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Editorial on the Research Topic

Retinal Changes in Neurological Diseases

Evidently, retinal manifestations of structural and functional deterioration are interlinked with the
development of neurodegenerative disorders. In addition, the presence of retinal vasculopathy
is also tightly linked with cognitive deficits in Alzheimer disease (AD) patients and animal
models summarized in a review by Shi et al. These retinal changes are clinically measurable
using existing non-invasive techniques such as retinal amyloid imaging, pericyte imaging, optical
coherence tomography-angiography (OCT-A), electroretinograms, and fundus imaging, and can
be used to monitor disease activity of the brain. This prompts the question of whether monitoring
retinal changes (functional, vascular, or structural) via non-invasive methods can be routinely
deployed for the early diagnosis of neurodegenerative disorders. This theme—early detection of
neurodegenerative disease by evaluating structural, functional, and vascular changes in the retina—
runs through this issue. Zhang et al. establish that the retinal abnormalities in an ADmouse model
(5XFAD) precede the abnormalities in the brain and therefore, could be used for AD diagnosis.
The study shows that deposition of amyloid-β plaques leads to thickening of the retina with
subsequently reduced light responses of retinal ganglion cells (measured with multielectrode-array
recording), which is observed to occur before deterioration in cognitive behavior. Similar retinal
pathology reflecting alterations in the brain is seen in Parkinson’s disease (PD) in a population-
based study conducted by Chen et al. They establish that the patients with PD are at higher risk of
retinal diseases at the premotor stage than non-PD controls. However, no significant association
was identified between optic nerve disease or glaucoma with PD in this study. The observation of
retinal pathology reflecting changes in the brain can help serve as a pre-motor biomarker of PD
especially if changes are captured by clinically available non-invasive methods. It was interesting
to note in the study by Chen et al. that the effects of PD on retinal pathology were reversed
after administration of dopamine supplements warranting a further investigation on the role of
dopamine in retina revival and restoration.

In congruence to the correlation between retinal diseases and PD, foveal microvascular
alterations are also observed in PD patients. Evaluation of the increasing vascular bed surrounding
the foveal avascular zone using OCT-A can help to discriminate PD patients with mild cognitive
impairment from controls as established by Murueta-Goyena et al. The result of this study also
emphasizes the role of vascular pathophysiology in PD which awaits further exploration. Further,
the potential of in vivo retinal fundus imaging using OCT to non-invasively evaluate vascular and
structural changes along with the alterations of oxygen metabolism can be used to assess multiple
sclerosis (MS)-related retinal pathology as shown by Kallab et al. The study establishes oxygen
metabolism changes in the retina inMS eyes with a history of optic neuritis (ON), but whether these
alterations are disease-specific or occur as a consequence of ON warrants further investigation.
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This research topic collection presents the potential of using
non-invasive investigation of retinal changes in predicting the
onset of neurodegenerative diseases. These retinal changes
may occur as a primary pathology or secondary outcome of
transsynaptic changes in neurological disorders (Puthenparampil
et al., 2017; Asanad et al., 2020; Sharma et al., 2021).
The hierarchy of the visual system is linked with one
synapse bridging the anterior and posterior ends of the visual
pathway, presenting itself as a model that can be clinically
monitored for neuro-structural, functional, and vascular changes
in the retina reflecting analogous changes in the brain. A
comprehensive review published on this subject by our group
details existing clinical scenarios showing the transsynaptic
changes in the retina that can be measured clinically to detect
and monitor the spread of neurodegeneration (Sharma et al.,
2021). The simple hierarchy of the visual pathway can help
localize lesions in the posterior pathway for clinical differential
diagnosis of neurological diseases. The underlying causes of
transsynaptic degeneration are however unknown and offer
an unexplored avenue for future research. Studies focused
on understanding the cellular and molecular mechanisms
driving transsynaptic degeneration in the visual system can
help unravel the causes and potential therapeutic targets of
neurodegenerative diseases. These investigations can be carried
out on animal models described in this research topic collection
employing the visual system as a model to understand the
spread of neurodegeneration, synaptic dysfunction, and the
transmission of β-amyloid and tau plaques in the retina from
the brain.

In conclusion, advancements in clinical and lab-based
imaging equipment offer easy evaluation of structural, functional,
and vascular changes in the retina. Several recent articles

have reviewed the potential role of novel retinal imaging
techniques such as OCT-A and retinal vascular amyloid
imaging in monitoring blood flow and metabolism changes
in the retina under disease conditions (Gupta et al., 2021;
Kashani et al., 2021; Shi et al.). These findings, however,
must be validated by using histopathology to establish the
specificity and sensitivity of these proposed imaging methods
enabling accurate detection. Further, the clinical utility of retinal
imaging in most neurodegenerative diseases is based on case
studies and from cross-sectional data derived from subjects
in advanced disease stages. This needs to be supplemented
with large-scale cohort studies to establish the timeline of the
changes in the brain and corresponding retinal changes during
disease progression. While brain imaging will remain as a
standard confirmatory test for the diagnosis of neurodegenerative
diseases, retinal imaging has rapidly emerged as a promising
clinical tool for non-invasive detection of disease-specific
retinal pathology in numerous neurodegenerative disorders in
the brain.
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Photocoagulation is used for the treatment of retinal ischemic disease. However,
due to the invasive nature of photocoagulation and variety of melanin concentrations
between individuals, it is challenging to avoid damaging the adjacent photoreceptors
and inducing several side effects. Previous studies indicate the role of laser power,
duration, and spot size on retinal lesions, but the effect of interspot distance of the
laser pulses needs to be considered in panretinal photocoagulation. In this study, we
examine different parameters of photocoagulation on lesions of the retina in rabbit,
finding that the lesion level of the outer nuclear layer of the retina depended on the pulse
duration and laser spot size, and decreasing interspot distance could completely abolish
the photoreceptor layer. The degeneration of the photoreceptor by photocoagulation
occurred in 24 h and was not restored afterward. We then conducted panretinal
photocoagulation in rabbit and found that oxidative stress was decreased in the inner
nuclear layer of the retina, and pupillary light reflex and ERG signals were impaired.
Our study could provide a rabbit model to explore the mechanism of photoreceptor
degeneration and therapies for the side effects after photocoagulation.

Keywords: photocoagulation, light pupillary reflex, rabbit model, oxidative stress, electroretinography

INTRODUCTION

Retinal photocoagulation is considered a gold standard for the therapy of retinal ischemic disease,
such as proliferative diabetic retinopathy and retinal vein occlusion (Reddy and Husain, 2018).
During photocoagulation, laser light is absorbed by melanin in retinal pigment epithelium (RPE)
cells and converted into heat, causing focal coagulation, necrosis, and hemostasis at RPE, Bruch’s
membrane (BM), and photoreceptor cells (Lock and Fong, 2011; Querques et al., 2018). Therefore,
due to the invasive nature of photocoagulation, it also induces serious side effects, including central
scotoma, permanent retinal scarring, and loss of visual field and night vision (Pender et al., 1981;
Fong et al., 2007). There are some hypotheses offered to explain the mechanism of laser-induced
retinal damage (LIRD), including reduction in oxygen consumption, photoablative debulking
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of the retina by photocoagulation, and heat-shock protein (HSP)
activation (Chhablani et al., 2018). A previous study shows that
the RPE cell death after thermal irradiation may take time and
mostly undergoes apoptosis, unless cells are immediately killed,
but the cellular responses and therapeutic mechanisms are still
unclear (Kern et al., 2018).

To minimize the side effects of photocoagulation, selective
retinal therapy (SRT) was applied as a new therapeutic laser
procedure for retinal diseases (Chhablani et al., 2018). SRT
selectively targets RPEs and avoids thermal damage of the
adjacent photoreceptors and choriocapillaris, which causes
a high peak temperatures around the melanosomes and a
low sublethal temperature increase in the adjacent tissue
structures (Framme et al., 2004). However, because the melanin
concentrations are different among patients or even in regions
within an eye and the lesions in RPE are invisible through an
ophthalmoscope (Weiter et al., 1986), localized SRT without
excessive burning and collateral damage is still challenging.
Previous studies indicate the role of laser power, duration,
and spot size on retinal lesions (Jain et al., 2008), but
during large-area photocoagulation, the effect of the interspot
distance of the laser pulses needs to be considered. Meanwhile,
the mechanism underlying photoreceptor degeneration after
photocoagulation remains unclear. A proper animal model for
studying cellular mechanisms would be helpful for further
eliminating side effects by SRT.

Due to the convenience of generating transgenic animals,
rodents seem to be a good animal model for studying
the molecular and cellular mechanisms of photoreceptor
degeneration by photocoagulation. However, the anatomical
structure and size of human and rodent eyes are significantly
different, preventing rodent models from further contributing
to translational studies. The anatomy of eyes in nonhuman
primates are very similar to that in humans, in particular, the
existence of a macular structure, and translational studies often
use nonhuman primates for electrophysiological and behavioral
experiments (Nishida et al., 2010; Pennesi et al., 2012; Shirai
et al., 2016). However, nonhuman primates are expensive and
have a long breeding cycle. Despite the lack of macula, the
size of eyeballs in rabbits is similar to that of humans (Kondo
et al., 2009; Amirpour et al., 2012; Isago et al., 2013; Petrus-
Reurer et al., 2018). The surgical tools for human patients in
ophthalmology can be used directly in rabbit surgery (Petrus-
Reurer et al., 2018), and fundus imaging and optical coherence
tomography (OCT) for humans also enable monitoring of the
rabbit retina over time (Plaza Reyes et al., 2016; Petrus-Reurer
et al., 2017). Furthermore, rabbits are easy to breed and could
be a good animal model in studying histological changes and
mechanisms after photocoagulation.

In this study, we conducted different parameters of
photocoagulation, including duration, spot size, and interspot
distance of the laser pulses, and examined retinal lesions by
histological approaches, electroretinography, and pupillary light
reflex. We also examined the oxidative stress in the retina after
photocoagulation at different time points. Our study provides a
rabbit model to explore new mechanisms and therapies for the
side effects after photocoagulation.

RESULTS

Visualization of Whitening Level and
Lesioned Spot Size by Photocoagulation
in Fundus Images
The lesion level of the retina in photocoagulation experiments
depends on the laser power, pulse duration, spot size, and
interspot distances. Previous studies indicate that 100 mW laser
power causes retinal whitening but not a ring of edema in
rabbits, correlating mainly with damage on the photoreceptors
(Jain et al., 2008), so we used 100 mW laser power throughout
the experiments. Each laser pulse resulted in a visible bright-
color lesioned spot in the fundus images. Retinal whitening
level and ring of edema size indicate the intensity of the
lesion; increased retinal whitening and a larger ring of edema
correspond to a more severe lesion (Jain et al., 2008). As
shown in Figure 1A, the whitening level of the lesioned spot
in the fundus images decreased as the laser spot size increased,
indicating that the level of lesion decreased as the size of the
laser spot increased. Similar results were obtained in other
conditions with different pulse durations (30 ms in Figure 1B
and 50 ms in Figure 1C). The size of the lesioned spot on
the retina increased with increasing pulse duration for 200,
300, and 500 µm laser spots (Figures 1A–D). These results
indicate that the whitening level and lesioned spot size on
retinal by photocoagulation was inversely proportional to the
size of the laser spot and proportional to the duration of
the laser pulse.

The Degree of Retinal Damage Is
Proportional to the Duration and
Inversely Proportional to the Size of the
Laser Spot
To confirm which parameters of photocoagulation induce
photoreceptor degeneration, which means the lesioning of the
outer nuclear layer (ONL) but not the inner nuclear layer (INL)
or ganglion cell layer (GCL), we examined cross-sections of
the retina 7 days after photocoagulation using Nissl staining
(Figure 2). We found that a 200-µm, 20-ms-duration laser
spot could induce severe damage of the ONL of the retina
and disarrange the structure of the retina. However, when the
diameter of the laser spot was 300 µm or 500 µm (100 mW,
20 ms duration), the ONL of the retina was scarcely damaged,
and a 200-µm, 30-ms laser spot disrupted the layered structure
of the retina, but a 300-µm, 30-ms or 500-µm, 30-ms laser spot
only partially damaged the ONL, indicating that these conditions
are not efficient for lesioning the entire ONL. Also, a 200-µm, 50-
ms laser spot partially damaged the INL of the retina, suggesting
that the retinal tissue was over-lesioned. However, the ONL of
the retina was eliminated at 300 µm and 500 µm spots (100
mW, 50 ms) without INL damage. These results suggest that
the lesion level of the ONL of the retina depends on the pulse
duration and laser spot size, and 50 ms, 300 µm and 500 µm
laser spots seem to damage the ONL completely but not the
INL of the retina.
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FIGURE 1 | Fundus images of rabbit retina under different photocoagulation conditions 1 h after surgery. (A–C) Fundus images of retina after photocoagulation of
200, 300, and 500 µm laser spot size produced by 100 mW laser power and 20 (A), 30 (B), or 50 ms (C) pulse duration. Scale bar = 2 mm. (D) Lesion diameter on
retina by photocoagulation with 200, 300, or 500 µm laser spot size produced by 100 mW laser power and 20, 30, or 50 ms duration (number of spots: n20 ms/500

µ m = 9, n20 ms/300 µ m = 15, n20 ms/200 µ m = 15, n30 ms/500 µ m = 10, n30 ms/300 µ m = 15, n30 ms/200 µ m = 15, n50 ms/500 µ m = 9, n50 ms/300 µ m = 15,
n50 ms/200 µ m = 14, Each set of spots comes from one retina). Data were presented as Mean ± SEM. **P < 0.01, ***P < 0.001.

Spatial Distance Between Laser Spots
Affected Retinal Damage Level
To examine the photoreceptor degeneration level in the retina by
large-area photocoagulation, we used laser spot arrays. Because
the magnification of the rabbit eye was 0.66, the size of the
laser spot at the retinal plane is different from the sizes of the
lesion spots both from our own observation and in the literature
(Blumenkranz et al., 2006; Framme et al., 2007). Hence, we next
explored how the distance between laser spots affects retinal
damage. In Figure 3, we conducted histologic analysis 7 days
after the photocoagulation surgery using 100-mW laser spots
with 50 ms (as used in Figure 2). In the first row of Figure 3,
a 200-µm laser spot with a 0 or 50-µm interspot distance
caused severe damage in the INL, ONL, and even GCL of the
retina. However, when the interspot distances were increased
to 100 or 150 µm, the ONL of the retina was not completely
abolished. To optimize the lesion condition, we increased the
spot diameter to 300 µm (50 ms duration). In the second row
in Figure 3, photocoagulation with a 75-µm inter-spot distance
led to the disruption of the layered structure in the INL. The
level of lesions in the retina decreased with 150- and 225-µm

inter-spot distances, but the effect of retinal damage is unstable.
When the diameter of the laser spot increased to 500 µm with
a 250- or 325-µm interspot distance, the ONL of the retina was
not completely eliminated. Laser spots with 500 µm diameter
and 0- or 125-µm inter-spot distance completely abolished the
photoreceptor layer with intact INL and GCL.

Long-Term Elimination of Photoreceptor
Layer by Photocoagulation in Rabbit
Retina
We examined the retinal structure and cellular morphological
changes after photocoagulation, and found that 1 day after
photocoagulation, the photoreceptor of the retina was almost
eliminated and the ONL exhibited sparse arrangement. Seven
days after photocoagulation, photoreceptor cells were completely
eliminated and ONL cells were intact (Figure 4A). These data
suggest that the degeneration of photoreceptor cells occurred
within 24 h after photocoagulation with a few cell remnants
and degenerated completely 7 days after photocoagulation. We
also used DHE staining to evaluate the level of oxidative stress
in retina. For the control group, the DHE fluorescence could
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FIGURE 2 | Histomorphology of rabbit retinas 7 days after photocoagulation with 100 mW laser power. Nissl staining of rabbit retina with different pulse durations
and laser spot sizes under 100 mW laser power. Each column corresponds to a constant laser spot size, and each row corresponds to a constant pulse duration.
The better conditions are circled by the red box. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Scale bar = 50 µm.

FIGURE 3 | Histomorphology of rabbit retinas 7 days after photocoagulation with 100 mW laser power and 50 ms pulse duration. Histologic images for different
laser spot size and distance. The control picture is in the first column and second row. Except for the control picture, each row corresponds to a constant laser spot
size, and each column to different laser spot distance. The better conditions are circled by the red box. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer
nuclear layer. Scale bar = 50 µm.
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FIGURE 4 | Histomorphology of rabbit retinas and normalized retinal thickness after photocoagulation surgery. (A) Histologic images at 1, 4, and 7 days after
photocoagulation with 100 mW laser power and 50 ms pulse duration. Histologic images for 500 µm laser spot size and 0 µm laser spot distance. The arrow points
to the remnant cells of the ONL. Scale bar = 50 µm. (B) DHE staining of control retinal sections and local damage retinal sections at 1, 4, and 7 days after
photocoagulation with 100 mW laser power and 50 ms pulse duration. Stained images for 500 µm laser spot size and 0 µm laser spot distance. Scale bar = 50 µm.
GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. (C) Histologic sections of rabbit retinas 7 and 28 days after photocoagulation with 100
mW laser power and 50 ms pulse duration. Histologic images for 300/150, 500/125, and 500/250 µm laser spot size/distance. GCL, ganglion cell layer; INL, inner
nuclear layer. Scale bar = 50 µm. The red line represents two locations randomly taken in each section for measuring the thickness of the retina after
photocoagulation in the photocoagulation area. (D) Normalized photocoagulation retinal thickness in different sections at 7 and 28 days after photocoagulation
under the same conditions as in (A). Normalized retinal thickness is the ratio between retinal thickness in photocoagulation area and retinal thickness in
nonphotocoagulation area. (7 days after photocoagulation: n300/150 µ m = 8 slices, n500/125 µ m = 8 slices, n500/250 µ m = 6 slices; 28 days after photocoagulation:
n300/150 µ m = 5 slices, n500/125 µ m = 6 slices, n500/250 µ m = 4 slices). Data were presented as Mean ± SEM.
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be detected in the ONL, GCL, and photoreceptor layer. But
the DHE fluorescence appeared decreased 1, 4, and 7 days
after photocoagulation (Figure 4B), which was similar to the
phenomena observed in a previous study (Saenz-de-Viteri et al.,
2014). This might be due to the destruction of the mitochondria-
rich photoreceptors by the laser treatment causing a decrease in
oxygen consumption in the outer retina and allowing oxygen
to diffuse from the choroidal circulation to the inner retina,
decreasing oxidative stress in the ONL and INL.

We next examined the long-term effects of photocoagulation
in the retina. We found that, in the 300-µm diameter/150-µm
interspot distance group (100 mW power and 50 ms duration),
the thickness of the retinas did not show significant differences
between days 7 and 28, and part of the ONL can be observed 28
days after photocoagulation, indicating photoreceptors were not
completely removed. In the 500-µm diameter/125-µm interspot
distance group, the thicknesses of the retina were similar between
days 7 and 28, and both showed abolished ONL and intact INL
and GCL. In the 500-µm diameter/250-µm interspot distance
group, there were still residual photoreceptors in the ONL
on both days 7 and 28 (Figures 4C,D). These data suggest
that laser pulses with 500-µm diameter and 125-µm interspot
distance (100 mW power and 50 ms duration) induced stable
photoreceptor degeneration.

Panretinal Photocoagulation in Rabbit
Retina With Optimal Parameters
According to the results in Figure 3, the optimal parameters
for selective damage of the ONL in the rabbit retina were
100 mW, 50 ms pulse duration, 500 µm diameter and 0–125
µm interspot distance. We further conducted photocoagulation
on the entire rabbit retina using these parameters. Fundus
images showed that the lesioned spots were all connected
to each other 7 days after photocoagulation (Figures 5A,B).
OCT images showed that the signals from the ONL of
the rabbit retina were disturbed, but the signal of the INL
and the GCL were relatively clear on day 7, indicating
that most of the ONL was damaged (Figures 5C,D). As
expected, Nissl staining showed that the ONL was almost
abolished 7 days after photocoagulation (Figures 5E,F). The
expression of cone outer segment marker PNA could not be
observed in the photocoagulated retina, but PKC-α (bipolar cell
marker) and ChAT (amacrine cell marker) immunochemistry
signals were visible (Figures 5G,H). These results show
that photocoagulation could induce selective elimination of
photoreceptors over a large area.

Disrupted Pupillary Light Reflex and ERG
Recording After Panretinal
Photocoagulation
Finally, we examined the pupillary light reflex before and
after lesions of panretinal photoreceptors by photocoagulation
surgery. The pupil constriction ratio was reduced significantly
after photocoagulation, indicating that the photoreceptor damage
caused the decrease of light response (Figures 6A,B). To evaluate
the function of retinal neurons after photocoagulation, we

performed electroretinogram (ERG) recording at 1, 4, and 7 days
after photocoagulation. In control eyes, we could record ERG
signals, and the amplitudes of the a-wave has mean values of
261.76 ± 90.73 µV while the b-wave is 538.28 ± 55.71 µV. After
photocoagulation, the amplitude of a- and b-waves significantly
decreased 1 day after photocoagulation, and the patterns and
amplitudes did not show significant changes from days 1 to
7 after photocoagulation (Figures 6C,D). These data suggest
that the RPE-photoreceptor complex function of the rabbits was
obviously damaged on the first day after photocoagulation, and
the effect of photocoagulation with the parameters we used may
be persistent and stable.

DISCUSSION

In this study, we examined different parameters of
photocoagulation in rabbits, which can serve as an effective
large animal model for studying cellular mechanisms that come
into the retina after photoreceptor degeneration. Prior to the
photocoagulation surgery, the laser power and pulse duration
need to be calibrated to avoid fundus bleeding due to vascular
rupture during the surgery. Consistent with previous results (Jain
et al., 2008), the diameter of the lesion spot increases as the pulse
duration increases. Jain et al. (2008) report that the diameter of
the fundus image of the lesion is larger than the spot size of the
laser beam at longer pulse durations.

The level of retinal damage in different rabbit strains could
also vary with the same photocoagulation parameters. The
most widely used rabbits are pigmented rabbits. McHugh
et al. (1995) demonstrate that photocoagulation damage in
pigmented rabbits is mainly caused by the absorption of
laser energy by melanin in retinal pigment epithelium and
choroidal melanocytes, and retinal damage by photocoagulation
in albino rabbits is induced by multiple scattering together
with absorption within hemoglobin and tissue water. Under
the same photocoagulation condition, chorioretinal coagulation
in albino rabbits was weaker than that in pigmented rabbits
(McHugh et al., 1995). Longer duration and higher power
were required to achieve the same coagulation effects in albino
rabbits compared with pigmented rabbits (Obana and Miki,
1989). Therefore, the lesion threshold by photocoagulation was
lower in pigmented rabbits than in albino rabbits. Moreover,
intravenous dye injection, such as indocyanine green (ICG), can
enhance the retinal damage level by photocoagulation in rabbits
(Suh et al., 1991; Matsumoto et al., 1992). The albino rabbits
need less time for recovery of the intraocular pressure after
photocoagulation compared with pigmented rabbits (Schubert
and Federman, 1989). Therefore, it is necessary to adjust the
laser power, pulse duration, and spot size according to the rabbit
breeds to achieve the ideal photocoagulation effects. Moreover,
pigmented rabbits could effectively absorb laser energy and cause
retinal damage, which is more suitable for establishing a rabbit
model of photoreceptor damage.

The effectiveness of photocoagulation also depends on the age
and metabolic state. Previous studies show that, with increasing
age, RPE cells thicken and become heavily loaded with metabolic
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FIGURE 5 | Rabbit retinal photoreceptors across the entire retina were damaged by photocoagulation with 100 mW laser power, 50 ms pulse duration, and 500 µm
laser spot size. (A,B) Fundus photographs of extensive damage of retinal photoreceptors at 1 h and 7 days after photocoagulation. Scale bar = 2 mm. (C) Control
OCT image of rabbit retina. Scale bar = 1 mm. (D) Example of OCT image of rabbit retina at 7 days after photocoagulation. Scale bar = 1 mm. Red lines in (C,D)
mark retina stratification. (E,F) Histomorphology of control rabbit retina (E) and rabbit retina 7 days after photocoagulation (F). Scale bar = 100 µm. (G,H)
Immunofluorescence staining of control rabbit retina (G) and rabbit retina 7 days after photocoagulation (H) with cone outer segments marker PNA, bipolar cell
marker PKC-α and amacrine cell marker ChAT 7 days after photocoagulation. Scale bar = 100 µm. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer
nuclear layer.

fatty products (Schraermeyer and Heimann, 1999), and the
content of soluble melanin in the pigment epithelium declined
with age from 95 µg/mg in the 14–50 year age group to 22
µg/mg dry weight in the over 70 year age group (Schmidt
and Peisch, 1986). However, the contents of melanin did not
show significant differences between males and females in blue
and brown eyes (Menon et al., 1992). Photocoagulation is
widely used in the treatment of proliferative diabetic retinopathy.
ROS was increased in the retina in diabetic mice compared

with control mice, indicating that damage of the retina by
photocoagulation might be more severe (Sasaki et al., 2010),
and the proliferation and hexagonality of regenerating RPE cells
were impaired after photocoagulation, and the regenerated RPE
cells lost their original properties in diabetic mice compared
with wild-type mice (Jang et al., 2019). Laser-induced choroidal
neovascularization was reduced significantly in the laser-injured
diabetic mice compared with the laser-injured control mice
(Liu et al., 2018).
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FIGURE 6 | The change of pupillary light reflex and ERG in rabbits before and after photocoagulation. (A) The example images of pupillary direct light reflex before
(top row) and 3 days after photocoagulation (bottom row) of the same rabbit eye. The position of the white dotted circle is the pupil position. Scale bar = 2 mm.
(B) Pupil constriction ratio before and 3 days after photocoagulation of rabbits. The pupil constriction ratio is calculated as (S0-Smin) / S0 × 100%, Smin is the
minimum pupil area under light stimulation, and S0 is the pupil area of the frame before light is given. (C) Sample waveforms of ERG before photocoagulation, 1, 4,
and 7 days after photocoagulation. (D) Comparison of a- and b-wave amplitudes in eyes before photocoagulation and 1, 4, and 7 days after photocoagulation.

The model established by photocoagulation also has some
limitations. First, this model of retinal damage is suitable for
pigmented animals because laser light is mainly absorbed by
melanin. The photoreceptor degeneration model established

by photocoagulation is due to the trauma caused by laser
impact, which is different from the progressive, hereditary
pathological characteristics of RP and AMD as a result of genetic,
environmental, or age-related degeneration. Moreover, the rods
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gradually die after progressive atrophy in RP patients, which
then leads to the death of the cones, but photocoagulation
causes the death of the rods and cones simultaneously,
and photocoagulation-induced retinal degeneration occurs
almost quickly, which is different from the progressive loss
of photoreceptors in retinal degenerative diseases. Due to
these limitations of the photoreceptor degeneration model by
photocoagulation, the model cannot be used to study the disease
progression of typical retinal degenerative diseases, nor is it
suitable for studying the treatment of gene therapy, drugs, and
chronic nutrition. Nevertheless, this model still has certain actual
uses. The model can be used to study the effectiveness of retinal
prosthesis and stem cell therapy in photoreceptor degeneration
disease, and it may also be used to study the mechanism of cell
death caused by oxidative stress.

In transgenic rabbit models of photoreceptor degeneration,
the thickness of the ONL of the transgenic rabbit started
to decrease at 2 weeks of age. By 48 weeks of age, there
was still a little residual ONL of the transgenic rabbit retina.
Moreover, 12 out of 80 newborn rabbits are transgenic, and
10 out of 12 survive (Kondo et al., 2009). Hence, transgenic
rabbit models are slow and costly. Ahn et al. (2019) establish a
local retinal degeneration rabbit model by intravitreal injection
of N-methyl-N-nitrosourea (MNU). In the high-dose injection
group, loss of the photoreceptor layer occurred 1 month
after the injection. However, without vitrectomy, the degree of
retinal degeneration is unpredictable. In addition, vitrectomy
causes around 30% incidence of cataract, further reducing the
success rate. Intravenous injection of IAA in rabbits induced
damage in the outer but not the inner segment of the
photoreceptors (Yamauchi et al., 2011). In addition, the degree
of degeneration was different among animals with the same IAA
dose (Liang et al., 2008). In the current study, we demonstrate
that the photoreceptor degeneration model established by
photocoagulation can stabilize 7 days after surgery, requires no
further invasive operations, and the area of degeneration can be
precisely controlled.

In summary, we develop and evaluate a reproducible and
low-cost photoreceptor degeneration rabbit model by laser
photocoagulation, in which selective damage was made to retinal
photoreceptors within 7 days. This model can be used to
induce local or large-area photoreceptor lesions. Our studies
shed light on a convenient model to test potential therapies and
mechanisms of cell death for photoreceptor degeneration prior to
nonhuman primate studies.

MATERIALS AND METHODS

Animals
A total of 20 healthy male adult Chinchilla Bastard rabbits were
used in this study. The rabbits were obtained from Shanghai
Songlian Laboratory Animal Co., Ltd. They were housed with
a 12-/12-h light/dark cycle, and food and water were available
ad libitum. The body weight of a rabbit is between 2.5 and 3.0 kg.
All procedures were performed in accordance with the National
Institutes of Health Guide for Care and Use of Laboratory

Animals and were approved by Animal Care and Use Committee
of Shanghai Medical College of Fudan University.

Photocoagulation
Rabbits were anesthetized by a mix of 3% isoflurane (RWD Life
Science Co., Shenzhen, China) and oxygen in a gas chamber
via a custom-made mask. The position of the rabbit was kept
by a custom-made body support during surgery. Before the
surgery, the rabbit pupil was fully dilated by two drops of 0.5%
phenylephrine hydrochloride and 0.5% tropicamide ophthalmic
solution for 20 min. All laser spots were delivered by VISULAS
532s (Carl Zeiss, Dublin, CA, United States) (laser power, 100–
200 mW; pulse duration, 20–200 ms; laser spot diameter, 200–500
µm) and focused on the rabbit fundus by a contact lens (Ocular
Mainster Focal/Grid Laser Lens, OMRA-S-2).

Fundus Photography and Optical
Coherence Tomography
Color fundus photography (CFP) was obtained 1 h and 7 days
after laser treatment to evaluate the effect of photocoagulation.

Optical coherence tomography images were obtained before
and 7 days after laser treatment to evaluate changes in retinal
structure with the Cirrus HD-OCT 4000 (Carl Zeiss Meditec,
Inc., Dublin, CA, United States).

Retinal Histology
Rabbits were sacrificed with a lethal dose of sodium pentobarbital
under deep anesthesia, and the eyeballs were enucleated
afterward. The eye was dissected in Ringer’s solution to keep
cell viability. Retinal samples for DHE staining were incubated
with DHE solution (5 µM) in a light-protected chamber at 37◦C
for 40 min and immersed for 5 min in 4% paraformaldehyde.
Retinal samples for Nissl staining and immunostaining were
immersed for 5 min in 4% paraformaldehyde. Then, the retina
was dehydrated in graded sucrose solution and embedded in
OCT compound (Sakura Finetek, United States). Retinas were
sectioned into 14-µm-thick sections.

For immunohistochemistry study, slides were washed three
times with 0.05 M tris buffer saline (TBS) for 15 min. After
immersing slices in 0.5% Triton-X-100 for 20 min, the slides were
incubated in a 10% Donkey serum (Jackson Immunoresearch,
United States) blocking solution, with 1% bovine serum
albumin (BSA) and 0.05% Triton-X-100. After being incubated
with primary antibody (anti-choline acetyltransferase antibody,
MILLIPORE (AB144P), 1:200; PNA, Vector (RL1072), 1:500;
PKC alpha Monoclonal Antibody, ThermoFisher (MA1-157),
1:100) for 20 h at 4◦C, the slides were washed four times
for 15 min in 0.05 M TBS and incubated with secondary
antibody for 1.5 h at room temperature. After washing the
secondary antibody (Donkey anti-Goat conjugated to Alexa Flour
488, 1:200, Jackson ImmunoResearch, United States; Donkey
anti-Mouse conjugated to Alexa Flour 647, 1:200, Jackson
ImmunoResearch, United States) away with TBS, the slides were
covered by 1:3000 DAPI (Sigma, United States) solution for 3 min
and washed three times for 10 min with TBS. Finally, the slides
were air-dried and cover-slipped.
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For Nissl staining, sections washed twice for 2 min by double
distilled water and then stained in 0.1 % cresyl violet solution,
which was preheated to 37◦C for 15 min. After that, the sides
were washed in distilled water and differentiated in 30%, 70%,
95%, and absolute ethanol for 30 s, respectively. Finally, the slides
were put in Xylol for 30 s and cover-slipped with neutral balsam
immediately after air-drying.

For DHE staining, rabbits were anesthetized with isoflurane
and then treated with enucleation of eye. The eyeball was
dissected in oxygenated Ringer’s solution (pH 7.35; oxygenated
with 95% O2 and 5% CO2) to keep cell viability. Samples were
incubated with DHE solution (Beyotime, Shanghai, China, 5
µM/L, dissolved with PBS) in a light-protected chamber at
37◦C for 40 min and immersed in 4% formaldehyde for 5 min.
For the retina slice staining, 10, 20, and 30% sucrose were
used to dehydrate the fixed retina. The retina was embedded
in OCT compound (Sakura) and stored at −80◦C. Fourteen-
micrometer slices were cut (Leica CM 1950, Lecia, Germany)
and washed three times for 15 min with 0.05 M TBS to wash
away OCT. Slices were air-dried and mounted. The DHE images
were obtained by fluorescence imaging microscope (Eclipse Ni,
Nikon Inc, Japan).

Pupillary Light Reflex
Rabbits were anesthetized by a mix of isoflurane and oxygen
and followed with 30 min dim environment adaptation. Light
stimuli provided by white LED was given to one eye and the pupil
area was recorded with a near-infrared camera (JAI, Denmark).
Each session was recorded for 30 s with a 10-Hz frame, and
light stimulus were provided for 10–15 s when recording started
for 5 s. Pupil area contraction percentage was calculated as (S0-
Smin)/S0 × 100% (Smin: minimum pupil area during light
stimulus; S0: pupil area during the dark environment).

ERG Recording
After general anesthesia, compound tropicamide eye drops
(Santen Pharmaceutical Co., LTD, Shiga Plant, Japan) were
instilled in rabbits’ eyes to dilute the pupil, and 0.5% proparacaine
hydrochloride eye drops (Alcon, Belgium) were used as corneal
surface anesthesia. The circular corneal electrode was placed
on the surface of the cornea of the rabbit, and the reference
electrode of the silver needle was placed subcutaneously near the
eye socket. The ground electrode of the silver needle was inserted
subcutaneously into the back of the rabbit’s ear. ERG signals
were amplified by an amplifier (Brownlee Precision Model 410,
United States) at 128 Hz, and bandpass filtered between 1 and
1000 Hz. Light stimuli was applied by white LED and controlled
by self-written Arduino code. Each session contains 10 stimuli,
which lasts for 200 ms and is separated by 10 to 15 s randomly.
The rabbit’s cornea was lubricated with 0.3% sodium hyaluronate
eye drops (Santen Pharmaceutical Co., LTD, Shiga Plant, Japan)
during recordings.

Data Analysis
The pixel size of the spot diameter and retina thickness were
measured in imaging-editing software (Adobe Photoshop CC
2018). The pixel-to-µm scale was obtained from the camera

manufacturer’s software. For the length of spot diameter in the
photocoagulation, eight more than clearly visible spots were
chosen randomly. The maximum straight-line distance in each
spot was manually marked, and the true distance was obtained
according to the number of pixels. To calculate the thickness
of the retina, two straight lines were manually marked at each
region of photocoagulation and nonphotocoagulation, which
were chosen randomly. Distance from the GCL to ONL in the
nonphotocoagulation region was measured, and the distance
from the GCL to the outer layer of the residual retina was
measured in the photocoagulation region. The real thickness
was estimated according to the mean number of pixels of
the straight lines. The thickness of retina was normalized by
the mean thickness of the nonphotocoagulation zone. Retinal
thickness and spot diameter at each location were expressed as
Mean ± Standard Error of Mean (SEM). The pupil area was
measured by ImageJ (NIH, United States). Data were analyzed
by GraphPad Prism software ver. 6.0c (GraphPad Software Inc.,
San Diego, CA, United States). P-values < .05 were considered
statistically significant.

We used self-written python code to analyze the ERG data.
The baseline of the ERG is the mean potential of the eye before
stimuli during the dark adaption. The amplitude of a- and
b-waves is measured from the baseline to the a-wave and the peak
of a-wave to the peak of the b-wave, respectively. Each condition
was repeated 10 times for each eye, and the average value was
taken as the eye’s results. We calculated the average values of three
eyes from two rabbits as the final results in this experiment.
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Background: Retinal microvascular alterations have been previously described in
Parkinson’s disease (PD) patients using optical coherence tomography angiography
(OCT-A). However, an extensive description of retinal vascular morphological features,
their association with PD-related clinical variables and their potential use as diagnostic
biomarkers has not been explored.

Methods: We performed a cross-sectional study including 49 PD patients (87 eyes) and
40 controls (73 eyes). Retinal microvasculature was evaluated with Spectralis OCT-A
and cognitive status with Montreal Cognitive Assessment. Unified PD Rating Scale and
disease duration were recorded in patients. We extracted microvascular parameters
from superficial and deep vascular plexuses of the macula, including the area and
circularity of foveal avascular zone (FAZ), skeleton density, perfusion density, vessel
perimeter index, vessel mean diameter, fractal dimension (FD) and lacunarity using
Python and MATLAB. We compared the microvascular parameters between groups
and explored their association with thickness of macular layers and clinical outcomes.
Data were analyzed with General Estimating Equations (GEE) and adjusted for age, sex,
and hypertension. Logistic regression GEE models were fitted to predict diagnosis of PD
versus controls from microvascular, demographic, and clinical data. The discrimination
ability of models was tested with receiver operating characteristic curves.

Results: FAZ area was significantly smaller in patients compared to controls in
superficial and deep plexuses, whereas perfusion density, skeleton density, FD and
lacunarity of capillaries were increased in the foveal zone of PD. In the parafovea,
microvascular parameters of superficial plexus were associated with ganglion cell-
inner plexiform layer thickness, but this was mainly driven by PD with mild cognitive
impairment. No such associations were observed in controls. FAZ area was negatively
associated with cognition in PD (non-adjusted models). Foveal lacunarity, combined
with demographic and clinical confounding factors, yielded an outstanding diagnostic
accuracy for discriminating PD patients from controls.
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Conclusion: Parkinson’s disease patients displayed foveal microvascular alterations
causing an enlargement of the vascular bed surrounding FAZ. Parafoveal microvascular
alterations were less pronounced but were related to inner retinal layer thinning. Retinal
microvascular abnormalities helped discriminating PD from controls. All this supports
OCT-A as a potential non-invasive biomarker to reveal vascular pathophysiology and
improve diagnostic accuracy in PD.

Keywords: neurodegeneration, angiography, capillary, density, Parkinson’s disease, retina, optical coherence
tomography, biomarker

INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disease characterized by motor impairment, including rest
tremor, muscle rigidity, bradykinesia, and postural imbalance.
The main hallmark of PD is the accumulation of anomalous
α-synuclein deposits within neuronal cytoplasm, presumably
resulting in profound loss of neurons, mainly of dopaminergic
neurons (Lotharius and Brundin, 2002). The pathological
features of PD have also been observed in postmortem retinas
(Ortuno-Lizaran et al., 2018), and several in vivo cross-sectional
studies have reported reduced retinal thickness in PD by
means of optical coherence tomography (OCT) (Chrysou et al.,
2019). Retinal atrophy seems to be specific to the inner retinal
layers, concretely, to macular ganglion cell-inner plexiform
complex (GCIPL) around the fovea (Murueta-Goyena et al.,
2019), where the largest amount of retinal dopaminergic cells
is found (Ortuño-Lizarán et al., 2020). The GCIPL thinning
is significantly more pronounced in PD patients over time
compared to controls (Murueta-Goyena et al., 2021), but it is
present from prodromal stages (Lee et al., 2019a,b), suggesting
that an early but active neurodegeneration takes place in PD
retina (Murueta-Goyena et al., 2021).

Previous publications have indicated that, in addition to
neurodegeneration, the vascular component might be a key
contributing factor to the pathogenesis and progression of PD
(Bradaric et al., 2012; Guan et al., 2013; Yang et al., 2015).
In fact, brain autopsies of PD patients have revealed capillary
disruption (Guan et al., 2013), angiogenesis (Bradaric et al.,
2012), and small vessel degeneration in substantia nigra, middle
frontal cortex and brainstem nuclei (Yang et al., 2015). It
has been suggested that retinal vasculature shows similarities
with cerebral microcirculation and can be therefore used as a
surrogate marker of cerebral microvascular pathology (Patton
et al., 2005). Within the retina, blood flow to inner retinal
layers comes from capillaries derived from the central retinal
artery, whereas outer retinal layers are supplied by choroidal
vasculature. Recent advances in OCT technology allow the
visualization of retinal vasculature using non-invasive, depth-
selective, and high-resolution images. OCT angiography (OCT-
A) detects blood flow down to the capillary level by measuring
changes in OCT signal in consecutive cross-sectional images
taken at the same location and allows a three-dimensional
mapping of retinal microvasculature. Studying the morphometric
variations of capillary networks in PD might provide key
information about the regional neuronal structure, and the

basis for investigating retinal vascular morphological features
as potential biomarkers of cerebral microcirculation in PD.
Although to date few studies have explored retinal vascular
alterations in PD using OCT-A, the observations so far support
the view that retinal vascular alterations are present in PD
(Kromer et al., 2016; Kwapong et al., 2018; Rascunà et al.,
2020; Shi et al., 2020; Zou et al., 2020; Robbins et al.,
2021).

On the other hand, the relationship between cerebral small
vessel disease and cognitive decline is well-established (Zanon
Zotin et al., 2021). In PD, cognitive impairment is present in
15 to 40% of patients at diagnosis or early stages of the disease
(Aarsland et al., 2009; Pfeiffer et al., 2014), and about 80% of
PD patients will progress to dementia, but the rate of disease
progression is not uniform across patients (Aarsland et al.,
2017). Recent evidence shows that subjects with mild cognitive
impairment (MCI) display retinal vascular network impairment
(Chua et al., 2020; Criscuolo et al., 2020; Shin et al., 2021).
Similarly, it seems that PD patients with GCIPL atrophy might
constitute a clinical endophenotype with more pronounced
cognitive impairment and worse prognosis (Murueta-Goyena
et al., 2019, 2021). However, the relationship between the
cognitive status, retinal microvascular parameters and retinal
layer thicknesses has not been fully explored in PD patients.

In this study, we aimed to extensively describe retinal vascular
morphometric parameters in PD patients using high-resolution
Spectralis OCT-A images, in order to verify the presence of
microvascular abnormalities in PD compared to controls or
specific alterations in PD-MCI compared to PD patients with
normal cognition. We also evaluated the association of retinal
microvascular parameters with retinal thickness measurements
and disease-related clinical variables. Finally, we assessed the
diagnostic accuracy of retinal microvascular parameters alone or
in combination with the thickness of retinal layers to differentiate
PD patients from controls.

MATERIALS AND METHODS

Design and Participants
55 patients with Parkinson’s disease (105 eyes) and 48 controls
(95 eyes) were initially recruited for the present cross-sectional
study from June 2020 to March 2021. We included individuals
aged 40 years or older. PD patients were recruited through the
outpatient neurology department at Cruces University Hospital
and fulfilled PD Parkinson’s UK Brain Bank criteria for the
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diagnosis of PD before enrollment. Demographic data, disease
onset, disease severity and type and dosage of dopaminergic
treatment were collected. One experienced neurologist in the
field of movement disorders recorded disease onset, Unified
Parkinson’s Disease Rating Scale (UPDRS) score, and calculated
Levodopa Equivalent Daily Dose (LEDD). All patients were
studied in an on-state of medication. Control individuals without
PD or a history or symptoms of other neurological conditions
were also enrolled in the study. Montreal Cognitive Assessment
(MoCA) was administered to all participants to evaluate general
cognition. A cutoff of 24 was established for determining MCI in
this Spanish population (Milani et al., 2018).

All participants completed a comprehensive questionnaire
on current comorbidities to check for the following systemic
exclusion criteria: severe smoking (>20 cigarettes/day), heavy
alcohol use (>4 drinks/day for men or >3 drinks/day for
women), diagnosis of any type or grade of diabetes, uncontrolled
or resistant elevated blood pressure, history of consumption
of drugs or medications known to induce retinal toxicity or
cognitive impairment, chronic inflammatory systemic diseases
(e.g., lupus erythematosus, sarcoid, Bechet disease), history
of brain trauma or central nervous system diseases different
from PD. Participants with well-controlled hypertension without
complications were included in the study.

PD patients and controls underwent a complete
ophthalmologic examination including pupillary reflexes,
refraction, visual acuity, color discrimination, slit lamp
examination, and spectral domain OCT. Spherical equivalent
refractive error above 4.00 diopters or more than 3.00 diopters
of astigmatism or any ocular or systemic pathological condition,
except PD, influencing retinal OCT measures were considered
exclusion criteria. OCT-A images with visually identifiable
motion artifacts or incomplete acquisitions were excluded
from the analyses.

The study protocol was approved by the regional Basque
Clinical Research Ethics Committee. All participants gave written
informed consent prior to their participation in the study, in
accordance with the tenets of the Declaration of Helsinki.

Spectral Domain Optical Coherence
Tomography (OCT)
Macular retinal thickness was assessed using the Spectralis
spectral-domain OCT system (HRA2 Acquisition Module
version 6.16.6.0, Heidelberg Engineering, Heidelberg, Germany).
Macular volumetric scans consisted of 25 single horizontal axial
scans (B-scans) covering a 20◦ × 20◦ area, with 512 A-scans per
B-scan and 49 frames averaged per B-scan. Layer segmentation
of the OCT data was performed with the built-in software.
All OCT images fulfilled quality control criteria from OSCAR-
IB consensus (Tewarie et al., 2012), accounting for Obvious
problems (O), poor Signal strength (S), Centration of scan (C),
Algorithm failure (A), Retinal pathology other than PD-related
(R), Illumination (I), and Beam placement (B).

Macular volumetric scans were exported in raw format (∗.vol)
and imported into MATLAB 2018b and 2019b (Mathworks,
Natick, MA, United States) using the openVolFast.m function

of the AURA tools software (Lang et al., 2013). The central
point of the macula was determined as the point of minimum
thickness after smoothing the thickness map with a circular
kernel of 0.05 mm radius (foveaFinder.m function of AURA
tools). The thickness values derived from the acquired raster
pattern were resampled to a regular grid using cubic interpolation
and 0.02 mm spacing between adjacent points. Then, the average
thickness within the foveal zone (central 1-mm diameter disc)
and parafoveal area (2.5-mm diameter ring adjacent to the
foveal zone) were computed by averaging the point-by-point
thicknesses in each sector.

The foveal and parafoveal thicknesses were calculated
for the following layer complexes: total retinal thickness
(Retina), macular nerve fiber layer (mRNFL), ganglion cell-
inner plexiform complex (GCIPL), inner nuclear layer (INL),
outer plexiform-Henle fiber-outer nuclear layer (OPL-ONL),
and the complex including external limiting membrane
and photoreceptor inner and outer segments (ELM-IS/OS)
(Figure 1).

Spectral Domain Optical Coherence
Tomography Angiography (OCT-A)
High-resolution acquisition was performed with Spectralis OCT
Angiography Module (Heidelberg Engineering, Germany) which
offers a lateral resolution of 5.7 µm and an axial resolution
of 3.9 µm per pixel, using a scanning area of 10◦ × 10◦ and
512 A-scans per B-scan. TruTrack Active Eye Tracking was
used to avoid motion artifacts. Superficial and deep vascular
plexus complexes of the macula were investigated [superficial
vascular complex (SVC) located between the ganglion cell layer
and the inner mid-part of inner plexiform layer and deep
vascular complex (DVC) located between the outer mid-part
of inner plexiform layer and outer plexiform layer]. En face
images were exported from Spectralis and stored as 768 × 768
pixels jpeg images.

OCT-A Image Processing
MATLAB 2018b and 2019b and Python (v3.8.5) were used to
develop image analysis and parameter extraction algorithms. For
vascular and foveal feature extraction, en face OCT-A images
were first cropped to remove the SLO funduscopic image of the
periphery. Then, OCT-A images were scaled using X and Y axis
scaling parameters from Spectralis OCT-A to obtain images of
1:1 pixel:µm correspondence. We defined the foveal zone as the
central 1-mm disc, and the parafovea as the ring surrounding the
foveal zone, with an outer diameter of 2.5 mm. The center of the
inner 1-mm diameter circle and outer 2.5 mm diameter ring was
the centroid of the FAZ in DVC, i.e., the same center location was
used in SVC and DVC for calculating microvascular parameters
in different concentric regions (Figure 1).

For microvascular parameter extraction, OCT-A images were
first enhanced using median filtering and later processed with
a top-hat filter to improve the contrast in the image. The
images were binarized using adaptive thresholding. In SVC, a
separate binarization algorithm was applied based on Otsu’s
threshold to segment large blood vessels. By subtracting large

Frontiers in Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 70870022

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-708700 July 6, 2021 Time: 18:30 # 4

Murueta-Goyena et al. Retinal Microvasculature in Parkinson’s Disease

FIGURE 1 | OCT-A image processing pipeline and evaluated retinal layers and regions for OCT and OCT-A images. The analysis protocol of the OCT-A images
(A) was different for the superficial vascular complex (SVC) and for the deep vascular complex (DVC) (see “Materials and Methods” for more details). Both SVC and
DVC images were cropped & rescaled (1) and binarized with an adaptive threshold (“adapt. thld.”) (2). In SVC images, after being binarized, the large vessels were
segmented (3) and the microvessels were binarized (4). With binarized SVC microvessel and binarized DVC images, images for vessel skeleton (5) and perimeters (6)
were obtained. From the vessel skeleton images, the “skeleton density” was quantified, from vessel perimeter images the “vessel perimeter index” was computed
and from the combination of vessel skeleton and perimeter images, the “mean diameter of blood vessels” was computed. From the binarized images of SVC and
DVC, the parameters “Lacunarity,” “Perfusion density,” and “Fractal dimension” were calculated. Finally, the cropped & rescaled DVC images were pre-processed
with white top-hat and opening/closing to segment the foveal avascular zone (FAZ) mask, from which “FAZ area” and “FAZ circularity” were computed. The layers of
the retina that were segmented from the OCT images (B) were macular retinal nerve fiber layer (mRNFL), ganglion cell-inner plexiform layer complex (GCIPL), inner
nuclear layer (INL), outer plexiform layer, Henle fibers, and outernuclear layer complex (OPL-ONL) and the complex including external limiting membrane and internal
andouter segments of photoreceptors (ELM-IS/OS). The mean thickness of the mentioned layers was obtained for two macular regions (B,C): the foveal region
(central circle of 1 mm in diameter) and the parafoveal ring (centered in the fovea and delimited by circles with an inner diameter of 1-mm and outer diameter of
2.5 mm). For both regions, the mean thicknesses of the mentioned retinal layers and the described OCT-A parameters were calculated.

vessel segmentation to the binarized OCT-A images, we obtained
SVC microvasculature. As the OCT-A detects blood flow down
to the capillary level by measuring the changes in OCT signal in
consecutive cross-sectional images, the whiteness of the binarized
images reflects the probability of perfusion. This allowed us to
calculate microvascular perfusion density as the ratio between

the number of white pixels of the binarized image and the total
number of pixels in the region of interest. The binarized images
of the microvasculature were further processed to extract the
skeleton of the vasculature using a built-in function in MATLAB.
Furthermore, a Canny edge detector was implemented to detect
the borders of the vasculature. From these images, we computed
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the following microvascular parameters: skeleton density as the
number of pixels of the skeleton divided by the number of pixels
in the region, the vessel perimeter index (Alam et al., 2017), mean
vessel diameter (Alam et al., 2017), the fractal dimension (FD)
estimated with Hausdorff (Box-counting) method (Harrar and
Hamami, 2007) and lacunarity with gliding box method (Tolle
et al., 2008). The lacunarity parameter used herein refers to the
calculation of lacunarity using a box-size of 512 pixels, which
represents a relative box-size of 0.1741 with respect to the rescaled
binarized image. These parameters were extracted in the foveal
zone and the parafovea. FD, lacunarity and perfusion density
were dimensionless, skeleton density and vessel perimeter index
were measured in 1/mm (length per unit of area) and mean vessel
diameter in µm.

For foveal avascular zone (FAZ) parameter extraction, FAZ
was first segmented using a parameterized version of Díaz et al.
(2019). The process consisted of a top hat transform for image
enhancement, Canny edge detection processing (including a
Gaussian filter), and the application of opening and closing
morphological operations to remove noise and fill holes. The FAZ
area (mm2) was measured, and the circularity was calculated with
the following formula: 4π (area/perimeter2).

Statistical Analysis
Statistical analysis was done in R (version 3.6.1) and RStudio
(version 1.2.1335). Group differences of demographic categorical
variables were tested using Chi square test. Quantitative variables
were described using mean and standard deviation. Normality of
data was visually inspected and tested with Shapiro-Wilks. Group
comparisons of normally distributed variables were done with
T-test and non-normally distributed data assessed with Mann
Whitney U-test. The analyses of OCT and OCT-A parameters
were conducted using generalized estimating equation (GEE)
models with an exchangeable working correlation structure to
account for correlation between the two eyes from a single
participant. Effect sizes were calculated with Cohen’s d. To test the
diagnostic ability of OCT-A parameters alone or in combination
with demographic or retinal thickness variables, we fitted logistic
GEE models and their predictive ability was tested in ROC
curves, using fitted values as predictors. For this, we first fitted
the null model including age, sex, and hypertension as a priori
confounders, and then added retinal variables for the full model.
The differences in goodness-of-fit between models were tested
with Wald test. All GEE analyses were performed with geepack
package and ROC curves calculated with pROC package. p-values
lower than 0.05 were considered statistically significant.

RESULTS

A total of 87 eyes from 49 PD patients and 73 eyes from 40
controls were analyzed after removing the acquisitions with
visually identifiable motion artifacts, incomplete acquisitions or
eyes presenting ocular exclusion criteria.

The demographics and clinical characteristics of participants
are listed in Table 1. There were no statistically significant
differences in age, but the proportion of females was larger in

the control group. The mean disease duration was 7.1 ± 4.1
years (range 0.4 to 19.4 years), and the mean UPDRS motor
score was 27.7 ± 7.7 (range, 9 to 54). The cognitive status was
similar between PD and controls, but the proportion of subjects
with MCI was larger in PD group. In PD patients, MoCA score
presented a mild correlation with motor deficits (r = −0.292,
p = 0.04). The frequency of well-controlled hypertension was
comparable in both groups.

PD patients were further divided into two groups: PD patients
with MCI (PD-MCI) (n = 18) and PD patients with normal
cognition (PD-NC) (n = 31). The mean age of PD-MCI was
67.1± 8.9 years and in PD-NC it was 63.1± 6.9 years (p= 0.11).
Disease duration was comparable among both groups (PD-MCI
6.3 ± 4.4 vs. PD-NC 7.5 ± 4.0, p = 0.3). The proportion of
females was also similar in both groups (PD-MCI 38.9% and PD-
NC 32.2%, p = 0.9), as well as the proportion of patients with
well-controlled hypertension (PD-MCI 16.6% and PD-NC 22.2%,
p= 0.7).

Comparison of Microvascular
Parameters Between PD Patients and
Controls
Comparing PD patients and controls, significant differences were
found in FAZ area in SVC (p = 0.004) and DVC (p < 0.001)
with a medium to large effect size, but not in FAZ circularity.
After controlling for a priori confounders (i.e., age, sex, and
hypertension), FAZ area remained significantly smaller in PD
patients compared to controls in both SVC and DVC (estimate
−0.1 µm, adjusted p = 0.004 in SVC and p = 0.014 in
DVC) (Table 2).

When analyzing differences in microvascular parameters
between PD patients and controls, skeleton density, perfusion
density and vessel perimeter of PD patients were increased in
the foveal zone, with statistically significant differences compared

TABLE 1 | Demographics and clinical characteristics of participants.

PD Control p-value

n 49 40

Age (years) 64.6 (7.9) 62.1 (8.0) 0.2

Sex (female n, %) 16 (34.7%) 27 (67.5%) <0.001

MoCA 24.4 (4.1) 25.7 (2.5) 0.3

MCI (n, %) 18 (36.7%) 6 (15%) 0.03

Hypertension (n, %) 12 (24.5%) 7 (17.5%) 0.59

Disease Duration (years) 7.1 (4.1) –

UPDRS I 2.0 (1.5) –

UPDRS II 10.8 (4.0) –

UPDRS III 27.7 (7.7) –

UPDRS IV 4.0 (2.9) –

LEDD (mg) 647.5 (364.6) –

Categorical data are expressed as number and percentage, whereas quantitative
data is expressed as mean (standard deviation). The proportion of participants with
well-controlled or benign hypertension is provided for each group. LEDD, Levodopa
Equivalent Daily Dose; MCI, Mild Cognitive Impairment; MoCA, Montreal Cognitive
Assessment; n, sample size; PD, Parkinson’s disease; UPDRS, Unified Parkinson’s
disease Rating Scale.
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to controls (Figure 2). Moreover, PD eyes showed increased FD
and lacunarity of both complexes in the foveal zone. Adjusted
GEE models showed that the SVC lacunarity and FD, and
DVC lacunarity, skeleton density and perfusion density were
significantly different between groups (Table 2), being the effect
size particularly large for lacunarity. On the other hand, the
parafoveal lacunarity in the retina of PD patients was significantly
decreased in SVC and significantly increased in DVC (GEE,
p < 0.001), but no differences were observed in the remaining
parafoveal microvascular parameters.

Retinal Thicknesses and Its Association
With Microvascular Parameters
Multivariate GEE adjusted for age, sex and hypertension showed
no significant differences in retinal thickness or its layers between
PD patients and controls.

In the foveal zone, FAZ area was negatively associated with
GCIPL and INL thickness in both PD patients and controls
(p < 0.001), and no significant associations were found with
ELM-IS/OS thickness in any group. These results suggest that
the foveal microvasculature significantly contributes to OCT
thickness measurement of inner retinal layers in normal and
pathological conditions. In a similar fashion, in both groups,
skeleton density, perfusion density, FD, and vessel perimeter of
both plexuses were positively associated with the thickness of
inner retinal layers (GCIPL and INL), but not with ELM-IS/OS.

However, a unique positive association was found in PD
patients between microvascular parameters and OPL-ONL in the
fovea. Concretely, FAZ areas in SVC and DVC were negatively
associated, and skeleton density, perfusion density, and vessel
perimeter of both plexuses were positively associated with OPL-
ONL thickness, indicating that increased capillary bed in the
fovea was related to OPL-ONL thickening. Also, foveal lacunarity

of DVC was associated with GCIPL, INL and OPL-ONL thinning
in PD patients, but not in controls.

In the parafovea of PD patients, a positive association was
found between some microvascular parameters of the SVC,
including skeleton density, perfusion density, FD and vessel
perimeter with parafoveal GCIPL thickness (GEE, adjusted
p-values: 0.014, 0.006, <0.001, and 0.013, respectively), but not
with the thickness of the remaining retinal layer complexes. No
such significant associations were found in control participants.
None of the microvascular parameters of DVC were associated
with retinal thicknesses in the parafovea.

Retinal Parameters in PD Patients With
Mild Cognitive Impairment
We also tested whether differences in microvascular parameters
could be detected between PD patients with and without MCI.
Some of such parameters tended to be lower in PD-MCI
compared to PD-NC patients, like DVC lacunarity in the foveal
zone or SVC skeleton density in the parafovea, but the differences
did not reach statistical significance (Table 3). FAZ area was
larger and FAZ circularity was decreased in PD-MCI patients, and
both parameters were significantly different in SVC compared
to PD-NC patients.

On the other hand, we observed that in PD-MCI retinal
thickness was 6 µm lower in the parafovea and 9 µm lower
in the foveal zone compared to PD-NC patients. Most of the
parafoveal retinal thickness decrease in PD-MCI was accounted
for changes in GCIPL (absolute difference of 4 µm). Contrarily,
in the foveal zone, the GCIPL only accounted for a third part of
the total retinal thinning (3 µm thinner), whereas foveal OPL-
ONL thickness accounted for the rest (6 µm lower in PD-MCI
vs. PD-NC, GEE, p = 0.047). However, none of these differences

TABLE 2 | Foveal microvascular changes in PD.

PD Control Cohen’s d Univariatep-value Multivariate p-value

FAZ area (mm2) SVC 0.669 ± 0.214 0.824 ± 0.292 0.61 0.004 0.004

DVC 0.401 ± 0.181 0.544 ± 0.198 0.75 <0.001 0.014

FAZ circularity SVC 0.187 ± 0.038 0.194 ± 0.029 0.21 0.280 0.686

DVC 0.257 ± 0.045 0.271 ± 0.043 0.32 0.067 0.210

Lacunarity SVC 6.0 ± 0.4 5.7 ± 0.4 0.75 <0.001 <0.001

DVC 12.8 ± 0.7 9.8 ± 3.2 1.30 <0.001 <0.001

Fractal Dimension SVC 1.42 ± 0.05 1.37 ± 0.09 0.69 0.008 0.027

DVC 1.49 ± 0.04 1.47 ± 0.04 0.50 0.030 0.127

Perfusion Density SVC 0.14 ± 0.04 0.11 ± 0.05 0.66 0.009 0.112

DVC 0.22 ± 0.04 0.20 ± 0.05 0.44 0.020 <0.001

Skeleton Density (1/mm) SVC 6.0 ± 1.9 4.8 ± 2.2 0.58 0.052 0.650

DVC 8.6 ± 1.9 7.6 ± 1.8 0.54 0.034 0.002

Vessel Perimeter Index (1/mm) SVC 17.1 ± 4.8 13.6 ± 5.6 0.67 0.006 0.210

DVC 27.6 ± 5.2 23.6 ± 5.6 0.74 0.003 0.541

Vessel Diameter (µm) SVC 23.3 ± 1.6 23.7 ± 2.1 0.21 0.160 0.056

DVC 26.1 ± 2.1 25.8 ± 2.0 0.15 0.320 0.944

Microvascular parameters are expressed as mean± standard deviation for each group. Cohen’s d represents the effect size. p-values were obtained with GEE. Multivariate
p-values are adjusted for age, sex, and hypertension. Significant results are highlighted in bold. Microvascular parameters without units are dimensionless. DVC, deep
vascular complex; FAZ, foveal avascular zone; PD, Parkinson’s disease; SVC, superficial vascular complex.
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FIGURE 2 | Representative images of the microvascularization in the foveal zone in controls and PD patients. Top panel figures show binarized images of the Deep
Vascular Complex of the retina, centered in the centroid of the Foveal Avascular Zone (FAZ), in a circle with a radius of 500 µm. The scaling factor was 5.60 in both
subjects, so the differences in FAZ size cannot be attributed to ocular biometric differences or magnification effects. Graphs correspond to the results in the Deep
Vascular Complex. Significance levels of unadjusted GEE models are represented with an asterisk: *p < 0.05, ** p < 0.01, *** p < 0.001.

reached statistical significance after controlling for the effect of
age, sex, and hypertension (Table 3).

Interestingly, we observed that parafoveal GCIPL thickness
was significantly associated with parafoveal microvascular
parameters in SVC, including skeleton density, perfusion density,
fractal dimension, lacunarity and vessel perimeter, but only in
PD-MCI and not in PD-NC.

Association Between Microvascular
Parameters and Clinical Outcomes
In PD patients, FAZ area and circularity of SVC were significantly
associated with MoCA scores (GEE, p = 0.028, p = 0.036,
respectively), but not with disease duration or UPDRS III scores.
However, the relationship between superficial FAZ parameters

and cognitive function lost significance when controlling for the
effect of covariates. None of the remaining foveal or parafoveal
microvascular parameters yielded significant associations with
disease duration, motor impairment or cognitive outcomes.

Diagnostic Accuracy of Macular
Parameters
To test the diagnostic ability of OCT-A parameters alone or
in combination with demographic, clinical, or retinal thickness
variables, we fitted multivariable logistic GEE models and their
predictive ability was tested in ROC curves. We first fitted
the null model including age, sex, and hypertension as the
a priori confounders. This yielded an area under the curve
(AUC) of 0.691 (95% CI, 0.601 – 0.772). Then, we included
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TABLE 3 | Microvascular and thickness parameters in PD patients with and
without MCI.

PD-MCI PD-NC Cohen’s
d

GEE
p-value

n 18 31

FAZ area (mm2) SVC 0.73 ± 0.20 0.63 ± 0.21 0.49 0.049

DVC 0.43 ± 0.17 0.38 ± 0.18 0.29 –

FAZ circularity SVC 0.17 ± 0.02 0.20 ± 0.04 0.95 0.001

DVC 0.25 ± 0.05 0.26 ± 0.04 0.22 –

Microvascular
parameters

Fovea

Fractal Dimension SVC 1.40 ± 0.05 1.42 ± 0.05 0.40 –

DVC 1.49 ± 0.04 1.50 ± 0.04 0.25 –

Lacunarity SVC 6.02 ± 0.32 6.03 ± 0.48 0.02 –

DVC 12.59 ± 0.63 12.91 ± 0.66 0.50 –

Skeleton Density
(1/mm)

SVC 11.8 ± 1.5 11.7 ± 1.2 0.07 –

DVC 12.0 ± 1.2 12.1 ± 1.3 0.08 –

Perfusion Density SVC 0.28 ± 0.04 0.27 ± 0.03 0.28 –

DVC 0.31 ± 0.02 0.32 ± 0.02 0.50 –

Parafovea

Fractal Dimension SVC 1.63 ± 0.02 1.63 ± 0.01 0 –

DVC 1.69 ± 0.01 1.69 ± 0.01 0 –

Lacunarity SVC 1.04 ± 0.01 1.04 ± 0.01 0 –

DVC 10.98 ± 0.24 11.14 ± 0.24 0.67 –

Skeleton Density
(1/mm)

SVC 11.4 ± 1.4 11.8 ± 1.3 0.30 –

DVC 13.4 ± 1.2 13.5 ± 1.2 0.08 –

Perfusion Density SVC 0.24 ± 0.02 0.24 ± 0.02 0.00 –

DVC 0.35 ± 0.01 0.35 ± 0.01 0.00 –

Thickness (µm)

Fovea

Retina 277.1 ± 19.1 286.3 ± 18.2 0.49 0.045

GCIPL 36.0 ± 7.7 39.4 ± 7.9 0.44 –

INL 19.4 ± 6.1 21.0 ± 5.9 0.27 –

OPL-ONL 117.2 ± 13.7 123.3 ± 8.4 0.54 0.047

ELM-IS/OS 49.6 ± 6.2 49.1 ± 4.9 0.09 –

Parafovea

Retina 339.4 ± 14.8 345.9 ± 13.3 0.46 –

GCIPL 92.0 ± 8.5 96.3 ± 7.2 0.55 0.039

INL 40.7 ± 2.8 40.7 ± 4.3 0 –

OPL-ONL 104.7 ± 8.1 106.1 ± 6.6 0.19 –

ELM-IS/OS 44.2 ± 3.5 44.0 ± 3.0 0.06 –

Data are expressed as mean ± standard deviation for each group. Cohen’s d
represents the effect size. p-values were obtained with univariate GEE. P-values
are only provided for significant results. DVC, deep vascular complex; ELM-
IS/OS, macular complex including external limiting membrane and inner and outer
segments of photoreceptors; FAZ, foveal avascular zone; GCIPL, ganglion cell-
inner plexiform complex; INL, inner nuclear layer; OPL-ONL, complex including
the outer plexiform and outer nuclear layers; PD-MCI, Patients with Parkinson’s
disease and Mild Cognitive Impairment; PD-NC, patients with Parkinson’s disease
and normal cognition; SVC, superficial vascular complex.

single microvascular parameters that differed most between
PD patients and controls, including FAZ area, foveal skeleton
density, perfusion density and lacunarity (both plexuses), foveal
FD in SVC and parafoveal lacunarity (both plexuses). Each
model was then compared to the null with Wald test to test

whether microvascular parameters significantly contributed to
diagnostic accuracy. From this, we observed that 3 parameters
significantly contributed to the model, providing excellent
diagnostic accuracies (AUC > 0.8). These parameters were the
lacunarity in DVC fovea (AUC = 0.852, 95% CI 0.79 – 0.92),
lacunarity in DVC parafovea (AUC = 0.838, 95% CI 0.77 –
0.90) and lacunarity in SVC parafovea (AUC = 0.835, 95%
CI 0.77 – 0.90) (Figure 3). Further adding retinal thicknesses
of the parafovea or central macula or combining different
microvascular parameters did not significantly improve the
classification performance.

DISCUSSION

In the present study, we observed retinal capillary alterations
in the central macula of PD patients. The area of the FAZ in
both superficial and deep vascular plexuses was significantly
smaller in PD patients compared to controls. In line with this
finding, the perfusion and density of capillaries in the foveal
zone was greater in PD patients, mainly in deep vascular plexus,
suggesting an enlarged vascular bed surrounding FAZ. Moreover,
fractal dimension and lacunarity of capillaries were greater in
this region reflecting the increased vascular complexity and
heterogeneity in PD fovea. Remodeling of foveal capillary bed was
associated with increased OPL-ONL thickness in PD patients.
Even though we failed to find differences in microvascular density
or perfusion in the parafovea, parafoveal lacunarity significantly
differed between patients and controls. Interestingly, parafoveal
microvascular parameters on the superficial vascular complex
were associated with GCIPL thickness in PD patients, but not in
controls, and these associations were mainly driven by PD-MCI.
Our results demonstrate that retinal microvascular alterations in
PD are mainly restricted to the fovea, and that the parafoveal
GCIPL atrophy in PD-MCI is associated with the superficial
vascular supply.

Previous studies have explored retinal vascular alterations in
PD. The first study analyzing retinal vascular changes in PD was
conducted using fluorescein angiography (FA) (Miri et al., 2015).
Although the resolution for fine capillary vessels of retinal FA
is somewhat limited, these authors found a shrinking of FAZ
in PD patients compared to controls, which is in line with the
results of the current study using OCT-A images and improved
algorithms to enhance the visualization of capillaries around the
FAZ. Furthermore, we found that the decrease in FAZ area was
accompanied by an increase in microvascular parameters in the
foveal zone, like skeleton and perfusion density, fractal dimension
or lacunarity. This contrasts with the results of Zou et al. who
found less vessel length and perfusion in the central macula of
PD patients and no changes in FAZ area (Zou et al., 2020), and
with the results of Rascunà et al. who did not find vascular density
changes in the foveal zone of early PD patients (Rascunà et al.,
2020). Some of these differences might be attributed to smaller
sample sizes, differences in disease stage of patients and study
design flaws of previous studies.

The first study using OCT-A in PD was published in 2018,
where Kwapong et al. (2018) nicely described a decrease in
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FIGURE 3 | Receiver operating characteristic (ROC) curves for testing the diagnostic accuracy of microvascular parameters. Fitted values resulting from logistic
regression were used as classifiers. ROC curve for the null model is shown in red, in which confounding demographical and clinical variables were used as
independent factors, including age, sex, and hypertension. In blue, ROC curves of regression models that were significantly different from null (Wald test) after adding
single microvascular parameters to the model. AUC, area under the curve; DVC, deep vascular complex; SVC, superficial vascular complex.

parafoveal microvascular density of superficial vascular complex
in PD and its relationship with GCIPL thickness decrease. Similar
results were reported by Shi et al. (2020). Nonetheless, none of
these authors explored microvascular alterations in the foveal
zone, where the fundamental microvascular alterations occur
according to the present study. They did neither control for the
inter-eye correlation in statistical analyses, possibly increasing
the rate of false positive findings in the parafovea. In our
study, we used GEE models to control for this effect, and
did not find significant changes in the parafoveal skeleton or
perfusion density. Nonetheless, part of their results coincides
with ours, as we also found an association between the
parafoveal microvascular density and GCIPL thickness, even after
adjusting for confounding variables. Similarly, Rascunà et al.
(2020), did not observe significant differences in the parafoveal
microvascular density between early PD patients and controls
but did find a correlation of inner retinal layer thickness and
microvascular density. However, these correlations were mostly
restricted to the foveal zone, and in the present study, we
showed that such associations were not specific to PD, as they
were also observed in controls. More recently, Robbins et al.
(2021) used larger sample sizes, including 124 eyes of 69 PD
patients and 248 eyes of 137 controls, concluding that retinal
superficial capillary vessel density and perfusion density around
the foveal zone are decreased in PD compared to age and
sex-matched control participants, but no correlation analyses
with retinal thickness were performed. Intriguingly, we observed
that the association between parafoveal GCIPL thickness and
microvascular parameters in PD was mainly driven by PD-
MCI patients, whose parafoveal GCIPL was significantly reduced
compared to PD-NC patients. As far as we know, this is the first
study that classifies PD patients into subgroups in an attempt
to unravel OCT-A differences between clinical endophenotypes.
Even though few significant differences were found, PD-MCI
tended to display larger FAZ areas and less FAZ circularity
than PD-NC. Future studies with larger sample sizes might
confirm this trend.

To date, few studies have assessed retinal vascular descriptors
beyond density that can be useful for increasing the information
obtainable from OCT-A images. Fractal dimension is a widely
known parameter for describing shape or texture, and determines
the complexity of an image. Two studies calculated FD of the
retinal vasculature of PD patients finding contradictory results.
Miri et al. (2015) did not find differences using FA, whereas Shi
et al. (2020) reported decreased FD in the parafoveal superficial
and deep vascular plexuses using OCT-A. This contrasts with our
results, as we did not find differences in FD in the parafoveal
region, but the FD within the foveal zone was significantly
increased in PD patients. On the other hand, lacunarity is
a feature descriptor that determines the heterogeneity of an
image and complements FD. Lacunarity expresses patchiness
or inhomogeneity of an image, and since it is not predicated
on fractality, it may be particularly useful for characterizing
the texture of retinal microvasculature. Indeed, in our study
lacunarity was the parameter that differed most between patients
and controls. The lacunarity within the foveal zone was
significantly higher in PD patients compared to controls, even
after adjusting for age, sex, and hypertension, suggesting that the
distribution of capillaries was more heterogeneous in this region,
with larger dispersion of gap sizes. The parafoveal lacunarity
was greater in DVC in both PD patients and controls, as
this plexus contains irregularly distributed vascular loops and
vascular branches extending from a central seed point, notably
increasing image heterogeneity (Hirano et al., 2018). Still, in the
present work this parameter was also found to be significantly
higher in PD patients compared to controls.

Moreover, lacunarity yielded the best diagnostic accuracy.
Many efforts are being devoted to the identification and
characterization of PD biomarkers. Notwithstanding the progress
made so far, reliable biomarkers are still lacking. In this work, we
showed that foveal lacunarity could be a promising biomarker
for differentiating patients from controls, as a significantly
greater AUC was achieved after adding this parameter to
the null model that controlled for confounding variables
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like age, sex, and hypertension. In a previous study of Zou
et al. (2020), similar AUCs were obtained after combining
OCT-A and OCT parameters. However, these authors only
accounted for capillary length and density, and no further
microvascular parameters were considered. In our study, the
combination of microvascular and structural modifications did
not increase the classification accuracy, and lacunarity could
be considered as a single imaging biomarker for discriminating
patients from controls. The differences in microvascular
imaging parameters between PD patients and controls, and
the lack of association between these parameters with disease
duration or severity, further support OCT-A as a useful
diagnostic marker.

An important aspect to consider for the comparability of
OCT-A studies is the critical contribution of technical differences
among OCT-A devices. The definition of the delimiting
boundaries of retinal vascular plexuses determines the tissue and
associated vasculature that is represented in two-dimensional en
face images. It is known that the location of these boundaries
varies among OCT-A devices and limits the comparability of
OCT-A studies (Li et al., 2018). So far, 2 OCT-A devices have been
used to explore the vascular changes in PD, namely, AngioVue
XR Avanti (Optovue Inc, Fremont, California, United States)
and AngioPlexTM OCTA system (Cirrus; Zeiss, Dublin). In
both devices, the intermediate capillary plexus (ICP) defined by
Campbell et al. (2017) is considered to be part of SVC, whereas
in Spectralis OCT-A the ICP pertains to DVC. Also, the axial
resolution is similar among the 3 OCT-A devices (5 µm), but the
lateral resolution of the OCT beam of Spectralis is much higher
(5.7 µm) than the other two (15 µm). This is especially important
considering that the average diameter of small capillaries is about
8 µm (Tan et al., 2012). Therefore, Spectralis OCT-A enables a
more precise detection and more confident evaluation of vascular
abnormalities at capillary level. As far as we know, this is the first
study using Spectralis OCT-A in PD, and the mere use of this
device could account for some of the contradictory results of our
work compared to previous literature in PD.

The pathophysiological mechanisms driving retinal
microvascular changes in PD are still unknown. In autopsy
brains of PD patients, increased angiogenesis has been observed
(Bradaric et al., 2012) with abnormally fragmented capillaries
(Guan et al., 2013), increased expression of vascular endothelial
growth (VEGF) receptors (Wada et al., 2006), and the formation
of string vessels (Yang et al., 2015), supporting vascular events as a
contributing factor to the PD pathophysiology. Concretely, string
vessels are remnants of capillary vessels with no function in blood
flow, and are triggered by factors that promote angiogenesis,
like VEGF (Brown, 2010). As retinal and brain microvasculature
share similarities, string vessel formation in the foveal zone
could account for the current results. This hypothesis is partially
supported by a recent in-vitro study that has demonstrated
how degenerating retinal ganglion cells release VEGF to drive
their own survival (Froger et al., 2020). Moreover, we observed
that the relationship between microvascular parameters and
OPL-ONL thickness in the fovea was exclusively present in PD
patients, even though no significant thickness changes were
detected between PD patients and controls in this area. It might

be that the activation of VEGF receptor could not only promote
pro-angiogenic effects, but also a microinflammation of the
outer layers (Uemura et al., 2021). However, the mechanistic
basis of microvascular retinal changes cannot be inferred from
clinical studies.

Furthermore, the axons of retinal ganglion cells exit the eye
to form the optic nerve, optic chiasm, and optic tract, which in
turn synapse with other neurons in the lateral geniculate nucleus
that extend through the optic radiations to the occipital lobe.
Previous studies have observed morphometric abnormalities
of the intracranial visual pathway structures in drug-naïve
early PD patients, including decreased volume of chiasmatic
area, and reduced white matter concentration and diffusivity
in optic radiations (Arrigo et al., 2017). In future studies, it
would be interesting to acknowledge not only whether the
retinal microvascular alterations are associated to intracranial
morphometric and functional changes, but also related to
extracranial pathology, like pathology of carotid arteries.

Lastly, it is worth mentioning that the involvement of the
eye in PD goes beyond the retina. In the last years, it has been
demonstrated that PD patients show profound alterations of
corneal innervation with decreased density of corneal subbasal
nerve fibers and branches, and increased number of beadings
(Arrigo et al., 2018; Ulusoy and Ulusoy, 2020). Probably, this
denervation is responsible for the defective lacrimal reflex, and
the subsequent dry eye signs and symptoms that are commonly
reported in the literature (Biousse et al., 2004; Ekker et al., 2017).

One limitation of the current study was that the automatic
segmentation of vascular plexuses near the fovea might not
be completely accurate, as at this region the vascular plexuses
converge into a single plexus around the FAZ, and DVC might be
added to SVC in the fovea (Spaide and Curcio, 2017). However,
we observed that microvascular changes in both plexuses were
in line, but quantitative measurements should be interpreted
with caution. Moreover, to find a tradeoff between the speed
of acquisition and the resolution, the size of the field of view
from the current OCT-A system was smaller than in previous
studies. Nonetheless, we expected that macular changes in PD
were predominantly restricted to the most central areas. Also, the
cutoff for MCI was defined using MoCA scores, but future studies
should rely on a comprehensive set of neuropsychological tests
to refine the classification of PD patients. Several microvascular
parameters were compared between PD patients and controls,
and p-values were not corrected for multiple comparisons due
to the exploratory nature of these analyses, and this remains
a limitation of the current study. Finally, we did not account
for all the potential confounding variables, such as smoking,
intraocular pressure or axial length, although the effects of the
latter were mitigated by scaling the OCT-A images. Future studies
will benefit from using larger sample sizes to control for the effect
of these factors in multivariable regression analyses.

In conclusion, the identification of biomarkers for PD is
a mainstream in clinical research to forestall the progression
of PD. Early retinal abnormalities in PD could permit a fast,
non-invasive, and cost-effective imaging of surrogate markers.
Our results support retinal vascular alterations detectable by
OCT-A, mainly in the foveal zone, and as far as we know,
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our study is the first to describe changes in retinal vessel
lacunarity in PD as a potential diagnostic biomarker of PD.
Also, we indicate that PD patients with MCI might represent a
clinical subtype in which retinal small vessel disease is related
to retinal atrophy, although this working hypothesis needs to
be tested in future studies. It is important to acknowledge
the technical properties and limitations of each OCT-A device
to ensure optimal interpretation of the obtained results in
the clinical setting. The standardization of OCT-A vascular
plexuses segmentation, the extraction and analysis of common
vascular parameters and increasing the speed and resolution of
acquisitions will enable a more precise description of retinal
microvascular variations in PD. Without limiting the foregoing,
vascular alterations in PD might need to be corroborated in
postmortem retinas using histochemistry.
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One of the major challenges in treating Alzheimer’s disease (AD) is its early diagnosis.

Increasing data from clinical and animal research indicate that the retina may facilitate

an early diagnosis of AD. However, a previous study on the 5xFAD (a fast AD model),

showing retinal changes before those in the brain, has been questioned because of

the involvement of the retinal degeneration allele Pde6brd1. Here, we tested in parallel,

at 4 and 6 months of age, both the retinal and the brain structure and function in a

5xFAD mouse line that carries no mutation of rd1. In the three tested regions of the

5xFAD brain (hippocampus, visual cortex, and olfactory bulb), the Aβ plaques were more

numerous than in wild-type (WT) littermates already at 4 months, but deterioration in

the cognitive behavioral test and long-term potentiation (LTP) lagged behind, showing

significant deterioration only at 6 months. Similarly in the retina, structural changes

preceded functional decay. At 4 months, the retina was generally normal except for

a thicker outer nuclear layer in the middle region than WT. At 6 months, the visual

behavior (as seen by an optomotor test) was clearly impaired. While the full-field and

pattern electroretinogram (ERG) responses were relatively normal, the light responses of

the retinal ganglion cells (measured with multielectrode-array recording) were decreased.

Structurally, the retina became abnormally thick with few more Aβ plaques and activated

glia cells. In conclusion, the timeline of the degenerative processes in the retina and the

brain is similar, supporting the use of non-invasive methods to test the retinal structure

and function to reflect changes in the brain for early AD diagnosis.

Keywords: Alzheimer’s disease, retinal ganglion cell, multielectrode array, long-term potentiation, photoreceptor

INTRODUCTION

Alzheimer’s disease (AD) is a progressive, age-related neurodegenerative disorder that causes
memory loss and a decline in cognitive function in patients. It is characterized by abnormal
accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles in the central nervous
system, which cause selective loss in neurons and synaptic connections (Huang and Jiang, 2009).
As the current standard tests including testing Aβ biomarkers by positron emission tomography
and cerebrospinal fluid assays are invasive and expensive (Sutphen et al., 2014), early diagnosis of
AD remains a challenge for its treatment.
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Increasing data from clinical and animal research indicate
that retina may serve as a window for early diagnostic of AD.
Several changes were reported in AD patients’ vision; these
include decrease in visual acuity, contrast sensitivity, color
discrimination, pattern electroretinogram (pERG) response, and
defects in the visual fields. Morphological changes were also
shown with optical coherence tomography (OCT) scanning, and
these include a thinning of the retinal nerve fiber layer (RNFL)
and a deficit in the retinal vasculature [reviewed in Chiquita et al.
(2019)]. Visual and morphological deficits including a decrease
in pERG response, presence of Aβ and Tau tangles in retina,
thinning of RNFL and ganglion cell layers, loss of ganglion
cell numbers, and reactive gliosis [reviewed in Chiquita et al.
(2019)] were reported in different transgenic AD animal models
at various degrees. Furthermore, simultaneous examinations of
the retina and brain pathologies are limited, and hence, the
correlation of the time course of retinal pathology and brain
degeneration remained unclear.

The 5xFAD mice is a good model with emphasis on the
overaccumulation of Aβ with marked AD symptoms seen in
behavioral tests by the age of 6 months (Oakley et al., 2006).
Using this model, it has been reported that the Aβ deposits in the
retina appears as early as 1.5M (Pogue et al., 2015), and retinal
light responses and visual acuity decays earlier than the cognitive
deficit (Criscuolo et al., 2018). However, the 5xFAD mice used
in these studies contained Pde6brd1 mutation that cause rods
to die; hence, the effect of the 5xFAD mutations could not be
isolated. Therefore, it is important to reassess the progressive
retinal degeneration that is caused by Aβ overaccumulation.
Work done by Lim et al. (2020) found abnormal retinal structure
and function at age of 6, 12, and 17 months. These retinal
degenerative processes were progressive and associated with
amyloid pathology patterns similar to that of the brain. However,
it remained unclear whether the retina shows abnormalities at an
early stage of AD or even precedes the brain degeneration in this
non-Pde6brd1 5xFAD mice. Therefore, the goal of this study was
to investigate the progressive changes in the retinal structure and
function of 5xFADmice with no mutation of rd1 and to compare
them with Aβ-related pathologies in the brain.

MATERIALS AND METHODS

Animals
Transgenic mice with 5xFAD mutations [B6.Cg-Tg
(APPSwFlLon, PSEN1∗M146L∗L286V) 6799Vas/Mmjax]
(Oakley et al., 2006) were purchased from Jackson Lab (MMRRC
stock no. 34848) with no retinal degeneration allele Pde6brd1.
5xFAD transgenic mice overexpress both mutant human APP
(695) with the Swedish (K670N, M671L), Florida (I716V), and
London (V717I) Familial Alzheimer’s Disease (FAD) mutations
and human PS1 harboring two FAD mutations, M146L and
L286V, under transcriptional control of the neural-specific
mouse Thy1 promoter (Oakley et al., 2006). C57BL/6J female
mice were purchased from Guangdong Medical Lab Animal
Center to be bred to 5xFAD to maintain the colony. Hemizygous
5xFADmice and non-transgenic wild-type littermates were used.
All animals were kept under standard laboratory conditions with

12-h/12-h light/dark cycles and were supplied with regular food
and water. All animal procedures were performed according to
the ARRIVE guidelines and were approved by competent ethics
committee at Jinan University. All efforts were taken to minimize
the number of animals used and their suffering.

Morris Water Maze Test
A water tank 70 cm in diameter and 35 cm in height was filled
with water to 16.5 cm at 22–25◦C. The pool was divided into four
equal quadrants. A 4×4-cm2 white escape platform was placed
5 cm beneath the water at the center of the fourth quadrant.
During four consecutive days of training session, mice were
placed into the pool and allowed to search for the platform for
60 s for four trials (once from each quadrant) with at least 10-
min interval. Animals were guided to the platform if they could
not find it within 60 s, in which case the latency was recorded as
60 s. On the fifth day, the platform was removed from the pool,
and mice were allowed to swim freely in the pool for 60 s. Times
of animals traversing the original platform position and the time
spent in the target quarter were measured to evaluate the working
memory of the animal. Data were recorded with a video camera
and analyzed using EthoVision XT 7.0 (Noldus, Wageningen, the
Netherlands). Animals that refused to swim were excluded from
the experiments.

Visual Behavioral Tests
The day after the water maze test, the visual performance of these
mice was tested by a black–white transition system and then an
optokinectic system. The black–white transition systemmeasures
the ability of animal to tell luminance. As we previously described
(Zhang et al., 2017), an animal was placed at the center of the
white chamber that was connected with the black chamber and
was able to move freely between these two chambers. The time at
which the animal stayed in the black chamber was recorded by
Noldus EthoVision XT 8.0 software.

Optomotor system measured the visual acuity of the animal.
Briefly, dark-adapted mice were placed on a pedestal located
at the center of an enclosure formed by four video monitors
that displayed the stimulus gratings. Vertical sine wave gratings
(100% contrast) written in MATLAB (MathWorks, Natick, MA,
USA) were projected on the computer monitors and rotated at
the speed of 12◦/s with increasing spatial frequencies of 0.1, 0.2,
0.3, 0.35, 0.4, 0.45, 0.5, and 0.6 cycle/degree. For each spatial
frequency, the grating was rotated clockwise for 1min and then
counterclockwise for another 1min. Animals reflexively track the
gratings by head movements as long as they could follow them.
The head movements were videotaped, and the maximal spatial
frequency at which an optokinetic response could be followed
was recorded as the visual acuity of the animal.

Electroretinogram
After behavioral tests, mice were dark adapted for 4 h, and
the electroretinogram of mice was measured to test retinal
function with a RETI-scan system (Roland Consult, RETI-scan,
Heidelberger, Germany) as we previously described (Zhang et al.,
2017; Liu et al., 2018). Briefly, mice were anesthetized with
tribromoethanol (0.14 ml/10 g bodyweight of 1.25% solution)
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and placed on a heated platform (37◦C) under dim red
light. Pupils were dilated with phenylephrine HCl (0.5%) and
tropicamide (0.5%). ERGs were recorded with gold-plated wire
loop electrodes contacting the corneal surface as the active
electrode. Stainless steel needle electrodes were inserted in the
skin near the eye and in the tail serving as reference and ground
leads, respectively. Dark-adapted animals were stimulated with
full-field green flashes of graded intensities of 0.01, 0.1, and 3.0
cd/m2 by Ganzfied stimulator. Then, mice were light adapted
for 5min under bright green background (20 cd/m2), and
photopic responses to green flashes of 3.0 and 10.0 cd/m2 were
recorded. ERG data were collected with RETI-scan system at a
sampling rate of 2 kHz and analyzed with the RETIport software
(Roland) after 50Hz low-pass filtering. To isolate the oscillatory
response (OPs), a 100-Hz high-pass filter was further applied.
The a-wave amplitude was measured from baseline to the first
negative peak, and the b-wave amplitude was measured from
a-wave trough to the next positive peak. Photopic negative
response (PhNR) was measured as the amplitude of the negative
peak following b-wave relative to the baseline. To measure the
amplitude of OPs, the voltage difference between the second
negative peak (N2) to positive peak (P2) and between the
third negative peak (N3) to positive peak (P3) were measured.
For each animal, the average response of the two eyes was
taken as one data point. To further evaluate the function of
retinal ganglion cells, some mice were tested with patterned
ERG projected by a flat LED screen (Roland). The pattern
consisted of a horizontal grating (with 0.5◦/cycle and 99%
contrast) and a flicker checkerboard (horizontal grating size,
2◦50′′; checkerboard size, 4◦15′′; flickering frequency, 1.0Hz).
The animal was tilted with the left eye covered and the right eye
directly facing the center of the screen at the distance of 26 cm
for the recording after photopic ERG recording. The sampling
rate was 1 kHz, and 200 trails were recorded and averaged. The
pERG waveform is characterized by a small initial negative wave
N1, followed by a large positive wave P1, and then a second
negative wave N2. The amplitude of P1-N2 peak was measured
to evaluate pERG.

Multielectrode Array Recording From

Retina and Data Collection
To examine the light response of single ganglion cell,
multielectrode array (MEA) recording was performed on
whole-mount retinas as we previously described (Liu et al.,
2018; Bao et al., 2019). Briefly, mice were dark adapted for 3 h
before euthanization, and a small piece of retina (∼2×2 mm2)
from whole-mount regions avoiding main blood vessels was
pressed down on an 8×8 MEA array (with electrodes of 20µm
in diameter spaced 100µm apart; P210A, Japan) by a platinum
ring to obtain a close contact between the ganglion cells and
the electrodes. The MEA array with the retina was transferred
to the recording stage, connected to the amplifier (MED64
amplifier; Alpha MED Scientific, Inc., Osaka, Japan), and
perfused continuously with the oxygenated AMES solution at a
rate of 3 ml/min at ∼32◦C. After dark adaptation in a light-tight
enclosure for over 30min, retinas were stimulated with a white
light-emitting diode (LEDWE-15; Thorlabs, Newton, NJ, USA)
with the stimulation intensity and duration controlled by the

main amplifier (MED64; Alpha MED Scientific, Inc.). The LED
gave a full-field flash focused onto the photoreceptor layer of
the retina. The flash protocol consisted of a 2-s light ON with a
saturating intensity of 3.6 × 107 photons/µm2/s, followed by an
8-s light OFF, and repeated 30 times.

The MEA system with MED64 amplifier (Japan) and Mobius
software (MED64, Japan) was used for recording and filtering
spike trains from each of the electrode in the array. Extracellular
spikes were bandpass filtered between 100 and 5,000Hz, digitized
at a rate of 20 kHz, and subsequently analyzed offline.

To identify responses from each individual cell, the MEA
data were processed offline using a spike sorter software (Offline
Sorter, Plexon Inc., Dallas, TX, USA) as previously described (Liu
et al., 2018). Sorted spikes were then exported to Spike2 (version
8, CED, UK), MATLAB (MathWorks), and R software (version
3.3.0) to get the peristimulus time histograms (PSTHs) and raster
plots of individual cells with a 10-ms bin width. Light responses
weremeasured as the average spike rate during the first 2 s of light
onset (ON) or offset (OFF) or the average of both ON and OFF
(for ON–OFF), subtracted by the spontaneous spiking (average
response within 2 s before light onset).

LTP Recordings With Microelectrode Array
LTP was recorded from CA3–CA1 regions of hippocampal slices
from 6-month-old 5xFAD and WT mice. Briefly, a mouse was
decapitated under isoflurane anesthesia; then, the brain was
quickly dissected and placed in ice-cold oxygenated (95% O2/5%
CO2) sucrose cutting solution (containing in mM: 40 NaCl, 4
KCl, 26 NaHCO3, 1.25 NaH2PO4, 0.5 CaCl2,7 MgCl2, 10 D-
glucose, and 150 sucrose, pH 7.4, 330 mOsmol). Slices were
then cut into 300µm thickness with a Vibratome (VT1000S;
Leica, Wetzlar, Germany) and maintained at room temperature
for at least 1 h in the oxygenated artificial cerebrospinal fluid
(ACSF) (comprising in mM: 125 NaCl, 3.5 KCl, 26 NaHCO3,
1.2 NaH2PO4, 2.4 CaCl2, 1.3 MgCl2, 25 D-glucose, pH 7.35,
310 mOsmol). Then, a single slice was transferred to an 8×8
MEA array (with electrodes of 50µm in diameter spaced 200µm
apart; Japan), pressed down by a nylon mesh, and continually
perfused with oxygenated ACSF buffer (flowrate, 3 ml/min) at
34◦C. One of the microelectrodes under the apical dendritic
region of CA3 was selected for stimulating the Schaffer collateral
pathway. A biphasic electric current (ranging from −10 to
40 pA) of 0.20ms was given every 20 s at the stimulus intensity
sufficient to elicit 30–50% maximal extracellular field excitatory
postsynaptic potential (fEPSP) recorded from other electrodes.
After establishing a stable baseline for at least 15min, three
repeated theta-burst stimulations (TBSs) were applied. Each TBS
contained 10 trains of four 100-Hz pulses at 5Hz, and TBS
was repeated three times with a 20-s interval. After the TBS
stimuli, fEPSP were recorded every 20 s for another 45min. The
peak amplitudes of the fEPSPs were measured by the MED64
Mobius software.

For both retinal and brain slice recording, at the end of
recording, the position of the tissue on the array was verified
under a dissecting microscope, and a bright field image was taken
with a digital camera (Mshot Image Analysis System; MC16,
Guangzhou, China).
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Tissue Processing and

Immunocytochemistry
Animals were killed by anesthetic overdose with
tribromoethanol, and eyes were enucleated and fixed in 4%
paraformaldehyde (PFA) for 30min at 4◦C. Following fixation,
the eyes were rinsed in 0.01M phosphate buffered saline (PBS),
cryoprotected overnight at 4◦C in 0.01M PBS containing
30% sucrose, and embedded in optimal cutting temperature
compound (OCT; Tissue Tek, Torrance, CA, USA). Retinas were
cryosectioned through the optic disk (OD) longitudinally at a
thickness of 15µm, and sections were mounted on glass slides
for future process.

For brain tissue collection, brains were removed and washed
in PBS three times with 1min each time, then fixed in 4%
paraformaldehyde (PFA) for 24 h at room temperature (RT).
Then, brains were rinsed in PBS, cryoprotected in 0.01M
PBS containing 10, 20, 30, and 40% sucrose at 4◦C overnight
for each concentration before embedded in OCT. Brain were
cryosectioned into sagittal slices at a thickness of 20µm, and
sections were mounted on glass slides for future process.

For immunochemical staining, both eyes and brain sections
were washed three times for 5min with 0.1% Triton X-100 in
PBS (0.1% PBST) and incubated in 0.3% PBST containing 3%
normal donkey serum (NDS), 1% bovine serum albumin (BSA),
and 0.3% Triton X-100 for 1 h at RT, then incubated with primary
antibodies overnight at 4◦C. After thorough washes with 0.1%
PBST, retinal or brain sections were incubated with secondary
antibodies for 1 h at RT. Sections were then washed, mounted,
and sealed under coverslips. For 4′,6-diamidino-2-phenylindole
(DAPI) staining, sections were incubated with DAPI (1:1,000,
Electron Microscopy Sciences, Hatfield, PA, USA) for 5min at
room temperature, then washed before mounting.

The primary antibodies used were rat anti-glial fibrillary acidic
protein (anti-GFAP) (1:500, 13-0300, Thermo Fisher, Waltham,
USA), rabbit anti-Iba1 (1:1,000, 019-19741,Wako, Osaka, Japan);
anti-Brn3A (1:500, ab81213, Abcam, Cambridge, UK) and Aβ

1-42 antibody (1:1,000, Cat. # AB5078P, Millipore, Burlington,
USA). Secondary antibodies used were donkey-antirabbit or
goat-antirat IgG (conjugated to Alexa 488 or 594; 1:1,000,
Invitrogen, Waltham, USA).

To calculate the thickness of each retinal layer, retinal slices
were stained with Hematoxylin and Eosin (HE) Staining Kit
(G1120, Solarbio, Beijing, China) according to the provided
protocol. To stain for senile plaques, brain sections were
rehydrated and dehydrated in distilled water for 2min. Then,
they were incubated with thioflavin solution (1% in DDW) for
5min. Slices were immersed in 70% alcohol for 5min and washed
with distilled water two times before mounted.

Image Collection and Processing
Fluorescent or immunostaining images were captured using a
Zeiss LSM700 confocal microscope or fluorescent microscope
(Carl Zeiss, Oberkochen, Germany). To measure the survival
of retinal ganglion cells, Brn3a-positive cells were counted on
whole-mount retina from 12 regions (field size, 200×200µm)
distributed at a distance of 300, 1,000, and 1,700µm from the

optic disk for each quadrant of the retina, and the average
density of RGCs over 12 regions was calculated. To measure the
Iba1 expression, the number of Iba-1-positive cells were counted
from the middle region on the whole-mount retina at the size
of 320×320µm. For all retinal slices, to ensure analysis of the
same eccentricity for different retinas, images were taken from
regions 1–1.2mm from the optic disk. To measure the thickness
of each layer of retina, a line was drawn from the left, right,
and center of each HE staining image, and the length of three
lines were measured and averaged as one data point for the
image. To measure the fluorescent intensity of GFAP, retinal
sections from different groups were processed simultaneously
with the same procedure and imaging parameters; the mean
fluorescent intensity in the inner retinal region (INL, IPL, and
GCL) was measured by Zen software (Zeiss, Germany), then
normalized to the mean of WT at the same age. To quantify
the number of Aβ in brain regions, the hippocampal area
(HP, 1,500×2,250µm), visual cortex (VC, 1,100×850µm), and
ventro-posterior of olfactory bulb (OB, 1,100×850µm) were
imaged and analyzed from the sagittal plane.

Image J software (NIH, Bethesda, MD, USA) was applied for
analyzing all the measurements. For each retina and brain slice,
data from three to five images was averaged to provide one data
point; these were then averaged for all retinas to provide the
average of each group. For a better display of the images in the
figures, intensity enhancement was applied by Photoshop (Adobe
Inc., San Jose, USA) with the same adjustment.

Statistical Analysis
All data are expressed as mean ± SEM. Student’s t-test or
two-way ANOVA with Sidak’s post-hoc tests was performed
with GraphPad 7 (GraphPad Software, San Diego, CA, USA)
depending on the number of groups to compare. p < 0.05 were
considered statistically significant, and p < 0.01 were highly
significant. Unless otherwise stated, the “n” indicates the total
number of mice examined for each group.

RESULTS

5xFAD Mice Demonstrate a Deficit in

Working Memory and Hippocampal LTP at

6 Months
In order to identify the behavioral changes in our 5xFAD mice,
we first performed a Morris water maze test for cognitive
performance. Mice were tested at the ages of 4 and 6 months
(examples of the moving traces at 6 months are shown in
Figure 1A). During trial days, bothWTmice and 5xFAD showed
a decrease in the escape latency, but the latency of 5xFAD mice
decreased more slowly than WT (p < 0.05 for 4 months and
p < 0.001 for 6 months, two-way ANOVA) (Figure 1B). On
the test day, 5xFAD mice trans-passed the platform region at a
lower frequency than WT (p = 0.4 for 4 months, p < 0.05 for
6 months, Figure 1C). This result indicates a deficit in spatial
working memory in 5xFAD at 6 months.

After the water maze test, to determine whether the memory
impairment of 5xFAD mice was also observed at the level of
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FIGURE 1 | The working memory and LTP deficiency in 5xFAD mice. (A) Swimming traces of a WT and 5xFAD mice in the water maze, with the hidden platform in the

upper-left quadrant. (B) The latency for mice to reach the platform during the first 5 days of trials at 4 and 6 months. (C) The frequency of mice crossing the platform

region on the test day. 5xFAD mice at 6 months took longer time to locate the platform during the trial day and crossed the platform region less frequently than WT.

(D) Illustration of a mouse hippocampus slice placed on the 8×8 multielectrode array. One of the electrodes (white squared) was used to apply the electric stimuli; the

other electrodes recorded the evoked field potential; the electrode squared in black, which gave the best response, was selected for data analysis. (E) Average

changes in the amplitude of the evoked post-synaptic potential (EPSP) within 45min after the theta-burst stimulation (TBS) in WT and 5xFAD mice. Typical EPSP of a

WT and 5xFAD mice before (black line) and after (gray line) TBS stimulation at an expanded time scale are shown above. n, number of experimental animals. Data

shown as mean ± SEM. *p < 0.05; ***p < 0.001; two-way ANOVA.

neuronal networks, we carried out hippocampal LTP recordings
from the same batch of mice. Stimulating the Schaffer collaterals
of CA3 elicited excitatory postsynaptic potentials (EPSPs) in
the CA1 area (Figures 1D,E). After stable baseline recording
in hippocampal slices of WT mice, a theta burst stimulation
(TBS) induced long-term potentiation of EPSP in CA1 area. This
LTP effect was hardly observed in 5xFAD mice at 6 months
(Figure 1E).

Aβ Plaque Deposits Are Detected in the

Brain of 5xFAD at 4 Months
After identifying the memory and LTP deficits in 5xFAD, we
tested the expression of Aβ plaques in different brain regions
using thioflavine S staining. The staining showed that there
were obvious Aβ plaques in the olfactory bulb (OB), the visual
cortex (VC), and the hippocampus (HP) of 5xFAD mice at both
4 and 6 months (Figures 2A,B, with enlarged areas shown in

Figures 2C,D), while no plaques were found in WT controls.
The number of plaques in each brain region of 5xFAD was
significantly higher than that inWT (Figure 2E). Interestingly, in
the olfactory bulb of 5xFADmice, the accumulation of Aβ plaque
was more gradual as it increased from 4 to 6 months (21.9 ± 1.5
vs. 73.0 ± 5.0, p < 0.001), while the number in the hippocampal
region and the visual cortex was already high at 4 months and
then remained stable or increased slowly (Figure 2E).

The Visual Behavior of 5xFAD Mice Is

Impaired at 6 Months
After confirming the AD symptoms in the brain of 5xFAD
mice, we wondered whether the visual system had similar
deficits. We examined the visual system by optokinetic
behavior and electroretinogram recordings and then by
histological examinations.
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FIGURE 2 | Aβ plaques appear in various brain regions of 5xFAD mice already at 4 months. (A,B) Images of brain slices stained with thioflavine S (green) that labels

Aβ plaques from a (A) WT and (B) 5xFAD mice. Brain regions including olfactory bulb (OB), hippocampus (HP), and visual cortex (VC) were enlarged in Panels (C) and

(D), respectively, for WT and 5xFAD. (E) Number of Aβ plaques in different brain regions of WT and 5xFAD at 4 and 6 months. At 4 months, 5xFAD mice have more Aβ

plaques in the brain than WT. Data shown as mean ± SEM. ***p < 0.001, two-way ANOVA test.

The optokinetic system tests the ability of a mouse to track
rotating gratings with its head (Figure 3A). The visual acuity
(i.e., the highest spatial frequency of the grating that can induce
the optokinetic reflex in mice) of the 5xFAD mouse decreased
compared to WT, and the difference reached significance at 6
months (0.32 ± 0.03 c/d vs. 0.41 ± 0.02 c/d in WT, p < 0.05)
but not at 4 months (Figure 3B).

The ability of a mouse to tell luminance was tested with a
black/light transition box. The 5xFAD mice tended to spend
shorter time than WT control in the black chamber, but the
difference did not reach statistical significance at 6 months
(5xFAD: 174 ± 23 s in black box, n = 4; WT: 208 ± 19 s, n =

6; not shown).

Rod and Cone Light Responses Are

Normal in 5xFAD Mice
The deficit in the above visual behavior indicates a deficit either
in the retina or the retina-to-superior colliculus pathway (or
both). Thus, we next evaluated the retinal function by full-field
ERG recording. Under dark adaptation (scotopic conditions),
both WT and 5xFAD mice responded well to flashes of
increasing intensities (0.01, 0.1, and 3.0 cd s/m2) (Figure 4A).
The amplitude of the a- and b-waves were similar between 5xFAD
and WT at both 4 and 6 months (Figures 4B,C), indicating that

FIGURE 3 | The visual acuity is impaired in 5xFAD mice at 6 months. (A)

Illustration of the optokinetic system that measures the mouse visual acuity.

Visual acuity is the maximum spatial frequency of the moving gratings that a

mouse can track with its head movement. (B) Scattered plot of the visual

acuity of 5xFAD and WT at 4 and 6 months. The visual acuity of 5xFAD was

lower than that of WT both at 4 months and at 6 months, and the difference

reached significance at 6 months. Data shown as mean ± SEM. *p < 0.05,

two-way ANOVA.

the rod-to-rod bipolar pathway is normal in 5xFAD. We next
light adapted the mice (photopic condition) and recorded cone
responses. Again, the b-wave amplitude was similar between

Frontiers in Neuroscience | www.frontiersin.org 6 July 2021 | Volume 15 | Article 68183137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Retinal Abnormalities in 5xFAD Mice

FIGURE 4 | The light responses of the first and second order retinal neurons are normal in 5xFAD. (A) Example ERG traces from a WT and 5xFAD mice at age of 4

and 6 months under dark adaptation (scotopic) and light adaptation (photopic). (B,C) Scattered plot of the amplitude of (B) a-wave and (C) b-wave under scotopic

condition. (D,E) Scattered plots of the amplitude of (D) b-wave and (E) PhNR under photopic condition. (F) Example OPs traces to flash of 3.0 cd s/m2 under

scotopic condition. (G) Scattered plots of the amplitude of P2-N2 and P3-N3. Data shown as mean ± SEM.
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FIGURE 5 | Pattern ERG response tend to decrease in 5xFAD. (A,C) Example

traces of pattern ERG responses to (A) horizontal gratings or (C)

checkerboard from a WT and 5xFAD mice. (B,D) Scattered plots of the P1-N2

amplitudes under stimuli of (B) horizontal gratings or (D) checkerboard. Data

shown as mean ± SEM.

5xFAD and WT at 4 and 6 months (Figures 4A,D), indicating
that the light response of cones and bipolar cells are also normal
in the 5xFAD mouse. The time-to-peak of a- and b-waves under
both scotopic and photopic conditions were also similar between
5xFAD and WT (data not shown).

The light responses of amacrine cells were also evaluated by
the oscillatory response (OPs) using ERG recordings. 5xFAD
mice showed a normal OPs response as did WT at both 4 and
6 months (Figure 4F), and the amplitudes of P2-N2 and P3-N3
were similar to WT (Figure 4G).

The Light Response of Retinal Ganglion

Cell Is Reduced in 5xFAD
To check the light response of retinal ganglion cells, we
first used ERG and measured the amplitude of the photopic
negative response (PhNR, a negative wave that follows the b-
wave under light adaptation) to full-field stimuli. The PhNR
response was similar between 5xFAD and WT at both 4 and 6
months, with similar amplitude and time to peak (Figure 4E).
Similar results were obtained with responses to pattern ERG,
which is more sensitive (Liu et al., 2014). For that, we used
patterned stimuli including horizontal grating and checkerboard
(Figures 5A,C). Under both stimuli, 5xFAD mice tended to have
smaller P1-N2 amplitude, but there was no significant difference
(Figures 5B,D).

We further analyzed the light responses of individual ganglion
cells by multielectrode array recordings. An example of a
flattened retina mounted on 8×8 MEA array, and the spike
responses recorded in each channel are shown in Figures 6A,B.
Both WT and 5xFAD RGCs fired strongly in response to
light stimuli (Figure 6C). Comparing the average light response
within the 2-s flashes showed a significant decrease in 5xFAD

at 6 months (to 52% of WT, p < 0.001) but not at 4 months
(Figure 6D). Similar changes were observed in the peak firing
rate (4 months: 100.8% of WT, p = 0.97; 6 months: 89% of WT,
p < 0.001, data not shown). While the light responses were not
much affected at 4 months, the spontaneous frequency of 5xFAD
started to decrease significantly compared with WT already at 4
months (59% of WT at 4 months and 65% of WT at 6 months, p
< 0.001) (Figure 6E).

Retinal Ganglion Cells Appear Normal in

5xFAD Retina at 6 Months With a Few Aβ

Plaques
As the function of ganglion cells in 5xFAD mice declined, we
further examined the survival rate of RGCs by Brn3a staining
on the whole-mount retina. The number of RGCs was counted
for three eccentricities; for each eccentricity, we counted and
averaged the numbers from four quadrants of the whole-mount
retina (Figure 7A, enlarged area shown in Figure 7B). For each
eccentricity, the number of RGCs in 5xFAD andWT at 4 months
and 6 months was similar (Figures 7A,B,D).

We have also stained the retinas for Aβ plaque deposits with
an Aβ1-42 antibody. For bothWT and 5xFAD, staining in whole-
mount retinas revealed only few Aβ plaques (red dots pointed
by white arrows in Figure 7A). In retinal slices, however, a few
Aβ deposits were observed also in the inner and outer retinal
layers of 5xFADmice but not that ofWT (the sampled region was
1mm from the optic disk) (Figure 7C). Counting the number
of Aβ deposits in these retinal slices showed that 5xFAD retina
has accumulated significantly more Aβ deposits than the WT
controls (2.0± 0.2 accumulated from three retinal slices for each
animal vs. 1.0± 0.2 in WT, p < 0.05) (Figure 7E).

The Retina Becomes Abnormally Thick in

5xFAD Mice
While examining the Aβ plaques, we noticed that the 5xFAD
retina appeared thicker and less organized. We have therefore
further examined the structure of the retinal layers. Using DAPI
staining, we measured the thickness of each retinal layer from the
center to periphery, with examples of images collected from the
middle region (800–1,000µm away from the optic disk center)
shown in Figure 8A. At 4 months, all retinal layers except ONL
in 5xFAD were as normal as WT (top panel, Figure 8B). For the
ONL in 5xFAD, the thickness tended to increase from the center
to middle region, then dropped in the peripheral region, and the
difference from WT reached significance at the middle region of
the retina. At the age of 6 months, all retinal layers of 5xFADwere
thicker than WT, with regional limited thicker ONL, OPL, and
INL, but a widespread thicker IPL, thus a general thicker retina
from center-to-peripheral regions (bottom panel, Figure 8B).

Retinal Glial Cells in Retina of 5xFAD at 6

Months Are Activated
Since pathological changes often accompany inflammation, we
next examined retinal inflammation using the indicator of
reactive gliosis in microglia and Muller cells.
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FIGURE 6 | The light response of individual ganglion cells is reduced in 5xFAD mice at 6 months. (A) Illustration of an isolated retinal tissue placed on an 8×8

multielectrode array. (B) Spikes recorded from each electrode in response to a saturated flash (light intensity (4.68 × 107 photons/µm2/s) whose onset is indicated by

a red line in the lower right corner of the array. (C) Examples of spiking responses from WT and 5xFAD RGCs. For each cell, the top panel shows a raster plot from 30

repeats, and the bottom panel shows the corresponding PSTH. The 2-s light stimuli are indicated as blue regions. (D) Average firing rate of RGCs within the 2-s light

stimuli was significantly reduced at 6 months in 5xFAD. (E) Spontaneous firing was greatly decreased in 5xFAD mice at both 4 and 6 months. The numbers within the

bars represent the number of responsive cells recorded from retinas of three animals. ***p < 0.001, two-way ANOVA.

In WT retina, microglia cells stained with Iba1 showed a
resting state with small somas and many elongated protrusions
extending around the soma. In 5xFAD retina, the appearance
of the microglia cells was different at 6 months, with often
shorter and less organized branches (Figure 9A), and the number
significantly increased at 6 months (32.4 ± 3.7 vs. 22.3 ± 2.6 per
320× 320µm forWT, p< 0.01) (Figure 9B), indicating an active
state. In WT retina, GFAP in Muller cells was limited to the end
feet in the inner limiting layer, showing a resting state. In 5xFAD
retina, the GFAP remained in the end feet area at 4 months, but at
6months, the GFAP positive staining appeared inmany processes
that cross the retina (Figure 9C). The fluorescent intensity of
GFAP in the inner retinal layers (INL, IPL, and GCL layers)
increased significantly at 6 months (p < 0.01) (Figure 9D). We
therefore conclude that glial cells in 5xFAD retinas are being
activated at 6 months.

DISCUSSION

In this study, we examined the retinal structure and function
of 5xFAD mice carrying no rd1 mutation and compared the
temporal changes with the brain. Obvious retinal pathologies

including thickening of retina, reactive gliosis, and few but
significantly increased Aβ plaques were identified at 6 months
old. An abnormal thickening of the outer nuclear layer was
noticed already at 4 months. Functionally, full-field ERG
and pERG remained normal, but visual acuity and light
responses of individual RGCs were reduced at 6 months. In
comparison, numerous Aβ plaques appeared in different regions
of the brain at 4 months, but the working memory and
hippocampal LTP significantly decayed only at 6 months. Thus,
the timeline of retinal abnormality coincides with the progress of
brain degeneration.

As early symptoms of AD include functional deficit of smell
and vision, olfactory and vision biomarkers are suggested to serve
as noninvasive biomarkers to diagnose dementia (Romano et al.,
2021). In AD patients or AD mice, beta-amyloid deposition is
found in the olfactory bulb [reviewed by Dibattista et al. (2020)].
In the 5xFAD mice, besides hippocampal region, we also found
an accumulation of Aβ in the olfactory bulb and visual cortex,
confirming the AD pathology in various brain regions in 5xFAD
mice. But unlike visual cortex and hippocampus, the rise in Aβ

deposition in the olfactory bulb was initially slow, and it kept on
rising from 4 to 6 months. This suggests that the progression
of AD pathology in olfactory bulb develops more slowly than
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FIGURE 7 | Density of retinal ganglion cells is normal in 5xFAD but a few Aβ plaques emerge in retina at 6 months. (A) Example of Brn3a staining of RGCs (green) and

Aβ plaque deposition (red, examples indicated by white arrows) from a whole mount retina of a WT and 5xFAD mice at 6 months; the white square from similar

eccentricity is shown in Panel (B) at higher magnification. (C) Images of retinal slices stained with DAPI and Aβ plaque deposition (red, points by white arrow). (D)

Scattered plot of the Brn3a-positive cell density in whole mount retina at central (cent), middle (mid), and peripheral (peri) regions (corresponding to 300, 1,000, and

1,700µm away from the center of the optic disk, respectively). The RGCs density in 5xFAD is similar to that of WT at both 4 and 6 months. (E) Scattered plot of Aβ

plaque number in retinal slices (accumulated from three slices for each animal). **p < 0.01; two-way ANOVA.

other two brain regions. Indeed, a slower decay of the volume of
olfactory bulb than hippocampus at the early andmiddle stages of
AD was reported in rTg510 mice, another AD mice model (Kim
et al., 2017). In another study on 5xFAD mice, an intact olfactory
memory from 3 to 15 months of age was reported (O’Leary
et al., 2020). Whether olfactory system decay differentially from
hippocampus and visual system in AD mice may need further
study, but it is not the main focus of current study.

Consistent with other reports, we found normal full-field ERG
responses in 5xFADboth at 4 and 6months, indicating unaffected
photoreceptors and bipolar cells (Criscuolo et al., 2018; Lim et al.,
2020). Regarding RGCs, we did not find an impairment of the
amplitude of PhNR or pERG, which represents a compound
light response of all RGCs (Porciatti, 2007; Chrysostomou
and Crowston, 2013). However, those methods may not be as
sensitive as the pSTR used by Lim et al., who reported a decreased
amplitude of pSTR at 6 months on the same mouse line (Lim
et al., 2020). This finding is consistent with our MEA data,
which showed a reduced light response in RGCs in 5xFAD by 6
months and also a reduced spontaneous firing at 4 months. The
dysfunction of RGCswas also reported in ADpatient (Parisi et al.,

2001). The response of amacrine cell, indicated by OPs, remained
normal in 5xFAD as in WT. Thus, the reduction in ganglion cell
activity found with MEA recordings probably depends on direct
changes within these cells rather than abnormal transmission
from their upstream cells.

Morphologically, instead of observing retinal thinning as in
other reports on animals (Liu et al., 2009; Georgevsky et al.,
2019) and AD patients [reviewed in Chiquita et al. (2019)], we
found an abnormal thickening of the 5xFAD retina at 6 months,
and the ONL was thicker already at 4 months. The seemingly
different results are likely due to the different age used in these
reports. In AD patients, the reduction in the retinal neve fiber
layer (RNFL) is reported in patients showing mild to severe
cognitive impairment (Paquet et al., 2007; Gao et al., 2015), while
no difference or even thicker inner retina (especially IPL) in
preclinical AD patients was also reported (Snyder et al., 2016;
van de Kreeke et al., 2019). Consistent with the results from
preclinical AD patient, Lim et al. observed a thickening of IPL
at 6 months only, but not at a later stage (Lim et al., 2020) in
5xFAD mice, while RNFL layer decreased since 6 months. In
other animal models such as Tg2576 mice (Liu et al., 2009),
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FIGURE 8 | Retina is abnormally thick in 5xFAD mice already at 4 months. (A) Images of DAPI staining of retinal slices from a WT and 5xFAD mice at 4 and 6 months.

(B) Retinal thickness from the center to periphery for ONL, OPL, INL, and IPL with GCL layers and the total thickness at 4 months (top panel) and 6 months (bottom

panel). The retina of 5xFAD mice is thicker than that of WT at 6 months. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. Data shown as

mean ± SEM. *p < 0.05, **p < 0.01; ***p < 0.001, two-way ANOVA with repetitive measurement. n, number of animals tested.

FIGURE 9 | Reactive gliosis happens in 5xFAD at 6 months. (A) Images of Iba1 staining (green) on whole mount retinas of WT and 5xFAD mice at 4 and 6 months. (B)

Number of Iba1+ cells on retina (an image size of 320×320µm). (C) Images of GFAP staining (green) on retinal sections of WT and 5xFAD mice at both ages. Note

the difference in scale. (D) The GFAP intensity in the inner retina, normalized to the WT control. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell

layer. Data shown as mean ± SEM. **p < 0.01; ***p < 0.001, two-way ANOVA.

3xTg mice (Song et al., 2020), and APP1/PS1 (Georgevsky et al.,
2019), a thinning of the retinal layers was reported at late stages,
but in an earlier study, using APP1/PS1 mice up to 12M, no
retinal pathology was observed (Chidlow et al., 2017). The early

thickening of the retina we observed in 5xFAD may be related
to the inflammation that happened around 6 months or edema.
Therefore, at the initial time, there might be edematous change
before any detectable functional change. Future experiment using
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OCT system to check the retinal thickness in alive 5xFAD mice
at early stages would help for early non-invasive diagnostic.
Indeed, we were collecting a series of OCT scanning of 5xFAD
retina together with its littermate at various time points (as early
as 3M) to access this possibility. It may be puzzling that the
ERG waves in 5xFAD mice were normal in spite of abnormal
retinal thickness. This may be due to the full-field flash we
applied, since full-field flash ERG averages responses all over
the retina and may not be able to detect regional difference.
Future experiment usingmultifocal ERGmay help to identify any
regional response abnormalities that may be correlated with the
outer retinal structure.

In both AD patients and animal models, Aβ plagues were
present in the retina (Koronyo-Hamaoui et al., 2011) [also see
review Chiquita et al. (2019)]. Consistent with these reports, we
foundmore Aβ plagues in 5xFAD retina than inWT, although the
number of Aβ plagues was rather low even at 6 months, especially
when compared with those in brain regions. In the other line
of 5xFAD that carries rd1 mutation, Aβ present in the retina as
early as 1.5M (Pogue et al., 2015). The earlier presence of Aβ

in the retina may be due to the pathology caused by the rd1
mutation. Interestingly, besides 5xFAD, we also noticed a few Aβ

staining on WT retina, and this was also mentioned by Barton
et al. (2021) when they used inhalable thioflavin S (Barton et al.,
2021). They also reported a significant association of Aβ deposits
with RGCs. In 5xFADmice (without rd1 mutation) age 6 months
and older, extracellular Aβ plagues were found in ONL, INL,
IPL, and GCL of the retina (Habiba et al., 2020). Consistent with
this, in our study, we noticed that the few Aβ plagues appeared
in the inner retinal layers as well as the outer retina. While Aβ

plagues do accumulate in the retina, their accumulation may be
too little to cause the abnormally thick retina we saw in 5xFAD.
We believe that global inflammation (especially in the IPL where
microglia got activated) may be the main reason at this age. In
older animals, when numerous Aβ aggregates starts to appear
in the retina, degradation of cells and synaptic proteins may
happen and cause retinal degeneration. Indeed, Habiba et al.
(2020) reported an increased number of Aβ plagues in aging
5xFAD mice at 12 and 17M, and the retina degenerated with
age (Habiba et al., 2020). Currently, it is not known whether
the synaptic proteins degrade in the aging 5xFAD mice as Aβ

plague accumulates; further experiments on older AD mice may
be needed to check this.

Using the same mouse line of 5xFAD carrying no rd1
mutation, Lim et al. (2020) found deficits in retinal function and
structure at 6 months, the earliest time point they assessed. We
also noticed retinal deficits at 6 months and further extended

their study by exploring an earlier time point at 4 months.
The retinal structure and function were in general normal at
4 months except a thickening of the outer nuclear layer in
the middle region. The pathology in retina does not happen
earlier than the pathology in brain, bringing the concern of
using retinal pathology as an early preclinical marker of cortical
and behavioral changes. However, obvious retinal deficits were
noticed at 6months whenworkingmemory and LTP significantly
decay, so retinal abnormality in this line of 5xFAD concurred
with brain degeneration. Thus, we suggest that using retinal
pathology to reflect the changes in the brain is still the right way
for AD diagnostic and evaluation of the treatment effects.
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Understanding the mechanisms underlying progression and developing new treatments
for progressive multiple sclerosis (PMS) are among the major challenges in the field
of central nervous system (CNS) demyelinating diseases. Over the last 10 years, also
because of some technological advances, the visual pathways have emerged as a useful
platform to study the processes of demyelination/remyelination and their relationship
with axonal degeneration/protection. The wider availability and technological advances
in optical coherence tomography (OCT) have allowed to add information on structural
neuroretinal changes, in addition to functional information provided by visual evoked
potentials (VEPs). The present review will address the role of the visual pathway as a
platform to assess functional and structural damage in MS, focusing in particular on the
role of VEPs and OCT, alone or in combination, in the prognosis and monitoring of PMS.

Keywords: multiple sclerosis, progressive multiple sclerosis, visual pathway, visual evoked potentials, optical
coherence tomography

BACKGROUND

The Challenge of Progressive Multiple Sclerosis
Multiple sclerosis (MS) is a chronic inflammatory, immune-mediated disease of the central
nervous system (CNS; Ontaneda and Fox, 2015), characterized by demyelination, axonal loss,
and neurodegeneration. Although the pathophysiology underlying the different phenotypes still
needs to be clarified, four main clinical courses of the disease have been identified: relapsing–
remitting MS (RRMS; characterized by clearly defined neurological exacerbations with full or
incomplete recovery, in the presence of dissemination in space and time of the inflammatory
process among the CNS), clinically isolated syndrome (CIS; a first neurological episode suggestive
of MS, but formal criteria of dissemination in time are not fulfilled), secondary progressive
MS (SPMS; defined retrospectively by the occurrence of gradual disability worsening with or
without occasional relapses, minor remissions, and plateaus, following an initial RRMS course),
and primary progressive MS (PPMS; characterized by progressive accumulation of disability
from disease onset with occasional plateaus, temporary minor improvements, or acute relapses
still consistent with the definition; Lublin and Reingold, 1996; Lublin et al., 2014). The MS
courses can be further qualified by the presence/absence of disease activity [presence of relapses
and/or magnetic resonance imaging (MRI) activity – i.e., gadolinium-enhancing lesions or
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new/unequivocally enlarging T2 hyperintense lesions] and
by the disability state: worsening, improving, or stable
(Lublin et al., 2014).

The pathological key features underlying the clinical
expression of the disease can be depicted as a spectrum, ranging
from waves of acute focal inflammation in RRMS to predominant
neurodegenerative features with concomitant chronic
compartmentalized inflammation in progressive multiple
sclerosis (PMS) (Lassmann et al., 2007; Giovannoni et al., 2016).

During the past decades, a major progress has been made in
understanding disease mechanisms in RRMS, with inflammation
and subsequent focal demyelination with breakdown of the
blood–brain barrier representing the main driver of clinical
disease in this subset of patients. This knowledge has led to the
development of anti-inflammatory and immunomodulatory
treatments that effectively reduce the severity and frequency
of new demyelinating episodes (Diebold and Derfuss, 2016).
In PMS, instead, focal disruption of the blood–brain barrier
is less common, and widespread degeneration of the white
and gray matter variably combined with slow expansion
of chronically active lesions are the pathological hallmarks
(Lassmann, 2017). Several and non-necessarily exclusive
mechanisms have been proposed to explain the pathogenesis of
PMS (i.e., compartmentalized ongoing chronic inflammation,
chronic inflammation leading to inflammation-independent
neurodegeneration, and primary neurodegeneration amplified
by concurrent independent inflammation), with SPMS and
PPMS course likely sharing similar pathophysiological features
(Confavreux and Vukusic, 2006; Trapp and Nave, 2008; Frischer
et al., 2009; Lassmann et al., 2012). Fundamental pathogenetic
pathways responsible of clinical progression, however, still
remain unidentified, with no available accurate preclinical
model reproducing this stage of the disease. The approval of
Ocrelizumab for active PPMS and SPMS treatment (Montalban
et al., 2017), and of Siponimod for active SPMS by EMA and for
relapsing MS by FDA (Kappos et al., 2018), represent important
encouraging novelties, but the tangible real-world impact of
these molecules has still to be assessed especially in the absence
of overt inflammation (Montalban et al., 2017; Kappos et al.,
2018). Unfortunately, previous studies exploring neuroprotective
strategies have failed; however, some positive results have
recently emerged from phase III clinical trials and are now under
exploration in definite clinical trials (Ontaneda et al., 2015;
Sorensen et al., 2020). Moreover, the process of discovery of new
therapeutic targets for PMS is a priority of the International
Progressive MS Alliance (2021), a multistakeholder initiative
promoted by International Federation of Multiple Sclerosis and
MS patient associations.1

The Visual Pathway as a Model of Brain
Damage in Multiple Sclerosis
In order to succeed in the challenge represented by PMS, our
ability to early detect the pathological processes on the stage
will be of fundamental importance. At present, diagnosis of
PMS is mainly retrospective since imaging methods as well

1www.progressivemsalliance.org

as other biomarkers to catch or predict progression are not
well established (Correale et al., 2017). There is an unmet
need for new strategies to identify inflammation/demyelination
and particularly neurodegeneration in a subclinical phase, with
consequent prompt interventions aimed to prevent disability to
occur for our patient.

Emerging evidence suggests that the visual system may play
an important role in this game (Martinez-Lapiscina et al., 2014).
The visual pathway is in fact frequently involved in MS, with
visual dysfunction that is not only common but also highly
relevant (Fisher et al., 2006; Heesen et al., 2008; Chatziralli et al.,
2012). Furthermore, the visual pathway may represent a model
of both acute focal CNS damage [through acute optic neuritis
(ON) and retinal periphlebitis] (Albrecht et al., 2007; Siger et al.,
2008), as well as a model of chronic, diffuse CNS involvement
(through chronic retinopathy, optic neuropathy, and trans-
synaptic degeneration). The ongoing pathological processes can
be accurately evaluated due to the availability of highly sensitive
imaging [i.e., MRI or optical coherence tomography (OCT)]
and electrophysiological [i.e., visual evoked potentials (VEPs)
and electroretinography (ERG)] tests. The combination of these
techniques allows to describe the interactions between the
different processes at play (such as inflammation, demyelination,
and axonal and neuronal loss) in vivo and in a non-invasive way,
features that identify the visual pathway as an elective platform
to differentiate MS pathophysiology from other inflammatory
conditions of the CNS (Vabanesi et al., 2019), as well as a reliable
model to monitor the disease and to test new neuroprotective
or regenerative therapies in the context of clinical trials (Fisher
et al., 2006; Heesen et al., 2008; Chatziralli et al., 2012; Martinez-
Lapiscina et al., 2014; Villoslada, 2016).

Optical coherence tomography in MS has been widely used
to measure in particular retinal nerve fiber layer (RNFL)
and ganglion cell–inner plexiform layer (GCIPL) thickness as
markers of neuroaxonal loss, allowing to detect subclinical
neurodegeneration (Petzold et al., 2010; Alonso et al., 2018;
Costello and Burton, 2018). RNFL and GCIPL thickness have
been correlated with tests of visual function (Pulicken et al.,
2007; Pueyo et al., 2008; Zaveri et al., 2008), with global disability
scores such as Expanded Disability Status Scale (EDSS; Albrecht
et al., 2007; Siger et al., 2008), with functional measures as those
provided by VEPs (Klistorner et al., 2008; Pueyo et al., 2008;
Di Maggio et al., 2014), but also with cerebral and optic nerve
MRI parameters (Trip et al., 2006; Grazioli et al., 2008; Siger
et al., 2008), as well as with fluid biomarkers such as serum
neurofilament light chain concentration (Tavazzi et al., 2020).
Most of the evidence available in the field is actually related to
the RRMS course, with neuroretinal atrophy being associated
with disease activity (Pisa et al., 2017), but with the possibility
to detect RNFL and GCIPL thinning over time in MS patients
with progression independent of relapse activity (PIRA; Bsteh
et al., 2020; Pisa et al., 2020). Cross-sectional RNFL, total macular
volume (TMV), and GCIPL thickness measures independently
predicted long-term disability in large cohorts of predominately
RRMS patients (Martinez-Lapiscina et al., 2016; Rothman et al.,
2019; Lambe et al., 2021), while the application of mathematical
models has suggested RNFL evolution, resulting from a mix of
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inflammatory and degenerative processes, to accurately reflect
disability progression over time (Montolío et al., 2019).

More recently, other retinal layers have also received attention
as possible biomarkers in MS: in particular, inner nuclear layer
(INL) consists of a network of bipolar, amacrine, and horizontal
cells; despite some signs of atrophy have been described on
histopathology at this level in MS (Green et al., 2010), in vivo
studies did not show an extensive INL atrophy as in the case
of RNFL and GCIPL, even after ON (Seigo et al., 2012; Syc
et al., 2012). Pathology studies have identified inflammation
and microglial activation within the inner retina in MS patients
(Green et al., 2010), and in vivo observations also suggest
INL as a possible biomarker of inflammation within the CNS,
with increased INL thickness reflecting a condition of retinal
inflammation, which parallels brain inflammatory activity in
MS: microcystic macular edema (MME) within this layer has
in fact been described to be associated with ON and disability;
furthermore, increased INL thickness has been associated with
a greater risk of developing new T2 or gadolinium-enhancing
lesions and of new relapses (Saidha et al., 2012; Balk et al., 2019);
finally, successful response to disease-modifying treatments
(DMTs) has been associated with a sustained reduction of
INL volume (Knier et al., 2016). Other authors, however, have
postulated the possibility for INL thickening (and MME in
particular) to be related to vitreomacular tractions, Müller cell
pathology, subclinical uveitis, or retinal periphlebitis, conditions
possibly found in association with MS (Kerrison et al., 1994;
Chen and Gordon, 2005). Significant correlations between INL
thickening and RNFL/GCIPL thinning have been also described:
according to this evidence, it has been speculated that INL
enlargement is related to structural changes in other retinal layers
(as the result of the opposing tractions between inner limiting
and Bruch’s membranes), being therefore compensatory in nature
(Kaushik et al., 2013).

MRI can be used to identify inflammation (lesion load on
T2-weighted images and gadolinium-enhancing lesions on T1-
contrast sequences), but also (with 3D high-resolution T1-
weighted images) to quantify regional atrophy along the visual
pathway, such as optic nerve atrophy after ON, of the lateral
geniculate nucleus (LGN) at the thalamic level and of the visual
cortex (Gabilondo et al., 2014). Other MRI parameters such as the
magnetization transfer ratio (MTR) and the diffusion-weighted
imaging (DWI) are sensitive to microstructural damage, allowing
to characterize demyelination and axonal damage along the
visual pathway, with an association with visual function measures
(Melzi et al., 2007; Naismith et al., 2010; Kolbe et al., 2012).
In the following sections, possible relations between OCT-VEPs
parameters and MRI data have been assessed; however, an
extensive dissertation of MRI findings and their implications in
PMS is beyond the purpose of the present review.

Among functional techniques, traditional full-field
VEPs (ff-VEPs) can be performed as an indicator
of demyelination/remyelination, expressed by latency
delay/shortening of the major component P100, with potential
diagnostic, prognostic, and monitoring roles in MS (Comi et al.,
1999; Leocani et al., 2018). In addition, multifocal techniques
(mf-VEPs) allow to assess conduction for separate portions of

the visual field, providing information about local signals of
small areas occupying up to 24 central degrees of the visual field,
with the possibility to detect mild abnormal local responses and
scotomas (Klistorner et al., 2008).

Starting from this background, in this article, we wanted to
assess the real value of the visual pathway as a specific biomarker
of functional and structural damage in PMS patients, focusing
in particular on VEPs and OCT use as possible prognostic and
monitoring tools.

EVIDENCE ACQUISITION

We searched PubMed up to March 15, 2021, using the
following terms: “Progressive Multiple Sclerosis and Visual
Evoked Potentials,” “Progressive Multiple Sclerosis and Optical
Coherence Tomography,” “Optical Coherence Tomography and
Disability and Multiple Sclerosis,” and “Visual Evoked Potentials
and Disability and Multiple Sclerosis.”

VISUAL EVOKED POTENTIALS IN PMS

There is little specific information about VEPs in PMS, and
especially PPMS, because many studies on VEPs in MS
were performed prior to the current classification of disease
courses (Lublin et al., 2014).

Currently available data on ff-VEPs sensitivity mainly
derive from studies assessing the role of a multimodal
neurophysiological assessment in MS cohorts, including subsets
of PMS patients. Leocani et al. (2006) performed a study in
which, among the others, 41 PMS patients (13 PPMS and 28
SPMS) underwent multimodal evoked potentials including ff-
VEPs, with high rates of visual conduction impairment in both
subgroups (92.3% for PPMS and 85.7% for SPMS), significantly
more elevated than the abnormalities recorded among the
RRMS cohort (77.4%; Leocani et al., 2006). These findings were
consistent with those deriving from other previous experiences:
in a small Japanese cohort of 11 PPMS patients, higher
frequencies of VEPs abnormality were reported in comparison
with 35 RRMS patients (Kira et al., 1993). In a similar way,
data extrapolated from a European cohort of 156 PPMS patients
showed a delay of conduction along the visual pathway in
105 out of 131 subjects (80%) who had undergone ff-VEP
examination (Stevenson et al., 1999); VEP studies in PMS patients
are summarized in Table 1. The high frequency of abnormal ff-
VEPs in PPMS, asymptomatic in the vast majority of the cases,
allowed to reveal a clinically unsuspected spatial dissemination
of the disease, and ff-VEPs were therefore once included among
PPMS diagnostic criteria (Thompson et al., 2000). Multifocal
VEP is a new technique that provides high sensitivity and
specificity in detecting abnormalities in visual function in MS
patients (Laron et al., 2009); however, no specific information
exploring their role in PMS is currently available in literature to
the knowledge of the authors.

Backner et al. (2019) analyzed the relations between different
vision-related measures, including ff-VEPs, in PMS. In particular,
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TABLE 1 | Studies assessing visual evoked potentials (VEPs) in progressive multiple sclerosis (PMS).

Study Technique Cohort Main findings

Leocani et al., 2006 ff-VEPs 43 RRMS, 28 SPMS, 13 PPMS VEPs abnormalities significantly more frequent in PMS (92.3% PPMS and 85.7%
SPMS) than in RRMS (77.4%)

Kira et al., 1993 ff-VEPs 35 RRMS, 11 PPMS (japanese) VEPs abnormalities more frequent in PPMS compared to RRMS patients

Stevenson et al., 1999 ff-VEPs 131 PPMS Visual conduction delay in 105/131 (80%) PPMS patients

ff-VEPs, full-field visual evoked potentials; RRMS, relapsing–remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis; PPMS, primary progressive
multiple sclerosis.

they reported data related to a cohort of 48 PMS patients
(classified as 18 progressive with relapses, 21 SPMS, and nine
PPMS) who had been enrolled in a longitudinal mesenchymal
stem cell therapy study (NCT02166021), conducted at the
Hadassah-Hebrew University Medical Center. Significant inverse
correlations were found between motion perception tests [object
for motion (OFM) and number for motion (NFM)] and ff-
VEPs latency in eyes with previous ON and their fellow eyes,
in the presence of preserved visual acuity (VA), thus confirming
previous evidences suggesting that dynamic visual functions may
reflect myelination levels along the visual pathway (Raz et al.,
2014). Considering instead functional and structural measures,
a correlation between ff-VEPs latency on the one hand and RNFL
thickness as well as optic radiation lesion load on the other was
described in non-ON eyes of the same cohort of patients enrolled
in the NCT02166021 trial (Berman et al., 2020). In this regard,
Davies et al. (1998) had previously reported optic nerve lesion
length and area [detected by MRI on the short tau inversion
recovery (STIR) sequence], to significantly correlate with ff-VEP
latency prolongation in a cohort of 25 SPMS patients, only four
of whom had a history of acute ON.

When considering the specific prognostic role of VEPs in
PMS, available data are even more limited. Sater et al. (1999)
proposed ff-VEPs as a tool to assess disease progression in
addition to standard disability-based endpoints: obtaining serial
VEPs and MRI scans from 11 PMS patients over a 1.5-year period,
they found in fact no significant change in disability as measured
by EDSS and Ambulation Index, nor in MRI T2 plaque burden,
in the presence, however, of a significant progression of the P100
latency over time (Sater et al., 1999). More recently, Schlaeger
et al. (2014) prospectively investigated the role of VEPs in the
context of a multimodal evoked potential assessment as possible
predictors of disease course in a small cohort of PPMS patients;
they found that a multimodal evoked potential score correlated
with disability in these patients, also allowing some prediction of
the course of the disease.

OPTICAL COHERENCE TOMOGRAPHY
IN PMS

Several studies over the last 15 years examined cross-sectionally
the pattern of retinal axonal loss (expressed by RNFL
measurement at a peripapillary level), across the different
MS clinical subtypes also including subsets of PMS patients,
often coming to partially contrasting conclusions. As a premise,

it is important to notice that early studies measured RNFL
thickness through time-domain OCT devices (TD-OCT), while
more recent experiences have been made with next-generation
OCT based on spectral-domain technology (SD-OCT). This
innovation allowed not only to increase speed acquisition but also
to improve resolution power and reproducibility; segmentation
algorithms also differ between TD-OCT and SD-OCT devices;
therefore, results obtained with different OCT generations are
not interchangeable and directly comparable (Bock et al., 2010).

In 2007, Pulicken et al. (2007) obtained RNFL thickness
measures using a TD-OCT device (OCT-3, Zeiss Meditec) on a
cohort of 135 RRMS, 16 SPMS, and 12 PPMS patients, as well
as in 47 healthy controls: the three subgroups of MS patients
all showed decreased RNFL values in comparison with controls;
compared with RRMS, both SPMS and PPMS patients revealed
a trend toward thinner RNFL values although in the absence of
a statistical significance, probably due to the small number of
PMS patients included in the study. In 2008, Henderson et al.
(2008) performed a similar study (using TD-OCT Stratus, Zeiss
Meditec) on 27 SPMS and 23 PPMS patients, with the former
but not the latter showing reduced RNFL thickness values when
compared with 20 healthy controls, in the absence of significant
differences between the two PMS subgroups when age-adjusted
regression coefficient of RNFL thickness was directly compared
(although in the presence of lower values among SPMS patients);
significant correlations between RNFL values and VA measures
were also reported, especially in the PPMS cohort. In another
study using the same TD-OCT device (Stratus) published in
2010, Siepman et al. (2010) reported no statistically significant
difference in terms of mean RNFL thickness comparing 26 RRMS
and 29 PPMS patients. In 2012, Gelfand et al. (2012) published
retinal imaging data obtained in 60 SPMS and 33 PPMS patients,
using a new SD-OCT device (Spectralis, Heidelberg Engineering):
the authors reported similar RNFL thickness values between
SPMS and PPMS patients examining eyes without previous ON,
with TMV slightly lower in the PPMS group. These results
were consistent with those published by Albrecht et al. (2012),
including 41 SPMS and 12 PPMS patients: using the same
Spectralis device, the authors reported significant RNFL thinning
compared with healthy controls for both subgroups, although
a direct comparison between different PMS subsets was not
performed. Another coeval work performed with Spectralis on a
German cohort of 414 MS patients (308 RRMS, 65 SPMS, and 41
PPMS) and 94 healthy controls reported significant differences in
terms of RNFL thickness only between RRMS and SPMS patients
after adjusting for clinical–demographic parameters (such as age,
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gender, and disease duration), while the PPMS subgroup did
not differ from neither RRMS nor SPMS cohorts; a different
pattern was obtained for TMV measures, for which a significant
reduction was found in both SPMS and PPMS subgroups when
compared with RRMS patients (Oberwahrenbrock et al., 2012).
Data deriving from a Dutch cohort of 230 MS patients (including
61 SPMS and 29 PPMS), despite being obtained with the
same SD-OCT (Spectralis), depicted another different situation:
the authors found SPMS to show significant RNFL thickness
reduction in comparison with PPMS but not RRMS patients, with
PPMS subgroup showing the highest absolute values (Balk et al.,
2014). Finally, in a recently published work, Jankowska-Lech
et al. (2019; using SD-OCT Topcon OCT 1000 Mark II, Topcon)
compared 26 RRMS with 22 PMS patients, finding significantly
decreased RNFL thickness values in the latter subgroup only
when taking into account also eyes with previous ON. The
contrasting results emerging from the studies listed above may
be partly related to the different techniques employed, with new
SD-OCT showing higher resolution power, image quality, and
reproducibility than the older TD-OCT devices (Bock et al.,
2010); however, due to the relatively small sample sizes provided
across the different studies, RNFL inter-individual variability
among general and MS population, as well as the possibility of
primary retinal pathology in a subset of MS patients, may have
also played a role (Kallenbach and Frederiksen, 2007; Petzold
et al., 2010; Serbecic et al., 2010; Saidha et al., 2011).

In more recent years, thanks to the availability of new
commercial software allowing retinal automated segmentation,

increasing attention has been directed toward the analysis of
other retinal strata (particularly GCIPL) measured on macular
scans; initial specific information is becoming available also for
PMS cohorts. Some of the studies previously described already
took into account these aspects: Albrecht et al. (2012) performed
a manual segmentation of macular scans, reporting reduced
GCIPL values in both SPMS and PPMS patients compared with
controls; in PPMS subgroup, a significant reduction of the INL
was also reported but not confirmed after the exclusion from
the analysis of eyes with previous ON. Balk et al. (2014), using
instead an automated software program, showed GCIPL to be
significantly reduced among PPMS patients when compared with
SPMS, also in the absence of previous ON history. Another
work published in 2017 using SD-OCT (Cirrus 5000, Zeiss
Meditec) compared 29 PMS with 84 RRMS patients, showing in
the former subgroup significantly reduced thickness values not
only for GCIPL but also when considering outer plexiform layer
(OPL); included patients, however, were of non-Caucasian origin
(Behbehani et al., 2017). Cross-sectional OCT studies assessing
retinal layers in PMS are summarized in Table 2.

Researchers also focused on exploring the relation between
retinal measures and clinical parameters; available data, however,
are often non-specific for PMS, with major contributions (relative
to visual function and global disability measures) deriving from
some of the studies previously reported. Henderson et al.
(2008) found a relationship between VA (both high- and low-
contrast tests) and RNFL thickness in their PMS cohort, with
particularly robust data in PPMS patients, as also suggested by

TABLE 2 | Cross-sectional OCT studies assessing retinal layers in PMS.

Study Device Cohort Main findings

Pulicken et al., 2007 TD-OCT (OCT-3, Zeiss Meditec) 1 3 5 R RMS, 16 SPMS, 12
PPMS, 47 HC

RNFLt reduced in MS groups compared to HC; statistical trend
indicating thinner RNFLt in SPMS and PPMS compared to
RRMS

Henderson et al., 2008 TD-OCT (Stratus, Zeiss Meditec) 2 7 SPMS, 23 PPMS, 20
HC

Mean RNFLt reduced in SPMS (but not PPMS) compared to HC

Siepman et al., 2010 TD-OCT (Stratus, Zeiss Meditec) 26 RRMS, 10 SPMS, 29
PPMS

Mean RNFLt no statistically different between RRMS and PPMS
patients

Gelfand et al., 2012 SD-OCT (Spectralis, Heidelberg
Engineering)

4 5 CIS, 403 RRMS, 60
SPMS, 33 PPMS, 53 HC

Mean RNFLt similar in SPMS and PPMS patients in non-ON
eyes; TMV slighlty lower in PPMS group

Albrecht et al., 2012 SD-OCT (Spectralis, Heidelberg
Engineering)

4 2 RRMS, 41 SPMS, 12
PPMS, 95 HC

Mean RNFLt and GCIPLt reduction in both SPMS and PPMS
compared to HC; INLt reduction only in PPMS in comparison to
HC

Oberwahrenbrock et al., 2012 SD-OCT (Spectralis, Heidelberg
Engineering)

308 RRMS, 65 SPMS, 41
PPMS, 94 HC

Mean RNFLt lower in SPMS (but not PPMS) compared to
RRMS; TMV reduced in both SPMS and PPMS compared to
RRMS

Balk et al., 2014 SD-OCT (Spectralis, Heidelberg
Engineering)

140 RRMS, 61 SPMS, 29
PPMS, 63 HC

Mean RNFLt, GCIPLt and INLt reduction in SPMS compared
with PPMS but not RRMS considering non-ON eyes; highest
absolute values in PPMS

Behbehani et al., 2017 SD-OCT (Cirrus 5000, Zeiss
Meditec)

84 RRMS, 29 PMS, 38 HC
(non-caucasian)

Mean RNFLt, GCIPLt and OPLt reduced in PMS compared to
RRMS patients

Jankowska-Lech et al., 2019 SD-OCT (OCT 1000 Mark II,
Topcon)

26 RRMS, 22 PMS, 31 HC Mean RNFLt reduced in PMS compared to RRMS patients only
when taking into account ON eyes

TD-OCT, time domain–optical coherence tomography; SD-OCT, spectral domain–optical coherence tomography; CIS, clinically isolated syndrome; RRMS, relapsing–
remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis; PPMS, primary progressive multiple sclerosis; HC, healthy controls; RNFLt, retinal nerve
fiber layer thickness; TMV, total macular volume; GCIPLt, ganglion cells–inner plexiform layer thickness; INLt, inner nuclear layer thickness; OPLt, outer plexiform layer
thickness; ON, optic neuritis.
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the observation (with SD-OCT Spectralis) of a significant relation
between low-contrast VA and GCIPL thickness in another cohort
of 25 PPMS patients (Poretto et al., 2017). The same authors,
however, did not identify any significant relation between RNFL
thickness and disease duration, duration of the progressive phase,
nor with EDSS (Henderson et al., 2008). A lack of a correlation
between RNFL thickness and EDSS has been also reported with
SD-OCT Spectralis in a cohort of 28 non-Caucasian SPMS
patients (Yousefipour et al., 2016). Siepman et al. (2010) reported
instead similar relations between RNFL thickness and VA, also
pointing out a negative correlation with EDSS in eyes without
previous ON; data, however, were referred to the entire study
cohort of 26 RRMS and 29 PPMS patients. Albrecht et al.
(2012) expanded this analysis in their cohort of 95 MS patients
(including 41 SPMS and 12 PPMS) observing EDSS to correlate
also with macular thickness and OPL, interestingly with a
positive correlation in this latter case. Behbehani et al. (2017)
reported instead an inverse correlation between ONL thickness
and EDSS in 29 PMS patients. No significant correlation with
RNFL (measured with Spectralis) was instead identified when
considering motion perception tests, which appear to be mainly
related to myelination status along the visual pathway more
than to axonal loss (Backner et al., 2019). Finally, considering
the possible relation between OCT measures and other clinical
parameters, Coric et al. (2018) analyzed with Spectralis a cohort
of 217 MS patients (including a remarkable percentage of PMS
patients – 56 SPMS and 28 PPMS, respectively) describing
cognitively impaired patients to have significantly reduced RNFL
and GCIPL values.

Moving to assess the relation between OCT and other
instrumental parameters, in 2007, Gordon-Lipkin et al. (2007)
had already described RNFL thickness (measured with OCT-3)
to correlate with brain atrophy in 40 MS patients (20 RRMS
and 20 PMS), although this association appeared to be driven
by the RRMS subset and by cerebrospinal fluid more than
white or gray matter volume. In another cohort of 25 PPMS

patients (assessed with Spectralis), RNFL thickness revealed to
be associated with thalamus and visual cortex volume, while
GCIPL values were associated with cortical lesion load; the
authors suggested retrograde trans-synaptic degeneration and/or
a common pathophysiologic process affecting both the brain and
the retina as possible explanations (Petracca et al., 2017). Data
deriving from a recent Italian retrospective study including a
cohort of 84 PMS patients also revealed increased values of INL
thickness in a subset of patients who had shown MRI activity
during the year before OCT assessment (Spectralis), proposing
INL evaluation as a possible surrogate marker of disease activity
also among progressive patients (Cellerino et al., 2019). Saidha
et al. (2015) explored the relation between SD-OCT (Cirrus 4000,
Zeiss Meditec) and MRI parameters longitudinally in the context
of a 4-year study including 107 MS patients: the authors described
RNFL and GCIPL thinning to be significantly associated with
whole-brain, and gray and white matter atrophy, pointing out
a stronger relation in the subset of 36 PMS patients. However,
data extrapolated from a randomized placebo-controlled trial
testing the possible role of lipoic acid in SPMS showed only
modest correlations between RNFL and cortical gray matter
atrophy in a subset of 51 patients with OCT (Cirrus 5000) and
MRI longitudinal data available, with no significant results for
GCIPL (Winges et al., 2019). In the SPRINT MS phase II clinical
trial, however, ibudilast significantly reduced over 2 years the
progression of brain atrophy compared with placebo in PMS
patients; this positive result was supported by a trend for a lower
RNFL thickness reduction in ibudilast-treated patients (Fox et al.,
2018). Finally, OCT parameters have been also analyzed in
association with other functional instrumental techniques: in
particular, a correlation between RNFL thickness and ff-VEPs
latency has been identified in PMS patients considering eyes
without ON history (Backner et al., 2019).

The evolution over time of OCT parameters has also started
to be explored in different subsets of MS patients, but conclusive
specific data for PMS are still lacking. In a work published

TABLE 3 | Longitudinal OCT studies assessing retinal layers in PMS.

Study Device Cohort Follow-up Main findings

Talman et al., 2010 TD-OCT (OCT-3, Zeiss
Meditec)

299 MS (84% RRMS) 1.5 years (range
0.5–4.5)

RNFLt reduction as a function of time (average −2.9 µm at 2–3
years and −6.1 µm at 3–4.5 years) in some patients with MS, even

in the absence of aON

Henderson et al., 2010 TD-OCT (Stratus, Zeiss
Meditec)

18 SPMS, 16 PPMS, 18
HC

1.5 years (range
1.1–2.4)

No significant RNFLt reduction over time in patients and controls.
TMV decline in both groups, with no between-group differences

Balk et al., 2016 SD-OCT (Spectralis,
Heidelberg Engineering)

7 CIS, 89 RRMS, 26
SPMS, 13 PPMS, 16 HC

2 years RNFLt and GCIPLt reductions more pronounced early in the course
of disease (higher atrophy rate in RRMS than SPMS patients)

Winges et al., 2019 SD-OCT (Cirrus 5000,
Zeiss Meditec)

51 SPMS 2 years RNFL (−0.31 µm/year) and GCIPL (−0.29 µm/year) atrophy rates
similar in aON and nON eyes; RNFLt > 75 µm associated with

higher (−0.85 µm/year) rate

Sotirchos et al., 2020 SD-OCT (Cirrus HD-OCT,
Zeiss Meditec)

178 RRMS, 186 PMS, 66
HC

3.7 years (IQ range
2.0–5.9)

PMS phenotype associated with faster RNFLt (−0.34 %/year) and
GCIPLt (−0.27 %/year) reduction; no significant impact determined

by DMTs

TD-OCT, time domain–optical coherence tomography; SD-OCT, spectral domain–optical coherence tomography; CIS, clinically isolated syndrome; RRMS, relapsing–
remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis; PPMS, primary progressive multiple sclerosis; HC, healthy controls; RNFLt, retinal nerve
fiber layer thickness; TMV, total macular volume; GCIPLt, ganglion cells–inner plexiform layer thickness; aON, acute optic neuritis; nON, non-optic neuritis; DMTs, disease-
modifying treatments.
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in 2010, Talman et al. (2010) followed up (mean 18 months,
range 6 months–4.5 years) 299 MS patients (84% with RRMS
phenotype) with TD-OCT (OCT-3): the authors described
progressive RNFL thinning as a function of time. In contrast
with this finding, Henderson et al. (2010) using Stratus TD-OCT
did not find any significant change of RNFL thickness over time
in a small cohort of 34 PMS patients (18 SPMS and 16 PPMS)
who were followed up for a median interval of 1.5 years. Balk
et al. (2016) performed another study enrolling 135 MS patients
(including 26 SPMS and 13 PPMS), who have been assessed with
SD-OCT (Spectralis) over a 2-year period: the authors showed
RNFL and GCIPL thinning to be significantly related to disease
duration (with thinning rate becoming smaller in the presence of
longer disease duration), and consistently, they found RNFL and
GCIPL atrophy rate to be higher in RRMS than SPMS patients;
such a relation was not identified for INL. Longitudinal data over
2 years relative to the cohort of 51 SPMS patients enrolled in the
lipoic acid trial showed annualized RNFL and GCIPL atrophy
rates (−0.31 and −0.29 µm/year, respectively) to not differ
between eyes with and without previous ON history; however,
a baseline RNFL thickness higher than 75 µm was associated
with a greater (−0.85 µm/year) annualized atrophy rate (Winges
et al., 2019). Only very recently Sotirchos et al. (2020) published
a significant OCT longitudinal study including a cohort of 178
RRMS and 186 PMS patients who were followed up with serial
OCT scans (performed with Cirrus SD device) for a median of
3.7 years: independently from age, PMS phenotype was found
to be associated with faster mean annualized percent changes
for both RNFL (−0.34%/year) and GCIPL (−0.27%/year), and
possibly also for INL and ONL, with no significant impact
determined by disease-modifying therapies; the relation between
retinal layers atrophy rates and disability progression over time,
however, has not been extensively assessed. Longitudinal OCT
studies assessing evolution over time of retinal layers in PMS are
summarized in Table 3.

CONCLUDING REMARKS

Optic pathway offers the unique opportunity to combine
functional and structural measures: given the demonstrated
correlations between optic nerve and brain damage (as revealed
by MRI), it represents an attractive CNS area of interest to
monitor MS evolution, as well as the response to DMTs,

particularly in PMS. On the one hand, VEP studies, albeit in the
presence of limited specific information, suggested a significant
functional involvement of the visual pathway in PMS, in the
presence of a relation with dynamic visual function measures
and with a possible prognostic contribution on progression, in
the context of a multimodal assessment of evoked responses.
On the other hand, OCT studies, although in the presence
of some contrasting results, highlighted a significant retinal
neuro-axonal loss in PMS compared with HC but also RRMS
patients, in the presence of possible, although non-linear, cross-
sectional and longitudinal relations with measures of visual and
global disability. Significant relations have been also identified
in PMS between retinal neuro-axonal architecture and structural
measures of brain atrophy provided by MRI; more recently,
INL has been proposed as a marker of neuroinflammation also
in the progressive phase of the disease. Our exploration of
the literature, however, appears to highlight a lack of studies
specifically combining a functional exploration of the visual
pathway with a morphological description of the retina in PMS
patients, with a still open possibility to better characterize the
relation between demyelination and neurodegeneration in the
progressive phase of the disease. To validate the use of VEPs
and OCT in PMS, it is mandatory to recruit large cohorts of
patients in the context of multicenter studies, longitudinally
followed to define the correlations with clinically relevant visual
parameters from the one side (i.e., contrast sensitivity measures)
and with global disability measures on the other. Of great
value could be also studies comparing combined OCT and
VEPs data with conventional and advanced MRI techniques.
A better knowledge in the field would be of fundamental
importance in a near future, in order to identify the most suitable
biomarkers to assess the efficacy of possible neuroprotective and
remyelinating strategies aimed to contrast irreversible disability
accrual affecting PMS patients.
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Introduction: Patients with Parkinson disease (PD) tend to have ophthalmic symptoms.
Retinal diseases are associated with central nervous system diseases, especially
neurodegenerative diseases. Here, we investigated the association of retinal diseases
with PD, especially the temporal relationship before and after PD diagnosis.

Methods: Data were obtained from the National Health Insurance Research Database
of Taiwan. In total, 21,845 patients with newly diagnosed PD were matched with four
controls each on the basis of propensity score. This study was bidirectional. A case–
control study evaluated the adjusted odds ratio (aOR) of retinal disease before PD
diagnosis by using conditional logistic regression. Furthermore, a cohort study evaluated
the adjusted subdistribution hazard ratio (aSHR) for new-onset retinal and optic nerve
diseases after PD diagnosis by using competing risk analysis. The association between
PD with optic nerve diseases and glaucoma (another common ophthalmic diseases with
the consequence of retinal dysfunction) were also analyzed as reference.

Results: In the case–control study, PD was found to be significantly comorbid with
recent and remote retinal disease [recent: ≤ 5 years, aOR: 1.12, 95% confidence
interval (CI): 1.03–1.23; remote: > 5 years, aOR: 1.18, 95% CI: 1.04–1.34]. No similar
association was identified between optic nerve disease or glaucoma with PD. In the
cohort study, patients with PD were found to have a low risk of retinal disease in short-
term (≤ 5 years, aSHR: 0.81, 95% CI: 0.71–0.93) and long-term (> 5 years, aSHR:
0.82, 95% CI: 0.72–0.93) follow-up.

Conclusion: The study findings demonstrated that patients with prediagnostic PD
were at greater risk of retinal disease than non-PD participants, but the risk reversed
afterward. Thus, retinal disease may be a premotor manifestation of PD, and there may
be some possible effect of dopamine supplements on retina.
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INTRODUCTION

Parkinson disease (PD) is the second most common
neurodegenerative disease worldwide, with an estimated
incidence of 15–328 per 100,000 individuals and prevalence of
15–12,500 per 100,000 individuals. The disease prevalence has
been increasing over time, affecting roughly 2.5 million patients
in 1990 and 6.1 million patients (5.0–7.3) in 2016 (GBD 2016
Parkinson’s Disease Collaborators, 2018). Among PD risk factors,
age is the most important and un-modified. With progress in
the domains of public health and medicine as well as increased
life expectancy (Christensen et al., 2009) among the general
population, the number of patients with PD will likely continue
to increase in the future.

Motor symptoms in PD are characteristic and include
resting tremor, bradykinesia, postural instability, and freezing
phenomenon. Non-motor symptoms at various stages of PD
include ophthalmologic symptoms and disorders (Borm et al.,
2020), mood disorders and affective apathy, anhedonia and
depression, cognitive dysfunction, complex behavioral disorders,
and hallucinations (Poewe, 2008).

Despite advances in technology and modern medicine,
the actual mechanism of PD remains obscure. The disease
is characterized by dopaminergic neuron depletion and
abnormal intracellular α-synuclein aggregation in Lewy
bodies. Both environmental (Klingelhoefer and Reichmann,
2015) and genetic factors (Koros et al., 2017), such as
neuroinflammation, mitochondrial dysfunction (Rocha et al.,
2018), and characteristics of the brain–gut axis, appear to be
associated with PD pathogenesis, although none of them can
explain the disease phenomenon completely.

Dopaminergic neuron depletion, associated with the
shortage of dopamine up to approximately 70%, results in the
manifestation of clinical motor symptoms of PD (Engelender
and Isacson, 2017). Dopamine is a neurotransmitter with key
roles in not only the central nervous system (CNS) but also
the gastrointestinal system (Glavin and Szabo, 1990), immune
response mediation (Matt and Gaskill, 2020), light adaptation
(Flood et al., 2018), and eye growth (Stone et al., 1989).

Visual disturbances are prominent at all PD stages (Satue
et al., 2017), with up to 82% of patients reporting dry eyes,
blepharitis, double vision, or visual hallucination (Borm et al.,
2020). The shortage and depletion of dopamine have been
associated with the retinal degeneration and denervation of
the visual cortex or adjacent regions in animal studies and
clinical studies involving patients with PD (Phillipson et al., 1987;
Weil et al., 2016). In an animal study, dopaminergic treatment
preserved visual function (Pardue and Allen, 2018). However,
levodopa and dopamine agonists used in the treatment of PD
are associated with ocular and visual adverse effects (Armstrong,
2017; Daggumilli et al., 2019).

Given the high prevalence of ophthalmologic symptoms
in patients with PD (Satue et al., 2017) and the possible
role of dopamine in retinal functions, we investigated the
association of retinal diseases with PD. To test the role of
dopamine as a premotor PD biomarker and avoid the possible
bias introduced by dopaminergic medications, we conducted

case–control and cohort studies using patient data from the
National Health Insurance Research Database (NHIRD). The
bidirectional approach helped assess the risk of newly diagnosed
retinal disease before and after PD diagnosis. To minimize the
potential of identifying retinal diseases secondary to glaucoma or
optic nerve disease, a prevalent disease in the elderly population,
we analyzed the risk of glaucoma and optic nerve diseases in
parallel for the purpose of comparison (Weinreb et al., 2014).

MATERIALS AND METHODS

Data Source
Patient data were obtained from the NHIRD, which is maintained
by the National Health Insurance (NHI) Administration (NHIA)
of Taiwan. The NHIRD is a nationwide claims-based database of
those insured under the NHI program, which is a compulsory
insurance program that has been providing coverage for most
of the health care services in Taiwan and almost 30,000
prescription medications since 1995. In this study, we used
data collected between 2000 and 2017, and data collected after
2000 were used because electronic claims data were incomplete
during the initial phases of NHI implementation. The NHIRD
includes information on disease diagnoses [coded according
to the International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) before 2016 and according
to ICD-10 thereafter], treatment procedures, service dates,
prescribed medications (classified according to the Anatomical
Therapeutic Chemical Classification System for Medications),
reimbursement amounts, patient demographic information,
and patient- and provider-encrypted identifiers. To verify the
accuracy of diagnoses and treatment rationales, the NHIA
routinely samples a portion of the NHI claims and penalizes
hospitals and clinics if they determine unnecessary medical
treatment has been provided.

Study Population
Patients with newly diagnosed PD were defined as those who
had at least two diagnostic claims (ICD-9-CM: 332.0) and
prescription claims for dopaminergic agents between 2004 and
2013. It had been validated that the diagnostic accuracy of this
inclusion criteria was 94.8% (Lee et al., 2013). The index date
of PD was defined as the date of first PD diagnosis, hereafter
referred to as the index PD. Patients aged < 45 years or who
had a history of stroke or prior treatment with an antipsychotic
drug before the index PD were excluded to avoid the possibility of
misclassification of secondary parkinsonism. In addition, patients
with a history of thyroid disease were excluded, as thyroid
dysfunction (ICD-9-CM: 240–246) may be directly associated
with ophthalmic diseases. The same exclusion criteria were used
for control participants.

Propensity Score Matching
Matching aims to reduce potential selection bias in observational
studies. Propensity score (PS) matching (PSM) is frequently
used to control for confounding factors that inevitably occur
in studies investigating the effect of exposures on an outcome.
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In PSM, study and control groups sharing similar propensity
scores are matched. The weighted value reveals the risk of a
participant for the outcome of interest according to underlying
characteristics that predispose them to that outcome irrespective
of the exposure of interest. In this study, the PS was measured
on the basis of hypertension (HTN, ICD-9-CM: 401–405),
diabetes mellitus (DM, ICD-9-CM: 250), hyperlipidemia (ICD-
9-CM: 272), chronic heart failure (CHF, ICD-9-CM: 428),
coronary artery disease (CAD, ICD-9-CM: 410–414), chronic
lung disease (ICD-9-CM: 415–417, 490–496, and 500–508), renal
disease (ICD-9-CM: 580–589), and inflammatory diseases (ICD-
9-CM: 710, 714). The selection of these factors was based on
their association with retinal and optic nerve diseases. Control
participants without PD were assigned an index date of pseudo-
PD diagnosis corresponding to the index PD of their matched
patients. Each patient with PD was matched with four control
participants without PD based on age, sex, pseudo diagnostic
year, and the PS using a caliper with a width of 0.1; consequently,
the two cohorts had similar baseline characteristics but differed
in PD diagnosis.

Main Outcome
Both patients with PD and control participants were tracked or
followed up for their risk of retinal and optic nerve diseases
according to the study design. Patients with retinal diseases (ICD-
9-CM: 361–363 except 363.4–363.7) were defined as those who
first had at least two diagnostic claims corresponding with the
fundus examination. In the cohort study, retinal disease risk was
measured after the index PD or pseudo-PD diagnosis. Hereditary
retinal disease (ICD-9-CM: 362.7) were excluded. Optic nerve
disease was defined as the presence of two disease diagnostic
claim (ICD-9-CM: 377) and traumatic optic nerve disease
(ICD-9-CM:377.3) was excluded. Glaucoma was defined as the
presence of disease diagnosis (ICD-9-CM:365) and medication
treatment. The detailed disease diagnostic codes are presented
in Supplementary Table 1. The selection process is presented
in Figure 1.

Statistical Analysis
Baseline characteristics were analyzed using the standardized
mean difference (SMD). An SMD of > 0.1 indicated non-
negligible differences between the groups. The case–control
study evaluated the adjusted odds ratio (aOR) of retinal disease
before PD diagnosis by using conditional logistic regression,
and the cohort study evaluated the adjusted subdistribution
hazard ratio (aSHR) of new-onset retinal and optic nerve
diseases after PD diagnosis by using competing risk analysis.
Competing risk model analyses were applied to estimate the
absolute relative retinal disease risks because the participants
had a high mortality risk. The follow-up period for each patient
ranged from the index PD or pseudo-PD diagnosis to the date
of retinal and optic nerve disease diagnosis, death, or the end
of the observation period (December 31, 2017). All analyses
were performed using SAS/STAT version 9.4 (SAS Institute
Inc., Cary, NC, United States) and STATA 14 (Stata Corp., LP,
College Station, TX, United States). A p-value of < 0.05 was
considered significant.

RESULTS

Figure 1 is the flow chart detailing the selection of patients
with PD. Overall, 21,845 patients with newly diagnosed PD and
87,380 non-PD PS-matched control participants for comparison
were included. No differences were present in age or sex
between the groups (Table 1). Comorbidities, including DM,
hyperlipidemia, CHF, CAD, chronic lung disease, renal disease,
and inflammatory diseases, were well-matched between the PD
and non-PD control groups.

The overall risk of retinal disease was significantly increased
in the PD group (aOR: 1.14, 95% CI: 1.06–1.23, p < 0.001)
compared with the non-PD group before PD diagnosis. The
significantly increased risk was consistent following separation
of the premotor stage into recent (≤ 5 years; aOR: 1.12, 95%
CI: 1.03–1.23) and remote (> 5 years; aOR: 1.18, 95% CI: 1.04–
1.34) periods. The increased risk was not evident in the diagnosis
of optic nerve disease or glaucoma, other common ophthalmic
diseases with the consequence of retinal disease, between the
groups before PD diagnosis (Table 2 and Supplementary
Tables 2, 3).

Regarding the follow-up cohort, we excluded participants with
a diagnosis of any ophthalmologic disorder before PD diagnosis
to focus on newly diagnosed retinal diseases after PD diagnosis.
The results demonstrated a significant reduction in the hazard
ratio of newly diagnosed retinal disease (aSHR: 0.77, 95% CI:
0.70–0.85, p < 0.001), and the reduced risk remained significant
in short-term (≤ 5 years; aSHR: 0.81, 95% CI: 0.71–0.93) and
long-term (> 5 years; aSHR: 0.82, 95% CI: 0.72–0.93) follow-
up. Regarding optic nerve disease, the overall hazard ratio was
not different between PD and non-PD (aSHR: 0.91, 95% CI:
0.67–1.23, p = 0.540). For the glaucoma, the overall hazard
ratio was significantly reduced (aSHR: 0.87, 95% CI: 0.78–0.97,
p = 0.010) but was identical between PD and non-PD groups at
short-term (≤ 5 years) follow-up and significantly lower only in
the PD group at long-term (> 5 year) follow-up (Table 3 and
Supplementary Tables 4, 5).

DISCUSSION

The present study demonstrated that patients with PD are
at higher risk of retinal disease at the premotor PD stage
than non-PD controls, although the hazard ratio reversed
markedly in the follow-up period. This contrasting association
was not observed between PD and optic nerve disease or
glaucoma, other common age-related ophthalmic diseases.
This discrepancy in the temporal relationship between the
two diseases may hint that retinal disease is a premotor
manifestation of PD, and the possible effect of dopamine
supplements on retina.

Anosmia is a well-recognized non-motor symptom of the
premotor PD stage (Iannilli et al., 2017), and the degeneration
of the olfactory bulb is found to occur before the loss of
dopaminergic neurons in the midbrain. Similar to the olfactory
bulb, the optic nerve and retina are considered to be extension
of the CNS (London et al., 2013). Dopamine is endogenously
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FIGURE 1 | Flowchart of patient selection.

found in and essential for the functioning of the retina, although
disorders of these structures are markedly underestimated in
patients with PD. Pathological α-synuclein aggregation and
deposits have been noted in retinal cells in postmortem patients
with PD (Veys et al., 2019). Thinning of the retinal nerve
fiber layers, a measure of the integrity of the retinal ganglion
cell axon, has been found in PD, and macular thickness has
also been reported to be reduced (Altintaş et al., 2008). The
association between PD with retinal disease suggest possible
explanation that dopaminergic deficiency is harmful for the
retina of key to maintain structural integrity (Witkovsky, 2004).
Applying dopamine was found to be effective in slowing retinal
degeneration in some preclinical studies and clinical trials (Zhou
et al., 2017) and the possible benefit of dopamine supplement
on restoring visual and neuronal function were the stimulation
of the secretion of pigment epithelium derived factor, and

anti-angiogenesis (Review by Pardue and Allen, 2018). The
present study used a bidirectional approach to successfully
distinguish the reverse association between the two diseases; our
approach is superior to previous cross-sectional, case–control
studies because it could discern the temporal relationship and
avoid the bias from dopaminergic supplements.

Glaucoma is widely recognized as an age-related disease
and a leading cause of retinal and optic nerve disease. The
present study did not find an increased risk of glaucoma for
patients with PD in the prediagnostic stage, and this excluded
the possible bias of increased risk of retinal and optic nerve
disease secondary to uncontrolled glaucoma. Regarding the
follow-up period for patients with PD, we found a significant
reduction of the hazard ratio of newly diagnosed glaucoma.
Previous studies have shown the effects of a dopamine receptor
agonist in decreasing intraorbital pressure over several hours
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TABLE 1 | Baseline characteristics of participants with PD versus non-PD before and after PSM.

Before matching After matching

Non-PD PD SMD Non-PD PD SMD

n (%) n (%) n (%) n (%)

Sample size 3,436,889 22,217 87,380 21,845

Male 1,917,573 (55.8) 13,139 (59.1) 0.068 51,712 (59.2) 12,928 (59.2) <0.001

Age, years

Mean (SD) 57.67 (10.44) 72.05 (9.89) 1.414 71.89 (9.82) 71.89 (9.82) <0.001

45–64 2,639,180 (76.8) 4,857 (21.9) 1.315 19,386 (22.2) 4,847 (22.2) <0.001

65+ 797,709 (23.2) 17,360 (78.1) 1.315 67,994 (77.8) 16,998 (77.8) <0.001

Year of diagnosis

2004–2005 651,760 (19.0) 4,306 (19.4) 0.011 16,936 (19.4) 4,234 (19.4) <0.001

2006–2007 698,620 (20.3) 4,558 (20.5) 0.005 17,884 (20.5) 4,471 (20.5) <0.001

2008–2009 698,440 (20.3) 4,474 (20.1) 0.005 17,568 (20.1) 4,392 (20.1) <0.001

2010–2011 693,020 (20.2) 4,470 (20.1) 0.001 17,620 (20.2) 4,405 (20.2) <0.001

2012–2013 695,049 (20.2) 4,409 (19.8) 0.009 17,372 (19.9) 4,343 (19.9) <0.001

Comorbidities

HTN 732,817 (21.3) 11,127 (50.1) 0.629 46,891 (53.7) 10,796 (49.4) 0.085

DM 332,270 (9.7) 4,687 (21.1) 0.321 17,404 (19.9) 4,552 (20.8) 0.023

Hyperlipidemia 353,140 (10.3) 4,036 (18.2) 0.227 13,730 (15.7) 3,950 (18.1) 0.063

CHF 32,781 (1.0) 898 (4.0) 0.199 3,427 (3.9) 819 (3.7) 0.009

CAD 179,610 (5.2) 3,902 (17.6) 0.396 14,913 (17.1) 3,713 (17.0) 0.002

Chronic lung disease 145,698 (4.2) 2,682 (12.1) 0.289 10,953 (12.5) 2,520 (11.5) 0.031

Renal disease 51,413 (1.5) 1,107 (5.0) 0.198 3,893 (4.5) 1,038 (4.8) 0.014

Inflammatory disease 27,063 (0.8) 338 (1.5) 0.069 984 (1.1) 324 (1.5) 0.031

Statin prescription 59,571 (4.6) 2,108 (9.5) 0.190 7,577 (8.7) 2,057 (9.4) 0.026

Average clinic visits/year 10.32 (11.83) 23.65 (17.49) 0.893 21.86 (15.93) 22.79 (15.94) 0.058

Standardized mean difference (SMD) indicates the variable difference in means or proportions divided by standard error; imbalance defined as absolute value > 0.1. PD,
Parkinson disease; PSM, propensity score matching; HTN, hypertension; DM, diabetes mellitus; CHF, congestive heart failure; CAD, coronary heart disease.

TABLE 2 | The aOR of retinal disease, optic nerve disease and glaucoma among the study participants in the case–control study.

PD Non-PD aOR (95% CI) p-value

Participants 21,845 87,380

Retinal disease, n (%)

Overall 972 (4.4) 3,428 (3.9) 1.14 (1.06–1.23) <0.001

Recent (≤5 years) 654 (3.0) 2,344 (2.7) 1.12 (1.03–1.23) 0.011

Remote (>5 years) 318 (1.5) 1,084 (1.2) 1.18 (1.04–1.34) 0.011

Optic Nerve disease, n (%)

Overall 86 (0.4) 275 (0.3) 1.25 (0.98–1.60) 0.069

Recent (≤5 years) 60 (0.3) 211 (0.2) 1.14 (0.85–1.51) 0.379

Remote (>5 years) 26 (0.1) 64 (0.1) 1.63 (1.03–2.58) 0.036

Glaucoma, n (%)

Overall 1,363 (6.2) 5,157 (5.9) 1.06 (1.00–1.13) 0.057

Recent (≤5 years) 695 (3.2) 2,645 (3.0) 1.05 (0.97–1.15) 0.234

Remote (>5 years) 668 (3.1) 2,512 (2.9) 1.07 (0.98–1.16) 0.146

aOR, adjusted odds ratio; PD, Parkinson disease; CI, confidence interval.

(Pescosolido et al., 2013), but there is scant evidence of a
more prolonged effect. We speculate that supplementation with
dopaminergic agents may lower the incidence of glaucoma in
patients with PD in the long-term, although further studies
must investigate the actual mechanism through which this
could be achieved.

To the best of our knowledge, this is the first study to
elucidate the association of retinal disease with PD using a
bidirectional approach and the first to identify a discrepancy
in risk based on temporal association. The main strengths of
our study are attributable to the characteristics of the cohort.
The NHIRD contains comprehensive data on a nationwide
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TABLE 3 | The aSHR of retinal disease, optic nerve disease and glaucoma among participants in the cohort study.

PD Non-PD aOR (95% CI) p-value

Retinal disease, n/N (%)

Overall 446/11,184 (4.3) 2,465/45,986 (5.7) 0.77 (0.70–0.85) <0.001

Short-term (≤5 years) 216/11,184 (1.9) 1,137/45,986 (2.5) 0.81 (0.71–0.93) 0.003

Long-term (>5 years) 230/7,928 (2.9) 1,328/35,308 (3.8) 0.82 (0.72–0.93) 0.003

Optic nerve disease, n/N (%)

Overall 50/11,184 (0.4) 226/45,986 (0.5) 0.91 (0.67–1.23) 0.540

Short-term (≤5 years) 23/11,184 (0.2) 105/45,986 (0.2) 0.94 (0.60–1.47) 0.770

Long-term (>5 years) 27/8,086 (0.3) 1,231/36,193 (0.3) 1.05 (0.70–1.60) 0.799

Glaucoma, n/N (%)

Overall 340/11,184 (3.0) 1,611/45,986 (3.5) 0.87 (0.78–0.97) 0.010

Short-term (≤5 years) 216/11,184 (1.9) 880/45,986 (1.9) 1.04 (0.90–1.20) 0.567

Long-term (>5 years) 124/7,924 (1.6) 731/35,500 (2.1) 0.75 (0.62–0.89) 0.001

aSHR, adjusted subdistribution hazard ratio; PD, Parkinson disease; CI, confidence interval.

population (> 99% of Taiwan’s population), and these data have
been collected for over two decades. Typically, the diagnosis of
PD and retinal and optic nerve disease is made by specialists.
Because we used the NHIRD, we were able to take advantage
of data encompassing long prediagnostic and follow-up periods
before and after PD diagnosis. Moreover, the data were free
from the false recall concern, which is a common concern
in most case–control studies, and the percentage of loss to
follow-up in the cohort was low. Despite these advantages, the
present study has certain limitations. First, the NHIRD does not
have information regarding family history of PD, environmental
factors, or occupational factors, all of which may affect the
incidence of retinal degeneration or PD. To minimize potential
bias, we excluded patients diagnosed with PD before 45 years
of age, but this exclusion criterion could not eliminate all
genetic-related PD. Second, the severity of retinal and optic
nerve disease was not documented in the NHIRD, which limits
further analysis of the diseases with PD risk. Third, although
the finding of significant risk reduction of retinal disease after
the diagnosis of PD, as the nature of epidemiological study, it
was not able to clearly delineate the causal relationship between
dopamine supplement with the risk reduction, which may need
more studies to confirm. Lastly, in the NHIRD, there was no
information abouts the motor symptoms and motor subtypes of
PD, which limited the possibility of further subgroup analysis.

In conclusion, the study demonstrated that patients with
PD are at a greater risk of retinal disease at the prediagnostic
stage, even more than 5 years in advance of diagnosis,
than are non-PD individuals. By contrast, the risk of retinal
disease after PD diagnosis decreased significantly compared
with the control group, implying the possible effect from
dopaminergic supplements. Further large-scale prospective
studies investigating retinal and optic nerve disease as a premotor
predictive biomarker for PD are warranted.
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Despite decades of research, disease-modifying treatments of Parkinson’s disease
(PD), the second most common neurodegenerative disease worldwide, remain out of
reach. One of the reasons for this treatment gap is the incomplete understanding
of how misfolded alpha-synuclein (α-syn) contributes to PD pathology. The retina,
as an integral part of the central nervous system, recapitulates the PD disease
processes that are typically seen in the brain, and retinal manifestations have emerged
as prodromal symptoms of the disease. The timeline of PD manifestations in the
visual system, however, is not fully elucidated and the underlying mechanisms are
obscure. This highlights the need for new studies investigating retinal pathology,
in order to propel its use as PD biomarker, and to develop validated research
models to investigate PD pathogenesis. The present study pioneers in characterizing
the retina of the Thy1-h[A30P]α-syn PD transgenic mouse model. We demonstrate
widespread α-syn accumulation in the inner retina of these mice, of which a proportion
is phosphorylated yet not aggregated. This α-syn expression coincides with inner
retinal atrophy due to postsynaptic degeneration. We also reveal abnormal retinal
electrophysiological responses. Absence of selective loss of melanopsin retinal ganglion
cells or dopaminergic amacrine cells and inflammation indicates that the retinal
manifestations in these transgenic mice diverge from their brain phenotype, and
questions the specific cellular or molecular alterations that underlie retinal pathology
in this PD mouse model. Nevertheless, the observed α-syn accumulation, synapse loss
and functional deficits suggest that the Thy1-h[A30P]α-syn retina mimics some of the
features of prodromal PD, and thus may provide a window to monitor and study the
preclinical/prodromal stages of PD, PD-associated retinal disease processes, as well as
aid in retinal biomarker discovery and validation.

Keywords: retina, visual system, alpha-synuclein, transgenic mouse model, Parkinson’s disease

Abbreviations: α-syn, Alpha-synuclein; α-syn mice, Thy1-h[A30P]α-syn mice; AQP4, Aquaporin 4; ChAT, Choline
acetyltransferase; CNS, Central nervous system; ERG, Electroretinography; DAPI, 4′,6-diamidino-2-phenylindole; GCL,
Ganglion cell layer; GFAP, Glial fibrillary acidic protein; Iba-1, Ionized calcium-binding adapter molecule 1; INL, Inner
nuclear layer; IPL, Inner plexiform layer; NFL, Nerve fiber layer; OP, Oscillatory potential; p-α-syn, Phosphorylated serine-
129 α-syn; pSTR, Positive scotopic threshold response; RGC, Retinal ganglion cell; TH, Tyrosine hydroxylase; ThioS,
Thioflavin S; WT, Wild type.
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INTRODUCTION

Despite decades of research, disease-modifying treatments
of Parkinson’s disease (PD), the second most common
neurodegenerative disease worldwide, remain out of reach (Guo
et al., 2018; Veys et al., 2019). It has been suggested that one of
the principal reasons for this treatment gap is the lack of accurate
and timely diagnosis. Traditionally, diagnosis is based on the
cardinal motor symptoms of PD (tremor, rigidity, bradykinesia,
and postural instability), which only arise years after a long
non-symptomatic phase during which a large proportion of the
dopaminergic cells in the substantia nigra are lost (Jankovic,
2008). In order to preserve brain function, therapies -and hence
diagnosis- should be focused on the preclinical (asymptomatic)
and prodromal (early symptomatic) stages (Forsaa et al., 2010;
Mahlknecht et al., 2015; Hustad and Aasly, 2020). In 2017, new
diagnostic criteria for PD have been defined by the International
Parkinson Disease and Movement Disorders Society (Postuma
and Berg, 2017; Marsili et al., 2018), whereby the probability of
an individual to develop PD is now calculated based on several
predictors, such as age, environmental predictors, prodromal
signs, genetic risk variables, and biomarker testing (Postuma
et al., 2016). Constant updating of these diagnostic criteria is
required as more insights into early stage PD emerge (Postuma
and Berg, 2017).

The retina has become a target organ in the search for
early biomarkers, relevant diagnostic criteria and techniques
that are amenable to population-wide patient screening and
disease monitoring. As an integral part of the central nervous
system (CNS), the eye can be considered a window to the
brain. The visual pathway has shown to be an excellent model
system to gain insight into classical neurodegenerative diseases,
as both retina and brain are often affected by these diseases and
share disease processes (e.g., neurodegeneration, inflammation,
aggregation of misfolded proteins, mitochondrial dysfunction;
Armstrong, 2009; Martínez-Lapiscina et al., 2014; Rahimi et al.,
2015; Veys et al., 2019; Kashani et al., 2021). Therefore, it
is not surprising that in many PD patients, one or more
visual symptoms are described, such as decreased visual acuity,
spatial contrast sensitivity, and color vision (Price et al., 1992;
Archibald et al., 2011; Armstrong, 2011; Bodis-Wollner, 2013;
Guo et al., 2018). Retinal dysfunction at least partially contributes
to these deficits (Bertrand et al., 2012; Mazzarella and Cole,
2016). This is corroborated by retinal imaging via optical
coherence tomography (OCT) and with electroretinography
(ERG) measurements, which revealed, respectively, retinal nerve
fiber layer (NFL), ganglion cell layer (GCL), inner plexiform
layer (IPL), and inner nuclear layer (INL) thinning (Shrier et al.,
2012; Adam et al., 2013; London et al., 2013; Spund et al., 2013;
Lee et al., 2014; Bodis-Wollner et al., 2014b; Boeke et al., 2016;
Aydin et al., 2018; Matlach et al., 2018); and abnormalities of
the photopic b-wave, scotopic oscillatory potentials (OPs), and
P50 component of the pattern ERG in PD patients (Nightingale
et al., 1986; Gottlob et al., 1987; Burguera et al., 1990; Ikeda
et al., 1994; Peppe et al., 1992, 1995, 1998; Langheinrich et al.,
2000; Sartucci et al., 2006; Garcia-Martin et al., 2014; Nowacka
et al., 2015; Kashani et al., 2021). Histopathological studies

have revealed pathological manifestations that may underlie
these changes in in vivo measures, including a reduction in
dopamine levels in the retina (Nguyen-Legros, 1988; Harnois
and Di Paolo, 1990; Chorostecki et al., 2015), reduced density
and complexity of dopaminergic neurons (Ortuño-Lizarán et al.,
2020) and melanopsin-positive retinal ganglion cells (RGCs;
Ortuno-Lizaran et al., 2018b), and, finally, the presence of alpha-
synuclein (α-syn) and phosphorylated (S129) α-syn (p-α-syn)
inclusions in the retina (Beach et al., 2014; Ho et al., 2014; Bodis-
Wollner et al., 2014a; Ortuno-Lizaran et al., 2018a; Veys et al.,
2019). Importantly, p-α-syn deposits in the retina accumulate
in parallel with the brain, already during the prodromal stage
of PD, and are associated with PD severity (Ortuno-Lizaran
et al., 2018a). This reinforces that retinal biomarkers have a high
potential for PD diagnosis and disease monitoring.

Further research into the (temporal) relationship between
retinal biomarker alterations and neurodegenerative changes in
the brain is needed, however, for retinal biomarkers to be adopted
in the clinic. Longitudinal and prospective studies in PD patients
and patients at risk of developing PD will be essential to assess the
value of retinal biomarkers for PD (Kashani et al., 2021). Animal
models of PD, on the other hand, can support these studies,
by providing a framework in which the correlation between
retinal biomarkers and disease manifestations can be explored
and novel insights into the molecular and cellular changes
underlying the retinal manifestations of PD can be obtained
(Santano et al., 2011; Normando et al., 2016; Price et al., 2016;
Mammadova et al., 2018, 2021; Veys et al., 2019). Altogether, the
wide availability of technologies for non-invasive high-resolution
ocular imaging, such as OCT, is a clear advantage over current
brain imaging techniques (De Groef and Cordeiro, 2018) and,
collectively, visual function measures, ERG, and retinal imaging
could offer a multimodal biomarker approach for PD diagnosis,
stratification, and monitoring (Guo et al., 2018; Turcano et al.,
2018; Veys et al., 2019).

In this study, we aim to fill the need for well-characterized
preclinical models to study retinal alternations in PD.
We characterized the retinal phenotype of the Thy1-
h[A30P]α-syn mouse model, by studying α-syn accumulation,
neurodegeneration, inflammation, synaptic integrity, and retinal
function. The brain phenotype of this mouse model has been
studied before, yet the retinal phenotype remains untouched
(Kahle et al., 2000; Neumann et al., 2002; Freichel et al., 2007;
Ekmark-Lewen et al., 2018). Here, we used in vivo retinal
imaging and electrophysiology measurements with high clinical
translatability, combined with post mortem histological studies, to
map the timeline of retinal disease manifestations in these mice.

MATERIALS AND METHODS

Animals
Thy1-h[A30P]α-syn mice (C57BL/6 background,
RRID:MGI:2652214) and corresponding wild type (WT)
controls, were bred under standard laboratory conditions
(Kahle et al., 2000). Both female and male mice were used
at 4, 8, 12, 15, and 18 months of age. All experiments were
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performed according to the European directive 2010/63/EU
and in compliance with protocols approved by the KU Leuven
institutional ethical committee.

(Immuno)histochemistry
Prior to eye dissection, mice were euthanized by an
intraperitoneal injection of 60 mg/kg sodium pentobarbital
(Dolethal, Vetoquinol) followed by transcardial perfusion with
saline and 4% paraformaldehyde (PFA). Next, eyes were either
fixed in 1% PFA for 4 h at 4◦C and embedded in paraffin, or in
4% PFA for 1 h at RT for wholemount preparations. The latter
were post-fixed for 1 h in 4% PFA for another hour.

Seven-micrometer sagittal paraffin sections were
deparaffinized and stained with hematoxylin (Sigma) and
eosin (Sigma) and mounted with Distyrene Plasticizer Xylene
mounting medium (Sigma). For Thioflavin S histological
staining, sections were stained for 5 min with Thioflavin S
(Sigma, 1/200 in 1:1 distilled water and ethanol) and mounted
with mowiol (Sigma). For immunohistochemistry, sections were
incubated overnight with one or two of the following primary
antibodies: human specific α-syn (1/5000; Millipore, clone
Syn211 [36-008] RRID:AB_310817), α-syn (1/1000; produced
and kindly provided by V. Baekelandt, KU Leuven, for double
staining with p-α-syn), p-α-syn (1/5000; Elan Pharmaceuticals),
p62 (1/200; Proteintech [#55274-1-AP], RRID:AB_11182278),
Brn3a (1/750; Santa Cruz Biotechnology, c-20 [#sc-31984],
RRID:AB_2167511), tyrosine hydroxylase (TH; 1/1000; Millipore
[#AB152], RRID:AB_390204), choline acetyltransferase (ChAT;
1/100; Millipore [#AB144P], RRID:AB_2079751), VGLUT1
(1/1000, Synaptic Systems [#135 302], RRID:AB_887877),
Prox1 (1/500; Biolegend [PCB-238C]), Homer1 (1/500; Synaptic
Systems [#160 003], RRID:AB_887730), glial fibrillary acidic
protein (GFAP; 1/1000; Dako [#Z0334], RRID:AB_10013382),
or aquaporin 4 (AQP4; 1/10000; Alomone labs [AQP-004],
RRID:AB_2039734). For α-syn, Brn3a, TH, ChAT, Prox1,
and Homer1, antigen retrieval with heated citrate buffer
(20 min, 95◦C) was used, while no antigen retrieval treatment
was used for VGLUT1 and proteinase K (5 min, 20 µg/ml,
Qiagen) antigen retrieval was used for GFAP stainings.
Fluorescent labeling was performed using an Alexa-488
labeled secondary antibody (Invitrogen) for Brn3a, TH, ChAT,
Prox1, VGLUT1, and GFAP staining, or with a fluorescein
or cyanine 3 tyramid signal amplification kit (PerkinElmer)
for p-α-syn, α-syn, and Homer1 stainings. Finally, slides
were counterstained with 4′,6-diamidino-2-phenylindole and
mounted with mowiol.

For wholemount immunohistochemistry, tissue
permeabilization was achieved by a freeze-thaw step
(15 min, −80◦C), followed by overnight incubation with
one of the following primary antibodies: p-α-syn (1/5000;
Elan Pharmaceuticals), TH (1/1000; Millipore [#AB152],
RRID:AB_390204), melanopsin (1/5000; Advanced Targeting
Systems [#AB-N38], RRID:AB_1608077), or ionized calcium-
binding adapter molecule 1 (Iba-1; 1/1000; Wako [#019-19741],
RRID:AB_839504). Subsequently, fluorescent labeling was
performed using an Alexa-488 labeled secondary antibody
(Invitrogen) and wholemounts were mounted with mowiol.

Image Analysis
Imaging was performed using a FV1000 confocal or FV1000-
M multiphoton microscope (Olympus) or a conventional
epifluorescence microscope (DM6, Leica).

Image analyses were performed with Fiji software (Schindelin
et al., 2012). For retinal wholemounts, the entire perimeter of
the wholemount was outlined and its area measured prior to
analysis. For sections, five sections per mouse were investigated,
including the central section containing the optic nerve head,
and the sections located 210 and 420 µm anterior/posterior.
On each section, analysis was done over a distance of 300 µm
at four locations per section. For α-syn, TH and GFAP, the
immunopositive area was measured in the inner retina (from
the retinal NFL until the INL included), while for AQP4 both
the outer retina (from OPL to ONL) and inner retina were
measured and for VGLUT1 and Homer1, only the IPL was
included (Van Hove et al., 2020). For cell counting, both
on wholemounts and sections, Fiji “Cell Counter” plugin was
used. Microglia density and morphology were quantified as
described in Davis et al. (2017) on projection images of z-stack
(step size 1.5 µm) pictures of Iba-1 stained wholemounts
(Davis et al., 2017).

Optical Coherence Tomography
Optical coherence tomography imaging was performed as
described before (Sergeys et al., 2019; Vandenabeele et al., 2021).
Briefly, after pupil dilatation with tropicamide (0.5%, Tropicol,
Théa), the retina of anesthetized animals was imaged (1000
A-scans, 100 B-scans, 1.4 × 1.4 mm, Bioptigen Envisu R2200).
Retinal layer thickness was measured using InVivoVue Diver (v
3.0.8, Bioptigen) software, at 16 locations in the central retina
spaced around the optic nerve head, and averaged per mouse.

Electroretinography
Electroretinography was performed as described before (Sergeys
et al., 2019; Vandenabeele et al., 2021). Full-field flash dark-
adapted electroretinograms were measured at increasing
flash intensities of 0.003, 0.01, 0.1, 1, 2.5, and 7.5 cd∗s/m2.
Electroretinograms were analyzed using Espion software
(v6.59.9, Diagnosys), as shown in Supplementary Figure 1. To
analyze the OPs on the rising part of the b-wave, a band pass
filter (75–300 Hz) was used. The positive scotopic threshold
response (pSTR) was measured at 1× 10−4 cd∗s/m2. 1 week after
baseline ERG or pSTR measurement, mice were intraperitoneally
injected with benserazide hydrochloride (12.5 g/kg, Sigma)
and L-DOPA (25 g/kg, Sigma) 50′ and 30′ prior to ERG/pSTR
measurement, respectively.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
(v8.4.3, GraphPad, RRID:SCR_002798). The number of animals
(n) used is depicted on the figures and the statistical analyses
are indicated in the figure legends. Data are presented as
mean± SEM. Differences were considered statistically significant
for two-sided p-values < 0.05 (∗p < 0.05; ∗∗p < 0.01;
∗∗∗p< 0.001; and ∗∗∗∗p< 0.0001).
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RESULTS

Retinal Accumulation of
(Phosphorylated) α-syn in
Thy1-h[A30P]α-syn Mice
α-syn expression, phosphorylation, and aggregation was studied
in the retina of WT and Thy1-h[A30P]α-syn mice (α-syn mice) of
various ages, using (immuno)stainings for transgenic human α-
syn, phosphorylated (serine-129) α-syn (p-α-syn; detecting both
human and rodent α-syn), thioflavin S (ThioS) and p62. Conform
with previously published data of Veys et al. (2019), hα-syn
expression was observed in neuronal cell bodies in the GCL,
in neurites in the retinal NFL and IPL and in dispersed cell
bodies in the INL of 4-, 8-, 12-, 15-, and 18-month-old Thy1-
h[A30P]α-syn mice (Figures 1A–F,T; Veys et al., 2019). The
hα-syn positive cell types in the inner retina comprise RGCs, as
shown by double staining with Brn3a (Figure 1U), and amacrine
cells, based on their morphology and location (Figures 1V–
X). Furthermore, the accumulation of hα-syn in dopaminergic,
(nor)adrenergic, cholinergic, or AII amacrine cells was ruled out
based on the lack of colocalization with TH, ChAT, and Prox1
positive cells, respectively (Figures 1V–X; Müller et al., 2017).
Quantitative analysis of the hα-syn fluorescent area did not reveal
any progressive changes in hα-syn expression in the inner retina
of α-syn mice with aging (Figure 1M). Next, a fraction of α-syn
was phosphorylated, most prominently in cell bodies and neurites
in the GCL (Figures 1G–L,S,T), and this did not change with age
(Figure 1N), not even in end-stage diseased animals with severe
signs of hind limb paralysis (data not shown). At 18 months of
age, only 34± 8% of strongly α-syn positive cells in the GCL also
contained p-α-syn. Finally, we assessed p62 and ThioS labeling to
investigate α-syn ubiquitination and aggregation, respectively. At
18 months of age, no p62 accumulation nor relocalization were
observed in the retina of α-syn mice as compared to WT mice
(Figures 1Q,R), and no ThioS positive aggregates were found
in the retina of transgenic nor WT animals (Figures 1O,P). Of
note, although no accumulation of ThioS-positive or p62-positive
cellular inclusions was detted in the Thy1-h[A30P]α-syn PD
mouse model, we cannot exclude that oligomeric, prefibrillar, or
non-fibril α-syn conformers contribute to the retinal phenotype
observed in these mice (Lashuel et al., 2013; Roberts and Brown,
2015; Cascella et al., 2021). This needs to be explored in follow-
up studies.

Altogether, these data show that, while both α-syn
overexpression and phosphorylation are present in the retina
of Thy1-h[A30P]α-syn mice already at a young age, α-syn
aggregation and ubiquitination do not manifest.

Synaptic Degeneration in the Retina of
Old Thy1-h[A30P]α-syn Mice
Spectral domain OCT was applied in a longitudinal in vivo
experiment to measure the thickness of the retinal layers in α-syn
mice and WT controls, early in their life (4 and 8 months) and at
12, 15, and 18 months of age (Figures 2A,B,D–F). At 4 months of
age, a minor yet significant thickening of the photoreceptor layer
(PL) was found in the α-syn mice (p = 0.0023; Figure 2A). This

difference in retinal thickness persisted at 12, 15, and 18 months
(p = 0.0009, p = 0.0130, and p = 0.0122; Figures 2C–G).
Furthermore, at 12 months, α-syn mice also displayed thinning
of the IPL, which persisted at 15 and 18 months (p = 0.0034 at
12 months, p = 0.0336 at 15 months, p = 0.0444 at 18 months;
Figures 2C–G).

As retinal thinning is typically a sign of neurodegeneration,
we next performed a more in-depth analysis of different
subpopulations of inner retinal neurons at 15 months of age to
clarify the origin of the observed IPL thinning. Given that the IPL
consists of neurites emerging from cell bodies in both the GCL
and INL, cell density was assessed in these layers on hematoxylin
and eosin-stained sections. No overt neurodegeneration was seen
in α-syn mice (Figure 2H). Additionally, a detailed analysis
of disease-relevant neuronal subtypes, also at 15 months of
age, revealed that cell numbers of intrinsically photosensitive
RGCs (melanopsin positive) in the GCL and of dopaminergic
(TH positive) amacrine cells in the INL (Figures 2I–N) were
not affected. However, IPL thinning may also occur due to
dendrite or synapse loss, a pathological process that is known
to precede loss of neuronal cell bodies. In line with the
preservation of dopaminergic cell bodies (cfr. above), we found
that the dopaminergic plexus of the retina, measured as the
TH-immunopositive area in the inner retina, was unaltered in
α-syn mice of 15 months of age (Figures 2O–Q). However,
taking a closer look at the synaptic integrity of the IPL, via
immunostainings with the established pre- and postsynaptic
markers VGLUT1 and Homer1, we revealed loss of postsynaptic
contacts yet preservation of the presynaptic terminals in 15-
month-old transgenic mice (Figures 2R–W). Altogether, these
findings suggest that synaptic degeneration in the retina underlies
the observed IPL thinning.

Electrophysiological Changes in the
Retina of Thy1-h[A30P]α-syn Mice With
Aging
In a next series of experiments, we sought to further identify the
neuronal cell types that are affected in the α-syn mouse and to
establish whether neuronal dysfunction can be detected already
at younger ages compared to the OCT thinning that only become
apparent at 12 months. Indeed, neuronal death is often preceded
by functional changes, and these prodromal manifestations of
the disease are of particular interest for biomarker development
(Nowacka et al., 2015; Barber et al., 2017; Turcano et al., 2018;
Hustad and Aasly, 2020). First, OPs as a read-out for amacrine
cell function, were assessed. Already at 4 months, the area
under the curve was larger in α-syn mice as compared to WT
animals for high intensity light stimuli (2.5 cd∗s/m2: p = 0.0137;
7.5 cd∗s/m2: p = 0.0094), and this effect persisted in older
transgenic animals of 8 (1 cd∗s/m2: p = 0.0191; 2.5 cd∗s/m2:
p = 0.0452; 7.5 cd∗s/m2: p = 0.0050), 12 (1 cd∗s/m2: p = 0.0034;
2.5 cd∗s/m2: p = 0.0039; 7.5 cd∗s/m2: p = 0.0023), and 18 months
of age (1 cd∗s/m2: p = 0.0001; Figures 3A,B and Supplementary
Figure 1F). Second, we measured RGC function via the pSTR.
Not yet at 4 months, but at 8, 12, and 18 months, the pSTR latency
time was shorter in α-syn mice as compared to WT controls
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FIGURE 1 | Inner retinal hα-syn expression is accompanied by α-syn phosphorylation, yet no ThioS positive aggregation or p62 accumulation, in the retina of
Thy1-h[A30P]α-syn mice. Representative images of hα-syn immunostainings (A–E); p-α-syn immunostainings (G–K); and ThioS staining (O) on retinal sections of
α-syn mice at 4, 8, 12, 15 and 18 months of age. (F,L,P) No staining was observed in the WT controls, at any age (only 18 months shown here). (M,N) Quantitative
analysis of the hα-syn fluorescent area and counting of the p-α-syn positive cells did not reveal an increase of hα-syn expression in the inner retina or p-α-syn cell
density in α-syn mice with age. (O,P) No ThioS positive inclusions were found in the retina of transgenic nor wild type animals in any of the age groups. (Q,R) No
difference in retinal p62 accumulation or localization was detected between transgenic and wild type animals at 18 months of age. (S) p-α-syn immunostaining on a
retinal wholemount of an α-syn mouse showed p-α-syn localization in cell bodies (arrows) and neurites (asterisks). (T) Double staining of hα-syn with p-α-syn
revealed clear colocalization. (U–X) Double staining of hα-syn with Brn3a, TH, ChAT and Prox1 revealed expression of Brn3a in hα-syn positive cells, yet no
colocalization in dopaminergic and cholinergic cells. Scale bar: 100 µm (A–R, V–X) or 50 µm (S–U); GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner
plexiform layer; and ONL, outer nuclear layer.
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FIGURE 2 | Continued
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FIGURE 2 | Outer retinal thickening and inner retinal thinning, associated with loss of postsynaptic labeling, in Thy1-h[A30P]α-syn mice. (A–E) Longitudinal OCT
measurements in 4- (A), 8- (B), 12- (C), 15- (D), and 18-month-old (E–G) mice, revealed significant differences in retinal layer thickness between α-syn and WT mice
of 4 months (PL thickening), 15 months (PL thickening and IPL thinning), and 12 and 18 months of age (PL thickening and IPL thinning). (H) Cell counts on
hematoxylin and eosin-stained sections in the GCL and in the INL did not reveal significant differences between transgenic animals and WT controls at 15 months of
age. (I–W) Representative images of retinal wholemounts stained for melanopsin (J,K) and TH (L,M), and of retinal sections stained for TH (P,Q), VGLUT1 (T,U), and
Homer-1 (V,W), of 15-month-old α-syn and WT mice. Counting the number of melanopsin- (I) and TH- (N) positive cells on retinal wholemounts revealed no
significant differences between transgenic and WT animals. No significant differences were uncovered in TH plexus (O) and VGLUT1 (R) immunopositive area, yet a
strong decrease of the Homer1 (S) signal was seen. Scale bar: 100 µm; Two-Way ANOVA with Tukey multiple comparisons post hoc test (I–N). Unpaired t-test (per
retinal layer; A–F,O,R,S): *p < 0.05; **p < 0.01; and ***p < 0.001. N/G, retinal nerve fiber layer + GCL; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner
plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer; and PL, photoreceptor layer.

(p = 0.0082 at 8 months, p = 0.0119 at 12 months, and p = 0.0006
at 18 months; Figures 3D–F and Supplementary Figure 1G).
a- and b-wave measurements were unaltered, indicating normal
functioning of the photoreceptors, bipolar cells, and Müller glia
(Supplementary Figures 1B–E).

In PD patients, visual defects have been attributed to
malfunctioning of the dopaminergic retinal neurons -which
constitute a subtype of amacrine cells-, which is supported by
the fact that ERG abnormalities can be alleviated by L-DOPA
treatment (Ikeda et al., 1994; Djamgoz et al., 1997; Peppe
et al., 1998; Turcano et al., 2018). Hence, we assessed the
effect of systemic L-DOPA treatment 30 min prior to the
ERG measurement in a second, independent study. We found
that L-DOPA did not fully reverse the effects of genotype on
the OPs in 8-month-old mice, nor the pSTR latency in 18-
month-old mice (Figures 3C,F). These findings are in line with
the absence of dopaminergic degeneration as observed in the
immunohistological studies (cfr. above). Overall, ERG changes
in the α-syn mice suggest that amacrine cells and RGCs become
dysfunctional with age, yet TH immunostainings showed that
it is unlikely that a selective loss of dopaminergic neurons
underlies this phenotype.

No Signs of Neuroinflammation in the
Retina of Thy1-h[A30P]α-syn Mice
Previous studies demonstrated that α-syn triggers
neuroinflammation, and that, in turn, inflammation increases
α-syn phosphorylation and pathology in synucleinopathies
(Lee et al., 2010; Tansey and Goldberg, 2010; Ramirez et al.,
2017; Ferreira and Romero-Ramos, 2018). Furthermore, retinal
inflammation has been linked to both swelling of the outer
retina and ERG deviations, and may therefore underlie -at least
in part- the OCT and ERG abnormalities that we observed
in the Thy1-h[A30P]α-syn mice (Mirza and Jampol, 2013;
Petzold, 2016; Pisa et al., 2021; Xia et al., 2021). Hence, we
next investigated macroglia and microglia reactivity and water
homeostasis in the retina. First, Müller glia and astrocytes
were investigated. Analysis of GFAP immunostainings on
retinal cross-sections of α-syn versus WT mice did not reveal
differences in immunofluorescent area at 4, 8, 12, 15, and
18 months of age and radial fiber density at 15 months of age
between the two genotypes, although an expected aging effect
was present (Figures 4A–D). Second, the cause of outer retinal
swelling was further investigated by measuring the expression
of AQP4 (Figures 4G,H). AQP4 is a water channel expressed

by the Müller glia, of which differences in expression levels
and cellular localization have been linked to retinal edema and
neuroinflammation (Amann et al., 2016). In AD patients, it
was found to be overexpressed in the brain and associated with
blood-brain barrier disruption (Foglio and Luigi Fabrizio, 2010;
Fukuda and Badaut, 2012). However, no genotypic difference
in immunofluorescent area nor localization in the inner versus
outer retinal layers was revealed in mice of 15 months old
(Figures 4E,F). Third, microgliosis was investigated on retinal
wholemounts stained for Iba-1 (Figures 4J,K,M,N). Cell density
did not differ in transgenic versus WT mice at any of the selected
ages (Figure 4I). Furthermore, we investigated cell morphology,
to probe for changes in soma roundness as a sign of microglia
reactivity (Davis et al., 2017). However, no difference in cell
body roundness of Iba-1+ cells was observed between the two
genotypes (Figure 4L). In conclusion, this data suggests that
retinal inflammation nor edema underlie the OCT and ERG
abnormalities that we observed in the α-syn mice.

DISCUSSION

In recent years, neurodegenerative disease research is
increasingly focusing on the pre- and early symptomatic
stages of disease, when the cascade of neurodegenerative events
has only just started and a sufficiently large pool of neurons still
remains that can be rescued with disease-modifying treatments
to preserve brain function. To identify and take opportunity
of this early time window for treatment, however, novel
biomarkers and inexpensive, minimally invasive, and widely
available screening and diagnostic tests are needed. These may
be found in the retina. As an integral part of the CNS, the retina
recapitulates many of the PD-related neurodegenerative process
in the brain. Indeed, a multitude of OCT and ERG studies
has shown that neuronal dysfunction and degeneration affects
the retina of PD patients (Garcia-Martin et al., 2014; Boeke
et al., 2016; Aydin et al., 2018; Veys et al., 2019). Furthermore,
accumulating evidence of retinal dopamine deficits and α-syn
misfolding suggest that this is the result of the same disease
processes that also drive neurodegeneration in the brain (Guo
et al., 2018; Ortuno-Lizaran et al., 2018a; Veys et al., 2019;
Ortuño-Lizarán et al., 2020). It remains to be explored, however,
what the correlation between the PD manifestations in the
brain and retina is, and whether the mechanisms behind these
manifestations are the same. A deeper understanding of this
will be essential for the rational use of retinal biomarkers for
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FIGURE 3 | Electrophysiological changes in the retina of older Thy1-h[A30P]α-syn mice cannot be alleviated by L-DOPA treatment. ERG was used to measure the
electrophysiological responses of different retinal cell types. (A,B) Quantification of the OPs, measured as the area under the curve (AUC), revealed larger OPs in 4-
and 8-month-old α-syn mice as compared to WT controls for light stimuli with high intensity. (D,E) Quantification of pSTR response did not reveal any differences at
4 months of age, yet a shorter pSTR latency time was observed in 18-month-old transgenic mice as compared to WTs. (C,F) L-DOPA treatment did not have an
overt rescue effect on observed OP (C) and pSTR (F) differences in α-syn mice. Repeated measures Two-Way ANOVA (A–C) with Bonferroni’s multiple comparisons
post hoc test or unpaired t-test (D–F): *p < 0.05; **p < 0.01; and ***p < 0.001. Full ERG data is shown in Supplementary Figure 1.

PD diagnosis, monitoring and/or stratification, and will also
aid research into novel retinal biomarkers. Animal research will
remain an essential complement to the extensive clinical studies
that are obviously needed, offering flexibility in study subjects
and read-outs to dig into the cellular and molecular changes
that characterize the PD retina and dictate the retinal biomarker
results. Up till now, multiple studies have investigated the brain
phenotype of PD animal models, yet retinal manifestations have
received little attention (Santano et al., 2011; Normando et al.,
2016; Price et al., 2016; Veys et al., 2019). Mammadova et al.
investigated the retinal phenotype of the TgM83 mouse model.
This transgenic mouse is characterized by α-syn accumulation
mainly in the outer retina and p-α-syn pathology in both outer
and inner retina, and thereby only partially mimics the inner
retina pathology seen in PD patients (Mammadova et al., 2018,
2021). In addition, and in contrast to the Thy1-h[A30P]α-syn
model, neuroinflammation, and photoreceptor cell loss were seen
in the TgM83 model, again partially reflecting human disease –
where also microglia reactivity was seen (Tansey and Goldberg,
2010; Ferreira and Romero-Ramos, 2018; Mammadova et al.,
2018). Both in the Thy1-h[A30P]α-syn and TgM83 mice, and
in contrast to reports on the human PD retina (Archibald et al.,
2009; Mammadova et al., 2018; Ortuño-Lizarán et al., 2020),
TH immunoreactivity was unaltered (Table 1). The lack of
dopaminergic degeneration, even in end-stage animals (data not
shown), highlights the limitations of the available transgenic
mouse models in recapitulating the full complexity of human

disease. Of note, this is in line with findings in the brain, where
a lack of progressive neurodegeneration has been reported for
several rodent PD models (Lim and Ng, 2009; Dawson et al.,
2010; Kin et al., 2019). Furthermore, the diverging retinal
manifestations observed in these two mouse models might
result from the use of distinct promoters (Thy1 versus Prp)
and/or different mutated forms of α-syn (A30P versus A53T),
which might influence the aggregation process (Flagmeier et al.,
2016). By examining the retina of the Thy1-h[A30P]α-syn PD
mouse model, we aim to establish a research model with a
retinal α-syn expression pattern that more closely resembles
α-synucleinopathy in PD patients. We believe that such as
model is valuable to investigate the retina-brain connection
in PD and thereby propel retinal biomarker discovery and
validation research and fundamental studies of the role of α-syn
in health and disease.

We revealed that, from a young age onward, α-syn
overexpression can be observed in the inner retina of α-syn mice,
alongside a fraction of phosphorylated α-syn in RGC neurites and
somata; an observation that complies with previously described
(p)-α-syn localization in the retina of PD patients (Table 1;
Ortuno-Lizaran et al., 2018a; Veys et al., 2019). Despite the
lack of ThioS positive protein aggregates and accumulation of
the Lewy body marker p62, α-syn overexpression did result
in thinning of the inner retina in α-syn mice from the age
of 12 months, similar to the inner retinal remodeling seen in
PD patients (Table 1; Shrier et al., 2012; Adam et al., 2013;
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FIGURE 4 | Macroglia and microglia reactivity and water homeostasis appear normal in Thy1-h[A30P]α-syn mice. Representative images of retinal cross-sections
stained for GFAP (C,D) and wholemounts stained for Iba-1 (J,K,M,N) and cross-sections stained for AQP4 (G,H) in 15-month-old α-syn and WT mice. (A,B) When
measuring the GFAP immunopositive area and the number of radial fibers in the inner retina, no differences in macroglia reactivity were uncovered between
transgenic and WT animals in any of the age groups. (I,L) No differences in Iba-1+ cell density and cell soma roundness, indicative of microgliosis, were observed.
(E,F) AQP4 immunopositive area or localization in the inner versus outer retina of α-syn mice versus age-matched WT animals was similar. Two-Way ANOVA with
Sidak’s multiple comparisons post hoc test (A,I,L) or unpaired t-test (B,E,F). Scale bar: 100 µm.

Spund et al., 2013; Lee et al., 2014; Bodis-Wollner et al., 2014b).
Our data revealed that neurodegeneration of dopaminergic
amacrine cells or melanopsin positive RGCs cannot account
for this IPL thinning uncovered with OCT imaging. Instead,
synapse loss may underlie this retinal atrophy. Indeed, significant

changes in the density of Homer1+ postsynaptic -yet not
VGLUT1+ presynaptic- terminals in the IPL underscore the
OCT alterations. Postsynaptic terminals in the IPL come from
RGCs and amacrine cells, neurons for which we also observed hα-
syn overexpression and abnormal ERG responses (Connaughton,
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TABLE 1 | Summary of the phenotypical alterations observed in the retina of PD patients, Thy1-h[A30P]α -syn mice.

PD patients References Thy1-h[A30P]α -syn mice TgM83 mice

α-syn in GCL, IPL, and INL Beach et al., 2014; Ho et al., 2014;
Bodis-Wollner et al., 2014a

α-syn in GCL, IPL, and INL α-syn in ONL and INL

p-α-syn positive cell bodies and neurites in
GCL

Beach et al., 2014; Ortuno-Lizaran
et al., 2018a

p-α-syn positive cell bodies and
neurites in GCL

p-α-syn labeling in outer and inner
retina

p-Tau (Thr231) in OPL and GCL

Thinning of NFL, GCL, IPL, and INL (OCT) Shrier et al., 2012; Adam et al.,
2013; Spund et al., 2013; Lee
et al., 2014; Bodis-Wollner et al.,
2014b; Matlach et al., 2018

Thinning of IPL (OCT) Thinning of ONL (histology)

Thickening of PL (OCT)

Decreased TH levels and TH-positive cell
density in INL Decreased TH + plexus
complexity

Nguyen-Legros, 1988; Harnois and
Di Paolo, 1990; Chorostecki et al.,
2015; Ortuño-Lizarán et al., 2020

Preserved TH-positive cell density
in INL

Preserved TH levels in INL

Preserved TH + plexus size in IPL

Decreased melanopsin-positive cell density
in GCL and dendritic tree complexity

Ortuno-Lizaran et al., 2018b Preserved melanopsin-positive cell
density in GCL

Increased microglial reactivity (Iba-1) Doorn et al., 2014; Ferreira and
Romero-Ramos, 2018

No microglial reactivity (Iba-1) Increased microglial reactivity
(CD11b, CD68)

No macroglial reactivity (GFAP) Mirza et al., 1999 No macroglial reactivity (GFAP) Macroglial reactivity (GFAP)

RGC, bipolar and amacrine cell dysfunction
(ERG):

Nightingale et al., 1986; Gottlob
et al., 1987; Burguera et al., 1990;
Ikeda et al., 1994; Peppe et al.,
1992, 1995, 1998; Langheinrich
et al., 2000; Sartucci et al., 2006;
Garcia-Martin et al., 2014;
Nowacka et al., 2015; Kashani
et al., 2021

RGC and amacrine cell dysfunction
(ERG):

− diminished responses of the photopic
b-wave, scotopic oscillatory potentials and
P50 component of the pattern ERG
reversed by L-DOPA

− supernormal responses of the
scotopic oscillatory potentials and
pSTR (starting at 4 and 8 months,
respectively)

− reversed by L-DOPA − no overt response to L-DOPA

Retinal manifestations on the TgM83 mouse model were described in Mammadova et al. (2018). OCT, optical coherence tomography; NFL, nerve fiber layer; GCL, ganglion
cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer; OPL, outer plexiform layer; PL, photoreceptor layer; ERG, electroretinography; OPs,
oscillatory potentials; pSTR, positive scotopic threshold response; and TH: tyrosine hydroxylase.

1995). Furthermore, synapse loss has been shown to occur early
in the neurodegenerative process, for example in the retina
of glaucoma models and patients, or in the brain of AD or
PD models and patients (Selkoe, 2002; Della Santina et al.,
2013; Purro et al., 2014; Bellucci et al., 2016; Subramanian and
Tremblay, 2021). More specifically, a decrease in synaptic volume
in of pre- and post-synapses has been reported in the striatum
of PD patients (Bellucci et al., 2016; Reeve et al., 2018; Gcwensa
et al., 2021). Of note, an age-related decrease of postsynaptic
retinal proteins was also observed in the plexiform layers of
Octodon degus, the only rodent with naturally occurring AD
(Chang et al., 2020).

The retinal atrophy and synapse loss observed in α-syn
mice is accompanied by functional alterations, which were
uncovered using ERG. These were striking for several reasons.
First, amacrine cell responses were supernormal in α-syn mice.
Although abnormal OPs are also typically seen in PD patients,
these ERG alterations tend to decrease rather than increase in
human patients (Table 1; Gottlob et al., 1987; Burguera et al.,
1990; Ikeda et al., 1994; Nowacka et al., 2015). Remarkably,
these supernormal ERG responses in α-syn mice coincide with
a thickening of the PL, which might be caused by local edema
or swelling of the photoreceptors (Devos et al., 2005; Archibald
et al., 2009). Interestingly, this outer retinal swelling was also seen
in the early disease stages of a rotenone-induced PD rat model,
where it was suggested to be linked to increased mitochondrial
biogenesis in the highly energy demanding photoreceptor cells

(Normando et al., 2016). Outer retinal thickening has also been
observed to co-occur with supernormal ERG measurements in
the retina of the 3×Tg-AD Alzheimer’s (Chiquita et al., 2019a).
Furthermore, both supernormal scotopic ERG measurements
and PL layer thickening have been related to a mild inflammatory
phenotype in the early stages of retinal pathology linked to
multiple sclerosis (Mirza and Jampol, 2013; Petzold, 2016). Yet,
with the measurements used in this study, no abnormalities
in AQP4 water channels and no inflammatory response of
the macro- and microglia was detected. Second, an equally
striking observation in this study is the increased conduction
velocity of RGC electrophysiological responses in older animals,
reminiscent of the RGC hyperactivity in early AD disease
stages of 5×FAD mice (Araya et al., 2021). In AD models,
amyloid-beta overproduction can lead to neuronal network
hyperexcitability (Kazim et al., 2021). As AD and PD are both
neurodegenerative proteinopathies and amyloid-beta and α-syn
biology show many parallels, one could hypothesize that similar
neuronal network hyperexcitability events might occur in PD
too (Goedert, 2015). This hypothesis is supported by our data
on synaptic integrity, which show preservation of presynaptic
integrity yet loss of postsynaptic density. The postsynaptic
density Homer1 proteins link metabotropic glutamate receptors
to intracellular effectors, mediating the glutamate inducible
effects in postsynaptic RGCs and amacrine cells (Connaughton,
1995). Dysregulation of extracellular glutamate concentrations
at the synapse can lead to excess release of glutamate, which
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is known to induce hyperexcitability in postsynaptic neurons
(Gasparini and Griffiths, 2013). An alternative explanation for
the supernormal ERG responses by RGCs might relate to
the physiological role of α-syn at the synapse, where it is
suggested to associate with synaptic vessels and to influence
neurotransmitter release (Sulzer and Edwards, 2019). Since
α-syn overexpression inhibits synaptic vesicle exocytosis, one
could hypothesize that decreased exocytosis might disturb the
tightly maintained balance that is involved in synaptic regulation
(Sulzer and Edwards, 2019). Finally, the electrophysiological
alterations observed in this study were, in contrast to ERG
changes in PD patients, not reversed by L-DOPA treatment

(Table 1; Archibald et al., 2009). Along with the observed lack
of dopaminergic cell loss in the retina and the absence of hα-
syn in dopaminergic amacrine cells in the α-syn mice, this
suggests a dopamine-independent mechanism underlying the
ERG alterations. Which neuronal subtype(s) account for the
observed electrophysiological abnormalities should be elucidated
in future research via more advanced electrophysiology studies,
e.g., using patch clamping or microelectrode arrays (Obien et al.,
2015; Chiquita et al., 2019b).

Besides generating insights into the (patho)physiological role
of α-syn and the disease processes that lead to the retinal PD
phenotype, we postulate that the α-syn mouse may also aid the

TABLE 2 | Overview of the reported phenotypical alterations in the brain and spinal cord of Thy1-h[A30P]α-syn mice, in relation to observations in the retina.

Observations in the brain and spinal cord Time point of first
observation

References Own observations in the
retina

Time point of first
observation

Functional read-outs

Decreased fine motor performance (beam transversal
test)

2 months, worsens
with age

Ekmark-Lewen et al.,
2018

Lower general activity and more risk-taking (multivariate
concentric square field test)

8 months Ekmark-Lewen et al.,
2018

Impaired spatial learning and memory (Morris water
maze)

12 months Freichel et al., 2007

Impaired fear conditioning (freezing behavior after foot
shock)

12 months Freichel et al., 2007

Higher locomotor activity 12 months Freichel et al., 2007

Impaired motor behavior (rotarod test) 17 months Freichel et al., 2007

(Hind limb) paralysis 18 months Freichel et al., 2007

Premature death 18 months Freichel et al., 2007

Decreased frequency of spontaneous excitatory
postsynaptic currents (electrophysiology)

1 month Chesselet et al., 2012 OP alterations (ERG) 4 months

pSTR latency alterations
(ERG)

18 months

Histopathology

α-syn overexpression in neuronal cell bodies and
neurites in the brain and spinal cord

6 month Kahle et al., 2000 α-syn overexpression in
neuronal cell bodies and
neurites in the inner retina

4 months

p-α-syn positive neurons in spinal cord and brainstem 1 months Freichel et al., 2007 p-α-syn positive neurons in
GCL

4 months

Oligomeric α-syn in brainstem, midbrain and
hippocampus

8 months Ekmark-Lewen et al.,
2018

PK-resistant α-syn in brain 9 months Neumann et al., 2002;
Freichel et al., 2007

Ubiquitin-positive inclusions in pontine reticular nuclei
and ventral horn of the spinal cord

12 months Neumann et al., 2002

ThioS reactive species in brainstem 16 months Schell et al., 2009 No ThioS reactivity
detected

Decreased TH immunoreactivity in central midbrain
regions

8 months Ekmark-Lewen et al.,
2018

No changes in TH
immunoreactivity

Increased GFAP immunoreactivity in brainstem 8 months Neumann et al., 2002;
Ekmark-Lewen et al.,
2018

No changes in GFAP
immunoreactivity

Limited inflammatory response (increase in Mac2+

immune cells)
8 months Ekmark-Lewen et al.,

2018
No changes in Iba-1
immunoreactivity

No reports of neurodegeneration PL thickening (OCT) 4 months

IPL thinning (OCT) 15 months

OCT, optical coherence tomography; PL, photoreceptor layer; IPL, inner plexiform layer; INL, inner nuclear layer; ERG, electroretinography; OPs, oscillatory potentials;
pSTR, positive scotopic threshold response; TH, tyrosine hydroxylase; PK, proteinase K; and ThioS, thioflavin S.
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understanding of the retina-brain connection. Indeed, the α-syn
mouse is characterized by hα-syn overexpression in neuronal cell
bodies and neurites in the brain and spinal cord (Table 2; Kahle
et al., 2000; Freichel et al., 2007) and p-α-syn and oligomeric α-
syn were detected in brainstem, midbrain, and hippocampus of 8-
month-old transgenic mice. In addition, older mice also develop
proteinase K-resistant α-syn deposits, ubiquitin-positive neuritic
and cell body inclusions, and ThioS reactive α-syn species in
various CNS regions (Table 2; Neumann et al., 2002; Schell
et al., 2009). This synucleinopathy in the brain is accompanied
by astrogliosis and dopaminergic neurodegeneration (Ekmark-
Lewen et al., 2018), and led to a variety of behavioral changes in
fine motor performance, learning, and memory, finally leading
to paralysis and premature death around the age of 18 months
(Table 2; Freichel et al., 2007; Ekmark-Lewen et al., 2018).
We conclude that the rather subtle retinal phenotype stands in
marked contrast to findings in the brain of these mice, exposing
the organotypic heterogeneity of the retina compared to other
brain structures. Notably, this heterogeneity may be exploited
as a strength in future research, and aid the understanding
of disease mechanisms and selective vulnerability in different
locations in the CNS.

Irrespective of the differences in the retina versus brain
phenotype of the α-syn mice, this study highlights the potential
of the retina for in vivo imaging and electrophysiology
measurements with non-invasive techniques, such as OCT
and ERG. Especially OCT, which detected retinal thinning in
the inner retina in our transgenic mice similar to what has
been described in the human PD retina, has the potential
to become a low-cost, non-invasive tool for diagnosis and
follow-up of PD disease progression (Shrier et al., 2012; Adam
et al., 2013; Spund et al., 2013; Lee et al., 2014; Bodis-Wollner
et al., 2014b). Importantly, these techniques have the advantage
of being suitable for both patient and preclinical research,
thereby providing relevant endpoint measures and enhancing the
translatability of this research to the clinic.

In conclusion, this study uncovered morphological and
electrophysiological abnormalities in the α-syn mouse retina.
While this mouse model does not display dopaminergic
neurodegeneration or neuroinflammation, its retina is
characterized by a decreased density of postsynaptic terminals
that may reflect neurotransmitter dysregulation and as such
is linked to the observed ERG changes and IPL thinning.
These pathological changes resemble the loss of synapses and
neuronal dysfunction that are typically observed during the
earliest stages of neurodegenerative diseases and are in line with
a multitude of OCT and ERG studies in PD patients and animal
models. The methodologies and the α-syn mouse model used

in this study thus constitute a toolbox for research of the early,
preclinical/prodromal stages of PD, and may aid fundamental
research of PD-associated retinal disease processes, such as α-
syn mediated synaptic dysfunction, as well as retinal biomarker
discovery and validation.
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The retina has been increasingly investigated as a site of Alzheimer’s disease (AD)
manifestation for over a decade. Early reports documented degeneration of retinal
ganglion cells and their axonal projections. Our group provided the first evidence
of the key pathological hallmarks of AD, amyloid β-protein (Aβ) plaques including
vascular Aβ deposits, in the retina of AD and mild cognitively impaired (MCI) patients.
Subsequent studies validated these findings and further identified electroretinography
and vision deficits, retinal (p)tau and inflammation, intracellular Aβ accumulation, and
retinal ganglion cell-subtype degeneration surrounding Aβ plaques in these patients. Our
data suggest that the brain and retina follow a similar trajectory during AD progression,
probably due to their common embryonic origin and anatomical proximity. However, the
retina is the only CNS organ feasible for direct, repeated, and non-invasive ophthalmic
examination with ultra-high spatial resolution and sensitivity. Neurovascular unit integrity
is key to maintaining normal CNS function and cerebral vascular abnormalities are
increasingly recognized as early and pivotal factors driving cognitive impairment in AD.
Likewise, retinal vascular abnormalities such as changes in vessel density and fractal
dimensions, blood flow, foveal avascular zone, curvature tortuosity, and arteriole-to-
venule ratio were described in AD patients including early-stage cases. A rapidly growing
number of reports have suggested that cerebral and retinal vasculopathy are tightly
associated with cognitive deficits in AD patients and animal models. Importantly, we
recently identified early and progressive deficiency in retinal vascular platelet-derived
growth factor receptor-β (PDGFRβ) expression and pericyte loss that were associated
with retinal vascular amyloidosis and cerebral amyloid angiopathy in MCI and AD
patients. Other studies utilizing optical coherence tomography (OCT), retinal amyloid-
fluorescence imaging and retinal hyperspectral imaging have made significant progress
in visualizing and quantifying AD pathology through the retina. With new advances in
OCT angiography, OCT leakage, scanning laser microscopy, fluorescein angiography
and adaptive optics imaging, future studies focusing on retinal vascular AD pathologies
could transform non-invasive pre-clinical AD diagnosis and monitoring.

Keywords: cerebral amyloid angiopathy, vascular amyloidosis, eye, ocular disease, retinal imaging, blood retinal
barrier, Alzheimer’s disease, neurodegenerative disease
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INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of senile dementia,
accounting for 60–80% of total cases (Alzheimer’s Association,
2020). By 2050, over six million Americans are projected to live
with AD, which could lead to a staggering $355 billion national
financial burden (National Institue on Aging, 2019; Alzheimer’s
Association, 2020). AD patients progressively develop irreversible
cognitive loss due to neurodegeneration in the brain and
other direct or indirect factors such as accumulation of toxic
molecules, neuroinflammation, and vascular damage. The main
pathological hallmarks of AD are amyloid β-protein (Aβ)
accumulation and neurofibrillary tangles, mainly composed of
hyperphosphorylated (p)tau deposits, that may exist inside or
outside of neurons and in blood vessels (Bloom, 2014; Cisternas
et al., 2019). Our group identified these hallmarks in the
retina of postmortem and living AD and mild cognitively
impaired (MCI) patients (Koronyo-Hamaoui et al., 2011; La
Morgia et al., 2016; Koronyo et al., 2017). Investigation of
CNS and fluid biomarkers has become an essential part of
AD research. In 2018, the National Institute on Aging and
Alzheimer’s Association (NIA-AA) created an updated research
framework for classifying pathological phases of AD based
on detection of abnormal levels of molecular biomarkers Aβ

(A), tau (T), and neurodegeneration [AT(N)], regardless of
cognitive status in living patients (Jack et al., 2018). The ATN
framework was also proposed to be expandable to include
new AD biomarkers such as vascular biomarkers (ATNV)
(Jack et al., 2018).

Vascular pathology in AD is an expanding subject and a
growing number of studies show that vascular-related damage
in the brain and retina can predict cognitive decline (Vidal
and Mavet, 1989; Baker et al., 2007; Gharbiya et al., 2014;
Boyle et al., 2015; Bulut et al., 2016, 2018; Cunha et al., 2017;
McGrory et al., 2017; Planton et al., 2017; Cabrera DeBuc
et al., 2018; Deal et al., 2018; Jiang et al., 2018; O’Bryhim
et al., 2018; van der Flier et al., 2018; Iadecola et al., 2019;
Jung et al., 2019; Montagne et al., 2020; Shi et al., 2020a;
Li et al., 2021). Cerebral vascular damage such as ischemia
leads to disturbed nutrient supply, induces oxidative stress and
inflammatory activities, impedes Aβ clearance and/or alters
amyloid-processing enzymes (Marchesi, 2011), all of which can
contribute to neurodegeneration and cognitive decline. Studies
have also proposed that the onset of clinical dementia may
be preceded by reduced cerebral blood flow associated with
insufficient Aβ clearance (Wolters et al., 2017; Govindpani et al.,
2019). With new disease-modifying therapies on the horizon
and emphasizing the need for early intervention (Tonda-Turo
et al., 2018), the current challenge is to diagnose AD early
and accurately in the clinical setting to allow for an effective
outcome that could limit the damage and prevent further
disease progression.

Vascular Damage in AD Brain
The brain is nourished by one of the human body’s richest
networks of blood vessels (Prensa, 2014), rendering its vascular
network highly susceptible to aging and AD-related cerebral

damage. Studies indicate that AD pathology is associated
with severe effects on cerebral blood vessels, potentially by
a wide range of complications (Govindpani et al., 2019).
These include cerebral amyloid angiopathy (CAA) (Ellis et al.,
1996; Arvanitakis et al., 2011; Viswanathan and Greenberg,
2011), vascular non-perfusion (Bonte et al., 1986; Hirsch et al.,
1997; Binnewijzend et al., 2016), neurovascular unit (NVU)
uncoupling and degeneration (Higuchi et al., 1987; Vinters
et al., 1994; Claudio, 1996), angiogenesis (Desai et al., 2009;
Biron et al., 2011), small blood vessel distortions (Hassler,
1965; Beskow et al., 1971; Fischer et al., 1990; Kalaria
and Kroon, 1992), blood–brain barrier (BBB) breakdown
and damage (Slemmon et al., 1994; Zipser et al., 2007;
Bell and Zlokovic, 2009; Ryu and McLarnon, 2009; Sengillo
et al., 2013; van de Haar et al., 2016a,b), vascular tau
accumulation (Williams et al., 2005; Castillo-Carranza et al.,
2017), dysregulated glucose metabolism (Kalaria and Harik,
1989; Harik, 1992), inflammation (Grammas and Ovase, 2001;
Tripathy et al., 2007), hypertension (Launer, 2002; Gabin
et al., 2017), hypercholesterolemia (Matsuzaki et al., 2011), and
atherosclerosis (Alzheimer, 1911; Yarchoan et al., 2012).

Amyloid plaques are the most considerable hallmarks of
AD, with 42 and 40 amino acid-long Aβ alloforms tightly
associated with AD pathogenesis and vascular pathology
(Blennow et al., 2015; Selkoe and Hardy, 2016). Nearly 85%
of AD patients develop varying degrees of CAA complications
(Arvanitakis et al., 2011; Viswanathan and Greenberg, 2011),
defined by Aβ deposits inside walls of arteries, arterioles
and capillaries (DeSimone et al., 2017). Accumulation of Aβ

within blood vessels is associated with damage to muscular
and elastic tissue, possibly replaced by Aβ fibrils, leading to
lobar cerebral hemorrhage (ICH) or vascular non-perfusion
(Mehndiratta et al., 2012; Keable et al., 2016). CAA can
also trigger other pathogenic pathways, such as inflammation
and oxidative stress, further leading to cerebral tissue damage
(Ghiso et al., 2010).

Alzheimer’s Retinopathy
Over the past decade, the retina has been extensively investigated
as a top candidate site of AD manifestation beyond the brain,
as it shares many structural, cellular, molecular, and functional
similarities with the brain (Hinton et al., 1986; Purves, 2001;
Patton et al., 2005; Koronyo-Hamaoui et al., 2011; Koronyo
et al., 2012, 2017; Schon et al., 2012; Erskine and Herrera,
2014; Crair and Mason, 2016; Hart et al., 2016; La Morgia
et al., 2016; den Haan et al., 2018a; Asanad et al., 2019;
Grimaldi et al., 2019; Lee S. et al., 2020; Mirzaei et al., 2020;
Schultz et al., 2020; Snyder et al., 2021). Given the parallel
pathology in the brain and retina, the retina has the potential
to become a non-invasive diagnostic window since it is not
shielded by bone and is easily accessible by ophthalmic exams
such as optical coherence tomography (OCT) and fundoscopy
(including scanning laser ophthalmoscopy) with subcellular
resolution. The retina is directly and indirectly connected to
the brain through bundles of neuronal axons forming the
optic nerve, and by retinal and cerebral blood vessels, which
may facilitate transportation of abnormal Aβ and tau species
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and further lead to the spread of AD pathology throughout
the CNS (Morin et al., 1993). In addition, the discovery of
dysfunctional lymphatic vessels within the brain of rodent
models of AD implicates this CNS-specific lymphatic network,
referred to as the glymphatic system (Jessen et al., 2015),
as a culprit of insufficient cerebral amyloid clearance in AD
(Louveau et al., 2015; Da Mesquita et al., 2018; Ahn et al., 2019).
Recently, an ocular lymphatic drainage system was also identified
in rodent models, which relies on an aquaporin-4-dependent
pathway to clear fluid and metabolites (Wang et al., 2020). The
roles of such lymphatic systems in retinal diseases and AD remain
to be explored in future studies.

Studies conducted by OCT, electroretinogram (ERG), and
histological examinations on cognitively impaired patients
and laboratory animals have extensively described various
retinal pathological and functional changes associated with AD
development. In fact, the retina is heavily affected by AD
pathology and displays a wide spectrum of retinopathy (reviewed
in Mirzaei et al., 2020). This includes optic nerve degeneration
and retinal neuronal and ganglion cell (RGC) loss (Hinton et al.,
1986; Blanks et al., 1989, 1996; La Morgia et al., 2016; Koronyo
et al., 2017; Asanad et al., 2019), retinal nerve fiber layer (NFL)
thinning (Kergoat et al., 2001; Parisi et al., 2001; Berisha et al.,
2007; Paquet et al., 2007; Moschos et al., 2012; Kirbas et al.,
2013; Marziani et al., 2013; Moreno-Ramos et al., 2013; Kromer
et al., 2014; Shi et al., 2014; Bayhan et al., 2015; Coppola et al.,
2015; Gao et al., 2015; Liu et al., 2015; La Morgia et al., 2016),
gliosis (Hinton et al., 1986; Curcio and Drucker, 1993; Blanks
et al., 1996; Guo et al., 2010; Grimaldi et al., 2019), and vascular
degeneration and injury (Patton et al., 2005; Frost et al., 2013;
Cheung et al., 2014; Feke et al., 2015; Williams et al., 2015;
Kapasi and Schneider, 2016; Shi et al., 2020b). This retinal
damage can explain, at least in part, the visual dysfunctions
(Sadun and Bassi, 1990; Armstrong and Syed, 1996; Risacher
et al., 2020), sleep disturbances (La Morgia et al., 2016; Wang
and Holtzman, 2020), and ERG abnormalities (Trick et al., 1989;
Parisi et al., 2001; Moschos et al., 2012) documented in AD
patients. Such findings have largely encouraged basic research
in the AD retina and exploration of retinal imaging techniques
for AD diagnosis.

Our group was the first to demonstrate the existence of
Aβ accumulation, the hallmark AD pathology, in the retina of
AD patients, including early-stage cases. In a study published
in mid-2010, we revealed the aggregation of Aβ deposits in
retinal flat-mounts isolated from 13 out of 13 neuropathologically
confirmed AD and mild cognitively impaired (MCI) patients,
which was minimally or undetected in 5 cognitively normal
(CN) subjects negative for brain amyloid (Koronyo-Hamaoui
et al., 2011). Further, this pioneer study demonstrated for the
first time the ability to non-invasively detect curcumin-labeled
Aβ deposits in live murine models of AD (Koronyo-Hamaoui
et al., 2011). Importantly, similar reductions in retinal and
brain Aβ plaques were detected ex vivo and in vivo in AD-
model mice (Koronyo-Hamaoui et al., 2011; Koronyo et al.,
2012) in response to immunomodulation therapies (Butovsky
et al., 2006; Koronyo-Hamaoui et al., 2009; Bakalash et al.,
2011; Koronyo et al., 2015; Rentsendorj et al., 2018; Doustar

et al., 2020). Although a few studies failed to detect Aβ

and/or (p)tau in the retina of AD patients, these reports
included low case numbers (Schon et al., 2012; Ho et al.,
2014; Williams et al., 2017) and only examined limited retinal
regions in cross sections, focusing on less affected regions in
these patients (La Morgia et al., 2016; Koronyo et al., 2017;
Asanad et al., 2019; Shi et al., 2020b). It is possible this
discrepancy in findings could also be due to differences in
retinal tissue preservation, processing, and/or immunostaining
protocols.

Subsequent studies by La Morgia et al. (2016), Lee S.
et al. (2020), and others also demonstrated Aβ plaques
and vascular-associated deposits in postmortem retinas of
AD patient cohorts. Retinal amyloidosis in AD patients was
in stark contrast to minimal pathology observed in the
retinas of CN individuals (Tsai et al., 2014; La Morgia
et al., 2016; den Haan et al., 2018a; Grimaldi et al., 2019;
Lee S. et al., 2020; Qiu et al., 2020; Shi et al., 2020a; Cao
et al., 2021). In 2017, Koronyo et al. (2017) published the
development of more advanced human retinal extraction and
histological techniques. Authors utilized immunofluorescence,
anti-Aβ compound labeling, non-fluorescence immunostaining,
and transmission electron microscopy (TEM) to measure
Aβ42 plaque burden, characterize retinal Aβ plaque subtypes
and morphology including identifying retinal Aβ fibrils and
protofibrils, and describe Aβ plaque topographical and layer
distribution in a larger cohort of 23 AD patients vs. 14 age-
and sex-matched CN patients (Koronyo et al., 2017). In this
study, several Aβ-epitope labeling techniques including Gallyas
silver stain, curcumin, thioflavin-S, congo red, as well as a
combination of monoclonal antibodies against various N’-, C’-
and center Aβ sequences were used to describe amyloidosis
in the human AD retina. Hence, together with post-mortem
detection by immunofluorescence staining, peroxidase-based
staining, and TEM analysis on retinal flat-mounts and cross-
sections, this study profoundly validated Aβ accumulation in the
AD retina in comparison to CN controls. We also demonstrated a
significant correlation between retinal and brain plaque burdens,
and more importantly, provided the first proof-of-concept trial
using curcumin labeling and a scanning laser ophthalmoscope
to detect and quantify retinal Aβ plaques in living patients,
(Koronyo et al., 2017).

Indeed, multiple biochemical and histological studies
corroborated these findings of Aβ deposits in the human
AD retina (den Haan et al., 2018a; Grimaldi et al., 2019;
Lee S. et al., 2020; Qiu et al., 2020) and further described
retinal pTau, Aβ40 and Aβ42 accumulation, inflammation,
and correlations between retinal and cerebral Aβ levels
in AD patients (Alexandrov et al., 2011; Schon et al.,
2012; den Haan et al., 2018b; Grimaldi et al., 2019; Lee S.
et al., 2020; Qiu et al., 2020; Schultz et al., 2020; Shi et al.,
2020b). More recently, in vivo retinal amyloid imaging
in living MCI and AD patients was achieved via either
retinal curcumin-enhanced fluorescence and SLO imaging
or hyperspectral imaging (Hadoux et al., 2019; More
et al., 2019; Dumitrascu et al., 2020; Lemmens et al., 2020;
Ngolab et al., 2021).
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Recent studies by Chibhabha et al. (2020); Sidiqi et al. (2020),
and Barton et al. (2021) in the APPSWE/PS11E9 transgenic
mouse model further corroborated these findings via Aβ retinal
curcumin imaging. In fact, numerous studies in AD rodent
models have detected Aβ and its alloforms such as Aβ40 and
Aβ42 in the AD retina (Inestrosa et al., 2005; Dutescu et al.,
2009; Liu et al., 2009; Alexandrov et al., 2011; Ardiles et al., 2012;
Schon et al., 2012; Williams et al., 2013; Yang et al., 2013; Zhao
et al., 2013; Park et al., 2014; Tsai et al., 2014; Du et al., 2015;
Parthasarathy et al., 2015; Chiasseu et al., 2017; Grimaldi et al.,
2018; Harrison et al., 2019).

Retinal Vascular Aβ Deposits in AD
Patients and Animal Models
An early study by Liu et al. (2009) in the Tg2576 transgenic
murine model describes Aβ deposits within retinal microvessels
by immunostaining against various Aβ epitopes, using mAbs
clones 6E10, 12F4 and 5C3, in retinal cross-sections. Histological
examinations by La Morgia et al. (2016) and Koronyo et al.
(2017) of retinas from AD patients and age- and sex-matched
cognitively normal controls provided evidence for retinal Aβ

deposits inside blood vessel walls, perivascular and along blood
vessels by immunostaining for 12F4-positive Aβ42 in retinal
flat-mounts and cross-sections. In the Koronyo et al. (2017)

study, retinal vascular Aβ accumulation in retinal flat-mounts
and cross-sections of AD patients was also validated by other
techniques including congo red, Gallyas silver stain, curcumin,
11A50-B10-positive Aβ40 immunostaining, as well as TEM
analysis (Koronyo et al., 2017). In murine models of AD, a
study by the same team demonstrated that following systemic
administration of curcumin to APPSWEPS11E9 model mice,
ex vivo examination of retinal flatmounts revealed double-
labeling of curcumin with 4G8 for Aβ deposits inside retinal
blood vessels (Koronyo-Hamaoui et al., 2011).

Amyloidosis in cerebral blood vessels predominately consists
of Aβ40 alloforms (Gravina et al., 1995). Accordingly, Shi et al.
(2020b) conducted the first stereological quantification and
mapping of Aβ40 in retinal blood vessels by immunostaining of
11A50-B10 and JRF/cAβ 40/28—specific monoclonal antibodies
detecting the Aβ40 alloform—in retinal cross-sections and
isolated retinal blood vessels from MCI and AD patients
(see Figures 1A–E,G,K,L for retinal vascular amyloidosis).
The pattern that was revealed by Aβ40 immunoreactivity
covered most vascular compartments including tunica media,
adventitia, and intima, indicating retinal blood vessels may
also be thoroughly affected by Aβ deposition (Figure 1B).
Increased levels of Aβ1-40 peptides in the retina of AD patients
as compared with age- and sex-matched cognitively normal
controls was further validated by a sandwich enzyme-linked

FIGURE 1 | Retinal vascular amyloidosis and pericyte loss in the retina of MCI and AD patients. (A) 3,3′-Diaminobenzidine (DAB) staining of Aβ42 by 12F4 antibody
in retinal blood vessels from flat-mount retina in an AD patient. Scale bar = 20 µm. (B) DAB staining of Aβ40 by JRF/cAβ 40/28 antibody on a retinal cross-section
sample from an AD patient. Scale bar = 20 µm. (C) Transmission electron microscopy (TEM) for Aβ42 by 12F4 antibody staining in retinal blood vessels and
pericytes. P, pericyte; EC, endothelial cell; L, lumen. Yellow circles indicate Aβ42 staining. Scale bar = 0.5 µm. (D,E) Immunostaining of Aβ42 by 12F4 antibody on
retinal blood vessels isolated from an AD patient and control. Scale bars = 20 µm. (F) Quantification of pericytes in AD patients and cognitively normal (CN) controls
based on isolated blood vessels. (G) Stereological quantification of Aβ in pericytes in AD patients and CN controls based on isolated blood vessels.
(H) Quantification of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) positive pericytes on retinal cross-sections from CN, mild
cognitively impaired (MCI), and AD patients. (I) Stereological quantification of PDGFRβ on retinal cross-sections from CN, MCI, and AD patients. (J) Pearson’s (r)
correlation between cerebral amyloidosis angiopathy (CAA) and retinal PDGFRβ from MCI and AD patients. (K,L) Stereological quantification of panel (K). Aβ40 and
(L) Aβ42 in CN versus MCI/AD patients. Filled circles represent males and clear circles represent females. Data from individual human donor as well as groups are
shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, by one-way ANOVA with Sidak’s post hoc multiple comparison test (more than 2
groups) or unpaired 2-tailed Student’s t test (2 groups). Fold and percentage changes are shown in red. Panel A reproduced from Koronyo et al. (2017) with
permission of ASCI via Copyright Clearance Center. Panels B–L reproduced from Shi et al. (2020b) under terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/).
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immunosorbent (ELISA) analytical biochemistry assay (Shi et al.,
2020b). When correlated with cerebral pathologies, levels of
retinal Aβ40 significantly associated with entorhinal cortex plaque
load and had a trend of predicting cognitive decline and
CAA. Retinal vascular Aβ40 tightly associated with neuritic
plaques in the entorhinal cortex and combined cerebral regions
including hippocampus, frontal cortex, temporal cortex, and
parietal cortex. A study by Schultz et al. (2020) also successfully
correlated levels of retinal high molecular weight Aβ42 and
Aβ40 with neurofibrillary tangles (NFT) and Aβ scores in the
hippocampus of AD patients. Another notable finding was
the downregulation of low-density lipoprotein receptor-related
protein 1 (LRP1) in AD retina, suggesting compromised Aβ

clearance (Shi et al., 2020b).
In a subsequent report, Shi et al. (2020a) detected

Aβ40 accumulation in retinal blood vessels of 8-month-old
APPSWEPS11E9 mice. Another recent study by Habiba et al.
(2021) revealed detectable levels of Aβ40 and Aβ42 oligomers in
the retina and blood as early as in 3-month-old APP/PS1 mice,
prior to their detection in the respective brain. It is important
to note that the transgenic APP/PS1 mouse model is driven by
increased production of human amyloidogenic Aβ peptides,
and therefore does not fully represent the human disease.
Nevertheless, this mouse model is known to develop Aβ plaques
and intracellular soluble Aβ oligomers, (p)tau, pronounced
micro- and astrogliosis, synaptic loss, as well as cognitive and
visual decline (Jankowsky et al., 2003; Butovsky et al., 2006;
Koronyo-Hamaoui et al., 2009; Bakalash et al., 2011; Koronyo
et al., 2015; Rentsendorj et al., 2018; Doustar et al., 2020; Vit et al.,
2021). Intriguingly, a recent study by Chintapaludi et al. (2020)
detected early onset alterations of retinal inflammatory genes
before cerebral amyloidosis. Nevertheless, more supporting
evidence and validation is needed to further evaluate the
feasibility to diagnose AD by retinal vascular amyloid imaging.

AD-Related Retinal Vasculopathy
Mounting evidence has demonstrated a wide range of retinal
vascular abnormalities in both AD patients and animals, such as
reduced macular microvascular density (O’Bryhim et al., 2018),
decreased blood flow (Berisha et al., 2007; Feke et al., 2015;
Einarsdottir et al., 2016), compromised microvascular network
(Frost et al., 2013; Cheung et al., 2014; Williams et al., 2015;
Einarsdottir et al., 2016; Cabrera DeBuc et al., 2018), damaged
vascular branching complexity (Frost et al., 2013; Cheung et al.,
2014), vein narrowing (Berisha et al., 2007; Frost et al., 2013;
Cheung et al., 2014; Feke et al., 2015; Cabrera DeBuc et al., 2018),
and increased vascular tortuosity (Cheung et al., 2014). Among
these findings, several studies showed significant correlations
between retinal vascular impairment and AD susceptibility, while
others did not. Nevertheless, these discoveries have provided
numerous potential retinal vascular targets for AD monitoring
and diagnosis. Compared to the brain, a distinct feature of the
retina is the existence of Müller glial cells, which are the principal
retinal glial cell type that maintain neuronal activity by regulating
extracellular concentration of neurotransmitters and neuroactive
ions (Newman and Reichenbach, 1996). Indeed, a previously
published report suggested that retinal Aβ is engulfed by these

specialized Muller glial cells (den Haan et al., 2018b), warranting
further research on the potential role of these retina-specific
glial cells in AD pathogenesis. It is important to note that most
investigations are still limited to cross-sectional observations.
Future studies should seek to apply standardized protocols and
design with longitudinal study methods.

Another similarity between the retina and brain is the
blood-organ barrier: the blood–retinal barrier (BRB) is highly
comparable to the BBB, both structurally and functionally
(Campbell and Humphries, 2012; Zenaro et al., 2017; Cai et al.,
2018). The BBB is composed of cerebral vascular endothelial
cells with tight junctions (TJ), astrocyte end-feet and supporting
pericytes, while the BRB is made of an inner barrier of retinal
vascular endothelial cells and an outer barrier of retinal epithelial
cells, both with TJ and supporting pericytes (Campbell and
Humphries, 2012; Zenaro et al., 2017; Cai et al., 2018). The
main functions of these barriers are to modulate the influx
of ions, proteins and water, as well as curb the infiltration of
circulating immune cells (Cunha-Vaz et al., 2011). In AD, a
compromised BBB is viewed as one of the principal causes for
cerebral amyloidosis due to its essential role in clearing abundant
cerebral Aβ to the circulating blood via the vascular network
(Zlokovic et al., 1993; DeMattos et al., 2002; Banks et al., 2003; Do
et al., 2015; Zhao et al., 2015; Sweeney et al., 2018). Recently, the
Zlokovic group has successfully connected the BBB-associated
pericyte injury biomarker, soluble PDGFRβ, in cerebrospinal
fluid (CSF) to cognitive decline in apolipoprotein E (APOE4)
carriers even after controlling for Aβ and tau status (Montagne
et al., 2020). These findings suggest that BBB biomarkers might be
an option for next-generation AD diagnostics and therapeutics.

Recent investigation of BRB in MCI and AD patients by Shi
et al. (2020b) has revealed early and progressive retinal vascular
PDGFRβ deficiency and pericyte loss associated with retinal
vascular Aβ40 and Aβ42 deposition in postmortem tissues from
MCI and AD patients (Figures 1D–J). In a subset of patients with
neuropathological reports, retinal vascular PDGFRβ expression
significantly correlated with CAA and cognitive decline assessed
by the Mini-Mental State Examination (MMSE). These data
suggest that pericyte loss or PDGFRβ downregulation may
precede AD progression. The retinal pericytes in cognitively
impaired patients were found to accumulate Aβ40 and Aβ42 and
undergo apoptosis, demonstrated by terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay and cleaved
caspase-3 nuclear staining. Interestingly, a previous study
detected increased neuronal apoptosis in the rat retina induced
by intra-vitreous injection of Aβ1-42 oligomers (Fisichella
et al., 2016). In a subsequent study, the Koronyo-Hamaoui
group further discovered significantly augmented capillary
degeneration in 8-month-old APPSWEPS11E9 mice compared to
wild type littermates that was further exacerbated in 12-month-
old mice (Figures 2A,B; Shi et al., 2020a). Retinal capillary
loss was associated with increased retinal vascular amyloidosis,
indicating more BRB damage may be driven by vascular Aβ

deposition and implicated in AD pathology (Shi et al., 2020a).
Western blot analysis of whole retinal lysates revealed altered
expression of key TJ molecules of the BRB, including claudin-1
and zonula occuludens-1 (ZO-1) (Figures 2C,D). These changes
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FIGURE 2 | Retinal vasculopathy in APPSWEPS11E9 (ADtg) mice. (A,B) Representative images of periodic acid-Schiff (PAS)-stained, hematoxylin-counterstained
isolated retinal microvasculature from ADtg and matched wild type (WT) littermates. Acellular degenerated retinal capillaries are indicated by red arrows. (B) Numbers
of degenerated retinal capillaries when mice are stratified by mouse genotypes, WT or ADtg, by age groups of 4, 8, and 12 months. (C,D) Western-Blot analysis of
panel (C) claudin-1 and (D) ZO-1 in retinal lysates from 4, 8, and 12-month-old APPSWEPS11 E9 mice and WT controls. (E) Images showing in vivo retinal
microvascular imaging for leakage after intraperitoneal fluorescein injection in 12-month-old WT and ADtg mice. (F,G) Quantitative analysis of the panel (D) FITC
(1,000 kDa) or (E) Texas Red (3 kDa)-stained area in retinal flat-mounts from WT or ADtg mice. Black-filled circles represent males and clear circles represent
females. Data from individual mouse as well as groups are shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, by 2-way ANOVA with
Sidak’s post hoc multiple comparison test (more than 2 groups) or unpaired 2-tailed Student’s t test (2 groups). Fold and percentage changes are shown in red.
Reproduced from Shi et al. (2020a) under terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

were also accompanied by elevated NF-κB p65 phosphorylation
in retinas of 12-month-old ADtg mice, implicating upregulated
inflammation in the retina with increased vascular amyloidosis
burden. Having found these changes in retinal blood vessels
and capillaries of AD-model mice, the authors sought to
explore how these vascular pathologies may have affected
BRB permeability. In vivo fluorescein (332 Da) imaging of
APPSWEPS11E9 mice showed live retinal vascular leakage in
12-month-old but not in 8-month-old mouse models of AD
(Figure 2E). Intriguingly, intravenous injection of larger FITC-
dextran (1,000 kDa) and Texas-Red-dextran (3 kDa) molecules
in 6-month-old APPSWEPS11E9 mice followed by ex vivo
postmortem retinal imaging and quantification of the fluorescent
signal indicated a dramatic increase in retinal vascular leakage of
both molecules (Figures 2F,G). These BRB permeability changes
in transgenic AD mice occur even earlier than the respective
cerebral leakage measured by the same molecules (Lahiri et al.,
2019). The difference between in vivo and ex vivo observations
is suggestive of a shift in molecular size-dependent transporting
mechanisms through the BRB in the AD transgenic mice model.
Accordingly, a recent study utilizing the C57BL/6 mouse revealed
a decrease in plasma protein transport activity through the BBB in
the aged brain, driven by transport shifting from ligand-specific
receptor-mediated to non-specific caveolar transcytosis (Yang
et al., 2020). Whether this also occurs in AD patients’ BRB needs
further validation. Overall, such discoveries have suggested that
several BRB compartments are affected in AD disease progression
that should be further evaluated as biomarkers for AD diagnosis.

Cerebral Imaging for AD
Recent developments in brain imaging modalities have
significantly improved the ability to rule-in AD related
cerebral pathologies in at-risk populations (Johnson et al.,
2012). These include MRI (fMRI) (Smith et al., 1999; Machulda
et al., 2003; Dickerson et al., 2004; Johnson et al., 2006, 2012),
fluorodeoxyglucose (FDG) positron emission tomography

(PET) (Foster et al., 1983; Hoffman et al., 2000; Engler et al.,
2006), amyloid PET imaging (Drzezga et al., 2008; Ikonomovic
et al., 2008), PET imaging of copper trafficking (Torres et al.,
2016; Andreozzi et al., 2017), and transcranial Doppler (TCD)
ultrasound (Roher et al., 2011). However, these techniques
are still subject to a variety of limitations such as high cost, low
availability, low spatial resolution, low specificity, or involving the
use of unsafe radio isotopes (Johnson et al., 2012). Nevertheless,
current imaging techniques do not provide a solution for large
scale screening of pre-symptomatic at-risk populations, which is
the main goal of current efforts to develop more sensitive ocular
examination techniques for AD diagnosis.

Retinal OCT and OCT-A Imaging in MCI
and AD Patients
Optical coherence tomography has been a pioneer technology
in capturing retinal structural changes in living AD patients.
This technology utilizes low-coherence light to acquire two- and
three-dimensional images of retinal cross-sectional anatomy with
micrometer resolution (Frohman et al., 2008; Popescu et al., 2011;
Aumann et al., 2019). It provides non-invasive live measurements
of retinal layer structure and is widely used in ophthalmic
exanimations for diagnosis of glaucoma, age-related macular
degeneration (AMD), diabetic retinopathy (DR), as well as other
ocular diseases (Lang, 2007; Medical Advisory, 2009; Sathyan
et al., 2012). Parisi et al. (2001) utilized this technology for the
first time in AD patients, demonstrating a significant reduction
in retinal nerve fiber layer (NFL) thickness as compared to
healthy control individuals. Paquet et al. (2007) further described
a significant reduction of retinal NFL thickness in MCI, mild
AD, moderate AD, and severe AD patients compared to healthy
controls. Subsequently, numerous studies verified these early
studies and reported decreases in NFL, ganglion cell layer (GCL),
and macula thickness correlating with cognitive decline (Kromer
et al., 2014; Cunha et al., 2016; Doustar et al., 2017; Ferrari et al.,
2017; Polans et al., 2017; Polo et al., 2017; Bulut et al., 2018;
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Janez-Escalada et al., 2019; Salobrar-Garcia et al., 2019; Czako
et al., 2020; Dumitrascu and Koronyo-Hamaoui, 2020; Mejia-
Vergara et al., 2021; Yan et al., 2021). OCT-adaptive optics is a
relatively newer advancement of this technology which provides
ultra-high-resolution images, including of blood vessel walls, that
warrants further testing in the AD retina (Snyder et al., 2021).

Among the many advances in OCT technology, OCT-
angiography (OCTA) has been specifically developed for
the investigation of retinal blood vessels, revolutionizing
the diagnosis of retinal vascular-related disorders
(de Carlo et al., 2015; Chalam and Sambhav, 2016; Hagag
et al., 2017). It provides high-resolution motion-contrast images
based on backscattered light from neuronal and vascular tissues
in the retina (Kashani et al., 2017). This enables visualization of
various retinal vascular abnormalities such as microaneurysms,
neovascularization, retinal vascular non-perfusion, reduced
vascular density, and modified foveal avascular zone (FAZ)
(Kashani et al., 2017). OCT-A received FDA approval in 2016
and has been rigorously used in diagnosis of retinal vascular
diseases including DR, uveitis, AMD, and others (Pichi et al.,
2017; Khadamy et al., 2018; Schneider and Fowler, 2018; Tey
et al., 2019). The significant potential of this technology has
recently led to a surge of research activity related to its utility
in exploring retinal biomarkers in AD. An early case-control
study by Bulut et al. (2018) on a total of 52 AD patients and
healthy controls described a significant decrease in retinal
vascular density, reduced retinal and choroidal thickness, as well
as enlarged FAZ area in the patients. Shortly after, Jiang et al.
(2018) based on 52 participants demonstrated lower densities
of retinal vascular network, superficial vascular plexus (SVP),
and deep vascular plexus (DCP) in MCI and AD patients, while
O’Bryhim et al. (2018) with 32 participants validated increased
FAZ area in AD patients. To date, such OCTA case-controlled
studies seem to be largely consistent in demonstrating retinal
vascular density loss and increased FAZ area in AD patients but
differ in identifying vascular areas affected, the superficial vs.
deep, or parafoveal vs. perifoveal vessels (Lahme et al., 2018;
Sadda et al., 2019; Yoon et al., 2019; Zabel et al., 2019; Zhang
et al., 2019; Czako et al., 2020; Lee J. Y. et al., 2020; Wu et al.,
2020; Rifai et al., 2021). Overall, these are indeed breakthrough
findings that warrant further investigation, considering OCTA
is a relatively new technology. It is also important to note that
sample sizes in most of these studies are relatively small. To
better evaluate OCTA as a diagnostic tool for AD, longitudinal
studies with a standardized consistent protocol and large case
numbers are needed.

Blood–retinal barrier permeability in laboratory animals is
usually measured by injecting fluorescent dyes such as fluorescein
(Do carmo et al., 1998) or Evans blue (Xu et al., 2001), followed
by in vivo or ex vivo imaging for retinal vascular leakage.
Fundus fluorescein angiography (FFA) was developed based on
visualizing fluorescent dye by fundus camera that has been widely
used to evaluate retinal vascular circulation and BRB integrity
(Marmor and Ravin, 2011). Another modified OCT method,
OCT-leakage, was recently developed to monitor retinal edema,
thus evaluating BRB damage (Cunha-Vaz et al., 2016; Cunha-Vaz,
2017). This method applies a proprietary algorithm to identify

sites of decreased optical reflectivity, then the system quantifies
and detects the correlation of retinal extracellular space. The
developer tested OCT-leakage on 28 patients and provided
consistent output between FFA and OCT-leakage for BRB
damage in diabetic retinopathy (Cunha-Vaz et al., 2017). Both
FFA and OCT-leakage can potentially be tested in cognitively
impaired patients to investigate the potential of BRB permeability
monitoring for AD diagnosis.

CONCLUSION

In summary, recent advancements in retinal vascular research in
AD patients and animal models have provided many potential
candidate targets for non-invasive diagnosis by retinal vascular
imaging. These include but are not limited to retinal vascular
amyloidosis, FAZ area, vascular leakage, vascular blood flow and
perfusion, TJ alteration, vascular density, pericyte and PDGFRβ

loss, vascular branching complexity and others. Reports suggest
that certain vascular abnormalities occur very early during
AD progression and may predict cognitive decline in patients;
thus, their detection may be critical for early diagnosis and
prognosis prediction. However, since some of these vascular
findings are commonly observed in retinal degenerative and
inflammatory diseases, it is important to also consider AD-
specific hallmark biomarkers such as Aβ and (p)tau for accurate
diagnosis. Finally, with the recent development of retinal
amyloid imaging (Koronyo et al., 2017; Dumitrascu et al., 2020;
Ngolab et al., 2021), pericyte imaging (Schallek et al., 2013),
OCTA and OCT-leakage (Cunha-Vaz et al., 2016; Cunha-Vaz,
2017), hyperspectral imaging (Hadoux et al., 2019; More et al.,
2019; Lemmens et al., 2020), and FFA (Marmor and Ravin,
2011), future studies may pave a the way for next-generation
non-invasive ophthalmic imaging technologies to facilitate AD
monitoring and diagnosis.
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Vascular changes and alterations of oxygen metabolism are suggested to be implicated
in multiple sclerosis (MS) pathogenesis and progression. Recently developed in vivo
retinal fundus imaging technologies provide now an opportunity to non-invasively
assess metabolic changes in the neural retina. This study was performed to assess
retinal oxygen metabolism, peripapillary capillary density (CD), large vessel density
(LVD), retinal nerve fiber layer thickness (RNFLT) and ganglion cell inner plexiform
layer thickness (GCIPLT) in patients with diagnosed relapsing multiple sclerosis (RMS)
and history of unilateral optic neuritis (ON). 16 RMS patients and 18 healthy controls
(HC) were included in this study. Retinal oxygen extraction was modeled using O2

saturations and Doppler optical coherence tomography (DOCT) derived retinal blood
flow (RBF) data. CD and LVD were assessed using optical coherence tomography (OCT)
angiography. RNFLT and GCIPLT were measured using structural OCT. Measurements
were performed in eyes with (MS+ON) and without (MS-ON) history for ON in RMS
patients and in one eye in HC. Total oxygen extraction was lowest in MS+ON
(1.8 ± 0.2 µl O2/min), higher in MS-ON (2.1 ± 0.5 µl O2/min, p = 0.019 vs. MS+ON)
and highest in HC eyes (2.3 ± 0.6 µl O2/min, p = 0.002 vs. MS, ANOVA p = 0.031).
RBF was lower in MS+ON (33.2 ± 6.0 µl/min) compared to MS-ON (38.3 ± 4.6 µl/min,
p = 0.005 vs. MS+ON) and HC eyes (37.2 ± 4.7 µl/min, p = 0.014 vs. MS+ON,
ANOVA p = 0.010). CD, LVD, RNFLT and GCIPL were significantly lower in MS+ON
eyes. The present data suggest that structural alterations in the retina of RMS patients
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are accompanied by changes in oxygen metabolism, which are more pronounced
in MS+ON than in MS-ON eyes. Whether these alterations promote MS onset and
progression or occur as consequence of disease warrants further investigation.

Clinical Trial Registration: ClinicalTrials.gov registry, NCT03401879.

Keywords: multiple sclerosis, retinal blood flow, retinal oxygen saturation, microcirculation, optical coherence
tomography angiography

INTRODUCTION

Multiple sclerosis (MS) is a demyelinating disease of the
central nervous system with a global median prevalence of
approximately 33 people per 100,000 and one of the major
reasons for permanent disability in young adults (Reich et al.,
2018). Although there is general agreement that MS is an
immune-mediated process, there is compelling evidence that
vascular factors and metabolic alterations such as mitochondrial
dysfunction (Dutta et al., 2006; Mahad et al., 2008) or hypoxia
(Davies et al., 2013; Yang and Dunn, 2015; Johnson et al.,
2016) play an essential role in the pathogenesis and progression
of the disease. As such, it has been shown that local oxygen
supply insufficiency leads to hypoxic damage, resulting in
neuroinflammation and demyelination of nerve fibers with the
known clinical consequences, while in turn neuroinflammation
per se can also trigger hypoxia (Yang and Dunn, 2019; Halder and
Milner, 2021). Thus, more knowledge on the oxygen metabolism
may help to get a better understanding of the pathophysiological
mechanisms involved in the disease progression and develop new
therapeutic strategies.

Currently, studying microvascular and metabolic changes in
MS is hampered by a paucity of available non-invasive methods
to measure oxygen metabolism in the human brain. In this
context, the anterior visual system – mainly the neural retina
and the optic nerve – offers unique possibilities to non-invasively
gain insight into the metabolic and microvascular processes
in unprecedented resolution. Recent development in retinal
imaging allows for the non-invasive determination of oxygen
saturation in retinal vessels (Hammer et al., 2008) as well as
for the quantitative assessment of perfusion (Werkmeister et al.,
2008) and microvascular density (Tan et al., 2020). Further, as
a part of the central nervous system, the retina is a highly
metabolically active tissue, which is frequently affected by MS.
More specifically, in 15–20% of patients diagnosed with MS, the
symptom leading to clinical investigation is optic neuritis (ON)
(Confavreux et al., 2000). Further, as much as 70% of patients
with MS are affected by ON at some time during the disease
(Toosy et al., 2014).

The current study takes advantage of recently developed
imaging techniques to assess retinal oxygen metabolism, retinal
perfusion and capillary density in patients with diagnosed
relapsing MS (RMS) and history of unilateral ON and to
compare these parameters with a healthy control group.
Retinal oxygen extraction is measured based on Doppler
optical coherence tomography (DOCT) (Werkmeister et al.,
2008) and non-invasive determination of oxygen saturation
via reflectometry (Hammer et al., 2008). This approach has

been validated and recently successfully used to investigate
metabolic changes under pathological conditions such as
diabetes (Fondi et al., 2017). Further, structural changes were
assessed using optical coherence tomography (OCT) and OCT
angiography (OCTA).

The aim of this observer-masked cross-sectional study was
to investigate potential metabolic and vascular alterations of the
retina in patients with MS.

MATERIALS AND METHODS

Study Subjects
MS patients as well as age- and sex-matched healthy subjects
were recruited between February 2018 and January 2021. The
study was conducted in accordance with the Declaration of
Helsinki and the Good Clinical Practice (GCP) guidelines
of the International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use (ICH).
Written informed consent was obtained from all participants
before any study related procedures and the Ethics Committee
of the Medical University of Vienna approved the study with all
its procedures before initiation.

In/Exclusion Criteria
Inclusion criteria for MS patients were age ≥18 years, diagnosis
of relapsing multiple sclerosis (RMS) according to McDonald
criteria (revision 2017), history of unilateral ON with unaffected
contralateral eye, ON more than one year ago, adequate visual
and auditory acuity to allow ocular blood flow measurements,
stable doses of concomitant medications for at least 30 days
prior inclusion if considered relevant by the investigator,
normal ophthalmologic findings apart from MS- or ON-related
alterations and ametropia< 6 Dpt.

Exclusion criteria for MS patients were presence or history
of a severe medical condition other than MS as judged by the
clinical investigator, history of neuromyelitis optica spectrum
disorder (NMOSD), history of any inflammatory or infectious
disease of the central nervous system other than MS, any
other significant and clinically relevant neurological disease as
judged by the investigator, untreated arterial hypertension and
diabetes. Further, patients with ocular diseases or presence of
any abnormality preventing reliable measurements in the study
eyes as judged by the investigator, best-corrected visual acuity
(BCVA) < 0.5 Snellen, pregnancy or planned pregnancy and
alcoholism or substance abuse were excluded.

Inclusion criteria for healthy subjects were age over 18 years,
normal findings in the medical history (or clinically irrelevant
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as judged by the investigator), normal ophthalmic findings and
ametropia <6 Dpt. Exclusion criteria for healthy subjects were:
history of any disease of the central nervous system, presence
or history of any severe medical condition as judged by the
investigator, untreated arterial hypertension, presence of any
abnormalities preventing reliable measurements in the study eye
as judged by the investigator, family history of MS, ON, or
NMOSD, BCVA < 0.5 Snellen, pregnancy or planned pregnancy
and alcoholism or substance abuse.

Experimental Paradigm
Before inclusion into the study, a screening examination was
performed to assess eligibility. It comprised the following
procedures: detailed medical history including assessment of
current MS-related symptoms (in MS patients) and concomitant
medication, pregnancy testing in women with childbearing
potential, measurement of systemic haemodynamics, BCVA,
visual field (VF) testing using standard automated perimetry
(SAP; Humphrey 30-2 SITA-Standard, Carl Zeiss Meditec Inc.,
Dublin, Ireland), measurement of axial eye length using an IOL-
Master (Carl Zeiss Meditec Inc.), slit-lamp examination including
dilated funduscopy and measurement of intraocular pressure
(IOP) using applanation tonometry.

Upon confirmation of eligibility, patients and healthy subjects
were included into the study. One drop of tropicamide was
administered to the study eye(s) and a 20-min resting period
was scheduled to obtain stable haemodynamic conditions.
Then, an ONH-centered 50◦ fundus image was taken using a
retinal vessel analyzer (RVA; Imedos Systems, Jena, Germany)
to measure vessel diameters and O2 saturations, before
retinal blood flow was assessed using a previously described
custom built dual-beam DOCT system (Werkmeister et al.,
2008; Doblhoff-Dier et al., 2014). Finally, a 3.5 diameter
circumpapillary OCT ring scan, a 20◦×20◦ macular volume
scan and a 15◦×15◦ peripapillary OCTA volume scan (384
B-Scans and 384 A-Scans/B-Scan) using the commercial
Heidelberg Spectralis OCT(A) (Heidelberg Engineering,
Heidelberg, Germany) were performed. In MS patients, both
the eye with (MS+ON) and without (MS-ON) history for
ON were measured, in healthy subjects one randomly chosen
eye was measured.

Methods
Noninvasive Measurement of Systemic
Haemodynamics
Measurements of systemic haemodynamics were performed
on the upper arm by an automated oscillometric device
(Infinity Delta; Dräger, Vienna, Austria). This device recorded
systolic, diastolic and mean arterial pressures (SBP, DBP, MAP),
pulse rate (HR) and peripheral oxygen saturation using a
fingertip pulse oximeter.

Intraocular Pressure
A slit-lamp mounted Goldmann applanation tonometer was
used to assess IOP at the screening examination. One drop of
oxybuprocainhydrochloride combined with sodium fluorescein
was used for anesthesia of the cornea before each measurement.

Circumpapillary Optical Coherence Tomography,
Macular Optical Coherence Tomography and
Peripapillary Optical Coherence Tomography
Angiography
Circumpapillary OCT scans were analyzed using the
segmentation and analysis software of the Spectralis glaucoma
module and global RNFL-thickness (RNFLT) in µm was
extracted for every measurement.

Macular OCT scans were used to measure the ganglion cell
layer and inner plexiform layer thickness (GCIPL) as previously
described using the standard Spectralis software segmentation
of GCL and IPL (Bsteh et al., 2021). In short, GCL and IPL
thicknesses in the inner quadrants (3 mm) of the macula-centered
ETDRS grid were averaged and GCIPL was calculated as the sum
of the averaged GCL and IPL thicknesses.

Peripapillary OCTA scans were processed using standard
segmentation and slab settings of the Spectralis OCTA module.
Superficial vascular complex (SVC) slabs were exported to the
Fiji distribution of ImageJ (Schindelin et al., 2012). Major retinal
vessels were separated from the capillary bed using a Hessian-
based large vessel detection algorithm (Sato et al., 1998) as
frequently applied in the analysis of retinal OCTA scans (Tan
et al., 2020). In short, a Hessian-based filter captures tubular
structures of a certain caliber range and the output was used to
create a binary vessel mask.

For capillary-specific analysis, this mask was applied to
remove major retinal vessels before an optic disc-centered ring-
shaped region of interest (ROI) with an inner diameter of 2.5 mm
and an outer diameter of 4 mm was defined. The ring-shaped,
capillary-specific ROI was binarized by mean values and capillary
density (CD) was calculated as percentage of white pixels. For
large vessel-specific analysis, the inverted vessel mask was applied
to remove the capillaries before ROI definition, thresholding
and density calculation was done as described for the capillary-
specific analysis to determine the large vessel density (LVD).

Retinal Vessel Diameter and Oxygen Saturation
The RVA system allows for the evaluation of retinal vessel
diameters and oxygen saturation (Hammer et al., 2008;
Garhofer et al., 2010). For this purpose, a computer-coupled
fundus camera is used.

Applying the VesselMap software to the ONH-centered
fundus image as acquired by the RVA, all peripapillary arteries
and veins branching from the central retinal artery (CRA) and
central retinal vein (CRV) were selected and the CRA- and
CRV-equivalent (CRAE and CRVE) and arterio-venous ratio
(AVR) were calculated by the software as proposed previously
(Hubbard et al., 1999).

Fundus images as taken using the RVA device were also
used to estimate oxygen saturations of all retinal arteries
(SaO2,A) and veins (SaO2,V) using a reflectometric approach
(Hammer et al., 2008, 2009). In short, two images with different
wavelengths are simultaneously taken (610 and 545 nm) and
oxygen saturation is estimated based on the fact that hemoglobin
exerts different light absorption characteristics depending on
its level of oxygenation. While this effect is greatest at around
610 nm, the isosbestic wavelength for hemoglobin i.e., the
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wavelength at which deoxygenated and oxygenated hemoglobin
show identical absorption characteristics is 548 nm. Using the
differences of these two images, SaO2,A or SaO2,V are estimated
in all retinal vessels.

Total Retinal Blood Flow Measurement
For TRBF calculation, measurements of the above-mentioned
fundus-camera coupled DOCT device were used. As described
previously, a peripapillary scanning pattern including horizontal
and vertical scans was applied to ensure coverage of all retinal
arteries and veins and blood flow was assessed in all vessels
with a diameter of 40 µm or larger (Doblhoff-Dier et al., 2014).
Each scan consisted of repetitive B-scans at the same position
and lasted for several seconds to ensure averaging of parameters
over a minimum of one full pulse cycle. The background and
details of single vessel velocity, diameter and flow extraction have
been extensively described in numerous previous publications
(Werkmeister et al., 2012a,b, 2015; Doblhoff-Dier et al., 2014;
Fondi et al., 2017; Bata et al., 2019). In reference to these papers,
we confine ourselves to a short summary: two orthogonally
polarized superluminescent diode beams separated by the known
angle 1α are focused onto one retinal spot. Due to the two
different angles α1 and α2(1α = α1 − α2) at which the two probe
beams impinge onto the vessel of interest, the phase shifts81and
82 induced into the probing light reflected by moving particles
(e.g., red blood cells) are different. This difference (18(18 =
81 −82) between the two probe beams in combination with1α,
several device and physiological constants (λ = OCT light source
central wavelength, τ = time interval between two recordings
dependent on acquisition rate, n = group refractive index of
blood) and the angle β (angle between the detection plane
spanned by the two probe beams and the velocity vector) can
be used to calculate absolute blood velocity using the following
equation (Eq. 1):

Vabs = 18 ∗
λ

4π ∗ n ∗ τ ∗1α ∗ cosβ
(1)

Vessel diameter (D) is extracted from the DOCT scans using
a caliper in the analysis software and absolute flood flow (Qabs) is
calculated using Eq. 2

Q =
D2

4
∗ π ∗ Vabs (2)

Summing up single vessel flow results for all arteries and veins
gives arterial and venous TRBFs (TRBFA and TRBFV). TRBF
measurements have been recently evaluated for reproducibility
and repeatability (Szegedi et al., 2020b). TRBFs presented in this
study are the means of TRBFA and TRBFV.

Oxygen Content and Retinal Oxygen Extraction
The model to calculate the oxygen content and retinal oxygen
extraction based on SaO2,A and SaO2,V was profoundly described
and discussed previously by Werkmeister et al. (2015) and has
since been applied in further studies in healthy subjects as well
as in patients with ocular diseases (Fondi et al., 2017; Bata
et al., 2019; Hommer et al., 2021). In short, SaO2,A and SaO2,V
are corrected for the distance of their measurement point to

the CRA or CRV merging point. By calculating the mean of
the corrected SaO2,A values (cSaO2,A), oxygen saturation in
the central retinal artery (SaO2,CRA) can be directly obtained.
For calculation of oxygen saturation in the central retinal vein
(SaO2,CRV), an additional step taking the flow in each individual
vessel as weighting factor into account is necessary as the venous
blood in the CRV is a mixture of all merging retinal veins.
In a next step, the oxygen content of the CRA (cO2,CRA) and
CRV (cO2,CRV) are estimated considering the fact that not only
hemoglobin bound oxygen needs to be considered but also the
oxygen dissolved in plasma.

Finally retinal oxygen extraction (extO2) is calculated using
Eq. 3, where cO2,CRA and cO2,CRV are the oxygen contents of
CRA and CRV, respectively and Q is the TRBF as described above.

extO2 =
(
cO2,CRA − cO2,CRV

)
∗ Q (3)

Statistical Analysis
Statistical analysis was performed using IBM SPSS Statistics
(Version 27, IBM, Armonk, NY, United States). All values are
presented as means ± standard deviations. Normal distribution
was confirmed using the Kolmogorov-Smirnov test. Descriptive
statistics are reported for all values obtained. A one-way ANOVA
model was used to assess overall differences between the three
groups (MS+ON, MS-ON and healthy eyes). For those that
turned out to be significant in the ANOVA model for three
groups, contrasts between two groups (MS+ON vs. MS-ON,
MS+ON vs. healthy eyes and MS-ON vs. healthy eyes) were
defined. Prior to calculating contrasts for planned comparison
between groups, a Levene’s test to assess equality of variances was
carried out. Plots for the figures were produced using GraphPad
Prism 9.2.0 (GraphPad Software Inc., CA, United States). A p-
value<0.05 was considered as the level of significance.

RESULTS

A total of 34 subjects were included in the present study, of
which 16 had MS and 18 were healthy age- and sex-matched
controls. As both eyes were measured in MS patients with history
of unilateral ON a total of 16 MS+ON, 16 MS-ON and 18 healthy
eyes were enrolled in this study. The demographics and baseline
characteristics of the two study groups are shown in Table 1.
There was no difference between groups in terms of age, sex or
systemic haemodynamics.

Eleven (11) out of 16 MS patients were currently medicated
with a disease-modifying therapy, of which five took glatiramer
acetate, three dimethyl fumurate and one each fingolimod,
natalizumab or interferon beta.

Seven (7) patients reported no current MS-related symptoms,
6 reported one and 3 reported more than one symptom. The
most frequent symptoms were upper/lower limb paresthesia, gait
disorder, fatigue and vertigo.

Retinal Vessel Diameters
CRAE was significantly different between the three groups
(p = 0.015), with CRAE being significantly lower in MS+ON eyes
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TABLE 1 | Baseline characteristics of the two study groups.

Healthy
subjects

Patients with MS p-value

Age (years) 41 ± 16 43 ± 13 0.698

Gender (m/f) 4/14 4/12 0.583

Years since diagnosis of MS
(years)

N/A 9 ± 8 N/A

Time elapsed since ON (years) N/A 8 ± 7 N/A

Systolic blood pressure (mmHg) 117 ± 14 123 ± 13 0.197

Diastolic blood pressure
(mmHg)

72 ± 8 76 ± 8 0.128

Heart rate (bpm) 66 ± 9 69 ± 12 0.446

Mean arterial pressure (mmHg) 90 ± 12 96 ± 10 0.145

Intraocular pressure (mmHg) 13 ± 2 15 ± 3
(MS+ON)

15 ± 3
(MS-ON)

0.062

Best corrected visual acuity
(Snellen decimal)

1.2 ± 0.5 1.2 ± 0.3
(MS+ON)

1.2 ± 0.2
(MS-ON)

0.937

Visual field mean
deviation (dB)

−0.5 ± 1.2 −1.8 ± 3.2
(MS+ON)

−1.0 ± 2.9
(MS-ON)

0.333

Values are presented as mean ± standard deviation.
ON, optic neuritis; MS, multiple sclerosis.
p-values are calculated by one-way ANOVA.

(182 ± 13 µm) and MS-ON eyes (182 ± 16 µm) compared to
healthy eyes (196 ± 18 µm, p = 0.014 for MS+ON vs. healthy
and p = 0.011 for MS-ON vs. healthy). In contrast, no significant
difference between groups was found for CRVE (222 ± 15 µm
in MS+ON eyes, 223 ± 13 µm in MS-ON eyes and 227 ± 14
µm in healthy eyes (p = 0.649 between groups). AVR was
also significantly different between groups (p = 0.034). It was
significantly reduced in eyes with MS+ON compared to healthy
eyes (0.82 ± 0.06 vs. 0.87 ± 0.07, p = 0.047) as well as in MS-
ON eyes compared to healthy eyes (0.81 ± 0.06 vs. 0.87 ± 0.07,
p = 0.015).

Oxygen Extraction and Total Retinal
Blood Flow
A statistically significant difference between the three groups was
found for TRBF (p = 0.010, Figure 1A) and calculated oxygen
extraction (p = 0.031, Figure 1B). Calculated oxygen extraction
was lowest in MS+ON eyes (1.8± 0.2 µl O2/min), higher in MS-
ON eyes (2.1 ± 0.5 µl O2/min; p = 0.019 for MS+ON vs. MS-
ON, Figure 1B) and highest in healthy eyes (2.3± 0.6 µl O2/min;
p = 0.002 for MS+ON vs. healthy, Figure 1B). TRBF was lower in
MS+ON eyes (33.2 ± 6.0 µl/min) as compared to MS-ON eyes
(38.3± 4.6 µl/min) and healthy eyes (37.2± 4.7 µl/min; p = 0.005
for MS+ON vs. MS-ON eyes, p = 0.014 for MS+ON vs. healthy
eyes, p = 0.560 for MS-ON vs. healthy eyes, Figure 1A).

Retinal Nerve Fiber Layer Thickness,
Ganglion Cell Inner Plexiform Layer
Thickness, Capillary Density and Large
Vessel Density
RNFLT and GCIPL were significantly different between the three
groups (p < 0.001 each). RNFLT was significantly lower in
MS+ON eyes (80.7 ± 14.0 µm) compared to MS-ON eyes

FIGURE 1 | Total retinal blood flow (A) and retinal oxygen extraction (B) in
eyes with history of acute optic neuritis (MS+ON), in contralateral eyes with no
history of ON (MS-ON) and healthy control eyes are significantly different
between the study groups upon ANOVA analysis. MS+ON eyes showed
significantly reduced total retinal blood flow and oxygen extraction as
compared to MS-ON and healthy eyes. Data are presented as
means ± standard deviation. ∗p < 0.05, ∗∗p < 0.01, ns, not significant.

(96.8 ± 8.9 µm) and eyes of healthy controls (100.0 ± 9.5
µm; p < 0.001 between MS+ON and MS-ON or healthy
eyes, p = 0.311 between MS-ON and healthy eyes). This
was also similar for GCIPL which was significantly lower in
MS+ON eyes (73.7 ± 14.6 µm) compared to MS-ON eyes
(92.2 ± 9.4 µm, p < 0.001 vs. MS+ON eyes) or healthy eyes
(93.8 ± 7.2 µm, p < 0.001 vs. MS+ON eyes; p = 0.665 vs. MS-
ON eyes).

Peripapillary CD without large vessels as assessed by OCTA
was significantly different between the three groups (p < 0.001).
In particular, it was lower in MS+ON eyes (46.0 ± 4.7 %)
compared to MS-ON eyes (49.1 ± 3.5 %, p = 0.037 vs. MS+ON
eyes) and compared to healthy eyes (51.7 ± 2.9 %, p < 0.001
vs. MS+ON eyes). No statistically significant difference was
found between MS-ON eyes and healthy eyes (p = 0.069,
Figure 2A). LVD also showed a significant difference between
the three groups (p = 0.014). It was significantly reduced in
MS+ON eyes compared to healthy eyes (14.0 ± 2.0% vs.
16.3 ± 2.3%, p = 0.004), but no significant differences were
found between MS+ON and MS-ON eyes (14.0 ± 2.0% vs.
15.4 ± 1.8%, p = 0.075) or MS-ON and healthy eyes (p = 0.236,
Figure 2B).

No statistically significant correlations were found between
changes in hemodynamic parameters and RNFL/GCIPL loss in
neither MS+ON nor MS-ON eyes (data not shown).

DISCUSSION

To the best of our knowledge, the data from our study shows
for the first time that retinal oxygen extraction is reduced in
patients with MS and history of unilateral ON when compared
to healthy subjects, suggesting an impaired oxygen metabolism in
patients with MS and ON. Further, our results indicate that these
impairments are more pronounced in the ON eye compared to
the fellow eye without history of ON and paralleled by a decrease
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FIGURE 2 | Capillary density (A) and large vessel density (B) in eyes with
history of acute optic neuritis (MS+ON), in contralateral eyes with no history of
ON (MS-ON) and healthy control eyes are significantly different between the
study groups upon ANOVA analysis. MS+ON eyes showed a significantly
reduced capillary density as compared to MS-ON and healthy eyes while large
vessel density was significantly different between healthy and MS+ON eyes,
only. Data are presented as means ± standard deviation. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001, ns, not significant.

in retinal blood flow. Finally, our data confirms previous evidence
for microvascular rarefication in patients with MS compared to
healthy controls.

As the eye offers ideal opportunities to observe microvascular
changes in-vivo, extensive research has been performed to
investigate changes in the retinal neural tissue in patients
with MS (Petzold et al., 2017; Britze and Frederiksen, 2018;
Kleerekooper et al., 2020). As such, early post-mortem studies
indicate that the anterior visual pathway is involved in 90%
of patients with MS (Toussaint et al., 1983). More recently,
OCT has been used as a non-invasive technique to assess
potential neurodegenerative changes in different layers of the
neural retina (Petzold et al., 2017). This was done in an effort
to investigate whether this technique might provide potential
novel biomarkers for neurodegeneration in patients with MS
(Garcia-Martin et al., 2017; Britze and Frederiksen, 2018).
Interestingly, the latter studies indicate that retinal thinning is
present in patients with MS, independently of a history of ON
and with the most pronounced differences in the peripapillary
RNFL and macular ganglion cell layer and inner plexiform
layer (Petzold et al., 2017). Although these anatomic changes
in the retina of patients with MS are well described, there
is only sparse knowledge on functional changes. Although
recent reports indicate impaired perfusion in patients with MS
(Wang et al., 2018; Liu et al., 2019), the question whether
TRBF or oxygen metabolism is altered in patients with MS is
not yet answered.

The present study provides in-vivo evidence that retinal
oxygen metabolism is compromised in patients with MS. In
particular, we found that retinal oxygen extraction was lowest
in MS+ON eyes, higher in MS-ON eyes and highest in healthy
eyes. The reason for this reduction of oxygen extraction is not
entirely clear, but may be related to a reduced oxygen demand
in particular of the inner retina caused by neurodegenerative
changes of retinal neurons.

However, when discussing these findings, the complex oxygen
supply of the retina needs to be considered. The retina is
nourished by two distinct vascular beds: the retinal circulation,
which supplies the inner retina including the ganglion cells
and their associated axons and the choroidal circulation,
which provides oxygen and other nutrients mainly to the
photoreceptors of the outer retina. As the oxygen diffusion from
the choroid to the inner retina is assumed to be negligible
under physiological conditions, changes in the oxygen extraction
of the retinal circulation can be mainly attributed to inner
retinal oxygen consumption (Linsenmeier and Zhang, 2017).
Hence, our findings may be at least partially explained by the
reduced number of retinal neural cells and their axons, which are
nourished via the retinal circulation. Along this line of thought,
we have recently shown that oxygen extraction as measured by
the model used in the current study correlates with the RNFLT
as measured using structural OCT, and the total number of
retinal ganglion cells in healthy subjects (Bata et al., 2019). This
indicates that a loss of retinal neural cells may lead to a reduced
oxygen demand of the tissue and consequently to a reduced
oxygen extraction. This hypothesis is also supported by the
results of the current study. Our results show a reduced GCIPL
and RNFLT as well as reduced capillary density and arteriolar
narrowing in patients with MS, indicative for a structural loss
in this groups of patients. Further, these findings are also in
keeping with previous results reporting that eyes of patients with
MS and ON show a reduced RNFLT and GCIPL (Walter et al.,
2012; Fernandes et al., 2013; Hokazono et al., 2013; Balk et al.,
2014; Knier et al., 2016; Bsteh et al., 2020). Interestingly, both
parameters can serve as biomarkers for disability progression,
with suggested advantages for the latter (Bsteh et al., 2019a,b,
2021). In this context it needs to be noted that although there
was a clear tendency toward a decrease in GCIPL and RNFLT in
patients with MS-ON when compared to healthy control subjects,
this effect did not reach level of significance. As previously
mentioned, larger studies consistently report reduced GCIPL
and RNFLT in patients with MS-ON, it is reasonable to suggest
that the lack of statistical significance is related to the relatively
small sample size of the current study (Oberwahrenbrock et al.,
2012; Britze et al., 2017; Alonso et al., 2018; Balci et al., 2020;
Farci et al., 2020).

Secondly, our results show that TRBF is lower in MS+ON
eyes compared to MS-ON and healthy eyes. This clearly indicates
that patients with a history of ON have compromised blood
flow and supports the hypothesis that impaired blood flow
and hypoperfusion may be an essential factor in patients with
ON and MS (Kleerekooper et al., 2020). Again, our results are
also in keeping with previous reports: Using a retinal function
imager, Liu et al. showed that retinal perfusion is decreased in
patients with relapsing MS when compared to healthy subjects
(Liu et al., 2019). However, the latter study is limited by the
fact that the authors did not differentiate between MS+ON
and MS-ON eyes and the instrument used was not capable to
provide data regarding TRBF. In another study, the same group
of investigators assessed inter-eye correlations and potential
differences of the retinal blood velocity in patients with MS
(Jiang et al., 2016). The authors concluded that patients with
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MS show lower blood velocities as compared to healthy subjects
(Jiang et al., 2016). Although the latter study measured only
velocities but not volumetric blood flow as in the current
study, this again supports our findings that blood flow is
compromised in patients with MS. In addition, our finding of
reduced blood flow is also compatible with the data of retinal
vessel analysis as measured in the current study, showing a
reduced AVR mainly caused by reduced CRAE. This, in turn,
indicates pronounced arterial constriction in the major retinal
vessels, which is in line with data on upregulation of endothelin-
1 in MS lesions and elevated serum and CSF levels of this
vasoconstrictive peptide (Speciale et al., 2000; Haufschild et al.,
2001; Halder and Milner, 2021).

Finally, the finding of impaired volumetric blood flow in
patients with MS is also compatible with the OCTA data of
the current study. Our results show a pronounced decrease
of capillary density in patients with MS, which again is
more pronounced in MS+ON eyes compared to MS-ON eyes
or healthy controls. This is also in keeping with previously
published studies, which consistently reported a rarefication of
the macular and/or peripapillary microvasculature in patients
with MS (Feucht et al., 2019; Murphy et al., 2020; Yilmaz et al.,
2020). Although OCTA does not allow for direct measurement
of volumetric blood flow, it supports the hypothesis that
microvascular perfusion may be impaired in patients with MS.

There is increasing evidence that mitochondrial dysfunction
plays an important role in several neurodegenerative disorders,
including MS (Mao and Reddy, 2010; Barcelos et al., 2019). Given
the high metabolic rate of the neural tissue, an impairment of
intracellular energy metabolism may easily translate to metabolic
stress with the ultimate consequence of neurodegeneration (Mao
and Reddy, 2010). Currently, there is no evidence regarding a
direct interaction of MS-related mitochondrial dysfunction and
decreased retinal oxygen extraction as observed in the current
study. However, reduced oxygen metabolism in the retina might
be an early sign of an impairment of neural function and may
therefore serve as an additional retinal biomarker for disease
progression complementing the purely structural parameters
such as RNFLT and GCIPL.

Altered retinal oxygen metabolism has consistently been
reported also for other neurodegenerative diseases than MS, such
as mild cognitive impairment or Alzheimer’s disease (Olafsdottir
et al., 2018; Stefánsson et al., 2019; Szegedi et al., 2020a),
accompanied by a reduction of blood flow (Szegedi et al.,
2020a) and microvascular dysfunction (Chua et al., 2020). This
supports the hypothesis that oxygen extraction is related to
neuronal degeneration or an impairment of neural function.
Along this line of thought is has been shown that there is an age-
dependent decline of retinal oxygen extraction correlated to the
physiological age-dependent ganglion cell loss (Bata et al., 2019).

Our study has several strengths and limitations that warrant
further discussion. The strength of our study is the use of a
combination of state-of-the-art technology that allows us to draw
direct conclusions regarding the oxygen metabolism of the retina.
We have successfully used the same approach to assess oxygen
extraction in healthy subjects (Palkovits et al., 2014; Werkmeister
et al., 2015) as well as in patients with systemic diseases such as

diabetes (Fondi et al., 2017), showing for the latter a reduction of
oxygen extraction already in early disease stage.

Some limitations need to be addressed as well: First, our
study is cross sectional in design. Therefore, based on the
current results, it cannot be determined whether decreased
blood flow and reduced oxygen extraction of the retinal neural
tissue is a causative factor in the pathogenesis of the disease
making the eye more vulnerable to damage or a consequence
of retinal nerve fiber loss and a reduced oxygen demand of
the tissue. Longitudinal studies would be necessary to finally
get insight in this question and could also elucidate whether
the assessed parameters are subject to temporal change and/or
are associated with disease progression. Secondly, the study
population is limited to a total number of 34 subjects. A larger
study population would increase the power and allow for
the detection of mores subtle changes in anatomical and
functional properties of the retina especially in MS-ON patients.
However, as the equipment used in the current study is not
commercially available and requires particular training for the
investigator, larger multicenter trials will be dependent on the
future commercial availability of devices for measurement of
ocular blood flow.

In summary, our data indicates that structural alterations
found in the retinal tissue of patients with MS are accompanied
by metabolic changes. Both oxygen metabolism and retinal blood
flow seem to be impaired in patients with MS and history of ON.
Whether this is a cause or a consequence of the disease has yet to
be investigated.
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Multiple sclerosis (MS) is a complex disease of the central nervous system
(CNS), characterized by inflammation, demyelination, neuro-axonal loss, and gliosis.
Inflammatory demyelinating lesions are a hallmark of the disease. Spontaneous
remyelination, however, is often incomplete and strategies that promote remyelination
are needed. As a result, accurate and sensitive in vivo measures of remyelination are
necessary. The visual pathway provides a unique opportunity for in vivo assessment
of myelin damage and repair in the MS-affected brain since it is highly susceptible to
damage in MS and is a very frequent site of MS lesions. The visually evoked potential
(VEP), an event-related potential generated by the striate cortex in response to visual
stimulation, is uniquely placed to serve as a biomarker of the myelination along the
visual pathway. The multifocal VEP (mfVEP) represents a most recent addition to the
array of VEP stimulations. This article provides a current view on the role of mfVEP as a
biomarker of demyelination, spontaneous remyelination, and myelin repair in MS.
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Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS), characterized by
inflammation, demyelination, neuro-axonal loss, and gliosis. Inflammatory demyelinating lesions
are a hallmark of the disease. The acute stage of lesion formation initially results in a complete block
of conduction (and associated functional deficit) along the axons affected by the inflammation.
Axonal conduction (and function), however, typically recovers within a few weeks, during
which inflammation subsides, ion channels are reconstructed and conduction in surviving but
demyelinated axons resumes, although often in a slower, continuous mode (Smith and Waxman,
2005). This restoration of conduction along the demyelinated axons is due to appearance of more
widely distributed sodium channels that are diffusely deployed along demyelinated axolemma (Felts
et al., 1997; Waxman, 2005).

Permanent demyelination, however, may contribute to accelerated degeneration of surviving
axons by rendering them vulnerable to physiological stress (Kornek et al., 2000; Bruck et al.,
2003). Chronic demyelination increases the energy demands of axonal conduction, ultimately
compromising axoplasmic adenosine triphosphate (ATP) production, leading to an ionic
imbalance and Ca2+-mediated axonal degeneration (Correale et al., 2017). In addition, lack
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of trophic support from myelin or oligodendrocytes and
disruption of normal axon–myelin interactions may result in
degeneration of chronically demyelinated axons (Trapp et al.,
1999; Peterson and Fujinami, 2007).

While spontaneous remyelination was first described in MS
in 1965 (Périer and Grégoire, 1965) and is now believed to be
an early and frequent phenomenon occurring in MS (Raine and
Wu, 1993; Patrikios et al., 2006), it is often incomplete (Prineas
et al., 1989; Bramow et al., 2010) and strategies that promote
remyelination are needed. A number of approaches to promote
myelin repair have made significant progress in experimental
models (Suhs et al., 2012) and it is now emerging as a new target
for neuroprotective strategies, making its way into human clinical
trials (see Cunniffe and Coles, 2019; Lubetzki et al., 2020 for
review). Therefore, accurate and sensitive in vivo measures that
can assess and verify the therapeutic and biological efficacy of
putative remyelinating treatments are necessary in order for a
transition to clinical therapy.

A number of imaging techniques have been suggested as
potential surrogate biomarkers of myelin damage and repair
in MS brain. There are several recent reviews examining the
potential use of various imaging biomarkers in remyelination
trials (Barkhof et al., 2009; Mallik et al., 2014; Oh et al., 2019).
In this review, however, we concentrate on electrophysiological
assessment of de/remyelination in MS patients.

The visual pathway provides a unique opportunity for in vivo
assessment of myelin damage and repair in the MS-affected brain.
Firstly, the visual system is highly susceptible to damage in MS
and is a very frequent site of MS lesions. Optic neuritis (ON) is the
presenting symptom of MS in approximately 20% of MS patients
and evidence of previous ON is typically detected in half of the
relapsing-remitting (RR) MS population, while optic radiation
(OR) lesions are seen in about two-thirds (Figure 1; Hornabrook
et al., 1992; Jenkins et al., 2010; Klistorner et al., 2015).

Secondly, the strictly hierarchical structure of the visual system
provides an opportunity to follow the effect of MS damage
along several levels of inter-connected neurons. Thirdly, with the

FIGURE 1 | Schematic representation of the visual system and sites of MS
lesions.

advent of tractography [based on diffusion magnetic resonance
imaging (MRI)], the entire length of the visual pathway, including
the OR, can now be visualized and its structural damage can be
quantified (Figure 2; Sherbondy et al., 2008).

In addition, contrary to many other white matter pathways,
the visual pathway allows study of the dynamics of myelin
alteration in both acute and chronic lesions. This is due to the fact
that, while OR lesions are typically silent, lesions of the anterior
visual pathway are clinically apparent.

Furthermore, accurate and quantifiable measures of visual
system function, such as visual acuity [and low contrast
visual acuity (LCVA) in particular], are readily available
(Balcer et al., 2017).

Finally, the visually evoked potential (VEP), an event-related
potential generated by the striate cortex in response to visual
stimulation (Fahle and Bach, 2006), is uniquely placed to serve
as a biomarker of the myelination along the visual pathway based
on the following rationale. The VEP represents an electrical signal
generated at the level of striate cortex by the combined activity
of post-synaptic potentials in response to visual stimulation
(Creutzfeldt et al., 1969; Fahle and Bach, 2006). As a result, its
magnitude (“amplitude”) and timing (“latency”) are affected by
pathological changes (such, for example, as MS lesions) along the
entire visual pathway. Thus, it was suggested that amplitude of
the VEP reflects the number of functional fibers along the visual
pathway and is determined by the severity of inflammation in
the acute stage of MS lesion and subsequent axonal degeneration
in later stages (Jones and Brusa, 2003). Latency, on the other
hand, is related to the speed of conduction. Since the slowing
of conduction affects only the demyelinated portion of the
axons (Smith and Waxman, 2005; Waxman, 2005), the extent
of demyelinated area is likely to be proportional to the delay of
VEP arrival to the visual cortex, i.e., delay of VEP latency. As a
result, in contrast to most brain lesions, the effect of myelin loss

FIGURE 2 | Tractography of the optic tract (green) and optic radiation using
ConTrack software.
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and recovery can be qualitatively measured by the latency delay
(Halliday et al., 1972).

This close association between VEP latency delay and degree
of visual pathway demyelination has been confirmed by clinical
and experimental studies. For example, van der Walt et al.
(2015) demonstrated a high degree of concordance between the
length of optic nerve lesion and relative latency delay of the
VEP derived from stimulation of corresponding eye (Figure 3).
Similar relationships have been found in animal studies (You
et al., 2011; Heidari et al., 2019). A study by Alshowaeir et al.
(2014) also revealed a close relationship between VEP latency
delay and lesion volume in posterior visual pathway.

Since the VEP is generated at the level of striate cortex, it is
affected by pathological changes along the entire visual pathway.
Therefore, latency delay of the VEP reflects the combined effect
of demyelination in the entire visual system including optic nerve
and OR. However, due to the unique topographic anatomy of the
visual system (i.e., post-chiasmal crossing and projection of fibers
subserving similar parts of the visual field of both eyes to the same
area of the cortex), the effect of optic nerve and OR demyelination
on VEP can be differentiated. Thus, demyelinating lesions of
OR typically produce a similar delay of the VEP response in
both eyes. Conversely, since lesions of the optic nerve in MS
are, as a rule, unilateral, optic nerve demyelination only affects
VEP recorded in response to stimulation of the affected eye.
Furthermore, the monocular nature of ON allows comparison
of VEP parameters recorded from the affected eye with data
obtained from the fellow (unaffected) eye. Using this inter-eye
latency difference (asymmetry) significantly reduces between-
subject variability, providing a very accurate measure of optic
nerve de/remyelination (Graham et al., 2000; Hood et al., 2000b;
Klistorner et al., 2018).

There are several stimulating modalities that are employed
to generate the VEP. Flash stimuli are typically used in animal
studies and to record VEP response from non-cooperative
patients or young children, while pattern-reversal full or half-field
VEPs are commonly used in adults (Fahle and Bach, 2006). The
multifocal VEP (mfVEP) represents a most recent addition to the
array of VEP stimulations. The multifocal technique was initially

FIGURE 3 | Correlation between optic nerve lesion and mfVEP latency delay
[from van der Walt et al. (2015)].

developed by Sutter and Tran (1992); Baseler et al. (1994), Baseler
and Sutter (1997) and later modified and improved to study
cortical responses, first in glaucoma and later in demyelinating
diseases (Klistorner et al., 1998, 2010; Hood et al., 2000a; Fraser
et al., 2006).

There are several advantages of mfVEP over full-field
stimulation (Table 1).

The conventional full-field VEP provides a summed response
of all neuronal elements stimulated and is greatly dominated by
the macular region due to its cortical overrepresentation (Daniel
and Whittridge, 1961). It has been estimated that 65% of the
total full-field VEP response represents the central 2◦of the visual
field (Riggs and Wooten, 1972; Yiannikas and Walsh, 1983).
A small unified check size, which is commonly used for full-field
pattern stimulation, is another factor that tends to bias the central
response (Harter, 1970).

In addition, being the vector sum of numerous differently
oriented dipoles (caused by projection of upper and lower
hemifields to oppositely oriented banks of the calcarine sulcus,
which is further exacerbated by local cortical convolution),
the waveform of the full-field VEP is prone to unpredictable
change depending on the part of the nerve/visual field
affected, leading sometimes to detection of apparent rather
than real amplitude and latency change (Halliday et al.,
1979; Klistorner et al., 1998). This is particularly apparent in
case of OR lesions.

In contrast, the mfVEP simultaneously stimulates numerous
small areas (typically 56) of the visual field using pseudorandom
sequences and is able to extract individual responses from each
stimulated area independently and at the same time (Sutter and
Tran, 1992; Klistorner et al., 1998). This, together with cortical
scaling of the stimulating areas, provides a much larger field of
examination, which typically extends to 25◦ of eccentricity. In
addition, larger check size at more peripheral locations produces
an optimal mfVEP response from different parts of the visual
field (Figure 4A; Balachandran et al., 2002). The introduction of
orthogonally oriented bipolar recording channels straddling the
inion (Klistorner and Graham, 2000) also enhanced the ability
of mfVEP to detect signals from all parts of the visual field
regardless of the orientation of the underlying striate cortex
dipole (Figure 4B).

Furthermore, stimulation of small areas of the visual field
eliminates the cancelation effect of various dipole orientation
caused by the opposite position of upper and lower banks of
calcarine sulcus (subserving the upper and lower hemifields) and
cortical convolution, which is a serious limitation for the full-
field VEP.

Since it was established that signals derived from the
peripheral areas of the visual fields are less delayed and recover
faster than responses derived from the central areas of the visual
fields, this may also contribute to cancelation or distortion of the
full-field VEP as it is a summed response (Klistorner et al., 2007).

There are various ways to measure mfVEP latency. Individual
segments can be assessed independently and a retinotopically
organized plot of latency delay can be constructed (both as
absolute value of latency delay and deviation from a normative
database) (Figure 5).
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TABLE 1 | Comparison between full-field and multifocal VEP.

Full-field VEP Multifocal VEP

Retinal topography of the response Dominated by the macular region Equally distributed within central 48◦ of the visual
field

Number of stimulating fields Single Multiple (up to 56)

Number of responses in individual recording Single combined response Independent responses from multiple small areas of
the visual field

Ability to assess retinal topography of the response No Yes

Susceptible to cancelation between upper and lower hemifields Yes No

Cortically scaled stimulation No Yes

Alternatively, an averaged value of latency across all areas of
the stimulated eye can be used. However, contrary to full-field
VEP, averaging of mfVEP areas does not result in cancelation or
distortion of the total signal since numerical values of latency not
waveforms are averaged.

In summary, the mfVEP better reflects the true state of the
conductivity along the visual pathway by including information
from fibers subserving more peripheral parts of the visual
field and eliminating cancelation effects of differently oriented
dipoles. Simultaneous recording from a plurality of visual field
locations and use of orthogonal channels also results in higher
spatial resolution of the mf VEP technique, allowing independent
assessment of multiple regions.

While a number of imaging techniques such as magnetization
transfer ratio, diffusion tensor imaging, and myelin water
fraction have been recently suggested as potential biomarkers
for de/remyelination in MS lesions (Jelescu et al., 2016; van der
Weijden et al., 2020; Klistorner S. A. et al., 2021), there is no
current consensus on an issue of which one should be selected.
There are also no clinical studies to compare sensitivity and
specificity between imaging and electrophysiological (and VEP in
particular) techniques in assessing de/remyelination.

ACUTE LESIONS OF THE VISUAL
PATHWAY

The majority of new white matter lesions in MS are clinically
silent and, as a result, are typically detected during routine MRI
examination long after the acute inflammatory stage. Optic nerve
lesions, on the other hand, are usually clinically apparent from
the onset and, therefore, provide a unique platform to study
spontaneous remyelination, as well as treatment-induced myelin
repair in the early post-acute period using VEP latency as a
biomarker (Hood et al., 2000a; Klistorner et al., 2010; Cadavid
et al., 2017; Klistorner A. et al., 2021).

Furthermore, since precise timing of ON onset is known,
the ON model also offers an opportunity to investigate the
effect of the lesion’s age on remyelinating capacity of any
potential treating agent by studying patients with different post-
ON intervals.

This is of particular importance since it is believed that
remyelination is more likely to succeed in the acute or recent
MS lesion, while the environment for successful remyelination

may become less permissive in longstanding lesions (Chari
and Blakemore, 2002; Ruffini et al., 2004). The “window of
opportunity” for the process of remyelination to be successful
(Blakemore et al., 2002) may be related to pro-reparative
interactions between various cell populations and cytokines
within the early MS lesion (Chari and Blakemore, 2002; Foote and
Blakemore, 2005; Zhao et al., 2005). This critical period may open
following sufficient expansion and differentiation of perilesional
and lesional oligodendrocyte precursor cells and end with the
conversion of acute to chronic inflammation status (Kotter et al.,
2011). This age effect on the lesion is therefore likely to influence
both spontaneous and treatment-induced remyelination that
may be achieved.

Multifocal Visually Evoked Potential
Studies of Spontaneous Remyelination
of Acute Lesions
Both experimental and clinical studies have demonstrated that
after a brief block of conduction caused by acute inflammation,
the surviving, but chronically demyelinated axons largely recover
the ability to conduct (Smith and Waxman, 2005; Klistorner
et al., 2010). This general pattern is well reflected in clinical
and electrophysiological recovery after an episode of acute ON.
It was shown that after the resolution of acute inflammation
that typically occurs within 1–2 weeks from the onset of ON,
the conduction along the demyelinated part of the affected
axons resumes, resulting in restoration of vision and recovery of
VEP amplitude. However, similar to full-field VEP, immediately
after recovery of the conduction block, the latency of mfVEP
often displays significant prolongation. We have previously
demonstrated that this latency delay is highly proportional to
the length of the acute demyelinated area along the optic nerve
(Figure 3; Klistorner et al., 2010) and, therefore, reflects the
degree of initial myelin loss (Hood et al., 2000a; Jones and Brusa,
2003; Klistorner et al., 2010; van der Walt et al., 2015).

Subsequent shortening of mfVEP latency, which is frequently
observed after this initial delay, is thought to represent the
process of spontaneous remyelination (Hood et al., 2000a;
Klistorner et al., 2010; van der Walt et al., 2015). The mfVEP
latency improvement, however, is limited in magnitude and
restricted in time (Klistorner et al., 2010). Thus, the speed of
latency recovery is fastest during first 3 months after an acute
episode of ON, but gradually decelerates in the following months
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FIGURE 4 | (A) Dartboard stimulus used in mfVEP recording. (B) Example of mfVEP recording from ON (bottom row) and fellow (upper row) eyes. Individual travels
from corresponding segments magnified to demonstrate latency measurement. Note that the same channel (vertical) is selected for inter-eye comparison.

and finally ceases by the end of the first year, remaining stable
thereafter (Klistorner et al., 2010, Klistorner et al., 2020).

In addition, it was demonstrated that, at least in the
optic nerve, the magnitude of post-acute latency shortening
(i.e., spontaneous remyelination) is largely independent of
initial latency delay (presumed size of the initial demyelinated
lesion). For example, while in some cases initial (4 weeks
after ON onset) latency delay of the mfVEP exceeds 35–40 ms

(indicating almost total demyelination of the optic nerve),
latency improvement does not usually go beyond 10–15 ms
(average latency recovery 11.3 ± 3 ms) (Klistorner et al., 2010),
indicating disproportionately small remyelination of large lesions
(Figure 6). This partial recovery of mfVEP latency (van der
Walt et al., 2015) reflects the limited nature of spontaneous
remyelination, which is well documented in experimental and
pathological studies (see Cunniffe and Coles, 2019 for review).
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FIGURE 5 | Example of mfVEP latency asymmetry values of individual segments (left) and plot of probability values of deviation from normative database.

FIGURE 6 | Absolute latency recovery values at 12 months plotted against
baseline latency delay [from Klistorner et al. (2010)].

Multifocal Visually Evoked Potential
Studies of Treatment-Induced
Remyelination of Acute Lesions
The acute ON model is becoming a method of choice for clinical
trials aimed at myelin repair (Tsakiri et al., 2012; Galetta et al.,
2015; Cadavid et al., 2017; Klistorner et al., 2018).

The mfVEP has recently been used to study remyelination
in a clinical trial of monoclonal antibody opicinumab, which
previously shows remyelinating activity in pre-clinical studies
(RENEW and RENEWED). In the RENEW study, patients
were treated with 100 mg/kg opicinumab for 20 weeks and
assessed up to week 32, while the RENEWED study was
designed as a follow-up study at 2 years after the last
visit of RENEW study.

In the RENEW study, both the conventional full-field VEP
(which was the primary endpoint of the study) and the mfVEP
latency demonstrated a larger improvement in ON eyes of
patients treated with opicinumab compared to placebo (Cadavid
et al., 2017; Klistorner et al., 2018), although this only reached

FIGURE 7 | Mean change in mfVEP latency, adjusted for the baseline latency
of unaffected fellow eye, at week 24 in the affected eye compared with the
unaffected fellow eye at baseline in the substudy ITT and PP populations [from
Klistorner et al. (2018)].

borderline significance. The average latency improvement in
treated eyes compared to placebo was 7.6 ms in full-field VEP
and 11.8 ms in mfVEP in the per-protocol population (Figure 7).
The mfVEP result, however, was achieved with half of the sample
size compared to full-field VEP (39 vs. 82 patients). The sample
size advantage of using mfVEP was confirmed by a post hoc
comparison of estimated effect size for change in mfVEP and full-
field VEP latency for opicinumab versus placebo at week 24 in
the intention-to-treat population, which showed that the mfVEP
demonstrated a larger treatment effect size than full-field VEP
(Klistorner et al., 2018).

Furthermore, while the high variability of full-field VEP
precluded any meaningful assessment of amplitude, analysis of
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mfVEP demonstrated evidence that fellow eye amplitude loss
occurs after ON but can potentially be prevented by opicinumab
treatment (Klistorner et al., 2018).

The RENEWED study also demonstrated higher sensitivity
of mfVEP in monitoring treatment-induced remyelination
compared to full-field VEP. The average difference between
latency recovery of mfVEP in the treated vs. placebo group
increased from 14.4 to 19.6 ms over the 2 years after treatment
was terminated, while full-field VEP demonstrated reduction of
latency recovery from 9.4 to 6.0 ms during the same period
(Aktas et al., 2020).

Further analysis of mfVEP revealed that in the opicinumab
group, there was a strong association between the degree of
latency delay at baseline (as measured at week 4) and the
latency recovery at RENEWED day 1 (r2 = 0.72, p = 0.004,
Pearson correlation coefficient). Conversely, the magnitude of
mfVEP latency recovery was limited in the placebo group and
did not correlate with initial degree of latency delay (p = 0.2)
(Klistorner et al., 2020), which was consistent with the results
of the “natural history” study of spontaneous optic nerve
remyelination following an episode of acute ON reported earlier
(Klistorner et al., 2010).

Therefore, in the presumed treatment-induced (opicinumab)
remyelination following acute ON, the degree of myelin recovery
was highly proportional to the extent of initial myelin loss
(Klistorner et al., 2020).

It must be noted that while the degree of acute
demyelination cannot often be assessed because of frequent
incidence of edema and conduction block, continuous
conduction along the demyelinated part of the affected
axons typically resumes by 3–4 weeks, which still provides
a good indication of the extent of original demyelination
(van der Walt et al., 2015).

CHRONIC LESIONS OF THE VISUAL
PATHWAY

While the clinical potential for remyelination of chronic lesions
is more challenging (see discussion related to “window of
opportunity” above), it is also extremely important since the
diagnosis of MS is typically delayed (Klistorner et al., 2017) due to
the fact that majority of MS lesions are clinically silent. As a result,
it is exceedingly difficult to identify acute lesions. In addition,
by the time of MS diagnosis, the patient often presents with a
number of chronic brain lesions.

The visual system can also be used to monitor myelin
alteration in chronic lesions. As stated above, since mfVEP
is generated at the level of primary (striate) visual cortex
but reflects the integrity of the full visual pathway, it is
affected by the speed of conduction and, therefore, degree
of de/remyelination along the entire pathway, including optic
nerve and OR. Accordingly, delay of mfVEP latency in non-
acute ON patients does reflect the combined effect of chronic
demyelination in both optic nerve and OR. Since the effect of
a chronic optic nerve lesion on mfVEP is usually monocular,
while OR lesions will yield binocular latency delay due to partial

FIGURE 8 | Pipeline for detecting optic radiation lesions. Optic radiation
(determined by tractography in yellow) is intersected with brain lesion mask
(red).

chiasmal crossing of visual pathway, this provides a point of
differentiation.

Quantitative investigation of the association between mfVEP
latency delay and MS-related damage of posterior visual
pathway was aided by the relatively recent development of
diffusion-based tractography, which enabled identification
and segmentation of major white matter tracts including ORs
(Sherbondy et al., 2008). Intersection of the brain lesion mask
with OR mask obtained using brain white matter tractography
(Figure 8) enabled accurate volumetric assessment of the
OR lesions and demonstrated significant association between
structural MRI-based estimation and electrophysiological
measurement of OR demyelination (Alshowaeir et al., 2014),
and confirmed the above relationship between OR lesions and
binocular latency delays.

Multifocal Visually Evoked Potential
Studies of Treatment-Induced
Remyelination of Chronic Lesions
The mfVEP has also recently been employed as a biomarker
for clinical trials to examine possible remyelination in chronic
lesions, in combination with MRI. The utility of the mfVEP
is further strengthened by our longitudinal analysis, which
demonstrated the remarkably stable nature of mfVEP latency
after 12 months in the absence of new lesional activity in the
visual pathway (Klistorner et al., 2020).

While patient recruitment within a short window after
symptom onset represents a limiting factor for acute ON trials,
selection of patients for remyelinating trials based on chronic
visual pathway lesions is less challenging. The main enrollment
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criteria for such trials are the presence of measurable mfVEP
signal (includes ∼95% of RRMS population) and significant
latency delay indicating chronic demyelination along the visual
pathway (includes ∼70% of RRMS population). Furthermore,
the sample size calculated for 12 months in a clinical trial of
a potential remyelinating agent based on latency of the mfVEP
revealed that a relatively small sample size would be required to
demonstrate efficacy of remyelination therapy (Klistorner et al.,
2020). This approach has been tested in a substudy of the large
clinical trial of opicinumab (SYNERGY, Biogen) and is currently
employed in the VISIONARY-MS trial to test the efficacy of
gold nanoparticles (Clene Nanomedicine, United States) and
the CCMR Two trial to test the combination of metformin
and clemastine (University of Cambridge, United States) in
remyelination of chronic MS lesions.

Multifocal Visually Evoked Potential in
Other Neurological Conditions
While mfVEP has also been used in monitoring other
neurological conditions, such as neurofibromatosis, Leber’s

optic neuropathy, chronic inflammatory demyelinating
polyneuropathy, optic disc drusen, chiasmal decompression,
compressive optic neuropathy, and schizophrenia (Semela et al.,
2009; Yamada et al., 2011; Raz et al., 2015; Ziccardi et al., 2015;
Malmqvist et al., 2017; Graf et al., 2018; Jayanetti et al., 2018), its
application is sporadic and clinical usefulness is limited.
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Purpose: The rearranged during transfection (RET) receptor tyrosine kinase plays a key
role in transducing signals related to cell growth and differentiation. Ret mutant mice
show abnormal retinal activity and abnormal levels and morphology of bipolar cells, yet
die on the 21st day after birth as a result of renal underdevelopment. To extend the
observation period, we generated the Ret conditional knockout Chx10-Cre;C-Retlx/lx

mouse model and analyzed the retinal function and morphological changes in mature
and aging Chx10-Cre;C-Retlx/lx mice.

Methods: Retina-specific depletion of Ret was achieved using mice with floxed alleles of
the Ret gene with CHX10-driven Cre recombinase; floxed mice without Cre expression
were used as controls. Retinal function was examined using electroretinography (ERG),
and 2-, 4-, 12-, and 24-month-old mice were analyzed by hematoxylin staining and
immunohistochemistry to evaluate retinal morphological alterations. The ultrastructure
of photoreceptor synapses was evaluated using electron microscopy.

Results: The results of the ERG testing showed that b-wave amplitudes were reduced
in Chx10-Cre;C-Retlx/lx mice, whereas a-waves were not affected. A histopathological
analysis revealed a thinner and disorganized outer plexiform layer at the ages of
12 and 24 months in Chx10-Cre;C-Retlx/lx mice. Moreover, the data provided by
immunohistochemistry showed defects in the synapses of photoreceptor cells. This
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result was confirmed at the ultrastructural level, thus supporting the participation of Ret
in the morphological changes of the synaptic ribbon.

Conclusion: Our results provide evidence of the role of Ret in maintaining the function
of the retina, which was essential for preserving the structure of the synaptic ribbon and
supporting the integrity of the outer plexiform layer.

Keywords: GDNF family of ligands (GFL), rearranged during transfection (RET), mouse retina, ribbon synapses,
Cre-loxP knockout mice

INTRODUCTION

The retina receives light signals at levels that span several orders
of magnitude. Adaptive changes to different light levels occur
at multiple sites within the retinal signal transmission and
act together in processing the light information. In contrast
to conventional neurons, photoreceptors do not signal via
action potentials; rather, they continuously translate light
into a graded transmitter release, with the highest exocytosis
rates in the dark. To accomplish this task, photoreceptors and
retinal bipolar cells contain a specialized type of synapse, the
so-called ribbon synapse. The ribbon synapse is a specialized
synaptic structure located in the outer plexiform layer (OPL)
of the retina in which a synaptic “triad” is formed between
the axonal pedicles of rods and cones and the dendrites of
horizontal and bipolar cells. Through this special synapse, visual
signals are transmitted from photoreceptors to bipolar and
horizontal cells (Heidelberger et al., 2005). Morphologically,
ribbon synapses are anchored to the plasma membrane
in close vicinity to voltage-gated Ca2+ channels and are
typically surrounded by a large number of synaptic vesicles
(Sterling and Matthews, 2005). A previous study showed
that the lack of active-zone-anchored synaptic ribbons
reduced the presynaptic readily releasable vesicle pool
and impaired synchronous visual signaling, thus affecting
visual function (LoGiudice and Matthews, 2009). Therefore,
photoreceptor ribbon synapses play an important role in
visual function.

To protect central nervous system (CNS) cells, mutation-
independent neuroprotective strategies—such as the
glial-cell-line-derived neurotrophic factor (GDNF), the brain-
derived neurotrophic factor (BDNF), the nerve growth factor
(NGF), and the ciliary neurotrophic factor (CNTF)—have
been applied to, and their therapeutic potential has been
demonstrated in, the management of retinal impairment in
various animal models (Chinskey et al., 2014). GDNF is a
distant member of the transforming growth factor β (TGF-
β) superfamily and a founder protein of the GDNF-family
ligands (GFLs), which include neurturin (NRTN), artemin
(ARTN), and persephin (PSPN) (Airaksinen and Saarma, 2002).
All four GFLs (GDNF, NRTN, ARTN, and PSPN) signal via

Abbreviations: ARTN, artemin; BDNF, brain-derived neurotrophic factor; CNTF,
ciliary neurotrophic factor; ERG, electroretinography; GDNF, glial-cell-line-
derived neurotrophic factor; GFLs, GDNF-family ligands; INL, inner nuclear
layer; IPL, inner plexiform layer; NGF, nerve growth factor; NRTN, neurturin;
ONL, outer nuclear layer; OPL, outer plexiform layer; PSPN, persephin; RT, room
temperature; TGF-β, transforming growth factor β; WT, wild-type.

the activation of the rearranged during transfection (RET)
receptor tyrosine kinase, a single-pass transmembrane protein
that contains four cadherin-like repeats in the extracellular
domain and a typical intracellular tyrosine kinase domain
(Durbec et al., 1996). These GFLs promote the survival of
various neurons, including peripheral neurons and central
motor and dopamine neurons, and have been suggested as
candidate therapeutic agents for neurodegenerative diseases
(Takahashi, 2001).

The function of GDNF in the nervous system has been
investigated in many studies. GDNF promotes the differentiation
and survival of rat midbrain dopamine neurons and increases
the outgrowth of neurites and dopamine uptake in vitro
(Lin et al., 1993). Moreover, GDNF stimulates the formation
of new axon terminals in dopamine neurons, which has
led to an increased interest in the therapeutic potential of
GDNF for the management of Parkinson’s disease (Bourque
and Trudeau, 2000). In addition, a previous study showed
that GDNF supports the survival of spinal motoneurons
(Henderson et al., 1994). In the eye, GDNF is mainly
expressed in the retina and has potential therapeutic value
by providing neuroprotection in the context of retinal
degeneration (Koeberle and Ball, 1998). Moreover, GDNF
was reported to be able to rescue retinal ganglion cells after
axotomy (Yan et al., 1999) and to be very effective in retarding
photoreceptor degeneration in the retinal degeneration 1 (rd1)
mouse model (Frasson et al., 1999). Subretinal injection of
GDNF decreased the loss of photoreceptors and provided a
significant functional rescue, as demonstrated by recordable
electroretinography (ERG) (Frasson et al., 1999). These
studies suggest that GDNF-mediated RET signaling affects
retinal function.

GDNF was shown to be a RET ligand, and extensive
studies of intracellular signaling through RET have been
performed. Specifically, mice carrying loss-of-function mutations
in a variety of GFLs or in their receptors exhibited either
a loss of sensory neuron populations or a loss of specific
types of neurons (Airaksinen and Saarma, 2002; Ernsberger,
2008). Moreover, GDNF/RET signaling plays crucial roles
in renal development (Costantini and Shakya, 2006) and
the regulation of spermatogonia differentiation (Meng et al.,
2000). In addition, RET mutations have been found to
cause several human diseases, such as papillary thyroid
carcinoma, multiple endocrine neoplasia types 2A and 2B,
and Hirschsprung’s disease. Ret-knockout mice exhibit a
lack of enteric neurons and superior cervical ganglia, as
well as renal agenesis or dysgenesis (Schuchardt et al., 1994;
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Moore et al., 1996). Furthermore, a previous study demonstrated
that abnormal retinal activity in NRTN- or Ret-deficient
mice was associated with abnormal process extension of
horizontal cells and bipolar cells into the outer nuclear
layer (ONL), as well as a severely disrupted OPL with
very sparse dendrites and axons of horizontal cells (Brantley
et al., 2008). These results suggest that RET signaling is
involved in retinal development. However, Ret-deficient mice
die before postnatal day 21; thus, further evaluation of their
retinal phenotype in adulthood is lacking in the literature
(Schuchardt et al., 1994).

The Cre-loxP system is widely used as a powerful genetic
tool for generating conditional knockout mice. Researchers
can use this system to investigate genes of interest in a
tissue/cell- (spatial control) and/or time- (temporal control)
specific manner when straight knockout of the genes of interest
causes embryonic lethality. In this study, we aimed to investigate
the function of Ret in the retina by generating conditional
knockout mice using the Cre-loxP system. Although conditional
RetRETfloxEGFP/RETfloxEGFP:Six3 Cre knockout mice have been
reported, the long-term effect of this intervention on the retina
remains unknown (Brantley et al., 2008). To overcome this
limitation, we deleted Ret exclusively in the retina by crossing
homozygous Ret conditional knockout mice (i.e., Retlx/lx mice)
with mice expressing Cre recombinase under the control of the
Chx10 gene. The Chx10 gene is specifically expressed in the
retinal progenitor cells at the early stage of eye development
(E11.5), followed by a restricted expression in the bipolar cells
as the progenitor cells differentiate and exit the cell cycle (Rowan
and Cepko, 2004). We analyzed the retinal network in mature and
aged Chx10-Cre;C-Retlx/lx mice and investigated the alteration
in the ultrastructure of synaptic ribbons in Chx10-Cre;C-Retlx/lx

mice specifically.

MATERIALS AND METHODS

Animals
All animal procedures were performed according to the
guidelines of the Association for Research in Vision and
Ophthalmology Statement for the Use of Animals in Ophthalmic
and Vision Research and were approved by the Institutional
Animal Care and Use Committee of the National Taiwan
University. RetRet < tm1.1Kln > mice were generated by Dr. Klein
(Kramer et al., 2007) by targeting a construct encompassing
exons 11–13 of the Ret gene with Lox P sites flanking exon 12
(Figure 1A) (termed C-Retlx/lx mice hereafter). The generation
of conditional knockout mice with Ret gene deletion in the
retina was achieved by crossing C-Retlx/lx mice carrying LoxP
sites flanking exon 12 of the Ret gene (Kramer et al., 2006)
with mice expressing Chx10-Cre specifically in the retina (JAX:
Stock No. 005105). All mice were housed in groups of four to
five animals per cage in a room that was kept at 23 ± 1◦C
and 55% ± 5% humidity with a 12-h light/dark cycle, and were
given ad libitum access to food and water. All mice used in
our experiments were genotyped to confirm the absence of the
rd8 and rd1 mutations as they may be present in vendor lines

and subsequently confound ocular-induced mutant phenotypes
(Errijgers et al., 2007; Mattapallil et al., 2012).

Mouse Genotyping
Mice were genotyped and verified using polymerase chain
reaction (PCR) analysis. For genotyping, genomic DNA was
isolated from a section of mouse tail, optic nerve and retina using
an AquadienTM kit (Bio-Rad, Richmond, CA, United States)
according to the manufacturer’s instructions. Mice homozygous
for C-Retlx/lx were identified using the C-Ret forward (5′-CCA
ACA GTA GCC TCT GTG TAA CCC C-3′) and reverse (5′-
GCA GTC TCT CCA TGG ACA TGG TAG CC-3′) primers
span the loxP in intron 12 (Figure 1A, top). Optic atrophy
type 1 (Opa1) forward (5′-GAG CTG AGA GGG AGT GAA
GAG AGG-3′) and reverse (5′-CCC AAA ACT CCT TTA TCC
CAG TGA C-3′) primers could serve as the positive control.
Furthermore, the Chx10-Cre mice carried EGFP fused with Cre
recombinase; therefore, primers that amplify EGFP were also
used to detect the presence of Cre recombinase. The thermal
cycling conditions consisted of 30 cycles of 30 s at 94◦C, 30
s at 55◦C, and 50 s at 72◦C. Reactions contained 200 ng of
template DNA, 0.5 µM primers, 100 µM dNTPs, 9% glycerol,
2.5 U of Taq polymerase, 1.8 mM MgCl2, and 1× PCR buffer
(GIBCO BRL) in a volume of 20 µL. The PCR products
were resolved via 2% agarose gel electrophoresis using Gel
Red (Invitrogen/Life Technologies) as the visualizing dye. The
DNA bands were visualized using a ChemiDoc Imaging System
(Bio-Rad).

Electroretinography
Electroretinography was performed as described previously
(Wang et al., 2010). After 12 h of adaptation in the dark,
the mice were prepared for the ERG recordings using an
Espion ERG System (Diagnosys LLC; Lowell, MA, United States)
under dim red light. The animals were kept on a heating
pad (Mycoal, Tochigi, Japan) during the ERG recordings, to
maintain a constant body temperature. Mice were anesthetized
via intraperitoneal injection of 0.1 mL of a mixed solution (1 mL
of ketamine at 100 mg/mL and 0.1 mL of xylazine at 20 mg/mL
in 8.9 mL of PBS) per 10 g of body weight, and pupils were
dilated with topical 2.5% phenylephrine hydrochloride and 1%
tropicamide. The test protocol consisted of 11 dark-adapted and
nine light-adapted steps. The light intensities of the stimuli used
for scotopic serial intensity ERG were –3.6, –3.2, –2.8, –2.4, –
2.0, –1.6, –1.2, –0.6, 0.0, 0.4, and 0.9 log cd.s/m2 in sequence. The
intervals between each stimulus varied from 2 to 30 s, and the
number of repeats varied from 10 to 4 times. After the completion
of dark-adapted recordings, the animals were exposed to a
full-field 30 cd/m2 white background for 10 min; subsequent
steps were delivered on top of this continuous background. The
single-flash stimuli applied after light adaptation consisted of
−0.1, 0.1, 0.3, 0.8, 1.0, 1.2, and 1.47 log cd.s/m2. The intervals
between each stimulus varied from 1 to 10 s, and the number
of repeats varied from 3 to 10 times. A digital band-pass filter
ranging from 0.3 to 300 Hz was used to isolate signals after
the waves were recorded. The a-wave amplitude was measured
from the baseline to the trough of the a-wave, and the b-wave
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FIGURE 1 | Targeting strategy for the generation of conditional Ret-knockout mice and genotyping of C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice using polymerase
chain reaction (PCR). The Cre-loxP system was used to generate conditional Ret-knockout mice. In C-Retlx/lx mice, the target, exon 12, of the C-Ret gene is flanked
by two loxP sites (A, top). The Chx10-Cre mouse model (JAX #005105) was generated by Chx10 BAC transgenes using a GFP/Cre translational fusion protein
combined with internal ribosome entry sequence-human placental alkaline phosphatase cassette (IRES-AP) under the control of Chx10 enhancer elements (A,
middle). In Chx10-Cre;C-Retlx/lx mice, Cre recognizes the loxP sites and excises the target exon 12 together with one loxP sequence while recombining the two
ends of the remaining sequences, thus causing the permanent deletion of the target C-Ret gene. Exons are depicted as white boxes and loxP sites are shown as
white triangles (A, bottom). A PCR analysis of all three genotypes (wild-type, C-Retlx/lx , and Chx10-Cre;C-Retlx/lx ) using the C-Ret primers (A, top) showed that a
350 bp signal was detected in the wild-type (WT) mice and 450 bp signals were observed in C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice (B, top). The PCR
amplification of GFP (A, middle), which was detected as a 320 bp fragment, was observed exclusively in Chx10-Cre;C-Retlx/lx mice (B, bottom).

was measured from the trough of the a-wave to the peak of
the b-wave.

Tissue Preparation
Mice were sacrificed at 2, 4, 12, and 24 months of age and their
eyes were enucleated and fixed in 4% paraformaldehyde (PFA)
in PBS for 1 h at room temperature (RT). For a better retinal
infiltration of 4% PFA, corneas were partially removed and then
placed in 4% PFA at 4◦C for ∼1 h. After washing in PBS three
times, the tissues were incubated in a 30% sucrose solution in
PBS at 4◦C for 3 days. Tissues were embedded in optimum
cutting temperature (OCT) compound (Thermo, Pittsburgh, PA,
United States), snap frozen in liquid nitrogen, and immediately
stored at –80◦C. Cryosections (14 µm in thickness) were cut and
collected on slides (Matsunami, Osaka, Japan). All slides were
stored at –80◦C before use. Before any staining process, the slides
were air dried for 15 min and washed in PBS.

Hematoxylin Staining
Sections were stained with hematoxylin for 1 min, then
washed with running water for 5 min. The stained sections
were mounted with an aqueous mounting medium (EMS,
Hatfield, PA, United States) and viewed under a microscope
(Olympus CH-2 system, Tokyo, Japan). The brightness and
contrast of photomicrographs were adjusted for maximum clarity
using Adobe Photoshop CS5 (Adobe Systems, San Jose, CA,

United States). The retinas of three mice in each group underwent
further histological analysis.

Immunohistochemistry
Sections were blocked with blocking buffer [5% fetal bovine
serum (FBS) in PBS containing 0.1% Triton X-100] for 1 h at
RT, followed by incubation with the primary antibodies (Table 1)
diluted in 3% FBS in PBS at 4◦C overnight. The sections were
subsequently incubated with the secondary antibodies for 1 h
at RT. After washing three times in PBS, they were mounted
with mounting medium (EMS, Hatfield, PA, United States) and
viewed under a Leica DM6000 Confocal Fluorescence Imaging
Microscope (Leica Microsystems, Wetzlar, Germany).

Transmission Electron Microscopy and
Quantification
Retinas were isolated and fixed in 2% glutaraldehyde and 2% PFA
in 0.1 M PB at 4◦C overnight. After postfixing in 1% osmium
tetroxide for 1 h, tissue samples were dehydrated in a graded
ethanol series and embedded in epoxy resin (EMS, Hatfield, PA,
United States). Ultrathin sections (70 nm in thickness) were
collected on copper grids and stained with uranyl acetate and
lead citrate before examination under a Hitachi H-7100 electron
microscope (Hitachi, Tokyo, Japan) equipped with a Gatan 832
digital camera (Gatan, Inc., Pleasanton, CA, United States).

For the quantification of synaptic ribbon conditions, images of
the OPL were taken at a magnification of 40,000X. Approximately
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TABLE 1 | List of antibodies applied for immunohistochemistry.

Antigen Antiserum Cell type Source Catalog Dilution factor

α-internexin Mouse anti-internexin, α, C-terminus, clone 2E3 Horizontal cell and ganglion
cell

Millipore MAB5224 1:100

PKC-α Mouse anti-PKC-α (H-7) Rod bipolar cell Santa Cruz
Biotechnology

Sc-8393 1:100

PKC-α Rabbit anti-PKC-α (H-300) Rod bipolar cell Santa Cruz
Biotechnology

Sc-10800 1:100

Synaptophysin Rabbit anti-synaptophysin Photoreceptor Abcam Ab-14692 1:100

Calbindin Rabbit anti-calbindin Horizontal cell Invitrogen PA1-931 1:500

PSD-95 Mouse anti-PSD95 Photoreceptor NeuroMab 75-028 1:500

EGFP Rabbit anti-(GFP) GFP expressing cells Millipore Ab-3080 1:500

Mouse IgG Goat anti-mouse IgG Alexa 488 and 594 Invitrogen A11001 A11005 1:200

Rabbit IgG Goat anti-rabbit IgG Alexa 488 and 594 Invitrogen A11008 A11012 1:200

500 photoreceptor terminals for each age were examined and
classified into different categories of rod-shaped ribbon profiles.

Histological Quantification
The thickness of the ONL and inner nuclear layer (INL) was
quantified from single optical sections. Images were taken at a
distance of 200 µm from the optic disc and within fields with
a size of 300 × 800 µm2, which was modified from previous
studies that chose the area of approximately 200–500 µm away
from the optic nerve for quantification (Berger et al., 2014;
Mead et al., 2014). Five images per retina were analyzed in
three mice per group.

Statistical Analysis
All experimental data were assessed by an operator blinded
to the genetic condition. The results were presented as the
mean ± standard error of the mean (SEM) and statistical
significance was determined by independent Student’s t-test.
P < 0.05 was considered significant. All analyses were performed
using SPSS (IBM SPSS Statistics for Windows, Version 21.0, IBM
Corp. Armonk, NY, United States) and GraphPad Prism 5.0a
(GraphPad Software Inc., San Diego, CA, United States).

RESULTS

Generation of Conditional Knockout
Mice
To detect the C-Retlx/lx allele in both Chx10-Cre;C-Retlx/lx and
C-Retlx/lx mice, total DNA from wild-type (WT) and transgenic
mice was subjected to PCR analysis with C-Ret primers spanning
the intron 12 loxP sequence (Figure 1A, top). In WT mice
(without the loxP insertion), the 350 bp amplicon was detected
using the C-Ret primers. In contrast, given that C-Retlx/lx and
Chx10-Cre;C-Retlx/lx mice contained loxP sequences, they yielded
an amplicon of 450 bp instead (Figure 1B, top). Because the
Chx10-Cre mouse model (JAX: Stock No. 005105) was generated
by Chx10 BAC transgenes using a “GFP/Cre translational fusion
protein” (Figure 1A, middle), we used GFP primers to determine
the presence of Cre. Consequently, we found that a 320 bp

fragment was detected exclusively in Chx10-Cre;C-Retlx/lx mice,
and not in WT or C-Retlx/lx mice (Figure 1B, bottom).

Conditional Knockout C-Ret in Retina
and Expression of Chx10-Cre
To validate whether exon 12 of the C-Ret gene was deleted in the
retina of Chx10-Cre;C-Retlx/lx mice, we performed PCR analysis
using C-Ret primers on DNA extracted from retina and optic
nerve of C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice. We found that
PCR could amplify C-Ret in C-Retlx/lx retina, but barely in Chx10-
Cre;C-Retlx/lx retina, indicating that exon 12 of the C-Ret gene
was deleted in most of the retina cells of Chx10-Cre;C-Retlx/lx

mice (Figure 2A, top). On the other hand, PCR could amplify C-
Ret from optic nerves in both C-Retlx/lx and Chx10-Cre;C-Retlx/lx

mice. In addition, PCR amplification with Opa1 primers was used
to make sure the DNA was successfully extracted from different
regions of eyeball and equally loading DNA amount for each lane
(Figure 2A, bottom). To further validate the expression of Cre
expression in Chx10-Cre mice, we did immunohistochemistry to
label rod bipolar cells and GFP expressing cells using anti-PKC-α
and anti-EGFP antibodies. Because the Cre protein on its own has
the capacity to cross the membrane and translocate to the nucleus
(Will et al., 2002), the IHC results showed GFP expression only
in the nuclei of Chx10-Cre;C-Retlx/lx bipolar cells, while PKC-
α expression was identified in the cytoplasm of bipolar cells
in both C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice (Figure 2B).
Based on PCR and IHC analysis, Chx10-Cre;C-Retlx/lx mice were
conditionally deleted the exon 12 of C-Ret gene in the retina.

In vivo Analyses of Retinal Function and
Morphology in Chx10-Cre;C-Retlx/lx Mice
To determine the effect of Ret deficiency on retinal function,
ERG was performed in 12-month-old Chx10-Cre;C-Retlx/lx and
C-Retlx/lx mice (Figure 3). The C-Retlx/lx mice showed a normal
ERG pattern of series intensity stimulation. As the flash intensity
of the scotopic phase increased, the amplitude of the a-wave
and b-wave increased. The a-wave represents the activity of
the photoreceptors, whereas the b-wave reflects bipolar cell
activity. The scotopic ERG of Chx10-Cre;C-Retlx/lx mice revealed
a selective reduction of b-waves, with relative preservation of
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FIGURE 2 | Amplification of C-Ret gene and immunohistochemistry of GFP in C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice. (A, top) Polymerase chain reaction (PCR)
was performed using C-Ret primers to screen the presence of exon 12 within the C-Ret gene. The results showed that barely any amplification occurred in the
retinae of Chx10-Cre;C-Retlx/lx mice compared to that in the retinae of C-Retlx/lx mice. PCR was able to amplify C-Ret gene from optic nerve in both C-Retlx/lx and
Chx10-Cre;C-Retlx/lx mice. (A, bottom) PCR analysis using Opa1 primers showed equally amplification between C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice in retinae
and optic nerve tissue. (B) Retinal sections of animals aged 12 months were immunostained with anti-PKC-α (red) and anti-EGFP (green) antibodies to label rod
bipolar and GFP expressing cells, respectively, followed by counterstaining with Hoechst dye, to indicate cell nuclei (blue). PKC-α (red) was expressed in cytoplasm
of bipolar cells in C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice; however, the GFP was only expressed in the nucleus of bipolar cells of Chx10-Cre;C-Retlx/lx mice due to
fusion with Cre protein, which has the capacity to cross the membrane and translocate to the nucleus.

a-waves in the scotopic phase (Figures 3A,B). The implicit times
of a- and b- waves were more delayed in Chx10-Cre;C-Retlx/lx

mice (Figure 3B) (n = 6; ∗P < 0.05). In photopic serial intensity
ERG, there were reductions in amplitude of a- and b- waves
in Chx10-Cre;C-Retlx/lx mice, which were statistically significant
in some intensities of b-waves. However, there was no obvious
difference in the implicit time of a- and b- waves in photopic
responses between Chx10-Cre;C-Retlx/lx and C-Retlx/lx mice.
The ERG recordings suggested that the Chx10-Cre;C-Retlx/lx

mice may exhibit a greater effect on the function of bipolar
cells. Furthermore, these tracings were similar to those of an
electronegative ERG corresponding to inner retinal dysfunction.

Hematoxylin staining was used to examine whether the
Chx10-Cre;C-Retlx/lx mice had morphological alterations in the
retina (Figure 4). We observed that, compared with C-Retlx/lx

mice (Figures 4A–D), the retinas of Chx10-Cre;C-Retlx/lx mice
seemed to exhibit a progressive decrease in the thickness of the
ONL, OPL, INL, and inner plexiform layer (IPL) (Figures 4E–H).
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FIGURE 3 | Electroretinography (ERG) of C-Retlx/lx and Chx10-CRE;C-Retlx/lx mice. (A) Representative ERG waveforms were recorded from 12-month-old
C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice at increasing stimulus intensities in the scotopic phase. In Chx10-Cre;C-Retlx/lx mice, a decrease in the b-wave and a
relative preservation of the a-wave were observed. (B) The b-wave amplitudes were significantly larger in C-Retlx/lx mice than they were in Chx10-Cre;C-Retlx/lx mice
at most of the different intensities of the scotopic phase, whereas the a-wave amplitudes were similar between C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice. There were
some delays in the implicit time of a- and b- waves in Chx10-Cre;C-Retlx/lx mice as compared to the implicit times in C-Retlx/lx mice at some flash intensities.
(C) Representative photopic ERG waveforms were recorded from 12-month-old C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice at increasing stimulus intensities. (D) In
Chx10-Cre;C-Retlx/lx mice, there were reductions in b-wave amplitudes, while no significant decrease in the amplitude occurred in the a-wave. There were no
significant delays in the a- and b- waves in photopic serial intensities. The electronegative ERG result indicated inner retinal dysfunction in Chx10-Cre;C-Retlx/lx mice
(n = 6; *P < 0.05).

Some nuclei in the ONL invaded the OPL in Chx10-Cre;C-
Retlx/lx mice at 12 months of age, which became more obvious
in these animals at the age of 24 months. We then quantified
the thickness of the ONL (Figure 4I) and INL (Figure 4J) using
morphometric measurements. Although there was no statistically
significant difference in the thickness of the ONL and INL
between the Chx10-Cre;C-Retlx/lx and C-Retlx/lx retinas, we found
that the thickness of the ONL in Chx10-Cre;C-Retlx/lx mice
showed a 15.4% reduction at 12 months and a 16.3% reduction at

24 months. This observation suggests that the retinal morphology
in Chx10-Cre;C-Retlx/lx mice is altered at older ages.

Immunohistochemistry of Horizontal
Cells and Rod Bipolar Cells in
Chx10-Cre;C-Retlx/lx Mice
To identify the components that are potentially altered in the
OPL, IHC was performed to label the horizontal cells and
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FIGURE 4 | Morphological examination of C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice. Hematoxylin staining of the retinas of C-Retlx/lx (A–D) and Chx10-Cre;C-Retlx/lx

(E–H) mice was performed at 2, 4, 12, and 24 months of age. At the age of 2 and 4 months, the OPL in Chx10-Cre;C-Retlx/lx retinas was slightly thinner than that in
C-Retlx/lx mice (A,B,E,F). Furthermore, this phenomenon was detected in the OPL of Chx10-Cre;C-Retlx/lx retinas which became worse, and their retina even
showed disorganization at the ages of 12 and 24 months (C,D,G,H). The thickness of the ONL and INL was measured in three animals per group at the ages of 2,
4, 12, and 24 months (I,J). The ONL in Chx10-Cre;C-Retlx/lx retinas was thinner than that in C-Retlx/lx retinas at the ages of 12 and 24 months, albeit with no
statistical significance at either of the stages (I). Similarly, the INL in Chx10-Cre;C-Retlx/lx retinas was slightly thinner (albeit not significantly) than that in C-Retlx/lx

retinas (J). An independent t-test was used in this analysis, and significance was set at P < 0.05. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner
nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bar, 25 µm.

rod bipolar cells in mouse retinas. Bipolar cells and horizontal
cells are the second−order neurons that form synapses with
photoreceptor terminals in the OPL. A previous study indicated
that α-internexin is expressed in horizontal cells and may be used
as a marker of these cells in the study of the mouse retina (Chien
and Liem, 1995). Therefore, an anti-α-internexin antibody was
used to detect the processes of horizontal cells (Figures 5A–H). In
C-Retlx/lx mice, horizontal cells possessed arborizing processes in
the OPL of mice aged 2–24 months (Figures 5A–D). In contrast,
the processes of horizontal cells in Chx10-Cre;C-Retlx/lx mice
were reduced at the ages of 2 and 4 months (Figures 5E,F),
followed by a dramatic decrease at the ages of 12 and 24 months
(Figures 5G,H). In order to obtain a second confirmation of
changes in horizontal cells, the anti-calbindin antibody was
applied to the sections, revealing a similar immunoreactivity
pattern to that of α-internexin (Supplementary Figure 1). These
results demonstrated that horizontal cells were affected in the
conditional Ret-knockout mice.

The retinal rod bipolar cells expressed protein kinase C alpha
(PKC-α), the distribution of which, within cells, is reportedly
activity-dependent in the rat model (Gabriel et al., 2001). Thus,
vertical sections of retinas were immunostained for PKC-α
(Figures 5I–P). The immunoreactivity of PKC-α in C-Retlx/lx

mice showed that the bipolar cells had their cell bodies and the
cytosolic compartments in the INL, the dendritic processes in

the OPL, and the axon terminals in the innermost sublamina
of the IPL (Figures 5I–L). A subpopulation of bipolar cells
with axons terminating close to the ganglion cell layer was also
observed. In Chx10-Cre;C-Retlx/lx mice, bipolar cells exhibited
a normal organization pattern, as in C-Retlx/lx mice, and
had well-preserved processes at the ages of 2 and 4 months
(Figures 5M,N). However, at the ages of 12 and 24 months, some
bipolar cells exhibited abnormal processes that sprouted into
the ONL (Figures 5O,P). Furthermore, the aberrant processes
tended to become longer and more numerous in aged Chx10-
Cre;C-Retlx/lx mice. According to these observations, bipolar cells
may also be altered in conditional Ret-knockout mice.

Alteration of Pre- and Post-synaptic
Structures in Chx10-Cre;C-Retlx/lx

Retinas
To determine whether the dendritic extensions of the rod
bipolar cells change in synapses with photoreceptors, double
IHC was performed. Given that synaptophysin is an integral
membrane protein of synaptic vesicles, it is used to label
synaptic structures in the terminals of photoreceptors (Nag and
Wadhwa, 2001). Double immunohistochemistry using anti-PKC-
α and anti-synaptophysin antibodies demonstrated that PKC-α-
positive processes lay among synaptophysin-positive terminals in
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FIGURE 5 | Immunohistochemistry of horizontal cells and rod bipolar cells in C-Retlx/lx and Chx10-Cre;C-Retlx/lx retinas. Retinal sections of mice aged 2, 4, 12, and
24 months were immunostained with an anti-α-internexin antibody (green, A–H) or an anti-PKC-α antibody (green, I–P), to label horizontal cells and rod bipolar cells,
respectively, followed by counterstaining with Hoechst dye, to reveal cell nuclei (blue). Compared with C-Retlx/lx mice (A–D), the processes of horizontal cells were
sparse and discontinuous in Chx10-Cre;C-Retlx/lx mice and were even more deteriorated at the ages of 12 and 24 months (E–H). The processes of rod bipolar cells
were similar between C-Retlx/lx (I–L) and Chx10-Cre;C-Retlx/lx (M–P) mice aged 2, 4, 12, and 24 months. However, some processes of rod bipolar cells extended
into the ONL at the ages of 12 and 24 months in Chx10-Cre;C-Retlx/lx mice (O,P, arrows), which was not observed in C-Retlx/lx mice. ONL, outer nuclear layer;
OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bar, 25 µm.

the OPL of C-Retlx/lx mice (Figures 6A–D). A similar pattern
was observed in Chx10-Cre;C-Retlx/lx mice aged 2 and 4 months
that processes, i.e., most of the rod bipolar cells labeled by the
anti-PKC-α antibody were associated with synaptophysin-labeled
rod axon terminals in the OPL (Figures 6E,F). However, in
Chx10-Cre;C-Retlx/lx mice aged 12 and 24 months, some PKC-
α- and synaptophysin-positive processes were mislocalized in the
ONL and synaptophysin-positive processes were also decreased
(Figures 6G,H). In addition, the post-synaptic density protein 95

(PSD-95) was detected in the OPL (Supplementary Figure 2).
A significant decrease of PSD-95 expression was found in Chx10-
Cre;C-Retlx/lx mice aged 12 and 24 months, compared to C-
Retlx/lx mice. The IHC results indicated that the synapses between
rod bipolar cells and photoreceptors were affected in conditional
Ret-knockout mice.

To further confirm the morphological changes observed in
the OPL of Chx10-Cre;C-Retlx/lx mice, we performed TEM
observations and identified ribbon synapses at the outer retina
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FIGURE 6 | Immunohistochemistry of pre- and postsynaptic structures in C-Retlx/lx and Chx10-Cre;C-Retlx/lx retinas. Retinal sections of animals aged 2, 4, 12, and
24 months were immunostained with an anti-PKC-α antibody (green) and an anti-synaptophysin antibody (red), to label rod bipolar cells and the synapses of
photoreceptors, respectively, followed by counterstaining with Hoechst dye, to indicate cell nuclei (blue) (A–H). The processes of rod bipolar cells formed synapses
with photoreceptors in the OPL of C-Retlx/lx mice at all ages (A–D) and Chx10-Cre;C-Retlx/lx mice at the ages of 2 and 4 months (E–F). Ectopic synapses in the
ONL were observed in 12- and 24-month-old Chx10-Cre;C-Retlx/lx mice (G,H, arrows). ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer.
Scale bar, 10 µm.

of C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice aged 2 months
(Figure 7) and 12 months (Figure 8). The photoreceptor ribbon
synapses of C-Retlx/lx mice exhibited a varying number of
rod-shaped profiles in photoreceptor terminals (Figures 7A,B).
Ribbon ultrastructure was defined by the central presynaptic
ribbon opposed by two postsynaptic horizontal cell processes.
The synaptic ribbon displayed its typical plate-like shape,
extending perpendicular to the presynaptic membrane into the
cytoplasm. Although, plentiful synaptic ribbons in Chx10-Cre;C-
Retlx/lx mice aged 2 months, having roughly the same length and
appearance as those in C-Retlx/lx terminals, were observed, they
were usually found to be “floating” in the cytoplasm instead of
anchored to other synaptic structures (Figures 7C–E). Besides,
the number of “Medusa-like’ ribbons seemed to be increased
and the synaptic ribbons were observed reduced in height and
swollen shaped (Figures 7E,F). Therefore, the synaptic ribbon
is surrounded by a halo of synaptic vesicles, as they do in the
C-Retlx/lx retina.

Furthermore, the appearance of the ribbon synaptic
complexes in the 12-month Chx10-Cre;C-Retlx/lx mice retinae
differed significantly from those in the C-Retlx/lx retinae.
Normally, a rod synaptic terminal in C-Retlx/lx retina contained
a single ribbon synaptic site (Figure 8A), where glutamate
was released onto the postsynaptic elements, horizontal cell
processes and rod bipolar cell dendrites. The postsynaptic
elements invaginated into the rod terminal and formed a
triadic or tetradic configuration adjacent to the ribbon site

(Figure 8B). However, most of the ribbons in the retinae of
12-month-old Chx10-Cre;C-Retlx/lx mice were not docked at
the synaptic site (i.e., they floated freely in the cytoplasm)
(Figures 8C,D). Many empty rod terminals without presynaptic
ribbons and postsynaptic invaginating elements were found
in Chx10-Cre;C-Retlx/lx mice (Figure 8E). In addition, the
number of synaptic vesicles was decreased near synapses
(Figure 8D) and found in clumps rather than distributed evenly
in the pedicle (Figure 8F). Following these observations, we
classified the synaptic ribbons into two categories: rod-shaped
and non-rod-shaped, based on their general morphological
features; this was followed by quantification of the synaptic
ribbons. Representative examples of the rod-shaped ribbons
anchored at the active zone, where exocytosis of synaptic vesicles
occurred, are shown in Figure 9A and the quantitative data are
summarized in Figure 9B. 87.1 and 86.3% of rod photoreceptor
ribbon profiles were presynaptically anchored and rod-shaped in
C-Retlx/lx mice aged 2 and 12 months, respectively. In contrast, a
significant decrease was found in the Chx10-Cre;C-Retlx/lx mice
whereby only 62.4% of rod photoreceptor ribbon profiles were
presynaptically anchored and rod-shaped at the age of 2 months;
this proportion only worsened at the age of 12 months (54.2% of
rod photoreceptor ribbons). The aforementioned TEM results
suggest that the loss of Ret causes a structural defect in the
synaptic connection between photoreceptors and bipolar cells.
Ultimately, this finding may underlie the abnormal ERG b-wave
observed in Chx10-Cre;C-Retlx/lx mice.
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FIGURE 7 | Ultrastructure of the synaptic ribbons in C-Retlx/lx and
Chx10-Cre;C-Retlx/lx retinas at the age of 2 months. Transmission electron
microscopy (TEM) images showed the outer plexiform layer of C-Retlx/lx (A,B)
and Chx10-Cre;C-Retlx/lx (C–F) mice at the age of 2 months. (A) Three typical
rod-like synaptic ribbon profiles (arrows) with several mitochondria were
observed in the pedicle of C-Retlx/lx mice. (B) Higher magnification of the TEM
image is shown in the rectangle of (A). The electron dense synaptic ribbon
was surrounded by a halo of synaptic vesicles. The arciform density (arrows)
was positioned between the base of the ribbon and the plasma membrane.
Three post-synaptic processes, two dendritic tips of horizontal cells (hc) and
one dendritic tips of bipolar cells (bc), were closely apposed to the
photoreceptor near the ribbon. (C,E) Most synaptic ribbons (arrows) in the rod
spherules appeared to float in the cytoplasm, unassociated with an arciform
density and the presynaptic membrane. (D) Higher magnification of the TEM
image is shown in the rectangle of (C). Synaptic structure in pedicle (arrow) of
Chx10-Cre;C-Retlx/lx retina was found to be dramatically different from that in
the C-Retlx/lx retina. (F) Higher magnification of the TEM image is shown in
the rectangle of (E). “Medusa-like” ribbons (arrows) were observed in which
they displayed fewer postsynaptic processes that appeared to invaginate into
a photoreceptor terminal. Scale bars: (A,C,E), 1 µm; (B,D,F), 300 nm.

DISCUSSION

In this study, we generated retinal Ret-specific knockout mice
using the Cre/loxP system and demonstrated a possible role for
Ret in retinal function. First, we found severely abnormal ERG
patterns, especially those of b-waves, in conditional Ret-knockout

FIGURE 8 | Ultrastructure of the synaptic ribbons in C-Retlx/lx and
Chx10-Cre;C-Retlx/lx retinas at the age of 12 months. TEM images showed
the outer plexiform layer (ONL) of C-Retlx/lx (A,B) and Chx10-Cre;C-Retlx/lx

(C–F) mice at the age of 12 months. (A) Three typical rod-like synaptic ribbon
profiles (arrows) with several mitochondria were observed in the rod spherules
of C-Retlx/lx mice. (B) Higher magnification of the TEM image is shown in the
rectangle of (A). The large presynaptic terminals were filled with numerous
synaptic vesicles, and the active zone was characterized by specialized
presynaptic densities, the arciform densities (arrows). Opposite to the active
zones were the dendritic tips of horizontal cells (hc) and bipolar cells (bc),
which contained ionotropic and metabotropic glutamate receptors for
signaling. (C–E) Electron micrographs showed different examples of rod
terminals and the ultrastructural appearance of the ribbon synaptic complex in
the Chx10-Cre;C-Retlx/lx retina. (C) Some synaptic ribbons (arrows) were
found to be mislocalized between cell nuclei in ONL, which were supposed to
be found in outer plexiform layer. All other synaptic ribbons were found floating
in the cytoplasm (arrowheads) and did not associate with an arciform density
nor with the presynaptic membrane. (D) Higher magnification of the TEM
images is shown in the rectangle of (C). Orphan presynaptic density
surrounded by synaptic vesicles (arrow) and irregularly shaped floating ribbons
were shown in Chx10-Cre;C-Retlx/lx retinae. (E) Three ultrastructural
appearance of the ribbon synaptic complexes (arrows) of photoreceptor
terminals were shown. (F) Higher magnification of the TEM images, shown in
the rectangles of (E), displayed an abnormal terminal with postsynaptic
elements but without presynaptic ribbon (arrow). Although synaptic vesicles
could still be observed, they seemed to be aggregated (arrowhead) rather
than in their typical, individual form. Scale bars: (A,E), 1 µm; (B,D,F), 300 nm;
(C), 2 µm.

retinas. Second, we identified gradually reduced levels of
immunoreactivity for α-internexin—a marker of processes of
horizontal cells—as Chx10-Cre;C-Retlx/lx mice increased in age.
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Third, deficiency of Ret in the retina caused the mislocalization
of synapses in the ONL, as demonstrated by immunostaining for
PKC-α and synaptophysin. Finally, ultrastructural observations
of conditional Ret-knockout retinas revealed that the synaptic
ribbons were immature and not fully assembled, which may
explain the abnormal ERG results.

The function of Ret in the retina was well assessed by full-field
ERG in previous studies. Ret hypomorphic mice, which exhibit
severely reduced Ret activity, do not survive beyond 3 weeks
and display significantly reduced scotopic a-waves, b-waves, and
photopic b-waves at postnatal day 18 (Brantley et al., 2008). In
this study, the Chx10-Cre;C-Retlx/lx mice, which had conditional
retinal Ret deficiency, exhibited a prolonged survival time and
a selective reduction in b-waves, but normal a-waves, on ERG
performed at 12 months of age. As such, this waveform was
deemed an electronegative ERG and suggested a dysfunction
of the ON bipolar cells. In addition to bipolar cells, it was
also hypothesized that reduced b-waves could result from the
impaired horizontal cells if their inhibition to bipolar cells was
switched off (Goetze et al., 2010). Taken together, these results
indicate that sufficient Ret expression is required for normal
retinal function and development.

GDNF and other GFLs (ARTN, NRTN, and PSPN) share the
RET receptor tyrosine kinase as their common signaling receptor.
A previous study revealed a thinner and disorganized OPL in
NRTN−/− mice, suggesting that the aberrant morphology of
photoreceptors, bipolar cells, and horizontal cells was caused
by NRTN deficiency (Brantley et al., 2008). Moreover, GDNF
can increase the proliferation, promote the differentiation, and
prevent the programmed death of chicken rod photoreceptors,
as assessed using re-aggregated retinal spheroids as an in vitro
assay model (Rothermel and Layer, 2003). Another GDNF-
family receptor alpha-4 (GFRα4)-deficient retinal culture study
showed a decrease in the number of amacrine cells, horizontal
cells, and blue-sensitive cone photoreceptors in this system
(Rothermel et al., 2006). In our study, the immunoreactivities
of α-internexin and PKC-α were altered in Chx10-Cre;C-Retlx/lx

mice. These results indicate that Ret dysfunction may trigger
an abnormal morphology in horizontal cells and bipolar cell
processes, and provided evidence that GFLs, GDNF-family
receptors (GFRs), or the RET receptor tyrosine kinase can
specifically affect distinct photoreceptors and other retinal
cell subpopulations.

It was reported that GDNF can be produced by glial cells to
increase the survival rate of a retinal ganglion or photoreceptor
cells in different experimental models, such as the rescue of
retinal ganglion cells after axotomy (Koeberle and Ball, 1998),
the delivery of a protective effect in mice with glaucoma
(Johnson et al., 2011), or the protection of photoreceptors in
the rd1 mouse (Frasson et al., 1999). Furthermore, GDNF also
moderately protected the rat retina from ischemia–reperfusion
injury, possibly by preventing apoptosis in retinal cells (Wu
et al., 2004). These previous studies suggested that, in the absence
of GDNF, retinal cells lose a protective factor, which might
lead to serious retinal dysfunction or degeneration. In addition,
a previous study demonstrated that GDNF partially restored
ureteric branching morphogenesis in Ret-deficient mice with

severe renal hypodysplasia, possibly through the induction of Met
phosphorylation, rather than through RET signaling (Popsueva
et al., 2003). This implies that it is also possible that GDNF
partially signals independently of RET through the GDNF-
family receptor alpha-1 (GFRα1) and Met phosphorylation in
the retina. In fact, the GFL–GFRα1 complex activates Met
kinase indirectly via Src kinases in the absence of RET kinase
(Popsueva et al., 2003). The GFLs can also interact directly
with heparan sulfate proteoglycans to activate Met kinase, which
might be mediated by a neural cell adhesion molecule (N-
CAM) (Sariola and Saarma, 2003). Our results revealed that
the thickness of the ONL was decreased at the stage of 12
and 24 months; however, there were no significant differences
between C-Retlx/lx and Chx10-Cre;C-Retlx/lx mice. Moreover, the
processes of horizontal cells were significantly reduced, and the
immunoreactivities of synaptophysin and PKC-α demonstrated
the presence of mislocalized synapses in the ONL. Despite
these alterations, the retinas of Chx10-Cre;C-Retlx/lx mice did
not show severe disorganization. We speculated that GDNF
signaling independently of RET and via GFRα1 might explain
why the retinas of Chx10-Cre;C-Retlx/lx mice failed to show severe
dysfunction or disorganization.

GDNF is also known as one of the neurotrophic factors that
play key roles in the development and survival of neurons.
Neurotrophic factors generally include the neurotrophin family
[NGF, BDNF, neurotrophin-3 (NT-3), and NT-4/5], the GDNF
family (GDNF, NRTN, ARTN, and PSPN), and the CNTF, which
is a member of the interleukin 6 (IL-6) family of cytokines.
Different factors can act in a sequential, simultaneous, additive
(synergistical), or mutual-inhibition fashion. For instance,
subpopulations of developing sensory and motor neurons are
dependent on the simultaneous action of GDNF and BDNF
(Henderson, 1996). Moreover, a combination of GDNF and
CNTF was reported to afford higher protection to photoreceptors
in a retinal degeneration (rd) mouse (Ogilvie et al., 2000).
In our study, Chx10-Cre;C-Retlx/lx mouse retinas had deletion
of RET, which is the canonical GDNF receptor, but did
not show severe dysfunction or disorganization. According
to the studies mentioned above, another explanation for
the resulting mild dysfunction following RET deletion is
that the remaining neurotrophic factors—which remained
unaffected—compensated for the effects of knocking out the RET
signaling pathway. However, this study did not investigate the
neurotrophic factors or possible signaling pathways independent
of RET that may play roles in the retinas of Chx10-Cre;C-
Retlx/lx mice. Therefore, further research is required to clarify the
mechanisms underlying these observations.

The ribbon complex of retinal photoreceptor synapses
represents a specialization of the cytomatrix at the active zone
that is present at conventional synapses. The active zones
of synapses are highly organized structures designed for the
regulated and site-specific release of neurotransmitters. The
function of photoreceptor ribbons was suggested to be the
continuous shuttling of vesicles to the active zone, for fusion
and the release of glutamate (Lenzi and von Gersdorff, 2001).
In a previous study, ribbons in Bassoon (Bsn)-mutant mouse
retinas did not attach to the active zone, thus potentially
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FIGURE 9 | Rod-shaped synaptic ribbons of photoreceptors disintegrated in Chx10-Cre;C-Retlx/lx mice. (A) A typical rod-shaped synaptic ribbon is shown in the
large presynaptic terminal. Scale bar: 300 nm. (B) Quantification was performed to investigate the number of rod-shaped synaptic ribbons in retinae of C-Retlx/lx and
Chx10-Cre;C-Retlx/lx mice at the age of 2 and 12 months. The histogram was plotted using mean values ± standard error of the mean (SEM). * Denotes p < 0.05 in
Student’s t-test (n = 3).

resulting in the failure of synaptic transmission. Moreover,
the a-waves of the ERG recordings performed in the Bsn-
mutant mouse were not affected, whereas their b-waves,
representing the response of the ON bipolar cells, were
significantly reduced in amplitude and prolonged in implicit
time (Dick et al., 2003). Our ultrastructural observation revealed
the inappropriate assembly of synaptic ribbons, which then
failed to anchor themselves to the active zone. Moreover,
a severely affected ERG was recorded in the retinas of
Chx10-Cre;C-Retlx/lx mice, implying that conditional deletion
of Ret in the retina may cause a dysfunction in synaptic
transmission. In addition, other findings demonstrated that
the co-administration of the fibroblast growth factor 2 (FGF-
2) and GDNF can promote the long-term survival of target-
deprived adult mouse spiral ganglion neurons (Wei et al.,
2007). Furthermore, GDNF was shown to contribute to synaptic
development and maturation in ventral midbrain dopaminergic
neurons and spinal cord motoneurons (Bourque and Trudeau,
2000). Therefore, conditional deletion of Ret, the canonical
GDNF receptor, may affect retinal development and cause
morphological and physiological alterations in Chx10-Cre;C-
Retlx/lx mouse retinas.

Our study has documented dendritic sprouting in aging Ret-
deficient mouse retinae. The outgrowth of bipolar cell dendrites
was reported to be observed under some pathologic conditions,
such as retinal detachment (Fisher et al., 2005), the nob2
mouse with a calcium channel Cav1.4 null mutation (Bayley
and Morgans, 2007) and Bsn mice lacking functional Bassoon
protein (Dick et al., 2003). A study of the RCS rat whose
retina underwent progressive photoreceptor degeneration also
demonstrated dendritic sprouting of rod bipolar cells (Cuenca
et al., 2005). Furthermore, NRTN-deficient mice—a model deficit
in one of GDNF family ligands—also showed abnormally located
synapses in the ONL (Brantley et al., 2008). This study also
suggested that the abnormal synapse formation in the ONL

caused deficits in the signaling of photoreceptor to bipolar
cell and contributed to the ERG defects which was similar to
what we have observed at 2–24 month of Chx10-Cre;C-Retlx/lx

mice. However, a previous study indicated that the dendrites
of rod bipolar cells, normally confined to the OPL, were found
to extend into the ONL in normal aging retina and tended
to increase in length and incidence with the age (Liets et al.,
2006). Although the effect of aging could not be excluded in
the abnormal synaptic formation of the Ret-deficient retina,
the results of our ERG recordings, comparing C-Retlx/lx and
Chx10-Cre;C-Retlx/lx mice at the age of 12 months, indicated that
the Chx10-Cre;C-Retlx/lx mice may have dysfunctional bipolar
cells. Additionally, a previous study speculated that reduced
synaptic efficacy may induce new neuronal growth and the
formation of ectopic synapses in Basson mutant mice (Dick
et al., 2003). Therefore, combining our ERG and morphological
results, we deduced that inadequate Ret expression may increase
the formation of ectopic synapses and exacerbate these to a
dysfunctional level. While not evaluated here, further studies
should look to investigate the specific molecular mechanisms
mediating the genesis and function of ectopic synapses in Ret-
deficient mice.

CONCLUSION

In conclusion, our results provide evidence of the role of Ret in
retinal development, which is essential to maintain the processes
of horizontal cells and preserve the integrity of the OPL by
stabilizing the structure of the synaptic ribbons. The Chx10-
Cre;C-Retlx/lx mice developed in this study provided a valuable
model in which to study Ret function in the retina and enhanced
the understanding of Ret function in postnatal development and
later stages. Finally, these conditional Ret-knockout mice might
be useful for investigating the importance of GFL-mediated RET
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activation in the retina of animal models of other diseases, such
as neurodegenerative diseases or genetic disorders.
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Supplementary Figure 1 | Calbindin staining of horizontal cells in C-Retlx/lx and
Chx10-Cre;C-Retlx/lx retinas. Immunostaining against calbindin (green), a specific
marker for horizontal cells, followed by counterstaining with Hoechst dye to
indicate cell nuclei (blue) is shown. Compared to those of C-Retlx/lx mice (A–D),
confocal microscopic images of horizontal cells at 2 month (E), 4 months (F),
12 months (G), and 24 months (H) of Chx10-Cre;C-Retlx/lx mice displayed a
progressed decrease in calbindin-positive immunoreactivity with an increase in
age. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;
IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bar, 25 µm.

Supplementary Figure 2 | Mislocalization of photoreceptor synaptic terminals
observed in Chx10-Cre;C-Retlx/lx mice. Retinal sections of animals aged 2, 4, 12,
and 24 months were immunostained with an anti-PKC-α antibody (green) and an
anti-PSD95 antibody (red), to label rod bipolar cells and the synapses of
photoreceptors, respectively, followed by counterstaining with Hoechst dye, to
indicate cell nuclei (blue) (A–H). The processes of rod bipolar cells formed
synapses with photoreceptors in the OPL of C-Retlx/lx mice at all ages (A–D) and
Chx10-Cre;C-Retlx/lx mice at the ages of 2 and 4 months (E–F). However,
extended rod bipolar cell dendrites and ectopic photoreceptor terminals (arrows)
in the ONL were observed in 12- and 24-month-old Chx10-Cre;C-Retlx/lx mice
(G,H). ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear
layer. Scale bar, 10 µm.
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