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Everyone is familiar with the speed-accuracy 
trade-off (SAT). To make good choices, we need 
to balance the conflicting demands of fast and 
accurate decision making. After all, hasty deci-
sions often lead to poor choices, but accurate 
decisions may be useless if they take too long. 
This notion is intuitive because it reflects a fun-
damental aspect of cognition: not only do we 
deliberate over the evidence for decisions, but 
we can control that deliberative process. This 
control raises many questions for the study of 
choice behaviour and executive function. For 
example, how do we figure out the appropriate 
balance between speed and accuracy on a given 
task? How do we impose that balance on our 
decisions, and what is its neural basis?

Researchers have addressed these and related 
questions for decades, using a variety of meth-
ods and offering answers at different levels of 
abstraction. Given this diverse methodology, 
our aim is to provide a unified view of the SAT. 
Extensive analysis of choice behaviour suggests 
that we make decisions by accumulating evi-

dence until some criterion is reached. Thus, adjusting the criterion controls how long we accu-
mulate evidence and therefore the speed and accuracy of decisions. This simple framework 
provides the platform for our unified view. In the pages that follow, leading experts in decision 
neuroscience consider the history of SAT research, strategies for determining the optimal balance 
between speed and accuracy, conditions under which this seemingly ubiquitous phenomenon 
breaks down, and the neural mechanisms that may implement the computations of our unifying 
framework. 
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mechanisms of cognition

Hasty decisions often lead to poor choices, whereas accurate decisions are ineffective if they take
too long. Thus, good choices require cognitive mechanisms to determine the appropriate balance
between speed and accuracy, and to control decision processing accordingly. This balance is
referred to as the speed-accuracy trade-off (SAT) and themechanisms by which it is determined and
imposed are the subject of this Frontiers Research Topic. Given the near-ubiquity of the SAT across
species and experimental tasks, it is not surprising that a wide range of methods have been used to
investigate it. Our aim is to provide a unified view of the SAT in light of this diverse methodology.
Computationally, decisionmaking and the SAT are well characterized by the framework of bounded
integration, providing a solid foundation for this view. Under this framework, noisy evidence for
the available choices is added up (integrated) until the running total for one of them reaches a
criterion (the bound). The SAT is readily controlled by the bound, where a higher bound favors
accuracy at the expense of speed and vice versa. In this collection, we use bounded integration as a
reference point for considering the factors that determine the optimal balance between speed and
accuracy, the interpretation of behavior by different models from this general class, and the neural
implementation of the computations captured by these models. Articles herein further consider
conditions under which the above descriptions of the SAT and bounded integration do not explain
behavior, and the utility of the SAT for manipulating the context of decisions.

The review by Heitz (2014) describes the history of the SAT as a quantifiable behavioral
phenomenon and provides a critical appraisal of methodologies for its study. His historical
account describes the shaping of decision theory by the SAT, a perspective that nicely sets up the
original research article by Ivanoff et al. (2014), who used SAT methodology to investigate spatial
compatibility effects, that is, how the respective locations of stimuli and responses can influence
behavior. They found that SATmanipulations can systematically promote or impede the efficacy of
stimulus-response mappings.

Stone (2014) investigated the relationship between speed and accuracy in his original research
article, reasoning that the information gained by the observation of evidence should be reflected in
both the speed and accuracy of decisions. By fitting a bounded integration model to experimental
data, he used model parameters to estimate the mutual information between perceptual evidence
and speed, and between perceptual evidence and accuracy. These measures provide bounds on
the information gained by the observation of evidence and were used to calculate the smallest
detectable change in the strength of evidence.

Salinas et al. (2014) reviewed recent studies of perceptual decisions under extreme time pressure.
In this context, the respective contributions of perception and motor planning to choice behavior
can be distinguished from one another, quantifying how the former guides the latter. These
experiments showed that perceptual information can accelerate or decelerate the competition
between ongoing motor plans, revealing the SAT as the combined effect of multiple adjustments
to decision processing, not a monolithic phenomenon.
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The isolation of perception from motor planning under
extreme time pressure (Salinas et al., 2014) is manifest in the
independence of accuracy from decision time, which constitutes
a violation of the SAT. Another well-known violation is the
improvement in speed and accuracy while learning a task. This
improvement is readily captured by increasing a parameter that
loosely corresponds to the difference in strength between sources
of evidence, often referred to as “drift.” In effect, learning mimics
a decrease in task difficulty. In their original research article,
Zhang and Rowe (2014) used a bounded integration model to
investigate the effects of speed and accuracy emphasis during
and after learning. Under accuracy emphasis, increasing the
bound and the drift captured subjects’ behavior at the beginning
of learning, whereas only an increase in the bound captured
behavior after learning. Their results suggest that learning
and speed-accuracy emphasis differentially influence decision
processing on different timescales.

It is widely accepted that the objective of the SAT is to optimize
decisions in terms of reward rate, that is, decision makers aim to
maximize the pay-off of the task at hand. Three original research
articles in the collection investigated optimal decision making,
each considering a different set of conditions and corresponding
strategies. Khodadadi et al. (2014) considered the case of a limited
time interval, during which decision makers can make as many
(or as few) decisions as they wish. This task can be formulated as
a search for the reward-maximizing bound in a given condition.
Khodadadi et al. (2014) took a reinforcement learning approach to
this problem, specifying a set of conditions, each corresponding
to a configuration of task constraints, e.g., the difficulty of the
task, the magnitude of reward and so forth. In the terminology of
reinforcement learning, each condition is a “state” and the bound
that maximizes the reward rate in that condition is its “action”
under the optimal “policy.” Their model took a conservative
strategy, choosing a high, sub-optimal bound in the early stages of
learning, before lowering it with experience to achieve optimality.
This result is a testable prediction for behavioral experiments.

Karsilar et al. (2014) investigated decisions with deadlines, in
which the optimal strategy is to reduce the bound during each
decision. This strategy ensures that decisions are always made
by the deadline, at a cost of lower accuracy. As such, decision
makers have to estimate the upcoming deadline and have to
account for the variability in these estimates. Crucially, models
that implement this strategy predict that accuracy will decline
to near-chance levels as the deadline approaches. Karsilar et al.
(2014) tested this predictionwith a perceptual choice task, finding
that subjects’ performance did not decline to chance levels near
the deadline, and that a slight decline did not relate to timing
variability. Furthermore, subjects’ behavior was captured by a
standard bounded integration model. These results suggest that
perceptual decisions are too short for within-trial adaptation of
the neural mechanisms captured by the bound.

As described above, the fundamental principle of bounded
integration is that the effect of within-trial noise can be limited
by integrating evidence. Goldfarb et al. (2014) compared several
bounded integration models with a popular model that does
not include within-trial noise, in which decision-time variability
and error rates are determined only by between-trial noise,

i.e., parameter values that vary from trial to trial. Their study
focused on reward-maximization tasks, in which task difficulty
is held constant for a block of trials and subjects try to earn
as much reward as possible, i.e., they try to optimize the trade-
off between speed and accuracy for a given task difficulty.
Significant differences were found between the classes of model,
especially on difficult tasks. As such, the models provide different
interpretations of behavior as task difficulty increases.

The issue of optimality is further considered by Pirrone et al.
(2014), who took an evolutionary perspective in their opinion
article. They argued that in most real-world decisions, each of
the alternatives offers some quantity of reward (e.g., deciding
between food items), whereas the dominant experimental
approach to date has been to reward a single alternative
only. Therefore, they suggest that most natural decisions are
value-based, necessitating a speed-value trade-off, optimized by
natural selection. They formalized this optimization problem and
argued that bounded integration models that optimize the SAT
can only account for value-based decisions if their parameter
values are assigned on a case-by-case basis, limiting their
generality.

The hypothesis and theory article by Standage et al.
(2014b) questioned the commonly held view that the bound is
implemented by the rate of decision-correlated neural activity at
the time of commitment to a choice, as well as the view that the
difference between this rate and a “baseline” rate controls the
SAT. Using a model derived from biophysical considerations,
they showed that these views may be inconsistent with widely-
held principles of cortical computation, which account for
the SAT. According to their hypothesis, the behavior of the
bound is well-approximated by an emergent property of cortical
dynamics, but not by the aforementioned difference in firing
rates.

The SAT has long been investigated as a behavioral
phenomenon, but studies addressing its neural basis are a recent
development. Standage et al. (2014a) reviewed hypotheses on the
neural basis of the SAT, considering three general mechanistic
categories: modulation of the encoding of evidence under speed
and accuracy emphasis, modulation of the integration of encoded
evidence, and modulation of the amount of integrated evidence
sufficient to make a choice. Thus, their review is structured by the
principles of bounded integration, but they focused on models
addressing the neural implementation of these principles, and on
the explanations offered by these models for a growing body of
neuroimaging and electrophysiological data. This convergence
of neural and behavioral data with models at different levels of
abstraction is exemplary of interdisciplinary neuroscience, and
suggests a productive future for the mechanistic study of decision
making, the SAT and cognition.

We believe this collection of articles provides a useful
reference for future SAT research, with review articles to
direct readers to relevant work in the literature, opinions and
hypotheses on the interpretation of topical methodologies
and data, and original research articles that make important
advances in the field. Moreover, we believe that bounded
integration has successfully provided a unifying framework
for the collection, supporting the systematic consideration
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of the SAT under different methodologies, at different
levels of abstraction, and from different perspectives.
A complete theory of decision making must explain

the SAT. We hope this Research Topic makes a valued
contribution toward this fundamental goal of cognitive
neuroscience.
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There are few behavioral effects as ubiquitous as the speed-accuracy tradeoff (SAT). From
insects to rodents to primates, the tendency for decision speed to covary with decision
accuracy seems an inescapable property of choice behavior. Recently, the SAT has received
renewed interest, as neuroscience approaches begin to uncover its neural underpinnings
and computational models are compelled to incorporate it as a necessary benchmark.
The present work provides a comprehensive overview of SAT. First, I trace its history as
a tractable behavioral phenomenon and the role it has played in shaping mathematical
descriptions of the decision process. Second, I present a “users guide” of SAT methodology,
including a critical review of common experimental manipulations and analysis techniques
and a treatment of the typical behavioral patterns that emerge when SAT is manipulated
directly. Finally, I review applications of this methodology in several domains.

Keywords: speed-accuracy tradeoff, decision-making

“. . . we face a very common problem in psychology: the exis-
tence of a tradeoff between dependent variables, in this case false
alarms and reaction time. The only sensible long-range strategy
is, in my opinion, to study the tradeoff. . . and to devise some
summary statistic to describe it.” - Luce, 1986, p. 56.

INTRODUCTION
Prima facie, the notion of speed-accuracy tradeoff (SAT) is pedes-
trian. Who has not encountered that a decision, made in haste,
often leads to err? Who has not felt the deleterious effects of
time pressure on ultimate outcomes? The concept seems so com-
monsensical as to deserve little interest—an obvious product of
nothing more than human limitations. Ironically, it is just this
pervasiveness that demands the SAT be considered—not only as a
phenomenon in and of itself—but also as a benchmark for mod-
els of the decision process. Common across task domains and in
creatures ranging from house-hunting ants (Franks et al., 2003)
and bumblebees (Chittka et al., 2003; for a review, see Marshall
et al., 2009) to humans (Wickelgren, 1977) and monkeys (Heitz
and Schall, 2012, 2013), the SAT is thus a topic of great concern.
Fortunately, there has been a renewed interest in SAT, particularly
in the neuroscience community. Using fMRI, EEG, and single-
unit recordings, never have we been closer to understanding, at
a fundamental level, how the brain takes in sensory information
and transforms it into a decision variable guiding choice. As a
ubiquitous phenomenon intimately tied to the decision process,
the SAT is integral.

HISTORICAL OVERVIEW
The idea that response time1 (RT) can be used to study the inner
workings of the mind is as old as psychology itself. In the mid
1800’s, Hermann von Helmholtz demonstrated that peripheral

1The term “response time” and “reaction time” are typically used interchange-
ably, and I will make no distinction here, but there is a slight semantic

nerve conduction velocity was finite and measureable—a revolu-
tionary conception for his time. The logic was simple, yet elegant.
Helmholtz created a preparation of frog legs with a portion of
nerve still attached; applying current to the nerve elicited mus-
cle contraction. He then noted the difference in the latency to
contraction when either a proximal or distal portion of the nerve
was stimulated. Since the distance between the stimulation points
was known, Helmholtz easily worked out the conduction velocity
(see Foster, 1870). Helmholtz’ logic was perhaps just as impor-
tant as his discovery: one can use the time of an overt movement
as a dependent measure, and by altering the antecedent condi-
tions, estimate the duration of intermediary components. Perhaps
one could use similar methodology to objectively measure the
component processes of the mind. This philosophy guided sev-
eral researchers in their exploration of the “velocity of thought,”
including Helmholtz’ colleague Wilhelm Wundt, in what would
be known as the first true psychology laboratory. Similar logic was
employed by Merkel (1885), and very notably, by Donders (1868)
in his study of processing stages using task comparisons. The
use of RT—one of the only non-introspective measures available,
became central.

That the accuracy of a response varies with the time taken to
produce it was probably already known, if implicitly. However,
such variation was of little interest, the field being dominated
at either extreme by psychophysics experiments—which empha-
size high accuracy without concern for RT—and reaction time
experiments, which examine one’s ability to produce predefined
responses to simple visual or auditory stimuli. Outside of this
asymptotic performance lay a nether-region of neither wholly

difference. “Reaction time” is often associated with the limits of ability, as
in making a fast, predetermined response to the onset of a visual stimulus,
whereas “response time” more generally describes “time to overt action.” See
(Luce, 1986).
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accurate nor wholly fast responding. Still, the fact that such
variability exists led some early researchers to address the speed-
accuracy relation empirically. The first demonstration that the
accuracy of an action varies with its speed was provided in 1899,
both in a dissertation by Woodworth (1899) and a contempora-
neous work by Martin and Müeller (1899), though these studies
focused on the speed of obligatory movements rather than choice
behavior 2 . The first demonstration of a relationship between
choice accuracy and decision time can be traced to 1911, when
Henmon (1911) presented subjects with a simple discrimination
task. Two lines were presented, each differing slightly in length,
and subjects were to determine which line was longer (or shorter)
and press the appropriate left or right button. In the first analysis
of its kind, Henmon “binned” the data by RT to examine the effect
of latency on accuracy. His data revealed an orderly relation, sug-
gesting they were not independent. A short time later, Henmon’s
observations were replicated and the relationship dubbed the
“speed-accuracy relation” for the first time in oft-neglected disser-
tation by Garrett (1922). The phenomenon received only sporadic
attention thereafter, for nearly three decades.

In the intervening years, work conducted on statistical
decision-making would ultimately provide a framework for
understanding the SAT, and also bring the phenomenon to cen-
ter stage. This work, carried out independently by Alan Turing 3,
Abraham Wald, and others, demonstrated that decision-making
under uncertainty can be bolstered through sequential sampling
of information—a suggestion not previously considered by the
extant literature in economics (Edwards, 1954). Consider a choice
between two competing hypotheses—say, whether or not a batch
of product contains sufficient defects to warrant rejection. At the
outset, one may already have some prior expectation regarding
which hypothesis is more likely. An updated posterior probability
can be computed by simply sampling information (e.g., units of
product) sequentially. The problem is that information is costly—
each sample takes some quanta of time and effort (Drugowitsch
et al., 2012). Therefore, it is in one’s best interest to sample as little
as possible to reach some specified compromise between confi-
dence and time spent sampling. Wald’s procedure, which became
known as the sequential probability ratio test (Wald, 1947), allows
one to approach a known (acceptable) error rate with a potentially
enormous savings in time and resources.

Turing and Wald’s application was a utilitarian approach to
economical decision-making, but it did not take long for others
to realize that the process may apply more generally to human
choice behavior. The first instance of this was provided in 1958
by Becker (1958). Participants viewed successive presentations
of cards, upon each of which was an imprinted letter. Cards
were drawn from one of two or more competing distributions,
described to subjects prior to each run. Viewers were asked to
sample as many cards as needed to determine which distribution
the cards were drawn from. Becker manipulated the difficulty of

2As the present work is focused on choice behavior, the movement speed-
accuracy tradeoff will not be considered. The reader is referred to (Hancock
and Newell, 1985; Meyer et al., 1990; Plamondon and Alimi, 1997).
3Turing’s effort was directed at breaking the Nazi enigma machine. For a
fascinating review, see (Gold and Shadlen, 2002).

the discrimination by altering the form of the parent distribu-
tions. For instance, subjects might need to determine if a sequence
of “P” and “Q” letters were sampled from a distribution with a
P:Q ratio of 2:1 or 1:1. Becker found that even in this abstract sit-
uation, humans produce data conforming to Wald’s predictions,
at least to a first approximation.

THE INTRODUCTION OF MATHEMATICAL DECISION MODELS
Meanwhile, others were working on formulating a mathemati-
cal relationship between decision time and accuracy. The first
attempts, provided by Audley (Audley and Jonckheere, 1956;
Audley, 1957, 1958), demonstrated that two-choice decisions
could be modeled as a stochastic process. Audley had been work-
ing with albino rats trained to push one of two buttons to earn
reward. At that time, stochastic models had seen success in pre-
dicting the form of the learning curve in terms of a gain in
accuracy over successive trials, but they did not accommodate
decision times. Nonetheless, decision times, and the RT distri-
butions they form, were thought to reflect the structure of the
choice process (Christie and Luce, 1956), and so were likely
an important component of a complete choice model. Audley
demonstrated that with some simple assumptions regarding the
form of the underlying RT distribution (in this case, exponen-
tial), one could simultaneously predict both choice accuracy and
decision time. However, the individual quanta in this situation
were single, punctate choices made by rats; the model was opaque
to the cognitive events carried out within any given trial. Audely
soon remedied this, in a model that would become known as the
Runs model (Audley, 1960); see also (LaBerge, 1962; Audley and
Pike, 1965). In a guarded conceptual leap, Audley assumed that
the choice process involves a series of “implicit responses” arising
from the presentation of a sensory signal. Though the definition
of “implicit responses” was left open to interpretation, it seems
closely related to what we might now call “perceptual accumula-
tion.” During a choice trial, observers obtain successive samples of
implicit responses, and some counting mechanism keeps track of
the number of consecutive runs favoring either of two potential
actions. Formulated mathematically, Audley demonstrated that
the model could account for choice behavior; notably, he fit the
model to Henmon’s data (Henmon, 1911) described earlier.

The above efforts came to a head in 1960, when Stone (1960)
produced a formal mathematical model of the decision process.
The model combined (1) the relation between RT and accuracy
rates as a stochastic process; (2) the mathematics and optimality
of the sequential probability ratio test; and (3) the presump-
tion of information accumulation over the course of perceptual
decision-making. The model, known as the random walk 4, made
very specific, empirically testable predictions about the means
and shapes of reaction time distributions, and how those dis-
tributions change with SAT. Figure 1 presents two depictions of
the random walk, adapted, respectively, from Fitts (1966) and

4The random walk process is by no means limited to psychology, but has
seen application in physics, chemistry, and economics. It was first proposed
by Pearson (1905), the same year that Albert Einsten published work on
the closely related, continuous-time stochastic process describing Brownian
motion, later to become known as the diffusion process.
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FIGURE 1 | Random-walk model of choice reaction time. (A) Each sample
can be considered evidence favoring one of two options, and at each step,
the observer updates an estimate of the posterior probability (here,
presented as an odds ratio) based on that evidence. A response is produced
at a threshold odds ratio. Reaction time is not explicit, but proportional to the

total number of samples. Adapted from Fitts (1966). (B) The closely related
diffusion model. Here, boundaries are associated with the correct or errant
response and the X-axis is real-time. As in (A) responses are produced when
activation reaches threshold, and the SAT is a function of the placement of
the threshold. Adapted from Ratcliff and Rouder (1998).

Ratcliff and Rouder (1998). During a trial, subjects sample per-
ceptual information, at each step computing a revised estimate
of the likelihood of either hypothesis being true. Responses are
produced when the observers’ posterior probability exceeds some
threshold odds ratio (Figure 1A). The same model is presented
in Figure 1B, except that the process carries out more clearly in
real time, and the response threshold is defined in an equivalent,
yet more abstract dimension. Figure 1B illustrates how sequential
sampling models implement SAT: when the decision threshold is
high (solid upper and lower lines), RT tends to be longer and
more likely correct, as noise in the process is allowed to average
out over time. When lowered (dashed lines), the process termi-
nates early (marked by a “T” in Figure 1B). This speeds RT, but
also increases the probability that an error will result due to noise
in the sampling process: note that the longest-latency correct
response would result in an error under low but not high thresh-
old. Moreover, the model makes very specific, empirically testable
predictions about the form of the resulting RT distributions, and
how they change with various manipulations. The random walk
model received immediate acclaim, and was extended and revised
almost immediately (Edwards, 1965; Laming, 1968).

The random walk model provided a rigorous and principled
treatment of SAT, but was not favored by all. In Ollman (1966)
proposed the first of what would become known as mixture mod-
els. Whereas sequential sampling models assume incremental evi-
dence accumulation, Ollman suggested a mixture of dichotomous
states: fast guesses and slow controlled decisions. The latency of
the guess process and controlled process was assumed constant;
SAT was achieved by simply changing the mixture. Note that this
predicts a linear accuracy-RT relationship anchored by a theo-
retical true guess RT (corresponding to chance level accuracy)
and a true controlled RT (corresponding to perfect accuracy).
Intermediate values are simply weighted averages of the two com-
ponent latencies. This fast guess model was tested by Yellott (1971).
Subjects performed a simple color discrimination task while SAT
was induced through response deadlines: arbitrary time limits sub-
jects must beat in order to produce a fully correct response (see

section SAT Manipulations). The fast guess model predicts that
both unknown quantities—the true guess and true controlled
RT—should be invariant over deadline conditions. Yellot devised
a method for estimating these latencies, and found remarkable
invariance. The guess and controlled RT was constant not only
across deadline conditions, but over subjects.

The idea that SAT results from a mixture of random guesses
is certainly attractive from a standpoint of simplicity. It should
not be controversial that subjects can, if they wish, produce a
pre-selected random guess in nearly any choice task. But, there
are problems with this proposal. The most obvious is the pre-
diction that mean error RT is faster than mean correct RT. This
must occur if errors are produced by guesses, which in turn are
always fast. While this is a common observation (Ollman, 1966;
Schouten and Bekker, 1967; Hale, 1969; Grice and Spiker, 1979),
it is certainly not the rule. Further, it is likely that Yellot’s color
choice task may have been so simple that subjects had to begin
guessing to meet the demands of the deadline manipulation. This
was in fact found to be the case. One year later, Swensson (1972a)
had subjects determine which of two rectangles, oriented at 45◦,
was longer. SAT was induced using a payoff matrix that favored
accurate or fast responding. Swensson conducted a regimented
trial-by-trial analysis, categorizing each as a likely guess or non-
guess response. When the discrimination was simple, Swensson
found data consistent with the fast guess model: subjects either
used a guessing strategy or a highly accurate controlled strategy.
A mixture also obtained when the discrimination was made more
difficult, except for one critical detail. When the analysis was lim-
ited to non-guess trials, accuracy rate continued to vary with RT.
Swensson proposed an alternative, known as the deadline model 5.
Like the fast guess, subjects are assumed to mix pure guesses with
correct responses, but whether or not a guess is to be made is not
decided prior to the trial. Instead, subjects maintain an internal

5The deadline model is usually attributed to Swensson (1972a), but it was in
fact proposed earlier, both by Nickerson (1969) as well as an alternative to his
own fast guess model by Yellott (1971).
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timer; SAT manipulations set a limit on this timer. A response is
produced either when sufficient information has been gleaned as
to make a correct response, or when the deadline is reached. While
intuitively appealing, the deadline model has seen little success.
For one thing, one might better term the model the slow guess, as
it predicts error RTs that are later than correct RTs—a prediction
not borne out by Swensson’s own data and numerous other stud-
ies (but see Estes and Wessel, 1966; Pike, 1968; Link and Tindall,
1971; Audley, 1973; Pfefferbaum et al., 1983; Ditterich, 2006a;
Heitz et al., 2010). Perhaps more problematic for the deadline
model—indeed all mixture models—is the observation that error
RT is sometimes faster and sometimes slower than correct RT
(Link and Tindall, 1971; Swensson, 1972a; Luce, 1986). Mixtures
models are not flexible enough to predict both. Other efforts have
rendered mixture models untenable as a sole explanation for SAT
(Reed, 1973; Ruthruff, 1996; Wagenmakers et al., 2008; but see
Dutilh et al., 2011; Schneider and Anderson, 2012; Donkin et al.,
2013).

For several reasons, sequential sampling has emerged as the
dominant decision model framework. For one, they naturally
account for choice behavior under SAT without appeal to a
mixture of two states, and with some assumptions, can predict
either fast or slow error RT (Laming, 1968; Ratcliff and Rouder,
1998). Another is precision: they provide a quantitative account
of mean correct and error RT, accuracy rate, the shapes of cor-
rect and error RT distributions, and how each of these change
with experimental manipulations such as SAT, response bias, and
the strength of sensory evidence. Third, they make testable pre-
dictions. For instance, when sensory evidence remains constant,
there exists a unique, optimal decision threshold that maximizes
reward rate (RR) (Gold and Shadlen, 2002; Bogacz et al., 2006),
and humans closely match this threshold even when optimality
changes between blocks of trials (Simen et al., 2009; Bogacz et al.,
2010a; Balci et al., 2011). Likewise, these models can be shown to
account for high-level behaviors such as visual fixations and pur-
chasing decisions (Krajbich et al., 2010, 2012; Milosavljevic et al.,
2010; Towal et al., 2013). Fourth, there is mounting evidence that
something akin to sequential sampling occurs in the brain, as I
will discuss later.

There exist several sequential-sampling models that embrace
these strengths, notably, the Drift-Diffusion (Ratcliff, 1978;
Busemeyer and Townsend, 1993; Ratcliff and Smith, 2004),
Race/Accumulator (Pike, 1968; Vickers and Smith, 1985;
Smith and Vickers, 1988; Logan, 2002), Leaky-Competing
Accumulator (Usher and McClelland, 2001), LATER (Carpenter
and Williams, 1995; Reddi and Carpenter, 2000), and Linear
Ballistic Accumulator (Brown and Heathcote, 2005, 2008) among
others (cf. Cisek et al., 2009; Drugowitsch and Pouget, 2012;
Thura et al., 2012; Thura and Cisek, 2014). Though a full dis-
cussion is beyond the scope of this article [the reader may
refer to Bogacz et al. (2006) and Ratcliff and Smith (2004)],
it should be noted that nearly all assume SAT is a function of
the distance (or “excursion,” Churchland et al., 2008) a decision
variable must travel from a start point to a threshold, some-
times called response caution (Forstmann et al., 2008). In many,
SAT is implemented by a change in decision threshold alone
(Figure 1). This idea has been challenged, and several efforts

now consider SAT to be a multifaceted phenomenon including
changes in, for example, sensory gain (Ditterich, 2006b; Standage
et al., 2011, 2013; Heitz and Schall, 2013) along with decision
threshold.

SUMMARY
The SAT has long been a phenomenon of interest in behavioral
science. From early on, the covariation between response speed
and accuracy was seen not as a nuisance, but a signature of the
decision process itself. Consequently, experimental investigations
of SAT progressed largely in parallel with mathematical models of
the decision process. This work is ongoing, but a consensus has
emerged: agents make choices based on a sequential analysis of
sensory evidence. As decades of research make clear, this decision
process is adaptable: actions are dictated not only by the nature
of perceptual input but also environmental constraints, inter-
nal goals, and biases. An embodiment of this flexibility, the SAT
arises due to the inherent contradiction between response speed
and decision accuracy. Faster responses entail less accumulated
evidence, and hence less informed decisions. Sequential sam-
pling models provide an intuitive framework for understanding
SAT. Observers set a decision criterion—an amount of evidence
required to commit to a choice—based on current task demands
and internal goals. This begs the question: how can we know what
decision criteria subjects employ? It would seem that without
this knowledge, mean RTs and accuracy rates conflate experimen-
tal factors with strategic effects employed by the observer. The
solution to this problem is to bring decision criterion6 under
experimenter control. As explained below, this not only avoids
ambiguity, but also quantifies precisely how accuracy trades off
with latency.

SAT METHODOLOGY: EXPERIMENTAL MANIPULATIONS
AND ANALYSIS TECHNIQUES
A common theme in the above is the manipulation of sub-
jects’ decision criteria through experimenter influence. These SAT
experiments quantify how accuracy covaries with RT over the
range of decision criteria subjects might use. In contrast, group
means obtained at a single criterion provide only a snapshot
of performance that conflates decision strategy with the nature
of the task (e.g., its difficulty). In other words, with decision
criteria free to vary, many different group means could obtain,
from very fast RT and chance accuracy to very slow RT and
asymptotic accuracy. The problem is further exacerbated if the
experimental conditions under comparison also encourage dif-
ferent SAT settings, making group means difficult to interpret
and conclusions ambiguous (Wickelgren, 1977; Lohman, 1989).
In this way, SAT manipulations avoid problems shared by non-
SAT experiments, echoed in the quote that opened this work.
Furthermore, deriving the pattern of performance over a vari-
ety of decision criteria, SAT experiments offer a window into the

6I use the terms SAT setting, SAT criterion, and decision criterion equiva-
lently to refer to one’s momentary willingness to trade response speed for
accuracy. It is a single point along an accuracy-latency performance func-
tion (Wickelgren, 1977; Lohman, 1989). In the context of sequential sampling
models, it is often referred to as decision threshold.

Frontiers in Neuroscience | Decision Neuroscience June 2014 | Volume 8 | Article 150 | 10

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Heitz The speed-accuracy tradeoff

decision process itself. An empirical example will drive home the
point.

Heitz and Engle (2007) addressed the possibility that indi-
viduals rated high or low on a measure of working memory
capacity exhibit differences in processing efficiency during low-
level visual (non-memory) tasks. Specifically, they proposed that
those with low working memory process sensory evidence more
slowly than those with high working memory capacity. To test
this, high and low working memory subjects performed the
Eriksen flanker task (Eriksen and Eriksen, 1974; Gratton et al.,
1988). Subjects reported the identity of a central letter (H or S,
mapped to key presses on different hands), each flanked on either
side with response-congruent or response-incongruent stimuli.
Subjects typically respond more quickly and with higher accuracy
to congruent (e.g., HHHHH) than incongruent (e.g., HHSHH)
strings. Heitz and Engle manipulated SAT through the use of
response deadlines ranging from 200 to 700 ms. By implicating
rate of perceptual accumulation, they predicted that asymptotic
performance would be equivalent. That is, if given sufficient time,
both groups should perform equally. This is particularly suited for
SAT methodology, as obtaining group means at a single criterion
would not address the question.

The data in Figure 2A depict accuracy rate conditionalized on
RT 7 (known as a conditional accuracy function—a topic I will
return to). The data are fit by a function known as an expo-
nential approach to a limit 8, as is common (Wickelgren, 1977;
McElree and Dosher, 1989; Öztekin and McElree, 2010), to obtain
numerical estimates of intercept (the processing time needed to
make above-chance, informed decisions), rate (gain in accuracy

7Data are collapsed over Experiments 1 and 2 of (Heitz and Engle, 2007). For
fitting, initial RT-accuracy bins with chance-level responding were eliminated.
The conclusions remain unaltered. See original publication for details.
8The exponential approach to a limit takes the form: Acc = λ

[
1− e−γ (T−δ)

]

where Acc is some measure of accuracy rate (proportion correct or d-prime), λ
is asymptotic performance, γ the rate, δ the x-axis intercept, and T is RT. The
use of an exponential approach to a limit has been criticized (Ratcliff, 2006)
on the grounds that it is atheoretical and not necessitated by process models
such as the drift-diffusion. Others might consider this a strength.

with RT), and asymptote (peak accuracy). The critical pattern
concerns the difference between high and low working memory
groups on incompatible trials (dashed lines). It is observed that at
very fast RT, both groups are equally fast and at respond at about
chance level. Asymptotic accuracy also appears equivalent, sug-
gesting that the two groups perform equally when given sufficient
time. What distinguishes the groups is the rate of gain in accu-
racy with RT, which the authors interpreted as evidence that the
groups did in fact differ in processing efficiency. The relationship
is perhaps more straightforward when the negatively accelerated
function is linearized using a log-odds transformation, also a
common practice (Figure 2B). It is clear that the slope of the
function relating accuracy and RT is greater for the high than
low working memory group. This conclusion—quite different
than the authors had expected—was made possible though SAT
manipulations9. In sum, bringing decision criteria under experi-
menter control provides a detailed picture of the decision process,
avoids ambiguity that may arise when SAT is not controlled,
and facilitates more specific hypotheses. Numerous experimental
methods accomplish this, each with strengths and weaknesses.

SAT MANIPULATIONS10

Verbal instructions
In the vast majority of behavioral studies, subjects are directed to
maintain both high accuracy and fast RTs. This is problematic, as
the two constraints are contradictory. As pointed out humorously
by Edwards (1961): “These instructions are internally inconsis-
tent. A computing machine would reject as insoluble a problem
presented with such instructions” (p. 276). It is with this in
mind that Howell and Kreidler carried out the first true SAT
experiment (Howell and Kreidler, 1963). In a task similar to the
venerable Hick paradigm (Hick, 1952), different groups of par-
ticipants were asked to favor fast, accurate, or fast and accurate

9For a similar application of SAT methodology to memory phenomena, see
(McElree and Dosher, 1989; Kumar et al., 2008; Öztekin and McElree, 2010).
10Several of the below SAT methodologies were previously reviewed by
Wickelgren (1977).

FIGURE 2 | Data from Heitz and Engle (2007) Experiments 1 and 2.

(A) Data were fit by an exponential approach to a limit. The critical
pattern concerns the incompatible condition (dashed lines). The groups

do not differ in intercept or in asymptote, but do differ in rate. (B) The
same data in (A) linearized using a log-odds transformation and fit with a
log-linear regression.
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responding. In their own words, this required “. . . that S estab-
lish a “trade-off” between two dimensions” (p. 41). For obvious
reasons, instructions remain the most common SAT manipula-
tion: they are simple to implement, require little training, and
yield large effect sizes.

Though popular, verbal instructions are not ideal in several
respects. First, instructions are qualitative. It is unlikely that indi-
viduals adopt similar response criteria both within and between
emphasis conditions (Lohman, 1989), which serves to both
diminish effect sizes and increase experimental error (Edwards,
1961). Moreover, without a quantitative method, the potential
for regression to the mean is high. Subjects may modify behav-
ior initially, but over the course of trials in a block, settle into
some less distinct mode. In fact, there is a tendency for con-
trolled RT distributions to skew toward an individual’s natural
mean RT (Schouten and Bekker, 1967). Second, the number of
qualitatively different emphasis conditions subjects can achieve
is limited; any more than three seems difficult. This is certainly
adequate for gross comparisons (e.g., Hale, 1969; Osman et al.,
2000; Forstmann et al., 2008; Ivanoff et al., 2008), but may be
inadequate for describing the accuracy-latency function math-
ematically, particularly if decision criteria are not homogenous
over subjects (McClelland, 1979). Finally, and particularly impor-
tant for future work, instructions are decidedly not available in
non-human subject populations.

Payoffs. To combat the ambiguity of instructions, Fitts (1966)
designed a payoff matrix to differentially reward correct deci-
sions and penalize errors. Fitts defined four response categories,
based on whether the response was correct and whether the RT
met an arbitrary “criterion time.” As shown in Table 1, subjects
were awarded +1.0 point for fast and correct responses, and
penalized −1.0 point for slow and inaccurate responses. The SAT
emphasis conditions were distinguished by the penalty incurred
for correct but slow or incorrect but fast responding. Under
accuracy emphasis, there was a higher penalty associated with
errors, whereas under speed emphasis, the penalty was greater for
slow responding. This scheme worked quite well; payoff matri-
ces induced significant covariation in RT and accuracy rate even
in the absence of verbal instructions. Others have since used simi-
lar methods to manipulate SAT (Pachella and Pew, 1968; Swanson
and Briggs, 1969; Lyons and Briggs, 1971; Swensson and Edwards,
1971; Gehring et al., 1993).

Payoffs have at least two advantages over verbal instructions.
First, the quantitative nature of the rewards and penalties allow
for a larger number of emphasis conditions. Secondly, verbal
instructions become unnecessary; observers learn contingencies
over the course of the experiment or in practice blocks, making

Table 1 | Payoff matrices used by Fitts (1966) to induce SAT.

Payoff Correct Correct Wrong Wrong

condition and fast and slow and fast and slow

Pretest +1 −0.2 −0.2 −1
Speed +1 −0.5 −0.1 −1
Accuracy +1 −0.1 −0.5 −1

this method viable for use with non-human populations. On the
other hand, the payoff scheme requires one to define a “criterion
time” that defines whether or not a particular response is con-
sidered fast or slow. Ideally, the criterion time is determined
subject-by-subject using a data-driven method, such as some
percentile of a subjects’ RT distribution during the same task
without time constraints. Whether arbitrary or subject-specific,
the choice of the criterion time separating “fast” and “slow” RT
is an important consideration, as improper values render the
method ineffective. That said, some early studies have seen suc-
cess using a constant, arbitrary criterion time for all subjects
(Fitts, 1966; Ollman, 1966; Pachella and Pew, 1968). It is also
worth noting that without additional instructions or cuing events,
switching between emphasis conditions will not be immediate.

Pure payoffs. Avoiding the problem of arbitrary criterion times,
Swensson designed a method making rewards and penalties lin-
early related to RT (Swensson and Edwards, 1971). Correct
responses are rewarded [D − k(RT)] and errors penalized
[−k(RT)]. Parameter k specifies the relative gain or loss with
changes in RT, while D defines the relative gain due to cor-
rect responding. When D is small, rewards and penalties are
based entirely on RT; when large, the reward associated with cor-
rect responding outweighs loss due to long latency. This regime,
known as “pure payoffs,” has seen little use (Swensson and
Edwards, 1971; Swensson, 1972a,b), but is in principle superior to
a standard payoff structure. Unfortunately, it shares one weakness
with the payoff matrix: learning the reward contingencies takes
time, and subjects will be unable to switch between conditions
immediately without ancillary cuing signals.

Deadlines. Pachella introduced a simplification of the payoff
procedure described above. He demonstrated that SAT can be
induced using only the criterion times that define “fast” and
“slow” responses without any associated payoff matrix (Pachella
and Pew, 1968; Pachella and Fisher, 1969). As is typical, a sin-
gle deadline is in effect throughout a block of trials; choice
latencies that do not beat the deadline are met with some
tone or visual feedback to indicate the response was not fast
enough11. Practice trials preceding each block provide an acclima-
tion period. Numerous classic and contemporary works use this
simple, highly effective manipulation (Pachella and Pew, 1968;
Pachella and Fisher, 1969; Link and Tindall, 1971; Yellott, 1971;
Green and Luce, 1973; Pike et al., 1974; Jennings et al., 1976;
Ratcliff and Rouder, 2000; Diederich and Busemeyer, 2006; Heitz
and Engle, 2007; Yamaguchi et al., 2013).

There are several considerations that warrant discussion. The
first is the number of deadline conditions, which depends on both

11How to treat “missed deadline” trials is an important issue. On one hand, it
can be argued that missed deadline trials are qualitatively different from made
deadline trials (e.g., subjects failed to adopt the appropriate decision crite-
rion), and so might be eliminated. On the other hand, this leads to artificially
truncated RT distributions and artifactual effects on mean RT and accuracy
rate. The most conservative approach is to compute mean RT and accuracy
rate for each condition as if deadlines did not exist (i.e., categorically accurate
responses count as correct even when deadlines were not met). In practice,
overall conclusions are robust to this choice.
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the desired resolution as well as willingness to obtain increasingly
more observations per subject. While as few as three are sufficient
to mathematically describe the tradeoff function (McClelland,
1979), as many as 5–8 are not uncommon (Schouten and Bekker,
1967; Yellott, 1971; Jennings et al., 1976; Heitz and Engle, 2007).
In regards to selecting particular deadline values, it is impor-
tant to have an idea of both the mean and variance of subjects’
RT during an unconstrained version of the same task. One
then selects N deadlines that more than span this range. Note
that spanning too large a range increases experimental complex-
ity with diminishing returns. Deadlines that are too fast will
encourage guessing, and deadlines that are too long will have
little to no effect. Another concern is the order of the deadline
blocks. If all subjects are presented with the same order, prac-
tice effects become confounded with SAT effects. It is desirable
to present deadlines in random or pseudo-random order, ideally
with multiple repetitions to account for gains in performance over
time.

Deadline tracking. An even more principled method for
manipulating SAT uses an adaptive tracking method coupled
with a deadline procedure. Rinkenauer et al. (2004) targeted
particular accuracy rates (97.5, 82.0, 66.0%) instead of RT
per se. Accuracy rate was computed in successive blocks of
trials, and deadline values increased or decreased (in 30 ms
steps) accordingly. This data-driven method has the advan-
tage of naturally accounting for practice effects, attentiveness,
fatigue, etc. that may alter behavior throughout an exper-
iment. However, because accuracy rates must be computed
over sets of trials, there is considerable overhead in converg-
ing to a desired performance level. Furthermore, if practice
effects are large, substantial changes in the underlying RT dis-
tributions may occur despite holding average accuracy rate
constant.

Response-to-stimulus interval (RSI). In the absence of explicit
SAT manipulations, subjects are thought to choose decision cri-
teria that maximize potential reward, whether that be monetary
or otherwise (Edwards, 1965; Gold and Shadlen, 2002). One’s
RR is simply the proportion of correct responses divided by
the average length of a trial. Several factors contribute to the
average length of a trial (and hence RR), including decision
time, non-decision related (e.g., sensory) delays, and the inter-
val between one’s response and the beginning of the following
trial (the response-to-stimulus interval, RSI). Recent theoretical
work suggests that altering RSI should provide a means to implic-
itly alter one’s SAT criteria (Bogacz et al., 2006). This makes
intuitive sense: when RSI is long and the pace of the task is
slow, the available number of decision opportunities is likely
to be fewer than when RSI is short and the pace is fast. In
this case, the optimal RR is attained through slow, highly accu-
rate decision-making. Conversely, when RSI is short, the opti-
mal RR is achieved by emitting decisions more quickly, even
if many of those decisions are incorrect. This has firm empiri-
cal support: RSI manipulations lead to SAT in much the same
way as conventional time limitations (Simen et al., 2009), and
mathematical decision models localize the effect to decision

threshold (Simen et al., 2006; Bogacz et al., 2010a; Balci et al.,
2011)12.

The use of RSI to manipulate SAT has several advantages. First,
it is divorced from any explicit time limitations and is clearly a
voluntary, strategic adaptation. Second, RSI is formalized mathe-
matically in decision models and makes contact with a theoretical
literature on RR optimization. Third, RSI may be ideal for use
with non-human populations. On the other hand, RSI manipula-
tions do not take effect immediately, as observers cannot optimize
decision criteria instantaneously (Simen et al., 2009; Balci et al.,
2011). Even the most sensitive subjects may require as many as 20
trials before performance stabilizes, and not all subjects produce
an effect (Bogacz et al., 2010a). Furthermore, the assumption that
RSI operates on subjects’ inherent motivation to maximize RR
seems to require experimental designs that are time-limited rather
than trial-limited. In practice, this point may be moot as subjects
appear to remain sensitive to RSI even in fixed trial length blocks
(Simen, personal communication, 4/3/2014).

Response signals. The last two methods, response signals and RT
Titration are motivated by different goals. Whereas the meth-
ods above attempt to alter subjects’ cognitive state, the following
attempt to bring RT under experimental control while keeping
SAT criteria constant. The response signal method13 was first
developed in 1973, as a direct test of the fast guess model (Reed,
1973). The procedure effectively prevents fast guesses by allowing
subjects to respond only when cued; in this case, the disappear-
ance of visual stimuli served as the signal. Even with fast guesses
eliminated, Reed observed that accuracy rate covaried with RT,
rendering the fast guess model untenable.

The strength of this method lies in the unpredictable nature
of the upcoming trial. The duration of the stimulus-to-cue dura-
tion cannot be anticipated, ensuring that each trial is approached
with equivalent cognitive states—exactly the opposite intention
as instructions, deadlines, etc. In this case, the accuracy-latency
relationship is less likely to involve strategic changes in deci-
sion criteria but rather results from the quantity of informa-
tion accumulated before encountering the cue to respond. Early
cues truncate processing and force a response based on partial
information.

There are two weaknesses to this approach. First, for long cue
delays, subjects may withhold their response when they would
otherwise have emitted a choice. In sequential sampling terms,
responses are obligated not by threshold crossing but by external
influence, questioning its relevance to the normal choice process.
(Even the deadline method allows the choice process to terminate

12Interestingly, human subjects seem to perform sub-optimally, with accuracy
rates slightly too high and and mean latencies slightly too long to maximize RR
(Simen et al., 2009; Bogacz et al., 2010a). Why this is so is not fully understood,
but it is worth noting that humans can learn to become optimal with sufficient
practice (Balci et al., 2011).
13There is actually an earlier example. In 1967, Schouten and Bekker pre-
sented subjects with a simple choice task and cued them to respond on the
last of three acoustic “pips” (but not earlier). Critically, the duration of the
stimulus-to-cue interval was blocked, such that subjects would adopt differ-
ent SAT settings. In this sense it is similar to the deadline manipulation, except
that early responses are not allowed.
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normally on most trials.) Related to this point, the choice process
has been altered such that one cannot be sure exactly what SAT
criterion observers are using. The method simply ensures that,
on average, observers use the same criterion at the beginning of
each trial, or alternatively, that the criterion does not vary in any
controlled way. The last method obviates this concern.

RT titration. RT Titration (Meyer et al., 1988) seeks to hold con-
stant observers’ SAT criteria trial-to-trial while ensuring subjects
begin each trial as if it were a normal, no-signal, free RT task.
The procedure is straightforward: subjects make choices when-
ever they wish, unless a response signal is encountered, at which
time a response is obligated. Because many trials include no
response signal, behavior on each trial is governed by the same
sequential sampling process in operation during non-SAT tasks.
Meanwhile, the influence of processing time on accuracy and the
contribution of partial information can be gauged by those trials
including a response signal. In many ways, RT Titration is supe-
rior to the response signal method, except that subjects require
training in order to produce responses swiftly after encountering
the relatively more rare response signal.

Methods that hold decision criteria constant (response sig-
nals and RT Titration) are fundamentally different from those
that force criteria to change (instructions, deadlines, etc.). Must
the form of the accuracy-latency relationship also be different?
One study to test this compared the deadline and response signal
methods in the same subjects during the same task (Dambacher
and Hübner, 2013). Interestingly, there was surprising agreement
between the two, despite a tendency for lower overall perfor-
mance in the response signal method. How can there be so much
agreement between such disparate methodologies? This can be
explained by the constancy of the perceptual input. Whether
perceptual accumulation terminates naturally due to threshold
crossing or is truncated artificially by experimenter influence,
the stimulus information driving the process remained constant.
What does differ—and this may partially explain the discrepancy
between the methods—is that the predictable deadline procedure
allows for proactive adjustments, such as the type observed in the
baseline neural firing rates in monkeys (Heitz and Schall, 2012).
Additionally, the response signal method likely involves extra cog-
nitive demand as observers must also perform signal detection.

Selecting the best SAT manipulation. All of the above method-
ologies are effective, but which is most appropriate? The answer is
guided by at least three considerations: (1) should RT be explicitly
controlled; (2) should decision criteria vary between conditions;
and if so (3) must adjustments be immediate? A guide is presented
in Table 2, but is non-exhaustive. For instance, verbal instructions
might be combined with deadlines to ensure at least minimal
control of mean RT (e.g., Forstmann et al., 2008), making it
an instance of “explicit” RT control. Likewise, the response sig-
nal method will allow decision criteria to vary if presented in a
blocked format (Schouten and Bekker, 1967).

ANALYSIS OF SPEED-ACCURACY TRADEOFF DATA
There are several methods for depicting the SAT; here I deal
with the three most popular: the speed-accuracy tradeoff function

Table 2 | Summary of SAT methodologies.

RT control Decision criteria Adjustment time Method

Indirect Altered Fast Verbal instructions

Indirect Altered Slow RSI

Explicit Altered Fast Deadlines

Explicit Altered Slow Payoffs, Pure
payoffs, Deadline
tracking

Explicit Invariant – Response signals,
RT Titration

(SATF), the conditional accuracy function (CAF), and the quantile-
probability plot (QPP). To facilitate the discussion, I created a
simulated SAT experiment employing three response deadlines at
225, 325, and 425 ms. The manipulation was assumed effective,
with mean accuracy rates increasing linearly at 50, 70, and 90%,
respectively. RT distributions for each condition were generated
by drawing 10,000 observations randomly from an ex-Gaussian
(van Zandt, 2000) distribution (σ = 20 ms, τ = 30 ms) such that
approximately 25% of all RTs fell later than the RT deadline in
each condition, but these “missed deadlines” were not removed.
The mean RT for error trials was set to be slightly (5 ms) faster
than correct trials.

SATF
The SATF plots mean RT and accuracy rate for each SAT condi-
tion separately (Figure 3A). It reflects the efficacy of the experi-
mental manipulation and quantifies how accuracy trades off with
RT, on average. The SATF is robust to the variability of the com-
ponent distributions: the extent to which conditions overlap has
no effect, nor is it influenced by the direction of mean error RT.
However, it is clear that there is considerable variation within
each condition not captured by the SATF. For instance, observed
RTs of ∼250 ms obtain in both the shortest and middle dead-
lines. Are these responses qualitatively different? Restated, the
question is whether or not the large-scale difference between SAT
conditions (the macro-SAT) is due to the same factor as smaller-
scale, within-condition variability (the micro-SAT; Pachella, 1974;
Thomas, 1974; Wood and Jennings, 1976; Wickelgren, 1977;
Grice and Spiker, 1979; Vickers et al., 1985). Perhaps the differ-
ence in between- and within-condition variability is only one of
magnitude; the macro-SAT due to large changes in decision cri-
teria and micro-SAT due to intrinsic variability and trial-to-trial
adjustments (Ridderinkhof, 2002; Jentzsch and Leuthold, 2006).

CAF
If this were the case, it makes more sense to plot accuracy rate
conditionalized on observed RT disregarding deadline condition
altogether. All RT data are categorized into equal-observation
quantiles, and accuracy rate is computed separately for each bin
(Figure 3B). Though this provides a more detailed description of
how accuracy trades off with RT, this overall CAF does not address
whether similar latencies collected under different deadline con-
ditions are psychologically equivalent. This may be accomplished
by computing CAFs individually for each deadline condition
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FIGURE 3 | Comparison of the SATF, overall CAF, and individual CAFs in

the same simulated dataset. (A) The SATF is simply the mean RT and
accuracy rate for each SAT condition Here, they were 225, 325, and 425 ms
response deadlines. The manipulation was effective by definition, yielding
accuracy rates of 50, 70, and 90%, respectively. Each condition was

constructed by drawing N = 10, 000 observations randomly from an
ex-Gaussian distribution with parameters indicated in figure inset. Solid
histograms depict correct trials, open histograms error trials. (B) The same
data as (A) but aggregated disregarding SAT condition and plotted as a CAF. (C)

Same data as (A,B) but CAFs computed separately for each deadline condition.

(Figure 3C). If the micro- and macro-SAT have the same source,
the SATF, CAF, and individual CAFs should be overlapping (but
see Grice and Spiker, 1979).

This can and does occur—two examples are presented in
Figure 4—but it is perhaps more common to find that they dis-
agree. The reason for this becomes apparent when two parameters
are varied—the extent of overlap between the RT distributions
and the direction of mean error RT. To demonstrate, I repeated
the simulation described above while manipulating both the vari-
ability (and tail) of the RT distributions and the direction of mean
error RT, being faster, equal, or slower than mean correct RT
(Wood and Jennings, 1976). The results are presented in Figure 5.
In the top row (Figures 5A–C), the standard deviation of the dis-
tributions is kept small, so as to include little overlap between the
SAT conditions. In this unrealistic situation, the overall CAF is
a fair representation of the SATF, but the individual CAFs may
be decreasing (A), flat (B), or increasing (C) depending on the
direction of mean error RT. It is straightforward to understand
why: when error RTs are slower than correct RTs, early quantile
bins necessarily contain more correct than error responses (A). If
mean RTs are equal (B), each bin will on average contain the same
number of errant and error-free trials. Finally, when mean error
RT is faster than correct (C), early bins will tend to be less accu-
rate, and later bins more accurate. The pattern is exaggerated in
the more realistic situation of extensive overlap between RT dis-
tributions (Figures 5D–F). In this case, neither the overall CAF
nor individual CAFs approximate the SATF. It would seem that
the CAFs are unpredictable and dominated by the simple direc-
tion of mean error RT. This is true, but beside the point. While
all sequential sampling models predict an increasing SATF, the
form of the micro-SAT differs. For instance, the original random
walk model (Stone, 1960) predicts flat CAFs, since correct and
error RT are equivalent (Pachella, 1974). In contrast, some accu-
mulator models (Vickers et al., 1985) and the random walk with
collapsing bounds (where threshold decreases over time) predict
decreasing or inverted “U” shape CAF (Pike, 1968). Increasing

CAFs are consistent with several models, including the fast guess
(Pachella, 1974), variable criterion model (Grice et al., 1977),
some versions of the random walk (Laming, 1968; Vickers et al.,
1985), and others.

Quantile probability plots
Combining aspects of both the SATF and CAF is the quantile
probability plot (Audley and Pike, 1965; see also Ratcliff and
Tuerlinckx, 2002). The SATF and CAF describe changes in accu-
racy rate with RT, but do not depict distributional characteristics,
aspects that are particularly important in evaluating the fit of
mathematical decision models (Audley and Pike, 1965; Pike,
1968). The drift-diffusion model, for instance, makes quantitative
predictions regarding the shape of correct and error RT distri-
butions; the QPP describes this information succinctly. For each
condition, RT quantiles are calculated separately for correct and
error trials, commonly at the 10, 30, 50, 70, and 90th percentiles.
The RT corresponding to these quantiles are then plotted against
response probability for each condition. For instance, if the accu-
racy rate for a particular condition was 80%, the RT quantiles for
correct trials would be plotted at 0.8, and corresponding error tri-
als at 1.0− 0.8 = 0.2. Under most circumstances, points to the
left of 0.5 represent error trials and those to the right of 0.5, cor-
rect trials (but see Simen et al., 2009). A typical QPP computed
on SAT data from a single (non-human primate) subject (Heitz
and Schall, 2012) is shown in Figure 6A. Several characteristics
are apparent. First, both accuracy rate and RT tend to increase
from a Speed emphasis condition to an Accuracy emphasis con-
dition, giving the QPP a “U” shape. This convexity is diagnostic:
in sequential sampling models such as the drift-diffusion, increas-
ing decision bounds lead to a slowing of RT with an increase in
accuracy rate. In contrast, a concave QPP indicates that accuracy
rate is improving while RT becomes faster, a common occurrence
when signal quality is manipulated (Ratcliff and Smith, 2010).
Second, error RT tends to be longer than correct RT. The differ-
ence is small in the Speed and Neutral conditions (note the one

www.frontiersin.org June 2014 | Volume 8 | Article 150 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Heitz The speed-accuracy tradeoff

FIGURE 4 | Two empirical examples when the CAF—both the overall

CAF and individual CAFs overlap with the SATF. (A) (Schouten and
Bekker, 1967) forced subjects to respond to respond at target RTs during
a simple two-choice response time experiment. They found that the
individual CAFs overlapped significantly; the accuracy rate associated with
a given RT was invariant with respect to the forced response time
condition. The overall CAF and SATF are approximated by the black ogive
running through individual points. Data were traced using graphics

software from the original work. Note that error rate (rather than
accuracy rate) is plotted on the y-axis. (B) (Heitz and Engle, 2007)
presented subjects with a two choice response compatibility experiment
under 6 response deadlines. These data, replotted from their
incompatible condition, clearly indicate gross agreement between the
SATF (black), overall CAF (red), and individual CAFs (colored lines). Based
on this agreement, these authors used the overall CAF as their primary
measure to retain time resolution.

FIGURE 5 | Dependence of the CAF on component RT variance and

direction of mean vs. correct RT. (A–C) With small RT variability,
distributions exhibit little overlap, leading the overall CAF (red lines) to be a
fair representation of the SATF with better resolution in time. The form of the
individual CAFs (blue) are dictated by the direction of correct and error RT,

exhibiting a downward trend for slow errors (A) a flat line with equal mean
correct and error RT (B) and an upward trend for fast errors (C). (D–F) The
mismatch between SATF, overall CAF, and individual CAFs is exaggerated
with more reasonable parameters. When RT distributions significantly
overlap, the overall CAF no longer reflects the SATF.

point in the Neutral condition not following this trend), but quite
large in the Accuracy condition. Third, the spread of the RT dis-
tributions increase with SAT stress, as might be expected given
the large changes in mean RT. Fourth, the distribution of error

RTs appears roughly equivalent to correct RTs in the Speed and
Neutral conditions, but noticeably larger for error trials in the
Accuracy condition, particularly in the tail. The QPP provides a
wealth of information absent in the SATF and CAF, yet they are
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FIGURE 6 | Quantile-probability plots. (A) The QPP calculated from a
single non-human primate during an SAT task. Open points to the left of 0.5
correspond to errors, closed points to the right of 0.5 are correct trials. Each
vertically oriented set of 5 points mark the RT quantiles described in the text.

Lines connect quantiles between SAT conditions (red = Accuracy stress,
black = Neutral, and green = Speed stress). (B) The QPP calculated from the
same simulated dataset presented in Figure 3. The individual-condition RT
distributions (Figure 3C) are reflected in the quantiles of the QPP.

related. Figure 6B displays this relation using the same simulated
data as that of Figure 3.

Selecting the best analysis technique
There is no one best depiction of SAT, as each of the
methods described above present different information, but
there are guidelines. The SATF is the most common and
straightforward approach, assuming only that the experimen-
tal design included some type of SAT manipulation. The
QPP provides further detail, but requires a more sizeable
dataset: estimation of RT quantiles becomes unreliable when
trial counts are low, and this can be particularly problematic
when errors are rare. The QPP has the additional bene-
fit of being closely related to mathematical decision mod-
els, but less clearly depicts the rate of gain in accuracy
with RT.

Overall CAFs, computed across an entire dataset, are only
appropriate in specific situations. First, in the context of non-
SAT experiments, the CAF might be computed to evaluate
subjects’ natural tendency to trade speed for accuracy (Lappin
and Disch, 1972a,b) and is indeed the only available option.
Second, when the CAF and SATF are overlapping, the for-
mer leads to the same conclusion as the latter while providing
slightly more resolution on the RT axis (Figure 4). Individual-
condition CAFs are useful in assessing the direction of error
RT on a fine scale, but are rarely used as a sole dependent
measure.

Summary
The use of SAT methodology continues to offer insight into
the decision process, and how that process is altered strategically.
The above provide numerous routes for obtaining and depict-
ing the SAT. Unfortunately, SAT experiments are costly relative
to non-SAT experiments, most requiring several times the num-
ber of observations. Is this gain in precision really worth the
investment? In what follows, I briefly review domains outside of
cognitive psychology where this has proven true.

APPLICATIONS OF SAT METHODOLOGY
NEURAL ACTIVITY UNDER SAT
A fundamental question in cognitive neuroscience concerns how
the brain adapts to bring about strategic changes in decision
criteria. The SAT is pervasive, and behavioral changes often large;
certainly brain activity must manifest a signature of SAT. The
answer to this question offers insight into the neural basis of an
elementary cognitive operation, and also bears on the viability of
mathematical decision models.

The sequential sampling framework described earlier has
recently graduated from an abstract cognitive model to an
assumed neural reality—a viable method the brain may use
to carry out perceptual decision-making. Evidence supporting
this claim derives from several sources, including human fMRI
(Heekeren et al., 2004) and EEG (Ratcliff et al., 2009; O’Connell
et al., 2012; van Vugt et al., 2012; Kelly and O’Connell, 2013),
but by far the most convincing stems from single-neuron record-
ings in non-human primates. In the typical paradigm, monkeys
view a display of static or dynamic stimuli that requires a per-
ceptual discrimination and subsequent choice between alternative
actions. Their decision is communicated through an eye move-
ment or button press, and juice reward is delivered when the
response is correct. Strikingly, activity in frontal eye field (Hanes
and Schall, 1996; Kim and Shadlen, 1999; Woodman et al., 2008;
Ding and Gold, 2012), lateral intraparietal area (Roitman and
Shadlen, 2002; Gold and Shadlen, 2007), and superior collicu-
lus (Horwitz and Newsome, 1999; Ratcliff et al., 2007) exhibits
patterns closely resembling the sequential sampling process. Most
germane is the fact that neural activity grows over time dur-
ing the deliberation period and terminates at a fixed threshold
at the moment an overt decision is produced. In accordance
with the model, much of the variability in RT can be accounted
for by the duration of the firing rate excursion—the time taken
to ramp from a baseline to a fixed threshold. Further lending
credence, computational (Ditterich, 2006a; Purcell et al., 2010,
2012; Zandbelt et al., 2014) and neural network models (Lo and
Wang, 2006; Wong et al., 2007; Beck et al., 2008; Wang, 2008;
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Zhang and Bogacz, 2010; Drugowitsch et al., 2012) inspired by
the sequential sampling process capture both behavior and neu-
rophysiology while respecting biological constraints. The neural
activity associated with SAT is thus a topic of great concern, and
has been examined using several techniques.

fMRI
A number of studies have used fMRI to examine neural activity
during SAT manipulations. Though an fMRI approach to SAT
suffers in several respects (Stark and Squire, 2001; Logothetis,
2008; Bogacz et al., 2010b), it is notable that all agree on at
least one conclusion: SAT manipulations affect more than deci-
sion threshold. In fact, the most consistent finding is that relative
to accuracy emphasis, placing subjects under speed stress leads
to an increase in the BOLD response during baseline intervals
(Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al.,
2008; Bogacz et al., 2010b). This would seem to be interpretable
within the sequential sampling framework by positing that base-
line shifts are functionally identical to threshold shifts—either
ultimately affects the amount of information accumulated prior
to decision14. More interesting is the observation that more than
one factor changes under SAT; at least one fMRI study has impli-
cated changes in sensory processing with SAT (Ho et al., 2012).
Further complicating the story, SAT manipulations appear to
affect BOLD in region-specific ways (Vallesi et al., 2012), some-
times in opposing directions (Blumen et al., 2011). This calls into
question the generality of the process: does sensory integration
occur simultaneously and interactively amongst brain regions, or
is there independence among sites of integration (Zhang, 2012)?

EEG
Unlike fMRI, EEG does not suffer from temporal blurring, but
does not offer opportunity to definitively localize brain regions.
Despite this, EEG components accurately track attention and
error monitoring (Woodman and Luck, 1999; Heitz et al., 2010;
Godlove et al., 2011), the chronometry of action preparation
(Gratton et al., 1988), and the temporal evolution of the deci-
sion process (O’Connell et al., 2012; Kelly and O’Connell, 2013;
van Vugt et al., 2014). In one early study, Gehring et al. (1993)
examined the error-related negativity (ERN) under SAT using
a deadline procedure. The ERN is a fronto-central negativity
that appears in the moments surrounding error commission
(Nieuwenhuis et al., 2001) and is though to reflect the error mon-
itoring process. When accuracy was emphasized, the magnitude
of the ERN was greater than under speed stress, when errors mat-
tered less. This finding suggests that in addition to altering the
decision process, SAT affects post-decision processing as well.

Several other studies sought to identify the processing stage
locus of SAT: does speed stress affect early sensory processing
or later decision and motor processing? Unfortunately, this issue
remains unresolved. The first attempt to address this—in fact the
first study to record neural activity under SAT—used the P3 com-
ponent during a line length discrimination task under speed or
accuracy emphasis (Pfefferbaum et al., 1983). The latency of the
P3, thought to mark the completion of stimulus processing, was

14It is worth mentioning that the brain entails no such equivalence.

earlier under speed than accuracy stress, suggesting that early per-
ceptual processing was indeed facilitated. The next attempts used
the lateralized readiness potential (LRP), a component that tracks
the evolution of motor preparation. Two studies using the LRP
have concluded that SAT manipulations do not affect sensory pro-
cessing (Osman et al., 2000; van der Lubbe et al., 2001; see also
Wenzlaff et al., 2011), while a third demonstrated that it affects
both early and late processing stages (Rinkenauer et al., 2004).

Each of the above studies examined the average EEG compo-
nent time-locked to some event of interest, but there is much
more information in the raw signal than is immediately apparent.
Understanding this, at least one study has examined the effect of
SAT on the EEG frequency spectra (Pastötter et al., 2012). Using
a two-choice discrimination task, subjects were cued trial-by-trial
to emphasize speed or accuracy. They found that, during the base-
line interval in which SAT emphasis was cued, the EEG tended
to oscillate more in the lower frequency bands (4–25 Hz) under
accuracy emphasis than speed emphasis (see also van Vugt et al.,
2012; Heitz and Schall, 2013).

Single-unit neurophysiology
To date, there has been only one single-unit recording study
employing SAT manipulations (Heitz and Schall, 2012). Monkeys
were trained to perform saccade visual search under Accuracy,
Neutral, or Speed emphasis, cued by the color of a fixation point.
Meanwhile, neural activity was recorded from the frontal eye field,
a key region in the planning and execution of eye movements.
The results were diverse but can be described succinctly: SAT
cues affected several stages of information processing, and speed
stress generally amplifies neural activity rather than attenuate
it. This was most evident for baseline neural activity (increas-
ing under Speed stress during the pre-trial interval) and in the
sensitivity of neurons to visual stimulation (responding more
vigorously under Speed stress). This indicates that SAT empha-
sis affects perceptual processing, a suggestion that has recently
gained support (Standage et al., 2011; Ho et al., 2012; Thura
et al., 2012; Dambacher and Hübner, 2014; Rae et al., 2014).
Surprisingly, neural threshold—the level of activity reached at
saccade decision—was greater for speed than accuracy empha-
sis, opposite the assumption of sequential sampling models. In
further analyses, it was shown that SAT affects much more than
the firing rates of neurons, including the extent to which sin-
gle neurons were coupled with their surrounding neural network
(spike-field coherence), as well as the sensitivity of that network
(Heitz and Schall, 2013).

Summary
The coupling of SAT methodology and neuroscience techniques
has the potential to offer real insight into the neural mechanisms
supporting decision. The consensus emerging suggests that SAT
is a multifaceted phenomenon, influencing several components
of the decision process and accompanied by distinct changes in
brain activity. It is interesting to suppose that external changes
in brain function—due to drugs, pathology, and senescence—
might lead to distinct declines in cognitive performance. SAT
methodology will be particularly useful in pinpointing the locus
of the deficit. The next section reviews this modest, but promising
literature.
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SAT WITH DRUGS AND PATHOLOGY
Cognitive impairments often accompany drug use, disease, injury,
and pathology. For instance, individuals with schizophrenia and
certain types of brain injuries exhibit impulsive, perseverative
behavior on measures such as the Wisconsin Card Sort and anti-
saccade tasks (Guitton et al., 1985; Fukushima et al., 1988; Kane
and Engle, 2002; Thakkar et al., 2011; Cutsuridis et al., 2014).
Likewise, monkeys permitted to self administer cocaine over long
periods of time demonstrate increased impulsivity and reduced
ability to switch between task sets (Liu et al., 2008, 2009). In
contrast, aging is associated with lower performance and longer
latencies (Salthouse, 2012), some of which is thought to be a
“general slowing” of cognition (Kail, 1991). Do these populations
simply differ in decision criteria, or has the information process-
ing system been affected, and if so, how? A handful of studies have
employed SAT methodology to address these questions.

Drugs
There have been few studies of SAT under the influence of con-
trolled substances. The most extensively tested is the effect of
alcohol. SAT was manipulated using instructions (Tiplady et al.,
2001) or response deadlines (Jennings et al., 1976; Rundell and
Williams, 1979) while subjects were given graded doses of alco-
hol and asked to perform auditory or visual discrimination
tasks. In each case, alcohol reduced the slope of the SATF in
a dose-dependent manner. As was the case of high and low
working memory capacity described earlier (Figure 2), this sug-
gests a reduction in the rate of information processing. In a
more recent study, subjects performed dot motion discrimination
under placebo, moderate dose, or high dose of alcohol. No SAT
manipulation was included. Application of the drift-diffusion
model localized the effects of alcohol to two components: drift
rate and non-decision time, suggesting that perceptual accumu-
lation was both degraded and delayed with increased intoxication
(van Ravenzwaaij et al., 2012).

In other work, monkeys administered graded doses of the
NMDA antagonist ketamine demonstrated both slower and more
accurate performance during visual search, indicating that deci-
sion criteria may have been altered (Shen et al., 2010). Finally, a
few studies have assessed the effects of stimulants on informa-
tion processing, but results are inconclusive. In one, low doses
of nicotine administered to non-smokers was found to benefit
information processing in the absence of any SAT (Le Houezec
et al., 1994). In another, the dopamine agonist bromocriptine was
found to have no effect (Winkel et al., 2012) while other work
suggests the dopamine reuptake inhibitor methylphenidate alters
decision criteria but does not benefit information processing
(Carlson et al., 1991).

Pathology and age
Research dealing with patient populations suggests a deficit in
the information processing system itself rather than non-optimal
decision criteria. In schizophrenics for instance, at least one mod-
eling study suggests that relative to controls, patients suffer from
increased sensory noise (Cutsuridis et al., 2014) and one explicit
SAT study provides anecdotal support (Schweitzer and Lee, 1992).
Similar conclusions are reached for Parkinson’s Disease patients

(Wylie et al., 2009). Interestingly, the situation is quite differ-
ent for one patient group of particular interest: attention-deficit
hyperactivity-disorder (ADHD). Relative to controls, ADHD sub-
jects exhibit SATFs that are shifted, but not different in slope
(Sergeant and Scholten, 1985a,b) suggesting that the rate of
information processing is equivalent. Recent work suggests that
ADHD patients instead have a relative inflexibility in optimiz-
ing decision criteria (Mulder et al., 2010; but see Metin et al.,
2013).

There is a well-characterized decline in cognitive function-
ing with age, but exactly what component of the decision
process is altered remains unclear. On one hand, older adults
tend to be more considered and cautious in their respond-
ing (Forstmann et al., 2011), suggesting a tendency to use
higher decision criteria than their younger counterparts. Indeed,
modeling studies suggest that older adults fail to set deci-
sion criteria optimally, often preferring overall accurate perfor-
mance at the cost of speed (Phillips and Rabbit, 1995; Ratcliff
et al., 2004; Starns and Ratcliff, 2010, 2012). Empirical stud-
ies using SAT methodology corroborate this, but also provide
compelling evidence for an impairment in information pro-
cessing (Salthouse, 1979; Madden and Allen, 1991; Hertzog
et al., 1993; Kumar et al., 2008) see also (Myerson et al.,
2007).

Summary
Though the cognitive impairments accompanying drug use,
pathology, and age are well characterized, the underlying basis
remains elusive. Traditional experimental approaches cannot dis-
sociate performance changes due to strategic effects (e.g., prefer-
ence for fast than accurate decisions) from those due to infor-
mation processing per se (e.g., compromised perceptual sam-
pling). By placing SAT criteria under experimental control, the
true nature of the deficit becomes clear. Further research will
be enlightening, and may be the key to developing targeted
interventions.

SAT IN NON-HUMAN ORGANISMS
The present work has primarily dealt with human behavior; in
stark contrast, this final section reviews a handful of studies
assessing SAT in non-human populations (monkeys, rodents, and
insects). This short discussion has two motivations. First, I wish
to promote the use of SAT methodology in populations amenable
to single-unit recordings. Neuroscience approaches continue to
elucidate the decision process with unparalleled detail, and single-
unit recordings are arguably the most definitive. This effort has
been limited by the absence of methods for controlling decision
criteria in non-human populations; here I show it is possible.
Second, I wish to illustrate that the SAT is truly universal. Unlike
humans and monkeys (and probably rodents), social insects also
exhibit SAT, but in a very different way. Specifically, the decision
to be made is one involving a colony, rather than a single member.
Likewise, whereas many individual neurons contribute to a single
decision in higher species, many individual entities contribute to a
group decision in insect colonies. Whether or not these phenom-
ena are comparable remains to be seen, but important parallels
exist.
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MONKEYS
There has been only one study using experimenter-induced SAT
in monkeys (Heitz and Schall, 2012). Monkeys performed sac-
cade visual search and were induced to respond at three levels
of SAT emphasis: speed, neutral, and accuracy. Conditions were
signaled by the color of a fixation point and presented in blocks
of 10–20 trials. Emphasis conditions were defined by differential
reward and punishment (time-out) contingencies, and monkeys
were trained until they adapted behavior immediately upon pre-
sentation of a new emphasis condition. In several ways, the SAT
in monkeys is identical to that in humans: the SATF is increas-
ing, and the behavior is well fit by sequential sampling models
with changes in decision threshold between emphasis condi-
tions. There are slight differences, however. Whereas humans
most commonly exhibit fast errors during visual search, mon-
keys tend to commit slow errors, leading to a decreasing (rather
than increasing) CAF. Interestingly, this occurs even in tasks
that do not include SAT manipulations, such as standard form
visual search (Heitz et al., 2010) and the venerable random dot
motion paradigm (Roitman and Shadlen, 2002; Ditterich, 2006a;
Churchland et al., 2008). The origin of this disparity is not
understood, but has not been systematically studied.

RODENTS
Evidence for SAT in rodent models is mixed. Using olfactory
discrimination, one study has shown a lack of any relation-
ship between accuracy rate and decision time, even when odor
mixtures are highly similar (Uchida and Mainen, 2003; see also
Zariwala et al., 2013; but see Abraham et al., 2004). However, a
different conclusion emerges when the stimulus-sampling period
is placed under experimenter control. One such study used an
analog of the response signal method. During an olfactory dis-
crimination task, mice were required to continue sniffing until
an auditory buzzer signaled the availability of reward (Rinberg
et al., 2006). The resulting SATFs were undeniably similar to that
of humans. Moreover, the slope of the accuracy-latency relation-
ship was altered by task difficulty: when odors were highly similar,
the rate of gain of accuracy with RT was much lower than for
highly dissimilar, and therefore easier, discriminations (see also
Brunton et al., 2013).

INSECTS
There is some evidence for SAT in bumblebees trained to perform
a type of visual search task: bees are rewarded with sucrose for
choosing to land on a target “flower” presented amongst distrac-
tors. Commonly, the flowers are distinguishable through color,
but other times through scent. Like humans, bees produce linear
speed-accuracy relationships (Chittka et al., 2003; Kulahci et al.,
2008; Riveros and Gronenberg, 2012). Those that decide more
slowly tend to be more accurate than those that respond quickly.
Also like humans, changing task parameters can lead to shifts of
the accuracy-latency function. For instance, when errant choices
are met with punishment (quinine solution), individual bees slow
down and increase accuracy relative to conditions without penalty
(Chittka et al., 2003). Other manipulations that lead to SAT in
bees include difficulty of discrimination (Dyer and Chittka, 2004;
Skorupski et al., 2006; Riveros and Gronenberg, 2012) and the

introduction of environmental stressors such as predation risk
(Ings and Chittka, 2008).

Like many social insect colonies, bees choose nesting cites
based on quorum sensing (Seeley and Visscher, 2004). Briefly,
scout bees examine potential locations for hives and recruit oth-
ers; the colony as a whole “decides” to migrate to the nest
when a quorum threshold (QT) has been reached (Passino et al.,
2008). It is interesting to note the parallel between the QT and
the decision threshold described by sequential sampling mod-
els. Under a lower QT, fewer bees contribute to the choice of
nesting cite increasing the potential for err. A computational
model of bee quorum sensing confirms that changing the QT
(the number of bees needed to commit to the new hive) imple-
ments SAT in an ecologically valid way (Passino and Seeley,
2006).

I am not aware of any empirical study testing this assertion
in bees, but it is certainly true for ants. Like bees, ants that have
found a potential nesting cite recruit others until a QT is reached.
At threshold, the colony switches from individual exploration into
a mode of “social carrying” in which ants pick up and carry other
ants to the new cite. The SAT becomes evident when the QT is
examined under different conditions. For instance, ant colonies
lower their QT when placed in a harsh environment necessi-
tating migration (Franks et al., 2003, 2009), relative to a calm
environment. Similarly, QT is lowered when nests are destroyed,
leading to emergency migration (Dornhaus et al., 2004); see also
(Marshall et al., 2006). Interestingly, this reduction in QT has
the consequences expected with SAT—faster, but less discerning
migration decisions.

SUMMARY
The SAT is a truly universal phenomenon. Monkeys and
rodents can be trained to vary decision criteria on cue, and
exhibit behavior similar to humans. Future studies employ-
ing SAT methodology with these populations will provide
critical insight into the decision process. There are parallels,
too, with social insect colonies, and this has not gone unno-
ticed. These ecologically valid studies speak to the mechanisms
of emergent behavior through the interaction of individual
entities.

CONCLUSION
The SAT has been a topic of great concern for over a cen-
tury. Throughout its history and still today, the SAT remains
an integral component of empirical, theoretical, and mathe-
matical explorations of the decision process. The growing pop-
ularity of SAT in the neuroscience community is particularly
exciting. The last decade has witnessed incredible advances in
our understanding of the neural basis of choice, and neural
investigations of SAT are now gaining momentum. This work
promises to detail the choice process—not just in humans but
non-humans as well—and will find utility in understanding
and treating common cognitive deficits. Clearly, there is much
work to be done. To facilitate this, and to bring together dis-
parate literatures and disciplines, the present work reviewed
the history, methodology, physiology, and behavior associated
with SAT.
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The Simon effect refers to the performance (response time and accuracy) advantage
for responses that spatially correspond to the task-irrelevant location of a stimulus. It
has been attributed to a natural tendency to respond toward the source of stimulation.
When location is task-relevant, however, and responses are intentionally directed away
(incompatible) or toward (compatible) the source of the stimulation, there is also an
advantage for spatially compatible responses over spatially incompatible responses.
Interestingly, a number of studies have demonstrated a reversed, or reduced, Simon effect
following practice with a spatial incompatibility task. One interpretation of this finding
is that practicing a spatial incompatibility task disables the natural tendency to respond
toward stimuli. Here, the temporal dynamics of this stimulus-response (S-R) transfer
were explored with speed-accuracy trade-offs (SATs). All experiments used the mixed-task
paradigm in which Simon and spatial compatibility/incompatibility tasks were interleaved
across blocks of trials. In general, bidirectional S-R transfer was observed: while the
spatial incompatibility task had an influence on the Simon effect, the task-relevant S-R
mapping of the Simon task also had a small impact on congruency effects within the
spatial compatibility and incompatibility tasks. These effects were generally greater when
the task contexts were similar. Moreover, the SAT analysis of performance in the Simon
task demonstrated that the tendency to respond to the location of the stimulus was not
eliminated because of the spatial incompatibility task. Rather, S-R transfer from the spatial
incompatibility task appeared to partially mask the natural tendency to respond to the
source of stimulation with a conflicting inclination to respond away from it. These findings
support the use of SAT methodology to quantitatively describe rapid response tendencies.

Keywords: speed-accuracy trade-off, stimulus-response compatibility, Simon effect, spatial compatibility, S-R

associations

INTRODUCTION
The spatial configuration of stimuli and responses greatly affects
human performance (Fitts and Seeger, 1953; Fitts and Deininger,
1954). Studies of stimulus-response (S-R) compatibility provide
an opportunity to explore which sorts of S-R associations are
more natural, and perhaps more automatic, than others. Spatial
incompatibility tasks, where the stimulus location is task-relevant
and the goal is to respond away from a stimulus, are gener-
ally performed more slowly and with greater errors than spatial
compatibility tasks, where responses are directed toward stimuli
(Fitts and Deininger, 1954). Fitts and Deininger proposed that
the number of transformations between stimulus and response
was a partial determinant of speeded responding under S-R
compatible/incompatible conditions. Others have taken a slightly
different approach, suggesting that the number or complexity of
rules in an incompatibility task is greater than it is in a compatible
condition (Duncan, 1977, 1978). It is generally thought that it is
easier to respond when there is some kind of conceptual match
between stimulus and response features (Kornblum et al., 1990).

The location of a stimulus, even when task-irrelevant, affects
spatial responding (Simon and Rudell, 1967; Simon, 1969), sug-
gesting there is some sort of well-established or automatic path-
way extending from neural regions responsible for processing
stimulus location to neural regions responsible for response
selection. The Simon effect refers to the performance advantage
for spatially corresponding responses over non-corresponding
responses, when the location of the stimulus is task-irrelevant. It
was originally attributed to “a ‘natural’ tendency to react toward
the source of stimulation” (Simon, 1969, p. 175). Dual-route
models (de Jong et al., 1994) usually incorporate this natural
tendency as a feature of the automatic, or direct, pathway that
speeds (corresponding), or slows (non-corresponding), respond-
ing. Although other accounts of the Simon effect have emphasized
various mechanisms (e.g., see Lu and Proctor, 1995; Proctor,
2011; Van der Lubbe and Abrahamse, 2011; Hommel, 2011 for
reviews), most accounts do tend to incorporate some kind of
“natural tendency” for location information to influence response
selection.
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TRANSFER OF S-R PATHWAY ACTIVITY ACROSS SIMON AND SPATIAL
INCOMPATIBILITY TASKS
In recent years, there has been growing interest in the trans-
fer of S-R mappings between spatial incompatibility and Simon
tasks. Proctor and Lu (1999) demonstrated that the Simon effect
reversed (i.e., spatially non-corresponding responses were faster
than spatially corresponding responses) when the Simon task was
preceded by a spatial incompatibility task. In other studies, trans-
fer from the spatial incompatibility task to the Simon task has
eliminated, but not reversed, the Simon effect (Tagliabue et al.,
2000). Tagliabue et al. (2000) attributed this discrepancy to the
greater number of practice trials in the spatial incompatibility task
in Proctor and Lu’s (1999) study (∼1800 trials) compared to that
of their study (72 trials). The reverse (or absent) Simon effect fol-
lowing a spatial incompatibility task has been explained in one of
two ways.

The first account of the reverse (or absent) Simon effect
following a spatial incompatibility task is, perhaps, the most prag-
matic of the two proposals. The Simon effect has routinely been
attributed to “automatic” response priming from the correspond-
ing stimulus location. This priming is thought to occur along the
direct, spatial S-R pathway. Proctor and Lu (1999) suggested that
activation of the direct pathway is not necessarily immutable. In
their description of the connectivity between spatial features of
the stimulus and the response they state, “[t]hese associations
have been described as unconditional (de Jong et al., 1994), perma-
nent (Barber and O’Leary, 1997), and as being either hard-wired
or learned from a lifetime’s experience (Umiltà and Zorzi, 1997).
The implication of such descriptions - that the associations are
essentially unmodifiable—is incorrect” (Proctor and Lu, 1999, p.
76). Thus, the learned associations from the spatial incompat-
ibility task may simply “overwrite” the direct pathway thereby
reversing, or eliminating, the Simon effect.

Tagliabue et al. proposed a different account of the effect of
a spatial incompatibility task on the Simon effect. Their account
includes three pathways (see Figure 1 for a graphical represen-
tation of the three pathways). The direct spatial S-R pathway,
connecting location stimulus codes directly to response codes,
has a quick, yet evanescent, onset. One of the slow, indirect S-R
pathways (sometimes called the conditional route or the controlled
pathway) is task-relevant: it translates non-spatial, symbolic stim-
ulus codes to intermediary spatial codes that, in turn, connect to
response codes. Dual pathway models have long been presumed
to encompass the cognitive architecture necessary for the Simon
effect (e.g., de Jong et al., 1994). The other indirect pathway is
spatial and is the result of residual activity from the spatial incom-
patibility task. It is likely slower than the direct spatial pathway.
It connects stimulus location information to intermediary spatial
codes that, in turn, recode spatial stimulus information for spatial
response selection (e.g., left→ right and right→ left). Tagliabue
et al. (2000) argued that this particular model accounts for the
time course of the Simon effect, following the performance of a
spatial incompatibility task, quite well.

In contrast to the S-R transfer evident from a spatial incompat-
ibility task to a Simon task, there is currently little evidence for S-R
transfer from a spatial compatibility task to a Simon task. Proctor
and Lu (1999) observed a 21 ms Simon effect following practice in

FIGURE 1 | An illustration of the three S-R pathways in a Simon task

modified by a spatial incompatibility task. The direct, task-irrelevant
pathway offers fast connectivity between stimulus location codes and
response codes. The indirect, task-relevant pathway between the
(non-spatial) identity of the stimulus and the response codes passes
through an intermediate translation stage. Lastly, in the case of prior (or
co-existent) experience with a spatial incompatibility task, the residual
pathway from the location of the stimulus to response codes also passes
through an intermediary stage where spatial codes are re-assigned new
mappings.

a task with central (neutral) stimuli and a 21 ms Simon effect fol-
lowing practice with a spatial compatibility task. Tagliabue et al.
(2000) noted a baseline Simon effect of 38.5 ms (Experiment 6),
and a Simon effect of 26.5, 35, and 33 ms (Experiments 3-5) when
preceded by spatial compatibility task. Tagliabue et al. (2000)
argue that the spatial S-R mappings from a spatial compatibility
task cannot further strengthen the direct pathway. Accordingly,
the (absent) effect of a spatial compatibility task on the Simon
effect provides reasonable experimental control to evaluate the
adverse effect of a spatial incompatibility task on the Simon effect.

Interestingly, S-R transfer does not seem to be particular to
a set of stimuli as it occurs when different stimuli sets are used
across tasks (Proctor and Lu, 1999). S-R transfer also occurs
across different stimulus modalities (Tagliabue et al., 2002),
although perhaps more weakly, given that the spatial incompat-
ibility task did not reverse the Simon effect in this study. With a
sufficient number of practice trials, there is even some evidence
for S-R transfer when the spatial incompatibility task is presented
along a different spatial axis from the Simon task (e.g., the prac-
tice stimuli and responses in the spatial incompatibility task are
presented along the horizontal axis while the transfer stimuli
and responses in the Simon task are presented along the verti-
cal axis), suggesting that in some cases a S-R rule (e.g., a “respond
opposite” procedure) may transfer across tasks (Vu, 2007). S-R
transfer from a spatial incompatibility task to a Simon task may
be relatively persistent. Transfer effects have been observed when
the interval between spatial incompatibility and Simon tasks has
ranged from 5 min to days (Tagliabue et al., 2000, 2002). S-R
transfer across tasks is also evident in so-called mixing tasks,
where the spatial incompatibility task alternates, or is interleaved,
with a Simon task (Marble and Proctor, 2000; Proctor et al.,
2000).

Despite its ubiquity, there is little known about three facets
of S-R transfer between spatial incompatibility and Simon tasks.
First, current research has emphasized S-R transfer in one direc-
tion (i.e., the effect of practicing a spatial incompatibility task
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on the Simon effect). Very little is known about the impact of
non-spatial, task-relevant S-R mappings in a Simon task on spa-
tial incompatibility tasks. The potential existence of bidirectional
S-R transfer has implications for our understanding of the lim-
itations of S-R transfer. Secondly, there has been little work on
the time course of Simon effects following transfer from a spatial
incompatibility task. Speed-accuracy trade-off (SAT) approaches
to the time course of the Simon effect do not possess the same
disadvantages as other, more common, RT distributional analy-
ses (e.g.,Zhang and Kornblum, 1997). Lastly, context of the task
is known to play a critical role in memory transfer (Smith and
Vela, 2001), but its place in S-R transfer has not yet been firmly
established.

BIDIRECTIONAL S-R TRANSFER
Very little research has explored the effect of task-relevant S-R
mappings from a Simon task on performance in a spatial com-
patibility or incompatibility task. One reason for the paucity of
attention on bidirectional S-R transfer is paradigmatic. Practice
tasks (e.g., Proctor and Lu, 1999; Tagliabue et al., 2000) typi-
cally only include two blocks of trials—practice and test—in a
fixed order (i.e., spatial compatibility or incompatibility task fol-
lowed by the Simon task), thus not permitting an evaluation
of the effects of S-R mapping in the Simon task on the spatial
compatibility and incompatibility tasks. The other reason that
bidirectional transfer is typically not explored is methodological.
In mixing tasks (Marble and Proctor, 2000; Proctor et al., 2000),
a non-spatial feature of the stimulus informs the participant to
perform a left, right or spatial compatibility (or incompatibil-
ity) task. For example, the color of the stimulus in Marble and
Proctor’s (2000) task informed the participant to make a particu-
lar response (i.e., a red or green stimulus informed participants
to make a left or right response), while another color (white)
instructed the participant to make a spatially compatible (or
incompatible) response. Accordingly, this particular methodol-
ogy does not permit the researcher to explore the effect of task-
relevant (non-spatial) Simon task S-R mappings on performance
in the spatial compatibility or incompatibility tasks.

The exception to this lack of attention to bidirectional transfer
is Proctor and Lu (1999; Experiment 2). In their task, participants
made left or right responses to letters (S or H) presented to the
left or right side of the screen. They practiced this Simon task in
three sessions before transfer to a spatial compatibility or incom-
patibility task. Although the authors initially failed to record letter
identity in the transfer session, a subsequent study corrected this
oversight and they found no effect of letter identity on RTs within
spatial compatibility/incompatibility tasks; however, there was an
effect of letter identity on error rate (i.e., there were more errors
when the response assigned to the letter was incongruent with
the location in both compatibility and incompatibility tasks). It
is not clear why the congruency effect only influenced error rates.
Proctor and Lu did not discuss the implication of their finding in
great detail.

There are a few theoretical implications for considering the
effect of task-relevant non-spatial mappings from a Simon task
on performance in a spatial compatibility or incompatibility task.
Firstly, location information generally precedes selection for color

or shape (Hillyard and Munte, 1984). If prior S-R mappings
between (slow) non-spatial features do not affect (fast) responses
to location, then S-R transfer may hinge on temporal precedence.
Second, the lack of evidence for S-R transfer from Simon to spatial
compatibility/incompatibility tasks might suggest that S-R trans-
fer is closely tied to spatial features of the stimulus. Lastly, it is
possible that non-spatial S-R mappings are relatively weak and,
consequently, do not transfer once the task is abandoned. In the
mixed-task paradigm (Marble and Proctor, 2000), however, task-
relevant S-R mappings from the Simon task should not be com-
pletely abandoned in the spatial compatibility/incompatibility
tasks because they will be needed once again, once the Simon
task cue is reintroduced. In the current study, the stimuli on
Simon and spatial compatibility/incompatibility trials were iden-
tical in a variant of the mixed-task paradigm to provide a fertile
opportunity to detect bidirectional S-R transfer. A cue precedes
a block of trials informing participants to engage in a partic-
ular task (i.e., a Simon or spatial compatibility/incompatibility
task). This methodology allows for an examination of the
effects of non-spatial S-R mappings from the Simon task on
performance in the spatial compatibility and incompatibility
tasks.

TIME COURSE OF THE SIMON EFFECT FOLLOWING A SPATIAL
INCOMPATIBILITY TASK: VINCENTIZING REACTION TIMES AND
SPEED-ACCURACY TRADE-OFFS
The time course of the Simon effect has played a critical role in
the theoretical development of purported mechanisms behind the
effect (Ridderinkhof, 2002). Although a number of chronometric
approaches purport to measure the unfolding of mental processes
(Meyer et al., 1988), one approach in particular has been widely
used in the Simon effect literature. de Jong et al. (1994) were the
first to use vincentized RTs (Ratcliff, 1979) to study the time course
of the Simon effect. According to this approach, RTs are rank
ordered, divided into bins (quartiles, quintiles, and deciles are
most commonly used), and then averaged within a bin for each
condition. When the corresponding mean RT for each bin is sub-
tracted from the non-corresponding mean RT, it is referred to as a
delta plot (Ridderinkhof, 2002). The delta plot of the Simon effect
has been interpreted as a direct measure of task-irrelevant spatial
response activity. Most studies of the standard Simon effect have
demonstrated negative-going slopes with the delta plot approach
(Schwarz and Miller, 2012), although there are some exceptions
(see Proctor et al., 2011). The interpretation of the decreasing
Simon effect has been controversial, with some suggesting a pas-
sive decay of task-irrelevant activity along the direct pathway,
while others suggest the direct pathway is actively suppressed (see
Proctor et al., 2011, for a review of the literature).

The interpretation of delta plots is not without its challenges
(Zhang and Kornblum, 1997; Schwarz and Miller, 2012). Zhang
and Kornblum (1997) pointed out that the negative-going slopes
of delta plots from Simon tasks simply derive from the shapes
of corresponding and non-corresponding RT distributions. In
particular, smaller variance in the non-corresponding condition,
relative to the corresponding condition, gives rise to a negative-
going slope (see also Pratte et al., 2010). Keep in mind that this
description of the RT distribution does not, however, presuppose
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a particular mechanism (Schwarz and Miller, 2012). Moreover,
delta plots of RTs do not account for error rates.

Error rates are often considered secondary to RT in many tasks,
even though they can reveal valuable information about perfor-
mance. For instance, Hilchey et al. (2011) recently examined the
Simon effect using two different measures of response accuracy
within the context of an SAT task. A symbol (i.e., ⊗ or a ⊕)
was used to instruct participants to make a left (L) or right (R)
response. The location of the task-relevant symbol could be to the
left, l, or right, r, of fixation. Hilchey et al. calculated the sensitivity
(d′) to the task-relevant (identity-based: d′id), and task-irrelevant
(location-based: d′loc), features of the target. These calculations
were possible because of the orthogonal relationship between the
identity (⊗ or⊕) and location (l or r) of the stimulus. First, ignor-
ing the spatial correspondence between stimulus and response,
d′id was calculated according to the identity of the stimulus (and
task instructions):

d′id = z
[
p(L | ⊗)

]− z
[
p(L | ⊕)

]

√
2

, (1)

where z[] is the inverse of the standard normal cumulative dis-
tribution. The divisor is a standard correction when the signal
detection approach is applied to alternative forced choice designs
(Macmillan and Creelman, 2005). The probability of respond-
ing with a “left” response given the ⊗ stimulus, p(L|⊗), is
also a hit within the framework of signal detection theory. On
the other hand, the probability of responding L given the ⊕
stimulus [p(L|⊕)] is a false alarm error. Hilchey et al. (2011)
observed that d′id increased with time, presumably reflecting evi-
dence accrual along the task-relevant, indirect, non-spatial S-R
pathway.

The second way in which Hilchey et al. (2011) assessed sensi-
tivity was according to the location of the stimulus. Sensitivity to
the location of the stimulus (d′loc) was calculated with the signal
detection framework, this time ignoring the non-spatial stimulus
identity. It was calculated according to the following equation:

d′loc = z
[
p (L|l)]− z[p(L|r)]√

2
. (2)

Here, the probability of responding with a left response, to a
stimulus presented on the left side of space, p(L|l), is a hit. The
probability of responding with a left response to a stimulus on the
right, p(L|r), is a false alarm error. Hilchey et al. (2011) observed
that this measure of sensitivity decreased with time. This mea-
sure is strongly related to the performance difference between
corresponding and non-corresponding trials (see Hilchey et al.,
2011). In signal detection theoretic terms, d′loc most closely cap-
tures Simon’s (1969) interpretation of the Simon effect: it reflects
the sensitivity to the location of the stimulus. In other words,
the d′loc score presumably reflects the combined impact of the
direct, and indirect, spatial S-R pathways (illustrated in Figure 1)
on response selection. Although this measure approximated an
exponential decay function with response lag (time), this kind of
function has yet to be quantitatively fitted to data.

Speed-accuracy tradeoffs: methodology and functions
Although there are a number of methodological approaches
for measuring SAT functions, the response-signal technique is
arguably one of the most common ( e.g., Schouten and Bekker,
1967; Reed, 1973; McElree and Carrasco, 1999; Carrasco and
McElree, 2001). With this procedure, participants are presented
with a target stimulus (usually a visual stimulus) and they with-
hold responding until the onset of a response signal (usually
a simple auditory tone). Following the response signal, there
is a short (≤300 ms) window in which responses are collected.
Responses that precede the window, or follow it, are typically
discarded. Varying the interval between the target onset and the
response signal controls reaction time. SAT functions allow for
a quantitative description of the time course of an effect as an
alternative to the delta plot approach (Pachella, 1974; Wickelgren,
1977; Salthouse and Hedden, 2002). SAT functions typically plot
d′ as a function of response lag (i.e., time). Response lag is the
sum of the mean reaction time to the response signal (i.e., RTs
within the response window) and the stimulus onset asynchrony
(SOA) between the target and the response signal. The follow-
ing is a general equation for the SAT function (Wickelgren, 1977)
that has been widely used to describe the trading relation between
speed and accuracy:

d′id (t) = λ
[

1− e−β(t−δ)
]
, for t > δ, else 0, (3)

where t is the mean response lag, λ is the asymptotic d′ value,
β is a rate parameter, and δ is the intercept. This SAT function,
describing accumulation of evidence to a maximum, is used to fit
many different sorts of SAT datasets and seems to fit just as well
as other equations (McElree and Dosher, 1989).

Although the exponential SAT function in Equation 3 is quite
common, Wickelgren once suggested that “no one knows the cor-
rect mathematical form for the speed-accuracy tradeoff function
for any cognitive process, so the exponential approach to a limit. . .
should be taken solely as an example” (Wickelgren, 1977, p. 70).
One potentially serious challenge to this function is that, in prac-
tice, early data points close to the intercept sometimes rise slowly
from the baseline, not as abruptly as is assumed in Equation 3.
The standard SAT equation does not account for any changes in
d′id between t = 0 and δ (one of the parameters to be determined
by the fitting process). Thus, Equation 3 is rather unusual as many
psychometric functions generally follow an ogive, or an S-shaped,
function (Gescheider, 1997) where there is gradual change in the
dependent measure (plotted along the y-axis) at the extremes of
the independent variable (plotted along the x-axis). Thus, as an
alternative approach to the standard SAT function in Equation
3, it seems reasonable to include gradual, rather than abrupt, evi-
dence accrual into the function. Accordingly, a hyperbolic tangent
function might capture the slight accumulation of evidence from
an assumed d′ = 0 (at t = 0):

d′id (t) = λ

2

[
1+ tanh

(
t − ω

κ

)]
, for t ≥ 0, (4)

where λ is the asymptotic value, ω is a shift parameter (i.e., reflect-
ing the time at which the function reaches 50% of λ) and κ reflects
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the speed of the transition from the initial region where d′ = 0
to the final region where d′ takes on its asymptotic value of λ.
Unlike the standard SAT equation, Equation 4 models the entire
timecourse, from t = 0 to asymptote (λ). This hyperbolic tangent
function produces an ogive-shaped curve that permeates much of
psychophysics (Gescheider, 1997).

Neither of these functions, however, adequately captures the
decreasing sensitivity to location information Hilchey et al.
(2011) observed. However, it does appear that d′loc may fit a simple
exponential decay function:

d′loc (t) = δe(−βt), for t ≥ 0, (5)

where δ is the peak d′loc value at t = 0 and β is a decay rate
parameter. It has yet to be determined how well d′loc data fit this
function.

The goodness of fit of SAT functions is typically assessed using
an adjusted R2 (Dosher et al., 2004) which includes a penalty for
increasing the number of parameters:

R2
adj = 1−

∑n
i= 1

(
di − d̂i

)2
/ (n− k)

∑n
i= 1

(
di − d

)2
/ (n− 1)

, (6)

where k is the number of free parameters, n is the number of data
values, di are the observed di values, d̂i are the predicted di from
the model, and d is the mean.

Using SAT functions to explore the time course of spatial
information processing in a Simon task has a possible bene-
fit over distributional analyses (e.g., vincentizing or delta plots)
in that it captures response decisions at a given time and is
therefore practically immune to the different distributional prop-
erties of corresponding and non-corresponding RTs (Zhang and
Kornblum, 1997).

The time course of the Simon effect that follows a spatial
incompatibility task is unlike what one usually sees with a stan-
dard Simon task. In studies that have included a vincentized
analysis of RT, the reverse Simon effect, resulting from prior
or concurrent experience with a spatial incompatibility task,
increases with increasing RT (Marble and Proctor, 2000; Proctor
and Vu, 2009). This time course seems rather unnatural, as there
is no a priori theoretical reason to suppose that a reverse Simon
effect should not be actively suppressed or naturally decay with
time (but see Tagliabue et al., 2000). The use of vincentized
RTs as a measure of time course is convenient, but as previ-
ously discussed, it is not without its interpretational challenges.
Here, we use SAT functions to explore the full temporal dynam-
ics of the reverse Simon effect that follows from mixing a spatial
incompatibility task with a Simon task.

THE ROLE OF TASK CONTEXT ON S-R TRANSFER
Surprisingly, there has been little investigation into the effect of
environmental context on S-R transfer effects in Simon tasks.
Recognition performance is often best when the testing condi-
tions resemble those in training (e.g., Godden and Baddeley,
1975). Context plays an important role in memory (Smith, 1994;
Murnane et al., 1999), perhaps because incidental environmental

features are usually encoded with task-relevant information,
unless intentionally suppressed (Smith and Vela, 2001). One
recent study (Milanese et al., 2011) explored the effect of prac-
ticing a spatial incompatibility task with a partner on a subse-
quent social Simon task, also performed with a partner. Like the
standard version of this paradigm, where only one individual per-
forms the task, the social Simon effect reverses when it follows
practice with a spatial incompatibility task (Milanese et al., 2010).
Milanese et al. (2011) observed that switching partners between
tasks did not eliminate the reverse social Simon effect. Given that
the identity of the partner was not integral to the task, it is likely
that it would not be a salient feature of the task context. When
the partners changed positions (i.e., from the left side to the right
side), however, there was no effect of the spatial incompatibility
task on the Simon effect. In this task, one’s position relative to the
partner is a stimulus feature that is critical to performing the task
properly. Thus S-R transfer may depend on task-relevant, salient
features.

Another paper (Yamaguchi and Proctor, 2009) considered
response mode to be an integral part of context. Yamaguchi and
Proctor’s (2009) participants performed a spatial incompatibil-
ity task by responding to stimuli on a keyboard or a joystick.
Participants then performed a Simon task (with a keyboard or a
joystick), where the color of the stimulus was task-relevant and
the location was task-irrelevant. When the response mode was
consistent across tasks the reduction of the Simon effect (from the
spatial incompatibility task) was generally greater than when the
response mode did not match. Thus, response mode may provide
a context that modulates S-R transfer.

There are two reasons to expect a contextual modulation of
S-R transfer across tasks in the present study. First, the response-
signal methodology (used to acquire SAT functions) is quite
different from standard RT tasks in which instructions emphasize
both the speed and accuracy of performance. The response-signal
methodology includes auditory signals and visual feedback that
are not present in the standard RT tasks. These components are
necessary to control RT in SAT tasks. Second, previous work
has demonstrated a switch cost when switching between tasks
with different speed-accuracy instructions (Gopher et al., 2000).
This switch cost suggests that SAT settings constitute part of
a task-set. Thus, it is expected that when spatial compatibility/
incompatibility and Simon task contexts are similar (i.e., they
are both SAT or standard RT tasks) maximal S-R transfer should
occur.

THE PRESENT STUDY
The current investigation used a mixing task, where Simon and
spatial compatibility (or incompatibility) tasks were signaled with
a task cue and alternated predictably every eight trials. Unlike pre-
vious experiments using the mixed-task methodology (Marble
and Proctor, 2000; Experiment 1), the stimuli in the present
study were identical in both the Simon and spatial compatibil-
ity/incompatibility tasks. In Experiment 1, both the Simon and
spatial compatibility effects were measured in standard RT tasks.
In Experiment 4, they were measured in SAT tasks. To date, no
study has used SAT methodology to study the temporal dynamics
of S-R transfer from spatial incompatibility tasks to Simon tasks.
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In Experiment 2, the spatial compatibility/incompatibility task
was administered with the response-signal methodology, while
the Simon task was a standard RT task. In Experiment 3, the
reverse was true. Unlike Experiments 1 and 4, the spatial compat-
ibility/incompatibility and Simon task contexts in Experiments 2
and 3 do not match.

EXPERIMENT 1
Participants were provided with a visual cue every eight trials
instructing them to perform the Simon task or the spatial com-
patibility (or incompatibility) task. The instructions of each task
equally emphasized the speed and accuracy of responding. One
group of participants performed a spatial incompatibility task
with the Simon task while another group performed a spatial
compatibility task with the Simon task. The stimuli in all tasks
are identical. A cue presented at the onset of a block of trials
informed participants of the task to perform. The purpose of
this experiment was to (1) replicate the reversal of the Simon
effect when paired with a spatial incompatibility task, (2) identify
the effect of the task-relevant S-R mappings from a Simon task
on spatial compatibility and incompatibility tasks, and (3) deter-
mine whether transfer occurs in a version of mixed-task design
(Marble and Proctor, 2000; Proctor et al., 2000) where the task is
predictably cued and stimuli are identical across tasks.

METHODS
Participants
Sixteen undergraduate participants from Saint Mary’s University
took part in the spatial compatibility condition and sixteen took
part in the spatial incompatibility condition. All participants were
between 18 and 30 years of age. All experiments were approved by
the Saint Mary’s University Research Ethics Board (REB) in accor-
dance with the Tri-council Policy Statement on Ethical Conduct
for Research Involving Humans (Canadian Institutes of Health
Research, Natural Sciences and Engineering Research Council of
Canada, and Social Sciences and Humanities Research Council
of Canada, Tri-Council Policy Statement: Ethical Conduct for
Research Involving Humans, December 2010).

Apparatus and stimuli
The experiment was conducted on an Apple iMac G3/400 DV
computer, powered by a 400MHz Power PC 750 (G3) processor,
running OS9. Superlab (ver 1.75; Cedrus, CA) was used to present
stimuli. The experiment took place in a quiet room with ambient
lighting. Responses were executed by pressing, with index fingers,
the “z” and “/” keys on a standard QWERTY Apple keyboard.

The viewing distance was approximately 57 cm. There were
three types of cues: (1) “Sym” (symbol task) to signal the Simon
task, (2) “Same” (same sided response) to signal a spatially com-
patible response, and (3) “Opp” (opposite sided response) to
signal a spatial incompatibility task. The task cues were 0.75◦
vertically and 1.5◦ (“Sym”/”Opp”) or 2.0◦ (“Same”) wide. Three
horizontally arranged square box outlines (1.2◦ × 1.2◦) were used
as placeholders for the stimuli. The peripheral placeholders were
5.3◦ (edge-to-edge) from the central placeholder. The fixation
point, a circle with a diameter of 0.8◦, was presented in the center
placeholder. The target stimuli,⊗ and⊕, were presented within a

circle of 1.2◦ in diameter. These targets were placed inside either
the left or right placeholder. All images were black on a white
background.

Procedure and design
Each participant underwent 128 trials, equally split between
Simon and spatial compatibility/incompatibility tasks. All stim-
uli and responses were equally balanced between left and right
positions. The starting task was randomly determined. A block
of eight trials in a particular task alternated with roughly half
the group starting with the Simon task the rest starting with
the spatial compatibility/incompatibility task. Each block of eight
trials was preceded by the 900 ms presentation of the task cue.
Following the task cue, a trial was presented. The sequence of
trial events was as follows: blank screen (300 ms), fixation display
(450 ms), and target (until response).

Each group took part in two tasks: Simon and spatial com-
patibility tasks or Simon and spatial incompatibility tasks. No
feedback was provided for these tasks, and participants were told
to respond as fast and accurately as possible.

Spatial compatibility task. Participants were presented with
“Same” cue (900 ms) at the beginning of the first trial for every
block of spatial compatibility task trials, indicating response to
the same-side as stimulus location. Therefore, stimuli presented
on the right of the fixation point required “/” key responses and
stimuli on the left required “z” key responses.

Spatial incompatibility task. The spatial incompatibility task was
the same as the spatial compatibility task with the following
exceptions. Participants were presented with “Opp” cue (900 ms)
at the beginning of the first trial for every block of the spatial
incompatibility task, indicating response to the opposite-side of
stimulus location. Therefore, stimuli presented on the right of
the fixation point required left (“z”) key response and stimuli
presented to the left of fixation required “/” key response.

Simon task. Participants were presented with “Sym” cue (900 ms)
at the beginning of the first trial for every location-irrelevant
block, indicating they were to respond to the non-spatial iden-
tity of the target (i.e., the symbol). Presentation of the⊗ stimulus
indicated a left response while the presentation of the ⊕ stimu-
lus indicated a right response, regardless of the location of the
stimulus.

RESULTS AND DISCUSSION
RTs in each condition were subject to a recursive procedure elim-
inating trials with RTs that were less than or greater than 3.5 SDs
from the mean. This procedure generally eliminated fewer than
5% of all trials across subjects.

Simon task
Table 1 presents the mean RTs for the Simon task. A 2 (Simon
correspondence: corresponding and non-corresponding) × 2
(group: spatial compatibility and spatial incompatibility) mixed
ANOVA revealed the expected interaction between Simon
correspondence and group [F(1, 30) = 14.35, MSE = 599.93,
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Table 1 | RTs in the Simon tasks in Experiments 1 and 2.

SOA Compatibility group Incompatibility group

Corr. Non-corr. Simon effect Corr. Non-corr. Simon effect

EXP. 1

570 599 29** 602 565 −37**

EXP. 2

60 491 508 17 491 506 15
120 491 509 18* 509 505 −4
240 483 514 31** 509 525 16
360 496 517 21 525 525 0
480 520 548 28* 552 568 16
960 546 551 5 539 554 15
1440 517 559 42** 547 551 4

SOA, stimulus-onset asynchrony; Corr., Corresponding; Non-corr., Non-

corresponding.
*Value is significantly different from zero, p < 0.05.
**Value is significantly different from zero, Bonferroni corrected.

p < 0.001]. There was a standard 29 ms Simon effect in the spa-
tial compatibility group and a -37 ms Simon effect in the spatial
incompatibility group. This finding replicates a number of papers
in the literature demonstrating a reverse Simon effect when it is
presented following, or within the context of, a spatial incom-
patibility task (e.g., Marble and Proctor, 2000; Tagliabue et al.,
2000).

The mean sensitivity (d′loc and d′id) values for the Simon
task are presented in Table 2. The d′loc and the d′id were com-
pared with an unpaired t-test across the incompatible and com-
patibility groups. Sensitivity to the task-relevant instructions
(d′id) was significantly higher in the compatibility group (d′id =
2.27) than it was in the incompatibility group (d′id = 1.73),
t(30)= 3.96, p < 0.001. Sensitivity to the location of the stimulus
also differed significantly [t(30) = 9.92, p < 0.001] between the
two groups (compatible d′loc = 0.13; incompatible d′loc = −0.25).
Both of these effects were significantly different from d′loc = 0
(ps < 0.001), suggesting that engaging a spatial incompatibil-
ity task reverses the tendency to respond toward the source of
stimulation.

The Simon effect reversed when the Simon task alternated with
a spatial incompatibility task. No such reversal was evident in
the control Simon task that alternated with the spatial compat-
ibility task. This finding is consistent with other studies using a
different mixed-task design (Marble and Proctor, 2000; Proctor
et al., 2000). The spatial incompatibility task also affected the d′
measures in the Simon task. Consistent with the pattern of RTs,
sensitivity to the location of the stimulus (d′loc) was positive in
the compatibility group, indicating a tendency to respond toward
the location of the stimulus. In contrast, the same measure was
negative in the incompatibility group, indicative of a tendency to
respond away from the stimulus.

Spatial compatibility and incompatibility tasks
Trials were sorted into congruent and incongruent conditions
for each task, where congruency reflects the match between the
response assigned to the identity of the stimulus (i.e., ⊗ or ⊕)

Table 2 | d′ scores in the Simon tasks in Experiments 1–4 as a

function of SOA in the other (spatial compatibility and

incompatibility) task (Experiment 2), and as a function of SOA in the

Simon (SAT) tasks (Experiments 3 and 4).

SOA Compatibility group Incompatibility group

d ′
id d ′

loc d ′
id d ′

loc

EXP. 1

2.27** 0.12** 1.73** −0.25**

EXP. 2

60 1.74** 0.21* 1.81** −0.04

120 1.97** 0.11 1.93** 0.00

240 2.12** 0.83 2.06** −0.07

360 2.20** 0.13** 2.24** −0.04

480 2.36** 0.06* 2.30** 0.04

960 2.26** 0.03 2.27** 0.00

1440 2.20** 0.11* 2.27** −0.03

EXP. 3 (SAT)

60 0.21* 1.04** 0.13 0.15

120 0.19 0.72** 0.50** −0.18

240 0.86** 0.39* 0.96** −0.16

360 1.71** 0.06 1.82** −0.19

480 2.33** 0.10 2.29** −0.04

960 2.88** −0.01 2.72** −0.02

1440 2.90** 0.03 2.88** 0.00

EXP. 4 (SAT)

60 0.02 1.14** 0.06 0.22*

120 0.02 1.21** 0.26* −0.03

240 0.63** 0.62** 0.65** −0.04

360 1.60** 0.41* 1.61** −0.14

480 2.17** 0.16* 1.84** −0.06

960 2.22** 0.26* 2.67** −0.05

1440 2.43** 0.14* 2.57** −0.07*

SAT, speed-accuracy trade-off; SOA, stimulus-onset asynchrony.
*Value is significantly different from zero, p < 0.05.
**Value is significantly different from zero, Bonferroni corrected.

in the Simon task and the location of the stimulus in the spa-
tial compatibility (or incompatibilty) task. The RTs were entered
into a 2 (congruency: congruent and incongruent) × 2 (group:
compatible and incompatible) mixed ANOVA. Only the inter-
action between congruency and group was significant, F(1, 30) =
12.15, MSE = 204.97, p < 0.005. The congruency effect was neg-
ative (incongruent − congruent = −14.3 ms) and significant in
the compatibility group [t(15) = 2.55, p < 0.05]. In the incom-
patible condition, the congruency effect was positive (+11 ms),
t(15) = −2.39, p < 0.05. The mean RTs are presented in Table 3.

As in the Simon task, we compared the measures of iden-
tity and location sensitivity (d′id and the d′loc, respectively) across
the incompatible and compatibility groups. There was no dif-
ference in d′id in the compatible (d′id = 0.13) and incompati-
bility groups (d′id = 0.09); however both of these effects were
significantly different from 0 (p < 0.005), suggesting a small,
but significant, sensitivity to the target’s identity (an irrele-
vant feature within the context of the spatial compatibility
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Table 3 | RTs in the spatial compatibility and incompatibility tasks in

Experiments 1 and 3 as a function of congruency and SOA

(Experiment 3) in the Simon task.

SOA Compatibility task Incompatibility task

Con. Incon. Con. Effect Con. Incon. Con. Effect

EXP. 1

370 356 −14** 381 392 11*

EXP. 2

60 278 282 4 319 313 −6

120 290 282 −8 331 332 1

240 284 287 3 331 330 −1

360 290 286 −4 344 343 −1

480 296 293 −3 362 357 −5

960 308 322 14 368 361 −7

1440 291 296 5 348 352 4

Con., congruent; Incon., incongruent; Con. Effect, congruency effect; SOA,

stimulus-onset asynchrony.
*Value is significantly different from zero, p < 0.05.
**Value is significantly different from zero, Bonferroni corrected.

task). As expected, d′loc was significantly different [t(30) = 27.42,
p < 0.001] between the compatible (d′loc = 2.42) and incompat-
ibility groups (d′loc = −2.56), demonstrating that participants
were following instructions. The mean d′ values are provided in
Table 4.

Previous studies have addressed the effect of spatial compat-
ibility tasks on the Simon effect. However, few investigations
have addressed the effect of task-relevant S-R mappings from the
Simon task on performance in spatial compatibility or incompat-
ibility tasks. Proctor and Lu (1999; Experiment 2), assessed the
effects of repeated practice with a Simon task on performance of
a spatial compatibility and incompatibility tasks. While there was
no effect of congruency on RTs, they did observe an effect on error
rates. In the present study, the congruency effect in the incom-
patibility group was consistent in RTs and d′id, demonstrating a
performance advantage when the identity-response mapping in
the Simon effect converges with the location-response mapping in
the incompatibility task. Interestingly, a different pattern emerged
with the compatibility task. While responses were more accurate
when the identity-response mapping in the Simon effect was con-
gruent with the location-response mapping in the compatibility
task, responses were faster when the mappings were incongru-
ent. This trade-off between accuracy and speed suggests that S-R
mappings in a Simon task have distinct effects on performance in
spatial compatibility and incompatibility tasks.

EXPERIMENT 2
In Experiment 2, the spatial compatibility and incompatibil-
ity tasks were subjected to the response-signal methodology for
a SAT analysis. The Simon task was the same as it was in
Experiment 1 (i.e., standard RT task) and alternated with the spa-
tial compatibility/incompatibility block across all response-signal
SOAs. Thus, in Experiment 2, the Simon and spatial compatibil-
ity/incompatibility task contexts did not match.

Table 4 | d ′ Scores in the spatial compatibility and incompatibility

tasks in Experiment 1, as a function of SOA in the Simon (SAT) task

in Experiment 3, and as a function of SOA in the spatial compatibility

and incompatibility tasks (SAT) in Experiments 2 and 4.

SOA Compatibility task Incompatibility task

d ′
id d ′

loc d ′
id d ′

loc

EXP. 1

0.13** 2.42** 0.09** −2.56**

EXP. 2 (SAT)

60 0.00 2.48** 0.03 −1.35**

120 −0.03 2.70** 0.01 −2.10**

240 −0.02 2.83** 0.02 −2.44**

360 0.10** 2.71** 0.04 −2.75**

480 0.07 2.64** 0.09 −2.49**

960 0.03 2.84** 0.03 −2.87**

1440 −0.01 2.91** −0.02 −2.84**

EXP. 3

60 0.00 2.55** 0.01 −2.36**

120 0.01 2.65** −0.01 −2.46**

240 −0.02 2.71** 0.02 −2.66**

360 0.04 2.79** 0.01 −2.67**

480 0.01 2.71** −0.01 −2.77**

960 0.01 2.78** −0.01 −2.75**

1440 0.01 2.78** −0.03 −2.75**

EXP. 4 (SAT)

60 0.02 2.46** 0.07 −0.92**

120 −0.03 2.81** −0.02 −1.86**

240 0.00 2.76** 0.03 −2.36**

360 0.06 2.38** 0.12* −2.36**

480 0.02 2.68** 0.06 −2.02**

960 0.10 2.46** 0.03 −2.72**

1440 0.19* 2.45** 0.14* −2.58**

SAT, speed-accuracy tradeoff task; SOA, stimulus-onset asynchrony.
*Value is significantly different from zero, p < 0.05.
**Value is significantly different from zero, Bonferroni corrected.

METHODS
Participants
Fifteen undergraduate participants took part in each of the com-
patible/Simon and incompatible/Simon tasks for course credit
and monetary bonuses. To encourage participants to make timely
responses in the SAT task, they received a penny for every
response that fell within the 240 ms response window and an
additional penny for a correct response.

Procedure
The general procedure was the same as it was in Experiment
1 with the following exceptions. The Simon task was exactly
like it was in Experiment 1, however it alternated with the
spatial compatibility or incompatibility task in each block of tri-
als. There were seven blocks of trials with 128 trials each. The
response-signal methodology was applied to the compatibility
and incompatibility tasks, but not the Simon task. In the spatial
compatibility and incompatibility tasks, the ⊗ or ⊕ appeared in
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one of the two peripheral placeholders, left or right of fixation,
for 60ms. As before, the ⊗ and ⊕ stimuli, presented to the left
or right, were presented with equal frequencies. The response sig-
nal, an auditory tone (44.1 KHz, 15 ms), was presented following
the onset of the stimulus after a delay (i.e., the SOA). The SOA
was fixed within a block. There were seven SOAs: 60, 120, 240,
360, 480, 960, and 1440 ms. Participants were required to respond
within a 240 ms response window following the tone. They were
also provided visual feedback with respect to the timing, but not
the accuracy, of their response. Participants were presented feed-
back “HIT” when responding within 240 ms of tone, “MISS”
when responding more than 240 ms after the tone, and “TOO
SOON” when responding prior to the tone. Thus, responding
within the response window took precedence over response accu-
racy. This prioritization reliably encouraged participants to trade
accuracy for speed at the shorter SOAs.

RESULTS AND DISCUSSION
The RTs in the Simon task were trimmed as before. The d′ scores
were calculated as they were in Experiment 1. The analysis of the
spatial compatibility and incompatibility task was much like other
SAT analyses. First, only responses that fell within the 240 ms time
window following the tone were analyzed. Second, response lag
was measured in the SAT task, not RT. Response lag is an esti-
mate of the average response time, relative to the response signal
(the tone), within the response window plus the SOA (for exam-
ple, if a response was made 129 ms following the tone when the
SOA was 360 ms, the response lag would be 489 ms for that par-
ticular trial). Lastly, d′loc and d′id were estimated for each SOA.
The d′ estimate for each participant was the mean of a bootstrap-
ping procedure. Ten thousand samples (with replacement) were
taken from each SOA using the base number of trials found in the
SOA with the most trials discarded (i.e., because the responses
fell outside of the response window). This bootstrapping proce-
dure was used to ensure that d′ values were not artificially deflated
across SOAs due to missing trials (i.e., when responses did not
fall within the response window). Trials with perfect scores were
adjusted according to the conventional 0.5f recommendation
(Kadlec, 1999).

Simon task
RTs are presented in Table 1 as a function of SOA in the spatial
compatibility task. The Simon trials were separated according
to the spatial compatibility/incompatibility group, correspon-
dence (corresponding and non-corresponding), and the SOA
from the spatial compatibility/incompatibility task (60, 120,
240, 360, 480, 960, and 1440 ms) and entered into a 2×
2 × 7 mixed ANOVA. There was a main effect of correspon-
dence [F(1, 28) = 12.32, MSE = 2238.14, p < 0.005], with a 15ms
Simon effect overall. There was also a main effect of SOA
[F(6, 168) = 8.58, MSE = 3294.13, p < 0.001], where the over-
all RT in the Simon task increased with the SOA in the spatial
compatibility/incompatibility task. Surprisingly, there was no sig-
nificant interaction between correspondence and group, although
there was a numerical reduction in the Simon effect in the
incompatibility group (incompatibility group: 9 ms [t(14) = 1.19,
p > 0.25]; compatibility group: 23 ms [t(14) = 4.39, p < 0.001]).

The d′ values are presented in Table 2 as a function of
SOA in the spatial compatibility task. The d′id values were
entered into a 2 (group) × 7 (SOA) ANOVA. Only the
main effect of SOA was significant, F(6, 168) = 8.69, MSE =
0.14, p < 0.001. With increasing SOA, the d′id values also
increased. This suggests that the speed-accuracy setting in
the spatial compatibility/incompatibility task transferred to
the Simon task. The d′loc values were also entered into the
same 2× 7 ANOVA. The main effect of group was sig-
nificant [F(1, 28) = 14.82, p < 0.005], demonstrating an over-
all greater effect of location in the Simon task within the
compatibility group (d′loc = 0.15) than with the incompat-
ibility group (d′loc = −0.03). The interaction between SOA
and group was significant, F(6, 168) = 3.08, MSE = 0.17, p <

0.01. We compared the d′loc values between compatible and
incompatibility groups at each SOA. d′loc was greater for the
compatibility group than the incompatibility group at 60ms
[t(28) = 3.56, p < 0.005], 240 ms [t(28) = 2.54, p < 0.05], 360 ms
[t(28) = 4.17, p < 0.0005], and 1440 ms [t(28) = 3.16, p <

0.005].
Unlike Experiment 1, there was no evidence of a reversal of

the Simon effect in Experiment 2. In fact, there was surprisingly
weak evidence of an influence of the spatial incompatibility
task on the Simon effect. Individual mean corresponding and
non-corresponding RTs from the Simon tasks for the spatial
incompatibility groups in Experiment 1 and 2 were entered into
2 (correspondence) × 2 (Experiment) ANOVA. The interac-
tion between correspondence and Experiment was significant
[F(1, 29) = 15.82, MSE = 501.62, p < 0.0005], backing the claim
that S-R transfer was not as strong in Experiment 2 as it was in
Experiment 1. Moreover, the same analysis on the Simon effect for
the spatial compatibility groups revealed no interaction between
Experiment and correspondence [F(1, 29) = 0.54, MSE = 423.05,
p = 0.47]. This finding supports the idea that there is no S-R
transfer from spatial compatibility tasks to Simon tasks (Tagliabue
et al., 2000). Together, this supplementary analysis suggests that
the context of the task has an important modulating influence on
S-R transfer effects from spatial incompatibility tasks to Simon
tasks.

Spatial compatibility and incompatibility tasks
The performance in the spatial compatibility task proved quite
easy, as d′loc was near ceiling across all SOAs (see Table 4). This
suggests that information processing along the direct spatial path-
way is very quick. For those in the incompatibility task, d′loc was
slightly impaired at the earliest lags, but still not enough for
proper curve-fitting as values were still quite far from chance.
We analyzed the spatial compatibility task by entering the d′ val-
ues into a 2 (group) × 7 (SOA) ANOVA. The analysis of d′loc
revealed a main effect of SOA [F(6, 168) = 10.33, MSE = 0.13,
p < 0.001], an expected large main effect of group [F(1, 28) =
2671.44, MSE = 0.52, p < 0.001], and the SOA x group inter-
action [F(6, 168) = 25.80, MSE = 0.13, p < 0.001]. Although the
SOA effect was significant in both groups, the difference between
d′loc at the longest SOA and the shortest SOA was much greater
in the incompatible condition than it was in the compatible
condition (Table 4).

www.frontiersin.org August 2014 | Volume 8 | Article 243 | 34

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Ivanoff et al. Temporal dynamics of spatial stimulus-response transfer

The analysis of d′id also included SOA and group as factors.
Only the main effect of SOA was significant [F(6, 168) = 2.30,
MSE = 0.02, p < 0.05]. As seen in Table 4, there was a signifi-
cant increase in d′id values at 360 ms, but only in the compatibility
group did the d′id values deviate significantly from zero.

There was little evidence of S-R transfer from the Simon task to
the spatial compatibility or incompatibility tasks. The only effect
of S-R mappings from the Simon task on the spatial compat-
ibility task (i.e., the congruency effect) occurred at the 360 ms
SOA. However, there was no a priori reason to expect the effect
to be restricted to a single SOA. There was also little reason to
expect that S-R transfer would not occur from the Simon task
to the spatial incompatibility task. Thus, Experiment 2 did not
replicate the observation in Experiment 1 of S-R identity transfer
from the Simon task to the spatial compatibility and incompati-
bility tasks. There are two reasons for this apparent discrepancy.
First, the response-signal methodology was applied to the spatial
compatibility and incompatibility tasks in Experiment 2, while
in Experiment 1 they were standard RT tasks. It is possible,
though unlikely, that the effects of S-R transfer are not measur-
able in SAT tasks. Second, the difference in the context of the task
may have hampered S-R transfer. Task contexts were reversed in
Experiment 3 to assess this latter possibility.

EXPERIMENT 3
In this experiment the Simon task was an SAT task while the
spatial compatibility and incompatibility tasks were standard RT
tasks. The SAT functions from the Simon task were analyzed in
three ways. First, the d′id values were analyzed using a hierar-
chical modeling approach (e.g., see McElree and Carrasco, 1999;
Carrasco and McElree, 2001). Second, fits with the standard SAT
equation (Equation 3) were compared to the fits achieved with the
proposed hyperbolic tangent equation (Equation 4). Lastly, the
d′loc data were fit with an exponential decay function (Equation 5).

METHODS
Participants
Fifteen undergraduates took part in each condition (compatible
and incompatible) for course credit and monetary incentives (for
the SAT task) as in Experiment 2.

Procedure
The general procedure was the same as it was in Experiment
2 with the exception that the response-signal methodology
was applied in the Simon task while the spatial compatibil-
ity/incompatibility tasks were “fast and accurate” standard RT
tasks.

RESULTS AND DISCUSSION
Simon task
SAT analysis of task-relevant identity information. The d′id
vs. response lag data were fit using the standard SAT function
(Equation 3) and the hyperbolic SAT function (Equation 4). Fit
was quantitatively and qualitatively assessed using a hierarchical
model-testing approach, commonly used in SAT studies (McElree
and Dosher, 1989; Carrasco and McElree, 2001; Giordano et al.,
2009). The models ranged from all factorial combinations that

ranged from single fit (1 λ, 1 β, 1 δ, and 1 λ, 1 ω, 1 κ) to both
datasets to a fully saturated model (2 λ, 2 β, 2 δ, and 2 λ, 2 ω, 2 κ).
Model error was assessed using a least squares approach wherein
normalized residuals were scaled to the total error for the model.

The analysis of the SAT data was accomplished in two stages.
In the first stage, the best fit parameters of the group mean were
identified for the compatibility and incompatibility groups sepa-
rately. Goodness of fit was assessed with the adjusted R2 method
(Dosher et al., 2004). These fit parameters were then used as
starting points for the hierarchical modeling approach, where the
mean data for both groups were concurrently fit using nonlinear
data-fitting optimization routines (i.e., with the lsqnonlin func-
tion in Matlab; Mathworks Inc., Natick, MA). The second stage
determined the best fit parameters for each individual participant
using Equations 3 and 4. These parameter values were statistically
compared across compatibility and incompatibility groups using
unpaired t-tests.

The analysis of the d′id data, using the standard SAT equa-
tion (Equation 3), revealed that the model with a single set of
parameters (1 λ, 1 β, 1 δ) across the datasets for the spatial incom-
patibility and compatibility groups had the best fit overall (R2

adj =
0.98). The group mean, and the best fit, are presented in Figure 2.
Equation 3 was then fit to the individual data for the compat-
ible and incompatibility groups. In general, the fits were very
good (average fit for compatibility group: R2

adj = 0.86; average fit

for the incompatibility group: R2
adj = 0.86). The parameters from

the fits for each group were compared and no differences were
significant.

The hyperbolic equation (Equation 4) was also fit to the group
mean. Again, a model that assumes a single set of parameters (1
λ, 1 ω, 1 κ) had the best fit (R2

adj = 0.99), slightly better than
the fit of the standard SAT equation. The best hyperbolic fit and
the group mean are presented in Figure 2. The individual fits for
the spatial compatibility (mean R2

adj = 0.95) and incompatibility

(mean R2
adj = 0.94) groups were also quite good. The parameters

from the fits from each group were compared, and again, there
were no significant differences.

SAT analysis of task-irrelevant location information. Unlike the
effect of task-relevant information (d′id) on response choice, the
effect of location-based information (d′loc) lessened with time (see
Figure 3). Neither the standard SAT (Equation 3) nor the hyper-
bolic (Equation 4) function fit the data particularly well. While
Equation 5 (i.e., single exponential decay) fit the data for the com-
patibility group well, it failed to fit the data for the incompatibility
group. As previously discussed, d′loc reflects the impact of spa-
tial information on response selection. At any given moment, t,
d′loc may be jointly influenced by the direct and/or indirect spa-
tial pathways depicted in Figure 1. The activity along each spatial
pathway is believed to lessen with time and have a summative
effect on response selection. Thus, a second exponential com-
ponent was included to account for these two sources of spatial
information,

d′loc (t) = δ1e(β1t) + δ2e(β2t), for t > 0. (7)
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FIGURE 2 | Group mean d ′
id

values as a function of processing lag (ms)

in Experiments 3 and 4. Top-row: best fit of the standard speed-accuracy
tradeoff function (Equation 3). Bottom-row: best fit of the hyperbolic tangent

speed-accuracy tradeoff function (Equation 4). The Simon SAT data from the
spatial incompatibility group are red. The Simon SAT data from the spatial
compatibility group are blue.

FIGURE 3 | Group mean d ′
loc

values as a function of processing lag (ms) in Experiments 3 and 4. The Simon SAT data from the spatial incompatibility
group are red. The Simon SAT data from the spatial compatibility group are blue.
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Because the compatible and incompatible datasets could not
be fit by the same function, we abandoned the hierarchical model-
ing approach. To analyze the decay of the task-irrelevant location
information, we developed two models. The models were derived
from the architecture depicted in Figure 1. Both models were fit
to the mean group data using nonlinear data-fitting optimization
routines in Matlab (Mathworks Inc., Natick, MA).

Both models presume that the d′loc values in Simon tasks,
when combined with an incompatibility task, are the result of
two exponential functions (Equation 7): (1) a positive component
resulting from the direct pathway, and (2) a negative component
resulting from the spatial incompatible mapping (i.e., the indirect
spatial pathway). The models only differ in their characteriza-
tion of the S-R transfer from the spatial compatibility task to the
Simon task.

The first model (Model 1) specifically presumes there is S-R
transfer from the spatial compatibility task to the Simon task.
The model holds that the component that is transferred from the
spatial compatibility task to the Simon task is similar in magni-
tude, but opposite in direction (i.e., toward, not away, from the
location), to the negative component passed along from the spa-
tial incompatibility task to the Simon task (i.e., 1β1, 1δ1, 2β2,
1δ2; with the constraint that β2 in the spatial compatibility task
is equal to -β2 in the spatial incompatibility task). This account
presumes that there are not only two exponential components
(Equation 7) in the spatial incompatibility group, but also two
exponential components in the spatial compatibility group. The
best fit for this model (Model 1) was quite poor (R2

adj = 0.38).
The second model (Model 2) presumes that, although the spa-

tial incompatibility task introduces a third pathway to the Simon
task, the spatial compatibility task has no effect on the Simon
effect. There are only two studies (Proctor and Lu, 1999; Tagliabue
et al., 2000) that have directly compared the Simon effect in a
neutral condition to one that follows a spatial compatibility task.
In both cases, there was no evidence of S-R transfer from a spa-
tial compatibility task to the Simon task. Accordingly, Model 2
includes only a single exponential function for the Simon task d′loc
data in the spatial compatibility group (Equation 5: 1β1, 1δ1) and
the same exponential component and a negative-going exponen-
tial component in the spatial incompatibility group (Equation 7:
1β1, 1δ1, β2, δ2). Thus, only one of the exponential components
is shared, while the function for the incompatibility group also
includes a second exponential component reflecting the third,
indirect (residual) pathway. This model fit the group mean rea-
sonably well (R2

adj = 0.91). The group mean is plotted in Figure 3
along with the fitted parameters from Model 2.

It was not possible to directly compare parameters from
the group-derived models for the compatible and incompatible
groups because the best fits were achieved with different func-
tions. Moreover, the fits of Model 2 to the individual data were
quite variable, with some being quite good (e.g., R2

adj = 0.97) and
others failing to reach a meaningful convergence. Thus, as a sec-
ond step in the analysis, we performed post-hoc, unpaired t-tests
on the d′loc values for each SOA. This approach does not pre-
sume any particular model. The d′loc value was significantly greater
for the compatibility group than the incompatibility group at the
60 ms [t(28) = 3.33, p < 0.005], 120 ms [t(28) = 3.68, p < 0.005],

and 240 ms [t(28) = 2.49, p < 0.05] SOAs. No other difference
was significant. As shown in Table 2, none of the d′loc values
differed from 0 in the spatial incompatibility group while the
d′loc at the three earliest SOAs did differ from 0 in the spatial
compatibility group.

The SAT analysis of the Simon task revealed two key find-
ings. First, there were no effects of the spatial incompatibility
task on d′id. The model fits and inferential statistics suggest that
the spatial compatibility and incompatibility tasks had no impact
on the ability to identify the task-relevant stimulus features (i.e.,
shape and/or orientation) in the Simon task. This finding is in
accord with the model proposed in Figure 1 and suggests there
is some independence between the indirect, residual pathway and
the indirect, task-relevant pathway. Second, the spatial incompat-
ibility task did have a noticeable effect on the sensitivity to the
location of the stimulus (d′loc). The spatial incompatibility task
appeared to weaken, but not reverse, the Simon effect (as mea-
sured with d′loc) in a SAT task. This pattern is similar to what
was observed in Experiment 2 in a standard RT Simon task.
Interestingly, the evidence for an early tendency to respond to the
location of the stimulus, while clear in the spatial compatibility
group, was mixed in the spatial incompatibility group. The infer-
ential statistics suggest that the d′loc data do not differ from zero1.
The modeling work, however, suggests that an early exponential
component is being masked by a second component. It is possi-
ble, that these effects are the result of reduced S-R transfer because
of a mismatch between task contexts.

Spatial compatibility and incompatibility tasks
The RTs for the spatial compatibility and incompatibility tasks
were analyzed with a 2 (group) × 2 (congruency) × 7 (SOA)
ANOVA. The mean RTs of the spatial compatibility group (M =
292 ms) were significantly faster than those of the incompatibil-
ity group (M = 342 ms), F(1, 28) = 8.46, MSE = 31539.06, p <

0.01. RTs also increased with increasing SOA, F(6, 168) = 6.63,
MSE = 1718.17, p < 0.0001. No other main effect or interaction
was significant. Table 3 provides the non-significant mean con-
gruency effects for the spatial compatibility and incompatibility
tasks.

The d′loc data were entered into a 2 (group)× 7 (SOA) ANOVA.
As expected, there was a large group effect [F(1, 28) = 2361.80,
MSE = 0.93, p < 0.0001] indicating that participants were fol-
lowing directions (i.e., responding to the target’s location in the
spatial compatibility task and away from the target’s location
in the spatial incompatibility task). There was also a group X

1Given that there was no significant impact of task-irrelevant spatial informa-
tion on responding for the spatial incompatibility group, fit was assessed with
a third model (Model 3). This model assumes a single exponential function
(Equation 5) for the spatial compatibility group and no impact (i.e., d′loc = 0)
of task-irrelevant spatial responding for the spatial incompatibility group.
Model 3 yielded a reasonable fit (R2

adj = 0.91), virtually indistinguishable
from Model 2. However, when the spatial compatibility group was excluded
from the analysis, the nil model (d′loc = 0) fit the data of the spatial incompat-
ibility group more poorly (R2

adj = −0.11) than a double exponential model

(Equation 7; R2
adj = 0.85), suggesting that any description of the data pre-

suming there is no effect of task-irrelevant spatial information on response
decisions is likely false.
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SOA interaction, F(6, 168) = 5.47, MSE = 0.10, p < 0.0001. The
SOA effect was only significant in the incompatibility group,
F(6, 84) = 5.18, MSE = 0.07, p < 0.0005. The same analysis was
performed on the d′id data. None of the effects were significant.
None of the d′id values differed significantly from zero (Table 4).

The key finding from the spatial compatibility and incompati-
bility tasks was the absence of a congruency effect on RTs and d′.
The possibility that this was the result of the disparity in task con-
text (SAT and standard RT) was addressed in Experiment 4 where
both tasks were SAT tasks.

EXPERIMENT 4
In this experiment the response-signal methodology was applied
to both Simon and spatial compatibility/incompatibility tasks.
Thus, like Experiment 1, the task contexts were identical.

METHODS
Participants
There were 15 undergraduate participants in the compatibility
group and 15 in the incompatibility group. Participants earned
course credit and small performance bonuses, as in the previous
experiments.

Procedure
In this experiment, both the Simon and spatial compatibility
tasks were subject to the response-signal methodology. Thus, the
Simon task was identical to the Simon task in Experiment 3 and
the spatial compatibility/incompatibility tasks were identical to
the spatial compatibility/incompatibility tasks in Experiment 2.
The same SOA was used in each block of Simon and spatial
compatibility/incompatibility trials.

RESULTS AND DISCUSSION
Simon task
SAT analysis of task-relevant identity information. The analy-
sis of the data using the standard SAT equation (Equation 3),
revealed—again—that the single fit [1 λ, 1 β,1 δ] model had
the best fit (R2

adj = 0.96; see Figure 2). The model was fit to the
individual data for the compatible and incompatibility groups.
In general the fits were very good (average fit for compatibil-
ity group: R2

adj = 0.89; average fit for the incompatibility group:

R2
adj = 0.87). The parameters from the fits for each group were

compared and no differences were significant.
The d′id analysis using the hyperbolic equation (Equation

4) was fit to the group using the hierarchical model-testing
approach, as described above. Again, a model that assumes a sin-
gle set of parameters (1 λ,1 ω,1 κ) had the best fit (R2

adj = 0.97),
slightly better than the fit of the standard SAT equation. The
average of the fits to individual data was also good for the com-
patible (mean R2

adj = 0.90) and incompatibility groups (mean

R2
adj = 0.91). The only comparison between individual fits that

was significant was that between the asymptote, λ, [t(28) = 2.20,
p < 0.05]. The mean asymptote of individual fits was slightly
higher for the spatial incompatibility group (M = 2.66) than
it was for the spatial compatibility group (M = 2.31). This
difference is apparent in the mean did values presented in the

late SOAs in Figure 2. A post-hoc analysis of the group differ-
ences in d′id for each SOA only revealed a difference at the 120 ms
[t(28) = 2.21, p < 0.05] and the 960 ms [t(28) = 2.16, p < 0.05]
SOA, although these effects do not survive a Bonferroni correc-
tion for multiple comparisons. Thus, the evidence that the spatial
compatibility task had an effect on the sensitivity to the non-
spatial, task-relevant feature (d′id) of the target in the Simon task
was generally poor, and mixed, at best.

SAT analysis of task-irrelevant location information. The SAT
functions of the group mean d′loc values are presented in Figure 3.
The first pass of fitting the group mean, using the same mod-
els in Experiment 3, was unsuccessful. Model 1 fit the data very
poorly (R2

adj = 0.15). Model 2 fared better, but the fit was less

than spectacular (R2
adj = 0.71). That the mean data for the spa-

tial compatibility group did not return to the zero baseline likely
explains these poor fits. Using Equation 5, but including a con-
stant, for the spatial compatibility group did not improve Model
2 (R2

adj = 0.64). In fact, the best model was one where the group
mean for the spatial compatibility group was fit with a constant
and the group mean for the spatial incompatibility group was fit
with Equation 7 independently (R2

adj = 0.93).

The d′loc values were significantly different between the spa-
tial compatibility and incompatibility groups at each SOA (ps <

0.05), with the exception of the 480 ms SOA. The d′loc values were
also compared to 0 for each group and SOA. The d′loc values for
the spatial compatibility group were significantly greater than 0
at all SOAs (ps < 0.05, uncorrected). For the spatial incompat-
ibility group, the d′loc value at the 60 ms SOA was significantly
greater than 0 (p < 0.05, uncorrected) and at the 1440 ms SOA
the d′loc value was significantly less than 0 (p < 0.05, uncorrected;
see Table 2)2.

The present findings suggest that there are fundamental dif-
ferences between the temporal dynamics of task-irrelevant spatial
information processing in Simon tasks when mixed with spa-
tial compatibility and incompatibility tasks. Unlike Experiment
3, the model with the best fit was one in which there were no
shared parameters between spatial compatibility and incompat-
ibility groups in the Simon task. A potential implication of this
fully saturated model is that the direct spatial pathway may be
compromised by the spatial compatibility/incompatibility task.

Spatial compatibility and incompatibility tasks
Accuracy was near ceiling in all conditions, as it was in
Experiment 2, so the data were not subjected to a curve-fitting
procedure. The d′loc values were entered into a 2 (group) ×
7 (SOA) ANOVA (see Table 4 for means). The main effects

2When the mean for the spatial incompatibility group was fit to a nil model
(i.e., d′loc = 0), as in Experiment 3 (see Footnote 1), and the spatial compati-
bility group mean was fit with a single exponential function (Equation 5; with
a constant), it produced a reasonable fit (R2

adj = 0.92). However, excluding
the spatial compatibility group from the analysis, again, tells a different story.
The fit of the spatial incompatibility group mean to a nil model was poor
(R2

adj = 0.09), while the fit to a double exponential function (Equation 7) was

good (R2
adj = 0.88). Once more, any description of the data suggesting there

is no effect of task-irrelevant spatial information on responding is likely false.
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of group [F(1, 28) = 1524.45, MSE = 0.76, p < 0.0001], SOA
[F(6, 168) = 9.70, MSE = 0.32, p < 0.0001], and the interaction
[F(6, 168) = 8.70, MSE = 0.32, p < 0.0001] were all significant.
The interaction was the result of a much larger SOA effect in the
spatial incompatibility task than the spatial compatibility task.

The d′id values were also entered into a 2 (group) × 7 (SOA)
ANOVA. Only the SOA effect was significant, F(6, 168) = 3.43,
MSE = 0.032, p < 0.005. d′id values increased with SOA.
However, only the d′id values at the 360 and 1440 ms SOA were
significantly different from 0 (see Table 4).

GENERAL DISCUSSION
When a spatial incompatibility task is intermixed with a Simon
task, the Simon effect is reversed (Marble and Proctor, 2000;
Proctor et al., 2000, 2003; Proctor and Vu, 2002). In Experiment
1, this finding was replicated in a different paradigm where
tasks predictably alternated between spatial incompatibility and
Simon tasks. The most common explanation for this finding is
that the spatial incompatibility task activates an additional, indi-
rect pathway that connects nodes representing spatial features of
the stimulus with response nodes (Figure 1). The current work
addressed three features of this paradigm: bidirectional S-R trans-
fer across Simon and spatial compatibility/incompatibility tasks,
the modulating effects of task context similarity on S-R transfer,
and the time course of task-irrelevant S-R location information
on response selection.

BIDIRECTIONAL S-R TRANSFER BETWEEN SIMON AND SPATIAL
COMPATIBILITY TASKS
This was the first study to explore bidirectional S-R transfer
between Simon and spatial compatibility/incompatibility tasks in
the mixed-tasks paradigm. Evidence for S-R transfer from the
spatial compatibility/incompatibility task to the Simon effect was
evident in all experiments. In general, performing the spatial
incompatibility task with the Simon task reduced or reversed the
tendency to respond to the location of the stimulus. This pattern
has been observed in a number of studies in a variety of different
paradigms (e.g., Tagliabue et al., 2000, 2002; Marble and Proctor,
2000; Proctor et al., 2007, 2013; Proctor and Vu, 2009; Yamaguchi
and Proctor, 2009).

The evidence for S-R transfer from the Simon task to the
spatial compatibility/incompatibility task was best when task con-
texts (SAT or standard RT) matched. Congruent responses, in
the spatial compatibility and incompatibility tasks, were those in
which the response associated with the non-spatial identity of the
stimulus in the Simon task matched the location of the stimulus.
In Experiment 1, the congruency effect for the spatial compatibil-
ity group was a speed-accuracy tradeoff: responses were faster and
less accurate for incongruent trials. On the other hand, for those
participants in the spatial incompatibility condition, congruent
trials were faster and more accurate than incongruent trials. In
Experiment 3, when the task contexts did not match, there was no
effect of congruency on RTs or d′id. Congruency effects were rarely
seen in the d′id measure in SAT tasks with response-signal method-
ology (Experiments 2 and 4). Thus, transfer from the Simon
task to the spatial compatibility/incompatibility tasks was weak
and sporadic, suggesting that S-R transfer between Simon and

spatial compatibility/incompatibility is bidirectional and asym-
metric. S-R transfer from spatial incompatibility tasks to the
Simon task was much more convincing than S-R transfer in the
other direction. It may be that the precedence for location infor-
mation (Hillyard and Munte, 1984) offers greater opportunities to
influence tasks wherein the task-relevant information comes from
slower (non-spatial) S-R pathways. Further research is needed to
assess the precise reason for asymmetrical S-R transfer. The clear-
est evidence, in the current work, for a congruency effect came
when (i) responding was slow (i.e., with the spatial incompatibil-
ity task in Experiment 1 and with long SOAs in Experiment 4)
and (ii) the two tasks shared a task context (i.e., in Experiments 1
and 4). The context of the task, thus, appears to play a key role in
S-R transfer.

TASK-CONTEXT DEPENDENT S-R TRANSFER
Environmental context plays a critical role in memory per-
formance. When features of the encoding environment match
features of the retrieval environment, memory performance is
generally better than when the environmental features do not
match (Godden and Baddeley, 1975). Smith and Vela (2001)
noted that manipulations that draw attention to the task or away
from the environmental context tend to reduce task-dependent
memory effects. Thus, context plays an important role when it is
attended during encoding and retrieval.

Yamaguchi and Proctor (2009) observed evidence for context-
dependent S-R transfer from a spatial incompatibility task to
a Simon task when the response mode (key-press vs. joystick
response) was the same for both tasks. Response modality (as in
Yamaguchi and Proctor, 2009) is one feature of task context; yet
the context of the task may also include other features. In the
current work, response-signal (i.e., SAT) methodology affected
S-R transfer in a context-dependent manner. The SAT task not
only included the same stimuli presented in the standard RT task,
but also included other task-relevant stimuli such as an auditory
response-signal tone and post-response feedback. These features
likely contributed to the unique context of the task and were quite
different from the context of the standard RT task. The results of
the present investigation support this claim. The spatial incom-
patibility task reversed the Simon effect in Experiment 1 (where
both tasks were standard RT tasks), but not in Experiment 2
where the Simon (standard RT methodology) and spatial incom-
patibility (response-signal methodology) tasks were different. In
the response-signal (SAT) Simon tasks (i.e., Experiments 3 and 4),
there was evidence for a late reversal of d′loc in Experiment 4 (task
contexts match), but not in Experiment 3 (task contexts do not
match). Together, the evidence suggests that the opportunity for
S-R transfer is greatest when task features are closely matched.
Moreover, the current works also demonstrates that the context
of the task plays an important role in the mixed-task experimental
design.

THE TIME COURSE OF TASK-IRRELEVANT LOCATION INFORMATION ON
RESPONSE SELECTION
A number of previous studies have used vincentizing approaches
to study the time course of the Simon effect. The challenge with
this approach is that it relies on differences in the shape of RT
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distributions (Zhang and Kornblum, 1997; Pratte et al., 2010;
Schwarz and Miller, 2012). The shape of an RT distribution can be
affected by a number of factors like fast guesses, fatigue, or inat-
tention. It can be troubling if these factors differ systematically
across conditions. It is, perhaps, even more troubling that dis-
tributional approaches, like vincentizing, completely ignore error
rates. Wickelgren (1977) argued that it “. . . may not be defensible
. . . to attempt to test quantitative theories of information process-
ing dynamics . . . by functions which use reaction time as the sole
dependent variable, without simultaneously predicting accuracy.”
(p. 81). Thus, researchers should be cautious not to overvalue the
contribution of vincentized approaches (e.g., delta plots) to the
temporal dynamics of information processing.

The response-signal (SAT) approach is similar to another
approach that has been commonly used to study the time course
of the Simon effect (Ridderinkhof, 2002). Conditional accuracy
functions (CAFs) partition RTs, and error rates, into a small num-
ber of bins (Wood and Jennings, 1976; Ridderinkhof, 2002; Band
et al., 2003), not unlike the vincentization approach. This ana-
lytic approach produces the so-called micro-SAT (Pachella, 1974).
Micro-SAT analyses have also depicted the influence of task-
irrelevant spatial information on response selection as an expo-
nential decay function (e.g., Ridderinkhof, 2002). This approach,
while less cumbersome than a full SAT analysis, may be criticized
on two grounds. First, it can be argued that, not unlike vincen-
tizing, different processes (guesses, fatigue, inattention, etc.) are
not equally represented along the RT distribution. The response-
signal approach avoids this pitfall by capturing a point along the
SAT within a single block of trials. Secondly, as Pachella (1974)
pointed out, the relationship between a micro-SAT and the stan-
dard SAT (sometimes called the macro-SAT) is unknown, but
what is known is that they do not seem to tap into the same
underlying function (Luce, 1986). Given this, some caution when
interpreting CAFs is warranted (Wickelgren, 1975, 1977).

The current work extended the first SAT analysis of the Simon
effect presented by Hilchey et al. (2011). A dissociation between
two measures of sensitivity, d′id (sensitivity to the task-relevant
target feature) and d′loc (sensitivity to the task-irrelevant spatial
feature of the target), in the context of a Simon task was revealled.
While d′id increased with time (a standard SAT), d′loc decreased
with time. The d′id data were fit with the standard SAT func-
tion and a hyperbolic tangent function. Both fits were excellent,
although the hyperbolic tangent function fit was slightly superior.
This is not to suggest that the hyperbolic tangent function should
replace the standard SAT function. Future research is needed to
determine which function might best describe performance in a
wider range of tasks.

The spatial incompatibility task had virtually no impact on
d′id in the Simon task, suggesting independence between spatial
S-R transfer and the processes involved in the identification of
non-spatial, task-relevant, target features. The only fly in the oint-
ment was seen in the hyperbolic tangent fits in Experiment 4: the
asymptotic parameter (λ) was significantly higher for the spa-
tial incompatibility group than the spatial compatibility group.
There are, however, a number of reasons to be skeptical about
this finding. First, there was little reason to expect, from any
a priori theoretical perspective, that the ability to identify the

non-spatial, task-relevant feature in a Simon task should be bet-
ter when the alternate task is a spatial incompatibility task than a
spatial compatibility task. Second, there was no significant dif-
ference between the asymptotic parameters, derived from the
standard SAT function (Equation 3), for the spatial compati-
bility and incompatibility groups in both Experiments 3 and 4.
Third, a post-hoc analysis suggested the d′id difference between
groups was only significant at one of the late SOAs (960 ms)
near asymptote. Lastly, in Experiments 3 and 4 the best fits to
the d′id group data in the Simon task assumed only a single
set of parameters, suggesting the alternate task (i.e., the spa-
tial compatibility or incompatibility task) had no impact on the
accumulation of task-relevant information. Thus, the asymptotic
difference between the groups found in Experiment 4 is, at best,
equivocal.

Although the spatial incompatibility task had no influence on
d′id in the Simon task, it had a robust effect on d′loc. This effect
provides another example of a single dissociation between d′loc
and d′id. The d′loc data were fit with an exponential decay func-
tion. The exponential models used in the current investigation
were simply initial attempts at providing a quantitative descrip-
tion of the time course of task-irrelevant, spatial S-R activity. It
could be argued that an exponential decay model is psychophysi-
cally implausible, as irrelevant S-R location information should
follow a Gaussian, biphasic, accumulation-decay pattern (e.g.,
Kornblum et al., 1999). Unfortunately we did not capture an
early accumulation phase. Future SAT investigations of the Simon
effect may consider manipulations (e.g., Ivanoff et al., 2002) that
might possibly delay the d′loc function in order to capture an early
accumulation phase. For now, it is worth noting that the decrease
in d′loc with time was fit reasonably well with an exponential decay
model.

The pattern of d′loc across time lag in the Simon task with
the spatial compatibility group is very similar to the pattern of
vincentized RTs for Simon effects when there is prior or con-
current experience with a spatial compatibility task (Tagliabue
et al., 2000; Proctor and Vu, 2009; Proctor et al., 2013). Both
approaches demonstrate a standard pattern of declining influ-
ence of task-irrelevant location information on response selection
with time. In the current work, that a single exponential com-
ponent described the time course of d′loc in the Simon task with
the spatial compatibility group is consistent with at least three
mechanisms. First, there may be no S-R transfer from spatial
compatibility tasks to Simon tasks. This proposal is consistent
with Tagliabue et al’s (2000) assertion that spatial compatibil-
ity tasks have no impact on the direct spatial pathway. Second,
a spatial compatibility task may induce some activity along an
indirect spatial pathway that is largely masked by robust activ-
ity along the spatial direct pathway. It is possible that this activity
may be unmasked at later SOAs given conditions that favor S-R
transfer. The evidence for this possibility comes from Experiment
4, where the best fit to the d′loc Simon data for the spatial com-
patibility group included a constant because d′loc did not decline
to zero. Unfortunately, this particular finding is ambiguous and
may be explained by another mechanism. It is possible that the
spatial compatibility task modulates the decline (decay or sup-
pression) of the spatial direct pathway. This account is generally
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consistent with Proctor and Lu’s (1999) original proposal that
the direct spatial pathway is not “unmodifiable.” It is not consis-
tent, however, with some modeling approaches (e.g., Tagliabue
et al., 2000). Future research is needed to disentangle and dis-
sociate the effects of different spatial S-R pathways on response
decisions.

Perhaps the most important contribution of the current
work stemmed from the observation that the d′loc time course
in the Simon task was different across the spatial compatibil-
ity/incompatibility groups. The time course of d′loc in the Simon
task, performed concomitantly with a spatial incompatibility task,
was unlike that observed with previous research using vincenti-
zation approaches (Marble and Proctor, 2000; Tagliabue et al.,
2000; Proctor and Vu, 2009) where the reverse Simon effect
generally increased with time. There was no evidence for a mono-
tonically increasing reverse Simon effect in the current study. In
Experiment 3, although none of the d′loc values in the Simon task
differed significantly from zero across SOAs, the spatial incom-
patibility group Simon data were fit well to a model that included
two exponential decay components: (i) the identical exponen-
tial decay component found in the spatial compatibility group,
presumably capturing activity along the spatial direct pathway,
and (ii) a negative exponential decay component that captured a
slight tendency to respond away from the location of the stim-
ulus. In Experiment 4, the spatial incompatibility group mean
data were also fit to a double exponential function (Equation
7) quite well. Moreover, in Experiment 4, the d′loc value of the
spatial incompatibility group at the earliest SOA was greater
than 0, indicating a tendency to respond to the location of the
stimulus). Interestingly, at the longest SOA, the opposite pattern
emerged (i.e., indicating a tendency to respond away from the
location of the stimulus). The data-fitting approaches espoused
herein appeared to be particularly sensitive to the time course
of d′loc and the findings generally support the tripartite pathway
model depicted in Figure 1. In summary, the findings from the
current study suggest that the early activity along the direct, task-
irrelevant, spatial S-R pathway is indeed masked by late (and
relatively persistent) residual activity from the indirect spatial S-R
pathway. The current findings are also consistent with model-
ing approaches that presume activity along the task-irrelevant
direct spatial pathway is unaffected by prior, or concurrent,
experience with a spatial incompatibility task (Tagliabue et al.,
2000).

CONCLUSIONS
The present findings firmly establish Simon’s (1969) original
claim that there is a natural tendency to respond toward the
source of stimulation. Performing a spatial incompatibility task
can reverse or eliminate this tendency. However, the current
results suggest that activity along the indirect spatial pathway may
mask this natural tendency to respond to the source of stimu-
lation. The present work also suggests that response-signal (i.e.,
SAT) methodology provides a task context that that may pro-
mote or impede S-R transfer. Lastly, these findings also demon-
strate that transfer between spatial compatibility/incompatibility
tasks and the Simon task can be bidirectional, although
asymmetric.
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As the strength of a stimulus increases, the proportions of correct binary responses
increases, which define the psychometric function. Simultaneously, mean reaction times
(RT) decrease, which collectively define the chronometric function. However, RTs are
traditionally ignored when estimating psychophysical parameters, even though they
may provide additional Shannon information. Here, we extend Palmer et al’s (2005)
proportional-rate diffusion model (PRD) by: (a) fitting individual RTs to an inverse Gaussian
distribution, (b) including lapse rate, (c) point-of-subjective-equality (PSE) parameters, and,
(d) using a two-alternative forced choice (2AFC) design based on the proportion of times a
variable comparison stimulus is chosen. Maximum likelihood estimates of mean RT values
(from fitted inverse Gaussians) and binary responses were fitted both separately and in
combination to this extended PRD (EPRD) model, to obtain psychophysical parameter
values. Values estimated from binary responses alone (i.e., the psychometric function)
were found to be similar to those estimated from RTs alone (i.e., the chronometric
function), which provides support for the underlying diffusion model. The EPRD model
was then used to estimate the mutual information between binary responses and stimulus
strength, and between RTs and stimulus strength. These provide conservative bounds for
the average amount of Shannon information the observer gains about stimulus strength on
each trial. For the human experiment reported here, the observer gains between 2.68 and
3.55 bits/trial. These bounds are monotonically related to a new measure, the Shannon
increment, which is the expected value of the smallest change in stimulus strength
detectable by an observer.

Keywords: psychometric function, chronometric function, point of subjective equality, diffusion model, reaction

time, threshold, Shannon information, mutual information

1. INTRODUCTION
For over a 100 years, it has been known that the ability to dis-
criminate between two stimuli increases as a sigmoidal function
of the difference between those stimuli, where this is tradition-
ally measured using binary observer responses. However, when
an observer makes a response, there is a trade-off between speed,
or reaction time (RT), and accuracy of responses. This speed-
accuracy trade-off has been the subject of numerous papers,
notably (Ratcliff, 1978; Harvey, 1986; Swanson and Birch, 1992;
Wichmann and Hill, 2001; Palmer et al., 2005), and more recently
in Bonnet et al. (2008).

Here, we propose four extensions to the proportional-rate
diffusion model (PRD) proposed in Palmer et al. (2005). First,
we introduce a new parameter, the point-of-subjective-equality
(PSE), which takes account of systematic shifts or bias in observer
perception. This parameter is incorporated into the chronomet-
ric and psychometric functions. Second, we use a maximum
likelihood estimate (MLE) of the RT mean based on a phys-
ically motivated diffusion model of RTs which involves fitting
individual RTs to an inverse Gaussian distribution. Third, we
take account of lapses in observer concentration by introducing
a lapse rate parameter, which is estimated simultaneously with

other psychophysical parameters. Fourth, we use a two-alternative
forced choice (2AFC) design where the psychometric function
is defined, not by the proportion of correct responses (range
50–100%), but by the proportion of times a variable compari-
son stimulus is chosen in preference to a fixed reference stimulus
(range 0–100%). Note that the 2AFC experimental procedure is
the same whether one chooses to measure the proportion of cor-
rect responses or the proportion of times a variable comparison
stimulus is chosen.

Once the model has been fitted to these data, it can be used
to estimate the mutual information (Shannon and Weaver, 1949;
MacKay, 2003; Stone, 2014) between binary responses and stim-
ulus strength, and between RT and stimulus strength. Finally, the
mutual information provides a value for the Shannon increment,
which is the expected value of the smallest change in stimulus
strength detectable by an observer.

2. THE PROPORTIONAL-RATE DIFFUSION MODEL
We provide a brief summary of Palmer et al’s PRD model (Palmer
et al., 2005) here, and describe extensions below. In the experi-
ment described in Palmer et al. (2005), an observer is presented
with an array of moving dots. Stimulus strength x is defined by
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coherence (i.e., the percentage of dots moving in the same direc-
tion), and the observer is required to indicate which one of two
directions the dots are moving. Note that coherence, and there-
fore stimulus strength x, varies between zero and some upper
bound.

The PRD model is based on a diffusion model of RT, where the
mean RT τ̄PRD varies as a sigmoidal function of x

τ̄PRD = A

Kx
tanh(KAx)+ τ̄res, (1)

where K is a measure of observer sensitivity, and A represents a
decision boundary associated with RT. The first term on the right
hand side represents the time to make a decision, and τ̄res is a fixed
residual RT (e.g., time to respond after a decision is made). Notice
that this model requires that the mean RT τ̄PRD decreases mono-
tonically as the motion signal increases above zero, a requirement
which will be relaxed in the model proposed below.

Within the PRD model, the probability PPRD of making a cor-
rect response is defined by the logistic psychometric function

PPRD = 1

1+ e−2AK|x| , (2)

where |x| indicates the absolute value of x. In Equation (2), the
product AK acts as a single parameter which modulates the steep-
ness of the sigmoidal function, and therefore acts as a measure of
sensitivity to changes in stimulus strength. Note that the stim-
ulus strength cannot fall below zero in Palmer et al’s moving
dot experiment, and that, when the stimulus motion strength is
x = 0%, the observer has to guess, so that PPRD = 0.5, whereas if
x = 100% then PPRD = 1.0.

3. THE EXTENDED PROPORTIONAL-RATE DIFFUSION (EPRD)
MODEL

The model proposed here is based on the assumption that
responses arise from a two-alternative forced choice (2AFC) pro-
cedure. On each trial, the observer is presented with two stimuli,
and the task is to choose the stronger stimulus, where strength can
be defined in terms of differences in any physical quantity, such
as speed, luminance, or contrast. The two stimuli are a reference
stimulus with a stimulus value sR that remains constant within a
specific subset of trials, and a comparison stimulus with a value sC

that varies between trials. A comparison response is obtained if the
observer chooses the comparison stimulus. The stimulus strength
x within one trial is defined as the difference between the reference
value sR and the comparison value sC , specifically x = sC − sR.

We measure performance in terms of the proportion P of
times that a variable comparison stimulus is chosen in preference
to the fixed reference stimulus, which we define as a compar-
ison stimulus response, so P varies between zero and one. A
direct translation from PPRD to P would guarantee that a stimu-
lus strength of zero corresponds to P = 0.5. However, if observer
perception is biased, such that a stimulus difference of x = 0 is
not perceived as zero, then a stimulus strength of zero would not
coincide with P = 0.5. This perceptual bias can be accommodated
with a second modification, a new parameter sPSE, which is the
point-of-subjective-equality (PSE) between the comparison and

reference stimuli. Specifically, sPSE is the value sC of the compari-
son stimulus which is perceived to be the same as the value sR of
reference stimulus.

Given that the stimulus strength is x = sC − sR, the perceived
stimulus strength x′ is

x′ = sC − sPSE (3)

= x −�x, (4)

where �x is the error in the perceived value of sC . The probability
of choosing the comparison stimulus is defined as

P = 1

1+ e−2AKx′ . (5)

Note that the product AK effectively acts as a single parameter,
and will be treated as such for binary response data (but not for
RT data, see below).

In order to take account of observer lapses in concentration,
which result in a pure guess, we introduce a lapse rate parame-
ter γ. Evidence presented in Wichmann and Hill (2001) suggests
that failure to take account of the lapse rate can lead to substantial
errors in estimated psychophysical parameter values. If the lapse
rate were zero then we would expect that P = 0 for highly negative
stimulus strengths, and that P = 1 for highly positive stimulus
strengths, so that observed deviations from P = 0 and P = 1 at
extreme stimulus strengths can be used to provide an estimate of
the lapse rate. Thus, the lapse rate parameter limits the lower and
upper bounds of the psychometric function to Pmin = γ/2 and
Pmax = 1− γ/2, respectively, such that1

P =
[

1

1+ e−2AKx′ − 0.5

]
(1− γ)+ 0.5. (6)

Thus, the three parameters to be estimated for Equation (6) define
the vector variable

θP = (sPSE, AK, γ). (7)

Similarly, we model the observer’s mean RT for a perceived
stimulus strength x′ as

τ̄ = A

kx′
tanh(KAx′)+ τ̄res. (8)

Here, the effects of A and K are separable, and so the four param-
eters to be estimated for Equation (8) define the vector variable

θτ = (sPSE, A, K, τ̄res). (9)

The lapse rate parameter is not included here because lapses have
no predictable effect on RT.

Finally, we can adapt results from Luce (1986) and Palmer et al.
(2005) to relate RT to response probability. The mean decision

1Notice that, if the lapse rate is γ = 0.01 then the upper and lower bounds
are 0.995 and 0.005, respectively, because half of the observer’s guesses will be
correct, on average.
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time is defined as τ̄dec = τ̄i − τ̄res, so that Equations (5, 8) can be
combined to provide a mapping between mean decision time τ̄dec

and the probability P of choosing the comparison stimulus

τ̄dec = (A/K)
(2P − 1)

x′
. (10)

Thus, if the perceived stimulus strength x′ has a large positive or
negative value then P = 0 or P = 1 (respectively), and so τ̄dec =
A/(K|x′|) in both cases. This predicts that, for a given perceived
stimulus strength, the probability of choosing the comparison
stimulus is proportional to the mean decision time.

4. USING OBSERVER RESPONSES
For each trial, we obtain a RT and a binary response from the
observer, which indicates whether the observer has chosen the
comparison stimulus or the reference stimulus. At each stimulus
strength xi, the comparison and reference stimuli are presented to
the observer on Ni trials, and the number of times the observer
chooses the comparison and reference stimulus is recorded as ni

and Ni − ni, respectively. For a given putative value of Pi, a stan-
dard binomial model gives the probability of the observed binary
responses as

p(ni|Ni, Pi) = Cni
Ni
× Pni

i × (1− Pi)
Ni−ni , (11)

where Pi is a function of the parameters Ak, γ and PSE as defined
in Equation (6). The maximum likelihood estimate of Pi is the
proportion of comparison stimulus responses P′i = ni/Ni.

When considered over all Nx values of x, the probability of
observing the set of all binary responses is defined by the log
likelihood function

LP = log
Nx∏

i= 1

Cni
Ni

Pni
i (1− Pi)

Ni−ni (12)

=
Nx∑

i= 1

ni log Pi +
Nx∑

i= 1

(Ni − ni) log(1− Pi)+
Nx∑

i= 1

log Cni
Ni

,(13)

where the final term does not depend on parameter values,
and can be discarded unless the exact value of the likelihood is
required. Recall that each Pi is determined by Equation (6), which
is a function of the EPRD parameter values θP = (A, K, γ, PSE).
The maximum likelihood estimate (MLE) of θP is obtained by
finding EPRD parameter values θP that maximize LP.

If the number of trials at each stimulus strength is large then
Equation (13) can be approximated by a Gaussian function. At
a given stimulus strength xi, the observed proportion of binary
responses is P′i , which is assumed to be the probability Pi plus a
noise term ηP, so that P ′i = Pi + ηP. If the noise ηP has a Gaussian
distribution with variance vP,i then

p(P′i|A, k, x′i) =
1

√
2πvP,i

exp
− (P′i − Pi

)2

2vP,i
, (14)

where Pi is defined as a function of A, k, x′ in Equation (6),
and the variances vP,i can be estimated from the data as

vP,i = NiP′i(1− P′i). Results for the Gaussian approximation in
Equation (14) were found to be very similar to those for Equation
(13). Results reported here are based on Equation (13).

5. USING REACTION TIMES
RTs tend to be short if the comparison stimulus value is very dif-
ferent from the reference stimulus, but as the comparison and
reference stimuli become more similar, so the RT increases, as
shown in Figure 4B. Here, we use RTs in a two stage process. First,
a mean RT value is estimated at each stimulus strength. These
mean RT values are then used as data for the RTτ̄ model, which is
used to estimate EPRD model parameters.

5.1. INVERSE GAUSSIAN MODEL OF INDIVIDUAL RTs
It is commonly assumed that the RT is the time required for the
cumulative amount of perceptual evidence to reach some crite-
rion value (Ratcliff, 1978; Smith, 1990). Specifically, this evidence
accumulation is assumed to consist of a Brownian diffusion pro-
cess with positive drift, which can be likened to a the total distance
traveled in a one-dimensional biased random walk. If a Brownian
process is allowed to run for a fixed time then it is well known
that the final distribution of values (e.g., evidence) has a Gaussian
distribution. However, it is less well known that if a Brownian
diffusion process is allowed to run until it reaches a fixed crite-
rion value then the time taken to reach that value has an inverse
Gaussian or Wald distribution (see Figure 3). Therefore, if the
amount of evidence required to make a response is stable for
a given observer then RTs are appropriately modeled using an
inverse Gaussian distribution2.

If RTs have an inverse Gaussian distribution with mean τ̄′i then
the probability of a single observed RT τij associated with the jth
presentation of the stimulus value xi is

p(τij|τ̄′i,λi) =
(

λi

2 π τ3
ij

)1/2

× exp

[
−λi(τij − τ̄′i)

2

2 τ̄
′2
i τij

]

, (15)

where the variance of this distribution is

vτi = τ̄
′3
i /λi. (16)

Each of the Nx stimulus strengths is presented Ni times. For one
model RT mean, the probability of the observed Ni RTs (one RT
per trial) defines the log likelihood function

Lτ,i = log
Ni∏

j= 1

p(τij|τ̄′i,λi). (17)

Maximizing Equation (17) with respect to the parameters τ̄′i and
λi yields a maximum likelihood estimate (MLE) of both parame-
ters at one stimulus strength xi. Even though the algebraic mean
and the MLE mean are identical (Tweedie, 1957) for the inverse

2For reference, the Wald distribution is the distribution of first passage times
of a biased Brownian process, and is qualitatively similar to the log-normal
distribution, which is often used to model RT.
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Gaussian, the fitting process provides the parameter estimate λi,
which is vital for subsequent calculations.

5.2. MODEL RTτ̄: USING MEAN REACTION TIMES
For a given stimulus strength xi, the predicted mean RT τ̄i varies
as a tanh function of xi, as defined in Equation (8). The central
limit theorem allows us to assume that the distribution of mean
RTs of the inverse Gaussian pdf at a given stimulus strength xi is
Gaussian with mean τ̄′i and variance vτ̄,i. Therefore, the likelihood
of the EPRD mean τ̄i from Equation (8) is

p(τ̄′i|τ̄i(θτ)) = 1
√

2πvτ̄,i
e−(τ̄′i−τ̄i)

2/(2vτ̄,i). (18)

The variance of an inverse Gaussian distribution of RT values with
mean τ̄′i is vτi (Equation 16), so the variance vτ̄i of a distribution
of means (where each mean is based on Ni samples) is

vτ̄i = τ̄′ 3
i

λi Ni
. (19)

Thus, we can assess the fit of the inverse Gaussian mean RTs τ̄′i to
the EPRD mean RTs τ̄i of Equation (8) as follows. The probabil-
ity of the Nx mean RTs τ̄′i (one mean RT per stimulus strength)
defines the log likelihood function

Lτ̄ = log
Nx∏

i= 1

p(τ̄′i|τ̄i) (20)

= −1/2
Nx∑

i= 1

(τ̄′i − τ̄i)
2

vτ̄,i
− 1/2

Nx∑

i=1

log 2πvτ̄,i, (21)

where τ̄i is defined in Equation (8), so that the parameters to
be estimated for model RTτ̄ are θτ = (A, k, γ, PSE, τ̄res) to fit the
overall variation in mean RT with stimulus strength x.

In summary, we have three estimates of the mean RT at each
stimulus strength: the algebraic mean τ̄′obsi, the MLE mean of the
inverse Gaussian or Wald pdf τ̄′i (from Equation 17), which collec-
tively are used as data to estimate the means τ̄i (one per stimulus
strength) obtained from the fitted EPRD model (from Equation
21). The MLE means τ̄′i are shown as crosses in Figure 4B,
and the means τ̄i are corresponding points on the fitted curve,
respectively.

We also have two estimates of the probability of a comparison
stimulus response at each stimulus strength: the observed propor-
tion of comparison stimulus responses (which is the MLE P′i =
ni/Ni), and the mean Pi (one per stimulus strength) obtained
from fitting the EPRD model (Equation 13) to the MLE means
P′i . These are shown as dots in Figure 4A, and as corresponding
points on the fitted curve, respectively.

6. USING BINARY RESPONSES AND RTs
In the absence of knowledge regarding the covariance between the
noise in mean RT and binary response probability, we are forced
to assume this covariance is zero. In other words, we assume that
LP and Lτ̄ provide independent estimates of the EPRD model

parameters. In this case, estimates based on combined RT and
binary response probability are obtained by maximizing the sum
of likelihoods

LC = LP + Lτ̄. (22)

However, the implausibility of this independence assumption
means that we will not take seriously any results based on
Equation (22).

7. INFORMATION THEORY
The amount of Shannon information (Shannon and Weaver,
1949; MacKay, 2003; Stone, 2014) that the observer gains about
the stimulus is reflected in both the binary responses and RTs.
Specifically, the average Shannon information that each mean
RT provides about the stimulus strength x is the mutual infor-
mation I(x, τ̄) between x and the mean RT. Similarly, the
average Shannon information that binary responses provide
about the stimulus strength x is the mutual information I(x, P)

between x and the probability of a comparison stimulus binary
response.

More importantly, the total amount of Shannon information
that the observer has about the stimulus cannot be less than
the amount of Shannon information implicit in the observer’s
combined binary and RT responses. In other words, the total
mutual information, as measured by an experimenter, between
observer responses and stimulus strength provides a lower bound
for the amount of Shannon information that the observer has
about the stimulus strength. Thus, each the mutual information
value provided in this paper constitutes a conservative estimate
of the amount of information that the observer gains about the
stimulus.

7.1. EVALUATING I(x, P)

The mutual information I(x, P) between stimulus strength s
and the probability P that the observer chooses the comparison
stimulus (i.e., r = 1) is

I(x, P) =
∫

x

∫

P
p(x, P) log

p(x, P)

p(x)p(P)
dP dx (23)

= H(x)+H(P)−H(x, P) bits, (24)

where H(x) and H(P) are the differential entropies of p(x) and
p(P), respectively, and H(x, P) is the differential entropy of the
joint distribution p(x, P). All logarithms in this paper use base
2, so information is measured in bits. Substituting p(x, P) =
p(P|x)p(x), yields

I(x, P) =
∫

x
p(x)

∫

P
p(P|x) log

p(P|x)
p(P)

dP dx (25)

= H(P)−H(P|x) bits, (26)

where H(P|x) is the differential entropy of the noise in the mea-
surements P. Given Bayes’ rule, p(P|x) = p(x|P)p(P)/p(x), we
can recognize the mutual information as the differential entropy
H(P) of the prior distribution minus the differential entropy
H(P|x) of the posterior distribution.
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We can evaluate Equation (25) by summing over discrete ver-
sions of the variables x and P. Recall that the observed proportion
of responses r = 1 at a given stimulus strength xi is P′i = ni/Ni, so
that

I(x, P) =
Nx∑

k= 1

p(xk)

[
Nx∑

i= 1

p(P′i|xk) log
p(P′i|xk)

p(P′i)

]

bits. (27)

We assume that the probability of stimulus values is locally uni-
form, so that p(xk) = 1/Nk. In order to evaluate Equation (27),
we require expressions for p(P′i|xk) and p(P′i).

7.1.1. Evaluating the posterior p(P ′i |xk )

Using Equation (5) across a range of x values, the fitted value of
P at xk is Pk. Assuming a binomial distribution, the probability of
the observed proportion P′i given a fitted value Pk at xk is

p(P′i|xk) = Cni
Ni

Pni
k (1− Pk)

Ni−ni , (28)

where p(P′i|xk) = p(P′i|Pk), and p(P′i|xk) values are normalized to
ensure that

∑
i p(P′i|xk) = 1.

7.1.2. Evaluating the prior p(P ′i )
The distribution of binary responses is binomial with a mean
equal to the grand mean PG of all NG binary responses of an
observer

PG = 1

NG

NG∑

i= 1

ri, (29)

where ri = 1 if and only if a response corresponds to the observer
choosing the comparison stimulus. The observer’s prior prob-
ability of the binary responses for the ith stimulus strength is
therefore

p(P′i) = Cni
Ni

Pni
G (1− PG)Ni−ni , (30)

where p(P′i) values are normalized to ensure that
∑

i p(P′i) = 1.

7.2. EVALUATING I(x, τ̄)

Following the same line of reasoning as above, the mutual infor-
mation I(x, τ̄) between stimulus strength and mean RT is

I(x, τ̄) =
∫

x
p(x)

∫

τ̄

p(τ̄|x) log
p(τ̄|x)
p(τ̄)

dτ̄ dx (31)

= H(τ̄)−H(τ̄|x) bits, (32)

where H(τ̄|x) is the differential entropy of the noise in the
measurements τ̄.

We can evaluate Equation (31) by summing over discrete
versions of the variables x and τ̄

I(x, τ̄) =
Nx∑

k= 1

p(xk)

⎡

⎣
Ni∑

i= 1

p(τ̄′i|xk) log
p(τ̄′i|xk)

p(τ̄′i)

⎤

⎦ bits, (33)

where p(τ̄′i|xk) is defined by the EPRD model (Equation 8) with a
fitted value τ̄k, so that

p(τ̄′i|xk) = p(τ̄′i|τ̄k(θτ)), (34)

as in Equation (18). As before, we assume that the probability of
stimulus values is uniform, so that p(xk) = 1/Ni.

7.2.1. Evaluating the posterior p(τ̄′i |xk )

The posterior is defined in Equation (18), but is repeated here
with changed subscripts for clarity

p(τ̄′i|xk) = 1√
2πvτ̄k

exp

[
−(τ̄′i − τ̄k)

2

2vτ̄k

]

, (35)

where vτ̄k is defined in Equation (19), and p(τ̄′i|xk) values are
normalized to ensure that

∑
i p(τ̄′i|xk) = 1.

7.2.2. Evaluating the prior p(τ̄′i)
A parametric form for the observer’s prior probability distribu-
tion p(τ) of individual RTs was estimated from the entire set of
that observer’s grand total of NG RTs. These were fitted to an
inverse Gaussian distribution to obtain a grand mean τ̄G and a
parameter λG. This pdf has a variance

vG = τ̄3
G/λG. (36)

At each stimulus strength xi, the RT mean is based on a sam-
ple of Ni RTs, and the central limit theorem suggests that the
distribution of means is approximately Gaussian with a variance

vg = vG/Ni. (37)

Therefore, the prior probability density of each inverse Gaussian
mean τ̄′i is

p(τ̄′i) =
1

√
2πvg

exp

[
−(τ̄′i − τ̄G)2

2vg

]

, (38)

where p(τ̄′i) values are normalized to ensure that
∑

i p(τ̄′i) = 1.

7.3. THE SHANNON INFORMATION OF A SINGLE RESPONSE
So far we have derived expressions for the Shannon informa-
tion implicit in the average RT τ̄i and also in the average binary
response, which is summarized as the proportion Pi of compar-
ison responses, for a stimulus strength xi. Here, we derive an
expression for the Shannon information associated with a single
trial; first for RTs, and then for binary responses.

As the number of trials at each stimulus strength is increased,
so the variance in each mean RT decreases, and the central limit
theorem ensures that the distribution of means becomes increas-
ingly Gaussian. The mutual information between two variables
(e.g., mean RT and stimulus strength) depends on the signal to
noise ratio SNR

I ≤ 1/2 log2(1+ SNR), (39)

where SNR is the signal variance expressed as a fraction of the
noise variance in the measurement (Shannon and Weaver, 1949).
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If the distribution of mean RTs is Gaussian then the distribu-
tion of differences �τ̄ between mean RT τ̄ and the grand mean
RT (at one stimulus strength) must also be Gaussian. Because
the mutual information is defined in Equation (32) to be the
differential entropy of τ̄ minus the differential entropy of the
noise �τ̄ in τ̄, we can assume equality in Equation (39) (Rieke
et al., 1997). In fact, we do not need to rely on the central limit
theorem here, because even if the perturbing noise �τ̄ is not
Gaussian, Shannon’s Theorem 18 (Shannon and Weaver, 1949)
implies equality in Equation (39), so that

I = 1/2 log2(1+ SNR) bits. (40)

We already have a value for the mutual information I(x, τ̄) from
Equation (27), so we can re-arrange Equation (40) to find the
SNR associated with τ̄

SNRτ̄ = 22I(x,τ̄) − 1 bits. (41)

However, the mutual information I(x, τ̄) obtained from Equation
(27) tells us how much average Shannon information each mean
RT provides about stimulus strength, whereas we want to know
how much average information each individual RT provides
about stimulus strength. Because the value of SNR in Equation
(41) is based on mean RTs, each of which involves Ni trials, the
variance of the measurement noise has been reduced by a factor
of Ni relative to the noise in the RT of a single trial (provided this
noise is iid). This implies that the value of SNR for a single trial is

SNRτ = SNRτ̄/Ni (42)

= (22I(x,τ̄) − 1)/Ni bits. (43)

If we substitute SNRτ into Equation (40) then we obtain an esti-
mate of the average Shannon information I(x, τ) implicit in the
observer’s RT in a single trial

I(x, τ) = 1

2
log2

[

1+ (22I(x,τ̄) − 1)

Ni

]

bits. (44)

A similar line of reasoning implies that the average Shannon
information I(x, r) implicit in the observer’s binary response r in
a single trial is

I(x, r) = 1

2
log2

[

1+ (22I(x,P) − 1)

Ni

]

bits. (45)

In order to compare mutual information estimates for the differ-
ent variables τ and r, the calculations for I(x, τ) and I(x, r) should
be based on the same range of stimulus strengths x.

7.4. DEFINING THE SHANNON INCREMENT
The mutual information between stimulus strength and (binary
or RT) responses can be used to define the smallest average
detectable difference in stimulus strength, which we call the
Shannon increment (SI). We first define the effective stimulus
range xrange as the range of stimulus strengths x associated with

response probabilities between P = ε and P = 1− ε, for some
small value ε. Then the SI is related to the mutual information
I by

SI = xrange

2I
, (46)

where the value 2 is based on the assumption that information
is measured in bits (i.e., using log to the base 2), and SI has the
same units as stimulus strength. Because SI decreases monoton-
ically with mutual information, it should become asymptotically
closer to the true value of SI as the number of trials or stimulus
strengths is increased.

A brief explanation for this definition is as follows. Consider
a range of stimulus strengths xrange which give rise to “noisy”
observer responses y = f (x), where these responses are samples
from a probability density function p(y(x)), and where the mutual
information between x and y is I bits. One way to interpret SI
involves assuming that p(y(x)) is uniform. In this case, on aver-
age, knowing the value of y reduces the possible range of x values
to an interval �x = xrange/2I , which we can recognize as being
equal to the SI.

8. FAT-FACE THIN: A DEMONSTRATION EXPERIMENT
We used the EPRD models described above to estimate the PSE
and other key parameters for a simple demonstration experiment
using a human observer. On each trial, the observer was presented
with a colored picture of an upright face and an inverted face
(see Figure 2) on a computer screen, and was required to indicate
which one appeared to be wider by pressing a left/right computer
key. For half of the trials, the reference stimulus was an upright
face, and the comparison stimulus was an inverted version of the
same face, and these were swapped for the other half of the tri-
als. The width of the comparison image was determined by 1 of
21 stretch factors s = 0.90, 0.91, . . . , 1.10, but the height of both
stimuli was kept constant. The stimulus strength was defined to
be x = s− 1, so that x varied between −0.1 and 0.1. For a given
value of si, the observer was presented with the same stimulus pair
for a total of Ni = 20 trials. Stimuli were shown in random order,
and the left/right position of reference/comparison stimuli was
counterbalanced across trials.

8.1. RESULTS
Each of three models defined by LP, Lτ̄, and LC was used to
fit a psychometric and/or a chronometric function to the data
from one subject, as shown in Figure 4. Maximum likelihood
parameter estimation was implemented in MatLab using the
Nelder–Mead simplex method. The parameter estimates for each
model are summarized in Table 1.

8.2. USING BINARY RESPONSES: MODEL LP

Based on 420 binary responses, maximizing LP (Equation 12)
yields a psychometric function similar to that in Figure 4A,
and a PSE of sPSE = 1.031. This maximum likelihood esti-
mate implies that an inverted face must be 3.1% wider than
an upright face in order for the two faces to be perceived as
the same width. Numerical estimation of the Hessian matrix
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FIGURE 1 | How the entropy H(x) in stimulus strength x is accounted

for by the entropy H(τ) in RT (τ) and entropy H(P) in the probability P
of a particular binary response r. The entropies of x, P, and τ are
represented by the discs X , Y , and Z , respectively. The mutual information
between x and P is I(x, P) = (a+ b), and the mutual information between
x and τ is I(x, τ) = (a+ c).

FIGURE 2 | Schematic illustration of typical stimulus shown to

observer on a single trial. The observer has to choose the face that looks
wider. The stimulus in the experiment used was a picture of the actor
James Corden’s face, with all background details removed (see
http://illusionoftheyear.com/2010/the-fat-face-thin-fft-illusion).

of second derivatives of Equation (12) at sPSE yields a stan-
dard error (se) of 0.003, which implies that sPSE is significantly
different from s = 1 (p < 0.001). The values of three param-
eters were estimated for this model, the PSE, Ak, and γ, and
the product Ak is quoted in Table 1 for comparison with other
works.

8.3. USING MEAN REACTION TIMES: MODEL Lτ̄

Each of 21 mean RTs (one per stimulus strength) was first esti-
mated by maximizing Equation (17), based on 20 RTs per stim-
ulus strength. Using these 21 mean RTs, Lτ̄ (Equation 21), was
maximized with respect to four parameters (PSE, A, k, and τ̄res)
to yield a chronometric function similar to that in Figure 4B. The
estimated PSE is sPSE = 1.034 (se = 0.004, p < 0.001).

8.4. USING MEAN RTs AND OBSERVER RESPONSES: MODEL LC

Based on 42 data points (the 21 estimated mean RTs used for Lτ̄

plus 21 corresponding binary response probabilities used for LP),

FIGURE 3 | Reaction times fitted with an inverse Gaussian

(Equation 15). Each dot represents 1 of 20 RTs for a stimulus value (width
scaling) of s = 1.05.

maximizing LC (Equation 22) yields the psychometric function
and the chronometric function in Figures 4A,B, respectively, and
a PSE of 1.032 (se= 0.003, p < 0.001). There are five parameters
to be estimated for this model, the PSE, A, k, τ̄res, and γ.

8.5. SHANNON INFORMATION
The mutual information I(x, τ̄) between x and τ̄ is the entropy
in p(τ̄) and p(x) shared by the joint distribution p(x, τ̄).
Using Equation (33), this evaluates to I(x, τ̄) = 2.79 bits. Using
Equation (44) with Ni = 20, this implies that the mutual infor-
mation I(x, τ) for a single RT is I(x, τ) = 0.87 bits, and is repre-
sented by the intersection of regions X and Z.

Similarly, Equation (27) can be used to estimate the mutual
information between x and P, which comes to I(x, P) = 4.82 bits.
Using Equation (45) with Ni = 20, this implies that the mutual
information I(x, r) for a single binary response r is I(x, r) =
2.68 bits, and is represented by the intersection of regions
X and Y .

We can use I(x, τ) and I(x, r) to provide lower and upper
bounds on the total amount of mutual information Itot between x
and the combined variables (r, τ), which can be considered to be a
vector variable. If τ and r provide independent information about
x (i.e., if a = 0 in Figure 1) then the maximum value of Itot is

max(Itot) = I(x, τ)+ I(x, r) (47)

= 0.87+ 2.68 (48)

= 3.55 bits. (49)

However, if all of the information I(x, τ) provided by τ about x
is the same as part of the information provided by r about x (i.e.,
if c = 0 in Figure 1) then Itot cannot be less than I(x, r). To take
account of the possibility that all of the information I(x, r) pro-
vided by r about x is the same as part of the information provided
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FIGURE 4 | The psychometric function (A) and chronometric function

(B), from the face inversion experiment for one observer. The width
scaling factor s applied to the comparison image is indicated on the
abscissa. The vertical dashed line marks the point-of-subjective-equality
(PSE) at s = 1.032. (A) Each dot represents the observed proportion of
trials for which the observer chose the comparison stimulus, and the
fitted psychometric function is defined in Equation 6. (B) Each dot
represents the RT of a single trial for the same responses as in

Figure 4A (RTs greater than 2 s are not shown). The fitted chronometric
function is defined in Equation 8. The dashed curve joins the fitted
(inverse Gaussian) mean RTs, each of which was obtained by maximizing
Equation 17. The solid curves in (A, B) (Equations 6, 8, respectively)
were fitted using combined binary and mean RT data by maximizing
Equation 22. A graph similar to (A) was obtained for model LP (i.e.,
using only binary responses), and a graph similar to (B) was obtained for
model Lτ̄ (i.e., using only mean RTs).

Table 1 | Results for three models.

Model PSE A k A × K τ̄res (s) γ LLik MI (bits)

Binary LP 1.031± 0.003 NA NA 22.32 NA 0.005 −31.13 2.68

RT Lτ̄ 1.034± 0.004 0.998 28.37 28.32 0.437 NA 18.7 0.87

Comb LC 1.032± 0.003 1.016 23.12 23.50 0.354 0.011 −13.10 3.18

Binary model: based only on binary response probability (Equation 12).

RT model: based only on mean RT (Equation 17).

Comb (combined model): based on binary response probability and mean RT (Equation 22).

PSE, point of subjective equality (± indicates standard error); A and k are EPRD parameters, τ̄res is the fixed part of RT; γ, lapse rate; LLik, log likelihood; and

MI, mutual information between stimulus strength and RT or binary responses or both (see text). The final number (3.18 bits) represents I(x, r) = 2.68 plus

I(x, τ) = 0.497, computed using parameter values obtained from Equation 22.

by τ about x, we can write

min(Itot) = max(I(x, τ), I(x, r)) (50)

= max(0.87, 2.68) (51)

= 2.68 bits. (52)

Thus, on average, each trial provides the observer with between
2.68 and 3.55 bits.

8.6. SHANNON INCREMENT
Using a conservative estimate of mutual information of I =2.68
bits suggests that the observer can discriminate differences
between the reference and comparison stimulus with an aver-
age resolution of about one part in 6.39 (= 22.68) of the effective
range xrange of stimulus strengths. Note that the range of scaling
values used srange = 0.2 (i.e., 0.9 . . . 1.1) equals the range of stim-
ulus strengths xrange = 0.2 (i.e., −0.1 . . . 0.1). Therefore, the SI
for the width scaling factor is

SI = xrange/2I (53)

= 0.2/6.39 (54)

= 0.031, (55)

where we have assumed ε = 0 here. Thus, on average, the smallest
change in scaling factor (between reference and comparison
stimulus) detectable by the observer is SI = 0.031.

9. DISCUSSION
We have shown how the PRD model from Palmer et al. (2005)
can be extended to make use of individual RTs, which can be
combined with binary observer responses to estimate key psy-
chophysical parameters in a 2AFC design.

A key feature of diffusion-based models is that they treat
each RT as the end-point of an accumulation of evidence. If
we take this type of evidence-accumulation process seriously
then it makes sense to model the distribution of RT values
as an inverse Gaussian distribution (for reasons described in
section 5).
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A striking result is the difference between the log likelihoods
associated with the binary response model and the RT model,
despite the fact that the binary response model has fewer free
parameters than the RT model, and that both models provide
similar PSE estimates which (based on their sems, not shown) are
not significantly different. These log likelihood values suggest that
the EPRD model provides a better fit to the RT data than it does
to the binary response data. This difference in likelihoods suggests
that the parameter estimates obtained using the combined RT and
response data is dominated by the binary data likelihood term.

Self-evidently, both the RT and binary responses of an observer
depend on the stimulus strength x. However, in general, it is
not known if RT or binary response data provide more Shannon
information about the value of x. More importantly, and more
subtley, it is not known if they provide the same information
about x, or if they merely provide the same amount of information
about x (see Figure 1).

We can gain some insight into the nature of this problem by
considering the proportion of the differential entropy in stimu-
lus values accounted for by the corresponding differential entropy
in observer responses. At one extreme, if an observer is told
to respond as quickly as possible then the RTs should pro-
vide relatively large amounts of mutual information regarding
stimulus strength, whereas the binary responses carry relatively
little mutual information (because speeded responses tend to
be inaccurate Hanks et al., 2011). In this case, the RT entropy
at a given stimulus strength will be relatively small, because
RTs will be tightly coupled to the stimulus strength, whereas
the binary response entropy at a given stimulus strength will
be relatively large (because these responses are inaccurate, and
therefore not tightly coupled to the stimulus strength). However,
when considered across different stimulus strengths, the tight
coupling between RT and stimulus strength will give rise to a
relatively large RT entropy, and most of this entropy will be
shared with stimulus strength entropy (which defines a large
mutual information between RT and stimulus strength). In con-
trast, these fast, inaccurate responses across stimulus strengths
will be associated with a relatively small range of response prob-
ability values (e.g., P ≈ 0.5), which will therefore have a rel-
atively small entropy, most of which is not shared with the
stimulus strength entropy (which defines a small mutual infor-
mation between binary responses and stimulus strength). In
summary, fast responses should yield high entropy RT values,
which share a large proportion of their entropy with the stim-
ulus strength, combined with low entropy P values which share
a small proportion of their entropy with the stimulus strength.
At the other extreme, if an observer is told to be as accu-
rate as possible then this should yield high entropy P values
which share a large proportion of their entropy with the stimu-
lus strength, combined with low entropy RT values which share
a small proportion of their entropy with the stimulus strength.
In summary, the entropy in stimulus strength can be shared
with entropy in both accuracy (P) and speed (RT). However, as
there is probably only a finite amount of such shared entropy
(mutual information) available, we predict that it can be real-
ized experimentally as maximum speed or maximum accuracy,
but not both.

The scenario considered above can be represented geomet-
rically, as in Figure 1. If we compare the mutual information
between τ and x with the mutual information between r and
x then it is possible that they have the same magnitude [e.g.,
(a+ c) = (a+ b), as in Figure 1]. However, the fact that both
τ and x have the same amount of mutual information (i.e., they
account for the same amount of entropy in x) does not imply that
they account for the same entropy in x. Formally, the fact that
(a+ c) = (a+ b) does not imply that (a+ c) ≡ (a+ b). This
matters because, even if I(x, τ) = I(x, r), we could not conclude
that I(x, τ) ≡ I(x, r), and so we could not conclude that τ and r
provide mutually redundant information. Thus, we cannot dis-
miss τ simply because r accounts for more entropy in x than τ

does (or vice versa). Indeed, this is precisely the situation that we
have in the results reported here, and provides reasonable grounds
for making use of both RT and binary response data in general.

Unfortunately, we have been unable to derive an expression
for the total mutual information between the joint variables (RT
and binary responses) and stimulus strength I(τ̄, P; x′) (i.e., the
area [a+ b+ c] in Figure 1), although it may be possible to do so
using Equation (10) [where the entropy of the difference between
P and τ̄ is H(τ̄, P|x′)]. The precise effect of the instructions given
to observers on mutual information, and the proposed invari-
ance of the total mutual information with respect to instructions,
clearly require further research (Soukoreff and MacKenzie, 2009).

The Shannon increment (SI) is similar in spirit to the more
conventional just noticeable difference (JND). However, the JND
has an arbitrary value, and (despite its name) there is no reason to
suppose that a JND is indeed just noticeable. The SI is monoton-
ically related to the average amount of Shannon information an
observer gains regarding a single presentation of a stimulus, and
is a measure of the perceptual resolution with which a parameter
is represented by the observer.

10. CONCLUSION
We have presented an extended proportional-rate diffusion
model, which takes account of both individual RTs and binary
responses for maximum likelihood estimation of key psychophys-
ical parameters (e.g., PSE, slope) of the psychometric and chrono-
metric functions. The fact that these psychophysical parameters
have similar estimated values when computed independently for
two models based on RTs alone or on binary responses alone pro-
vides support for the underlying physical basis of this class of
diffusion models.

An information-theoretic analysis was used to estimate the
average amount of Shannon information that each RT pro-
vided about the stimulus value, and also the average amount of
Shannon information that each binary response provided about
the stimulus value. This analysis provides bounds for the average
amount of Shannon information that the observer gains about
the stimulus value from one presentation, which was found to be
between 2.68 and 3.55 bits/trial for the experiment used here.
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APPENDIX
MATHEMATICAL SYMBOLS AND ABBREVIATIONS

A an EPRD model parameter which is the amount of evidence
required to trigger a response.
comparison stimulus response: a response indicating the compar-
ison stimulus was chosen.
EPRD: extended proportional-rate diffusion model.
SI: Shannon increment, the smallest detectable change in a
stimulus.
γ EPRD lapse rate parameter.
i index over stimulus strength x, with range i = 1, . . . , Nx.
j index over trials at one stimulus strength xi, with range
j = 1, . . . , Ni.
k index over stimulus strength, with range k = 1, . . . , Nx.
K is a measure of sensitivity to changes in x in the EPRD model.
Ni number of trials at stimulus strength xi.
Nx number of different stimulus strengths.
PSE: point of subjective equality.
Pi proportion of comparison stimulus responses at stimulus
strength xi, predicted by EPRD model.
P′i MLE mean, equal to observed proportion of comparison
responses at stimulus strength xi.

r binary observer response (e.g., observer chooses comparison
or reference stimulus).
sC variable stimulus value of the comparison stimulus.
sR fixed stimulus value of the reference stimulus.
sPSE value of the comparison stimulus which the observer per-
ceives as being the same as the reference stimulus.
τ̄′i MLE mean of inverse Gaussian RT at stimulus
strength xi.
τ̄i mean RT at stimulus strength xi, as predicted by EPRD
model.
τ̄dec,i mean decision RT at stimulus strength xi, as predicted by
EPRD model.
τ̄res mean residual RT (assumed the same at all stim-
ulus strengths), as predicted by EPRD model, where
τ̄res = τ̄dec,i − τ̄i.
θτ = (sPSE, A, K, γ, τ̄res), five parameters for the RT component
of the EPRD model.
θP = (sPSE, AK, γ), three parameters for the binary response
component of the EPRD model.
vτ̄,i variance in mean RT.
xi stimulus strength.
x′i perceived strength of stimulus with strength xi.
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A key goal in the study of decision making is determining how neural networks involved
in perception and motor planning interact to generate a given choice, but this is
complicated due to the internal trade-off between speed and accuracy, which confounds
their individual contributions. Urgent decisions, however, are special: they may range
between random and fully informed, depending on the amount of processing time (or
stimulus viewing time) available in each trial, but regardless, movement preparation
always starts early on. As a consequence, under time pressure it is possible to produce
a psychophysical curve that characterizes perceptual performance independently of
reaction time, and this, in turn, makes it possible to pinpoint how perceptual information
(which requires sensory input) modulates motor planning (which does not) to guide
a choice. Here we review experiments in which, on the basis of this approach, the
origin of the speed-accuracy trade-off becomes particularly transparent. Psychophysical,
neurophysiological, and modeling results in the “compelled-saccade” task indicate that,
during urgent decision making, perceptual information—if and whenever it becomes
available—accelerates or decelerates competing motor plans that are already ongoing.
This interaction affects both the reaction time and the probability of success in any given
trial. In two experiments with reward asymmetries, we find that speed and accuracy can
be traded in different amounts and for different reasons, depending on how the particular
task contingencies affect specific neural mechanisms related to perception and motor
planning. Therefore, from the vantage point of urgent decisions, the speed-accuracy
trade-off is not a unique phenomenon tied to a single underlying mechanism, but
rather a typical outcome of many possible combinations of internal adjustments within
sensory-motor neural circuits.

Keywords: choice, computational model, decision making, discrimination, mental chronometry, race to threshold,

saccade, subtraction method

1. THE PROBLEM OF PARSING THE REACTION TIME
In daily life, some decisions are rather abstract (should I trust the
financial adviser?) whereas others require a specific action (should
I press the brake or the accelerator?). Within the latter category,
speed and accuracy are inversely related in virtually every task
(Woodworth, 1899; Hick, 1952; Wickelgren, 1977; Chittka et al.,
2009); the faster the decision, the less accurate the outcome. This
means that the traditional, key quantities that are used to measure
cognitive performance, the reaction time (RT) and the percentage
of correct responses, are fundamentally intertwined. What is the
underlying cause of this interdependence? How does it emerge
from the structure and dynamics of neural circuits? We consider
these questions in the context of decisions that are coupled to
immediate actions.

Intuitive models of the speed-accuracy trade-off have been
formulated (Reddi and Carpenter, 2000; Bogacz et al., 2010;
Standage et al., 2013), but the empirical investigation of these
questions reveals further complexity (Cook and Maunsell, 2002;

DiCarlo and Maunsell, 2005; Battaglia and Schrater, 2007; Cohen
et al., 2009; Heitz and Schall, 2012). Part of the problem is that the
RT reflects the total amount of time consumed by all the subsys-
tems that contribute to a choice or decision process. Thus, when
a subject executes an action in response to a sensory scene, the
RT must comprise, at the very least, the time necessary for ana-
lyzing the sensory information plus the amount of time required
to plan the motor action that is congruent with that informa-
tion. Discerning just these two components has been challenging
because the underlying neural networks are themselves strongly
interrelated: neurons that encode a subject’s perceptual decision,
that participate in motor planning, or that do both, are typi-
cally found within the same, local microcircuits (Horwitz and
Newsome, 1999; Shadlen and Newsome, 2001; Hernández et al.,
2010; Costello et al., 2013; Mante et al., 2013). Furthermore,
other distinct cognitive processes may contribute to the RT too;
for instance, deploying visuospatial attention or accessing infor-
mation stored in memory could represent separate processing
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steps requiring a certain amount of time to unfold independently
of the perceptual and motor-planning stages (Sternberg, 1966;
Monsell, 2003; Horowitz et al., 2004; Busse et al., 2008). As such,
the RT must reflect a total sum over the times consumed by
multiple covert processes (Sternberg, 1969), each of which could
conceivably constrain or be traded against the others.

Broadly speaking, three techniques have been used to distin-
guish the two major components of the RT during relatively fast
perceptual decision-making tasks, i.e., the contributions of per-
ceptual and motor-planning processes. (1) A common approach
is to introduce a delay between the perceptual evaluation and
the motor report required in each trial. This strategy is widely
used to characterize neuronal activity as sensory-, memory-,
or movement-related neurons (Shadlen and Newsome, 2001;
Sommer and Wurtz, 2001; Lemus et al., 2007). (2) Another pos-
sibility is to limit the amount of cue viewing time (Bergen and
Julesz, 1983; Ratcliff and Rouder, 2000; Bodelón et al., 2007; Kiani
et al., 2008). The idea is that neurons, or any processing compo-
nent in general, whose responses vary systematically as functions
of cue viewing time may be strongly involved in the analysis
of perceptual information. This manipulation is not as straight-
forward as it may seem, though, because controlling very short
stimulus durations is difficult and typically requires additional
masking stimuli to prevent stimulus persistence, and such mask-
ing introduces other potential problems (Breitmeyer and Ogmen,
2000, 2006). (3) An alternative that is not quite as intuitive, is
to do the reverse of 1: inform choices on the basis of urgent
perceptual decisions. That is, start preparing a motor response
first, before the relevant cue information becomes available (Ghez
et al., 1989; Chapman et al., 2010). That way, the initial motor
planning stage stays relatively constant.

That is the approach we have taken (Stanford et al., 2010;
Shankar et al., 2011; Costello et al., 2013). It provides a sim-
ple and highly effective way to dissociate motor and perceptual
performance, and thus a different set of tools with which to char-
acterize and quantify perceptual decision-making mechanisms.
Here we review previously published results of experiments in
which urgent decisions inform rapid choices (Stanford et al.,
2010; Shankar et al., 2011; Costello et al., 2013), but focus specif-
ically on their implications for understanding the origin of the
speed-accuracy trade-off. As discussed below, under this light it is
possible to see not only how perceptual capacity and motor exe-
cution interact to determine the response speed and success rate
of a subject, but also how additional factors such as motivation
or internal preference may alter that interaction. In this way, it
becomes quite clear that the speed-accuracy trade-off is not a uni-
tary phenomenon derived from a unique, underlying mechanism,
but is instead the result of multiple, semi-independent moving
parts that interact with each other within sensory-motor neural
circuits.

2. PERCEPTUAL DECISIONS UNDER TIME PRESSURE
As a means to disambiguate perceptual and motor processes,
we designed a compelled-response task wherein participants are
given the instruction to respond before the relevant perceptual
information appears (Stanford et al., 2010). In the oculomotor
version, the compelled-saccade task (Figure 1A), the response is

FIGURE 1 | Dissociating perceptual and motor performance in the

compelled-saccade task. (A) Sequence of events in the task. The subject is
required to make a saccade when the fixation point disappears (go). If the
chosen target matches the color of the fixation point (red, in this example), the
choice is correct and a reward is obtained. The go instruction is given first,
before the relevant sensory information is revealed (cue). The gap
(50—250 ms) is the time interval between the go and the cue. The rPT is the
amount of time during which the color information can potentially inform the
saccadic choice. (B) Percentage of correct responses as a function of gap, or
psychometric curve. (C) Mean RT (±1 SD) as a function of gap, or
chronometric curve. Both correct and incorrect trials are included. (D)
Percentage of correct responses as a function of rPT (equal to RT− gap), or
tachometric curve. In (B–D), blue and black lines/symbols correspond to
psychophysical and simulation results, respectively. See Shankar et al. (2011)
for details about the experimental data and modeling methods.

an eye movement. First, the observer fixates on a central spot,
the color of which indicates the color of the eventual target. Then
two yellow (neutral) dots appear in the periphery; these are sim-
ply placeholders indicating the possible response locations. Next,
the central fixation point disappears, and this is the “go” signal
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that tells the observer “respond now!” Note that, when the go is
given, the identities of the target and distracter are still unknown,
but the observer must begin planning a movement to one of the
two potential targets nonetheless. Then, after a variable time gap
(from 50 to 250 ms) the peripheral dots change color, reveal-
ing one to be the target and the other the distracter. The onset
of the subject’s response occurs when the eyes just start moving,
and marks the end of the RT period that started at the go signal
(Figure 1A).

The logic behind this design is that, by telling the subject when
to respond, the motor choice process is initiated early, and so per-
ceptual information, once presented, influences a motor plan that
is already developing. By unpredictably varying the time delay
between the go signal and the appearance of the color cue (i.e.,
the gap), the subject generates responses that range between fully
informed choices (for gaps that are much shorter than the typical
saccadic RT) and fully uninformed choices, or guesses (for gaps
that are comparable to the typical saccadic RT), all with the same
underlying distribution of motor plans. So, it becomes possible
to dissociate the effect of motor preparation from the perceptual
decision-making process in an otherwise standard saccadic choice
task.

The crucial event in the task is the go instruction, which com-
pels the subject to respond before the target and distracter are
revealed. But, why is it that subjects do not simply wait for the
color cue to appear before making a choice? In essence, there are
three reasons. First, because responding is natural; with the fixa-
tion point gone and two salient objects present, it takes effort not
to look at one of them. Second, because throughout training, the
subjects learn two separate rules, (1) that the offset of the fixation
point means “respond now!” and (2) that the correct choice is the
one matching the color of the fixation point. Rule 1 is learned first,
and if necessary, which is not always the case, it is practiced inde-
pendently of rule 2. And third, during the compelled-saccade task
subjects have a limited time window for making a valid response,
so a trial is scored as incorrect—and no reward is given—if the
RT is too long, regardless of the choice. It should be noted, how-
ever, that consistent with the first two points, such trials in which
the RT limit is exceeded are extremely rare (<2%). For a detailed
analysis of possible waiting strategies see Salinas et al. (2010).

Performance in the task is expected to decline toward chance
as a function of the gap, and indeed this is what happens, as illus-
trated with representative data from two monkeys (Figure 1B).
In contrast, RTs are expected to remain approximately—but not
exactly—constant, and this is also the case: mean RTs change by
less than 30 ms, or approximately 10%, while performance varies
between chance and near 100% correct (Figure 1C). In other
perceptual decision-making tasks, RTs often show comparable
variations of a few tens of milliseconds, although the difference
over the full performance range sometimes reaches hundreds of
milliseconds, or several fold (Wolfe, 1998; Ratcliff and Smith,
2004; Palmer et al., 2005; Reinagel, 2013a,b). The variation of
∼30 ms in mean RT seen in the compelled-saccade task is mod-
est, but more importantly, it and the systematic increase in the
spread of the RTs with gap (error bars in Figure 1C) can be fully
accounted for by a simple model; the key notion is that even
though the initial motor planning process is statistically the same

for all the gaps, the motor conflict is resolved sooner or later
depending on when the perceptual information arrives (more on
this below).

2.1. THE TACHOMETRIC CURVE
Although the gap is the main control parameter in the task, the
variable that fundamentally determines the probability of success
in each trial is the raw processing time, or rPT (Figure 1A), which
is the amount of time before the onset of the motor response dur-
ing which the color information is available to inform the choice.
It is important to stress that this theoretical limit to the maximum
amount of cue viewing time is a trial-specific quantity, which can
be easily computed via

rPT = RT− gap (1)

based on the gap and the RT recorded in each trial. Using this
equation we can determine how long the perceptual information
was available for guiding each saccadic choice. Furthermore, by
plotting the percentage of correct responses versus rPT we obtain
a “tachometric curve,” a curve that characterizes the perceptual
performance of a subject (Figure 1D).

This curve has a sigmoidal shape with parameters that are
readily interpretable in terms of psychophysical capacity. For the
data in Figure 1D, the saturation values are very near 100% cor-
rect, so the color information is fully exploited by the subjects
when they have enough time to view the cue. The center point
of the curve is the rPT at which the percent correct is halfway
between chance and the saturation value. It is an indication of
how much viewing time is necessary for perceptual information
to have a significant impact on performance. For the curves in
Figure 1D, the center points are 134 ± 2 ms for monkey S and
157 ± 2 ms for monkey G. Trials to the left of the center point
are mostly near chance performance and correspond predomi-
nantly to uninformed choices, or guesses, whereas trials to the
right of the center point correspond mostly to fully informed
choices. Finally, the steepness of the curve near the center point
provides a measure of the speed with which perceptual infor-
mation influences the choice once this information has begun
having an impact. For monkeys S and G, half of the performance
range (from 62.5% to 87.5% correct) is covered within 24± 2 ms
and 40 ± 2 ms, respectively, so the color discrimination unfolds
extremely rapidly once it gets going.

2.2. MULTIPLE MECHANISMS FOR GENERATING TRADE-OFFS
In principle, simultaneous variations in RT and percent correct
may result from changes in motor planning alone, in percep-
tion alone, or in both, and to distinguish these options it is
essential to have independent, quantifiable measures of their
impact on choice behavior. That is the key advantage of the
compelled-response approach, it provides independent assess-
ments of perceptual and motor performance in the tachometric
and chronometric (RT versus gap) curves, respectively. This is
illustrated in detail further below with data from two experi-
ments, but before discussing those, it is useful, first, to consider
some simplified examples, and second, to gain some mechanis-
tic intuition, via a heuristic model, about the ways in which
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perceptual and motor-planning processes interact when deci-
sions are made under time pressure. The three scenarios that
follow are meant simply to illustrate, based on the model, how
variations in the three psychophysical curves obtained in the
compelled-saccade task (Figures 1B–D) may relate to each other.

The speed-accuracy trade-off is often explained in terms of a
change in threshold (Reddi and Carpenter, 2000; Bogacz et al.,
2010; Hanks et al., 2011). That is, a motor response is triggered
after a “decision variable” reaches a particular value (Figure 2A),
and increasing that value produces both higher RTs and a higher
proportion of correct responses. This is because it takes longer
for the variable to go from baseline to threshold in each trial,
and a longer RT means more time during which the percep-
tual information can advance the decision variable in the correct
direction. Although our theoretical framework is somewhat dif-
ferent (and considers the threshold to be fixed; see below), in the
compelled-saccade task a change in threshold would have pre-
cisely the expected effects associated with a standard trade-off

(Figures 2B,C), but notably, it would have absolutely no impact
on the tachometric curve (Figure 2D). This is because, in contrast
to the psychometric and chronometric curves, the tachometric
curve is highly insensitive to the dynamics of the motor plan-
ning process. In essence, it reflects how soon (after the cue is
revealed) and how strongly the perceptual information modulates
motor activity that is already rising. In the context of this urgent
decision-making task, both the rising activity—which specifi-
cally represents a motor plan—and the threshold are properties
intrinsic to the motor circuitry, in agreement with neurophysio-
logical evidence (Costello et al., 2013 see also Hanes and Schall,
1996; Heitz and Schall, 2012). So, variations in threshold could
produce a standard trade-off between speed and accuracy in
the compelled-saccade task, but this mechanism would leave the
tachometric curve intact.

The response threshold is not the only quantity that may
be altered to produce a trade-off. In theory, varying the base-
line level of activity would be essentially equivalent (see Bogacz

FIGURE 2 | Changes in speed and accuracy generated by three distinct

mechanisms. All results are expectations based on model simulations of the
compelled-saccade task. (A) Schematic of a developing oculomotor plan.
A saccade is triggered shortly after motor-related activity (blue trace) reaches a
threshold (dotted lines). The threshold-crossing time, and thus the RT, varies
with the threshold value. (B–D) Model results. Variations in threshold produce a
standard speed-accuracy trade-off. As the threshold increases, both
performance (B) and mean RT (C) increase, but the tachometric curve (D) does
not change. (E) Schematic illustrating how threshold-crossing time varies with
the build-up rate of the motor plan. (F–H) Model results. Variations in mean
build-up rate also produce a trade-off. As the mean build-up rate decreases,

both performance (F) and mean RT (G) increase, whereas the tachometric
curve (H) changes minimally. (I) Schematic illustrating how threshold-crossing
time varies with the latency of the go signal. (J–L) Model results. Variations in
visual latency alone do not produce a trade-off. When the latency of the visual
stimuli (go signal and color cue) decreases, performance does not change (E),
but mean RT (F) decreases and the tachometric curve (G) shifts to the left,
indicating that perception informs the subject’s choices systematically sooner.
Results are from model simulations either with identical parameters as in
Figure 1 (for monkey S), or with a 25% increase or a 25% decrease in the value
of one parameter, either the threshold (B–D), the mean build-up rate of the
motor plans (F–H), or the latency of the visual information (J–L).
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et al., 2010). But beyond that, in the context of urgent-decision
tasks in which motor planning starts before perceptual analy-
sis, changes in the mean build-up rate of the developing motor
activity (Figure 2E) would produce qualitatively similar effects
(Figures 2F–H). The intuition is simple: when motor plans rise
more quickly, the excursion from baseline to threshold takes less
time and there is, consequently, less opportunity for the per-
ceptual information to influence those ongoing motor plans.
This case would again correspond to behavioral changes driven
exclusively by modulations in the dynamics of the motor circuitry.

Finally, consider another hypothetical scenario in which the
only difference between three conditions is in the latency with
which the visual stimuli, i.e., the go signal (Figure 2I) and the cue,
may start informing the motor plans. This latency could depend
on multiple factors, such as contrast or alertness, for instance,
but regardless of the cause, everything else being equal, a decrease
in visual latency would manifest in a very specific way: it would
decrease the mean RTs (Figure 2K), because effectively all afferent
delays would be shorter; it would produce a leftward shift of the
tachometric curve (Figure 2L), indicating that perception starts
guiding performance sooner relative to cue onset; and it would
have no effect on the observed percentage of correct responses
(Figure 2J), because the motor plans would still have the same
amount of time to rise before the arrival of the cue information
(stated differently, from the point of view of the motor plan-
ning circuit, the time elapsed between the arrival of the go signal
and the arrival of the color cue would not change). So, in this
case the RT would drop without a trade-off, and the underlying
mechanism would be purely sensory/perceptual.

Now, if the mechanisms illustrated in Figure 2 could be com-
bined arbitrarily, it would be possible to produce a range of
trade-offs with widely different magnitudes in terms of the ratio
of change in percent correct to change in RT. Also keep in mind
that, for simplicity, these effects were illustrated based on just
three parameters, saccade threshold, mean build-up rate, and
visual latency, but various other parameters of the motor and per-
ceptual circuits could serve to modulate performance. So, more
generally, different combinations of alterations in the intrinsic
dynamics of the motor plans and in the perceptual discrimina-
tion process could lead to large or small changes in RT coupled to
large or small changes in accuracy.

In conclusion, while overall it may still be true that increases in
performance are accompanied by increases in RT, and vice versa, a
trade-off may occur for very different reasons, and its magnitude
may vary enormously. As will be shown below, this is pre-
cisely what appears to be happening under realistic experimental
conditions.

3. A HEURISTIC MODELING FRAMEWORK FOR DESCRIBING
URGENT DECISIONS

This section presents a model that replicates the performance of
subjects in the compelled-saccade task and is consistent with the
neurophysiology of the underlying neural circuits. Although the
model and associated theoretical framework have been described
before (for details and parameter values see Salinas et al., 2010;
Shankar et al., 2011), they are important for interpreting the
experimental data relevant to the speed-accuracy trade-off that

are discussed below. We review key findings that establish the
model’s credibility.

The preparation for action in the context of the compelled-
saccade task can be viewed as a competition between two oppos-
ing motor plans that develop concurrently, racing to a threshold
for triggering a movement to one of the two potential target loca-
tions. The direction in which the eyes move is determined by
whichever plan reaches the threshold first, but crucially, when
perceptual information is available, it modulates the ongoing
plans to favor the correct choice. That is the essence of the “accel-
erated race-to-threshold” model (Salinas et al., 2010; Stanford
et al., 2010; Shankar et al., 2011). Such a model is useful because it
provides a quantitative, yet intuitive, link between the measured
psychophysical behavior and its neural basis.

The dynamics of the model are determined by two key
assumptions. (1) That the cue information accelerates the motor
plan developing toward the target and decelerates the plan devel-
oping toward the distracter. And (2), that in each trial, the
competing motor plans begin rising toward threshold shortly
after the go signal, with initial build-up rates drawn randomly
from a distribution. In this way, the outcome of any given trial
depends on when the cue information becomes available relative
to how advanced each of the developing oculomotor plans is at
that time, and notably, this interaction can take just five distinct
forms (Figures 3A–E).

In these examples (Figures 3A–E), a correct choice is produced
when the cyan motor plan wins the race. In all trials, the initial
build-up rates randomly favor one of the two potential targets,
and reflect the subject’s initial predisposition. So, when a saccade
is triggered before the cue information arrives (Figures 3D,E), the
result is an uninformed choice, i.e., a guess. Note that the prob-
ability of such a random outcome increases both for longer gap
durations and for higher initial build-up rates. In contrast, when
the cue information arrives early enough to guide the ongoing
motor plans, the result is an informed choice (Figures 3A–C).
However, the initial build-up rates still play an important role:
when the motor plan that is congruent with the target starts as
the leader, it curves upward slightly and triggers a correct sac-
cade with a short RT (Figure 3A), but when this target-related
plan lags behind, it starts out slowly and has more ground to
cover once the acceleration kicks in, so it takes longer to reach
threshold (Figure 3B). On such trials success also requires that the
distracter-related plan be decelerated, but if this leading plan is
sufficiently advanced, the influence of the cue information may be
insufficient to prevent it from reaching threshold and producing
an incorrect saccade (Figure 3C).

Thus, the mechanistic signature of the model is this: when the
motor activity evoked shortly after the go signal is intense and
strongly committed to one of the potential targets, the result is
typically an uninformed choice (with a short or negative rPT),
whereas when the initial motor activity is more moderate and less
biased, the later arriving perceptual information is more likely to
resolve the motor conflict in favor of the correct choice (with a
long rPT). We think that similar dynamics are, in general, the
underlying substrate of rapid perceptual decisions lasting just a
fraction of the RT (see Discussion; Cisek and Kalaska, 2010).
The accelerated race-to-threshold model, which instantiates these
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FIGURE 3 | The accelerated race-to-threshold model closely

reproduces psychophysical data in the compelled-saccade task.

(A–E) Simulated trials illustrating the five essential types of interaction
between competing motor plans. In each panel, two competing variables
represent oculomotor activity that triggers an eye movement either to
the right (cyan) or to the left (magenta). In these examples the target
is on the right, so races in which the cyan trace reaches threshold first
correspond to correct choices. The two variables start racing 75 ms
(afferent delay) after the go signal and a saccade is triggered 15 ms
(efferent delay) after threshold is crossed. Initial build-up rates are
drawn randomly in each trial. Gray shades indicate the time during

which the cue information is available to modulate the motor activity.
During informed choices (A–C, gap = 100 ms), the motor plan toward
the target accelerates (its build-up rate increases) and the plan toward
the distracter decelerates (its build-up rate decreases), whereas during
guesses (D,E, gap = 250 ms) the build-up rates do not change. (F)

Reaction time distributions in correct (cyan) and incorrect (magenta) trials
at specific gaps (indicated on upper left corners). Results are shown for
two monkeys, S (left) and G (right). In each plot, the black curves
correspond to model simulations. Vertical lines indicate the center point
of the tachometric curve of the corresponding monkey. Results are
based on the same experimental and simulated data as in Figure 1.

interactions quantitatively, is consistent with both psychophysical
and neurophysiological data, as discussed next.

3.1. ACCOUNTING FOR THE MICROSTRUCTURE OF BEHAVIOR
With the correct parameter values, the model can replicate a mon-
key’s psychometric, chronometric and tachometric curves very
accurately (Figures 1B–D, compare Data versus Model), but each
point in these curves aggregates many trials with motor competi-
tions (races) of different types (Figures 3A–E), so the three curves
provide a relatively coarse summary of the subject’s behavior.
Matching the full RT distributions for correct and error trials at
each individual gap (Figure 3F) is a much more stringent bench-
mark for any model (Salinas et al., 2010), because the shapes
of these distributions are directly related to the more limited
mixtures of race trajectories that occur at each gap.

For example, the distribution of RTs for correct responses, or
hits (Figure 3F, cyan histograms), clearly transitions from uni-
modal to bimodal. According to the accelerated race-to-threshold
model, this is because short gaps contain a large proportion
of fast informed decisions (Figure 3A), whereas long gaps con-
tain a mixture of correct guesses (Figure 3E) and slow informed
decisions (Figure 3B). Similarly, the distribution of RTs for
incorrect responses (Figure 3F, magenta histograms) contains
mostly wrong guesses (Figure 3D) and a small proportion of
informed choices that were nonetheless incorrect (Figure 3C),
which occupy the rightward tail of the histograms.

These combinations are easy to distinguish by noticing that the
rPT that corresponds to the center point of the tachometric curve
can be marked as a line in each plot (vertical lines in Figure 3F),
and that this line divides each RT distribution into two parts: the
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trials to the right are all informed choices, whereas the trials to the
left are, except for those very near the line, uninformed choices.
With this in mind, it becomes immediately obvious that correct
trials at short gaps are almost always informed (cyan histograms
in Figure 3F, top; RTs are predominantly to the right of the line),
whereas correct trials at long gaps are almost always lucky guesses
(cyan histograms in Figure 3F, bottom; RTs are predominantly to
the left of the line). This also explains why, when looking at the
correct responses going from long to short gaps, the peak to the
right of the line moves progressively to the left: as the perceptual
information arrives earlier and earlier, more and more trials that
would have otherwise ended up on the rightward tail of the distri-
bution are accelerated, resulting instead in short RTs. The position
of the line itself shifts to the left as the gap decreases because
rPT and RT differ precisely by the gap value (Equation 1), but
the center point of the tachometric curve remains a fixed num-
ber for each monkey—a number that, as mentioned earlier and
illustrated in Figure 3, is crucial for assessing the degree to which
perceptual information determines the outcome of each trial.

3.2. MODEL PARAMETERS AND THEIR INTERPRETATION
As implemented here, the accelerated race-to-threshold model
has 11 parameters that can be adjusted to fit the psychophysical
data of individual monkeys, as in Figure 3F (Salinas et al., 2010;
Shankar et al., 2011; Costello et al., 2013). Although this number
may seem large, the effect of any given parameter is quite limited;
each one affects the dynamics of the two competing motor plans
in a very specific way and has a well-defined neurophysiological
interpretation.

Three parameters describe the distribution from which the
initial build-up rates of the two motor plans are drawn in each
trial. A description based on three numbers, corresponding to
the mean, variance, and correlation of the build-up rates, is quite
minimal for a two-dimensional (joint) distribution.

Two parameters, one for the mean and another for the vari-
ance, determine the visual latency in each trial. This latency is
agnostic about the underlying causes (afferent delay, additional
visual processing stages, etc.); it simply describes when the rele-
vant visual information (go and cue) reaches the model circuit.
For the results presented here, we assume that the mean latencies
of the go signal and the color cue are the same, but this is not
necessarily the case in general.

Three parameters describe how perception alters the trajecto-
ries of the ongoing motor plans (as in Figures 3A,B); they specify
the magnitude of the acceleration and deceleration and how long
they last. Using fixed acceleration and deceleration coefficients
is the simplest possible way to describe motor plans that are
not perfectly straight, i.e., for which the build-up rates are not
constant.

One other parameter, the probability of confusion or lapse
rate, accounts for incorrect responses that occur at long process-
ing times and cannot be attributed to insufficient cue viewing
time. There are many possible reasons for such lapses; here they
are simply considered random events.

Finally, two additional parameters are included to replicate
a subtle but systematic feature seen in distributions of RTs
that are bimodal (as in Figure 3F, for 175–225 ms gap), a dip

that is slightly more pronounced than expected. This corre-
sponds closely to a phenomenon known as “saccadic inhibition”
that occurs when a distracting stimulus appears while a sac-
cade is already being programmed (Reingold and Stampe, 2002;
Buonocore and McIntosh, 2008, 2012; Bompas and Sumner,
2011). The race model accounts for this deviation via a brief inter-
ruption in the rise of the motor activity linked to the detection of
the cue. The two corresponding parameters determine the onset
and offset of the brief pause, and have a relatively minor impact
on other aspects of the data.

Thus, the model starts with a simple description of the motor
choice process and is augmented with a mechanism whereby
perception can guide it. So, is the model activity comparable
to saccade-related neural responses evoked during perceptually
driven choices?

3.3. LINKING BEHAVIOR AND NEUROPHYSIOLOGY
The accelerated race-to-threshold model provides excellent fits
to the RT distributions at fixed gaps for all the monkeys we
have trained in the compelled-saccade task (Shankar et al., 2011).
Although this is certainly reassuring, psychophysical data alone
cannot fully constrain or validate such a mechanistic model, even
if the fits were perfect; this is true not only for our model (Salinas
et al., 2010) but also in general (e.g., Ratcliff and Smith, 2004;
Brunton et al., 2013; Miller and Katz, 2013). However, the activity
of single neurons recorded in the frontal eye field (FEF) of behav-
ing monkeys is consistent with key, non-trivial predictions of the
model (Salinas et al., 2010; Stanford et al., 2010; Costello et al.,
2013), suggesting that, indeed, its basic layout is correct.

To generate specific predictions directly comparable to neu-
rophysiological data, the model was run with parameter values
that fitted the behavioral data of monkey S, and expected neural
responses (Figures 4B,C) were computed by averaging separately
the simulated motor plans obtained in short- and long-rPT tri-
als. The short- and long-rPT intervals were defined according to
the tachometric curve so that they would include chiefly guesses
and informed choices, respectively (Figure 4A, shaded areas). In
this way we could ask: how should the mean neural responses dif-
fer between correct, uninformed guesses and correct, informed
discriminations?

The answer to this question comprises essentially two predic-
tions about the relative amounts of activity for saccades in the
preferred (red) versus the antipreferred (green) direction of ocu-
lomotor neurons. First, during uninformed choices (short rPTs),
the motor plan into the movement field should demonstrate a
strong advantage shortly after the go signal (Figure 4B; arrows
on left column). This preference should be evident before the
cue is even presented (Figure 4B; middle column), and corre-
sponds to a heavily biased motor competition that is decided
well in advance of saccade onset (Figure 4B; right column).
Second, during informed choices (long rPTs), the two motor
plans should start building up more slowly and without a strong
bias (Figure 4C; arrow on left column). In fact, in this case the
expectation is somewhat counterintuitive: during the prolonged
period of motor ambivalence, the motor plan in the direction of
the target should, on average, lag behind the plan favoring the dis-
tracter (red traces below green), but ultimately the conflict must
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FIGURE 4 | Comparison between model and FEF neuronal responses.

The accelerated race-to-threshold model was simulated with parameters that
fitted the behavioral data of Money S, as in Figure 3, and the simulated
activity averaged across trials was compared to that recorded from
motor-related neurons in FEF. (A) Simulated tachometric curve. Gray shades
indicate ranges used to sort the simulated trials into short- (left shade,
guesses) and long-rPT (right shade, informed choices) groups. (B,C) Average
model responses for short- (B) and long-rPT (C) trials aligned either on the go
signal (left column), the cue (middle column), or saccade onset (right column).

All data are from correct responses. Separate averages were calculated for
choices in the preferred (red traces) and antipreferred (green traces) direction
of the model neurons. (D–F) As in A–C, but for 45 FEF neurons (motor and
visuomotor) that differentiated significantly between movements into and
away from the movement field before the saccade. Shaded areas indicate ±1
SE across neurons. In all plots, the y axis corresponds to normalized firing
rate. Blue arrows mark key differences in evoked activity during guesses
versus informed choices. See Costello et al. (2013) for details about the
experimental data and modeling methods.

be resolved in favor of the correct choice. The reason for this
effect is that, as discussed earlier, correct choices with long rPTs
often correspond to trials in which the target-related motor plan
is initially weak (Figure 3B), so a similar pattern emerges when
averaging over multiple trials (Figure 4C).

The mean evoked responses of FEF neurons (motor and visuo-
motor) with significant movement-related activity were generally
in excellent agreement with the expectations based on the model
(Stanford et al., 2010; Costello et al., 2013). In particular, during
informed choices, there was, indeed, a prolonged period of motor
conflict during which the plan in favor of the distracter showed
a slight initial advantage (Figure 4F), whereas no ambiguity was
seen during correct guesses (Figure 4E). Observed differences
between correct and incorrect responses were also in agreement
with the model (Costello et al., 2013). Finally, to compare the
model and recorded responses quantitatively, mean traces were
calculated and analyzed as continuous functions of rPT via a
sliding window, and the ensuing results led to two additional con-
clusions: (1) that the motor plans favoring the target and the
distracter do accelerate and decelerate, respectively, and (2) that
the acceleration and deceleration vary as functions of cue viewing
time (rPT) as expected given the center point of the tachometric
curve (Stanford et al., 2010; Costello et al., 2013).

These results are extremely important because they
support the two fundamental elements of the accelerated
race-to-threshold model. First, that in the compelled-saccade
task, ongoing motor plans are modulated by perceptual
information if and when that information becomes available

to the motor circuitry, but a motor choice is made either with
(informed) or without it (uninformed). And second, that in spite
of a profound impact on behavioral performance, the effect of
perception on neural activity is rather subtle, particularly for
eye movements into the receptive field of the neurons, because
acceleration manifests as a slight difference in the curvature
of the motor plan as it rises to threshold (Figures 4E,F, right
column; compare red traces). Note that it did not have to be
this way, as the psychophysical data alone can be replicated very
accurately by a model based on completely different assumptions
and dynamics (Salinas et al., 2010).

4. A TRADE-OFF DRIVEN BY MOTIVATIONAL BIAS
The tachometric curve is highly sensitive to task manipulations
(Shankar et al., 2011; Hauser et al., 2013). Thus, many effects—for
instance, subtle changes in performance due to perceptual learn-
ing (Shankar et al., 2011)—are clearly seen that would normally
be impossible to resolve from the raw chronometric and psycho-
metric data. In this section and the next we exploit this to discern,
from the results of two experiments, the possible underlying
mechanisms whereby speed and accuracy may be traded.

The first experiment consisted of a variant of the compelled-
saccade task in which the monkey knew at the beginning of each
trial whether a large or a small reward was at stake (all details are
described by Shankar et al., 2011). The color of the target con-
veyed this information, and the association between color and
reward amount was kept constant for blocks of 150–250 trials. So,
during a block, correct movements to the red target would yield
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a higher reward than correct movements to the green target, but
the high- and low-reward colors were reversed in the next block.
Here, because the color of the fixation spot indicates the color
of the target, in each trial the subject knows how much reward
can be gained, but that is all: given that target color and tar-
get location vary randomly and independently across trials, this
knowledge provides no objective advantage, although it should
affect the subject’s motivation to perform the task correctly.

Comparison of responses in the high- and low-reward con-
ditions revealed what appeared to be a classic trade-off between
speed and accuracy. When working for a large reward (high incen-
tive), on average the monkeys performed better (Figures 5A,F)
and responded more slowly (Figures 5B,G) than when a small
reward was at stake (low incentive). Both effects were relatively
moderate in absolute terms, but the gain of the trade-off was
high: an increase in performance of roughly 10% was accom-
panied by an increase in RT on the order of 10 ms—a change
in RT that is quite small as a fraction of its mean value (∼4%).
So, based on these data alone, it would seem that the increase in
performance incurred a very small cost in RT, and that the sys-
tem is such that a small flexibility in RT affords a large benefit in
success rate. Interpreted in terms of the two motor mechanisms
discussed earlier, this would mean that a tiny increase in thresh-
old (Figures 2A–D) or a tiny decrease in the mean build-up rates

(Figures 2E–H) would allow the sensory information to have a
considerably stronger influence on the outcome of each trial.

However, analysis of the data in terms of processing time paints
a much more nuanced picture in which both motor and percep-
tual mechanisms vary across conditions. In trials in which a high
reward was at stake, the tachometric curves of monkeys G and R
(Figures 5D,I) shifted to the left by about 30 and 20 ms, respec-
tively, relative to when a low reward was at stake. This suggests
that the decision-making process itself starts sooner or advances
more rapidly when the incentive to perform accurately is high.
By fitting the empirical tachometric curves to continuous func-
tions (Figures 5D,I, thin black lines) and applying resampling
techniques to estimate the likely error in these fits (Figures 5E,J),
we found that the shifts were very highly significant (Shankar
et al., 2011). A leftward shift, however, does not necessarily imply
a higher percentage of correct responses, as illustrated earlier
(Figure 2J), and would likely be accompanied by lower RTs too
(Figure 2K), the opposite of the observed effect. So why the
discrepancy?

Intuitively, the answer is that at least two mechanisms must
be at work across conditions, given that the chronometric and
tachometric curves are highly independent. A faster onset of the
perceptual process could account for the leftward shift of the
tachometric curve, a slow-down in motor activity could account

FIGURE 5 | Psychophysical performance of two monkeys in a motivational

bias experiment. At the beginning of each trial of the compelled-saccade task,
the monkey knew whether a correct response would result in a small or a large
reward. The shown data were sorted post hoc according to the reward that was
at stake in each trial, as indicated. (A–C) Summary statistics for monkey G.
When a high reward (purple) rather than a low reward (orange) was at stake, the
overall success rate (A) and mean RT (B) increased, and the tachometric curve
shifted to the left (C), indicating an earlier onset of the perceptual discrimination.
Error bars indicate±1 SE. (D) Tachometric curves from monkey G. Fitted
Weibull functions (black curves) are shown together with the experimental data

(colored traces). A vertical dotted line marks the center point of each curve
(indicated in C) derived from the fit, i.e., the time point at which the percent
correct is halfway between chance and the maximum value. (E) Joint
distributions of center points and rise times obtained from bootstrapping and
re-fitting of monkey G’s data, based on 2000 resamplings. The rise time is the
time that it would take for the curve to go from 50% to 100% correct if its slope
were always equal to the slope at the center point. Crosses mark the values of
the original fits shown in (D). Histograms at the top and on the right show the
corresponding marginal distributions. (F–J) As in (A–E) but for monkey R. See
Shankar et al. (2011) for details about experimental and statistical methods.
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for the increase in performance, and the net effect on RT could be
a combination of both.

The accelerated race-to-threshold model confirmed this intu-
ition quantitatively. The model reproduced all the observed
effects very accurately, and although this required modifying all
of its parameters to various degrees across the two conditions,
notably, these parameter differences were qualitatively the same
for three monkeys. As discussed earlier, some of the parameters
in the model relate fundamentally to perceptual processing and
the tachometric curve (e.g., visual latency; magnitude of accelera-
tion/deceleration), whereas others impact the initial motor plans
only (e.g., mean and variance of the initial build-up rates). To
tease apart their individual contributions to the observed exper-
imental results (Figure 5), we first ran the model that fitted the
low-reward condition and then compared the results to those of
additional runs in which only selected parameters were modified
as required to fit the high-reward condition.

The results were clear: although all parameters changed
across conditions and had some impact, the experimental data
could be largely explained by the two mechanisms illustrated in
Figures 2E–L acting simultaneously. Specifically, according to the
model, motor activity developed considerably more slowly dur-
ing high- than low-reward trials. This slow-down accounted for
virtually the full increase in the percentage of correct responses,
and in the case of monkey G, if acting alone it would have yielded
an increase in mean RT of ∼35 ms. This tendency, however, was
largely offset by a smaller value of the visual latency parame-
ter that determines when the go signal and the color cue start
informing the motor circuit. This change explained most of the
shift of the tachometric curve and, by itself, would have pro-
duced a drop in mean RT of ∼30 ms. So, motor and perceptual
mechanisms exerted independent effects on accuracy but oppos-
ing effects on speed. As a consequence, the net change in RT
produced by the model, with the contributions of all parameters
taken into consideration, was relatively small, ∼10 ms, the same
as found experimentally.

This simple computational dissection indicates (1) that multi-
ple, distinct neural mechanisms are required to simultaneously
explain all the experimental findings in the motivation exper-
iment, and (2) that the coincident changes measured in
speed (RT) and accuracy (percent correct) do not reflect
a single, fundamental trade-off, but rather the combined
action of cognitive factors on separate motor and perceptual
processes.

Additional experimental observations supported these con-
clusions. For instance, note that the maximum percent correct
reached by the tachometric curves (Figures 5D,I) was not the
same in the two conditions. This means that, during trials in
which a large reward was on offer, the monkeys rarely made a
mistake when provided ample time to discriminate target from
distracter, whereas in trials in which the potential reward was
small, the monkeys made many more “careless” mistakes, errors
that could not be attributed to insufficient viewing time. The fre-
quency with which such errors occur is captured by one model
parameter, the lapse rate, and when target and distracter are
easily discriminable, as in the experiment, its effect is rather
unique—it cannot be reproduced or even approximated by other

combinations of parameters—which suggests that it involves yet
another mechanism that is distinct from those discussed above.

Therefore, to restate the main conclusion of this experiment,
motivation affects choice behavior by simultaneously altering
speed and accuracy, and there is good reason to believe that the
cognitive signals that mediate these effects are diverse and exert
at least partially independent control over motor and perceptual
processes (see Discussion). This suggests that, in general, one-
parameter descriptions of the speed-accuracy trade-off are likely
to be oversimplifications, and should be interpreted with great
caution.

5. A TRADE-OFF DRIVEN BY SPATIAL BIAS
Next, we consider a second experiment with asymmetric rewards
in the compelled-saccade task. It provides an interesting coun-
terpoint to that in the previous section because it shows that
the same motor and perceptual mechanisms may be engaged
quite differently across tasks, giving rise to stronger or weaker
trade-offs.

In this case, the monkeys received a large reward following
correct saccades to one side and a small reward following cor-
rect saccades to the other (all details are described by Stanford
et al., 2010). As a consequence, they developed a spatial bias,
a strong tendency to respond more often to one side than the
other. On average, the two animals that participated in this
experiment chose the high-reward side about 76% of the time
(but this number understates the strength of the preference; see
below). The high-reward side, left or right, was kept constant
during a block of 150–250 trials and was then switched. As
always, target colors and locations were randomly interleaved.
The collected data were then sorted according to the subject’s
choices; that is, trials were partitioned into two groups, those that
resulted in movements in the preferred (high-reward) direction,
and those that resulted in movements in the non-preferred (low-
reward) direction. These two data subsets were then analyzed
separately.

The behavior of the animals was strikingly different for the
two types of choice. Responses in the preferred direction were
much more prone to errors than those in the non-preferred
direction (Figures 6A,F), and were also initiated much sooner
(Figures 6B,G). In other words, the spatial bias induced a trade-
off between speed and accuracy across conditions whereby an
increase in performance of approximately 20% was accompanied
by an increase in RT of 25 or 48 ms, depending on the subject.
This behavior can be intuitively understood as follows: the high-
reward side is chosen by default, so many choices toward that
side are incorrect; in contrast, the low-reward side is chosen only
if there is little uncertainty that the target is actually there, but
this happens only when the red and green spots are discriminated
accurately, i.e., when the rPT (and thus the RT) is long. This can
be seen quantitatively by plotting the fraction of choices made
to the low-reward side as a function of rPT (Figures 6E,J). The
resulting choice curve rises quite sharply, so the monkey’s pref-
erence is indeed dictated by the amount of cue viewing time.
This curve also shows that, in the absence of sensory evidence
(rPT �100 ms), the monkey’s guess is to the high-reward side
between 80% and 90% of the time.
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FIGURE 6 | Psychophysical performance in a spatial bias experiment.

Correct choices to one side yielded a higher reward than correct choices to the
other side. Data are shown sorted according to the subject’s choices, either to
the preferred (high-reward, blue) or the non-preferred (low-reward, green) side,
as indicated. (A–C) Summary statistics for monkey S. When the preferred
rather than the non-preferred side was chosen, the overall success rate (A) and
mean RT (B) decreased substantially, and the tachometric curve shifted slightly
to the right (C). Error bars indicate±1 SE. (D) Tachometric curves from monkey
S. Fitted Weibull functions (black curves) are shown together with the

experimental data (colored traces). Vertical dotted lines mark the center points
of the curves (indicated in C) derived from the fits. (E) Percentage of choices to
the non-preferred side as a function of rPT. As in (D), dotted lines mark the
center points of the tachometric curves. Gray shades indicate±1 SE based on
binomial statistics. (F–J) As in (A–E) but for monkey G. (K–O) As in (A–E) but for
simulated responses. Model data were generated with the same parameters
as in Figure 4, except that the higher of the two initial build-up rates was
assigned to the preferred side in 90% of the trials (instead of the standard
50%). See Stanford et al. (2010) for experimental details.

In general, the effects on speed and accuracy
(Figures 6A,B,F,G) were considerably larger than in the
motivational bias experiment (Figures 5A,B,F,G). Interestingly,
however, although the main effect on the tachometric curve in
this case was again a leftward shift congruent with the condi-
tion with higher overall performance (Figures 6C,D,H,I), the
magnitude of the shift was smaller than in the motivational bias
experiment (Figures 5C,D,H,I). This suggests that the perceptual
process itself was affected less by the spatial bias than by the
motivational bias, and therefore, that the observed trade-off
in the former case may be accounted for almost entirely by an
internal adjustment in motor planning alone. Indeed, that is
precisely what a more thorough analysis of the data showed.

Again we used the accelerated race-to-threshold model to esti-
mate the contributions of different mechanisms to the biases

found empirically. However, instead of discussing the full model
fits to the psychophysical data, which involve numerous param-
eter differences across conditions, in this case we discuss a much
simpler manipulation that illustrates the main result more plainly.
It goes as follows. First we simulated N trials of the model with
a fixed set of parameters. This set was exactly the same one
used earlier to reproduce the behavior of monkey S (Figure 3F);
everything was balanced, unbiased. Then we divided the simu-
lated trials into two groups with approximately N/2 trials each:
one group included all the trials in which the motor plan to
the right had led initially, before the cue information was pre-
sented, and the other group included all other trials, in which the
plan to the left had drawn a higher initial build-up rate. For this,
trial outcome was irrelevant; only the initial build-up rates were
considered. Next, we designated the right side as the preferred,

www.frontiersin.org April 2014 | Volume 8 | Article 85 | 64

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Salinas et al. Speed and accuracy decoupled

highly-rewarded side, and threw away 89% of the trials in the
second group, in which the non-preferred (left) plan had led ini-
tially. Finally, we merged the remaining simulated trials back into
a single data set, erased the information about which plan led ini-
tially, and analyzed them exactly as if they had been collected in
the experiment. With this method, we produced a biased data set
without changing the influence of the perceptual information or
the dynamics of the motor plans at all; all we did was create a
hypothetical subject, just like monkey S, that made 90% of its
initial guesses toward a preferred side (combining N/2 preferred
guesses with 0.11× N/2 non-preferred guesses makes the former
90% of the total).

When the synthetic trials thus generated were sorted accord-
ing to choice, as was done with the monkey data, the results
qualitatively mimicked all the effects found experimentally:
choices in the preferred direction were less accurate (Figure 6K)
and faster (Figure 6L), the probability of making a non-
preferred choice varied sharply as a function of rPT (Figure 6O),
and the tachometric curves derived from preferred and non-
preferred choices were slightly shifted relative to each other
(Figures 6M,N). The underlying reason why such large differ-
ences emerged is that, by selecting trials based on the direc-
tion of the leading motor plan, the proportions of the five
basic types of motor competition (Figures 3A–E) became dras-
tically different for the two possible choices. Such proportions
alone have an enormous impact on the average RT and suc-
cess rate, even when the dynamics remain identical within
each type of race. So, all the relevant differences between
preferred and non-preferred choices—and in particular the
bulk of the speed-accuracy trade-off—can be explained by a
simple asymmetry in the way the motor plans are initially
deployed.

This is not to say that other properties of the motor plans
or of the perceptual process that informs them remained per-
fectly intact. In fact, there are hints that they did not. One is that
the maximum percent correct was significantly different for the
two tachometric curves of monkey G (Figure 6I), and another
is that the shifts seen in the real data were larger than that in
the simulation (Figures 6D,I,N). Additional adjustments to the
parameters of the model would be required to account for these
effects. However, these discrepancies are relatively small and do
not affect the main conclusion, which is that in the spatial bias
experiment the trade-off is larger than in the motivational bias
experiment and depends predominantly on the way the motor
plans for the two choices are deployed at the beginning of each
trial.

Perhaps somewhat counterintuitively, these results also imply
that average RTs may decrease in one condition relative to another
without any explicit slow-down of the motor circuitry. If this cir-
cuitry naturally produces a wide distribution of RTs, then the
apparent difference in response speed may result simply because
one condition samples more fast and fewer slow trials than
the other. In this sense, a change in response speed may not
necessarily reflect a change in dynamics.

Taken together, the results reviewed in this and the previ-
ous section indicate that the individual contributions of motor
and perceptual mechanisms to a given, experimentally observed

trade-off may vary widely depending on the particular circum-
stances of an experiment.

6. BROADER IMPLICATIONS
Here we have reviewed behavioral, neurophysiological and mod-
eling results in an urgent decision-making task in which inde-
pendent, quantitative measures of motor and perceptual capacity
(chronometric and tachometric curves) can be obtained. Based
on this unique dissociation, we investigated how motor and per-
ceptual mechanisms interact to determine a subject’s response
speed (RT) and accuracy (percentage of correct choices). In other
words, we were able to decouple these quantities and investigate
the potential sources of their trade-off.

Based on a combination of behavioral and neurophysiologi-
cal constraints, the accelerated race-to-threshold model provides
a parsimonious description of how perceptual information may
resolve an ongoing motor selection process during relatively rapid
choices. This heuristic model is key because it lets us evaluate the
functional roles that meaningful neural elements or features play
in the choice process. It shows, for instance, that the build-up
rates with which competing motor plans are deployed initially,
before perceptual information arrives, are absolutely critical in
determining the fate of any given task trial (Figure 4, see arrows
Salinas et al., 2010; Shankar et al., 2011). Likewise, the tachome-
tric curve demonstrates that the response latencies—neuronal,
not behavioral—to the go signal and the cue are much more
flexible than one might have expected (Figures 5D,I), and the
model serves to evaluate quantitatively the consequences of this
(Figures 2I–L; see also Salinas and Stanford, 2013). Of course,
other neural parameters may be important too; the point is simply
that many specific properties of perceptual and motor-planning
circuits may be quantitatively related to simultaneous changes in
speed and accuracy.

When seen under the light of this framework, the experimental
results obtained in the two biased versions of the compelled-
saccade task lead to three conclusions: (1) that both motor and
perceptual mechanisms may contribute to an observed trade-off,
(2) that each of these mechanisms may weigh in more or less
heavily, depending on the particulars of the task, and (3) that, as
a consequence, small or large trade-offs may result from various
combinations of motor and perceptual contributions.

This would also explain why, under certain circumstances, it
is possible to observe a decrease in RT and/or an increase in
accuracy with no apparent trade-off (Bendiksby and Platt, 2006;
Takikawa et al., 2002). Other studies are also consistent with an
intricate, fluid link between perception and action (Battaglia and
Schrater, 2007; Cardoso-Leite and Gorea, 2010; Simoncini et al.,
2012; see below).

6.1. LIFE WITHOUT THE TACHOMETRIC CURVE
It is interesting to ponder how the two bias experiments
would be interpreted without the tachometric curve. In the
case of the motivational bias, the trade-off would seem small
(Figures 5A,B,F,G), and there would be no reason to think that
the perceptual evaluation itself would or should change from
one condition to another. The results could be explained as a
small increase in a response criterion leading to slightly better
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performance and slighlty higher RTs. Instead, the tachomet-
ric curve reveals significant changes in perceptual performance
(Figures 5D,I), and it is only because of the model that those
changes can be reconciled with the relatively small observed
trade-off, and that a rather substantial adjustment in motor
planning can be inferred.

In the spatial bias experiment the speed-accuracy trade-off
is large and evident (Figures 6A,B,F,G), but without the tacho-
metric curve it again would be virtually impossible to ascertain
whether or not changes in perception are involved—such changes
are there (Figures 6D,I), but are noticeably smaller and less
important in proportion to the magnitude of the trade-off in this
case. Furthermore, the choice curve (Figures 6E,J) and the model
(Figures 6K–O) provide a clear and parsimonious account of the
results: the subjects’ strategy is to almost always make an initial
guess toward the preferred side, and override that initial plan only
when the perceptual evidence against it arrives early enough and
is strong enough. Without this insight, which depends critically
on the distinction between RT and rPT, it would be very diffi-
cult to understand why, at a given gap, the subjects choose the
low-reward side on some trials but not on others.

Interestingly, if the goal of the internal circuitry is to imple-
ment said strategy, then the observed trade-off may be a plain
byproduct of the implementation, because the results can be
largely accounted for simply by appropriately redistributing sim-
ulated trials across conditions, without altering any parameters or
interactions in the model. In other words, the internal circuitry
may not be directly attempting to find an optimal compromise
in the exchange of RT for percent correct; rather, the observed
exchange may be an inevitable consequence of a different trade-
off, that between the possibility of a large reward versus the
certainty of a small one.

6.2. UBIQUITY OF FAST DECISIONS
A few other tasks used in past studies compel participants to make
a response before the correct answer is fully specified (Schouten
and Bekker, 1967; Becker and Jürgens, 1979; Ghez et al., 1989;
Hening et al., 1998; Chapman et al., 2010; Wood et al., 2011). In
particular, the countermanding or stop-signal task is very similar
to our compelled-saccade task, except for two main differences: it
is a go/no-go task, and the relevant sensory evaluation is a detec-
tion rather than a discrimination—but notably, a tachometric
curve can be constructed in this case too (Salinas and Stanford,
2013). Numerous experimental manipulations of the counter-
manding task have led to simultaneous changes in RT and percent
correct (Cabel et al., 2000; Cavina-Pratesi et al., 2001; Ramautar
et al., 2004; Emeric et al., 2007; Stevenson et al., 2009; Leotti
and Wager, 2010), and modeling work indicates that, in differ-
ent experiments, the observed trade-off may result either from
adjustments in motor planning alone, in the perceptual detec-
tion process alone, or in both (Salinas and Stanford, 2013). The
parallels with the experiments reviewed here are striking. For
instance, variations in response latency associated with the detec-
tion of the saccadic target and the stop signal seem to be major
determinants of perceptual performance. Overall, the spectrum of
potential speed-accuracy trade-offs in the countermanding task
is just as wide as illustrated here, if not wider, in terms of their

magnitude and variety of underlying neural mechanisms (Salinas
and Stanford, 2013).

These results notwithstanding, how general are the conclu-
sions presented here? Perhaps compelled-response tasks put sub-
jects in an unnatural setting in which the mechanisms that control
speed and accuracy are engaged in rather anomalous ways. To the
contrary, we think that compelled tasks are good models for many
real-life situations in which choices are made quickly (see Uchida
et al., 2006).

For instance, eye movements (2–3/s) show similar distribu-
tions of fixation times and intersaccadic intervals under a wide
variety of viewing conditions (Berg et al., 2009; Castelhano et al.,
2009), which suggests that they are normally programmed con-
tinuously, without waiting for particular perceptual events to
happen (McPeek et al., 2000; Hafed and Ignashchenkova, 2013).
Furthermore, the ability to quickly modify ongoing motor plans is
essential in situations that demand extreme performance, such as
high-speed chases (Ghose et al., 2006, 2009). Competitive sports
provide many familiar examples too. To return a tennis serve,
hit a curveball, or stop a penalty, movements must be prepared
early and the corresponding motor plans must take into account
relevant perceptual information as soon as it becomes available
(Abernethy, 1990; Land and McLeod, 2000; Yarrow et al., 2009).
Interestingly, athletic skill may be thought of as an unusually weak
speed-accuracy trade-off, in that a professional squash player can
strike the ball both faster and more accurately than a beginner,
and there is evidence that when the skill level achieved is excep-
tional, it is so in both perceptual and motor domains (Yarrow
et al., 2009).

In this respect, note that the “urgency” of the compelled-
saccade task refers to the perceptual analysis process rather
than to motor execution. The saccadic RTs obtained in the task
(Figure 1C) are well within the normal range for choice behav-
iors (e.g., DiCarlo and Maunsell, 2005; Berg et al., 2009); it is the
color discrimination that is time-limited. For a participant, the
decision is urgent in the same way as for a batter trying to hit
a baseball: there is ample time to perform a required movement
(a saccade or a swing), but very little time to make the relevant
judgment (red/green or curveball/fastball) and inform the ongo-
ing motor plan so that the movement is correct. In contrast, by
specifically requiring that subjects remain still while the critical
sensory information is displayed, the majority of laboratory tasks
used to study perceptual decision making abolish this temporal
conflict, both in fixed-duration and RT paradigms. This, however,
makes it extremely difficult to determine when the perceptual dis-
crimination finishes and when the motor plans start (e.g., Kiani
et al., 2008; Port and Wurtz, 2009; Zariwala et al., 2013)—and
thus to attribute a given change in mean RT to either of these
events.

6.3. URGENT VERSUS NON-URGENT DECISIONS
The distinction between urgent and non-urgent tasks parallels a
broad conceptual division in the ways in which sensory, cognitive
and motor circuits may interact to carry out goal-directed actions
or choices. In one scenario, they operate in a strictly serial fash-
ion whereby perceptual analysis needs to reach a conclusion first,
before the motor selection process can begin. In the alternative
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scenario, the simultaneous activation of multiple uninformed
motor plans marks the start of the choice process, and the com-
petition is subsequently guided by perceptual information on the
fly, if and whenever it becomes available. Each of these possi-
bilities is likely to apply under certain circumstances. Cisek and
Kalaska (2010), Cisek (2012) and Padoa-Schioppa (2011) discuss
this issue at length. Here, we make two observations about this
distinction in regard to our results.

First, we note that the former, serial account is incompati-
ble with the compelled-saccade task (Salinas et al., 2010), but
beyond that, one could argue that, for time scales below roughly
1000 ms, the idea of sequentially ordered perceptual and motor
stages is inconsistent even with results from ostensibly serial deci-
sion tasks. This can be appreciated in two limit cases in which
the trade-off between speed and accuracy essentially disappears.
At one extreme, performance in many tasks does not benefit
from prolonged deliberation times beyond 250–300 ms (Uchida
et al., 2006), so that the optimal behavior is to respond rapidly
(within <300 ms) regardless of difficulty. This is precisely what
Mainen and colleagues found in an odor categorization task in
rats (Zariwala et al., 2013). At the other extreme, note that the
rise in choice-related firing activity is often interpreted as a pure
accumulation of sensory evidence (Gold and Shadlen, 2001), but
the notion that sensory evidence must achieve a critical thresh-
old before the effector system is engaged is difficult to reconcile
with choices made on the basis of little or no sensory evidence.
Consider, for instance, the zero-coherence trials in the random-
dot motion discrimination task (Shadlen and Newsome, 2001);
what drives choice commitment when the sensory input to be
integrated consists exclusively of noise? A choice under such con-
dition is typically framed and modeled as the result of a lower
threshold or collapsed decision bound wherein the evidence cri-
terion is relaxed so that less (or no) sensory evidence is required
to engage the motor circuitry (Ditterich, 2006; Beck et al., 2008;
Hanks et al., 2011). But this is essentially a matter of interpreta-
tion: a collapsing decision bound is functionally equivalent to an
increasing motor plan or urgency signal (Cisek et al., 2009; Thura
et al., 2012). So, viewed from a different perspective, the “percep-
tual threshold” can be interpreted as the point in time at which
a commitment to a motor choice curtails the evidence accumu-
lation phase that had been informing the emerging motor plan
to that point. Importantly, current neurophysiological evidence
(Hanes and Schall, 1996; Heitz and Schall, 2012; see also Hayden
et al., 2011) indicates that there is indeed such thing as thresh-
old crossing, at least for saccadic choices, but it is a decidedly
motor event. Furthermore, as the choice-related activity rises, its
level relative to threshold is directly related to the degree of motor
commitment (Gold and Shadlen, 2000).

Second, several studies within the latter camp, which considers
the scheduling of motor actions to be independent of perceptual
events, resonate particularly well with our approach. In particular,
Goodale and colleagues studied the hand trajectories that result
when humans perform a compelled-reaching task (Chapman
et al., 2010; Wood et al., 2011). Participants were obliged to begin
execution of a pointing movement toward one of various stim-
uli, but information identifying the true target was released only
after the onset of the reach. The characteristic spatial patterns that

resulted indicated that, initially, multiple reaching plans toward
various potential targets develop in parallel, with the initial move-
ment direction reflecting an underlying vector-averaging opera-
tion; the final movement direction is disambiguated later, when
the true target is revealed. Interestingly, they also found that stim-
uli of greater salience (through greater contrast or pixel density)
confers greater initial weight to their corresponding motor plans,
even when such saliency is unlikely to signal the true target loca-
tion (Wood et al., 2011; see also Schütz et al., 2012). Notably,
this pop-out effect went away when participants were allowed
to briefly view the stimulus cue before initiating the reach. This
means that motor plans associated with salient stimuli are acti-
vated more strongly, but unless the observer has reason to believe
that a stimulus is important beyond its perceptual salience, this
increased weight dwindles rapidly. So, perceptual information
continuously modulates ongoing motor plans, likely via multiple
pathways (e.g., bottom-up versus top-down).

In agreement with the aforementioned findings in FEF
(Stanford et al., 2010; Costello et al., 2013), this conclusion is
highly consistent with analyses of single-neuron activity recorded
in the parietal reach region of monkeys, which show (1) that com-
peting motor plans are initially activated when multiple reach
targets are presented and a choice needs to be made (Scherberger
and Andersen, 2007), and (2) that the motor conflict is resolved
either spontaneously or once the relevant cue information is pro-
vided (Klaes et al., 2011). Similar ideas have also been advocated
by Cisek and colleagues based on recordings from premotor areas
(Cisek and Kalaska, 2005; Pastor-Bernier and Cisek, 2011), giv-
ing rise to a powerful modeling framework, the “urgency-gating
model” (Cisek, 2006; Cisek et al., 2009; Thura et al., 2012), that
is similar in spirit to our accelerated race-to-threshold model (see
Costello et al., 2013).

These findings demonstrate that, during rapid choices, percep-
tual and motor planning processes overlap extensively in time and
are likely to contribute jointly to RT and accuracy under many
circumstances. Their interaction is evident even in the absence
of motor competition, when the upcoming movement is certain
(Buonocore and McIntosh, 2008, 2012; Welchman et al., 2010;
Bompas and Sumner, 2011). As a consequence, pinpointing the
mechanisms that give rise to an observed trade-off is likely to be
exceedingly difficult in general—unless additional experimental
constraints independent of RT and percent correct are available.

6.4. BACK TO THE FUTURE: A HISTORICAL NOTE
The existence of a speed-accuracy trade-off has been acknowl-
edged for many years (Woodworth, 1899; Hick, 1952), and it once
was considered to have “great potential to advance all areas of
cognitive psychology” (Wickelgren, 1977).

In 1977, Wickelgren passionately argued that generating
speed-accuracy functions—the curves obtained by plotting the
percentage of correct responses versus RT—would be vastly supe-
rior to simply evaluating RT and performance in single, indepen-
dent experiments. He reasoned that a prototypical speed-accuracy
curve would have three essential components: (1) an initial delay
period during which performance would be at chance, (2) a ceil-
ing value reached at long RTs beyond which performance could
not increase further, and (3) a steep rise in performance around

Frontiers in Neuroscience | Decision Neuroscience April 2014 | Volume 8 | Article 85 | 67

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Salinas et al. Speed and accuracy decoupled

FIGURE 7 | Speed-accuracy curves in the compelled-saccade task.

(A) Percentage of correct responses as a function of RT for monkeys S (left)
and G (right), computed from the same experimental data shown in
Figure 1. Trials were sorted according to RT, regardless of gap, using bins
with a 40 ms width sliding in steps of 2 ms. Gray shades indicate ±1 SE
based on binomial statistics. (B) RT distributions for correct (blue) and
incorrect (magenta) choices for each monkey, based on the same bins
used in (A).

a short window of RTs. All three features would be informa-
tive and potentially interpretable in terms of separate cognitive
mechanisms. Wickelgren (1977) further distinguished two ways
to create such a curve, both potentially useful. One version used
the “macro-trade-off,” which is what commonly results when
experimental manipulations are introduced (i.e., via deadlines,
asymmetric payoffs, instructions emphasizing speed or accuracy,
etc.); the other version used the “micro-trade-off,” which is seen
by the post hoc partitioning of RTs from a single experiment into
small bands for analysis. Building on the work of Pachella (1974),
Wickelgren suggested that internal variations in response criteria
due to arousal, attention, and other covert factors creates variabil-
ity within the RT distribution that macro-plots might not account
for, but that would manifest in the micro-curves.

These ideas faded somewhat (but see, e.g., Giordano et al.,
2009), most likely, we suspect, because the shapes of the speed-
accuracy curves obtained experimentally were not stereotypical,
as was hoped initially, nor consistent across experiments. For
example, when the curves are generated from the data in the stan-
dard compelled-saccade task (Figure 7A), the resulting shapes
are essentially meaningless. The framework presented here makes
it easy, in retrospect, to see the reason for such failure: RT is
not the same thing as processing time, and it is the relationship
between performance and processing time that is stereotypical.
That relationship—which is none other than the tachometric
curve—describes precisely how much accuracy is gained for a
given amount of time. It does this within a given experiment,
as the micro-curve was supposed to do, and also decouples any
true changes in perception from purely motor variations in RT,
as may occur during a macro-trade-off. For the speed-accuracy
curve to work as envisioned, the RT would need to correlate very
tightly with rPT, but in general it does not, because it additionally

depends on many cognitive processes such as attention, memory,
or motor planning, that contribute to its variance (Figure 7B).

Wickelgren (1977) recognized the enormous utility of a curve
that would accurately reveal the dependence of performance on
time. It could serve as a powerful tool for studying the dynam-
ics of information processing across subjects, modalities, and task
conditions, and by extension, for studying the neural mechanisms
underlying fundamental cognitive functions. We submit that it is
the tachometric curve, not the speed-accuracy curve, that fulfills
this promise.
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Two phenomena are commonly observed in decision-making. First, there is a
speed-accuracy tradeoff (SAT) such that decisions are slower and more accurate
when instructions emphasize accuracy over speed, and vice versa. Second, decision
performance improves with practice, as a task is learnt. The SAT and learning effects
have been explained under a well-established evidence-accumulation framework for
decision-making, which suggests that evidence supporting each choice is accumulated
over time, and a decision is committed to when the accumulated evidence reaches
a decision boundary. This framework suggests that changing the decision boundary
creates the tradeoff between decision speed and accuracy, while increasing the rate of
accumulation leads to more accurate and faster decisions after learning. However, recent
studies challenged the view that SAT and learning are associated with changes in distinct,
single decision parameters. Further, the influence of speed-accuracy instructions over the
course of learning remains largely unknown. Here, we used a hierarchical drift-diffusion
model to examine the SAT during learning of a coherent motion discrimination task across
multiple training sessions, and a transfer test session. The influence of speed-accuracy
instructions was robust over training and generalized across untrained stimulus features.
Emphasizing decision accuracy rather than speed was associated with increased boundary
separation, drift rate and non-decision time at the beginning of training. However, after
training, an emphasis on decision accuracy was only associated with increased boundary
separation. In addition, faster and more accurate decisions after learning were due to
a gradual decrease in boundary separation and an increase in drift rate. The results
suggest that speed-accuracy instructions and learning differentially shape decision-making
processes at different time scales.

Keywords: speed-accuracy tradeoff, perceptual learning, drift-diffusion model, Bayesian parameter estimation,

motion discrimination

INTRODUCTION
When making choices under time and resources constraints, more
accurate decisions are often achievable at a cost of longer time,
while faster responses are more error-prone. This phenomenon
of speed-accuracy tradeoff (SAT) is ubiquitous across species and
tasks (Schouten and Bekker, 1967; Wickelgren, 1977; Chittka
et al., 2009), from collective foraging behavior in insects (Chittka
et al., 2003; Franks et al., 2003; Marshall et al., 2006) to simple per-
ceptual decisions in mammals (Uchida and Mainen, 2003; Heitz
and Schall, 2012), and to complex strategic judgments in human
(Beersma et al., 2003).

Most studies on the SAT compare behavioral performance
under instructions of speed or accuracy emphasis. Humans can
effectively trade accuracy for speed when instructed to respond
as fast as possible, or vice versa when instructed to respond
accurately. A change between speed and accuracy instructions
can rapidly switch one’s behavior between short blocks of trials
(Ratcliff and Rouder, 1998; Mulder et al., 2013) or even between

two single trials (Forstmann et al., 2008; Ivanoff et al., 2008),
suggesting that such instruction-induced SAT is embodied in the
decision-making process. This is consistent with recent findings
that the SAT in sensory-motor tasks is associated with neural
activities in areas involved in perceptual decisions and cognitive
control, such as (pre-) supplementary motor area, the frontal eye
field, the anterior cingulate cortex, the striatum, and the dorsolat-
eral prefrontal cortex (Forstmann et al., 2008; Ivanoff et al., 2008;
Van Veen et al., 2008; Wylie et al., 2009; Blumen et al., 2011; Heitz
and Schall, 2012).

While decisions can be rapidly adjusted in response to speed-
accuracy instructions, they are also largely influenced by training
and practice over a much longer time frame. It is well-established
that prolonged practice gradually improves task performance,
resulting in higher accuracy and faster responses (Logan, 1992;
Heathcote et al., 2000). Similar to the SAT, the effect of percep-
tual learning is observed across species (Trobalon et al., 1992; Li
et al., 2004) and sensory modalities (Fahle and Poggio, 2002), but
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there are clear distinctions between the two. For simple visual per-
ceptual decisions, performance improvement through perceptual
learning is usually specific for the stimuli similar to those used
in training, and do not fully generalize to other stimuli when
the tasks are difficult (Ahissar and Hochstein, 1997; Green and
Bavelier, 2003). Practice on more complex tasks, however, may
improve performance in other tasks (Green and Bavelier, 2003).
Unlike the SAT, the perceptual learning process can be automatic,
without conscious insights of the task. For example, motion
discrimination improves as participants were exposed to sub-
liminal motion stimuli when performing an motion-irrelevant
task (Watanabe et al., 2001). The specificity, generalizability, and
implicit nature of perceptual learning indicate changes in early
sensory processing as well as top–down influences during the
learning process (Gilbert et al., 2001; Furmanski et al., 2004; Yang
and Maunsell, 2004; Fahle, 2005; Bao et al., 2010; Zhang and
Kourtzi, 2010; Zhang et al., 2010).

The cognitive processes underpin SAT and perceptual learn-
ing have previously been investigated by using the drift-diffusion
model (DDM) (Stone, 1960; Ratcliff, 1978). The DDM belongs
to a large family of decision-making models, namely sequen-
tial sampling models (Wald, 1947; Lehmann, 1959; Stone, 1960;
Link, 1975; Link and Heath, 1975; Townsend and Ashby, 1983;
Luce, 1986; Ratcliff and Smith, 2004; Smith and Ratcliff, 2004;
Bogacz et al., 2006). These models assume that information sup-
porting decisions is represented by a stream of noisy observations
over time, and conceptualize decision-making as an information
accumulation process: momentary evidence is accumulated over
time, which reduce the noise in the evidence and hereby facil-
itate more accurate decisions. The sequential sampling models
have been proven successful in providing a close fit to response
accuracy and response time (RT) distributions (e.g., Ratcliff
and Rouder, 1998), and are consistent with the identification of
putative neural accumulators in the cortex from neurophysio-
logical (Kim and Shadlen, 1999; Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002; Schall, 2002; Mazurek et al., 2003;
Huk and Shadlen, 2005; Hanks et al., 2006; Gold and Shadlen,
2007) and neuroimage studies (Ploran et al., 2007; Heekeren
et al., 2008; Ho et al., 2009; Kayser et al., 2010; Zhang et al.,
2012).

The DDM is one of the most prominent sequential sam-
pling models for two-choice decisions. It has been applied to
a number of perceptual and cognitive tasks, including memory
retrieval (Ratcliff, 1978), lexical decisions (Ratcliff et al., 2004;
Wagenmakers et al., 2008), visual discrimination (Ratcliff, 2002;
Palmer et al., 2005), and categorization (Nosofsky and Palmeri,
1997). The model implies a single accumulator integrating the
sample evidence according to a stochastic diffusion process, until
the accumulated evidence reaches one of the two decision bound-
aries, corresponding to the two choice alternatives. As such the
model decomposes behavioral data into four parameters mapped
on to latent psychological processes (Figure 1): boundary separa-
tion a for response caution, drift rate v for speed of accumulation,
starting point z for a priori response bias, and non-decision
time Ter for stimulus encoding and response execution latencies
(Ratcliff and McKoon, 2008; Wagenmakers, 2009). Trial-to-trial
variability in model parameters can be included to improve the

FIGURE 1 | Examples of trajectories of the drift-diffusion model. Two
decision boundaries (0 and a) represent the “leftward” and “rightward”
decisions in the motion discrimination task. The drift rate v represents
mean sensory evidence per unit of time. The magnitude of v is determined
by the quality of the evidence. A positive v (as shown in the figure)
indicates that the upper boundary is the correct choice. The diffusion
process starts at a starting point between the two boundaries (denoted as
a proportion of a by z) until the accumulated evidence reaches one of two
boundaries. If the correct boundary is hit (blue sample paths), the model
makes a correct decision. Because of noise, the model may sometime hit
the incorrect boundary (red sample path). The predicted response time (RT)
is the sum of the duration of the diffusion process and the non-decision
time Ter .

model fits to experimental data (Laming, 1968; Ratcliff, 1978;
Ratcliff et al., 1999; Ratcliff and Tuerlinckx, 2002).

Behavioral changes in SAT and perceptual learning can be
explained by different parameter changes in the DDM. The SAT
can be simply quantified by the separation of the two deci-
sion boundaries. When response speed is emphasized, the dis-
tance between decision boundaries is decreased. This reduces
the amount of accumulated evidence prior to a decision (i.e.,
faster RT) and increase the change of hitting the wrong decision
boundary (i.e., lower accuracy). When accuracy is emphasized,
the distance between decision boundaries is increased and the
model predicts slower RT and higher accuracy, because more evi-
dence need to be accumulated prior to a decision. It has indeed
been shown that emphasizing decision speed or accuracy leads to
changes in the boundary separation (Ratcliff and Rouder, 2000).
A few recent studies have also applied the DDM to perceptual
learning and identified two separate learning mechanisms (Dutilh
et al., 2011, 2009; Petrov et al., 2011). First, training and practice
are associated with an increase in the drift rate, leading to higher
accuracy and faster RT (Dutilh et al., 2009; Wagenmakers, 2009).
The drift rate change is consistent with most learning theories
that the quality of sensory processing improves during training
(Ahissar and Hochstein, 2004). Second, perceptual learning has
been shown to decrease the non-decision time, which may be due
to an increase in familiarity with the stimuli and task after training
(Dutilh et al., 2011, 2009; Petrov et al., 2011).

However, two important issues remain unsolved. First,
although previous research proposed that emphasizing speed or
accuracy influence only the boundary separation (Ratcliff and
Rouder, 1998; Wagenmakers et al., 2008), recent studies showed
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that speed-accuracy instructions affect two other model parame-
ters: drift rate (Vandekerckhove et al., 2011; Rae et al., in press)
and non-decision time (Osman et al., 2000; Rinkenauer et al.,
2004; Voss et al., 2004; Mulder et al., 2010, 2013). Therefore, it is
necessary to examine whether other model parameters are indeed
affected by speed emphasis or accuracy emphasis instructions.

Second, previous studies of the SAT and perceptual learning
have been largely independent, partly because of the different
time scale on which the two effects operate. However, since
speed-accuracy instructions and learning can affect the same
decision parameters, it is necessary to study these two different
task conditions in a single experiment. Here we test the intrigu-
ing hypothesis that the SAT be efficiently manipulated over the
course of learning a new task. One might establish a stable trade-
off between speed and accuracy throughout learning, according to
the task instructions. Alternatively, the effects of speed-accuracy
instructions in a new task may be different from that in the same
task after substantial practice.

The current study examined changes in decision performance
and underlying cognitive mechanisms when SAT was manipu-
lated throughout the course of learning. During multiple training
sessions, participants learned to perform a coherent motion dis-
crimination task under speed or accuracy emphasis (Figure 2A).
Speed-accuracy instructions efficiently modulated participants’
behavior between short blocks of trials across all sessions and
training gradually improves performance specific to the trained
directions. By fitting the DDM using Bayesian parameter esti-
mation approach, we quantified the influence of speed-accuracy
instructions and learning on the model parameters. Emphasizing
decision accuracy rather than speed was related to increased
boundary separation, drift rate and non-decision time at the
beginning of training. In contrast, the emphasis on accuracy
was only related to increased boundary separation after training.
Furthermore, faster and more accurate decisions after learning
are mainly due to a decrease in boundary separation and an
increase in drift rate. Our results demonstrate that decision-
making processes are differentially influenced by speed-accuracy
instructions and training at different time scales and different
stages of learning.

MATERIALS AND METHODS
PARTICIPANTS
Six adults (four females) between the age of 21–35 years (mean
age, 25.50 years) participated in the experiment. All participants
were right handed with normal hearing and normal or corrected-
to-normal vision, and none reported a history of significant
neurological or psychiatric illness. None had previous experience
with the task. All participants signed a written informed consent
before starting the experiment. The study was approved by the
Cambridge Psychology Research Ethics Committee.

APPARATUS
The experiment was conducted in a darkened testing room.
Each participant’s head rested in a chinrest to stabilize the
head position and control viewing distance. A computer (Dell
Optiplex 745) controlled stimulus delivery and recorded behav-
ioral responses. Visual stimulus was presented on a 21-inch CRT

FIGURE 2 | Behavioral paradigm. (A) Structure of a single trial in the
accuracy condition. A fixation point was presented for 1000 ms. The
random dot kinematogram was then presented for a maximum of 2400 ms,
during which participants made a binary decision on whether the coherent
motion direction is leftward or rightward by pressing one of the two
response buttons. For a correct response, a smiley face was presented for
500 and 50 points was credited. For an incorrect response, a sad face was
presented and 20 points was lost, together with an auditory feedback. The
payoff in the speed condition was slightly different (see section Task and
Procedurefor more details). The intertrial interval (ITI) was randomized
between 1200 and 1600 ms. (B) Training procedure across six sessions. In
the first five sessions, half of the participants trained at two directions (30
and 210◦), and the other half trained at two different directions (150 and
330◦). In the sixth session, all participants performed the task at two new
directions that were not presented in their first five sessions (i.e., untrained
directions).

monitor (Dell P1130) with a resolution of 1024 by 768 pixels and
a refresh rate of 85 Hz, located 47.50 cm in front of the partici-
pants. Participants’ responses were collected from a two-button
response box. The experiment was written in Matlab 7.8 (The
MathWorks, Natick, USA) and used the Psychophysics Toolbox
3 extensions (Brainard, 1997).

STIMULI
The stimuli were random-dot kinematograms displayed within a
central invisible circular aperture (12◦ diameter) on a black back-
ground (100% contrast). Dot density was 16.53 dots per deg2 per
s and the minimum distance between any two dots in each frame
was 0.48◦. Each dot was white and subtended a visual angle of
0.12◦ at the screen center. The motion stimulus was formed by
interleaving three uncorrelated sequences of dot positions at a
rate of 85 frames/s, which was similar to those described else-
where (Britten et al., 1993; Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002; Pilly and Seitz, 2009). To introduce coherent
motion information, in each frame a fixed proportion (10.71%)
of the dots was replotted at an appropriate spatial displacement
in the direction of motion (10◦/s velocity), relative to their posi-
tions three frames earlier, and the rest of the dots were replotted
at random locations within the aperture. For example, three
uncorrelated sets of dots were plotted in the first three frames.
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A proportion of dots (i.e., the signal dots) in frame 1 moved in
frame 4 with spatial displacements, and then a proportion of dots
in frame 2 moved in frame 5, and so on. Signal dots that moved
outside the aperture were wrapped around from the opposite
direction of motion to conserve dot density and avoid attention
cues along edges. The coherent dot motion in each trial was in
one of four non-cardinal directions (30, 150, 210, and 330◦).

TASK AND PROCEDURE
All participants completed six behavioral sessions conducted on
different days. Participants performed a two-alternative forced-
choice task in all sessions, deciding whether the coherent motion
direction of the random-dot stimulus is leftward (toward 150 or
210◦) or rightward (toward 30 or 330◦) (Figure 2A). Participants
responded by pressing the left button (for leftward decisions) or
the right button (for rightward decisions) on the response box
with their right index and middle fingers. In the first five sessions,
the random-dot stimulus was always presented at two possible
directions along a line (e.g., 30 and 210◦), which referred to as
the trained directions. In the sixth session, the stimulus was only
presented at the other two new directions (e.g., 150 and 330◦),
which referred to as the untrained directions. One-half of the par-
ticipants were trained at 30 and 210◦ directions and the other half
of the participants were trained at the 150 and 330◦ directions in
their first five sessions (Figure 2B).

Each experiment session comprised 672 trials, which were
divided into 12 blocks of 56 trials. Each block had 50% leftwards
motion trials and 50% rightwards motion trials at a randomized
order. Participants took short breaks between blocks. The speed-
accuracy manipulation was introduced at the block level: each
session comprised of 6 accuracy blocks and 6 speed blocks. The
first block of each session was always an accuracy block, and the
order of the accuracy/speed instructions in the rest of the blocks
were randomized across sessions and participants. At the begin-
ning of an accuracy block, the text instruction “Be accurate this
time” was presented on the screen in blue (RGB = 5, 137, 255),
indicating that the participants should respond as accurate as pos-
sible. At the beginning of a speed block, the text instruction “Be
fast this time” was presented in red (RGB = 255, 2, 2), indicat-
ing that the participants should respond as fast as possible. To
ensure participants could easily identify the task instructions dur-
ing the experiment, a text cue was presented at the top center of
the screen throughout each block: “ACC” in blue (RGB = 5, 137,
255) for accuracy blocks, and “SPD” in red (RGB= 255, 2, 2) for
speed blocks. Before the first and the 29th trials of each block, four
parallel gray lines (RGB = 100, 100, 100, 0.05◦ thick, 4◦ apart)
were presented within the circular aperture for 2000 ms, indicat-
ing the two possible motion directions in the current block (30
and 210◦, or 150 and 330◦). Before the first session, each partic-
ipant was familiarized with the task during a short practice run
comprising 16 trials for the accuracy condition and 16 trials for
the speed condition, during which the proportion of coherently
moving dots was set at a high level of 80%.

Each trial began with the presentation of a fixation point
(0.12◦ diameter) at the center of the screen, which was illumi-
nated for 1000 ms, followed by the random-dot stimulus onset.
The stimulus was presented for a maximum of 2400 ms, during

which the participants were instructed to perform the motion
discrimination task under accuracy or speed emphasis. The
random-dot stimulus disappeared as soon as a response was
made, or the maximum duration was reached. The RT on each
trial was measured from the stimulus onset until the participant
made a response. Feedback was given 100 ms after the stimulus
offset, followed by an intertrial interval randomized between 1200
and 1600 ms (Figure 2A).

To help the participants engage in the task and effectively
adjust their decision processes to the speed-accuracy instructions,
three types of feedback were given in the forms of texts, auditory
beeps (tone with frequency of 600 Hz and duration of 0.15 s), and
bonus points (see Petrov et al., 2011; Mulder et al., 2013 for sim-
ilar multi-session designs using bonus points). If the participant
failed to respond within 2200 ms or responded within 100 ms, a
red warning message “Too slow!” or “Too fast!” was presented
for a prolonged period (1500 ms) together with a beep, and the
participant lost 50 points. In the accuracy condition, if the par-
ticipant made a correct response, a smiley face was presented
for 500 ms and 50 bonus points were credited. For an incorrect
response, a sad face was presented for 500 ms and a beep where
given, and the participant lost 20 points. In the speed condition,
when the participants failed to respond within a time limit, a red
text “Too slow!” and a beep was given and the participant lost
20 points. No further feedback about the accuracy of the partic-
ipants’ responses was given (i.e., they would also lose 20 points
for a correct but overtime response). For each session and each
participant, the time limit for the speed condition was defined
as the 40% quantile of the RT distribution from the participant’s
first accuracy block in that specific session (see Mulder et al., 2013
for another way of defining participant-specific time limit). If
participant’s response was within the time limit, the same type
of feedback was given for correct and incorrect responses as in
the accuracy condition, but the participant would only lose 10
points for an incorrect response (i.e., fewer penalties for errors
when instructing speeded responses). Participants started with
zero bonus point at the beginning of each session and the cumu-
lative bonus points were displayed at the bottom of the screen
throughout the session.

DATA PROCESSING AND ANALYSIS
To eliminate fast guesses, trials with RT faster than 100 ms were
removed from further analysis. Trials without a valid response
within 2200 ms after the random-dot stimulus onset were also
removed. The discarded trials only accounted for 0.3% of all tri-
als. Decision accuracies (proportion of correct responses) and
mean RTs from each session were entered into two separate
repeated-measures ANOVAs for group analyses, with task condi-
tions (accuracy and speed instructions) and sessions as factors.

Randomization tests were used to examine the statistical sig-
nificance at the single-subject level (Edgington, 1995; Coolican,
2009). For example, to test whether a single participant had dif-
ferent RT between the speed and accuracy conditions, we first
estimated the mean RT separately from each block in each session
of the participant, resulting in RT samples from 36 speed blocks
and 36 accuracy blocks. The observed RT difference between
the two task conditions was quantified by the sample t-value
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(mean difference between the data from the speed emphasis and
accuracy emphasis conditions divided by the standard error of
the difference). If the null hypothesis is true, there is no differ-
ence between task conditions, and the samples are exchangeable
between conditions. We therefore generated a null distribution of
the test statistic from 100,000 permutations, with the condition
label randomly shuffled in each permutation. The permutation
p-value was then calculated as the proportion of the randomized
samples with the test statistic exceeded the observed test statis-
tic. The same randomization procedure was applied to test the
learning effects between sessions (Table 1).

HIERARCHICAL DRIFT-DIFFUSION MODEL
A full version of the DDM was fitted to each participant’s accu-
racy and RT distribution. The model consists of seven parameters
(Ratcliff and McKoon, 2008; Wagenmakers, 2009). (1) Boundary
separation a (a > 0). (2) Mean drift rate v. (3) Mean response
bias z as a proportion of boundary separation (0 < z < 1), which
gives the starting point of the diffusion process relative to the two
boundaries (z ∗ a). Thus, values of z > 0.5 indicate an a priori
bias toward the upper boundary (right button press) and values
of z < 0.5 indicate a bias toward the lower boundary (left button
press). (4) Mean non-decision time Ter . (5) Normally distributed
trial-by-trial variability in drift rate sv. (6) Uniformly distributed
trial-by-trial variability in response bias sz. (7) Uniformly dis-
tributed trial-by-trial variability in non-decision time st . The
model predicts a binary choice as whether the upper or the lower
boundary is reached, and predicts the observed RT as a sum of the
decision time (i.e., the latency for the accumulator reaching one
of the boundaries) and the non-decision time.

We used the hierarchical drift-diffusion model toolbox to fit
the data (Wiecki et al., 2013). The hierarchical extension of the
DDM assumes that the model parameters for individual partici-
pants are random samples drawn from group-level distributions,
and uses Bayesian statistical methods to simultaneously estimate
all parameters at both the group level and the individual-subject
level (Vandekerckhove et al., 2011). The Bayesian approach for
parameter estimation has two advantages. First, the Bayesian
approach is more robust in recovering model parameters when
less data is available (Matzke et al., 2013; Wiecki et al., 2013).
Second, Bayesian estimation generates joint posterior distribu-
tions of all model parameters, given the observed experimental
data. The posterior parameter distribution provides not only a
point estimate, but also uncertainty of the estimate, and can be
straightforwardly applied for Bayesian inference (Gelman et al.,
2004). For example, let PPost|Data(aaccuracy) and PPost|Data(aspeed)
be the marginal posteriors for the boundary separation from the
accuracy and speed conditions. To test whether the boundary
separation in the accuracy condition is larger than that in the
speed condition, we can directly calculate the probability that
the difference between the two parameters is larger than zero
PPost|Data(aaccuracy – aspeed > 0) from the posterior distributions,
and a high probability indicates strong evidence in favor of the
testing hypothesis.

Performance differences between speed-accuracy conditions
and between sessions suggest changes in one or more model
parameters across task conditions and sessions. We therefore

examined seven variants of the DDM with different parameter
constrains between the two task conditions. The seven models
differed on whether the boundary separation a, the drift rate v,
the non-decision time Ter , or a combination of the three parame-
ters varied between the accuracy and speed conditions (Figure 4).
In all the models, the four key parameters (a, v, Ter , and z) were
allowed to vary between sessions and were estimated at both
individual-subject level and group level. The trial-by-trial vari-
ability parameters (sv, st , and sz) were shared between sessions
and were estimated only at the group level, because it has been
shown that the DDM with variability parameters fixed across
multiple sessions provided a better explanation of the data (Liu
and Watanabe, 2012). Similar to previous studies, the response
bias parameter was set to vary between sessions but was invariant
between task conditions (Mulder et al., 2013).

For each model, we generated 15,000 samples from the joint
posterior distribution of all model parameters by using Markov
chain Monte Carlo methods (Gamerman and Lopes, 2006) and
discarded the first 5000 samples as burn-in (see Wiecki et al., 2013
for a more detailed description of the procedure). The conver-
gence of the Markov chains were assessed using Geweke statistic
(Gelman and Rubin, 1992). Parameter estimates in all models
were converged after 15,000 samples.

RESULTS
SPEED-ACCURACY TRADEOFF AND LEARNING EFFECTS ON
BEHAVIORAL PERFORMANCE
Participants’ performance under the accuracy and speed condi-
tions was quantified by the mean decision accuracy and mean RT
in each session (Figure 3). A two-way repeated-measures ANOVA
showed a significant main effect of speed-accuracy instruc-
tions [accuracy: F(1, 5) = 27.57, p < 0.01, partial η2 = 0.85; RT:
F(1, 5) = 17.56, p < 0.01, partial η2 = 0.78], a significant main
effect of session [accuracy: F(5, 25) = 67.48, p < 0.0001, partial
η2 = 0.93; RT: F(5, 25) = 22.82, p < 0.0001, partial η2 = 0.82],
and a significant interaction between speed-accuracy manipula-
tion and session [accuracy: F(5, 25) = 4.78, p < 0.01, partial η2 =
0.49; RT: F(1, 5) = 5.08, p < 0.01, partial η2 = 0.50]. In each
session, the participants had higher accuracy (p < 0.05 in all ses-
sions, Wilcoxon signed ranks test) and faster RT (p < 0.05 in all
sessions, Wilcoxon Signed Ranks Test) in the accuracy condition
than in the speed condition. Therefore, throughout training, the
participants could effectively trade speed for accuracy (and vice
versa) as instructed.

During the first five training sessions, behavior performance
at the trained directions gradually improved, as shown by a sig-
nificant linear increase of accuracy [F(1, 5) = 102.07, p < 0.0001,
partial η2 = 0.95] and a linear decrease of RT [F(1, 5) = 53.37,
p < 0.001, partial η2 = 0.91] over training. To examine whether
the behavioral improvement at the trained directions can be
generalized to another direction, we compared participants’ per-
formance between the 5th session (i.e., the last session at the
trained directions) and the 6th session (i.e., untrained direc-
tions after training). The learning effect on decision accuracy
was specific to individual participants’ trained directions, as the
accuracy was significantly lower at the untrained directions than
the trained directions [F(1, 5) = 73.56, p < 0.0001, partial η2 =
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Table 1 | Results of single-subject randomization tests.

Participant SAT effects Learning effects Learning generalization

Accuracy RT Accuracy RT Accuracy RT

(ACC > SPD) (ACC > SPD) (session 1–5) (session 1–5) (session 5–6) (session 5–6)

t p t p t p t p t p t p

S01 1.92 0.0600 2.05 0.0398 −2.82 0.0090 3.84 <0.0001 2.23 0.0348 3.14 0.0057

S02 1.85 0.0695 3.46 0.0007 −3.89 0.0012 4.57 <0.0001 3.90 0.0008 2.83 0.0102

S03 3.38 0.0015 9.73 <0.0001 −1.74 0.0963 2.45 0.0237 1.28 0.2121 −0.37 0.7150

S04 4.35 <0.0001 5.06 <0.0001 −3.44 0.0028 2.43 0.0194 2.31 0.0336 −0.53 0.6114

S05 2.40 0.0200 10.89 <0.0001 2.40 0.0258 2.73 0.0132 1.70 0.1093 −0.69 0.5077

S06 3.99 0.0002 4.37 <0.0001 −3.52 0.0018 6.50 <0.0001 2.78 0.0110 −1.20 0.2508

The SAT effects compared the behavioral performance between accuracy and speed conditions across all sessions. The learning effects compared the performance

between session 1 and 5. The learning generalization effects compared the accuracy and RT between session 5 and 6 (i.e., performance at the untrained directions).

Differences between conditions were quantified by sample t-values. Each p-value was obtained from 100,000 permutations of data samples (see section Data

Processing and Analysis for details).

FIGURE 3 | Behavioral results. Decision accuracy (A) and mean
response time (B) of the speed emphasis and accuracy emphasis
conditions at each training session. The solid lines and the shaded

areas indicate the mean performance and the standard errors across
participants. Different markers indicate performance of each individual
participant across sessions.

0.94]. Further, the learning effect on decision speed generalized
across directions, as the RT at the untrained directions did not sig-
nificantly differ to the trained directions after training [F(1, 5) =
0.03, p = 0.87, partial η2 = 0.01], but much faster than that in
the first session [F(1, 5) = 35.94, p < 0.01, partial η2 = 0.88].

These results indicate strong group effects of speed-accuracy
instructions and learning in perceptual decisions. Since the
experiment collected substantial amount of data from individual
participants, it is effective to further examine whether each indi-
vidual’s performance is consistent with the group effects above
(Coolican, 2009; Barnett et al., 2012). We therefore conducted
single-subject randomization tests (Bulté and Onghena, 2008, see
section Data Processing and Analysis for details), estimating the
main effects of task instructions across all sessions, the effect
of learning, and generalization between trained and untrained
directions for each participant (Table 1). Four participants had
significantly higher decision accuracy and slower RT across ses-
sions when instructed to trade speed for accuracy, with a trend

effect in the accuracy in two participants (S01 and S02 in Table 1).
After training, significant improvements in both accuracy and RT
were observed in five out of six participants, except one partici-
pant (S03) who had faster RT but no significant accuracy change
after training. Four participants had significantly lower accura-
cies at the untrained directions than the trained directions after
training. These analyses suggested that the single-subject data are
largely consistent with the group inferences.

HIERARCHICAL DRIFT-DIFFUSION MODEL FOR SPEED-ACCURACY
TRADEOFF AND LEARNING
To examine which model parameters account for the effects of
speed-accuracy instructions during learning, we considered seven
variants of the hierarchical DDM, varying systematically in con-
straints on whether three model parameters (a, v, and Ter) were
invariant or varied across the task conditions. We used a Bayesian
parameter estimation procedure to draw samples from the joint
posterior distributions of all the parameters in the hierarchical
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FIGURE 4 | The deviance information criterion (DIC) value differences

between the seven variants of the drift-diffusion model and the best

model. The models differ on whether the boundary separation a, mean drift
rate v, and mean non-decision time Ter can vary between the speed and
accuracy conditions. The model structures are shown below the figure. The
black square indicates that the corresponding parameter can vary between
the speed emphasis and accuracy emphasis conditions, and the white
square indicates that the parameter is invariant between the two task
conditions. The best model with the minimum DIC value had variable a, v,
and Ter (model 1, DIC = 9474.03).

DDM (Vandekerckhove et al., 2011; Wiecki et al., 2013). The
posterior samples represents parameter estimates and their uncer-
tainties after having observed the data (i.e., response and RT
distributions) (Gelman et al., 2004). Model fits were assessed by
comparing each model’s deviance information criterion (DIC)
value (Spiegelhalter et al., 2002), which has a degree of penalty
for additional free model parameters.

The best model (the one with the lowest DIC value) to describe
the data across task conditions, sessions and participants allows
the boundary separation a, mean drift rate v, and mean non-
decision time Ter all to vary between speed and accuracy condi-
tions (model 1 in Figure 4). The second best model had varied
a and Ter but invariant v between SAT conditions, which had a
DIC value 10.37 larger than the best model (model 3 in Figure 4).
The model with only varied v but invariant a and Ter (model
6 in Figure 4) provided the worst fit among the seven models.
Thus, changes in the mean drift rate are less likely to significantly
account for the observed speed-accuracy effects. In later analysis,
we focused on the best model with the minimum DIC value1.

To evaluate the overall model fit, we generated posterior model
predictions of the best model by simulate the same amount of
predicted data as observed in the experiment using posterior

1Conventionally, a DIC difference of more than 10 indicates that the evidence
supporting the best model is substantial (Burnham and Anderson, 2002).
Because the difference of DIC values between the best and the second best
model is close to this criterion, we repeated the same analysis on parameters
estimates as in section hierarchical drift-diffusion model analyses for the sec-
ond best model. The parameter changes between task conditions and sessions
remain significant in the second best model.

estimates of the model parameters. There was very good agree-
ment between the observed data and the model predictions across
conditions and sessions (Figure 5).

HIERARCHICAL DRIFT-DIFFUSION MODEL ANALYSES
The hierarchical DDM incorporates parameters estimates (a, v,
Ter , and z) at the individual-subject level and population esti-
mates of these parameters at the group level (Wiecki et al., 2013).
We used two complementary approaches to determine the effects
of speed-accuracy instructions and learning on the model param-
eters. First, for each parameter at the individual-subject level, the
mean of its posterior distribution was used as a point estimate for
group analysis. Second, for each group-level parameter, the mean
and the standard deviation of its posterior distribution were used
to quantify group-level measures and estimation uncertainties
(Figure 6). We also used the group-level posteriors to compare
two parameters in Bayesian methodology (Lindley, 1965; Berger
and Bayarri, 2004; Kruschke, 2010, see section Data Processing
and Analysis for details). For simplicity, below we used p to refer
to classical frequentist p-value from ANOVA, and PP|D to refer to
the proportion of the posteriors supporting the testing hypothesis
at the group level.

Boundary separation
Figure 6A showed the posterior mean and standard deviation
of the boundary separation for each task condition and session.
The boundary separation was significantly larger in the accu-
racy conditions than in the speed conditions [F(1, 5) = 16.21,
p < 0.01, partial η2 = 0.76, PP|D = 0.95]. Post-hoc tests showed
significant differences between SAT conditions in all sessions
(p < 0.05, Wilcoxon signed ranks test, PP|D > 0.93). The inter-
action between the SAT condition and session is not significant
[F(5, 25) = 0.34, p = 0.89 partial η2 = 0.06], suggesting similar
extent of the speed-accuracy effect on boundary separation across
sessions.

There is a main effect of session [F(5, 25) = 7.83, p < 0.001,
partial η2 = 0.61]. Learning at the trained directions gradually
decreases boundary separation, as supported by a linear effect
in the first five sessions [F(1, 5) = 15.17, p < 0.05, partial η2 =
0.75]. Boundary separation at untrained directions after learn-
ing (session 6) is lower than that at the first session [F(1, 5) =
9.41, p < 0.05, partial η2 = 0.65, PP|D = 0.98], but similar to
the parameter at the trained directions after learning (ses-
sion 5) [F(1, 5) = 1.68, p = 0.25, partial η2 = 0.25, PP|D = 0.37].
Therefore, the learning effect on boundary separation generalized
between trained and untrained directions.

Drift rate
The mean drift rate (Figure 6B) did not significantly differ
between SAT conditions across all sessions [F(1, 5) = 2.93, p =
0.15, partial η2 = 0.37, PP|D = 0.76], consistent with our model
comparison result that the mean drift rate is not the main
factor in explaining the effects of speed-accuracy instructions.
Interestingly, there was a marginal interaction effect between task
conditions and sessions before and after training (sessions 1 and
5) [F(5, 25) = 6.14, p = 0.06, partial η2 = 0.55], which is mainly
driven by the higher mean drift rate in the accuracy condition
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FIGURE 5 | Posterior predictive data distributions for the task conditions

and sessions from the best fit model. The distributions along the positive
x-axis indicate correct response times, and the distributions along the
negative x-axis indicate error response times. Each panel shows the
normalized histograms of the observed data (bar plots) and the model
prediction (black lines). The area under the curve at positive x-axis is therefore
corresponding to the observed and predicted proportion correct. To generate

model predictions, for each participant and each model parameter, we drew
500 sampled values from that participant’s joint posterior distribution of the
model parameters, which give 500 posterior parameter sets. Each sampled
parameter set was then used to simulate the same amount of model-predicted
data as observed in the experiment. The simulated RT distributions of correct
and error trials were then averaged across the parameter sets as posterior
model predictions. Data from individual participants are pooled together.

than the speed condition in the first session (p < 0.05, Wilcoxon
signed ranks test, PP|D = 0.86).

The main effect of session on the mean drift rate was signif-
icant [F(5, 25) = 118.50, p < 0.00001, partial η2 = 0.96], with a
linear increase in the first five sessions at the trained directions
[F(1, 5) = 350.98, p < 0.00001, partial η2]. The drift rate at the
untrained directions was lower than that at the trained directions
after learning [F(1, 5) = 217.53, p < 0.00001, partial η2 = 0.98,
PP|D ≈ 1], consistent with the observed data that improvements
in accuracy did not transfer to the untrained directions after
learning.

Non-decision time
The non-decision time (Figure 6C) was larger in the accurate
condition than in the speed condition [F(1, 5) = 8.21, p < 0.05,
partial η2 = 0.62, PP|D = 0.89]. Pairwise comparison within each
session indicates that the effects of speed-accuracy instructions
were significant in the first three sessions (p < 0.05, Wilcoxon
signed ranks test, PP|D > 0.91) but not in the last three sessions
(p > 0.08, Wilcoxon signed ranks test, PP|D < 0.80). No signif-
icant effect of session was observed [F(5, 25) = 1.57, p = 0.21,
partial η2 = 0.24], but there is an interaction between task con-
ditions and sessions before and after training [F(1, 5) = 6.83, p <

0.05, partial η2 = 0.58]. These results suggest that the speed-
accuracy instructions affect the non-decision time at a larger
extent at the beginning of training.

Response bias
The posterior estimates of the response bias were close to 0.5 in
all sessions (Figure 6D) and a repeated-measures ANOVA showed

no effect of sessions [F(5, 25) = 0.78, p = 0.58, partial η2 = 0.13].
Therefore, there was no significant bias toward any of the two
responses or change of biases across sessions.

DISCUSSION
This study examined how the two widely observed phenomenon,
SAT and perceptual learning, differentially shape decision-
making processes over different timescales and stages of learning.
Speed emphasis or accuracy emphasis, in a coherent motion
discrimination task, rapidly modulated participant’s behavior
between short blocks of trials (fast and error-prone or slow
and accurate). This tradeoff between speed and accuracy was
consistent throughout training and generalized between trained
and untrained directions. The model analysis suggested that
accuracy emphasis, compared with speed emphasis, not only
increases the total amount of evidence required to render
a decision (i.e., boundary separation), but also increases the
quality of the evidence being accumulated (i.e., drift rate)
and the latencies on stimulus encoding and motor prepa-
ration (i.e., non-decision time). Importantly, the effect of
speed-accuracy instructions on boundary separation was sig-
nificant across multiple sessions, but the effect on drift rate
and non-decision time was significant only at the beginning
of training.

One common assumption often made is that speed-accuracy
instruction influences only the boundary separation. This selec-
tive influence assumption was largely accommodated by the
ability of the constrained DDM with only varied boundaries to
adequately fit behavioral data under SAT manipulations (Ratcliff
and Rouder, 1998; Wagenmakers et al., 2008). However, such an
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FIGURE 6 | Posterior estimates of the hierarchal drift-diffusion model

parameters: (A) boundary separation a, (B) drift rate v, (C)

non-decision time and Ter and (D) response bias z. The bars are the
sampled mean posterior estimates and the error bars are standard
deviations from sampled posterior distributions.

approach cannot rule out possible influence of speed-accuracy
instructions on other model parameters. Recent studies have con-
sidered more flexible models and identified the speed-accuracy
effects on drift rate and non-decision time. By reanalyzing the
data from Ratcliff and Rouder (1998), Vandekerckhove et al.
(2011) suggested that the SAT is better described by changes in
both drift rate and boundary separation than changes in bound-
ary alone, with larger drift rate and boundary separation under
accuracy emphasis. Similarly, Rae et al. (in press) reported that
a constrained model with invariant drift rate between speed
emphasis and accuracy emphasis conditions would underpredict
the observed decision accuracy difference between the SAT con-
ditions, which we also noticed from simulations of the inferior
model (Model 3 in Figure 4). Rae et al. (in press) also reported
larger drift rate change between speed-accuracy instructions in
more difficult tasks than easier tasks. Interestingly, this is consis-
tent with our result of significant drift rate change only in the first
session, because the same task is relatively difficult for participants
at the beginning of their training. Furthermore, studies using the
DDM with variable non-decision time between different speed-
accuracy conditions suggested decreased non-decision time when
response speed is emphasized (Voss et al., 2004; Mulder et al.,
2010, 2013). Therefore, emphasizing speed or accuracy affects
multiple processes, not only the total amount of evidence needed
for making a decision.

We found different effects of speed-accuracy instructions on
the model parameters over the course of learning. For a difficult
and unfamiliar task, emphasizing accuracy resulted in increased

boundary separation, drift rate, and non-decision time. Once
the participants learned the task after substantial training, the
effect of speed-accuracy instructions was evident only on bound-
ary separation. These findings confirmed a substantial role of
boundary separation in response to speed-accuracy instructions
(Ratcliff and Rouder, 1998; Wagenmakers et al., 2008; Starns
and Ratcliff, 2014) throughout learning and generalized between
trained and untrained stimulus features. The influence of speed-
accuracy instructions on the other two DDM parameters is not
intuitive, because unlike boundary separation, changing drift rate
or non-decision time itself cannot describe an inverse relationship
between decision error and RT as observed in SAT: increasing drift
rate results in lower decision errors but shorter RT, and increasing
non-decision time results in longer RT but no change in accuracy
(Ratcliff and McKoon, 2008).

Nevertheless, several possible hypotheses may explain why
learning influences the drift rate and non-decision time in
response to speed-accuracy instructions. First, Rae et al. (in press)
proposed that the quality of information extracted from the envi-
ronment improves over the course of a single decision, and the
rates of the changes are identical in both speed and accuracy
emphasis conditions. Since the RT is smaller when response speed
is emphasized, the drift rate estimated from the speed condi-
tion is largely based on the quality of information extracted early
after stimulus onset, which would be systematically lower than
the information quality later in a trial (i.e., as in the accuracy
condition). Second, drift rate has been linked to the allocation
of attention on the task (Schmiedek et al., 2007). It is possi-
ble that speed-accuracy instructions have impacts on the balance
of attentional resources allocated between the decision process
and other cognitive processes. For example, speed emphasis may
facilitate the monitoring of elapsed time within a trial, which
limits the attentional resources for extracting information for
decision-making. Third, Rinkenauer et al. (2004) examined the
SAT effects on lateralized readiness potentials (Leuthold et al.,
1996; Eimer, 1998; Masaki et al., 2004) and observed decreased
intervals between response-locked lateralized readiness potential
onset and motor responses under speed emphasis (see Osman
et al., 2000 for similar results). Since lateralized readiness poten-
tial intervals refer to the duration of motor processes after a
decision being made, the findings from the electrophysiological
data posit a role of speed-accuracy instructions on both decision
and post-decision processes. This further supports our findings
of decreased non-decision time under speed emphasis, because
response execution is often considered an important compo-
nent described by non-decision time in the DDM (Ratcliff and
McKoon, 2008). However, it is not immediately clear why the
SAT effects on drift rate and non-decision making are more
evident at the beginning of training. An active account is that
participants change their decision strategy after they become pro-
ficient about the procedure and the task (e.g., Adini et al., 2004).
In other words, participants may learn to integrate information
across larger periods of the stimulus presentation, decreasing the
time spent on processes outside of decision-making and hence
improving performance. Or, in a more passive account, because
the task becomes much easier after training, there is only a lim-
ited capacity to improve on the accuracy and RT, which in turn
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limits the influence of speed-accuracy instructions on the model
parameters other than boundary separation. Future investigations
on how learning underpins the SAT at various task difficulty levels
are necessary.

Our results demonstrated distinct perceptual learning mecha-
nisms with different properties. As expected, training with feed-
back led to gradual improvements in decision accuracy and speed.
The learning effect on accuracy was specific to the trained direc-
tions (Liu and Weinshall, 2000), but the improvement on RT
partially generalized to untrained directions after training. Unlike
most previous perceptual learning studies, which have focused
only on decision accuracy but ignored decision speed (e.g., Fahle
and Poggio, 2002; Dosher and Lu, 2007), we used the DDM
to provide a mechanistic interpretation of both accuracy and
speed improvements during learning (see Dutilh et al., 2009,
2011; Petrov et al., 2011; Liu and Watanabe, 2012 for similar
approaches). Drift rate increased over training and the increase
was specific to the trained directions, compatible with the the-
ory that sensory processing is enhanced after learning (Karni
and Sagi, 1991; Gilbert et al., 2001). This is also consistent with
neurophysiological evidence that improved behavioral perfor-
mance over training is accompanied by changes in sensory-driven
responses of neurons in areas associated with perceptual decisions
(Law and Gold, 2008). Boundary separation decreased over train-
ing and did not significantly differ between trained and untrained
directions after training. Therefore, after substantial training of
two motion directions, less accumulated evidence is required to
discriminate coherent motion between two novel directions, even
though the quality of extracted information from novel stimulus
(e.g., drift rate for untrained directions) is lower. These findings
further confirmed previous studies showing the learning effect on
drift rate and boundary separation (Petrov et al., 2011; Liu and
Watanabe, 2012).

The current study highlighted the benefits of using Bayesian
methods to implement the DDM with the recently proposed hier-
archical extension (Vandekerckhove et al., 2011; Wiecki et al.,
2013). The hierarchical DDM is powerful in recovering model
parameters with limited observed data (e.g., Jahfari et al., 2013).
This feature is particularly important for the current study,
because data from different training sessions need to be consid-
ered separately. One major advantage of using Bayesian methods
for parameter estimation is the practicality of the obtained poste-
rior parameter distributions. As we demonstrated in the current
study, the posterior distributions can either be used to pro-
vide point estimates for classical frequentist inference, or can be
directly used for Bayesian inference at both individual and group
levels.

Two issues require further consideration. First, the drift-
diffusion model is only an exemplar model of a large family of
sequential sampling models (Ratcliff and Smith, 2004; Smith and
Ratcliff, 2004; Bogacz et al., 2006; Zhang, 2012), and there are also
simplified accumulator models omitting the noise in momen-
tary evidence (Brown and Heathcote, 2005, 2008). These models
mainly differ in how evidence supporting different alternatives
is accumulated over time. It is of theoretical interest to explore
whether our findings depend on the specific structure of the
models we used. For example, one recent study showed similar

influence of speed-accuracy instructions on model parameters in
the DDM and in an accumulator model (Rae et al., in press).
Second, we used a combination of bonuses and warning mes-
sages to help participants engage in the task, which is similar to
early studies using a payoff matrix with criterion time (Fitts, 1966;
Pachella and Pew, 1968) This design has been proven to be effi-
cient in modulating behavior (Dutilh et al., 2009; Petrov et al.,
2011). However, it is possible that participants would adopt a dif-
ferent decision strategy if the feedback or payoff is changed (e.g.,
the ratio of correct and error bonuses, see Simen et al., 2006, 2009;
Bogacz et al., 2010; Balci et al., 2011).

In summary, we showed that the influence of speed-accuracy
instructions cannot be attributed to a single change in decision
boundary, but also relates to changes in other parameters that
are relevant to the decision-making process and depends on the
stage of learning. Future research on this topic should there-
fore take into account the complexity of individual’s response to
speed-accuracy instructions.
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When animals have to make a number of decisions during a limited time interval, they
face a fundamental problem: how much time they should spend on each decision in
order to achieve the maximum possible total outcome. Deliberating more on one decision
usually leads to more outcome but less time will remain for other decisions. In the
framework of sequential sampling models, the question is how animals learn to set their
decision threshold such that the total expected outcome achieved during a limited time is
maximized. The aim of this paper is to provide a theoretical framework for answering this
question. To this end, we consider an experimental design in which each trial can come
from one of the several possible “conditions.” A condition specifies the difficulty of the
trial, the reward, the penalty and so on. We show that to maximize the expected reward
during a limited time, the subject should set a separate value of decision threshold for each
condition. We propose a model of learning the optimal value of decision thresholds based
on the theory of semi-Markov decision processes (SMDP). In our model, the experimental
environment is modeled as an SMDP with each “condition” being a “state” and the value
of decision thresholds being the “actions” taken in those states. The problem of finding
the optimal decision thresholds then is cast as the stochastic optimal control problem of
taking actions in each state in the corresponding SMDP such that the average reward rate
is maximized. Our model utilizes a biologically plausible learning algorithm to solve this
problem. The simulation results show that at the beginning of learning the model choses
high values of decision threshold which lead to sub-optimal performance. With experience,
however, the model learns to lower the value of decision thresholds till finally it finds the
optimal values.

Keywords: semi-Markov decision process, average reward rate maximization, speed-accuracy trade-off,

reinforcement learning, sequential sampling models, diffusion process, decision threshold

1. INTRODUCTION
In many problems that animals and humans encounter, the qual-
ity of a desired outcome that they can achieve depends on the
amount of a resource they spent. For example, one can pay more
money (resource) to buy a more stylish (higher quality) coat
(desired outcome). If the resource is limited (which is almost
always the case), the animal or human should decide how much
of the resource she is willing to spend on obtaining one outcome.
By spending more of the resource on an outcome the quality
increases but less would be left for other outcomes. A rational ani-
mal or human, then, should decide how to allocate the resource
for obtaining each outcome to maximize the total amount of
obtained outcome. That is, she should find out what resource
allocation maximizes outcome per unit of the resource.

One interesting example of a situation in which the subject
should trade a resource with the quality of the outcome is per-
ceptual decision making in which the subject should detect a
noisy stimulus and choose a proper response based on it. Because
of the noise in the stimulus, to make more accurate responses
the subject should spend more time to detect the stimulus.
Since faster responses are less accurate, the subject should trade
between the amount of time (resource) and the accuracy (which

determines the quality of the outcome). This leads to the so-called
speed-accuracy tradeoff (SAT).

In the past few decades, computational modeling has been
a popular method for investigating the mechanisms underlying
perceptual decision making. A large class of models of percep-
tual decision making, called sequential sampling models, assume
that the subject sequentially samples from the stimulus (Link
and Heath, 1975; Townsend and Ashby, 1983; Luce, 1986; Smith
and Vickers, 1988; Busemeyer and Townsend, 1993; Smith, 2000;
Usher and McClelland, 2001; Ratcliff and Smith, 2004). These
samples are noisy and so the decision cannot be made based on
a single sample. These models propose that the subject responds
whenever the accumulated evidence favoring one of the responses
exceeds a specific value called the decision threshold. This way,
these models separate the perceptual process from the decisional
process. The evidence accumulation models the perceptual pro-
cess and is assumed to be affected by the physical stimulus. The
decisional process is modeled by the decision threshold and is
assumed to be controlled by the subject. Higher values of the
decision threshold mean that more information is needed for
making a decision and so the decisions will be more accurate.
However, accumulating more information takes more time and
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so decisions will be slower. Thus, the SAT is explained in sequen-
tial sampling models by changes in the decision threshold. This
feature of sequential sampling models has motivated a large body
of research on the SAT phenomena. A standard experimental
method of investigating this phenomena is to vary the emphasis
on speed or accuracy in the task instructions. Sequential sam-
pling models predict that the subjects will choose lower decision
threshold in the speed condition in comparison to the accuracy
conditions. This prediction has been confirmed in many stud-
ies (Ratcliff, 1978; Luce, 1986; Ratcliff, 2002; Palmer et al., 2005;
Ratcliff and McKoon, 2007; Ivanoff et al., 2008; Wagenmakers
et al., 2008; Bogacz et al., 2010; Forstmann et al., 2010).

Although these results show that subjects choose different val-
ues of decision threshold in response to varying the task’s instruc-
tions, they do not specify what value of the decision threshold
should be chosen in each condition. In other words, the results
of theses studies do not provide a normative account of the SAT
phenomena. The rationality notion explained above, however,
suggests a possible way to provide such an explanation: if the total
time of the task is fixed, a rational subject should balance between
her speed and accuracy such that the total outcome obtained dur-
ing the whole task is maximized. Spending more time on one trial
results in less remaining time for the other trials, meaning the
subject experiences fewer trials in the task. However, by spend-
ing more time on one trial the subject can increase the chance of
responding correctly.

This experimental design was first suggested by Gold and
Shadlen (2002). They considered a perceptual decision making
task in which the total time of the task is fixed and so the total
number of trials that the subject can experience depends on the
average time she spends on each trial. Also, the subject receives
a reward after each correct response and a penalty after each
incorrect response. They proposed that a rational subject sets her
decision threshold such that the expected total outcome (sum of
rewards and penalties) would be maximized. Because the total
time of the task is limited and fixed, this is equivalent to maxi-
mizing the expected outcome per unit time, or the average reward
rate.

Bogacz et al. (2006) further investigated the properties of the
average reward rate as a function of the task parameters (e.g.,
reward, penalty, stimulus salience and so on) and the parameters
of a class of sequential sampling models. Specifically, they derived
the relationship between the task parameters and the optimal
value of the decision threshold in the experimental design of Gold
and Shadlen. More recently, Simen et al. (2009) and Balci et al.
(2011) conducted a series of experiments to see if human subjects
can achieve the optimal performance in this experimental design.
The results of these studies showed that after extensive training in
tasks similar to what was proposed by Gold and Shadlen (2002),
human subjects could learn to set the decision threshold at values
close to optimal.

Knowing that subjects can learn to behave optimally, the next
question would be how the brain learns the optimal threshold.
The aim of this paper is to propose a computational framework
to answer this question. To this end, we consider a more gen-
eral experimental design than the design of Gold and Shadlen.
In this design, instead of having one condition, trials in a block

can come from one of several possible conditions and so the
subject should set different decision thresholds for different con-
ditions to achieve the maximum average reward rate (section 2).
We then show that this experiment can be modeled as a stochas-
tic process, specifically a semi-Markov decision process (section 4).
Learning the optimal decision threshold will be framed as an
optimal control problem in this stochastic environment. We then
propose a biologically plausible model that can solve this problem
(section 5). In the final section of this paper, we test the perfor-
mance of our model in learning the optimal value of the decision
threshold in different experiments (section 6).

2. COMPUTATIONAL METHODS
Our model is developed to account for a more general experimen-
tal design than what was used in previous research on optimal
SAT. To the best of our knowledge, Simen et al. (2009) conducted
the first experimental study to investigate if human subjects can
learn the optimal value of the decision threshold. To contrast their
experimental design with the one that is considered in this paper,
here we briefly explain experiment 1 of Simen et al. (2009).

The stimulus in each trial of this experiment was the well-
known random-dot kinematogram. This stimulus consists of a
number of dots, some of them moving coherently toward the left
or toward the right, while other dots move randomly. The sub-
jects’ task is to decide in each trial if the net direction of motion is
toward the left or right. The salience of the stimulus is determined
by the percentage of dots that are moving coherently. Other task
parameters were the reward that the subject receives after each
correct response and the response-stimulus interval (RSI), the
time between subject’s response and the presentation of the next
stimulus. Each session of the experiment consisted of 12 blocks
(the number of blocks was more than 12, but here we just consider
those that are relevant to our explanation). The blocks’ dura-
tion was fixed (4 min) and so the number of trials in each block
depended on how much time the subject spent on each trial.

Based on Gold and Shadlen’s hypothesis (Gold and Shadlen,
2002), because the blocks’ duration is fixed, a rational subject will
try to balance her speed and accuracy such that the average reward
rate is maximized. Since the total reward is the sum of the reward
for each block, maximizing the total average reward rate is equiv-
alent to maximizing it in each individual block. In experiment 1
of Simen et al. (2009), the stimulus salience and reward were held
constant. RSI was held constant within each block, but manipu-
lated across blocks. Clearly, the average reward rate is a function
of RSI, since the longer the delay between the trials, the fewer tri-
als can be experienced within a block. In addition, (Bogacz et al.,
2006) showed that if the subjects’ performance in this experiment
is modeled in the sequential sampling framework, the optimal
value of the decision threshold is a function of RSI. Therefore,
to achieve the optimal performance in each block (and so maxi-
mize the total average reward rate) subjects have to set different
decision thresholds for different blocks, dependent on the RSI .

Although the optimal value of the decision threshold in a block
depends on the RSI in that block, it does not depend on the RSI
in other blocks. In other words, to maximize the average reward
rate in one block, the subject does not need to know what are the
values of RSI in other blocks. Therefore, the subject can set the
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value of the decision threshold in each block with a specific value
of RSI, independent of other blocks with different RSIs. This is the
main difference between this design and the design we consider in
the current paper.

Here, we consider a more general design in which to achieve
the optimal performance the subject should consider all con-
ditions together and the optimal decision threshold for one
condition depends on all other conditions in the task. As an exam-
ple, consider two conditions: RSI= 500 ms and RSI= 1000 ms. In
the previous design, there would be two types of blocks: in one
type the RSI of all trials is 500 ms while the RSI of the trials in
the other type of blocks is 1000 ms. In our design, however, tri-
als with RSI= 500 ms and RSI= 1000 ms are all intermixed. In
other words, there is no manipulation across blocks. Crucially, a
cue associated with each RSI value is presented at the beginning
of each trial. For example, in the task set-up shown in Figure 1, in
trials with RSI= 500 ms a red cross-hair is presented as the cue
while in trials with RSI= 1000 the cue is a blue cross-hair. As
seen in this figure, the cue is followed by the random dots stimu-
lus. The blocks’ duration is fixed and so a rational subject should
maximize the average reward rate.

Since a cue associated with the RSI of the trial is presented
before the presentation of the stimulus, we assume that subjects
can set different values of decision threshold for each value of
RSI. In other words, the subject can associate different value of
decision threshold to each cue. Thus, like the design in Simen
et al. (2009), the average reward rate will be a function of the two
decision thresholds. The crucial difference is that in their design
the two decision thresholds are independent of each other (since
RSI is only manipulated across blocks), whereas in our design the
optimal threshold for one value of RSI depends on the value of
the other RSI.

The reason for this dependency in our design can be conceived
intuitively by noting that because the blocks’ duration is fixed,

every second that the subject spends on one trial, she is actually
losing the opportunity to spend that time on other trials. If the
other trials on average lead to higher reward, it is better to spend
less time on the current trial. By being faster in one type of trials,
the accuracy decreases and so the subject will lose more rewards
in those trials. However, if other types of trials are “rewarding
enough” it may be worth it to be fast and inaccurate in those tri-
als which lead to less reward. This means that to set the decision
threshold in each condition, the subject should consider all other
conditions in the task. In the next section, we derive a formal
expression of the average reward rate in our design and investigate
its properties in more detail.

3. AVERAGE REWARD RATE
In this section, we investigate the properties of the average reward
rate as a function of the task parameters. We first state the formula
for the average reward rate in the experimental design explained
above. To see how this function is related to the decision threshold
in different conditions, we then explain a variant of sequential
sampling models called independent race model and show how the
decision making process is modeled in this framework. Finally,
we see some examples of the average reward rate for different task
parameters.

3.1. AVERAGE REWARD RATE AS A FUNCTION OF TASK PARAMETERS
In section 2, we explained the experimental design with an exam-
ple in which only one task parameter (RSI) was manipulated.
Before deriving the formula for the average reward rate, we should
explain the experimental design in more detail.

In the experimental design, there are several blocks with a
fixed duration. Each trial in each block comes from one of the
Nc possible “conditions” with each condition specifying the task
parameters in that trial. Each trial is drawn from a given condi-
tion Ci with probability Pi. As explained before, a cue presented at

FIGURE 1 | An example of the experimental design. In this example, each
trial can come from one of two conditions with equal probability. A colored
cross-hair presented at the beginning of each trial indicates the condition of the
upcoming trial. After the presentation of the cue, the stimulus appears and
remains on the screen till the subject responds. After responding, the subject
receives feedback. The time between subject’s response and the beginning of

the next trial is determined by the delay penalty (DP) and response-stimulus
interval (RSI). The table on the right of the figure shows the cue-condition
association along with the task parameters in each condition. As seen, the two
conditions differ only in the value of the RSI. See Table 1 for a description of the
task parameters. In this table, a separate parameter for the fixation time is not
considered and instead it is considered as a part of the RSI.
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the beginning of each trial indicates which condition this trial is
coming from. For example, in Figure 1 there are two conditions
and each trial can come from one of them with equal probabil-
ity. In this figure, all task parameters are the same in these two
conditions except the RSI.

The subject receives a reward after each correct response and
a penalty after incorrect responses. Also, there is a delay penalty
after each incorrect response. This is the time that the subject
should wait in addition to the RSI when the response is incorrect.
The task parameters and their notations are specified in Table 1.

The average reward rate is defined as the average reward
divided by the average time that it takes to obtain the reward. In
our experimental design , since the subject can choose different
decision thresholds for different conditions, the average time and
average reward will be different in different conditions . The aver-
age reward in the task, then, is the weighted sum of the average
reward in each condition with the weights being the probabil-
ity of each condition presented in the task. The average time is
computed in the same way. The average reward rate, then, can be
expressed as follows:

R̄ =
∑Nc

i= 1 Pi ·
[
rC

i · PC
i + rI

i · (1− PC
i )
]

∑Nc
i= 1 Pi ·

[
T̄C

i · PC
i +

(
T̄I

i + TDP
i

)· (1− PC
i

)+ TRSI
i + TND

]

(1)
Among all these parameters, the subject can only control the
probability of correct Pi

c, mean correct reaction time T̄C
i and

mean incorrect reaction time T̄I
i in each condition i, by adjusting

her decision threshold in each condition. All other parameters are
controlled by the experimenter. The sequential sampling mod-
els specify the relationship between the decision threshold and
mean reaction time and probability correct. In the next section
we explain this relationship.

3.2. DIFFUSION PROCESS MODEL OF PERCEPTUAL DECISION MAKING
As explained before, the sequential sampling models assume that
the subject accumulates noisy information favoring each response
and she will respond as soon as the evidence favoring one of the
responses reaches a decision threshold. Several models have been
proposed based on different assumptions about the accumulation
process and the decision process (see Ratcliff and Smith, 2004 for

Table 1 | Task parameters in the experiment.

Parameter Description

Nc Number of conditions

Pi Probability of condition i happening

PC
i Probability of being correct in condition i

rC
i Reward in condition i

r I
i Penalty in condition i

T̄ C
i Mean correct reaction time in condition i

T̄ I
i Mean incorrect reaction time in condition i

T DP
i Delay penalty after incorrect responses in condition i

T RSI
i Response-stimulus interval in condition i

T ND Non-decision time which is assumed to be independent of
the condition

a comprehensive review of different sequential sampling mod-
els). Although different models make different predictions about
a subject’s performance, most of these models can fulfil the pur-
pose of this paper. In this paper, we consider an independent race
model in which the information favoring each response is accu-
mulated in a separate accumulator. This model assumes that the
subject responds as soon as the accumulated information in one
of the accumulators reaches its decision threshold. The accumu-
lated information in each accumulator is modeled as a diffusion
process. In this model, the information is sampled and accumu-
lated in continuous time. A diffusion process X is specified by the
stochastic differential equation:

dX = μ · dt + σ · dB (2)

The parameter μ is called the drift coefficient and determines
the mean of the process X (It can be shown that E [X(t)] = μ · t
(see for example Smith, 2000)). This parameter is assumed to
be proportional to the stimulus salience. The parameter σ is the
diffusion coefficient and specifies the amount of noise in the
samples. The process dB specifies the increments of a zero-mean
Gaussian process.

Consider the random-dot kinematogram task explained in
section 2. The corresponding independent race model of this task
consists of two accumulators that one of them accumulates infor-
mation favoring the “right” response while the other accumulates
information favoring the “left” response. Each of these accu-
mulators is a diffusion process with one decision threshold (see
Figure 2). Thus, the parameters of the model are the drift coeffi-
cients μi, the diffusion coefficients σi and the decision thresholds
ai, where the subscript i = 1, 2 denotes the ith accumulator. For
sake of simplicity, we assume that σ1 = σ2 = σ and a1 = a2 = a.
In this paper, we do not distinguish between the right and left
responses, and instead assume that accumulator 1 corresponds to
the correct response and accumulator 2 corresponds to the incor-
rect response. The probability of giving a correct response, as well
as the probability density functions for the correct and incorrect
reaction times, are expressed in Supplementary Material. These
functions specify the relationship between the average reward rate
function in Equation1 and the decision thresholds in the differ-
ent conditions, and so all parameters being fixed, one can plot
R̄ as a function of the decision thresholds. Several examples are
investigated in the next section.

3.3. SOME EXAMPLES
In this section, we investigate the properties of the average reward
rate function in Equation1 with three examples. In the first
example, we consider an experiment similar to the experimen-
tal design used previously (Simen et al., 2009; Balci et al., 2011).
As explained above, in this case the subject has to set only one
decision threshold for each block. The average reward rate R̄ as a
function of the decision threshold for the task parameters given in
Table 2 and different values of TRSI is shown in Figure 3. As can
be seen in this figure, for all values of TRSI there is one value of
the decision threshold a that maximizes the average reward rate.
The properties of the average reward rate function for another
sequential sampling model, called the drift diffusion model, have
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FIGURE 2 | A sample path of the accumulated information in the two

accumulators of the race model. The black paths are the accumulated
information and the thick red lines are the decision thresholds. The
accumulated information in the accumulator 1 reaches the decision
threshold at about 1.8 s and before the accumulator 2 and so the response
1 will be selected.

Table 2 | Task parameters used in the first example.

Parameter μ1 μ2 σ T ND rC rI T DP

Value 0.1 0 0.05 0.5 5 −5 5

been investigated thoroughly before (Bogacz et al., 2006; Simen
et al., 2006, 2009; Balci et al., 2011). Specifically, it has been shown
that this function is uni-modal in the whole parameter space. Our
simulations, not reported here, showed that this is also the case for
the independent race model used here.

In the second example, we consider an experiment similar to
what was shown in Figure 1. In this experiment, each trial could
come from one of the two conditions with equal probability. The

task parameters are given in Table 3. In this table, μ
j
i is the drift

coefficient of accumulator j in condition i. As explained before, in
this experiment the subject can set separate decision thresholds
for different conditions. The average reward rate as a function of
the decision threshold in condition 1, a1, and condition 2, a2, is
shown in Figure 4. Although we do not prove it here, our simula-
tions suggest that this function is also uni-modal over the whole
parameter space and so there is one pair of the decision thresholds
that maximize it. In Figure 4, the average reward rate is maxi-
mized when a1 = 0.06 and a2 = 0.11. As can be seen in Table 3,
in both conditions, the reward for the correct response is rC

j = 2
but the punishments are different. In condition 2, the punishment
is greater and because of that, the subject might ponder more in

FIGURE 3 | The average reward rate in example 1. In this example, no
cue is presented at the beginning of trials and so it is assumed that the
subject sets one decision threshold for all trials. In this figure, the average
reward rate is plotted as a function of this decision threshold, (denoted as a
in the figure), and for different values of the parameter T RSI . Other
parameters are given in Table 2.

Table 3 | Task parameters used in the second example.

Parameter μ1
1 μ2

1 μ1
2 μ2

2 σ T ND rC
1 r I

1 rC
2 r I

2 T DP T RSI

Value 0.1 0 0.15 0 0.07 1 2 −1 2 −5 2 1

FIGURE 4 | The average reward rate in example 2. In this example, there
are two conditions and each trials starts with presentation of a cue
associated with these conditions. It is assumed that the subject sets
different decision thresholds for each condition. In this figure, the average
reward rate is plotted as a function of these decision thresholds. a1 denotes
the decision threshold in condition 1 and a2 denotes the decision threshold
in condition 2. The task parameters are given in Table 3.

those trials and so the optimal decision threshold for condition 2
is greater than condition 1.

In the last example of this section, we examine how the optimal
decision threshold in each condition varies when the difficulty
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of one of the conditions changes. Again, we consider an exper-
iment with two conditions. The task parameters are given in
Table 4. As can be seen in this table, all parameters of the two
conditions are the same except the reward after correct responses
which is 1 in condition 1 and 5 in condition 2. Here, we want
to see how the optimal values of the decision thresholds change
when the salience level of condition 1, μ1

1, changes. The opti-
mal value of the decision thresholds for several values of μ1

1 in
the interval [0.05, 0.2] is plotted in the top panel of Figure 5.
When the salience levels in the two conditions are equal, that is
μ1

1 = μ1
2 = 0.05 and μ2

1 = μ2
2 = 0, the optimal value of the deci-

sion threshold in condition 2 is larger than condition 1 (a
opt
1 =

0.033 and a
opt
2 = 0.083). This is because each correct response in

condition 2 leads to higher value of reward and so it is worth it
to set a higher decision threshold for this condition and so on
average spent more time on this condition than condition 1 and
make more correct responses. However, as the salience level of
condition 1 increases and this condition becomes easier than con-
dition 2, the optimal decision threshold in condition 1 increases
while it decreases for condition 2. To investigate this situation
more, the probability of giving a correct response and mean time
spent in each condition when the optimal decision thresholds are
recruited are shown in the left and right panels at the bottom of
Figure 5, respectively. As seen, by increasing μ1

1, the optimal deci-
sion thresholds change in a way that the probability of correct
response increases for condition 1 and decreases for condition 2.
The mean time spent in each condition shows a more complicated
pattern. In conclusion, even when the task parameters of only
one condition change, the subject should adjust her speed and
accuracy in all conditions to maximize the global average reward
rate.

4. A STOCHASTIC PROCESS MODEL OF THE EXPERIMENT
The main aim of this paper is to propose a computational model
of how subjects learn the optimal decision thresholds in the exper-
imental design explained before. The proposed model is based on
well-known reinforcement learning algorithms previously used
to model optimal action selection and decision making in ani-
mals and humans (Barto, 1995; Montague et al., 1996; Schultz
et al., 1997; Sutton and Barto, 1998). In these algorithms, the
learning problem is formulated as an optimal control problem
in a stochastic environment. One critical step in modeling in
this framework is to specify the environment corresponding to
the problem in hand. In this section, we show how our exper-
imental design can be modeled as a stochastic process called a
semi-Markov decision process. In what follows, we first explain
Markov decision processes and then discuss how semi-Markov
decision processes generalize them to continuous time problems.
Finally, we show how our problem can be cast as a semi-Markov
decision process.

Table 4 | Task parameters used in the third example.

Parameter μ2
1 μ1

2 μ2
2 σ T ND rC

1 r I
1 rC

2 r I
2 T DP T RSI

Value 0 0.05 0 0.07 0.5 1 −2 5 −2 2 0.5

4.1. MARKOV DECISION PROCESS
In a Markov decision process an agent (e.g. an animal or a
robot) is interacting with a stochastic environment. The envi-
ronment consists of N states S = {s1, · · · , sN

}
and at each

time step k it is in one of these states, say sk = si. At each
time step, the agent can choose an action from the set of
M possible actions A = {a1, · · · , aM

}
. After taking action ak

the environment transfers to a new state sk+ 1 with prob-
ability Tu

ij(k) = Pr (sk+ 1 = sj|sk = si, ak = au) and the agent

receives a probabilistic reward rk = r with probability Ru
ij(r, k) =

Pr (rk = r|sk = si, sk+ 1 = sj, ak = au). The important aspect of
these functions is that they possess the Markov property. That
is, the transition probability Tu

ij and reward probability Ru
ij only

depend on the state at time k and the action ak and not the whole
history of states and actions

{
s1, a1, · · · , sk, ak

}
. More formally:

Pr
(

sk+ 1 = sj|sk, ak, · · · , s1, a1

)
= Pr

(
sk+ 1 = sj|sk, ak

)
(3)

Pr (rk = r|sk+ 1, sk, ak, · · · , s1, a1) = Pr (rk = r|sk+ 1, sk, ak)(4)

This structure is called a Markov decision process (MDP). In
short, an MDP consists of a 4-tuple 〈S, A, T, R〉 such that T and
R possess the Markov property. The state and action spaces in an
MDP can be continuous.

The agent’s goal in an MDP is to find the optimal policy. A
policy π : S× A→ [0, 1] is a function that maps a state-action
pair (s, a) to the probability of selecting action a in state s. To
define the optimal policy we need a notion of optimality. This
notion can be formalized based on the agent’s desire to maximize
a function of received rewards called return. One popular form of
the return function used in many applications of reinforcement

FIGURE 5 | Optimal decision thresholds, probability of correct and

mean reaction times in example 3. (A) The optimal value of the decision
threshold in condition 1, aopt

1 , and condition 2, aopt
2 , for different values of

the parameter μ1
1 in the interval [0.05, 0.2]. (B) The probability of a correct

response in condition 1 (denoted as PC
1 ) versus condition 2 (denoted as

PC
2 ). (C) The mean time spent on condition 1 (T̄1) and condition 2 (T̄2). In all

figures, the points corresponding to μ1
1 = 0.05, 0.1 and 0.2 are specified by

arrows.
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learning is expected discounted sum of future reward:

E

[ ∞∑

k= 0

γ krk

]

(5)

where the operator E denotes expectation over all trials. The
parameter γ is called the discounting factor and determines the
relative weighting of immediate versus later rewards. The opti-
mal policy will maximize this return. One reason for popularity
of this return in the literature of reinforcement learning is that, as
we will see in section 5.1, it will lead to a set of recursive equa-
tions for finding the optimal policy. Some of the psychologically
more plausible returns (e.g., hyperbolic discounting) do not pos-
sess this property (for a fuller discussion see Daw, 2003, section
2.1.4).

Based on this notion of return, the value of state si at time step
k under the policy π is defined as:

Vπ

(
si, k

)
= E

⎡

⎣
∞∑

j= k

γ j− krj|sk = si, π

⎤

⎦ (6)

This function is called the state value function and is the expected
discounted sum of rewards that the agent expect to receive given
that the state at time step k is sk = si and the agent will choose
actions based on policy π afterwards. It is easy to show that an
optimal policy that maximizes the return 6 will also maximize the
state value functions for all time steps and states. Thus a policy π∗
is optimal if:

Vπ∗ (s, k) ≥ Vπ (s, k) for all s ∈ S and k and all policies π (7)

that is, if the state value functions under that policy are greater
than those under any other policy.

4.2. SEMI-MARKOV DECISION PROCESS
In an MDP the state transitions occur at discrete time steps.
Semi-Markov decision processes (SMDPs), generalize MDPs by
allowing the state transitions to occur in continuous irregular
times. In this framework, after the agent takes action a in state
s, the environment will remain in state s for time d and then tran-
sits to the next state and the agent receives the reward r. The dwell
time d is a random variable with probability density D(d; s, a). An
SMDP is specified by the 5-tuple 〈S, A, T, R, D〉where T, R and D
possess the Markov property. This process is called semi-Markov
because the transition from one state to another not only depends
on the current state and action but also on the time elapsed since
the action has been taken.

Since D is a function of action a, the dwell time in each state
depends on the agent’s policy. This means that in an SMDP, in
addition to the total reward, the total time to achieve that reward
depends on the policy. Thus, it is reasonable to define the opti-
mal policy based on a return that takes both reward and dwell
time into account. This makes the average reward rate an appeal-
ing choice for the return in an SMDP. Assuming that the rewards
are delivered only after each transition (and not during the dwell

time) the average reward rate of an SMDP starting at state si under
the policy π is defined as follows (Das et al., 1999):

R̄π
(

si
)
= lim

N→∞
E
[∑N

k= 0 rk|s0 = si, π
]

E
[∑N

k= 0 dk|s0 = si, π
] (8)

The state value functions are defined accordingly. The optimal
policy of an SMDP, then, maximizes the average reward rate.

4.3. AN SMDP MODEL OF THE EXPERIMENT
In this section, we show how the experimental design explained
in section 2 can be modeled as an SMDP. Each SMDP is specified
by the five-tuple 〈S, A, T, R, D〉 and so to explain our model we
should show how these functions correspond to different com-
ponents of the experiment and mechanisms of subjects’ decision
making. Before formally defining each of the components of the
model, we explain them using the examples in section 3.3. The
SMDP corresponding to the second example in section 3.3 is
shown in Figure 6. There are two conditions in this example.
In our model, we assume that each condition corresponds to
one state of the environment and so for this example the corre-
sponding SMDP has two states. After presentation of each cue
at the beginning of each trial, the environment transits to one
of these states. The dwell time in an SMDP is defined as the
time between the transition from one state to another. Since the
state transitions in the model occur at the beginning of each
trial (by the presentation of the cue), the dwell time is the time
between the presentation of a cue in one trial and the time of
the presentation of the cue in the next trial. The critical aspect
of the model is the way that we define actions in the corre-
sponding SMDP. In our experimental design, the main concern
is the relationship between the decision threshold in each con-
dition and the average reward rate. On the other hand, in an
SMDP in each state the agent tries to take actions that maxi-
mize the average reward rate. This suggests a plausible choice for
actions in the corresponding SMDP: the action in each state is

FIGURE 6 | The SMDP corresponding to the second example in

section 3.3. In the example each trial could come from one of two
conditions and so the corresponding SMDP has two states. The states are
shown by circles. The arrows show transitions between states. The
probability of each transition and the reward that the agent receives after
each transition are written on the arrows.
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the decision threshold of the information accumulators. In this
way, by learning the optimal policy in the SMDP, the subject
is actually learning the optimal value of the decision thresh-
old for each condition. The decision threshold affects both the
reaction time and the accuracy and so in the corresponding
SMDP, actions affect both the reward probabilities and the dwell
times. Since the decision thresholds can be any positive value, the
action space in each state is the continuous space of all positive
numbers.

The transition from one state to another is determined by
the probability that a trial comes from a specific condition. In
the example we are considering here, this probability is 0.5 for
each condition. The reward that subject receives after each correct
and incorrect response depends on the condition. In Figure 6,
these quantities are shown on the arrows that indicate transitions
between states.

Based on this description, the functions 〈S, A, T, R, D〉 can be
specified as follows:

The state space S: the state space is the discrete set of all possible
conditions in the experiment, that is S = {C1, · · · , CNc }.

The transition probability function T: For sake of simplicity, in
this paper we only consider experiments in which the probability
of each trial coming from a specific condition does not depend on
either subject’s response or the condition presented in the previ-
ous trial. As we explained, this probability is instead determined
by the experimenter. Thus, the transition probability function is
defined as follows:

Tu
ij(k) = Pr

(
sk+ 1 = Cj|sk = Ci, ak = au) = Pr

(
sk+ 1 = Cj

) = Pj

(9)
where Cj denotes the jth condition which corresponds to the jth

state of the environment.
The reward probability function R: As it was explained before,

the reward that subject receives after responding in each trial,
depends on the condition and the subject’s response. Specifically,
in condition i the subject receives reward rC

i for each correct
response and rI

i for each incorrect response. Therefore, the prob-
ability of receiving a reward r in each condition depends on
subject’s accuracy and so her decision threshold in that con-
dition. Formally, the reward probability function is defined as
follows:

Ru
ij(r, k) = Pr

(
rk = r|sk = Ci, sk+ 1 = Cj, ak = au)

=
⎧
⎨

⎩

PC
i if r = rC

i ,

1− PC
i if r = rI

i ,

0 otherwise

(10)

The dwell time probability density function D: The dwell time
in an SMDP is the time that it takes between transition from
one state to another. In our model, this time is the sum of four
parts: non-decision time, response time, delay penalty and RSI.
The response time is the time between the presentation of the
stimulus and the time that the first accumulator hits its decision
threshold. The delay penalty depends on the subject’s response
and the trial condition. The probability density of the dwell time
for each condition is a function of the subject’s decision threshold

and the task parameters in that condition. The mean dwell time
in condition i is:

E[d] = T̄C
i · PC

i +
(
T̄I

i + TDP
i

) · (1− PC
i

)+ TRSI
i + TND (11)

The action space A: As it was explained above, the action space
in each state is the space of all positive real numbers. The
policy π(sk = Ci, ak = a) is the probability density function
that specifies the likelihood of setting the value a as the deci-
sion threshold when the cue associated with condition Ci is
presented.

5. MODEL
So far, we have shown how our experimental design can be
modeled as an SMDP. Following Gold and Shadlen (2002) we
speculated that a rational subject learns to balance her speed and
accuracy in each condition such that the average reward rate is
maximized. The question, then, is how the subject learns this
optimal behavior. In this section, we propose a normative model
of learning the optimal SAT in our experimental design. In the
SMDP framework proposed above, the problem of optimal SAT
is equivalent to the problem of learning the optimal policy that
maximizes the average reward rate. Fortunately, the problem of
learning the optimal policy in an MDP and SMDP has been
investigated thoroughly in the machine learning and computer
science literature. Specifically, the reinforcement learning (RL)
algorithms provide a mechanism for learning the optimal policy
without any knowledge about the dynamic of the environment
and only by experiencing it (Bertsekas and Tsitsiklis, 1996; Sutton
and Barto, 1998). In an SMDP, the dynamic of the environment
is determined by the functions R, T and D. The RL algorithms
assume that the agent does not know these functions and can
only observe noisy samples from them. This property makes these
algorithms appropriate for our problem: here, the subject can
only observe the reward, reaction time and condition in each
trial and she should learn the optimal value of decision threshold
based on these observations. Another appealing feature of these
algorithms is that they provide a biologically plausible account
of learning. It has been shown that the pattern of fluctuations in
the firing of dopaminergic neurons in ventral tegmental area and
surrounding neurons in tasks that involve prediction of reward,
resembles a signal called the temporal difference error, which plays
a central role in the RL algorithms (Montague et al., 1996; Schultz
et al., 1997).

In this section, we first explain the temporal difference learning
method and then propose a model that uses this method to solve
the optimal SAT problem.

5.1. TEMPORAL DIFFERENCE LEARNING
As we explained before, the optimal policy in MDPs and SMDPs is
defined as the policy that maximizes the state values for all states
(see inequality 7). Therefore, to find the optimal policy a learn-
ing algorithm should be able to compute the state values for a
given policy. For return function 5, the state values are defined in
Equation 6. This equation can be written in a recursive form:

Vπ (sk) = E [rk + γ Vπ (sk+ 1)] (12)
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This equation is known as the Bellman equation. The expecta-
tion on the right hand side of this equation is taken with respect
to all possible actions and states and so depends on the func-
tions T and R. Notice that the Bellman equation provides one
equation for each state in the state space and so can be con-
sidered as a system of equations. If the functions T and R are
known, dynamic programming methods can be used to solve this
system of equations efficiently (Bertsekas and Tsitsiklis, 1996).
However, in many situations (including our problem) the agent
does not know these functions. The temporal difference (TD)
leaning method provides a simple and efficient solution to this
problem. In its simplest form, the TD learning method uses an
estimate of the difference between the two sides of Bellman equa-
tion 12 to learn the state value functions. This estimate is called
the temporal difference error and is defined as follows:

δk = rk + γ V̂k
π (sj)− V̂k

π (si) (13)

where V̂k
π (s) is the agent’s estimate of the value of state s at time

step k, si and sj are the state of the environment at steps k and
k+ 1 and rk is the one step reward that the agent earned by going
from si to sj. The agent then updates its estimate of the value of
state si using this error signal:

V̂k+ 1
π (si) = V̂k

π (si)+ αc . δk (14)

where αc is the learning rate.
Das et al. (1999) showed that for an SMDP with the average

reward rate return defined in Equation 8, the TD error signal
should be computed as follows:

δk = rk − ρ̂k · dk + V̂k
π (sj)− V̂k

π (si) (15)

where ρ̂k is an estimate of the average reward rate defined in
Equation 8 at time step k (in the next section, we explain how
this estimate can be computed).

Equation 15 together with the update Equation 14 provide an
algorithm for learning the state values for a given policy π in an
SMDP. However, they do not specify how the optimal policy can
be learned. In the next section, we explain a method for learning
the optimal policy based on the TD learning algorithm.

5.2. A MODEL OF LEARNING OPTIMAL DECISION THRESHOLDS
In this section, we propose a model for learning the optimal
decision thresholds. This model is based on the TD learning algo-
rithm. The schematics of the model is shown in Figure 7. The
frames shown on the left of this figure as the inputs to different
parts of the model, are exactly those that were shown in Figure 1
(these are the frames shown in one trial of the task).

The model consists of two units: an information accumulation
unit and an actor-critic unit. The information accumulation unit
is responsible for processing the stimulus and selecting the appro-
priate response in each trial. The stimulus presented in each trial
is considered as the input to this unit and the selected response
(denoted as R in the figure) is the output of the unit. This unit
is an independent race model. As we discussed in section 3.2, in
the independent race model, the correct and incorrect responses

FIGURE 7 | Schematics of the proposed model of learning the optimal

decision thresholds. All frames of a trial in Figure 1 are shown here as the
input to different components of the model. The cue presented at the
beginning of the trial (the red cross-hair here) determines the current state,
sk , and acts as the input to the actor. Based on sk and the current policy the
actor chooses a value a for the decision thresholds of the information
accumulators. The arrows from the output of the actor to the threshold
units in the accumulators (denoted as TH in the figure) show that the
decision thresholds are set by the actor. The noisy information
accumulation is represented in the figure by two channels in which the
noise N is added to the signals μi and passed through integrators. This
noisy accumulated information is sent to the threshold units and finally to
the response unit (RU in the figure) that determines which accumulator has
finished processing first. After responding, the model receives the
feedback which is the inputs to the critic. Other inputs of the critic are the
cue presented in the next trial (which determines the next state sk + 1) and
the estimate of the average reward rate. The ARE unit in the figure receives
the reward as its input and computes an estimate of the average reward
rate using equation 19. Finally, the critic computes the TD error signal
through equation 17 and uses it to update both the estimate of state values
and the policy.

each have a separate accumulator (modeled as a diffusion process)
and assumes that whenever the accumulated information reaches
one of the thresholds (TH in the figure), the subject will respond.
The unit named RU in the figure, simply determines which of the
accumulators has won the race and so determines the response.

The speed and accuracy are controlled by the value of the deci-
sion threshold in the information accumulation unit. The value of
this parameter is set by the other unit of the model, the actor-critic
unit (in the figure, the arrows from the output of the actor-critic
unit to the threshold units are intended to show this) and so this
unit is responsible for learning to solve the optimal SAT prob-
lem. Actor-critic architecture is one the most popular TD learning
algorithms. Specifically, among several TD based algorithms pro-
posed in the RL literature, the actor-critic algorithm has received
significant attention in the computational neuroscience litera-
ture. This is because different components of this model mapped
nicely to the anatomy of basal ganglia, a brain circuit know to
be involved in many motor and cognitive functions (Barto, 1995;
Doya, 2000; Frank, 2005, 2006; Bogacz and Larsen, 2011).

The actor-critic architecture, as its name suggests, consists of
two units: an actor unit and a critic unit. The actor unit has
a representation of the current policy and in each state selects
an action based on this policy. In the SMDP model of our
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experimental design, the state is determined by the cue presented
at the beginning of a trial and the action is the value of the deci-
sion threshold for that trial. Thus, in our model the cue presented
at the beginning of a trial is the input to the actor unit while its
output is the decision threshold for that trial (see Figure 7). In
each trial, after the presentation of the cue the actor sets the deci-
sion thresholds of the information accumulation units. After the
presentation of the stimulus, the information accumulation unit
selects a response based on which of its accumulators has reached
its threshold sooner. Based on the selected response and the trial
condition, a reward is presented to the subject and the next trial
starts after a while.

At the moment that the cue of the next trial is presented, the
critic unit plays its role. The role of this unit, as its name implies,
is to criticize the action taken by the actor in a trial. In our model,
the critic evaluates if the chosen decision threshold in a trial leads
to better or worse than expected performance in that trial. The
critic does this by computing the TD error in that trial. To see
how the TD error can be employed to evaluate the actions taken
by the actor, let us consider an experimental design with only one
condition (like the first example in section 3.3). In this situation,
sj = si = C1 and so the terms V̂k

π (sj) and V̂k
π (si) in Equation 15

cancel out each other and the TD error is reduced to δk = rk −
ρ̂k · dk. If the TD error δk is positive for a trial, it means that the
amount of reward received in that trial, rk, exceeded the cost spent
on that trial which is ρ̂k · dk. The term ρ̂k · dk is considered as the
cost spent on the trial because when the subject is spending time
dk to receive the reward rk, she is actually losing the opportunity
of spending this time on other trials that on average lead to ρ̂k of
reward per unit of time. Thus, if the actor has chosen a value for
the decision threshold for a trial and the TD error for that trial
is positive, it means that decision threshold has led to better than
expected performance. Similarly, negative TD error means worse
than expected performance. In actor-critic algorithm, this feature
of the TD error is used to improve the policy: if in a trial the actor
takes an action that leads to positive TD error, the probability of
taking that action next time increases. Similarly, the probability of
taking actions that lead to negative TD error decreases. This way
the policy is improved (at least probabilistically) after each trial
till it finally converges to the optimal policy.

In the general experimental design in which there could be
more than one condition, to compute the TD error, the critic
needs to have an estimate of the state values. Thus, in addition
to improving the policy, the TD error computed by the critic is
used to estimate these values using Equation 14 (in Figure 7 the
arrow that goes from the output of the critic back to it is intended
to show this).

In sum, in our model, after the presentation of the cue in the
next trial [which is equivalent to transition to the new state in the
corresponding SMDP (see section 4.3)], the critic computes the
TD error which is used both to improve the policy and estimate
the state values.

To calculate the TD error using Equation 15, the critic needs to
know the current state si, the next state sj, the reward rk, the dwell
time dk and the estimate of the average reward rate ρ̂k. Thus, in
Figure 7 the frames corresponding to the current trial (the red
cross-hair), the reward, the next trial (the blue cross-hair) and

also the output of the average reward rate estimator unit (ARE in
the figure) are shown as the inputs to the critic unit.

So far, we have explained the role of different units of the
model in processing the stimulus and selecting response, setting
the decision thresholds and improving the policy. To complete the
model, three issues should be addressed and the rest of this sec-
tion is devoted to them: first, how the policy is represented in the
actor, second, how the policy can be improved using the TD error
and third, how the average reward rate can be estimated.

The first two problems are tightly related and so we explained
them first. When the actor-critic algorithm is used in discrete
action space problems, the policy can be represented as a proba-
bility mass function with one probability value for each action in
the action space. When an action is taken by the actor, the prob-
ability of taking it in the next trial will be increased or decreased
proportional to the TD error, and the probability of taking other
actions will be normalized accordingly. However, when the action
space is continuous (as is the case in our model), the policy takes
the form of a probability density function, and so updating it
using the method for discrete action spaces is not feasible any-
more. Another problem associated with continuous action spaces
is action selection: even if we are able to fully specify the policy
π( · ), then how should the actions be selected? Several methods
have been proposed to address these problems. The comparison
between these methods is outside the scope of this paper. Here,
we use a slight modification of a simple algorithm proposed by
Gullapalli (1990). In this algorithm, the policy is represented by
a Gaussian distribution. For a 1-dimensional action space the
policy takes the following form:

π
(

sk = si, ak = a
)
= 1√

2π · νi
· exp

(
− (a−mi)2

2(νi)2

)
(16)

where π(sk = si, ak = a) specifies the likelihood of choosing the
value a as the action in state si, and mi and νi are the mean and
standard deviation of the Gaussian distribution representing the
policy in state si. An advantage of representing the policy as a
parametric distribution is that during learning, we just need to
update the parameters. In other words, the problem of updating
the policy reduces to the problem of updating its parameters. The
Gaussian distribution in Equation 16 has only two parameters: m
and ν. Gullapalli (1990) suggested the following updating rule for
the parameter m:

mi(k+ 1)← mi(k)+ αm ·	mi(k)

	mi(k) = δk ·
(

ak −mi(k)
(νi(k))2

) (17)

In Gullapalli’s algorithm ν is also updated but for sake of sim-
plicity we do not consider updating it here (ν remains constant
during learning).

In the actor-critic implementation of this algorithm, in each
state the actor draws a sample from the distribution Equation 16
and takes it as the action. After receiving reward the critic com-
putes the TD error signal. This signal is then used to update
the policy parameter using Equation 17. For appropriate choice
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of learning rates, this algorithm will eventually converge to the
optimal policy.

The parameter ν can be considered as the exploration-
exploitation parameter. For small values of this parameter, the
Gaussian distribution is highly concentrated around its mean, m,
and so most of the actions (which are random samples from this
distribution) will be close to the mean. In this case, the algorithm
cannot explore the action space enough. On the other hand, for
large values of ν, many of the actions will be exploratory. In this
case, even if the algorithm finds the optimal value of m, many of
the selected actions will still be suboptimal. One way to balance
between exploration and exploitation is to start the algorithm
with large values of ν and decrease its value gradually during
learning.

Now, we turn to the third problem mentioned above. In
Equation 15, ρ̂k is the estimate of the global average reward rate.
This signal is estimated by a linear filter named ARE in Figure 7.
Before explaining how this unit works, we should clarify a point.
Both the actor and the critic units work at discrete time steps.
Specifically, although we can implement them as continuous time
systems, they only do their computations at either the beginning
or at the end of a trial. Therefore, all signals computed in these
two units are indexed by the discrete index k. However, to esti-
mate the average reward rate, the ARE unit needs to work in
continuous time and so its input and output are functions of
time t. Specifically, the input to this unit is the signal U(t) =∑

k rk · δ(t − tk) where δ( · ) is the Dirac delta function, rk is the
reward received in the kth trial and tk is the time at which this
reward was received. It is assumed that the rewards are delivered at
the time of state transitions and so tk =∑k

j= 1 dj with dj being the

dwell time in the jth trial. The signal U(t) is the train of impulses
created by delivery of rewards. The ARE unit acts as a linear filter
on its input and so its output is computed as follows:

dρ̂(t)

dt
= −αρ̂ · ρ̂(t)+ U(t) (18)

The signal ρ̂(t) is the estimate of the average reward rate at time
t. To compute the TD error, the critic uses the value of this signal
at the end of each trial, that is at times tk. It is easy to show that:

ρ̂k = ρ̂(tk) = (ρ̂k− 1 + αρ̂ · rk− 1
) · e−αρ̂ · dk (19)

In sum, in one trial of the experiment different components of the
model work in the following way: after the presentation of the cue,
the actor draws a random sample from the Gaussian distribution
in Eqaution 16 and sets the thresholds of the accumulators equal
to this value. After the presentation of the stimulus, the accu-
mulators race till one of them reaches its threshold and selects a
response. Based on the response and the trial condition a reward
is delivered and the next trial starts. After the presentation of the
cue at the beginning of the next trial, the critic computes the TD
error using Equation 15. This error signal is then used to update
both the estimate of state values (using Equation 14) and the pol-
icy (using Equation 17). The actor then selects a new threshold
for the new trial based on the presented cue.

6. SIMULATION RESULTS
In this section, we analyze the performance of the proposed model
in two simulations. The first simulation corresponds to the first
example given in section 3.3 in which no cue is presented at
the beginning of trials and so there is only one state in the cor-
responding SMDP. The second simulation corresponds to the
second example in that section in which there are two trial condi-
tions and each of them is associated with a specific cue presented
at the beginning of each trial and so the corresponding SMDP has
two states.

6.1. SIMULATION 1: ONE CONDITION WITH NO CUE
In the experimental design considered in this simulation, no cue
is presented at the beginning of trials. There could be one or more
than one conditions in the task but all conditions are intermixed
and the subject does not know the number of conditions in the
task. As explained before, because there is no cue, the subject will
treat all the conditions the same and so even if there are more
than one condition she will set one decision threshold for all trials.
For this simulation, we use the parameters values given in Table 2
with TRSI = 0.

We use the Gaussian policy specified in Equation 16 with
ν2 = 2.25× 10−4. All other parameters being fixed, the average
reward rate will be only a function of the mean of the Gaussian, m.
The average reward rate as a function of m is shown in Figure 8.
Supplementary Material explains how this function is computed.

The maximum reward rate is equal to RRmax = 2.5812 which
is obtained when m = 0.095. Here, we investigate the perfor-
mance of the model in learning this optimal value of m.

The results of 20 simulations of the model are captured in
Figure 9. The learning rates for these simulations are: αm =
0.0002, αρ̂ = 0.001. In the top panels of this figure, thin gray lines
correspond to the performance in different simulations and the
dark thick line is the average among all simulations. The thick
red lines show the optimal values. The left top panel shows the

FIGURE 8 | The average reward rate in the experiment considered in

simulation 1, as a function of m, the mean of the Gaussian policy. This
function is computed using the method described in Supplementary
Material.
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FIGURE 9 | Results of simulation 1. Top left: the value of the parameter
m as a function of trial number during learning. Top right: the estimated
average reward rate, ρ̂k , as a function of trial. In the top panels, the tick red
line shows the optimal value. Bottom left: the accuracy as a function of
block. Bottom right: the mean reaction time as a function of block. In the
bottom panels, a block is defined as 500 trials. As learning progresses, the
mean of the policy decreases and so the subject chooses lower decision
thresholds more often. This leads to lower accuracy but faster responses.

value of the parameter m as a function of trial and the right top
panel shows the estimated average reward rate (ρ̂k in Equation 19)
as a function of trial. The left and right bottom panels show the
accuracy and the mean reaction time averaged over all 20 simula-
tions, respectively, as functions of block number where a block is
defined arbitrarily as 500 trials.

At the beginning of learning, the value of the parameter m is
high and so high values of the decision threshold are chosen more
often. Thus, at this stage of learning the accuracy is high and the
mean reaction times are also high. In other words, the model is
too much conservative and so it cannot achieve the maximum
average reward rate. Throughout learning, the model gradually
learns to lower the value of the parameter m. Finally, at about trial
5800 or so the model finds the optimal value of this parameter. As
can be seen in the right top panel, the initial estimation of average
reward rate is zero and during learning it approaches the optimal
value and finally asymptotes at the optimal value.

The learning of the model may seem slow. This raises the ques-
tion of whether human subjects are also so slow or if they can
find the optimal threshold faster. In a recent study, Balci et al.
(2011) investigated human subjects’ performance in an experi-
mental design similar to what was used in simulation 1. Their
results show that, on average, subjects achieve the optimal per-
formance after about 10 sessions of training (Figures 3a and 8 of
Balci et al., 2011). Thus, the learning speed of our model is close
to human subjects. Then, the next question is why both the algo-
rithm and the subjects learn slowly. The main reason for this slow
learning is a high amount of noise in the function that the agent

FIGURE 10 | The average reward rate as a function of the mean of the

Gaussian policy in state 1,m1, and in state 2, m2. This function is
computed using the method described in Supplementary Materials.

is trying to maximize. For a single value of the decision threshold,
the variance of the reaction time could be high. Also, the accuracy
could be a value significantly less than one. Therefore, even if the
subject keeps her threshold at a fixed value for several trials, the
samples of the average reward rate obtained in each trial would be
very noisy and it takes a long time before the subject can achieve
a reliable estimate of it.

6.2. SIMULATION 2: TWO CONDITIONS WITH CUE
In this simulation, we analyze the performance of the model in
the experimental design explained in example 2 of section 3.3.
We used the parameters given in Table 3. The policy in each state
is represented by a Gaussian distribution with ν2

1 = ν2
2 = 0.015.

The average reward rate as a function of the means of these dis-
tributions is shown in Figure 10. We used the method explained
in Supplementary Material to plot this function. As we see in this
figure, the maximum reward rate equals RRmax = 1.43 which is
obtained when m1 = 0.07 and m2 = 0.12.

The model was simulated in this task for 20 times. The learn-
ing rate parameters in the model were αm = 0.0005, αc = 0.075
and αρ̂ = 0.001. We have chosen a larger learning rate for the
critic than the actor to make sure that the critic learns faster. This
is because the critic provides the TD error signal necessary for
updating both the critic and the actor and so the policy should
not be updated a lot before the critic learns the state values.

The simulation results are depicted in Figure 11. The panels in
this figure correspond to those in Figure 9. The top right panel
shows the estimated average reward as a function of trial number.
As seen, this function asymptotes in an optimal value after about
8000 trials or so. The top right panel shows the upper view of the
average reward rate function shown in Figure 10. The black tick
path superimposed on this figure shows the points (m1(k), m2(k))
averaged over 20 simulations, with k = 1, · · · , 15000 being the
trial number. This curve shows that at the beginning of learn-
ing the agent sets the mean of its policy in condition one and
two at m1 = 0.2 and m2 = 0.2, respectively ((m1(1), m2(1)) =
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FIGURE 11 | Results of simulation 2. Top left: the values of the
parameters m1 and m2 during learning averaged over 20 simulations
superimposed on the color map of the average reward rate. The initial point
of the path is

(
m1(1), m2(1)

) = (0.2, 0.2) and its end point is(
m1(15000), m2(15000)

) = (0.06, 0.11). The optimal value is indicated by the
two dash lines. Top right: the estimated average reward rate. The optimal
value is plotted as a red tick line. Bottom left: the accuracy as a function of
block number. Bottom right: the mean reaction time as a function of block
number.

(0.2, 0.2) is the starting point of the black path). With exten-
sive learning, the agent learns the optimal value of the thresholds
((m1(15000), m2(15000)) = (0.06, 0.11) is the end point of the
black path). An interesting point is that this curve shows that on
average the learning algorithm takes the shortest path from the
starting values to the optimal values of the parameters. Finally,
similar to simulation 1, the bottom panels show that the algo-
rithm learns to choose less conservative values of the decision
threshold which leads to less accurate but faster responses.

In the previous two simulations, the initial values of the thresh-
olds were higher than the optimal value. We also performed
another simulation with the same parameters as simulation 1
but with a lower than optimal initial value of the threshold.
Due to space limitation, we do not present the full details of
this simulation. It suffices to mention here that the model could
learn the optimal value of the threshold in this situation and its
performance was at the same level of simulation 1.

7. DISCUSSION
In this paper, we suggested a theoretical framework to answer the
question of how animals learn to set the decision threshold to
maximize the average reward rate. We considered an experimen-
tal design in which trials from different conditions are intermixed.
A cue associated with each condition is presented at the begin-
ning of each trial and indicates which condition this trial comes
from. We derived the expression for the average reward rate in
this experiment and investigated the properties of this function
and showed that to achieve the optimal average reward rate, the

subject has to set different decision thresholds for different con-
ditions. We, then, proposed an SMDP model of the experiment
in which each condition is modeled as a state of the environ-
ment, decision thresholds are actions and the time spent on each
trial is the dwell time in each state. In this way, the problem of
learning the optimal decision thresholds becomes the problem
of learning the optimal action in each state of the correspond-
ing SMDP. Finally, we proposed a model to solve this problem. In
the proposed model, an independent race architecture is respon-
sible for processing the stimulus and selecting responses while an
actor-critic architecture learns the optimal value of the decision
thresholds.

In the first set of simulation, we considered an experiment in
which there is no cue at the beginning of each trial and so there
is only one state in the corresponding SMDP. Simen et al. (2006)
have proposed a model for learning the optimal decision thresh-
old in this situation. In their model, the decision threshold at
time t is a(t) = max Ą (0, amax − w · r(t)) where r(t) is the cur-
rent estimation of the reward rate. To assure that the algorithm
converges to the optimal value of a(t), the two constants amax

and w should be chosen such that the line amax − w · a passes
through the maximum of the function R(a), the reward rate as
a function of threshold a (see Figure 3 for an example of this
function). Notice that for each set of task parameters the function
R(a) would be different and so different values of amax and w will
assure the convergence of the algorithm. In the simulations, the
authors assumed that the subjects have learned the optimal values
of these parameters through practice under different trial con-
ditions. The model then predicts fast adaptation of the decision
threshold for a well-trained subject. The model proposed in this
paper explains slow learning of the optimal decision threshold for
an untrained subject. Further research is necessary to see how the
two approaches can be combined to develop a model of both slow
learning of untrained subjects and fast threshold adaptation of
well-trained subjects.

In our simulations, we assumed that the drift coefficients
remain constant during learning. As a result, when the thresh-
old decreases the accuracy also decreases [see bottom left panels
of Figures 9, 11]. However, this may not always be the case. For
example, in Balci et al. (2011) the estimated drift coefficient
increased with practice. The effect of this increase in drift coeffi-
cient and the decrease in the threshold was such that the subjects’
accuracy remained constant while the reaction time decreased
with practice. It would be interesting to investigate the behavior
of the proposed model in this situation and more generally when
the task parameters change during learning. It can be imagined,
though, that as long as the task parameters do not change very
quickly, the model will still be able to learn the optimal thresholds.

The SMDP framework has been utilized previously in the
animal learning literature to model the rate of responding in free-
operant tasks (Niv, 2007; Niv et al., 2007). A rat placed in an
operant chamber can choose to perform one of the several possi-
ble actions (nose poking, lever pressing, etc.). In addition, the rat
may choose to perform different actions at different rates. Faster
responding has the possible benefit of obtaining more reward but
it is also associated with higher costs (e.g., energy cost, cogni-
tive load and so on). Niv (2007); Niv et al. (2007) proposed a
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normative account of how fast each action should be taken to
achieve an optimal balance between the benefits of behaving fast
and its costs. In this model, taking each action incurs a rate-
dependent cost and it is assumed that the rat is trying to maximize
the average reward rate. Like Niv’s model, the model we proposed
in this paper learns to optimally balance between the benefits and
costs of acting fast. The benefit of acting fast in both models is
to be able to experience more trials. The cost in our framework,
however, is having less accuracy. This cost is due to the constraints
that the sequential sampling model imposes to the relationship
between the speed and accuracy which are in turn imposed by the
noise in the stimulus.

One feature of our model is that it suggests a way to integrate
the theories of perceptual decision making and reinforcement
learning. Traditionally, these theories have been developed sepa-
rately (see Bogacz and Gurney, 2007 and Bogacz and Larsen, 2011
for a discussion of this matter). Theories of perceptual decision
making deal with situations in which the subject should process
a noisy stimulus and select the appropriate response based on a
known stimulus-response mapping. The reinforcement learning
theories, on the other hand, deal with situations in which the
stimulus is easily detectable but the subject should learn to take
optimal actions in response to each stimulus. In our model, the
cue presented in each trial is the easily detectable stimulus for the
reinforcement learning (the actor-critic) unit. The role of this unit
is to learn the optimal mapping between the cues and the deci-
sion thresholds which form the action space in the corresponding
SMDP. The noisy stimulus in each trial, on the other hand, is pro-
cessed by the independent race unit. By this division of labor, the
model benefits from the strengths of both sets of theories.

In this respect, our model is in line with the recent effort in
integrating these two sets of theories (Bogacz and Gurney, 2007;
Dayan and Daw, 2008; Law and Gold, 2009; Rao, 2010; Bogacz
and Larsen, 2011; Shenoy and Yu, 2011; Ratcliff and Frank, 2012).
Bogacz and Larsen (2011) proposed a computational model of
basal ganglia that is capable of learning the optimal stimulus-
response mapping when the stimulus is noisy. This model is
basically an actor-critic architecture in which the actor is a variant
of the sequential sampling models. The critic, crudely speak-
ing, provides the error signal necessary for learning the weights
between the sensory units and the information accumulators in
the actor. By learning these weights, the model learns the cor-
rect stimulus-response mapping. However, because the model is
developed in the Markov decision process framework, it cannot
solve the problem of optimal balance between speed and accuracy.

Rao (2010) proposed a model in which the perceptual deci-
sion making problem was cast as action selection in a partially
observable Markov decision process (POMDP). In this model,
each stimulus is considered as a state of the environment. The
subject, however, does not know the state and instead can only
make noisy observations of it at discrete time steps. The subject
starts with a prior belief about the state and after each obser-
vation she updates her belief using the Bayes rule. At each time
step, based on her current belief about the state, the subject can
either choose one of the responses or make another observation.
Using temporal difference learning, the model learns the opti-
mal mapping between the current belief and these actions. Since

the model was not developed to solve the optimal speed-accuracy
problem, the cost of time is considered as an arbitrary constant in
the model (for example -1 for each time-step that the response is
not selected). In contrast, in our model the cost of time is propor-
tional to the average reward rate which in turn depends on the
task parameters in all conditions of the task. Further research is
needed to compare the two models.

One question that remains open is how the brain performs
average reward reinforcement learning. The essential part of this
algorithm is the computation of the temporal difference error and
this in turn needs an estimate of the average reward rate. Thus, the
important question is how the brain estimates the average reward
rate. Niv et al. (2007) suggested that the average reward rate is
coded as tonic dopamine in the brain. This suggestion is based
on the observation that higher levels of tonic dopamine is associ-
ated with higher response rate and vice versa (see e.g., Salamone
and Correa, 2002). One interesting future line of research, then,
would be to use model based fMRI technique to investigate the
relationship between the average reward rate signal computed
in our model and tonic activity (the activity before the deliv-
ery of reward) of brain areas previously associated with reward
prediction (e.g., striatum).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnins.2014.

00101/abstract
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Perceptual decision making has been successfully modeled as a process of evidence
accumulation up to a threshold. In order to maximize the rewards earned for correct
responses in tasks with response deadlines, participants should collapse decision
thresholds dynamically during each trial so that a decision is reached before the deadline.
This strategy ensures on-time responding, though at the cost of reduced accuracy, since
slower decisions are based on lower thresholds and less net evidence later in a trial
(compared to a constant threshold). Frazier and Yu (2008) showed that the normative rate
of threshold reduction depends on deadline delays and on participants’ uncertainty about
these delays. Participants should start collapsing decision thresholds earlier when making
decisions under shorter deadlines (for a given level of timing uncertainty) or when timing
uncertainty is higher (for a given deadline). We tested these predictions using human
participants in a random dot motion discrimination task. Each participant was tested in
free-response, short deadline (800 ms), and long deadline conditions (1000 ms). Contrary
to optimal-performance predictions, the resulting empirical function relating accuracy to
response time (RT) in deadline conditions did not decline to chance level near the deadline;
nor did the slight decline we typically observed relate to measures of endogenous timing
uncertainty. Further, although this function did decline slightly with increasing RT, the
decline was explainable by the best-fitting parameterization of Ratcliff’s diffusion model
(Ratcliff, 1978), whose parameters are constant within trials. Our findings suggest that at
the very least, typical decision durations are too short for participants to adapt decision
parameters within trials.

Keywords: response deadlines, optimality, speed-accuracy, timing uncertainty, decision making

INTRODUCTION
Noisy evidence accumulation models such as the drift-diffusion
model (DDM, Ratcliff, 1978, 1981, 1985, 1988, 2002) have suc-
cessfully explained accuracy and RT patterns in two-alternative
forced choice (2AFC) perceptual decision tasks. The DDM has
also been useful in defining an optimality-based benchmark for
decision making. For instance, Bogacz et al. (2006) formulated
a parameter-free optimal performance curve (OPC; Figure 1)
relating the DDM’s decision speed to its accuracy in a class of
2AFC tasks. Specifically, on tasks in which the signal-to-noise
ratio (SNR) stays constant within a test block and within trials,
the two stimulus types are equally likely and participants are free
to wait as long as they wish prior to responding. The OPC pre-
scribes an optimal normalized decision time (DT) for a given
level of accuracy in order to maximize the expected reward rate
(RR) in such free-response paradigms. If the signal quality is
very high, then little evidence needs to be accumulated to achieve
high accuracy; conversely if there is no signal in the environ-
ment (necessarily yielding an error rate around 0.5), the decision
maker should accumulate little or no evidence before making a
choice. In this way, the participant can maximize the number
of decisions made (trials generated) in a fixed amount of test
duration. However, when the SNR is at an intermediate level, the
optimal decision strategy requires accumulating more evidence

(and thus generating fewer trials) for maximizing the RR; the
maximum decision time is associated with accuracy levels of
roughly 0.8. Note that the OPC for 2AFC tasks was defined based
on the assumptions of the reduced DDM analyzed by Bogacz
et al. (2006), which lacks the between-trial variability of the core
parameters found in Ratcliff ’s DDM.

Inherent in the formulation of the OPC is a trade-off between
speed and accuracy of decisions (SAT; Wickelgren, 1977), which
posits that fast responses suffer from less evidence accumulation
and are thus less accurate, whereas slower responses benefit from
more evidence accumulation resulting in higher accuracy at the
cost of time. In formal decision making models such as the DDM,
SAT is represented by a threshold parameter that determines how
much evidence is accumulated in favor of each hypothesis in a
2AFC task (Figure 2). A higher threshold requires more evidence
accumulation and thus underlies a slower response, on average,
whereas a lower threshold leads to a faster response at the expense
of an increased chance of errors due to noisy evidence accumu-
lation (e.g., Ratcliff and McKoon, 2008). Research shows that,
with extensive training, participants can maximize their RR by
setting the optimal threshold, which defines the optimal trade-
off between the speed and accuracy of their decisions (e.g., Simen
et al., 2009; Balci et al., 2011b). However, behavioral studies test-
ing for optimality in 2AFC paradigms typically do not enforce
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FIGURE 1 | Optimal Performance Curve derived from the pure Drift

Diffusion Model. Horizontal axis shows ER and vertical axis shows the
normalized decision time, i.e., Decision time divided by RSI + Ter;
Reproduced from Bogacz et al. (2006).

FIGURE 2 | Sample Drift-Diffusion process with (A) constant

thresholds, and (B) exponentially collapsing thresholds which meet at

a hypothetical deadline of 3000 ms. Red lines represent the two decision
thresholds; blue line represents the evidence accumulation process
[identical in both (A,B)]. Threshold crossing time represents the decision
time. Total RT equals decision time plus non-decision latency.

hard time constraints on the decision making process (e.g., Feng
et al., 2009; Simen et al., 2009; Bogacz et al., 2010; Starns and
Ratcliff, 2010, 2012; Balci et al., 2011b), which provides a the-
oretically infinite (in reality limited by the test block duration)
amount of time to the participant before a decision must be
made.

Decisions in real life scenarios rarely enjoy such temporal
luxury for gathering evidence, but instead often need to be

terminated before a pre-specified deadline, after which no reward
can be earned (e.g., in class exams). Optimal behavior in such
settings requires the decision maker to collapse decision thresh-
olds as the deadline approaches, such that they meet when the
deadline is reached, in order to secure at least a 50% chance of
earning a reward, as opposed to a 0% chance if responding late.
In this regard, see Frazier and Yu (2008), who analyzed optimal
threshold collapse for a loss function that linearly combines an
indicator of on-time, accurate responding, the RT itself, and a
penalty for late responding. This loss function is closely related,
but not identical, to an objective function equaling the RR. As
such, the notion of time-dependent collapsing thresholds (or sim-
ilarly, time-dependent inflation of evidence accumulation rates)
has received a great deal of attention in the decision making lit-
erature (Luce, 1986; Rao, 2010; Drugowitsch et al., 2012; Thura
et al., 2012).

Two interesting hypotheses emerge from this formulation.
First, a higher level of endogenous timing uncertainty (for a
fixed deadline) requires an earlier threshold collapse, along with
a lower rate of decline (see Frazier and Yu, 2008; Figures 2A,B).
Within this formulation, endogenous timing uncertainty refers
to the trial-to-trial variability in a participant’s estimates of time
intervals (Buhusi and Meck, 2005). Second, for a given level of
timing uncertainty, threshold collapsing should begin earlier for
a shorter deadline. Balci et al. (2011a) tested these previously
untested predictions in a pilot study but found little evidence
of collapsing thresholds; however, their design might not have
been optimized to investigate these predictions that might have
obscured signs of threshold collapse (e.g., not terminating the
RDM stimulus at the deadline). This study tests these predic-
tions more rigorously, and thereby elucidates the extent to which
optimal behavior in 2AFC is achievable when reward maxi-
mization entails within-trial modulation of decision thresholds.
Additionally, we aim to investigate the extent to which, if at
all, participants are successful in factoring their level of timing
uncertainties into their threshold modulation.

In order to formally define the optimal 2AFC behavior,
whether under response deadlines or not, we need mathemat-
ical models which can accurately describe accuracy along with
RT in 2AFC tasks by relying on various psychomechanistic com-
ponents underlying a complete decision making process. One
such model is the above-mentioned DDM, which conceptualizes
decision making as a bounded, noisy, evidence accumulation pro-
cess (Figure 2) in the form of an ongoing computation of the
current log-likelihood ratio of the two hypotheses under con-
sideration (Stone, 1960). At its core, the DDM is a continuous
version of the Sequential Probability Ratio Test (SPRT), which
is a statistical procedure for minimizing the number of sam-
ples necessary to decide between two hypotheses with a given
mean accuracy, as well as maximizing the likelihood of arriv-
ing at the correct hypothesis for any given number of samples
(Wald and Wolfowitz, 1948). In the formulation of the DDM,
the step time between the samples accumulated in an SPRT
becomes infinitesimal, resulting in a continuous random walk,
where the duration from the start of the evidence accumula-
tion until a threshold crossing represents the decision time (see
Stone, 1960).
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The drift-diffusion process is defined by the stochastic differ-
ential equation:

dx = Adt + cdW (1)

Here, as in Bogacz et al. (2006), x denotes the difference between
the evidence supporting two different alternatives at time t, Adt
represents the average increase in x during the interval dt, and
cdW is Gaussian distributed white noise with mean 0 and vari-
ance c2dt (Ratcliff and Smith, 2004). When x crosses one of the
two decision thresholds (one above the starting point, and one
below it) a decision is made. This threshold crossing time rep-
resents the decision time. Within this formulation the drift rate
A represents the average rate of the evidence accumulation, and
is the slope of this random walk process. On the other hand,
the noise component explains the random fluctuations in the
same process and accounts for the fact that a given SNR can
lead to correct decisions in some trials and errors in some oth-
ers. This model is now referred to as the pure DDM (Figure 2;
see Bogacz et al., 2006). It uses RT and accuracy data in order
to describe decision performance by quantifying drift rate (v;
rate of evidence accumulation), boundary separation (a; decision
threshold), non-decision related latency (Ter), and starting point
(z) parameters. In a more generalized version, three parameters
of the DDM (v, z, and Ter) were made variable on a trial-by-trial
basis, mainly to allow for fitting data with unequal average RT for
correct and incorrect responses (Ratcliff and Rouder, 1998) and is
appropriately named the extended DDM (see Bogacz et al., 2006).

The DDM has been successful in explaining RT and accuracy
data in various psychophysical studies (see Voss et al., 2013 for a
review) including recognition memory (Ratcliff, 1978; McKoon
and Ratcliff, 2012), brightness discrimination (Ratcliff, 2002),
color discrimination (Spaniol et al., 2011), and even the classi-
fication of clinical disorders (Mulder et al., 2010; White et al.,
2010). Of greater relevance to this study, however, is the DDM’s
utilization in prescribing unique threshold parameters for RR-
maximizing (i.e., optimal) performance in 2AFC tasks. As men-
tioned earlier, the theoretical work by Bogacz et al. (2006) has
defined a closed-form RR-maximizing function that prescribes a
specific average decision time for each error rate (ER), and also
defines the OPC. Bogacz et al. (2010) and Simen et al. (2009)
have tested the extent to which human participants are optimal
in setting RR-maximizing thresholds, and have found that within
a single session, thresholds were generally set too high compared
to their optimal values. Balci et al. (2011b) have replicated this
finding, but have also shown that this accuracy bias diminishes
with practice.

Bogacz et al. (2010) and Balci et al. (2011b) argued that sub-
optimal performance due to favoring accuracy over reward rate
(observed in their studies after a limited level of training) might
be an adaptive threshold setting bias that takes into account
endogenous timing uncertainty. This adaptive bias was attributed
to the asymmetry (i.e., lower rate of decline in RR for thresh-
olds higher than the optimal threshold) in the RR curves as a
function of decision threshold (Bogacz et al., 2006; Figure 15),
which entails that setting the threshold higher than the optimal
threshold leads to a higher RR than setting it too low by the same

amount. A more adaptive response under endogenous timing
uncertainty therefore entails favoring slower yet more accurate
responses (Bogacz et al., 2006; Balci et al., 2011b). Balci et al’s
(2011a) findings suggest that participants can “monitor” their
levels of uncertainty regarding temporal properties of the task,
and thereby factor it into the decision process. This proposi-
tion is further supported by studies showing that humans and
other animals can in fact take normative account of their tim-
ing uncertainties at both sub- and supra-second intervals in order
to reach optimal performance when they make decisions based
on the durations of stimuli/events ( e.g., Hudson et al., 2008;
Balci et al., 2009; Jazayeri and Shadlen, 2010; Simen et al., 2011;
Çavdaroğlu et al., 2014; for a review see Balci et al., 2011a).
Overall, these studies suggest that timing uncertainty is instru-
mental in shaping choice behavior and determining how much
reward is earned both in temporal and non-temporal decision-
making. The importance of interval timing to perceptual decision
making is further emphasized by recent studies proposing pos-
sible mechanisms (e.g., gain modulation) by which temporal
information processing can modulate speed-accuracy tradeoffs
(e.g., Standage et al., 2011, 2013).

Endogenous timing uncertainty becomes even more relevant
to optimal choice behavior in 2AFC perceptual decision making
when a response deadline is explicitly introduced to the deci-
sion process. Such situations are familiar to most organisms in
their natural settings, within which contextual temporal proper-
ties constantly require arriving at a decision before a stochastic
deadline. For instance, correctly identifying when and how long
a prey will be available in a hunting ground, as well as which
prey to hunt among the alternatives (“Slow but old?,” “Young
but fast?”) are of vital importance for a predator’s survival. The
optimal predator in its attempt to choose the best option should
also require less and less information for arriving at a decision
as the time for the prey animals to leave approaches. This strat-
egy ensures that it catches at least one prey, though perhaps not
an ideal one, instead of losing all. Moreover, it should engage in
this decision process while simultaneously relying on its level of
uncertainty regarding how much time it has before a choice must
be made. If it is too uncertain about temporal intervals, or the
time until the prey animals leave is too short, the predator should
start reducing the required level of evidence earlier, and should
at worst pick a random prey right before the time to leave, if it
still hasn’t done so. This hypothetical naturalistic scenario exem-
plifies the above-mentioned optimal strategy in a situation with a
response deadline, which is to collapse the decision threshold such
that by the time the deadline is reached, a response of at least 50%
accuracy is ensured.

Two main hypotheses emerge under this scenario. First, for a
given deadline, higher timing uncertainty makes it necessary to
collapse thresholds earlier compared to lower timing uncertainty,
so that the deadline is not passed by accident, ultimately resulting
in an opportunity cost. Second, for a given timing uncertainty,
participants need to start collapsing decision thresholds earlier
for shorter deadlines, compared to longer ones. Frazier and Yu
(2008) have shown that both predictions should manifest them-
selves with steady decline in accuracy as time approaches the
deadline, which should closely parallel the presumed decline in
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decision thresholds. We can quantify this time-dependent decline
in thresholds by calculating accuracy levels for RTs bins of a spe-
cific size. The resulting curve formed by connecting the accuracy
levels in these bins constitutes the conditional accuracy (a.k.a.
Micro Speed Accuracy Trade-off) curve (Wickelgren, 1977; Luce,
1986). Since the diffusion process calculates the log-likelihood
ratio of the two hypotheses, a particular accuracy level is assured
by setting a particular decision threshold. When accuracy data
is sorted and binned in this way, this principle should still hold
for each individual RT bin. Thus, if the threshold is dynamically
set lower in later time bins, then by definition this also prescribes
lower accuracy for those bins (Luce, 1986).

Here, we conduct simulations in order to approximate the
optimal relationship between threshold collapsing and (1) the
deadline duration and (2) the level of endogenous timing uncer-
tainty. For the collapsing thresholds we use two closed-form
collapse functions: exponential and linear. Figure 3 depicts the
threshold collapsing functions (assuming exponential collapse
functions) that yielded the highest number of rewards for differ-
ent response deadlines (for a given level of timing uncertainty)
and for different levels of endogenous timing uncertainty (for a

given deadline). As predicted by Frazier and Yu (2008), visual
inspection of Figures 3A,B suggests that reward-maximizing
threshold trajectories should nearly meet at the response dead-
line, and threshold collapsing should start earlier in the trial
for shorter deadlines and higher levels of timing uncertainty.
Our simulations showed very similar results when RR instead of
“reward amount” is taken as an indicator of optimality. These
results qualitatively mimicked the analytically derived functions
found by Frazier and Yu (2008) for an objective function closely
related to RR (see Methods).

To the best of our knowledge, the aforementioned predictions
have not been directly tested by employing hard response dead-
lines (but see Balci et al., 2011a for description of a pilot study).
Neither has the relationship of 2AFC behavior under response
deadlines been empirically related to the decision maker’s level
of endogenous timing uncertainty. The present study fills this
empirical gap. Finally, we conducted further simulations to deter-
mine whether different levels of trial-to-trial variability of the
core DDM parameters that might result from the introduction of
the response deadlines can explain our data without alluding to
dynamic (within-trial) threshold modulation. These simulations

FIGURE 3 | Optimal threshold collapse trajectories selected from the

family of exponential decline functions for three different response

deadlines and six hypothetical levels of timing uncertainty when

optimality criterion is taken as (A) the expected total reward, and (B)

reward rate. Vertical dashed lines represent the response deadlines (800,
1000, and 1200 ms).
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were necessary given that it is also possible to observe a reduc-
tion in conditional accuracy curves without any corresponding
threshold modulation as suggested by Frazier and Yu (2008).
Our simulations confirmed this possibility by showing that such
declines in accuracy with RT in these conditional accuracy curves
can emerge directly from Ratcliff ’s model without any within-
trial collapsing of the threshold, as shown previously (Ratcliff and
Rouder, 1998; Ratcliff and McKoon, 2008).

MATERIALS AND METHODS
PARTICIPANTS
Eleven adults (6 males and 5 females), aged between 18 and 24
years (M = 20) were recruited through announcements posted
online at the daily newsletter of Koç University. One partici-
pant (male, aged 24) stopped attending experiments after the first
session, and his data were discarded from all analyses. The exper-
iment consisted of eight, daily, one-hour long sessions comprised
of two Free Response (FR) sessions, four Deadlined Response
(DR) sessions, and two Temporal Reproduction (TR) sessions
in that order (see Procedure below). One participant missed a
single DR session, and another participant missed the second
TR session. The experiment was approved by the Institutional
Review Panel for Human Subjects of Koç University and was in
accordance with the principles of the Declaration of Helsinki. All
participants provided written consent for their participation.

APPARATUS
All stimuli were presented on a 21′′ LCD screen on an Apple
iMac G4 computer, generated in Matlab using the Psychtoolbox
Extension (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) on the
SnowDots framework developed by Joshua Gold at the University
of Pennsylvania. Participants sat at a distance of 58–63 cm from
the screen, in a dimly lit room and provided their responses using
a standard Apple iMac keyboard, and stereo noise-cancelling
headphones worn throughout the experiment gave auditory feed-
back.

STIMULI AND PROCEDURE
Free response dot motion discrimination task
Stimuli were random dot kinematograms (see Gold and Shadlen,
2001; Shadlen and Newsome, 2001). These Random Dot Motion
(RDM) stimuli consisted of a circular aperture of randomly mov-
ing white dots (3× 3 pixels) on a black background, with a
diameter of approximately 3 inches, centered on the screen. On
each trial, 16% of the dots moved coherently in rightward or left-
ward direction (0 or 180 degrees respectively). The motion direc-
tion was assigned randomly with equal probability. Participants’
task was to use the ‘Z’ or ‘M’ keys on the keyboard to report
the direction of the coherently moving dots. Stimuli stayed on
the screen until a response was given, at which moment they
were terminated. Trials were separated by a response-to-stimulus
(RSI) interval, sampled from a truncated exponential distribu-
tion with a mean of 2 s, a lower bound of 1 s, and an upper
bound of 5.6 s. Correct responses were followed by an auditory
beep indicating positive feedback, whereas no feedback was given
for incorrect responses. This method of giving auditory feed-
back is standard in most 2AFC tasks, and has been shown to

aid acquisition (e.g., Herzog and Fahle, 1997; Seitz et al., 2006),
which was also the central purpose of our FR sessions (Figure 6).
Premature/anticipatory responses (i.e., responses less than 100 ms
after the offset of the stimulus) were penalized by a 4 s time-
out, following a buzzing sound. Participants earned 2 kurus
(approximately 1 cent) per correct response in experimental trials
(excluding practice blocks), whereas no punishment was given for
incorrect responses. The cumulative number of correct responses
was presented on the screen every 10 trials in font size 12 (approx-
imately 0.7 cm height). FR session consisted of a 2-min practice
block, followed by eight 5-min test blocks, and a 4-min Signal
Detection (SD) block. The data from these SD blocks were not
used in this study.

Deadlined dot motion discrimination tasks
The DR sessions consisted of a 2-min practice block with FR tri-
als, followed by one 5-min experimental FR block (same as the
one described above), followed by two groups of four DR blocks,
each group preceded by a 2-min practice block of the corre-
sponding deadline (see below). Stimulus types and presentation
schedules in DR blocks in these DR sessions were identical to
those used in FR sessions, except for the assignment of either a
short (800 ms) or a long (1000 ms) deadline to every trial in the
block. In these DR trials, if the participant failed to respond before
the pre-specified fixed deadline, the RDM stimulus disappeared,
a buzzing sound was played (indicating a “late response”) and no
reward was given for that trial. Otherwise, identical to the FR tri-
als, the RDM stimulus disappeared upon a given response and a
reward was given for correct responses.

After a 10 s intermission following the above-mentioned sin-
gle 5-min FR block, and the 2-min practice block of DR trials,
four 5-min experimental blocks with the same type of DR trials
employing one of the deadlines (i.e., short or long) were pre-
sented. These blocks were followed by a 30-s intermission, after
which the same order of practice and experimental blocks was
presented, this time using the other deadline. Individual blocks
were separated by a minimum break of 10-s, after which the par-
ticipant made a button press to start the following block. The
order of deadlines was randomized across the two halves of the
eight DR blocks in each session. Identical with the FR sessions,
two 2-min SD blocks were presented at the end of each session,
and the data from these SD blocks were not used in this study.

These two hard deadlines were chosen based on the data col-
lected from single session pilot testing with only the FR blocks.
These data showed that the majority of participants’ RTs ranged
between 400 and 2500 ms, with a mean of 700 ms. Based on these
data we chose two deadlines, the “easy” deadline of 1000 ms (on
average 15% of the RTs were longer than 1000 ms; s.e.m. = 4.41)
and the more “stringent” deadline of 800 ms (on average 28%
of the RTs were longer than 800 ms; s.e.m. = 6.32). This way,
we planned to have enough data from trials with RTs near the
response deadlines. It can be argued that shorter deadlines might
have made the task so difficult as to preclude strategic time-based
decision-making. That said, we observed that participants sped
up their free response RTs in the deadline blocks (Figure 7) and
thus the deadline stringency was not as high as we intended dur-
ing the study design. Nonetheless, the deadlines clearly exerted
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an effect on speed and accuracy relative to free responding, as
we demonstrate below, and the two deadline durations should
have been sufficiently discriminable from each other that a dif-
ferential effect on behavior could have been expected. The ratio
between 800 and 1000 ms constitutes a discriminable differ-
ence for humans; given a coefficient of variation (CV; Section
Temporal reproduction task – static stimuli) of 0.12, the differ-
ence is over two standard deviations for the standard duration
of 800 ms (Malapani and Fairhurst, 2002). This CV value is also
consistent with earlier data (see Wearden, 2003).

Temporal reproduction task – static stimuli
The TR task consisted of the presentation of a stimulus for a spe-
cific duration, after which the participant tried to reproduce the
same duration as accurately as possible by holding down the space
button. The stimulus used in the first TR task was a 3× 3 inch
green square, placed in the middle of the screen. Each TR trial
started with a button press after which the square was presented
for a specific duration. The TR session started with a practice
block of 9 trials using 3 randomly ordered target durations (i.e.,
1.3, 2.3, and 3.3 s) with equal frequency. After the reproduced
interval on practice trials, visual feedback was given by placing
an approximately 1 cm white vertical line either to the left or right
of a red reference line in the middle of the screen, representing the
reproduced and given durations, respectively. The offset length of
the white line was proportional to the difference between given
and reproduced durations, whereas its location (left vs. right)
showed under- or over-reproduction, respectively.

Nine 5-min test blocks of three target durations (1, 2.12, and
4.24 s), were presented in pseudo-random order following the
practice trials. No feedback was given in test trials. The amount of
money earned in each block was a function of the target duration,
the average of absolute deviance scores for that block, and a maxi-
mum of 2.5 Turkish Liras that could hypothetically be earned with
perfect performance (i.e., mean deviance score of 0), calculated
using the following formula;

Total Earnings = Maximum Possible Amount

× (1− Average Deviance Score/Target Time
)

(2)

Therefore, a smaller deviance score was required in a block
of shorter target durations, compared to a block of longer to
be-reproduced durations, in order to earn the same monetary
reward.

The total amount earned was shown at the end of each block.
Participants’ endogenous timing uncertainties were quantified
using reproduction data for each duration by dividing the stan-
dard deviation of reproduced durations by their mean. This is
a statistical procedure for obtaining the CV of a dataset, and is
used as an indicator of endogenous timing uncertainty, which
is typically constant for different durations within an individual
(Gibbon, 1977; Buhusi and Meck, 2005). The CV is an appropri-
ate measure of timing uncertainty since when the CV is known,
one can estimate the expected error of the same individual for
other intervals (CV times t). Thus, many studies in the interval
timing literature use CV as a measure of timing uncertainty (e.g.,
Gibbon, 1977; Balci et al., 2011a).

Temporal reproduction task–RDM stimuli
These additional TR sessions were identical to the original TR ses-
sion described above, except for replacing the static green square
with a RDM stimulus identical to the one used in FR and DR
sessions (i.e., dot motion stimulus with 16% coherence). The pur-
pose in replacing the static stimulus with the RDM stimulus was
to replicate as closely as possible the conditions in which the FR
and DR sessions took place, since a TR task more similar to these
2AFC tasks could better capture the representation of attentional,
as well as temporal, dynamics underlying the decision making
process (see Zakay and Block, 1996). This in turn should lead to
more accurate estimates of timing performance (i.e., CV) as man-
ifest in the decision task and thus values that are more appropriate
for generating threshold collapse predictions in DR sessions. In
order to make sure that the motion direction was being attended
to, participants were asked to report the direction of motion using
the “Z” or “M” keys in 20% of the trials, following the time repro-
duction. “Total Earnings” (Equation 2) were multiplied by the
proportion of accuracy in reporting the direction of motion in
each block.

Since the error rate in direction judgments would inevitably
decrease the total amount earned in these TR sessions compared
to those using the static stimuli, the maximum possible amount
that could be earned per block was increased from 2.5 to 3 Turkish
Liras. Each TR task (i.e., with static or RDM stimuli) lasted for a
single session. The TR testing was shorter than the 2AFC tasks
because estimating temporal accuracy and precision does not
require as large of a dataset as one needs for the DDM fits and
conditional accuracy curves.

DATA ANALYSIS
Quantifying declining accuracy with time
In order to quantify a possible decline in accuracy as time elapsed
within trials, accuracy levels were calculated for each 50 ms RT
bin, forming the conditional accuracy curves. Bins with less than
4 data points, as well as RTs above 5 s, were excluded from all
further analyses. The exclusion criterion for bin size was based
on post-hoc analyses of the data, especially for the last two RT
bins (i.e., at around the deadline), which generally contained
less data points than the ones that corresponded to shorter RTs.
Our analysis showed that nine participants had at least 4 data
points in the last RT bin in the short deadline condition, whereas
this number declined to four participants in the long deadline
condition. Since the accuracy at and near the deadline was of high
relevance to this study, we set our exclusion criterion to allow for
involving these participants’ RT data in further analyses. Note
that our original choice of the specific response deadlines based
on free response RT distributions aimed for more data points to
fall in these later bins.

A conditional accuracy curve allows us to determine the RT
bin where a decline in accuracy starts, as well as the rate of this
decline. In order to define the specific point where the accuracy
trend changes, we found the RT bin at which the sum of squared
errors of two piece-wise linear fits to data before and after that
point (a.k.a. the knot) is minimized. This was achieved by run-
ning an algorithm which fits the piece-wise linear functions to
data by using each RT bin as a putative knot location where the

Frontiers in Neuroscience | Decision Neuroscience August 2014 | Volume 8 | Article 248 | 104

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive
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first linear function is “latched on” to the second one. Specifically,
the algorithm constrains the intercept of the second linear fit to
be the last value of the first fit, forming two connected lines. Since
the last data point of the first fit affects the fit of the second line by
slightly modifying its slope, the algorithm runs in both forward
and reverse directions, ensuring that it finds the knot location
where the total error of the piece-wise fit is minimal, regardless
of which of the two slopes is modified. The purpose of using this
algorithm was to quantify the onset (i.e., inflection point), as well
as the slope of a possible decline in accuracy with RT separately
for two different deadlines. The correlations of these two values
(i.e., onset & slope) with timing uncertainty were later calculated
(Section Effect of Deadlines on Response Time and Accuracy) in
order to test if higher levels of timing uncertainty predicted an
earlier onset of decline in accuracy characterized by a lower (as
opposed to a steep) negative slope.

Optimal threshold collapse simulations
We conducted simulations in order to approximate the opti-
mal threshold collapsing trajectories for different deadline dura-
tions (800, 1000, and 1200 ms) and six linearly increasing levels
of endogenous timing uncertainty (i.e., CV), using two differ-
ent closed-form collapse functions (i.e., exponential and linear).
Below we describe the details for the exponential threshold col-
lapse function, but the same procedure applies to the linear col-
lapse function as well. Although our response paradigm employed
only two deadline durations (800 and 1000 ms), we have also
tested the 1200 ms deadline in these simulations. For the objective
function analyzed by Frazier and Yu (2008)–which may approx-
imate but is not identical to RR—analytically optimal collapse
functions look much like our exponentials.

In order to find the exponential threshold collapsing trajec-
tory that maximizes the number of rewards for a given deadline
and a given timing uncertainty, we first constructed a total of 101
threshold trajectories with 0.01 second increments, separately for
each CV value. The following formula was used to construct an
exponential curve:

a =
(

Asymptote+ (Starting Point − Asymptote
)× e(−c∗t)) (3)

where Asymptote was set at 0.1 for the upper threshold, Starting
Point was set at 0, c represented the rate of exponential decline
(i.e., as a proxy for temporal discriminability), and t is time. The
resulting curve was then flipped on its y-axis to construct the
upper threshold. This mirror image of the upper threshold was
used as the lower threshold (Figure 3).

All thresholds collapsed exponentially with time to the
starting point of evidence accumulation (Figures 3A,B). The
upper and lower thresholds with the earliest evaluated col-
lapse onset met well before the shortest deadline (i.e., 800 ms),
and the thresholds with the latest evaluated collapse onset
met well after the longest deadline (i.e., 1200 ms). The pre-
sumed effect of the timing uncertainty was implemented by
changing the exponential decay parameter (c; e.g., steeper col-
lapse for higher temporal discriminability due to lower timing
uncertainty).

For each response deadline, we defined the optimal threshold
trajectory as the one (out of 101 per CV) that yielded the great-
est number of rewards out of 106 drift-diffusion simulations. In
line with our experimental paradigm, in these simulations RTs
longer than the deadline duration were not assigned any reward.
The drift diffusion processes were simulated based on Equation 1.
The drift rate was set to 0.1, the noise coefficient was set to 0.1, the
starting point was set to 0 and non-decision time was set to 0. The
two decision thresholds were set to−0.1 and 0.1 at trial onset. For
simplicity, the core parameters were not allowed to vary between
trials. The results of our simulations supported Frazier and Yu’s
formulation; the optimal thresholds for a given deadline and a
given CV were the ones which nearly reached the starting point at
the response deadline even with closed-form collapse functions
(Figure 3A). These simulations also suggested that higher timing
uncertainty requires an earlier onset of threshold collapsing, so
that the upper and lower decision thresholds are ensured to meet
virtually at the deadline.

We have also calculated the optimal threshold collapse trajec-
tories by setting the criterion for optimality as the highest RR
instead of the highest amount of expected reward (Figure 3B).
The RR for each collapse trajectory was calculated by dividing
the mean accuracy by the mean RT. In calculating the RR, late
responses (i.e., those beyond the deadline) were given a value of
0 for accuracy (i.e., they were counted as error trials). RT was
defined as “DT + RSI + Ter”for trials with RTs faster than the
deadline, and “deadline + RSI” for trials where RTs were slower
than the deadline. Using values for the RSI and Ter very close to
the ones derived from our experimental paradigm, calculated the
expected RR for each collapse trajectory and found that, similar
to those in Figure 3A, optimal thresholds for a given CV were the
ones that roughly collapsed to the starting point near the deadline
(Figure 3B).

Visual inspection of Figure 4A shows that the order of the
optimal threshold (i.e., the order of a given threshold among
the 101 thresholds tested with 0.01 s increments) increases with
longer deadlines for a given CV, in addition to decreasing with
higher CVs for a given deadline. Additionally, conditional accu-
racy curves were plotted for the six hypothetical CV levels,
separately for the three deadline durations (Figure 4B). The
level of CV (i.e., the level of endogenous timing uncertainty)
was increased or decreased by decreasing or increasing the
rate of exponential decline (the c parameter in Equation 3),
respectively. Visual inspection of Figure 4B suggests that accu-
racy in our simulations declines with time for all levels of CV.
However, contrary to our expectations, accuracy never fully
reaches 50% (chance level) in these curves. Both Figures 4A,B
were constructed based on expected total reward as the optimality
criterion.

Finally, Figure 5A shows the expected total reward curves
for all 101 collapse functions constructed with the lowest
and the highest CV levels (out of the six CV levels) for the
three deadline durations. Visual inspection of Figure 5A sug-
gests that the expected total reward steadily increases with
the order of exponentially collapsing thresholds, and sharply
declines immediately following the deadline. Additionally,
Figure 5B shows the mean RTs and expected total rewards
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FIGURE 4 | (A) Bar graphs depicting the order of the optimal threshold
collapse trajectories (out of 101 thresholds with 0.01 s increments)
selected from the family of exponential decline functions for six
hypothetical levels of timing uncertainty. Lines connect the bars. (B)

Conditional accuracy curves for the six CV conditions, shown separately

for the three response deadlines. Red lines represent the conditional
accuracy curves for the short deadline (800 ms), blue lines for the
medium deadline (1000 ms), and green lines for the long deadline
(1200 ms). Both (A,B) are based on expected total reward as the
optimality criterion.

predicted for optimal threshold trajectories as a function
of CV, separately for the three deadlines. Figure 5B sug-
gests that with increasing timing uncertainty (i.e., CV level),
both the mean RT and the expected total reward decline.
See Supplementary Material for the linear threshold collapse
results.

RESULTS
ACCURACY AND RESPONSE TIME IN THE FREE RESPONSE
CONDITIONS
The data from the two FR sessions showed that the participants’
error rates declined from a mean of 10% in the first 4 blocks of
the first FR session, to a mean of 4.3% in the last 4 blocks of
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FIGURE 5 | (A) Expected total reward amount for the highest and
lowest CV levels as a function of the order of threshold among the
101 thresholds tested (here defined as “Threshold Order”). (B) Mean
response times and expected total reward amounts as a function of six

levels of CV defining six exponential threshold collapse trajectories for
the short (800 ms), medium (1000 ms) and long (1200) simulated
deadlines. Both (A,B) are based on expected total reward as the
optimality criterion.

the second FR session [t(9) = 3.1, p < 0.05; Figure 6] suggesting
that the FR sessions were successful in training the participants
on the RDM discrimination task. Additionally, the RTs showed a
similar decline with increasing blocks, with a mean of 0.94 s in
the first 4 blocks of the first FR session, to a mean of 0.75 s in
the last 4 blocks of the second FR session, however, this differ-
ence failed to reach significance (p > 0.05). RTs between the first
and second halves within the two FR sessions did not differ sig-
nificantly (both ps > 0.05), excluding the potential role of factors
such as an increased fatigue or inattention toward the end of a test
session.

Figure 7 shows the RT distributions in the FR blocks in FR
sessions, FR blocks in DR sessions, and the two deadline blocks in
the DR sessions. Figure 7 shows the plots either of all RTs pooled
across participants (Figure 7A), or RTs below the short deadline
duration (Figure 7B). A mean of 844.85 (s.e.m. = 20.1) trials

were completed in FR blocks in FR sessions, whereas this num-
ber was 105.2 (s.e.m. = 1.24) in FR blocks in DR sessions, 433.88
(s.e.m. = 2.27) in Short Deadline blocks in DR sessions, and
432.48 (s.e.m.= 2.82) in Long Deadline blocks in DR sessions.

EFFECT OF DEADLINES ON RESPONSE TIME AND ACCURACY
In order to determine whether introducing a deadline for
responding was successful in modifying behavior, we first com-
pared the mean RT values obtained by pooling data from both
FR sessions, the 4 DR sessions (separately for the short and
long deadline conditions), and the single FR blocks presented
at the start of each DR session for each participant. A one-way
repeated measures ANOVA was conducted to compare the effect
of response time limitations on mean RT in four conditions; two
free response (i.e., FR blocks in FR sessions and FR blocks in
DR sessions) and two deadline (i.e., short & long) conditions.
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FIGURE 6 | Mean error rate as a function of FR block. Mean error rates
per FR block in the first two sessions (i.e., FR sessions). Blue squares
correspond to FR blocks in the first FR session and red circles correspond
to FR blocks in the second FR session. Error bars denote the standard error
of the mean.

Since response deadlines act as a procedural censoring point for
slower RTs, only the RT values up to the short deadline (800 ms)
were compared in all conditions. Our analysis indicated a sig-
nificant effect of different experimental conditions on the RTs,
F(3,6) = 32.78, p < 0.001. Tests of six pair-wise comparisons were
conducted using Holm-Bonferroni adjusted alpha levels. These
comparisons showed that RTs in FR blocks in FR sessions (M =
602 ms) were significantly longer than both the short deadline
(M = 519 ms, p < 0.001) and the long deadline (M = 525 ms,
p < 0.001) conditions, as well as the response times of FR blocks
in DR sessions (M = 548 ms, p < 0.001). The difference between
the RTs in the two separate deadline conditions and the FR
blocks in DR sessions did not reach significance (both ps > 0.05).
However, when no correction was applied for multiple compar-
isons, the mean RT differences between FR blocks in DR sessions
and the two separate deadline conditions reached significance
(both ps < 0.05).

In order to further test if introducing a short vs. long dead-
line was effective, we compared the number of missed deadlines
for each deadline condition. A mean of 1.68% of deadlines were
missed in the short deadline condition (s.e.m. = 0.35), whereas
this percentage declined to a mean of 0.36% in the long deadline
condition (s.e.m. = 0.09). A paired samples t-test revealed that
the percentage of missed deadlines was higher for the short dead-
line condition, compared to long deadline condition t(9) = 4.5,
p < 0.001. In other words, participants as expected were more
likely to miss the deadline in the short DL conditions compared
to the long DL conditions. The hypothetical percentage of missed
deadlines was computed for the RT distributions of the FR blocks
in DR sessions by calculating the percentage of the data above
the RTs corresponding to the two deadlines separately. A mean
of 9.13% of the trials (s.e.m. = 3.02) had RTs above the short

deadline duration (i.e., 800 ms), whereas a mean of 3.26% of the
trials (s.e.m. = 1.15) had RTs above the long deadline duration
(i.e., 1000 ms). Matched-sample t-tests showed that the percent-
age of RTs above the short deadline duration in FR blocks in
DR sessions was significantly higher compared to the percentage
of missed deadlines in the short deadline condition t(9) = 2.89,
p < 0.05. Similarly, the percentage of RTs above the long dead-
line duration in FR blocks in DR sessions was significantly higher
compared to the percentage of missed deadlines in the long dead-
line condition t(9) = 2.81, p < 0.05. These results point at the
effect of response deadlines on RTs.

An additional One-Way repeated measures ANOVA was con-
ducted to compare the effect of four experimental conditions
on overall accuracy, using accuracy data corresponding to RTs
below 800 ms (again due to the procedural censoring factor).
There was a significant effect of experimental condition on accu-
racy, F(3,6) = 22.59, p < 0.001. Tests of six pair-wise comparisons
conducted using Holm-Bonferroni adjusted alpha levels revealed
that, whereas the accuracy in FR sessions (M = 0.96) and FR
blocks in DR sessions (M = 0.94) did not differ significantly from
each other (p > 0.05), both accuracy means differed significantly
from the short (M = 0.90, both ps < 0.001) and long deadline
(M = 0.90, ps < 0.001) conditions. Mean accuracy in the two
deadline conditions did not differ significantly (p > 0.05).

The effect of four experimental conditions on overall accu-
racy were also compared using all data, without excluding those
above 800 ms. There was a significant effect of experimental con-
dition on accuracy, F(3,6) = 8.07, p < 0.001. Tests of six pair-wise
comparisons conducted using Holm-Bonferroni adjusted alpha
levels revealed that, whereas the accuracy in FR blocks in FR ses-
sions (M = 0.94) and FR blocks in DR sessions (M = 0.93) did
not differ significantly (p > 0.05), mean accuracy in FR blocks in
DR sessions differed significantly from both the short (M = 0.90)
and long deadline (M = 0.90) conditions (both ps < 0.001). The
mean accuracy in the two deadline conditions did not differ sig-
nificantly either from each other or from the mean accuracy in
FR blocks in FR sessions (all ps > 0.05). However, when no cor-
rection was applied for multiple comparisons, the mean accuracy
differences between FR blocks in FR sessions and the two separate
deadline conditions reached significance (all ps < 0.05).

We analyzed within block RTs in both deadline conditions to
verify that inattention/fatigue did not set in toward the end of a
5-min block, possibly resulting in slower RTs toward the end of a
block. For this purpose, we first calculated individual participants’
mean RTs for each trial order in separate deadlined blocks across
all DR sessions, for the two deadline conditions. For instance the
mean RT for trial number 14 in the second block of all short
deadlined DR sessions was calculated by taking the mean of all
RTs corresponding to the 14th trial in the second blocks of the
short deadlined DR sessions and so on. For later trials where some
blocks did not have RT data due to unequal number of trials per
block, mean RT was calculated by using available data only. Given
that there were four blocks in each deadline condition per session,
this procedure resulted in four sets of mean RTs per participant,
which were fit by a linear regression using a least-squares method.
It was reasoned that an increase in RTs over the course of a block
of trials should manifest itself as a positive slope of a linear fit
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FIGURE 7 | Response time distributions for FR blocks in FR sessions, FR blocks in DR sessions, Short DR blocks in DR sessions and Long DL blocks in

DR sessions. RT data pooled across participants are plotted either (A) without an upper limit, or (B) with an upper limit of the short deadline duration (800 ms).

to data. A total of eight one-sample t-tests were conducted (four
for each deadline condition) in order to determine whether the
slopes of the linear fits were different from 0. None of the slopes
were significantly higher or lower compared to the test value of 0
(all ps > 0.05), suggesting that RTs did not increase or decrease
toward the end of a test block.

Finally, we wanted to see if error trials were more likely to
occur in the first half or the second half of a DR block, due
to possibly increasing fatigue or inattention. Using the same
method described above, we calculated individual participants’
mean accuracies in the first and the second halves of each block,
separately for the two deadline conditions. Eight paired sample
t-tests were conducted to compare accuracy in the two halves of
each block in the two deadline conditions (i.e., four t-tests for
each condition). None of the differences were significant, suggest-
ing that accuracy did not decline toward the end of a deadlined
test block (all ps > 0.05).

ACCURACY AT DEADLINE
In order to see if it declined to chance level at the deadline, accu-
racy in the last 50 ms RT bin was calculated for both deadline
conditions. Nine participants had valid data (i.e., more than 4
data points) in this RT bin in the short deadline condition, with
a mean accuracy of 78.4% (s.e.m. = 3.6%), whereas 4 partici-
pants had data in the last bin in the long deadline condition with
a mean of 75.6% (s.e.m. = 5.8%). Of those with valid data in
the last bin, no participant’s accuracy fell below 63% in the short

deadline condition, whereas the lowest accuracy in the last bin
was 60% in the long deadline condition. A Wilcoxon signed ranks
test indicated that accuracy in the last RT bin in the short deadline
condition (Mdn = 0.76) was significantly higher than a hypothet-
ical value of 0.5 (Z = 45, p < 0.05), whereas this difference did
not reach significance for the last RT bin in the long deadline
condition (Mdn = 0.78, p > 0.05).

PIECE-WISE LINEAR FITS OF CONDITIONAL ACCURACY CURVES
Figure 8 shows the conditional accuracy curves plotted for each
condition by pooling data across participants. The analysis using
piece-wise linear fits was also based on each participant’s data
expressed as conditional accuracy curves (Figure 9). The knot
locations (defined in terms of RT bins) of the piece-wise linear
fits to these data and the slopes of the best fit lines were cal-
culated using the algorithm described in the Methods Section,
in order to quantify the onset, as well as the rate of a potential
decline in accuracy with time. Figure 9 shows fits to individ-
ual participants’ data. A total of 9 out of 10 participants had
declining accuracies after the inflection point (i.e., knot location)
with time (i.e., negative slope) in the short deadline condition,
whereas 6 had declining accuracies after the inflection point in
the long deadline condition. Two one sample t-tests were con-
ducted in order to compare the slopes of the second line for the
two deadline conditions to the slope of “0” (i.e., no decline in
accuracy with time). Although, the slopes in the short deadline
condition (M = −0.3) differed significantly from 0 [t(9) = 2.84,
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FIGURE 8 | Conditional accuracy curves for the FR blocks in FR

sessions, FR blocks in DR sessions, and DR blocks separately for

the short (A) and long (B) deadlines (800 and 1000 ms,

respectively). The conditional accuracy curves for the two FR blocks
are identical between two columns up to the 15th RT bin. Data were
pooled across participants.

FIGURE 9 | Piece-wise linear fits (red lines) to conditional accuracy for the DR blocks (blue lines with circles) of all participants in the short deadline

(left) and long deadline (right) conditions. Vertical green lines indicate inflection points.
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p < 0.05], this difference failed to reach significance in the long
deadline condition (M = 0.01, p > 0.05). The insignificant dif-
ference remained for the long deadline condition when the data
from participant 9 with a bad fit were not included in the analysis.

TEMPORAL UNCERTAINTY AND CONDITIONAL ACCURACY CURVES
Coefficient of variation values for each participant were calculated
for both TR tasks by taking the average of all CVs for the three tar-
get durations (see Methods Section; Figure 10). Mean CV values
obtained from the first TR task using static stimuli were signifi-
cantly higher compared to CVs obtained from the second TR task
using RDM stimuli [t(9) = 3.97, p < 0.01], which may reflect a
practice effect since the first TR task always used static stimuli
or the specific stimulus effect. A potentially significant correla-
tion between RT and CV was examined. Neither of the CV values
obtained from the two TR tasks correlated significantly with mean
RTs in the FR or DR conditions (all ps > 0.05).

While the positive correlation between CVs in the TR task
with static stimuli and the knot location of the piece-wise fits
to RT data in the short deadline condition reached significance
[r(8) = 0.85, p < 0.01, two-tailed], the same CVs did not cor-
relate with the knot locations in the long deadline condition
(p > 0.05). Conversely, the CVs obtained in the TR task with
dynamic stimuli were positively correlated with the knot location
of the piece-wise fits in the long deadline condition [r(7) = 0.72,
p < 0.05, two-tailed], whereas they did not correlate with those
knot locations in the short deadline condition (p > 0.05). Neither
of the CVs correlated with the slopes of the first or second line of
the piece-wise linear fits (both p > 0.05).

As can be seen in Figure 9, participant number 9 had a visi-
bly bad piece-wise linear fit to his/her conditional accuracy curve
in the long deadline condition. Therefore, the same correlations

FIGURE 10 | CV values obtained in the temporal reproduction task

with two different types of stimuli (red circles for static stimuli &

green triangle for dynamic stimuli) for each subject. Subject 4 did not
participate in the second TR session with dynamic stimuli.

were also calculated by excluding this participant’s data in the long
deadline condition. While the correlation between CVs in the TR
task with static stimuli and the knot location of the piece-wise fits
in the long deadline condition remained insignificant (p > 0.05),
the correlation between CVs in the TR task with dynamic stimuli
and the knot location in the long deadline condition also failed
to reach significance when calculated by excluding this partici-
pant’s data. Excluding this participant’s data also did not result
in a significant correlation between CVs and the slopes of the
first or second line of the piece-wise linear fits to the long dead-
line condition (all ps > 0.05). None of these results support the
optimal performance predictions, since we expected participants
with higher CVs to start reducing their accuracy earlier (under
the threshold collapsing assumption). If anything we observed the
opposite relationship with the CVs in TR task with static stim-
uli in the short deadline condition, and the CVs in TR task with
dynamic stimuli in the long deadline condition. When the data
only from the participants with a negative slope in the second line
of the piece-wise linear fits were taken into consideration, none of
the correlations between either of the CVs and the knot locations,
or between the CVs and the slopes of both the first and second line
of the piece-wise linear fits reached significance (all ps > 0.05).

Even though we had a minimum number of data points per RT
bin used in forming the conditional accuracy curves, investigating
the declining accuracy using binned RTs may be misleading in the
sense that some bin accuracies calculated with fewer yet highly
accurate/inaccurate trials may be artificially inflated / deflated.
In other words, the binning methodology may fail to accurately
represent the dynamics of a declining accuracy with time, since
it entails estimating accuracies for a specific time period from
the average of sometimes a very limited number of data points.
Therefore, we also calculated peak accuracy by taking the cumu-
lative average of accuracy with increasing time (i.e., RT), and
correlated the location of these peaks in time with CV values.
This was achieved by first sorting RTs for each trial in increas-
ing order and then forming an “accuracy vector” by coding 0 for
error trials and 1 for correct trials corresponding to each RT value.
Cumulative accuracy was then calculated for each trial by taking
the average accuracy of all trials with RTs at and below that trial,
which formed a cumulative average accuracy curve. Consistent
with the findings reported above, the RTs at which the cumulative
average of accuracy peaked did not correlate significantly with the
CVs estimated from either TR task (both ps > 0.05). These results
further supported the above-mentioned results obtained by using
the RT binning approach, further suggesting that even if partic-
ipants collapsed their decision thresholds, they did not take into
account their endogenous timing uncertainties.

Finally, in order to see if there was a bias toward over- or
underestimating the durations/deadlines additional analyses were
conducted. Normalized mean reproduction durations of all par-
ticipants were first calculated by dividing the mean reproduction
duration by the target duration. This was done separately for
all three durations (1–2.12–4.24 s) tested in the two TR ses-
sion types (static or dynamic stimuli). Six one-sample t-tests
were conducted using “1” as test value for accurate normalized
performance. Only the 1 s test duration in the dynamic stim-
ulus condition (M = 1.31, s.e.m. = 0.0.06) was systematically

www.frontiersin.org August 2014 | Volume 8 | Article 248 | 111

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive
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overproduced by the participants [t(8) = 4.73, p < 0.001], sug-
gesting that subjects tended to underestimate 1 s of dynamic
stimulus presentation. This result suggests that if thresholds did
in fact collapse with time, this collapse may have started declining
later than optimally, since participants were underestimating the
deadlines. In order to test this possibility, the correlation between
the mean reproduction duration of 1 second (separately in the
TR tasks using static & dynamic stimuli), and the knot location,
as well as the slope parameter of the conditional accuracy curves
was calculated. This procedure was also repeated by excluding the
long deadline data of participant ID 9. None of these correlation
coefficients reached significance (all ps > 0.05).

DRIFT-DIFFUSION MODEL SIMULATIONS
Since we observed accuracy reduction within trials for some par-
ticipants in DR sessions, it is important to address whether mod-
els with fixed parameters within trials can account for this pattern.
Thus, we tested if observed reduction in accuracy as a function of
RTs could be due to factors other than collapsing thresholds. For
this purpose, individual participants’ data between FR blocks in
DR sessions were fit by the extended DDM (i.e., allowing for inter-
trial variability parameters, all variability parameters > 0, and also
allowing for starting point bias) using the diffusion model anal-
ysis toolbox (DMAT) (Vandekerckhove and Tuerlinckx, 2008).
These parameters were then averaged across participants in order
to obtain a representative set of parameters that could be used for
DDM simulations to follow.

The following mean parameters were obtained; decision
boundary (a) = 0.1214, non-decision related delays (Ter) =
0.4419, drift rate variability (Var(v)) = 0.1922, starting point
(z) = 0.0608, starting point variability (Range(z)) = 0.0547,
non-decision time variability (Range (Ter)) = 0.1668, and drift
rate (v) = 0.4447. Data from FR blocks in DR sessions were
used instead of FR blocks in FR sessions to estimate the DDM
parameters because they represent performance that is closer to
steady-state.

Using these DDM parameters, we simulated three sets of 106

data points using DMAT’s simulation feature, in which either
of the threshold (a), drift rate variability (Var(v)), or the start-
ing point variability (Range(z)) parameters were increased or
decreased by 10 and 20% (depending on the condition; see
Figure 11). Therefore, each set contained five levels of its cor-
responding parameters. This procedure aimed to investigate if
changes unrelated to within-trial threshold collapsing might also
lead to decreasing accuracy levels with slower RTs. These specific
parameters were chosen for incrementing/decrementing because
large/small values of these parameters are known to lead to
longer/shorter RTs for incorrect choices (Ratcliff and Rouder,
1998; Ratcliff and McKoon, 2008). Specifically, larger values of
threshold and drift rate variability parameters lead to slower error
RTs, whereas a larger variability in starting point should present
itself as faster RTs for error trials (Ratcliff and Rouder, 1998;
Ratcliff and McKoon, 2008). Such response patterns formed by
slower responses for error trials compared to correct ones can-
not be explained by the pure DDM when it is unbiased toward
one threshold over the other (Laming, 1968). Importantly for our
purposes, if error trials are slower than correct trials, this pattern

automatically implies a declining conditional accuracy curve. In
other words, the decline in accuracy observed in our data may not
necessarily be a behavioral manifestation of a collapsing decision
threshold (a), but instead may result from changes in the values of
the other parameters such as the drift rate variability (Var(v)) or
an overall reduction in decision threshold (a) that stays constant
within a trial. Figure 11 shows the results of these simulations by
plotting accuracies as a function of corresponding RTs (using a
bin size of 0.05 s).

Conditional accuracy curves based on simulated data showed
a steadily declining accuracy with increasing RT (Figure 11).
Moreover, although the rate of this decline is higher for a lower
threshold parameter, a similarly increasing rate of decline is
observed for higher levels of the drift rate variability parameter as
well, with no modification of the threshold or any other param-
eter within a trial. Additionally, increasing or decreasing the
starting point variability had no discriminable effect on the rate of
decline in accuracy with time. These results suggest that, impor-
tantly, decreasing the constant decision threshold (i.e., without
the need for within trial modulation) or increasing the variability
in drift rate could underlie decreasing accuracy toward a deadline.

DISCUSSION
Many studies using 2AFC tasks have focused on the optimality
of decisions in free response paradigms (e.g., Bogacz et al., 2006,
2010; Simen et al., 2009; Starns and Ratcliff, 2010; Balci et al.,
2011b). Some of these studies showed that with enough training
human participants can optimize the speed-accuracy tradeoff in
their decisions by adopting RR-maximizing decision thresholds.
When response deadlines are imposed in these tasks, reward max-
imization instead requires the decision-maker to collapse decision
thresholds within a trial such that at the time of deadline, they
meet at the starting point of the evidence accumulation process.
This is an adaptive process as it secures at least a 50% chance
that the reward will be obtained instead of earning nothing if
the decision-maker is late. Frazier and Yu (2008) showed the
relevance of timing uncertainty to the parameterization of this
adaptive within-trial threshold crossing process. Participants with
higher timing uncertainty should start collapsing decision thresh-
olds earlier to maximize reward. Thus, reward maximization in
these tasks entails factoring timing uncertainty into decisions in a
normative fashion.

To this end, previous research has shown that humans and
non-human animals are able to take normative account of their
endogenous timing uncertainties in both temporal and non-
temporal decision making tasks (for review see Balci et al., 2011a).
This prediction was tested in the current study by examining con-
ditional accuracy curves and evaluating how their shape depends
on deadlines and participants’ endogenous timing uncertainty.
Although our results showed that accuracy decreased with time
toward the deadline for many participants, this rate of decline was
much lower than expected from an optimal decision-maker and
did not correlate with measured levels of timing uncertainty. In
contrast to optimal performance predictions, the timing of the
onset of decline in accuracy increased rather than decreased with
higher levels of timing uncertainty in the short deadline condi-
tion, when this uncertainty was quantified using a static visual
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FIGURE 11 | Conditional accuracy curves gathered from simulated

data. RT bin size of 50 ms was used for plotting. Three parameters were
systematically modified by increasing and decreasing their values by 20

and 10%. The parameters manipulated were (A) threshold (top panel), (B)

drift rate variability (middle panel), and (C) starting point variability (bottom
panel).

stimulus, and also in the long deadline condition when it was
quantified using a dynamic visual stimulus. It is possible that
our analytical approach, i.e., using linear fits to accuracy levels
of binned RT data, was not sensitive enough to capture such
relations and might be vulnerable to artifacts depending on the
number of data points included per bin. However, this relation
did not hold even when the onset of this decline in accuracy
was characterized by the location of peak accuracy levels using a
non-binning approach. Overall, these results suggest that there is

no relation between decreasing accuracy and timing uncertainty.
Importantly, however, our analyses showed that slopes were less
negative in the long deadline condition compared to the short
deadline condition, suggesting that interval timing still had an
effect on participants’ choice behavior.

There are at least three possible explanations for sub-optimal
behavior in the deadline blocks. First, participants may have kept
favoring accuracy over reward rate throughout the experiment,
which has been previously reported (e.g., Maddox and Bohil,
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2004; Bogacz et al., 2006, 2010; Balci et al., 2011b). Thus, accuracy
bias could have prevented within trial modulation of thresholds
to reduce overall error rates. This possibility relies on the implicit
assumption that errors are subjectively more costly than missed
trials. Second, participants may have started collapsing thresholds
later than the optimal case due to underestimation of the dead-
line. In this case, accuracy would remain above the chance level
at the time of response deadline. However, our analyses did not
support this possibility. Third, sub-optimal decision making may
be caused by mechanistic limitations at the neuronal level which
may not allow for within-trial decision threshold modulation, at
least for decisions made in less than one second. This is a plausi-
ble explanation of our results, given that the cognitive cost (i.e.,
executive load) of modulating the value of the decision thresh-
old in real-time may outweigh its benefits in terms of increasing
the overall reward attained throughout a session. Importantly,
participants differed in terms of decreasing and increasing accu-
racy with time (see Figure 9, where some participants’ accuracies
increased rather than decreased toward the deadline), which
could again be explained by individual differences in bias toward
accuracy, as opposed to maximizing reward.

Slower RTs on error trials are commonly found in 2AFC
research with free responding (Ratcliff and Rouder, 1998; Ratcliff
and McKoon, 2008). These patterns can be accounted for by the
extended DDM by allowing the drift rate to vary between trials.
Drift variability enables the extended DDM to account for slower
average error RTs than correct RTs. Inflation of this variabil-
ity parameter (in addition to decreasing the constant threshold)
should therefore produce decreasing accuracy with slower RTs
in conditional accuracy curves, even in the absence of collaps-
ing thresholds within a trial. Our simulations confirmed that
accuracy can decline steadily with RT without any accompanying
threshold collapse. We have shown that, while a concomitantly
decreasing threshold parameter yields an additionally higher rate
of decline in accuracy, a similar effect is observed by increas-
ing drift rate variability across trials, whereas modifying starting
point variability had no such effect. This lack of a visible effect
of the starting point parameter on the rate of decline in accu-
racy with time was expected, given that increasing this parameter
results in faster error RTs, which should not necessarily trans-
late into slower error RTs when the same parameter is decreased.
Overall, these results suggest that increasing drift rate variability
or setting the constant decision threshold to a lower value might
be a way to mimic the effect of collapsing thresholds on accuracy
without actually collapsing them.

Finally, it is also important to note that a cross-over between
faster and slower error responses has been suggested depending
on the difficulty of the task (see Luce, 1986). Namely, harder tasks
(i.e., higher error rates) have been shown to lead to slower RTs
for error trials, whereas participants had faster error RTs in eas-
ier tasks (e.g., Ratcliff and Rouder, 1998). It is possible that our
task was a relatively easy one, given the low error rates observed
(Figure 6), the small number of trials in the last RT bin of the
conditional accuracy curves (Figure 9), and a relatively high esti-
mated drift rate (i.e., 0.4447) (see Section Drift-Diffusion Model
Simulations). However, we still observe slower RTs for error trials,
as can be seen in Figure 8. Therefore, studies using an easier task

still may not observe a more pronounced decline in accuracy with
time, but this remains an open question.

Future studies should increase the cost of missing a deadline
by explicitly adding a penalty. Under such payoff structures, one
might be more likely to observe threshold collapsing. However,
note that in these cases the optimal threshold collapse trajectories
will also change (possibly meeting prior to the response dead-
line) due to the explicit penalty for late responses. Additionally,
speed-accuracy tradeoff functions in tasks that use response signal
methodology do not exhibit reduction in accuracy with increas-
ing lags (e.g., Wickelgren, 1977). On the other hand, in our
free response paradigm, such decline in accuracy was apparent
in conditional accuracy curves. Response signal paradigms typ-
ically employ a single signal (or a series of equally distributed
signals) after which the participant is instructed to respond as
soon as possible, ensuring that there are no fast guesses, in addi-
tion to making within trial strategic manipulation of decision
making parameters harder (Heitz, 2014). This difficulty is due
to the fact that, by the time the response signal is given, sub-
jects need to make a choice using the already accumulated (and
potentially partial) evidence. This approach contrasts with the
one we have used in a number of ways. First, subjects do not nec-
essarily need to keep track of the time to respond in response
signal tasks, whereas in our experimental design, participants
needed to constantly rely on endogenous markers of the passage
of time in order to maximize reward, which is likely more taxing
in terms of information processing throughout the decision pro-
cess. In turn, the relatively higher amount of cognitive resources
available to the decision maker in the response signal paradigm
might present itself as lower variability in drift rate, which as
we showed can underlie declining accuracy with time. Secondly,
the response signal paradigm allows post-signal accumulation
of evidence to a certain extent, whereas our methodology does
not permit it at all. As a result, one might expect that, even
if participants were able to modulate thresholds within a trial
(which we show here to not be the case), giving the chance to
accumulate more evidence after a response signal might obscure
a decline in accuracy with slower RTs. Further empirical work
is needed to elucidate the possible sources of these differences
between the two experimental paradigms, although the similar-
ity of the implementation of SAT by decision makers has been
questioned due to fundamental differences in the two approaches
(see Heitz, 2014).

Overall, our empirical results do not support the optimal per-
formance predictions regarding within-trial collapsing of thresh-
olds under response deadlines. A slight decline in accuracy was
observed for decisions made near the response deadlines; how-
ever, this decline never reached chance level, which is predicted
by optimal threshold collapse. Moreover, the observed decline in
accuracy was not related to the level of endogenous timing uncer-
tainty in the expected direction, and it could be accounted for by
DDM parameters that are constant within trials.
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We present new findings that distinguish drift diffusion models (DDMs) from the
linear ballistic accumulator (LBA) model as descriptions of human behavior in a
two-alternative forced-choice reward maximization (Rmax) task. Previous comparisons
have not considered Rmax tasks, and differences identified between the models’
predictions have centered on practice effects. Unlike the parameter-free optimal
performance curves of the pure DDM, the extended DDM and LBA predict families of
curves depending on their additional parameters, and those of the LBA show significant
differences from the DDMs, especially for poorly discriminable stimuli that incur high
error rates. Moreover, fits to behavior reveal that the LBA and DDM provide different
interpretations of behavior as stimulus discriminability increases. Trends for threshold
setting (caution) in the DDMs are consistent between fits, while in the corresponding
LBA fits, thresholds interact with distributions of starting points in a complex manner that
depends upon parameter constraints. Our results suggest that reinterpretation of LBA
parameters may be necessary in modeling the Rmax paradigm.

Keywords: drift diffusion model, linear ballistic accumulator model, reward maximization, optimal performance

theory

1. INTRODUCTION
Among the many models proposed to describe decision tasks,
leaky competing accumulators (LCAs) (Usher and McClelland,
2001) and drift diffusion models (DDMs) e.g., Ratcliff and
Rouder (1998) have been especially prominent. More recently the
linear ballistic accumulator (LBA) (Brown and Heathcote, 2008)
was introduced as a conceptually simpler alternative to DDMs.
All these models employ drift terms that describe mean rates
of evidence accumulation, thresholds that signal decision times
when crossed, and sources of variability, either within or across
trials. All have been validated against particular behavioral data,
but since they differ in structure, number of parameters, and
the manner in which variability enters, they may suggest differ-
ent processing mechanisms [although the DDM can be derived
from the LCA under certain conditions (Bogacz et al., 2006)]. It is
therefore of interest to compare their accounts of given data sets.

The comparative study of Donkin et al. (2011) revealed few
differences between the abilities of the LBA and DDM to fit and
predict behavioral data. However, an earlier comparison of DDM
fits to simulated data from LBA, DDM, and LCA found that DDM
and LCA parameters correlated in a one-to-one manner, but those
of LBA and DDM did not (van Ravenzwaaij and Oberauer, 2009).
Subsequently, differences in drift rates, non-decision times and

caution parameters were found in many-parameter fits of prac-
tice effects (Heathcote and Hayes, 2012), but these differences
were not connected to optimal theories of performance in per-
ceptual choice tasks. LBA fits were not included in a substantial
recent paper (Teodorescu and Usher, 2013) that compared sev-
eral race and LCA models. Nor have the LBA and DDMs been
compared for reward maximization (Rmax) tasks in which par-
ticipants have learned strategies and apply task-based knowledge
to optimize performance.

In Rmax tasks participants are instructed to adopt a strat-
egy that yields maximum rewards, and are given a fixed time
interval to complete each block of trials, during which they may
attempt the task as many times as they wish, as detailed in sec-
tion 2.3. Task difficulty is held constant within a block but varied
between blocks. In the two-alternative forced-choice (2AFC) task
from which data is analyzed here, visual moving dots stimuli were
used and task difficulty was adjusted via motion coherence (Balci
et al., 2011). Depending on difficulty, a participant may attempt
the task few times, slowly and cautiously, or she may work faster
but more carelessly. The 2AFC Rmax task performance and model
fits have been tested against the DDM, and DDM fits have been
shown to describe a speed-accuracy tradeoff quite close to that of
high performing participants (Bogacz et al., 2006; Simen et al.,
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2009; Bogacz et al., 2010; Balci et al., 2011). However, Rmax task
performance and fits have not previously been compared across
models.

Here we compare the LBA, which represents evidence in favor
of two or more options, with the pure and extended (Ratcliff,
e.g., Ratcliff and Rouder, 1998) DDMs, which assess differences
of evidence between options. In the LBA two drift rates, believed
to be correlated with neural activity (e.g., Gold and Shadlen, 2000,
2001; Gold et al., 2008), represent preferences for each of the two
options; in the DDMs, a single drift rate represents the difference
between these preferences.

For both the DDMs and the LBA models, thresholds, also
called caution parameters (Donkin et al., 2011), set a level of
accumulated activity at which a decision is made. Caution is key
in setting the speed-accuracy tradeoff: high caution implies low
speed and high accuracy and low caution implies high speed and
low accuracy (Bogacz et al., 2006; Brown and Heathcote, 2008;
Balci et al., 2011). For example, caution can explain the rela-
tively slow response times of elderly individuals (Ratcliff et al.,
2004). Caution can be experimentally manipulated by adjusting
task difficulty from block to block, and optimal values of caution
can be determined analytically for the pure DDM and numer-
ically for the extended DDM and the LBA, as shown below in
section 2.2.

An important difference between the DDMs and the LBA
models is the treatment of variability. In the DDMs variability
enters as additive Gaussian noise in the evidence accumulation
dynamics during each individual trial. In the extended DDM,
there are additional trial-to-trial variabilities in the starting point,
in the drift rate of evidence accumulation, and in the non-
decision time. In contrast, there is no additive noise in the LBA
during individual trials, as implied by the adjectives “linear” and
“ballistic.” Instead there is only trial-to-trial variability in the
starting points and in the drift rates. Nonetheless, the LBA mod-
els can capture much of the same behavior as the extended DDM,
and they do so with fewer parameters (Brown and Heathcote,
2008; Donkin et al., 2011).

Direct numerical comparisons of the role of caution in the
models are straightforward. Parameters can be fit to participant
behavior at each difficulty level for each model. For a given
parameter set, changes in speed and accuracy of responses as cau-
tion is varied can be computed, and thus the value of the caution

parameter that yields the highest reward rate can be determined
for each difficulty level. An optimal speed-accuracy tradeoff for
each model and participant can then be derived, assuming that
caution is varied from one difficulty condition to the next.

The models can also be evaluated and compared by examin-
ing their predictions of optimal performance. For the pure DDM,
a unique parameter-free Optimal Performance Curve (OPC)
describes the relationship between error rate (ER) and a nor-
malized decision time (DT), independent of model parameters
(Bogacz et al., 2006). Parameterized families of OPCs may also be
determined for the extended DDM, and as the values of the addi-
tional parameters (variances in drift rate, in starting point, and in
non-decision time) become small, these curves approach that of
the pure DDM (Bogacz et al., 2006). Like the extended DDM, the
LBA does not predict unique OPCs, and our analysis of the LBA
reveals a critical interaction between thresholds and variance in
starting points.

While the DDMs and the LBA can reproduce key aspects of
behaviors, the DDM fits suggest that participants are on average
least cautious on the most difficult tasks, in which the optimal
strategy is random guessing. In contrast, an LBA fit indicates that
participants are on average more cautious on the most difficult
tasks, and that they reduce variance in starting points as difficulty
decreases. These differences between the DDM and the LBA pre-
dictions highlight the role of diffusive noise within trials in the
DDMs, which is sacrificed for simplicity in the LBA model.

The paper is structured as follows. In section 2 we discuss
our methods, describing the LBA model, the pure and extended
DDMs, and parameter-fitting procedures. We review optimal per-
formance theory for the pure and extended DDMs, develop anal-
ogous results for the LBA, propose an adapted LBA that decouples
starting point from thresholds and compare model performances
in the limit of large noise. Section 3 describes our results pri-
marily in terms of parameter fits across subjects, and section 4
contains a discussion and directions for future work. Details of
fits to individual participants are provided in the Supplementary
Material.

2. MATERIALS AND METHODS
2.1. DRIFT DIFFUSION AND LINEAR BALLISTIC ACCUMULATION
In this section we describe the pure and extended (Ratcliff) DDMs
and the LBA models. The two models are illustrated in Figure 1.

FIGURE 1 | Comparative illustration of pure DDM (left) and LBA (right) models. See text for description of extended DDM and further details.

Frontiers in Neuroscience | Decision Neuroscience August 2014 | Volume 8 | Article 148 | 118

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Goldfarb et al. DDM and LBA model comparisons

2.1.1. Pure drift diffusion model
In the pure DDM the difference in evidence for the two choices
evolves according to the following scalar equation:

dx = μdt + σdW, x(0) = x0, (1)

where x(t) is the aggregate evidence at time t, μ is the drift rate,
σ is the diffusion rate, and dt and dW represent time and Wiener
noise increments, respectively. Evidence accumulates noisily from
the starting point x(0) = x0 at time t = 0 to the first time t =
T at which x(T) = +z or −z. Without loss of generality, we
assume that μ ≥ 0 (Bogacz et al., 2006). Thus, the two thresh-
olds, +z and −z, respectively, correspond to selecting the correct
and incorrect choices. We will refer to z interchangeably as the
threshold or the caution (parameter); z can take any non-negative
value.

Only four parameters are required to predict DT for
Equation (1): μ, x0, σ , and z, and there are closed form analytical
expressions for mean DT and ER (Bogacz et al., 2006):

DT = z

μ
tanh

( zμ

σ 2

)
+ 2z

μ
·
⎛

⎝
1− exp

(
2x0μ

σ 2

)

exp
(

2zμ
σ 2

)
− exp

(
− 2zμ

σ 2

)

⎞

⎠− x0

μ
, (2)

ER = 1

1+ exp
(

2zμ
σ 2

) −
⎛

⎝
1− exp

(
2x0μ

σ 2

)

exp
(

2zμ
σ 2

)
− exp

(
− 2zμ

σ 2

)

⎞

⎠ . (3)

In addition, the pure DDM is augmented by a non-decision
time parameter, T0, corresponding to non-decision processes.
The estimated reaction time (RT) is the sum of the decision and
non-decision times: RT = DT+ T0.

Although our data were derived from unbiased stimuli, we
allow non-zero starting points in order to make direct compar-
isons among all the models, since extended DDMs and LBAs use
ranges of starting points.

2.1.2. Extended drift diffusion model
In the extended (Ratcliff) DDM, evidence accumulation in each
trial is governed by the same process as in the pure DDM, but with
added variability in starting points, drift rate, and non-decision
time:

dx = μ∗dt + σdW, x(0) = x∗0, (4)

where μ∗, σ , z, x∗0 , and T∗0 , respectively represent the drift rate,
diffusion rate, threshold, starting point, and non-decision time
for a given trial. Evidence accumulation proceeds from the start-
ing point x(0) = x0 at time t = 0 to the first time t = T at which
x(T) = +z or −z. For each trial, μ∗ is selected from N (

μ, s2
μ

)
,

x∗0 is selected from U
(

x0 − sx0
2 , x0 + sx0

2

)
, and T∗0 is selected

from N
(

T0, s2
T0

)
, where N and U respectively denote Gaussian

(normal) and uniform distributions, and μ, sμ, sx0 , T0, sT0 are all
non-negative constant scalars.

The additional variability in the model parameters from trial
to trial augments the model’s descriptive power. In particular,
the extended DDM, unlike the pure DDM, can predict different

RT distributions for correct and error trials, even with unbiased
mean starting points. Prior work has suggested that the parame-
ters new to the extended DDM sufficiently extend the descriptive
capabilities of the DDM to merit the additional modeling cost
(Ratcliff and Rouder, 1998; Ratcliff and Smith, 2004; Balci et al.,
2011). However, analytical expressions for DT and ER analogous
to Equations (2, 3) do not exist for the extended DDM. The
extended DDM is frequently called the Ratcliff DDM due to a
large body of work by Ratcliff to characterize it. Here the thresh-
old z can assume any non-negative value outside the range of
starting points (Tuerlinckx, 2004).

2.1.3. Linear ballistic accumulator model
The LBA model is conceptually simple and yet can provide rich
descriptions of behavior, rivaling those of the extended DDM
(Brown and Heathcote, 2008; Donkin et al., 2011). Evidence xi(t)
for each of two or more choices accumulates linearly and ballis-
tically in time t from xi(0) = xi0∗ toward a threshold z at a drift
rate μ∗i :

xi(t) = x∗i0 + μ∗i t, i = 1, 2, . . . , N. (5)

As in the extended DDM, parameters may vary from trial to
trial. Here μ∗i is selected from N [

μi, s2
]

and x∗i0 from U [0, A]
on each trial. The parameter A > 0 defines the maximum value
that any starting point x∗i0 may assume. The accumulator xi(t)
that is first to reach the threshold z is selected. In prior work,
A has been restricted to lie below z, i.e., A ≤ z (Brown and
Heathcote, 2008; Donkin et al., 2011). A non-decision time T0 is
also included. While drift rates generally differ for each accumu-
lator (μi �= μj), the remaining parameters A, z, s, T0 are common
to all accumulators.

Closed form expressions describing the LBA model’s behavior
were derived in Brown and Heathcote (2008). The cumulative dis-
tribution function (CDF), Fi(t), and the probability density func-
tion (PDF), fi(t), can be written in terms of the LBA parameters
for individual accumulators:

Fi(t) = 1+ z − A− tμi

A
�

(
z − A− tμi

ts

)

− z − tμi

A
�

(
z − tμi

ts

)
+ ts

A
φ

(
z − A− tμi

ts

)

− ts

A
φ

(
z − tμi

ts

)
, (6)

fi(t) = 1

A

[
−μi�

(
z − A− tμi

ts

)
+ sφ

(
z − A− tμi

ts

)

+μi�

(
z − tμi

ts

)
− sφ

(
z − tμi

ts

)]
, (7)

where �( · ) is the CDF and φ( · ) the PDF for the normal dis-
tribution with zero mean and unit variance. See Brown and
Heathcote (2008, Supplementary Material) for the derivations of
Equations (6, 7).

To determine mean first passage times for competing accu-
mulations, we use the defective PDF, denoted PDFi(t); unlike the
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standard PDF, the defective PDF generally integrates to a value
between 0 and 1. PDFi(t) describes the likelihood that accumula-
tor xi(t) reaches the threshold provided that no other accumulator
has already done so:

PDFi(t) = fi(t)
∏

j �= i

(
1− Fj(t)

)
. (8)

Because drift rates μ∗i are selected from a normal distribution, in
some cases all μ∗i ’s are negative. When this happens, the model
produces an infinite decision time, and no response is given.
Thus to compare LBA responses to those predicted by the two
DDMs, which are finite on every trial, we consider only simu-
lated LBA trials that yield a finite response time, i.e., that have at
least one accumulator with a positive drift rate on that trial. To
do so we modify the expressions above by a normalization factor
α(μ1, . . . , μN , s) = 1−∏N

i= 1 �
(−μi

s

)
, which is the probabil-

ity that no accumulator reaches threshold. This follows since
�
(−μi

s

)
is the probability that the ith accumulator has μ∗i < 0.

The normalized defective probability density functions pi(t) are
given in Brown and Heathcote (2008) as

pi(t) = PDFi(t)

α(μ1, . . . , μN , s)
. (9)

For a two choice task, we therefore have

p1(t) = PDF1(t)

1−�
(−μ1

s

)
�
(−μ2

s

) , (10)

p2(t) = PDF2(t)

1−�
(−μ1

s

)
�
(−μ2

s

) , (11)

with
∫∞

0 (p1(t)+ p2(t))dt = 1. The expressions for DT and
ER are

DT =
∫ ∞

0
t(p1(t)+ p2(t))dt, (12)

ER =
∫ ∞

0
p2(t)dt. (13)

Following the convention adopted for the DDM, we shall assume
that μ1 ≥ μ2, so that p1(t) and p2(t) represent correct and incor-
rect responses, respectively, and the corresponding DTs may be
written as

DTcorrect = 1

1− ER

∫ ∞

0
tp1(t)dt, (14)

DTerror = 1

ER

∫ ∞

0
tp2(t)dt. (15)

We also normalize the sum of the mean drift rates: μ1 + μ2 = 1.
For the LBA described in the literature (Brown and Heathcote,
2008; Donkin et al., 2011), the threshold must not fall within the
range of starting points, i.e., we must have z ≥ A. The LBA, unlike
the two DDMs, therefore almost always predicts non-zero DTs.
Implications of this in determining an optimal speed-accuracy
tradeoff are discussed in the next section.

2.2. OPTIMAL PERFORMANCES
As in Bogacz et al. (2006), we define optimal performance as a
strategy that maximizes the Reward Rate (RR):

RR = 1− ER

DT+ T0 + RSI
, (16)

where RSI denotes the response to stimulus interval (see sec-
tion 2.3 below). To assess performance, we seek a relationship
between the behavioral measures ER and DT that yields the max-
imum RR for a given decision making model. This Optimal
Performance Curve (OPC) (Bogacz et al., 2006) relates normal-
ized DT to ER, where the former is defined as DT

Dtot
with Dtot =

T0 + RSI. We now describe OPCs for the DDM, extended DDM,
and LBA.

2.2.1. Optimal performance under the pure DDM is described by a
unique curve

The pure DDM has a unique, parameter-free OPC, defined by

DT

Dtot
=
(

1

ER log 1− ER
ER

+ 1

1− 2ER

)−1

, (17)

which is derived by finding the threshold that maximizes RR
for a given task difficulty (Bogacz et al., 2006). This function
is shown in solid black in Figure 2 below. Its general shape can
be intuitively explained by noting that for very noisy stimuli,
prolonged evidence accumulation cannot improve much over
random choices, so at the righthand end optimal thresholds
approach zero, DT→ 0 and ER→ 0.5. Alternatively, very easy
tasks require little accumulation to achieve high accuracy, so DTs
are also small at the left, but ER → 0. For each intermediate
difficulty level and a given Dtot = T0 + RSI, there is a unique
optimal threshold with associated DT and ER between 0 and 0.5
that maximizes RR, thus defining the curve. All other thresholds,
associated with faster or slower RTs, yield smaller net rewards at
that task condition. Going from right to left, RRs rise as difficulty

FIGURE 2 | Optimal Performance Curves (OPCs) for the LBA are not

unique. The following parameters for the standard LBA were used in the
simulation: s = 0.32, T0 = 226 ms, RSI = 1000 ms, μ1 + μ2 = 1. The
unique OPC of the pure DDM is shown in black.
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decreases, but it is important to recognize that any point on the
OPC corresponds to maximum RR for a specific task condition.
See Bogacz et al. (2006) and Zacksenhouse et al. (2010) for further
discussion and illustrations of the OPC.

2.2.2. Optimal performance under the extended DDM is not
uniquely defined

The extended DDM has families of OPCs rather than a unique
OPC, as in the pure DDM. In the extended DDM, variability in
starting points precludes the possibility of trials with a DT = 0.
However, for low values of variance parameters in the extended
DDM, the OPCs for the extended DDM approach the OPC for the
pure DDM. For a sample OPC for the extended DDM see (Bogacz
et al., 2006, Figure 14). To compute such curves, all parameters
except drift rate and threshold are fixed. Then the threshold which
optimizes RR is computed for each drift rate and used to deter-
mine ER and normalized DT. Further details can be found in
Bogacz et al. (2006).

2.2.3. Optimal performance under the LBA is not uniquely defined
The LBA expressions of Equations (6–11) are complicated, and
simple analytical expressions of their OPC families do not seem
possible. Instead we approximate them numerically. To do this,
we fix T0, RSI, s, set μ1 + μ2 = 1 and choose A. We then calculate
ER and DT for each μ1 ∈ [0.5, 1]. From these we estimate the
optimal z and find the corresponding ER and DT, producing a
point on the OPC for the selected A value. We find that a different
OPC is generated for each value of A, as shown in Figure 2, i.e.,
there is no unique OPC for the LBA.

This is consistent with the observation that, for μ1 = μ2 = 0.5
(equal evidence for both options), different choices of A will affect
the DT but not the ER. This is because the expected accuracy
will be exactly 0.5 and no greater accuracy may be realized or
information accumulated over time. It follows that the optimal
solution is the lowest possible threshold and therefore the shortest
possible DT.

For the pure DDM and the extended DDM with zero starting
point variance (sx = 0), the threshold parameter, z, can go to 0,
and likewise the DT. However, in the LBA, the threshold must lie
at or above the top of the range of starting points, i.e., z ≥ A. Since
this is a key source of variability, in general A > 0. Moreover, the
lowest (and optimal) threshold for μ1 = μ2 = μ is therefore z =
A, which gives DT > 0. The OPC curve plotting DT

DTtot
varies with

the value of A as shown in Figure 2; the smooth portions of each
curve correspond to z > A (on the left) and z = A (on the right).
That is, when the task is difficult and the ER is close to 0.5, the
threshold, z, is as small as it can be. Moreover, unlike the OPC for
the DDM, the OPCs for the LBA terminate at ER = 0.5 with finite
normalized DTs. As A→ 0, the normalized DTs approach 0 for
all ERs.

2.2.4. An adapted LBA allows fast responses at high error rates
The above analysis prompts us to define an adapted version of the
LBA, in which thresholds can take values in the range of starting
points, i.e., z ≥ A is relaxed to z ≥ 0. If the starting point in one or
both accumulators is greater than z, then DT = 0 and the accu-
mulator with the higher starting point is selected for that trial.

The mean error rate and decision time, ERa and DTa, for the
adapted DT with z < A are defined accordingly:

ERa(A, z, μ1, μ2, s) = 1

2
· A− z

A
+ z

A
· ER(z, z, μ1, μ2, s),(18)

DTa(A, z, μ1, μ2, s) = z

A
· DT(z, z, μ1, μ2, s), (19)

where ER and DT are calculated as in Equations (12–15) for the
standard LBA.

Instantaneous decisions occurring for starting points above z
can be seen as representing a prior resolution to respond as fast as
possible, as is optimal for entirely noisy (zero-coherence) stimuli,
see the OPC of Figure 2. In this case RT= T0. Hence the adapted
LBA can produce bimodal RT distributions, with a delta function
at T0 for trials with starting points above z and a second peak at
longer RTs due to those starting below z.

Numerically-derived OPCs for the adapted LBA are also non-
unique. As stimuli become less discriminable and ERs approach
0.5, the best values of z are those that minimize DT. Hence zopt →
0 as μ1 → μ2, leading to many rapid responses. For μ1 >> μ2,
we also find zopt → 0 and DT→ 0, but with ER→ 0 due to fast
drift toward correct choices. As A varies this produces a family of
OPCs with portions on the left similar to those of Figure 2, but
approaching DT = 0 as ER→ 0.5. Also, as A→ 0, zopt → 0 for
μ1 �= μ2, as for the standard LBA.

2.2.5. Noise scales differently in the pure DDM and standard LBA
Poorly discriminable stimuli correspond to low signal-to-noise
ratios μ/σ in the pure DDM, and may also correspond to vari-
ability in drift rates and starting points in the extended DDM. The
LBA has trial-to-trial variability (“noise”) in drift rates and start-
ing points but lacks additive noise in individual trials. We now
compare noise scaling in the two models in the case of equal mean
evidence for both alternatives, represented as μ1 = μ2 in the LBA
model and as μ = 0 in the DDM. We show that the DDM and
LBA behave differently as noise increases.

We first consider approximations of DT and ER about the
point 1

σ 2 = 0 (analogous to μ = 0) for the DDM. Taking μ and
z fixed and strictly positive, and expanding the expressions (2, 3)
with respect to the small parameter 1

σ 2 in Taylor series, we obtain

DT

(
1

σ 2

)
= z2

(
1

σ 2

)
− μ2z4

3

(
1

σ 6

)
+ O

(
μ4z6

σ 10

)
and (20)

ER

(
1

σ 2

)
= 1

2
− zμ

2

(
1

σ 2

)
+ z3μ3

6

(
1

σ 6

)
+ O

(
z5μ5

σ 10

)
. (21)

Here ER is O (1), and DT is O
(

1
σ 2

)
. Thus, ER scales differ-

ently with high noise σ as compared to DT. In particular, as
σ →∞, ER→ 0.5 and DT→ 0. Intuitively, large noise pushes
the accumulation process rapidly toward one of the boundaries.

We now consider scaling of ER and DT with noise in the
standard LBA, and show that large noise generally leads to non-
zero DTs and always leads to non-zero mean DTs, given non-zero
thresholds. For non-discriminable stimuli μ1 = μ2 = 1

2 the LBA
has two sources of noise or variability: in drift rates, s, and in
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starting points, A. In all cases, since μ1 = μ2 and drift is the only
source of bias, ER = 0.5. We note that the mean DT can be 0 if
and only if A = 0, due to the constraint that z ≥ A, so that A �= 0
implies a non-zero distance to accumulate to threshold. To see
this, first suppose that s = 0 and then allow s to increase, produc-
ing a distribution of drift rates centered around μi = 1

2 . In fact
for s = 0 the RT distribution is

f (t) =

⎧
⎪⎨

⎪⎩

0, t < z−A
μ

2μZ
A2

(
1− μt

z

)
, t ∈

[
z−A

μ
, z

μ

]

0, t > z
μ

, (22)

with mean DT = (3z − 2A)/3μ, and this value will change con-
tinuously with s. It follows that for μ1 = μ2 and the minimum
z∗ = A, DT increases with A. This behavior for μ1 = μ2 and high
A is quite different from that of the optimized pure DDM, in
which large noise implies that mean DT→ 0.

2.3. REWARD MAXIMIZATION EXPERIMENT
In order to compare model fits, we reanalyze human behavioral
data from a free response motion discrimination task previously
presented in Balci et al. (2011). Participants (n = 17, 6 male) were
asked to discriminate the direction of displays of moving dots
on a computer screen and instructed to maximize their rewards.
Task difficulty was adjusted via motion coherence determined by
the fraction of dots moving leftward or rightward while the rest
moved randomly.

Stimuli were viewed at ≈60 cm from the CRT monitor. The
participant indicated motion direction by pressing a key on a
standard keyboard: leftward with the “Z” key and rightward with
the “M” key. Leftward and rightward stimuli were presented with
equal probabilities. Premature responses, either anticipatory or
with RTs of less than 100 ms, were penalized with a buzzing sound
and a 4 s timeout period. When participants did not respond
prematurely, RSIs were selected from a truncated exponential dis-
tribution with mean of 1 s. Experiments were conducted at a
Macintosh computer, using the Psychophysics Toolbox (Brainard,
1997).

Each participant completed at least 13 daily sessions of 60 min
total duration. The first four of these sessions involved training
and practice without monetary reward. In each of the remaining
sessions, participants completed five blocks with motion stim-
uli presented at a different coherence in each block (0, 4, 8, 16,
and 32%, randomized across participants); participants earned
$0.02 for each correct response. Performance improved markedly
over the first 5 sessions and for certain participants continued
to improve until session 9. Here we only use data from sessions
10–13.

After completing the motion discrimination task, participants
performed an interval timing task and a signal detection task.
The signal detection task was the same as above, except that
participants were instructed to respond merely to motion onset,
regardless of direction. In one block they were instructed to press
the “M” key, and in the other, the “Z” key, again receiving $0.02
for each correct (non-anticipatory) response. The signal detection
data was used to compute non-decision times as described in the

following section. Interval timing data is not used here, so we do
not describe that task. For more details, see Balci et al. (2011).

2.4. DATA FITTING PROCEDURES
Fits were performed to participant data for the two DDMs and
the LBA using published toolboxes for the models in Matlab
(Tuerlinckx, 2004) and R (Donkin et al., 2009), respectively. Fits
to the LBA model required some modifications to the standard
LBA code, as outlined in Donkin et al. (2009).

Data were separated by difficulty and fits were computed for
individual participants over all five difficulty conditions. Multiple
fits were performed for each condition and participant, first vary-
ing only drift rate and caution (threshold) with difficulty level
for the pure DDM, and then also varying the range of starting
points, while the remaining parameters were held constant. The
DDMs and LBA were fit separately to RT distributions for correct
and error trials in each condition using five quantiles (10%, 30%,
50%, 70%, 90%). The same data and partitioning were used for
both model fit toolboxes. The toolboxes fit non-decision times T0,
so that mean RTs and DTs can be computed for all models.

Empirical non-decision times were also estimated for each
participant from their mean RTs for the fastest 25% of signal
detection trials, as in Balci (Personal Communication, 2011) and
Balci et al. (2011). These non-decision times were only used in
computing normalized mean DTs for the human data shown
below in Figures 3, 4 and Supplementary Figure S4; normal-
ized mean DTs for the models were derived from the model fit
toolboxes.

Both the DMAT (DDM) and LBA toolboxes allow the user to
constrain some parameters to constant values while others are
allowed to vary across conditions. The DMAT toolbox does this
by using a combination of a system of matrix equations similar
to those in general linear models, coupled with post-processing
to remove outliers (Vandekerckhove and Tuerlinckx, 2007, 2008).
The LBA toolbox uses the quantile maximum probability estima-
tor method (Heathcote et al., 2004) to estimate PDFs for correct
and error trials, which are then used to select model parameters.

The qualities of the resulting model fits were then assessed by
comparing their predicted mean RTs and ERs with data for each
condition and participant, using the Akaike, Corrected Akaike,
and Bayesian Information Criteria (AIC, AICc, and BIC) (Akaike,
1974, 1980, 1981). Finally, in addition to each participant’s actual
performance, a theoretically optimal performance for each diffi-
culty condition was estimated by allowing the caution parameter
to vary freely while holding all other parameters fixed at that par-
ticipant’s fitted values. The optimal value of caution is defined
as that yielding the highest possible reward rate, given constant
(fitted) values for the remaining parameters.

3. RESULTS
To compare the properties of the DDM and LBA in fitting
Rmax task data, we fitted the following models to data for each
participant:

• A pure DDM, in which thresholds z and drift rates μ vary
among coherence conditions (13 parameters: x0, σ 2, T0, 5 z’s
and 5 μ’s).
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FIGURE 3 | Data and fits to Rmax behavior for (A) a high performing and

(B) a low performing participant. Empirical normalized DTs, estimated from
mean RT data for the main task and RTs from a signal detection task, are
shown in black with standard error bars. OPC for the pure DDM is shown in
gray, and OPCs for the LBA, computed as described in section 2.2.3, are

shown in purple open circles. LBA fits, shown in green, overestimate
normalized DTs for both subjects. The OPC for the LBA, however, lies
significantly below the data for Subject 32, because this data requires a small
starting point range A to get low DTs in difficult tasks, and a low A yields low
DTs throughout.

FIGURE 4 | Data and fits to Rmax behavior averaged over all

participants, with comparison to OPCs for pure DDM (gray) and LBA

(purple open circles). Data is shown in black, with error bars being the
mean of standard errors for each participant within the given ER bin. LBA
fits (green dots and dark blue diamonds) overestimate mean normalized
DTs, but the OPC for the LBA underestimates them.

• An extended DDM, in which thresholds z and mean drift rates
μ∗ vary among coherence conditions (16 parameters: x0, σ 2,
T0, 5 z’s, 5 μ’s and sx, sT0 , sμ).
• A second extended DDM, in which thresholds z, mean drift

rates μ∗ and ranges sx of starting points (SPs) vary among
coherence conditions (20 parameters: x0, σ 2, T0, 5 z’s, 5 μ’s,
5 sx’s, sT0 and sμ).
• A LBA model, in which thresholds z and mean drift rates μi

vary among coherence conditions (13 parameters, with μ1 +
μ2 = 1: A, s, T0, 5 z’s and 5μ1’s).
• A second LBA model, in which thresholds z, mean drift rates

μi and ranges A of starting points (SPs) vary among coherence
conditions (17 parameters, with μ1 + μ2 = 1: 5 A’s, s, T0, 5 z’s
and 5 μ1’s).

Note that, for increased flexibility, σ is not set to 1.

Table 1 | DDM and LBA model fit comparisons, with fit quality

defined by the match to mean ER and RT data.

Model Total AIC AICc BIC R2

parameters

Pure DDM 13 63.57 −1.43 93.50 0.98

Extended DDM 16 66.37 20.66 103.21 0.98

Extended DDM with var. SPs 20 66.76 30.40 112.81 0.99

LBA 13 80.44 15.44 110.37 0.95

LBA with var. SPs 17 66.18 23.68 105.32 0.99

Lower AIC, AICc, and BIC scores indicate better fits. See text for discussion.

AIC, AICc, and BIC scores for each participant and model
were computed based on mean RT and ER data and model
predictions. These were then averaged over all participants and
conditions to determine mean scores for each model. All three
metrics reward goodness of fit while penalizing extra parame-
ters; lower scores are desirable and negative values are possible
(Akaike, 1974, 1980, 1981). The scores, along with mean values of
the correlation coefficient R2, are summarized in Table 1. Figures
S1 and S2 in the Supplementary Material show individual fits
to RT and ER data. According to AIC, AICc, and BIC, the pure
DDM provides the best overall fit to mean RT and ER data, but
fits for each participant and condition are quite good for all five
models.

Lower AIC, AICc, and BIC scores for the pure DDM are due
to the fact that it has fewer parameters than all other models used
here except the standard LBA, and the pure DDM predicts mean
ER and RT data well. The extended DDM and LBA with variable
starting points achieve slightly higher mean R2 values than the
pure DDM, indicating better fits to mean behavior when addi-
tional parameters are included. Comparing the pure DDM fit to
the extended DDMs over RT distributions using the DDM tool-
box, the extended DDM (χ2 = 168.35, p < 0.05) and extended
DDM with variable starting points (χ2 = 408.94, p < 0.001)
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yield superior deviance scores (Chernoff and Lehmann, 1954).
However, fitting distributions is problematic because individual
participant data sets separated by coherence condition are rela-
tively small, and assessment of Rmax performance requires mean
RTs and ERs.

Table 1 also shows that allowing the range of starting points
to vary in the LBA yields better fits according to AIC and BIC but
not AICc, and that such variability in the extended DDM does not
improve fits according to any of these metrics.

Figure 3 shows normalized DTs for representative high and
low performing participants (Subjects 32 and 34) and Figure 4
shows the DTs averaged over all participants. Individual fits
appear in Figure S4 of the Supplementary Material. The data is
shown in solid black with error bars, and model fits are super-
imposed in curves of various colors with different markers: the
LBA in green dots, the pure DDM in light blue with diamonds,
the extended DDM in dark blue with circles, the LBA with var-
ied starting point ranges in dark blue with diamonds, and the
extended DDM with varied starting point ranges in red with
squares. The OPC for the LBA is indicated in purple with circles,
and the OPC for the DDM in light gray.

Figure 3 illustrates a key difference between high and low per-
forming participants. For the former (Figure 3A), the fits all trend
downward and mean normalized DTs decrease as ERs increase,
as they do for the OPC for the DDM. For the latter (Figure 3B),
this trend is reversed and all fits diverge from the OPC for the
DDM. The pure and extended DDM fits lie close to the data in
both cases. The OPC for the LBA generally predicts the smallest
normalized DTs, but it lies far below the data at intermediate ERs
for the high performing participant.

As with individual subjects who do not perform at the highest
level (Figure 3B), the average behavior shown in Figure 4 diverges
from the OPC for the pure DDM as ERs increase. The difference
between the empirical normalized mean DTs of Figure 4 and the
OPC for the pure DDM is a good predictor of overall RR for each
of the coherence conditions (R2 = 0.53, p < 0.001).

The LBA models and the pure DDM overestimate normalized
DTs and the extended DDMs slightly underestimate them. This is
due in part to some subjectivity in the estimation of non-decision
time T0. For example, the LBA tends to fit smaller T0 values than
do the DDMs, and thus the LBA yields larger DTs (Donkin et al.,
2011). However, while the LBA fits lie above the data curve, the
OPC for the LBA lies below it, especially at intermediate ERs.
This holds for many high performing participants (see Figure 3A
and Supplementary Figure S4). For such individuals the range
of starting points is small (Supplementary Figure S6), so that
thresholds can be small without a major sacrifice in accuracy. We
investigate how starting point ranges depend on coherence below
(Figure 6A).

To better understand differences among the five models, we
next consider mean parameter fits for the caution parameter,
i.e., threshold, z. For each participant, coherence condition,
and DDM fit, we calculated a threshold, and then averaged
over individual threshold values for a given model and coher-
ence. Thresholds for individual participants and coherence levels
appear in Figure S5 of the Supplementary Material.

Figure 5A shows that mean threshold values increase with
coherence for all three DDMs. Allowing starting point ranges
to vary with coherence in the extended DDM increased thresh-
olds at the two lowest coherence levels, and this variation with
coherence over all thresholds is significant in the extended DDM
[F(4, 64) = 73.72, p < 0.01, η2 = 0.82]. Extended DDM fits to the
same data set in Balci et al. (2011) suggested approximately equal
evidence for both variable and constant thresholds, because of
differences in outlier treatment and in fitting algorithm options.

Figure 5B illustrates a similar analysis for the two LBA model
fits. The fit to the LBA model with starting point range fixed over
coherences also indicates that caution increases with coherence,
but allowing starting point ranges to vary with coherence reverses
this trend. A within-groups ANOVA on parameter values for the
LBA with and without variability in starting point ranges shows
that the main effect of LBA model type [F(1, 16) = 5.62, p < 0.05,

FIGURE 5 | Mean threshold values versus coherence. (A) Caution
increases with coherence in all DDM fits. Pure (blue) and first extended DDM
(red) fits do not differ significantly, but difficulty condition is significant
[F(4, 64) = 3.91, p < 0.01, η2 = 0.16]. Allowing the starting point range to vary
in the second extended DDM (green) does not improve fits by AIC/BIC, but
compared with the other two DDM fits, main effects of model
[F(2, 32) = 3.99, p < 0.05, η2 = 0.02] and interaction of model type and

difficulty condition [F(8, 128) = 2.06, p < 0.01, η2 = 0.01] are significant.
(B) Caution increases with coherence in the first LBA fit, and decreases with
coherence in the second LBA fit, with variable starting point range. A
within-groups ANOVA shows that main effect of model type [F(1, 16) = 5.62,
p < 0.05, η2 = 0.01] and interaction of model type and difficulty condition
[F(4, 64) = 4.29, p < 0.01, η2 = 0.08] are both significant. Bars indicate
standard errors for n = 17 subjects.
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η2 = 0.01] and the interaction of LBA model type and diffi-
culty condition [F(4, 64) = 4.29, p < 0.01, η2 = 0.08] are both
significant.

We next consider the role of starting point variability. Mean
values of starting point ranges, averaged across all participants,
are shown in Figure 6A for all models. The two models in which
variability is allowed exhibit similar monotonically decreasing
starting point ranges as coherence increases. Analogous data for
individual participants appears in Figure S6 of the Supplementary
Material, illustrating substantial variability among participants.

Figure 6B compares the DDM and LBA estimates of mean
drift rates. Here LBA drift values are reduced by subtracting 1

2
from μ1, so that μ = 0 corresponds to zero coherence in both
models, allowing direct comparisons. All models predict a mono-
tonically increasing mean drift rate with increasing coherence.
The effect of coherence on drift parameters is significant for
all models with a large effect size [F(4, 64) = 118.80, p < 0.001,
η2 = 0.76]. Interaction of model and condition type is also sig-
nificant, but effect size is modest [F(16, 256) = 5.48, p < 0.001,
η2 = 0.11]. The effect of model type on drift is also significant
[F(4, 64) = 7.79, p < 0.001, η2 = 0.10]. Drift rate estimates for
individual participants appear in Figure S7 of the Supplementary
Material, showing more uniformity than the starting point ranges
of Supplementary Figure S6. Thus, estimates of task difficulty are
in general agreement across all models.

4. DISCUSSION
In this paper we compare accounts of behavior provided by fit-
ting DDM and LBA models to behavioral data from a 2AFC Rmax
task. Adjustments of thresholds, equivalent to caution, are known
to be central to DDM descriptions of Rmax behavior. For exam-
ple, participants may adjust their thresholds to best suit each
difficulty condition (Bogacz et al., 2006, 2010; Balci et al., 2011),
or pick a single threshold that works well, albeit suboptimally,
across multiple difficulty levels (Balci et al., 2011).

We first showed that, while the optimal performance curve
(OPC) for the pure DDM is unique and parameter free, OPCs for
the LBA are non-unique (Figure 2), like those for the extended
DDM. Moreover, for a given parameter set, optimal behavior in

the LBA is at least partially determined by the range of start-
ing points, A. If A > 0, fast responses at near signal detection
speed are impossible because of thresholds z ≥ A, and if A ≈ 0,
the quality of fits is limited. Lacking diffusive noise during trials,
the LBA requires variable starting points as well as variable drift
rates to produce a range of DTs and corresponding estimated RT.
Allowing A to vary with task difficulty yields significantly better
fits, and this parameter variability is consequently critical to the
success of the LBA. We also proposed an adapted LBA, in which
thresholds can lie below A, which we intend to analyze and fit to
data in the future.

We then fitted five models to an Rmax data set: a pure DDM,
an extended DDM, an extended DDM allowing starting point
ranges that vary with task difficulty, a standard LBA, and an LBA
that allows starting point ranges to vary with task difficulty. For
consistency, we employed the LBA parameterization of Brown
and Heathcote (2008) and Donkin et al. (2011) to parallel that
of the extended DDM. We found that DDMs yielded somewhat
better fits with a single starting point range. The AIC and BIC
criteria indicated improved fits for the LBA with varying starting
point ranges, although AICc did not (Table 1).

In all three DDMs and the LBA with a common starting
point range, participants modestly increased caution with coher-
ence. In contrast, allowing starting point ranges to vary in the
LBA predicted that participants decreased caution with coher-
ence (compare Figures 5A,B). However, starting point ranges
decreased with coherence in both models that allowed variability
(Figure 6A). The LBA models and the extended DDMs require
thresholds to lie at or above starting point ranges, but the addi-
tional source of within-trial randomness in the DDM may allow
smaller starting point ranges, and hence yield better fits for diffi-
cult stimuli. Thresholds can be arbitrarily low for the pure DDM,
since it has a single starting point. All models agree that drift rates
increase with coherence (Figure 6B).

Critically, then, the Rmax task reveals that the DDMs and the
LBA with varying starting point ranges provide fundamentally
different accounts of behavior. In the DDMs, increased partici-
pant caution accounts for changes in behavior as stimulus coher-
ence increases from 0% to 32%. According to the LBA model

FIGURE 6 | (A) Mean values of the range of starting points sx , A,
averaged over participants, by model and coherence condition (the pure
DDM does not allow starting point variability). (B) Mean values of drift

rate μ, averaged over all participants. For LBA model fits, the relative
evidence μ1 − 1

2 in favor of option 1 is shown. Bars indicate standard
errors for n = 17 subjects.
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with variable starting point range, participants instead decrease
caution and simultaneously reduce their range of starting points
as coherence increases. Consequently, mean accumulation dis-
tances can still decrease with coherence in the LBA, in spite of
smaller starting points. The corresponding RT and ER data there-
fore remain comparable between LBA and DDM fits. However,
interpretations of the role of caution in these fits are inconsistent,
adding to earlier findings that LBA parameters may not correlate
straightforwardly with those of the DDM (van Ravenzwaaij and
Oberauer, 2009; Heathcote and Hayes, 2012).

Our results raise the broad question of model design and
selection, and suggest several directions for future work. While
good overall, neither the LBA nor DDM accounts of behavior
are perfect. The pure DDM is analytically tractable and predicts
a unique, parameter-free OPC against which Rmax task perfor-
mances can be assessed (Bogacz et al., 2006), but it can fail to fit
RT distributions, especially when correct and error trials are sepa-
rated (Ratcliff and Smith, 2004). Additional freedom in extended
DDMs with variable drift rates and starting points across trials
allows good fits, but defies analytical description and produces
multiparameter families of OPCs. The LBA, incorporating trial-
to-trial variability but omitting diffusive noise within trials, is
almost as simple and tractable as the pure DDM, but it yields
families of OPCs in which the allowed range of starting points
plays a central and apparently complex role. In contrast, shifting
the unique starting point of the pure DDM makes clear predic-
tions regarding biased stimuli or incentivized rewards (Feng et al.,
2009; Simen et al., 2009; Rorie et al., 2010; Gao et al., 2011).

Future work might re-adjust our interpretation of LBA param-
eters. For example, one might assume that the starting point range
is controlled in tandem with thresholds. Indeed, a recent study
suggests that this range narrows with practice (Heathcote and
Hayes, 2012). The adapted LBA introduced in section 2.2.4 may
provide accounts of average behavior that are more consistent
with those provided by DDM fits, and, as noted there, it can pro-
duce bimodal RT distributions such as those sometimes observed
for low stimulus discriminability, e.g., Simen et al. (2009) and
Balci et al. (2011). Additional numerical and theoretical analyses
are also of interest. For example, following Teodorescu and Usher
(2013) one could compare models such as the Leaky Competing
Accumulator as well as optimal Bayesian accounts of behavior
with LBAs and DDMs.
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1. INTRODUCTION
In psychology and neuroscience, and
in other disciplines studying decision-
making mechanisms, it is often assumed
that optimal decision-making means
statistical optimality. This is attractive
because statistically optimal decision
procedures are known, can be simply
implemented in biologically-plausible
models, and because such models
have been shown to give good fits to
behavioural as well as neural data. Here
we question when statistical optimality is
the kind of optimality we should expect
natural selection to aim towards, by con-
sidering what kinds of loss function should
be optimised under different behavioural
scenarios. In laboratory settings subjects
are often rewarded only on making a cor-
rect choice, so optimisation of a zero-one
loss function is appropriate, and this is
achieved by implementing a statistically-
optimal decision procedure that gives
the best compromise between speed and
accuracy of decision-making. Many nat-
uralistic decisions may also be described
by such a loss function; however others,
such as selecting food items of potentially
different value, appear to be different since
the animal is rewarded by the value of the
item it chooses regardless of whether it
was the best available. We argue that most
naturalistic decisions are value-based.
Mechanisms that optimise speed-accuracy
trade-offs need to be parameterised, using
information about the decision problem,
in order to deal with value-based decision-
making. Mechanisms for value-sensitive
decision-making have been described,

however, which adaptively change between
decision-making strategies without the
need for continual re-parameterisation.

2. SPEED-ACCURACY TRADE-OFFS
It is usually assumed that decision-makers
have to decide to be either fast or accu-
rate. When speed is important mistakes
are more frequent, while when accu-
racy is needed decisions are slower. This
obvious problem is defined as the speed-
accuracy trade-off and is a distinctive fea-
ture of many types of decision making
(Wickelgren, 1977).

The speed-accuracy trade-off can be
explained within the theoretical frame-
work of sequential sampling models of
decision making that have been shown
to fit behavioral and neural data from
human and animal choice tasks (Ratcliff
and Rouder, 2000; Ratcliff et al., 2003,
2004; Ratcliff and Smith, 2004; Busemeyer
et al., 2013). In particular, the Drift
Diffusion Model (DDM; Ratcliff, 1978)
describes choice between two alternatives
(see Smith and Ratcliff, 2004; Bogacz
et al., 2006; Basten et al., 2010) and
recently has been shown also to be quan-
titatively accurate in describing trinary
choices (Krajbich and Rangel, 2011) and
value-based choices (Krajbich et al., 2010;
Milosavljevic et al., 2010; Krajbich and
Rangel, 2011; Krajbich et al., 2012), sug-
gesting that the DDM can be thought of as
a unifying computational framework for
describing decision making (Basten et al.,
2010). Moreover, Bogacz et al. (2006) have
demonstrated that several connectionist
decision-making models can approximate

the DDM under specific conditions. The
DDM is a special case of the statistically-
optimal Sequential Probability Ratio Test
(SPRT; Wald, 1947; Wald and Wolfowitz,
1948). In the DDM noisy sensory evi-
dence supporting the alternatives is inte-
grated over time until the net evidence
in favor of one alternative exceeds a cer-
tain positive or negative threshold value,
precipitating a decision for the corre-
sponding alternative. These thresholds
can be varied to compromise optimally
between the average speed and accuracy of
decisions.

3. SPEED-VALUE TRADE-OFFS
In situations where decisions are rewarded
according to whether they are correct
or not, optimizing the speed-accuracy
trade-off is sensible. When decisions are
rewarded according to the value of the
option chosen, however, a different crite-
rion needs to be optimized. This can be
illustrated with the simplest case of choos-
ing between two equal value options; here
there is no decision accuracy, since choos-
ing either option is “correct.” Similarly,
there is no difference in average evidence
for which of the two options is more valu-
able, meaning that the SPRT/DDM will
only reach a decision by integrating suffi-
cient noise to cross a decision threshold.
Thus in this scenario there is no speed-
accuracy trade-off to manage; the optimal
decision is to choose anything as quickly as
possible. The fundamental insight is that
for certain decisions, speed-value trade-
offs are more appropriate to optimize,
rather than speed-accuracy trade-offs.
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The SPRT/DDM can be optimized to
take account of the value of the alterna-
tives but, as we discuss here, doing so
requires knowledge of the decision prob-
lem faced. The thresholds for an optimal
decision depend on the goals of the deci-
sion maker and are task specific. By way
of example, one route to accounting for
the values associated with different deci-
sion outcomes is to minimize an extended
version of the Bayes Risk (BR). BR is
a linear combination of expected deci-
sion delay and expected terminal decision
loss, first proposed by Wald and Wolfowitz
(1948), and assumes that decision mak-
ers seek to minimize a cost function that
is the weighted sum of decision times
(DTs) and error rate (ERs). This was sub-
sequently extended by Edwards to also
account for non-zero rewards for incorrect
decisions (Edwards, 1965; Bogacz et al.,
2006). Formally Edwards’ extension of BR,
which implements Wald and Wolfowitz’s
version as a special case, can be defined as

BRE = c1DT + c2

(
ER

1 − ER

)
(1)

where c1 is the cost of observing the stim-
ulus per unit time, while c2 is a row-vector
specifying the payoffs from incorrect and
correct choices (Bogacz et al., 2006). If
c2 = (k 0), where k > 0 is a constant,
then Wald and Wolfowitz’s original BR
is recovered. Several studies demonstrate
that, under specific circumstances, sub-
jects choose decision thresholds close to
those that minimize BRE (Busemeyer and
Rapoport, 1988; Mozer et al., 2002).
Bayes risk is not the only criterion pro-
posed to date that decision-makers might
optimize. Bogacz et al. survey alterna-
tives, such as reward-rate, however, these
alternatives are all calculated based on
decision-accuracy, which requires explicit
parameterizations based on the values
of correct and incorrect choices (Bogacz
et al., 2006). We therefore concentrate our
analysis on Bayes risk. Bayes risk can be
used to optimize value-sensitive decision-
making; for example in a decision between
two equal alternatives, each having value
v if chosen, we would set the vector c2 =
(v v) (e.g., dashed green line in Figure 1),
thus simplifying Equation (1) above to

BRE = c1DT + v. (2)

FIGURE 1 | The accuracy-based component of Bayes Risk (BRE as defined by Equation 1) can

be used to approximate a value-based reward scheme. In value-based decisions individuals are
rewarded according to the value |v | + �v of the option they choose (solid lines), where |v | is the
average value of the alternatives under consideration, and �v is the deviation from this average of
the value of the option chosen by the subject. With knowledge of the values of the alternatives,
BRE can be used to optimize value sensitive decision-making as described in the main text; for
example the dashed lines show payoffs used in BRE for: options having values of 0.5 and 1.5 units
(black), options having equal values of 2.5 and 2.5 units (green) and options having values of 3.5 and
4.5 units (red). Intersections between payoffs selected for BRE (dashed lines) with value-based
reward (solid lines of matching colors) correspond to choice scenarios between different-valued
options for which BRE implements reward-by-value of the selected option; these intersections
represent choice scenarios involving “poor” (hollow circles) and “good” (filled circles) options
having particular values. However, the cost parameters for BRE need to be recalculated according
to the values of the options under consideration; for example, although the difference in the values
of the alternatives does not change from the low-value (black) to the high-value (red) scenarios,
since their absolute values change the BRE payoffs need to be recalculated in each case. As
described in the text, value-sensitive decision-mechanisms have been described that are able
adaptively to deal with a variety of such decision scenarios, without re-parameterizations.

Equation (2) shows us that, intuitively,
an optimal decision-maker in our equal-
alternatives scenario should minimize
decision-time DT, since doing so incurs
no penalty as the error rate ER no longer
features. However, using Bayes risk in this
way requires the values of the alterna-
tives to be known on a case by case basis,
as shown in Figure 1. Subjects might
learn the values of incorrect and cor-
rect choices over time, for example when
trials are blocked in psychophysical exper-
iments (see Bogacz et al., 2006). However,
in the following we argue that in most
naturalistic decision scenarios decision-
makers will not have this opportunity,
and will therefore use other mechanisms
that directly optimize speed-value trade-
offs, rather than optimizing decisions
indirectly via optimization of the speed-
accuracy trade-off with an appropriate
payoff vector c2.

4. NATURALISTIC DECISIONS ARE
USUALLY VALUE-BASED

We argue that most naturalistic decisions
faced by animals, including humans, are
value-based, in that the animal is rewarded

according to the value of the option it
chooses. Such a view on decision-making
is not new to behavioral ecologists, where
a long tradition exists of studying behav-
iors such as mate choice and foraging
(Davies et al., 2012) or nest-site selec-
tion (Stroeymeyt et al., 2014). Recently
many studies have focused on how value
and reward are represented and inte-
grated during the decision process (Platt
and Glimcher, 1999; Sugrue et al., 2004;
Padoa-Schioppa and Assad, 2006; Rangel
et al., 2008; Kable and Glimcher, 2009;
Krajbich et al., 2010; Philiastides et al.,
2010; Hare et al., 2011; Krajbich and
Rangel, 2011; Louie and Glimcher, 2012;
Tsetsos et al., 2012; Cassey et al., 2013;
Towal et al., 2013); however, in psychology
and neuroscience, experiments are usually
designed such that there is always a cor-
rect choice, and only correct choices are
rewarded (see Gold and Shadlen, 2003;
Bogacz et al., 2006). While studying behav-
ior in psychophysical tasks is beneficial
in that it gives a well-controlled deci-
sion environment, our point is that only
rewarding subjects when they make cor-
rect choices may not correspond to the
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kind of decisions animals, and their neu-
ral circuitry, have typically evolved to deal
with. Even in the value-based decision
experiments cited above, which are ana-
lyzed using the DDM, it is typical to only
present subjects with a choice between
options known to have different values.
Moreover, even though some studies have
looked at how reward information is inte-
grated (Rorie et al., 2010; Gao et al., 2011),
much of this work has not yet focused
on the tradeoff between value and speed.
While usually in the decision-making liter-
ature the optimal behavior is to optimize
speed-accuracy trade-offs, and subjects
can apparently do this (Busemeyer and
Rapoport, 1988; Bogacz et al., 2006), we
argue that these scenarios are not repre-
sentative of many naturalistic settings, and
that there is great value in considering
how subjects make value-sensitive deci-
sions and how these should be optimized.
In the following section we discuss theory
that may be useful for this.

At least one important class of natural-
istic decisions does require optimization
of speed-accuracy trade-offs; these are life-
or-death decisions. If we analyze for exam-
ple the case of an animal attempting to
forage while avoiding predators (Trimmer
et al., 2008), a slow-but-accurate decision
would mean being killed by the preda-
tor, a maximal loss. On the other hand
if the decision is fast-but-inaccurate the
animal would escape even when the stim-
ulus is not a predator, and this would
mean losing food. The best strategy for
the animal is thus that which optimizes
the speed-accuracy trade-off, taking into
account the payoffs arising from the dif-
ferent decision outcomes; hence Trimmer
et al.’s hypothetical animal is modeled with
a single-threshold DDM, with evidence
sufficient to cross that single decision
threshold leading to the animal taking
anti-predator action such as running away.

5. MECHANISMS FOR VALUE-
SENSITIVE DECISION-MAKING

Recent modeling work inspired by
studying another value-sensitive decision-
making system, collective nest-site
selection by honeybees (Seeley et al.,
2012), has described a very simple mech-
anism able to adaptively account for the
value of different decision outcomes, with
minimal parameter tuning (Pais et al.,

2013). This simple model implements a
variety of sophisticated decision-making
strategies; for example, when equal but
low-value alternatives are presented, a
decision deadlock is maintained that can
be broken should a third, higher-value
alternative, be made available. However, if
equal-but-high-value alternatives are pre-
sented, or sufficient time passes, deadlock
is spontaneously and randomly broken
(Pais et al., 2013). This is particularly inter-
esting, since the classic DDM is insensitive
to the absolute value of the alternatives
under consideration, and only integrates
the difference in their values. When dif-
ferences between alternative values are
sufficient, the value-sensitive mechanism
of Pais et al. becomes closer to a classic
DDM, allowing speed-accuracy trade-offs
to be managed, although not optimized,
through modification of decision thresh-
olds. All of the different behavioral
regimes of the model arise without direct
parameterizations regarding alternatives’
values, simply through the dependence
of the model’s dynamics on the mean
values of inputs to its integrator popula-
tions; this allows the model to adaptively
respond to different decision scenarios
on a trial-by-trial basis, which cannot be
achieved in pure DDM models without the
decision-maker having access to explicit
information on the decision-task at hand.
Modifications to DDM-type models have
been proposed to deal with trial-by-trial
variability such as online estimation of
task parameters (Deneve, 2012) or the use
of time-dependent change in parameters
such as decision-thresholds, urgency sig-
nals or asymmetry of inhibition (Ditterich,
2006; Hanks et al., 2011; Drugowitsch
et al., 2012; Thura et al., 2012); funda-
mentally, however, these modifications are
still interpreted under the assumption that
decision speed vs accuracy is the trade-
off to be maximized, unlike the model of
Pais et al. (2013) in which the dynam-
ics are naturally interpreted in terms of
value vs time trade-offs. Pais et al.’s mech-
anism also exhibits other characteristics
of natural value-discrimination systems,
such as Weber’s law of just-noticeable dif-
ference; interestingly Weber’s law arises
from the deterministic dynamics of the
mechanism rather than from noise pro-
cesses (Pais et al., 2013) (cf. Deco and
Rolls, 2006; Deco et al., 2007). Finally,

it is important to note that the DDM
cannot account for the non-linearity
that characterizes many decision mak-
ing dynamics (e.g., food recruitment by
social insects; Nicolis and Deneubourg,
1999) while the model of Pais et al. (2013)
is non-linear.

6. CONCLUSION
The study of speed-accuracy trade-offs has
been tremendously fruitful for psychol-
ogy, neuroscience and animal behavior,
and will doubtless prove fruitful for many
years to come. Yet as we have argued here
most naturalistic decisions, which animals’
brains should have evolved to optimize,
are value-based rather than accuracy-
based. This leads us to argue that the
drift-diffusion model, which optimizes
speed-accuracy trade-offs, is not an ideal
computational framework to describe
value-based decision-making; although
it has had some success in describing
particular experiments on value-based
decision-making, discussed in the sec-
tion “Speed-Accuracy Trade-Offs,” as we
have shown here the DDM requires special
case-by-case parameterizations to imple-
ment true value-based decision-making.
We suggest that this limits the generality
of the DDM as a unifying framework for
all ecologically-relevant decision-making
problems. However, recent theory has
presented mechanisms that can manage
value-sensitive decision problems without
the additional informational requirements
of the DDM. At the same time, experi-
mental and theoretical psychologists and
neuroscientists have started to tackle prob-
lems of value-based decision-making.
We have presented our arguments for
value in terms of animal decision-making,
but unicellular organisms and individual
cells also make decisions (e.g., Perkins
and Swain, 2009; Latty and Beekman,
2011), and value is likely to be simi-
larly important for these. We believe
that the evolutionary perspective we
have presented here should motivate fur-
ther research into value-sensitivity and
decision-making.
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Decisions are faster and less accurate when conditions favor speed, and are slower and
more accurate when they favor accuracy. This speed-accuracy trade-off (SAT) can be
explained by the principles of bounded integration, where noisy evidence is integrated
until it reaches a bound. Higher bounds reduce the impact of noise by increasing
integration times, supporting higher accuracy (vice versa for speed). These computations
are hypothesized to be implemented by feedback inhibition between neural populations
selective for the decision alternatives, each of which corresponds to an attractor in the
space of network states. Since decision-correlated neural activity typically reaches a fixed
rate at the time of commitment to a choice, it has been hypothesized that the neural
implementation of the bound is fixed, and that the SAT is supported by a common
input to the populations integrating evidence. According to this hypothesis, a stronger
common input reduces the difference between a baseline firing rate and a threshold rate
for enacting a choice. In simulations of a two-choice decision task, we use a reduced
version of a biophysically-based network model (Wong and Wang, 2006) to show that a
common input can control the SAT, but that changes to the threshold-baseline difference
are epiphenomenal. Rather, the SAT is controlled by changes to network dynamics. A
stronger common input decreases the model’s effective time constant of integration and
changes the shape of the attractor landscape, so the initial state is in a more error-prone
position. Thus, a stronger common input reduces decision time and lowers accuracy. The
change in dynamics also renders firing rates higher under speed conditions at the time
that an ideal observer can make a decision from network activity. The difference between
this rate and the baseline rate is actually greater under speed conditions than accuracy
conditions, suggesting that the bound is not implemented by firing rates per se.

Keywords: speed-accuracy trade-off, neural dynamics, bounded integration, decision threshold, threshold-baseline

difference

1. INTRODUCTION
In decision making experiments, subjects make faster, less accu-
rate decisions when conditions favor speed, and make slower,
more accurate decisions when conditions favor accuracy (e.g.,
Bogacz et al., 2010a; Heitz and Schall, 2012). These data describe
the speed-accuracy trade-off (SAT) and can be explained by the
principles of bounded integration. According to these princi-
ples, noisy evidence for the alternatives of a decision is integrated
until the running total for one of the alternatives reaches a crite-
rion level. The running total is referred to as a decision variable
and the criterion is referred to as the bound. A higher bound
allows evidence to be integrated for longer, increasing the percent-
age of correct decisions. A lower bound has the opposite effect.
These abstract models have been invaluable in characterizing the
computations underlying decisions and the SAT (see Smith and
Ratcliff, 2004; Ratcliff and McKoon, 2008; Bogacz et al., 2010b).

The computations characterized by bounded integration mod-
els are hypothesized to be implemented by competitive interac-
tions between neural populations selective for the alternatives of

a decision (Usher and McClelland, 2001; Wang, 2002; Machens
et al., 2005; Bogacz et al., 2006; Wong and Wang, 2006; Standage
et al., 2011; You and Wang, 2013). According to this widely held
hypothesis, temporal integration and competitive interactions are
supported by recurrent excitation and feedback inhibition respec-
tively, where each population implements a decision variable and
a choice is made when the aggregate firing rate of one of the
populations reaches a threshold. This hypothesis is supported by
electrophysiological recordings from several cortical areas in non-
human primates performing decision tasks, where the spike rates
of neurons responsive to the chosen alternative (target-in neu-
rons) increase over several hundreds of milliseconds prior to the
animal’s choice, and the spike rates of neurons unresponsive to
the chosen alternative (target-out neurons) are much lower (e.g.,
Roitman and Shadlen, 2002; Thomas and Pare, 2007; Bollimunta
and Ditterich, 2011; Ding and Gold, 2012).

Under several task paradigms, target-in activity of putative
integrator neurons has been shown to reach an approximately
fixed rate at the time of commitment to a choice (the choice
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threshold), regardless of the speed or accuracy of decisions
(Hanes and Schall, 1996; Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002; Churchland et al., 2008; Purcell et al., 2010;
Ding and Gold, 2012). These data have been interpreted as indi-
cating that the neural implementation of the bound is fixed
across conditions emphasizing speed over accuracy or vice versa
(see Bogacz et al., 2010b). Under the assumption of linear inte-
gration, adjusting the starting point of a decision variable is
equivalent to adjusting the bound, so it has been hypothesized
that subjects trade speed and accuracy by adjusting the “base-
line” rate of integrator populations, i.e., the activity on which a
decision variable builds (see Bogacz et al., 2010b). According to
this hypothesis, the SAT is controlled by a cognitive signal pro-
jecting uniformly to all integrator populations, where a stronger
(weaker) signal favors speed (accuracy) by decreasing (increasing)
the difference between the choice threshold and baseline activ-
ity (the threshold-baseline difference). We refer to this possibility
as the threshold-baseline hypothesis (a.k.a. the changing-baseline
hypothesis, Bogacz et al., 2010b). Several recent neuroimaging
(Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al.,
2008; Wenzlaff et al., 2011) and electrophysiological (Heitz and
Schall, 2012; Hanks et al., 2014) studies have provided evidence
for such a signal, reporting higher baseline (pre-stimulus) activity
in decision-correlated cortical areas under speed conditions than
accuracy and/or neutral conditions.

Here, we present an alternative hypothesis that does not
assume linear integration. As above, we assume that a cogni-
tive signal controls the SAT by projecting uniformly to integrator
populations, but the underlying mechanism is grounded in the
framework of attractor dynamics (e.g., Machens et al., 2005;
Bogacz et al., 2006; Wong and Wang, 2006; Standage et al., 2011;
You and Wang, 2013; see Wang, 2008, 2012 for review). According
to this framework, integration times are determined by the non-
linear dynamics of decision circuitry, where stronger and weaker
dynamics furnish shorter and longer integration times respec-
tively (Wong and Wang, 2006; Standage et al., 2011). The SAT
can therefore be accomplished by any mechanism that modulates
the strength of dynamics within and between neural populations
selective for the decision alternatives (see Standage et al., 2014).
Spatially non-selective excitation provides just such a mecha-
nism (Salinas and Abbott, 1996), where a stronger (weaker)
signal corresponds to speed (accuracy) conditions (Furman and
Wang, 2008; Roxin and Ledberg, 2008). Of course, this input also
entails higher (lower) baseline activity under speed (accuracy)
conditions. In attractor network models, higher (lower) baseline
activity will indeed decrease (increase) the threshold-baseline dif-
ference, but this decrease (increase) is epiphenomenal. The SAT is
supported by the resulting changes to network dynamics.

Below, we use a neurally-derived model (Wong and Wang,
2006) to demonstrate that adjusting the strength of spatially non-
selective excitation can control the SAT (Furman and Wang, 2008;
Roxin and Ledberg, 2008). We demonstrate that this signal raises
(lowers) the baseline activity of integrator populations, consis-
tent with higher (lower) baseline activity under speed (accuracy,
neutral) conditions in SAT experiments (Forstmann et al., 2008;
Ivanoff et al., 2008; van Veen et al., 2008; Wenzlaff et al., 2011;
Heitz and Schall, 2012; Hanks et al., 2014). We use a fixed

choice threshold in the model, so the spatially non-selective sig-
nal decreases (increases) the threshold-baseline difference under
speed (accuracy) conditions, relative to a neutral condition.
We demonstrate that the threshold-baseline difference cannot
account for the SAT in the model, since raising (lowering) the
threshold to compensate for the higher (lower) baseline activity
under the speed (accuracy) condition does not “untrade” speed
and accuracy, i.e., reinstating the threshold-baseline difference of
the neutral condition does not recover the neutral behavior of the
model. Using dynamic systems analysis, we show that a higher
(lower) baseline decreases (increases) the effective time constant
of integration of the network under speed (accuracy) conditions,
accounting for the SAT in a manner consistent with a flexible
bound, while also changing the shape of the decision space so
as to further decrease (increase) accuracy. Finally, we show that
decision-selective firing rates in the model are actually higher
(lower) under speed (accuracy) conditions at the time at which
an ideal observer can discriminate between the rates of the inte-
grator populations; as is the difference between these rates and
the baseline rate (the discrimination-baseline difference). Thus,
the discrimination-baseline difference increases under speed con-
ditions and decreases under accuracy conditions, opposite to
the principles of the threshold-baseline hypothesis. Our analysis
explains these observations.

Our simulations show that under the framework of attractor
dynamics, there is no discrepancy between a flexible bound and
a fixed choice threshold. The bound—or the difference between
the bound and the starting point of a decision variable—is a
computational device for controlling the duration of evidence
accumulation in abstract models. It can be implemented by the
effective time constant of integration of decision circuitry, with
corresponding changes to the decision space. This space and its
time evolution are emergent properties of network dynamics and
are qualitatively different than the synaptic current required to
elicit choice behavior.

2. A COMMON INPUT TO INTEGRATORS CONTROLS THE
SAT IN AN ATTRACTOR MODEL, BUT NOT BY THE
THRESHOLD-BASELINE DIFFERENCE

In their seminal study, Wong and Wang (2006) used ana-
lytic methods to reduce a biophysically-based cortical network
model (Wang, 2002) to a 2-variable system, tractable for analysis
(depicted in Figure 1A). They showed that each of the popu-
lations selective for the decision alternatives corresponds to a
stable state in the space of possible states of network activity,
i.e., each population corresponds to an attractor (Figures 1B,C).
The attractors are separated by an unstable “saddle” steady state
with two manifolds: a stable manifold that draws the network
toward the saddle point, and an unstable manifold that repels
it toward one of the stable attractors (Figure 1C). They further
calculated the time constants of these two manifolds, showing
that the dynamics in the vicinity of the saddle support inte-
gration times much longer than the time constants of decay of
contributing biophysical processes, such as those of neurons and
synapses.

We used Wong and Wang’s (2006) model in simulations of a 2-
choice random dot motion (RDM) task (Supplementary Material
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A

B C

FIGURE 1 | (A) The reduced model by Wong and Wang (2006),
approximating a biophysically-based cortical network model (left of the
thick arrow) with a 2-variable system (right). The thick arrow depicts the
derivation of the latter from the former. The large oval on the left depicts
a network of cortical pyramidal neurons. Inside the oval, the three open
circles depict the target and distractor populations with selective input T
and D respectively, and a population unresponsive to the evidence for
either alternative. Looping arcs depict recurrent synapses, which are
stronger within each selective population (thicker arcs). All pyramidal
neurons excite a common inhibitory pool, which uniformly inhibits all
pyramidal neurons. Excitatory and inhibitory synapses are depicted by
arrows and closed circles respectively, small black dots depict individual
neurons, and BG refers to background input. (B) Cartoon depiction of an
attractor “energy landscape” for 2-choice decisions, where the energy
decreases over time. An unstable steady state (high energy) separates
two stable attractors (low energy), corresponding to the target and

distractor stimuli. Conceptually, a ball placed between the two attractors
will eventually role one way or the other, depicted by the dashed arrows.
The ball enters an attractor basin sooner (later) under speed (accuracy)
conditions because the dynamics evolve more quickly (slowly). Below the
cartoon, the firing rates of target (blue) and distractor (red) neural
populations are plotted over time during two decision trials,
corresponding to the ball rolling into the target attractor basin (left) and
the distractor attractor basin (right). (C) Decision space for two choices.
Stable (solid) and unstable (dashed) manifolds of the saddle point
(intersection of the manifolds, see text). The system moves toward this
state along the stable manifold and is repelled along the unstable
manifold. The firing rates of the winning populations in the two decision
trials in (B) are plotted against each other, superimposed on the decision
space, along with two noise-free trajectories (gray) with initial conditions
inside each attractor basin. On each trial, the network state moves along
the stable manifold before being repelled toward an attractor.

Section 1). We ran 1000 trials for each motion coherence c ∈
{0, 1, 2, 4, 8, 16, 32}%, where the motion stimulus was provided
for 5s following a 2.5s pre-stimulus interval. We refer to the inte-
grator population receiving the stronger (weaker) stimulus as the
target (distractor) population. We modeled speed and accuracy
conditions by increasing and decreasing a uniform input to the
two populations respectively, relative to a neutral condition. To
this end, we adjusted the mean background current I0, captur-
ing the total input current from upstream neurons other than
those encoding motion stimuli. This current therefore subsumes
the hypothesized cognitive signal controlling the SAT. Because

the model’s parameter values and corresponding dynamics are
rigorously described by Wong and Wang (2006), we used the
same parameter values here (excepting I0 and its corresponding
standard deviation, see Supplementary Material Section 1).

Unsurprisingly, the spatially non-selective current I0 produced
higher and lower pre-stimulus (baseline) firing rates under speed
and accuracy conditions respectively, compared to the neutral
condition. Baseline rates can be seen to the left of the vertical
line in Figure 2A for an example coherence value (c = 4%, see
Figure caption). The resulting SAT can be seen in Figures 2B,C,
where the psychometric curve is shifted to the right and left
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FIGURE 2 | Trading speed and accuracy as a function spatially

non-selective input I0. Simulated neural activity (A) and resulting
psychometric (B) and chronometric (C) curves for neutral (I0 = 321pA,
medium gray), speed (I0 = 325pA, black) and accuracy (I0 = 316pA, light
gray) conditions. (A) Trial-averaged firing rates for coherence c = 4%. For
each condition, the upper and lower curves show the mean rate over all
correct trials for the target and distractor populations respectively. The
vertical line at 0ms indicates the time of simulated motion onset. To the left
of this line, pre-stimulus/baseline firing rates are higher (lower) under speed
(accuracy) conditions compared to the neutral condition. Thus, the
threshold-baseline difference is smaller (larger) under speed (accuracy)
conditions. The solid horizontal line shows the “default” choice threshold
θ = 15Hz used by Wong and Wang (2006). The dashed horizontal lines
depict other possible thresholds. (B) The percentage of correct trials as a
function of coherence. The data are fitted with a Weibull function for each
condition. Error bars show standard error. The solid vertical line indicates
coherence c = 4%, corresponding to the firing rates in (A). The dotted lines
indicate the coherence value at 75% accuracy (see Figure 3A). (C) Mean
decision times over coherence for correct (solid) and error (dashed) trials for
each condition. Error bars show standard error. The vertical line indicates
coherence c = 4%, corresponding to the firing rates in (A).

under speed and accuracy conditions respectively; and for cor-
rect and error trials, mean decisions times are shorter and longer
respectively. Thus, Figure 2 shows that by raising and lowering
baseline activity, uniform input to both integrator populations
controls the SAT. At first glance, these results appear to support
the threshold-baseline hypothesis.

However, the threshold-baseline hypothesis dictates that
the speed and accuracy of decisions are determined by the
threshold-baseline difference. According to this hypothesis, a
fixed threshold-baseline difference will produce uniform decision
making performance, regardless of the rate of baseline activ-
ity. The threshold-baseline hypothesis therefore requires that any
changes to the speed or accuracy of decisions resulting from
a change in baseline activity (with a fixed threshold) can be
“reversed” by an equal change to the threshold. We therefore
increased the threshold under the speed condition by the differ-
ence between baseline activity under speed and neutral conditions
(�ns, the mean difference over the last 1000 ms of the pre-
stimulus interval), and we decreased the threshold under the
accuracy condition by the difference between baseline activity
under neutral and accuracy conditions (�na). These adjustments
to the threshold did not recover the psychometric and chrono-
metric curves produced under the neutral condition, i.e., the
black and light gray curves in Figures 2B,C do not overlay the
medium gray curves. Denoting the threshold used by Wong and
Wang (2006) as θ (vertical line in Figure 3), increasing (decreas-
ing) θ by �ns (�na) under the speed (accuracy) condition has
almost no effect on performance. The same is true for any value
of the choice threshold above θ . For thresholds below θ , the effect
of these adjustments increases with decreasing threshold, but
the psychometric (Figure 3A) and chronometric (Figures 3B,C)
curves under speed and accuracy conditions do not come close to
overlaying the neutral curves. For the lowest value of the thresh-
old, there is a moderate effect on the psychmetric curves (the
difference between the solid and dotted curves for speed and
accuracy conditions), but such a low threshold does not allow a
firing-rate excursion, so this moderate effect can only be achieved
if the model deviates from the neural data on which the threshold-
baseline hypothesis is founded, i.e., a fixed rate of target-in
activity that is much higher than target-out activity at the time
of commitment to a choice (e.g., Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002; Thomas and Pare, 2007; Purcell et al.,
2010; Bollimunta and Ditterich, 2011; Ding and Gold, 2012). See
the Discussion for other issues with such a low threshold. The
psychometric and chronometric curves break down for thresh-
olds lower than those in the figure. Note that Figures 3B,C show
results for coherence values of c = 1% and c = 32% respectively.
Values in between these extremes yield the same qualitative result.
These results demonstrate that the threshold-baseline hypothesis
does not account for the SAT under the principles of the attractor
framework.

3. THE SAT IS CONTROLLED BY NETWORK DYNAMICS
Returning to Figure 2A, the mean firing rates following motion
onset (to the right of the vertical line) point to the mechanism
by which the spatially non-selective input I0 controls the SAT in
the model. The rate of increase of target activity is higher and
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A B C

FIGURE 3 | (A) The value of simulated motion coherence at which accuracy
equals 75% for a range of choice thresholds under speed (black), neutral
(medium gray) and accuracy (light gray) conditions (see dashed lines in
Figure 2B). Dotted curves show results for simulations in which the
threshold was raised (speed condition) and lowered (accuracy condition) by
�ns and �na respectively (see text). Solid curves show results for the
corresponding unadjusted threshold. Adjusting the choice threshold makes

little difference to accuracy, i.e., the solid and dotted curves are similar for
speed and accuracy conditions, and do not overlay the neutral curve. (B,C)

Mean decision times over all trials for coherence c = 1% (B) and c = 32%
(C). Conventions are the same as in (A). Adjusting the threshold by �ns and
�na makes little difference to decision times, regardless of the threshold
chosen. The solid vertical line in each panel indicates the threshold used by
Wong and Wang (2006).

lower under speed and accuracy conditions respectively, relative
to the neutral condition. The different rates of increase reflect
the dynamics furnished by the different values of I0 under speed,
accuracy and neutral conditions. As shown by Wong and Wang
(2006), the dynamics in the vicinity of the saddle point deter-
mine the length of time the network can integrate evidence, which
can be approximated by the time constant of the unstable man-
ifold (the effective time constant of integration, Supplementary
Material Section 2). Wong and Wang (2006) calculated this time
constant for several values of the strength of recurrent excita-
tion, showing the consequent changes to the speed and accuracy
of decisions (see their Figure 11). Figure 4A shows these calcula-
tions for our changes to I0. Under speed and accuracy conditions,
higher and lower values of I0 furnish shorter and longer time con-
stants respectively, relative to the neutral condition. Here, it is
worth noting that the effective time constant behaves in exactly
the same way as the bound of bounded integration models,
decreasing (increasing) integration time under speed (accuracy)
conditions (Figure 4A). Additionally, the shape of the attractor
landscape changes with I0. Figures 4B–D show that for a given
task difficulty (c = 4% in the figure), higher values of I0 push the
stable manifold toward the midline at low rates below the sad-
dle point. Since the network approaches the saddle from below
(Figure 1C) and since errors occur when noise pushes the state
of the network over the stable manifold (Wong and Wang, 2006),
this re-positioning of the stable manifold further lowers (raises)
accuracy under speed (accuracy) conditions. This mechanism is
evident in Figures 4B–D, in which the solid circle in each panel
shows the mean initial state of the network (immediately prior
to the onset of evidence). With increasing I0, the stable manifold
moves toward this initial state, which becomes increasingly pre-
carious. Thus, a common input to integrators controls the rate of
baseline activity, but the SAT does not result from the consequent
changes to the threshold-baseline difference. The SAT results from
the changes to network dynamics.

Increasing I0 not only re-positions the stable manifold, but
also re-positions the saddle point, so that both populations fire

at higher rates (Figures 4B–D). This change in position of the
saddle dictates that firing rates will be higher when the network
begins its descent into an attractor basin under speed conditions.
In other words, firing rates will be higher when decision-selective
rates separate from those of the competing population. To con-
firm this effect, we used signal detection theory to determine
when an ideal observer can discriminate target activity from dis-
tractor activity in the model under speed, accuracy and neutral
conditions (Supplementary Material Section 3). Signal detection
theory is commonly used to estimate the time of target selection
from neural data (Thompson et al., 1996; Cohen et al., 2009)
and assumes that a downstream circuit makes decisions by dis-
criminating the activity of neural populations selective for the
alternatives (see Standage and Pare, 2011). Firing rates at the time
of discrimination were higher under speed conditions and lower
under accuracy conditions (Figure 5).

Next, we subtracted the baseline rate under speed, accuracy
and neutral conditions from the corresponding rate at dis-
crimination time (the discrimination-baseline difference). The
discrimination-baseline difference was larger under speed condi-
tions and smaller under accuracy conditions. Because decisions
are over when the firing rates separate, the rate at this time
approximates a “decision threshold,” as opposed to the choice
threshold (see the Discussion). To summarize: the difference
between this decision threshold and baseline activity is larger
under speed conditions and smaller under accuracy conditions
in the model. Thus, stronger (weaker) non-selective input under
speed (accuracy) conditions modulates decision-selective firing
rates in a manner opposite to the principles of the threshold-
baseline hypothesis. We confirmed these findings with an alter-
native method, in which decision times (and correctness) were
determined by the last intersection of target and distractor activity
on each trial, i.e., decisions were made when target and distractor
activity separated for the final time. The mean rate at the time
of separation was higher (lower) under speed (accuracy) condi-
tions, as was the difference between this rate and the baseline
rate (not shown). Importantly, our analysis in this section makes
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A B

C D

FIGURE 4 | (A) The time constant of the unstable manifold of the saddle
point (see Figure 1) for speed (black), neutral (medium gray) and accuracy
(light gray) conditions, as a function of coherence. The time constant
determines the time over which the system is repelled from the saddle
toward an attractor corresponding to the target or the distractor (Figure 1C; T
and D in B–D). (B–D) Stable (solid) and unstable (dashed) manifolds of the

saddle for the accuracy (B, I0 = 316pA), neutral (C, I0 = 321pA) and speed (D,
I0 = 325pA) conditions for coherence c = 4%. At low rates below the saddle,
the stable manifold is pushed closer to the midline with increasing I0, while
rates at the saddle increase. Solid circles show the initial state of the
network. Insets show close-ups of the stable manifold and the midline at
frequencies ≤ 5 Hz.

two predictions for electrophysiological studies of the SAT: (1)
target-in and target-out data will separate at higher (lower) rates
under speed (accuracy) conditions, and (2) the discrimination-
baseline difference will be larger (smaller) under speed (accuracy)
conditions.

4. DISCUSSION AND CONCLUSIONS
We have demonstrated that spatially non-selective excitation can
control the SAT in an attractor model (Figures 2B,C), as shown
previously (Furman and Wang, 2008; Roxin and Ledberg, 2008).
The non-selective input increases and decreases baseline activ-
ity under speed and accuracy conditions respectively (Figure 2A),
which unavoidably decreases and increases the difference between
baseline activity and a fixed choice threshold. The threshold-
baseline difference, however, does not control the SAT in the
model (Figure 3). Rather, an increase (decrease) in non-selective
input increases (decreases) the strength of network dynamics,
which decreases (increases) the effective time constant of integra-
tion (Figure 4A) and renders the initial state of the network closer

to (farther from) the stable manifold of the saddle, the crossing of
which results in errors (Figures 4B–D).

Our findings are consistent with the hypothesis that a cognitive
signal controls the SAT by adjusting a uniform input to integra-
tor populations (see Bogacz et al., 2010b; Standage et al., 2014).
This hypothesis is supported by neuroimaging (Forstmann et al.,
2008; Ivanoff et al., 2008; van Veen et al., 2008; Wenzlaff et al.,
2011) and electrophysiological (Heitz and Schall, 2012; Hanks
et al., 2014) data from SAT tasks, where pre-stimulus activa-
tion has been shown to be higher (lower) under speed (accuracy,
neutral) conditions. Like the threshold-baseline hypothesis, our
results are consistent with these data. Our results conflict with
the threshold-baseline hypothesis because the changes in network
dynamics engendered by a uniform input dwarf the correspond-
ing changes to the threshold-baseline difference. A related reason
is that the choice threshold is qualitatively different than the
bound of bounded integration models. The rate of target-in activ-
ity at the time of commitment to a choice has been shown to be
considerably higher than the rate at which this activity separates
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FIGURE 5 | The mean firing rate of the target population at the time at

which an ideal observer can discriminate target activity from

distractor activity, calculated across all positive coherence values. The
rate is higher (lower) under speed (accuracy) conditions.

from target-out activity (see e.g., Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002; Bollimunta and Ditterich, 2011;
Ding and Gold, 2012). Under the framework of attractor dynam-
ics, this excursion of target-in activity corresponds to the repul-
sion of a decision network from the saddle along its unstable
manifold. Thus, these neural data suggest that the choice thresh-
old is much higher than the saddle. As such, changes to the choice
threshold will not influence decision accuracy over a broad range,
unlike the bound of bounded integration models. This effect is
clear in Figure 2A. As noted in Section 3, the rate at which target
and distractor activity separates can be thought of as a “deci-
sion threshold,” but our simulations predict that this rate is not
fixed across speed and accuracy conditions. Indeed, we predict
that it changes (Figure 5) in a manner opposite to a flexible
bound (e.g., Ratcliff and McKoon, 2008; Bogacz et al., 2010a).
Our findings therefore suggest that the bound is not implemented
in terms of firing rates per se. In this regard, the astute reader
may have noticed our use of the term “choice threshold” when
referring to decision-selective firing rates at the time of commit-
ment to a choice, as opposed to the more conventional “deci-
sion threshold.” We believe the latter term is misleading in this
context.

There are potential advantages to choice thresholds being
higher than decision thresholds. For example, a high choice
threshold alleviates the need for fine tuning (Roxin and Ledberg,
2008). Furthermore, the difference between the choice threshold
and a decision threshold provides a buffer between decisions and
their enactment. This buffer may confer advantages to decision
makers. For instance, a high choice threshold gives an upstream
decision variable the opportunity to suppress its competitors,
that is, the choice is not made until the “winning” integrator

population is firing at a high rate and the losing populations
are firing at much lower rates. Thresholds are hypothesized to
be implemented by networks with very strong dynamics (Simen,
2012), which are poorly suited to decision making (Standage and
Pare, 2011), i.e., they implement an all-or-none response to a crit-
ical level of input. If the respective rates of the choice threshold
and the decision threshold were similar (a small buffer), then
the difference between the decision variables would be smaller
when the largest one reaches the choice threshold, increasing
the possibility that the thresholding circuit would inadvertently
choose the wrong decision variable. Simultaneous electrophys-
iological recordings from decision circuitry and thresholding
circuitry would be informative in this regard. It seems unlikely
that target-in activity in one structure would coincide with target-
out activity in the other, even infrequently. Another possibility
is that thresholding circuitry implements an ideal observer of
integrator circuitry, where back-projections from the former to
the latter account for the excursion of decision-selective activity
prior to choice selection (see Simen, 2012). Under this sce-
nario, bidirectionally-coupled decision circuits would collectively
implement both integration and choice, a compelling possibility
that warrants further investigation.

Another perspective on the difficulties of equating the dif-
ference between the bound and the starting point of a decision
variable with the threshold-baseline difference relates to lev-
els of abstraction in models of brain function (Marr, 1982;
Trappenberg, 2010). From this perspective, bounded integration
models can be considered algorithms that characterize the com-
putations underlying decisions. They have been (and continue
to be) invaluable for our understanding of decision processing
and the SAT, but it is not necessary to attribute direct biological
correlates to each of their parameters. Qualitatively, the effective
time constant of integration under speed and accuracy conditions
changes in the same manner as the bound (Figure 4A) and there-
fore provides a plausible neural implementation of this abstract
term, but the corresponding changes to the attractor basins show
that this interpretation may be overly simplistic (Figures 4B–D).
Note that we do not suggest the twain shall never meet. Far
from it, formal equivalence has been shown between different
classes of (linear) bounded integration models and the (non-
linear) biophysically-based model on which our simulations are
based (Bogacz et al., 2006). The constraints under which these
models are equivalent define the relationship between decision
models at these two levels of abstraction, allowing the system-
atic consideration of one class in terms of the other. Where earlier
work has largely considered the commonalities between classes
of model, e.g., the range of parameters under which non-linear,
feedback-inhibition models are well-approximated by linear inte-
gration models (Usher and McClelland, 2001; Bogacz et al., 2006),
we have focused on their differences. In this sense, we have shown
what is lost in translation in relation to the SAT, suggesting that
caution is warranted when interpreting neural data in terms of
models that are purposefully simplified. Note that earlier dis-
cussions of the threshold-baseline hypothesis have made it clear
that changes to the bound and the starting point of a decision
variable are not equivalent in all abstract models (Bogacz et al.,
2010b). For more extensive treatment of the constraints of the
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threshold-baseline hypothesis in relation to implementation-level
models, see Marshall et al. (2012).

It is possible that a different kind of threshold-baseline differ-
ence could account for the SAT. If the baseline rate of thresholding
circuitry were increased (decreased) under speed (accuracy) con-
ditions, then lower rates of integrator activity would be sufficient
to elicit choice behavior, i.e., to drive the relevant motor cir-
cuitry (see Standage et al., 2014 for review). As such, a cognitive
signal controlling the SAT could bypass integrator populations.
However, the rates of integrator populations at the time of com-
mitment to a choice would be lower under speed conditions and
higher under accuracy conditions, which conflicts with recent
electrophysiological recordings from putative integrator neurons
showing the opposite profile of activity (Heitz and Schall, 2012).
Notably, these data also show higher (lower) baseline rates and
a higher (lower) rate of increase under speed (accuracy) condi-
tions, suggesting that speed and accuracy conditions do modulate
integrator neurons. These findings are qualitatively reproduced by
our simulations (Figure 2A).

Finally, we do not suggest that single-circuit attractor mod-
els provide a complete picture of decision making. For example,
these models produce slower mean decision times on error tri-
als than correct trials because the network state has to cross
the unstable manifold (Wong and Wang, 2006; Standage et al.,
2011), but error trials are faster than correct trials under some
task paradigms (see Smith and Ratcliff, 2004). Such shortcom-
ings point to the need for coupled-circuit models (e.g., Lo and
Wang, 2006; Standage et al., 2013). The recent surge in neu-
roimaging studies of decision making and the SAT represents an
important direction in this regard, identifying contributing brain
regions and pointing to their respective roles in decision pro-
cessing (Forstmann et al., 2008; Ivanoff et al., 2008; van Veen
et al., 2008; Forstmann et al., 2010; van Maanen et al., 2011;
Wenzlaff et al., 2011; Green et al., 2012; Ho et al., 2012). Guided by
these data, models of distributed decision circuitry are an exciting
direction in decision neuroscience (Frank, 2006; Lo and Wang,
2006; Bogacz and Gurney, 2007). Simulations of the bidirectional
coupling between circuits supporting evidence integration and
choice may be highly informative about the relationship between
decision bounds and choice thresholds.
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Decisions are faster and less accurate when conditions favor speed, and are slower
and more accurate when they favor accuracy. This phenomenon is referred to as the
speed-accuracy trade-off (SAT). Behavioral studies of the SAT have a long history, and
the data from these studies are well characterized within the framework of bounded
integration. According to this framework, decision makers accumulate noisy evidence
until the running total for one of the alternatives reaches a bound. Lower and higher
bounds favor speed and accuracy respectively, each at the expense of the other. Studies
addressing the neural implementation of these computations are a recent development
in neuroscience. In this review, we describe the experimental and theoretical evidence
provided by these studies. We structure the review according to the framework of
bounded integration, describing evidence for (1) the modulation of the encoding of
evidence under conditions favoring speed or accuracy, (2) the modulation of the integration
of encoded evidence, and (3) the modulation of the amount of integrated evidence
sufficient to make a choice. We discuss commonalities and differences between the
proposed neural mechanisms, some of their assumptions and simplifications, and open
questions for future work. We close by offering a unifying hypothesis on the present state
of play in this nascent research field.

Keywords: speed-accuracy trade-off, decision making, neural mechanisms of cognition, bounded integration,

review

1. INTRODUCTION
The ability to trade-off speed and accuracy against each other is
a hallmark of decision making across species and tasks (Chittka
et al., 2009; Bogacz et al., 2010a; Heitz and Schall, 2012). For a
given task difficulty, decisions are typically faster and less accurate
when conditions favor speed, and are slower and more accurate
when conditions favor accuracy. Given the near-ubiquity of this
behavior in experiments, the speed-accuracy trade-off (SAT) can
almost be considered a psychophysical law. It can also be con-
sidered a cognitive phenomenon, since it captures a change in
strategy toward an ostensibly unchanging task.

The SAT has long been the subject of behavioral experiments
(Fitts, 1966; Wickelgren, 1977), but studies addressing its neu-
ral basis are a fairly recent development in the field of decision
making (Bogacz et al., 2010b). These studies have built on a large
body of work on the neural basis of decisions more generally.
This work has characterized the computations underlying deci-
sions (see Smith and Ratcliff, 2004; Ratcliff and McKoon, 2008),
identified neural correlates of these computations (see Schall,
2001; Gold and Shadlen, 2007; Kable and Glimcher, 2009) and
provided mechanistic hypotheses that explain behavioral data in
terms of neural data (see Wang, 2008, 2012). This body of work
provides a persuasive account of neural decision processing, but
does not speak directly to the mechanisms by which decision pro-
cessing is differentially modulated by conditions favoring speed
or accuracy.

In this review, we describe hypotheses on the neural imple-
mentation of the SAT. We take a modeling perspective. We
classify models according to two general levels of abstraction,
sometimes referred to as the algorithmic level and the level of
implementation (Marr, 1982). These classes need not be consid-
ered discrete, but rather, can be considered as the extreme ends
of a continuum. At one end, algorithmic models characterize the
computations underlying brain function. At the other end, neu-
ral models address the implementation of these computations. In
the domain of decision making, analytic studies have shown the
assumptions and constraints under which implementation-level
models are formally equivalent to algorithmic models, providing
a principled foundation for considering the latter in terms of the
former (Bogacz et al., 2006). We endeavor to utilize the flexibility
and explanatory power of this modeling perspective.

Our review is structured according to the framework of
bounded integration. This framework not only provides a set
of organizing principles for the review, but provides the back-
ground for this collection more generally. Most of the neural and
behavioral data we consider were recorded from perceptual deci-
sion tasks. We assume that the neural mechanisms underlying
perceptual decisions generalize to other kinds of decisions, but
the sources of evidence differ according to the decision domain
(Gold and Shadlen, 2007). Sensory systems and memory systems
provide examples of sources of evidence. We begin by defining
the SAT (Section 2). We then describe bounded integration as a
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computational framework for characterizing decisions (Section
3), along with a widely held hypothesis on the neural imple-
mentation of these computations (Section 3.1). We categorize
hypotheses on the SAT according to the major components of
the bounded integration framework, describing the evidence for
differential modulation of these components under speed and
accuracy conditions (Sections 4.1, 4.2, and 4.3). We close with a
discussion of the assumptions underlying these hypotheses, the
relationship between mechanisms, and some open questions for
future research (Section 5).

2. DEFINING THE SPEED-ACCURACY TRADE-OFF
In decision tasks, subjects must determine which decision alterna-
tive is favored by the evidence. If the evidence for one alternative
is clearly stronger than the evidence for the others, the task is
easy. Conversely, if the evidence for each alternative is similar,
the task is difficult. Accuracy decreases with task difficulty, while
decision times increase, characterizing the common psychometric
and chronometric curves respectively (Figure 1). Task difficulty
therefore imposes a systematic relationship between the speed
and accuracy of decisions (see Stone, 2014 in this collection), but
these curves do not define the SAT. The SAT refers to changes
in the speed and accuracy of decisions for a given task difficulty.
While many decision tasks manipulate the strength of evidence,
this experimental parameter need not vary in SAT experiments.

The SAT captures a control mechanism for decision process-
ing, and can be further distinguished according to the timescale
of adjustments to speed and accuracy conditions. Over longer
timescales, the SAT may be accomplished by adaptive mecha-
nisms that extract a balance between the speed and accuracy of
decisions in order to maximize reward over a block of trials (Gold
and Shadlen, 2002; Simen et al., 2006; Furman and Wang, 2008;
Standage et al., 2011). This approach has been demonstrated
by algorithmic models (Gold and Shadlen, 2002; Bogacz et al.,
2010a), biophysically-based neural models (Lo and Wang, 2006;
Furman and Wang, 2008) and models in between these levels of
abstraction (Simen et al., 2006). In contrast, experimental sub-
jects often learn to respond to speed or accuracy conditions from
trial to trial, according to a pre-trial cue (Forstmann et al., 2008;
Heitz and Schall, 2012). We point out this difference because
we are unaware of any implementation-level models to simu-
late trial-to-trial switching of response “modes” for speed and
accuracy. Since there is an optimal trade-off for each condition
that depends on its associated reward schedule, it is plausible
that long-timescale mechanisms correspond to a learning phase
for each response mode; however, it is important to note that
switching between speed and accuracy modes necessarily involves
additional mechanisms to associate the cues with the appropriate
mode, and to switch between modes on cue.

3. THE BOUNDED INTEGRATION FRAMEWORK
Under the bounded integration framework, the evidence for each
alternative of a decision is integrated until the running total
for one of the alternatives reaches a criterion level. Thus, the
bound refers to the criterion and integration refers to the accu-
mulation of evidence. The accumulated evidence for a given
alternative is referred to as a decision variable. According to

FIGURE 1 | The psychometric and chronometric curves. Decisions are
faster and less accurate with increasing task difficulty, describing a
relationship between speed and accuracy. For a given task difficulty,
decisions are faster and less accurate under conditions favoring speed, and
are slower and more accurate under conditions favoring accuracy. This
phenomenon is depicted by the arrows on either side of the central data
point on each curve, where speed and accuracy conditions correspond to
black and gray arrows respectively.

this sequential sampling approach (see Ratcliff and Smith, 2004;
Smith and Ratcliff, 2004), integration is necessary because neu-
ral processing of the evidence is noisy, as may be the evidence
itself. By integrating the evidence over time, an average is com-
puted, so that decisions are not based on moment-to-moment
fluctuations in the evidence or its processing. The longer the
integration period, the better the average and the higher the
probability of identifying the alternative with the most evidence.
Clearly, speed and accuracy make conflicting demands under this
framework.

Bounded integration subsumes a number of algorithmic mod-
els. Most generally, these models can be distinguished according
to whether the evidence for each choice is integrated indepen-
dently from the others, or whether the evidence for each choice
serves as evidence against the others. The former are often
referred to as race models (Figure 2A) and the latter as dif-
fusion models (Figure 2C). A flexible approach between these
extremes is provided by competing accumulator models (Usher
and McClelland, 2001; Bogacz et al., 2007; Purcell et al., 2012),
in which decision variables for the respective alternatives are

Frontiers in Neuroscience | Decision Neuroscience August 2014 | Volume 8 | Article 236 | 143

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Standage et al. On the neural implementation of the speed-accuracy trade-off

FIGURE 2 | Three classes of bounded integrator model. Each model
receives the same two noisy stimuli, one with a higher mean (target T, solid)
than the other (distractor D, dotted). Curves in the upper figures correspond
to integrators (decision variables DV), depicted in the lower figure. (A)

Independent race model of a 2-choice decision. The black horizontal line bs

corresponds to a low decision bound, supporting faster decisions that are
less likely to identify the target. The gray horizontal line ba corresponds to a
higher bound, favoring the accurate identification of the target at the expense

of processing time. The independence of the integrators is depicted in the
lower figure. (B) Competing accumulator model. The weight (w) of
subtraction between the two integrators is depicted in the lower figure.
Different values of this weight would yield different curves. (C) Drift diffusion
model. The decision variable is the integrated difference between the two
stimuli. Black (bs) and gray (ba) horizontal lines correspond to bounds favoring
speed and accuracy respectively. In each panel, the gray shaded region
depicts the time of crossing of the lower (speed condition) threshold.

subtracted from one another according to a scaling parameter
or weight (Figure 2C). In 2-choice tasks, the weight of sub-
traction can effectively (though not always formally) interpolate
between the independent race model and the diffusion model,
i.e., it controls the strength of competition between accumulators.
Moreover, competing accumulators accommodate tasks with any
number of choices and they provide an important link between
models at the algorithmic level and the implementation level (see
the next section). For an intuitive description of the formal rela-
tionships between race models, diffusion models and competing
accumulators, see Bogacz (2007). For a rigorous mathematical
treatment, see Bogacz et al. (2006).

This brief description of bounded integration warrants several
technical points. Firstly, integration refers to the accumulation of
evidence in continuous time, but for simplicity, we do not dis-
tinguish accumulation in discrete time from the continuous-time
case. Secondly, the benefits of integration depend on the timescale
of noise correlations. Thirdly, we only consider unbiased tasks, in
which the bound (or its mean) is the same for each alternative,
as is the starting value (or its mean) of each decision variable.
Note that “unbiased” does not imply that the mean evidence for
each alternative is equal, but rather, the prior probability of each
alternative is equal. The framework is readily extended to biased
conditions (see Gold and Shadlen, 2001). For a comprehensive
description of bounded integration, see Smith and Ratcliff (2004);
Bogacz et al. (2006).

3.1. INTERPRETING BOUNDED INTEGRATOR MODELS
As noted in the Introduction, bounded integrator models can be
thought of as abstract algorithms that characterize the computa-
tions underlying decisions. From this perspective, the terms and

parameters of these models are independent of their implemen-
tation and do not require explicit neural interpretation. On the
other hand, it can be instructive to interpret these parameters in
neural terms if they resemble neural activity. As such, the evi-
dence in perceptual decision tasks corresponds to the response
by sensory (and sensory-association) neurons to task-relevant
stimuli, and decision variables correspond to the activity of down-
stream neural populations hypothesized to integrate this activity.
Accordingly, the starting point of a decision variable is commonly
equated with the baseline (pre-trial) level of integrator activity
and the bound is commonly equated with the level of this activity
at the time of commitment to a choice (see Bogacz et al., 2010b).

There is considerable evidence supporting this general inter-
pretation. For example, in random dot motion (RDM) tasks,
subjects are rewarded for identifying the direction of coherent
movement of a proportion of randomly moving dots on a com-
puter screen. The coherence of the dots provides the evidence
in the task, which can be precisely controlled by the experi-
menter. Neurons in the medial temporal area (MT) of monkeys
are responsive to movement of the dots (Britten et al., 1992,
1993), and in tasks in which monkeys indicate their choices by
making an eye-movement to a visual target, neurons in the lat-
eral intraparietal area (LIP) that are responsive to the chosen
target (target-in neurons) show buildup activity prior to choice
selection (Roitman and Shadlen, 2002; Churchland et al., 2008).
Since MT projects to LIP, it is widely believed that neurons in
LIP integrate the evidence provided by MT, projecting in turn to
the circuitry mediating eye-movements (see Gold and Shadlen,
2007; Shadlen and Kiani, 2013). Note that neural correlates of
decision variables in RDM tasks have also been recorded in
other cortical areas, e.g., dorsolateral prefrontal cortex (dlPFC)
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(Kim and Shadlen, 1999) and the frontal eye fields (FEF) (Ding
and Gold, 2012). Similar data have been recorded from these and
other brain regions in different task paradigms, described below
in relation to SAT experiments. Importantly, electrophysiologi-
cal recordings from neurons responsive to a visual target that is
not chosen on a given trial (target-out neurons) typically show a
much lower rate of activity than target-in neurons prior to choice
selection (e.g., Roitman and Shadlen, 2002; Thomas and Pare,
2007; Bollimunta and Ditterich, 2011; Ding and Gold, 2012).
Taken together, increasing activity by target-in neurons and sup-
pressed activity by target-out neurons have been interpreted as
revealing competitive interactions between neural decision vari-
ables (Usher and McClelland, 2001; Wang, 2002; Albantakis and
Deco, 2009; Standage and Pare, 2011). In competing accumula-
tor models, each accumulator can be thought of as a population
of neurons responsive to one of the alternatives, where the weight
of subtraction corresponds to the strength of inhibition between
these populations (Figure 2B).

Competing accumulator models can also have parameters gov-
erning leakage and recurrent excitation of decision variables,
both of which are important for interpreting these models in
neural terms. To begin with, neurons leak, e.g., membrane poten-
tial and synaptic activation decay. Importantly, the relevant time
constants of decay (e.g., the time of decay from maximum to
half-maximum) are on the order of tens of milliseconds, whereas
perceptual decision times are typically in the range of several
hundreds of milliseconds. Thus, the time constants of these cur-
rents are not long enough to support temporal integration. Such
long integration times are believed to require recurrent excitation
(Wang, 2002), provided by synaptic connectivity within a popu-
lation of excitatory neurons responsive to a given alternative. To
provide an idealized example, if the leakage and inhibitory synap-
tic currents of individual neurons (responding linearly to their
inputs) were precisely offset by the strength of recurrent exci-
tation from other neurons in the population, then each neuron
would support perfect integration of evidence, limited only by
its maximum firing rate. In reality, local-circuit dynamics con-
strain the length of time each population can support integration,
described in the next section.

This neural interpretation of competing accumulator models
sets the stage for our consideration of the neural basis of the SAT.
In bounded integrator models, we interpret noisy evidence as
the response by populations of sensory (and sensory-association)
neurons to stimuli in perceptual tasks. We interpret temporal
integration as the buildup activity of neural populations receiving
projections from sensory neurons. We interpret the starting point
of a decision variable as the activity of integrator populations at
the time of evidence onset (the baseline rate), and for simplicity,
we interpret the bound as the rate of integrator activity at the time
of commitment to a choice. We consider another interpretation of
the bound in Section 4.2.1.

3.1.1. Attractor dynamics
The time over which competing neural populations can integrate
evidence is an emergent property of network dynamics. The rel-
evant dynamics are most easily described for 2-choice decisions,
but are applicable to more than two decision alternatives (You and

Wang, 2013). As noted above, when the activity of an integrator
population builds up in a 2-choice task, it suppresses the other
population by recurrent inhibition. The eventual state of high-
rate activity by one population and low-rate activity by the other
is an attractor in the space of possible states of the network, and
the increase in activity by the “winning” population and the sup-
pression of the losing population (Figure 3B) corresponds to a
descent into its basin of attraction (Figure 3C). The attractors are
stable states of the network, that is, the state of the network evolves
toward these states for a given set of conditions. Once there, the
mean activity of the network is fixed until conditions change, such
as the offset of evidence. In the domain of decision making, the
“getting there” is the decision process.

The attractors are separated by an unstable steady state, toward
which the network is drawn with the onset of the evidence,
and from which it is repelled toward one of the two attractors
(Figure 3C). The dynamics in the vicinity of the unstable steady
state are slow, supporting temporal integration. The time over
which integration is supported is referred to as the effective time
constant of the network, and corresponds to the rate at which the
dynamics evolve near this state. See Wong and Wang (2006) for
a thorough description of the dynamics. The crucial point here is
that the effective time constant is shorter with stronger recurrent
dynamics, limiting the amount of time the network can integrate
evidence. Accordingly, moderate dynamics can be considered to
support neutral conditions, where stronger and weaker dynam-
ics support speed and accuracy conditions respectively. We refer
to local-circuit dynamics with these properties as the “decision
regime.” We refer to weaker dynamics without these properties as
the “leakage regime.” In the leakage regime, the effective time con-
stant of the network is similar in principle to the time constant of
decay of membrane potential or synaptic activation, though it can
be considerably longer. In the decision regime, the effective time
constant does not correspond to leakage; rather, it corresponds to
an amplification of the decision variable, and is thus qualitatively
different than a time constant of decay (see Standage et al., 2011).

4. THREE GENERAL MECHANISTIC HYPOTHESES ON THE
SAT

Hypotheses on the neural implementation of the SAT must pro-
vide mechanistic explanations for differential decision processing
under speed and accuracy conditions. Under the principles of
bounded integration, these hypotheses can be grouped into three
mutually-compatible classes: modulation of the encoding of evi-
dence, modulation of the integration of encoded evidence, and
modulation of the amount of integrated evidence sufficient to
make a choice. In principle, each class of hypothesis (and each
mechanistic hypothesis in each class) is sufficient to account
for the SAT, but we do not favor any one hypothesis over the
others. Rather, we believe the SAT is likely to result from the
interplay of multiple mechanisms, with different mechanisms (or
combinations of mechanisms) playing a greater role in different
contexts.

The three general classes of hypothesis provide an intuitive
basis for organizing the review, but they also correspond to three
successive processing stages of decisions: the encoding of evi-
dence, the integration of encoded evidence, and choosing. Under
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FIGURE 3 | (A) A neural implementation of the principles of bounded
integration. Neural populations selective for the decision alternatives (T and
D) compete via a common inhibitory pool (solid black circle). Arcs with
arrows and filled circles depict excitatory and inhibitory synaptic
connectivity respectively. Target (T) and distractor (D) stimuli provide
stronger and weaker evidence to the integrator populations respectively.
(B) Competitive interactions between integrator populations lead to an
increased spike rate by one population (solid) and a decreased rate by the
other (dotted). (C) Cartoon depiction of an attractor “energy landscape”
supported by the neural model, where the energy decreases over time. An
unstable steady state (high energy) separates two attractors (low energy),
corresponding to the target and the distractor. The ball depicts the state of
the network, which is drawn toward the unstable steady state at stimulus
onset (vertical arrow), and from which it is repelled toward one of the
“attractor basins” (bent arrows). Descent into the attractor basin
corresponds to the firing-rate excursion of the target population in (B),
where the vertical line approximates the position of the ball in (C). The
evolution of the network state (conceptually, the movement of the ball) is
faster (slower) under speed (accuracy) conditions.

the attractor framework, the computational requirements of these
stages are supported by weak, moderate and strong local-circuit
dynamics respectively. Weak dynamics support the encoding of
evidence by “giving way” to their inputs, i.e., the dynamics are
dominated by leakage. Moderately strong dynamics furnish a long
effective time constant, supporting temporal integration (Section
3.1.1). Strong dynamics furnish a short effective time constant
within the decision regime, allowing an all-or-none response to
a critical level of input (see Simen, 2012). Thus, the principles
of bounded integration are captured by a three-stage neural sys-
tem, in which evidence-encoding circuitry with weak dynamics
projects to integrator circuitry with moderate dynamics, which in
turn projects to thresholding circuitry with strong dynamics. This
three-stage process is depicted in Figure 4.

Finally, it is important to clarify our usage of several terms
before proceeding with the review. We define the “correct” alter-
native as the one for which the evidence has the highest mean, and
as suggested in Section 2, we define task difficulty as the difference
between the mean of the evidence for the correct alternative and
that for the alternative with the next highest mean. Task difficulty
overlaps with the rate of integration in bounded integrator mod-
els, but this overlap depends on model specifics. For example, in
race models, increasing the evidence for the correct alternative
increases its integration rate (there’s more instantaneous input
to accumulate) and reduces task difficulty if the evidence for
the other alternatives is not increased; however, increasing the
evidence for each alternative by the same amount increases the
integration rate of each integrator, but does not influence task
difficulty. In diffusion models, an increase in the evidence for the
correct alternative necessarily decreases task difficulty, unless the

FIGURE 4 | Three processing stages for decisions: the encoding of

evidence (left), the integration of encoded evidence (middle) and

choice selection (right). Evidence-encoding populations (left) are
responsive to target (T) and distractor (D) stimuli. Weak dynamics prevent
integration, depicted by the lack of recurrent connectivity.
Evidence-encoding populations project to integrator populations (middle).
Feedback connectivity depicts moderately strong dynamics, suitable for
temporal integration (corresponding to Figure 3). Integrator populations
project to thresholding circuitry (right). Thick connectivity depicts very
strong dynamics, suitable to an all-or none response to a critical level of
input (see Simen, 2012).

signal-to-noise ratio (SNR) of the evidence is preserved. Here, it
is important to remember our definition of the SAT in Section
2: improvements in speed (accuracy) at the expense of accuracy
(speed) for a given task difficulty. In Section 4.2.1, we describe
hypotheses on the neural implementation of the SAT by modula-
tion of the rate of integration. We define the rate of integration
as the inverse of the difference between the rate of integrator
neurons at the time of commitment to a choice and their base-
line rate. These considerations highlight two important points.
Firstly, the hypotheses in Section 4.2.1 do not refer to changes
in integration rate resulting solely from upstream changes to the
encoding of evidence (support for this possibility is described in
Section 4.1). Secondly, these hypotheses address the neural mech-
anisms by which the rate of rise of putative integrator activity is
modulated by speed and accuracy conditions, not task difficulty.

4.1. MODULATION OF THE ENCODING OF EVIDENCE
Evidence for the modulation of sensory processing under speed
and accuracy conditions (Figure 5A) has been shown in a visual
search task, in which monkeys were rewarded for making a sac-
cade to a target stimulus, while single-cell activity was recorded
from FEF (Heitz and Schall, 2012). A substantial body of electro-
physiological data from visual decision tasks indicates that FEF
neurons can be classified as visual neurons and movement neu-
rons (Cohen et al., 2010; Purcell et al., 2010). Visual neurons
are responsive to task-relevant stimuli, but do not show saccade-
related activity, whereas movement neurons show saccade-related
activity, but do not respond to stimuli. As such, movement neu-
rons are hypothesized to integrate the evidence encoded by visual
neurons (the first and second stages of Figure 4), loosely anal-
ogous to the hypothesis that LIP neurons integrate the activity
of MT neurons in RDM tasks (Section 3.1). In the study by
(Heitz and Schall, 2012), the SAT was correlated with multiple
adjustments to the activity of both classes of neuron, including
the baseline rate of visual neurons (Figure 6A), the magnitude
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FIGURE 5 | Hypotheses on the neural implementation of the SAT,

under the framework of bounded integration. Each panel is an instance
of the 3-stage schematic in Figure 4. (A) Modulation of the encoding of
evidence. A cognitive signal adjusts the gain of sensory encoding
populations (dashed arcs). This multiplicative effect is depicted by the “X”
in the open circle at the top. (B) Modulation of the rate of integration of
encoded evidence (dashed arcs). The cognitive signal adjusts the gain of
integrator circuitry, controlling the rate of integration. (C) Modulation of the
onset of integration of encoded evidence. An inhibitory gate (G) controls
the onset of integration (dotted arcs). (D) Modulation of the sensitivity of
integrator circuitry to encoded evidence. Integrator populations are
selective for different sub-populations of evidence-encoding neurons under
speed and accuracy conditions, depicted by the black (speed) and gray
(accuracy) arcs. (E) Modulation of the amount of non-evidence input to
integrator circuitry. All integrator populations receive a uniform cognitive
signal, in addition (+) to evidence (dotted arcs). (F) Modulation of the
amount of non-integrator input to thresholding circuitry. Neural populations
enacting choice behavior receive a uniform cognitive signal, in addition (+)
to integrated evidence (dotted arcs). (G) Modulation of the connectivity
between integrator circuitry and thresholding circuitry. The amount of
integrated evidence sufficient to make a choice is modulated by the
strength of connectivity from integrators to the circuitry enacting choice
behavior (thick horizontal arrows).

of their response to stimuli (Figure 6B) and the time at which
target-in activity can be discriminated from target-out activ-
ity (Figure 6B). To summarize, the search array was identical
across conditions, but the baseline rates and response magnitude
of visual neurons were higher, and the time of discrimination

was earlier, under the speed condition, in which the monkeys
made faster, less accurate decisions. Conversely, baseline rates and
response magnitude were lower, and discrimination was later,
under the accuracy condition, in which the monkeys made slower,
more accurate decisions.

These data provide strong support for the hypothesis that
the modulation of the encoding of evidence contributes to the
SAT, but the data alone do not explain the underlying neural
mechanism. Gain modulation provides an explanation. The base-
line rates of target-in and target-out visual neurons were higher
(lower) under speed (accuracy) conditions (solid and dashed
curves before stimulus onset in Figure 6B), suggesting that visual
neurons received a common signal, regardless of whether they
were encoding evidence for the target or a distractor. Spatially
non-selective (global, uniform, diffuse) excitation is an estab-
lished form of gain modulation in attractor models (Salinas and
Abbott, 1996; Furman and Wang, 2008; Standage et al., 2013), so a
stronger (weaker) common signal under speed (accuracy) condi-
tions would account for the higher (lower) response magnitude
of visual neurons. If the SNR of encoded evidence were unaf-
fected (or lowered) by this signal, then other things being equal,
higher-rate activity by visual neurons under the speed condition
would be manifest in a higher rate of integration of this activity
by movement neurons, supporting fewer sequential samples and
therefore improved speed at the expense of accuracy (vice versa for
the accuracy condition). This scenario is equivalent to adjusting
a decision bound. Consistent with this possibility, the rate of rise
of movement-neuron activity was higher (lower) under the speed
(accuracy) condition in the study by Heitz and Schall (2012). In
the next section, we provide another, compatible explanation of
these movement-neuron data.

4.2. MODULATION OF THE INTEGRATION OF ENCODED EVIDENCE
Mechanistic hypotheses on the trading of speed and accuracy by
modulation of the integration of evidence can be grouped into
three mutually compatible categories: modulation of the rate of
integration (Figure 5B), modulation of the onset of integration
(Figure 5C) and modulation of the sensitivity to the encoding of
evidence (Figure 5D). As noted above, the first hypothesis does
not refer to changes in the rate of integration resulting solely from
changes in the evidence or its encoding. Rather, we refer to mech-
anisms hypothesized to actively target integrator circuitry in this
section, regardless of upstream or downstream modulation.

4.2.1. Modulation of the rate of integration of evidence
The study by Heitz and Schall (2012) not only provides evi-
dence for the differential modulation of sensory encoding with
speed and accuracy conditions, but also for the modulation of
the rate of integration of evidence (Figure 5B). In their study,
the slope of pre-saccadic activity by movement neurons in FEF
was shown to increase and decrease under speed and accuracy
conditions respectively (Figure 6C). As noted in Section 4.1,
these changes could simply result from the increase (decrease)
in gain of visual neurons under speed (accuracy) conditions;
however, they can be explained by the modulation of local-
circuit (recurrent) dynamics (Figure 3), independent of upstream
changes. Increasing the strength of recurrent dynamics shortens
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FIGURE 6 | Electrophysiological data recorded from FEF during a visual

search task under speed (black) and accuracy (gray) conditions (Heitz

and Schall, 2012). (A) The baseline rate of visual (evidence-encoding)
neurons was higher and lower under speed and accuracy conditions
respectively (stimulus onset at 0 ms). (B) The gain of visual neurons was

higher (lower) under speed (accuracy) conditions. (C) The slope of
movement neuron activity was higher (lower) under speed (accuracy)
conditions. (D) The peak of movement neuron activity was higher (lower)
under speed (accuracy) conditions. Data aligned to saccade initiation. Figure
adapted from Heitz and Schall (2012) with permission of © Elsevier.

the effective time constant of local-circuit models (Wong and
Wang, 2006; Standage et al., 2011), so the decision variable builds
up more quickly, limiting the amount of integrated evidence.
Decisions are consequently faster and less accurate. Conversely,
decreasing the strength of recurrent dynamics lengthens the effec-
tive time constant, so the decision variable builds up more slowly
and decisions are slower and more accurate. Here, it is worth
noting that the computational role of the effective time con-
stant is identical to that of the bound, operating at a different
level of abstraction; it controls the duration of the integration
of evidence. Thus, while it is intuitive to interpret the bound in
terms of the firing rates of integrator neurons, the bound may be
implemented by any mechanism that controls integration time.

Lengthening and shortening the effective time constant of
a decision circuit offers a sound principle for trading speed
and accuracy, but it requires a mechanism (or mechanisms) to
increase and decrease the strength of recurrent dynamics under
speed and accuracy conditions respectively. There are several pos-
sibilities, such as spatially non-selective excitation of excitatory
neurons (Furman and Wang, 2008; Standage et al., 2013) or the
conductance strength of excitatory recurrent synapses (Wong and
Wang, 2006; Standage and Pare, 2011). Furman and Wang (2008)
used the first of these mechanisms in simulations of an RDM task
with a biophysically-based local-circuit model. They simulated
the experiments by Churchland et al. (2008), who recorded from
LIP neurons while monkeys chose between two or four possible

directions of motion. Not only did Furman and Wang (2008)
qualitatively reproduce neural and behavioral data from the task,
but they further considered the effects of speed and accuracy
emphasis that were not tested experimentally. They hypothesized
that the SAT is controlled by a stationary “top-down” signal, test-
ing their hypothesis by providing non-selective spike trains to all
pyramidal neurons in the network, in addition to the selective
spike trains simulating motion evidence from area MT. Stronger
non-selective input produced faster, less accurate decisions in the
model. Furman and Wang (2008) did not show network activity
under the different non-selective input rates, but it is clear from
other modeling studies that the slope of network activity is higher
(lower) with stronger (weaker) recurrent dynamics, correspond-
ing to speed (accuracy) emphasis (e.g., Wong and Wang, 2006;
Standage and Pare, 2011). Notably, the baseline rates of target-
in and target-out movement neurons in the electrophysiological
study by Heitz and Schall (2012) were higher (lower) under speed
(accuracy) conditions, consistent with the modulation of local-
circuit dynamics by a spatially non-selective signal. Note that such
a signal is consistent with the use of the term “urgency” in some
studies, i.e., speed (accuracy) conditions entail a higher (lower)
urgency to respond (Reddi and Carpenter, 2000), though we
restrict our usage of this term to time-dependent signals below,
i.e., the urgency to respond increases with the duration of a deci-
sion (Churchland et al., 2008; Cisek et al., 2009; Standage et al.,
2011).
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Where Furman and Wang (2008) used a stationary signal to
differentially modulate decision dynamics under speed and accu-
racy conditions, Standage et al. (2011) used a timing (urgency)
signal, hypothesizing that an estimate of one’s temporal con-
straints is sufficient to trade speed and accuracy with a fixed level
of integrator activity at decision time. They used a model from
the same family as that of Furman and Wang (2008), but they
took a more abstract population rate approach, where a “trans-
fer function” determines the proportion of an idealized neural
population activated by its input (Wilson and Cowan, 1972;
Gerstner, 2000). The timing signal was an increasing function of
time, building up more quickly with tighter temporal constraints,
but reaching a fixed maximum (see Durstewitz, 2004). The sig-
nal scaled the slope parameter of the transfer function, which
in turn controlled the dynamics of the network (the higher the
slope parameter, the stronger the dynamics). As such, network
dynamics were weak at the start of each trial, but were strength-
ened with elapsed time. This progression lengthened the time
constant of the network prior to entry into the decision regime,
and then shortened it (Figure 7B). Decision-selective firing rates
were fixed at decision time because the network always pro-
gressed through the same dynamic regimes, but slower buildup
of the timing signal allowed the network to spend more time in
regimes with a longer time constant. Thus, the slope of integra-
tor activity was lower (higher) with longer (shorter) temporal
constraints, and decisions were slower (faster) and more (less)
accurate (Figures 7C,D). Standage et al. (2011) compared this
approach to the modulation of the network by a stationary signal,
showing that time-dependent modulation systematically earned
more reward per unit time. In effect, time-dependent modulation
of attractor dynamics makes a better use of time than station-
ary modulation, but human and non-human animals do not
necessarily make decisions this way. The model makes testable
predictions for experiments, which are an important next step for
this hypothesis (see the Discussion).

What neural mechanisms could implement stationary
(Furman and Wang, 2008; Roxin and Ledberg, 2008) and
time-dependent (Standage et al., 2011, 2013) top-down signals
for controlling the speed and accuracy of decisions? A stationary
signal could be provided by persistent, goal-directed activity,
for which there is abundant evidence in prefrontal and parietal
cortical areas (see Wang, 2001). This mechanism would require
an additional means to control the rate of persistent activity. Like
integration time, the rate of persistent activity in local-circuit
cortical models can be controlled by the strength of recurrent
dynamics (Brunel and Wang, 2001). Thus, any mechanism that
modulates recurrent dynamics in the circuitry mediating the
control signal would in turn control the strength of non-selective
input to downstream integrator circuitry, and thereby the SAT. To
switch between speed and accuracy response modes from trial to
trial (e.g., Forstmann et al., 2008; Heitz and Schall, 2012), higher
and lower rates of persistent activity would need to be associated
with the cues for speed and accuracy conditions respectively.

There is also abundant evidence for the encoding of elapsed
time by “climbing activity,” i.e., activity that peaks at the time of
an anticipated event, such as a deadline (see Durstewitz, 2004).
Such prospective coding (Rainer et al., 1999; Komura et al., 2001)

has been recorded during tasks with a timing requirement in a
number of cortical areas (Niki and Watanabe, 1979; Rainer et al.,
1999; Maimon and Assad, 2006; Shuler and Bear, 2006). Standage
et al. (2013) built on their earlier population rate model (Standage
et al., 2011) with a biophysically-based, coupled-circuit cortical
model, offering a neural implementation of the timing signal, and
demonstrating its modulation of downstream decision dynamics
by spatially non-selective excitation. To switch between speed and
accuracy response modes from trial to trial, the shorter and longer
timing signals would need to be associated with the cues for speed
and accuracy conditions respectively.

It is worth noting that time-dependent attractor models
Standage et al. (2011, 2013) are conceptually similar to bounded
integrator models in which the bound is lowered over the course
of each trial (Ditterich, 2006b; Drugowitsch et al., 2012), but
the former cannot be considered a neural implementation of the
latter. The underlying premise of the latter is that longer process-
ing time implies a more difficult decision and therefore a lower
probability of a correct response. Lowering the bound reduces
time-wasting because it speeds up decisions that are more likely
to be wrong, increasing reward rate. This approach is function-
ally equivalent to the time-dependent multiplication of incoming
evidence (Ditterich, 2006b). Expressed as a bounded integrator
model, the time-dependent attractor models by Standage et al.
(2011, 2013) implement the time-dependent multiplication of
evidence and the evolving decision variable, making different
predictions about the sensitivity of decisions to the timing of
evidence than other bounded integrator models (see Section 5.1).

4.2.2. Modulation of the onset of integration
It is possible that speed and accuracy conditions modulate the
onset of evidence integration (Figure 5C), as opposed to (or in
addition to) the rate of integration. Purcell et al. (2012) tested this
hypothesis with a leaky competing accumulator model, in which
the accumulators received the activity of visually-responsive neu-
rons in FEF, recorded during a visual search task. The accumula-
tor corresponding to the target received the activity of target-in
neurons, while the other accumulators received the activity of
target-out neurons. Each accumulator received a fixed inhibitory
signal serving as a gate, preventing the accumulation of activity
prior to the search array, that is, the gate dictated that evidence
was only accumulated if it exceeded a minimum rate. The model
was fit to behavioral data from monkeys performing the search
task and to electrophysiological recordings from FEF movement
neurons. In simulations of an SAT experiment, adjustments to the
inhibitory gate were compared to adjustments to the bound. Both
parameters accounted for the SAT and maximized reward rate,
but they made different predictions about the activity of move-
ment neurons. As expected, adjustments to the bound predicted
a higher (lower) rate of activity at the time of commitment to
a choice under accuracy (speed) conditions, but did not impact
baseline activity or the onset of integration. Adjustments to the
inhibitory gate predicted higher (lower) baseline activity and
earlier (later) onset of integration under speed (accuracy) condi-
tions. To the best of our knowledge, the activity of FEF movement
neurons in the study by Heitz and Schall (2012) provide the only
available single-cell data to test these predictions. These data do
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FIGURE 7 | (A) A control signal (c) modulating local-circuit decision
processing. The signal could be implemented by persistent, goal directed
activity (Stationary) or by climbing activity, encoding elapsed time relative to a
deadline (Timing). The model schematic is the same as in Figure 3A, with the
addition of the control signal. (B) Under stationary modulation, the decision
network can support a single time constant of integration for a given trial,
depicted by the horizontal lines. A stronger control signal furnishes a shorter
time constant. Under time-dependent modulation, the time constant of

integration increases in the leakage regime, before contracting in the
decision regime. This progression occurs more quickly with faster buildup of
the signal. Black and gray curves correspond to speed and accuracy
conditions. (C) Target and distractor-selective firing rates in a simulated
decision circuit for each timing signal. The slope of decision-selective activity
is higher for shorter timing signals. (D) Psychometric and chronometric
curves corresponding to each timing signal. (B–D) are adapted from
Standage et al. (2011).

not support the predictions of the bound parameter. Not only do
they show differential baseline activity under speed and accuracy
conditions, but they also show a higher rate of activity at choice
time under speed conditions (Figure 6D), i.e., opposite to the
predicted activity. These data support the predictions for baseline
activity by the gate parameter, i.e., higher baseline under speed
conditions, but they do not support the prediction of differential
onset of integration. Several fMRI studies with human subjects
also show differential baseline activity under speed and accuracy
conditions in pre-motor cortical areas (Forstmann et al., 2008;
Ivanoff et al., 2008; van Maanen et al., 2011) (Section 4.3.2).

4.2.3. Modulation of the sensitivity to encoded evidence
Support for the hypothesis that integrator circuitry is more (less)
sensitive to the encoding of evidence under accuracy (speed)
conditions (Figure 5D) has been provided by a visual discrimi-
nation task, in which human subjects decided whether flashing
stimuli were of the same or slightly different orientation (Ho
et al., 2012). As expected, decisions were slower and more accu-
rate under the accuracy condition (vice versa for speed). Because
the neural mechanisms underlying fine discrimination of orien-
tation are well-studied, these authors focused on trials on which
the stimuli differed (mismatch trials). In particular, off-target

neurons (tuned away from the stimulus) are hypothesized to be
more informative for fine discrimination than on-target neu-
rons (tuned toward the stimulus), due to the steeper slope of
their tuning curves at off-target orientations (see Scolari and
Serences, 2012). This computational principle is depicted in
Figure 8. In the study by Ho et al. (2012), there was no dif-
ference between blood oxygenation level dependent (BOLD)
based orientation tuning curves in primary visual cortex (V1)
under speed and accuracy conditions, suggesting that these con-
ditions did not modulate the encoding of evidence on mismatch
trials. However, off-target activation (tuned away from the tar-
get orientation) was higher on correct trials than error trials
under the accuracy condition, that is, subjects were more accu-
rate when off-target activation was higher. This finding suggests
that subjects were more accurate when the gain of off-target
neurons was higher, which further suggests that accuracy was
higher because integrator populations detected this higher gain.
Conversely, BOLD-based tuning curves did not differ on cor-
rect and error trials under the speed condition, suggesting that
integrator populations did not detect fluctuations in the gain of
off-target neurons (or on-target neurons). Taken together, the
speed and accuracy data suggest that integrator populations are
more sensitive to (more informative) off-target activity under
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FIGURE 8 | SAT mechanism hypothesized by Ho et al. (2012). Small
changes to a stimulus feature do not elicit much change in the response by
neurons that are highly selective for the feature (on-target neurons). Here,
the feature is orientation. The solid and dashed vertical lines on the left
correspond to feature values of 0◦ and slightly greater than 0◦ respectively.
The change in response by a neuron maximally responsive to 0◦ is shown
by the corresponding horizontal lines abutting the black curve. The solid and
dashed vertical lines on the right correspond to feature values of 45◦ and a
slight increase from 45◦ respectively. The change in response by the same
neuron (maximally responsive to 0◦) is shown by the corresponding
horizontal lines abutting the black curve. For a given change in feature value,
the difference in the off-target response is greater than the difference in the
on-target response.

accuracy conditions, resulting in higher accuracy at a cost in terms
of speed. Under speed conditions, lower sensitivity to off-target
activity would appear to support faster decisions, at a cost in
terms of accuracy.

Ho et al. (2012) did not speculate on the mechanism by which
speed (accuracy) conditions may engender lower (higher) sensi-
tivity to more informative neurons, but it is plausible that speed
conditions lower the SNR of the activity projecting to integrator
circuitry, such that the fine discrimination provided by off-target
activity is swallowed by noise. The lower firing rate of off-target
activity (see Figure 8) is consistent with this possibility. Another
possibility is that integrator circuitry is not differentially sen-
sitive to off-target activity per se, but is preferentially selective
for on-target and off-target neurons under speed and accuracy
conditions respectively. If so, lower-rate, more informative off-
target activity would take longer to accumulate to a given firing
rate than higher-rate, less informative on-target activity, account-
ing for the SAT. Our description of this possibility does not
explain how preferential selectivity would arise, but is consistent
with the higher (lower) rate of rise of movement-neuron activ-
ity under speed (accuracy) conditions shown by Heitz and Schall
(2012).

4.3. MODULATION OF THE AMOUNT OF INTEGRATED EVIDENCE
SUFFICIENT TO MAKE A CHOICE

The hypothesis that speed and accuracy are traded by the mod-
ulation of the amount of integrated evidence has received the

lion’s share of attention in mechanistic studies of the SAT, pre-
sumably because bounded integrator models are readily fit to
behavioral data by adjusting the bound (see Bogacz et al., 2010b).
Under the assumption of linear integration, changing the start-
ing point is algorithmically equivalent to changing the bound.
Under a neural instantiation of these terms, changes to the start-
ing point would be manifest in changes to the baseline activity
of integrator neurons, while changes to the bound would be
manifest in the firing rate of integrator neurons at the time of
commitment to a choice. Here, it is important to distinguish
between the amount of integrated evidence and a neural deci-
sion variable. A decision variable may have sources of input
other than the evidence (Kable and Glimcher, 2009; Doya and
Shadlen, 2012), e.g., the encoding of the prior probabilities of
the alternatives. Under this approach, mechanistic hypotheses
on the modulation of the amount of integrated evidence suf-
ficient to make a choice can immediately be grouped into two
categories: changes to non-evidence inputs to integrator circuitry
(Figure 5E), and changes to non-integrator inputs to threshold-
ing circuitry (Figure 5F). The former tend to be limited to cortical
circuitry, whereas the latter often involve cortex and the basal
ganglia (BG). We also consider a third category in this section:
changes to the connectivity mediating integrator inputs to thresh-
olding circuitry (Figure 5G). This category is distinct from the
modulation of integrated evidence described above (Section 4.2),
since no mechanistic change to the integration process is entailed
by changes to downstream connectivity. Note that these three
general, mechanistic categories share the assumption that a fixed
net input current to thresholding circuitry is required to elicit
choice behavior.

4.3.1. Adjustments to non-evidence inputs to integrator circuitry
Several theoretical studies have proposed neural mechanisms for
the SAT that involve differential levels of non-evidence inputs
to integrator circuitry under speed and accuracy conditions
(Furman and Wang, 2008; Roxin and Ledberg, 2008; Standage
et al., 2013) (Figure 5E). A large body of electrophysiological
data provides evidence for integrator activity in frontal (Kim and
Shadlen, 1999; Schall et al., 2011; Ding and Gold, 2012) and
parietal (Roitman and Shadlen, 2002; Thomas and Pare, 2007;
Bollimunta and Ditterich, 2011) cortical areas during decision
tasks (Section 3.1), so these theoretical studies have typically
focused on cortical circuitry. Furman and Wang (2008) controlled
the SAT by providing input spike trains to all pyramidal neu-
rons in their biophysically-based cortical model, in addition to the
selective spike trains for each of the decision alternatives. We pre-
sented this model in Section 4.2.1 because spatially non-selective
input modulates the dynamics of local-circuit decision models,
changing the rate of integration. However, the model does imple-
ment an adjustment to the amount of non-evidence input to
integrator circuitry, albeit a small one.

The hypothesis that persistent activity controls the SAT by pro-
jecting non-selectively to integrator populations (Furman and
Wang, 2008; Roxin and Ledberg, 2008) is consistent with fMRI
data from a Simon task (van Veen et al., 2008), in which human
subjects responded to the color of a stimulus to the left or right
of fixation, while ignoring its location. This study showed an
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increased baseline (sustained) BOLD response in dlPFC under
speed conditions relative to accuracy conditions, and an increased
transient (associated with the decision process) BOLD response
in the intraparietal lobule, a parietal area that may correspond
to LIP in monkeys. As noted above, persistent activity has been
recorded from dlPFC in studies of working memory (Fuster,
1973; Funahashi et al., 1989) and decision-correlated activity
has been recorded from LIP in decision tasks (Roitman and
Shadlen, 2002; Thomas and Pare, 2007), so it is plausible that
dlPFC projects a stronger (weaker) control signal to integra-
tor neurons in the intraparietal lobule under speed (accuracy)
conditions, controlling the speed and accuracy of decisions.
This possibility is consistent with increased (decreased) baseline
activity by putative integrator neurons under speed (accuracy)
conditions in the study by Heitz and Schall (2012) (Section
4.2.1), as well as with the modulation of the rate of integra-
tion by a stationary, non-selective signal (Furman and Wang,
2008).

The SAT is also controlled by non-selective excitation of inte-
grator circuitry in the model by Standage et al. (2013). As
described in Section 4.2.1, the major difference between this
neural model and the one by Furman and Wang (2008) is the
information content of the non-evidence input. In the model by
Standage et al. (2013), the non-evidence input is an estimate of
elapsed time relative to a deadline, implemented by the desta-
bilization of background activity by strong recurrent dynamics.
Like the model by Furman and Wang (2008), this model con-
trols the SAT by modulation of the rate of integration (Section
4.2.1), but nonetheless, it does implement a time-dependent, uni-
form input to integrators. This input builds up more (less) rapidly
under speed (accuracy) conditions.

4.3.2. Adjustments to non-integrator inputs to thresholding circuitry
A number of mechanistic hypotheses on the SAT are based
on the premise that the amount of integrated evidence suffi-
cient to make a choice is controlled by spatially non-selective
input to thresholding circuitry (Frank, 2006; Simen et al., 2006;
Forstmann et al., 2010; Green et al., 2012) (Figure 5F). According
to this premise, stronger non-selective input allows lower lev-
els of integrator activity to elicit a choice. The hypotheses differ
according the processing pathways providing the non-selective
inputs, and in the corresponding information content provided
by these signals. Many of these hypotheses involve BG, owing to
its well-established role in movement initiation (choice behavior
in the present context). Excitatory input to BG arrives at the stria-
tum, which inhibits the output nuclei along the so-called direct
pathway. The output nuclei inhibit motor circuitry in their tonic
(background, default) state, so excitation of the striatum releases
motor circuitry from inhibition, enabling choice behavior (See
Figure 9A).

It has been proposed that an estimate of reward rate could
provide spatially non-selective input to thresholding circuitry,
computed by leaky integration of reward signals (Simen et al.,
2006). Such a mechanism could approximate the optimal trade-
off between speed and accuracy in terms of reward-rate maxi-
mization, without speed or accuracy instructions (Simen et al.,
2006). In effect, the strength of non-selective input tracks reward

FIGURE 9 | (A) Basal ganglia (BG) pathways hypothesized to control the
SAT. Along the direct pathway, cortex (Ctx) excites the striatum (Str), which
in turn inhibits the BG output nuclei (OP). The output nuclei project tonic
inhibition to the circuitry driving motor execution of decisions (M), i.e.,
choices. Less integrator activity is required to make a choice when the
striatum is diffusely excited by non-integrator cortical activity. Along the
hyper-direct pathway, cortex excites the subthalamic nucleus (STN), which
in turn excites the output nuclei. More integrator activity is required to
make a choice when STN is diffusely excited by non-integrator cortical
activity. The dotted arcs through the globus pallidus (GPe) depict two
further pathways that could influence the SAT in an opposite manner to the
direct and hyperdirect pathways respectively. Routes back to cortex via the
thalamus (T) are also depicted by dotted arcs, largely unexplored in this
context. (B) Distributed system of brain regions correlated with decision
making and the SAT. Data and theory suggest that executive cortical areas
(here PFC) project non-selectively to integrator populations (here posterior
parietal cortex PPC) and to pre-motor areas (PMC). A stronger (weaker)
non-selective signal thus favors speed (accuracy) by increasing (decreasing)
the strength of recurrent dynamics among integrator populations
(Figure 3B) and by decreasing the rate of their activity required for choice
behavior.

rate under this mechanism. It is plausible that such a non-selective
signal could be implemented in PFC by the increased occupancy
of D1 dopamine receptors, due to slow extrasynaptic uptake
(Grace, 1991; Dreyer et al., 2010). The activity of dopamine (DA)
neurons in BG is extensively correlated with reward and these
neurons project diffusely to PFC (and other association cortical
areas), where D1 receptors are hypothesized to control attrac-
tor dynamics in support of persistent, goal-directed activity (see
Durstewitz and Seamans, 2006). It is therefore possible that the
rate of persistent activity in PFC could provide a reward esti-
mate to BG, which gates choice behavior. It is not clear how such
a reward-rate signal would adapt to the imposition of speed or
accuracy conditions on cue, i.e., the proposed mechanism extracts
an appropriate strength of signal for a given condition, but would
presumably require an additional mechanism to switch between
speed and accuracy modes from trial to trial.

Timing signals are another potential source of non-selective
input to thresholding circuitry. Under this hypothesis, the SAT is
controlled by the balance between selective input from integra-
tor populations and non-selective input from neural populations
encoding elapsed time. In the study by Green et al. (2012),
human subjects performed an RDM task under reward schedules
corresponding to speed and accuracy conditions. Subjects’ behav-
ior was fit by a bounded integrator model, where adjustments
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to the bound were correlated with reward rate on an individ-
ual subject basis, i.e., subjects whose behavior was captured by
larger adjustments to the bound earned more reward. Because
a higher (lower) bound supports more (less) integration, this
correlation suggests that subjects traded speed accuracy by con-
trolling the amount of integrated evidence sufficient to make a
choice. Using fMRI, these authors showed higher activation in
dlPFC under the accuracy condition, and higher activation in
the cerebellum under the speed condition. They further consid-
ered correlations between activation in each of these regions and
that in the striatum (the effective connectivity). Note that the
striatum is hypothesized to control response thresholds and thus
choice behavior (see below). The effective connectivity between
dlPFC and the striatum was higher under the accuracy condi-
tion and was positively correlated with the difference (high-low)
between the value of the bound parameter under the two condi-
tions. The effective connectivity between the cerebellum and the
striatum was higher under the speed condition and was negatively
correlated with this difference. Striatal activation did not differ
between conditions, consistent with a fixed threshold. Because
earlier studies have provided evidence for integrator activity in
dlPFC during decisions (Kim and Shadlen, 1999; Heekeren et al.,
2004; Philiastides et al., 2011) and for sub-second timing in
the cerebellum (see Lewis and Miall, 2003; Ivry and Spencer,
2004), it was hypothesized that persistent changes in connec-
tivity mediate response modes for the purpose of maximizing
reward. Thus, the balance between cortico-striatal and cerebellar-
striatal processing could control the SAT. This study switched
speed and accuracy conditions between blocks, but each block
contained very few trials (approximately 10). Subjects therefore
adapted quickly to task conditions, suggesting that the underly-
ing mechanism may be capable of switching from trial to trial
on cue.

The study by Green et al. (2012) is not the only MRI study to
implicate the striatum in the SAT. In the study by Forstmann et al.
(2008), the BOLD signal in the pre-supplementary motor area
(pre-SMA) and the striatum was stronger in response to a pre-
trial cue indicating speed conditions in an RDM task, compared
to accuracy or neutral conditions. When individual subject’s
behavioral data were fit by a bounded accumulator model, the
magnitude of adjustments to the bound were positively corre-
lated with the BOLD signal in these areas, i.e., subjects whose
behavior was captured by larger adjustments showed greater
activation in pre-SMA and striatum. The strength of connec-
tivity between pre-SMA and striatum has also been correlated
with individual subjects’ adjustments to the bound in an RDM
task, i.e., subjects whose behavior was captured by larger adjust-
ments to the bound showed greater connectivity between these
areas, as determined by structual MRI (sMRI) (Forstmann et al.,
2010).

In the study by Ivanoff et al. (2008), human subjects performed
an RDM task with growing motion coherence under speed and
accuracy conditions. These authors classified their results accord-
ing to “baseline trials” and “coherence trials,” where the coherence
of moving dots was 0% (over a full trial) and greater than 0%
respectively. The underlying premise of this classification is that
baseline trials did not provide evidence for integration, but rather,

provided only noise; whereas coherence trials provided evidence
and noise. The BOLD signal in pre-SMA and posterior lateral
prefrontal cortex (plPFC) was higher on baseline trials under
the speed condition, and was higher on coherence trials under
the accuracy condition. Furthermore, the difference in activation
under speed and accuracy conditions on baseline trials was equal
and opposite to that on coherence trials across subjects, i.e., the
speed-minus-accuracy difference on baseline trials equaled the
accuracy-minus-speed difference on coherence trials. These data
suggest that baseline activity in these cortical regions determines
the amount of integrated evidence sufficient to make a choice.
In other words, the integrated evidence on coherence trials may
account for the difference in activation between speed and accu-
racy conditions. If so, this equal, opposite difference should be
found on a within-subject basis. It was found in pre-SMA, but
not in plPFC.

Ivanoff et al. (2008) further showed that on coherence tri-
als, a measure of subjects’ decision criteria [the criterion metric
of signal detection theory (Macmillan and Creelman, 1991)]
was correlated with the BOLD signal in plPFC, but not in pre-
SMA. This finding suggests that speed and accuracy conditions
modulate the amount of evidence integrated by plPFC. These
authors sub-classified their coherence trials according to the level
of coherence at the time of subjects’ decisions, defining “hits”
and “false alarms” as trials on which coherence was positive and
0% at decision time respectively. The BOLD signal in pre-SMA
was equal in both classes of trial. Under the assumption that
brain regions supporting the integration of evidence should show
greater activity on hits than false alarms (because there is evidence
to integrate), these data support the hypothesis that evidence
is not integrated in pre-SMA. Conversely, activation in plPFC
was greater on hits than false alarms, suggesting that plPFC sup-
ports integration in the task. Overall, the study by Ivanoff et al.
(2008) supports the hypothesis that pre-SMA plays an “adaptive
baseline” role in the SAT, determining the amount of evidence
integrated in cortical areas such as plPFC. Taken together, the
studies by Forstmann et al. (2008), Forstmann et al. (2010), and
Ivanoff et al. (2008) suggest that pre-SMA projects non-selectively
to the striatum, where this activity is added to selective inputs
from cortical integrator populations.

The above studies were extended by van Maanen et al.
(2011), who considered the mechanisms by which subjects switch
between response modes for speed and accuracy. Under speed
conditions, trial-to-trial changes in the BOLD signal in pre-SMA
were positively correlated with estimates of the starting point of
accumulation in a single-trial version of a bounded accumula-
tor model, in which the bound was fixed. In this case, a higher
starting point has the same effect as a lower bound, i.e., faster,
less accurate decisions. These data further support the hypothesis
that pre-SMA provides a non-selective control signal to the stria-
tum, governing the SAT. On trials that imposed a switch between
speed and accuracy conditions (in either direction), a positive
correlation was also found between BOLD changes in the ante-
rior cingulate cortex (ACC) and the starting point. Interestingly,
only switches from accuracy to speed were correlated with activa-
tion of the striatum, suggesting that switching between response
modes may be asymmetric, i.e., different mechanisms may
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mediate switching from a speed mode to an accuracy mode than
vice versa.

The study by van Maanen et al. (2011) further showed that
under accuracy conditions, BOLD changes in ACC were positively
correlated with changes in the starting point in their model, but
only on trials following an error. These data suggest that ACC may
contribute to an emphasis on accuracy, consistent with a neural
model of cortico-BG circuitry in which cortical conflict detection
excites the subthalamic nucleus (STN) (Frank, 2006; Frank et al.,
2007). Note that ACC is believed to play a role in conflict moni-
toring (Yeung et al., 2004). The model is based on earlier neural
models of action selection (Gurney et al., 2001), in which rewards
are associated with salient stimuli. In the model by Frank (2006),
conflict arises when multiple rewarding (or unrewarding) stimuli
occur simultaneously. Cortex detects this “conflict” and projects
to STN, which in turn prevents action selection by inhibiting
motor circuitry. The model thereby implements dynamic thresh-
old adaptation, increasing the amount of evidence sufficient to
make a choice during difficult decisions.

The underlying premises of this “STN hypothesis” (Bogacz
et al., 2010b) are further supported by studies of response inhibi-
tion in “stop-signal” tasks, in which subjects are cued to withhold
planned responses on a proportion of trials (Stop trials). The
“direct” and “hyperdirect” pathways have been correlated with
Go trials (without the stopping cue) and Stop trials respec-
tively (Aron and Poldrack, 2006), suggesting that activation of
the striatum speeds up responding and activation of STN slows
it down. These data therefore suggest that speed and accuracy
conditions may preferentially activate the direct and hyperdi-
rect pathways respectively (Figure 9A). As described above, speed
conditions have been correlated with fronto-striatal circuitry in a
number of neuroimaging studies of the SAT (Forstmann et al.,
2008; Ivanoff et al., 2008; Forstmann et al., 2010; van Maanen
et al., 2011). However, we are unaware of any study to show a
positive correlation between STN (activity or connectivity) and
accuracy conditions, or a negative correlation between STN and
speed conditions. The small size of STN may be a factor in this
regard. The present neuroimaging data can therefore be consid-
ered to support the notion that accuracy conditions correspond
to a “default” mode of decision making, modulated by speed
conditions (van Veen et al., 2008; van Maanen et al., 2011). If
so, switching between speed and accuracy response modes from
trial to trial would only need involve fronto-striatal circuitry,
as described above (Forstmann et al., 2008, 2010; Ivanoff et al.,
2008). The fMRI data by van Maanen et al. (2011) suggest a more
complex state of affairs, but it seems plausible that under this
“striatal hypothesis” (Bogacz et al., 2010b), some baseline level
of fronto-striatal activation corresponds to a default mode, where
speed and accuracy conditions increase and decrease activation
respectively.

4.3.3. Adjustments to the connectivity between integrators and
thresholding circuitry

The hypothesis that the SAT is supported by adjustments to
the connectivity between integrators and thresholding circuitry
(Figure 5G) has been implemented in a biophysically-based,
coupled-circuit model of eye-movement decisions (Lo and Wang,

2006). In the model, the integration of evidence occurs in cortex
and projects directly to the superior colliculus (SC) by excitatory
synaptic connectivity, and indirectly via the striatum and sub-
stantia nigra pars reticulata (SNr). Note that SC is extensively
correlated with eye-movement decisions (e.g., Dorris and Munoz,
1998; Thevarajah et al., 2009). SC is tonically inhibited by SNr, so
the latter pathway is disinhibitory. These authors assumed that
the pre-saccadic reduction in tonic SNr activity occurs abruptly,
rather than smoothly, so SC burst neurons were inactive in the
model until SNr was sufficiently inhibited by the striatum. As
such, burst neurons detected threshold-crossing by cortical inte-
grator neurons, and consequently, burst firing was much more
sensitive to changes in the conductance strength of cortico-striatal
synapses than cortico-SC synapses. By tuning the conductance
strength of cortico-striatal synapses between blocks of trials, the
model traded speed for accuracy. Stronger (weaker) conduc-
tance entailed lower (higher) integrator rates under speed (accu-
racy) conditions, but for a given conductance strength (a given
speed/accuracy condition), integrator rates were fixed across task
difficulty (Roitman and Shadlen, 2002; Churchland et al., 2008).
Note that the model does not appear suited to the trial-to-trial
switching of speed and accuracy modes on cue, owing to the
timescales of synaptic plasticity.

5. DISCUSSION AND CONCLUSIONS
Under the framework of bounded integration, there are three gen-
eral classes of hypothesis on the neural implementation of the
SAT: differential modulation of the encoding of evidence under
speed and accuracy conditions (Figure 5A), differential modula-
tion of the integration of encoded evidence (Figures 5B–D), and
differential modulation of the amount of integrated evidence suf-
ficient to make a choice (Figures 5E–G). The first category has
received the least attention, but the recent study by Heitz and
Schall (2012) provides strong evidence for the modulation of
sensory encoding (Section 4.1).

Hypotheses on the differential modulation of integration
under speed and accuracy conditions can be sub-classified
according to the rate (Section 4.2.1) and onset (Section 4.2.2)
of integration, and the sensitivity of integrator circuitry to the
encoding of evidence (Section 4.2.3). There is considerable evi-
dence for the first of these hypotheses. The rate of rise of puta-
tive integrator activity has been shown to increase and decrease
under speed and accuracy conditions respectively (Heitz and
Schall, 2012). This activity can be explained by attractor mod-
els (Figures 3, 7), in which speed (accuracy) conditions increase
(decrease) the rate of the evolution of competitive dynamics.
At least three neural models have demonstrated that a cognitive
signal could control the SAT in this manner by projecting non-
selectively to integrator circuitry, either by persistent mnemonic
activity (Furman and Wang, 2008; Roxin and Ledberg, 2008) or
by climbing activity encoding elapsed time relative to a deadline
(Standage et al., 2013).

Hypotheses on the amount of integrated evidence sufficient
to make a choice can be sub-classified according to adjust-
ments to non-evidence inputs to integrator circuitry (Section
4.3.1), adjustments of non-integrator inputs to thresholding cir-
cuitry (Section 4.3.2) and adjustments to the connectivity from
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integrator circuitry to thresholding circuitry (Section 4.3.3).
According to the first of these hypotheses, if choice behavior
requires a fixed level of activity by integrator neurons, then more
(less) evidence will be required to reach this fixed level if less
(more) common input is provided to all integrators. Attractor
models suggest that this mechanism may be impossible to dis-
entangle from the modulation of the rate of integration, since
an increase in spatially non-selective excitation decreases their
effective time constants, i.e., it increases the rate of integration.
Spatially non-selective excitation, however, is not necessarily syn-
onymous with a common input to integrators. The former entails
a common input to integrator neurons and other neurons in the
local circuitry not receiving evidence. The latter does not neces-
sarily include these other neurons. We are unaware of any studies
to systematically consider the modulation of recurrent dynam-
ics according to this difference, but the dynamics of attractor
networks are known to be influenced by the size of integrator
populations relative to the number of neurons in these networks
(Albantakis and Deco, 2009).

Our description of the role of BG in the adjustment of
non-integrator inputs to thresholding circuitry has not consid-
ered bidirectional connectivity between cortex and BG via the
thalamus, which complicates the interpretation of information
flow during decisions (Figure 9A). The different spatial profiles
of cortico-BG-thalamo-cortical loops further complicate things,
since information from different cortical areas may be processed
discretely within BG and returned to the areas of origin, may
be integrated within BG and returned to all regions of ori-
gin, or may be partially integrated (see Nambu, 2011). Further
to these complications, there are multiple processing pathways
though BG. The direct and hyperdirect pathways are described
above, but there is also an “indirect” pathway to the output
nuclei, via the external segment of the globus pallidus (GPe,
Figure 9A). GPe receives inhibitory projections from the stria-
tum and makes inhibitory projections to the output nuclei. The
indirect pathway thus “counteracts” the direct pathway, i.e., exci-
tation of the striatum disinhibits motor circuitry along the direct
pathway, while effectively inhibiting it via the indirect pathway
(dis-disinhibition). Interestingly, STN makes excitatory projec-
tions to GPe, so the hyperdirect pathway also has a counteracting
pathway, i.e., excitation of STN inhibits motor circuitry, but
also disinhibits it via GPe (see Nambu, 2011). Thus, interpret-
ing correlations between SAT behavior and activation of BG
input and output nuclei is complicated by the paths this activity
may follow, with each path supporting different computations.
Extensive discussion of these possibilities is beyond the scope
of this review, but assumptions about these and other anatomi-
cal factors influence the interpretation of the experimental data
presented here.

The possibility of “self-modulation” of decision dynamics
(Section 4.3.2) also warrants further comment. The cortico-BG
model by Frank (2006) includes a cortical conflict detection area
(potentially ACC) that raises the threshold for choice behavior
by projecting to STN. Thus, more difficult tasks more strongly
activate this area during decisions, raising the threshold. At first
glance, this possibility appears to conflict with bounded integra-
tor models in which reward rate is maximized by lowering the

bound during decisions (Ditterich, 2006a; Drugowitsch et al.,
2012). As noted in Section 4.2.1, lowering the decision crite-
rion reduces time-wasting because it speeds up decisions that
are more likely to be wrong, but this approach may not be ideal
under stringent accuracy conditions, e.g., when errors are pun-
ished by long timeouts. In this case, raising the criterion could
be the better strategy. This discrepancy highlights the potential
utility of separate mechanisms for speed and accuracy empha-
sis: it is not immediately clear how a single neural mechanism
could implement the within-trial increase in the bound under
accuracy conditions and decrease in the bound under speed
conditions.

5.1. PREDICTIONS FOR FUTURE EXPERIMENTS
Different classes of hypothesis on the SAT make different pre-
dictions for experimental testing, as do different models within
these classes. For instance, the hypothesis that the SAT is con-
trolled by adjustments to non-evidence input to integrator cir-
cuitry (Section 4.3.1) makes a different prediction about the rate
of integrator activity at the time of commitment to a choice
than the hypothesis that the SAT is controlled by adjustments to
non-integrator inputs to thresholding circuitry (Section 4.3.2) or
adjustments to the connectivity between integrator circuitry and
thresholding circuitry. Assuming a fixed current is required for
choice selection, adjustments to non-evidence input to integrator
circuitry imply the same rate of integrator activity at choice time
across task conditions, whereas an increase (decrease) in non-
integrator input to thresholding circuitry under speed (accuracy)
conditions implies a lower (higher) rate of integrator activity at
choice time, as does stronger (weaker) connectivity between these
circuits. The only available single-cell data conflict with the latter
mechanisms, showing a higher rate of putative integrator activity
under speed conditions (Heitz and Schall, 2012). These authors
showed that leakage by the circuitry enacting the choice could
account for the difference in rate, an explanation that supports
the former mechanism.

The conflict between the prediction of lower (higher) inte-
grator rates under speed (accuracy) conditions and electrophys-
iological data (Heitz and Schall, 2012) raises several points of
caution. Firstly, the experimental studies providing evidence for
the adjustment of non-integrator inputs to thresholding circuitry
employed perceptual tasks in which humans made their choices
by manually pressing a button (Forstmann et al., 2008, 2010;
Ivanoff et al., 2008; van Veen et al., 2008; Green et al., 2012),
whereas the electrophysiological data were recorded during a
task in which non-human primates made their choices with an
eye-movement. We are comfortable ignoring inter-species dif-
ferences at this stage of the game, but it is plausible that the
pathways from frontal regions to primary motor cortex are qual-
itatively different in relation to the SAT than those from FEF
to eye-movement circuitry (as in Heitz and Schall, 2012). On
the other hand, the striatal hypothesis (Section 4.3.2) does not
require that non-selective excitation of the striatum be provided
by the same cortical area across response modalities. Here, it is
worth noting that FEF projects directly to the circuitry mediating
eye movements, but also projects to this circuitry along a path-
way through the striatum, substantia nigra pars reticulata (SNr)
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and SC. Because SNr tonically inhibits SC, the latter pathway
potentially provides an eye-movement “version” of the striatal
hypothesis described above in the context of manual movements.
Suffice to say, it would be informative to run the RDM task used
by Forstmann et al. (2008) in an eye-movement paradigm.

Different models that account for the SAT by the modulation
of the rate of integration (Section 4.2.1) make different predic-
tions about the weighting of evidence during decisions. Stationary
attractor models (Furman and Wang, 2008; Roxin and Ledberg,
2008) predict a primacy effect (Wong et al., 2007), i.e., earlier
evidence is weighted more heavily than later evidence. In effect,
attractor dynamics amplify a decision variable, so earlier evi-
dence is subject to amplification for longer. This prediction by
stationary attractor models contrasts with that of bounded inte-
grator models dominated by leakage, which show a recency effect
because earlier evidence is subject to leakage for longer (see e.g.,
Usher and McClelland, 2001). In time-dependent attractor mod-
els (Standage et al., 2011, 2013), if the dynamics are weak at the
start of a trial, then a decision variable is dominated by early leak-
age and late amplification. As such, the evidence will be most
heavily weighted somewhere in the middle (see Standage et al.,
2011). The respective predictions of these models could be tested
by changing the strength of evidence at different times during
decision trials. At least one study has conducted such an exper-
iment, using an RDM task in which the coherence of the dots
changed during a brief window at different times (Kiani et al.,
2008). These authors found a primacy effect, but they used a
fixed-duration task with a flat hazard rate, i.e., subjects responded
on cue, but it was impossible to determine when the cue would
arrive. It would therefore have been impossible to encode elapsed
time relative to the cue. Running the same task with a fully
predictable duration would be highly informative.

5.2. EVIDENCE FOR LIMITED INTEGRATION
It is not universally assumed that the neural mechanisms underly-
ing decisions implement the principles of bounded integration as
described above (Section 3). In the model by Cisek et al. (2009),
momentary evidence is multiplied by elapsed time and a decision
is made when the resulting quantity exceeds a decision bound.
Because decisions would be susceptible to noise without tem-
poral integration, the authors proposed that noisy evidence is
low-passed filtered before being multiplied. A low-pass filter can
be thought of as a leaky integrator with a short time constant, so
the main difference between this “urgency-gating” model and a
leaky integrator with a decreasing bound (see Ditterich, 2006b)
is the length of the time constant of integration, i.e., how rapidly
the evidence is leaking. Cisek et al. (2009) argued that percep-
tual decisions in real-world environments are likely to depend on
fluctuating evidence, but integrators with long time constants are
not well-suited to these conditions. Consistent with these princi-
ples, they showed that the urgency-gating model could account
for behavioral data from a task with changing evidence, whereas
bounded integrator models could not. In effect, the bounded
integrators were not leaky enough.

Thura et al. (2012) extended this work by proposing that opti-
mal decisions are supported by the integration of novel informa-
tion only, where optimality was defined in terms of reward rate.

Formally, their model specifies the perfect integration of differen-
tiated evidence, where a decision is made when the running total
exceeds a decreasing bound. They showed that this procedure
is optimal under the assumption of non-independence between
sequential samples of evidence, which is likely to be the case in
most natural conditions, and they proposed that this optimal pro-
cedure can be approximated by the multiplication of low-pass
filtered evidence by a growing urgency signal. As such, the model
is equivalent to their earlier model (Cisek et al., 2009). Their mod-
els explain the SAT in tasks with changing evidence because longer
(shorter) intervals provide more (less) opportunity to integrate
changes in the evidence (novelty). Under the assumption that
response-time variability is primarily the result of between-trial
variability in attention, arousal and related factors (Carpenter and
Williams, 1995), their models further account for behavioral data
from traditional tasks with fixed (within-trial) mean evidence,
and they account for decision-correlated buildup activity (Section
3.1) under the assumption that this activity mainly reflects the
urgency to respond.

In proposing a neural approximation of the urgency-gating
model, these authors suggested that the timescale of (leaky)
integration is on the order of 100 ms, consistent with evidence
that perceptual decisions are based on information from a time
window on this order (see Thura et al., 2012), but difficult to
reconcile with the SAT on timescales of many hundreds of mil-
liseconds. For example, in the random dot motion task by Palmer
et al. (2005), accuracy was lower (higher) and decision times
were shorter (longer) under a speed (accuracy) condition, where
response times were as long as around 500 ms (2 s). Since the
only novel evidence was provided by stimulus onset, the urgency-
gating model would appear to predict shorter (longer) decision
times under speed (accuracy) conditions, with no change in accu-
racy, i.e., the integral would have reached its asymptote before
500 ms in either condition, so additional processing time would
not improve accuracy. Under the framework of attractor dynam-
ics, however, there is no discrepancy: local-circuit dynamics are
subject to modulation, where weak dynamics support a leakage
regime and stronger dynamics support a decision regime (Section
3.1.1). As such, modulation of network dynamics by a cognitive
signal (Section 4.2.1) can support a range of time constants in the
leakage or decision regimes (see Figure 7B). From this viewpoint,
cognitive signals projecting to integrator circuitry (or evidence-
encoding circuitry) are capable of supporting the effective time
constant required by a given context, from around 100 ms (Cisek
et al., 2009) to several seconds (Palmer et al., 2005). Under this
framework, weak dynamics may be a default mode for decision
circuitry under natural conditions (changing evidence), but cog-
nitively demanding tasks may recruit dynamics supporting longer
time constants.

The framework of attractor dynamics sheds further light on
the possible neural implementation of urgency-gating. A leaky
integrator with a short time constant could be implemented
by weak local-circuit dynamics, per the first processing stage of
Figure 4. In this regard, Thura et al. (2012) noted that the effect
of the urgency signal on the decision variables could be addi-
tive, not necessarily multiplicative. In the study by Standage et al.
(2011), a network model with weak dynamics was subject to gain
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modulation by a growing urgency signal, i.e., the urgency sig-
nal had a multiplicative effect on the decision process. Long time
constants were an emergent property of the network, suggesting
that a neural implementation of urgency-gating might require
additive input. The biophysically-based model by Standage et al.
(2013) suggests that this input would need to be spatially selec-
tive (targeting each decision variable, but not other local-circuit
neurons), since attractor dynamics (with long effective time
constants) emerged in their model with a non-selective signal
(Section 4.3.1). In principle, the urgency gating model could also
be implemented by the projection of the urgency signal to thresh-
olding circuitry, implementing a time-dependent version of the
striatal hypothesis (Section 4.3.2) with weak decision dynamics.
These and other possibilities require further investigation. Note
that there is ample evidence for urgency signals, i.e., climbing
activity encoding elapsed time (see Section 4.2.1). The ways in
which this activity may modulate decision processing are receiv-
ing considerable attention (Ditterich, 2006b; Churchland et al.,
2008; Cisek et al., 2009; Hanks et al., 2011; Standage et al.,
2011; Drugowitsch et al., 2012; Standage et al., 2013). Changing-
evidence tasks represent an important direction in the study of
the SAT and decision making more generally.

5.3. DISTRIBUTED INTEGRATION OF EVIDENCE AND THE SAT
The distributed nature of decision processing is an important
consideration for all three general classes of hypothesis. For the
most part, we have described putative integrator activity one cor-
tical area at a time [e.g., dlPFC (Kim and Shadlen, 1999), LIP
(Roitman and Shadlen, 2002; Thomas and Pare, 2007) and FEF
(Ding and Gold, 2012; Heitz and Schall, 2012)], highlighting the
rate of this activity at choice time in a given electrophysiological
experiment. It is likely that different decision-correlated cortical
areas encode different dimensions of a given task. Changes to the
profile of activity in these areas may therefore differ with task
conditions. For example, a higher (lower) rate of FEF movement
neurons under speed (accuracy) conditions (Heitz and Schall,
2012) may be accompanied by a lower (higher) rate of activity
in dlPFC and/or LIP. All three areas project (at least indirectly)
to the circuitry driving eye-movements. The distributed nature
of decision processing is well-appreciated by researchers in deci-
sion neuroscience, but it is often implicit in electrophysiological
studies (and studies based on electrophysiological data) that the
relevant decision variable is the one being recorded. There are
good reasons for choice thresholds to be fixed (see Marshall et al.,
2012), but a fixed choice threshold need not imply a fixed rate
of decision-selective activity in each of the brain regions project-
ing to the relevant motor circuitry. Rather, the aggregate input to
the motor circuitry may be fixed, with varying contributions from
upstream areas in different conditions.

To further complicate matters, decision-correlated brain areas
are often bidirectionally coupled (e.g., FEF, LIP, and SC), so these
areas presumably modulate each other during decisions. It is
therefore plausible that in a given area, spike rates may indeed be
fixed at the time of commitment to a choice, but that peak rates
reflect the post-decision dynamics of choice behavior (see Simen,
2012). In light of these considerations, there is a need for electro-
physiological recordings from multiple decision-correlated areas

under speed and accuracy conditions, e.g., dlPFC, LIP, and/or FEF
during eye-movement tasks. The different ways in which deci-
sion variables in these areas are modulated by speed and accuracy
conditions will not only be informative about the contributions
of these areas to the SAT, but also about the roles they play in
decision making more generally.

Similarly, the decision dynamics described above (Section
3.1.1) are based on single-circuit models, i.e., local-circuit
integration of inputs from upstream, evidence-encoding neurons.
We are unaware of any neural modeling studies to systematically
consider the dynamics of bidirectionally-coupled decision cir-
cuits. It is clear that single-circuit attractor models cannot provide
a full account of decision making. For example, these models nec-
essarily produce longer error trials than correct trials (see Wong
and Wang, 2006; Standage et al., 2011), but correct trials are
longer under some task paradigms (see Ratcliff and Smith, 2004).

5.4. A UNIFYING PERSPECTIVE
We have described the above hypotheses one at a time, largely in
isolation from one another, but as indicated in Section 4, these
hypotheses should not be considered mutually exclusive. The
electrophysiological data by Heitz and Schall (2012) are revealing
in this regard, providing evidence for the modulation of sensory
encoding, the rate of integration and the strength of non-evidence
inputs to integrator circuitry. These data are consistent with
the hypothesis that a cognitive signal projects non-selectively to
sensory-encoding populations and integrator populations, con-
trolling the SAT by gain modulation. Such a signal could be
implemented by dlPFC (van Veen et al., 2008; Wenzlaff et al.,
2011). It is possible that such a signal also projects to threshold-
ing circuitry. Unlike non-selective input to integrator circuitry,
which controls integration times in attractor models (Furman
and Wang, 2008; Roxin and Ledberg, 2008; Standage et al., 2013),
non-selective input to thresholding circuitry may have a negli-
gible effect on local-circuit dynamics, given the already-strong
dynamics hypothesized to support the implementation of thresh-
olds (Simen, 2012). Such a cognitive signal could also project to
pre-motor regions [e.g., pre-SMA (Forstmann et al., 2008, 2010;
Ivanoff et al., 2008)], raising their baseline rates, in turn lowering
motor thresholds for choice behavior. This description of the SAT
assumes that the cognitive signal is present in neutral conditions,
where its rate increases and decreases under speed and accuracy
conditions respectively. This hypothesis unifies much of the data
presented above and is depicted in Figure 9B.

Despite the long history of behavioral data describing the SAT,
these are early days in its mechanistic study (Bogacz et al., 2010b).
Recent electrophysiological (Heitz and Schall, 2012), neuroimag-
ing (Forstmann et al., 2008, 2010; Ivanoff et al., 2008; van Veen
et al., 2008; Wenzlaff et al., 2011; Green et al., 2012; Ho et al.,
2012) and biophysically-based modeling (Lo and Wang, 2006;
Furman and Wang, 2008; Standage et al., 2013) studies are exem-
plary of the promising methods being brought to bear on this
fundamental cognitive phenomenon.
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