(Storto et al., 2017), air-sea heat fluxes (Valdivieso et al.,
2017), ocean heat content (Palmer et al., 2017). ORAs are also
a key tool for evaluating key climate diagnostics that are not
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directly observed, such as deep ocean warming (Balmaseda et al.,
2013), the reconstruction of the overturning circulation (Jackson
et al., 2016). Few ORAs studies so far have focused on their
performance in polar regions. Chevallier et al. (2017) used 14
global ORAs to analyze the seasonal variability of the sea ice area
and sea ice edge position in the Arctic region. They showed that
the ensemble-mean SIC agrees quite well with the observations
but there is significant disagreement among systems in simulated
sea ice thickness (which is not directly assimilated in any of the
ORAs). However, they also revealed a large spread in the
representation of pack ice and the MIZ extent. Using a set of
10 ORAs, Uotila et al. (2019) found an overall agreement with
observations in the location of both Arctic and Antarctic sea ice
edges, and showed that ORAs are able to capture seasonal
variability of sea ice area (SIA). The large differences in the 10
reanalysis systems resulted in a poor representation of the
seasonal variability of the MIZ and pack ice area. Nevertheless,
Uotila et al. (2019) discussed the fidelity of ensemble mean
estimates and proved that the multi-system concept provides
the most robust results owing to the cancellation of the individual
errors.

In this study, we investigate the interannual and seasonal
changes of Antarctic SIA on hemispheric and regional scales with
the purpose of identifying the differences between MIZ and total/
consolidated pack ice. We use an ensemble-mean of four global
ocean-sea ice reanalyses (ORAs) together with long-term passive
microwave sea ice estimates. We examine the quality of the
Global ocean Reanalysis Ensemble Product (version 2,
hereafter called GREP) provided by the Copernicus Marine
Environment Monitoring Service (CMEMS) of the European
Union. GREP is an ensemble of four global ocean-sea ice
reanalyses produced at eddy-permitting resolution for the
period from 1993 to present. GREP has already been
successfully validated with respect to a range of ocean
variables (Masina et al., 2015; Storto et al., 2019) and have
been largely adopted for evaluating key climate diagnostics
that are not easily observed. In this study, we evaluate the
capability of GREP in reproducing the Antarctic sea ice area
in the marginal ice and pack ice regions, in the 1993–2019 period.
We analyse the interannual and seasonal variability in five sectors
of the Antarctic Ocean. The main objectives of this work are to
validate GREP Antarctic SIA against satellite estimates and to
investigate the benefits of a multi-system ensemble approach.
Since the multi-model mean can offset systematic errors of
individual systems, we expect GREP to perform generally
better than single reanalysis and provide the most consistent
estimates of sea ice state and variability. We also intend to
encourage the use of GREP in a wide range of applications.

DATA AND METHODS

The Global Reanalysis Ensemble Product (GREP version 2)
consists of four global ocean-sea ice reanalyses (C-GLORSv7,
Storto et al., 2016; FOAM-GloSea5, MacLachlan et al., 2015;
GLORYS2v4, Lellouche et al., 2013; ORAS5, Zuo et al., 2019), all
constrained by satellite and in-situ observations, and driven by

the ECMWF ERA-Interim atmospheric reanalysis (Dee et al.,
2011). Monthly means of ocean and sea ice variables, for
individual reanalysis as well as the ensemble mean and spread,
are produced and freely disseminated by CMEMS through the
CMEMS catalogue (product reference
GLOBAL_REANALYSIS_PHY_001_031).

The four reanalyses share the ocean components of the state-
of-the-art NEMO model, and are produced on the same tripolar
ORCA025 grid at an eddy-permitting resolution (approximately
¼ degree of horizontal resolution and 75 depth levels). Three
reanalyses use the LIM2 thermodynamic-dynamic sea-ice model,
while the other (FOAM-GloSea5) employs CICE4.1 which
includes more complex physics parameterizations compared to
LIM2. Although many physical and numerical schemes are
similar in the four reanalyses, there are a number of
significant changes including the ocean model version and
some parameterizations, thus introducing differences in the
four ocean model configurations. There are also differences in
the data assimilation methods used by the single products, in
terms of data assimilation scheme, code, frequency of analysis
and assimilation time-windows, input observational data-sets,
error definitions and bias correction schemes, which introduce a
large number of uncertainties as ensemble spread. The main
characteristics of the GREP members are summarized in Table 1
– a detailed description of model setup and data assimilation
methods is outside of the scope of this study. GREP and its
constituent reanalyses cover the altimetric period from 1993. Our
analysis extends to 2019.

We consider a set of sea ice satellite products in order to
evaluate the GREP performance. We use SIC fields from
NOAA/NSIDC Climate Data Record (version 3, Meier et al.,
2017, hereafter CDR), EUMETSAT OSISAF Climate Data
Record and Interim Climate Data Record (release 2,
products OSI-450 and OSI-430-b, Lavergne et al., 2019), and
IFREMER/CERSAT (Ezraty et al., 2007). Firstly, the CDR
algorithm output is a combination of SIC estimates from
two well-established algorithms: the NASA Team (NT)
algorithm (Cavalieri et al., 1984) and the Bootstrap (BT)
algorithm (Comiso 1986). CDR SIC is based on gridded
brightness temperatures (TBs) from the Nimbus-7 SMMR
and the DMSP series of SSM/I and SSMIS passive
microwave radiometers; the final product is provided at
daily and monthly frequency on a 25 km × 25 km grid.

Secondly, the EUMETSAT OSI-450 is a level 4 product that
covers the period from 1979 to 2015. The sea ice concentration is
computed from the SMMR (1979–1987), SSM/I (1987–2008),
and SSMIS (2006–2015) instruments, as well as ECMWF ERA-
Interim data. The Interim OSI-430-b extends OSI-450 from 2016
onwards; it is an off-line product based on the same algorithms as
OSI-450, and uses SSMIS data available through the NOAA
CLASS, as well as operational analysis and forecast from
ECMWF. The data processing introduced an open-water filter
aimed at removing weather-induced false ice over open water,
which unfortunately may remove some true low-concentration
ice in the MIZ (Lavergne et al., 2019). OSISAF products are
delivered at daily frequency on a 25 × 25 km grid. Lastly, the
IFREMER/CERSAT product used here is derived from high
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frequency channels of SSM/I that yield a spatial resolution of 12.5
× 12.5 km. SIC is provided at daily and monthly frequency.

It is worth mentioning that OSISAF and IFREMER/CERSAT
sea ice concentration are ingested by the data assimilation
systems employed in the ORAs constituting GREP, while CDR
is not assimilated in any ORA. The use of CDR is, hence,
considered an advantage for the robustness of the GREP
validation; OSISAF and IFREMER/CERSAT datasets are
anyway used in our analysis. It has been shown that NT
generally underestimates SIC (Andersen et al., 2007; Meier
et al., 2014), and overestimates MIZ and underestimates pack
ice by a factor of two compared to BT (Stroeve et al., 2016). On the
other hand, BT produces too low SIC under extremely cold
conditions (Comiso et al., 1997). The CDR algorithm blends
NT and BT output concentration by selecting, for each grid cell,
the higher concentration value, taking advantage of the strengths
of each algorithm to produce concentration fields more accurate
than those from either algorithm alone. Since passive microwave
instruments tend to underestimate SIC, the aforementioned
approach is considered to be more accurate (Meier et al.,
2014). Given that observational datasets and ORAs use
different horizontal grids, we interpolated the former onto the
ORCA025 grid for the grid-point diagnostics.

In this paper, sea ice variability is described in terms of sea ice
area (SIA) rather than sea ice extent (SIE). Sea ice extent is defined
as the integral sum of the areas of all grid cells with at least 15% ice
concentration, whereas sea ice area is the sum of the product of
each grid cell area with at least 15% ice concentration and the
respective ice concentration. Hence, sea ice area excludes open
water areas between ice floes. Although these two metrics are
highly correlated, uncertainties in SIC retrievals from passive
microwave sensors have a larger impact on SIA that results in a
weaker agreement across data records.

In addition to the total sea ice area, we consider two sea ice
classes defined through SIC thresholds. TheMIZ is here identified
as the region extending from the outer sea ice–open-ocean
boundary (defined by SIC equal to or higher than 15%) to the
boundary of the consolidated pack ice (defined by 80% SIC). This
definition has been previously used by Stroeve et al. (2016) to
assess observed MIZ changes in Antarctica. The consolidated
pack ice is then defined as the area with ice concentrations higher
than 80%.

The seasonal variability of SIA is analysed for total, pack and
MIZ sea ice on the hemispheric domain and in selected regions
where satellite records have highlighted large differences in the ice
response to climate. As in previous studies (e.g., Parkison and
Cavalieri, 2012), the Antarctic domain is divided in the following
five sectors (Figure 1): Weddell Sea (60° W–20° E, plus the small
ocean area between the east coast of the Antarctic Peninsula and
60° W), Indian Ocean (20–90° E), western Pacific Ocean (90–160°

E), Ross Sea (160° E–130° W), and the combined Amundsen-
Bellingshausen Seas (130–60° W).

RESULTS

We begin with the assessment of the interannual variability of
total SIA reproduced by GREP and derived from satellite data
sets. The GREP and observational products monthly-mean SIA is
presented for the Southern Ocean as a whole, from January 1993
to December 2019, in Figure 2A. GREP SIA ranges from the
summer minima occurring in February to winter maxima
occurring generally in September, with a huge amount of sea
ice growing and melting each year in very good agreement with
observations. While the reanalysis ensemble slightly
underestimates minima and maxima SIA, it correctly
reproduces the large interannual variability, and properly
depicts the record high in September 2014 (16.73 × 106 km2 in
GREP and 17.42 × 106 km2 in CDR) and the marked decreases in
the subsequent 3 years, with the record low in February 2017
(1.16 × 106 km2 in GREP and 1.57 × 106 km2 in CDR). GREP and
CDR monthly anomalies of SIA show similar patterns and trends
are basically consistent (Figure 2B), with an upward trend in
yearly average SIA of 0.32 × 106 km2/decade in GREP and 0.31 ×
106 km2/decade in CDR for 1993–2014, and trend close to zero
(−0.04 × 106 km2/decade in GREP and −0.036 × 106 km2/decade
in CDR) for the entire period 1993–2019. The good agreement
between the three observational products (gray shading) and the
four ORAs (pink shading) is notable; differences are greatest at
the winter maxima.

To quantify the inconsistency between GREP and satellite
estimates, we use the integrated ice area error (IIAE) approach of
Roach et al. (2018, 2020). The IIAE identifies the area of sea ice on
which ORAs and observations disagree; it is computed as the sum

TABLE 1 | The central characteristics of ocean reanalyses.

Name CGLORSv7 GLORYS2v4 (hereafter
GLORYS2)

ORAS5 FOAM-GLOSEA5v13

Institution CMCC Mercator Ocean ECMWF United Kingdom Met Office
Ocean-ice model NEMO3.6-LIM2 (EVP

rheology)
NEMO3.1-LIM2 (EVP rheology) NEMO3.4-LIM2 (VP rheology) NEMO3.2-CICE4.1 (EVP

rheology)
Time period 1986–2019 1993–2019 1979–2019 1993–2019
Sea ice data assimilation
method

Linear nudging Reduced order KF (SEEK) 3DVAR-FGAT 3DVAR

Ocean data assimilation
method

3DVAR (7 days) SAM2 (SEEK) (7 days) 3DVAR-FGAT (5 days) 3DVAR (1 day)

DA sea ice data OSI-SAF IFREMER/CERSAT OSTIA (reprocessed before 2008, analysis
from 2008)

OSI-SAF

Thickness categories 1 1 1 5
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of overestimated (O) and underestimated (U) sea ice area. These
two O and U components are calculated as the sum of the product
of the area and the SIC of each grid cell where GREP has a higher
or lower concentration compared to observations. We apply the

same metric also to pack ice and MIZ to determine how each sea
ice class contributes to the overall error. The location of sea ice
classes in CDR estimates is taken as the “true state”. The time
series of IIAE O and U components for total ice, pack ice and the
MIZ area computed relative to CDR are shown for the period
1993–2019 (Figure 3).

For every month, errors are very low relative to the mean SIA
values, even for February and September. In general, GREP tends
to underestimate total SIA area with the error ranging from 0.1 ×
106 km2 in March-April to 0.7 × 106 km2 in October-December.
Reanalyses generally tend to reproduce lower SIC than CDR,
within the pack ice region: while IIAE O component in pack ice is
relatively small (~0.05 × 106 km2 all year round) and similar
among the individual ORAs, IIAE U component grows up to 0.6
× 106 km in August-November and doubles for two reanalysis
products. TheMIZ also contributes to the total overestimated and
underestimated area, but the error does not generally exceed 0.2 ×
106 km2. There is one ORA outlier (GLORYS2) that generally
contributes to overestimating SIA, and one (CGLORS) to
underestimating it. The former (the latter) reproduces too
high (low) SIC in the MIZ. Overall, GREP performs well
owing to minimization of systematic errors in individual
products. Additionally, the error in the ensemble mean is
consistent throughout the years, which is not the case for
single ensemble members.

The accuracy of GREP and individual ORAs in reproducing
the spatial distribution of SIC is shown in Figure 4, where maps
of the SIC root mean square errors (RMSE) for GREP and
individual ORAs against CDR are presented for September

FIGURE 1 | Map of the five Antarctic sectors used in the regional
analysis.

FIGURE 2 | Time series of (A) monthly averages and (B) monthly anomalies of Antarctic sea ice area in GREP (magenta) and CDR (black) from January 1993 to
December 2019, for GREP (magenta) and CDR (black). Pink (gray) shading denotes the envelope of GREP members (CDR, OSISAF, Ifremer CERSAT satellite records).
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and February, which are typically the months of maximum and
minimum ice coverage respectively. The monthly climatologies
are computed over the years 1993–2019. The sign of the errors
has also been analyzed through the spatial distribution of the
average bias (not shown). In September, RMSEs are lower than
5% along the Antarctic coast for all ORAs and tend to grow
towards the ice edge, with the highest values generally smaller
than 15% except for one single product, GLORYS2, which
overestimates SIC by up to 20% in the Ross Sea and the
Bellingshausen and Amundsen Seas. In February, the largest
disagreement with CDR is located near the Antarctic coast, in
particular in the Indian Ocean and the Western Pacific Ocean
sectors, where three of the four ORAs underestimate the observed

concentration. This error may be primarily linked to the
reanalyses representation of sea ice drift and the Antarctic
coastal current in the eastern Antarctica (not shown). One
product (CGLORS) exhibits an unique behavior with the RMSE
for SIC exceeding 30% along the entire Antarctic coastline - this
indicates a lower concentration compared to CDR that may be
related to a large warm bias in sea surface temperature along the
coast, in particular in the Indian and the Western Pacific
Oceans (not shown). GREP compares well with satellite
estimates considering that the RMSEs are of the same order
as the uncertainties from SIC retrievals using passive
microwave radiometry (Ivanova et al., 2015). Time evolution
of the mean over area RMSE (not shown) indicates that the

FIGURE 3 | Time series of the GREP integrated ice area error components (in magenta) calculated with respect to CDR for total SIA (top panel), pack ice (middle
panel) and the MIZ (bottom panel). Area of sea ice where GREP simulates higher (lower) SIC is on the left (right) column. The y-axis scales for pack ice are different. Thin
lines represent the individual ORAs: CGLORS in light blue, FOAM-GloSea5 in violet, GLORYS2 in green, and ORAS5 in yellow–the same colors will be used in the
following figures for single ORAs.

FIGURE 4 |Mean root mean square error for SIC at every grid cell for the single ORAs and GREP against CDR in September (upper row) and February (lower row).
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RMSE for GREP concentration is up to ~10% in summer
months (January-February) and does not exceed 7% in other
months.

We also analyze the ensemble spread (ES) in order to assess the
overall consistency across ORAs (Figures 5A,B). The largest ES
in SIC (~35% in February) is found during the melting season

FIGURE 5 | Spatial distribution of (A,B) ensemble spread (ES) and (C,D) difference (in %) between GREP RMSE and ES for SIC in September and February.
Contours indicate the mean position of 15% (solid) and 80% (dashed) ice concentration over the period 1993–2019 from CDR. (E) Time series of the difference (in %)
between GREP RMSE and ES spread of SIC for total area (black), pack ice (red), the MIZ (blue).
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everywhere along the Antarctic coast, except in the Weddell and
the Ross Seas. Increased ES is consistent with uncertainties
coming from the assimilated satellite data - SIC retrievals
present larger uncertainties within the melting season due to
surface wetness and a broad variety of sea ice forms that affect sea
ice emissivity (Ivanova et al., 2015; Meier and Stewart, 2019). In
September, there is high consistency among ORAs due to the
larger portion of stable and compact pack ice. Larger ES is located
in the MIZ and does not exceed 10%. Finally, we compare RMSE
of GREP SIC calculated against CDR, with the SIC ES to evaluate
whether the ensemble is over-dispersive or under-dispersive. The
spatial distribution of the metric (GREP RMSE minus ES) is
shown for September and February in Figures 5C,D. GREP is
over-dispersive when RMSE < ES (blue/negative) and under-
dispersive when RMSE > ES (red/positive). In September, it
appears that ensemble dispersion depends on sea ice class:
GREP is over-dispersive in the MIZ (represented by the region
between contour lines), whereas GREP is under-dispersive within
the pack ice. This means that ORAs agree better on the
representation of high concentration in the region of stable
pack ice, where the ORAs performances are less challenging
compared to the MIZ. In February, there does not seem to be
a direct relationship between ensemble dispersion and sea ice
class. The pattern of the difference is heterogeneous, particularly
along the coast of the eastern Antarctic. In the Weddell and Ross
Seas, the GREP remains over-dispersive. Time series of the
difference between GREP RMSE and ES better presents the
opposite behavior of sea ice classes and the contribution to
total sea ice changes (Figure 5E). The compensation between
sea ice classes in all seasons, except in summer, translates into
close-to-zero values for the total ice concentration. From
December to February, GREP RMSE exceeds ES in both pack
ice and the MIZ, leading to an increased difference for the total
ice area.

Seasonal Variability
We proceed with an assessment of the consistency of the
seasonal sea ice variability between the reanalysis ensemble
and satellite estimates. The climatological mean seasonal
cycle of the circumpolar SIA as represented by GREP, single
ORAs and observational estimates, is shown for total sea ice,
pack ice, and MIZ, in Figure 6A. The seasonal cycle of Antarctic
sea ice is consistent among ORAs and in phase with
observations. All systems have a maximum in total SIA in
September, and a minimum in February; it takes about
7 months to expand sixfold from summer minimum of ~2.5
× 106 km2 to winter maximum of ~15 × 106 km2, and about
5 months to melt again. It is worth noting that the ensemble
spread of ORA SIA is limited throughout the year, and is
comparable to the estimated observational uncertainty. The
seasonal cycle of Antarctic-wide total SIA is dominated by
the variability of pack ice, whose area evolves at the same
rate as total ice. GREP slightly underestimates the area of
pack ice from August for the melting season (only one
reanalysis, GLORYS2, is larger than observational products),
but all ORAs align well with observations during refreezing in
autumn.

The seasonal changes in theMIZ are quite different from those
in total ice and pack ice. On average, the MIZ advance needs
about 10 months to progress from near the coast (in February) to
its most equatorward maximum (in November or December) and
about only 2 months to revert to a minimum. After summer, the
MIZ area grows simultaneously with pack ice, in part
transforming into it, and continues to expand in spring after
the total (and pack) SIA peaks. The further increase in the MIZ
area after the consolidated ice pack begins to melt implies that, as
it starts to retreat, the pack ice converts in part to MIZ over a
wider area. We note the Antarctic MIZ/pack-ice ratio is close to 1
from December to March. GREP is always in the observed
envelope; the ensemble spread of ORA SIA is generally
smaller or comparable to the estimated observational
uncertainty. Here, the larger spread among the observed MIZ
area (found also between NT and BT algorithms by Stroeve et al.,
2016) reflects the different ability of high and low frequency
channels used in the different data algorithms to retrieve low
fraction sea ice. However, GLORYS2 underestimates the MIZ
area from July to December, and this can be attributed to faster
sea ice consolidation in the growing season. This is consistent
with the IIAE analysis (Figure 3), which indicates that this system
simulates higher SIC in those grid cells that are considered to
belong to the MIZ in observations, and with the RMSE of SIC
(Figure 4) with larger errors in the outer ice region where MIZ is
located. CGLORS underestimates the MIZ area in summer from
December to February, causing a large impact on the minimum of
total SIA (as seen in Figures 3, 4).

For all sea ice classes, the highest consistency among datasets is
observed throughout autumn freezing, from March to June.
Overall, due to the realistic performance of all single members
and the cancellation of systematic errors, GREP reproduces
robust estimates of the seasonal cycle of Antarctic total ice
area and the two sea ice classes.

The different seasonality of sea ice classes is a notable result
that confirms a different interplay of ice classes with the ocean
and the atmosphere. Seasonal variability of Antarctic sea ice is
governed by the position of the circumpolar trough relative to the
ice edge and associated wind field and Ekman transport
(Enomoto and Ohmura, 1990; Eayrs et al., 2019). In spring,
when the circumpolar trough is north of the ice edge, hastened
conversion of pack ice to the MIZ is supported by divergence
which results in opening of pack ice. This consequently facilitates
solar absorption in the upper ocean and accelerates lateral
melting of ice floes (e.g., Perovich and Jones, 2014) which
contributes to the MIZ growth. From December to February,
the MIZ area rapidly retreats together with pack ice, driven by
southward Ekman forcing and sea ice convergence. However, the
MIZ represents a significant part of the overall ice cover from
December to March (the proportion between the MIZ and pack
ice area is in the range between 0.8 and 1.2).

Analysis in the Sub-regions
Since Antarctic sea ice variability and trends are spatially
heterogeneous (e.g., Parkinson and Cavalieri, 2012; Parkinson
2019), the analysis of the Antarctic circumpolar sea ice is rather
limited. In this section, we investigate the accuracy of GREP
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FIGURE 6 |Mean seasonal cycle (1993–2019) in the total SIA (solid), pack ice (dashed) (upper subplots), and the area covered by Marginal Ice Zone (MIZ) (lower
subplots) computed for GREP (in magenta) and the individual ORA (thin colored lines) in the Antarctic-wide region (A), for GREP in the five sub-sectors (B-F). Pink
shading denotes the envelope of GREP members. Gray shading denotes the envelope of observational estimates (CDR, OSISAF, Ifremer CERSAT). Please note the
different y-axis scales for the Southern Ocean and Weddell Sea.
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performance on regional scales by analysing the seasonal
variability of total ice, pack ice and MIZ area for each of the
five Antarctic sectors (shown in Figure 1), and by comparing
GREP output with the CDR product.

As expected, there are significant differences among the five
sectors in the amount of ice classes, the timing of maxima and
minima, the rate of sea ice expansion and the retreat phase
(Figures 6B–F). This contrast in the regional patterns of sea
ice growth and melt is associated with geographic differences and
interplay of leading climate processes (Maksym et al., 2012).

There is a very good agreement between GREP and CDR
variability in all regions (Figures 6B–F, Figure 7). It is worth
noting that the spread in observational products (and in the

reanalyses) varies not only among sea ice classes, but also among
regions. The spread of observational estimates of MIZ area is
generally larger than the spread of the reanalysis ensemble, in
particular in theWeddell Sea and Ross Sea in autumnmonths and
in the Amundsen-Bellingshausen (A-B) Seas from March to
December.

As in the Southern Ocean as a whole, all sectors exhibit a large
annual cycle of monthly total SIA (Figure 6), with asymmetric
growth and melt seasons. However, there are large differences in
the timing and magnitude of the sub-region seasonality, given
that the rate of waxing and waning of sea ice and the interplay
with air-sea components vary across the sectors. Minima of total
SIA always occur in February and maxima occur frequently in
September (Figure 6), although with much greater interannual
variability than in the Southern Ocean as a whole (not shown).
The pattern and ratio of pack and marginal ice widely varies
among the regions.

The regional variability as reproduced by the GREP ensemble-
mean is described for individual sectors. In the Weddell Sea
(Figure 6B), the SIA is much higher than other regions and has
the largest distribution of pack ice. Its seasonality is consistent
with the Southern Ocean as a whole. From the February minima
(~1 × 106 km2), total and pack ice areas begin to expand in March
and peak (at ~ 5.7 × 106 km2 and ~5 × 106 km2 respectively) on
average in September, but maximum timing varies frequently
from August to October (not shown). The Weddell Sea provides
the greatest contribution (~55%) to the summer sea ice area in the
Southern Ocean, due to the presence of consolidated pack ice all
year around. In agreement with CDR, the ensemble-mean shows
that the Weddell Sea holds the largest percentage (~75%) of
February pack ice. The MIZ area also starts to advance in March
and continues to increase until December (~1.45 × 106 km2), as
the pack ice quickly retreats. In this region, the sea ice cover
expands northwards until it reaches a region with strong air-sea
dynamics. North of the consolidated pack ice region, ice
continues to advance, thanks to further freezing or breaking
by the winds and currents.

The second largest contribution to the Antarctic-wide ice area
comes from the Ross Sea (Figure 6C). In this sector, the total ice
and pack ice areas present a large asymmetric seasonal cycle, with,
approximately, a 9-months growth period and a 3-months
melting period. With almost no pack ice, the total sea ice and
MIZ areas have a marked minimum always occurring in
February. There is a large variability in the timing of total and
consolidated pack ice maxima occurring generally fromAugust to
October and reaching ~3.5 × 106 km2 and ~3 × 106 km2

respectively. In February, the minimum SIA mainly consists of
MIZ that covers ~0.25 106 km2; the MIZ fraction is then nearly
constant throughout the expansion and retreat of the pack ice,
with a maximum in December (1.13 × 106 km2) as the pack ice
rapidly decays. The Ross Sea, like theWestern Pacific (Figure 6F),
exhibits a second peak in the MIZ area in March, in the freezing
season, when the area of MIZ and pack ice starts to expand and
the increasing sea ice consolidation is accompanied by MIZ-to-
pack ice transformation.

In the Indian Ocean, the total SIA maximum (3 × 106 km2) is
reached in October rather than September (Figure 6D), about

FIGURE 7 | Seasonal cycle of (GREP minus CDR, in %) monthly
climatology of (A) total ice (upper panel), (B) pack ice (middle) and (C)MIZ area
in the Southern Ocean and its five sectors. Differences are shown as a
percentage of CDR values computed for the years 1993–2019. Red
(blue) indicates that GREP reproduces higher (lower) SIA compared to CDR.
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1 month later the pack ice peak (2.4 × 106 km2) is reached. The
pack ice tends to disappear completely in summer and when MIZ
comprises the largest portion of the overall ice cover. The MIZ
advances from March until November when its area (~1.1 ×
106 km2) is comparable to that of pack ice.

At their largest, the A-B Seas and Western Pacific Ocean
together account for less than 20% of the Antarctic-wide SIA,
with the lowest winter maxima (1.83 and 1.5 × 106 km2,
respectively); they can weakly affect the Antarctic sea ice
seasonal cycle. In both sectors, the areas of consolidated pack
ice and MIZ are generally comparable in the winter months. The
A-B Seas are in major contrast with the rest of the Southern
Ocean (Parkinson, 2019), and are characterized by an overall
downward sea ice trend (not shown) related to the upper ocean
warming at the west of the Antarctic Peninsula (e.g., Ducklow
et al., 2012). Seasonality of ice expansion and retreat are almost
symmetric for total ice and pack ice areas (Figure 6D) that both
peak in August (the maximum timing varies from July to October
from year to year) and are minimum between February and
March. The MIZ area increases during most of the year, from
February to December. There is a large interannual variability in
the timing of the maximum that results in the double peaks in
September and November (approximately 0.42 × 106 km2). Here,
the MIZ area does not further increase when pack ice starts to
retreat, in contrast to other regions. The MIZ gives the largest
contribution to total area from January to April. In this sector the
spread of observational estimates of MIZ is very large compared
to the ORAs spread- GREP is always located within the observed
envelope. In the Western Pacific Ocean, the total SIA reaches the
highest value from August to October (Figure 6F), with the
maximum generally occurring in September (~1.5 × 106 km2).
While pack ice area exhibits very low values and stays nearly
constant throughout the summer period, MIZ area presents a
prominent minimum in February and then begins to quickly
expand until November when it exceeds pack ice area. The MIZ
area remains larger until autumn.

Figure 7 shows how GREP representation of the seasonal
variability of total ice, pack ice and theMIZ area differs fromCDR
estimates; due to the large regional contrasts in the amount of sea
ice, the differences are expressed as a percentage of the average of
CDR values. For total SIA, the difference between GREP and
CDR is almost everywhere within 15% from April to December
(Figure 7A). Thus, GREP seasonal variability is consistent in time
and space with the observed sea ice changes over the period
1993–2019. The largest differences are generally found in
summer, in particular in the Indian Ocean and the Western
Pacific where GREP area is about 25% lower than CDR. The
accuracy of GREP stands out in the Weddell Sea where total sea
ice area differs from CDR data by -7% at the most. The high
quality of total sea ice in the reanalysis ensemble results from the
contrasting behaviour of pack and MIZ area. Differences have a
similar pattern for pack ice areas, but with different magnitudes.
The highest values are found from December to March when
GREP tends to generally underestimate the area of consolidated
ice in all sectors. Due to the very low amount of pack ice area in
both GREP and CDR in spring and summer, this metric typically
detects small differences with respect to CDR. For example,

GREP pack ice area differs by ~70% from CDR in the Indian
Ocean in February, when pack ice area has almost disappeared in
the region, with values lower than 0.1 × 106 km2. As for the total
ice, it is in theWeddell Sea sector that GREP better reproduces the
seasonal variability of the pack sea ice area. Overall, the ensemble-
mean reproduces a larger area of the MIZ almost everywhere. As
for pack ice, GREP and CDR differences are the smallest in the
growing season when GREPMIZ extends 10%more than CDR at
most - differences stay small but reverse in the Western Pacific
Ocean during autumn-winter months. The GREP MIZ area is
20–30% larger than observed estimates generally in November-
December, when it approaches its maximum values. The largest
departures from CDR are found in the Western Pacific sector in
January and theWeddell Sea in November. It is worth noting that
the MIZ area reproduced by GREP has generally the largest
differences from the observational estimates when they present
large spread (Figure 6).

DISCUSSION

Understanding the mechanisms and rates of Antarctic sea ice
change is crucial from a climate-change perspective. Sea ice
concentration retrieved from satellite microwave radiometers
has been available on a daily basis since the late 1980s at a
horizontal resolution finer than 25 km. However, these
observational estimates are highly dependent on which passive
microwave methods and sea ice algorithms are used (Ivanova
et al., 2014; 2015). There are dozens of such algorithms available.
Although these products agree quite well on area trends, absolute
values of total SIC and SIA are not necessarily consistent with
each other. There are also large differences among observed
products in the regional ice distribution and trends, as well as
in the contribution of consolidated ice or MIZ in the total ice
cover (Stroeve et al., 2016). This is of particular importance for
accurate assessment of processes contributing to climate change
and assimilation of sea-ice in models. Reliable estimates of sea ice
concentration and relative parameters are necessary to constrain
also other ice parameters in modelling studies of past, present and
future variability.

Simulation of Antarctic sea ice remains a fundamental
challenge for state-of-the-art climate models (e.g., Holmes
et al., 2019; Roach et al., 2020). Despite advances in climate
modeling capabilities, the CMIP5 and CMIP6 intermodel spread
in Antarctic sea ice extent is large, especially in summer, and the
observed weak upward trend of the Antarctic ice extent is not
captured yet (Turner et al., 2013; Roach et al., 2020; Shu et al.,
2020; Shu et al., 2020). The poor accuracy of Antarctic sea ice
changes in the CMIP exercises limits our understanding on what
drives regional and seasonal Antarctic sea ice changes, including
feedback and competing processes.

Our analysis confirms that ocean reanalyses are a
fundamental tool for investigating climate variability and
for evaluating key climate diagnostics that are not directly
observed (e.g., Masina and Storto, 2017). Given the robustness
of its mean and the implicit quantification of uncertainty by
means of the spread, the multi-model ensemble provides a
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robust representation of the spatial and temporal variability of
Antarctic sea ice. Although sea ice concentration is the most
well-constrained sea ice parameter, the ensemble spread
mainly comes from differences in implemented data
assimilation schemes but also from other sources of
uncertainty such as differences in models, observational
datasets and air-sea flux formulations.

We found strong consistency between the reanalysis ensemble
and the satellite products, and GREP generally outperforms or at
least equals individual reanalyses in approaching observation-
based estimates of sea ice area. The advantage of the multi-model
approach is highlighted by the fact that it is practically impossible
to determine which one of four performs the best for all metrics
and seasons. GREP smooths the strengths and weaknesses of
single systems and provides the most consistent and reliable
estimates of the mean state and variability of sea ice area.
Nevertheless, advancement in model formulations and data
assimilation schemes in single members could reduce the
impact of ORAs shortcomings on the realism and accuracy of
the ensemble-mean solution.

Although the main objective of the study is the evaluation of
the GREP ability to reproduce the observed sea ice area on
interannual and seasonal scales, our results also confirm the
importance of regional variability and the distinction in sea ice
classes. They should be considered when assessing how Antarctic
sea ice varies in model simulations and when investigating the
different processes that are likely contributing to ice interannual
and seasonal.

We focus on how consolidated pack ice and the marginal ice
change in relation to their different characteristics and therefore
their different sensitivities to the external forcing. Differences in
the seasonality of ice classes suggest that their variability is driven
by changes in wind and ocean conditions in a different way.
While the description of processes controlling the distribution of
the MIZ and pack ice is out of scope of this study, we emphasize
that a better knowledge of temporal and spatial variability in the
MIZ and pack ice can provide a deeper insight of possible driving
mechanisms behind these changes. We show that both GREP
(and individual ORAs) and satellite products present
considerable differences in the climatological mean seasonal
cycle in the area of ice classes. The net circumpolar changes in
sea ice area is the result of the interplay of MIZ and pack ice, and
their different response to changing wind and ocean conditions.
The annual waxing and waning of sea ice cover implies
redistribution of ice floes between the MIZ and pack ice from
month to month as well as spatial expansion and contraction of
sea ice edge. When pack ice starts to melt and its area to retreat in
spring, the breaking of ice floes contributes to the MIZ expansion
that continues for 2–3 months. That results in a strong
asymmetry in the MIZ seasonal cycle in all Antarctic regions,
with approximately 9–10 months of advance and 2–3 months of
retreat. Contractions and expansions of pack ice and the MIZ do
not necessarily follow the changes in the location of the outer sea
ice edge: ice classes can contribute to changes in sea ice coverage
in different ways or even exhibit an opposite behavior (Stroeve
et al., 2016). GREP reproduces regional differences in the
proportion between pack and MIZ, the timing and duration of

freezing and melting seasons, in close agreement with
observation-based results (e.g., Stroeve et al., 2016; Parkinson,
2019; Wang et al., 2021).

The reanalysis ensemble agrees well with the CDR product on
the different contributions of MIZ and pack ice to changes in the
Antarctic-wide total ice. Monthly trends (computed as function
of longitude and month) in the total, pack and marginal ice area
(Figure 8) indicate a large degree of seasonal and regional
variability around Antarctica. In all sectors and for all months,
the spatial patterns and magnitude of statistically significant
positive and negative trends in total ice area are highly
consistent between GREP and CDR in all sectors. Results
highlight the necessity to distinguish between sea ice classes in
order to assess the quality of numerical systems. Although GREP
and CDR are similar in SIA trends, there are some inconsistencies
when looking at sea ice classes: GREP barely reproduces the
correct magnitude of trends in the Eastern Antarctic and does not
simulate the MIZ area expansion in December in the Ross Sea.
Generally, in both GREP and CDR, significant trends in the MIZ
are less pronounced but more heterogeneous in space, and they
tend to offset the significant trends in pack ice. This is for example
evident in the Ross Sea, where no trend is found in the observed
total sea ice area in December, due to compensation between the
opposite trends in the MIZ and pack ice. Positive trends in total
SIA are generally dominated by statistically significant positive
trends in the consolidated pack ice as in the western Weddell Sea
from January to March. Both ice classes contribute to the
statistically significant negative trends in the eastern Ross Sea
and eastern A-B Seas in summer. The regional variability of the
MIZ area trends during spring and autumn is consistent with a
complex pattern of changes in timing of sea ice advance, retreat
and duration (e.g., Eayrs et al., 2019).

Differences between GREP and CDR can be also explained by
some limitations in our analysis. The first caveat concerns the
methodology: we distinguish sea ice classes through sea ice
concentration thresholds. Although the SIC-based definition is
the one most often used (e.g., Strong and Rigor, 2013; Stroeve
et al., 2016; Rolph et al., 2020), Vichi (2021) showed that it is not
able to adequately capture the features of the Antarctic MIZ, in
which ice dynamics is determined by oceanic and atmospheric
processes. Indeed, this definition of the MIZ is not physically or
dynamically explained; the lower boundary is linked to
uncertainty from SIC retrievals (Comiso & Zwally, 1984) while
the upper boundary corresponds to theWMO definition of “close
ice” (WMO, 2009). In fact, the properties of Antarctic ice cover do
not directly depend on the degree of coverage. In-situ
measurements carried out in the Southern Ocean showed that
close pack ice with SIC up to 100% do have the dynamical
properties of the MIZ (Alberello et al., 2019; Vichi et al., 2019;
Brouwer et al., 2021), which discredits the reliability of threshold-
based definition. Vichi (2021) proposed an alternative MIZ
definition that is based on statistical properties of the SIC and
its spatial and temporal variability. The new method indicates the
measure of variability, which is a key feature of the marginal ice. It
also overcomes the disparity among the algorithms that could
considerably differ in their representations of sea ice
concentration, area and extent.
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Given the highly dynamic nature of theMIZ, another limitation
of this study is the temporal resolution of GREP and ORAs output
provided by CMEMS. Our analysis is constrained by monthly
means of SIC from reanalyses. The use of daily fieldsmight bemore
appropriate to investigate the MIZ variability and its linkage to
regional interactions with ocean and atmosphere.

CONCLUSION

We assessed the accuracy of the CMEMS Global Reanalysis
Ensemble Product (GREP) in reproducing the evolution in
time and space of Antarctic total sea ice and discriminating
the consolidated pack ice from the MIZ. Antarctic sea ice area
from GREP is compared to a set of sea ice satellite products.
GREP properly reproduces interannual and seasonal variability of
total sea ice area both on hemispheric and regional scales. GREP
is shown to properly represent the interannual and seasonal
variability of pack and MIZ areas during the growing and
melting seasons, as well as their minima and maxima. More
evident discrepancies between GREP and satellite products occur
during summer, when the spread among individual ORA
increases; one product tends to underestimate MIZ area and
another to overestimate pack ice area. Nonetheless, due to
minimization of the single errors, the ensemble mean provides
the most consistent and reliable estimates. The spatial

distribution of RMSE in SIC also indicates that GREP smooths
out strengths and weaknesses of individual systems.

For all ice classes, the ensemble spread is comparable to the
spread among the observational estimates. The quality of GREP is
generally comparable to that of satellite data sets and the
differences between GREP and CDR are comparable or even
smaller than differences between different algorithms (Stroeve
et al., 2016). The seasonal cycle of the total sea ice area is within
the observational uncertainty almost all year round, while the
pack ice area is generally underestimated and the MIZ area is in
the upper end of the observational range. This compensation
between sea ice classes partly reflects misplacement of sea ice
across the basin compared to the “true state”.

Dispersion of GREP in sea ice concentration also appears to
depend on sea ice classes. Due to the compensation between the
opposite behavior in pack ice (GREP is under-dispersive) and the
MIZ (GREP is over-dispersive), the difference between GREP
RMSE and GREP ES is close to zero for the total ice area.

On a regional scale, the Weddell Sea is the region where
GREP provides the most accurate representation of sea ice
area, while the largest and most persistent discrepancies occur
in the Indian and the Western Pacific sectors. This spatial
distinction in GREP performance is attributed to the
proportion of pack ice and the MIZ in the regions. Given
its highly dynamic nature, the MIZ is more challenging to
simulate compared to pack ice.

FIGURE 8 |Monthly trends (1993–2019) in regional areas of total ice (A,B), pack ice (C,D), andMIZ (E,F), as a function of longitude. Left (right) columns correspond
to GREP (CDR). Only significance higher than 95% are shown. Note that colorbar scales are different for ice classes.
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Considering that ocean reanalyses are widely used as
boundary and initial conditions in forecasting systems, sub-
optimal representation of the SIC distribution and variability
can affect the quality of the output. The results of the current
work proved the quality of the GREP product with regard to sea
ice concentration and associated metrics. GREP agrees well
with satellite products, and can be used to get a robust estimate
of current sea ice state and recent trends in sea ice area and
extent. However, improvement in data assimilation techniques,
space-time data coverage in the ice-covered Southern Ocean
regions, and availability of other ice properties (such as
thickness and drift) from satellite measurements will most
probably enhance the quality of ORAs and GREP in polar
regions.
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Ocean biogeochemical (BGC) models utilise a large number of poorly-constrained

global parameters to mimic unresolved processes and reproduce the observed complex

spatio-temporal patterns. Large model errors stem primarily from inaccuracies in these

parameters whose optimal values can vary both in space and time. This study aims

to demonstrate the ability of ensemble data assimilation (DA) methods to provide

high-quality and improved BGC parameters within an Earth system model in an idealized

perfect twin experiment framework. We use the Norwegian Climate Prediction Model

(NorCPM), which combines the Norwegian Earth System Model with the Dual-One-Step

ahead smoothing-based Ensemble Kalman Filter (DOSA-EnKF). We aim to estimate five

spatially varying BGC parameters by assimilating salinity and temperature profiles and

surface BGC (Phytoplankton, Nitrate, Phosphate, Silicate, and Oxygen) observations in a

strongly coupled DA framework—i.e., jointly updating ocean and BGC state-parameters

during the assimilation. We show how BGC observations can effectively constrain error

in the ocean physics and vice versa. The method converges quickly (less than a year)

and largely reduces the errors in the BGC parameters. Some parameter error remains,

but the resulting state variable error using the estimated parameters for a free ensemble

run and for a reanalysis performs nearly as well as with true parameter values. Optimal

parameter values can also be recovered by assimilating climatological BGC observations

or sparse observational networks. The findings of this study demonstrate the applicability

of the DA approach for tuning the system in a real framework.

Keywords: parameter estimation, Ensemble Kalman Filter (EnKF), biogeochemical model, Earth system model

(ESM), ecosystem parameters, NorCPM, NorESM, DOSA-EnKF
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1. INTRODUCTION

Ocean biogeochemistry (BGC) is an important component of
an Earth system model (ESM) for simulating the anthropogenic
carbon sinks across the air-sea interface (e.g., Marotzke et al.,
2017; Tjiputra et al., 2020). It also simulates critical biophysical
feedbacks to the climate system such as phytoplankton short-
wave absorption (Jochum et al., 2010) and the production
of radiatively-important marine aerosol precursor (Schwinger
et al., 2017). Following the emergence of seasonal-to-decadal
prediction which shows that the ocean variability can be
predicted by up to 10 years in advance (Smith et al.,
2007; Keenlyside et al., 2008), a similar initiative has been
attempted for ocean biogeochemistry (Séférian et al., 2014;
Payne et al., 2017; Lovenduski et al., 2019; Park et al., 2019;
Fransner et al., 2020).

The accuracy of biological and chemical process
representations in ESMs is crucial for simulating the BGC
state and variability as realistically as possible. In current
state-of-the-art ESMs, the inorganic chemistry is governed
by well defined chemical and thermodynamic formulations.
However, the biological process representations such as primary
production are more uncertain, which leads to a large bias
and inter-model spread in their projections (Bopp et al.,
2013; Kwiatkowski et al., 2020). The uncertainty becomes
more evident at regional scales (Vancoppenolle et al., 2013),
hindering their application for regional impact studies. These
uncertainties are associated with empirical parameterisations
of the biogeochemical inter-actions, which are linked to
the complexities and imperfect descriptions of the ocean
physical environment that drives the biological process, among
others. Generally, ocean BGC models utilise numerous poorly
constrained, spatially and temporally constant parameters
to simplify the marine ecosystem complexity. Consequently,
the large error in the projections, primarily linked to these
inaccurate parameters, limits the reliability of the ecosystem
model (Losa et al., 2004). One of the reasons for inaccuracy in
these parameters is their static nature. Many studies have proven
that resolving space and/or time varying BGC parameters is
more relevant in the context of biogeochemical modeling (e.g.,
Losa et al., 2003; Tjiputra et al., 2007; Mattern et al., 2012; Roy
et al., 2012; Doron et al., 2013).

Ocean BGC parameters are often estimated and calibrated
in small-scale laboratory experiments, which do not always
reflect the large-scale open ocean conditions. Once implemented
in the global model, these parameters are generalized (i.e.,
assumed uniform across the globe for simplicity), and tuned
within observational uncertainty to capture the observed large-
scale BGC properties, for instance primary production, vertical
nutrient gradient, deoxygenation pattern, etc. However, this
parameter tuning process often becomes complicated and
inefficient when the number of parameters increases so as to
represent the increasing complexity of biogeochemical models.
Therefore, BGC simulations are often subject to a high level
of parametric uncertainty and require an efficient method for
optimal tuning of their parameters, particularly those which the
model is most sensitive to.

Data assimilation (DA) schemes provide an objective and
efficient methodology for parameter estimation by combining
observations with a numerical model simulation (Eknes and
Evensen, 2002). Particularly, ensemble based sequential DA
schemes like the Ensemble Kalman Filter (EnKF) offer a simple
but efficient framework for automatic optimisation of model
parameters alongside the state variables by simply augmenting
them together using “Joint-EnKF” formulation (Anderson, 2001;
Annan et al., 2005; Jazwinski, 2007). The EnKF (Evensen,
2003) is based on a Monte Carlo sampling of the state space
thereby avoiding model linearization. It updates the prior
statistics (mean and covariance of state variables) by assuming
Gaussian distributed variables and errors. It is one of the widely
used sequential DA schemes in the field of geosciences (e.g.,
Houtekamer and Mitchell, 2001; Reichle et al., 2002; Counillon
et al., 2014). However, the application of the EnKF for parameter
estimation of numerical models like BGC is both theoretically
and practically challenging. Difficulties are usually related to high
dimensions and non-linearity of the models as well as other
physical constraints such as the positiveness of the BGC variables
and parameters. To elaborate, in a high dimensional model
like ocean BGC, the number of unknown model state variables
and parameters are larger than the available observations. In
this case, the EnKF attempts to solve an underdetermined
inverse problem at each DA cycle, where it utilises a small
number of observations to estimate an extremely large set of
unknowns. This problem is more pronounced when the available
observations are limited to the surface only, which is often
the case for satellite ocean color observations. Furthermore,
BGC tracers and parameters, such as nutrient concentration and
phytoplankton exudation rate, are positive quantities and cannot
be negative. As such, the Gaussian assumptions made in the
EnKF (Losa et al., 2004) are not satisfied. To mitigate this issue,
a variable-transform approach called Gaussian anamorphosis
(Bertino et al., 2003), has been successfully tested and applied
for such application (e.g., Simon and Bertino, 2009; Gharamti
et al., 2017a). Another challenging issue is the strongly non-linear
behavior that BGC models experience during the spring bloom.
The rapid temporal dynamics may create large discrepancies
between the observations and the ensemble estimates. For
example, few ensemble members might start producing a bloom
earlier than the rest of the members, which may create inaccurate
state and parameter cross-correlations with a linear analysis
update. Such a situation often yields unrealistic updates of
parameters. On top of the aforementioned challenges, sampling
errors due to limited ensemble sizes are generally unavoidable
(Natvik and Evensen, 2003), and can degrade the accuracy
of the state and parameters. In short, the traditional joint-
EnKF scheme for parameter estimation may suffer from above
mentioned limitations that could degrade the filter performance
(e.g., Moradkhani et al., 2005; Chen and Zhang, 2006; Wen and
Chen, 2006).

Recently, many different analysis algorithms have been
developed to tackle the limitations of the traditional joint-
EnKF with the aim to estimate dynamically consistent and more
accurate model parameters. Wen and Chen (2006) derived a
confirming-step (CS-EnKF) where the updated parameters are
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used to rerun the model and obtain reliable state estimates.
Another classical approach, suggested by Moradkhani et al.
(2005), is a dual updating scheme (Dual-EnKF) for the state and
the parameters using two parallel and inter-active EnKFs, where
one acts on the state and the other on the parameters. Both
the CS-EnKF and the Dual-EnKF are heuristic in nature and
do not maintain the Bayesian consistency of the joint state and
parameters estimation problem. A recent work by Gharamti et al.
(2015) proposed a one-step-ahead smoothing ensemble scheme
(OSA-EnKF), which provides a robust estimation framework
while respecting the Bayesian consistency of the problem. The
algorithm shares a lot of similarities with the CS- and Dual-
EnKF, and further introduces a smoothing character in which
future observations are used to constrain current state variables.
Gharamti et al. (2017b) applied all four estimation schemes
(Joint-, CS-, Dual-, and OSA-EnKF) for optimising poorly
constrained ecosystem parameters using a one-dimensional
configuration of the Ocean BGC model. They concluded that
OSA-EnKF is accurate and reliable compared to the others
schemes and it successfully recovers the observed seasonal
variability of the ecosystem dynamics. Ait-El-Fquih et al. (2016)
further derived a more generalized variant of the OSA scheme,
namely dual one-step-ahead smoothing EnKF (DOSA-EnKF), by
using a dual updating feature where the state variables undergo
both smoothing and analysis steps. Motivated by the promising
results of OSA scheme in optimising ecosystem parameters, we
utilise the generalized variant of the scheme, i.e., DOSA-EnKF
for this study.

Another key ingredient for success is the choice of variables
in the state vector such that the use of available observations
is maximized and the dynamical consistency is preserved.
In a coupled model, observations are available in different
compartments (ocean, atmosphere, sea ice, biogeochemistry). A
simple approach referred to as weakly coupled data assimilation
(WCDA; Penny and Hamill, 2017), assimilates the data
independently in their respective components. The other model
components adjust to these individual changes dynamically in
between the assimilation cycles. Allowing the assimilation to
update across model components is expected to outperform
WCDA because it would enhance the dynamical consistency
of the initial conditions and expand the influence of the
observations across its own component (strongly coupled data
assimilation, SCDA; Penny and Hamill, 2017; Penny et al., 2019).
However, the update would still rely on a linear analysis update
step, which can be problematic as coupled covariances include
complex, coupled phenomena that can be strongly non-linear.
Iterative methods such as the dual one step ahead smoother,
can better control the growth of non-linearities. For ocean and
biogeochemistry this approximation is reasonable, and it has
been shown that cross compartment update were beneficial
(Yu et al., 2018).

The present study explores the efficiency and the feasibility
of the DOSA-EnKF scheme to optimise BGC parameters within
an Earth system model in an idealized perfect (or identical)
twin experiment framework (Halem and Dlouhy, 1984). In a
perfect twin experiment (or identical twin Observing System
Simulation Experiment), observations are constructed from the

same model and in this study, the only non-perfect aspects
of the model are the parameters to be estimated. It differs
from fraternal twin experiments (e.g., Arnold Jr and Dey,
1986; Masutani et al., 2010; Halliwell Jr et al., 2014) where
observations are constructed from a model that differs from
the model used in the data assimilation experiment. Here,
we use the Norwegian Climate Prediction Model (NorCPM;
Counillon et al., 2014), which provides the ensemble assimilation
framework for Norwegian Earth System Model (NorESM1).
We aim to estimate five spatially varying BGC parameters by
assimilating salinity and temperature hydrographic profiles and
surface BGC (Phytoplankton, Nitrate, Phosphorous, Silicate, and
Oxygen) observations in a strongly coupled DA framework—
i.e., jointly updating ocean and BGC state-parameters during the
assimilation. The five ecosystem parameters were also chosen
because they are essential to constrain the observed annual cycle
of surface BGC, which has been identified as one of the primary
sources of future projection uncertainties (Kessler and Tjiputra,
2016; Goris et al., 2018).

The rest of this article is organized as follows. Section
2 summarizes details of model, assimilation algorithm,
and experimental design. Section 3 present and discuss the
assimilation results and assessment of parameters estimates.
Summary and conclusion of the work are given in Section 4.

2. THE NORWEGIAN CLIMATE
PREDICTION MODEL AND THE
EXPERIMENTAL DESIGN

NorCPM (Counillon et al., 2014) is a climate prediction system
that aims to provide seasonal-to-decadal prediction (Kimmritz
et al., 2019; Wang et al., 2019; Bethke et al., 2021) and long
term climate reanalysis (Counillon et al., 2016). It combines the
Norwegian Earth System Model (e.g., NorESM1; Bentsen et al.,
2013) with the Ensemble Kalman Filter (Evensen, 2003).

2.1. The Norwegian Earth System Model
The NorESM1 is a global fully coupled system, which is
based on the Community Earth System Model version 1.0.3
(CESM1; Vertenstein et al., 2012). Unlike CESM1, NorESM1
uses the atmospheric component from the modified version of
Community Atmosphere Model (CAM4-Oslo; Kirkevåg et al.,
2013). The ocean physical component of NorESM1 is based on
Miami Isopycnic Coordinate Ocean Model (MICOM; Bleck and
Smith, 1990; Bleck et al., 1992) but with modified numerics and
physics (Bentsen et al., 2012). The ocean BGC compartment in
NorESM1 is the Hamburg Oceanic Carbon Cycle (HAMOCC;
Maier-Reimer et al., 2005; Tjiputra et al., 2013), which is
embedded with the isopycnic MICOM model (Assmann et al.,
2010). The other components in the model are adopted in their
original form from CESM1, which are the Community Land
Model (CLM4; Oleson et al., 2010; Lawrence et al., 2011), the Los
Alamos sea ice model (CICE4; Gent et al., 2011; Holland et al.,
2012) and with the version 7 coupler (CPL7; Craig et al., 2012).

This study utilizes the medium-resolution version of
NorESM1 (Tjiputra et al., 2013). The atmospheric component
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CAM4 and Land component CLM4 are configured on a
horizontal resolution of 1.9◦ at latitude and 2.5◦ at longitude
(approximately 2◦ finite volume grid). In the vertical, CAM4
features 26 hybrid sigma-pressure levels with model top at
approximately 3 hPa. The ocean MICOM and sea ice CICE4
models have a common horizontal resolution of approximately
1◦ × 1◦ with refined grids near the Equator in meridional
direction, and in both zonal and meridional direction at high
latitudes. MICOM uses 51 isopycnal layers and 2 additional
layers for representing the bulk mixed layer with time-evolving
thicknesses and densities. The biogeochemical component
HAMOCC utilizes the same spatial and temporal resolution as
the ocean model.

HAMOCC includes an NPZD-type ecosystem module which
was initially implemented by Six and Maier-Reimer (1996). It
includes one generic class of phytoplankton, one generic class
of zooplankton, three macronutrients (phosphate, nitrate, and
silicate), and one micronutrient (dissolved iron). In addition
to the ecosystem module, it also prognostically simulates full
inorganic carbon chemistry, which includes dissolved inorganic
carbon and alkalinity. Other key state variables include oxygen,
dissolved organic carbon, particulate organic and inorganic
carbon, and biogenic opal. The phytoplankton growth rate in
the model is formulated as a function of temperature and light
availability (Smith, 1936). The primary production is represented
by a prognostic function of phytoplankton growth rate, which
is limited by temperature, incoming shortwave radiation, and
availability of nutrients. Further details of the HAMOCC can be
sought from Tjiputra et al. (2013).

NorESM1 has been shown to capture the major observed
modes of climatic variability (Bentsen et al., 2013). Further, many
studies have demonstrated that it simulates well ENSO variability
and its teleconnection (e.g., Sperber et al., 2013; Bellenger et al.,
2014). In Anav et al. (2013), it was demonstrated that observed
tropical inter-annual variability in ocean primary production
reproduced by NorESM1 is in the top three among 18 ESM’s
used in their study. Tjiputra et al. (2013) evaluated the mean
state of HAMOCC with NorESM and reported that NorESM
satisfactorily reproduces many of the observed large scale ocean
biogeochemical features.

2.2. The Dual One Step Ahead Smoother
The dual one step ahead smoother (DOSA, Gharamti et al., 2015)
is an iterative smoother scheme based on the Ensemble Kalman
Filter. The DOSA scheme respects the Bayesian consistency of
the problem, and proceeds as shown in Figure 1. Here, we use
the Deterministic EnKF (DEnKF) in DOSA. The DEnKF is a
square-root (deterministic) formulation of the EnKF that solves
the analysis without the need to perturb the observations. It
inflates the errors by construction and is intended to performwell
in operational applications (Sakov et al., 2012).

In the first step, the ensemble of analysed model state Xa
k−1

and its associated parameters at time k − 1, Pa
k−1, are integrated

forward: X
f

k
=M(Xa

k−1,P
a
k−1). Note that the parameters are not

changed during the model integration (i.e., Pa
k−1 = P

f

k
).

The observations at time k, yk, are used to produce a smoothed
estimate of the state and parameters at the previous analysis step
k− 1 as follows:

Xs
k−1 = Xa

k−1 + Kk−1,k(yk −HX
f

k
). (1)

As
k−1 = Aa

k−1 −
1

2
Kk−1,kHA

f

k
. (2)

where,

Kk−1,k = Aa
k−1A

f

k
THT

(

HA
f

k
A
f

k
THT

+ R
)

−1
. (3)

where the superscript T denotes a matrix transpose and A the
ensemble anomalies, i.e., A = X− x1T, with 1m = [1, 1, . . . , 1] ∈
R

1×N . In a similar way, the parameter ensemble, Ps
k−1, at time

k− 1 is smoothed using yk.
In the second step, the model is integrated forward to time k

again but with smoothed ensemble of state Xs
k−1 and parameters

Ps
k−1; i.e., X

f 2
k
=M(Xs

k−1,P
s
k−1).

The observations at time k, yk, are then used again to produce
an analysis of Xa

k
.

Xa
k
= X

f 2
k
+ Kk,k(yk −HX

f 2
k
). (4)

Aa
k = A

f 2
k
−

1

2
Kk,kHAf 2. (5)

Kk,k is the standard Kalman gain and A
f 2
k

are the ensemble

anomalies constructed from X
f 2
k
. It should be emphasized that

the observations are used twice, but the second time they are used
with a model that is using a different set of parameters. As such,
model state is updated twice in a assimilation cycle but parameter
is updated only at previous time step.

The model state (X) includes several ocean physical and
biogeochemical prognostic model variables and they are
updated in isopycnal coordinates as in Counillon et al.
(2014), Wang et al. (2017). In the physical component, we
update the full isopycnal temperature, salinity, layer thickness
and velocities (53 isopycnal layers). Similarly, we update the
biogeochemical variables at all isopycnal layers which include
oxygen, phytoplankton, silicate, nitrate, total dissolved inorganic
carbon, total alkalinity, dissolved organic carbon, particulate
organic carbon, zooplankton, and biogenic silica. The list of
selected BGC parameters for this study is provided in Section 2.3.
For the assimilation system, the state vector is composed of the
above physical and biogeochemical model variables along with
the biogeochemical parameters. When one updates the ocean
variable layer thickness, one effectively updates also the mass
of the BGC quantities. In Bethke et al. (2021), it was shown
that this approach conserves well BGC properties and does not
introduce spurious upwelling at the Equator. However, with
an EnKF, the linear analysis update returns unphysical values
for non-Gaussian distributed variables. Some state variables
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FIGURE 1 | Schematic diagram of the steps of the dual one step ahead (DOSA) scheme.

have a physical constraint and their values should be positive
definite such as layer thickness and tracer concentrations. For
layer thickness we use the upscaling algorithm (Wang et al.,
2016) while for the BGC concentration quantity (i.e., when
updating the BGC state) a post-processing step is applied so that
negative values are set to zero. We have not noticed degradations
caused by the post-processing. We think that it is due to the
fact that 1) part of the non-Gaussianity is already handled by
the super layer algorithm which updates the layer thickness,
and 2) with the smoothing flavor that the DOSA scheme
provides, the updated parameters rarely became non-physical
(i.e., negative).

Observations are used to update both ocean and BGC
components in a strongly coupled framework (Penny and
Hamill, 2017). The BGC component does not feedback to
the physics in this version of NorESM and thus error in the
physical state cannot be caused by error in the value of the
BGC parameters. Therefore, for simultaneous state-parameter
estimation, we update the parameter values from only BGC
observations in Equations (1) and (2) while the state variables
of ocean physics and BGC are updated using all available
observations (see Figure 1).

The rest of the configuration for the assimilation experiments
in this work follows that of Counillon et al. (2014, 2016), Wang
et al. (2016, 2017) and Bethke et al. (2021). The assimilation
algorithm uses a local analysis framework (Evensen, 2003; Sakov
et al., 2012), where a local analysis is computed for one horizontal
grid point at a time by utilizing all available observation in a
spatial window around the grid point. A quasi-Gaussian and
distance-dependent localization function (Gaspari and Cohn,
1999) is used to smooth the impact at the boundary of the
localisation radius. In this work, the localization radius varies
with latitude for both hydrographic profile and BGC observations
(Wang et al., 2017). We do not use vertical localization. A
moderation and a pre-screening technique (Sakov et al., 2012)
is used to sustain the ensemble spread during the assimilation
period.We also use themoderation technique, where observation

error variance is increased (here by a factor of 4) for the
update of the ensemble anomalies [Equation (2)] while the
original value of the observation error variance is kept to update
the ensemble mean [Equation (1)]. The pre-screening method
inflates the observation error such that the analysis remains
within two standard deviations of the forecast error from the
ensemble mean.

2.3. Experiment Design
We test the potential of the DOSA to optimise BGC parameters
with NorCPM in an identical twin experiment framework.
A reference model simulation performed with the prescribed
parameter values is considered as the truth. We aim to retrieve
the parameter values in the truth that are assumed to be
unknown. We focus on optimizing five BGC parameters of
NorESM1, which are among the most uncertain in the BGC
model component. The parameters are: 1) the half-saturation
constant for nutrient uptake during the phytoplankton growth
(BKPHY), 2) Maximum zooplankton grazing rate (GRAZRA),
3) Phytoplankton exudation rate, i.e., the rate of dissolved
organic carbon release by phytoplankton (GAMMAP), 4)
Sinking speed for particulate organic carbon (WPOC), and
5) Half-saturation constant for silicate uptake during biogenic
opal production (BKOPAL). A complete list of the ecosystem
parameters used in the HAMOCC model is documented in
Maier-Reimer et al. (2005).

The “true” parameters (TP) values are constant in time but
they vary spatially (the first row of Figure 6). They have two
Gaussian anomalies centered randomly: one with an isotropic
distribution and another with an anisotropic distribution. The
spatial pattern is purely artificial but more as a way to test
the robustness of the proposed parameter estimation method
in retrieving spatially varying pattern. The characteristic length
scale and structure of those perturbations are unknown so
that the DA system cannot be tuned specifically. The initial
(first guess) perturbed parameters (PP) values (the second
row of Figure 6) are sampled from a multi-variate Gaussian
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distribution, with a spatially uniform value for each ensemble
member. The ensemble mean of PP is set intentionally to be 25%
lower than the global mean of TP. The standard deviation of the
ensemble of PP is equal to 33% of the global mean of TP. As such
the PP are chosen so that the ensemble mean differs from the
truth but that it encloses the truth value.

We have first performed a NorESM simulation (one
member/realisation) with TP values (the first row of Figure 6)
from 1980 to 1999 that henceforth referred to as TRUTH.
It has been initialized in January 1980 from member one of
the 30-member NorCPM1 historical simulation integrated with
historical forcing from 1850 to 2014 following phase 6 of the
Coupled Model Inter-comparison Project (CMIP6) protocol
(Bethke et al., 2021). A tiny perturbation of 10−6◦C was added to
SST of that member in January 1980. We constructed synthetic
observations from monthly averages of TRUTH with random
white noise taking into account for observational error. The
observation error was specified to be equal to one standard
deviation of the temporal variability in TRUTH. The observation
error varies with grid cell and calendar month. The monthly
averaged observations of temperature, salinity, phytoplankton
concentration, Oxygen, Nitrate, Silicate, and Phosphate were
chosen for this study. Synthetic observations of temperature
and salinity were produced at 35 vertical z-levels sampling the
full water column, while in horizontal direction we kept only
points at every 5th model cell. The BGC observations have
been produced at surface at every 5th grid cell. Observations in
ice-covered water were discarded.

Four sets of experiments have been performed in this study
as follows:

• We use perfect parameters (i.e., TP;) to evaluate the impact
of different observational networks for constraining error of
the physical and BGC state variables. All experiments use
30 members. The initial ensemble state in January 1980 is
taken from the historical ensemble NorCPM1 simulation run
(Bethke et al., 2021). The initial condition is constructed from
the 30-member NorCPM1 historical simulation- meaning
that member 1 is nearly identical to the truth. However,
two members starting with a microscopic difference in SST
would be totally different at the surface within 10 months
(Supplementary Figure S3 in Fransner et al., 2020), and would
have produced a spread comparable to climatology in the top
1000m. The first 10 years (i.e., 1980–1989) are considered as
a spin-up period so as to let the model adjust to the perfect
parameters that differ from the value used for producing
the historical ensemble and so that the initial condition of
member 1 differs from the truth. Assimilation of the state
variables starts in February 1990 and run until July 1991 with
assimilation of (1) ocean physics profiles (EnKF_PHY), (2)
BGC surface observations (EnKF_BGC), and (3) combined
physics and BGC observations (EnKF_ALL). All observations
are time-varying and available at every 5th grid cell. We
also perform a free ensemble run (without data assimilation
called NorESM_TP) so it is feasible to quantify the
impact of assimilation. Theses simulations are analysed
in Section 3.1.

• The second set of experiments is conducted to test state-
parameter estimation. A 30-member ensemble simulation
is run from the initial ensemble as in the previous set of
experiments but this time with PP values (the second row
of Figure 6). Again the ensemble is integrated from January
1980 until January 1990 (NorESM_PP) to let the model
state adjust to the new parameter values. From February
1990 to December 1990, three state-parameter estimation
experiments are performed to test the impact of the parameter
estimation. The parameters are only adjusted by assimilation
and the value is kept unchanged during the model integration
(persistence) until the next assimilation step. All experiments
assimilate physical observations but differ in the BGC surface
observation networks: (1) time-varying BGC observations at
every 5th grid cell (EnKF_PE), (2) monthly climatology of
BGC observations at every 5th grid cell (EnKF_PE_CO), and
(3) monthly climatology of BGC observations at a sparser
grid (i.e., every 10th grid cell; EnKF_PE_SCO). The monthly
climatology is generated by averaging 20-years time varying
observations. The results of these experiments are presented
in Section 3.2.

• The parameters estimated in the previous set of experiments
are now fixed and we analyse their impact on the
model state for free ensemble runs (without assimilation).
All simulations were initialized on the 15th of January
1980 (as in NorESM_TP) and run until December 1983.
However, the state variable of member 1 is very close to
the truth run in January 1980 and we have decided to
consider only the other 29 members that are completely
independent (member 2–30) for all experiments. Three
ensemble simulations are performedwith parameters obtained
from EnKF_PE, EnKF_PE_CO and EnKF_PE_SCO (referred
to as NorESM_PE, NorESM_PE_CO and NorESM_PE_SCO,
respectively). The simulations with parameters estimated
(PE) are compared to NorESM_TP and NorESM_PP. In
NorESM_TP, parameters are perfect but the initial state in
1980 is imperfect and it quantifies a climatological error
level expected with a perfect model (upper benchmark). In
NorESM_PP, both the initial state and the parameter are
inaccurate, and it represents the lower benchmark. The results
of these experiments are presented in Section 3.3.

• The final set of experiments addresses the impact of the
estimated parameters on the performance of reanalysis—
where monthly assimilation of the state is performed. The
reanalysis is started on February 1990 and run to December
1991. Prior to this, a 10 year spin up from 1980 is performed
to allow the model to adjust to the new parameter values. The
ensemble parameter values are from (1) parameters estimated
(PE) obtained from EnKF_PE (referred as REANA_PE),
(2) Perturbed parameters (REANA_PP, lower benchmark),
and (3) REANA_TP with perfect parameter values. All
experiments use the same observations (as in EnKF_ALL
experiment), which combined physics and BGC surface time-
varying observations available at every 5th grid cell. The results
of these experiments are presented in Section 3.4.

A summary of all experiments is given in Table 1.
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TABLE 1 | List of performed experiments.

Description Experiment Name Observations (if assimilated) Initial ensemble from Parameters used Time period

Model free runs NorESM_PP Historical run Perturbed parameters Jan 1980–Jan 1990

NorESM_TP Historical run True Parameters Jan 1980–Jul 1991

Assimilation

runs with true

parameters

EnKF_PHY Physics obs. NorESM_TP True Parameters Feb 1990–Jul 1991

EnKF_BGC BGC obs. NorESM_TP True Parameters Feb 1990–Jul 1991

EnKF_ALL Physics + BGC obs. NorESM_TP True Parameters Feb 1990–Jul 1991

Online

parameter

estimation

EnKF_PE Physics + BGC obs. NorESM_PP Online Feb 1990–Dec 1990

EnKF_PE_CO Physics + BGC Clim. Obs. NorESM_PP Online Feb 1990–Dec 1990

EnKF_PE_SCO Sparser grid Physics + BGC Clim. Obs. NorESM_PP Online Feb 1990–Dec 1990

Free runs with

fixed PE

NorESM_PE Historical run PE from EnKF_PE Jan 1980–Jan 1990

NorESM_PE_CO Historical run PE from EnKF_PE_CO Jan 1980–Dec 1983

NorESM_PE_SCO Historical run PE from EnKF_PE_SCO Jan 1980–Dec 1983

Reanalysis runs REANA_PE Physics + BGC obs. NorESM_PE PE from EnKF_PE Feb 1990–Dec 1991

REANA_TP Physics + BGC obs. NorESM_TP True parameters Feb 1990–Dec 1991

REANA_PP Physics + BGC obs. NorESM_PP Perturbed Parameters Feb 1990–Dec 1991

FIGURE 2 | The first row shows the time evolution of the vertical global-averaged RMSE for temperature (first column), salinity (second column), and phytoplankton

concentration (third column) in the NorESM free run against TRUTH. The other rows show the RMSE difference (RMSED) for the same variables with assimilation of

physics observation (EnKF_PHY), BGC surface observations (EnKF_BGC), and combined observations (EnKF_ALL), respectively. RMSED is computed by subtracting

the RMSE of simulations with DA from that of free run RMSE. Warm (cold) colors represent improvement (degradation) from assimilation.
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FIGURE 3 | Same as Figure 2 but for Phosphate (first column), Silicate (second column), and Oxygen (third column).

3. RESULTS

3.1. Impact of Assimilation on the State
Using True Parameters
A prerequisite for skillful parameter estimation is that
assimilation constrains the error of the state variables well.
Error in state variables, particularly at the surface and at
inter-mediate depth can have a strong influence on near-
surface biogeochemical processes. We work in a perfect model
framework (i.e., all members use true parameter values) and
we are interested in how well the error of the state variables is
constrained by different observation networks. The monthly
time evolution of the RMSE (averaged over the global domain
and organized by depth level) of the NorESM free ensemble
run (NorESM_TP) is shown in Figures 2, 3. We also show the
RMSE-difference (RMSED) of EnKF_PHY, EnKF_BGC and
EnKF_ALL assimilation experiments compared to NorESM_TP.

All assimilation experiments improve the accuracy of both
the ocean and the BGC state variables in the near-surface levels
compared to NorESM_TP. The difference between the three

DA experiments is small. Sole assimilation of BGC or physical
data alone is able to constrain well the surface ocean physical
and biogeochemical variables and vice versa. This was somewhat
unexpected, and it exemplifies well the potential of strongly
coupled data assimilation (Penny and Hamill, 2017). It should be
reminded that we assimilate in an isopycnal coordinate that has
been shown to be more effective than assimilation in geopotential
depth for surface observation (Gavart and De Mey, 1997;
Counillon et al., 2016). The Analysis error for phytoplankton
concentration is well reduced in all experiments. Similarly,
clear improvements are shown for nutrients (phosphate and
silicate) and oxygen estimates. BGC data assimilation alone
yields the largest reduction of errors in the top 200 m. Below
200 m depth, the combined assimilation of physical and BGC
observations provides slightly better performance than the other
two experiments and it mitigates the degradation seen at deeper
layers for some variables, e.g., temperature, phosphate, and
oxygen. Overall, the accuracy of the combined assimilation
experiment is slightly better. For example, the average error
in EnKF_ALL for salinity in the top 1 km is 35% lower than

Frontiers in Marine Science | www.frontiersin.org 8 February 2022 | Volume 9 | Article 775394206

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Singh et al. BGC Parameter Estimation Using EnKF

FIGURE 4 | Time evolution of global-averaged normalized RMSE (solid lines)

and ensemble spread (dotted lines) of the BGC parameters from

state-parameter estimation experiment using assimilation of time-varying

observations (EnKF_PE). RMSE is calculated by comparing each member

against the true values. Both RMSE and spread has been normalized by the

global mean value of the true parameter.

that of the free run, while it is 24% for EnKF_PHY and 30%
for EnKF_BGC. Similarly for Oxygen, EnKF_ALL has 28%
lower error than the free run while EnKF_PHY is 19% and
EnKF_BGC 24%.

3.2. Online Parameter Estimation
This section presents and assesses spatially varying ecosystem
parameters estimation with the DOSA scheme (reduction of
error of the estimated parameter). We analyse the EnKF_PE,
EnKF_PE_CO and EnKF_PE_SCO experiments (see Table 1).
The time evolution of the global-averaged ensemble spreads and
RMSEs of the estimated parameters obtained from EnKF_PE
are shown in Figure 4. RMSEs for all parameters reduce
with time and become stable within one year of assimilation.
The reduction is largest for GRAZRA that shows a 72%
error reduction from its initial distribution (Table 2). The
error reduction in the remaining parameters WPOC, BKPHY,
GAMMAP, and BKOPAL is about 54, 47, 40, and 30%,
respectively. Similarly, the ensemble spreads of all parameters
reduce with time. However, the reduction is quicker than
for RMSE, which suggests that the system may benefit
from using multiplicative or additive inflation (Mitchell and
Houtekamer, 2000; Anderson, 2001). Similar results have been
obtained from EnKF_PE_CO and EnKF_PE_SCO experiments
(not shown).

Ensemble data assimilation estimates the parameters based
on their correlation with the model misfits from observations
(e.g., Anderson, 2001). In order to visualise the convergence
process, we have used scatter plots (see Figure 5) of the
parameter ensemble against the model deviation from the truth
at different cycles of the assimilation experiment; i.e., in the
start in January 1990 (red color), after the first assimilation, the
second and the last assimilation cycles (green, purple, and blue
colors, respectively). Each scattered dot represents one ensemble
member and the big dots represent the ensemble mean. All
ecosystem variables simulated using perturbed parameters show

TABLE 2 | Spatial average of the point-wise ensemble RMSE of the parameter

values obtained at the end of the estimation period (December 1990).

NorESM_PP EnKF_PE EnKF_PE_CO EnKF_PE_SCO

BKPHY 0.38 0.20 0.17 0.22

GRAZRA 0.37 0.10 0.09 0.11

BKOPAL 0.36 0.25 0.22 0.29

GAMMAP 0.43 0.26 0.30 0.32

WPOC 0.39 0.18 0.15 0.23

The RMSE has been normalized (divided) by the global mean value of the true parameter.

relatively large deviations from the TRUTH (y-axes in Figure 5),
which underlines the sensitivity of the surface quantities to
errors in the parameters. Among all parameters, GRAZRA
shows the strongest linear relation with all variables and is the
most important parameter for reducing model bias. For some
parameters, the linear relationship is only strong with respect
to some variables (e.g., WPOC with Silicate), which shows
the importance of using multiple type of observations for the
parameter estimation. The parameters are converging toward the
true value very rapidly (already within the first 2 assimilation
cycles), strongly reducing the error in ecosystem variables. After
11 assimilation cycles (corresponding to December 1990), one
can notice that global means of the estimated parameters are
very close to the true value and that the errors in the ecosystem
variables are close to zero. This shows that the method converges
quickly (within few assimilation steps) and is able to constrain
the global mean of estimated parameters close to their true values
by largely reducing the error in parameters. Similar results have
been found for EnKF_PE_CO and EnKF_PE_SCO experiments
(not shown).

We further analyse the spatial distribution of the estimated
parameters obtained for December 1990 from all three
experiments. Figure 6 shows the true and ensemble mean of
the experiments with perturbed and estimated parameters. First,
we note that the data assimilation yields a reduction of error
compared to the initial values for all parameters. We can also
notice that there is some spatial coherency in the value of the
pattern retrieved. Parameters show relatively good agreement
with the spatial distribution of the true value with spatial RMSE
reduced by 75% for GRAZRA, by 50 % for BKPHY and WPOC,
40% for GAMMAP, and only 30% for BKOPAL, see Table 2.
However, some differences remain and there is some small-scale
noise. We suspect the latter to be related to spurious correlations
present in our finite size ensemble (30). The places where the
estimation fails to converge to true value may relate to places
where the model is insensitive to the parameters. Hence, the
parameter estimation can drift towards an erroneous value—
e.g., as a response to spurious correlation or because of the
approximation of Gaussianity and linearity during the analysis—
without having an impact on the state error. In order to assess the
impact of the error reduction on the state variable, we will freeze
the parameter values at the last assimilation cycle and perform
simulations in a free ensemble run and in a reanalysis mode in
the following sections.
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FIGURE 5 | Scatter plots for globally-averaged misfit (model-TRUTH) ensemble vs. BGC parameters ensemble. Plots are shown for surface phytoplankton (row-one),

silicate (row-two), phosphate (row-three), nitrate (row-four), and oxygen (row-five) with BKPHY (column-one), GRAZRA, (column-two), BKOPAL (column-three),

GAMMAP (column-four), and WPOC (column-five) parameters; obtained from first guess (red), after first assimilation cycle (green), second assimilation cycle (purple),

and end of assimilation (blue) with EnKF_PE experiment. The large dots show the ensemble mean. Horizontal and vertical dashed black reference lines represent the

line of zero misfit and global-averaged TP values, respectively. Solid colored lines are the linear regression lines.

3.3. Model Ensemble Free Run With
Estimated Parameters
We verify the state accuracy of a free ensemble run that uses
the final parameter’s estimates of EnKF_PE, EnKF_PE_CO and
EnKF_PE_SCO experiments, and refer to them as NorESM_PE,
NorESM_PE_CO and NorESM_PE_SCO, respectively. We
compare the performance against a free ensemble run using
the true parameter (NorESM_TP) and one using the perturbed
parameter (NorESM_PP).

In Figure 7, NorESM_PP poorly simulates the phytoplankton
activity with a systematic overestimation of phytoplankton

concentrations and generally longer spring blooms during
the summer seasons compared to NorESM_TP. The runs
that use the estimated parameters clearly outperform
NorESM_PP, and perform closely to NorESM_TP. For
instance, the global averaged RMSE of the phytoplankton
concentration with NorESM_PE and NorESM_TP is roughly
51 and 54% lower than in NorESM_PP. Similarly, the biases
in the parameter estimation experiments are significantly
reduced to the level of that of TP. The performance of
TP and PEs are also comparable in the upper 200-m as
shown in Figure 7C. Below this depth, the model seems to
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FIGURE 6 | True (row-one) and point wise ensemble mean of the perturbed (row-two) and estimated BGC parameters in December 1990 with assimilation of

time-varying (row-three), climatological (row-four), and very sparse climatological (row-five) BGC surface observations in addition to time varying physics. Column-one

to -five correspond to BKPHY, GRAZRA, BKOPAL, GAMMAP, and WPOC parameters.

have no sensitivity to these parameters and all experiments
perform equivalently.

This conclusion is also verified for others BGC quantities
such as silicate (Figure 8), phosphate (Figure 9), nitrate, and
oxygen (not shown) in which PEs perform nearly as good as
TP, while PP leads to a poor simulation of these variables and a
large underestimate (negative bias) of the nutrient concentration,
specifically during summer seasons, in the euphotic zone. This
is related to the highly enhanced phytoplankton activity in PP,
as seen earlier, which removes the available nutrients from the
euphotic zone. RMSE and bias profile plots suggest that BGC
parameters may strongly control the biogeochemical process in
deeper layers up to roughly 500m depth. Again, the simulated
quality of nutrients and oxygen profiles by PEs and TP are very
similar throughout entire depth.

We can also notice that NorESM_PE and NorESM_PE_SCO
experiments show very comparable accuracy for ecosystem
variables. Results from NorESM_PE_CO is not included to avoid
overlapping lines in the Figures but we found very similar results.
It suggests that BGC surface sparse climatological observations,
and even very sparse climatological observations are somewhat

sufficient to retrieve optimal ecosystem parameters with similar
quality as time-varying observations using the DOSA-EnKF
algorithm. Hence, in our model, the largest contribution to the
error appears to be related to the seasonal cycle representation,
which can be effectively corrected with a monthly climatology
of observations.

We also analyse the impact of the parameters spatially.
Figure 10 shows the RMSE and bias averaged over 100m depth
for the phytoplankton concentration and 500m for the silicate
profile. In general, bloom intensity increases from mid to high
latitudes. It is seen that PP shows a larger overestimation of
phytoplankton concentration, specifically over high latitudes and
over some tropical regions, e.g., the eastern tropical Pacific
Ocean. In all 3 PEs, the biases and RMSEs are reduced. The
RMSE and bias patterns of the PEs closely match that of TP.
In the case of silicate, PP shows a severe underestimation
over the region where increased phytoplankton activities
are seen.

Performance of the PEs is now assessed for an observation that
was not used for tuning the parameters. Hence, we investigate air-
sea CO2 flux and net primary production (NPP) (Figure 11) and
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FIGURE 7 | Panels on the left show the RMSE (solid lines) and bias (dotted lines) of the ensemble mean of NorESM phytoplankton concentration compared to the

TRUTH in the euphotic zone (i.e., from the surface to 100 m) in the northern hemisphere [NH, (A)] and in the southern hemisphere [SH, (B)]. (C) is the globally

averaged vertical error profiles estimated over the 4-year period (1980–1983). The results of the free NorESM simulation using TP are shown in black, PP in red, and

PE using assimilation of time-varying observations in blue and sparse climatological BGC observations in magenta.

found consistent results. Similar to previous results, PEsmaintain
the accuracy closer to TP.

The above results provide strong evidence that the DOSA-
EnKF system can successfully recover the optimal value for
chosen BGC parameters. It also suggests that the remaining
parametric error does not effectively influence the behavior of
the model.

3.4. Reanalysis With Estimated Parameters
This section presents the accuracy of the state variables in the
reanalyses which started in February 1990 and were run until
December 1991 using fixed estimated parameters (REANA_PE).
We compare the performance of REANA_PE with that of
a reanalysis using perturbed parameters REANA_PP (lower
benchmark) and a reanalysis using true parameters REANA_TP
(upper benchmark).

The time evolution of the RMSE and bias over the
euphotic zone is presented in Figure 12. First, we notice that
assimilation improves the accuracy of the ecosystem variables
in all experiments. For instance, the prior distributions of
phytoplankton, oxygen and net primary production (NPP) are
associated with high uncertainty and biases in the months with
maximum bloom activity (January in the southern hemisphere).
After a few assimilation cycles, there is a lower error during
the bloom seasons. This can also be verified by comparing the
phytoplankton free run accuracy shown in Figure 7 with the

analysis accuracy presented here. For instance, the free run with
PP shows RMSE values of roughly 70 µmolC m−3 for the spring
bloom peak over the northern hemisphere (Figure 7), which is
reduced to roughly 40µmolC m−3 after assimilation (Figure 12).

Similar results are found for NPP (time evolution of free run
not shown), for which observations are not being assimilated
in the system (non-observed variable). Thus, the assimilation
system is capable of improving the quality of not only the
observed ecosystem variables (e.g., phytoplankton and Oxygen)
but also of the non-observed variables. However, differences in
the accuracy of reanalyses are clearly visible for the different set
of parameters. REANA_PP shows larger uncertainty and stronger
biases particularly during bloom seasons for phytoplankton,
oxygen and net primary production reanalyses. The differences
between REANA_PP and REANA_TP are more pronounced
in the northern hemisphere than in the southern hemisphere.
This exemplifies that assimilation cannot achieve optimum
performance in the presence of model error.

The quality assessment of reanalysis has been further assessed
in the deeper ocean by estimating the globally averaged RMSE
and bias profiles for the top 1-km (Figure 13). The statistics have
been computed using the July 1990 to December 1991 period.
The first 6 months have been discarded for removing assimilation
spinup that is longer in the deeper ocean. TP and PE show overall
comparable performance for phytoplankton reanalysis whereas
PP leads to degraded performance mostly in the top 150 m.
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FIGURE 8 | Same as Figure 7 but for Silicate.

FIGURE 9 | Same as Figure 7 but for Phosphate.
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FIGURE 10 | RMSE and bias maps estimated over 1980–1983 for phytoplankton and silicate. For phytoplankton, RMSE (column-one) and bias (column-two) are

averaged over euphotic zone (0–100 m), while for silicate, they are averaged over 0–500m depth (column-three and -four, respectively). The error are computed from

free NorESM simulation using TP (first row), PP (row-two), and fixed PE estimated with assimilation of time-varying observation (row-three), time varying physic and

climatological BGC (row-four), and time varying physic and sparse climatological BGC (row-five).

Similar results can be seen for nutrients (e.g., phosphate and
silicate) and oxygen profiles where differences of PP with TP or
PE are more pronounced at inter-mediate depth levels. Still we
can see that the performance of PE is not as efficient for oxygen
and phosphate below 300m. It would have been interesting to test
whether training the parameters with deeper BGC observations
(currently only available at the surface) would have improved
performance there.

4. SUMMARY AND CONCLUSIONS

We have presented the feasibility of optimizing spatially
varying ocean biogeochemical parameters in an Earth system
model using an ensemble-based data assimilation method in

an idealized perfect twin experiment setup. We used the
NorCPM system, which combines the NorESM global model
with the DOSA-EnKF assimilation method. The DOSA-EnKF
applies a smoothing step to the state and parameters before
propagating the model for the analysis step. We estimate
five spatially varying biogeochemical parameters in addition
to ocean physical and biogeochemical state variables. The
parameters characterize the major surface biological processes
such as phytoplankton growth, zooplankton grazing, release
of dissolved organic carbon, sinking of organic matter and
nutrient uptake. We assimilate synthetic monthly ocean physics
profiles (temperature and salinity) and surface BGC observations
(Phytoplankton, Nitrate, Phosphate, Silicate, and Oxygen)
in a strongly coupled framework, where observations are
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FIGURE 11 | Same as Figure 10 but for CO2 flux (column-one and -two) and net primary production (column-three and -four).

used to update ocean and BGC state variables jointly along
with parameters.

Assimilation of different observation networks in a strongly
coupled framework reveals that BGC observations can effectively
constrain errors in the ocean physics and vice versa. It
demonstrates the potential of strongly coupled data assimilation
to constrain the errors in cross component state variables. It
could benefit ocean BGC in real observations setup, where
dense network of physical observations can be used to constrain
the BGC state variables for which measured properties are
under-sampled. In our setup, sole assimilation of BGC surface
observations seems to yield largest error reduction in the top
200 m for both physical and ecosystem variables. Further,
combined assimilation of physical and BGC observations
provides more robust performance and avoid degradation in
deeper layers.

The success of the parameter estimation has been tested by
three state-parameter estimation experiments performed using
different networks of BGC observation on top of physical
observations. One of them assimilating sparse-grid (every 5th
grid cell) time-varying BGC observations and the other two
assimilating climatological BGC observations prepared at sparse
(every 5th grid cell) and very sparse horizontal resolution (every
10th grid cell). All experiments converge quickly within a year
and are able to retrieve the true global mean of estimated
parameters, strongly reducing the error in the perturbed
parameters. Further, the spatial pattern for nutrient uptake and
zooplankton grazing parameters show relatively good agreement
with that of the true values. However, some differences remain
in the estimated values. The success of recovering the true
parameter values in any region depends on the sensitivity of the
model to those parameters. It is possible that the true values are
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FIGURE 12 | Panels on the left show the RMSE (solid lines) and bias (dotted lines) of the ensemble mean of phytoplankton concentration reanalysis compared to the

TRUTH in the euphotic zone in the northern hemisphere [NH, (A)] and southern hemisphere [SH, (B)]. The results of the reanalysis using TP are shown in black, PP in

red, and PE in blue using assimilation of time-varying observations. (C,D) and (E,F) are same as (A,B) but for net primary production and oxygen concentration.

FIGURE 13 | (A) is the globally averaged RMSE (solid lines) and bias (dotted

lines) profiles estimated over the 18-months reanalysis period (July 1990-

December 1991) for phytoplankton concentration generated using TP (black),

PP (red), fixed PE (blue), and assimilating time-varying observations. (B–D) are

same as (A) but for oxygen, phosphate, and silicate, respectively.

not sensitive in many regions. Over such regions, the estimation
of parameters may not work effectively and differences between
estimated and true values are possible.

As a way to test the impact of the parameters on the state
variables, we conducted ensemble free run using estimated
parameter values obtained from three different BGC observation
networks mentioned earlier. The performance of the estimated
values has been compared with upper- and lower benchmark
model ensemble runs conducted using true and perturbed
parameter values, respectively. We found that the accuracy
of simulated ecosystem variables obtained using all three sets
of estimated parameters is as good as those obtained using
true parameters. Perturbed parameters lead to a systematic
overestimation of the phytoplankton and longer spring blooms
compared to the true parameters. Similar results have been
obtained for nutrient and oxygen concentrations throughout
the entire water column. These results suggest that remaining
differences in the estimated and true parameters do not effectively
influence the behavior of the model and estimated values are
optimal. As similar results have been obtained from all three
sets of estimated parameters, we can conclude that very sparse
BGC surface climate observations are sufficient to retrieve
optimal ecosystem parameters with similar quality as time-
varying observations using the DOSA-EnKF algorithm with our
model system. We suspect that this is because the primary source
of error is in the representation of the seasonal cycle that is well
represented by the monthly climatology data.

The performance of reanalyses using fixed estimated
parameters was also assessed. Again, we found that using
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the estimated parameters improves the quality of ecosystem
variables in the reanalyses mode. The accuracy of the reanalysis
with perturbed parameters shows poorer performance than the
one using true and estimated parameters with large biases and
error for observed variables (e.g., phytoplankton, oxygen and
phosphate) as well as for unobserved variables (e.g., net primary
production which was not assimilated). This is expected because
assimilation is not designed to correct model errors (Dee, 2005;
Counillon et al., 2021).

The finding of this study clearly reveals that the DOSA-EnKF
system in a perfect twin experiment can estimate spatially varying
optimal BGC parameters for the NorESM model, even with very
sparse climatological BGC surface observation. It remains to be
confirmed whether the method succeeds in a real framework
(assimilating real observations) as errors may originate from
the other components (atmosphere, ocean physics, sea ice) or
additional structural-related errors.
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