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Editorial on the Research Topic

Integration of Machine Learning and Computer Simulation in Solving Complex Physiological
and Medical Questions

BACKGROUND

This Research Topic, “Integration of Machine Learning and Computer Simulation in Solving Complex
Physiological and Medical Questions”, brings together two powerful computational approaches to
investigate complex disease processes: the use of high-fidelity, mechanism-based simulation models
(MSMs), and the training of artificial neural networks (ANNs) via machine learning (ML) and artificial
intelligence (AI). These two approaches represent distinct aspects of the scientific process:ML/AI involves
correlation identification/hypothesis generation whereas MSMs provide an in silico means for hypothesis
testing and conceptual model verification, with capabilities that can complement and address each other’s
limitations. High-fidelityMSMs can contain very large numbers of parameters, which poses challenges to
effective parameterization and/or parameter space exploration, and can present prohibitive
computational costs in terms of executing simulation experiments. Alternatively, ML/AI approaches
are notoriously data-hungry (a considerable issue when dealing with biological data sets that are generally
orders of magnitude more sparse compared to other ML applications), are highly limited in terms of
testing inferred causal relationships, and are often “black boxes” in terms of interpreting why the ANNs
do what they do. This Research Topic brings together work that integrates MSM and ML in a
complementary fashion.We have organized these papers in the following general classes of investigation.

APPLICATIONS OF INTEGRATED ML AND MSM IN
PERSONALIZED MEDICINE

The ostensible goal of the practice of medicine is to treat sick individuals with the right drug and the
right time, and be able to have such a treatment regimen for every sick patient. MSMs can serve as
“digital twins” of individual patients and provide a means of virtually forecasting their future disease
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course, or, with future developments, aid in personalizing
potential therapies. Implicit in this process is the need to
capture disease trajectories over time (i.e., integrating time
series data), which challenges data-hungry pure ML
approaches, but also requires tuning a simulation model to a
specific person’s “parameters.” Kuruvila et al. combined
convolutional neural network (CNN) and long short-term
memory (LTSM) models to infer a listener’s auditory attention
in noisy acoustic environments. CNNs were trained with
experimental data of electroencephalography (EEG) and
speech spectrograms from speakers. The CNN outputs then
parsed to the bidirectional LSTM and the auditory attention to
speakers were classified. Their results supported the integration of
listener-specific EEG signals into ML-powered hearing aids that
will help listeners attend to speech signals in noisy scenarios.
Schafer et al. applied physics-based network diffusion models to
simulate the propagation of misfolded tau proteins in three brain
regions of patients with Alzheimer’s disease. Hierarchical
Bayesian Inference models were used to obtain posterior
probability distributions for two personalized model
parameters, namely, the diffusion coefficient and production
rate of tau proteins. Personalized models of tau pathology with
capability of predicting tau evolution and their associated
cognitive functions would be of great use in creating virtual
patient controls for clinical trials. van Duuren et al. combined
bi-objective evolutionary algorithm (EA) and an established
microsimulation model for personalized colorectal cancer
screening. EA was used to find personalized screening policies
in minimizing the costs while maximizing the number of Quality-
Adjusted Life Years gained. Their study results supported the use
of computer models to guide policy making and implementation
of personalized colorectal cancer screening.

MACHINE LEARNING AS SURROGATE
MODELS OF COMPLEX MECHANISTIC
MODELS
Developing “lighter weight” surrogate models of complex MSMs
would enhance the computational efficiency of simulation
experiments. ANNs, as governed by the universal
Approximation Theorem (Hornik et al., 1989) are able to
recapitulate any generative function and are therefore
appealing means of creating surrogate models. Quetzalcóatl
Toledo-Marín et al. applied this principle to partial differential
equation (PDE) models of biological diffusion. In this case, there
is considerable improvement in performance with the surrogate
ANN, which allows for both greater complexity of the MSM and
more extensive exploration of possible behaviors with simulation
experiments. Alternatively, there are types of MSMs that do not
have a readily accessible equation form, primarily agent-based
models (ABMs). Larie et al. uses ABM simulation data to create a
surrogate ANN, but with certain caveats related to properties
often found in biomedical ABMs. Firstly, in contrast to
deterministic equation-based models, instead of specific

trajectories ANN surrogates of ABMs generate a probabilistic
“cone” of future trajectories (ala hurricane path prediction). As
such, any attempt to use such surrogate models needs to account
for this projected uncertainty with updating to produce a rolling
forecast horizon. Secondly, the ANN of the ABM also shows the
property of path non-uniqueness, which has implications
regarding attempts to “reverse engineer” particular pathway or
causal network structures from biological data.

ML-BASED PARAMETER SPACE
CHARACTERIZATION METHODS FOR
HIGH-FIDELITY MSMS
Complex medical problems require complex solutions. However,
there is a tension between using models simple enough to readily
parameterize but do not capture key details necessary for clinical
utility versus sufficiently expressive but highly complex models
with a host of parameters that may not be accessible
experimentally. ML methods have thus been applied to the
problem of parameter space characterization and uncertainty
quantification (Granato and Li-Jessen, 2020) through Model
Exploration (ME) (Ozik et al., 2018) methods, such as Random
Forest (Garg et al., 2019). Alarid-Escudero et al. utilized the
Extreme-scale Model Exploration with Swift (EMEWS)
framework for high performance computing (HPC) enabled ME
to characterize how experimentally unidentifiable parameters
affected the performance of microsimulation decision models
regarding the natural history of colorectal cancer (CRC).
Leaving these known factors out of a decision model would
lead to an intuitively inferior model, and therefore this group
used EMEWS to infer regions of identifiable parameter space that
produced clinically relevant alterations in the decision model
outputs. A different perspective is presented in the paper by
Cockrell & An using genetic algorithms (GA) to calibrate a
complex ABM. This study introduces a formal mathematical
object, the Model Rule Matrix (MRM), intended to account for
the inherent “incompleteness” of anymechanism-based simulation
model by accounting for all the possible “missing connections” as
model parameters. Therefore, as opposed to “parameter fitting”
that attempts to reduce experimental/clinical data variation, this
approach expands the range of allowable model parameterizations
given real-world observations.

CONCLUSION

Future work will invariably continue leveraging the strengths of
MSMs and ML to offset their inherent limitations. Moving
forward, we note multiple open challenges remain, two of
which we briefly note:

• The use of synthetic data is ubiquitous in most non-
biomedical applications of ML/AI. This need is even more
pronounced given the relative sparsity of biological data.
However, given the universal Approximating capabilities of
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ANNs, care must be taken when generating biological time
series data such that the ANN does not only “learn” to the
generative model. Therefore, developing means to “hide” the
generative model from the ANN is a crucial area of
investigation and development. The paper in this Research
Topic by Cockrell & An begins to address this issue.

• Onemain concern regarding the use ofML/AI in biomedicine is
the opacity of these systems. “Explainable” or “interpretable”AI
is a key research topic in the general AI community. The use of
MSMs to generate synthetic data can aid in addressing the
transparency issues, as the MSMs are explicitly transparent (by
virtue of their programmed structure) and essentially represent
the conceptual-symbolic model that many consider a necessary
component of next generation AI systems. (Garcez and Lamb,
2020).

We hope that the papers in this Research Topic will help spur
additional developments and applications in what we consider to
be an essential set of methods to better understand and treat
complex medical diseases.
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Deep Learning in Automatic Sleep
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This study centers on automatic sleep staging with a single channel
electroencephalography (EEG), with some significant findings for sleep staging. In
this study, we proposed a deep learning-based network by integrating attention
mechanism and bidirectional long short-term memory neural network (AT-BiLSTM) to
classify wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep
stages N1, N2 and N3. The AT-BiLSTM network outperformed five other networks and
achieved an accuracy of 83.78%, a Cohen’s kappa coefficient of 0.766 and a macro
F1-score of 82.14% on the PhysioNet Sleep-EDF Expanded dataset, and an accuracy
of 81.72%, a Cohen’s kappa coefficient of 0.751 and a macro F1-score of 80.74%
on the DREAMS Subjects dataset. The proposed AT-BiLSTM network even achieved
a higher accuracy than the existing methods based on traditional feature extraction.
Moreover, better performance was obtained by the AT-BiLSTM network with the frontal
EEG derivations than with EEG channels located at the central, occipital or parietal
lobe. As EEG signal can be easily acquired using dry electrodes on the forehead, our
findings might provide a promising solution for automatic sleep scoring without feature
extraction and may prove very useful for the screening of sleep disorders.

Keywords: deep learning, single channel electroencephalography, automatic sleep staging, bidirectional long
short-term memory, attention mechanism

INTRODUCTION

Sleep is important for the optimal functioning of the brain and the body (Czeisler, 2015). However,
a large number of people suffer from sleep related disorders, such as sleep apnea, insomnia and
narcolepsy (Ohayon, 2002). Effective and feasible sleep assessment is essential for recognizing sleep
problems and making timely interventions.

Sleep assessment is generally based on the manual staging of overnight polysomnography
(PSG) signals, including electroencephalogram (EEG), electrooculogram (EOG), electromyogram
(EMG), electrocardiogram (ECG), blood oxygen saturation and respiration (Weaver et al., 2005), by
trained and certified technicians. According to the American Academy of Sleep Medicine (AASM)
manual (Iber et al., 2007), sleep can be staged as wakefulness (WAKE), rapid eye movement
(REM) sleep and non-REM (NREM) sleep, which is further divided into three stages, N1, N2
and N3. Usually, it takes about 2–4 h for a technician to mark an overnight (lasting about 8 h)
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PSG. The time-consuming nature of manual sleep staging
hampers its application on very large datasets and limits related
research in this field (Hassan and Bhuiyan, 2016a). Moreover,
the inter-scorer agreement is less than 90% and its improvement
remains a challenge (Younes, 2017). The multiple channels
of PSG also present drawbacks preventing wider usage for
the general population, due to complicated preparation and
disturbance to participants’ normal sleep. Therefore, the past
decades have witnessed the growth of automatic sleep staging
based on single-channel EEG (Liang et al., 2012; Ronzhina et al.,
2012; Aboalayon et al., 2014; Radha et al., 2014; Zhu et al., 2014;
Wang et al., 2015; Hassan and Bhuiyan, 2016a, 2017; Boostani
et al., 2017; Phan et al., 2017; Silveira et al., 2017; Tian et al., 2017;
Lngkvist and Loutfi, 2018; Seifpour et al., 2018; Sors et al., 2018;
Tripathy and Acharya, 2018). These methods may eventually lead
to a sufficiently accurate, robust, cost-effective and fast means of
sleep scoring (Wang et al., 2015).

In the field of machine learning, deep networks are drawing
more and more attention because they can learn from data
directly without manual feature extraction (Lecun et al., 2015;
Tsinalis et al., 2015; Dong et al., 2016; Supratak et al., 2017;
Zhang and Wu, 2017; Bresch et al., 2018; Malafeev et al.,
2018; Stephansen et al., 2018). There are many useful and well-
established deep networks for the data mining of time series,
such as the convolutional neural network (CNN) (Lecun and
Bengio, 1997) and recurrent neural network (RNN) (Elman,
1990). Although CNN has mainly been applied in automated
recognition of images, its application in the analysis of time
series has also been notable (Chambon et al., 2018; Cui et al.,
2018; Zhang and Wu, 2018; Yildirim et al., 2019). That said,
it is generally demonstrated that RNN has better performance
than CNN for the analysis of time series (Fiorillo et al., 2019).
One of the most widely used RNN is the Long Short-Term
Memory (LSTM) neural network, which is capable of capturing
the long-term dependent information underlying the temporal
structure of the time series (Hochreiter and Schmidhuber, 1997).
Furthermore, bidirectional LSTM (BiLSTM), composed of two
unidirectional LSTMs, can read data from both ends of the time
series and is able to make full use of information embedded
in both directions of the time series (Schuster and Paliwal,
1997). Moreover, the concept of attention is arguably one of
the most powerful in the deep learning field nowadays. It is
based on a common sense intuition that we “attend to” a
certain part when processing a large amount of information.
This simple yet powerful concept has led to many breakthroughs,
not only in natural language processing tasks, such as speech
recognition (Jo et al., 2010) and machine translation (Ferri
et al., 2012; Karpathy and Fei-Fei, 2014; Hassan and Bhuiyan,
2017), but also in time series analysis. Recently, Zhang et al.
(2019) proposed an attention-based LSTM model for financial
time series prediction and a comparative analysis conducted by
Hollis et al. (2018) further demonstrates that an LSTM with
attention indeed outperforms a standalone LSTM for forecasting
financial time series.

The application of deep neural networks for automatic sleep
staging is soaring (Table 1). The PhysioNet Sleep-EDF Expanded
(PSEE) dataset (Goldberger et al., 2000; Kemp et al., 2000) was

the most widely employed dataset in related studies. As shown in
Table 1, Tsinalis et al. (2016) and Phan et al. (2019) reported an
accuracy of 74.0% and 81.9% respectively, for 5-class sleep staging
of the PSEE dataset with a CNN algorithm, while Supratak
found that the combination of CNN and BiLSTM increased the
accuracy to 82.4% (Supratak et al., 2017). There are also some
datasets aside from PSEE that are routinely employed in studies
of automatic sleep staging with a single-channel EEG and deep
learning algorithms. Hsu et al. (2013) built an RNN model on
the PhysioNet Sleep-EDF (PSE) dataset and achieved an accuracy
of 87.2%. On the Montreal Archive of Sleep Studies (MASS)
dataset, Phan et al. (2019) built a CNN model and achieved an
accuracy of 83.6% while Supratak et al. (2017) built a CNN-
LSTM model and obtained an accuracy of 86.2%. A CNN was
also applied on the Sleep Heart Health Study (SHHS) dataset,
yielding an accuracy of 87% (Sors et al., 2018). However, few
works investigated whether the performance of sleep staging
can be further improved by the combination of BiLSTM and
the attention mechanism. Aside from that, there is a lack of
comparison between the performance of deep learning based and
conventional feature extraction based models.

Although deep learning algorithms have shown themselves
promising in automatic sleep staging with a single-channel
EEG, few studies investigated whether the performance of such
algorithms is sensitive to the choice of EEG channel. Therefore,
in this study, the PSEE dataset and the DREAMS Subjects (DRM-
SUB) dataset (Devuyst, 2005) were used. Both datasets have
more than one channel of EEG and the DRM-SUB dataset
was involved in many automatic sleep staging studies with
conventional feature extraction (Hassan and Bhuiyan, 2016a,
2017; Ghimatgar et al., 2019; Shen et al., 2019). A neural
network named AT-BiLSTM was proposed, which uses the neural
attention mechanism of the BiLSTM to classify sleep stages.
For comparison, five other networks, CNN, LSTM, BiLSTM,
the combination of CNN and LSTM (CNN-LSTM), and the
combination of CNN and BiLSTM (CNN-BiLSTM) were also
trained and tested. Our aims are threefold: first, to investigate
whether AT-BiLSTM can achieve the highest performance among
these networks; second, to confirm whether RNN algorithms
(i.e., LSTM and BiLSTM) outperform CNN in sleep staging
with single channel EEG; third, to explore whether the method
of making hybrid networks further improves the performance
of sleep staging.

MATERIALS AND METHODS

Datasets
The data analyzed in this study were obtained from two
open-access datasets: the DRM-SUB dataset and the PSEE
dataset. The DRM-SUB consists of 20 whole-night PSG
recordings (lasting 7–9 h) obtained from 20 subjects (four
males and 16 females, 20–65 years old). Three EEG channels
located in different lobes (Cz-A1, Fp1-A1 and O1-A1) were
included in DRM-SUB, with a sampling rate of 200 Hz.
To investigate the impact of the choice of EEG derivations
on the performance of automatic sleep staging, EEG
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TABLE 1 | An overview of the application of deep networks on sleep staging.

Authors Dataset Channel Model Accuracy

Tsinalis et al. PSEE Fpz-Cz CNN 74.0%

Phan et al. PSEE Fpz-Cz CNN 81.9%

Supratak et al. PSEE Fpz-Cz CNN-BiLSTM 82.4%

Hsu et al. PSE Fpz-Cz RNN 87.2%

Phan et al. MASS C4-A1 CNN 83.6%

Supratak et al. MASS F4-EOG (Left) CNN-BiLSTM 86.2%

Sors et al. SHHS C4-A1 CNN 87.0%

TABLE 2 | Data distribution of sleep stages in both datasets.

Dataset Total epochs WAKE (%) N1 (%) N2 (%) N3 (%) REM (%)

PSEE 41663 19.2 6.6 42.2 13.4 18.5

DRM-SUB 20265 17.6 7.3 40.7 19.4 14.9

signals from all three channels were used separately for the
following analysis.

Twenty healthy subjects (10 males and 10 females, 25–
34 years old) from the PSEE dataset were also included. There
are two EEG channels (Fpz-Cz and Pz-Oz) available in the
PSEE dataset, with a sampling rate of 100 Hz. For each
subject, two PSGs of about 20 h each were recorded during
two subsequent day-night periods at the subjects’ homes. In
order to remain consistent with previous studies (Supratak
et al., 2017), for each subject and each PSG, only the data
from 30 min before sleep-onset (i.e., the first sleep epoch
after light-off in the evening) and 30 min after the last sleep
epoch in the morning were included. Both channels were
investigated separately.

For both datasets, labels of sleep staging for each 30-s EEG
epoch were provided by the data distributors according to AASM
rules. Five staging classes, i.e., WAKE, N1, N2, N3, and REM were
used in this study. The distribution of 30-s EEG epochs of both
datasets is illustrated in Table 2.

Construction of the AT-BiLSTM Network
The proposed AT-BiLSTM network architecture for automatic
sleep staging is illustrated in Figure 1. It is composed
of two main components, three stacked BiLSTM layers for
feature exacting and one attention layer to weight the most
relevant parts of the input sequence. According to a preset
parameter, called the input dimension m, each raw 30-s
EEG epoch is divided into multiple vectors, which are fed
into the BiLSTM part sequentially to construct a feature
matrix. Then to emphasize the different importance of different
vectors, an attention layer is applied in the intra-epoch feature
learning and summarizes the outputs of the BiLSTM part
with different weights. Finally, the probability of each sleep
stage can be derived from a fully connected (FC) layer and
a softmax layer.

Given a 30-s EEG epoch X [x1,x2,,xN] with N data points,
a moving window with input dimension of m is applied to X
without overlap, leading to the matrix form of X, as shown in
Equation 1, where n equals to N/m and Xt represents the vector

in time step t.

X1
X2
...

Xt
...

Xn


=



x1 x2 · · · xm
xm+1 xm+2 · · · x2m

...
... · · ·

...

x(t−1)m+1 x(t−1)m+2 · · · xt×m
...

... · · ·
...

x(n−1)m+1 x(n−1)m+2 · · · xn×m


t ∈ [1, n] (1)

All the vectors are fed into the first BiLSTM layer, forward and
backward respectively. For time step t, the output of the forward
or backward network, denoted as hf

t or hb
t , can be obtained,

respectively, according to Equation 2 or 3.

hf
t = σ(Wfxxt +Wffhf

t−1 + bf ) (2)

hb
t = σ(Wbxxt +Wbbhb

t−1 + bb) (3)

where σ is the logistic sigmoid function, W is the weight matrix
(e.g., subscription “fx” in W represents the forward network of
xt) and b is the bias vector of the network (bf and bb represents
the bias vector of forward and backward network, respectively).

The weighted sum of hf
t and hb

t , denoted as ht, is computed as
the output of the first BiLSTM layer following Equation 4.

ht = Whfhf
t +Whbhb

t + bh (4)

The output of the previous BiLSTM layer is fed into the next
layer in the same way. The third layer gives the final output of
the BiLSTM part, which is weighted by the attention layer before
feeding into the FC layer. Considering that EEG signal in different
time steps should contribute differently to the classification task,
it is rational to give strong weights to the more discriminative
parts and vice versa. Formally, the attention weight at at the time
step t is computed according to Formula (5) – (6).

ut = tanh(wwht + bw) (5)

at =
exp(uT

t uw)∑
t exp(uT

t uw)
(6)
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FIGURE 1 | Illustration of the proposed AT-BiLSTM network architecture for
automated sleep staging. The network consists of a BiLSTM part, an attention
layer, a full-connected (FC) layer and a softmax layer. The input of the network
is a raw 30-s EEG time series and the output is the probability of each sleep
stage. The dashed rectangle on the EEG time series represents a vector of
EEG signals at a time step.

In Formula (5)–(6), ut represents the state of the hidden
layer obtained from a simple neural network, uw represents a
weight vector randomly initialized, at represents the similarity
betweenut and uw obtained by softmax function.

st =
∑

t
atht (7)

By weighting and summing the output of the BiLSTM part, the
attention vector, denoted as st, can be obtained and fed into
FC layer, preceding to the softmax layer which finally yields the
probability of each sleep stage.

Construction of Baseline Networks
Apart from the proposed AT-BiLSTM network, we also
constructed five baseline networks, including three single

networks, i.e., CNN, LSTM and BiLSTM, and two hybrid
networks, i.e., CNN-LSTM and CNN-BiLSTM.

Single Networks
Figure 2A illustrated the CNN topology used in this study, which
is fed with a matrix reconstructed from a raw 30-s EEG epoch
according to Equation 1. It consists of three convolution blocks
and three max pooling layers. Each convolutional block contains
a one-dimensional convolutional layer and a rectified linear unit
(ReLU) activation layer. The input matrix is padded with zeros
to ensure that the number of rows in the matrix is constant
during the convolutional process. The output of CNN is fed into
a FC layer, then activated by softmax function to obtain the sleep
stage probability.

Two scenarios were considered in single RNN network. In the
first scenario, three layers of LSTMs were stacked, also followed
by a FC layer and a softmax layer. The second scenario employed
stacked BiLSTM layers instead of the LSTM layers.

Hybrid Networks With CNN and RNN
As shown in Figure 2B,C, a CNN part followed by an RNN part
was adopted in the hybrid networks, in order to make use of
RNN for further processing the features extracted by CNN. The
structures of the CNN part and RNN part are the same with the
single networks aforementioned.

Datasets Splitting Strategy
Machine learning algorithms require independent training and
test sets for model training and performance evaluation. Also,
k-fold cross validation is preferred in application. Generally,
there are two types of training data partitioning for clinic data:
subject-wise and epoch-wise (Figure 3). For the subject-wise
method, all the subjects were split into k folds equally and onefold
is taken as the test set in turn while the remains as the training
set. For the epoch-wise method, all the 30-s EEG epochs from
all the subjects were merged and then split into k equal folds
for each stage randomly. That is, for each sleep stage, all the 30-
s EEG epochs from all the subjects were collected and divided
into k folds. Consequently, the epochs of a subject may appear
in both the training and test set, violating the independence
between the training and test set and contributing to a virtual
high performance. Thus, in the present study, the subject-wise
method with fivefold cross validation was adopted. The model
was trained using the training set and evaluated using the test set.
Finally, all evaluation results were combined.

Experimental Setting and Network
Optimization
Using the first fold as the test set, the network parameters, such
as the input dimension, the number of hidden units in each
LSTM/BiLSTM/convolutional layer, and the filter/stride size of
each convolutional layer and pooling layer, were determined by
a grid-search to minimize the errors of networks with Python 3.6
and TensorFlow v1.15.0 (Abadi et al., 2016). The standard cross-
entropy loss was used as the loss function in model training due
to its good performance in measuring the errors of networks with
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FIGURE 2 | Structure of the baseline networks for sleep staging: (A) the CNN network, (B) the CNN-LSTM network and (C) CNN-BiLSTM network. The CNN
network consists of a CNN part, a full-connected layer and a softmax layer. In the CNN part, there are three convolution layers and three max pooling layers. Each
convolution layer has 256 filters with a size of 7 × 1 each and each pooling layer has one filter of size 5 × 1. A rectified linear unit (ReLU) follows the convolution layer
and precedes the pooling layer. The CNN part in panels (B,C) has the same topology with panel (A). For the LSTM/BiLSTM part, there are three stacked
LSTM/BiLSTM layers with each layer consists of 256 memory cells. The target for all the networks was the probability of each sleep stage.

FIGURE 3 | Schematic diagram for the dataset splitting of training and test set: (A) subject-wise method; (B) epoch-wise method. For the subject-wise method, all
the 30-s EEG epochs from a subject will be included in the training set or the test set as a whole while for the epoch-wise method, the epochs of a subject may
appear in both the training and test set.

discrete targets (Boer et al., 2005). Each network was trained for
30 epochs with a mini batch size of 64 sequences. As a result,
the input dimension m was set as 5, the number of hidden units
as 256, and the stride size for both convolution layers and max
pooling layers as 1 × 1. The filter size of each convolutional

layer and max pooling layer in CNN were set to 1 × 7 and
1× 5 respectively.

For backpropagation, the adaptive moment estimation
(ADAM) algorithm was adopted because it solves the
optimization problem in non-stationary conditions and
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works faster than the standard gradient descent algorithm and
the root mean square propagation (Kingma and Ba, 2017). The
main hyper-parameters used for ADAM algorithm were set
as: learning rate (α = 0.001), gradient decay factor (β1 = 0.9),
squared gradient decay factor (β2 = 0.999), and epsilon (ε = 10–8)
for numerical stability. Moreover, a dropout layer before the
last FC layer was used to avoid over-fitting and its dropout rate
was set to 0.2, leading to 20% of the weights dropped during
the training phase.

Performance Metrics
Overall metrics, including accuracy, macro F1-score (MF1) and
Cohen’s kappa (κ) were used to evaluate the performance of each
model. Performance on individual sleep stages was also assessed
via class-wise precision and sensitivity.

Cohen’s kappa coefficient is a statistical measure of inter-
rater agreement for categorical items (Cohen, 1960). When two
persons (algorithms or raters) try to evaluate the same data,
Cohen’s Kappa coefficient, κ, is used as a measure of agreement
between their decisions. In this study, it measures the amount of
agreement between the output of the proposed algorithm and the
provided labels of sleep stages.

Another metric used for performance evaluation here is
the area under the receiver operating characteristics (ROC)
curve, called AUC. The ROC curve is a graphical tool and
demonstrates the classification performance by plotting the true
positive rate (TPR) against the false positive rate (FPR) at
different classification thresholds (Zweig and Campbell, 1993).
Furthermore, it provides a convenient way for selecting the
threshold that provides the maximum classification TPR while
not exceeding a maximum allowable FPR level (Kim et al.,
2019). For an n- class classification task, n ROC curves can be
obtained by splitting the task into n binary classification tasks.
For each binary classification task, its AUC value can be used
as a class-wise measure of performance and the macro-average
AUC of these tasks can be regarded as an overall metric for the
performance evaluation.

RESULTS

Table 3 shows the overall performance of different networks
on the PSEE dataset. The proposed AT-BiLSTM network
outperforms other networks with overall accuracy, κ, MF1

and MAUC of 83.78%, 0.766, 82.14% and 97.45% on channel
Fpz-Cz, respectively and an overall accuracy, κ, MF1 and
MAUC of 80.79%, 0.731, 79.27% and 96.33% on channel Pz-
Oz, respectively. The AT -BiLSTM network performs better than
the other networks overall. For the single networks, the RNN-
based networks outperform the CNN network while the results of
BiLSTM and LSTM are comparable. The hybrid networks further
improve the overall performance compared to the single models.
Moreover, AT-BiLSTM achieves better precision and sensitivity
on N3 and REM than the hybrid networks with CNN and RNN,
although they have a comparable performance on stages Wake,
N1 and N2. Furthermore, better performance is found in Fpz-
Cz than Pz-Oz channel, regardless of the network topology used,
indicating EEG derived from the frontal lobe is more valuable
than those from the parietal lobe in sleep staging.

Table 4 shows the performance of different networks on the
DRM-SUB dataset. The AT -BiLSTM network still outperforms
other networks, suggesting its good generalization in sleep
staging. Consistent with the results in PSEE dataset, the frontal
EEG channel (Fp1-A1 here) achieves the best performance. The
results are in line with a recent work, which found that EEG
signals from an Fp1-A1 channel yielded higher accuracy values in
automatic sleep staging than those of a Cz-A1 or O1-A1 channel
(Ghimatgar et al., 2019).

Figure 4 illustrates the hypnograms labeled manually by a
clinical technician of sleep and by the trained AT-BiLSTM model.
The corresponding EEG recoding was obtained from the first
person in PSEE dataset (SC4001E0), who spent 7 h during
sleep. Noting that the subject is located in the test set for the
trained model. The accuracy of the automatic sleep staging for
this subject is 87.30%, showing considerable reliability of the
proposed AT-BiLSTM network. Most of the wrong classifications
were made during the transitions from one stage to another.

Table 5 shows the class-wise performances obtained on the
PSEE dataset. For most stages, better performance is achieved by
the AT-BiLSTM model than the baseline networks and Fpz-Cz
channel outperforms the Pz-Oz one. Although the classification
accuracy of stage N1 is significantly lower than that of the other
stages, which might due to the small percentage of N1 during
sleep, it is higher than those reported in previous studies (Hsu
et al., 2013; Supratak et al., 2017). Similar findings can be found
on the DRM-SUB (Table 6).

Furthermore, ROC curves were used to compare
the performances of the proposed AT-BiLSTM model

TABLE 3 | The overall performance of different networks on the PSEE dataset (value in bold represents for the best among all the networks).

Networks Fpz-Cz Pz-Oz

Acc. κ MF1 AUC Acc. κ MF1 AUC

AT-BiLSTM 83.78 0.766 82.14 96.08 80.79 0.731 79.27 93.63

CNN 78.84 0.706 76.10 92.89 76.45 0.669 74.56 89.91

LSTM 81.59 0.747 79.25 95.36 79.02 0.706 75.92 92.14

BiLSTM 81.48 0.740 80.13 93.78 78.95 0.707 77.44 91.81

CNN-LSTM 82.58 0.759 80.40 93.96 79.51 0.718 76.44 92.36

CNN-BiLSTM 82.58 0.759 81.15 94.67 79.37 0.710 77.92 92.70
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TABLE 4 | The overall performance of different networks on the DRM-SUB dataset (value in bold represents for the best among all the networks).

Networks Fp1-A1 Cz-A1 O1-A1

Acc. κ MF1 AUC Acc. κ MF1 AUC Acc. κ MF1 AUC

AT-BiLSTM 81.72 0.751 80.74 94.99 81.62 0.749 80.76 95.25 77.09 0.685 75.98 94.91

CNN 77.84 0.732 67.17 89.90 75.82 0.664 73.98 91.00 72.45 0.617 70.84 90.59

LSTM 80.19 0.738 70.96 94.29 80.53 0.733 80.23 94.65 74.13 0.641 72.32 92.97

BiLSTM 80.31 0.739 70.41 93.84 80.41 0.733 79.58 94.66 74.22 0.644 72.98 92.85

CNN-LSTM 80.55 0.738 71.96 94.43 80.87 0.736 79.24 94.50 75.78 0.665 74.52 93.73

CNN-BiLSTM 80.61 0.737 71.62 93.87 80.83 0.738 80.71 94.68 75.94 0.666 74.42 93.79

FIGURE 4 | The hypnograms labeled (A) manually by a clinical technician of sleep and (B) by the trained AT-BiLSTM model. The corresponding EEG recoding was
obtained from PSEE dataset (SC4001E0).

TABLE 5 | The class-wise performance obtained on the PSEE dataset (value in bold represents for the best among all the networks).

EEG signal Networks Precision Sensitivity Class-wise AUC

W N1 N2 N3 REM W N1 N2 N3 REM W N1 N2 N3 REM

Fpz-Cz AT-BiLSTM 86.38 45.06 87.82 88.88 76.84 89.42 25.76 89.18 89.62 82.18 97.58 88.85 97.31 99.34 97.33

CNN 84.68 34.32 84.78 82.66 67.08 83.88 19.34 84.98 82.63 77.22 95.98 82.00 94.18 97.99 94.32

LSTM 84.72 43.28 85.98 88.68 71.92 87.74 20.68 88.16 85.12 80.14 98.72 84.85 97.25 99.08 96.94

BiLSTM 81.34 41.23 86.95 86.71 69.90 88.32 20.84 86.88 89.42 81.43 96.70 81.18 96.54 99.04 95.45

CNN-LSTM 85.72 45.16 88.46 87.22 71.04 90.14 12.46 86.54 88.46 79.22 96.52 81.29 96.77 99.17 96.09

CNN-BiLSTM 85.16 42.51 87.56 87.42 75.72 88.72 25.34 87.42 88.64 79.76 97.19 83.26 96.96 99.22 96.74

Pz-Oz AT-BiLSTM 82.58 40.24 84.64 84.84 71.76 82.58 40.24 84.64 84.84 71.76 96.23 82.54 96.08 98.76 94.52

CNN 78.48 24.18 81.16 79.42 63.28 78.48 24.18 81.16 79.42 63.28 94.59 75.96 92.70 95.17 91.14

LSTM 79.84 41.82 82.94 82.36 64.82 79.84 41.82 82.94 82.36 64.81 95.34 78.34 94.80 98.35 93.88

BiLSTM 80.64 42.94 83.78 82.26 66.70 80.64 42.94 84.28 82.26 66.74 95.19 76.55 95.16 98.46 93.69

CNN-LSTM 80.95 42.65 83.95 82.55 69.75 80.95 42.65 83.95 82.55 69.75 95.31 78.72 95.26 98.48 94.04

CNN-BiLSTM 79.52 44.62 84.26 83.04 70.37 79.55 44.62 84.26 83.04 70.38 95.79 80.53 95.16 98.39 93.63

for different sleep stages with the frontal channels in
both datasets (Figure 5). As shown in Figure 5, AT-
BiLSTM is sufficient to identify WAKE, N3 and REM, but
insufficient to identify N1.

Table 7 illustrates the results of a comparison between the
proposed AT-BiLSTM model and the state-of-the-art works
using the same dataset of DRM-SUB (Hassan and Bhuiyan,
2016a,b; Hassan and Subasi, 2017; Ghimatgar et al., 2019; Shen
et al., 2019). With the same dataset, same EEG channel and

same dataset splitting strategy, the proposed AT-BiLSTM model
achieves the highest accuracy.

DISCUSSION

In this study, we proposed an AT-BiLSTM network for automatic
sleep staging with single-channel EEG. The main findings
were: (1) the frontal EEG derivations contribute to better
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TABLE 6 | The class-wise performance obtained on the DRM-SUB dataset (value in bold represents for the best among all the networks).

EEG signal Networks Precision Sensitivity Class-wise AUC

W N1 N2 N3 REM W N1 N2 N3 REM W N1 N2 N3 REM

Fp1-A1 AT-BiLSTM 88.48 45.92 84.98 89.08 68.26 89.34 25.88 85.12 85.18 83.06 99.50 88.80 93.05 96.69 96.93

CNN 83.54 40.82 79.76 87.14 63.02 84.22 11.54 85.92 78.52 78.96 97.85 82.77 87.05 86.85 94.96

LSTM 83.63 44.16 82.58 88.26 68.14 89.92 19.18 84.82 84.74 75.28 99.35 87.06 92.33 96.40 96.33

BiLSTM 85.24 43.82 83.28 86.82 66.28 86.78 17.36 85.31 86.83 77.74 98.90 85.83 92.01 96.39 96.07

CNN-LSTM 87.12 42.26 84.52 86.26 66.44 87.04 23.34 84.52 87.66 79.91 99.26 88.22 91.94 96.61 96.13

CNN-BiLSTM 86.62 46.92 83.88 86.74 66.38 89.98 20.74 84.54 85.88 79.86 99.21 86.30 92.04 96.28 95.54

Cz-A1 AT-BiLSTM 88.02 42.02 84.98 87.56 69.22 90.96 22.22 86.32 86.28 80.92 99.40 89.24 93.62 97.10 96.87

CNN 83.68 23.44 75.18 86.14 65.12 86.55 8.92 85.36 73.28 72.68 98.18 82.81 88.39 90.85 94.77

LSTM 87.24 43.88 83.44 87.76 69.26 89.54 22.34 86.12 86.26 77.04 99.14 88.59 92.39 97.06 96.09

BiLSTM 86.46 39.68 83.82 88.58 67.12 89.24 20.62 85.36 83.38 78.42 99.27 88.56 92.57 96.77 96.14

CNN-LSTM 84.34 48.72 81.44 89.58 70.64 91.34 14.16 87.66 82.46 78.06 98.99 88.43 92.42 96.49 96.15

CNN-BiLSTM 86.22 42.96 82.32 87.98 70.88 90.36 23.68 86.78 84.26 76.58 99.30 88.68 92.48 96.66 96.29

O1-A1 AT-BiLSTM 88.86 46.58 78.76 83.20 62.56 91.36 18.53 81.94 78.67 72.74 99.55 89.76 92.40 96.67 96.18

CNN 86.21 38.78 73.48 82.92 52.02 84.38 7.56 80.62 72.40 65.38 98.25 82.82 87.94 92.30 91.63

LSTM 83.66 28.76 74.96 83.98 55.44 90.44 8.12 81.88 75.96 62.66 99.17 84.52 91.31 96.09 93.75

BiLSTM 89.92 39.72 75.06 80.52 56.02 87.72 13.14 79.64 81.02 62.96 99.24 84.52 91.28 95.89 93.33

CNN-LSTM 90.52 42.81 76.32 82.25 59.18 88.76 13.56 82.34 78.86 68.73 99.23 87.46 91.39 95.13 95.46

CNN-BiLSTM 88.04 45.96 76.26 82.44 60.84 89.92 11.72 82.18 79.62 67.68 99.26 86.43 91.41 96.40 95.44

FIGURE 5 | ROC curves for sleep stages using the proposed AT-BiLSTM models trained with (A) Fpz-Cz channel of PSEE dataset and (B) Fp1-A1 channel of
DRM-SUB dataset.

TABLE 7 | Comparison of sleep staging performance on the DRM-SUB dataset between the proposed method and previous works based on conventional
feature extraction.

Authors Year Methodology Dataset splitting strategy Channel Accuracy

Hassan and Bhuiyan, 2016a 2016 Tunable Q-factor wavelet transform, random forest (Hassan
and Bhuiyan, 2016a)

Epoch-wise Fp1-A1 72.28%

Hassan and Bhuiyan, 2016b 2016 Implementation of ensemble empirical mode decomposition
in conjunction with random under sampling boosting
(Hassan and Bhuiyan, 2016a)

Epoch-wise Fp1-A1 74.59%

Hassan and Subasi, 2017 2017 Tunable Q-factor wavelet transform, bagging (Hassan and
Subasi, 2017)

Epoch-wise Fp1-A1 78.95%

Shen et al. 2019 Essence features extraction method (Shen et al., 2019) Subject-wise Cz-A1 80.90%

Ghimatgar et al. 2019 Features in time domain, frequency domain, cepstral
domain, wavelet features, autoregressive coefficients and
non-linear features with Hidden Markov Model (Ghimatgar
et al., 2019)

Subject-wise Fp1-A1 81.22%

Proposed method Raw EEG signal and AT-BiLSTM Subject-wise Fp1-A1 81.72%
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performance of sleep staging than those located in the
central, occipital or parietal lobe; (2) the proposed AT-
BiLSTM network outperforms the other networks based
on CNN or RNN; (3) The proposed deep learning
network achieves higher accuracy than conventional feature
extraction methods.

Two EEG datasets, i.e., PSEE and DRM-SUB, with different
EEG derivations were used in our study. To clarify the
influence of the EEG channel on automatic sleep staging, here
we applied the proposed method to all the EEG channels
in both datasets. The results obtained from both datasets
are similar: the model adopting frontal derivation behaved
better than those from other lobes. Such a finding indicated
that the performance of sleep scoring was sensitive to the
selection of EEG channel and the derivations from the
frontal region are the optimal choices. Physiologically, the
prefrontal cortex is deactivated and reactivated during the
sleep cycle, indicating its involvement in the wake–sleep cycle
(Maquet et al., 1996). With the development of wearable
EEG devices, EEG signals can be easily obtained using dry
electrodes on the forehead (Hassan and Bhuiyan, 2016a); the
proposed method would be promising in supporting people
monitoring sleep.

In recent years, many automated sleep staging methods based
on deep neural networks used CNNs for feature extraction and
RNNs to capture temporal information. These approaches have
significantly improved the accuracy of sleep staging (Hassan
and Bhuiyan, 2016a; Boostani et al., 2017; Sors et al., 2018). In
general, for the sequence-to-label model based on RNN, only the
output vector at the last time step is retained for classification,
e.g., via a softmax layer (Phan et al., 2017). However, it is
reasonable to combine the output vectors of different time
steps by some weighting schemes. Intuitively, those parts of
the input sequence which are essential to the classification task
at hand should be associated with strong weights, and those
with less importance should be weighted correspondingly less.
Ideally, these weights should be automatically learned by the
network. This can be accomplished with an attention layer
(Luong et al., 2015). Besides, previous works demonstrated that
the performance of classification or regression can be further
improved by stacking multiple BiLSTM in neural networks
(Liu et al., 2017; Wang et al., 2018; Liu et al., 2018). Aside
from that, we found the overall performance of the RNN
based model to be better than that of the CNN models in
automatic sleep staging, which might indicate that the RNNs
are promising in capturing the temporal nature of an EEG
time series. From such a perspective, the highest performance
achieved by the proposed AT-BiLSTM might further confirm
the role of stacking layers and attention mechanism in feature
extracting of time series.

In this study, all experiments were performed on a
server configured with 64 CPUs [Intel(R) Xeon(R) CPU @
2.10 GHz), 64 GB memory, a GPU (NVIDIA GeForce GTX
1,080 Ti] and a Windows Server 2016 system. A CNN

network has the lowest computational cost as its training
time for each batch was 0.16 s on average. LSTM and
CNN-LSTM networks take similar times (8.46 and 8.60 s
respectively) for each batch in training. The computational
cost of BiLSTM based networks is twice that of LSTM based
networks because they must calculate the input sequence
in two directions and set up double parameters. Moreover,
approximately 1.3 s more is required for each batch with the
attention layer.

Our study demonstrated that a deep learning approach
without manual feature extraction can also provide sufficient
accuracy for sleep staging, which is even better than conventional
methods based on manual feature extraction. Therefore, the
proposed method is a promising choice for computer-aided
detection of sleep stages and similar 1-D signal classification
problems. In conclusion, our findings provide a possible solution
for automatic sleep scoring without manual signal preprocessing
and feature extraction. With the development of wearable EEG
devices, such a solution would be valuable in the screening of
sleep disorders at home for the general population.
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For the clinical analysis of underlying mechanisms of voice disorders, we developed

a numerical aeroacoustic larynx model, called simVoice, that mimics commonly

observed functional laryngeal disorders as glottal insufficiency and vibrational left-right

asymmetries. The model is a combination of the Finite Volume (FV) CFD solver

Star-CCM+ and the Finite Element (FE) aeroacoustic solver CFS++. simVoice models

turbulence using Large Eddy Simulations (LES) and the acoustic wave propagation

with the perturbed convective wave equation (PCWE). Its geometry corresponds to a

simplified larynx and a vocal tract model representing the vowel /a/. The oscillations of

the vocal folds are externally driven. In total, 10 configurations with different degrees of

functional-based disorders were simulated and analyzed. The energy transfer between

the glottal airflow and the vocal folds decreases with an increasing glottal insufficiency

and potentially reflects the higher effort during speech for patients being concerned.

This loss of energy transfer may also have an essential influence on the quality of the

sound signal as expressed by decreasing sound pressure level (SPL), Cepstral Peak

Prominence (CPP), and Vocal Efficiency (VE). Asymmetry in the vocal fold oscillations

also reduces the quality of the sound signal. However, simVoice confirmed previous

clinical and experimental observations that a high level of glottal insufficiency worsens

the acoustic signal quality more than oscillatory left-right asymmetry. Both symptoms

in combination will further reduce the quality of the sound signal. In summary, simVoice

allows for detailed analysis of the origins of disordered voice production and hence fosters

the further understanding of laryngeal physiology, including occurring dependencies.

A current walltime of 10 h/cycle is, with a prospective increase in computing power,

auspicious for a future clinical use of simVoice.

Keywords: computational fluid dynamics, computational aero acoustics, glottal insufficiency, left-right

asymmetry, posterior gap, simVoice (numerical larynx model)
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1. INTRODUCTION

The human voice as a prerequisite for speech production is
our most important tool to communicate with other people.
Moreover, people heavily rely on oral communication in their
professional life. Disorders of the ordinary communication
system have severe consequences on concerned persons’
employments and even on the whole economic system (Ruben,
2000). The phonatory process, the prerequisite for human speech,
describes the production of the human voice and depends on
various factors as age, gender, training, and health status (Titze,
2000; Aronson and Bless, 2009).

The human voice results from a periodic oscillation of the
vocal folds (VF) in the larynx, see Figure 1. The oscillations
are caused by a complex fluid-structure interaction between
the tracheal airflow and the elastic tissue of the vocal folds.
Thereby, the airflow is the main sound generating source, that
is subsequently modulated by the vocal tract consisting of the
upper airway structures and is then emitted from the lips as an
audible signal.

This process is supposed to be most efficient when (1) the
vocal folds close the gap in between (called glottis) completely in
each oscillation cycle and (2) when they oscillate symmetrically
and periodic (Titze, 2000). An incomplete glottis closure or
glottal insufficiency and asymmetric oscillations of the vocal folds
cause a reduced voice quality with decreased tonal and increased
broadband sound in the voice signal (Park and Mongeau, 2008;
Hoffman et al., 2012; Yamauchi et al., 2016). The voice is then
described as aspirated/breathy and hoarse. However, as shown by
Inwald et al. (2010) and Schneider and Bigenzahn (2003), these
underlying symptoms do not only occur in pathologic (e.g., scars,
paresis, or paralysis) cases (Bhatt and Verma, 2014), but also in
apparently organically healthy larynges (Rammage et al., 1992;
Inwald et al., 2010; Patel et al., 2012) and with advancing age of
the patients (Södersten et al., 1995; Vaca et al., 2017).

The scientific investigation and the clinical diagnostics suffer
from the restricted location of the vocal folds inside the larynx,
especially during phonation. To compensate this restriction,
experimental (ex/in vivo), and numerical models have been

FIGURE 1 | 2D view of a human head (left) with an enlargement of the larynx (right) and its embedded structures that are important for the phonatory process. The

vocal folds (VF) and the above arranged ventricular folds (VeF) are indicated.

developed. In vivo studies on glottal insufficiency were done
by Södersten et al. (1995), Södersten and Lindestad (1990),
and Yamauchi et al. (2014) and on the asymmetric vocal fold
oscillations by Eysholdt et al. (2003). Whereas in vivo studies are
difficult to perform and are mainly restricted to pure observation
of the vocal fold oscillations (Inwald et al., 2010; Döllinger et al.,
2012), ex vivo experiments with excised cadaver larynges (e.g.,
canine, porcine, human) provide better access to the laryngeal
area and enable to manipulate the larynx (Hoffman et al., 2012;
Birk et al., 2017b). Ex vivo studies about different levels of
glottal insufficiency were reported by Döllinger et al. (2018)
and Thornton et al. (2019) using rabbit larynges and Birk
et al. (2017b) who used porcine larynges. Moreover, Oren et al.
(2016) investigated asymmetric vocal fold oscillations in excised
canine larynges.

Besides excised larynges, synthetic vocal fold models with
silicone vocal folds were carried out with the focus on the
glottal insufficiency (Park and Mongeau, 2008; Kirmse et al.,
2010; Kniesburges et al., 2013, 2016). Pickup and Thomson
(2009) and Zhang et al. (2012) investigated asymmetric vocal
fold oscillations with a silicone model. Such models can mimic
specific physiological and disorderedmotion patterns of the vocal
folds for which they have been developed for and are therefore
well-established in voice science (Zhang et al., 2004; Thomson
et al., 2005; Park and Mongeau, 2008; Kirmse et al., 2010; Murray
and Thomson, 2012; Kniesburges et al., 2013, 2016; Van Hirtum
and Pelorson, 2017; Motie-Shirazi et al., 2019; Taylor et al.,
2019; Romero et al., 2020). However, both ex vivo and synthetic
larynx models are restricted regarding the spatial resolution of
the measuring data of fluid flow, the vocal fold dynamics, and
their interaction.

Thus, numerical models based on Finite-Elements and/or
Finite-Volumes have great potential to be applied in the
clinical routine, e.g., diagnostics and treatment control. Numeric
simulations, regarding the effect of the glottal insufficiency on
the human voice, were done by Zörner et al. (2016) and on
the asymmetric vocal fold oscillations by Xue et al. (2010)
and Samlan et al. (2014). In contrast to experimental models,
computer models provide the complete 3D data of the flow field
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TABLE 1 | Parameter reported for normal male phonation in in vivo and ex vivo studies compared with the experimental silicone model synthVOICE (Kniesburges et al.,

2013, 2016, 2020; Kniesburges, 2014) (validation cases) and the performed numerical validation simulations by simVoice (Sadeghi et al., 2018, 2019a,b; Sadeghi, 2019;

Schoder et al., 2020).

Parameter In vivo

(male)

Ex vivo

(male)

Silicone model

(synthVOICE)

Numerical

simulation

(simVoice)

Fundamental Frequency

(F0) [Hz]

103–220

(Larsson and Hertegård, 2004; Sundberg

et al., 2005)

97–200

(Döllinger et al., 2005, 2016; Döllinger and

Berry, 2006b)

148 148

Vocal fold length

(anterior–posterior) [mm]

14–17

(Schuberth et al., 2002; Hoppe et al.,

2003; Larsson and Hertegård, 2004;

Rogers et al., 2014)

13–18

(Lagier et al., 2017)

15 15

Glottal gap diameter

(dG) [mm]

1.49–2.8

(Hoppe et al., 2003; George et al., 2008;

Semmler et al., 2018)

2.3–5.6

(Döllinger et al., 2005, 2016; Döllinger and

Berry, 2006a,b; Boessenecker et al.,

2007)

4.66 4.66

Speed Quotient (SQ) [a.u.] 0.59–1.978

(Holmberg et al., 1988; Baken and Orlikoff,

2000)

0.8–1.6

(Döllinger et al., 2014)

0.67 0.67

Open Quotient (OQ) [a.u.] 0.37–1.00

(Holmberg et al., 1988; Baken and Orlikoff,

2000)

0.42–1.00

(Mendelsohn et al., 2015)

0.93 0.93

Mean flow rate (Q) [ l
min

] 4.5–18

(Holmberg et al., 1988; Baken and Orlikoff,

2000)

6–108

(Döllinger et al., 2005, 2014, 2016;

Döllinger and Berry, 2006a,b;

Boessenecker et al., 2007)

65–115 37.8–132

Mean subglottal pressure

(Psub) [Pa]

157–3510

(Holmberg et al., 1988; Sundberg et al.,

1993, 2005; Alku et al., 2006)

600–4300

(Döllinger et al., 2005, 2014, 2016;

Döllinger and Berry, 2006b)

2449–3251 2450–3251

(Sciamarella and Le Quéré, 2008; Zörner et al., 2013; Sadeghi
et al., 2018) and in case of coupled models the fluid-structure
interaction (FSI) between flow, tissue and the aeroacoustic sound
generation and propagation during phonation (de Oliveira Rosa
et al., 2003; Luo et al., 2008, 2009; Tao and Jiang, 2008; Link et al.,
2009; Kaltenbacher et al., 2014; Xue et al., 2014; Jo et al., 2016).

The large drawback of these numerical models are the
large computational costs to perform the simulations (Sadeghi
et al., 2018). Thus, they are not applicable in the clinical
environment yet, where a short wall time with sufficient
accuracy is needed. However, computational fluid dynamic
(CFD) models with prescribed vocal fold movements and a
prospective increasing computational power already keeps the
simulation time adequately small (Sadeghi et al., 2019b).

For the development of our hybrid (sound propagation is
calculated based on aeroacoustic source terms from the flow
simulation) 3D aeroacoustic numeric larynx model simVoice
(Sadeghi et al., 2018, 2019a,b; Schoder et al., 2020) for future
clinic usefulness, it is essential to replicate normal and disordered
glottal closures and dynamical asymmetries. A method to set
up a workflow containing the import of various physiological
and disordered glottal geometries into simVoice is shown in this
study. We concentrate on modeling four disordered cases of
glottal insufficiency based on high-speed video data of porcine
ex vivo experiments performed by Birk et al. (2017b). Moreover,
symmetric and asymmetric vocal fold motions are modeled. Our
hypotheses for this study are:

• Hypothesis 1: Our existing and validated 3D-FV-FE numerical
larynx model simVoice can accurately mimic and simulate
realistic glottis geometries and vocal fold motions based on
experimental high-speed video data.

• Hypothesis 2: simVoice can qualitatively and quantitatively
mimic typical glottal parameters quantifying the different
levels of glottal insufficiency that are reported in the literature.

• Hypothesis 3: Typical parameters of the acoustic voice signal
computed from the simulated sound signal show typical
characteristics for glottal insufficiency and asymmetric vocal
fold oscillations.

2. METHODS: HYBRID AEROACOUSTIC
NUMERICAL LARYNX MODEL—SIMVOICE

The 3D aeroacoustic numeric larynx model simVoice is a
combination of the Finite Volume (FV) CFD solver Star-CCM+
and the Finite Element (FE) solver CFS++ (Kaltenbacher, 2015).
The basic simVoice model was validated against a silicone model
that provided an extensively large set of experimental data,
including the vocal fold motion, the flow field, and produced
sound field (Kniesburges et al., 2013, 2016, 2020; Lodermeyer
et al., 2015, 2018). Characteristic parameters of the silicone
model performance and corresponding physiological male values
are shown in Table 1. Validation parameters in detail were: (1)
Flow dynamic properties as pressure measurements and the
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FIGURE 2 | (A) 3D representation of simVoice, including a velocity field in the mid-coronal plane, the vocal folds (VF), the ventricular folds (VeF), and the vowel

/a/-vocal tract. Points P1, and P2 are located 6mm, and 20mm in distance to the vocal folds. (B) Geometry and domain of the CAA model of simVoice as introduced

by Schoder et al. (2020). Mic.1 and Mic.2 are located 5 and 8 cm in distance of the vocal tract exit (mouth).

velocity field with the glottal jet in the supraglottal region using
particle image velocimetry (PIV) by Sadeghi et al. (2018, 2019a),
and (2) the acoustic signal by Schoder et al. (2020). In this
study, the investigated configurations of glottal insufficiency and
asymmetric vocal fold oscillations are synthetic cases that were
derived as combination from ex vivo (Birk et al., 2016, 2017a)
and silicone model experiments (Kniesburges et al., 2013). Thus,
there are no experimental data for validation purposes.

2.1. simVoice—CFD
2.1.1. Geometric Dimensions
The CFD model simVoice represents three main parts: the
subglottal section upstream of the vocal folds, the glottal duct
with the two vocal folds (VF) and the supraglottal part with
the ventricular folds (VeF) and an MRI-based vocal tract (VT),
see Figure 2A. The vocal folds are based on the well-known
M5 model (Scherer et al., 2001; Thomson et al., 2005) and the
numerical domain dimension is obtained from the experimental
setup of a synthetic vocal fold model (Becker et al., 2009;
Kniesburges et al., 2013, 2016; Lodermeyer et al., 2015). All
dimensions of the larynx structures are in the human length scale
(Titze, 2000). The basic development of simVoice is described
in (Sadeghi et al., 2018, 2019a,b). The gap between the VeF is 5
mm as in (Sadeghi et al., 2019a). The vocal tract represents the
vowel /a/ and was developed by Probst et al. (2019) based on
MRI data of 6 professional tenors (Echternach et al., 2011). Probst
et al. (2019) simplified the single tenors’ VTs with the method
introduced by Story et al. (1996) and generated a mean vocal
tract model by averaging the six single vocal tracts. The resulting
staged vocal tract model was subsequently smoothed with linear
interpolation. Arnela et al. (2016) showed, that using a simplified
vocal tract instead of a realistic vocal tract is an appropriate
approach. The distance between the vocal folds and the outlet of
the vocal tract is 171mm.

2.1.2. Modeling the Glottis Geometry
In this study, four types of clinically seen glottis closures
(GC1 to GC4) were designed that are based on high-speed
recordings obtained from experiments with ex vivo porcine
larynges by Birk et al. (2016, 2017a), see Figure 3. Furthermore,
an additional type GC5 with a rectangular glottis shape, similar

to a midmembranous gap (Södersten et al., 1995), was modeled.
GC1 to GC4 represent posterior gaps with an increasing
glottal insufficiency, whereas GC5 represents a complete glottal
insufficiency. A glottal insufficiency can not only occur in
pathological phonation cases as a result of scars, paresis, paralysis,
or age-related atrophy (Bhatt and Verma, 2014; Vaca et al., 2017),
but also in physiological phonation of women or children with a
triangular-shaped gap located at the posterior part of the glottis
(Södersten and Lindestad, 1990; Rammage et al., 1992; Södersten
et al., 1995; Inwald et al., 2010; Döllinger et al., 2012; Patel et al.,
2012). All GC types are modeled by two parameters: (1) the
initial glottal gap area and (2) the length of the closed part of the
glottis divided by the entire glottis length. As shown in Figure 3,
the modeled glottis is either fully closed (GC1: 100% LengthVF),
partly closed (GC2: 60% and GC3: 30% LengthVF), or completely
open (GC4 and GC5: 0% LengthVF) at the initial glottal gap. The
initial glottal gaps for GC2 to GC4 are based on the glottal gap
index of Birk et al. (2016, 2017a) and the initial glottal gap of GC5
is half the maximum GAW of the synthetic model (Kniesburges
et al., 2016). As described by Sadeghi et al. (2018), there must be
a small area between both vocal folds of 0.5mm2 at GC1 to reach
a numerically stable simulation. Nevertheless, this small gap still
interrupts the flow through the glottis during the closed phase,
as shown by Sadeghi et al. (2019b). For GC2, GC3, and GC4, the
initial glottal gaps possess a triangular and for GC5 a rectangular
shape, see Figure 3.

2.1.3. Vocal Fold Motion
The lower part of Figure 3 shows the phases of the synthetic
vocal folds during one oscillation cycle (Lodermeyer et al., 2015;
Kniesburges et al., 2020) and the corresponding glottal area
waveform (GAW). TheGAW is computed as the change of glottal
area over time and is a common measure for the description of
laryngeal dynamics. Based on the GAW of the synthetic model
(Kniesburges et al., 2016), the oscillation of the vocal folds is
modeled in simVoice as proposed by Sadeghi et al. (2018). In
the right part of Figure 3, the five GC types combined with the
respective modified GAWs are shown. The GAW for GC1 is
equal to that used by (Sadeghi et al., 2018). The GAWs for GC2
to GC5 were computed as follows:
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FIGURE 3 | Workflow of vocal folds modeling. Upper left part: four GC types of ex vivo experiments based on high-speed videos (Birk et al., 2017b) and the

corresponding schematic numeric GC geometries (superior view). Lower left part: phases of the vocal fold motion of the synthetic vocal fold model (view on the

coronal plane) during one oscillation cycle (Lodermeyer et al., 2015) and the GAW was taken from high-speed videos (Sadeghi et al., 2018). Right part: Four plus one

additional GC types with the adapted GAWs.

Ai(t) = A0
i +

Amax
0 − A0

i

Amax
0

· A0(t) (1)

where Ai(t) is the modified GAW (of the individual GC type),
subscript i = 0 indicates the GAW of the synthetic model of
Kniesburges et al. (2016), and subscript i = 1 to 5 indicates
GC1 to GC5. Amax

i is the maximum value of the GAW and A0
i

represents the initial glottal gap area, see Figure 3.
We explicitly selected one motion pattern in combination

with the five increasing levels of glottal insufficiency (GC1-GC5).
With this strategy, we avoided to include individual effects of the
patient-specific motion that may overlap the effects of the glottal
insufficiency in the acoustic results.

To reduce the computational costs of the CFD simulations,
the vocal fold dynamics are externally forced with characteristic
dynamic patterns according to the modified GAWs. The
computation of the elliptic shaped vocal fold motion is generated
by a sinusoidal function along the two vocal folds (Sadeghi
et al., 2018). Additionally, Sadeghi et al. (2018) added a simple
convergent-divergent standard mucosal wave-like motion model
based on experiments (time periods of convergent and divergent
glottal duct shapes) and the literature for typical angles of
the glottal duct during oscillation (Titze, 2000). It contains a
convergent shaped glottal duct during the opening (0.1 T to

0.32 T) with an angle range of 0◦ to 5◦ and a divergent duct
(0.32 T to 0.9 T) with angles of −10◦ to 0◦. The glottis is closed
between 0.9 T and 0.1 T of the next cycle. The 3D vocal fold
motion is realized by moving wall boundaries of the vocal folds
that form the glottal duct, see Supplementary Video 1. For all
GC types, the vocal folds oscillate with a fundamental frequency
of f0 = 148Hz. The maximum glottis width of 4.66mm is
in the range as reported for ex vivo male larynx studies (up
to 5.6mm)(Döllinger et al., 2005; Döllinger and Berry, 2006a,b;
Boessenecker et al., 2007) but higher than reported for in vivo
measurements (up to 2.8mm) (George et al., 2008; Semmler et al.,
2018).

For the symmetric motion, both vocal folds move equally
but in opposite directions. The left-right asymmetric vocal fold
motion is realized by reducing the amplitude of one vocal
fold to 50% (of the original amplitude), see Figure 4 and
Supplementary Video 2. Subsequently, the asymmetric motion
reduces the corresponding maxima of the GAWs to 75%
compared to the symmetric cases.

2.1.4. Boundary Conditions
At all walls of the simVoicemodel, no-slip no-injection boundary
conditions were applied. The walls of themoving vocal folds were
defined as moving wall boundaries. For all simulation cases, the
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FIGURE 4 | Exemplary vocal fold motion of GC1 for the symmetric and

asymmetric case along the y-axis (medial-lateral direction) for a point on the

medial plane of the VF surface, see the red mark at GC1 in Figure 3. The solid

red line represents the motion on the y-axis of the upper vocal fold for the

symmetric and the dashed line for the asymmetric motion. The blue line

represents the motion on the y-axis of the lower vocal fold.

mean pressure of the subglottal inlet boundary is Pinlet = 775Pa
that is in the physiologic range of human lunge pressures during
normal phonation (Titze, 2000). The mean pressure at the outlet,
which represents the mouth, is Poutlet = 0 Pa. The kinematic

viscosity of air was specified as ν = 1.5666 · 10−5 m2

s and the

density of air constant at ρ = 1.18415 kg

m3 as the Mach number is
Ma < 0.3 (Kniesburges et al., 2011).

2.1.5. Numerical Methods
The numerical setup is identical to the previous studies
(Sadeghi et al., 2018, 2019a,b). To perform the simulations of
simVoice, we use the software package STAR-CCM+ (Siemens,
PLM Software, Plano, TX, USA) with a finite-volume cell-
centered non-staggered grid. For modeling the turbulence,
Large Eddy Simulations (LES) in combination with a Wall-
Adapting Local Eddy-Viscosity (WALE) subgrid-scale model
(Nicoud and Ducros, 1999) were carried out. The convective and
diffusive terms of the Navier-Stokes equations were discretized
with a central difference scheme with second-order accuracy.
Subsequently, the pressure-correction PISO algorithm (Pressure-
Implicit with Splitting Operators) solves the pressure-velocity
linked equations non iteratively. Finally, an Algebraic Multigrid
(AMG) method with a Gauss-Seidel relaxation scheme was
applied to solve the final linear system of equations.

2.1.6. Mesh Generation
The mesh consists of hexahedral cells and is based on the mesh
presented by Sadeghi et al. (2019b). For the mesh independence

study, GC1 and a symmetric vocal fold motion was conducted.
Starting with the base mesh (MB) with 2.9 million cells, three
more meshes (M1-M3) with a decreasing number of cells were
generated, see Supplementary Table 1. The limit for the mesh
coarsening was set by the Taylor micro-scale λT = 0.085mm
according to Mihaescu et al. (2010). Figure 5A) shows the flow
rate for one oscillation cycle. M1-M3 produced a similar trend
and the mean relative deviation to MB ranges between −1.3%
and +2.6%, see Supplementary Table 1. Whereas M3 shows the
best accordance withMB in the cycle range 1.4 to 1.8, M1 andM2
deviate from the trend of MB. Figure 5B shows an instantaneous
pressure evolution at point P1 with a good agreement of meshes
M1-M3 in comparison with mesh MB. Small deviations at the
beginning and the end of the cycle are visible, which are the
result of different instantaneous turbulent fluctuations at point
P1 (Sadeghi et al., 2019b), see Figure 5B. Summarizing, M3 with
the lowest number of cells shows good agreement with the base
meshMB. The resultingmeshM3 is assembled of 1.3 million cells
with a basic cell size of 0.68mm, see Supplementary Table 1.

The near-wall flow is modeled by the all-y+ model of Star-
CCM+ that can handle fine and coarse meshes (Reichardt, 1951).
The first cell layers on the vocal fold walls have a y+ = 1.
The time step size is set to 1.36 · 10−6 s, and the corresponding
mean CFL number is 3.5 that is appropriate for implicit solvers
(Anderson, 1995; Hirsch, 2007). simVoice uses the overset mesh
approach of STAR-CCM+ to realize the vocal fold motion.
This chimera method combines a fixed Eulerian background
mesh with an Arbitrary Lagrangian-Eulerian (ALE) overlapping
mesh (Hadzic, 2005). In simVoice, the mesh around both vocal
folds represents the overlapping or overset mesh. Consequently,
the total number of cells changes over time and depends on
the GC type and the distance between the vocal folds during
the oscillation.

2.2. simVoice—CAA Model
2.2.1. Geometry Dimensions
The acoustic model of simVoice has been introduced by Schoder
et al. (2020). According to the hybrid aeroacoustic approach,
the acoustic domain captures the CFD domain assembled by
the larynx and the vocal tract, where the acoustic sources occur.
This region is coupled to a propagation domain in which the
microphone points Mic1 and Mic2 are located, see Figure 2B.
These points are positioned on the centerline of the vocal tract
at a distance of 5 cm and 8 cm from the vocal tract exit (mouth).
Additionally, perfectly matched layers (PML) surround the
propagation domain to ensure free field radiation (Kaltenbacher,
2015). Owing to the plane wave approximation, we use an
absorbing boundary condition (ABC) at the inlet that requires
less computing power compared to PML (Kaltenbacher, 2015).
Furthermore, all solid walls are modeled as acoustically hard.

To preserve mesh flexibility and element quality, the acoustic
computation grid is composed of two conforming meshes linked
via a non-conforming Nitsche-type mortaring interface. The
mesh of the larynx and the vocal tract was generated for each
GC type separately, representing the geometry of the maximum
VF opening. It consists of tetrahedral finite elements with a
maximum cell size of 5.7mm. In contrast, the mesh in the
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FIGURE 5 | (A) Volume flow rate through the glottis for one oscillation cycle for different mesh resolutions MB-M3. (B) Instantaneous pressure evolution for mesh

resolutions MB-M3 for one oscillation cycle at point P1, see Figure 2. The pressure evolutions were smoothed by a low-pass filter (Butterworth), with a cut-off

frequency of 2,000Hz, to reduce the numerical noise.

propagation domain is the same for all GC types and has
hexahedral elements with a cell size of about 10.9mm.

2.2.2. Numerical Methods
The aeroacoustic sound generation and acoustic wave
propagation is described by the perturbed convective wave
equation (PCWE) (Kaltenbacher et al., 2016), which is solved
via the finite element solver CFS++ (Schoder et al., 2020).
To compute the acoustic source term for the PCWE, the
incompressible pressure field from the CFD is transferred onto
the CAA mesh by a conservative interpolation scheme based on
a cut cell algorithm (Schoder et al., 2019, 2020). The acoustic
source term is then computed on the CAA grid as the partial
time derivative of the incompressible pressure. We modeled a
one-way coupling from the flow to the acoustic sources which
was found to be valid for normal voice production (Schoder
et al., 2020). A back-coupling effect from the acoustics to the
flow field was not considered.

2.3. simVoice—Data Acquisition and
Analysis
A total of 20 oscillation cycles of the vocal folds were
simulated. In a first step, the simVoice CFD simulations were
executed for 10 oscillation cycles to produce a fully developed
flow field. After these 10 initializing oscillations, another 10
oscillation cycles were simulated to provide valid data for the
analysis. As shown by Supplementary Figure 1 the model has
achieved repeatable periodic oscillations with the flow field fully
converged. The mean cyclic pressure at P1 fluctuates in the
range of −7.1 and 9.1% and for P2 in the range of −9.1 and
6.5%, see Supplementary Figure 1A). These small fluctuations

highly depend on the turbulent characteristic and the small cycle-
to-cycle changes of the fluid flow in the supraglottal region
(Kniesburges et al., 2016). The mean volume flow Q of the 10
initial oscillations is nearly constant and fluctuates in the range of
−0.4 and 1.2%, see Supplementary Figure 1B). For the analysis,
the complete 3D pressure and velocity fields were exported at
every 10th time-step. These flow field data are then imported
into CFS++ to determine the acoustic sources and to run the
simulation of sound propagation. Finally, the acoustic signals at
the two microphone positions were used. The sound pressure
level (SPL) was calculated at a reference sound pressure of p0 =

20µPa using aMatlab (Mathworks, USA) routine. Therefore, the
acoustic potential of Mic.2, see Figure 2B, was extrapolated to
a distance of 20 cm far from the vocal tract outlet to match the
distance of ex vivo studies (Birk et al., 2016, 2017b). The Vocal
Efficiency (VE) is calculated as proposed by Riede et al. (2019)
and Titze (1992):

VE =
Pr

Pa
=

4 · π · R2 · 10
SPL−120

10

Psub · Q
(2)

where Pr is the radiated acoustic power, Pa is the aerodynamic
power, R is the distance of the microphone to the opening
of the vocal tract, Psub is the subglottal pressure, and Q
is the mean volume flow through the glottis. Additionally,
the computed acoustic pressures were analyzed by the in-
house Glottis Analysis Tool (GAT) for obtaining the Cepstral
Peak Prominence (CPP) (Hillenbrand et al., 1994). The CPP
is a spectra-based, well-established and objective measure to
judge for perceived breathiness or vocal fatigue (Hillenbrand
et al., 1994; Hillenbrand and Houde, 1996; Brinca et al., 2014;
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FIGURE 6 | Volume flow through the glottis for the five GC types with (A) a symmetric and (B) an asymmetric vocal fold motion. For both motion types the volume

flows are rising with an increasing glottal insufficiency, whereas the corresponding volume flows of the asymmetric motion are collectively smaller than those of the

symmetric motion.

Samlan et al., 2014; Samlan and Story, 2017; Patel et al., 2018;
Mahalingam et al., 2020; Murton et al., 2020) and has proven
to be a more reliable measure of dysphonia than time-based
measures (Heman-Ackah et al., 2003). The exact computation
procedure is shown in Birk et al. (2016). The CFD data are
evaluated concerning the volume flow through the glottis, the
glottis resistance as proposed by van den Berg et al. (1957),
and the energy transfer between the airflow and the vocal folds
tissue. The energy transfer is defined by the work performed
by the aerodynamic forces on the moving VFs according to
Thomson et al. (2005).

3. RESULTS

3.1. Aerodynamic Characteristics
3.1.1. Volume Flow
The minimum, maximum, and mean volume flow through
the glottis consequently increases with an increasing glottal
insufficiency from GC1 to GC5 for symmetric and asymmetric
vocal fold motions as shown in Figure 6 and Table 2. The flow
rate decrease comparing symmetric and asymmetric motion
amounts between 9.0% (GC4) and 18.2% (GC1) as displayed
in Table 2.

3.1.2. Glottis Resistance
The flow resistance across the glottal duct RGlottis (Kniesburges
et al., 2017) decreases with an increasing glottal insufficiency.
The reason for this decrease in RGlottis is the rising flow rate Q,
while the Psub remains constant. The direct comparison of RGlottis
between symmetric and asymmetric vocal fold motion yielded a

TABLE 2 | Mean volume flow through the glottis Q, the glottis resistance RGlottis,

and the net energy Wnet of all GC types.

Parameter GC1 GC2 GC3 GC4 GC5

Q
sym

in [ l
s
] 0.77 0.88 0.91 1.11 1.20

Q
asym

in [ l
s
] 0.63 0.73 0.78 1.01 1.06

rel.Dev. −18.2% −17.0% −14.3% −9.0% −11.7%

R
sym
Glottis in [ Pa·s

m3 ] 1168.9 1044.3 1003.2 845.6 915.0

R
asym
Glottis in [ Pa·s

m3 ] 1397.3 1262.0 1183.5 902.4 1032.3

rel.Dev. 19.5% 20.8% 18.0% 6.7% 12.8%

W
sym
net in [µJ] 165.4 167.1 148.7 73.1 79.1

W
asym
net in [µJ] 114.8 113.1 105.2 54.1 65.2

rel.Dev. −30.6% −32.3% -29.3% −26.0% −18.0%

Relative deviation (rel.Dev.) refers to deviation of asymmetric to symmetric motion values.

Q increases while RGlottis andWnet decrease with increasing glottal insufficiency. However,

in contrast to RGlottis, Wnet decreases for asymmetric motion owing to the smaller total

amplitude of the glottis oscillation.

larger resistance for the asymmetric motion becauseQ is reduced
owing to the smaller glottal gap, see Table 2.

3.1.3. Energy Transfer
As proposed by Sadeghi et al. (2019a), the total transferred work
(Wnet) during one oscillation cycle is calculated, see Table 2.
For both motion types, the total net work during an oscillation
cycle is positive, being typical for vocal fold oscillations during
phonation (Thomson et al., 2005; Luo et al., 2009). Furthermore,
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FIGURE 7 | Net rate energy transfer (Ėnet) of the five GC types with (A) a symmetric and (B) an asymmetric vocal fold motion. A positive Ėnet means an energy flux

from the glottal flow toward the vocal folds and a negative Ėnet an energy flux from the vocal folds toward the airflow. For both motion types Ėnet is positive at the

beginning and the end of the oscillation cycle. In these intervals Ėnet decreases with an increasing glottal insufficiency, whereas the corresponding values of the

asymmetric motion are collectively smaller than those of the symmetric motion.

Wnet decreases with an increasing glottal insufficiency. Table 2
shows that Wnet decreases by 55.8% (symmetric) and 52.9%
(asymmetric) fromGC1 to GC5 whereas the maximum deviation
comparing symmetric and asymmetric motion occurs for GC2
with 32.3%. However, in contrast to RGlottis, Wnet decreases for
asymmetric motion owing to the smaller total amplitude of the
glottis oscillation. Overall, our data shows that a partially closed
glottis (GC2 and GC3) in combination with an asymmetric
motion produces a higher Wnet than a contact-free symmetric
oscillation, see Table 2.

According to Sadeghi et al. (2019a), the time derivative of
the work constitutes the net energy transfer rate Ėnet between
fluid and tissue. It is shown in Figure 7 for both symmetric and
asymmetric vocal fold motions. A positive Ėnet corresponds to
an energy flux from the laryngeal flow into the tissue, i.e., the
flow deforms the vocal folds (Sadeghi et al., 2019a). During the
opening, until 0.25T, Ėnet is positive, which indicates the tissue
deformation by the laryngeal flow. Between 0.25T to 0.58T, the
glottis width reaches its maximum, producing a negative Ėnet,
resulting from the tissue’s resistance to deform further (Sadeghi
et al., 2019a). After the flow is fully accelerated, the aerodynamic
pressure between the vocal folds is minimal, which initiates
the glottis’s closing motion. The VFs move toward each other,
starting at 0.58T, and again a positive Ėnet arises. Although the
motion of the vocal folds is prescribed in this model, Luo et al.
(2009) show a similar energy transfer rate during a cycle of flow-
induced VF oscillations. For clarity, we want to mention that
the discrete changes in the energy transfer plots occur due to

the frame rate of 4,000 fps of the camera, which was used to
record the oscillations of the synthetic vocal folds (Kniesburges
et al., 2013). Based on this recording the motion of the vocal
folds was modeled without further smoothing and therefore
discrete changes in the velocity subsequently occur at multiples
of 0.25ms. Figure 7 further shows that the positive Ėnet during
the opening and closing phases decreases with an increasing
glottal insufficiency. Furthermore, in the opening and closing
phase, Ėnet is lower for the asymmetric motion, whereas it is
equal for both motion types during the phase of significant tissue
resistance (0.25T - 0.58T).

3.1.4. Flow Field Structure
Figure 8 shows the supraglottal flow field at two time instances
(t1 = 0 and t2 = 0.56T) during the oscillation cycle for
the symmetric and the asymmetric vocal fold motion. For
all GC types, a long jet expands into the supraglottal region.
While GC1 fully interrupts this glottal jet at the end of the
cycle, GC2 and GC3 only partly interrupt the laryngeal fluid
flow at the anterior section of the glottis. For GC4 and GC5,
the vocal folds remain open along the entire glottis length
during the oscillation cycle, see Supplementary Videos 3, 4.
This absent interruption of the glottal jet is often related
to an aspirated voice signal characterized by lower tonal
sound components (Fritzen et al., 1986; Bhatt and Verma,
2014; Kniesburges et al., 2020). As reported by Sadeghi
et al. (2018), the VeFs have a stabilizing influence on the
glottal jet. Therefore, no jet deflection in the medial-lateral
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FIGURE 8 | (A) Symmetric vocal fold motion: velocity magnitude in the midcoronal (xy-plane) and the sagittal (xz-plane) plane for the five GC types at two instances

(t1 = 0 and t2 = 0.56 T ) of an oscillation cycle. While GC1 fully interrupts the glottal jet at the end of the cycle, GC2 and GC3 only partly, and GC4 and GC5 do not

interrupt the laryngeal fluid flow. (B) Asymmetric vocal fold motion: Velocity magnitude in the midcoronal (xy-plane) and the sagittal (xz-plane) plane for the five GC

types at two instances (t1 = 0 and t2 = 0.56 T ) of an oscillation cycle. The upper vocal fold moves with the 50% amplitude and the glottal jet impinges mainly the

lower VeF and subsequently, just a vortex in the lower ventricle occurs.

directions (Figure 8 in the xy-plane) can be observed, see
Supplementary Videos 5, 6. However, the glottal opening shape
has a strong influence on the posterior-anterior jet shape
(Figure 8 in the xz-plane), see also Supplementary Videos 7, 8.

As similarly reported by Zörner et al. (2016), triangular
glottal orifices deflect the jet toward the larger glottal opening
that occurs for GC2 and GC3 at the posterior end of
the glottis.
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FIGURE 9 | Amplitude Spectral Density (ASD) for the GC1 type for the symmetric and asymmetric vocal fold motion. The spectra of both motions show similar slope

and only slight deviations in the amplitudes at the fundamental frequency, whereas more significant differences occur at higher harmonics.

For the symmetric vocal fold motion, the glottal jet impinges
both VeF during the oscillation cycle and vortices arise in both
ventricles. For the asymmetric case, the glottal jet impinges
mainly the lower VeF and subsequently, just a vortex in the
lower ventricle occurs, see Figure 8B for t2 = 0.56T in the xy-
plane. Furthermore, the maximum glottal velocity is higher for
the symmetric vocal fold motion than for the asymmetric vocal
fold motion due to the larger flow rate in the symmetric cases, see
color bars in Figure 8.

3.2. Quality of Acoustic Voice Signal
3.2.1. Spectral Analysis and Formant Frequencies
Figure 9 shows the amplitude spectral density (ASD) of the
sound signals for GC1 and both symmetric and asymmetric vocal
folds motions measured at the Mic.1 position, see Figure 2B.
Both spectra exhibit the main peak at the oscillation frequency
of the vocal folds f0 = 148Hz, followed by their harmonics.
Comparing the spectra of all GC types shows similar slope and
only slight deviations in the amplitudes at the fundamental
frequency, whereas more significant differences at the higher
harmonics occur, see Supplementary Figures 2, 3. Regarding the
motion type of the vocal folds, the harmonic tones are more
pronounced for the symmetric vocal fold motion, especially in
the frequency range between 1, 000 and 2, 000Hz. This variance
in the acoustic spectra of the radiated sound was also found by
Zörner et al. (2016) although the velocity fields of the five GC
types are considerably different.

A modal analysis of the vocal tract shows that the first two
formants F1 = 1, 020Hz and F2 = 1, 350Hz, see transfer

function of /a/ vocal tract in Supplementary Figure S4, are well-
positioned within the region of the /a/ vowel of the formant chart
of Peterson and Barney (1952), shown in Figure 10.

3.2.2. Sound Pressure Level (SPL) and Vocal

Efficiency (VE)
Figure 11A presents the SPL for all GC types. SPL significantly
decreases with an increasing glottal insufficiency: For the
symmetric motion type from 91.8 dB for GC1 to 82.4 and 84.2 dB
for GC4 and GC5 representing a loss of 10.2 and 8.3%. For the
asymmetric motion type, a decrease of about 4.5% for GC2 and
GC3, 1.9% for GC4, and 4.9% for GC5, was found compared to
SPL = 89.8 dB for GC1. The comparison between both motion
types shows only minor differences. A maximum deviation of
6.4% for a higher SPL at the asymmetric motion occurs at GC4.
Figure 11B shows the VE of all GC types. As mentioned before,
the VE is the ratio of radiated acoustic power to aerodynamic
power, see Equation (1). According to the SPL, the VE decreases
for both vocal fold motion types (symmetric vs. asymmetric) and
an increasing degree of glottal insufficiency (GC1 to GC5). The
VE decreases from VE = 0.25% for GC1 to VE = 0.03% for GC5
for the symmetric motion and for the asymmetric motion, VE
decreases less, from VE = 0.19% (GC1) to VE = 0.04% (GC5).

3.2.3. Cepstral Peak Prominence (CPP)
The CPP is widely used as a quantitative measure for the
periodicity of a signal and thereby has proven to be a reliable
indicator for the strength of tonal components and therewith the
quality of the human voice (Hillenbrand et al., 1994; Hillenbrand
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and Houde, 1996; Birk et al., 2017b). It is shown in Figure 12 for
both motion types. The CPP for the symmetric vocal fold motion
starts at 17.1 for GC1 and increases to 17.4 for GC2 and GC3.

FIGURE 10 | Formant chart as proposed by Peterson and Barney (1952),

shows the formant frequencies of the first two formants found in this study and

that of Probst et al. (2019). In contrast to Probst et al. (2019), F1 = 1, 020Hz

and F2 = 1, 350Hz simulated by simVoice are well-positioned within the

region of the /a/ vowel.

Afterwards, the CPP decreases to 16.2 dB for GC4 and further to
14.4 dB for GC5. For the asymmetric vocal fold motion the CPP
decreases for an increasing glottal insufficiency from 17.1 dB for
GC1 to 12.5 dB for GC5.

FIGURE 12 | CPP vs. the GC types with a symmetric (red points) and an

asymmetric (green points) vocal fold motion. The CPP for the symmetric vocal

fold motion almost remains at the same level for GC1 to GC3 followed by a

decrease. The CPP for the asymmetric vocal fold motion decreases for an

increasing glottal insufficiency. The CPP for the asymmetric motion is

collectively smaller than those for the symmetric motion.

FIGURE 11 | SPL (A) and VE (B) vs. the GC types with a symmetric (red dots) and an asymmetric (green dots) vocal fold motion. The SPL and the VE significantly

decrease with an increasing glottal insufficiency. The comparison between both motion types shows significant differences for GC1 and GC4 and only minor

differences for GC2, GC3, andGC5.
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4. DISCUSSION

4.1. Aerodynamic Characteristics
Our results of the volume flow through the glottis agree with the
study by Zañartu et al. (2014) who reported an airflow rise with
an increasing posterior gap. As the maximum glottal gap area
of an asymmetric type is smaller than its symmetric equivalent,
the mean volume flow Q is subsequently decreased, see Table 2.
The left-right asymmetry does not only affect the maximum
glottal area as reported by Pickup and Thomson (2009) but also
significantly reduces the volume flow through the glottis for a
constant inlet pressure in both motion types.

In phonation, the goal is to increase the energy transfer
between the glottal airflow and the VFs as a beneficial mechanism
to induce the VF oscillation. Kniesburges et al. (2017) interpreted
the flow resistance as ameasure of energy transfer from the glottal
flow to the VFs. Furthermore, Birk et al. (2017b) reported that
the energy transfer from the glottal airstream to the vocal folds,
as indicated by the glottal resistance, is strongly dependent on
glottal insufficiency. In this context, a complete glottis closure
during the VFs oscillation produces a large flow resistance RGlottis
and in addition a large energy transfer between flow and tissue.
Additionally, our data support the findings of Döllinger et al.
(2018) which showed that a partially closed glottis (GC2 and
GC3) in combination with an asymmetric motion may be still
better than a contact-free symmetric oscillation.

In all GC cases, the interaction of the jet with the flow
structures in the immediate supraglottal area causes deflection of
the tail of the glottal jet. Zhang andMongeau (2006) reported that
this interaction leads to pronounced shear layers between the jet
and the resting fluid with large velocity fluctuations.

4.2. Quality of Acoustic Signal
As described above, the vocal tract model is the smoothed version
of the staged model developed by Probst et al. (2019). They
reported formant frequencies of F1 = 550Hz and F2 = 1, 080Hz,
being lower than the formants found here. We assume the shift
of the first two formants in this study to higher values is due
to the vocal tract smoothing. As reported by Jiang et al. (2017)
the location of the formants and a resulting shift significantly
depends on the area variation along the tract. Probst et al. (2019)
and Jiang et al. (2017) found lower frequencies for the first two
formants, but Jiang et al. (2017) used a vocal tract, mimicking
a neutral vowel /schwa/ superimposed onto a realistic airway
centerline from in vivoMRI measurements. Comparing the third
formant F3 of our model with that of Probst et al. (2019) shows a
good agreement.

Moreover, the results of SPL show good qualitative agreement
with those reported by Thornton et al. (2019) and Döllinger
et al. (2018), see Table 3. They executed ex vivo experiments with
rabbit larynxes and three different glottal insufficiency grades
(complete glottal closure, partial glottal closure, no contact of
vocal folds). They measured the SPL at a distance of 20 cm
from the glottis. Furthermore, our SPL is higher than the
in vivo measurements of Södersten et al. (1995) because the
microphone in our model is located 30 cm closer to the vocal
folds, nevertheless our SPL values are in the human range

TABLE 3 | SPL in [dB] of Döllinger et al. (2018) and Thornton et al. (2019).

SPL in [dB] GC1 GC2/GC3 GC4

closed partially closed no contact

Döllinger et al., 2018 79.1± 6.4 76.1± 7.1 69.4± 7.5

Thornton et al., 2019 76.7± 6.5 76.0± 7.6 59.4± 7.5

Even though our SPL values are higher they show good qualitative agreement with the

trends reported in this study.

TABLE 4 | CPP in [dB] of Birk et al. (2017b), Döllinger et al. (2018), and

Thornton et al. (2019).

CPP in [dB] GC1

closed

GC2

30%

partially

closed

GC3

60%

partially

closed

GC4

no contact

Birk et al., 2017b 24.3± 5.82 21.8± 4.2 16.4± 2.82 15.7± 1.94

Döllinger et al., 2018 24.0± 4.8 22.8± 4.8 19.4± 4.9

Thornton et al., 2019 17.9± 4.3 15.8± 6.5 11.0± 3.4

Quantitatively, our CPP values are in the range of values reported there.

(Gramming et al., 1988). Our results show that an increasing
posterior gap and glottal insufficiency may reduce the SPL as
reported by Zañartu et al. (2014).

Tanaka and Gould (1985) found a low VE with a large glottal
gap and a high flow rate. Due to the dependency of the radiated
acoustic power from the mouth opening and therefore from the
vowels (Titze et al., 2016), our results may be just valid for a
vowel /a/. Although the basic trend of the VE for the asymmetric
motion coincides with that for symmetric motion, the VE is
mostly larger (GC2 to GC5) compared to the symmetric motion
and is just lower for GC1. Thus, our results agree for GC1 with
the study by Oren et al. (2016), who reported a reduction of VE
for asymmetric vocal fold motion (the study does not present the
degree of glottal insufficiency). We could not identify a discrete
effect that produces the outlier in SPL and subsequently in VE for
GC4.We assume a cumulative effect that may occurmainly in the
higher frequency range of the acoustic signal.

Both effects, an increasing insufficiency, and an asymmetric
vocal fold motion potentially reduce the tonal components of
the acoustic signal and the voice quality. The same observations
have been made in in vivo studies executed by Samlan et al.
(2014) and Chen et al. (2011). Furthermore, the qualitative
trend of CPP was also found in ex vivo studies with human
(Birk et al., 2017b) and rabbit larynges (Döllinger et al., 2018;
Thornton et al., 2019), as shown in Table 4. The high CPP
values for GC2 and GC3 for symmetrically oscillating VFs
shows, that the acoustic signal is still tonal and physiological
for small posterior gaps as often observed in physiological
phonation of women and childs (Södersten and Lindestad, 1990;
Södersten et al., 1995; Inwald et al., 2010; Patel et al., 2012;
Kniesburges et al., 2020). Quantitatively, our CPP values are
in the range of values reported by Döllinger et al. (2018) and
Thornton et al. (2019).
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4.3. Limitations of the Study
The vocal fold vibration in this study is prescribed, neglecting the
fluid-structure interaction (FSI), which is a common approach to
increase the efficiency of the simulations.

5. CONCLUSION

Glottal insufficiency and asymmetric vocal fold oscillations
have been investigated using our numerical aeroacoustic model
simVoice. Aerodynamically, an increasing degree of glottal
insufficiency leads to a decrease in flow resistance and a decrease
in the energy transfer rate between flow and tissue. This means
a reduction of the stimulation of the vocal fold oscillations and
subsequently impairs the acoustic signal. Thus, CPP (Hillenbrand
and Houde, 1996; Birk et al., 2017b; Döllinger et al., 2018;
Thornton et al., 2019), SPL (Döllinger et al., 2018; Thornton
et al., 2019), and VE (Tanaka and Gould, 1985) deteriorate for
an increasing degree of glottal insufficiency.

All these findings correlate with symptoms of functional
voice disorders such as breathiness, hoarseness, and an enhanced
effort needed to phonate, commonly called air loss during
phonation (Fritzen et al., 1986; Zhang, 2019). However, a glottis
insufficiency can also occur in physiological phonation often
observed in women and children who have a triangular-shaped
opening located in the posterior glottis (Södersten and Lindestad,
1990; Södersten et al., 1995; Inwald et al., 2010; Patel et al.,
2012; Kniesburges et al., 2020). Those persons have often a
soft and quiet voice as reported by Fritzen et al. (1986) and
Bhatt and Verma (2014).

In principle, the same trend of a deterioration for an
increasing degree of glottal insufficiency for CPP, SPL and VE
can be seen when comparing symmetric and asymmetric motion
of the vocal folds: The energy transfer rate and the acoustic
parameters decrease for asymmetric motion. However, this trend
is not that distinct as for glottal insufficiency (Birk et al., 2017b).
Therefore, a left-right asymmetry must not necessarily result
in a salient reduction in voice quality, as similarly reported by
Zhang et al. (2012).

From our results, we assume that a high degree of glottal
insufficiency potentially displays the most severe symptom
for a functional voice disorder, which has to be focused on
during clinical treatment [e.g., medialization with hyaluronic
acid-based materials or thyroplasty (type 1 thyroplasty)].
Thereby, the asymmetry of the motion of the vocal folds
seems to have a reduced role in negatively impacting the
voice quality compared to the glottal insufficiency. But both
symptoms in combination will further reduce the quality of the
sound signal.

Regarding the functionality of simVoice, the study shows:
(1) simVoice can mimic simplified vibration characteristics and
glottal geometries, (2) simVoice reveals separated and combined
effects of aerodynamic and acoustic symptoms of a glottal
insufficiency and an asymmetric vocal fold motion, and (3) a
current walltime of 10 h/cycle is, with a prospective increase in
computing power, very promising for a clinical approach.

Furthermore, CFD data in addition to experimental data are
essential to develop, train and validate neural networks as done
by Zhang (2020) and Zhang et al. (2020), which will further
speed up the computing time of the phonation process and the
implementing of numerical models in the clinical environment.
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INTRODUCTION

Machine learning has the potential to enhance the practice of medicine (Rajkomar et al., 2019).
However, an “AI chasm” has been described that limit the clinical application of machine
learning models (Keane and Topol, 2018). Clinicians are domain experts that can help bridge
the gap by becoming active partners in developing and implementing machine learning models
for clinical use. The paradigm of collaboration between domain experts and machine learning
engineers has been successful in developing expert-augmented machine learning (Gennatas et al.,
2020). However, it is challenging for interested clinicians to understand the capabilities of
machine learning and how to best contribute their domain expertise in designing a machine
learning solution.

This is a guide for the clinician interested in helping to design and deploy machine learning
solutions to improve clinical care. We propose an approach that finds an area with potential for
benefit, considers machine learning as one of several solutions, then counts the cost of a perfectly
performing machine learning algorithm to determine if it is worth the effort (Figure 1).

Key Terms
Artificial intelligence (AI): Generally, the ability for a computer to accomplish tasks typically
associated with human intelligence.

Machine learning (ML): a subfield of artificial intelligence, broadly refers to the ability of a
computational platform to learn from data and make predictions or recommendations based
on this data without being explicitly programmed. In general, there are two major categories
of machine learning, supervised and unsupervised. Supervised learning is conducted with the
concept of “truth” where the model tries to approximate the relationship between inputs and
labeled outputs. For example, given images of cats and dogs, where each image has a correct
answer, can you train a model that accurately identifies of cats versus dogs? Unsupervised learning
is performed without data labels and the goal is for the computer to infer inherent structure or
patterns in the data. For example, given a set of heart rate, accelerometer, and location data from
a wearable fitness monitor, can the computer identify periods of rest versus exercise based on
differences in the raw data?

Neural networks (NN): a form of machine learning with a basic architecture consisting
of nodes and connections existing in multiple layers, loosely analogous to neurons and
synapses in the biological brain. This broad category is inclusive of many kinds of modern
machine learning models which are used in tasks such as computer vision, voice recognition,
bioinformatics, and among others.

Deep learning: A broad family of neural network architectures that have multiple layers
(aka deep).
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FIGURE 1 | Framework for considering artificial intelligence-based tools for clinical care.

KEY QUESTIONS

For the interested clinician, these following self-assessment
questions may help in determining whether a machine learning
tool makes sense for your specific scenario.

What Is My Unmet Need?
For machine learning to make a positive impact on patient
care, finding the right use case is the place to start. As a
practicing clinician, this should draw from your understanding
of the clinical workflow and impact on patient care. A proposed
paradigm is starting with a larger problem, mapping out the
workflow, and identifying areas in need of improvement.

Is Machine Learning Useful for This Need?
Critically consider if machine learning is the best tool to improve
that specific area. Consider other solutions involving personnel,
workflow, or policy changes. If an information technology
solution is the best answer, consider its impact on the workflow in
the best case scenario. This depends onwhat is important for each
clinical scenario: accuracy, timeliness, or reliability. If even the
best case scenario leads to minimal improvement and significant
changes in the workflow (with attendant costs), machine learning
may not be the best solution. Consider other solutions involving
personnel, rules-based systems, or process redesign.

Are You Asking the Right Question to Put
the ML Tool in the Highest Value Use
Within the Clinical Workflow?
In order to do this effectively, first find the right use case (e.g.,
right information to the right person at the right time). Next,

figure out where the model fits into the clinical pathway, which
includes process mapping to understand types of input data
needed and output desired. Finally, consider the workflow and
needs of the end-user, including timeliness.

Should Computer Simulation Be
Considered in the Development Process
for the ML Tool?
Depending on the deployment setting, the ML tool may benefit
from data augmentation to improve generalizability, particularly
if the tool is to be applied across different radiological, electronic
health record, or genomic platforms. This can be achieved with
generation of synthetic data or techniques of data transformation.
These are methods where data is artificially manufactured rather
than the result of real-world measurement. This approach can
sometimes be used judiciously to augment real-world data in
scenarios where real-world data is sparse or difficult to obtain.
Data can be either created de novo based on a set of criteria or by
digitally manipulating real-world measured data. This approach
should be used cautiously due to multiple tricky considerations
including bias and generalizability.

CASE STUDIES

Medical Imaging Perspective
Radiographic medical imaging, whether CT, MRI, Ultrasound,
or other modality, is an ever-growing source of big data in
healthcare. Medical imaging began as a field in which advanced
technology was used to generate visual data that could be
analyzed and assessed qualitatively by a clinician. As the field
evolved, quantitative imaging metrics were developed to assist
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with image interpretation and management decisions (Giger
et al., 2008). The advent of computer-aided diagnosis and
detection in the 1980’s and 1990’s brought early machine
learning techniques to the medical imaging field with important
applications in breast cancer mammography and ultrasound
(Jiang et al., 1999; Freer and Ulissey, 2001). Over the past
decade, the emergence of deep learning neural networks has
generated a tremendous amount of attention in the field of
medical image analysis for its transformative potential (Ker et al.,
2018). Deep learning utilizes raw pixel or voxel input from
images and feeds them through progressively more complex
layers of a neural network to generate an output prediction.
Through an iterative training process, millions of mathematical
parameters of a neural network are optimized such that input
images fed into the network generate predictions that best
fit the true output. Rather than rely on user input to pre-
engineer and determine appropriate features for the machine
learning model, deep learning utilizes raw imaging data to
“learn” the features that optimize predictive performance. Unlike
prior forms of computer-aided analysis, deep learning has the
potential to form end-to-end prediction models encompassing
multiple parallel or sequential imaging tasks, including object
segmentation, detection, and identification. Deep learning has
the potential to affect medical imaging in healthcare by (1)
improving diagnostic efficiency and achieving cost savings by
freeing up limited human resources, (2) augmenting human
performance at diagnostic prediction in challenging scenarios,
and (3) discerning previously impossible-to-discern patterns and
predictions from imaging data.

Case Study: Lung Cancer Screening
Lung cancer is the leading cause of cancer death in the
United States. Lung cancer screening with low-dose CT has
been shown to reduce mortality and is currently recommended
routinely for high-risk individuals (National Lung Screening
Trial Research et al., 2011; de Koning et al., 2020). Despite
imaging guidelines for lung cancer detection, there remains
significant concern surrounding inter-rater variability, and false-
positive and negative rates (Field et al., 2016). Additionally,
uptake of CT screening, even among high risk populations
has remained extremely low, in part, owing to lack of high-
volume radiology center resources (Jemal and Fedewa, 2017).
Given these challenges, there is a unique opportunity to explore
machine learning to improve accuracy of detection and access to
screening. In embarking on an investigation of machine learning
for lung cancer screening, the following should be considered:

What is the goal and what is the metric of success? The
ultimate goal and metric for success may not be the same
thing, particularly in initial phases of algorithm development.
The ultimate goal should reflect clinically meaningful endpoints:
improving patient survival, quality of life, or healthcare costs. The
metric for success often begins more narrowly. In the case of
lung cancer screening, percent accuracy, sensitivity, specificity,
and the area under the ROC curve in identifying a lung nodule
as benign or malignant may be appropriate. Ultimately, as
study progresses, metrics should move beyond accuracy. Direct
measurement of clinical meaningful endpoints, such as survival,

morbidity, and quality of life should be incorporated into clinical
trials of the application.

What type of machine learning is optimal for the task? The
type of machine learning utilized will be driven by the medical
imaging task, however, in general, convolutional neural network-
based deep learning architectures are the current gold standard
for image analysis. In simplistic terms, a convolutional neural
network takes images as input data, and applies various filters
which manipulate the image to extract features. This is analogous
to image filters you can use in photo manipulation software or
various social media programs. Some filters may enhance borders
or edges, others may detect specific colors or brightness levels.
This strategy is used in a neural network where the final output
is based on extracting meaningful features from the images
and making decisions based on those features. Older methods
utilizing pre-engineered radiomic features may be suitable for
certain classification problems where the image region of interest
is well-defined, but deep learning has the ability to both localize
an object (in this case lung nodule) and classify it (malignant vs.
benign). Deep learning is particularly well-suited for this “end-to-
end” task completion. Several studies have shown extremely high
accuracy of lung nodule and malignancy prediction using a deep
learning based approach to CT diagnosis (Field et al., 2016; Jemal
and Fedewa, 2017; Kang et al., 2017; Causey et al., 2018; Ardila
et al., 2019).

What type of data is needed? Data collection, curation, and
annotation are perhaps the most critical aspects of training
a successful machine learning algorithm. As the approach
shifts from simpler machine learning models to more complex
models such as deep learning neural networks, the quantity
and quality of data becomes increasingly important. For lung
cancer screening, this means access to thousands of CT scans
that have been pre-labeled by human experts. Each nodule
should have been identified and should have associated with it
a “ground truth” label. For an image localization task, this label
itself would be a segmented region of interest encompassing
the nodule. For malignancy classification, this label could be
binary (malignant or benign) or ordinal (suspicion of malignancy
on a scale of 1 through 5), depending on how the labeling
was performed. Because many imaging-based ML algorithms
are prone to overfitting training data, all models must be
validated on external datasets, ideally representative of the target
scenario for which the algorithm is being developed. Particular
considerations for medical images are type of CT scanner, use of
contrast agent, image resolution, and artifact. These parameters
must be explored and addressed in preprocessing steps and/or
validation datasets prior to implementation of an imaging-based
ML application.

What is the role of simulated, or synthetic, data? Successful
ML development in medicine requires large, high-quality,
annotated, and accessible datasets, which are often lacking
(Emanuel and Wachter, 2019). A key strategy to mitigate data
limitations is the use of data augmentation techniques to create
simulated, or synthetic, data to bolster the training process. By
applying image transformations, from simple rotations, flips,
or deformations to more advanced ML-driven augmentation,
model generalization can be improved dramatically even when
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training on relatively small datasets (Goel et al., 2020).
This is accomplished by introducing transforms that mimic
confounding variations expected of data samples encountered
in real-world testing, but that are not themselves features that
predict a particular data class.

Where does the model fit into the clinical pathway? The
ultimate utility of an ML-based healthcare application like lung
cancer screening will not be decided by AUC or accuracy, but
by clinically meaningful endpoints, such as decreased mortality,
treatment-related morbidity, and healthcare resource burden.
To maximize the potential utility of the algorithm, it must be
determined how the model can best fit into the clinical pathway
by considering timing, physical space, costs, user interface,
and responsibility. In the context of lung cancer screening, for
example, an algorithm could be executed automatically at the
time of scan or by the radiologist during review. The former
could improve resource allocation by flagging abnormal scans
for expedited review, but the latter would allow for human
oversight of the algorithm with less risk of bias. On the other
hand, incorporation at the time of radiologist review would
necessitate a streamlined user interface that does not compromise
efficiency. Simple workflow decisions such as this can also have
profound implications for responsibility, trust, and decision-
making and raise medico-legal issues. If an algorithm triages
patients incorrectly to the reviewing radiologist, who is liable for
this error? These subtle implementation characteristics represent
significant barriers to entry to real-world clinical use, but are
often overlooked in early stages of algorithm development. These
factors should be considered (and reconsidered) at each stage of
algorithm development, even at model conception.

Ambulatory Provider Perspective
A major advantage of machine learning algorithms is the
ability to process large amounts of data in a relatively short
amount of time. For an ambulatory provider, this advantage
can translate into individualized decision-making by using a
model that incorporates relevant variables beyond traditional
population-based risk factors. For example, primary care
providers often use a clinical decision support tool to recommend
initiation of a statin for appropriate patients during routine
office visits. Traditional models such as the Atherosclerotic
Cardiovascular Disease (ASCVD) risk score uses conventional
statistical methods from a population that may not be a good
representation for all patients, particularly since risk of disease
and treatment guidelines vary among patients of different
ethnicities (McCredie et al., 1990; Norwood et al., 2009; Lloyd-
Jones et al., 2017; Das et al., 2018; Volgman et al., 2018; Damask
et al., 2020).

Case Study: Polygenic Risk Scoring
To better understand differences between individuals of different
ethnicities, polygenic risk scoring estimates the predisposition
of disease using the presence or absence of known disease-
associated genes (Damask et al., 2020). This holds the promise
of generating more accurate predictions by using genotypic data
in conjunction with other clinical and environmental variables.

As a clinician interested in implementing such a model into live
practice, what are the important specifics to consider?

Machine learning models can process a large number of
variables that are also very different from one another. In order to
handle the variety of data, data management is critical during the
early stages of planning. Effective data management considers (1)
data type, (2) data reliability, and (3) the sample size.

In regards to data types, the inputs used to generate a
model can come in various forms. One of the major advantages
of newer machine learning models over traditional statistical
models is increased flexibility to take different types of inputs.
This can range from simple mixing of categorical vs. continuous
variables to handling high dimensional complex inputs such as
raw imaging, video, audio, or even genome sequencing data.
Another advantage of handlingmultiple data types is that one can
imagine a machine learning pipeline that utilizing several layers
of processing while appearing seamless to the end user. If a data
type is not readily available in modern EHRs but is of critical
importance, it should be considered for integration as part of
future policy/health IT infrastructure development. For example,
in order to fully utilize genomic risk prediction, sequencing data
must be available. At present, most genomic sequencing is often
done for a specific panel of genes and the results are often saved as
a report in the EHR. The actual genomic data is not saved as most
mainstream EHRs lack the capability to store this type of data.

When considering data reliability, the electronic health record
(EHR) is a rich source of potential data but most clinicians
recognize that there is a wide range to the reliability and accuracy
of EHR data. Some data types are structured (for example a
hemoglobin A1C laboratory value), meaning both the value and
the context are discretely defined. Structured data are more easily
accepted by machine learning algorithms with less preprocessing
needed. These types of data fall on the more reliable end of the
spectrum. Diagnosis and billing codes are also structured, in that
the value and context are clearly defined, but most clinicians
understand that they are limited terms of accurate representation
of the patient. Fully unstructured data include data types such
as notes. Notes are often considered the most representative of
clinical truth in the EHR, but often can still contain errors. As
unstructured data, notes are difficult formachine learningmodels
to accept as input without preprocessing.

A challenge for generalizability in polygenic risk scores is the
heterogeneity of available data across electronic health record
systems that vary across institutions and health systems, and
scarcity of fully annotated genomic datasets. Two promising
approaches have shown the ability to generate synthetic data by
characterizing different data distributions in electronic health
record data and genomic datasets using generative adversarial
neural networks and ordinary differential equation-based models
(Fratello et al., 2015; Baowaly et al., 2019).

A critical question for data scientists is identifying what types
of data is important to include into a model. Clinicians can
inform data scientists about important concepts to include and
point them to the best sources of data to represent those concepts.
This often draws on the clinician’s medical knowledge and may
mirror their own human analytic process when making clinical
decisions. For example, clinicians understand that diabetes is an
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important risk factor to include in models for cardiovascular
disease. Therefore, an important concept to identify is the
presence of “diabetes.” However, data that could represent
diabetes include laboratory values, clinical documentation,
billing codes, and among others. The ultimate decision on which
to use (including combinations) is best made in conjunction
with a clinician who understands the medical considerations,
the workflow considerations, and the data considerations as
discussed above. Once there is a thoughtful strategy on what
are the best sources of data for specific concepts, advanced ML
techniques can be employed to obtain more difficult to extract
data if necessary.

For example, a common challenge in utilizing the EHR is
how to best utilize clinical notes, where information largely
exists as free-text. One approach to make use of unstructured
free-text data is natural language processing. Natural language
processing models can capture specific meaning and interpret
intent based on not just terms but context. A combination of
ML models optimized for specific tasks can be integrated into a
larger model either directly or through a series of preprocessing
steps where the output is used in a subsequent ML model.
Specific ML models may be optimized for natural language
processing of notes, or detect polygenic risk of cardiovascular
disease from genomic data. In the prior example, NLP may be
used to identify the concept of “poor adherence to insulin” from
clinical notes whereas a genomic risk factor model may find
mutations that confer risk of developing type II diabetes. These
data points can subsequently integrate into a model that accounts
for environmental exposures such as smoking and other clinical
risk factors like obesity.

The last major consideration is the number of cases or patients
with the relevant data available. While most of the current
excitement is over deep learning or neural networks, these
types of machine learning techniques require large numbers of
examples to train. Other forms of machine learning can perform
well with smaller training samples, and some approaches handle
missing data better than others, which is a frequent occurrence
when working with clinical variables. Lastly, understanding the
population characteristics can be helpful when selecting good
machine learningmodel candidates. Like all predictionmodeling,
incidence and prevalence are important considerations when
attempting classification tasks. For example, rare events can be
more difficult for machine learning to predict, and data scientists
often address issues related to class balance when building the
model. If a machine learning model tried to predict whether you
would win the lottery, and just predicted that nobody would win
the lottery ever, it would be right the majority of the time and be
very “high performing” from an accuracy perspective.

Proceduralist Perspective
Real-time deep learning-based computer vision can also
enhance the performance of the proceduralist by providing
visual enhancement of anatomy and pathology. These can be
overlaid directly onto images collected during the procedure,
whether from laparoscopic surgery or diagnostic endoscopy. The
algorithms could provide optical biopsies, map out anatomical

boundaries and tissue planes, and identify abnormal areas
relevant to the particular operative procedure.

Case Study: Colonoscopy With Computer-Aided

Detection
For a gastroenterologist, finding precancerous lesions is the top
priority to prevent colorectal cancer. In order to measure the
success in preventing colorectal cancer that develops before
the recommended next colonoscopy, gastroenterologists have
traditionally used adenoma detection rate (ADR) as a proxy
indicator for high quality colonoscopy as a 1% increase in
ADR in correlated with a 3% decreased risk of interval
colorectal cancer. The endoscopist can track their adenoma
detection rate, and if it is lower than expected could undergo
additional training to improve their ability to detect pre-
cancerous lesions. However, adenoma detection rate has wide
variation across endoscopists, and a tool that would standardize
the performance of endoscopists would help decrease the
incidence of preventable colorectal cancer. Recent advances in
deep learning through convoluted neural networks have led
to high-performing algorithms that hold promise in enhancing
endoscopist performance by identifying polyps in real-time
colonoscopy videos and detecting adenomas, which can increase
the adenoma detection rates for all endoscopists (Misawa et al.,
2018; Urban et al., 2018;Wang et al., 2018, 2019, 2020; Gong et al.,
2020).

As a clinician interested in developing or implementing deep
learning tools to improve the adenoma detection rate, how
should you think about the approach?

First, identify the inputs (e.g., images or video) to train
the model, which in this case would be deep convolutional
neural networks described earlier in section Medical Imaging
Perspective. If the model is meant to detect polyps, the ideal
input would be colonoscopy videos with labeled images of “polyp
present” and where in the frame the polyp is located. This is the
rate-limiting step, since labeling is human capital-intensive, deep
learning requires numerous examples, and the algorithms learn
explicitly from the label of “polyp present” or “polyp absent.”

In this particular task, data transformation has been
considered due to the relative absence of large annotated image
databases of polyps. These approaches have included changing
the image dimensions, changing pixel values, and adding in
external conditions with the goal to maintain or achieve better
generalizability for ML tools to detect polyps (Sánchez-Peralta
et al., 2020).

As with all supervised machine learning, labels must be
present in the data to train the algorithm, which can sometimes
be costly as content experts are needed to create the labels.
Furthermore, one key challenge is to make sure the algorithm
can perform well in other datasets, referred to as “robustness,”
such as in real time for a new procedure. In this case, the specific
way the data is captured may affect the algorithm performance.
For example, if the algorithm is to be used in a practice with high
definition endoscopes that have specific image processing settings
(e.g., narrow band imaging), the input data should ideally be
captured from that specific brand of endoscope and also include
images with the specific setting. A clinician is critical in informing
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the data scientist the parameters of the data used during the
procedure so that adequate data of sufficient quality is collected
to train the algorithm.

As the model is developed, the issue of timeliness and
workflow is highlighted as a key area for clinician involvement
(Shung and Byrne, 2020). This is particularly relevant for
endoscopic units in ambulatory surgical centers, where the
trend toward lower reimbursement for endoscopy have led to
the development of performance metrics to enhance efficiency
(Gellad et al., 2013). Proceduralists provide crucial information
about the existing clinical process to guide how software
should be designed. The user needs of the endoscopist must
be considered, particularly the tolerance for false positives
and the impact of the software on efficiency (i.e., duration
of the procedure). Since a colonoscopy procedure involves
diagnosis, assessment, and treatment (find the polyps, assess if
they are problematic, and remove them), real-time processing
is a prerequisite to any software solution. For high volume
ambulatory surgery centers, algorithms must have minimal
impact the amount of time to perform procedures. Clinicians’
preferences and insight into the workflow of how the deep
learning software enhances the user experience and performance
are key in optimization, in this case providing real-time
recommendations that do not unnecessarily prolong the
overall procedure.

Finally, as these algorithms are implemented, clinicians have
an important role in providing feedback. User assessments
and improvements in the interface for each iteration of the
software implementation. If there are clear discrepancies in
what the software detects and provider assessment, quality
control is crucial to maintain provider confidence in the
software recommendations.

Limitations and Additional Considerations
While these scenarios delve into specific ways in which clinicians
can inform the development and validation ofML tools in clinical
care, the potential applications of AI in healthcare go from
individualized recommendations with personalized medicine
to informing policy in public health. A discussion of all the
potential applications is beyond the scope of this article, but a
comprehensive compilation of AI and ML-based medical devices
approved by regulatory bodies in the United States and Europe
provide a glimpse into the personalization of care (Muehlematter
et al., 2021), while another article delves into the ways in which
AI and ML can be used across populations to tailor policies to
promote health, protect health, and improve the efficiency of
services for communities within the greater population (Panch
et al., 2019).

Limitations for integrating ML tools into clinical care can
broadly fall under data maintenance and real-world deployment.

Bias, heterogeneity, and gaps in data can lead to poor
performance or contribute toward perpetuating disparities or
harmful discriminatory practices. Indeed, a prominent recent
example was the Amazon AI recruitment tool that was
deactivated after it showed bias against hiring women (Dastin,
2018). A new concept of algorithmic stewardship addresses
the limitations of constantly changing sources and storage of
healthcare data by monitoring, correcting, and updating the

dataflow to accurately reflect different ways of data capture as well
as practice patterns or epidemiological shifts (Eaneff et al., 2020).
Data equity and representation is a key limitation that should be
actively addressed with the development of anyML tool to ensure
that inherent health inequities, such as race correction, will not be
perpetuated (Vyas et al., 2020).

Generalizability and interpretability are two key limitations
that can hamper real-world deployment of ML tools. For
clinicians, the focus is on the individual patient, which requires
that the algorithm performs well and does not generate an
erroneous result. For deep learning tools in particular, the
key limitation of overfitting due to complexity of the network
architecture and large number of parameters must be addressed
with rigorous validation on multiple datasets representative of
real world data. This is analogous to training a robot to play
tennis only on a clay court, and then deploying the robot to play
on the grass courts of Wimbledon. Since clinicians are experts
with advanced training, the need to trust and verify the ML tool
output is key to ensure that the ML tools are used in clinical
practice. For this, a measure of interpretability is important so
that ML tools can complement the professional authority of
clinical providers (Kelly et al., 2019).

The use of AI with its dependence on data also introduces
additional risks into the healthcare environment with regards
to ethical, regulatory, and legal issues. Privacy compliance, the
role of the algorithm in shared patient-provider decision making,
data access, system failures, computer viruses/malware, and
intentional adversarial attacks geared toward machine learning
models require additional strategies to mitigate risk for patients
when considering the use of ML in medicine (Finlayson et al.,
2019). Ethical research methodology, including fairness and
equity for both representation in the data used for the algorithms
and in sharing the benefits realized by the algorithm, must
be practiced when using patient data. Clinician researchers
adept in these consideration can help guide data scientists
in this regard. We recommend consultation with institutional
review boards (IRB) for all projects related to patient data
to ensure appropriateness and proper protection of patients.
Prior to commercialization and deployment of informatics based
tools in patient care, approval from regulatory bodies may be
necessary. The regulatory guidelines continue to evolve in the
United States with the FDA, the European Union with General
Data Protection and Regulation framework, and internationally
through the International Medical Device Regulators Forum. For
the FDA, ML algorithms have been assessed in a similar fashion
to medical devices, although there is now a growing recognition
that software-based products are a unique category within
that track.

CONCLUSIONS

Machine learning integrated medicine is the future of patient
care. Analytic tools to take full advantage of an increasingly
information-dense practice environment, but clinicians are
critical partners in developing successful ML models that can be
integrated into real-world patient care. While data scientists are
experts in the technical aspects of machine learning, clinicians
are needed to identify the appropriate settings for ML solutions,
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the best data to use to help shape model development, the best
integration point into a real world workflow environment, and
the final usability of the tool.
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Introduction: Accounting for biological heterogeneity represents one of the greatest
challenges in biomedical research. Dynamic computational and mathematical models
can be used to enhance the study and understanding of biological systems, but
traditional methods for calibration and validation commonly do not account for the
heterogeneity of biological data, which may result in overfitting and brittleness of
these models. Herein we propose a machine learning approach that utilizes genetic
algorithms (GAs) to calibrate and refine an agent-based model (ABM) of acute systemic
inflammation, with a focus on accounting for the heterogeneity seen in a clinical data set,
thereby avoiding overfitting and increasing the robustness and potential generalizability
of the underlying simulation model.

Methods: Agent-based modeling is a frequently used modeling method for multi-scale
mechanistic modeling. However, the same properties that make ABMs well suited
to representing biological systems also present significant challenges with respect to
their construction and calibration, particularly with respect to the selection of potential
mechanistic rules and the large number of associated free parameters. We have
proposed that machine learning approaches (such as GAs) can be used to more
effectively and efficiently deal with rule selection and parameter space characterization;
the current work applies GAs to the challenge of calibrating a complex ABM to a specific
data set, while preserving biological heterogeneity reflected in the range and variance
of the data. This project uses a GA to augment the rule-set for a previously validated
ABM of acute systemic inflammation, the Innate Immune Response ABM (IIRABM) to
clinical time series data of systemic cytokine levels from a population of burn patients.
The genome for the GA is a vector generated from the IIRABM’s Model Rule Matrix
(MRM), which is a matrix representation of not only the constants/parameters associated
with the IIRABM’s cytokine interaction rules, but also the existence of rules themselves.
Capturing heterogeneity is accomplished by a fitness function that incorporates the
sample value range (“error bars”) of the clinical data.
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Results: The GA-enabled parameter space exploration resulted in a set of putative
MRM rules and associated parameterizations which closely match the cytokine time
course data used to design the fitness function. The number of non-zero elements
in the MRM increases significantly as the model parameterizations evolve toward a
fitness function minimum, transitioning from a sparse to a dense matrix. This results
in a model structure that more closely resembles (at a superficial level) the structure of
data generated by a standard differential gene expression experimental study.

Conclusion: We present an HPC-enabled machine learning/evolutionary computing
approach to calibrate a complex ABM to complex clinical data while preserving
biological heterogeneity. The integration of machine learning, HPC, and multi-scale
mechanistic modeling provides a pathway forward to more effectively representing the
heterogeneity of clinical populations and their data.

Keywords: machine learning, agent based modeling, high performance computing, genetic algorithm, biological
heterogeneity

INTRODUCTION

Heterogeneity of biological phenotype is an essential
characteristic that provides robustness for organisms in
variable and ever-changing environments and provides the
range of fitness across individuals necessary for natural selection
and evolution to function (Csete and Doyle, 2004; Stelling
et al., 2006). Accounting for biological heterogeneity, be it in
experimental systems or in clinical data, represents one of the
most critical challenges to identifying shared and fundamental
properties across biological entities (Gough et al., 2017). In
addition to the concepts described in Gough et al. (2017),
we have previously proposed that multi-scale computational
models can serve as focused abstractions of biological systems
to enhance the study and understanding of how these systems
function; furthermore, enhancing their ability to capture and
reflect complex biological heterogeneity can increase their
utility as means of generating more robust, generalizable
and translatable knowledge (An, 2018). All computational
and mathematical models incorporate parameters that help
define their behavior; variations of those parameters can be
used to represent the heterogeneity seen in the dynamics of
the biological systems represented by those models (Cockrell
et al., 2020). We have extended this concept to the propose
that a “parameter space” that results in recapitulation of
bioplausible phenotypes can reflect genetic and epigenetic
variation within a population, and assert that the model rule
structure, which represents knowledge of the interactions
between the components of the biological system, can be
optimized to reflect a more accurate interaction network able
to capture an increased variation of behavioral phenotypes.
Herein we present a method utilizing genetic algorithms (GAs),
a machine learning method for complex optimization, to
calibrate and refine an agent-based model (ABM) of systemic
inflammation to capture the heterogeneity and variability of
a clinical data set. This method represents a departure from
traditional approaches to calibration and parameterization
that generally focus on using “cleaner” data sets with less

variation/heterogeneity and/or fitting to a regression that
draws a mean through what variation is present in the selected
data, a process that can result in over-fit and brittle models.
Alternatively, we propose that models (in terms of both
parameters and interaction rules) selected for being able to
reproduce an entire range of data within a dataset are more
robust and generalizable, and therefore able to enhance the
translation and applicability of knowledge.

This work focuses on enhancing the utility of ABMs as
means of instantiating mechanistic hypotheses (An, 2009).
Agent-based modeling is an object-oriented, discrete-
event, rule-based, spatially explicit, stochastic modeling
method (Bonabeau, 2002). In an ABM, individual agents
representing components of the overall system are simulated
interacting with each other and with their environment.
These interactions are mediated by a pre-defined set of
rules, typically derived from the literature and expert
knowledge, and often containing stochastic components,
to reflect either known probabilistic components in their
behavioral rules or epistemic uncertainty regarding how
those rules are resolved. As such, ABMs are computational
instantiations of mechanistic knowledge regarding the systems
being modeled and consequently are often used to simulate
complex systems in which the aggregate of individual agent
interactions can lead to non-trivial or unintuitive macro-
state/system-level behaviors (An et al., 2009). This makes
agent-based modeling a powerful technique for representing
biological systems; rules are derived from experimentally
observed biological behaviors, and the spatially explicit
nature of the models give it an inherent ability to capture
space/geometry/structure of biological tissue, which facilitates
the ability of biomedical researchers to express and represent
their hypotheses in an ABM (An, 2009). ABM’s have been
used to study and model a wide variety of biological systems
(Bonabeau, 2002), from general purpose anatomic/cell-for-
cell representations of organ systems capable of reproducing
multiple independent phenomena (Cockrell et al., 2014,
2015) to platforms for drug development (An et al., 2011;
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Cockrell and Axelrod, 2018), and are frequently used to model
non-linear dynamical systems such as the human immune
system (Baldazzi et al., 2006; Bailey et al., 2007; Cockrell and An,
2017; An, 2018).

In the process of developing an ABM, hypotheses or pieces
of existing knowledge are re-framed as rules that determine
the behavior of the agents when they interact with each and
their environment. For example, in the context of a biomedical
ABM one of those rules might be the definition of a cytokine
signaling pathway, i.e., Tumor Necrosis Factor α (TNFα), a pro-
inflammatory cytokine, upregulates Interleukin-10 (IL-10), an
anti-inflammatory cytokine. The quantification of the effect that
TNFα has on IL-10 in this hypothetical rule is determined by
adjusting the parameters associated with that rule during model
calibration, a critical step in the development and refinement of
an ABM (Bonabeau, 2002; Rogers and Von Tessin, 2004; Bianchi
et al., 2007; Windrum et al., 2007; Liu et al., 2017).

Parameter Space as a Means of
Capturing
Genetic/Epigenetic/Intrapopulation
Variability
All computational models incorporate parameters within the
rules/equations that make up the model. In dynamic mechanistic
models, like ABMs, those rules often represent cellular functions
and molecular events, such as receptor binding, signaling,
gene activation, protein synthesis or secretion (Figure 1).
However, the vast majority of mechanism-based computational
models do not explicitly represent every component of
every step present in the cell; in practice this is nearly
functionally impossible at the current time because the sum
total of interactions between components, or even the total
set of components, is not known. Therefore, essentially all
computational models that utilize rules to govern cellular
behavior use some degree of abstraction and developer choice
in what entities and functions are represented; these choices
are often termed the variables of the model. These models
invariably incorporate sets of parameters/coefficients that reflect
the contribution/effect of a particular biological entity/mediator
explicitly represented within a model’s rules; these are the
parameters that modify the variables within a stated rule. We
assert that for rules of this type/form the parameters/coefficients
represent a concatenation of various mediators, pathways and
genes not explicitly represented that affect the interaction
process represented in the rule (Figure 1), and therefore
provide a means of capturing “hidden” control factors (known
and unknown) that provide variation across a population of
biological entities.

Note that these parameters are an aggregation of a whole
series of factors: i.e., the effect of other health factors, such
as co-morbidities or age, on the represented rules/functions,
unknown mediators or genes, essentially any potential factor than
can affect the functional output of the represented rule. Cast
in this fashion, the multi-dimensional space of parameters can
encompass a range of genetic/epigenetic/functional variability
of the type present in a heterogeneous clinical population.

We propose that characterizing this parameter space and its
associated ensemble of model forms enhances the applicability
and generalizability of a model’s rule structure and can avoid
“overfitting” and the generation of brittle models. Given the
high-dimensional nature of this type of model parameter space
we propose to use a machine learning/evolutionary computing
optimization method, GAs, in order to generate an ensemble of
parameterizations able to recapitulate a heterogeneous clinical
data set. We would like to emphasize that while GA is an
optimization method that will converge to an “optimal” solution,
we do not suppose that the optimized solution is necessarily more
plausible that the rest of the sufficient parameterizations within
the ensemble. Rather, we are utilizing the convergence process
of the GA to identify a set of parameterizations sufficient to
represent the range of heterogenous clinical data; this ensemble
of parameterizations then forms the bioplausible manifestations
of simulation model, which can then be used for further studies
on disease forecasting (Larie et al., 2020) or therapeutic control
discovery (Cockrell and An, 2018; Petersen et al., 2019). Our
proposed method is related to how parameter spaces are used
to define the behavior of ordinary differential equation (ODE)
models, where different fits are used to match different values
within a range in a time series of data. However, we believe that
the use of ABMs provides an extension of the representational
capability of ODE parameter space characterization by the
stochastic properties of the ABMs, which reflect intrinsic
biological stochasticity, to generate population distributions for
individual parameterizations (as opposed to unique deterministic
trajectories seen in an ODE).

We also note our attempt to avoid the use of the term
“fitting” for this process, a term that brings to mind the way
that statistical models are adjusted to match data (though often
applied to the calibration of ODE models). Rather than trying
to precisely and restrictively identify “fitted” parameterizations,
which commonly requires a lossy process by which the
heterogeneity of the data is compressed into a mean, we aim
to find sufficient parameterizations that are able to recapitulate
the range of data present. Given how we have defined the
role of the parameters in the model (Figure 1) there is no
supposition that a “single” parameterization exists within the
clinical population, but rather that a population is represented by
an ensemble of parameterizations. However, given the epistemic
uncertainty associated with all the potential factors that might
affect the behavior of the model, it is currently impossible to
specify what the distribution across a real population of those
parameterizations; the only means we have of determining their
plausibility is via the existing data. This strategy is specifically
designed to avoid “overfitting,” which we interpret as a failure
of generalizability of a particular model when it is exposed
to new, additional data; our intent is to preserve and refine
the expressiveness of a model’s rule structure with a focus on
recapitulating the heterogeneity seen in biological data.

In the sections below we present a method and results that
uses the convergence process of GAs to identify an ensemble of
parameterizations for an ABM of acute systemic inflammation
sufficient to recapitulate the heterogeneity of a clinical data set
from burn patients.
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FIGURE 1 | Depiction of how representation of cellular behavioral rules governing the effect and generation of various mediators is accomplished by rule parameters.
Cellular rules are presented as input-output relationships for specific cell types; in practice not every mechanistic step is represented in such a rule. The weight of
each contributing mediator to the overall function of the cell is represented by the parameters associated within each rule. We pose that these parameters essentially
aggregates the influence of non-represented or unknown cellular components on the represented rule. a and b are rule parameters that represent “hidden”
factors/controls/genes that affect the contribution of Mediator 1 and Mediator 2 to the production of Mediator 3.

MATERIALS AND METHODS

The Model Rule Matrix
In our ABMs the rules and a set of coefficients that quantify the
effect of the rules (see Figure 1) are stored in an object which we
refer to as the Model Rule Matrix (MRM). In this scheme, specific
rules are represented by rows in the matrix; each computationally
relevant entity in the model is then represented by the matrix
columns. As a simple example, the system of model rule equations
for a single cell:

M1t+1 = M1t +M2t

M2t+1 = −M1t +M3t

Would be represented by the matrix:[
1 1 0
−1 0 1

]
Where the first column holds the rule coefficients for Mediator 1
(M1), the second column holds the rule coefficients for Mediator
2 (M2), and the third column holds the rule coefficients for
Mediator 3 (M3). We note that this is a simplified rule for the
purpose of illustration. The matrix is readily decomposable into a
one-dimensional vector, upon which we can operate using GAs.
The number of rows in the matrix then is equal to the number
of rules that it represents, and the number of columns is equal
to the number of entities that could potentially contribute to the
decision made by their associated rule. Note that if a particular

interaction between model components is not represented
then the corresponding position within the MRM contains a
“0.” Therefore, the MRM presents a compact mathematical
representation of the interaction rules present in an ABM.

The resulting product of this work is an ensemble of
biologically/clinically plausible model parameterizations,
representing a genetically/epigenetically/functionally diverse
cohort of in silico patients, able to represent a range of
heterogeneous experimental or clinical data. In this sense,
elements of this work are similar to traditional sensitivity analysis
techniques (Cukier et al., 1978; Saltelli et al., 2004, 2008); the
primary distinction lies in the fact that these algorithms consider
alternate rule configurations (as represented by the conversion
of zero to non-zero elements in the MRM), which can change
model-parameter sensitivities (Cockrell et al., 2020).

The Reference Model: IIRABM
In this work, we utilize a previously developed an ABM of
systemic inflammation, the Innate Immune Response ABM
(IIRABM). Though the IIRABM has been calibrated to simulate
blunt trauma and infectious insult, it is an abstract and
generalizable (An, 2004; Cockrell and An, 2017) model of human
response to injury. Cytokine time series and systemic response
varies significantly between both blunt trauma/infectious insult
and severe/large surface area burns. In this work, we demonstrate
the changes necessary to recalibrate the model from simulating
an infectious injury to a caustic and sterile injury. The IIRABM
is a two-dimensional abstract representation of the human
endothelial-blood interface. This abstraction is designed to model
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the endothelial-blood interface for a traumatic (in the medical
sense) injury and does so by representing this interface as
the unwrapped internal vascular surface of a 2D projection
of the terminus for a branch of the arterial vascular network.
The closed circulatory surface can be represented as a torus,
and this two-dimensional surface defines the interaction space
simulated by the model. The spatial geometry of the circulatory
system and associated organ interfaces are not directly mapped
using this scheme. This abstraction reproduces the circulatory
topology accessible by the innate immune system and presents
a unified means of representing interaction between leukocytes
and endothelial surfaces across multiple tissue and organ types.
The IIRABM utilizes this abstraction to simulate the human
inflammatory signaling network response to injury; the model
has been calibrated such that it reproduces the general clinical
trajectories of sepsis. The IIRABM operates by simulating
multiple cell types and their interactions, including endothelial
cells, macrophages, neutrophils, T-lymphocyte subtypes (TH0,
TH1, and TH2 cells) as well as their associated precursor
cells. Intrinsic biological stochasticity, such as the spatial
distribution of cells at initialization or movement direction
not governed by chemotaxis and the manifestation of switches
governing cellular actions, is represented by the introduction
of randomness into the IIRABM; this allows the IIRABM to
generate a population distribution of different trajectories from
an identical parameterization/initial conditions. The simulated
system dies when total damage (defined as aggregate endothelial
cell damage) exceeds 80%; this threshold represents the ability of
current medical technologies to keep patients alive (i.e., through
mechanical organ support) in conditions that previously would
have been lethal. The IIRABM is initiated using five parameters
representing the size and nature of the injury/infection as well
as a metric of the host’s resilience: (1) initial injury size, (2)
microbial invasiveness (rate at which infection spreads), (3)
microbial toxigenesis (rate at which infection damages tissue),
(4) environmental toxicity (amount of spontaneous infectious
exposure in the environment, such as an Intensive Care Unit),
and (5) host resilience (the rate at which damaged but not dead
tissue recovers). These five parameters clearly have correlates
in the real world, and yet are nearly inherently un-quantifiable.
Therefore, they are treated as dimension-less coordinate axes in
which the behavior of the IIRABM exists.

The IIRABM characterizes the human innate immune
response through the simulated generation of a suite of
biomarkers, including the pro-inflammatory and anti-
inflammatory cytokines represented in the IIRABM. At each time
step, the IIRABM outputs the total amount of cytokine present
for all mediators in the model across the entire simulation. The
ordered set of these cytokine values creates a high-dimensional
trajectory through cytokine space that lasts throughout the
duration of the simulation (until the in silico patient heals
completely or dies). We note that stochastic effects can play a
significant role in simulation dynamics. Model parameterizations
used in this work lead to a simulated mortality rate of 50%; in
these simulations, identical injuries and initial conditions are
given to the model and over time, the trajectories diverge to
the point that half of the simulated cohort heals completely and

half dies. The fact that the initial conditions are exactly identical
means that it is indeed stochasticity, not chaos, that leads to
the diverging trajectories. A detailed discussion of this can be
found in Cockrell and An (2017).

While the IIRABM successfully simulates the human immune
response to injury at a high, overall system level (outcome
proportions, time to outcome, etc.), it may not always replicate
specific cytokine time series. A cytokine time series is not a
single sequence of numerical values; rather, it is a sequence
of ranges, indicating significant heterogeneity clinical response
to severe burns, within which the cytokine measurements fall
for a given patient in the cohort that generated the time
series. This heterogeneity is challenging because the magnitude
of these ranges is not temporally constant. In order for a
computational model to be biologically realistic, it must be able
to generate any physiological state which can experienced by the
biology that is being simulated and do so with the appropriate
frequency. We have previously characterized the shapes of the
probabilistic “clouds” of multi-dimensional state space of the
IIRABM (Cockrell and An, 2017); these distributions, which
are more akin to the range of variable behavior generated
by biological systems, are too complex to be represented by
a small/simple set of stochastic differential equations with an
analytically defined “noise” term. This prompts the need to
execute the ABM at large scale in order to more effectively capture
the population dynamics structure present in a clinical data set.

Application of Genetic Algorithms
In this work, we use GA to operate on the IIRABM’s rule set such
that it can accurately simulate the cytokine time course and final
outcomes for a serious burn injury. As noted in the Introduction,
we are employing GA is a non-standard fashion, where rather
than seeking a specific optimal parameterization of the MRM we
are using the process of convergence of the GA to identify an
ensemble of valid parameterizations. Cytokine time series were
extracted via inspection from Bergquist et al. (2019). In Bergquist
et al. (2019) provide a variety of blood cytokine levels over 15 time
points and 22 days for patients which exhibited severe burns over
50% of the surface area of their bodies. The authors observed a
mortality rate of 50% for this category of injury.

A GA (Goldberg and Holland, 1988; Fonseca and Fleming,
1993; Haupt and Ellen Haupt, 2004) is a population-based
optimization algorithm that is inspired by biological evolution.
In a GA, a candidate solution is represented by a synthetic
“genome,” which, for an individual, is typically a one-dimensional
vector containing numerical values. Each individual in a GA
can undergo computational analogs to the biological processes
of reproduction, mutation, and natural selection. In order to
reproduce, two individual vectors are combined in a crossover
operation, which combines the genetic information from two
parents into their progeny.

Using this scheme, cytokines produced by a given cell type
are held fixed, while the stimuli that lead to the production
of that specific cytokine are allowed to vary. This maintains a
distinction between the cell and tissue types represented in the
model throughout the MRM evolution from the GA.
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The candidate genomes which comprise the rule set are then
tested against a fitness function which is simply the sum of
cytokine range differences between the experimental data and the
computational model:

F =
∑

i,t

∣∣max
(
Ce

i,t
)
−max

(
Cm

i,t
)∣∣+ k |Re − Rm| ,

where Ce
i,t represents the normalized blood serum level of

cytokine i at time point t from the experimental data, Cm
i,t

represents the normalized blood serum level of cytokine i at
time point t from the IIRABM, Re represents the experimentally
observed mortality rate, Rm represents the model-generated
mortality rate, and k is an adjustable parameter to govern the
importance of the mortality rate contribution to the fitness
function. For the purposes of this work, we consider an optimal
solution to be one that minimizes the above fitness function.
In order to avoid issues of over-fitting, we held the time points
at t = 48 h post-burn and t = 8 days post-burn back from the
evaluation of candidate fitness. Despite this, these time points
were well-matched between the in silico and in vivo experiments.

We note that 50 stochastic replicate simulations of the
IIRABM were used to generate simulated ranges, while only
20 patients comprised the clinical data set. The reasoning for
this is that the simulated range was not stable using only 20
stochastic replicates; we found that when we ran 50 replicates per
parameterization, the simulated cytokine ranges varied only by a
few percent. Additionally, we did not have access to individual
data points, or distributions at different time points; we only had
the maximum and minimum values, and thus were unable to
evaluate the effect that additional clinical patients would have had
on the observed clinical data range.

Candidate genomes are then selected against each other in a
tournament fashion, with a tournament size of 2 [28, 29]. The
tournament winners make up the breeding pool, and progenitor
genomes are randomely selected and paired. We implement a
variant of elitism in that, at the completion of the tournament, the
least fit 10% of the candidate progenitors are replaced with the
fittest 10% of candidate genomes from the precious generation.
Progeny genomes are defined with a uniform crossover operation
using a standard continuous formulation (Haupt and Haupt,
2004):

C1,i = βP1,i + (1− β)P2,i

C2,i = βP2,i + (1− β)P1,i

Where C1,i is the value for gene i in child 1, P is the value for gene
i in parent 1, and β is a random floating-point number between 0
and 1. After breeding, each child is subject to a random chance of
mutation which begins at 1% and increases with each generation.

We employ an elitist strategy by replacing the least fit 10%
of the breeding population with the most fit parameterizations.
This ensures that our best solutions are not lost due to mutation.
Additionally, we utilize two non-standard additions to the GA:
the non-viability criterion and the ensemble retainment criterion.
As noted above, the potential parameter space is astronomically
large, and the vast majority of those putative parameterizations

are in no way biologically viable or plausible; it is therefore
desirable to filter these regions of parameter space early in
this process. The non-viability criterion immediately rejects any
parameterization which leads the model to die before the first
clinical time point (3 h post-injury); these are replaced with fitter
candidates. In our experience with this model, this non-viability
criterion is only activated in the first few generations, as the
algorithm quickly finds a focus on viable regions of parameter
space. Further, we recognize that any putative parameterization
which generates cytokine trajectories that always lie within the
cilnically observad range cannot be invalidated by the data, and
are therefore biologically plausible; thus, these parameterizations
should be retained for inclusion into the final ensemble. As the
goal of the fitness function is to obtain maximum coverage over
the clinical data range, some of these viable parameterizations
may be lost as the population evolves.

The IIRABM was optimized for 250 generations with a
starting population size of 1024 candidate parameterizations. The
IIRABM was implemented in C++ and the GA was implemented
in Python 3; and simulations were performed on the Cori Cray
XC40 Supercomputer at the National Energy Research Scientific
Computing Center and at the Vermont Advanced Computing
Center. Codes can be found at https://github.com/An-Cockrell/
IIRABM_MRM_GA. Pseudocode for this procedure is given
below:

(1) Initialize starting population, P, where each Pi ∈ P, is
represented by a matrix with elements randomly assigned
in the range [−2,2]

(2) REPEAT-UNTIL stopping condition is met (maximum
generations or minimum fitness)

(a) BROADCAST candidate parameterizations to available
processes

(b) On each process, CALL IIRABM simulation
(c) Determine Fitness, Fi
(i) NON-VIABILITY CRITERION: IF Fi > Fc THEN
(1) Discard Pi
(2) Replace with Pj6=i, where Fj<Fc
(d) ENSEMBLE RETAINMENT: Determine Bioplausibility
(i) IF all simulated cytokine values are contained within the

range of clinical data, then retain parameterization for
inclusion into the ensemble, E

(e) GATHER fitnesses to root process
(f) Tournament Selection
(i) Randomly select pairs of parameterizations

(ii) Select fitter parameterization for inclusion into breeding
pool B

(g) Breeding
(i) Randomly select pairs of parameterizations from B

(ii) Generate two progeny parameterizations, where
matrix elements are combined using the standard
continuous formulation.

(h) Mutation
(i) Set mutation probability, rm = 0.01+ 0.002∗gn, where gn

is the number of generations completed by the GA
(ii) Generate random number r
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(iii) IF r ≤ rm THEN randomly select matrix element to
mutate, and assign a random value in the range [−2,2]

(i) Check if any fitness has reached the minimum value
(0, indicating a single parameterization matches the
data perfectly) or the maximum number of generations
has been reached.

We note that we ran the algorithm 10 times, all with random
seeding parameterizations, and found that, though the initial
populations were completely random, the GA converged to the
same region of parameter space each time we ran it. This does
not preclude the existence of alternate regions, but indicates
that, if they exist, their hypervolumes are significantly smaller
than the region of parameter space represented by our ensemble
population, which is contiguous at the level of resolution that
we have used to examine it. Additionally, the simulation never
reached a fitness of 0, indicating that a single parameterization of
our model cannot explain all the data.

RESULTS

For the initial attempt with the GA the contributions of each
of the five cytokines were weighted equally. This generated an
ensemble of sufficient forms of the MRM that produced excellent
results for four out of five of the comparison cytokines. However,
the GA could not converge well enough to produce MRMs able
to generate IL-10 concentrations which matched the literature,
with peaking occurring at 6 h post-insult rather than 5 days
post-insult, as was seen clinically Figure 2A). As a potential
explanation for this inability to replicate IL-10 data we note that
in comparison to the other cytokine time series IL-10 showed
spikes at t = 5 days but is near zero everywhere else, suggesting
that a poor fit is more likely when using a fitness function that
weights the contributions of each cytokine equally. A candidate
MRM parameterization that minimizes IL-10 production over
the entire time course would thus contribute less to the overall
fitness (in this case, we seek to minimize the fitness function)
than a hypothetical parameterization that was 10% off on TNF
levels for every time step. In order to address this, we both
doubled and tripled the weight of the coefficient to the portion
of the fitness function that incorporated IL-10 contribution. Both
of these modifications showed similar improvements over the
initial fitness function, but neither was significantly better than
the other. This leads us to expect that a doubling of the IL-10
contribution to the fitness is sufficient. We display this difference
in Figure 2.

A plot of cytokine ranges for 5 cytokines which existed in
the clinical data set and were already present in the model at
the start of this work (GCSF, TNF-α, IL-4, IL-10, and IFN-γ) is
shown in Figure 3. Ranges for the original model, described in
Cockrell and An (2017); An (2018), are shown in black; ranges for
the published data (Bergquist et al., 2019) are shown in red; and
results from the optimized ensemble model are shown in green.

The temporal cytokine dynamics expressed by the optimized
IIRABM are significantly modified from its original incarnation.
We note that the ensemble models are optimized to match four

out of five of the cytokines used in the fitness function to be nearly
indistinguishable from the clinical data. We note a slight under-
expression of IL-10 at t = 5 days post-injury. This discrepancy
identifies a weakness in our model when it is being used to
simulate burns, namely, that the cellular production of IL-10
is not well enough defined, in that its production is limited
to activated macrophages and TH2 helper cells. Given that the
IIRABM was developed to represent the innate immune response
to traumatic injury, we consider this recalibration to burn injuries
to be a success.

In Figure 4, we depict the MRM as a heat map of the values
(Figures 4A,B) before and at the end of the GA runs. Numerical
values for these matrices can be found in the Supplementary
Material. Figure 4A shows the MRM values of the original
implementation of the IIRABM prior to training; the sparseness
of the matrix reflects the necessary abstracting modeling choices
made in terms of which rules to represent. Figure 4B shows the
“optimized” MRM at the end of the GA runs, noting that while
this MRM is the one that most closely matches the range of data
seen clinically it is representative of the ensemble of MRM able to
generate data matching the ranges seen in the clinical data. The
optimized matrix has a much more connected structure, and is a
dense matrix, as opposed to the sparse original rule matrix. There
are not any matrix elements with a value of 0 in the optimized
matrix, though there are many elements with comparatively small
values. This is an intuitive result and is the intended output
based on how the MRM is defined in terms of Figure 1; as all
mechanism-based computational models represent a limited and
reduced representation of biological reality it is not surprising
that there are additional connections needed in order for the
model to recapitulate real-world data. As such, this structure of
the optimized MRM is similar to what is seen in experimental
bioinformatic studies; all of the cytokines in this network appear
to be connected to each other, at least to a small degree,
while a smaller number of strong connections (which could
also be considered correlations) provide the majority of the
influence on the system dynamics. The original rule matrix,
formatted and with complete labeling, can be found in the
Supplementary Material.

We note that while the process of the GA will lead to
convergence to an “optimal” MRM that most closely matches
the range of data observed clinically, any parameterization which
generates a range of data that is encompassed by the clinical
data is retained in the ensemble of valid parameterizations. It is
this ensemble that is the intended output of the GA process. In
Figure 5 we depict the ranges of values of the MRM in the valid
ensemble, both as a 2-dimensional heatmap and the same data
shown as a 3-dimensional bar graph to aid in visualization of the
range of MRM values within the ensemble.

In Figure 6, we present the time evolution of the diversity
of the simulated population. We define the total diversity of
a population to be the sum of the ranges of each matrix
element. In Figure 6A, matrix element ranges are ordered
from low to high. In the first several generations, diversity
is maximized over the entire matrix. As the system evolves
toward an optimum parameterization, diversity decreases, and
the matrix begins to converge to a single value. In order to
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FIGURE 2 | Cytokine ranges are shown for IL-10 for the original model (black), published data (red), and optimized ensemble model (blue). On the left (A), the IL-10
contribution to the fitness function is weighted equally to the other cytokines, with the result that simulated IL-10 levels after 6 h are essentially 0; on the right (B), the
IL-10 contribution to the fitness function was doubled.

FIGURE 3 | Cytokine ranges are shown for the original model (black), published data (red), and optimized ensemble model (blue) for TNFα (top-left), IL-10 (top-right),
IFNγ (center-left), IL-4 (center-right) and GCSF (bottom-left). Ranges for the computational models were generated using 50 stochastic replicates.

combat this, we use a mutation rate that increases as a function
of the generation number, which begins to reintroduce diversity
into the population. This is seen in Figure 6A, as the matrix
element ranges begin to return to a diverse configuration, and
more globally in Figure 6B, which plots the total diversity metric
as a function of generation number.

DISCUSSION

The IIRABM rule set utilized in this work contained 432 free
and continuous parameters, many of which had highly non-
linear or conditional effects on the model-generated cytokine

trajectories and outcomes. This high-dimensional parameter
space provides an astronomically large set of possible behaviors,
of which only a subset are bioplausible. Concurrently, biological
objects manifest population-level individual heterogeneity, which
means that “bioplausibility” is not a particular trajectory (or
mean of trajectories) but rather a set of behaviors and outputs
producible by the biological system. Our only guide to this set
of behaviors is the range of outputs captured within a data set.
The task, then, is to establish a concordance between the range
of behaviors represented by a subset of the parameter space of
the computational model and the range of outputs seen in the
data set and to bound the putative bioplausible parameter space
using the data available. The subject of this paper is to present an
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FIGURE 4 | Depictions of the MRM A heatmap of the original rule matrix is shown in panel (A), the optimized matrix representative of the valid ensemble is shown in
panel (B). In panels (A,B), the white blocks represent a matrix element with a value of 0 (e.g., no connection); the dark blue to green represents a negative matrix
element; the pink to light blue represents a positive matrix element. The optimization process vastly increases the connectivity of the ABM elements (as would be
expected in the true biological system).

FIGURE 5 | Depiction of the range of values of the MRM for the valid ensemble able to produce data consistent with the clinical data. Panel (A) shows the ranges of
the MRM values as a heatmap, where dark blue is a range of 0 and yellow indicates a range of 3.42, with a maximal range of 4.0. Panel (B) shows this same data as
a 3-dimensional bar graph, where the height of each cell reflects the range of the values for each matrix element.

alternative means of calibrating a computational model to a data
set with an emphasis on maintaining the capability to represent
the heterogeneity of the data, thereby potentially reflecting
critical biological processes that account for the ubiquitous inter-
individual variability seen in biological systems.

There are the critical and intertwined issues regarding
definition of the fitness function, overfitting, and choice of
algorithm. Our utilization of GA was non-standard: while the
algorithm sought to optimize the results of the simulation to
minimize a fitness function, the discovery of the optimum
parameterization was not the actual goal of the work. As our GA
traversed the parameter space toward its optimum destination,
it gathered all model parameterizations that were not invalidated
by the available data into the final ensemble. The fitness function

was designed such that an optimal solution would minimize the
difference between the range of data generated by the model and
the range of data observed clinically, but with the explicit aim
of defining this bioplausible set rather than finding “a” particular
optimal solution.

The design of the fitness function is intimately connected to
the concept of overfitting, and some might interpret transition
from a sparse rule matrix to a dense rule matrix as the parameter
set is optimized as an indication of potential overfitting. This
concern stems from the concept of overfitting of statistical
models, where the addition of new terms can lead to spurious
relationships that may not be present in new data and therefore
lead to decreased performance (e.g., failure of generalizability).
To some degree this is not the case for mechanism-based dynamic
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FIGURE 6 | Panel (A) displays the ordered matrix element ranges for a variety of time points throughout the genetic algorithm. In this plot, the most diverse
generations are represented by a nearly horizontal line at the top of the plot. As the system evolved, this diversity begins to collapse until the increasing mutation rate
compensates for the algorithm’s convergence. This is displayed in panel (B), which shows the total diversity of the population as a function of generation number.

models, where the putative additions to the model represent
additional knowledge that (1) has a scientific justification for
its addition, (2) theoretically increases the expressiveness (e.g.,
increased generalizability) of the data and (3) are actually
present in the real-world biological object. In addition, from
a methodological standpoint, we contend that the traditional
concern of overfitting (e.g., failure to generalize) should not be
an issue for this approach, according to the following logic:

(1) The primary danger of overfitting is the introduction of
spurious elements to the model which would lead to the model’s
failure to generalize to new data outside of the data used to
train it, ultimately resulting in an invalidation of the model. The
primary goal of this work is to generate a diverse population of
model parameterizations which are encompassed by the clinical
data; when taken in aggregate, and due to the fact that each
parameterization generates a range of behavior, this population of
parameterizations fills out the range of data observed clinically.
While one could claim that a particular added component may
not be necessary in order to replicate the data (violation of the
concept of parsimony), the addition of such a term cannot be
invalidated in comparison to the data.

(2) The introduction of new data cannot invalidate individual
parameterizations in our ensemble because the introduction of
new data can take only two forms: (1) it is either encompassed
within the range of the existing data, in which case the
previously valid parameterizations are still valid, or (2) new data
can be outside the existing range, which does not invalidate
any of the previously validated parameterization, but rather
suggests an insufficiency in the expressiveness of the previously
defined parameter space. In this case an additional search of
the parameter space is needed because the current ensemble
is insufficiently expressive to explain the heterogeneity of the
clinical data and therefore parameterizations that were formerly
considered invalid would now be seen to be biologically plausible.

We note that by setting the fitness function to match the
published data as exactly as possible we are limiting the targeted
degree of heterogeneity to that presented by the relatively small
cohort of clinical patients.; the true range of biologically plausible
blood cytokine concentrations in undoubtedly larger than what is

seen in a small cohort of 20 individuals. In order to obtain a more
generalizable model, we propose two alternative approaches to
the above presented work: (1) that the fitness function should be
configured to over-encompass the available data, with cytokine
range boundaries determined by the probability density function
(pdf) which governs the experimental data; or (2) synthesize
multiple datasets in order to design a fitness with maximum
cytokine rage coverage that is still supported by experimental
data. Incorporating the shape of the probability density function
into the fitness function can be difficult purely as a matter of
practicality–often the raw data for human cytokine levels isn’t
available, and only the absolute range can be extracted from
published manuscripts, and it is also common to see a cohort
size that is too small to definitively propose a single pdf which
adequately describes the data.

Our approach also involves addressing the limited
representation inherent in all computational models. As
essentially all mathematical/computational models of biological
processes represent some degree of abstraction and are therefore
necessarily incomplete, we recognize that the task of model
“validation” is more often one of determining the conditions
in which a model is “valid” and at what point the model is
insufficient. While the employment of the MRM refinement
is a means of “encompassing” the uncertainties and “missing”
components of the ABM rules, there are still cases where the
constraints placed by the choice of rules in the model preclude
fitting to particular data points; it is at this point that the
model is recognized to be falsified (in the Popperian sense).
However, being able to specify where the model fails is extremely
useful. In this case, the difficulties in being able to reproduce
the trajectories of IL-10 help point to where the IIRABM is
insufficient as a representation of the systemic response to burn
injury, specifically with respect to the level of representation of
anti-inflammatory components. This insight points to the need
to incorporate other known anti-inflammatory components into
future iterations of the IIRABM.

In future work, we will utilize this method to generate
diverse in silico cohorts as part of our machine-learning
therapeutic discovery workflow (Cockrell and An, 2018;
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FIGURE 7 | A diagram indicating a hybrid experimental/computational
workflow for the automated calibration and validation of ABMs using the MRM
scheme. In this workflow, a computational model containing all mechanistic
knowledge hypothesized to be relevant to the biological system in question is
developed. The range of output for a comprehensive set of viable model
parameterizations is determined and compared to biological data. At this
point, experimental data can be used to eliminate some of the formerly viable
model parameterizations or invalidate the model. In the event the model is
invalidated, it can be redesigned/reconfigured to address its shortcomings.
After that, the remaining set of putative model parameterizations is
investigated to determine which specific parameters contribute the most
variability to the model output. These are then the parameters that are
selected for further characterization in subsequent biological experiments.

Petersen et al., 2019). We note the importance of in silico
genetic diversity for therapeutic discovery in Cockrell and An
(2018); in this work, we developed a multi-cytokine/multi-
time-point therapeutic regimen which decreased the mortality
rate from ∼80 to ∼20% for a severe simulated injury. The
therapy was discovered using GAs on a single model internal
parameterization. When we examined the non-responders,
we noted that hyperactivity in specific pathways could
manifest negatively, specifically, excess Granulocyte Colony
Stimulating Factor activity lead to excess neutrophil recruitment,
which instigated a state of perpetual inflammation. Brittle
policies/solutions (i.e., those that are not applicable outside of
the very specific circumstances used to train them) have long
been recognized as a weakness of machine learning research
(Holland J.H.(ed.), 1983). In order to overcome this obstacle,
data used to train machine-learning algorithms should be
sourced as broadly as possible. A useful analogy would be
to compare the machine learning experiment to an in vivo
biological experiment: performing a biological experiment on a
set of genetically identical animals will yield less generalizable
information than an experiment performed on a set of genetically
heterogenous animals.

Further, we note that, while we generated a diverse in silico
patient cohort which generates cytokine trajectories that match
clinical data, the diversity is limited by the algorithm. We
recognize that by using GA to find a path through parameter
space toward some optimum of the fitness function, even though

we collect viable parameterizations as the algorithm progresses,
they are sampled from a limited region of parameter space.
Many of the genes in each individual parameterization end up
tightly constrained by the algorithm, while others have a larger
range. These latter parameters are those about which the model is
most uncertain. Future work will seek to more comprehensively
explore the entire parameter space using active learning, similar
to Cockrell et al. (2020). Active Learning is a sampling technique
used in machine learning in which sampled data is chosen based
on how much information it can apply to the machine learning
model. A similar approach can be taken in this case. In order
to most efficiently update and refine the computational model,
experiments should be designed to query the model features that
are most uncertain. This approach is illustrated in Figure 7. In
this way, GA can play an integral role in the iterative cycle of
model refinement and experimentation necessary to construct a
high-fidelity generalizable computational model.
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Purpose: Bayesian calibration is generally superior to standard direct-search algorithms

in that it estimates the full joint posterior distribution of the calibrated parameters.

However, there aremany barriers to using Bayesian calibration in health decision sciences

stemming from the need to program complex models in probabilistic programming

languages and the associated computational burden of applying Bayesian calibration.

In this paper, we propose to use artificial neural networks (ANN) as one practical solution

to these challenges.

Methods: Bayesian Calibration using Artificial Neural Networks (BayCANN) involves

(1) training an ANN metamodel on a sample of model inputs and outputs, and (2)

then calibrating the trained ANN metamodel instead of the full model in a probabilistic

programming language to obtain the posterior joint distribution of the calibrated

parameters. We illustrate BayCANN using a colorectal cancer natural history model. We

conduct a confirmatory simulation analysis by first obtaining parameter estimates from

the literature and then using them to generate adenoma prevalence and cancer incidence

targets. We compare the performance of BayCANN in recovering these “true” parameter

values against performing a Bayesian calibration directly on the simulation model using

an incremental mixture importance sampling (IMIS) algorithm.

Results: We were able to apply BayCANN using only a dataset of the model inputs and

outputs and minor modification of BayCANN’s code. In this example, BayCANN was

slightly more accurate in recovering the true posterior parameter estimates compared to

IMIS. Obtaining the dataset of samples, and running BayCANN took 15 min compared

to the IMIS which took 80 min. In applications involving computationally more expensive

simulations (e.g., microsimulations), BayCANN may offer higher relative speed gains.

Conclusions: BayCANN only uses a dataset of model inputs and outputs to obtain

the calibrated joint parameter distributions. Thus, it can be adapted to models of various

levels of complexity with minor or no change to its structure. In addition, BayCANN’s

efficiency can be especially useful in computationally expensive models. To facilitate

BayCANN’s wider adoption, we provide BayCANN’s open-source implementation in R

and Stan.

Keywords: Bayesian calibration, machine learning, mechanistic models, artificial neural networks, emulators,

surrogate models, metamodels
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1. BACKGROUND

Modelers and decision-makers often use mathematical
simulation models to simplify real-life complexity and inform
decisions, particularly those for which uncertainty is inherent.
However, some of the model parameters might be either
unobserved or unobservable due to various financial, practical or
ethical reasons. For example, a model that simulates the natural
history of cancer progression may lack an estimate for the rate at
which an individual transitions from a pre-symptomatic cancer
state to becoming symptomatic. Although this rate might not
be directly observable, it may be estimated using a technique
commonly referred to as calibration (Alarid-Escudero et al.,
2018; Vanni et al., 2011; Rutter et al., 2009). Thus, calibration
involves modifying the model input parameters until the desired
output is obtained.

Calibration has the potential for improving model inference,
and recent guidelines recommend that model calibration of
unknown parameters should be performed where data on
outputs exist (Weinstein et al., 2003; Briggs et al., 2012). Modelers
are also encouraged to report the uncertainty around calibrated
parameters and use these uncertainties in both deterministic and
probabilistic sensitivity analyses (Briggs et al., 2012).

There are several calibration techniques with various levels
of complexity. For example, Nelder-Mead is a direct-search
algorithm commonly used to calibrate models in health and
medicine. Nelder-Mead is a deterministic approach that searches
the parameter space for good-fitting parameter values (Nelder
and Mead, 1965). Although Nelder-Mead is generally effective,
it cannot estimate parameter distributions or directly inform
on the correlations among the calibrated parameters. It is
also not guaranteed to find a global optimal value because it
might converge to a local optimum. Unlike the direct-search
algorithms, Bayesian methods are naturally suited for calibration
because they estimate the input parameter’s posterior joint and
marginal distributions (Menzies et al., 2017). However, Bayesian
methods are difficult to implement due to the complexity of the
models used and the computational challenges of applying these
methods. Bayesian calibration often requires tens or hundreds
of thousands of simulation runs and a model written in a
probabilistic programming language, such as Stan (Carpenter
et al., 2017) or Bayesian inference Using Gibbs Sampling (BUGS)
(Lunn et al., 2009). We argue that the complexity of these
tasks and their potential computational demand have prevented
a wider adoption of Bayesian calibration methods in health
decision science models.

In this manuscript, we use artificial neural network (ANN)
metamodels as a practical approach to streamlining Bayesian
calibration in complex simulation models. Metamodels have
increasingly been used to overcome the computational burden
of Bayesian calibration. A metamodel is a surrogate model that
can be used to approximate themodel’s input-output relationship
(Jalal et al., 2013). Metamodels can provide an approximation
to the simulation model in a fraction of the time. While ANN
metamodels are not fully probabilistic, they are flexible functions
that canmap highly non-linear relationships in large data.We use
an ANN metamodel as an emulator to substitute the simulation

model in the Bayesian calibration analysis. Thus, the ANN acts
as a low computational cost proxy of the simulation model.
In addition, analysts do not need to program their simulation
model in a probabilistic language because coding the ANN in
probabilistic languages (e.g., Stan) is relatively straight-forward,
and analysts can reuse the provided Stan code with little or no
modification.

We refer to our approach as Bayesian calibration via artificial
neural networks, or BayCANN for short. We demonstrate
BayCANN by calibrating a realistic model of the natural history
of colorectal cancer (CRC).We compare this approach’s results to
an approximate Bayesian calibration of the original model using
an incremental mixture importance sampling (IMIS) algorithm.
We provide the code in R and Stan for our application that
researchers can adapt to calibrate their models.

2. METHODS

We start this exposition by reviewing elements of Bayesian
calibration. We describe the computational burden of using
Bayes theorem in most realistic models, and how deep
ANNs can streamline Bayesian calibration methods to calibrate
these models. We illustrate this approach by calibrating a
natural history model of CRC. We also compare BayCANN’s
performance to a Bayesian calibration using IMIS directly on a
simulation model.

2.1. Bayesian Calibration
The Bayes theorem states that

p(θ |data) =
p(data|θ)p(θ)

p(data)
, (1)

where θ is a set of model parameters, data is the observed data,
and p(data|θ) is the same as the likelihood l(θ |data). Because the
denominator is not a function of θ , we can rewrite Equation (1) as

p(θ |data) ∝ l(θ |data)p(θ). (2)

Table 1 shows how each term in Equation (2) can be mapped
to a component in a calibration exercise. The prior distribution,
p(θ), represents our uncertainty about the distribution of the
model parameters before calibrating the model. Modelers often
use various distributions to describe this uncertainty, including
beta or logit-normal distribution for probabilities, gamma for
rates, or log-normal distributions for rates or hazard ratios. Thus,
we can think of a prior distribution as the uncertainty of the
pre-calibrated model input parameters. For example, we can
represent a vague distribution by a uniform distribution where
all the values are equally likely within a defined range.

Bayesian calibration will update the prior distribution based
on the observed target data. The term p(θ |data) is called the
posterior distribution, representing the updated distribution
of θ after observing some data. The posterior distribution is
equivalent to the calibrated parameter distribution when the data
are the calibration targets.

The likelihood function, l(θ |data), denotes how likely the
observed data arise from a given data generation mechanism
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TABLE 1 | The Bayes formula in a calibration context.

Term Bayesian context Calibration context

p(θ ) Prior distribution of the model

input parameters θ

Pre-calibrated model input

parameters

p(θ |data) Posterior distribution of the

model parameters θ given

observed data

Calibrated model parameters to

target data

l(θ |data) Probability of the data given

model parameters θ (model

likelihood)

Objective function or

goodness-of-fit measure; how

well the model output fits the

target data given a particular

value of θ

with a parameter set values θ . From a simulation modeling
perspective, l(θ |data) is equivalent to measuring the goodness of
the model output fit to the calibration targets given a simulation
model’s input parameter set θ .

Thus, we can map all components of Bayes theorem
to calibration components and use Bayesian inference to
obtain the calibrated parameter distributions (a.k.a. the
posterior distributions).

Bayesian calibration is often challenging to adopt in practice
in health decision science models. The main challenge lies
in the complexity of applying Equation (2). Specifically, an
analytical solution for p(θ |data) is unlikely to exist for most
realistic simulation models. Thus, specialized algorithms, such
as Markov-Chain Monte-Carlo (MCMC) might be necessary at
the expense of being practically challenging to implement for
complex models and computationally expensive.

2.2. Metamodels
To overcome the computational and practical challenges of
Bayesian calibration, we propose to use artificial neural network
(ANN) metamodels. As described above, a metamodel is a
surrogate model that approximates the relationship between
the simulation model’s inputs and outputs (i.e., a metamodel
is a model of the model) (Blanning, 1974; Kleijnen, 1975;
Kleijnen et al., 2005; Kleijnen, 2015). Metamodels range from
simple models, such as linear regressions, to complex non-linear
models, such as artificial neural networks (ANN). Although
linear regression models are the most common form of
metamodels (Barton and Meckesheimer, 2006; Barton, 2009;
Sacks et al., 1989; Fu, 1994; Weiser Friedman, 1996; Banks,
1998; Kleijnen and Sargent, 2000; Jalal et al., 2013, 2015), in
this paper we focus on ANN because they are more flexible
while still being relatively simple to implement in Stan or
BUGS.

Metamodels are often used because they generally offer a
vast reduction in computation time (Kleijnen, 1979; Friedman
and Pressman, 1988; Barton, 1992; Weiser Friedman, 1996;
O’Hagan et al., 1999; Barton and Meckesheimer, 2006; Santos
and Santos, 2007; Reis dos Santos and Reis dos Santos, 2009;
Khuri and Mukhopadhyay, 2010). For example, a model that
takes several hours or even days to run can be approximated with
a metamodel that may only take a few milliseconds. This feature

has been an attractive attribute of metamodels for many decades
in engineering and computer science. Examples of metamodels
in health decision sciences involve revealing model uncertainty
using linear regression mdetamodeling (Jalal et al., 2013), and
speeding up computationally expensive microsimulation models
using Gaussian processes metamodeling (Stevenson et al., 2004;
de Carvalho et al., 2019).

An additional benefit of using metamodels for Bayesian
calibration is that one can reuse the same metamodel structure to
calibrate very different simulation models. The same BayCANN
code can be adapted to other problems with no or minimal
change.

2.2.1. ANN Metamodels
Artificial neural networks (ANNs) are networks of non-linear
regressions that were initially developed to mimic the neural
signal processing in the brain and to model how the nervous
system processes complex information (Másson and Wang,
1990; Michie et al., 1994; Rojas, 1996; Jain et al., 1996; Olden
et al., 2008). ANNs have recently witnessed significant advances
for applications in machine learning, artificial intelligence, and
pattern recognition (Ravì et al., 2016).

Figure 1 illustrates the basic structure of a four-layer neural
network with two hidden layers with I neurons (nodes) in the
input layer, J hidden nodes in the first hidden layer, K hidden
nodes in the second hidden layer, and O output nodes in the
output layer. The ANNs with more than one hidden layer are
often referred to as deep ANNs. The following sets of equations
represent the structure of this ANN

z(1) = W(1)θ + b(1)

h(1) = f (1)
(

z(1)
)

z(2) = W(2)h(1) + b(2)

h(2) = f (2)
(

z(2)
)

z(3) = W(3)h(2) + b(3)

Y = f (3)
(

z(3)
)

,

(3)

where θ is the simulation model inputs, Y is the model
outputs to be compared to the calibrated targets, and (W, b) =
(

W(1), b(1),W(2), b(2),W(3), b(3)
)

are the ANN coefficients. W(1)

are the weights connecting the inputs θ with the nodes in the
first hidden layer, W(2) are the weights connecting the nodes
in the first and second hidden layers, and W(3) are the weights
connecting the nodes in the second hidden layer with the output
Y . The terms b(1), b(2) and b(3) are corresponding bias (intercept)
terms. f (1) is the activation function, commonly, a sigmoid
function such as a hyperbolic tangent function

f (1)
(

z(1)
)

=
2

1+ e−2z(1)
− 1. (4)

The function f (3) is called a transfer function that transforms the
results from the last hidden layer’s nodes into a working output.
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FIGURE 1 | Diagram of general structure of a deep neural network with I

inputs, two hidden layers with J and K hidden nodes and O outputs.

The transfer function can also be a sigmoid function or a simple
linear function. Thus, the z(1), z(2) and z(3) are the weighted
sum of inputs from the input layer and the first and second
hidden layers, respectively. ANNs can be made more flexible by
increasing the number of hidden layers and/or the number of
nodes in these layers.

2.3. BayCANN Algorithm
We implement BayCANN with TensorFlow to fit the ANN
and Stan to obtain the parameter’s posterior distributions. We
use the package keras in R to create ANN metamodels
that approximate the relationship between our model’s input
parameters and outputs and estimate the coefficients b and W
(R Core Team, 2018; Jalal et al., 2017). We built the ANN from
a set of probabilistic samples using a Latin hypercube sampling
(LHS) design of experiment (DoE) to efficiently sample the
input parameter space. Once we obtain the ANN coefficients, we
perform the Bayesian calibration using the ANN rather than the
simulation model.

We implemented the deep ANN in Stan (Carpenter et al.,
2017) which uses a guided MCMC using gradient descent,
referred to as HamiltonianMonte-Carlo. Similarly, the R package
rstan.

Both TensorFlow and Stan utilize multithreading; thus, it is
essential to ensure sufficient memory is available for all threads
to run efficiently.

Below we outline the steps to conduct BayCANN.

1. Structure the simulation model such that it produces outputs
corresponding to the calibration targets. For example, if
calibration targets are disease incidence or prevalence, ensure
the model generates these outputs.

2. Generate two datasets of input parameter sets—one for
training the ANN (training dataset) and the second for
validating it (validation dataset). The analyst could use an LHS
to efficiently sample the model inputs’ prior distributions.

3. Run the simulation model using both training and validation
datasets to generate their corresponding simulation
model outputs.

4. Train an ANN using the training dataset, and validate it using
the validation dataset. Obtaining a high-fidelity ANN is crucial
to ensure getting accurate and reliable results from BayCANN
(Degeling et al., 2020). Adjust the ANN’s structure to obtain
an accurate metamodel before proceeding.

5. Perform the Bayesian calibration by passing the ANN
coefficients W and b, the prior input parameter samples, and
the calibration targets to the programmed ANN framework in
Stan. Stan then returns the joint posterior distribution of the
calibrated parameters.

The code for implementing BayCANN is available on GitHub
at https://github.com/hjalal/BayCANN. In the case study below,
we use BayCANN to calibrate a colorectal cancer natural history
model.

2.4. Case Study: Natural History Model of
Colorectal Cancer
We use BayCANN to calibrate a state-transition model (STM)
of the natural history of colorectal cancer (CRC) implemented
in R (Jalal et al., 2017). We refer to our model as CRCModR.
CRCModR is a discrete-time STM based on a model structure
originally proposed by (Wu et al., 2006) that has previously been
used for testing other methods (Alarid-Escudero et al., 2018;
Heath et al., 2020). Briefly, CRCModR has 9 different health states
that include absence of the disease, small and large precancerous
lesions (i.e., adenomatous polyps), and early and late preclinical
and clinical cancer states by stage. Figure 2 shows the state-
transition diagram of the model. The progression between health
states follows a continuous-time age-dependent Markov process.
There are two age-dependent transition intensities (i.e., transition
rates), λ1(a) and µ(a), that govern the age of onset of adenomas
and all-cause mortality, respectively. Following Wu’s original
specification (Wu et al., 2006), we specify λ1(a) as a Weibull
hazard such that

λ1(a) = lγ aγ−1, (5)

where l and γ are the scale and shape parameters of the
Weibull hazard model, respectively. The model simulates two
adenoma categories: small (adenoma smaller than or equal to
1 cm in size) and large (an adenoma larger than 1 cm in
size). All adenomas start small and can transition to the large
size category at a constant annual rate λ2. Large adenomas
may become preclinical CRC at a constant annual rate λ3.
Both small and large adenomas may progress to preclinical
CRC, although most will not in an individual’s lifetime. Early
preclinical cancers progress to late stages at a constant annual
rate λ4 and could become symptomatic at a constant annual
rate λ5. Late preclinical cancer could become symptomatic
at a constant annual rate λ6. After clinical detection, the
model simulates the survival time to death from early and
late CRC using time-homogeneous mortality rates, λ7 and λ8,
respectively. In total, the model has nine health states: normal,
small adenoma, large adenoma, early preclinical CRC, late
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FIGURE 2 | State-transition diagram of the natural history model of colorectal cancer. Ovals represent health states and arrows represent transitions. All states can

transition to death from causes other than CRC with rate µ(a). CRC, colorectal cancer.

TABLE 2 | The parameters of the natural history model of colorectal cancer (CRC).

Parameter Description Base value Calibrate? Source Prior range

l Scale parameter of Weibull hazard 2.86e-06 Yes Wu et al., 2006 [2× 10−6, 2× 10−5]

g Shape parameter of Weibull hazard 2.78 Yes Wu et al., 2006 [2.00, 4.00]

λ2 Small adenoma to large adenoma 0.0346 Yes Wu et al., 2006 [0.01, 0.10]

λ3 Large adenoma to preclinical early CRC 0.0215 Yes Wu et al., 2006 [0.01, 0.04]

λ4 Preclinical early to preclinical late CRC 0.3697 Yes Wu et al., 2006 [0.20, 0.50]

λ5 Preclinical early to clinical early CRC 0.2382 Yes Wu et al., 2006 [0.20, 0.30]

λ6 Preclinical late to clinical late CRC 0.4852 Yes Wu et al., 2006 [0.30, 0.70]

λ7 CRC mortality in early stage 0.0302 No Wu et al., 2006 -

λ8 CRC mortality in late stage 0.2099 No Wu et al., 2006 -

padeno Prevalence of adenoma at age 50 0.27 Yes Rutter et al., 2007 [0.25, 0.35]

psmall Proportion of small adenomas at age 50 0.71 Yes Wu et al., 2006 [0.38, 0.95]

The base values are used to generate the calibration targets and the ranges of the uniform distribution used as priors for the Bayesian calibration.

preclinical CRC, CRC death, and other causes of death. The
state-transition diagram of the model is shown in Figure 2. The
model simulates the natural history of CRC of a hypothetical
cohort of 50-year-old women in the U.S. over a lifetime. The
cohort starts the simulation with a prevalence of adenoma of
padeno. A proportion, psmall, corresponds to small adenomas
and prevalence of preclinical early and late CRC of 0.12 and
0.08, respectively. The simulated cohort in any state is at risk
of all-cause mortality µ(a) obtained from the U.S. life tables
Arias (2014). Similar models to CRCmodR have been used
to inform population-level screening guidelines in the U.S.
(Knudsen et al., 2016).

CRCModR has 11 parameters summarized in Table 2 (Alarid-
Escudero et al., 2018). Mortality rates from early and late stages
of CRC (λ7, λ8]) could be obtained from cancer population
registries (e.g., SEER in the U.S.). Thus, we calibrate the model
to the remaining nine parameters (padeno, psmall, l,γ , λ2, λ3, λ4,
λ5 and λ6).

2.4.1. Confirmatory Analysis
We conducted a confirmatory analysis to compare BayCANN vs.
IMIS. To obtain the “truth” that we could compare BayCANN
and IMIS against, we generated the synthetic targets using the
base-case values in Table 2. We generated four age-specific
targets, including adenoma prevalence, the proportion of small
adenomas, and CRC incidence for early and late stages which
represent commonly used calibration targets for this type of
model (Kuntz et al., 2011). To generate the calibration targets, we
ran CRCModR as a microsimulation (Krijkamp et al., 2018) 100
times to produce different adenoma-related and cancer incidence
outputs. We then aggregated the results across all 100 outputs
to compute their mean and standard errors (SE). Different
calibration targets could have different levels of uncertainty
given the amount of data to compute their summary measures.
Therefore, to account for different variations in the amount
of data on different calibration targets, we simulated different
numbers of individuals for adenoma targets (N = 500) and
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FIGURE 3 | Generated calibration targets and its 95% credible interval of a cohort of 500 and 100,000 simulated individuals for adenoma-related targets cancer

incidence targets, respectively plotted against age in years on the x-axis. These distributions are from 100 different runs using the same parameter set values in each

set of runs.

cancer incidence targets (N = 100, 000). Figure 3 shows the
generated adenoma-related and cancer incidence calibration
targets aggregated over 100 different runs using the parameter set
in Table 2.

To create a deep ANN metamodel, we generated a DOE
by sampling each of the nine parameters from the ranges of
the uniform distributions using an LHS design as shown in
Table 2. Specifically, we created two LHS input datasets of sizes
8,000 samples and 2,000 samples for training and validating
the ANN, respectively. We then ran the natural history model
and generated adenoma prevalence and CRC incidence for each
parameter set.

We define an ANN with two hidden layers and 100 nodes
per hidden layer. Then, we evaluated the ANN’s performance
by validating the predicted values for the 36 outcomes against
the observed values from the validation dataset. The likelihood
function for BayCANN was constructed by assuming that the
targets, yti , are normally distributed with mean φti and standard
deviation σti , where φti = M[θ] is the model-predicted output
for each type of target t and age group i at parameter set θ . We
defined uniform prior distributions for all θu based on previous
knowledge or nature of the parameters (Table 2).

We compare BayCANN against a full Bayesian calibration
of the natural history model using the incremental mixture
importance sampling (IMIS) algorithm. The IMIS algorithm

has been described elsewhere (Raftery and Bao, 2010),
but briefly, this algorithm reduces the computational
burden of Bayesian calibration by incrementally building
a better importance sampling function based on Gaussian
mixtures.

3. RESULTS

We present the ANN’s performance in approximating the
output of the simulation model and compare the generated
joint posterior distribution of the simulation model parameters
produced from BayCANN against the full joint posterior from
the IMIS approach. We compare both BayCANN and IMIS
results recovering the “true” values—the parameter values we
used to generate the calibration targets in the confirmatory
analysis.

3.1. Validation
Figure 4 illustrates the ANN’s performance in predicting the
model outputs using the validation dataset. Each plot represents
one of the model outputs, where we compare the ANN’s
prediction on the y-axis against the model’s output on the x-
axis. Each red dot represents one of the 2,000 DOE validation
samples not used to train the ANN. The ANN had a high
prediction performance in approximating the model outputs
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FIGURE 4 | Validation of the fitted ANN on the validation Latin hyper cube sample (LHS) dataset. The x and y axes represent the scaled model outputs and scaled

ANN predictions, respectively.

(R2 > 99.9%), indicating that the deep ANN is a high fidelity
metamodel of the simulation model within the parameter ranges
we evaluated.

3.2. Comparing BayCANN and IMIS
Figure 5 compares BayCANN against IMIS in recovering the true
parameter values used to generate the targets. The 95% credible
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FIGURE 5 | Prior and Marginal posterior distributions of the calibrated parameters from the IMIS and BayCANN methods. The vertical solid lines indicate the “true”

parameter values (i.e., the value of the parameters used to generate the calibration targets in the confirmatory analysis). The vertical dashed lines represent the

maximum a posteriori (MAP) for BayCANN and the incremental mixture importance sampling (IMIS).

intervals (CrI) of each parameter distribution obtained from
BayCANN cover all nine true parameters. For IMIS, the 95%
CrI did not cover the true parameters for λ2 and λ3. This figure
also shows the maximum a posteriori (MAP) estimate for both
BayCANN and IMIS. The MAP is the sample associated with the
highest log-posterior and indicates the posterior parameter set
that best fits the target data.

Figure 6 compares the results of BayCANN against all the
calibration targets for the probability of developing multiple
adenomas, the proportion of small adenomas, and early and late
clinical CRC incidence. Upon visual inspection, BayCANN fits
all calibration targets well, indicating that the joint posterior
distribution from BayCANN can produce targets in the desired
ranges. The results here represent the model-predictive mean
and the credible interval of using 10,000 posterior samples from
BayCANN.We also present the results of using BayCANN’sMAP
estimates which closely follow the model-predicted posterior
mean from the 10,000 posterior samples.

In this example, BayCANNwas five times faster than the IMIS.
The IMIS algorithm took 80min to run in aMacBook Pro Retina,
15-inch, Late 2013 with a 2.6 GHz Intel Core i7 processor with
4 cores and 16 gigabytes of RAM. BayCANN took only 15 min

on the same computer; 5 min to produce 10,000 samples for both
LHSDOE dataset generations and about 10min to fit the ANN in
TensorFlow and produce the joint posterior distributions in Stan.
The computational gain of BayCANN was modest given that our
case study model was efficient and deterministic.

Figure 7 presents the joint distribution of all pairwise
parameters in BayCANN, and along the diagonal, the marginal
distributions of each parameter. This figure reveals insightful
information about this calibration exercise. In practice, many
calibrated parameters are correlated as shown in this figure.
The absolute value of these correlations range from 0.013 to
0.963. The strength of the correlation reflects the level of non-
identifiability between that pair of parameters. The stronger the
correlation the higher the non-identifiability and the greater need
to add additional target data or modify the model structure
to separate the parameters in question (Alarid-Escudero et al.,
2018).

4. DISCUSSION

In this study, we propose BayCANN as a feasible and practical
solution to Bayesian calibration challenges in complex health
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FIGURE 6 | BayCANN calibration results by age in years on the x-axis. The upper panels show adenoma targets and lower panels show cancer incidence targets by

stage. Calibration targets with their 95% confidence intervals are shown in black. The colored curves show the posterior model-predicted mean, and the shaded area

shows the corresponding 95% posterior model-predicted credible interval of the outcomes. The dashed-dotted lines represent the output using the maximum a

posteriori (MAP) estimate from BayCANN.

decision science models. The distinct advantage of using
BayCANN is that it represents the model on a functional
basis as an ANN. Then, the ANN can become a high-
fidelity representation of the model. Thus, those interested in
implementing BayCANN can do so without the need to code
their models in a probabilistic programming language. Given
the high computational efficiency of the ANN, BayCANN can
also provide a computational advantages over other Bayesian
calibration methods.

BayCANN uses ANNs specifically to streamline Bayesian
calibration. ANNs have also been used as metamodels of
both stochastic and deterministic responses, mainly for their
computational efficiency (Barton, 2009; Badiru and Sieger, 1998;
Hurrion, 1997; Chambers and Mount-Campbell, 2002; Zobel
and Keeling, 2008). One of the first implementations of ANN
as metamodels was in 1992 for a scheduling simulation model
(Pierreval et al., 1992; Pierreval and Huntsinger, 1992). Since
then, ANNs have been successfully implemented as emulators of
all sorts of discrete-event and continuous simulation models in a
wide variety of fields (Kilmer, 1996; Sabuncuoglu and Touhami,
2002; Fonseca et al., 2003; El Tabach et al., 2007). ANNs have also
been proposed as proxies for non-linear and simulation models
(Paiva et al., 2010;Mareš and Kučerová, 2012; Pichler et al., 2003).
An example of ANNs as metamodels is estimating the mean and

variance of patient time in emergency department visits (Kilmer,
1994; Kilmer et al., 1997). Nowadays, ANNs are widely popular
as machine learning tools in artificial intelligence (Schmidhuber,
2015). Deep learning using ANNs are used for visual recognition
in self-driving cars (Ndikumana et al., 2020) and in classifying
galaxies (Folkes et al., 1996). ANNs have been used for calibration
of computationally expensive models, such as general circulation
and rainfall-runoff models in climate science (Khu et al., 2004;
Hauser et al., 2012), and other complex global optimization
techniques such as genetic algorithms (Wang, 2005).

The superior performance of BayCANN relative to IMIS
may pertain to the bias of the ANN in BayCANN being
relatively lower than that of the Bayesian approximation of
IMIS. BayCANN uses ANNs as high-fidelity metamodels of
the simulator and conducts full Bayesian calibration. However,
IMIS is an approximation of Bayesian inference that directly
uses the simulator itself. Thus, visual examination of the ANN’s
performance similar to Figure 4 is an important step to ensure
obtaining high-fidelity ANN for BayCANN.

Bayesian calibration provides other practical advantages
over direct-search algorithms because the samples from the
joint posterior distribution can be used directly as inputs to
probabilistic sensitivity analyses (PSA) which are now required
for cost-effectiveness analyses (Neumann et al., 2016; Rutter
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FIGURE 7 | Joint posterior distribution of the calibrated parameters of the case study using the ANN method.

et al., 2019). This joint posterior distribution is also informative
in non-identifiable calibration problems where calibration
targets are not sufficient to provide a unique solution to the
calibrated parameters. Non-identifiability is often overlooked
using standard non-Bayesian calibration approaches (Alarid-
Escudero et al., 2018).

In our case study, BayCANN was both faster and overall
more accurate in recovering the true parameter values than the
IMIS algorithm. We developed BayCANN to be generalizable to
models of various complexities, and we provide the open-source
implementation in R and Stan to facilitate its wider adoption.

BayCANNmay have an additional advantage for representing
models with first-order Monte-Carlo noise from individual-
based state-transition models (iSTM). Traditionally, calibrating
these models has been challenging because of (1) the stochasticity
of each simulation due to the simulator’s output varying given
the same set of input parameter values, and (2) the extra
computational burden involved in calibrating iSTM. Because
BayCANN averages over a set of simulations, it can account for
the first-order Monte-Carlo noise. Further research is needed to
study BayCANN’s performance in stochastic models.

We chose ANNs over other metamodeling techniques because
of their flexibility, efficiency, and ability to accept a large number
of inputs. The use of metamodels in Bayesian calibration has

been mostly limited to Gaussian processes (GP) (Kennedy and
O’Hagan, 2001; Gramacy, 2020). GPs are attractive because they
can be specified fully as Bayesian models (Kennedy and O’Hagan,
2001). However, GPs are not without limitations, the main
one being that they are themselves relatively computationally
expensive. In practice, computational challenges limit training
GPs to datasets in the low thousands limiting their applicability
to health decision sciences models (Gramacy, 2020).

Our approach has some limitations. First, ANNs are not
fully probabilistic, thus, the joint posterior distribution produced
from the Bayesian calibration is an approximation of the
true distribution. Other metamodels, such as GPs are fully
probabilistic and can produce the full joint posterior distribution
(Gramacy, 2020). However, applying GPs in complex models
can be computationally infeasible (Gramacy, 2020). Second,
accuracy—Because ANNs (and GPs) are metamodels, they may
rarely achieve 100% precision compared to using the simulation
model itself. In our example, with a relatively simple ANN (only
two hidden layers with 100 hidden nodes each), we were able
to achieve 99.9% accuracy. However, for other application, the
accuracy of the ANN might be lower especially if the model
outputs are not continuous or smooth in certain region of
the parameter space. In addition, over-fitting can be a serious
problem with any metamodel especially when the purpose of
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the metamodel is as sensitive as calibration. To reduce the
chance of over-fitting, we validated the model against a subset
of simulation runs. We visually inspected the degree of fit
for the simulation output against those predicted by the ANN
(Figure 4). Third, similar to any Bayesian model, the choice of
priors can be important. Fortunately, in health decision sciences’
models, analysts often make careful choices of their priors when
designing their models and running PSA analyses. Additionally,
the best-fitting parameters may be outside the simulated ranges.
Notably, the joint posterior distribution can give insights into the
parameter ranges. For example, if a parameter is skewed heavily
without a clear peak, that may indicate that the parameter range
needs to be shifted to cover values that may fit better. This process
is usually iterative and may involve multiple steps or redefining
the parameter ranges and recalibrating the model. Finally, there
is no strict guideline for choosing the number of hidden ANN
layers or the number of nodes per layer. In this study, we chose an
ANN with two hidden layers and 100 nodes per layer. Adjusting
these parameters and additional parameters of the Bayesian
calibration process can improve the calibration results and can
be easily changed in BayCANN. While determining these values
apriori can be challenging, we recommend modelers who wish to
use BayCANN to start with simple settings and gradually increase
the complexity of the ANN to accommodate their particular
needs. We provide flexible code in R and Stan to simplify these
tasks.

In summary, Bayesian calibration can reveal important
insights into model parameter values and produce outcomes
that match observed data. BayCANN is one effort to target the
computational and technical challenges of Bayesian calibration
for complex models.
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In many mechanistic medical, biological, physical, and engineered spatiotemporal

dynamic models the numerical solution of partial differential equations (PDEs), especially

for diffusion, fluid flow and mechanical relaxation, can make simulations impractically

slow. Biological models of tissues and organs often require the simultaneous calculation

of the spatial variation of concentration of dozens of diffusing chemical species.

One clinical example where rapid calculation of a diffusing field is of use is the

estimation of oxygen gradients in the retina, based on imaging of the retinal vasculature,

to guide surgical interventions in diabetic retinopathy. Furthermore, the ability to

predict blood perfusion and oxygenation may one day guide clinical interventions in

diverse settings, i.e., from stent placement in treating heart disease to BOLD fMRI

interpretation in evaluating cognitive function (Xie et al., 2019; Lee et al., 2020).

Since the quasi-steady-state solutions required for fast-diffusing chemical species like

oxygen are particularly computationally costly, we consider the use of a neural network

to provide an approximate solution to the steady-state diffusion equation. Machine

learning surrogates, neural networks trained to provide approximate solutions to such

complicated numerical problems, can often provide speed-ups of several orders of

magnitude compared to direct calculation. Surrogates of PDEs could enable use of

larger and more detailed models than are possible with direct calculation and can

make including such simulations in real-time or near-real time workflows practical.

Creating a surrogate requires running the direct calculation tens of thousands of times

to generate training data and then training the neural network, both of which are

computationally expensive. Often the practical applications of such models require

thousands to millions of replica simulations, for example for parameter identification and

uncertainty quantification, each of which gains speed from surrogate use and rapidly

recovers the up-front costs of surrogate generation. We use a Convolutional Neural

Network to approximate the stationary solution to the diffusion equation in the case

of two equal-diameter, circular, constant-value sources located at random positions

in a two-dimensional square domain with absorbing boundary conditions. Such a

configuration caricatures the chemical concentration field of a fast-diffusing species like

oxygen in a tissue with two parallel blood vessels in a cross section perpendicular to the
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two blood vessels. To improve convergence during training, we apply a training approach

that uses roll-back to reject stochastic changes to the network that increase the loss

function. The trained neural network approximation is about 1000 times faster than the

direct calculation for individual replicas. Because different applications will have different

criteria for acceptable approximation accuracy, we discuss a variety of loss functions and

accuracy estimators that can help select the best network for a particular application. We

briefly discuss some of the issues we encountered with overfitting, mismapping of the

field values and the geometrical conditions that lead to large absolute and relative errors

in the approximate solution.

Keywords: diffusion surrogate, machine learning, virtual tissue, mechanistic modeling, Julia

1. INTRODUCTION

Diffusion is ubiquitous in physical, biological, and engineered
systems. In mechanistic computer simulations of the dynamics
of such systems, solving the steady state and time-varying
diffusion equations with multiple sources and sinks is often
the most computationally expensive part of the calculation,
especially in cases with multiple diffusing species with diffusion
constants differing by multiple orders of magnitude. Examples
in biology include cells secreting and responding to diffusible
chemical signals during embryonic development, blood vessels
secreting oxygen which cells in tissues absorb during normal
tissue function, tumors secreting growth factors promoting
neoangiogenesis in cancer progression, or viruses spreading
from their host cells to infect other cells in tissues. In these
situations the natural diffusion constants can range from ∼

103µm2/s for oxygen to ∼ 0.1 − 102µm2/s for a typical protein
(Phillips, 2018). Dynamic simulations of biological tissues and
organs may require the independent calculation of the time-
varying concentrations of dozens of chemical species in three
dimensions, and in the presence of a complex field of cells
and extracellular matrix. As the number of species increases,
solving these diffusion equations dominates the computational
cost of the simulation. Numerous approaches attempt to reduce
the cost of solving the diffusion equation including implicit,
particle-based, frequency-domain and finite-element methods,
multithreaded, and MPI-based parallelization and GPUs, but all
have significant limitations. HPC methods that do not require
Deep Learning (DL) can certainly accelerate solution of problems
including diffusion equations, e.g., Secomb’s Green’s function
method leverages GPUs to accelerate solution of 3D advection-
diffusion in microvessels with time-dependent sinks and sources
(Secomb, 2016). Such methods could greatly reduce the time
required to generate training sets for DL-assisted approaches.
Machine learning has also been applied to solve a growing
list of PDE problems (Farimani et al., 2017; Sharma et al.,
2018; Edalatifar et al., 2020; He and Pathak, 2020; Li A. et al.,
2020; Li Z. et al., 2020; Cai et al., 2021). See Fox and Jha
(2019) for a thorough review. Machine learning has also been
applied to the inverse problem, i.e., attempting to infer the
underlying mechanistic equations governing a complex system
from experimental data. These methods can potentially lead to

the discovery of new physics (Champion et al., 2019). Similarly,
Neural-ODEs is a highly active and exciting field where neural
networks are embedded into a differential equation. Modeling
a process via an ODE typically consists in equating the change
rate of a quantity (e.g., concentration) to an operator applied to
that same quantity plus some other quantities which are called
inhomogeneities or external fields, then solving the ODE and
comparing it with experimental data of that thing to validate the
model or fit parameters. The operator in the ODE is selected
a priori based on the symmetries of the process. Neural-ODEs
replaces the operator with a neural network. The neural network
is trained by solving the Neural-ODE and comparing it with the
experimental data (Chen et al., 2018; Rackauckas et al., 2019).
Moreover, Physics Informed Neural Networks tackle forward
and inverse problems by embedding physical information into
the neural network. Embedding physical information into
the neural network means embedding the ODE, the initial
conditions and the boundary conditions into the loss function
used to train the neural network (Raissi et al., 2019). In the
case of multiscale modeling, the complexity of the system
includes different characteristic length and time scales differing
by orders of magnitude. Multiscale modeling using standard
computational approaches, such as Monte Carlo methods and/or
molecular dynamics is time consuming. AI-based surrogates
using deep learning methods can accelerate computation by
replacing specific classical solvers, while preserving the overall
interpretability of mechanistic models. In real-world problems,
the number of sources and sinks, their shape, boundary fluxes,
and positions differ from instance to instance and may change
in time. Boundary conditions may also be complicated and
diffusion constants may be anisotropic or vary in space. The
resulting lack of symmetry means that many high-speed implicit
and frequency-domain diffusion-solver approaches do not work
effectively, requiring the use of simpler but slower forward solvers
(Schiesser, 2012). Deep learning1 surrogates to solve either the
steady-state field or the time-dependent field for a given set of
sources and sinks subject to diffusion could potentially increase
the speed of such simulations by several orders of magnitude
compared to the use of direct numerical solvers.

1We use the terms deep learning and machine learning interchangeably. We also
use neural network and deep neural network interchangeably.
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FIGURE 1 | Snapshot of (A) initial condition and (B) stationary state solution. (A) We placed two random value sources of radius 5 voxels in random positions fully

within a 100× 100pixel lattice and used this configuration as the input to the NN. (B) Stationary solution to the diffusion equation with absorbing boundary conditions

for the initial conditions in (A). The stationary solution (B) is the target for the NN. We fixed the diffusion constant to D = 1 voxels2/s and the decay rate to

γ = 1/400s−1, which yields a diffusion length equal to
√

D/γ voxels = 20voxels.

One challenge in developing effective deep neural network
(NN) diffusion-solver surrogates is that the dimensionality of the
problem specification is potentially very high, with an arbitrary
pattern of sources and sinks, with different boundary conditions
for each source and sink, and spatially variable or anisotropic
diffusivities. As a proof-of-principle we will start with a NN
surrogate for a simple version of the problem that we can
gradually generalize to a full surrogate in future work. In a two-
dimensional square domain represented as N ×Npixels and with
absorbing boundary conditions, we place two circular sources of
equal diameters at random positions, with the constraint that
the sources do not overlap and are fully contained within the
domain. Each source imposes a constant value on the diffusing
field within the source and at its boundary. We select the value
for one of the sources equal to 1 while the value for the other
source is randomly selected from a uniform distribution between
(0, 1] (see Figure 1A). Outside the sources the field diffuses with
a constant diffusion constant (D) and linearly decays with a
constant decay rate (γ ). This simple geometry could represent the
diffusion and uptake of oxygen in a volume of tissue between two
parallel blood vessels of different diameters. Although reflecting
or periodic boundary conditions might better represent a potion
of a larger tissue, we use the simpler absorbing boundary
conditions here. In this case, the steady-state field depends
critically on the distance between the sources, and between the
sources and the boundary, both relative to the diffusion length
(lD = (D/γ )1/2) and on the sources’ field strengths.

In practice then, the solution of the steady state diffusion
equation maps an image consisting of N × N pixels with 0
value outside the sources and constant values between 0 and 1

inside the sources to a second image of the same size, which
has the same values inside the sources but values between 0 and
1 elsewhere (see Figure 1B). We evaluate the ability of a NN
trained on the explicit numerical solutions of the steady-state
diffusion field for 20, 000 two-source examples to approximate
the steady state field for configurations of sources that it had not
previously encountered.

Notice that the diffusion kernel convolution used in the direct
solution of the time-dependent diffusion equation (e.g., finite-
element methods) is a type of convolutional neural network
(Schiesser, 2012). Therefore we chose deep convolutional NN
as the architecture. However, there are multiple types of
convolutional NN. Here we considered two of these. A deep
convolutional neural network and an autoencoder (Baur et al.,
2020). In addition, because it was possible that these two types
would do better at replicating specific aspects of the overall
solution, we also evaluated a superposition of the two. Time
series surrogates often use recurrent NN (Zhang and Xiao, 2000;
Dubois et al., 2020). Similarly, deep generative models have been
shown to be useful to sample from high dimensional space,
as in the case of molecular dynamics and chemical reaction
modeling (Chen and Ferguson, 2018; Noé et al., 2019, 2020;
Zhang et al., 2019; Gkeka et al., 2020; Kasim et al., 2020). Since
our main interest is the stationary solution, we did not consider
these approaches.

2. MODEL

Figure 2 shows the data flow through the NN. We denote by |x〉
and |ŷ〉 the input and output images, that is the initial condition
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FIGURE 2 | Network architecture: the input image |x〉 passes through NN 1 (see Figure 3A) and NN 2 (see Figure 3B), generating the two outputs ŷ1〉 and |ŷ2〉. The

final output |ŷ〉 is the sum of the outputs of the two NNs weighted by coefficients p1 and p2, i.e., |ŷ〉 = p1|ŷ1〉 + p2|ŷ2〉. pi are fixed Boolean hyperparameters for the

model and fixed for each model we trained. This means that when a given model has pi = 0 (pi = 1) then NNi is turned off (on).

layout of the source cells and the predicted stationary solution
of the diffusion equation, respectively. The input |x〉 passes to
two different neural networks (NNs) denoted NN 1 (Figure 3A)
and NN 2 (Figure 3B) which output |ŷ1〉 and |ŷ2〉, respectively.
The output |ŷ〉 is a weighted sum of the outputs of the two NNs,
|ŷ〉 = p1|ŷ1〉+p2|ŷ2〉, where p1 and p2 are fixed hyperparameters,
i.e., these hyperparameters are fixed during training. In our
code (Toledo-Marin, 2020) pi are real numbers, however, in
this paper we only consider the Boolean case where they each
take values of 0 or 1. NN 1 is a deep convolutional neural
network that maintains the height and width of the input image
through each of 6 convolutional layers. The first layer outputs a
4-channel image, the second layer outputs an 8-channel image,
the third layer outputs a 16-channel image, the fourth layer
outputs an 8-channel image, the fifth layer outputs a 4-channel
image and the sixth layer outputs a 1-channel image. NN 2 is an
autoencoder (Chen et al., 2017) where the first six layers perform
a meanpool operation that reduces height and width in half after
each layer following the sequence {1002, 502, 252, 122, 62, 32, 12}
while adding channels after each layer following the sequence
{1, 64, 128, 256, 512, 1, 024, 2, 048}. Then, the following six layers
consist on reducing the number of channels following the
sequence {1, 024, 512, 256, 128, 64, 1} while increasing the height
and width following the sequence {12, 32, 72, 132, 252, 512, 1002}.
Figure 3 sketches the architectures of the two NNs, while Table 1
provides their parameters.We will find that NN 1 will capture the
sources whereas NN 2will capture the field. InTable 1, we specify
each neural network by specifying for each layer the kind of layer,
the activation function and the output shape.

To generate representative two-source initial conditions
and paired steady-state diffusion fields, we considered a two-
dimensional lattice of size 100 × 100units2. We generated 20 k
configurations with two sources, each with a radius of 5 units.
One source has a constant source value equal to 1, while the other
source has a constant source value between 0 and 1 randomly
assigned using a uniform distribution. Everywhere else the field
value is 0. We placed the sources in randomly uniform positions
in the lattice. This image served as the input for the NN |x〉. Then
we calculated the stationary solution to the diffusion equation
with absorbing boundary conditions for each initial condition
using the Differential Equation package in Julia (Rackauckas and
Nie, 2017). The Julia-calculated stationary solution is the target
or ground truth image for the NN |y〉. In Figures 1A,B, we show
an initial condition and the stationary solution, respectively. We
have set the diffusion constant to D = 1units2/s and the decay
rate γ = 1/400s−1, which yield a diffusion length lD =

√
D/γ =

20 units. Notice that this length is 4 times the radius of the
sources and 1/5 the lattice linear dimension. As γ increases and
asD decreases, this length decreases. As this length decreases, the
field gradient also decreases (Tikhonov and Samarskii, 2013). The
source code to generate the data and train the NN can be found
in Toledo-Marin (2020).

We trained the CNN setting the number of epochs to 800
using the deep learning library in Julia called Flux (Innes, 2018).
We varied the dropout values between 0.0 and 0.6 in steps of
0.1 (see Table 2). We used ADAM as the optimizer (Kingma
and Ba, 2014). Deciding on a loss function is a critical choice in
the creation of the surrogate. The loss function determines the
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FIGURE 3 | Sketch of (A) convolutional NN 1. The first layer takes as input a single-channel N× N image and applies four 3× 3 convolutions to generate four N× N

images, the second layer applies eight 3× 3 convolutions to generate eight N× N images, the third layer applies 16 3× 3 convolutions to generate sixteen N× N

images, the fourth layer applies eight 3× 3 convolutions to generate eight N× N images, the fifth layer applies four 3× 3 convolutions to generate four N× N images

and the sixth layer applies a 3× 3 convolution to generate a single N× N image. Sketch of (B) autoencoder NN 2. The first six layers perform a meanpool operation

that reduces image height and width by half after each layer, with the image dimensions following the sequence {1002, 502, 252, 122, 62, 32, 12} while adding channels

after each layer following the sequence {1, 64, 128, 256, 512, 1024, 2048}. Then, the following six layers reverse the process, reducing the number of channels

following the sequence {1024, 512, 256, 128, 64, 1} while increasing the height and width following the sequence {12, 32, 72, 132, 252, 512, 1002}. This sketch only

defines the kinds of layers used. For details about the activation functions used in each layer (see Table 1).

types of error the surrogate’s approximation will make compared
to the direct calculation and the acceptability of these errors
will depend on the specific application. The mean squared error
(MSE) error is a standard choice. However, it is more sensitive to
larger absolute errors and therefore tolerates large relative errors
at pixels with small values. A loss function calculated on the log of
the values would be equally sensitive to relative error no matter
what the absolute value. In most biological contexts we want to
have a small absolute error for small values and a small relative
error for large values. We explored the use of both functions,

MAE and MSE, as described in Table 2. We used 80 and 20%
of the dataset for training and test sets, respectively. We trained
each model once. The highest and lowest values in the input
and output images are 1 and 0, respectively. The former only
occurs in sources and their vicinity. Given the configurations
of the sources, the fraction of pixels in the image with values
near 1 is ∼ 2πR2/L2 ≈ 2%. Thus, pixels with small values
are much more common than pixels with large values, and
because the loss function is an average over the field, high field
values tend to get washed out. To account for this unbalance
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TABLE 1 | Convolutional neural network architectures.

Operation Act Output shape

Conv 3 × 3 LReLU 4 × 100 × 100

Dropout 1 (D1) – –

BatchNorm Identity –

Conv 3 × 3 LReLU 8 × 100 × 100

BatchNorm Identity –

Conv 3 × 3 LReLU 16 × 100 × 100

BatchNorm Identity –

Conv 3 × 3 LReLU 8 × 100 × 100

BatchNorm Identity –

Conv 3 × 3 LReLU 4 × 100 × 100

BatchNorm Identity –

Conv 3 × 3 ReLU 1 × 100 × 100

Dropout 2 (D2) – –

BatchNorm Identity –

Conv 3 × 3 LReLU 64 × 100 × 100

BatchNorm Identity –

Dropout 3 (D3) – –

Meanpool Identity 64 × 50 × 50

Conv 3 × 3 LReLU 128 × 50 × 50

Meanpool Identity 128 × 25 × 25

Conv 3 × 3 LReLU 256 × 25 × 25

Meanpool Identity 256 × 12 × 12

Conv 3 × 3 LReLU 512 × 12 × 12

Meanpool Identity 512 × 6 × 6

Conv 3 × 3 LReLU 1,024 × 6 × 6

Meanpool Identity 1,024 × 3 × 3

Conv 3 × 3 LReLU 2,048 × 1 × 1

ConvT 3 × 3 LReLU 1,024 × 3 × 3

ConvT 3 × 3 LReLU 512 × 7 × 7

ConvT 3 × 3 LReLU 256 × 13 × 13

ConvT 3 × 3 LReLU 128 × 25 × 25

ConvT 3 × 3 LReLU 64 × 51 × 51

Dropout 4 (D4) – –

ConvT 4 × 4 ReLU 1 × 100 × 100

BatchNorm Identity –

Left panel corresponds to the successive operations of NN 1 while the right panel

corresponds to the successive operations NN 2. Act stands for activation function. Conv,

ConvT, and (L)ReLU stand for convolution, convolution transpose, and (leaky) rectified

linear unit, while Identity means the activation function is the identity function (see Innes

et al., 2018). Both NNs take as input the initial condition which has dimensions Channels

× Width × Height = 1 × 100 × 100.

between the frequency of occurrence of low and high values,
we introduced an exponential weight on the pixels in the loss
function. We modulate this exponential weight through a scalar
hyperparameter w, for the field in the ith lattice position in the
loss function as

L
(α)
iβ = exp(−(〈i|1〉 − 〈i|yβ〉)/w) ·

(

〈i|ŷβ〉 − 〈i|yβ〉
)α

, (1)

where α is 1 or 2 for MAE or MSE, respectively and β tags the
tuple in the data set (input and target). Here 〈|〉 denotes the inner

product and |i〉 is a unitary vector with the same size as |yβ〉

with all components equal to zero except the element in position
i which is equal to one. |1〉 is a vector with all components
equal to 1 and with size equal to that of |yβ〉. Then 〈i|yβ〉 is a
scalar corresponding to the pixel value at the ith position in |yβ〉,
whereas 〈i|1〉 = 1 for all i. Notice that high pixel values will then
have an exponential weight ≈ 1 while low pixel values will have
an exponential weight ≈ exp(−1/w). This implies that the error
associated to high pixels will have a larger value than that for low
pixels. The loss function L

(α) is the mean value over all pixels (i)
and a given data set (β):

L
(α)

= 〈L
(α)
iβ 〉 , (2)

where 〈〉 denotes average. In our initial trial training runs, we
noticed that the loss function always reached a plateau by 800
epochs, so we trained the NNs over 800 epochs for all runs
reported in this paper. Because the training is stochastic, the
loss function can increase as well as decrease between epochs
as seen in Figure 4. At the end of 800 epochs we adopted the
network configuration with the lowest loss function regardless of
the epoch at which it was achieved.

While the trendline (averaged over 5 or 10 epochs) of the loss
function value tends to decrease during training, the stochasticity
of the training means that the value of the loss function often
increases significantly between successive epochs, even by one
or two orders of magnitude (see Figure 4). In some cases, the
loss function decreases back to its trend after one or two epochs,
in other cases (which we call jumps), it stays at the higher
value, resetting the trend line to the higher value and only
gradually begins to decrease afterwards. In this case all of the
epochs after the jump have larger loss functions than the epoch
immediately before the jump, as shown for the evolution of
the loss function for a typical training run in Figure 4A. This
behavior indicates that the stochastic optimization algorithm has
pursued an unfavorable branch. To avoid this problem, we added
a roll-back algorithm to the training, as proposed in Geoffrey
(2020). We set a loss threshold value, Lthrs, such that if the
ratio of loss value from epoch n to n + 1 is larger than Lthrs,
then the training algorithm reverts (rolls back) to the NN state
corresponding to epoch n − s and tries again. The stochasticity
of training means that roll-back has an effect similar to training
an ensemble of models with the same hyperparameters and
selecting the model with the lowest loss function value, however,
the roll-back optimization takes much less computer time than
a large ensemble. We set s = 5 and set the threshold value
Lthrs to

Lthrs = C
1

m

n
∑

ep=n−m+1

L
(α)(ep) . (3)

Here we chose C = 5 and m = 20 where ep stands
for epoch, i.e., we set the threshold value to 5 times the
average loss function value over the previous m = 20
epochs. We chose these values empirically. In Figure 4B, we
have plotted a typical example of the evolution of the loss
function during training when we train using roll-back. A typical
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TABLE 2 | Trained models with their corresponding hyperparameters.

Model Weight (w) p1 p2 D1 D2 D3 D4 Loss 〈res〉 (10−3) 99-P res (10−2) Max res

1 1000 1 1 0.3 0.3 0.3 0.3 MSE 2.77 2.26 0.35

2 1 1 1 0.3 0.3 0.3 0.3 MSE 2.91 2.25 0.37

3 1 1 1 0.4 0.4 0.1 0.1 MSE 3.49 2.03 0.34

4 1 0 1 − − 0.3 0.3 MSE 2.49 1.97 0.38

5 1 0 1 − − 0.1 0.1 MSE 2.04 1.89 0.35

6 1 1 0 0.3 0.3 − − MSE 75.8 16.5 0.47

7 1 1 0 0.4 0.4 − − MSE 79.9 21.6 0.65

8 100 1 1 0.3 0.3 0.3 0.3 MAE 2.62 2.59 0.33

9 100 1 1 0.4 0.4 0.1 0.1 MAE 2.08 2.02 0.30

10 1 1 1 0.3 0.3 0.3 0.3 MAE 3.19 3.53 0.40

11 1 1 1 0.4 0.4 0.1 0.1 MAE 2.36 2.66 0.25

12 1 0 1 − − 0.1 0.1 MAE 2.12 2.17 0.34

13 10 0 1 − − 0.3 0.3 MAE 3.15 3.39 0.36

14 10 0 1 − − 0.1 0.1 MAE 2.30 2.46 0.33

Each model is numbered for reference. The weight w is defined in Equation (1). The Di for i = 1, . . . , 4 are the dropout values (see Table 1). D1 and D2 apply to NN 1 whereas D3 and

D4 apply to NN 2. p1 and p2 are Boolean variables. pi = 0 (pi = 1) implies NN i is turned off (on). If p1 = 0 then the values of D1 and D2 are irrelevant, while p2 = 0 makes the values

of D3 and D4 irrelevant. The loss column specifies the loss function, either MSE for mean squared error (α = 2) or mean absolute error MAE (α = 1), respectively (see Equation 1). The

mean res, 99-P res and max res columns show the mean, 99-percentile and maximum residual for each model computed over the test set.

FIGURE 4 | Training loss function vs. epochs for model 9 (the hyperparameters are specified in Table 2 and the NN details are described in the main text) without

roll-back (A) and with roll-back (B) using the same seed. We have circled in green where a jump occurred during this training run (see main text for discussion).

number of roll-backs is 40, i.e., this number is the number of
epochs where the jump was higher than the threshold during
the training.

3. RESULTS

Quite commonly, themean residual is the estimator used to judge
the goodness of a given model. However, there are cases where
the worst predictions are highly informative and can be used
to make basic decisions about which features of the NN do not
add value. In Figures 5A–C we show 20 different inputs, targets
and predictions, respectively. The predictions in Figure 5C were

obtained usingmodel 12 (seeTable 2) and qualitatively show very
good results. For each model we computed the residual, i.e., the
absolute value of the difference between the ground truth and
the NN prediction pixel-by-pixel, as shown in Figure 6B. We
also analyzed the relative residual, i.e., the residual divided by
the ground truth pixel-by-pixel, as shown in Figure 6C. Models
6 and 7, which only use NN 1 (p1 = 1 and p2 = 0), yield mean
residuals an order of magnitude larger than models that use both
or only NN 2. Therefore, we reject the NN 1-only models and do
not analyze them further.

Table 2 summarizes the hyperparameter values for each
model we trained. The choice of these parameters was empirically
driven. Since we had the field values bounded between 0 and 1
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FIGURE 5 | Results for 20 randomly selected test data sets’. (A) input, (B) ground truth (target output), and (C) NN surrogate prediction of steady-state diffusion field

output for the input.

similar to black and white images, we tested different L-norms,
namely, mean absolute value (MAE), mean squared value (MSE),
and mean to the fourth power, often used in neural networks
applied to images. In this paper we show the results for MAE
andMSE.We also tested different hyperparameters values for the
dropout. We found that low dropout values for NN 2 yield the
best results.

In Figure 6D, we have plotted the mean residual value, the
99-Percentile residual value and the maximum residual value
computed over the test set. Notice that the 99-Percentile residual
value is ten times the mean residual value and the maximum
residual value is 10 times the 99-Percentile residual value. This
suggests that the residual distribution contains outliers, i.e., there
is a 1% residual that deviate from mean residual 10 to 100 times.
Furthermore, these outliers correspond to regions between the
source and the border, near the source, where the source is
close to the border as suggested by Figure 6B. While the largest
values in absolute residual come from pixels near the source as
shown in Figure 6B, the relative error near the source is small
whereas the relative error near boundaries is large, as shown in
Figure 6C. In Figure 6A we show the stationary solution for the
same batch shown in Figures 6B,D. Since we are considering
absorbing boundary conditions, the field at the boundary is
always equal to zero, thus strictly speaking the relative residual

value has a singularity at the boundary. Thus, at the boundaries
there is a larger relative error due to the boundary conditions.
Since our method has a small absolute error independent of the
mean value, the relative error is a poor measure of accuracy for
small mean values, since it diverges as the mean approaches zero.
Since we have zero-value boundary conditions, at the boundaries
there is a larger relative error due to the boundary conditions
and therefore the relative error is not a functionally meaningful
measure of error unless the system being modeled is highly
sensitive to small values of the field. Oxygen levels in normal
tissues fluctuate significantly in space and time. For instance,
in the retina, oxygen concentration fluctuates dramatically in
space, time and depending on illumination. Short-term temporal
fluctuations range from 5 to 50% depending on depth in cat
retina (Linsenmeier and Zhang, 2017). This intrinsic oxygenation
fluctuation in tissues suggests that biologically, 5% relative error
at low concentrations is an acceptable accuracy for oxygen
concentration estimation.

Models 5, 11, and 12 have low mean residuals with model
5 being the smallest. Focusing instead on the mean residual
and the 99-Percentile, we notice that models 3, 4, 5, 11, and 12
yield the best results. Finally, considering the maximum residual
together with the previous estimators, we notice that model 9
has low mean residual, low 99-percentile residual and the lowest
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FIGURE 6 | (A) The stationary solution for the same batch in the test set. (B) Residual (absolute error, i.e., ||yβ 〉 − |ŷβ 〉|) for 20 sample source images in the test set

trained using model 12 in Table 2. (C) Residual/true value (relative error) for the corresponding images. (D) Mean, 99-Percentile, and maximum residual for all of the

models in Table 2. Left scale for mean value, right scale for 99-Percentile residual value and right scale in parentheses for max residual value.

max residual. Depending on the user’s needs, one estimator
will be more relevant than others. In this sense, defining a best
model is relative. Nevertheless, having more metrics (e.g., relative
error for large values and absolute error for small values) helps
to characterize each model’s performance. In future work we’ll
consider more adaptable metrics, as well as mixed error functions
that incorporate multiple estimators.

Figure 8 plots the prediction vs. the target for each pixel
in each image in the training and test sets for models
9 and 11. Notice that for the test sets the results are
qualitatively similar between models, for the training set the
dispersion is larger in model 11 than in model 9. This
suggests model 11 is overfitting the training data. Models 9
and 11 have the same hyperparameters except for the weight
w. In the former w = 100 while in the latter w =

1. This suggests that the exponential weight helps reduce
overfitting.

In Figure 7, we show the prediction from NN 1 (Figure 7A)
and NN 2 (Figure 7B). Notice that NN 1 is able to detect
the sources whereas NN 2 is able to predict the field. Using
both neural networks improves the results as can be seen in
Figure 6D. As previously mentioned, pixels with low (near 0)
field values are much more common than pixels with high (near

1) field values. While the exponential factor in the loss function
compensates for this bias, the residual in Figure 6D does not.
To address this issue we compute the mean residual over small
field intervals. This will tell us how well the model predicts for
each range of absolute values. Furthermore, this method can
be used to emphasize accuracy or relative accuracy in different
value ranges. The way we do this is as follows. In Figure 8,
we take 10 slices of size 0.1 in the direction y = x. We then
compute the mean residual and standard deviation per slice. In
Supplementary Material (section 1), we have plotted the PDF
(probability density function) per slice (blue bins) and a Gaussian
distribution (red curve) with mean and standard deviation set to
the mean residual and standard deviation per slice, respectively.
We did this for all models in Table 2. In Figure 9, we plotted
the mean residual vs. for each model for each slice for the
test and training sets. The error envelop shows the residual
standard deviation per slice. Notice thatmodels trainedwithMSE
have a smaller residual standard deviation than models trained
with MAE in the case of the training set, which suggest that
MSE contributes to overfitting more that MAE. Recall that the
difference between the MSE gradient and the MAE gradient is
that the former is linear with the residual value whereas the latter
is a constant. Therefore, training with MAE generalizes better
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FIGURE 7 | Results for 20 randomly selected test data sets’. (A) Prediction using model 7, which only uses NN 1. (B) Prediction using model 5, which only uses NN 2

(see Table 2). Note the different scale on the color bars.

than MSE. Additionally, notice the dispersion increases with the
slice number.

In Figure 10, we plotted the average and maximum over the
residual mean value per slice (see Figure 10A) and the residual
standard deviation per slice (see Figure 10B) for each model’s
test and training sets. Notice that in this approach, by slicing the
residual values and computing the average residual over the set of
slices, we are giving equal weight to each mean residual per slice
and, therefore, compensating for the imbalance in frequency of
low and high value pixels. An interesting feature from using MSE
or MAE comes from the PDF of the field values. Training using
MAE makes the PDF prediction quite accurate as the prediction
completely overlaps with the ground truth (see Figure 11). In
comparison, when training withMSE, the PDF is not as good and
the overlap between ground truth and prediction is not complete.
There is a mismatch for low field values in the sense that the NN
does not predict low non-zero field values correctly. Thus, we
recommend using MAE to avoid this issue.

4. DISCUSSION

In large-scale mechanistic simulations of biological tissues,
calculations of the diffusion of molecular species can be a
significant fraction of the total computational cost. Because
biological responses to concentrations often have a stochastic
overlay, high precision may not be essential in these calculations
Because NN surrogate estimates are significantly faster than the
explicit calculation of the steady-state diffusion field for a given
configuration of sources and sinks, an effective NN surrogate
could greatly increase the practical size of simulated tissues, e.g.,
in cardiac simulations (Kerckhoffs et al., 2007; Sundnes et al.,
2014), cancer simulations (Bruno et al., 2020), and orthopedic
simulations (Erdemir et al., 2007). In our case, using a NVIDIA
Quadro RTX 6000, each diffusion solution is about 1,000 times
faster using the trained NN solver compared to the Julia code.

In order to decide if this acceleration is useful, we have to
consider how long it takes to run the direct simulation, how long
the NN takes to train and how long it takes to execute the NN

once it has been trained (Fox and Jha, 2019). If each diffusion
calculation takes δ seconds to run, conducting N calculations
directly takes tdirect = Nδ. If each neural network surrogate takes
ǫ seconds to run, and the number of replicas in the training set
is M and the training time is E, the total time for the neural
network simulation is the time to generate the training set, the
training time plus the simulation time, tneuro = Mδ+E+Nǫ. To
estimate these times, we ran 20, 000 explicit simulations in Julia,
which took ∼6 h and 30 min, yielding roughly 1.16s each. The
NN training time was 12 h on average. While the speedup for an
individual simulation is δ/ǫ ≈ 1, 000, the ratio τneuro/τdirect must
be smaller than 1 in order to have a useful acceleration. Equating
this ratio to 1 and solving for N yields

Nmin =
M + E/δ

1− ǫ/δ
≈ M +

E

δ
. (4)

Nmin gives the number of replicas necessary for the total time
using the NN to be the same as the direct calculation. Of course,
the exact times will depend on the specific hardware used for
the direct and NN calculations. In our case, from Equation
(4) we obtain that Nmin ≈ 57, 300, we would need to use
the neural network more than 57, 300 times for the total time
using the NN to be faster than the direct calculation. Thus
the NN acceleration is primarily useful in simulations that will
be run many, many times for the specific situation for which
the NN is appropriate. Consider for example if one wishes
to include a variable number of sources, different lattice sizes,
different dimensionalities (e.g., 3D) and boundary conditions.
The more general the NN the more training data it will require,
the longer training will take, and the slower the individual NN
calculations will be. Currently virtual-tissue simulation studies
often run thousands to tens of thousands of replicas and each
replica often takes tens of minutes to tens of hours to run.
This computational cost makes detailed parameter identification
and uncertainty quantification impractical, since simulations
often have dozens of parameters to explore. If using a NN-
based diffusion solver accelerated these simulations by 100× it
would permit practical studies with hundreds of thousands to
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FIGURE 8 | Ground truth vs. prediction for (A) test set and (B) training set in the case of model 9; (C) test set and (D) training set in the case of model 11 (see

Table 2). The number of points plotted in each panel is 3.75 · 107.

millions of replicas, greatly expanding the feasible exploration
of parameter space for parameter identification and uncertainty
quantification. It is worthwhile mentioning that there are other
numerical methods for diffusion in 2D and 3D models that
can also exploit the GPU parallelization such as the one in
Secomb (2016) based on a discretization of Green’s function.
Our focus is on the ability of neural-network surrogates to solve
the time-independent diffusion equation, however it would be
interesting to extensively optimize the mechanistic methods we
used to generate our training data sets. Generating training data
is so time consuming, applications of deep neural networks will

benefit greatly from using faster mechanistic methods to generate
training data.

While there isn’t a protocol for setting up a diffusion-solver
surrogate, there are several things that must be considered. First
one needs to frame the problem similar to how one would do
when performing mechanistic modeling. One needs to settle
on the dimensionality, e.g., 1D, 2D, 3D,. . . or n-dimensions;
the system size which in our case we settled on 100 × 100;
the type of sources to consider, e.g., sinks, sources, or both;
the boundary conditions e.g., absorbing, reflective, periodic,
or mixed; the distribution of sources in space; and it is also
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FIGURE 9 | Mean (data points) ± standard deviation (envelop) per slice vs. models (see Table 1) for test set (blue) and training set (red). Slice i corresponds to field

values in the interval [0.1 · (i − 1), 0.1 · i] where i = 1, . . . , 10.
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FIGURE 10 | (A) For each model, we show the average and maximum over the residual mean value per slice. (B) For each model, we show the average and

maximum over the residual standard deviation per slice (see Figure 9). This was done for the test and training set.

FIGURE 11 | PDF of field obtained via NN (blue) and ground truth (red) in the case of training using MSE, for (A) model 2 and (B) model 3 and for training using MAE,

for (C) model 11 and (D) model 12. When using MSE (A,B) the NN predicts zero field values instead of low non-zero field values as the predicted PDF has a larger

peak in zero than the ground truth PDF, and a smaller PDF for small non-zero field values compared with the ground truth PDF. When training using MAE (C,D) the

prediction and ground truth PDFs overlap completely.

important to think about the accuracy required from the neural
network. There isn’t a rigorous way to determine the size of
the required training dataset, although the size will depend on
the problem one is addressing and the decisions made in the
previous step. We recommend to start with a training dataset

size of the order ∼ 104. Then one needs to decide on the
network architecture. For the network architecture the number
of options is large. For instance, the depth of the neural network,
e.g., deep or shallow; the type of layers, e.g., convolutional layers,
fully-connected layers, recurrent layers, or mixed layers; the
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activation functions, e.g., ReLU, sigmoid, tanh, etc. Evidence
suggests that using deep neural networks as opposed to shallow
neural networks will increase the non-linearity of the neural
network, which ultimately broadens the learning capabilities
of the neural network (Bianchini and Scarselli, 2014). But as
depth increases the gradient of the loss function can grow
or diminish significantly leading to instabilities or a regime
of zero learning where the gradient becomes zero but the
loss function value is large. Very deep neural networks can
also lead to an overflow or underflow situation. Therefore, the
neural network depth is a feature that should be set in way
that meets a middle ground. The right choice of activation
functions, regularizer layers (i.e., DropOut, BatchNorm, etc.)
and weight initializers can hinder the unwanted features of
instabilities or zero learning. Choosing the right optimizer for
training is also something to consider. However, unless there
are some very specific needs, the standard rule is to use the
ADAM optimizer (Kingma and Ba, 2014). Choosing the loss
function is crucial as this is the metric the neural network
will use to measure how good the outcome is. Typically for
these type of problems MSE, MAE and other similar norms are
used. Additionally, there are a number of (hyper)parameters to
be chosen. For instance, some activation functions, regularizer
layer and optimizers have hyperparameters. Also the number
of epochs and size of minibatch are hyperparameters. To set
the hyperparameters’ values, one can start by using the values
reported in the literature but the scope should be to explore
the space of hyperparameters by training an ensemble of neural
networks with different hyperparameters and then choosing the
model that performed best on the validation set.

In a real tissue, the oxygen tension on the surface of the blood
vessel and in the tissue as a whole involves complex feedback
among many factors, including spatial and temporal variation in
the supply and consumption of oxygen; supply at a given location
could depend on the degree of local blood-vessel dilation, the rate
of blood flow, and levels of oxygen in the blood to name a few
examples. A realistic model of oxygenation in tissue would need
to include spatial and temporal models of all of these processes
individually and of their coupling. Clearly such a model is much
more complex than our simple example of calculating the steady-
state oxygen field given a fixed set of circular sources with fixed
oxygen tensions and a fixed uniform consumption rate in the
tissue implemented as linear decay.

While developing NN surrogates to solve the entire complex
problem of oxygenation would be worthwhile, we believe that
deep neural network surrogates will (at least initially) not replace
the entire simulation, but to replace the most computationally
costly components of the simulation. In this case, looking for
surrogates for specific commonly-used calculations, which can
be used in many different applications and which can provide
a substantial speed-up is appropriate. Many biophysical and
engineering problems require solving the diffusion equation
for fixed sources. Despite the improvements to direct solution
mentioned in Secomb (2016), solving the diffusion equation still
often contributes much of the computational cost of the full
problem solution. In these cases, the faster the “diffusion step”
is computed, the faster the solution of the multiscale model as a

whole. To train an optimal diffusion surrogate for a particular
problem one has to choose a set of appropriate loss functions and
combine them to minimize the errors of the metrics one defines
as most relevant to the specific problem being addressed. How to
choose loss functions and their weighting to achieve macroscopic
desired outcomes is not well understood as a general problem.
Even in our very simple example, we had to explore a wide
variety of loss functions to achieve reasonable convergence of
our NN during training and reasonable final absolute and relative
accuracy of our surrogate.

5. CONCLUSIONS

Neural networks provide many possible approaches to
generating surrogate diffusion solvers. Given the type of
problem setting, we were interested in a neural network
that could predict the stationary field. We considered a deep
convolutional neural network, an autoencoder and their
combination. We considered two loss functions, viz. mean
squared error and mean absolute error. We considered different
hyperparameters for dropout and an exponential weight to
compensate the under-sampling of high field values. The
exponential weight also helped reduce overfitting as shown in
Figure 8.

The range of scientific and engineering applications for
diffusion solvers is very broad. Depending on the specific
application, the predictions by the neural network will have
to meet a specific set of criteria quantified in the form of
statistical estimators (e.g., mean error, max error, percentiles,
mean relative error, etc.). In this paper we studied several
reasonable error metrics, namely, mean residual, maximum
residual, 99-Percentile residual, mean relative residual, mean
weighted residual and the weighted standard deviation residual.
The last two metrics compensate for the low frequency of high
field values, ones that usually occur in small regions around
sources. The autoencoders are commonly used in generative
models which is applicable, as we have shown here, to the case
of a diffusion surrogate. The field predictions are accurate on
all the metrics we considered. This is appears to be due to
collapsing the input into a one-dimensional vector and then
decoding back to the initial size, which forces the network to
learn the relevant features (Kingma and Welling, 2019). While
some models had high errors across all metrics, no single model
had the smallest error for all error metrics. Different networks
and hyperparameters were optimal for different metrics, e.g.,
model 5 had the lowest mean residual, whereas model 9 yielded
relatively good results on all metrics. Model 9 uses both neural
networks with the dropout values for the deep convolutional
network were set to D1,2 = 0.4, and for the autoencoder to
D3,4 = 0.1. The weight hyperparameter was set to 100. Recall
that large weight hyperparameter values make the loss function
weight high field values over low field values. This is important
since the largest absolute error happens close to sources and close
to boundaries because of the under-representation of these kinds
of configurations. We also noticed that this choice reduced the
overfitting as was shown in Figure 8.
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Additionally, we tested several loss function. Here we reported
the results using mean squared error and mean absolute error.
We noticed two key differences.WithMSE the weighted standard
deviation (see Figure 9) is smaller than for MAE for the training
set. However, for the test set, the results for both loss functions
are comparable. This difference between training and test sets
suggests that MSE is more prone to overfitting the data than
MAE. The other key difference is that for the MAE, the predicted
field probability function consistently overlapped the ground
truth completely, whereas for MSE there is a mismatch in that
the NN does not predict low non-zero field values correctly (see
Figure 11). Therefore, we recommend using MAE as the loss
function for surrogate calculations where the field values are well
bounded, as we have shown it produces better predictions than
MSE. The autoencoder (NN 2) is capable of approximating the
diffusion field on its own, the convolutional network (NN 1) is
not. However, if we use the two networks together we find that
the prediction is more accurate than NN 2 alone.

These encouraging results suggest that we should pursue NN
surrogates for acceleration of simulations in which the solution
to the diffusion equation contributes a considerable fraction of
the total computational cost. An effective NN diffusion solver
surrogate would need to be able to solve diffusion fields for
arbitrary sources and sinks in two or three dimensions with
variable diffusivity, a much higher dimensional set of conditions
than the two circular sources in a uniform two-dimensional
square domain that we investigated in this paper. A key question
will be the degree to which NNs are able to generalize, e.g., from n
sources to n+1 sources or from circular sources to more complex
shapes. In addition, here we only considered absorbing boundary
conditions, ultimately mixed boundary conditions are desirable.
It is unclear if the best approach would be a single NN capable
of doing multiple boundary conditions, or better to develop
unique NNs for each boundary condition scenario. While in this
paper we have only considered zero-field boundary conditions
mainly due to feasibility purposes for the neural network, we will
consider different boundary conditions in future work.

Increasing the number and size of vessels is a combinatorial
problem in the dimensionality of the training set, but it ultimately
doesn’t change the nature of the diffusion equation. Thus, we
expect that a straightforward approach consisting using a bigger
training set including a greater variety of source and sink sizes,
shapes, and number, should still work, though it will take more
computing time to generate the training data and train the
network. The ability of greens-function methods to solve the
diffusion equation for arbitrary numbers of sources and sinks
suggests (though it does not prove) that such generalization
should work also for neural network solvers.

To solve 3D diffusion problems, the most straightforward
extension of ourmethod would be to use 3D convolutional neural
networks. However, there may be some difficulties with a naive
extension of our convolutional methods to 3D. If we have a
linear dimension of L then the output layer of the NN has L2

elements in 2D and L3 in 3D. Thus, for a given value of L, the
network size is much larger in 3D. Besides the size of the network,
the training set will also be larger. For N sources, the number
of possible configurations grows roughly as L2N in 2D, while
the number of configurations in 3D is L3N . In addition, if we

wish to represent realistic sources in 3D, like blood vessels, we
need to sample over appropriately spatially-correlated patterns
of sources rather than the randomly located spherical sources
we used in our 2D example. Naively these very high dimensions
of possible source configurations suggest that the 3D problem
would require impossibly large training datasets. However, one
of the outstanding features of deep neural networks is their
capacity to extrapolate from apparently severely undersampled
training sets, so increasing the number of possible configurations
exponentially does not necessarily imply the need to increase the
training set exponentially. Another approach to develop diffusion
solver surrogates in 3D is to build physically informed neural
networks (PINNs) (Raissi et al., 2019) where the ODE describing
the process, the initial conditions and the boundary conditions
are embedded in the loss function. Other efforts attempt to tackle
the curse of dimensionality by physical intuition embedded in
the neural network architecture (Roberts, 2021). We will explore
these issues in future work.
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Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology

in Alzheimer’s disease. Tau in particular spreads in the brains of patients following

a spatiotemporal pattern that is highly sterotypical and correlated with subsequent

neurodegeneration. Novel medical imaging techniques can now visualize the distribution

of tau in the brain in vivo, allowing for new insights to the dynamics of this biomarker. Here

we personalize a network diffusion model with global spreading and local production

terms to longitudinal tau positron emission tomography data of 76 subjects from

the Alzheimer’s Disease Neuroimaging Initiative. We use Bayesian inference with a

hierarchical prior structure to infer means and credible intervals for our model parameters

on group and subject levels. Our results show that the group average protein production

rate for amyloid positive subjects is significantly higher with 0.019 ± 0.27/yr, than that

for amyloid negative subjects with −0.143± 0.21/yr (p = 0.0075). These results support

the hypothesis that amyloid pathology drives tau pathology. The calibrated model could

serve as a valuable clinical tool to identify optimal time points for follow-up scans and

predict the timeline of disease progression.

Keywords: Alzheimer’s disease, network diffusion model, tau PET, Bayesian inference, hierarchical modeling,

uncertainty quantification

1. INTRODUCTION

Alzheimer’s disease currently affects one out of 10 adults over the age of 65 in the United States
(Association, 2019). Due to demographic changes worldwide, the prevalence and public health
impact of this neurodegenerative disease is projected to more than double in the next 30 years.
Effective therapeutic interventions require early diagnosis and a detailed understanding of the early
mechanisms driving pathology. For Alzheimer’s disease, this poses a particular challenge since
clinical diagnosis is currently possible only with the appearance of cognitive impairment at late
disease stages. We now know that the first pathological changes which initiate the disease may
happen up to decades before the presence of cognitive symptoms (Bateman et al., 2012; Jack et al.,
2013). Investigating these early disease mechanisms is crucial, if we want to understand the timeline
of disease progression and identify early access points for intervention.

It is well accepted that two proteins, amyloid-β and tau, play a major role in disease initiation
and represent important biomarkers for disease progress (Duyckaerts et al., 2009). Amyloid and tau
are both present in the healthy brain, but have been found to accumulate and aggregate in abnormal
amounts and pathological forms in the brains of Alzheimer’s patients. The amyloid hypothesis
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states that at the early stages of disease, amyloid-β starts
to accumulate widely across the neocortex. Subsequently,
hyperphosphorylated tau starts to accumulate and aggregate in
neurofibrillary tangles in more and more areas of the brain,
ultimately causing neurodegeneration and cognitive impairment
(Jack and Holtzman, 2013). The sequence of when and where
neurofibrillary tangles of tau emerge has been shown to follow
a highly reproducible pattern. Cross-sectional autopsy studies
have confirmed that tangles first appear in the transentorhinal
and entorhinal cortex in early disease stages, then emerge in
the neighboring hippocampus and regions of the temporal lobe,
before ultimately spreading into more distantly connected areas
of the neocortex (Braak and Braak, 1991; Braak et al., 2006).
There is strong evidence from animal and imaging studies
that hyperphosphorylated tau spreads intracellularly along axons
in the brain (De Calignon et al., 2012; Liu et al., 2012;
Jones et al., 2017; Pereira et al., 2019), explaining how the
pathology propagates from the entorhinal cortex to connected
regions. Several studies have found links between amyloid and
tau, suggesting that amyloid pathology is a precursor for tau
pathology and influences the distribution of neurofibrillary
tangles in the brain (Price and Morris, 1999; Musiek and
Holtzman, 2012; Jack et al., 2013). Tau itself has been found to be
strongly correlated with tissue atrophy and neurodegeneration,
making it a predictor for cognitive impairment at later disease
stages (Harrison et al., 2019; La Joie et al., 2020).

The consistency of tau’s spatiotemporal progression and its
confirmed direct correlation with neurodegeneration make it an
optimal target for computational modeling. Personalized models
of tau pathology could serve as a tool to predict individual disease
progression timelines and as simulated controls in clinical trials.
In the latter context, the model may be leveraged to predict how
tau would develop in a test subject over time without intervention
which can then be compared to the actual developments in
the test subject with interventions targeting tau aggregation
(Congdon and Sigurdsson, 2018). Multiple groups have proposed
network diffusion and epidemic spreadingmodels to simulate the
spatiotemporal propagation in the brain for pathological proteins
in general (Iturria-Medina et al., 2014; Weickenmeier et al., 2019;
Garbarino et al., 2021), and for tau in particular (Raj et al., 2012;
Torok et al., 2018; Fornari et al., 2019; Vogel et al., 2020) with
good qualitative results. Until recently, the only way to measure
the distribution of tau in the brain was through postmortem
histology or by making assumptions about the relationship
between tau and tissue atrophy observed in structural MRI scans
(Raj et al., 2012; Torok et al., 2018). The resulting lack of data
has posed significant challenges for calibration of computational
tau models. However, an emerging molecular imaging technique,
positron emission tomography (PET), now enables us to track
the distribution of hyperphosphorylated tau in the brain in
vivo (Johnson et al., 2016; Villemagne et al., 2018). As the
technique is maturing, the amount of available data is growing
steadily, allowing us to computationally comprehend the tau
pathology in individual subjects over time and use this data for
model calibration.

In a recent study, we have shown that we can successfully
fit a network diffusion model based on a weighted Laplacian

graph of the axonal connectome to longitudinal tau PET data
of 46 subjects using a deterministic optimization approach
(Schäfer et al., 2020). With tau PET becoming a more established
component of longitudinal imaging studies, the amount of
available data is steadily increasing, setting the ground for data-
driven modeling techniques. Here we use Bayesian hierarchical
modeling (Peirlinck et al., 2019) to calibrate the same network
diffusion model to longitudinal imaging data from 76 subjects
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
2020). Introducing this probabilistic approach to replace our
previous deterministic optimization allows us to account for
potential uncertainties in image acquisition and processing,
and at the same time, quantify the uncertainty in our model
calibration. Identifying the uncertainty in our model parameters
is essential to determine the accuracy of our personalized model
predictions. If clinical scientists and study designers are to use
our model, it is crucial to quantify the accuracy of the simulation.
Only then can they determine for which subjects the disease
course can be confidently inferred from the available data and for
which subjects additional data may be needed to make accurate
enough projections. It may also inform them at which time points
to acquire additional data to most efficiently improve model
accuracy. The hierarchical structure we chose here to represent
our model parameters on group and subject levels, will help us
gain a better understanding of variability and commonalities of
tau pathology between subjects.

2. MATERIALS AND METHODS

Figure 1 gives an overview of our methods. In summary, we
obtain regional tau uptake values from longitudinal tau PET
images through a process of image registration, segmentation,
and region of interest analysis. We assume that the propagation
of misfolded tau in the brain can be described by a network
diffusion model characterized by two model parameters,
diffusion coefficient and production rate. After defining weakly
informative prior distributions for those model parameters we
use a Markov Chain Monte Carlo algorithm to smartly sample
from the priors. Inserting the sampled parameters into our
model and comparing the resulting simulated tau uptake with
the observed data then allows us to rate each sample based on its
likelihood and apply Bayes’ theorem to determine the posterior
distributions of most likely parameter values for each subject.

2.1. Network Diffusion Model
We model the accumulation and propagation of
hyperphosphorylated tau in the brain’s connectome as a
diffusion problem on a weighted, undirected graph G with
N nodes, representing different brain regions, and E edges,
representing axonal connections between those brain regions.
We use the Budapest Reference Connectome v. 3.0 (Szalkai
et al., 2017) to obtain the graph G from processed diffusion
tensor imaging data of 418 healthy subjects collected through
the Human Connectome Project (McNab et al., 2013). From the
original graph with N = 1015 nodes, we create a reduced graph
with N = 83 nodes representing 83 cortical and subcortical
brain regions. The edge weights of the network are defined
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FIGURE 1 | Summary of Methods. Summary of our workflow including PET image analysis and Bayesian modeling to obtain personalized posterior distributions of

two model parameters describing the tau pathology in the examined group of subjects.

by the number of fibers nij detected along the respective edge
between the pair of nodes i and j, divided by the fiber length lij
along this edge averaged across all 418 brains. The adjacency
matrix Aij of the graph, containing the edge weights for all
connections, is thus computed as Aij = nij/lij. The resulting
network and its adjacency matrix are illustrated in Figure 2,
showing a small number of strong and medium connections
within and between the lobes of each hemisphere and only few
connections between hemispheres.

We characterize the aggregation and spread of pathological
tau within the brain connectome as a nonlinear reaction-
diffusion problem governed by the Fisher-Kolmogorov equation
(Fisher, 1937; Kolmogorov et al., 1937). This equation describes
how the concentration of misfolded protein c evolves over time
based on the assumption that tau pathology develops in a prion-
like fashion (Jucker andWalker, 2011; Fornari et al., 2019, 2020).

dc

dt
= ∇ · (D · ∇c(t))+ α c(t) [ 1− c(t) ], (1)

Here,D denotes the diffusion tensor, which determines the speed
and directionality of corruptive tau seed propagation, and α the
local production rate, which captures the processes of protein
production, clearance and conversion from healthy to unhealthy
seeds (Fornari et al., 2019). In order to apply the diffusion model
to our brain network, we discretize Equation (1) on the weighted
graph G. This leads to a discretized diffusion equation expressing
for each node of the network i = 1, ...,N the change in nodal

FIGURE 2 | Brain network model. Connectivity-weighted brain network and

corresponding adjacency matrix. Colors represent the connection strength

between two regions. Connectivity is moderate to strong within the two brain

hemispheres while there are only few and weak connections between

hemispheres.

concentration of misfolded protein ci as

dci
dt

= −κ

N
∑

j=1

Lij cj(t)+ α ci(t)[ 1− ci(t)]. (2)

Equation (2) contains two model parameters, κ and α, which we
can calibrate to individual patient data to reflect differences in
disease dynamics across individuals. The diffusion coefficient κ
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determines the transport rate of misfolded protein between two
regions and α the production or clearance of pathological protein
at each node. We assume these model parameters to be identical
at all nodes i = 1, ...,N, but different between individuals. The
weighted graph Laplacian Lij summarizes the connectivity of the
graph. Its diagonal terms contain information about how much
protein diffuses out of node i into other nodes j and its non-
diagonal terms describe how much protein enters node i from
all other nodes j. The Laplacian is a square matrix constructed by
subtracting the adjacency matrix Aij from the degree matrix Dii,

Lij = Dij − Aij. (3)

The degree matrix Dii is a diagonal matrix with each entry
representing the sum of elements along a row of the adjacency
matrix Aij,

Dii = diag
N

∑

j=1,j6=i

Aij. (4)

2.2. Image Data
We use longitudinal imaging data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) ADNI (2020) to initialize and
calibrate our model. From the database, we select 76 subjects with
at least three consecutive tau PET scans, which were acquired
on average 1 year (1.07 ± 0.31) apart. This group contains
a variety of clinical diagnoses, 31 subjects are diagnosed as
cognitively normal, 15 with significant memory concern, 28 with
mild cognitive impairment, and two with clinically confirmed
Alzheimer’s disease. Previously evaluated β-amyloid PET images
identify 46 subjects as amyloid positive (Landau et al., 2013),
meaning the average measured amyloid concentration in their
brain exceeds a certain threshold value. We conduct our analysis
blind to clinical diagnosis, but take amyloid status into account
in our model structure.

All acquired AV1451-PET scans were processed according to
standard ADNI protocols (ADNI, 2020). For each subject, we co-
register the PET images to a corresponding high resolution T1
weighted magnetic resonance image (MRI) which we segmented
into 68 cortical and 45 subcortical regions according to the
Desikan-Killiany atlas (Desikan et al., 2006) using FreeSurfer
(FreeSurfer, 2020). We use this segmentation to compute
regional tracer uptake values from the PET images for the same
83 regions represented in our network model. We normalize
these regional uptake values with respect to the uptake in the
inferior cerebellar gray matter, which serves as our reference
region, in order to gain regional standardized uptake value
ratios (SUVR). Since PET recordings in subcortical regions and
the hippocampus are known to be contaminated by off-target
binding in the choroid plexus and nearby vascular structures
(Lowe et al., 2016; Marquié et al., 2017; Lemoine et al., 2018), we
focus our model calibration on the remaining 66 cortical regions.

Our network diffusion model delivers regional normalized tau
concentrations csim, between zero, indicating that no misfolded
protein is present, and one, indicating that a maximum amount
of misfolded protein is present, 0 ≤ csim ≤ 1. To compare
simulated with observed protein concentrations, we need to map

the tau PET standardized uptake value ratios into the same zero-
to-one interval. To this end, we identify a lower threshold for
tau positivity by fitting a Gaussian mixture model with two
components to the cumulative raw tau PET data craw from all
subjects, time points, and regions. Assuming that many of the
included regions must be free from pathological tau, this allows
us to determine the minimum raw PET value that should be
considered positive. We declare all values below to this threshold
of craw = 1.1 to be zero and normalize the remaining raw values
such that 0 ≤ cpet ≤ 1.

2.3. Hierarchical Bayesian Inference
For each subject, we infer a personalized diffusion coefficient
κs and protein production rate αs most accurately reproducing
the image data and quantify the uncertainty in our calibration
using Bayesian inference. For each subject, we set the initial
conditions of our model to the tau uptake values measured
in the baseline PET scan csim(t = 0) = cpet(t0). Starting
from this initial distribution of tau, Bayesian inference allows
us to find the parameters that, when inserted into the model,
minimize the difference between the model predictions csim(ti)
and the longitudinal tau PET data cpet(ti) for each subject.
The timepoints ti (i = 1, ...,M) for model evaluation are
dictated by the timepoints of PET scan acquisition, with the
number of follow-up scans M ranging from two to four
depending on data availability for each respective subject. To
define the prior distributions for our Bayesian inference, we
employ the hierarchical structure illustrated in Figure 3. The
hierarchical approach allows us to gain personalized posterior
distributions while taking into account commonalities between
subjects (Gelman and Hill, 2006). Specifically, we assume that
the personalized diffusion coefficient κs is represented by a
normal distribution bounded to positive values. Additionally, we
propose that the hyperparameters µκ and σ κ , representing mean
and standard deviation of this bounded normal distribution,
are drawn from common hyperdistributions for all subjects.
To account for potential deviations in pathology based on
the subjects’ amyloid status, we assume that the personalized
production rate, αs

Aβ+
or αs

Aβ−
, is drawn from a different normal

distribution depending onwhether the subject has been identified
to be amyloid positive or negative. To account for similarities
across subjects within one amyloid status group, we postulate that
the hyperparameters µα

Aβ+
and σ α

Aβ+
are drawn from common

hyperdistributions for all amyloid positive subjects, while the
hyperparameters µα

Aβ−
and σ α

Aβ−
are drawn from common

hyperdistributions for all amyloid negative subjects.
We postulate that the likelihood between the time-dependent

PET imaging data D̂(t) and our model predictions D(t,ϑ ,ϕ) is
normally distributed around the modeled values with a width
of σ err.

p(D̂(t)|ϑ ,ϕ) ∼ Normal(mean = D(t,ϑ ,ϕ), width = σ err). (5)

To complete our statistical model in a Bayesian setting, we
select weakly informative priors for our set of model parameters
ϑ = {κs,αs

Aβ+
,αs

Aβ−
} and our set of hyperparameters ϕ =

{µκ , σ κ ,µα
Aβ+

, σ α
Aβ+

,µα
Aβ−

, σ α
Aβ−

} as summarized in Table 1.
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Finally, we compute the posterior distributions p(ϑ ,ϕ|D̂(t))
for the model parameters ϑ and hyperparameters ϕ using Bayes’
theorem,

p(ϑ ,ϕ|D̂(t)) =
p(D̂(t)|ϑ ,ϕ) p(ϑ ,ϕ)

p(D̂(t))
, (6)

with p(ϑ) denoting the prior distributions from Table 1. Since
we cannot solve for the posterior distributions analytically, we
adopt approximate-inference techniques to calibrate our model
to the imaging data. Specifically, we use the No-U-Turn sampler
(NUTS) (Hoffman and Gelman, 2014), a type of Hamiltonian
Monte Carlo algorithm implemented in the python package
PyMC3 (Salvatier et al., 2016) to numerically approximate the
posterior distributions. We run two chains with 1,600 tuning
samples and 2,000 post-tuning samples each. After convergence

TABLE 1 | Hierarchical Bayesian inference.

Parameter Distribution

µκ BoundNormal(> 0,1,20)

σ κ HalfCauchy(β = 1)

κs BoundNormal(> 0,µκ ,σ κ )

µα
Aβ+

Normal(0,2)

σ α
Aβ+

HalfCauchy(β = 1)

αs
Aβ+

Normal(µα
Aβ+

,σ α
Aβ+

)

µα
Aβ−

Normal(0,2)

σ α
Aβ−

HalfCauchy(β = 1)

αs
Aβ−

Normal(µα
Aβ−

,σ α
Aβ−

)

σ err HalfCauchy(β = 1)

Prior distributions for the personalized diffusion coefficient and its hyperparameters, the

personalized production rate and its hyperparameters, and the width of the likelihood.

of the posterior distributions, we draw 4,000 posterior predictive
samples of different parameter combinations which allow
us to quantify the uncertainty on the inferred parameters.
Additionally, we sample from the posterior distributions to
predict the evolution of tau in three brain regions of interest
in 35 subjects with a positive production rate. Specifically, we
predict how the tau concentration is projected to change over the
next 30 years in the entorhinal cortex (EC), the middle temporal
gyrus (MTG) and the superior temporal gyrus (STG). Post
mortem histological studies have shown that these regions are
affected by hyperphosphorylated tau and neurofibrillary tangles
at different disease stages, the entorhinal cortex falling into Braak
stage II, the middle temporal gyrus into Braak stage IV and the
superior temporal gyrus into Braak stage V (Braak et al., 2006).
By propagating the uncertainty from the parameter inference
through the posterior predictions, we gain an ensemble of
forecasts enabling us to determine the credible intervals around
our predictions.

3. RESULTS

3.1. Posterior Distributions
Figure 4 shows the posterior distribution density plots for
the personalized model parameters κs, αs

Aβ+
and αs

Aβ−
, as

well as for the hyperparameters µκ , µα
Aβ+

and µα
Aβ−

. The
personalized diffusion coefficient, characterizing how fast tau
spreads along a single connection between two regions, is
physically constrained to be positive. We found that this
parameter takes on values of up to 4.38 µm/yr. Across
all subjects we identified an average diffusion coefficient of
1.304 ± 0.69 µm/yr. The protein production rate can take on
positive or negative values, depending on whether clearance
or production of pathological protein dominate in a particular
subject. Both amyloid groups contain subjects with positive and

FIGURE 3 | Hierarchical Bayesian inference. Hierarchical structure and prior assumptions for Bayesian inference approach.
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subjects with negative production rates. However, the density
plots of the hyperparameters show that there is a noticeable
difference in the group-level mean production rate depending
on amyloid status. Subjects with negative amyloid status tend
to exhibit a lower protein production rate than subjects with
positive amyloid status. We identified an average production rate
of −0.143 ± 0.21/yr across all amyloid negative subjects and
0.019 ± 0.27/yr across all amyloid positive subjects. Table 2
summarizes the mean, maximum, and minimum inferred values
for all personalized model parameters.

The boxplot in Figure 5 further illustrates the effect of
amyloid status on the inferred personalized production rate.
When comparing the average production rates associated with
amyloid positive and negative groups in an independent t-
test, we found that the difference is significant with p =

0.0075. While there are some outliers toward negative values
in the amyloid positive group, overall the production rate
associated with amyloid positive subjects is significantly higher

TABLE 2 | Posterior distributions.

Parameter Diffusion

coefficient κs

Production rate

αs
Aβ−

Production rate

αs
Aβ+

[µm/yr] [1/yr] [1/yr]

Mean 1.304 −0.143 0.019

Std ±0.69 ±0.21 ±0.27

Min 0.15 −0.49 −1.01

Max 4.38 0.27 0.44

Mean values, standard deviations, maximum and minimum values for personalized model

parameters.

than the production rate associated with amyloid negative
subjects. Our results did not show any significant and
consistent trends in diffusion coefficients or production rates
associated with different clinical diagnoses, e.g., cognitively
normal, mild cognitive impairment, or Alzheimer’s disease (see
Supplementary Figure 1).

3.2. Posterior Predictive Modeling
Posterior predictive modeling allows us to propagate the
uncertainty from the Bayesian inference process through the
model and illustrate its impact on model predictions. Figures 6–
8 show our projections for tau evolution over 30 years after

FIGURE 5 | Amyloid status. Boxplot illustrating the distributions of

personalized production rates in amyloid negative and amyloid positive subject

groups. The difference between the two groups is significant with p = 0.0075.

FIGURE 4 | Posterior distributions. Posterior distributions for diffusion coefficient and protein production rate on group and subject levels. Subject-wise distributions

for the production rate are depicted in light and dark green in separate plots based on amyloid status. In each of those plots, the individual distributions associated

with the other amyloid status group are depicted in light gray for comparison.
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the first PET scan in 35 subjects and three different brain
regions. The sigmoid like shape of the curves is characteristic
for the combined diffusion production equation we use to
model the spread of pathological tau and local conversion from
healthy to unhealthy proteins. The shaded area around the
curves represents the 95% credible interval, quantifying the
uncertainty in our predictions as established by the probabilistic
approach. Narrow credible intervals indicate high confidence in
our predictions. The curves are fairly symmetrical across left and
right hemisphere. When comparing the predictions for different
subjects within entorhinal cortex (EC), middle temporal gyrus
(MTG) and superior temporal gyrus (STG), we can identify a
number of subjects for which the credible interval is narrow,
confirming high certainty for our predictions. Specifically, there
are seven subjects for whom the credible interval does not exceed
a width of 0.2 over 30 years in any of the three examined brain
regions. Formultiple other subjects however, the credible interval
is rapidly widening after only a few years. For these subjects, the
available imaging data did not yet contain enough information
to confidently infer personalized model parameters with our
probabilistic approach. In those instances, additional data from
PET scans at future time points may improve the prediction
certainty. The vertical gray lines in Figures 6–8 indicate the year
at which the width of the credible interval exceeds a critical
threshold of 0.2. If the goal is to collect additional data to
increase confidence in our projections, these time points would
be reasonable choices for additional scans. The value of 0.2 was

chosen arbitrarily to illustrate how our uncertainty predictions
can inform future study design if there is a known confidence
requirement for predictions.

4. DISCUSSION

In this study we used a probabilistic approach based on
hierarchical modeling and Bayesian inference to identify
personalized model parameters of a physics-based network
diffusionmodel for misfolded tau propagation.We calibrated our
model to longitudinal tau PET data of 76 subjects and created
personalized predictions for disease progression over a course of
30 years. Propagating the uncertainty from our parameter search
through the posterior predictions allowed us to determine the
credibility associated with our predictions for different subjects
and brain regions.

We based the structure of our hierarchical model on the
assumption that the protein production rate, summarizing
the process of healthy protein production, protein clearance
and conversion from healthy to misfolded protein, may vary
between amyloid positive and amyloid negative subjects. This
assumption makes sense in light of the amyloid hypothesis,
which identifies amyloid pathology as the primary hallmark
of Alzheimer’s disease. In fact, tau pathology has been found
in medial temporal limbic areas before the appearance of any
amyloid plaques (Braak and Del Tredici, 2011). However, these

FIGURE 6 | Posterior predictive modeling. Predictions for the change in tau in the entorhinal cortex in 30 years after first tau PET scan for 35 subjects. Shaded areas

around the curves represent the 95% credible intervals of the predictions.
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FIGURE 7 | Posterior predictive modeling. Predictions for the change in tau in the middle temporal gyrus in 30 years after first tau PET scan for 35 subjects. Shaded

areas around the curves represent the 95% credible intervals of the predictions.

early tau accumulations are usually so small that they can
only be detected by immunostaining methods and are rather
related to normal aging than to Alzheimer’s disease. It has
been suggested that, independent from previously existing minor
tauopathy, amyloid pathology intensifies and accelerates any
existing tauopathy through currently unknown mechanisms
(Price and Morris, 1999; Jack et al., 2013). This may allow
hyperphosphorylated tau to spread widely across the neocortex
(Musiek and Holtzman, 2012; Kevrekidis et al., 2020; Thompson
et al., 2020). Our results support the hypothesis that amyloid
pathology is a driver for tau pathology. Even though the structure
of our probabilistic model does not enforce a difference between
the production rate hyperdistributions for amyloid positive and
negative groups, we found that misfolded tau production rates
were significantly higher in amyloid positive subjects than in
amyloid negative subjects.

Across all examined subjects, we identified an average tau
diffusion rate of 1.304 µm/yr. In vivo experiments in mice
determined that healthy tau proteins move as part of the slow
component of axonal transport at 0.2–0.4 mm/day in retinal
ganglion cell axons (Mercken et al., 1995). There seems to be a
strong disconnect between the slow time scale of tau pathology
evolution in Alzheimer’s disease, which is known to typically
stretch over more than a decade (Bateman et al., 2012), and
the fast time scale of axonal transport. If misfolded tau spread
in the brain at the speed measured for healthy tau, it would
easily contaminate the whole brain in just a few months. This

scenario appears inconsistent with the slow propagation and
discrete stageing of neurofibrillary tangles and neuropathology
that has been observed in histopathological (Braak and Braak,
1991) and imaging studies (Jack et al., 2018).

A possible explanation for this discrepancy in time scales
could be related to how protein diffusion and production
contribute to tau pathology to varying extents depending on
the stage of disease. The model we use here to describe the
propagation of tau pathology in the brain is based on the
hypothesis that misfolded tau contaminates the brain in a
prion-like fashion (Jucker and Walker, 2011; Fornari et al.,
2020). We assume that hyperphosphorylated tau proteins act as
proteopathic seeds that can travel along the axon, leave the cell
and be taken up into previously unaffected neurons (Clavaguera
et al., 2009; Liu et al., 2012). Additionally, we adopt the hypothesis
that misfolded tau seeds replicate and aggregate locally (Iba
et al., 2013). Once the chain reaction consisting of the spread
of proteopathic seeds and the local multiplication of seeds is
initiated, it results in an overall increase of misfolded tau across
the brain. However, it is difficult, if not impossible, to determine
experimentally which of the two components, diffusion or local
production, dominates during different stages of disease.

A recent study aimed at quantifying the chemical kinetics
of tau replication and spreading from several modalities of
data, including seed amplification assays, histopathology, and
tau PET, found that protein replication, not spreading, is the
dominant and limiting component of tau accumulation after a
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FIGURE 8 | Posterior predictive modeling. Predictions for the change in tau in the superior temporal gyrus in 30 years after first tau PET scan for 35 subjects. Shaded

areas around the curves represent the 95% credible intervals of the predictions.

certain stage of disease (Meisl et al., 2020). The authors argue
that misfolded tau seeds spread very fast early in the disease
process, consistent with the fast axonal transport rates known for
other proteins. After this initial fast spread, small but significant
amounts of proteopathic seeds are already present in numerous
brain regions, and further kinetics are largely determined by the
local replication and aggregation of those seeds. These findings
are consistent with our results, which indicate very low diffusion
coefficients. Unless our data were capturing the very beginning
of tau pathology, we will not be able to infer the fast transport
rates that might determine disease progression initially. Since we
use the regional tau distribution from each subject’s baseline PET
scan instead of an artificial seeding approach, it is common that
small amounts of tau are already measured in a majority of the
brain regions. The protein production rates we identified for our
subject sample are comparable to the average replication rate of
0.14/yr reported in the study above (Meisl et al., 2020).

We computed personalized 30-year predictions of tau
evolution in three different brain areas, the entorhinal cortex, the
middle temporal gyrus and the superior temporal gyrus. Since
there is a well established correlation between tau distribution
and neurodegeneration, these predictions not only contain
information about the amount of protein in these areas, but
also provide important clinical insight into when certain
brain functions might be affected. A recently conducted study
compared tau PET distribution at baseline visit to the amount
and distribution of atrophy detected between baseline and

follow-up visit (La Joie et al., 2020). It was found that tau
is a strong predictor for regional atrophy presenting around
15 months after the PET scan. In the healthy adult brain,
the neurons in the entorhinal cortex provide a number of
functionalities, but are mainly thought to be responsible for
spatial memory and spatial association tasks (Kerr et al., 2007;
Van Strien et al., 2009; Kuruvilla and Ainge, 2017). If this
area atrophies after serious invasion of misfolded tau protein,
these functions may be impaired or lost. The middle temporal
gyrus, which is part of the inferior temporal lobe, has been
suggested to play a central role in visual learning and memory
(Buckley et al., 1997) and lesions in this region may cause
object and face recognition deficits (Purves et al., 2001). The
superior temporal gyrus contains the auditory cortex and is
involved in speech and auditory processing (Gernsbacher and
Kaschak, 2003) as well as social cognition (Adolphs, 2003;
Bigler et al., 2007). The quantified uncertainty on disease
progression showcased in Figures 6–8 indicates the credibility
associated with each subject’s prediction specifically, taking into
account the behavior of the whole cohort. This framework may
provide an interesting tool for clinical prognosis, informing
clinical practitioners and caregivers when cognitive symptoms
related to loss of the functions above maybe be expected in
a certain patient. It may also provide a new means to assess
the optimal time for a follow-up scan, smartly maximizing
prognosis credibility while minimizing the number of
scans performed.
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This study comes with a number of limitations. First, the
amount of longitudinal tau PET data available today is limited.
The small sample size and limited follow-up data included
in our study result in large credible intervals and reduced
confidence in the model parameters. As tau PET becomes a more
established technique in longitudinal imaging studies over the
next years, more data will naturally become available, allowing
us to constantly improve our hierarchical model, as Bayesian
methods are inherently tailored to analyzing data that are
continuously updated in time. Adding more subjects to our data
set will further increase the learning effect we achieve through the
hierarchical structure, which will in turn increase the credibility
of all personalized predictions. Larger sample sizes of data in the
future will also allow us to explore more complex models, e.g.,
models introducing regionally varying protein production rates
based on local gene expression (Grothe et al., 2018), without the
risk of overfitting. Second, we use the same anatomical brain
network to compute tau spreading in all subjects. This network
was extracted from averaged diffusion tensor images of over 400
brains. In reality, the connectivity is different in every brain,
potentially affecting the diffusion dynamics observed here. We
attempt to surmount this issue by introducing the diffusion
coefficient as a personalized parameter. It would be reasonable
to assume that the transport rate of misfolded tau along the
axon is a biological parameter that is similar in all brains.
However, by allowing this parameter to vary between subjects,
we provide the option to scale the adjacency matrix and thereby
introduce variations in connection strength for the otherwise
non-personalized network. In the future, we plan to surpass
the potential over-generalization that using an average network
introduces by extracting personalized connectomes for each
subject from diffusion tensor images when available. Another
consideration for future studies is to correct the weighting of
connections in our network for the varying surface areas between
brain regions. Additionally, it could be of interest to compare
the performance of our model on the structural connectome
with its performance on other reference networks, and thus
test the hypothesis that misfolded tau spreads along the axonal
network. Third, since the ADNI data base only provides one
tau PET scan for each time point, this study does not explicitly
take into account uncertainties arising from imaging protocols.
However, since we expect this error to be Gaussian, it is partially
accounted for by the stochastic nature of the observation error in
our Bayesian inference framework. In contrast to deterministic
optimization algorithms, our probabilistic approach inherently
accounts for observation errors through the likelihood width.

The approach we used here is optimal for understanding the
applicability of the physics-based network diffusion model to
longitudinal brain imaging data and for quantifying the range
of model parameters presented in this data. Additionally, the
Bayesian inference framework inherently provides information
on the uncertainty in our model, intrinsically informing us on
model applicability. In the future, we will expand our model to a
more predictive approach using a combination of deep learning,
Bayesian inference, and physics-based modeling, with the goal
to create personalized predictions of tau spreading dynamics
from a single baseline PET scan. Furthermore, we will explore

a coupled model of tau pathology and resulting tissue atrophy
(Schäfer et al., 2019) calibrated to longitudinal tau PET and
structural MRI.

5. CONCLUSION

Wepresented a probabilistic approach to calibrate the parameters
of a physics-based network diffusion model to longitudinal tau
PET data. We obtained posterior probability distributions for
two personalized model parameters, the diffusion coefficient
and the protein production rate, using Bayesian inference
combined with a hierarchical prior structure. This approach
allowed us to identify the characteristics of tau propagation
for each individual subject while taking into account expected
commonalities between subjects. We inferred an average
diffusion coefficient of 1.304 ± 0.69 µm/yr, a protein production
rate of 0.019 ± 0.27/yr for the amyloid positive group, and a
production rate of −0.143 ± 0.21/yr for the amyloid negative
group. The significantly higher tau production rate associated
with the presence of amyloid-β supports the hypothesis that
amyloid pathology drives tau pathology. The small magnitude
of our inferred diffusion coefficients is inconsistent with
experimentally identified axonal transport rates for healthy tau,
but consistent with the slow disease progression known for
Alzheimer’s disease. Extrapolating our model based on the
posterior distributions of model parameters allowed us to create
personalized predictions of tau evolution in three brain regions
associated with distinct cognitive functions. These predicitons
and associated credibility intervals may serve as a tool to estimate
the timeline of regional tau pathology and function-specific
cognitive impairment in individual patients. Our findings could
serve as simulated controls in therapeutic trials or as a means to
smartly schedule follow-up PET scans that most benefit model
prediction certainty.
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Human brain performs remarkably well in segregating a particular speaker from interfering

ones in a multispeaker scenario. We can quantitatively evaluate the segregation capability

by modeling a relationship between the speech signals present in an auditory scene, and

the listener’s cortical signals measured using electroencephalography (EEG). This has

opened up avenues to integrate neuro-feedback into hearing aids where the device can

infer user’s attention and enhance the attended speaker. Commonly used algorithms

to infer the auditory attention are based on linear systems theory where cues such

as speech envelopes are mapped on to the EEG signals. Here, we present a joint

convolutional neural network (CNN)—long short-term memory (LSTM) model to infer

the auditory attention. Our joint CNN-LSTM model takes the EEG signals and the

spectrogram of the multiple speakers as inputs and classifies the attention to one of

the speakers. We evaluated the reliability of our network using three different datasets

comprising of 61 subjects, where each subject undertook a dual-speaker experiment.

The three datasets analyzed corresponded to speech stimuli presented in three different

languages namely German, Danish, and Dutch. Using the proposed joint CNN-LSTM

model, we obtained a median decoding accuracy of 77.2% at a trial duration of 3 s.

Furthermore, we evaluated the amount of sparsity that the model can tolerate by means

of magnitude pruning and found a tolerance of up to 50% sparsity without substantial

loss of decoding accuracy.

Keywords: EEG, cocktail party effect, auditory attention, long short term memory networks, hearing aids, speech

enhancement, speech separation, convolutional neural network

1. INTRODUCTION

Holding a conversation in presence of multiple noise sources and interfering speakers is a task that
people with normal hearing carry out exceptionally well. The inherent ability to focus the auditory
attention on a particular speech signal in a complex mixture is known as the cocktail party effect
(Cherry, 1953). However, an automatic machine based solution to the cocktail party problem is
yet to be discovered despite the intense research for more than half a century. Such a solution
is highly desirable for a plethora of applications such as human-machine interface (e.g., Amazon
Alexa), automatic captioning of audio/video recordings (e.g., YouTube, Netflix), advanced hearing
aids etc.

In the domain of hearing aids, people with hearing loss suffer from deteriorated speech
intelligibility when listening to a particular speaker in a multispeaker scenario. Hearing aids
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currently available in the market often do not provide sufficient
amenity in such scenarios due to their inability to distinguish
between the attended speaker and the ignored ones. Hence,
additional information about the locus of attention is highly
desirable. In visual domain, selective attention is explained in
terms of visual object formation where an observer focuses
on a certain object in a complex visual scene (Feldman,
2003). This was extended to auditory domain where it was
suggested that phenomena such as cocktail party effect could
be better understood using auditory object formation (Shinn-
Cunningham, 2008). In other words, brain forms objects based
on the multiple speakers present in an auditory scene and
selects those objects belonging to a particular speaker during
attentive listening (top-down or late selection). However, flexible
locus of attention theory was concurrently proposed where the
late selection is hypothesized to occur at low cognitive load
and early selection is hypothesized to occur at high cognitive
load (Vogel et al., 2005). This has inspired investigation into
whether cortical signals could provide additional information
that helps to discriminate between the attended speaker and
interfering speakers. In a dual-speaker experiment, it was
observed that the cortical signals measured using implanted
electrodes track the salient features of the attended speaker
stronger than the ignored speaker (Mesgarani and Chang, 2012).
Similar results were obtained using magnetoencephalography
and electroencephalography (EEG) (Ding and Simon, 2012;
O’Sullivan et al., 2014). In recent years, EEG analyses have
become the commonly used methodology in attention research
which is lately known as auditory attention decoding (AAD).

Both low level acoustic features (speech envelope or speech
spectrogram) and high level features (phonemes or phonetics)
have been used to investigate the speech tracking in cortical
signals (Aiken and Picton, 2008; Lalor and Foxe, 2010; Di Liberto
et al., 2015; Broderick et al., 2019). State-of-the-art AAD
algorithms are based on linear systems theory where acoustic
features are linearly mapped on to the EEG signals. This mapping
can be either in the forward direction (Lalor and Foxe, 2010;
Fiedler et al., 2017; Kuruvila et al., 2020) or in the backward
direction (O’Sullivan et al., 2014; Mirkovic et al., 2015; Biesmans
et al., 2017). These algorithms have been successful in providing
insights into the underlying neuroscientific processes through
which brain suppresses the ignored speaker in a dual-speaker
scenario. Using speech envelope as the input acoustic feature,
linear algorithms could generate system response functions that
characterize the auditory pathway in the forward direction. These
system response functions are referred to as temporal response
function (TRF) (Lalor and Foxe, 2010). Analysis of the shape of
TRFs has revealed that the human brain encodes the attended
speaker different to that of the ignored speaker. Specifically,
TRFs corresponding to the attended speaker have salient peaks
around 100 and 200 ms which are weaker in TRFs corresponding
to the ignored speaker (Fiedler et al., 2019; Kuruvila et al.,
2021). Similar attention modulation effects were observed when
the acoustic input was modified to using speech spectrogram
or higher level features such as phonetics (Di Liberto et al.,
2015). Likewise using backward models, the input stimulus can
be reconstructed from EEG signals (stimulus reconstruction

method) and a listener’s attention could be inferred by comparing
the reconstructed stimulus to the input stimuli (O’Sullivan et al.,
2014). These findings give the possibility of integrating AAD
algorithms into hearing aids which in combination with robust
speech separation algorithms could greatly enhance the amenity
provided to the users.

It has been well-established that the human auditory system
is inherently non-linear (Zwicker and Fastl, 2013) and AAD
analysis based on linear systems theory addresses the issue of
non-linearity to a certain extend in the preprocessing stage. For
example, during speech envelope extraction. Another limitation
of linear methods is the longer time delay required to classify
attention (Fuglsang et al., 2017; Geirnaert et al., 2019), although
there were attempts to overcome this limitation (Miran et al.,
2018; Kuruvila et al., 2021). In the last few years, deep neural
networks have become popular especially in the field of computer
vision and natural language processing. Since neural networks
have the ability to model non-linearity, they have been used
to estimate the dynamic state of brain from EEG signals
(Craik et al., 2019). Similarly in AAD paradigm, convolutional
neural network (CNN) based models were proposed where the
stimulus reconstruction algorithm was implemented using the
CNN model to infer attention (Ciccarelli et al., 2019; de Taillez
et al., 2020). A direct classification of attention which bypasses
the regression task of stimulus reconstruction, instead classifies
whether the attention is to speaker 1 or speaker 2 directly
was proposed in Ciccarelli et al. (2019) and Vandecappelle
et al. (2021). In a non-competing speaker experiment, classifying
attention as successful vs unsuccessful or match vs mismatch was
further addressed inMonesi et al. (2020) and Tian andMa (2020).

All aforementioned neural network models either did not use
speech features or made use of only speech envelope as the input
feature. As neural networks are data driven models, additional
data/information about the speech stimuli may improve the
performance of the network. In speech separation algorithms
based on neural networks, spectrogram is used as the input
feature to separate multiple speakers from a speech mixture
(Wang and Chen, 2018). Inspired by the joint audio-visual speech
separation model (Ephrat et al., 2018), we present a novel neural
network framework that make use the speech spectrogram of
multiple speakers and the EEG signals as inputs to classify the
auditory attention.

The rest of the paper is organized as follows. In section 2,
details of the datasets that were used to train and validate the
neural network are provided. In section 3, the neural network
architecture is explained in detail. The results are presented in
sections 4, 5 provides a discussion on the results.

2. MATERIALS AND METHODS

2.1. Examined EEG Datasets
We evaluated the performance of our neural network model
using three different EEG datasets. The first dataset was collected
at our lab and it will be referred to as FAU_Dataset (Kuruvila
et al., 2021). The second and third datasets are publicly available
and they will be referred to as DTU_Dataset (Fuglsang et al.,
2018) and KUL_Dataset (Das et al., 2019), respectively.
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2.1.1. FAU_Dataset

This dataset comprised of EEG collected from 27 subjects who
were all native German speakers. A cocktail party effect was
simulated by presenting two speech stimuli simultaneously using
loudspeakers and the subject was asked to attend selectively
to one of the two stimuli. Speech stimuli were taken from
the slowly spoken news section of the German news website
www.dw.de and were read by two male speakers. The experiment
consisted of six different presentations with each presentation
being approximately fiveminutes longmaking it a total of 30min.
EEG was collected using 21 AgCl electrodes placed over the scalp
according to the 10–20 EEG format. The reference electrode was
placed at the right mastoid, the ground electrode was placed at
the left earlobe and the EEG signals were sampled at 2,500 Hz.
More details of the experiment could be found in Kuruvila et al.
(2021).

2.1.2. DTU_Dataset

This is a publicly available dataset that was part of the work
presented in Fuglsang et al. (2017). The dataset consisted of 18
subjects who selectively attended to one of the two simultaneous
speakers. Speech stimuli were excerpts taken from Danish
audiobooks that were narrated by a male and a female speaker.
The experiment consisted of 60 segments with each segment
being 50 s long making it a total of 50 min. EEG were recorded
using 64 electrodes and were sampled at 512 Hz. The reference
electrode was chosen either as the left mastoid or as the right
mastoid after visual inspection. Further details can be found in
Fuglsang et al. (2017, 2018).

2.1.3. KUL_Dataset

The final dataset that was analyzed is another publicly
available dataset where 16 subjects undertook selective attention
experiment. Speech stimuli consisted of four Dutch stories
narrated by male speakers. Each story was 12 min long which
was further divided into two 6 min presentations. EEG was
recorded using 64 electrodes and were sampled at 8,196 Hz. The
reference electrode was chosen either as TP7 or as TP8 electrode
after visually inspecting the quality of the EEG signal measured
at these locations. The experiment consisted of three different
conditions namely HRTF, dichotic and repeated stimuli. In this
work, we analyzed only the dichotic condition which was 24 min
long. Additional details about the experiment and the dataset can
be found in Das et al. (2016, 2019).

Details of the datasets are summarized again in Table 1. A
total of 34.9 h of EEG data were examined in this work. However,
the speech stimuli used were identical across subjects per dataset
and they totalled 104 min of dual-speaker data. In all the three
datasets that were analyzed, the two speakers read out different
stimuli. Moreover, the stimuli were presented only once to the
subject in order to avoid any learning effect. For each subject, the
training and the test data were split as 75–25% and we ensured
that no part of the EEG or the speech used in the test data was part
of the training data. The test data were further divided equally
into two halves and one half was used as a validation set during
the training procedure.

2.2. Data Analysis
As EEG signals analyzed were collected at different sampling
frequencies, they were all low pass filtered at a cut off frequency
of 32 Hz and downsampled to 64 Hz sampling rate. Additionally,
signals measured at only 10 electrode locations were considered
for analysis and they were F7, F3, F4, F8, T7, C3, Cz, C4, T8, Pz.
We analyzed four different trial durations in this study namely
2, 3, 4, and 5 s. For 2 s trials, an overlap of 1 s was applied. Thus,
there were 118,922 trials in total for analysis. In order to maintain
the total number of trials constant, 2 s of overlap was used in case
of 3 s trial, 3 s of overlap was used in case of 4 s trial and 4 s overlap
was used in case of 5 s trial. EEG signals in each trial were further
high pass filtered with a cut off frequency of 1 Hz and the filtered
signals were normalized to have zero mean and unit variance at
each electrode location.

Speech stimuli were initially low pass filtered with a cut off
frequency of 8 kHz and were downsampled to a sampling rate
of 16 kHz. Subsequently, they were segmented into trials with
a duration of 2, 3, 4, and 5 s at an overlap of 1, 2, 3, and 4 s,
respectively. The speech spectrogram for each trial was obtained
by taking the absolute value of the short-time Fourier transform
(STFT) coefficients. The STFT was computed using a Hann
window of 32 ms duration with a 12 ms overlap. Most of the
analysis in our work was performed using 3 s trial and other trial
durations were used only for comparison purposes. A summary
of the dimensions of EEG signals and speech spectrogram
after preprocessing for different trial durations is provided
in Table 2.

3. NETWORK ARCHITECTURE

A top level view of the proposed neural network architecture
is shown in Figure 1. It consists of three subnetworks namely
EEG_CNN, Audio_CNN, and AE_Concat.

TABLE 1 | Details of the EEG datasets analyzed.

Name Number of

subjects

Duration

per subject

(minutes)

Total

duration

(hours)

Experiment

type

Language

FAU_Dataset 27 30 13.5 Male +

Male

German

DTU_Dataset 18 50 15 Male +

Female

Danish

KUL_Dataset 16 24 6.4 Male +

Male

Dutch

TABLE 2 | Trial duration vs. dimension of the input.

Trial duration (sec) EEG data

(time × num_electrodes)

Speech data

(time × freq)

2 128 × 10 101 × 257

3 192 × 10 151 × 257

4 256 × 10 201 × 257

5 320 × 10 251 × 257
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3.1. EEG_CNN
The EEG subnetwork comprised of four different convolutional
layers as shown in Table 3. The kernel size of the first layer was
chosen as 24 and it corresponded to a latency of 375 ms in
the time domain. A longer kernel was chosen because previous
studies have shown that the TRFs corresponding to attended
and unattended speakers differ around 100 and 200 ms (Fiedler
et al., 2019; Kuruvila et al., 2021). Therefore, a latency of 375
ms could help us to extract features that modulate the attention
to different speakers in a dual-speaker environment. All other
layers were initialized with kernels of shorter duration as shown
in Table 3. All convolutions were performed using a stride of 1
× 1 and after the convolutions, max pooling was used to reduce
the dimensionality. To prevent overfitting on the training data
and improve generalization, dropout (Srivastava et al., 2014),
and batch normalization (BN) (Ioffe and Szegedy, 2015) were
applied. Subsequently, the output was passed through a non-
linear activation function which was chosen as rectified linear
unit (ReLU). The dimension of the input to EEG_CNN varied
according to the length of the trial (Table 2) but the dimension of
the output was fixed at 48 × 32. The max pooling parameter was
slightly modified for different trial durations to obtain the fixed
output dimension. The first dimension (48) corresponded to the
temporal axis and the second dimension (32) corresponded to
the number of convolution kernels. The dimension of the output
that mapped the EEG signals measured at different electrodes was
reduced to one by the successive application ofmax pooling along
the electrode axis.

3.2. Audio_CNN
The audio subnetwork that processed the speech spectrogram
consisted of five convolution layers whose parameters are shown
in Table 4. All standard procedures such as max pooling, batch
normalization, dropout, and ReLU activation were applied to the
convolution output. Similar to the EEG_CNN, dimension of the
input to the Audio_CNN varied according to the trial duration
(Table 2) but the dimension of the output feature map was always

TABLE 3 | CNN parameters of the EEG subnetwork.

Number of kernels Kernel size Dilation Padding Maxpool

Layer 1 32 24 × 1 1.1 12.0 2.1

Layer 2 32 7 × 1 2.1 6.0 1.2

Layer 3 32 7 × 5 1.1 3.2 2.5

Layer 4 32 7 × 1 1.1 3.0 1.1

TABLE 4 | CNN parameters of the Audio subnetwork.

Number of kernels Kernel size Dilation Padding Maxpool

Layer 1 32 1 × 7 1.1 0.3 1.1

Layer 2 32 7 × 1 1.1 0.0 1.4

Layer 3 32 3 × 5 8.8 0.16 1.2

Layer 4 32 3 × 3 16.16 0.16 1.1

Layer 5 1 1 × 1 1.1 0.0 2.2

FIGURE 1 | The architecture of the proposed joint CNN-LSTM model. Input to the audio stream is the spectrogram of speech signals and input to the EEG stream is

the downsampled version of EEG signals. Number of Audio_CNNs depends on the number of speakers present in the auditory scene (here two). From the outputs of

Audio_CNN and EEG_CNN, speech and EEG embeddings are created which are concatenated together and passed to a BLSTM layer followed by FC layers.
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fixed at 48 × 16. As the datasets considered in this study were
taken from dual-speaker experiments, the Audio_CNN was run
twice resulting in two sets of output.

3.3. AE_Concat
The feature maps obtained from EEG_CNN and Audio_CNN
were concatenated along the temporal axis and the dimension of
the feature map after concatenation was 48 × 64. In this way,
we ensured that half of the feature map was contributed from
the EEG data and half of the feature map was contributed from
the speech data. This also provides the flexibility to extend to
more than two speakers such as the experiment performed in
Schäfer et al. (2018). The concatenated feature map was passed
through a bidirectional long short-term memory (BLSTM) layer
(Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997)
which was followed by four fully connected (FC) layers. For the
first three FC layers, ReLU activation was used and for the last FC
layer, softmax activation was applied which helps us to classify
the attention to speaker 1 or speaker 2.

The total number of EEG samples and audio samples (trials)
available was 118,922 and 75% of the total available samples
(89,192) were used to train the network and the rest of the
available samples (29,730) were equally split as validation and
test data. The network was trained for 80 epochs using a mini
batch size of 32 samples and with a learning rate of 5 ∗ 10−4.
The drop out probability was set to 0.25 for the EEG_CNN
and the AE_Concat subnetworks but it was increased to 0.4 for
the Audio_CNN subnetwork. A larger drop out probability was
used for the Audio_CNN because speech stimuli were identical
across subjects for a particular dataset. Hence, when trained on
data from multiple subjects, the speech data remain identical
and the network may remember the speech spectrogram of the
training data. The network was optimized using Adam optimizer
(Kingma and Ba, 2014) and the loss function used was binary
cross entropy. As neural network training can result in random
variations from epoch to epoch, the test accuracy was calculated
as the median accuracy of the last five epochs (Goyal et al., 2017).
The network was trained using an Nvidia Geforce RTX-2060 (6
GB) graphics card and took ∼36 h to complete the training. The
neural network model was developed in PyTorch and the python
code is available at: https://github.com/ivine-GIT/joint_CNN_
LSTM_AAD.

3.4. Sparse Neural Network: Magnitude
Pruning
Despite neural network learning being a sophisticated algorithm,
it is still not widely used in embedded devices due to the
high memory and computational power requirements. Sparse
neural networks have been recently proposed to overcome
these challenges and enable running these models on embedded
devices (Han et al., 2015). In sparse networks, majority of the
model parameters are zeros and zero-valued multiplications can
be ignored thereby reducing the computational requirement.
Similarly, only non-zero weights need to be stored on the device
and for all the zero-valued weights, only their position needs to
be known reducing the memory footprint. Empirical evidences

have shown that neural networks tolerate high level of sparsity
(Han et al., 2015; Narang et al., 2017; Zhu and Gupta, 2017).

Sparse neural networks are found out by using a procedure
known as network pruning. It consists of three steps. First, a
large over-parameterized network is trained in order to obtain
a high test accuracy as over-parameterization has stronger
representation power (Luo et al., 2017). Second, from the trained
over-parameterized network, only important weights based on
certain criterion are retained and all other weights are assumed
to be redundant and reinitialized to zero. Finally, the pruned
network is fine-tuned by training it further using only the
retained weights so as to improve the performance. Searching
for the redundant weights can be based on simple criteria such
as magnitude pruning (Han et al., 2015) or based on complex
algorithms such as variational dropout (Molchanov et al., 2017)
or L0 regularization (Louizos et al., 2017). However, it was shown
that introducing sparsity using magnitude pruning could achieve
comparable or better performance than complex techniques such
as variational dropout or L0 regularization (Gale et al., 2019).
Hence, we will present results based on only magnitude pruning
in this work.

4. RESULTS

4.1. Attention Decoding Accuracy
To evaluate the performance of our neural network, we trained
the model under different scenarios using a trial duration of 3 s.
In the first scenario (Ind set train), attention decoding accuracies
were calculated per individual dataset. In other words, to obtain
the test accuracy of subjects belonging to FAU_Dataset, themodel
was trained using training samples only from FAU_Dataset
leaving out DTU_dataset and KUL_Dataset. Similarly, to obtain
the test accuracy for DTU_Dataset, the model was trained
using training samples only from DTU_Dataset. The same
procedure was repeated for KUL_Dataset. The median decoding
accuracy was 72.6% for FAU_Dataset, 48.1% for DTU_Dataset,
and 69.1% for KUL_Dataset (Figure 2). In the second scenario
(Full set train), accuracies were calculated by combining training
samples from all the three datasets together. The median
decoding accuracies obtained in this scenario were 84.5, 52.9,
and 77.9% for FAU_Dataset, DTU_Dataset, and KUL_Dataset,
respectively. The results from the second scenario showed a
clear improvement over the first scenario (p_FAU < 0.001;
p_DTU < 0.05; p_KUL < 0.01) suggesting that the model
generalizes better in the Full set train. Furthermore, to evaluate
the cross-set training performance, we trained the model using
one dataset and tested it on the other two datasets. For example,
the training would be performed using FAU_Dataset and testing
would be performed on both DTU and KUL datasets. The
same procedure was repeated by training using the DTU dataset
and the KUL dataset. The decoding accuracies obtained were
all at chance level across the three cross-set training scenarios
(Figure 3). Consequently, all results presented further in this
paper are based on Full set train. The statistical analyses are based
on paired Wilcoxon signed-rank test with sample sizes given in
Table 1.
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FIGURE 2 | Boxplot depicting the decoding accuracies obtained using two different training scenarios. In the first scenario (Ind set train), individual dataset accuracies

were obtained by using training samples only from that particular dataset. For example, to calculate the test accuracy of FAU_Dataset, training samples were taken

only from FAU_Dataset. In the second scenario (Full set train), individual dataset accuracies were obtained using training samples from all the three datasets

combined. As a result, there are more training samples in the second scenario compared to the first (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 based on paired Wilcoxon

signed-rank test).

FIGURE 3 | Boxplot showing the decoding accuracies obtained for cross-set training scenario. The accuracies obtained were all at chance level.

4.2. Decoding Accuracy vs. Trial Duration
To analyse the effect of trial duration on the attention decoding
accuracy, the model was trained using trials of length 2, 3, 4, and

5 s. For every trial, only 1 s of new data were added and the
remaining data were populated by overlapping to the previous
trial using a sliding window. Specifically, for 2 s trial, 1 s of
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FIGURE 4 | Comparison of the decoding accuracies calculated for different trial durations per dataset. Statistical analysis based on paired Wilcoxon signed-rank test

and pooled over all subjects together from the three datasets (∗p < 0.05; ∗∗∗p < 0.001).

overlap was used and for 3 s trial, 2 s of overlap was used, and
so on. In this way, total number of training samples remained
constant for different trial durations considered in our analysis.
The mean decoding accuracy across all subjects and all datasets
in case of 2 s trial duration was 70.9± 13.2%. The mean accuracy
improved to 73.9 ± 14.8% when the trial duration was increased
to 3 s (p < 0.001, r = 0.60). Using a trial duration of 4 s,
the mean accuracy obtained was 75.2 ± 14.3% which is a slight
improvement over 3 s trials (p < 0.05, r = 0.31). For 5 s trials,
our neural network model resulted in a mean accuracy of 75.5
± 15.7% that was statistically identical to the accuracy obtained
using 4 s trials (p > 0.05, r = 0.10). Figure 4 depicts the accuracy
calculated for individual datasets.

4.3. Ablation Analysis
In order to gain further insights into the architecture and
understand the contribution of different parts of our neural
network, we performed ablation analysis using a trial duration
of 3 s. To this end, we modified the neural network architecture
by removing specific block such as the BLSTM layer or the
FC layers one at a time and retrained the modified network.
Similarly, to understand the importance of the audio input
feature, decoding accuracies were calculated by zeroing out the
EEG input and to understand the importance of the EEG input
feature, decoding accuracies were calculated by zeroing out
the audio input. As shown in Figure 5, the median decoding
accuracy by zeroing out the EEG input was 48.6% whereas
zeroing out the audio input resulted in an accuracy of 53.6%
resulting in no significant difference (p > 0.05). When the
network was retrained by removing the BLSTM layer only,
the median decoding accuracy obtained was 68.3% and on
removing the FC layers only, median decoding accuracy was
74.7%. Hence, the BLSTM layer contributes more toward the
network learning than the FC layer (p < 0.001). To compare, the

FIGURE 5 | Boxplots showing the decoding accuracies obtained by ablating

the different blocks such as FC layer or BLSTM layer. To obtain the test

accuracies after ablating, the ablated network was trained from scratch in

case of FC_rem and BLSTM_rem. However, in case of Audio_rem and

EEG_rem, accuracies were calculated by zeroing out the corresponding input

features before passing them to a fully trained network. The obtained accuracy

did not demonstrate a statistically significant difference between Audio_rem

and EEG_rem (p > 0.05). For all other cases, there was a significant difference

(∗∗∗p < 0.001 based on paired Wilcoxon signed-rank test).

median decoding accuracy calculated using the full the network
was 77.2%.

4.4. Sparse Neural Network Using
Magnitude Pruning
To investigate the degree of sparsity that our neural network can
tolerate, we pruned the model at 40, 50, 60, 70, and 80% sparsity

Frontiers in Physiology | www.frontiersin.org 7 August 2021 | Volume 12 | Article 700655104

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kuruvila et al. Attention Decoding: CNN-LSTM Model

using the 3 s trial duration. In order to fine-tune the pruned
neural network, there are two options: (1) sequential or (2) one-
shot. In sequential fine-tuning, weights of the trained original
model are reinitialized to zero in smaller steps per epoch until the
required sparsity is attained. In one-shot fine-tuning, weights of
the trained original model are reinitialized to zero at one shot in
the first epoch and the sparse model is further trained to improve
performance. We observed that the sequential fine-tuning is less
efficient than one-shot fine-tuning in terms of training time
budget. Therefore, all results presented here are based on one-
shot fine-tuning. We achieved a median decoding accuracy of
76.9% at a sparsity of 40% which is statistically identical to the
original model at 77.2% (p > 0.05). When the sparsity was
increased to 50%, the median decoding accuracy decreased to
75.7% which was lower than the original model (p < 0.001).
Increasing the sparsity level further resulted in deterioration of
decoding accuracy reaching 63.2% at a sparsity of 80% (Figure 6).
Total number of learnable parameters in our model was 416,741
and to find the sparse network, we pruned only the weights
leaving the bias and BN parameters unchanged.

5. DISCUSSION

People with hearing loss suffer from deteriorated speech
intelligibility in noisy acoustic environments such as
multispeaker scenarios. Increasing the audibility by means
of hearing aids has not shown to provide sufficient improvement
to the speech intelligibility. This is because the hearing aids are
unable to estimate apriori to which speaker the user intends
to listen. Hence, hearing aids amplify both the wanted signal
(attended speaker) and interfering signals (ignored speakers).
Recently, it has been shown that the cortical signals measured

FIGURE 6 | Plots comparing the trade off between decoding accuracies and

sparsity level (*p < 0.05; ***p < 0.001 based on paired Wilcoxon signed-rank

test).

using EEG could infer the auditory attention by discriminating
between the attended speaker and the ignored speaker in a
dual-speaker scenario (O’Sullivan et al., 2014). Linear system
analysis has been the commonly used methodology to analyse
the EEG signals measured from a listener performing selective
attention. However, in recent years, non-linear analyses based
on neural networks have become prominent, thanks to the
availability of customized hardware accelerators and associated
software libraries.

In this work, we developed a joint CNN-LSTM model to
infer the auditory attention of a listener in a dual-speaker
environment. CNNs take the EEG signal and spectrogram
of the multiple speakers as inputs and extract features
through successive convolutions. These convolutions generate
an intermediate embeddings of the inputs which are then
given to a BLSTM layer. As LSTMs fall under the category
of recurrent neural networks, they can model the temporal
relationship between the EEG embedding and the multiple
spectrogram embeddings. Finally, the output of the BLSTM is
processed through FC layers to infer the auditory attention. The
effectiveness of the proposed neural network was evaluated with
the help of three different EEG datasets collected from subjects
who undertook dual-speaker experiment.

There are many choices for the acoustic cues of speech
signal that could be given as input to the neural network.
They are speech onsets (Howard and Poeppel, 2010), speech
envelopes (Aiken and Picton, 2008), speech spectrograms (Pasley
et al., 2012), or phonemes (Di Liberto et al., 2015). Due to the
hierarchical processing of speech, all of the aforementioned cues
could be tracked from the cortical signals measured using EEG
(Hickok and Poeppel, 2007; Ding and Simon, 2014). Speech
envelope is the most commonly used acoustic cues in the
linear system analysis of EEG signal. However, we decided to
use spectrogram due to its rich representational power of the
corresponding speech signal and the ability of neural networks
to index these multidimensional inputs efficiently.

5.1. Attention Decoding Accuracy
We analyzed the performance of our neural network in two
different training scenarios. In the first scenario, individual
dataset accuracy was found out by training the network using
samples taken only from that particular dataset. In the second
scenario, individual dataset accuracy was found out by training
using samples combined from all three datasets together. The
accuracies obtained in the second scenario were higher than the
first scenario by 10.8% on average, which is in agreement with
the premise of neural network learning that larger the amount
of training data, the better the generalization. The decoding
accuracies obtained for subjects belonging to the DTU_Dataset
were markedly lower than the other two datasets similar to the
observation made in Geirnaert et al. (2020). While the exact
reason for the lower performance is unclear, a major difference
of the DTU_Dataset compared to the other two datasets was that
the former consisted of attention to male and female speakers
whereas the latter consisted of attention to only male speakers.
Therefore, training with additional EEG data that consist of
attention to female speakers can provide more insights into
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the lower performance. Additionally, we investigated the cross-
set performance by training the model using one dataset and
testing using the other two datasets. The accuracies obtained
were all at chance level as seen in Figure 3. This is not against
our expectation because if the underlying training set is not
representative, neural networks will not generalize. Specifically,
features in the training set and the test set are different since
they were recorded in different audio settings, languages, and
EEG devices. This further affirms the importance of having
a large and diverse training set for the neural networks to
function efficiently.

5.2. Decoding Accuracy vs. Trial Duration
One of the major challenges that AAD algorithms based on linear
system theory faces is the deteriorated decoding performance
when the trial duration is reduced. To this end, we calculated the
accuracies using our neural network for different trial durations
of 2, 3, 4, and 5 s. We observed a clear performance improvement
when trial duration was increased from 2 to 3 s whereas for all
other trial durations, accuracies did not improve substantially
(Figure 4). However, increasing the trial duration will result in
larger latency needed to infer the auditory attention that can
adversely affect applications which require real-time operation.
Hence, 3 s trial duration may be an optimal operation point
as it is known from a previous study that human brain tracks
the sentence phrases and phrases are normally not longer than
3 s (Vander Ghinst et al., 2019). Similarly, our analysis made
use of 10 electrodes distributed all over the scalp but future
work should investigate the effect of reducing the number
of electrodes. This will help in integrating algorithms based
on neural networks into devices such as hearing aids. We
anticipate that the current network will require modifications
with additional hyperparameter tuning in order to accommodate
for the reduction in number of electrodes, as the fewer is the
number of electrodes, the lower is the amount of data available
for training.

5.3. Ablation Analysis
Performing ablation analysis gives the possibility to evaluate the
contribution of different inputs andmodules in a neural network.
To our model, when only the speech features were given as input,
the median decoding accuracy was 48.6% whereas only EEG
features as input resulted in an accuracy of 53.6% (Figure 5).
However, statistical analysis revealed that there is no significant
difference between the two. This is contrary to our anticipation
because we expected the model to learn more from the EEG
features than from the audio features, as the EEG signal is unique
to the subject while the audio stimulus was repeated among
subjects per dataset. Nevertheless, in future care must be taken
to design the experiment in such a way as to incorporate diverse
speech stimuli. Further analysis ablating the BLSTM layer and the
FC layers revealed that the BLSTM layer was more important
than the FC layers. This is probably due to the ability of the
LSTM layer tomodel the temporal delay between speech cues and
the EEG. However, we anticipate that when the training datasets
become larger and more dissimilar, FC layers will become more

important due to the improved representation and optimization
power of dense networks (Luo et al., 2017).

5.4. Sparse Neural Networks
Although neural networks achieve state-of-the-art performances
for a wide range of applications, they have large memory
footprint and require extremely high computation power. Over
the years, neural networks were able to extend their scope of
applications was by scaling up the network size. In 1998, the CNN
model (LeNet) that was successful in recognizing handwritten
digits consisted of under a million parameters (LeCun et al.,
1998), whereas AlexNet that won the ImageNet challenge in
2012 consisted of 60 million parameters (Krizhevsky et al., 2017).
Neural networks were further scaled up to the order of 10 billion
parameters and efficient methods to train these extremely large
networks were presented in Coates et al. (2013).While these large
models are very powerful, running them on embedded devices
poses huge challenges due to the large memory and computation
requirements. Sparse neural networks are a novel architecture
search where redundant weights are reinitialized to zero thereby
reducing the computation load.

Investigation into the amount of sparsity that our neural
network can tolerate revealed a tolerance of upto 50% sparsity
without substantial loss of accuracy (Figure 6). However,
standard benchmarking on sparsity has found that deep networks
such as ResNet-50 can tolerate upto 90% sparsity (Gale et al.,
2019). One of the potential reasons for the lower level of sparsity
in our model is due to its shallow nature. That is, our model
is comprised of less than half a million learnable parameters
while deep networks such as ResNet-50 is comprised of over 25
million learnable parameters. It is also interesting to note that
the accuracy obtained by removing the FC layer in our ablation
analysis was 74.6% compared to the full network accuracy of
77.2%. And the ablated network consisted of 105,605 parameters
which is approximately only a quarter of the total number
of parameters (416,741) of the original network. This shows
that by careful design choices, we can reduce the network size
considerably compared to an automatic sparse network search
using magnitude pruning.

Sparsification of neural network has also been investigated
as a neural network architecture search rather than merely
as an optimization procedure. In the lottery ticket hypothesis
presented in Frankle and Carbin (2018), authors posit that,
inside the structure of an over-parameterized network, there exist
subnetworks (winning tickets) that when trained in isolation
reaches accuracies comparable to the original network. The pre-
requisite to achieve comparable accuracy is to initialize the sparse
network using the original random weight initialization that was
used to obtain the sparse architecture. However, it was shown that
with careful choice of the learning rate, the stringent requirement
on original weight initialization can be relaxed and the sparse
network can be trained from scratch for any random initialization
(Liu et al., 2018).

One of the assumptions that we have made throughout this
paper is the availability of clean speech signal to obtain the
spectrogram. In practice, only noisy mixtures are available and
speech sources must be separated before the spectrogram can
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be calculated. This is an active research field and algorithms
are already available based on classical signal processing such
as beamforming or based on deep neural networks (Wang and
Chen, 2018). Another challenge in neural network learning and
in particular, its application in EEG research is the scarcity
of labeled data to train the network. This limits the ability of
network to generalize well to unseen EEG data. To mitigate
the aforementioned limitation, data augmentation techniques are
widely used in neural network training. Data augmentation is
a procedure to generate synthetic dataset that spans unexplored
input signal space but corresponding to the true labels (Wen et al.,
2020). In auditory attention paradigm, linear system analyses
have shown that the TRF properties differ between attended
and ignored speakers (Fiedler et al., 2019; Kuruvila et al., 2021).
As a result, synthetic EEG can be generated by performing a
linear convolution between TRFs and the corresponding speech
signal cues (Miran et al., 2018). The signal-to-noise ratio of
the synthesized EEG can be varied by adding appropriate noise
to the convolved signal. The most commonly used speech
cue is the signal envelope obtained using Hilbert transform.
However, more sophisticated envelope extraction methods such
as the computational models simulating the auditory system
could improve the quality of synthesized EEG signals (Kates,
2013; Verhulst et al., 2018). It must be noted that the data
augmentation techniques must only be used to train the network.
The validation and the testing procedure must still be performed
using real datasets.

6. CONCLUSION

Integrating EEG to track the cortical signals is one of the latest
proposals to enhance the quality of service provided by hearing
aids to the users. EEG is envisaged to provide neuro-feedback
about the user’s intention thereby enabling the hearing aid to
infer and enhance the attended speech signals. In the present
study, we propose a joint CNN-LSTM network to classify the
attended speaker in order to infer the auditory attention of a
listener. The proposed neural network uses speech spectrograms
and EEG signals as inputs to infer the auditory attention.
Results obtained by training the network using three different
EEG datasets collected from multiple subjects who undertook a
dual-speaker experiment showed that our network generalizes

well to different scenarios. Investigation into the importance of
different constituents of our network architecture revealed that
adding an LSTM layer improved the performance of the model
considerably. Evaluating sparsity on the proposed joint CNN-
LSTM network demonstrates that the network can tolerate upto
50% sparsity without considerable deterioration in performance.
These results could pave way to integrate algorithms based on
neural networks into hearing aids that have constrained memory
and computational power.
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The ambulatory assessment of vocal function can be significantly enhanced by having

access to physiologically based features that describe underlying pathophysiological

mechanisms in individuals with voice disorders. This type of enhancement can improve

methods for the prevention, diagnosis, and treatment of behaviorally based voice

disorders. Unfortunately, the direct measurement of important vocal features such as

subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is

impractical in laboratory and ambulatory settings. In this study, we introduce a method

to estimate these features during phonation from a neck-surface vibration signal through

a framework that integrates a physiologically relevant model of voice production and

machine learning tools. The signal from a neck-surface accelerometer is first processed

using subglottal impedance-based inverse filtering to yield an estimate of the unsteady

glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck

surface accelerometer and an optional microphone signal. A neural network architecture

is selected to provide a mapping between the seven input features and subglottal

pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle

activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations

of a voice production model that utilizes a symmetric triangular body-cover model of

the vocal folds. The performance of the method was compared against laboratory

data from synchronous recordings of oral airflow, intraoral pressure, microphone, and

neck-surface vibration in 79 vocally healthy female participants uttering consecutive

/pæ/ syllable strings at comfortable, loud, and soft levels. The mean absolute error

and root-mean-square error for estimating the mean subglottal pressure were 191 Pa

(1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with

previous studies but with the key advantage of not requiring subject-specific training
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and yielding more output measures. The validation of vocal fold collision pressure and

laryngeal muscle activation was performed with synthetic values as reference. These

initial results provide valuable insight for further vocal fold model refinement and constitute

a proof of concept that the proposed machine learning method is a feasible option for

providing physiologically relevant measures for laboratory and ambulatory assessment

of vocal function.

Keywords: ambulatory monitoring, neck-surface accelerometer, subglottal pressure estimation, voice production

model, neural networks, clinical voice assessment

1. INTRODUCTION

Laryngeal voice disorders have been estimated to affect
approximately 30% of the adult population in the United States at
some point in their lives (Bhattacharyya, 2014). Voice disorders
can disrupt or preclude normal oral communication and thus
have far-reaching social, professional, economic, and personal
consequences for those affected. The most common voice
disorders are associated with detrimental patterns of daily vocal
behavior and voice use (often classified as vocal hyperfunction)
for which there is limited understanding of the underlying
etiological and pathophysiological mechanisms. The paucity of
such information serves to hinder the effective prevention,
diagnosis and treatment of these common voice disorders.

Ambulatory voice monitoring using a neck-placed
accelerometer (ACC) provides the capability to quantitatively
assess daily vocal function and has also been shown to have the
potential to assist in modifying vocal behaviors via ambulatory
biofeedback (Popolo et al., 2005; Hillman and Mehta, 2011;
Mehta et al., 2012; Andreassen et al., 2017; Van Stan et al.,
2017a). Numerous features have been extracted from the
ambulatory recording of the ACC signal, including phonation
duration, sound pressure level (SPL), fundamental frequency
(fo) (Ghassemi et al., 2014), vocal vibration-dose measures
(Titze et al., 2003; Titze and Hunter, 2015), spectral and cepstral
measures (Mehta et al., 2015, 2019), and aerodynamic measures
(Llico et al., 2015; Cortés et al., 2018). These measures have
been used to differentiate the daily voice use of patients with
vocal hyperfunction from matched controls (Ghassemi et al.,
2014; Cortés et al., 2018; Van Stan et al., 2021) and to track
changes related to surgical and voice therapy treatment of
hyperfunctional voice disorders (Van Stan et al., 2017b, 2020).
Current classification accuracy using these parameters is in the
range of 0.7–0.85.

We argue that the extraction of additional physiological
measures from ambulatory ACC recordings, such as subglottal
pressure, vocal fold collision pressure, and laryngeal muscle
activation, would provide critical additional insights into the
etiologic and pathophysiological mechanisms that underlie
hyperfunctional voice disorders and thus significantly enhance
the capability to identify the detrimental daily patterns of
vocal behavior associated with these disorders (Espinoza et al.,
2017; Galindo et al., 2017; Hillman et al., 2020). There have
been recent efforts to develop subject-specific representations
that can capture such physiologically relevant measures (e.g.,

subglottal pressure, contact pressure, muscle activation, and
material properties of the vocal folds) that are difficult to obtain
directly (Deng et al., 2019; Hadwin et al., 2019; Alzamendi
et al., 2020; Drioli and Foresti, 2020). These approaches take
advantage of the physiological relevance of lumped and finite
element models of voice production, which have been shown
to be useful tools for the investigation, diagnosis, and treatment
of voice disorders (Erath et al., 2013). The most recent in vivo
approach uses a Bayesian framework to estimate lumped-element
vocal fold model parameters to predict subglottal pressure, vocal
fold collision pressure, and laryngeal muscle activation along
with their corresponding confidence intervals from observations
obtained in clinical recordings, i.e., high-speed videoendoscopy
(HSV) and oral airflow (Alzamendi et al., 2020).

Direct application of Bayesian subject-specific estimation
from the ACC signal remains unsolved. There are challenges
associated with the current extended Kalman filter approach for
processing ambulatory data and using the ACC as the solely
observation that remain to be addressed, including the large
computational cost for the volume of data to be processed,
the need for data fusion from different recording sessions, the
need for an online estimation of model covariance, and the
incorporation of a time-domain neck skin model for the ACC
sensor within the voice production model.

On the other hand, machine learning and artificial intelligence
are becoming relevant tools in biomedical engineering, as they
can provide accurate predictions and efficient implementations.
Numerical models are attractive alternatives for training
purposes, suitable representing a significant range of conditions
and providing access to relevant measures that are difficult to
obtain experimentally. Voice assessment is starting to make use
of these modeling advantages, where machine learning methods
have been trained using simulated data from physiological
numerical models to predict clinical parameters of interest.
This approach was utilized by Gómez et al. (2019) to predict
subglottal pressure from HSV in excised porcine vocal folds and
by Zhang (2020) to predict vocal fold (geometric andmechanical)
properties and subglottal pressure from a microphone signal.
No machine learning method trained with a voice production
model has been devised for the ACC signal in a laboratory or
ambulatory context.

Although there are ongoing efforts to address the challenges
of the Bayesian framework for the ambulatory monitoring,
we propose in this study a more direct solution for the
estimation of ambulatory physiologically-based features from
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the ACC that uses machine learning and voice modeling tools.
Thus, we propose a method to obtain a non-linear optimal
mapping between ACC features and subglottal pressure, vocal
fold collision pressure, and laryngeal muscle activation. We
propose using the impedance based inverse filtering (IBIF)
algorithm (Zañartu et al., 2013; Cortés et al., 2018), which yields
an unsteady glottal airflow signal from the ACC signal, to provide
aerodynamic features that are used as inputs to the non-linear
mapping. At the same time, we propose using a neural network
(NN) regression architecture trained from a physiologically
relevant muscle-controlled voice synthesizer with a triangular
body-cover vocal fold model (Alzamendi et al., 2019, 2021) that
takes the aerodynamic features as input and provides subglottal
pressure, collision pressure, and laryngeal muscle activation as
output. Predictions obtained with this scheme are validated
against numerical simulations and laboratory measurements of
subglottal pressure. The contributions of this work are twofold:
First, the proposed scheme provides access, for the first time,
to various physiologically relevant model-based features from a
neck-surface accelerometer signal. Then, the approach provides
a comprehensive contrast of the selected voice production model
against laboratory data.

2. MATERIALS AND METHODS

Figure 1 provides an overall schematic of the proposed method
of estimating four vocal function measures from neck-surface
vibration recorded using a neck-surface accelerometer (ACC)
sensor. The first analysis block results in an estimate of
the unsteady glottal airflow volume velocity signal using the
IBIF model (Zañartu et al., 2013), which has been shown to
provide aerodynamic features reliably for the classification of
vocal hyperfunction in laboratory (Espinoza et al., 2020) and
ambulatory (Cortés et al., 2018) settings. The second analysis
block computes the following six features from the glottal
airflow signal: amplitude of the unsteady glottal airflow (ACFL),
maximum flow declination rate (MFDR), open quotient (OQ),
speed quotient (SQ), spectral tilt measured as the log-magnitude
difference between the first and second harmonics (H1 − H2),
and fundamental frequency (fo). A seventh feature—the sound
pressure level (SPL)—can be estimated either directly using an
acoustic microphone (MIC) in the laboratory setting or using
a log-log mapping between the root-mean-square magnitude of
the ACC signal and SPL (Švec et al., 2005). See Table 1 for
descriptions of each feature. These seven features are used as
input into a NN to estimate four desirable measures of vocal
function: subglottal pressure (Ps), vocal fold collision pressure
(Pc), and normalized activation levels of the cricothyroid (aCT)
and thyroarytenoid (aTA) muscles.

The NN was trained using 13,000 Monte Carlo simulations of
a numerical voice production model. The design of the network
architecture and overall training description are provided in
section 2.1, and the details of the numerical voice production
model are found in section 2.2. Validation of the estimated
output features were performed using in vivo laboratory
reference measures of Ps or numerical simulations of phonation

for reference measures of Pc, aCT , and aTA. Details of the
experimental validation are provided in section 2.3.

2.1. Neural Network Architecture and
Training
A supervised machine learning framework for regression was
implemented based on amulti-layer NN (Hagan et al., 2014). The
network consisted of an input layer of the seven aerodynamic
and acoustic features (ACFL, MFDR, OQ, SQ, H1 − H2, fo,
and SPL), an output layer composed of the four target vocal
function measures (Ps, Pc, aTA, and aCT), and two interconnected
hidden layers with a 10% dropout to avoid overfitting. Each
neuron within the hidden layers had adjustable weight and bias
parameters that combined with the outputs of the preceding layer
to activate a rectified linear unit activation function; then, the
resulting activation served as input for the next layer Bianco et al.
(2019). The number of neurons for each layer was investigated
as a function of the model performance against both numerical
and experimental data. The training stage updates the weights
and biases using the Adam optimization algorithm (Kingma and
Ba, 2017) with a learning rate of 0.001. All the NNs involved in
this work were implemented in a virtual machine from Google
Colaboratory with two CPU models Intel(R) Xeon(R) CPU @
2.00GHz, using Python 3.7.11. and the TensorFlow 2.5.0 library
(Abadi et al., 2015). The runtime for the largest network (8
hidden layer with 128 neurons and 100 epoch) was less than 120 s.

The NN regression models were trained following the scheme
shown in Figure 2. For this purpose, a synthetic voice dataset
was obtained with a numerical voice production model described
in section 2.2. Similar approaches were recently taken by
other authors using different sensing modalities, i.e., high-speed
videoendoscopy (Gómez et al., 2019) and MIC sensors (Zhang,
2020) in ex vivo experimental validation platforms (instead of
in vivo). Using synthetic data for training helped addressing
the lack of comprehensive and massive in vivo human datasets
with thousands or even millions of conditions. Testing of
the NN models was performed with both numerical and in
vivo laboratory datasets. The laboratory dataset is described in
section 2.3.

The voice production model described in section 2.2 was
used to create 110,000 Monte Carlo simulations of sustained
phonation. The simulations included a wide variation of
the model control parameters such as lung pressure (PL),
activation levels for the cricothyroid (aCT), thyroarytenoid (aTA),
lateral cricoarytenoid (aLCA), interarytenoid (aIA), and posterior
cricoarytenoid (aPCA) muscles. Control model parameters and
their variation range are shown inTable 2. Each simulation lasted
800 ms, with the mean value of the seven input features taken for
the last 50 ms to avoid transient artifacts. The glottal airflow was
filtered using the same low- and high-pass filters utilized in the
analysis of the laboratory recordings, as described in section 2.3.

As suggested by Gómez et al. (2019), the training data
resembled the empirical distribution of the population-based
aerodynamic and acoustic feature set. Thus, simulated data with
ACFL less than 30 mL/s and fo outside the range of 120–
400 Hz were discarded, as these cases were not found in the
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FIGURE 1 | A schematic of the proposed method for the ambulatory vocal assessment based on processing the neck skin acceleration signal and a regression neural

network.

TABLE 1 | Description of aerodynamic features extracted from the glottal airflow signal and acoustic sound pressure level extracted from the microphone or

accelerometer signal.

Feature Description Units

ACFL The difference between the maximum and minimum amplitude of the AC glottal airflow (peak-to-peak) within each

glottal cycle

mL/s

MFDR Maximum flow declination rate: Negative peak of the first derivative of the glottal waveform L/s2

OQ Open quotient: Ratio of the open time of the glottal vibratory cycle to the corresponding cycle period. Computed as in

Cortés et al. (2018)

%

SQ Speed quotient: Ratio of the opening time of the glottis to the closing time. Computed as in Cortés et al. (2018) –

H1 − H2 Difference between the magnitude of the first two harmonics dB

fo Fundamental frequency Hz

SPL Sound pressure level: dB from the RMS envelope of the acoustic signal dB SPL

laboratory data used for testing the NN. As a result, the final
synthetic dataset consisted of 13,000 samples. Figure 3 shows
the normalized histogram of features for the synthetic data (blue
color) and laboratory data (red color).

Notice that feature ranges and distributions for both clinical
and synthetic data sets agree, except for SPL and Ps, where
ranges are noticeable dissimilar (see histograms for attenuated
red color). Two bias corrections were considered for these
components. First, as the SPL for the voice production model
is obtained at the lips, the SPL value was corrected to match

the 10 cm mouth-to-microphone recording distance considered
in the clinical recordings, yielding a −28.5 dB correction factor
(Švec and Granqvist, 2018). In addition, histograms of Ps suggest
that the physiological voice synthesizer yields higher values for
this measure. It is possible that sub and supra glottal tract
propagation losses and the losses at the glottal boundary were
not sufficiently high, thus amplifying source-filter interactions
and raising up subglottal pressure. This bias has motivated
subsequent exploration and model developments. However, to
address the need to correct for the difference in Ps in this study,
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FIGURE 2 | A schematic for the proposed training procedure. A regression neural network is built for mapping accelerometer-based vocal features into clinically

relevant estimates for subglottal pressure, subglottal collision pressure, and laryngeal muscle activation levels of the thyroarytenoid (TA) and cricothyroid (CT) muscles.

Training data are produced from a numerical voice production model.

TABLE 2 | Range and increment step for control parameters in the numerical

voice production model considered for building the synthetic dataset.

Parameter Range Step Unit

aCT 0-1 0.1 –

aTA 0-1 0.1 –

aLCA 0.2-0.8 0.1 –

aPCA 0-0.1 0.1 –

aIA 0.2-0.8 0.1 –

PL 500 – 2000 150 Pa

a bias correction was applied by taking the differences between
the mean of clinical and synthetic Ps values, thus leading to a
−3.37 cm H2O offset.

Synthetic training data were min-max normalized and
selected randomly from 80% of the total simulations. Testing

was performed in the remaining 20% of synthetic data and in
the clinical data in order to identify the models providing the
best estimation of subglottal pressure. To assess the regression
performance during both training and validation stages and
to compare with prior studies (Gómez et al., 2018; Lin et al.,
2020; Zhang, 2020), the mean absolute error (MAE) and the
root-mean-squared error (RMSE) metrics were utilized.

Several NN architectures with different numbers of neurons
in the hidden layers were trained for two cases. Case I included
six glottal aerodynamic features, described in Table 1 (ACFL,
MFDR, OQ, SQ, fo, and H1 − H2) as input layer to the NNs, i.e.,
glottal measures extracted only from IBIF. Case II had the input
layer of the NNs composed by all seven features in Table 1.

2.2. Voice Production Model
The selected voice production model for the training stage is a
multi-physics scheme featuring a low-order model of the vocal
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FIGURE 3 | Normalized histogram describing vocal features obtained for all measured quantities in the clinical data set (blue color). Resulting histograms for the

synthetic dataset (red color) are superimposed to illustrate model matching. Bias correction for synthetic SPL and Ps are shown as additional histograms (light red

color).

folds that allows for the coordinated activation of all five intrinsic
laryngeal muscles (Alzamendi et al., 2019, 2021). The model
was recently developed and was chosen due to its flexibility
and physical and physiological relevant way to cover numerous
(normal and disordered) phonatory conditions. The approach
builds upon prior efforts that describe rules for controlling
low-order models (Titze and Story, 2002), vocal fold posturing
(Titze and Hunter, 2007), and a triangular body-cover vocal
fold model (Galindo et al., 2017). The model also accounts for
tissue-fluid-acoustic interactions at the glottis (Zañartu et al.,
2014), sound wave propagation through the vocal tract followed
by sound pressure radiated from mouth (Zañartu, 2006), and
allows for describing sustained vowels and time-varying glottal
gestures. Given that the model is fairly new, we describe its main
components pertaining to the development of the NN regression
model and training set.

The triangular body-cover model (TBCM) (Galindo et al.,
2017) (see Figure 2) consists of paired three-mass body-
cover systems interconnected with mechanical elements
(Story and Titze, 1995) and configured in a triangular
anatomical shape (Birkholz et al., 2011). Beside resembling
the triangular glottis, the TBCM is physiologically relevant
because it mimics the layered vocal fold structure and extends
the vocal fold collision model with a gradual zipper-like
incomplete glottal closure. The latter aided to describe the
time-varying vocal fold collision pressure (Pc) during phonation.
Similar to Galindo et al. (2017), the parameterization of the
TBCM followed the original body-cover description (Story
and Titze, 1995) and applied the empirical rules to change
geometrical and viscoelastic vocal fold parameters developed
by Titze and Story (2002). However, the major difference

with (Galindo et al., 2017) resided in the computation of
both the internal tension and elongation in the vocal folds.
The remaining rules in Titze and Story (2002) were taken
as originally proposed for deriving the lumped-element
dynamical parameters.

Given the interest in estimating intrinsic laryngeal activity
with the proposed method, a comprehensive description of
muscle activity on the laryngeal configuration was considered.
For this purpose, the contributions of all five intrinsic muscles
and the passive response of connective tissue (i.e., the vocal
ligament and vocal fold mucosa) were included in the model.
Hence, simulated laryngeal muscle activations were the control
variables governing the phonatory posture and vocal fold
elongation. The incorporation of this muscle-controlled model
of the larynx allowed to dynamically modify the glottal
function during phonation, e.g., the vocal fold oscillatory
dynamics, time-varying glottal resistance, and aerodynamic-
acoustic coupling mechanisms. Following Titze and Hunter
(2007), the five intrinsic muscles were modeled independently
by using a modified Kelvin model (Hunter et al., 2004), which
dynamically solves for the internal stress-strain response in one-
dimensional fibrous tissues by integrating both active and passive
properties. Passive stress was described as a non-linear function
of longitudinal strain. Additionally, the active stress resulted
from the maximum isometric active stress and the normalized
activation level, in the range 0 ≤ a ≤ 1, mapping from relaxed
to strong muscle tension. The simulated muscle activation for
each intrinsic muscle was thus adjusted trough the corresponding
activation levels {aLCA, aIA, aPCA, aCT, aTA}. In the TBCM, an
adducted glottal configuration is critical for setting the system
into self-sustained oscillations, thus requiring higher activation
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of the adductory intrinsic (LCA and IA) musculature than
the abductury intrinsic (PCA) musculature. For simplicity, we
did not consider the effects of elevated antagonistic muscles
(Alzamendi et al., 2021) and only explored a small range of PCA
activation to secure self-sustained oscillations in the TBCM. This
approach allowed us to reduce the number of simulations to
be discarded and to optimize the computational load. Future
investigations will involve further scenarios for muscle control in
typical and disordered phonation. Models for the vocal ligament
and vocal fold mucosa were similarly implemented, except that
the active component was set to zero for these cases (Titze, 2006).

Beside controlling intrinsic muscle activation, the voice
production model also allowed for the adjustment of the
aerodynamic lung pressure, PL. The aerodynamic forces acting
over the vocal fold cover layer were then computed from the
resulting subglottal pressure, Ps, and supraglottal pressure, Pe,
according to Titze (2002). The three-way interaction at the glottal
level between sound, flow, and vocal fold tissue was included,
whereas the glottal airflow was computed from the acoustic
driving pressures impinging on the glottal (membranous plus
posterior portions) area following (Titze, 2006; Zañartu et al.,
2014; Lucero and Schoentgen, 2015). Simulation of the time-
varying acoustic wave propagation was achieved by applying
the wave reflection analog scheme, where the subglottal and
supraglottal tracts were modeled as a discrete concatenation of
short uniform acoustic cylinders with variable cross-sectional
areas. Effects due to the boundary condition at the lips was
approximated by including an inertive radiation impedance, that
produces the reflected pressure wave and the radiated sound
wave, Pout . Losses due to viscosity, moving walls, and other
losses are described by an exponential attenuation factor in the
propagation through the cylindrical sections (Zañartu, 2006;
Zañartu et al., 2007). Vocal tract area functions that resemble
a typical male (Story, 2008) and female (Story et al., 1998) that
could match the in vivo experimental data were selected, i.e.,
vowels /æ/ and /A, along with a representative subglottal tract
(Zañartu et al., 2014).

2.3. Experimental Validation of
NN-Estimated Subglottal Pressure
An in vivo laboratory dataset (Mehta et al., 2015; Espinoza et al.,
2017, 2020) with synchronous recordings of intraoral pressure
(IOP), oral airflow volume velocity (OVV), MIC, and ACC from
vocally healthy subjects was utilized to provide a completely
separate testing platform for the estimates obtained with the
regression NN. This dataset was used to experimentally validate
the NN estimates of subglottal pressure. Direct measurements of
vocal fold collision pressure and laryngeal muscle activation are
difficult to obtain in the laboratory and were not included in this
experimental validation. Note that this dataset was not used to
train the NN.

The data correspond to a group of participants composed
of 79 adult females with no history of voice disorders. The
mean (SD) age was 29.6 (13.0) years old. Their vocally healthy
status was verified by a licensed speech-language pathologist
via interview (subjects reported no difficulties with their

voices in daily life), laryngeal videostroboscopic examination,
and a clinician-administered Consensus Auditory-Perceptual
Evaluation of Voice (CAPE-V) assessment (Kempster et al.,
2009). Informed consent was obtained from all the participants
in this study, and experimental and clinical protocols were
approved by the institutional review board of Mass General
Brigham (formerly Partners HealthCare) at the Massachusetts
General Hospital. Data recordings were conducted in a sound-
treated room where study staff instructed each participant to
repeat strings of /pæ/ syllables in three loudness conditions
(comfortable, loud, and soft). Although subjects were instructed
to maintain a constant pitch and loudness within each syllable
string, they were free to choose levels that were most natural
for them without any prescribed levels of absolute pitch
and loudness.

Recordings consisted of the simultaneous acquisition of
acoustic pressure obtained with a condenser MIC (MKE104,
Sennheiser, Electronic GmbH, Wedemark, Germany) placed
10 cm from the lips and having full bandwidth in the range
of 0–6 kHz, OVV sensed by using a circumferentially vented
pneumotachograph mask (PT-2E, Glottal Enterprises, Syracuse,
NY) with a bandwidth of approximately 1.1 kHz, IOP measured
with an oral catheter passed between the lips and connected to
a low-bandwidth pressure sensor with an effective bandwidth
of approximately 80 Hz (Espinoza et al., 2017), and ACC (BU-
27135; Knowles Corp., Itasca, IL, USA) placed on the anterior
neck surface halfway between the thyroid prominence and
the suprasternal notch (Zañartu et al., 2013). All signals were
sampled at 20 kHz/16 bits (Digidata 1440A, Axon Instruments,
Inc.), low-pass filtered at 8-kHz cutoff frequency (CyberAmp
Model 380, Axon Instruments, Inc.), and calibrated to physical
units (Espinoza et al., 2017).

Signals obtained from the ACC and pneumotachograph mask
were low-pass filtered at 1,100 Hz with a 10th-order Chebyshev
Type II filter and decimated to 8,192 Hz. Then, a fourth-order
Butterworth high-pass filter with cutoff frequency at 60 Hz was
used to remove low-frequency components. The IOP signal
was low-pass filtered at 80 Hz with a fifth-order Butterworth
filter and then decimated to 256 Hz sample rate. All filters
were applied with phase removal to avoid phase distortion
(Perkell et al., 1994).

Reference values for subglottal pressure were obtained from
IOP signals following (Espinoza et al., 2017). Driving pressure
was extrapolated as the mean value of the two consecutive
IOP plateaus produced by the combined lip closure and glottis
opening prior to the /p/ sounds, that produced just before and
after each vowel segment. The three middle syllables in each
/pæ/ string were selected for the analysis, so that the initial and
final portions were disregarded to avoid any evident transient
dynamics. The estimated subglottal pressure was the average
of these three-syllable values. Three reference measures per
participant for comfortable, loud, and soft loudness conditions
were obtained. Thus, a total of 237 /pæ/ tokens were used in
this study.

The OVV-based glottal airflow was obtained through a
common inverse filtering technique based on a single-notch filter
with a conjugate pair of zeros and unity gain at DC at first vocal
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tract resonance (Perkell et al., 1991; Cheyne, 2006). Each single-
notch filter was applied to a 50 ms stable portion of the middle
/pæ/ string. The center frequency of the filter was determined
following an optimization procedure developed by Espinoza et al.
(2017).

The ACC-based glottal airflow was estimated using the IBIF
scheme (Zañartu et al., 2013; Cortés et al., 2018). This method
uses an acoustic transmission line model and a calibration step
to obtain a set of subject-specific parameters corresponding to
the neck-skin surface, length of the trachea, and accelerometer
position (Zañartu, 2010; Zañartu et al., 2013; Cortés et al., 2018).
These parameters are determined by minimizing the waveform
error between the OVV-based glottal airflow (reference signal
described previously) and the inverse filtered neck-skin ACC
signal via a particle swarm optimization Kennedy and Eberhart
(1995). The middle 50 ms of the glottal airflow signal estimated
from IBIF was selected to compute the six acceleration-based
aerodynamic feature (see Table 1). Even though SPL can be
computed from the ACC signal using regression methods Švec
et al. (2005), the synchronous microphone signal was used in
this study to avoid introducing any additional estimation error at
this point. Future work can be devoted to enhance current linear
mapping between ACC and SPL.

Validation with human data is the gold standard to assess
the ability of the NN regression scheme to represent in vivo
data; but direct measurement of certain physiological measures
of vocal function is not feasible. An advantage of using a voice
production model to train a neural network is that we can
estimate vocal function measures that are difficult to measure in
practice, which is the case for vocal fold collision pressure and
intrinsic muscle activation. Thus, the assessment of the estimates
of subglottal pressure is described in terms of test sets from
numerical simulations and laboratory data, whereas the estimates
of vocal fold collision pressure and laryngeal muscle activation
are only evaluated using a synthetic data test set.

3. RESULTS

3.1. Subglottal Pressure Estimation
The MAE and RMSE describing Ps estimates for the different
architectures are reported in Table 3 for both synthetic and
clinical test data. For both cases I and II, additional hidden layers
and neurons per layer yielded an improvement in subglottal
pressure estimation when tested against the synthetic data. For
example, in case I, MAE decreased from 1.98 cm H2O to 0.93 cm
H2O from the simplest (2 hidden layers with 4 neurons) to a
more complex (4 hidden layers with 128 neurons) architecture,
respectively. In case II, MAE decreased from 1.84 cm H2O
to 0.78 cm H2O for the same prior complexity in the NN
architecture. This represents a reduction of more than 50% in
MAE in both cases. A similar trend is observed with RMSE.
An explanation for the improvement comes from the fact that
the training and testing data were obtained from the same voice
production model. Therefore, more complex NN models appear
to capture efficiently the non-linear mechanisms of the model,
which has been suggested by Zhang (2020), when training and
testing with synthetic data from the same model. However, for

TABLE 3 | MAE and RMSE between the estimated Ps with the proposed NN

regression model and the reference measures from synthetic and laboratory test

data.

Neurons in Number of Synthetic Data Laboratory Data

each hidden hidden layers MAE RMSE MAE RMSE

layer (cm H2O) (cm H2O) (cm H2O) (cm H2O)

Case I:

4 2 1.98 2.51 2.23 2.82

8 2 1.81 2.34 2.28 2.86

16 2 1.35 1.83 2.56 3.13

32 2 1.18 1.64 2.82 3.43

64 2 1.02 1.48 2.89 3.50

128 2 0.99 1.68 2.94 3.58

128 4 0.93 1.33 3.17 3.87

128 6 0.97 1.38 3.14 3.85

128 8 1.01 1.45 3.12 3.76

Case II:

4 2 1.84 2.42 1.95 2.48

8 2 1.87 2.43 1.97 2.52

16 2 1.27 1.74 2.42 2.98

32 2 1.13 1.58 2.55 3.17

64 2 0.99 1.42 2.88 3.45

128 2 0.90 1.30 2.98 3.58

128 4 0.78 1.12 3.23 3.87

128 6 0.87 1.21 3.04 3.71

128 8 1.00 1.38 3.08 3.70

Errors are reported for different NN architecture (different number of neurons and hidden

layers). Case I: Input aerodynamic features of ACFL, MFDR, OQ, SQ, fo, and H1 − H2.

Case II: Input aerodynamic features in Case I and acoustic SPL.

the NN architectures composed over the six hidden layer with
128 neurons, the MAE and RMSE for synthetic data increase,
showing that a deeper NN does not improve the estimation of
subglottal pressure in this context.

It is important to highlight that all NNs were trained using 100
epochs. This criterion was selected to ensure the convergence of
models. Figure 4 shows mean squared error vs. the epochs for
training and validation of the simplest and the most complex
architecture models. The curves illustrate the convergence of
the training procedure, where the simplest regression model
exhibits a more rapid convergence. However, at around 100
epochs, the error remains constant, as the training progresses for
both architectures. A similar trend was observed for all tested
configurations. Another element to highlight is the absence of
overfitting, since the training and validation error monotonically
decrease at the same time. This shows that the network learns
the structure of the observed data and is able to infer the
validation data. An indication of overfitting would be a training
error that decreases while the validation error remains the same
or increases.

On the other hand, for the laboratory validation of subglottal
pressure, we found the opposite trend for MAE as a function
of the NN architecture complexity. In Case I, MAE increased
from 2.23 cm H2O to 3.17 cm H2O for an increasing complexity
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FIGURE 4 | Mean Squared Error (MSE) vs. epoch for training (blue color) and validation (red color) for two neural networks architectures. (Left) 2 hidden layers with 4

neurons. (Right) 8 hidden layers and 128 neurons.

FIGURE 5 | Comparison between laboratory-estimated subglottal pressure

and the corresponding estimates from the trained neural network (2-hidden

layer, 4 neurons in each layer, and 7 voice features). R2 = 0.65. The dashed

line represents the theoretical 1:1 perfect matching.

from the 2 hidden layers with 4 neurons to 4 hidden layers
with 128 neurons model. Case II also exhibited MAE increases
from 1.95 cm H2O to 3.23 cm H2O for the same increasing
complexity in the NN architecture. These results represented an
increase of 42% and 66% in MAE for Case I and II, respectively,
with similar trends for RMSE. Therefore, higher NN complexity
was not adequate to represent sample distribution from the
laboratory dataset.

Table 3 also illustrates that the inclusion of SPL in the input
feature vector improves the estimation of subglottal pressure
for all tested NN architectures. Using the best architecture for
the laboratory validation, we found a 12% reduction in MAE
and RMSE. The best architecture for the synthetic validation
exhibited a 16% reduction in MAE and RMSE when SPL was
added. These results are in agreement with previous studies (Titze
et al., 2003; Björklund and Sundberg, 2016; Espinoza et al., 2017)
that reported a strong correlation between subglottal pressure
and acoustic SPL. Although not reported, no significant error
differences were observed when estimating SPL from either the
MIC or ACC sensor.

Therefore, the NN model with lowest error in the validation
set from the laboratory data was selected from 4 neurons
in the hidden layers and all seven input features. Figure 5

shows a scatter plot of the NN-estimated subglottal pressure
vs. the reference subglottal pressure from the laboratory data.
The dashed line represents a 1:1 correspondence between the
estimated and reference subglottal pressure. The coefficient of
determination R2 is 0.65 and the mean absolute percentage
error is 24.9%. We highlight that even though the IOP data
was used as ground truth for this assessment, differences in the
subglottal pressure estimates from IOP and direct measurement
of subglottal pressure via tracheal puncture has been reported in
the range of 5% (Hertegård et al., 1995), although interpolation
between the peaks of the pulses can lead to a 12% error
(Rothenberg, 2013).

3.2. Vocal Fold Collision Pressure and
Laryngeal Muscle Activation Estimation
Table 4 reports the coefficient of determination R2, MAE (in
physical units and in percentage of range) using synthetic data
for the four outputs (Ps, Pc, aCT , aTA) obtained using the NN for
the 2 hidden layers with 4-neuron and 4 the hidden layers with
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TABLE 4 | Assessment of estimated vocal measures Ps, Pc, aTA, and aCT using

the proposed NN regression method.

Parameters Units R2 MAE MAE

(Units) (%)

2-HL and 4-N architecture:

Ps cm H2O 0.64 1.84 11.4

Pc cm H2O 0.70 3.33 8.2

aTA - 0.07 0.21 21.1

aCT - 0.53 0.15 14.6

4-HL and 128-N architecture:

Ps cm H2O 0.93 0.74 4.7

Pc cm H2O 0.92 1.70 4.2

aTA – 0.52 0.13 13.3

aCT – 0.84 0.07 7.1

Reported values for R2 and MAE (in physical units and in percentage of range) for two NN

architectures with different hidden layers (HL) and neurons (N). The input vector includes

the seven aerodynamic measures.

128-neuron architectures. The architectures with more layers
exhibited the best performance for estimating subglottal pressure
for the synthetic data.

As seen before for the synthetic validation of subglottal
pressure, increasing the complexity of the NN architecture
increases the accuracy of the estimates. This performance holds
true for the estimates of vocal fold collision pressure and
laryngeal muscle activation. However, there is a significantly
smaller R2 of 0.52 for aTA estimation when compared with
R2 > 0.8 for estimation of the other measures using the 4
hidden layer with 128 neurons NN. This finding suggests that
certain measures, such as aTA, require deeper, more complex NN
architectures to achieve similar performance.

4. DISCUSSION

The purpose of this study was to explore the combination of
neural network regression networks with a voice production
model to estimate physiologically relevant vocal measures, i.e.,
subglottal pressure, vocal fold collision pressure, and (TA and
CT) laryngeal muscle activation from a neck-surface vibration
signal. Validation for this study was done both numerically
and experimentally. Given that some of the predicted measures
are difficult to obtain experimentally, only the estimates of
subglottal pressure could be compared with reference estimates
of mean subglottal pressure derived from the standard airflow
interruption technique in the laboratory.

Both numerical and experimental validation experiments
yielded reasonable accuracy. The robust and reliable estimates
of the proposed method are dependent on the capacity of
the selected voice production model to mimic the observed
distributions in the laboratory data. As the architecture
complexity of the NN increased, the estimation error decreased
for the synthetic data but increases for the laboratory data. We
argue that this is a result of the way the model was utilized,
i.e., model parameters were swept across a large range of values,

but no anatomical changes were considered; thus the model
simply described a single subject for a range of conditions.
This may be playing a role in the accuracy for the estimation
of subglottal pressure because no inter-subject variability was
considered. At the same time, we discarded cases that differed
from the laboratory distributions during the training process
and corrected for a bias in the estimation of subglottal pressure.
In addition, it is possible that subglottal and supraglottal tract
propagation losses and the losses at the glottal boundary were
not high enough, thus amplifying the source-filter interactions
and resulting subglottal pressure. Future efforts will be devoted to
improve model development, better reflect population behaviors,
and assess these effects in the predicted accuracy of the proposed
approach. In spite of its simplicity and the aforementioned
limitations, we still conclude that the triangular body cover
model provides a good general representation of typical sustained
phonation for a large range of subjects and conditions.

The predicted subglottal pressure in this study are comparable
with those obtained in previous studies. Our lowest mean
absolute error for estimated subglottal pressure from clinical data
was 191 Pa (1.95 cmH2O), whereas two relevant studies reported
mean absolute errors of 194 Pa (Gómez et al., 2019) and 115
Pa (Zhang, 2020). However, it is important to highlight that
our predictions are obtained from a neck-surface accelerometer
and that we tested our predictions against in vivo human data,
whereas these studies used porcine and human excised larynx
experiments. Lin et al. (2020) estimated subglottal pressure
from a neck-surface accelerometer using a subject-specific step-
wise factorial regression model in 26 normal subjects. The
investigators obtained an average root-mean-square error in
the range of 2.4–2.5 cm H2O, which is comparable with the
root-mean-square error of 2.48 cm H2O in the current study.
The linear regression models in Lin et al. (2020) included
cepstral peak prominence and fundamental frequency, along
with ACC-based aerodynamicmeasures and were constructed on
an individual basis for every subject across multiple elicited voice
qualities. The main advantages of the NN model approach are
the fact that a single, general non-linear regression mapping is
utilized and that our mapping also provides estimates of other
clinically relevant measures of vocal function. It is acknowledged
that future work is required to experimentally validate these
other measures of vocal fold collision pressure and laryngeal
muscle activation.

Titze et al. (2003) put forth a simple, empirically derived
formula (Equation 15) that computed subglottal pressure using
only measurements of SPL and fo. Applying this formula to the
laboratory data (237 tokens) in the current study to estimate
subglottal pressure resulted in a root-mean-square error of
2.86 cm H2O and mean absolute error of 2.11 cm H2O. The
relatively good performance for such a simple formula supports
the idea that simple regression architectures are adequate for
predicting subglottal pressure in vocally typical conditions;
estimation accuracy of linear regression models reduces when
non-modal voice qualities are included (Marks et al., 2019, 2020;
Lin et al., 2020). The model-based approach of the current work
allows for the estimation of additional measures of vocal function
(e.g., vocal fold collision pressure, laryngeal muscle activation).
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On the other hand, the accuracy of estimates of muscle
activation and collision pressure that was assessed against
synthetic data was hampered by the simplicity of the rather
shallowNN architecture that resulted frommatching clinical data
for subglottal pressure. When the complexity of the network
is increased, the estimation of muscle activation and collision
pressure improves. This result is encouraging to investigate the
development of subject-specific models that can handle more
complex neural network architectures without losing the ability
to predict subglottal pressure.

These initial results constitute a proof of concept that
the proposed NN method is a feasible option for estimating
clinically relevant vocal measures that are difficult to directly
measure in laboratory and ambulatory settings. Current results
could be significantly improved by exploring different NN
architectures, improving model development, training with ACC
signal features directly (vs. model features), using subject-specific
tuning with transfer learning instead of a generic training for all
subjects, and including experimental validation of all predicted
values. This study delineates a path for various subsequent
research efforts in this direction.

The neck-surface accelerometer sensor can be worn by a
speaker for laboratory, clinical, and ambulatory assessments
of vocal function. The estimation of subglottal pressure was
validated using sustained phonation datasets from numerical
modeling and laboratory recordings. There is potential to
translate this method into ambulatory settings due to the input
of the network only needing accelerometer-based features for
short-time windows of 50 ms in duration. We hypothesize
that the physiologically relevant measures that are obtained
with the proposed approach will yield salient measures of
vocal function in real-world environments. We expect that the
physiologically relevant measures that are obtained with the
proposed approach will provide unique quantitatively based
insights into the etiologic and pathophysiological mechanisms
associated with daily voice use in patients with hyperfunctional
voice disorders. The capability to link model outputs with clinical
data is expected to produce more comprehensive and specific
descriptions of aberrant phonatory mechanisms that will lead to
better subclassification (phenotyping) of hyperfunctional voice
disorders and ultimately improve the prevention, diagnosis, and
treatment of these disorders.

5. CONCLUSION

A framework to estimate subglottal pressure, collision pressure,
and muscle activation from a neck surface accelerometer is
developed integrating machine learning tools and a numerical
model of voice production. Aerodynamic measures estimated
from the neck surface accelerometer are combined with a sound
pressure level estimate obtained from either an accelerometer or
a microphone, and are selected as inputs to a neural regression
network. The non-linear mapping is trained solely with a low-
order voice production model featuring a symmetric triangular
body-cover model of the vocal folds. When compared with

clinical recordings from 79 female vocally healthy participants,
the mean absolute error and root mean square error for the
subglottal pressure were 1.95 cm H2O and 2.48 cm H2O.
These results are comparable with previous studies but with
the advantage of having a general mapping for all patients
and providing simultaneous estimates of collision pressure and
muscle activation. However, given that clinical validation for
these latter features is cumbersome, only synthetic data were
used for that purpose, and experimental validation is left for
future efforts. At the same time, relevant insights are gained by
comparing the numerical model with the clinical data that will
lead to further model refinements. The initial results constitute a
proof of concept that the proposed machine learning method is a
feasible option for providing highly relevant physical measures
for the ambulatory assessment of voice. Future efforts will be
focused on creating individualized mappings for normal and
disordered voices with transfer learning and validating all the
estimated features with in vivo recordings.
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Background: Sepsis, post-liver transplantation, is a frequent challenge that impacts

patient outcomes. We aimed to develop an artificial intelligence method to predict the

onset of post-operative sepsis earlier.

Methods: This pilot study aimed to identify “physiomarkers” in continuous

minute-by-minute physiologic data streams, such as heart rate, respiratory rate, oxygen

saturation (SpO2), and blood pressure, to predict the onset of sepsis. The model

was derived from a cohort of 5,748 transplant and non-transplant patients across

intensive care units (ICUs) over 36 months, with 92 post-liver transplant patients who

developed sepsis.

Results: Using an alert timestamp generated with the Third International Consensus

Definition of Sepsis (Sepsis-3) definition as a reference point, we studied up to 24 h

of continuous physiologic data prior to the event, totaling to 8.35 million data points.

One hundred fifty-five features were generated using signal processing and statistical

methods. Feature selection identified 52 highly ranked features, many of which included

blood pressures. An eXtreme Gradient Boost (XGB) classifier was then trained on the

ranked features by 5-fold cross validation on all patients (n = 5,748). We identified that

the average sensitivity, specificity, positive predictive value (PPV), and area under the

receiver-operator curve (AUC) of the model after 100 iterations was 0.94 ± 0.02, 0.9

± 0.02, 0.89 ± 0.01, respectively, and 0.97 ± 0.01 for predicting sepsis 12 h before

meeting criteria.

Conclusion: The data suggest that machine learning/deep learning can be applied

to continuous streaming data in the transplant ICU to monitor patients and possibly

predict sepsis.

Keywords: machine learning, liver transplant, surgery, physiological data streams, artificial intelligence, sepsis
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INTRODUCTION

Liver transplantation continues to be the optimal and more
successful therapy for end-stage liver disease and cirrhosis (Kim
et al., 2019). One of the biggest challenges in the transplant
community is the discrepancy of donor availability and the need
of the recipients. Transplant centers frequently appeal to the use
of marginal or suboptimal donors to decrease this gap, while,
at the same time, increasing the chances for post-transplant
complications associated with organ dysfunction (Kim et al.,
2019).

Moreover, in recent years, the increased availability of more
potent immunosuppressive agents, along with sicker and older
recipients needing transplantation, has increased the incidence
of opportunistic infections (OIs) affecting patient survival after
liver transplantation (LT) (Haidar et al., 2019; He et al., 2019).
Post-transplant infections with or without surgical complications
are the leading cause of morbidity and mortality post-LT
(Kim et al., 2019). Overall, infections and sepsis are estimated
to occur in more than half of LT recipients, and are the
main cause of post-LT death between days 21 and 180 (Sun
et al., 2011; Fischer et al., 2013; Martin et al., 2014; Haidar
et al., 2019; He et al., 2019). Bacterial infections are the most
common post-transplant infections (>70%), followed by viral
and fungal infections (Sun et al., 2011; Haidar et al., 2019; He
et al., 2019). Fortunately, due to intensive screening practices
to detect latent infections in liver transplant candidates, and
with the implementation of appropriate prophylactic protocols
and therapy, mortality associated with post-LT infections is still
low (<10%) (Sun et al., 2011; Martin et al., 2014; He et al.,
2019). Known risk factors associated with infection after LT
include a high model for end-stage liver disease (MELD) score,
re-transplantation, advanced age of the recipient, number of
blood transfusions, renal replacement therapy (RRT), and a long
intensive care unit (ICU) stay, among others (Haidar et al.,
2019; He et al., 2019). Several steps in the physical examination
and laboratory assessment allow a clinician to identify active
infections that would prompt therapy to prevent complications.
It is known, however, that delays in diagnosis and therapy
implementations would carry higher mortality in this population
(Kumar et al., 2006; Dombrovskiy et al., 2007). Because of the
scarce resource of liver grafts and the associated mortality of
post-transplant infections, biomarkers or markers capable of
accurately expediting diagnosis would be of significant clinical
significance in a transplant unit.

Sepsis is a common event, with more than a million
Americans getting hospitalized each year (Dombrovskiy et al.,
2007; Liu et al., 2014). Sepsis is caused by a heightened
inflammatory response to an infection, and can quickly progress
to multi-organ failure and death (Liu et al., 2014). In the
septic shock phase of the disease, every hour that treatment
is delayed can lead to a 7.6% increase in mortality (Kumar
et al., 2006). In liver transplantation, this phenomenon is not
different in the general population, and an early infection due to
surgical complications, such as bleeding, bile leak, or rejection,
may trigger infections and sepsis with severe consequences in
recipients (Kumar et al., 2006; Elkholy et al., 2019).

A number of recent studies have applied artificial intelligence
(AI) and machine learning to identify patients at risk for sepsis
earlier, thereby potentially reducing mortality and morbidity
(Kumar et al., 2006; Nemati et al., 2018; Elkholy et al., 2019).
These methods have typically used an array of clinical and
laboratory variables in the electronic medical record (EMR) to
predict the risk of sepsis. While such methods have achieved
a significant performance in retrospective studies, they are
limited by the aperiodic and unstructured nature of EMR
data. Alternative methods for developing predictive models
for sepsis have used high-frequency data streams captured
from the medical monitor, such as heart rate, blood pressures,
respiratory rate, and oxygen saturation (Kamaleswaran et al.,
2018; van Wyk et al., 2019). The use of such biosensor data
may identify physiomarkers that present hours before the clinical
manifestation of the disease or event, thereby allowing for earlier
recognition and the initiation of therapy. In this study, we
evaluated the effectiveness of high-frequency physiological data
stream analysis in predicting the onset of sepsis in liver transplant
patients. We developed and tested a number of machine learning
methods using features derived from the physiological time series
to generate predictions at various time intervals before the Third
International Consensus Definition of Sepsis (Sepsis-3) clinical
definition (Singer et al., 2016).

MATERIALS AND METHODS

Data Collection Environment
This observational retrospective study was approved by the
Institutional Review Board (IRB) of the University of Tennessee
Health Science Center. We collected continuous physiological
data streams from bed-side monitors using the Cerner iBus
(Cerner Corporation, Kansas City, MO, United States) (Cerner
Corporation, 2014). The Cerner iBus generated minute-by-
minute heart rate (HR), respiratory rate (RR), blood pressure
(mean, systolic, and diastolic), and oxygen saturation (SpO2) data
streams; however, continuous temperature was not available and
was, therefore, excluded from the analysis. We captured non-
invasive blood pressure (NIBP), which was sampled at least once
an hour, and, in some cases where clinical deterioration was
suspected, the NIBP was sampled more frequently.

Case Definition
Patients admitted to the intensive care unit across the Methodist
University Hospital and Transplant Institute (UTHSC) between
January 2017 and January 2020, with continuous minute-by-
minute physiological monitoring data, were included in the
study. In this study, we utilized the Sepsis-3 definition [SHAP
(SHapley Additive exPlanations), 2021]; patients whomet Sepsis-
3 criteria but did not have high-frequency data recorded within
the prior 24 h were excluded. Sepsis-3 definitions were applied
serially using the method described by Nemati et al. (2018) in
order to identify the time of sepsis onset (event time) (Nemati
et al., 2018). We identified controls as those who had never met
sepsis criteria during their encounter. To identify a control event
time (for supervised learning), we used a randomly generated
timestamp that occurred between admission and discharge,
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provided that the 24-h data availability criterion prior to the
random event time was met. All the data were then temporally
aligned to the event time, identified as tsepsis

Feature Extraction and Feature Selection
For each of the six physiological data streams [heart rate,
respiratory rate, oxygen saturation, systolic blood pressure (SBP),
diastolic blood pressure (DBP), and mean femoral artery blood
pressure (MAP)], features were extracted using eight statistical
and two time-frequency domain methods, namely, mean, sum,
minimum, maximum, frequency of the measurement (length),
standard deviation, variance, kurtosis, fast Fourier transform
(FFT), and continuous wavelet transform (CWT) (Christ et al.,
2018). A number of parameters were included for evaluating the
FFT coefficients (0–100, with a step of 4); then, we extracted
the absolute coefficient values for each parameter. For CWT
features, we evaluated width values of 0–20 at a step of 2. These
features were extracted for each hour within the 3-h window
across six data streams, for a total of 774 features per window;
24 FFT features consistently returned null and subsequently
removed, resulting in a total of 750. Missing data were imputed if
there was a previous record; otherwise, we used the population
median value. These features were then concatenated into a
single feature vector that incorporated temporal dynamics over
the 3-h period.

We then applied a variety of feature selection methods,
including statistical, and thus performed both non-parametric
Mann–Whitney-U and parametric independent sample t-tests,
ridge, lasso, recursive feature elimination (RFE), and random
forest-based variable importance utilizing information gain and
gini impurity. These feature selection methods were performed
in order to reduce data dimensionality to a limited set of markers
that predict the onset of sepsis.

The dataset was then segmented into two cohorts; the
first included all patients who were admitted to the intensive
care unit without having received a liver transplant at least
31 days prior to admission, and the second cohort included
all patients who underwent transplantation. For the training
of the model, we implemented a subsampling strategy where
we randomly selected an equal number of controls to cases.
In order to control for over-fitting, we implemented a 5-
fold cross validation on each iteration to derive training
and test performances. We then iterated this training 100
times to generate unique model performances from each run
and reported the averaged performance measure overall runs.
Hyperparameters were evaluated using a grid-search approach,
with which we predefined the upper and lower limits of the
hyperparameters and generated a series of models and recorded
their performance. The hyperparameters that achieved the most
stable model performance, with minimal variance over the 100
runs, were selected and used to train the entire first cohort
data. We selected the optimal hyperparameter for each of
the algorithms that were explored, namely, eXtreme Gradient
Boosting (XGB), logistic regression (LR), support vector machine
(SVM), and random forest (RF). The remaining selected models
were then validated on the transplant cohort.

Machine Learning Pipeline
Prior to the modeling of high-dimensional data streams, we
applied an unsupervised cluster visualization technique called
t-distributed stochastic neighbor embedding (tSNE) (Van der
Maaten and Hinton, 2008). This method converts similarities
between data points to joint probabilities and tries to minimize
the divergence between these joint probabilities in a low-
dimensional manner to illustrate possible clusters and separation.
Then, in the binary classification, we applied a number of
machine learning classifiers to generate complementary but
competing models. We investigated supervised learning methods
such as eXtremeGradient XGB, LR, SVM, and RF, with both XGB
and RF being non-linear ensemble-based learning methods. In
particular, XGB is unique in incorporating sequential boosting to
improve classification performance, but it may also be sensitive
to overfitting. Furthermore, SVM is a classical machine learning
method that utilizes hyperplanes to optimize separation among
features and has been successfully used for binary classification
tasks. In addition, ALR is a statistical learning method and often
serves as a benchmark for machine learning model comparison.
We utilized the above algorithms to compare performance across
unique learning strategies to select an optimal algorithm that
performs best for this dataset.

In order to generate explainable feature importance, we used
the SHapley Additive exPlanations (SHAP) package (Lundberg
and Lee, 2017). The SHAP algorithm uses methods from game
theory to explain the output of machine learning models; it has
been noted to be state-of-the-art in terms of generating reliable
explanations of predictive model outputs.

Model benchmarks were generated by computing area under
the receiver-operator curve (AUC), area under the precision-
recall curve (AUPRC), sensitivity, specificity, and positive
predictive value (PPV). In particular, AUC is a traditional
benchmarking tool for determining performance over a range
of possible model-estimated probability thresholds; however, it
assumes a balanced distribution of samples. Conversely, AUPRC
is more useful for measuring performance across imbalanced
and low-PPV scenarios; a higher AUPRC indicates that the
model can accurately identify all positive examples without
compromising specificity.

We utilized Python 3.6 and the XGBoost package (XGBoost
Documentation, 2021) for developing the XGB model and the
sci-kit learn (Scikit-Learn: Machine Learning in Python, 2021)
package for developing the remaining machine learning and
statistical analysis code base. We utilized the SHAP library to
derive explainable interpretations and summary plots [SHAP
(SHapley Additive exPlanations), 2021].

RESULTS

Data Missingness
In the derivation dataset, the rate of missing value was highest
between MAP and DBP, with an average of 16% patients having
at least one missing value in the 3-h observational window.
Oxygen saturation was the most often recorded, with only 0.1%
of the patients missing this measure, followed by HR with
a missing value of up to 0.6%, RR in 2.7% of patients, and
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TABLE 1 | Characteristics of the study population.

Sepsis (Non-Transplant) Sepsis (Transplant)

Characteristics Overall Yes No Overall Yes No

Patient, n (%) 5,748 (100) 604 (10.5) 5,144 (89.5) 252 (100) 92 (27) 160 (73)

Male, n (%) 2,932 (49.2) 299 (48.5) 2,633 (49.3) 160 (63) 50 (54) 110 (69)

Mechanical ventilation, n (%) 1,356 (22.8) 490 (74.6) 896 (16.8) 252 (100) 92 (100) 160 (100)

In hospital deaths, n (%) 439 (7.4) 176 (28.5)** 263 (4.9) 23 (9) 8 (9) 15 (9)

Age (yr.) median (IQR) 62 (50–72) 63 (52–72) 61.5 (50–72) 57 (48–66) 61 (46–67) 57 (50–65)

ICU LOS (d), median (IQR) 5 (3–8) 11 (6–20)** 4 (3–7) 2 (2–5) 4 (2–5) 2 (2–5)

ICU LOS > = 7d, n (%) 1,917 (32.2) 435 (70.5)** 1,482 (27.7) 58 (22.9) 21 (23) 37 (22.9)

Self-reported race, n (% row-wise)

Black or African American 3,453 (58.0) 387 (62.7)* 3,066 (57.4) 44 (17) 7 (16) 37 (84)

White 2,360 (39.6) 214 (34.7) 2,146 (40.2) 178 (71) 14 (8) 164 (80)

Other/Unknown 104 (1.8) 13 (2.1) 91 (1.7) 20 (8) 2 18 (6)

Multiple 21 (0.4) 1 (0.2) 20 (0.4) 0 0 0

Asian 19 (0.3) 2 (0.3) 17 (0.3) 1 0 1

Self-reported Ethnicity, n (%)

Not Hispanic or Latino 5,847 (98.2) 605 (98.0) 5,242 (98.2) 219 (87) 11 (1) 208 (99)

Hispanic or Latino 69 (1.2) 8 (1.4) 69 (1.3) 19 (8) 2 (10) 17 (90)

Unknown or Declined 33 (0.6) 4 (0.6) 29 (0.5) 0 0 0

*Significant at a = 0.01; **significant at a = 0.001.

SBP in 4.8%. Supplementary Figure S1 illustrates the correlation
between the missing variables, and suggests that when MAP
is missing, DBP is also missing and vice versa. In 60% of the
cases, SBP is associated with missing MAP and DBP. In cases
where HR is missing, in 30% of the patients, MAP and DBP are
also missing.

We identified a total of 5,748 non-transplant patients who
were admitted to the intensive care unit over an 8-month period,
604 (10.5%) of whom met the “Sepsis-3” criteria defined as
suspicion of infection in the presence of organ failure (Singer
et al., 2016). Furthermore, another 252 patients were separately
identified to have undergone a liver transplant, 92 (36%) of whom
met Sepsis-3 criteria during their stay in the ICU.

Age and gender differences were not statistically significant in
the general cohort (Table 1). Model for end-stage liver disease
scores was also not statistically different between the cohorts,
with scores consistently ranging from 22 to 28 across both
cohorts. As expected, in the transplant program, a greater portion
of the transplant cohort consisted ofmale Caucasians. In-hospital
mortality in the transplantation cohort was 9%, which is less than
the in-hospital mortality in the general cohort. The incidence of
sepsis in the transplant cohort was significantly higher than in
the general cohort. The median age of the transplant cohort was
57 years, with the sepsis patients being, on average, 4 years older
than the non-sepsis liver transplant patients across each group
similar to the general cohort. All patients in the transplant cohort
were temporarily mechanically ventilated, while only 23% was in
the general cohort.

An Unsupervised clustering, using the tSNE method, of the
raw data up to 12 h prior to sepsis onset suggests that clusters
can be distinguishable (Figure 1A, tSNE plot). The cluster to the

left largely consists of patients without sepsis, while the cluster
to the top and to the right contains a significant portion of
patients with sepsis, indicating that further analysis of the data
may reveal useful predictive markers for sepsis. We found a
number of overlapping distinguishing physiomarkers when we
utilized the gradient boosting method (Figures 1B,C), and the
SHAP output (Figure 1D). Notably, HR, RR, and SBPs were
significant explainers for patients who developed sepsis early in
the clinical course.

Figure 2 illustrates an example patient with sepsis where the
physiological data streams were available up to 16 h before onset.
In this figure, dynamic shifts are seen in the HR, RR, and
blood pressure data streams during the time leading to sepsis.
Moreover, interventional response via fluid resuscitation is also
observed shortly thereafter.

Statistical Analysis
A total of 750 features were generated from all the physiological
data streams using statistical and time-frequency domain
methods (described in the methods section); these represent
features generated in the observational window at 12 h
(prediction horizon) prior to sepsis onset. By Student’s t-test
against these continuous measures to identify distinguishing
features, we found that the statistical significance for the
transplant cohort at p < 0.05 was observed in 311 features,
of which 106 were various time-frequency abstractions of
DBP and 79 features were related to SBP, 73 to RR, 38 to
MAP, and 15 belonged to HR. None of the SpO2 features
figured as statistically significant. Among the signal processing
features, at p < 0.001, FFT of DBP and SBP, and CWT
of RR were significant (Figure 3). The box plots illustrated
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FIGURE 1 | (A) t-Distributed stochastic neighbor embedding (tSNE) plot characterizing sepsis (dark purple) and non-sepsis clusters (pink); (B) cumulative feature

importance identifies 29 features that explain 99% of the data; (C) feature importance generated using light gradient boosted machines; (D) explainable importance

with SHapley Additive exPlanations (SHAP) after feature selection.

in Figure 3 show that frequency-domain characteristics were
meaningfully distinguishable among blood pressures, while more
complex dynamics that spanned the time-frequency domain were
apparent among respiratory rates.

Machine Learning
Utilizing the statistically significant features (n= 311), we applied
feature selection techniques, namely, the RFE method, which
generated 22 features that were highly predictive. All of these
22 features were derived from statistical and continuous wavelet
transformmethods, and indicated that SBP characteristics are the
top predictor of sepsis (Figure 1D). Separately, using ridge and
lasso feature selection, we applied a defined coefficient threshold
of 0.5 to select the most predictive features. The lasso method
selected 12 features, which consisted exclusively of statistics from
respiratory rate. The ridge method selected 52 highly ranked
features, of which the top feature was SBP, with various temporal
permutations of SBP appearing a total of nine times. The second
most important feature was DBP, which appeared a total of 10
times, followed by RR, which appeared 12 times. The models
were developed using both the RFE and ridge methods, and
the ridge-based feature selection was identified as the optimal
feature set because of its improved performance across the

5-fold cross-validation benchmarks. While we evaluated XGB,
LR, SVM, RF, and MLP, XGB was identified as the optimal model
after averaging 10 randomized runs of the 5-fold cross-validation.
Because of the significant overfitting that occurred in the MLP
pipeline early in the analysis, we did not pursue it for further
hyperparameterization. Figure 4 illustrates model performance,
such as AUC and AUPRC, for the machine learning methods
evaluated. In the figure, both XGB and RF are consistently shown
to have the highest performance across both benchmarks, with
XGB slightly outperforming RF.

Table 2 lists the performances of the logistic regression,
support vector machine, random forest, and eXtreme Gradient
Boost models. The XGB model was identified as the optimal
model because of generally improved performance across all
metrics, with a mean sensitivity of 0.94, specificity of 0.90, and an
AUC of 0.97, as shown in Figure 4. The SVM model performed
worst with respect to AUC (0.63) but had the highest specificity
(0.94). The RF model performed relatively close to the XGB
model but with a lower sensitivity (0.92) and specificity (0.88).
The LRmodel had the lowest overall PPV (0.76). The XGBmodel
outperformed all the other models in terms of each metric except
for specificity. The optimal hyperparameters used in the XGB
model were as follows: max depth of 6, subsample parameter
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FIGURE 2 | An example patient with sepsis is illustrated in this figure; continuous physiological data were captured over an 18-h post-transplantation period. The

patient met Sepsis-3 criteria (tSepsis) 13 h post transplantation (retrospectively identified), and fluid resuscitation (fluid bolus) was initiated 1.5 h thereafter. Several

elements are of note within this patient, namely, in the preceding hours before meeting criteria, heart rate (HR) variability is noticeably reduced, accompanied by

increased dynamics in the systolic blood pressure (SBP) and mean femoral artery blood pressure (MAP) data streams.

FIGURE 3 | Statistical significance (p < 0.001) was observed among the three

physiological signals, namely, respiratory rate, diastolic blood pressure, and

systolic blood pressure at 12 h prior to sepsis onset.

of 1, the minimum sum of instance weight for child of 1, and a
learning rate of 0.1. The optimal SVM kernel function was linear.
The threshold used for binary classification was 0.5.

DISCUSSION

Liver transplantation is a life-saving therapy for patients with
liver cancer and end-stage liver disease. In the United States in
2017, more than 7,000 LTs were performed (Kim et al., 2019).

Transplant recipients are, however, at high risk for
complications such as infections due to advanced age, obesity,
comorbidities, and issues associated with the transplant
event that may be related to surgical complications or organ
dysfunction (Pedersen and Seetharam, 2014). Furthermore,
systemic immunosuppression has rendered liver recipients
susceptible to de novo infections and the reactivation of
preexisting latent infections such as viral infections. Infections
occurring during the first month post-LT are usually nosocomial
or donor-derived or the result of a perioperative complication,
such as a surgical complication, or organ dysfunction
(Hernandez Mdel et al., 2015). A recent review of the Organ
Procurement and Transplantation Network (OPTN) data
from 64,977 patients who underwent liver transplantation
identified the incidence of 90-day and 1-year mortalities
at 5 and 10%, respectively. Although death associated with
cardiovascular/cerebrovascular/pulmonary/hemorrhage was the
most common cause of death within the first 21 days (7-day:
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53%), only 20% of patients who underwent liver transplantation
died from these causes after 180 days. Importantly, infections
were the most frequent cause of death 30–180 days after liver
transplantation. In contrast, after roughly 200 days from the time
of liver transplantation, other causes were the most frequent
cause of death (Baganate et al., 2018).

Severe sepsis, or infection with systemic inflammation,
poses a substantial burden on the United States healthcare
system, leading to>7,50,000 hospitalizations and 2,00,000 deaths
annually (Moore et al., 2016). Severe sepsis remains a leading
cause of death in the United States, with in-hospital mortality

FIGURE 4 | (A) Area under the Receiver Operator Curve, the XGBoost model

achieves the highest AUC while SVM performed the worst. (B) area under the

Precision Recall curve, XGBoost maintains the best AUPRC but Logistic

Regression is ranked the worst.

ranging from 12 to 26% (Donnelly et al., 2016). In solid organ
transplantation and in contrast to the general belief, infection,
and sepsis are more frequent in the general population, but the
mortality associated with sepsis is lower, as also demonstrated in
the analysis and results (Donnelly et al., 2016).

A big challenge is, however, early diagnosis, as the syndrome
of sepsis has a wider range of causative organisms and differing
presentations among immunosuppressed individuals such as
patients who underwent liver transplant (Oriol et al., 2015).
Furthermore, in the septic shock phase of the disease, every hour
that treatment is delayed can lead to a 7.6% increase in mortality
(Kumar et al., 2006).

Traditional markers of systemic inflammatory response
syndrome and clinical presentation may not be present
among the immunosuppressed, despite active overwhelming
infection (Gauer, 2013).

Hereby, the analysis of patients who underwent liver
transplantation patients who were admitted to the intensive
care unit post-surgery revealed novel physiomarkers that can
predict the onset of sepsis earlier and may have an impact on
clinical decisions. An illustration using the tSNE visualization
method indicated that there are unique clusters that emerge with
separation between sepsis and non-sepsis cohorts. This indicates
that the source data, comprising physiological data streams, may
indeed be useful to predict the onset of sepsis within this cohort.
We further found that these physiomarkers existed at least 12 h
before a clinical definition was made. Among the important
features, we noted that, when compared across two different
explainability methods, we saw a consistent trend in the statistical
markers of RR and SBP, along with HR, dominating the list of
signals that predicted sepsis early in the clinical course. These
vital sign measures have been previously described using EMR
data. However, they have not been discussed in the context of
continuous bedside monitoring for patients who received liver
transplants in the past (Desautels et al., 2016; Bloch et al., 2019).
While signal processing methods, FFT and CWT, were both
statistically significant between the cohorts, they were outranked
by the statistical features derived from the same physiological
data streams.

We also found that, while several models may be useful
as optimal candidates, the eXtreme Gradient Boost model
specifically showed higher performance. In the selection criteria
for the optimal model, we ensured that a specificity value of at
least 0.6 would be required, as to not overwhelm nursing staff
with false alarms. Therefore, these results indicate a value in the

TABLE 2 | Comparison of model performance.

LR SVM RF XGB

mean [95% CI]

Sensitivity 0.49 [0.44–0.49] 0.28 [0.27–0.33] 0.92 [0.90–0.92] 0.94 [0.93–0.95]

Specificity 0.85 [0.83–0.86] 0.94 [0.93–0.95] 0.88 [0.83–0.89] 0.90 [0.89–0.90]

PPV 0.76 [0.74–0.78] 0.83 [0.82–0.84] 0.88 [0.87–0.89] 0.89 [0.88–0.91]

AUC 0.67 [0.66–0.70] 0.63 [0.62–0.65] 0.96[0.93–0.96] 0.97 [0.95–0.97]
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use of bedside monitoring data streams for informed clinical
decision-making and potential treatment plans for patients who
received liver transplants in the past, and may serve as useful
alternatives to existing clinical monitoring.

Specific features derived from time-frequency domain
extractions revealed the useful characteristics of the continuous
physiological data streams that can highly predict sepsis.
Specifically, in the results, we found that SBP and DBP, along
with changes in RR, were among the dominant features (top
10) in the model. We noted that SpO2 was not observed to
be a significant predictor. While significant literature has
been proposed around the utility of HR and HR variability
(Ahmad et al., 2009), we noted that, in the model, these appear
only seven times in the 52 features that were included in
model development.

We sought to develop a minimal physiologic model of
sepsis because of the unpredictable nature of orders and
their results. The development, therefore, of a minimalistic
predictive model may allow for wider use. However, we note
that there may be significant improvements in the performance
of the model by incorporating clinical- and laboratory-based
findings. We expect this to improve the model performance in
prospective deployment.

Limitations associated with this study are being derived from
a single site and incomplete data analysis due to incomplete
clinical data collection (e.g., IMS, surgical complications, HAT,
among others). As for the future study, we seek to incorporate
data across multiple sites. We were unable to compute standard
severity of illness scores because of the limited clinical data, such
as the composite sepsis risk score, D-MELD (donor age recipient
MELD), donor risk index, Euro-transplant donor risk index, or
survival outcome following liver transplantation (SOFT) score,
to perform benchmark comparisons. We also reported a small
sample size of patients who received liver transplants in the past,
which could limit the generalizability of the model; thus, larger
datasets from multi-site transplantation units could improve the
external generalization.

Clinical Translation and Future Study
In this pilot study, we demonstrated that continuous
physiological data streams can be used for informed clinical
decision-making related to the risk of sepsis among patients
who received liver transplants in the past. While the model
proposed in this study can be directly applied, clinical translation
has been a major challenge for machine learning algorithms.
We have previously demonstrated that, while clinical data may
be useful by themselves, machine learning algorithms are also
influenced by measurement indicators (e.g., practice patterns),
such as specific applications of sepsis bundles that may indicate
increased clinical suspicion (Futoma et al., 2021). In order to
control for these confounding variables, a clinical translation of

such machine learning models needs to be carefully managed,
for instance, by enacting benchmark methods that include silent
prospective pilots and clinical adjudication of alerts. These efforts
form the basis for the future study.

CONCLUSION

Artificial intelligence is becoming an important tool to assist
many areas in the field, such as inpatient and outpatient
monitoring, including the setting of solid organ transplantation
(Woldaregay et al., 2019). In this context, this is one of the first
studies that aim to demonstrate that the use of machine learning
and AI tools may accurately assess a large amount of continuous
data streams from the bedside of patients and help tomake earlier
diagnoses or event recognition, allowing for faster and more
accurate clinical decisions.
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Introduction: Disease states are being characterized at finer and finer levels of
resolution via biomarker or gene expression profiles, while at the same time. Machine
learning (ML) is increasingly used to analyze and potentially classify or predict the
behavior of biological systems based on such characterization. As ML applications are
extremely data-intensive, given the relative sparsity of biomedical data sets ML training
of artificial neural networks (ANNs) often require the use of synthetic training data.
Agent-based models (ABMs) that incorporate known biological mechanisms and their
associated stochastic properties are a potential means of generating synthetic data.
Herein we present an example of ML used to train an artificial neural network (ANN) as a
surrogate system used to predict the time evolution of an ABM focusing on the clinical
condition of sepsis.

Methods: The disease trajectories for clinical sepsis, in terms of temporal cytokine
and phenotypic dynamics, can be interpreted as a random dynamical system. The
Innate Immune Response Agent-based Model (IIRABM) is a well-established model that
utilizes known cellular and molecular rules to simulate disease trajectories corresponding
to clinical sepsis. We have utilized two distinct neural network architectures, Long
Short-Term Memory and Multi-Layer Perceptron, to take a time sequence of five
measurements of eleven IIRABM simulated serum cytokine concentrations as input and
to return both the future cytokine trajectories as well as an aggregate metric representing
the patient’s state of health.

Results: The ANNs predicted model trajectories with the expected amount of error,
due to stochasticity in the simulation, and recognizing that the mapping from a specific
cytokine profile to a state-of-health is not unique. The Multi-Layer Perceptron neural
network, generated predictions with a more accurate forecasted trajectory cone.
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Discussion: This work serves as a proof-of-concept for the use of ANNs to predict
disease progression in sepsis as represented by an ABM. The findings demonstrate
that multicellular systems with intrinsic stochasticity can be approximated with an ANN,
but that forecasting a specific trajectory of the system requires sequential updating of
the system state to provide a rolling forecast horizon.

Keywords: agent-based model (ABM), machine learning, sepsis, neural networks, time series

BACKGROUND

The characterization of the gene expression or protein level
patterns associated with clinical disease, which generally manifest
as physiological derangements, has led to attempts to use this
type of fine-grained, detailed information to forecast clinical
outcomes. This approach underlies the concepts of personalized
and precision medicine, where disease characterization in terms
of molecular-level features (microstates) are intended to more
finely define and distinguish patients who might have otherwise
similar physiology (macrostates). Increasingly, machine learning
(ML) has been investigated as a means of aiding in the ability to
predict and forecast the course of disease. Modern ML generally
involves training an artificial neural network (ANN) on a given
data set such that the ANN “learns” an underlying function that
generates the data. While a powerful method, ML-trained ANNs
can be brittle and prone to overfitting, which can lead to their
failure when applied in real-world situations (Ross and Swetlitz,
2017; Strickland, 2019; D’Amour et al., 2020). As ML is extremely
data-intensive, training is often augmented by the use of synthetic
data; however, it is crucial that the generated surrogate/synthetic
data effectively replicates the underlying generative process of
the real-world system being learned. This issue is less important
for such static tasks such as image recognition/classification
but takes on considerable importance if time-series/dynamic
processes (and therefore functions) are being analyzed. The
need to effectively generate synthetic data is accentuated in
biomedical applications, where, in general, biomedical data sets
are relatively sparse, particularly in terms of time series data
needed to predict or forecast the dynamic course of disease. This
sparsity is further accentuated when molecular-level biomarker
panels are proposed as the means of disease characterization,
as currently this information can only be acquired through
invasive blood sampling. Thus, there is an inherent tension
between the desire for a finer-grained characterization of disease
state and limitations in terms of both availability of such data
and the ability to correlate these detailed representations to the
physiological derangements present clinically.

Multi-scale simulation models that represent cellular and
molecular mechanisms can reproduce the dynamics of tissue or
system level physiology and pathophysiology have potential as
a means of generating synthetic training data, but these models
come with their own challenges and limitations. Specifically,
dealing with the high-dimensional parameter spaces of such
complex mechanism-based models presents computational
challenges in terms of calibration and validation. Additional
ML methods have been proposed as an adjunct to the
exploration of these models’ high dimensional parameter spaces

(Cockrell et al., 2019; Ozik et al., 2019; Wang et al., 2019),
including the training of artificial neural networks (ANNs) as
surrogates for the mechanism-based model (Wang et al., 2019).
However, to our knowledge, the application of ML to train
ANN surrogates for agent-based models (ABMs), a prevalent
method for multi-scale computational modeling, has not been
previously reported in the biomedical literature. This is a
potentially significant capability, as ABMs structurally share
many of the features of biological systems (Bonabeau, 2002;
An et al., 2009; Metzcar et al., 2019) and exhibit behaviors not
necessarily represented by other types of modeling methods,
particularly in terms of their stochastic behavior and reflection of
biological heterogeneity (Cockrell and An, 2017). The ability of
ABMs to generate “emergent” phenomena (Bonabeau, 2002), i.e.,
where populations of components and their interactions lead to
system-level phenomenon that cannot be directly inferred from
the behavioral rules governing the components is particularly
relevant to being able to translate cellular and molecular
mechanisms and data into system-level behavior manifesting
as physiology. Cell-based ABMs explicitly represent existing
knowledge about cellular and molecular mechanisms, which
is the level at which modern medicine strives to characterize
patients in a precise and personalized fashion (e.g., biomarker or
-omics panels), and through their simulation are able to generate
aggregated, system-level output corresponding to the physiology
at which disease primarily manifests. Given the prevailing
interest in characterizing disease states through molecular-level
profiling and the application of ML methods to forecasting the
physiological trajectories of disease, we believe that it is important
to examine the capabilities and limitations of applying ML to
forecast trajectories that bridge microstate (mediator/molecular
profiles) and macrostate (system-level/physiological output).
Toward that end we present herein an investigation of the ability
of trained ANNs to forecast the dynamic behavior of a complex
biomedical ABM used to simulate acute systemic inflammation
and the clinical condition of sepsis.

The Multi-Scale Challenge of Sepsis
Sepsis is a complex physiological and clinically significant
problem with approximately 1 million cases in the United States
each year, with a mortality rate between 28–50% (Wood and
Angus, 2004). Sepsis is a highly dynamic process with multi-
scale features, ranging from clinical phenotypes characterized
by features such as multi-system organ failure, down to the
molecular level with dysregulation of the body’s internal cytokine
signaling network (Cockrell and An, 2017, 2019, 2021). While
care process improvements in the treatment of sepsis, such as
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the development of treatment bundles and practice guidelines,
have improved clinical outcomes in the past few decades, the
search for new drugs to treat the biological-basis of sepsis has
been marked by complete failure: there is currently not a single
drug approved by the U.S. Food and Drug Administration
that targets the underlying pathophysiology of sepsis (Angus,
2011; Buchman et al., 2016). One of the major challenges
in designing therapies for sepsis is an inability to effectively
forecast the disease trajectories of individual patients, thereby
limiting the effective sub-stratification of this heterogeneous
population into those biologically similar enough to control.
Existing means of classifying sepsis patients, such as with the
Sequential Organ Failure Score (SOFA; Vincent et al., 1996)
or various biomarker panels (Gibot et al., 2012; Riedel, 2012;
Samraj et al., 2013), while potentially useful for coarse-grained
outcome risk stratification, are only able to provide population-
level projections that cannot effectively be updated to an
individual patient’s disease course. Adding to the limitations of
data-centric population-based scoring systems is the inherent
stochasticity of the biological processes driving sepsis. The
presence of stochasticity in the system governing inflammation
makes accurately predicting the entire trajectory of the disease,
or accurately predicting the patient state 30 days into the
future, given one point of assessment, an impossibility (see
description of Stochastic Trajectory Analysis regarding sepsis in
(Cockrell and An, 2017)).

Biological Heterogeneity, Stochasticity,
and Forecasting
Ultimately, the biological heterogeneity seen clinically is
generated from a combination of inter-patient (genetic
variability) and intra-patient (stochastic processes) effects.
The result is that it is not tractable to comprehensively
enumerate all possible biomarker states and configurations (i.e.,
phenotypes) that can be generated from a specific systemic
perturbation or injury. The challenge (and solution) is similar
to that faced by Q-Learning (Watkins and Dayan, 1992)
(now Deep Reinforcement Learning); Q-learning is a type of
reinforcement learning in which agents determine what action
to take (a) by looking up their current state (s) in the lookup
table, Q(s,a) that lists the probability of a desirable outcome
based on that decision. Because the lookup table needs to
provide this probability to guide the decision process it requires
a finite (and computationally tractable) state space. In order
to work effectively in continuous (infinite states) search spaces
Q-learning utilizes the Universal Approximation Theorem
(Barron, 1993), which states that a feed-forward neural network
can approximate, to arbitrary fidelity, a real and continuous
function. In the case of Q-learning, it is the lookup table that
is being approximated; we note that the lookup table does
not necessarily meet the strict mathematical definition for
continuity, however, the technique works in practice as long
as the density/granularity of the lookup table is sufficiently
fine. Acquiring time series data of this granularity is often not
logistically feasible, therefore we pose that mechanism-based
simulations can serve as means of generating such surrogate

data. In particular, given their structural similarity to biological
systems, ABMs are appealing candidates for this task.

In previous work, we have demonstrated that the cytokine
signaling network which controls the inflammatory process can
be modeled as a random dynamical system (Cockrell and An,
2017, 2018), which is a system that evolves in time according to
fixed rules, but also incorporates stochasticity (Bhattacharya and
Majumdar, 2003; Arnold, 2013). Knowledge of the underlying
cellular and molecular processes of acute inflammation has
been used to create a dynamic model, the Innate Immune
Response Agent-based Model (IIRABM; An, 2004), that can
serve as a proxy model for the development of more advanced
prediction and forecasting methods. The IIRABM is an ABM
of the innate immune response that represents the endothelial-
blood interface (e.g., the inside of blood vessels in the tissue
region of interest) and the response of that system to either
injury or infection. The IIRABM simulation is initiated with
the application of a simulated injury or infection to the
endothelium. The injury is defined by five parameters: injury
size, microbial virulence, microbial toxigenesis, environmental
toxicity, and host resilience. The simulated inflammatory
response is generated by the damaged endothelium, and
recruits a variety of inflammatory cells, including neutrophils,
macrophages, and a suite of T-lymphocytes, to respond to,
contain, and heal the injury/infection. The simulation then
proceeds until it reaches a terminal state – either complete
healing or death, which is triggered when the aggregate system
damage exceeds 80%. This threshold has been chosen to
represent the ability of supportive medical technology (i.e., a
ventilator) to keep people alive in situations in which they
would otherwise die.

Despite its acknowledged abstraction the IIRABM has proven
useful in examining the complexity of sepsis and the challenges
associated with trying to treat the syndrome. The IIRABM has
been used to demonstrate the use of in silico clinical trials
as a means of evaluating the plausibility of planned potential
interventions (An, 2004), provided fundamental insights into the
mathematical and dynamic properties of sepsis that account for
patient heterogeneity (Cockrell and An, 2017), demonstrating
the futility of standard biomarker-based outcome prediction
(Cockrell and An, 2017), and served as a proxy model (An et al.,
2017) for control discovery for sepsis. This most recent control
discovery work has employed advanced computational methods
such as genetic algorithms/evolutionary computing (Cockrell and
An, 2018) and deep reinforcement learning/artificial intelligence
(Petersen et al., 2019) to describe what would be required for
multi-modal treatment of sepsis. While the IIRABM is nearly
20 years old its central component structure remains valid and
has predicted a series of behaviors associated with sepsis that have
since been recognized in the subsequent years, specifically the
temporal concurrence of pro- and anti-inflammatory cytokine
responses (as opposed to sequential pro- and compensatory
responses) (Osuchowski et al., 2006; Tamayo et al., 2011) and
the importance of the immunoparalyzed recovery phase of sepsis,
particularly with respect to its prolonged duration (Ferguson
et al., 1999; Boomer et al., 2011; Hotchkiss et al., 2013a,b).
Key to all these studies is the recognition that even though
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the IIRABM is an abstract representation far less complex
than the “real” immune system, it has structural properties
that mimic a multicellular biological system (i.e., composed of
semiautonomous components that harbor the system’s stochastic
potential), and generates the type of system dynamics that
challenges traditional methods of biomedical analysis. As such we
consider the IIRABM a useful surrogate for generating biology-
like synthetic data that bridges mediator-level microstate and
system-level microstate output that can be used to examine the
ability of ML to capture its behavior. The current work aims to
train an ANN on simulated data generated from the IIRABM
and evaluate its sufficiency as a surrogate for the IIRABM by
assessing the ability of the trained ANN for dynamic trajectory
prediction of the IIRABM.

MATERIALS AND METHODS

The foresting procedure is divided into two principal tasks: (1)
predict future cytokine trajectories in an 11-dimensional space
(microstate characterization); and (2) regress the overall “health”
of the simulation as a function of its current cytokine profile
(predicting system macrostate). Training and validation data
was generated using the IIRABM (Cockrell and An, 2017). The
training/validation set was composed of cytokine measurements
for 11 unique cytokines over 10,000 time-steps in 66,000 in silico
patients. Networks were constructed Using Keras (Gulli and Pal,
2017), a TensorFlow based deep learning library for Python.

Trajectory Forecasting
In order to forecast future values in the cytokine time series,
we utilized long short-term memory (LSTM) recursive neural
networks (RNN). RNNs are different from standard multi-
layer-perceptron networks because they have a neural network
contained within a cell which takes information from the current
input to help determine the adjusted state of the cell based on its
current cell state. This adjusted cell state becomes the new cell
state, and an output is determined for the network.

Long short-term memory networks’ memory cells have a
unique structure, characterized by an input gate, two update
layers, and an output gate to determine the adjusted cell state
(Hochreiter and Schmidhuber, 1997). The memory cells in
LSTM networks allow for more long term memory than typical
RNNs which make them well suited for time-series analysis and
prediction (Nelson et al., 2017). Noting this, an LSTM network
will likely be able to predict future cytokine levels, given that they
are continuous and previous cytokine levels will likely have a large
impact on near-future values.

We constructed a unique network for each cytokine that
was to be predicted; each LSTM network takes five sequential
11-dimensional cytokine profiles as input and predicts the
subsequent value(s). The first three layers of the network are 100-
node LSTM layers; the output from these layers are fed into two
fully connected layers of 300 and 200 nodes, respectively, then to
a single output node, resulting in 296,301 trainable parameters.
Training data was arranged into five sequential 11-dimensional
points as training input features and the next 11-dimensional

point as the training label. The data was then shuffled to avoid
biasing the training. After data preprocessing, 8,576,100 data
sequences and labels were used to train the network. The loss
metric used to train this network is mean absolute error (MAE),
and the Adam optimizer (Kingma and Ba, 2014). Each network
was trained until loss converged to a minimum.

For the ultimate utilization of this network, 11 cytokine values
are observed for five time steps, then a prediction for each of
the next values is made using its own LSTM network. This set
of 11 observations is combined into one 11-dimensional point,
which is then added to the original five samples as the next
sample. Predictions are made recursively in this manner for
100 time steps after the initial observation. Accuracy of this
algorithm was measured using the average MSE across the 11
cytokine values at 1, 2, 3, 4, 5, 10, 25, 50, and 100 time steps
after the initial observation. Prediction variance and error bars
were calculated through stochastic variations to the dropout layer
(Baldi and Sadowski, 2013), as demonstrated with regards to
Active Learning for regression in (Tsymbalov et al., 2018).

As a comparison of the efficacy of LSTM neural networks,
MLP prediction networks for each cytokine were also created.
Each network functionally acts the same as the LSTM networks,
accepting five sequential 11-dimensional points in cytokine space
and predicting the future value for a single cytokine. Each
network has a structure beginning with a fully connected layer
of 1000 nodes, followed by a function to flatten the output shape
from a 5 by 1000 array to a single vector of length 5000. Next is
another fully connected layer of 1000 nodes, then a 1% permanent
dropout layer, feeding into a fully connected layer of 500 nodes,
then another fully connected layer of 500 nodes, then finally to
a single output node. These networks were trained using a loss
function to minimize MSE. Eleven-dimensional cytokine profiles,
predicted either from the LSTM network the MLP network are
then fed into an MLP-regressor (described below) in order to
translate the cytokine profile into an aggregate measure of patient
health or disease state.

Health Metric Regression
The IIRABM uses the “Oxygen Deficit” metric as a measure of
health, where a low oxygen deficit is good, and a high oxygen
deficit is bad; “Oxygen Deficit” is therefore the system-level
output that corresponds to the macrostate of the IIRABM. We
note that, both in silico and in vivo, cytokine profiles provide
a non-unique mapping to state-of-health (a concept which is
more nebulously defined in vivo than in our in silico model).
As such, error is expected when attempting to regress from an
11-dimensional cytokine profile to a single health metric.

This regression was performed by using a fully connected deep
network that takes an 11-dimensional cytokine vector as input,
feeding into two fully connected layers with 1,500 nodes each,
then into a layer with 150 nodes, and finally to a single output
node. The loss metric used to train this algorithm is MSE. Using
the regression network, a prediction of oxygen deficit trajectory
can be made from the 11-dimensional matrix created by the
LSTM network. Overall accuracy was measured by comparing the
oxygen deficit path to the predicted path and calculating the MSE.
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FIGURE 1 | In panel (A), we present the variance in oxygen deficit as a function of the sum of cytokine concentrations in the whole area of simulated tissue,
effectively compressing an 11-dimensinal vector into a scalar quantity indicative of total biological activity (e.g., cells performing functions) in the simulated tissue. In
panel (B), we show the mean absolute error in the regression of the oxygen deficit as a function of cytokine profile, as a function of training epoch.

The prediction of whether an in silico patient will live or die,
or the decision on whether or not pharmacologic therapeutics
are more likely to be beneficial than detrimental, is ultimately
based on the temporal trajectory of the patient’s state of health
(in this case, a measure of systemic oxygen deficit). The predicted
trajectory in 11-dimensional cytokine space is then fed into
the health-metric regression network to forecast the most-likely
outcome, time-to-outcome, and time-horizon for potentially
effective therapeutic interventions.

Additionally, we created a multi-layer perceptron (MLP) to
predict the future oxygen deficit trajectory as a function of past
values only, effectively treating the simulation output as a Markov
chain. This network expects an input of five sequential oxygen
deficit values and will return a single future oxygen deficit value
predicted for the next time step. The structure of this MLP begins
with a fully connected layer of 1000 nodes, followed by a 1%
permanent dropout layer, then two fully connected layers of 150
nodes each, followed by a single output node. This network
was trained using a loss function to minimize MSE. Trajectory
prediction for this network is made in the same recursive manner
as the cytokine prediction networks.

RESULTS

It is important to note that the map which translates a cytokine
profile (microstate) into its associated oxygen deficit (macrostate;
and vice-versa) is non-unique, and therefore some amount of
error is expected and unavoidable. In Figure 1A, we present the
variance in oxygen deficit as a function of the sum of cytokine
concentrations in the whole area of simulated tissue. The sum of
cytokine concentrations is a coarse metric that roughly represents
the amount of inflammation (no distinction is made between
pro- and anti-inflammatory signals) and inflammatory signaling
present in the model. This is analogous to what is seen clinically –
patients that see ostensibly identical insults/infections/injuries
will invariably present a range of responses, in terms of temporal

cytokine profiles or other clinical physiological observables
(heart-rate, blood pressure, temperature, etc.).

This figure also illustrates a key difference between the
structure of the noise in the IIRABM and the stochastic structure
in a stochastic differential equation; the noise present in the
IIRABM varies spatio-temporally and cannot be represented with
a closed-form analytical expression. Very generally speaking, the
reason for this is that when cell-signaling is high, there is lots
of activity in the model, and therefore lots of opportunities for
stochastic events. This can be illustrated with a simple thought
experiment: consider two system states, one with a single infected
cell and one with 10 infected cells, and each infected cell has a
probability of infecting a single neighbor, and some probability
of healing. If we evolve the simulation a single time step, system
1 can have 0, 1, or 2 infected cells, while the range of infected
cells in system 2 can vary from 0 to 20 (depending on the spatial
configuration of the infected cells). In Figure 1B, we show the
mean absolute error as a function of training epoch when training
the health regression neural net. The error quickly converges to
a minimum with a relatively constant error of approximately
200 units (on a scale of 8160), with the caveat that the predicted
error would be lower when the true oxygen deficit is lower, and
higher when the true oxygen deficit is higher.

Cytokine trajectories present similar stochastic properties as
the oxygen deficit: when levels are high, the plausible range of
cytokine expression for the subsequent time step is larger than
when levels are low. We present the mean squared error (in
arbitrary units) as a function of training epoch for TNFα, which is
representative of the full cytokine set in Figure 2. Once again, the
network quickly converges to a low and constant level of error.
We note that the total error quickly and significantly increases
as we extend the time-prediction horizon past 100 time-steps.
This distinguishes this methodology from that of ML-augmented
surrogate modeling (Cicchese et al., 2017) because we do not
claim the ability to accurately represent the entire course of a
sepsis disease trajectory (up to 90 days in our computational
model) using neural-network approximations.
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FIGURE 2 | The mean squared error (in arbitrary units) as a function of training
epoch for TNFα. The training of this cytokine prediction network was
representative of all simulated cytokine prediction networks.

FIGURE 3 | In this figure, we compare the dual-network predictor, which uses
an MLP to predict the 11-dimensional cytokine profile trajectory and then
another MLP to regress the oxygen deficit value (shaded in red), with an MLP
which is informed solely by prior values for the oxygen deficit (shaded in blue).

The use of the dropout layer allows for the simple creation of
an ensemble of predictive networks by stochastically varying the
specific node(s) in the layer that are dropped out, allowing us to
visualize probability clouds for future trajectories. In Figure 3,
we compare the dual-network predictor, which uses an MLP
to predict the 11-dimensional cytokine profile trajectory and
then another MLP to regress the oxygen deficit value (shaded
in red), with an MLP which is informed solely by prior values
for the oxygen deficit (shaded in blue); the performance of the
dual-network model is significantly more stable and accurate
when compared with the MLP using only the oxygen deficit for
prediction. In Figure 4, we have visualized the probability cloud
for future health trajectories generated using the MLP network
(shaded in red), future health trajectories generated using the
LSTM network (shaded in blue) and plotted the true trajectory
(red line). This figure visualizes a single prediction iteration

FIGURE 4 | Here we present trajectory clouds for the MLP and
LSTM-generated predictions. In both cases, 11-dimensional cytokine
trajectories were predicted. The predicted values were then fed into the MLP
regressor network, which regressed the future predicted oxygen deficit as a
function of the predicted cytokine profile trajectories. The future
health-trajectory probability cloud predicted using the MLP network is shaded
in red; the future health-trajectory probability cloud predicted using the LSTM
network is shaded in blue; the true trajectory is plotted in red.

FIGURE 5 | Using the MLP Trajectory Forecast Model combined with the
MLP Oxygen-Deficit Regressor, we determined the upper and lower
boundaries for the future health-trajectory probability cone, which are
indicated by the blue lines; the actual trajectory is plotted with a red line.
Predictions began at t = 200 and were update upon every time-step.

(predict future cytokine trajectory, regress state of health) for the
above-described workflow. As new data is fed into the model
about the true trajectory of the system, the forecast cloud is
updated. The actual health trajectory typically lies in the center
of the probability cloud, which is a clear benefit of the ensemble
approach. In Figure 5, we display the probability cone for the
entire simulation run, starting at the 240th time step, and then
updating the trajectory cone on every subsequent time step.
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FIGURE 6 | In this figure, we compare predictions generated using the MLP Cytokine Trajectory Prediction/MLP Oxygen-Deficit Regressor with a set of stochastic
replicates generated by the simulation. In panel (A), we contrast the future health-trajectory probability cones with networks that used data collected in the first 24 h
(shaded in red) and networks that excluded the first-day data (shaded in blue); we note that the blue area appears purple as it is entirely contained within the red
area. In panel (B), we present 100 stochastic replicates of the actual simulation health-trajectory, reseeded at the time of the first prediction (red) compared with the
predicted probability cone trajectories (blue). In panel (C), we generated the simulation trajectory cone through reseeding the simulation’s random number generator
at the upper and lower boundaries of the trajectory cone every 100 time steps from t = 1100 to t = 1800.

In Figure 6, Panel A, we contrast predictions that considered
the full time evolution of the system when training the neural
network model, shaded in red, with predictions that only used
training data collected after the 240th time step, representing
approximately 1 day. The network that only utilizes data collected
more than 24 h post-injury performs substantially better. This is
primarily due to the massive amount of stochasticity introduced
at the time of injury; the degree of this stochasticity is significantly
larger in magnitude than later in the simulation, as discussed
below. In Panel B, we display the same oxygen-deficit probability
cone as in Panel A, however, also reseed the simulation’s random
number generator at this time step to generate 100 stochastic
replicates of the time evolution of that specific instantiation of the
IIRABM. We see that the predicted probability cone has a greater
spread than the actual probability cone, however, we note that the
MLP predictor is constantly updating its trajectory predictions:
the set of observations

{
ta
−5, t

a
−4, t

a
−3, t

a
−2, t

a
−1

}
, where ta

−5 has
the superscript, “a”, representing an actual observation, and the
subscript, “−5” to denote that the time point is five points prior
to the starting reference point, is used to predict tp0 , where the
superscript, “p”, indicates a predicted observation. Eventually, the
set of points used to generate the prediction will consist entirely
of previously predicted points, allowing for the compounding of
any errors. In Panel C, we show the same probability cone as in
Panel A, however, this time, we have re-seeded the simulation
every 100 time steps at t = 1100 to t = 1800, for 100 stochastic
replicates each. This is a more direct comparison since the MLP
predictor effectively reseeds itself every time step. We observe
that the actual probability cone is significantly wider than in Panel
B, but still not as wide as the predicted cone. This is discussed
in detail below.

DISCUSSION

The MLP predictor which predicts cytokine trajectories and uses
those to regress the oxygen deficit performs better than using an

LSTM to predict future state-of-health trajectories, however, this
does not represent a failure of the LSTM method (or indicate
superiority over the MLP). This is best illustrated in Figure 1,
which illustrates the non-unique mapping between a specific
cytokine profile and a physiological state of health, which is well-
known clinically (Bergquist et al., 2019). The accuracy of the
cytokine trajectory predictions, shown in Figure 2, is high, but
even with an accurate prediction of the future cytokine profile,
turning that profile into an informative state of health prediction
is not possible. Additionally, this predictor also outperforms
the NN model which used an MLP to predict future oxygen
deficit from previous values of oxygen deficit, not incorporating
any cytokine data (see Figure 3). This indicates that, while a
static cytokine profile can be correlated with a wide range of
health-state, the dynamics/trajectories of these mediators provide
actional information regarding system state.

Additionally, we note that the predictor performs better
when using training data starting 1 day after the simulated
injury perturbs the system, and the reasoning for this is similar
to that above, in that the cytokine and spatial dynamics are
dominated by stochasticity. When the simulated injury occurs,
a large, contiguous, area of tissue is injured with a homogenous
injury, representing a significant perturbation to the system;
thus, early simulation behaviors contain a significant amount
of stochasticity, leading the training data to be less informative
as to the true mechanisms which underlie the dynamics
of the simulation.

Recognizing that there are configurations in which the system
is more or less strongly influenced by randomness can also help
to explain why treating the global simulation output as a Markov
chain (or full cytokine trajectory output as a Markov random
field, as we have described in (Cockrell and An, 2017)) is only an
approximation. The full simulation, which takes place on a two-
dimensional grid, is memoryless, and begins with a homogenous
injury. However, as the injury evolves, the spatial distribution
of damage or of various cytokine concentrations begins to
vary, due to both stochastic and deterministic influences. All
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this information about spatial heterogeneity is lost when it is
collapsed into a single trajectory. A Markov Transition Matrix
(or kernel) could be constructed for the simulation output that
would be true in the comprehensive sense, e.g., when considering
all possible trajectories and model configurations, however, the
utility of this information becomes more limited the farther out
the prediction goes, as seen in Figure 5.

The model reseedings in Figure 6 indicate to use that
the model is in a very deterministic configuration. Due to
the spatial distribution of the injury, there is essentially no
chance that it will heal the in silico patient back to full
health, while also being in no danger of an immediate/near-
term death. Essentially, the simulations are entirely under the
influence of a single Probabilistic Basin of Attraction; this
is discussed in detail in Cockrell and An (2017). Therefore,
while the fully spatially realized simulation does not have a
memory (and can safely be treated as a Markov process), the
historical paths of the aggregate cytokine/health trajectories do
provide some predictive ability; while information regarding the
spatial distribution of tissue damage and systemic response is
washed away when considering the trajectory of the system
as a whole, features that describe the time evolution of
the trajectory (i.e., temporal derivatives) play a role in the
future predictions.

The failure to identify effective drugs to treat sepsis is due in
significant part to a failure to account for the heterogeneity of
the state space for sepsis and the non-uniqueness of mapping
from state space to trajectory space: without understanding
the potential future histories of an individual patient from
any point in time there can be no rationally justified attempt
at controlling or steering that patient’s eventual outcome. We
have proposed that mechanism-based multi-scale computational
models (as defined by the National Institutes of Health
Interagency Modeling and Analysis Group1) can serve as proxy
systems that can address the “Denominator Problem” that arises
out of the non-uniqueness of the mapping between system
state and behavior and the inevitable sparsity of biological
data (An, 2018); we pose that the IIRABM represents one
example of a proxy model for sepsis. However, for multiscale
modeling and simulation to be deployed in clinical practice,
it must be practical to utilize the models in a clinical setting.
As we have shown in previous work (Cockrell and An,
2017), this requires an immense amount of computational
power as the simulation must be repeated for many stochastic
replicates. Compressing/approximating the information and
dynamics contained within the computational model using
an ANN allows for a computationally cheap and tractable
method of rapidly updating predictions about patient disease
trajectory as new information becomes available. Therefore,
ability to predict requires an additional layer of surrogate
models to render such prediction clinically tractable, and the
complexity of the dynamic structure of inflammation/sepsis
calls for the use of ANNs for this purpose. While there have
been some attempts to use ANNs to serve as surrogates for

1https://www.imagwiki.nibib.nih.gov/content/multiscale-modeling-msm-
consortium

multiscale models (Lagaris et al., 1998; Wang et al., 2019),
these approaches involve the approximation of models that
are based on known and explicitly described functions. Given
that the Universal Approximation Theorem states that an
ANN can be trained to reproduce any function, knowing the
target function beforehand provides a greater likelihood of
success. This is in direct contrast to ABM, which are generally
explicitly used because they have no equivalent equation-based
formulation. In particular, it is the ability to generate more
biologically realistic probability distributions of behavior, as
seen in Figure 1A and Ref (Cockrell and An, 2017). We
posit that this is due to the nature of the noise in ABM’s
compared to stochastic differential equation methods. In contrast
to a differential equation, an ABM does not typically have
closed form expression describing the randomness in the
simulation; rather, randomness in the execution of the ABM
is biologically motivated and incorporates aspects of observed
biological heterogeneity (i.e., the spatial distribution of tissue
resident macrophages in our prior sepsis simulations). Therefore,
ANNs trained on ABMs inherently have a forecast horizon
and prediction/forecasting applications of such ANNs need to
account for updates of system state in order to provide a
“rolling” forecasting cone. The concept is similar to that as
seen in weather prediction, with the notable difference that in
weather models the future uncertainty is due to deterministic
chaos whereas in the ABM/biological system it is due to intrinsic
aleatory stochasticity.

This current work the first step of the development of a
workflow that integrates mechanism-based ABMs with ML in
order to train predictive ANNs that can inform what sort of
sensing technology and capabilities need to be developed in
the real world. The demonstration of the non-unique mapping
between system-microstate (in terms of cytokine profiles) and an
overall metric of system macrostate (e.g., system health) suggests
that data-centric attempts to develop predictive models, which
at their root involve reverse engineering causal relationships
between microstate and macrostate, are futile. We assert that it
is only through mechanism-based, generative simulations that
the sufficient density of time series data can be made available
to parse the multiple trajectories that can arise from a particular
system state. The basis for this assertion lies in the fact that the
computational mechanistic model (as opposed to a data-driven
statistical model) limits the future possibility space to one that
can evolve from experimentally validated biological (microstate)
mechanisms, whereas a statistical model with a sufficient number
of terms can fit any data set arbitrarily well. While this space or
the number of potential configurations a biological system can
exist in is combinatorially/astronomically large, it is not infinite.

Our simulations also demonstrate the crucial role that
aleatory stochasticity plays in the time evolution of these
multi-agent/cellular systems, thereby necessitating a “rolling
forecast” approach in which the update interval is informed
by the simulations. Integrating mechanism-based, multi-scale
simulations with ML provides a means of training predictive
ANNs “off-line,” circumventing the need to run high-fidelity
simulations in real time. Freed from the constraint of execution
time, this in turn allows for more detailed mechanistic simulation
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models able to generate synthetic data that more closely matches
that produced by the real world system, and, crucially, performed
in a fashion that more comprehensively captures the range of
biological heterogeneity seen in the clinical setting and has the
ability to potentially falsify the model’s underlying structure (for
a full description of this process see Ref (Cockrell and An, 2021)).
We hope that this work can provide a starting point for additional
investigations into the integration of ML and agent-based models.
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Background: Fecal immunochemical testing (FIT) is an establishedmethod for colorectal

cancer (CRC) screening. Measured FIT-concentrations are associated with both present

and future risk of CRC, and may be used for personalized screening. However,

evaluation of personalized screening is computationally challenging. In this study, a

broadly applicable algorithm is presented to efficiently optimize personalized screening

policies that prescribe screening intervals and FIT-cutoffs, based on age and FIT-history.

Methods: We present a mathematical framework for personalized screening policies

and a bi-objective evolutionary algorithm that identifies policies with minimal costs and

maximal health benefits. The algorithm is combined with an established microsimulation

model (MISCAN-Colon), to accurately estimate the costs and benefits of generated

policies, without restrictive Markov assumptions. The performance of the algorithm is

demonstrated in three experiments.

Results: In Experiment 1, a relatively small benchmark problem, the optimal policies

were known. The algorithm approached the maximum feasible benefits with a relative

difference of 0.007%. Experiment 2 optimized both intervals and cutoffs, Experiment 3

optimized cutoffs only. Optimal policies in both experiments are unknown. Compared

to policies recently evaluated for the USPSTF, personalized screening increased health

benefits up to 14 and 4.3%, for Experiments 2 and 3, respectively, without adding

costs. Generated policies have several features concordant with current screening

recommendations.

Discussion: The method presented in this paper is flexible and capable of optimizing

personalized screening policies evaluated with computationally-intensive but established

simulation models. It can be used to inform screening policies for CRC or other diseases.

For CRC, more debate is needed on what features a policy needs to exhibit to make it

suitable for implementation in practice.

Keywords: colorectal cancer, personalized screening, fecal immunochemical test, screening interval, cutoff,

microsimulation models, evolutionary algorithm, FIT-history
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1. INTRODUCTION

Colorectal cancer (CRC) is an important cause of cancer
deaths. In 2020, it was the third most incident cancer type
and the second leading cause of cancer deaths worldwide
(Sung et al., 2021). CRC is preventable through screening,
and screening programs for CRC have been implemented in
many countries. A large proportion of these are based on the
Fecal Immunochemical Test (FIT) (Schreuders et al., 2015).
This test measures the concentration of hemoglobin (Hb) in an
individual’s stool sample. An increased concentration may be
caused by a precancerous lesion or a cancer. Participants with
a concentration above a prespecified threshold for a positive
result, commonly referred to as the cutoff, are referred for a
colonoscopy, an endoscopic test with which the colon and rectum
are directly observed by a specialized practitioner. Participants
with a concentration below the cutoff are invited for a new FIT
after a fixed time interval.

However, the FIT provides opportunities which currently
remain unexploited. Grobbee et al. (2017) showed that measured
FIT-concentrations, also below the cutoff, are strongly associated
with the future risk of developing CRC.While screening intervals
and cutoffs are equal across the population in current FIT-based
programs, Grobbee et al. (2017) conclude that FIT-programs
may be improved by implementing a screening policy with
personalized intervals and cutoffs based on an individual’s history
of measured fecal Hb-concentrations.

Screening policies come with benefits, as they are likely to
prevent CRC cases, and with harms such as overtreatment, for
example when participants are treated for screen-detected lesions
that would not have progressed to a cancer during their lifetime.
These harms and benefits are measured in Quality-Adjusted Life
Years (QALYs): one QALY represents one life year in perfect
health. Screening policies also come with costs. Given their
financial budget, policy makers aim to maximize the number
of QALYs gained, and screening policies need to be developed
that achieve precisely this. Implementing personalized screening
policies may help to achieve this.

The amount of feasible personalized screening policies is
endless, making it infeasible to evaluate the costs and health
benefits of all of them in practice in randomized controlled trials.
Instead, advanced simulation models such as those by Loeve et al.
(1999) and Rutter and Savarino (2010) have been developed to
evaluate screening policies. Still, the sheer amount of possible
personalized screening options based on FIT-concentrations is so
large, that it prohibits evaluating all options even by simulation.
This underlines the need for optimization algorithms to design
effective personalized screening policies without the need to
evaluate all options.

Though algorithms have been developed to optimize
personalized policies, none of them have the flexibility to
incorporate detailed and computationally heavy simulation
models, which is required for accurate evaluation of costs and
benefits. Instead, strong assumptions are typically imposed to
ensure computational tractability. Maillart et al. (2008), Ayer
et al. (2012), Erenay et al. (2014) and Otten et al. (2017) use the
framework of (Partially Observable) Markov Decision Processes

(POMDPs) to develop personalized screening policies for a
variety of cancer types, modeling the progression of the cancer
by a Markov process. However, these Markov models assume, for
example, that the transition rates between the different cancer
states are independent. In reality, these transition rates are
highly correlated within an individual. Consequently, POMDPs
optimize their policies to a simpler model of the disease
progression. Ahuja et al. (2017) adapt a method for POMDPs
to incorporate such correlations in the cancer progression.
However, they impose strong restrictions to the costs associated
with screening and treatment, and don’t allow for optimizing the
costs and benefits as a bi-objective problem.

In this study, we present an algorithm that optimizes screening
policies while incorporating MISCAN-Colon (Loeve et al., 1999).
This is a detailed simulation model for CRC screening which is
able to realistically evaluate the costs of and QALYs gained by
a screening policy and that is commonly used to inform e.g.,
the United States Preventive Services Task Force on their CRC
screening policy (Knudsen et al., 2020). We present a bi-objective
evolutionary algorithm (EA), a heuristic algorithm which is
frequently applied to difficult optimization problems. An EA is
an ideal tool to combine with a computationally heavy evaluation
procedure, in this case required to evaluate the costs and QALYs
of a screening policy with MISCAN-Colon. Moreover, the EA
is very well-suited to generate a frontier of screening policies
with varying preference weights for costs and benefits, allowing
policy makers to make a well-informed choice for a particular
screening policy within their given budget. Finally, the EA is a
flexible tool that is to some extent modular for the evaluation
procedure. This means that the algorithm can be applied to
inform screening programs for any disease, as long as there is a
simulation tool to evaluate the costs and benefits of a screening
policy, and the program uses a test with a quantitative test result.
Examples include prostate cancer screening based on Prostate
Specific Antigen (PSA), lung cancer screening based on smoking
behavior and breast cancer screening based on nodule size, for all
of which model consortia exist within the Cancer Intervention
and Surveillance Modeling Network (CISNET) (Gulati et al.,
2011; Alagoz et al., 2018; Criss et al., 2019).

In this paper, we present a proof-of-concept of our
computational approach by (1) showing how our evolutionary
algorithm can be combined with an established simulationmodel
to optimize personalized screening policies, and (2) showing the
potential of personalized screening in the case of CRC.

The remainder of this paper is structured as follows. In
section 2, we discuss all aspects of the algorithm and how
personalized screening policies are evaluated. In section 3, we
present the outcomes of our experiments and compare them
with screening policies from practice. Finally, in section 4 we
discuss the outcomes of the experiments and the advantages and
limitations of our algorithm.

2. METHODS

In this section, we introduce all aspects related to our
evolutionary algorithm and the experiments we performed. First,
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we give background on the microsimulation model MISCAN-
Colon that is used to evaluate the costs and benefits of
personalized screening policies obtained by the algorithm. Next,
we introduce our mathematical framework for personalized
screening policies. After that, we formalize the bi-objective
optimization problem that we aim to solve in this study using
our algorithm. Then, we present all details on the evolutionary
algorithm. Finally, we introduce the experiments that we used to
illustrate the performance of the algorithm.

2.1. MISCAN-Colon
The microsimulation model MISCAN-Colon was developed by
the Department of Public Health within Erasmus University
Medical Center, Rotterdam, The Netherlands. It is an established
model, and has been used to inform the American Cancer Society
(ACS) and the United States Preventive Services Task Force
(USPSTF) guidelines (Knudsen et al., 2020). It has been validated
on the results of three clinical trials on the effects of screening for
colorectal cancer: the United Kingdom Flexible Sigmoidoscopy
Screening (UKFSS) trial (DeYoreo et al., 2020); the Norwegian
Colorectal Cancer Prevention (NORCCAP) trial (Buskermolen
et al., 2018); and the Screening for Colon and Rectum (SCORE)
trial (Gini et al., 2021).

The structure of the model, the underlying assumptions, and
the calibration and validation studies have been described in
detail by Loeve et al. (1999) and van Hees et al. (2014). In
brief, the model simulates individual life histories from birth to
death. At birth, all individuals are free of disease, but they may
develop CRC during their lives. MISCAN-Colon assumes that
all cancers develop from precancerous lesions, called adenomas,
via the conventional adenoma-carcinoma pathway. Individuals
may develop one or more adenomas over time. These lesions
grow andmay progress to preclinical CRC. Preclinical cancers are
asymptomatic but may become symptomatic, resulting in clinical
detection. Once a cancer becomes clinical, the person is treated,
and a time to death is determined, depending on the stage of
the cancer. The parameters of the natural history of CRC were
calibrated to high-quality data sources, such as autopsy studies on
age-specific adenoma prevalence and multiplicity (Meester et al.,
2018) and age-, stage-, and location-specific CRC incidence data
from the Surveillance, Epidemiology and End Results (SEER)
program from the period before screening was common practice
(1975–1979) (SEER, 2021).

The model also has an optional screening component.
When activated, the simulated individuals undergo screening
according to a specified screening policy. Some lifetimes are
altered because some cancers are prevented by removal of the
precedent adenomas, or are detected at an early stage, leading
to more favorable survival. The effect of screening depends
on the implemented policy and the test characteristics such
as the sensitivity and specificity and the reach of endoscopic
tests. Endoscopic tests also have a risk of complications. The
characteristics of the screening tests inMISCAN-Colon are based
on various studies to assess the diagnostic performance of FIT
and colonoscopy (Knudsen et al., 2016).

Screening policies are associated with monetary costs and
benefits in terms of QALYs, related to the total number of

screening tests and the life years spent on cancer treatment in
a simulated population. After simulation, the model aggregates
these quantities to calculate the policy’s costs and benefits. The
costs and benefits used in this study are listed in Gini et al. (2017).

Up to now, MISCAN-Colon has not been used before to
evaluate personalized screening policies based on FIT-history.
FITs were modeled as binary tests that return either a positive
or negative test result based on sensitivity and specificity. For
our study, the model was extended with a prototype module
describing individuals’ fecal occult blood loss over time, such that
FIT-concentrations were returned. A model was developed with
a linear mixed-effects model (GLMM) structure. Its parameter
values were estimated using population-based data on measured
FIT-concentrations and corresponding outcomes observed in
the Dutch national colorectal cancer screening program (Toes-
Zoutendijk et al., 2017). This module is a prototype and still
needs further calibration before informing actual policy changes.
However, the quality of this module is not relevant for the
purpose of this study which is to provide a proof-of-concept of
the presented computational technique.

An overview of the model assumptions for the natural
history, test characteristics and the module for FIT-
concentrations is presented in Supplementary Section 1 of
the Supplementary Material.

2.2. Personalized Screening Policies
In this section, we provide the mathematical framework for
personalized screening policies. In short, an individual is
represented by a pair (r, τ ) that contains its perceived risk of CRC
based on its FIT-history r and its age at the most recent FIT τ .
The two-dimensional space of all possible pairs is called the belief
space. Each individual is represented by a point in this space.
A screening policy prescribes an action for each point in the
belief space. There are two types of actions: either a participant
is referred to a hospital for a follow-up colonoscopy, denoted by
COL, or an interval of I years until the next FIT is prescribed,
denoted by FITI . In fact, a personalized policy is a mapping that
partitions the belief space and relates each part to an action. An
example is given in Figure 1A, in which screening intervals of 1, 2
and 3 years are prescribed. The remainder of this section provides
a more extensive formalization of the framework of personalized
screening policies.

First, the framework requires a discrete set of screen-eligible
age groups T . In this study, individuals were assumed eligible
for screening between ages 40 and 85. This range was split in age
groups of 5 years and we assumed that the policy is the same for
each age group, i.e., two individuals aged 40 and 44 with equal
perceived risk are prescribed the same action. Age groups are
represented by their lowest age and in our study, the set of age
groups was T : ={40, 45, . . . , 80}.

Second, the framework requires a measure for perceived risk
of CRC. In this study, perceived risk was estimated by the average
of an individual’s k most recently measured FIT-concentrations.
We used k = 1 as a base case and k = 2, 3 for sensitivity analyses.
The average was mapped linearly to a value in the range [0, 1]
where risk values of 0 corresponded to a negligible risk and 1
to a very high risk. This way, more advanced risk estimators
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FIGURE 1 | (A) An example policy. Individuals are represented by a pair (age, perceived risk) which is a point in the belief space. For example, the participant

represented by A is aged 68 and has a risk of 0.075. A policy defines an action for each individual by partitioning the belief space and relating each part to an action,

as shown by the colors. The individuals represented by points A and B are prescribed actions FIT3 and FIT2 (a screening interval of 3 and 2 years), respectively.

Individual C is referred to a hospital for a colonoscopy. The discretization of R and T causes the grid structure. (B) An infeasible policy. Participant E is assigned a

longer interval than participant D while they are of the same age and the risk of E is higher. Therefore, this policy does not comply with the test order assumption.

can easily be incorporated in the future. Since most countries
use a cutoff between 15 and 80 µg/g (Schreuders et al., 2015),
we assumed that average FIT-concentrations above 100 µg/g
correspond with a perceived risk of 1. In our method, individuals
with a FIT-concentration above 100µg/g were always referred for
a colonoscopy. Formalizing the above, the perceived risk of CRC
Rk after the participant’s nth FIT was calculated as

Rk : =
1

100k

k
∑

i=0

Cn−i,

with Cj the measured concentration at the participant’s jth FIT.
Similar to the age groups, we discretized the interval [0,1] in parts
of length 0.1 and assumed that the action is the same within each
part for a given age group, i.e., two individuals with risk 0.11 and
0.19 of equal age were prescribed the same action. This restricted
the number of feasible cutoffs. The set of feasible cutoffs R was
{0, 0.1, . . . , 1}. Note that the discrete nature of T and R causes
the grid structure in Figure 1A. Finer discretization increases
the number of potential personalized screening policies, but also
increases the size of the search space of the algorithm.

Third, the framework needs a set of actions A. In our study,
we used two types of actions. The first, denoted by COL, was
equivalent to a positive FIT and referred an individual for a
colonoscopy in a hospital. After a positive colonoscopy result,
the individual left the screening program and was referred to
a surveillance program instead. After a negative colonoscopy
result, the individual re-entered the screening program and
obtained a new FIT after a fixed 5-year interval. The second
action type corresponded with a negative FIT and prescribed a
screening interval I. Such actions were denoted by FITI . The set
of feasible intervals was denoted by I . The resulting action set A
was

A : = {COL} ∪ {FITI |I ∈ I}.

Considering larger action sets allows formore potential screening
policies, but also increases the size of the algorithm’s search space.

The space B := R × T is called the belief space. The current
status of a participant is represented by a point in this space. A
screening policy π :B → A partitions the belief space and maps
each part to an action in the action set (see Figure 1A), defining
an action for each participant.

The framework assumes that the actions have a test burden
and that the order of the actions in the belief space is fixed with
respect to this test burden. In our case, colonoscopies, for which
participants are referred to a hospital, have a relatively high test
burden compared to FIT which is done at home. Short FIT-
intervals were also assumed to have a higher burden than longer
intervals. Only screening policies that adhere to this ordering by
test burden are considered. That is, a participant is only assigned
a test with a higher burden than another participant of the same
age, if also the perceived risk is higher. Figure 1B shows an
example of a screening policy that does not comply with the
test order assumption. We consider such a policy infeasible in
this framework.

As the ordering of the actions is fixed per age group,
screening policies can also be characterized by the bounds of
their partitions. The upper bound of the parts of the belief space
that correspond to an action are considered a function in the
belief space. In our study, this concerned the actions FITI with
corresponding policy bounds βI : T → R. In Figure 1A, these
functions are represented by the bold, dotted lines. A screening
policy is characterized by the set of its policy bounds

π = {βI}I∈I .

Note that the characterization only included the policy bounds
of the screening intervals I ∈ I , because the upper bound of the
part corresponding with the action COL was not relevant. This
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characterization of personalized screening policies is used in the
remainder of this paper.

Policies that are obtained by a combination of two other
policies are also considered. By prescribing policy π to a fraction
λ ∈ (0, 1) of the population and prescribing policy σ to the
remaining fraction (1− λ), a new policy ρ is generated.

2.3. Optimization Problem
Next, we introduce the optimization problem solved in this
paper. In particular we present a multi-objective (specifically
bi-objective) optimization problem.

A policy π has associated costs and QALYs, denoted as C(π)
and Q(π), respectively, and measured per 1,000 individuals, as is

common. We define o(π) : =

[

C(π)
Q(π)

]

as the vector containing

both objectives of π .
The bi-objective optimization problem is to find policies

minimizing the costs andmaximizing theQALYs gained. A single
policy optimizing both objectives is unlikely to exist as screening
policies with an increased number of QALYs gained generally
come with higher costs. Therefore, we aim to find a set of policies
that contains those with maximal benefits for given costs. Given
this set, policy makers can choose policies based on their budget
constraints or on what they find a suitable balance between the
two criteria.

In a multi-objective setting, the concept of Pareto dominance
is used to compare policies. A policy π dominates another policy
σ if π is a better choice than σ , i.e., if (1) the costs and QALYs of
π are at least as good as those of σ :

Q(π) ≥ Q(σ ) and C(π) ≤ C(σ ),

and (2) at least one of the objectives is better:

Q(π) > Q(σ ) or C(π) < C(σ ).

Figure 2 shows the costs and QALYs of several example policies.
Here, policy B dominates E because its costs are lower and its
QALYs are higher. B does not dominate D. A policy that is
not dominated by any other policy is called Pareto optimal. The
set of all Pareto optimal policies is referred to as the Pareto
frontier. The multi-objective optimization problem is to find
the Pareto frontier. The Pareto frontier potentially includes an
infinite number of policies, and is computationally difficult to
identify precisely. Therefore, the algorithm aims to find a set of
policies that best approximates the Pareto frontier.

Next, we explain how an approximation of the Pareto frontier
is represented using the approximation set as introduced in
Zitzler et al. (2003). This set makes use of combinations of
policies, i.e., prescribing policy π to a fraction λ ∈ (0, 1) of the
population and prescribing policy σ to the remaining fraction
(1−λ) which results in a new policy ρ. Observe that the objective
values of ρ are convex combinations of the objective values of π
and σ in the conventional sense:

o(ρ) = λo(π)+ (1− λ)o(σ ).

By varying λ, an infinite number of new policies can be generated
using only two policies.

FIGURE 2 | The costs of and QALYs gained by the fictive screening policies in

5 = {A,B,C,D,E} are plotted. The dotted black line shows the objective

values of the policies in the approximation set ψ (5). The minimal

representation of ψ (5) is {A,B,C}.

We use the above observation to create an approximation set
of the Pareto frontier of the following form. An approximation set
is represented using a finite set of policies5. This approximation
set contains all non-dominated policies among 5 and all their
non-dominated combinations, and is denoted by ψ(5). This
way, (if |5| ≥ 2) the approximation ψ(5) consists of an
infinite set of policies, but can be represented using a, typically
small, finite set of policies. In our computations, but also when
presenting the results in this paper, it is beneficial to consider a
minimal representation of ψ(5), which is a smallest subset5′ of
5 such that ψ(5′) = ψ(5).

As an example, the dotted black line in Figure 2 shows the
approximation set ψ(5) represented by 5 = {A,B,C,D,E}.
The same approximation set can also be represented by policies
5′ = {A,B,C} because D is dominated by a combination of A
and B and E is dominated by B.

2.4. Evolutionary Algorithm
In this section, we describe the evolutionary algorithm (EA)
which we developed to identify approximation sets of the Pareto
frontier. EAs are based on the principle of survival of the fittest
(Holland, 1975).

In general, the algorithm keeps track of two sets of policies.
Firstly, it maintains a population of screening policies. This set
evolves over time, i.e., it changes at every iteration of the EA.
Secondly, it maintains a memory which is a set of policies that
is a minimal representation of the best approximation set found
so far. This set is updated every time that a policy appears in the
population which is non-dominated by any found policy. This
new policy is then added to the memory, and others are removed
if they are dominated. Therefore, the population can be thought
of as the current generation, while the memory simply contains
the best policies observed over all generations. Although we
are interested in the approximation set represented by the final
memory as the final solution to our optimization problem, the
population does not necessarily have to be a non-dominated set
of policies. In fact, for diversification purposes it can be beneficial
to allow inferior policies in the population.

As an example, if policies A, . . . ,E in Figure 2 are the policies
found by the algorithm, policies A, . . . ,D form the memory as
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FIGURE 3 | Schematic overview of the initialization of a policy. (A) First, the policy bounds are assigned a constant value over all age groups, adhering to the test

order assumption. (B) After that, random mutations are applied.

FIGURE 4 | An illustration of the NSGA-II algorithm. The dots represent the

costs of and QALYs gained by several fictive policies. Policies with equal rank

are connected by the lines. Non-dominated policies obtain rank 1. Those that

are dominated by policies with rank 1 only, obtain rank 2, etc. The crowding

distance of the white policy equals the circumference of the rectangle drawn

around it. The rectangle touches the next less costly and next more expensive

policies with equal rank.

policy E is dominated by B. Policy D is also part of the memory
because it is not dominated by a found policy.

The EA starts with an initial population that consists of a
predefined number of screening policies. It evaluates the fitness,
or quality, of these policies in terms of the objectives. Then, it
selects half of the policies to stay in the population and discards
the other half. This is a semi-random selection procedure where
solutions of higher fitness are more likely to be selected. The
selected policies are paired up randomly to form pairs of parents.
Together, these parents generate two child policies by exchanging
some of their features, called cross-over. Some of the child
policies undergo random mutations in which their features are
changed randomly. Finally, the algorithm adds the children to
the population, which results in a new population, and updates
the memory such that it contains the best policies observed
until then. It repeats the cycle of fitness evaluation, selection,
cross-over and mutation until some stopping criterion is met.

In the remainder of this section we provide a more detailed
description of the key elements of the EA and its interaction with
MISCAN-Colon.

2.4.1. Initialization
A screening policy is initialized in two steps as illustrated in
Figure 3. First, each policy bound βI(τ ) is assigned a constant

value for all age groups τ ∈ T . For that, |I| random values
are uniformly drawn from R and assigned to the policy bounds,
adhering to the test order assumption. That is, the smallest value
drawn from R is assigned to the policy bound that relates to
the action with the lowest test burden, the second smallest value
to the action with the second lowest test burden, etc. Then,
the mutation operator as described in section 2.4.5 is applied
such that the policy bounds are not necessarily constant over
the age groups anymore. The algorithm repeats these two steps
Npop times to obtain an initial population of policies, where Npop

denotes the number of screening policies in the population.

2.4.2. Fitness Evaluation
The algorithm bases the fitness of a policy in the population
on its costs and QALYs as simulated by MISCAN-Colon. In
MISCAN-Colon, both objectives were discounted by 3% annually
from the age of 40 and were calculated relative to a situation
without screening. Simulations used one million individuals.
Common seeds ensured that the results of different simulation
runs were comparable.

The EA uses the Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II) introduced by Deb et al. (2002) to evaluate fitness.
NSGA-II summarizes fitness of policies with two quantities: the
rank and crowding distance. Given a population of policies P,
the rank of a policy represents to what extent it is dominated
by other policies in P (excluding combinations of policies).
Non-dominated policies in P obtain rank 1. Then these policies
are excluded and the non-dominated policies of the remainder
are assigned rank 2. This is repeated until every policy is
ranked (Figure 4). Consequently, the solution quality increases
for decreasing rank.

It is likely that multiple policies in the population obtain an
equal rank. To break a tie in the selection procedure, NSGA-
II evaluates for each policy a crowding distance. The crowding
distance is a statistic that reflects the level of isolation with respect
to other policies with equal rank. For a policy π , the crowding
distance is the circumference of the rectangle that touches the
next less costly and next more expensive policies with the same
rank as π , see Figure 4 for an example. Note that the crowding
distance of the cheapest and most expensive policies in a frontier
are considered to be infinite. In case two policies have equal rank,
the algorithm prefers the one with a higher crowding distance.
The idea behind the crowding distance is to get a good spread
of different screening policies, i.e., expensive as well as cheap
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FIGURE 5 | Schematic overview of the cross-over operator. The two upper figures represent the parent policies, a random pair of policies in Mg. The lower figures

represent two offspring policies that are added to Og. The two age groups 50 and 65 were randomly selected. The policy bounds in between these age groups

(marked by the red box) are exchanged in the offspring.

policies. This may help in achieving a high quality approximation
of the complete Pareto frontier.

In our particular bi-objective case, the time complexity of the
NSGA-II algorithm is O(N2

pop) (Deb et al., 2002).

2.4.3. Selection Operator
Once the rank and the crowding distance of the policies in
the population are evaluated, the EA selects which policies are
maintained in the population and which are discarded. The
maintained policies form the mating pool. In iteration g, the
pool is denoted by Mg . During the selection procedure, exactly
Nsel := Npop/2 policies are selected and added to Mg . The
selection operator consists of two phases.

First, the mating pool is (partially) filled by an elitist
selection procedure. Given the current population Pg and the
approximation set ψ(Pg), the EA adds the solutions in the
minimal representation of ψ(Pg) to the mating pool, i.e., it
adds the policies in the population that are not dominated by
(combinations of) other policies in the population. This ensures
that the best policies are selected. Note that this is a subset of
the policies with rank 1. Tests with our benchmark have shown
that adding the complete set of policies with rank 1 in this phase
leads to poorer algorithm performance. If more thanNsel policies
are selected in this first, elitist phase, the algorithm randomly
discards policies until Nsel policies remain.

In the second phase, the remainder of the mating pool is filled
by tournament selection: two policies are randomly sampled
from the population and the fittest of the two policies in terms
of rank and crowding distance is added to the mating pool. This
is repeated until the mating pool is filled with Nsel policies. Note
that this procedure may lead to duplicates in the mating pool.
Policies may be selected once in both phases and/or multiple
times in the second phase.

2.4.4. Cross-Over Operator
Having filled the mating pool Mg , the algorithm applies 2-point
cross-over (Whitley, 1994) to generate offspring. The policies in
Mg are paired up randomly. For each of the pairs, two age groups
τ1, τ2 ∈ T are randomly selected. The policy bounds in the
interval [τ1, τ2] are exchanged, see Figure 5 for an example. This
results in two new offspring policies which are added to Og , the
set of offspring obtained in iteration g. After all pairs of parents
have generated offspring, Og has a size of Npop/2.

2.4.5. Mutation Operator
The offspring policies inOg are subject to randommutations with
probability pM . If the EA selects a policy to undergomutation, the
following steps are taken. First, a fraction pe of the age groups in
T is randomly selected. For these age groups, the values of all
policy bounds {βI}I∈I are mutated: they are replaced by random
values from R. However, these values are not sampled from R,
instead they are sampled from a subset of R. For each selected
age group, a value r̃ ∈ R is sampled. This value is an upper or
a lower bound with 50% probability. If it is an upper bound, |I|
random values are drawn from the values in R smaller or equal
to r̃. If it is a lower bound, they are drawn from the values in
R larger or equal to r̃. These new values are assigned as policy
bounds, adhering to the test order assumption, see Figure 6 for
an example.

The reason to sample the new values from a subset of R is
that this is more likely to result in a larger variety of policies. For
example, the policy bound related to the largest screening interval
always obtains the smallest of the |I| new values. If these values
are drawn from the complete setR, it is unlikely that a value close
to 1 is assigned to this bound. This is more likely to occur when
sampling from a subinterval ofR.
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FIGURE 6 | Schematic overview of the mutation of a policy. (A) A policy before mutation. If pe = 3/9, the algorithm is likely to select three age groups, marked by the

three red boxes. (B) For each age group, new policy bounds are sampled from a subset of R (red boxes). For age groups 50 and 75, r̃ is 0.4 and 0.3, resp., and it is

an upper bound. Therefore, the new values of the policy bounds must be smaller or equal to 0.4 and 0.3, resp. For age group 70, r̃ = 0.5 is a lower bound and all new

values are larger or equal to 0.5.

2.4.6. Updating Procedures and Stopping Condition
After applying all operators, the algorithm obtains (1) a mating
pool Mg that contains the selected policies from the current
population Pg , and (2) a set of newly generated offspringOg . Both
sets have size Npop/2. The algorithm merges these sets to obtain
the population for the next iteration, i.e., Pg+1 = Mg ∪ Og .

Additionally, it updates its memory with the best found
policies. It adds all newly found policies that are not dominated
by the policies in the current memory, and removes all policies
that are dominated by the newly added policies.

The algorithm repeats the procedures for selection, fitness,
cross-over, mutation and updating until no new solutions are
added to the memory for Nstop = 30 consecutive iterations.
The approximation set represented by the memory at the final
iteration is considered the best approximation of the Pareto
frontier and is the final solution to our problem.

2.5. Experiments and Implementation
We demonstrate the performance of the algorithm with three
different experiments. First, we evaluated how well the algorithm
approximated a Pareto frontier, i.e., the optimal solution to
the multi-objective optimization problem, using a benchmark
problem. We considered an instance of the problem with a
relatively small number of feasible policies, which enabled us to
enumerate all feasible policies, evaluate their costs and QALYs
and identify the Pareto frontier. All policies were simulated with
2 million individuals using common random numbers to ensure
that each policy was evaluated for exactly the same population.
Based on this benchmark, we also identified the best values for
the parameters Npop, pM and pe.

The benchmark problem size was reduced by restricting the
assumed screen eligibility to ages 55 to 75, resulting in the age
groups T = {55, 60, 65, 70}, and restricting the set of feasible
cutoffs toR = {0, 0.125, 0.25, 0.375, 0.5}. We used R1 to estimate
perceived risk. As shown in Supplementary Section 2 of the
Supplementary Material, this combination of parameters gave
approximately 1.5 million feasible policies.

To quantify how well the Pareto frontier was approached by
an approximation set, we used the relative difference between
the hypervolume (HV) of both sets. The HV is a quality
indicator introduced by Zitzler and Thiele (1998) and is very
common in multi-objective optimization (Riquelme et al., 2015).

FIGURE 7 | The costs and QALYs of several policies that form a minimal

representation of an approximation set. The hypervolume of this approximation

set is equal to the area of the objective space dominated by the approximation

set, bounded by a reference point. This point is marked with a cross in the

figure.

In our study, the hypervolume of an approximation set was
defined as the area of the objective space dominated by the
approximation set, bounded in some sense by a reference point
as illustrated in Figure 7. The reference point was chosen as
(costs, QALYs) = (4,000,000; 0). In Experiment 1, we evaluated
the HV of both the approximation set represented by the
Pareto frontier and the approximation set obtained by the
algorithm. The relative difference between the two quantified the
optimality gap, i.e., how well the approximation set approaches
the Pareto frontier.

Next, we used two larger problem instances to test the
algorithm. Experiment 2 used the original settings for T and R

and used the action set A = {COL, FIT1, FIT2, FIT3} such that
both the cutoff for FIT-positivity and screening intervals were
optimized. In Experiment 3, we considered a simplified situation
in which A = {COL, FIT2}. It effectively means that we used a
fixed screening interval of 2 years and only optimized the cutoff
per age group. This is an improvement already compared to
current practice in which the cutoff is fixed for all ages. The size
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of the search space was much smaller compared to Experiment 2
(see Supplementary Material).

For both experiments, it was computationally impossible to
evaluate all feasible policies and to find the exact Pareto frontier.
To evaluate the obtained approximation sets, we compared them
in terms of costs and QALYs with policies recently evaluated
for the United States Preventive Services Task Force (USPSTF)
by Knudsen et al. (2020) that include FIT and/or colonoscopies.
For a fair comparison, we only used reference policies that start
screening no later than age 45, because the policies generated by
the algorithm all start at age 40 due to our chosen parameter
settings. An overview of the reference policies is shown in
Supplementary Section 3 of the Supplementary Material. The
reference policies and those in the memory of the algorithm were
(re-)evaluated withMISCAN-Colon using 2.5million individuals
and with a different random number stream than used in the
algorithm. This prevented a biased comparison, since the policies
of the algorithmmay have been optimized to the random number
stream used for simulations in the EA.

As is common in health economics, we made use of a
statistic, the incremental cost-effectiveness ratio (ICER) (Sanders
et al., 2016), to identify a single policy in an approximation set
which is cost-effective, for comparative purposes. We evaluated
the ICER for the policies in the finite set that is a minimal
representation of the approximation set. The ICER of policy
π is defined as the extra costs per extra QALY gained when
opting for policy π instead of the next less costly policy in the
minimal representation, i.e., it is defined as the ratio between the
difference in costs and the difference in QALYs gained between
the two. Due to our definition of an approximation set, the
ICER of a policy increases for increasing costs. The cost-effective
policy is defined as the policy that has maximum benefits for
which the ICER is still below a predetermined threshold, often
called the willingness-to-pay threshold. In this study, we used
a threshold of $100,000 per QALY gained to determine the
cost-effective strategy.

The running time of the algorithm strongly depends on
the implementation and computational resources. In our
experiments, the algorithm was implemented using the Python
DEAP evolutionary computation framework (Fortin et al., 2012)
and implemented as a high-performance computing (HPC)
workflow using the EMEWS framework (Ozik et al., 2016). The
first, second and majority of the third experiment were run on
Bebop, an HPC cluster managed by the Laboratory Computing
Resource Center at Argonne National Laboratory. Bebop has
1,024 nodes comprised of 672 Intel Broadwell processors with
36 cores per node and 128 GB of RAM and 372 Intel Knights
Landing processors with 64 cores per node and 96 GB of RAM.

3. RESULTS

In this section, we present the results of the three experiments
introduced in section 2.5. All presented costs and QALYs are
relative to a situation without screening for CRC. Also, they
were discounted by 3% annually from age 40, as is common in
cost-effectiveness analyses.

3.1. Experiment 1: Benchmark
Figure 8 shows the costs and QALYs of all feasible policies in
the benchmark problem, evaluated in 10 phases on Bebop, 9 of
which used 1,792 cores each and 1 which used 2,016 cores. It was
completed in 97.07 h, resulting in 177,528.31 core hours in total.

Experiments were done with varying values for Npop, pM , and
pe. After convergence, the hypervolume (HV) of the obtained
approximation set was highest for the values (Npop, pM , pe) =

(400, 0.3, 0.6). This approximation set, obtained after 499
iterations of the algorithm, is included in Figure 8. The three
selected parameters values are used in the remainder of our study.

We observe that nearly all feasible policies are dominated by
the approximation set, suggesting it is a good approximation
of the Pareto frontier. This is further confirmed by the
hypervolume. The HV of the approximation set and Pareto
frontier (PF) equal 108,116,896 and 108,124,226, respectively,
effectively resulting in an optimality gap of 0.007%.

The PF contains 12 policies, the minimal representation of the
approximation set contains 11. Further analysis showed that the
11 policies representing the approximation set are all part of the
representation of the PF: the approximation set misses only one
of the policies on the PF, which explains the optimality gap. The
missing policy is marked in Figure 8.

3.2. Experiment 2: Optimizing Cutoffs and
Screening Intervals
In the second experiment, using R1 to estimate perceived risk,
the algorithm took 1263 iterations until convergence. This was
performed in 5 phases on Bebop. Each phase of the experiment
was run on 432 cores, enabling 430 individual policies to be
evaluated in parallel with the remaining two processors being
used for workflow management. The total number of 1,263
iterations was completed in 101.7 h for a total compute time
of 43,934.4 core hours, four times faster than the enumeration
in Experiment 1 despite the factor 1016 increase in search
space (see Supplementary Material). The evolutionary operators
consumed 0.11% of the total computation time, the remainder
was used by MISCAN-Colon.

Incorporating extra FIT-concentrations in the perceived risk
value did not affect the performance and the outcomes of the
algorithm. Experiments with perceived risk estimators R2 and R3

resulted in similar computation times and policies with similar
costs, QALYs and patterns. In the remainder of this section, we
only discuss the outcomes using R1.

Figure 9 shows the total number of policies added to the
memory in each iteration, and how many of these policies were
added to the minimal representation of its approximation set,
i.e., the number of new policies that were not dominated by any
combination of other policies in the memory.We observe that the
latter group is a minority. Especially in the final 600 iterations,
only 9 of such policies were found.

Figure 10 shows the costs and QALYs of the best
approximation set of the PF obtained by the algorithm and
of all reference policies. The minimal representation of the
approximation set contains twelve personalized policies, and
dominates all reference policies. For similar costs, the QALYs of
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FIGURE 8 | Visualization of all feasible policies in the problem instance of Experiment 1. The yellow dots represent the costs and QALYs of the feasible policies. The

blue line shows the approximation set obtained by the algorithm. It is represented by the 11 policies indicated by the blue dots. The policy indicated by the purple

square is the only strategy on the PF that was not in the approximation set found by the algorithm.

FIGURE 9 | The number of policies added to the memory in each iteration for Experiment 2. The blue line counts all added policies, the orange line only those that are

not dominated by (combinations of) other policies in the current memory. The latter are part of the minimal representation of the memory’s approximation set.

the obtained screening policies increased up to 14% compared to
the reference policies. This shows that the algorithm succeeded
in finding personalized screening policies that are more
effective than the uniform reference policies as evaluated using
MISCAN-Colon.

To characterize the obtained approximation set, Figure 11
shows the cost-effective personalized policy inmore detail (policy
6, marked blue-red in Figure 10), as well as two reference
policies with comparable costs and QALYs (marked green-
red in Figure 10). The reference policies initiate screening at
age 45. Policy 6 prescribes screening before 45, but limits
colonoscopy referrals by prescribing a high FIT-cutoff of 90µg/g.
The reference policies both stop screening at age 75. Policy 6
prescribes high cutoffs and long intervals from age 70. Since
the algorithm is forced to design screening policies that start at
age 40 and stop at age 85, we suspect that it tries to reduce the
screening intensity by prescribing long intervals and high cutoffs
for younger/older age ranges. Interestingly, the FIT-cutoffs at age
ranges 55 and 65 in policy 6 are 0 µg/g, effectively resulting in a
guaranteed referral for a colonoscopy regardless of the measured
FIT-concentration. After such a colonoscopy, provided it was

negative, screening is first halted for 5 years by design.We see that
screening is then offered with higher cutoffs for another 5 years.
Effectively, the colonoscopies are applied with a 10-year interval
for most participants between these ages, in line with current
USPSTF recommendations for colonoscopy-based screening and
policy C3.

Figure 12 displays all policies that represent the blue
approximation set in Figure 10 to observe the effect of decreasing
or increasing the costs compared to policy 6. All policies offer
intermittent colonoscopy and FIT-screening by prescribing at
least one guaranteed colonoscopy and prescribing FIT-screening
with higher cutoffs after a guaranteed colonoscopy with a
negative result. The cheaper policies focus on FIT-screening
during the ages 50 through 65. They apply higher cutoffs and
longer screening intervals for other ages, limiting the screening
intensity for those age ranges. This is a consequence of the
lower risk of CRC for younger age ranges in general and the
shorter life expectancy for older age ranges, effectively resulting
in less life years to gain from screening. More expensive policies
focus relatively more on colonoscopy screening (FIT-cutoffs of 0
µg/g) and decrease the cutoffs and the intervals first for those

Frontiers in Physiology | www.frontiersin.org 10 January 2022 | Volume 12 | Article 718276151

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


van Duuren et al. Algorithm to Personalize CRC Screening

FIGURE 10 | The costs and QALYs of the reference policies and of the best approximation sets generated in Experiments 2 and 3. The blue line shows the best

approximation set obtained in Experiment 2, the black line shows that of Experiment 3. The blue-red and black-orange policies in the approximation sets are

cost-effective. The plus represents a situation without screening, the diamonds represent the policies evaluated for the USPSTF with FIT and/or colonoscopies that

start at age 45. The two white diamonds are the two reference policies that are not dominated in Experiment 3. The four green-red/green-orange diamonds are

referred to in Figures 11, 14.

FIGURE 11 | The three blue-red/green-red policies in Figure 10 are shown. Policy 6 is the cost-effective policy within the willingness-to-pay threshold in the

approximation set for Experiment 2. Policies CF2 and C3 are the closest reference policies in terms of costs and QALYs (these policies are listed in

Supplementary Table 3). For age groups with a black bar, reference policies do not offer screening.

aged 40 and then for the 70+ age ranges. The most expensive
policies prescribe multiple guaranteed colonoscopies, similar to
the colonoscopy-based policies evaluated for the USPSTF.

3.3. Experiment 3: Optimizing Cutoffs
Experiment 3 has a smaller number of feasible policies
compared to Experiment 2 because the action space was smaller.
Nonetheless, the algorithm converged after 2,111 iterations,
more than in Experiment 2. The third experiment was run
in two phases. The first 505 iterations were run on a virtual
machine managed by Erasmus Medical Center, the remaining
1,606 iterations on Bebop. The part run on Bebop was performed
on 288 cores, enabling 286 concurrent model runs, with a total
walltime of 65.5 h, and a computation time of 18,864 core hours.

The evolutionary operators used 0.07% of the computation time,
MISCAN-Colon used the remainder. The running times of
Experiments 2 and 3 are incomparable because MISCAN-Colon
was accelerated in between the two runs.

The number of policies added to the memory per iteration
(Figure 13) evolved along similar lines as in Experiment 2,
where the minority of the policies added are not dominated by
a combination of other policies, especially during the last few
iterations. The peak at iteration 505 is caused by the changed
random number stream for MISCAN-Colon when the runs were
transferred from the virtual machine to the Bebop.

In Experiment 3, there were 13 policies to minimally represent
the obtained approximation set (Figure 10). The figure shows
that nearly all reference policies were dominated, except for
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FIGURE 12 | The policies that form the minimal representation of the approximation set of Experiment 2 as shown in Figure 10.

FIGURE 13 | The number of policies added to the memory in each iteration for Experiment 3. The blue line counts all added policies, the orange line only those that

are not dominated by (combinations of) other policies in the current memory. The latter are part of the minimal representation of the memory’s approximation set. The

peak at iteration 506 is caused by the different seeds used on the virtual machine and the Bebop.

two. The two exceptions are marked by white-green diamonds:
triennial FIT for ages 45 through 70, and colonoscopy for age
ranges 45 and 60 (policies F1 and C1 in Supplementary Table 3,
resp.). Both policies quit screening relatively early whereas the

personalized policies have a fixed stopping age of 85 by design.
Disregarding these two reference policies, the QALYs of the
obtained screening policies were up to 4.3% higher than the
QALYs of the reference policies for similar costs.
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FIGURE 14 | The three black-orange/green-orange policies in Figure 10 are shown. Policy 7 is the cost-effective policy within the willingness-to-pay threshold in the

approximation set for Experiment 3. Policies CF4 and C4 are the closest reference policies in terms of costs and QALYs (see also Supplementary Table 3). For age

groups with a black bar, no screening is offered.

In this experiment, the black-orange policy in Figure 10 was
the cost-effective policy within the willingness-to-pay threshold
(policy 7 in Figure 14). The two most similar reference policies
with respect to costs and QALYs (marked green-yellow in
Figure 10) commence screening at 45. Also, the screening
intensity of policy 7 is low until age 45 as a cutoff of 50 µg/g is
prescribed. The policies stop screening at age 80 or 85, though
policy 7 has high cutoffs for colonoscopy referral from age 75. In
between, policy 7 effectively prescribes 10-yearly colonoscopy for
most participants, in line with US colonoscopy-based screening
recommendations and policy C4.

Overall, the other policies in the minimal representation of
the obtained approximation set (Figure 15) have patterns similar
to the policies found in Experiment 2. Screening is primarily
focused on the ages 50/55 through 75 for policies cheaper
than policy 7. More expensive policies allow more screening
in other age ranges, and the most expensive policies are more
colonoscopy-based.

3.4. Comparing Experiments 2 and 3
Screening policies in Experiment 2 are more flexible as they have
a larger variety in screening intervals compared to Experiment
3. However, with this flexibility, the number of feasible policies
increases by a factor 1013 (see Supplementary Section 2). This
means that the algorithm has a larger search space.

Figure 10 shows that the approximation set of Experiment 3
is dominated by that of Experiment 2. Figures 9, 13 show that
the set was found in fewer iterations in the second experiment
compared to the third. This suggests that it may be beneficial to
increase the flexibility of the problem by increasing the action
space, despite the increased search space.

4. DISCUSSION

In this paper, we demonstrated the computational viability
of designing and optimizing personalized FIT-based screening
policies using an evolutionary algorithm. The algorithm

combines with an advanced simulation model to evaluate the
policies. The generated policies prescribed varying screening
intervals or referral for a colonoscopy, based on a person’s
age and measured fecal haemoglobin concentrations. The
evolutionary algorithm was used to generate a collection of
personalized screening policies, also called an approximation
set, that approximates the Pareto frontier, the set of policies
with maximum benefits, measured in QALYs gained, for given
costs. In our study, an established microsimulation model,
MISCAN-Colon, was used to estimate the costs and QALYs of
a screening policy.

We demonstrated the performance of the algorithm in three
experiments. In the first, we used a relatively small problem
instance with 1.5 million feasible policies.We calculated the exact
optimal Pareto frontier and tested how well it was approximated
by the algorithm. The algorithm could solve this instance to
near-optimality, with an optimality gap of 0.007%.

The problem instances of the second and third experiments
were too large to derive the exact Pareto frontier. We evaluated
the performance of the evolutionary algorithm by (1) comparing
the generated policies to a set of reference policies, previously
evaluated with MISCAN-Colon in a decision analysis for the
United States Preventive Services Task Force (USPSTF), in terms
of costs and benefits and (2) assessing the face validity of the
obtained policies. First, the generated personalized screening
policies generally outperformed the reference policies in terms of
costs and QALYs. For a given level of costs, the QALYs gained
by the generated policies increased by 14% in Experiment 2
and 4.3% in Experiment 3. In Experiment 2, the computation
time of the algorithm was four times shorter than the time
of the enumeration process in Experiment 1, despite the 1016

times larger search space. This underscores the potential of
personalized screening, and of the computational approach
presented in this study.

Second, the obtained policies have several interesting features.
The cost-effective policies allocated screening predominantly
to the ages 50–70 or 45–70 through short intervals and low
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FIGURE 15 | The policies that form the minimal representation of the approximation set of Experiment 3 as shown in Figure 10. Note that a cutoff at a perceived risk

of 1.0 implies that participants with a FIT-concentration above 100 µg/g are referred for a colonoscopy.

cutoffs for these ages. This is in line with currently implemented
policies, which mostly prescribe screening to those aged 50–70
(Schreuders et al., 2015). Cheaper policies increased the intervals
and cutoffs for the ages below 55 and above 65. This way, the
algorithm narrows the focus of the policies to the ages 55–65
since policies are forced to apply screening from age 40 to 85 by
design.More expensive policies expanded the age ranges with low
cutoffs and short intervals. Remarkably, all policies guaranteed
at least one colonoscopy to all participants by prescribing a FIT-
cutoff of 0 µg/g for at least one age range. However, whenever a
second guaranteed colonoscopy was offered, the interval from the
previous colonoscopy was at least 10 years. This is in accordance
with current US colonoscopy-based screening recommendations
(Lin et al., 2021). The above observations support the algorithm’s
face validity, i.e., its ability to generate sensible policies.

In the second experiment, the policies prescribed a larger
variety of screening intervals than in the third experiment,

resulting in an increase of the search space by a factor 1013.
Still, the approximation set found in Experiment 2 dominates
the set found in Experiment 3. This suggests that a larger
set of screening intervals is beneficial, despite the increased
search space.

To the best of our knowledge, this is the first algorithm
that optimizes personalized FIT-screening policies evaluated by
an advanced microsimulation model. Whereas current methods
impose strong Markov assumptions to evaluate generated
policies, we evaluated them without such assumptions. The
described algorithm is flexible: an individual’s risk can be
estimated by a variety of estimators, a wide range of actions
can be incorporated in the action set, and custom age ranges to
which policies apply may be considered. It may also be applied to
other diseases when combined with a suitable simulation model
that evaluates the costs and benefits of policies, as long as their
screening program is based on a test with a quantitative test
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result. Examples include prostate specific antigen (PSA) based
screening for prostate cancer or mammography screening for
breast cancer. Such models are increasingly developed and our
algorithm provides enough flexibility that it can be combined
with many existing models.

The developed algorithm may be amenable for further
improvement. First, it may be possible to enhance the
evolutionary operators to search the space of screening
policies more efficiently, for example by applying semi-random
mutations directed by other simulation outcomes. Second, more
fine-grained variations of the belief and action space may
be considered, for example including information on prior
colonoscopy results in addition to FIT-history, and the option to
“stop screening”. Furthermore, additional user constraints may
be applied to the policies generated by our algorithm, to facilitate
easier implementation in practice. For example, it may not be
desirable to prescribe guaranteed colonoscopies, or policymakers
may want age-independent cutoffs for FIT-positivity for practical
reasons. Decision scientists and policy makers should come up
with a guideline of what features a policy requires for real-
world implementation.We believe the computational framework
presented in this paper is sufficiently flexible to incorporate such
additional features.

As with any model, results from a microsimulation model
are subject to uncertainty, and should be interpreted with
caution. MISCAN-Colon was extensively validated in the past
on randomized clinical trial data for screening, including fecal-
based screening. However, the module for FIT-concentrations
was a prototype model for which direct clinical validation
was not possible in the scope of this study. It needs further
development and validation when more data on the relation
between FIT-concentrations and presence of lesions become
available. On the other hand, the study shows that using
a simpler but faster model could decrease the algorithm’s
computation time. In Experiments 2 and 3, 99.9% of the
algorithm’s running time was spent on simulation by MISCAN-
Colon, despite parallel computations. However, this may
be at the cost of decreased accuracy in the evaluation
of the policies.

To conclude, we demonstrated a potential method for
identifying optimized personalized screening policies while
evaluating them with established simulation models from

practice. This moves the field a step closer to implementing
personalized screening in practice.
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Background: We evaluated the implications of different approaches to characterize the
uncertainty of calibrated parameters of microsimulation decision models (DMs) and
quantified the value of such uncertainty in decision making.

Methods: We calibrated the natural history model of CRC to simulated epidemiological
data with different degrees of uncertainty and obtained the joint posterior distribution of the
parameters using a Bayesian approach. We conducted a probabilistic sensitivity analysis
(PSA) on all the model parameters with different characterizations of the uncertainty of the
calibrated parameters. We estimated the value of uncertainty of the various
characterizations with a value of information analysis. We conducted all analyses using
high-performance computing resources running the Extreme-scale Model Exploration with
Swift (EMEWS) framework.

Results: The posterior distribution had a high correlation among some parameters. The
parameters of the Weibull hazard function for the age of onset of adenomas had the
highest posterior correlation of −0.958.When comparing full posterior distributions and the
maximum-a-posteriori estimate of the calibrated parameters, there is little difference in the
spread of the distribution of the CEA outcomes with a similar expected value of perfect
information (EVPI) of $653 and $685, respectively, at a willingness-to-pay (WTP) threshold
of $66,000 per quality-adjusted life year (QALY). Ignoring correlation on the calibrated
parameters’ posterior distribution produced the broadest distribution of CEA outcomes
and the highest EVPI of $809 at the same WTP threshold.

Conclusion: Different characterizations of the uncertainty of calibrated parameters affect
the expected value of eliminating parametric uncertainty on the CEA. Ignoring inherent
correlation among calibrated parameters on a PSA overestimates the value of uncertainty.

Keywords: microsimulation models, uncertainty quantification, calibration, Bayesian, value of information analysis,
decision-analytic models, high-performance computing, EMEWS
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BACKGROUND

Decision models (DMs) are commonly used in cost-effectiveness
analysis where uncertainty in the parameters is inherent (Kuntz
et al., 2017). The impact of parameter uncertainty can be assessed
with a probabilistic sensitivity analysis (PSA) to characterize
decision uncertainty (i.e., the probability of a strategy being
cost-effective) (Briggs et al., 2012; Sculpher et al., 2017) and to
quantify the value of potential future research by determining the
potential consequences of a decision with value of information
(VOI) analysis (Schlaifer, 1959; Raiffa and Schlaifer, 1961).

The parameters of DMs can be split into two categories, those
obtained from the literature or estimated from available data
(i.e., external parameters) and those that need to be estimated
through calibration (i.e., calibrated parameters). External
parameters are estimated either from individual-level or
aggregated data that directly inform the parameters of interest.
There are recommendations on the type of distributions that
characterize their uncertainty based on the characteristics of the
parameters or the statistical model used to estimate them (Briggs
et al., 2012). For example, a probability could be modeled with a
beta distribution and a relative risk with a lognormal distribution
(Briggs et al., 2002). For calibrated parameters, no such data exist
that can directly inform their uncertainty because a research
study hasn’t been conducted or is unfeasible to conduct, or
because the parameters reflect unobservable phenomena, as is
often the case in natural history models of chronic diseases
(Welton and Ades, 2005; Karnon et al., 2007; Rutter et al.,
2009; Rutter et al., 2011) or in infectious disease dynamic
models (Enns et al., 2017). The choice of distribution for these
parameters is often less clear. One option is to define uniform
distributions with wide bounds or generate informed
distributions based on moments of the calibrated parameters,
such as the mean and standard error. However, the impact of
these approaches to characterize the uncertainty of calibrated
parameters on decision uncertainty and the VOI on reducing that
uncertainty has not been studied.

Model calibration is the process of estimating unobserved or
unobservable parameters by matching model outputs to observed
clinical or epidemiological data (known as calibration targets)
(Kennedy and O’Hagan, 2001; Stout et al., 2009; Kuntz et al.,
2017). While there are several approaches for searching the
parameter space in the calibration process, most approaches
are insufficient to characterize the uncertainty in the calibrated
model parameters because they do not provide interval estimates.
For example, direct-search optimization algorithms like Newton-
Raphson Nelder-Mead (Nelder and Mead 1965) simulated
annealing or genetic algorithms (Kong et al., 2009) treat the
calibration targets as if they were known with certainty, so are
primarily useful when identifying a single or a set of parameters
that yield good fit to the targets (Kennedy and O’Hagan, 2001).

A sample of calibrated parameter sets that correctly
characterizes the uncertainty of the calibration target data is
obtained from their joint distribution, conditional on the
calibrated targets. To obtain the joint distribution, calibration
could be specified as a statistical estimation problem under at
least two different frameworks, through maximum likelihood

(ML) or Bayesian methods. ML can fail in obtaining interval
estimates by not being able to estimate the Hessian matrix when
the likelihood is intractable or computationally intensive to
simulate and when the calibration problem is non-identifiable
(Gustafson, 2005; Alarid-Escudero et al., 2018); thus, we focus on
Bayesian methods (Romanowicz et al., 1994; Kennedy and
O’Hagan, 2001; Oakley and O’Hagan, 2004; Gustafson, 2005;
Kaipio and Somersalo, 2005; Oden et al., 2010; Gustafson, 2015;
Alarid-Escudero et al., 2018).

Despite their suitability to correctly characterize the
uncertainty of calibrated model parameters, Bayesian methods
are generally computationally expensive because they require
evaluating the model thousands and sometimes millions of
times. The computational burden of Bayesian methods does
not seem to be an impediment when calibrating non-
computationally intensive DMs (e.g., Markov cohort models,
difference equations, relatively small systems of differential
equations, etc.) (Whyte et al., 2011; Hawkins-Daarud et al.,
2013; Jackson et al., 2016; Menzies et al., 2017). Still, they
become more challenging to apply to DMs that could be
computationally intensive to solve, such as models that
simulate underlying stochastic processes (Iskandar, 2018) (e.g.,
microsimulation, discrete-event simulation, and agent-based
models), limiting their use to only a few of such models
(Rutter et al., 2009).

However, the increasing availability of high-performance
computing (HPC) systems in an academic, national laboratory
and commercial settings enables such systems for model
calibration and model exploration of microsimulation DMs at
a large scale to a broader audience. HPC resources allow running
large numbers of DMs concurrently, allowing calibration
algorithms to generate large batches of parameters
simultaneously, such as the incremental mixture importance
sampling (IMIS) described below, to be run efficiently. In
many cases, particularly in the academic and national
laboratory settings, computing allocations can be obtained
through proposals with no cost to researchers (e.g., the
Advanced Scientific Computing Research (ASCR) Leadership
Computing Challenge (ALCC), https://science.osti.gov/ascr/
Facilities/Accessing-ASCR-Facilities/ALCC). However,
implementing dynamic calibration algorithms for HPC
resources has generally proved difficult, requiring specialized
knowledge across various disciplines. The Extreme-scale Model
Exploration with Swift (EMEWS) framework was designed to
facilitate large-scale model calibration and exploration on HPC
resources (Ozik et al., 2016a) to a broad community. EMEWS can
run very large, highly concurrent ensembles of microsimulation
DMs of varying types with a broad class of calibration algorithms,
including those increasingly available to the community via.
Python and R libraries, using HPC workflows. EMEWS
workflows provide interfaces for plugging in DMs (and any
other simulation or black box model) and algorithms, through
an inversion of control scheme (Ozik et al., 2018), to control the
dynamic execution of those DMs for calibration and other
heuristics for “model exploration” purposes. These interfaces
help reduce the need for an in-depth understanding of how
task coordination and inter-task dependencies are
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implemented for HPC resources. The general use of EMEWS can
be seen on the EMEWS website (https://emews.github.io), which
includes links to tutorials.

The purpose of our study is threefold. First, to use recently
developed HPC capabilities to characterize the uncertainty of
calibrated parameters of a microsimulation model of the natural
history of colorectal cancer (CRC). Second, to explore the impact
of different approaches to characterize the uncertainty of
calibrated parameters on decision uncertainty, and third, to
use VOI analysis to quantify the value of eliminating
parameter uncertainty when assessing the cost-effectiveness of
CRC screening.

METHODS

We developed a microsimulation model of the natural history of
CRC and calibrated it using a Bayesian approach. We then
overlaid a simple CRC screening strategy onto the natural
history model and conducted a cost-effectiveness analysis
(CEA) of screening, including a PSA. Instead of using the
posterior means to represent the best estimates of each
calibrated parameter, we obtained the posterior distribution
using a Bayesian approach that represents the joint
uncertainty of all the calibrated parameters that can then be
used in a PSA. We then evaluated the impact of different
approaches to characterize the uncertainty of calibrated
parameters on the joint distribution of incremental costs and
incremental effects of the screening strategy compared with no
screening through a PSA while also accounting for the
uncertainty of the external parameters (e.g., test characteristics,
costs, etc.). Finally, we quantified the amount of money that a
decision maker should be willing to spend to eliminate all
parameter uncertainty (i.e., the expected value of perfect
information (EVPI)).

Microsimulation Model of the Natural
History of CRC
We developed a state-transition microsimulation model of the
natural history of CRC implemented in R (Krijkamp et al., 2018)
based on a previously developed model (Alarid-Escudero et al.,
2018). The progression between health states follows a
continuous-time age-dependent Markov process. There are
two age-dependent transition intensities (i.e., transition rates),
λ1(a) and μ(a), that govern the age of onset of adenomas and
non-cancer-specific mortality, respectively. Following Wu et al.
(2006) we specify λ1(a) as a Weibull hazard with the following
specification

λ1(a) � lγaγ−1,

where a is the age of the simulated individuals, and l and γ are the
scale and shape parameters of the Weibull hazard function,
respectively. The model simulates two adenoma categories:
small (adenoma smaller than 1 cm in size) and large
(adenoma larger than or equal to 1 cm in size). All adenomas

start small and can transition to the large size category at a
constant annual rate λ2. Large adenomas may become preclinical
CRC at a constant annual rate λ3. Both small and large adenomas
may progress to preclinical CRC, although most will not in a
simulated individual’s lifetime. Early preclinical cancers
(preclinical stages I and II) progress to late stages (preclinical
stages III and IV) at a constant annual rate λ4 and could become
symptomatic at a constant annual rate λ5. Late preclinical cancer
could become symptomatic at a constant annual rate λ6. After
clinical detection, the model simulates the survival time to early
and late CRC death using cancer-specific constant mortality rates,
λ7 and λ8, respectively. The model has nine health states: normal,
small adenoma, large adenoma, early preclinical CRC, late
preclinical CRC, early clinical CRC, late clinical CRC, CRC
death, and death from other causes. The state-transition
diagram of the continuous-time model is shown in Figure 1.

The continuous-time age-dependent Markov process of this
natural history model of CRC can be represented by an age-
dependent 9 × 9 transition intensity matrix, Q(a). To translate
Q(a) to discrete-time, we compute the annual-cycle age-
dependent transition probability matrix, P(a, t), using the
Kolmogorov differential equations (Kolmogorov, 1963; Cox
and Miller, 1965; Welton and Ades, 2005)

P(a, t) � Exp(tQ(a)),
where t � 1 and Exp() is the matrix exponential. In discrete
time, the natural history model of CRC allows individual
transitions across multiple health states in a single year. Small
and large adenomas may progress to preclinical or clinical
CRC, and preclinical cancers may progress through early and
late stages.

We simulated a hypothetical cohort of 50-year-old women in
the United States over a lifetime. The cohort starts the simulation
with a prevalence of adenoma of padeno, from which a proportion,
psmall, corresponds to small adenomas, and a prevalence of
preclinical early and late CRC of 0.12% (Rutter et al., 2007)
and 0.08% (Wu et al., 2006), respectively. The parameters padeno

and psmall are calibrated parameters. The simulated cohort is at
risk of all-cause mortality, μ(a), from all health states obtained
from 2014 United States life tables (Arias et al., 2017).

Calibration Targets
We used the microsimulation model of the natural history of
CRC to generate synthetic calibration targets by selecting a set
of parameter values based on plausible estimates from the
literature (Table 1) (Wu et al., 2006; Rutter et al., 2007). We
simulated four different age-specific synthetic targets,
including adenoma prevalence, the proportion of small
adenomas, and CRC incidence for early and late stages,
which resemble commonly used calibration targets for this
type of model (Rutter et al., 2009; Whyte et al., 2011; Frazier
et al., 2000; Kuntz et al., 2011). To simulate the calibration
targets, we ran the microsimulation model 100 times to get a
stable estimate of the standard errors (SEs) using the fixed
values in Table 1. We then aggregated each outcome across all
100 model replications to compute their mean and SE. To
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account for different levels of uncertainty across targets given
the amount of data to estimate their summary measures, we
simulated various targets based on cohorts of different sizes
(Rutter et al., 2009). Adenoma-related targets were based on a
cohort of 500 individuals, and cancer incidence targets were
based on 100,000 individuals.

Calibration of the Microsimulation Model of
the Natural History
To state the calibration of the microsimulation model as an
estimation problem (Alarid-Escudero et al., 2018), we define

M as the microsimulation model of the natural history of CRC
with 11 input parameters. Cancer-specific mortality rates from
early and late stages of CRC could be obtained from cancer
population registries (e.g., the Surveillance, Epidemiology and
End Results (SEER) registry in the United States), so
calibration of these rates was unnecessary. That is, θk �
[λ7, λ8] is a set of 2 parameters that are either known or
could be obtained from external data (i.e., are external
parameters). The model has a set of 9 parameters θu �
[padeno, psmall, l, γ, λ2, λ3, λ4, λ5, λ6] that cannot be directly
estimated from sample data and need to be calibrated. M’s
full set of parameters is θ � [θu, θk].

FIGURE 1 | State-transition diagram of the nine-state microsimulation model of the natural history of colorectal cancer. Individuals in all health states face an age-
specific mortality of dying from other causes (state not shown) (Jalal et al., 2021).

TABLE 1 | Description of parameters of the natural history model.

Symbol Description Value Source Prior distribution Calibrated

Initial state of 50-year-old cohort

Proportions

padeno Prevalence of adenoma at age 50 0.25 Rutter et al. (2007) Beta(3, 8) Yes
psmall Proportion adenomas that are small at age 50 0.71 Wu et al. (2006) Beta(6, 3) Yes
— Prevalence of preclinical early CRC at age 50 0.12 Wu et al. (2006) Fixed No
— Prevalence of preclinical late CRC at age 50 0.08 Wu et al. (2006) Fixed No

Disease dynamics

Transition rates (annual)

l Scale parameter of Weibull hazard 2.86e-06 Wu et al. (2006) Log-normal(m = −11.97, s = 0.59) Yes
γ Shape parameter of Weibull hazard 2.78 Wu et al. (2006) Log-normal(m = 1.04, s = 0.18) Yes
λ2 Small adenoma to large adenoma 0.0346 Wu et al. (2006) Log-normal(m = −3.45, s = 0.59) Yes
λ3 Large adenoma to preclinical early CRC 0.0215 Wu et al. (2006) Log-normal(m = −3.91, s = 0.35) Yes
λ4 Preclinical early CRC to preclinical late CRC 0.3697 Wu et al. (2006) Log-normal(m = −1.15, s = 0.23) Yes
λ5 Preclinical early CRC to clinical early CRC 0.2382 Wu et al. (2006) Log-normal(m = −1.41, s = 0.10) Yes
λ6 Preclinical late CRC to clinical late CRC 0.4582 Wu et al. (2006) Log-normal(m = −0.78, s = 0.22) Yes
λ7 CRC mortality in early stage 0.0302 Wu et al. (2006) Fixed No
λ8 CRC mortality in late stage 0.2099 Wu et al. (2006) Fixed No
μ(a) Age-specific mortality Age-specific Arias, (2017) Fixed No
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To calibrateM, we adopted a Bayesian approach that allowed
us to obtain a joint posterior distribution that characterizes the
uncertainty of both the calibration targets and previous
knowledge of the parameters of interest in the form of prior
distributions. Prior distributions can reflect experts’ opinions, or
when little knowledge is available, these could be specified as
uniform distributions. We constructed the likelihood function by
assuming that each type of target t, including adenoma
prevalence, proportion of small adenomas, early clinical CRC
incidence, and late clinical CRC incidence for each age group a,
yta, are normally distributed with mean ϕta and standard
deviation σta (Alarid-Escudero et al., 2018). That is,

yta ~ Normal(ϕta
, σta),

where ϕta� E[M(θ)] is the expected value of the model-predicted
output from parameter set θ. We added the log-likelihoods across
all targets to compute an aggregated likelihood measure. We
defined prior distributions for all θu based on previous knowledge
or the nature of the parameters (Table 1). We defined beta
distributions for the prevalence of adenomas and the
proportion of small adenomas at age 50, bounded between 0
and 1. We assumed that the annual transition rates follow a log-
normal distribution for their priors, defined over positive
numbers. The ranges given in Table 1 are assumed to
represent the 95% equal-tailed interval for the beta and log-
normal distributions.

To conduct the Bayesian calibration, we used the incremental
mixture importance sampling (IMIS) algorithm (Steele et al.,
2006; Raftery and Bao, 2009), which has been previously used to
calibrate health policy models (Menzies et al., 2017; Ryckman
et al., 2020). We ran the IMIS algorithm on the Midway2 cluster
at the University of Chicago Research Computing Center (https://
rcc.uchicago.edu/resources/high-performance-computing).
Midway2 is a hybrid cluster, including both central processing
unit (CPU) and graphics processing unit (GPU) resources. For
this work, we used the CPU resources. Midway2 consists of 370
nodes of Intel E5-2680v4 processors, each with 28 cores and
64 GB of RAM. Using EMEWS, we developed a workflow that
parallelized the likelihood evaluations over 1,008 processes using
36 compute nodes. In other words, we reduced the computation
time approximately by 250 had the analysis been conducted in a
laptop with four processing cores.

Consistent with previous analyses, we deemed that
convergence had occurred when the target effective sample
size (ESS) got as close as 5,000 (Rutter et al., 2019; DeYoreo
et al., 2022). An advantage of IMIS over other Monte Carlo
methods, such as Markov chain Monte Carlo, is that with IMIS,
we parallelize the evaluation of the likelihood for different
sampled parameter sets, making its implementation perfectly
suitable for an HPC environment using EMEWS. IMIS
requires defining and computing the likelihood, which we
could do with our model. However, when computing the
likelihood is intractable, modelers could use the incremental
mixture approximate Bayesian computation (IMABC)
algorithm (Rutter et al., 2019), which an approximate Bayesian
version of IMIS.

Propagation of Uncertainty
We sampled 5,000 parameter sets from the IMIS joint posterior
distribution for the nine calibrated model parameters. To
compare the outputs of the calibrated model against the
calibration targets, we propagated the uncertainty of the
calibrated parameters through the microsimulation model of
the natural history of CRC. We simulated a cohort of 100,000
(i.e., the largest cohort size used to generate the targets). We
generated themodel-predicted adenoma and cancer outcomes for
each of the 5,000 calibrated parameter sets drawn from their joint
posterior distribution. We computed the 95% posterior predicted
interval (PI), defined as the estimated range between the 2.5th and
97.5th percentiles of the model-predicted posterior outputs to
quantify the uncertainty limit model outputs.

Cost-Effectiveness Analysis of Screening
for CRC
With the calibrated microsimulation model of the natural history
of CRC, we assessed the cost-effectiveness of 10-yearly
colonoscopy screening starting at age 50 years compared to no
screening. For adenomas detected with colonoscopy, a
polypectomy was performed during the procedure. Individuals
diagnosed with a small or large adenoma underwent surveillance
with colonoscopy every 5 or 3 years, respectively. We assumed
screening or surveillance continued until 85 years of age.
Individuals with a history of polyp diagnosis had higher
recurrence rates after polypectomy, that is, a higher transition
rate from normal to small adenoma (i.e., λ1(a)). We assumed a
hazard ratio of 2 for small adenomas and 3 for the large
adenomas. The costs and utilities of CRC care varied by stage,
and individuals without clinical CRC had a utility of 1. Table 2
shows the parameters used in the CEA with their corresponding
distributions.

Uncertainty Quantification
We performed four different approaches to quantify the
uncertainty of the two types of parameters—calibrated
parameters and external (i.e., CEA) parameters. The first
approach for uncertainty quantification considers uncertainty
in both types of parameters, with uncertainty of the calibrated
parameters characterized by their joint posterior distribution
obtained from the IMIS algorithm. The second approach only
considers uncertainty in the external parameters while fixing the
calibrated parameters at the maximum-a-posteriori (MAP)
estimate, defined as the parameter with the highest posterior
density. The third approach considers uncertainty only in the
calibrated parameters characterized by their joint posterior
distribution and no uncertainty in the external parameters,
fixed at their mean values. The fourth approach considers
uncertainty in both types of parameters, but instead of using
the IMIS posterior distribution of the calibrated parameters, we
constructed distributions based solely on the IMIS posterior
moments (i.e., means and standard deviations) and the type of
calibrated parameters ignoring correlations.

We conducted a PSA to evaluate the impact of uncertainty in
model parameters on the cost-effectiveness of 10-years

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 7809175

Alarid-Escudero et al. Uncertainty Quantification of Calibrated Parameters

162

https://rcc.uchicago.edu/resources/high-performance-computing
https://rcc.uchicago.edu/resources/high-performance-computing
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


colonoscopy screening vs. no screening for CRC. A separate PSA
was performed for the four different approaches to quantify the
uncertainty of the two types of parameters. We used EMEWS to
distribute the samples of each PSA across HPC resources.

Value of Information Analysis
We quantified the theoretical value of eliminating uncertainty in
the external and calibrated model parameters using VOI analysis.
VOI measures the losses (i.e., foregone benefits) from choosing a
strategy given imperfect information (Raiffa and Schlaifer, 1961),
providing the amount of resources a decision maker should be
willing to spend to obtain information that would reduce the
uncertainty. Specifically, we estimated the value of eliminating
parametric uncertainty (i.e., the EVPI) in the cost-effectiveness of
a 10-years colonoscopy screening strategy. This entailed
computing the difference in net benefit between perfect

information and current information (Oostenbrink et al.,
2008). The EVPI was calculated across a wide range of
willingness-to-pay (WTP) thresholds (Eckermann et al., 2010).
We repeated this VOI analysis for the different approaches to
characterize the uncertainty of the calibrated and external
parameters.

RESULTS

We sampled 5,000 parameter sets from the posterior distribution
using IMIS, including 3,241 unique parameter sets with an
expected sample size (ESS) of 2,098. With the sample from the
posterior distribution, we estimated posterior means and
standard deviations, MAP estimates, and 95% credible
intervals (CrI) for all calibrated parameters (Table 3). The
posterior means of the calibrated parameter were similar to
the prior means (Table 3). Still, the major contrast is that the
width of the posterior distributions shrunk, meaning that the
calibration targets informed the calibrated parameters through a
Bayesian updating (Figure 2).

The Bayesian calibration also correlated the parameters, showing
the dependency among some of them (Figure 3). There are pairs of
parameters with high correlation. The scale and shape parameters of
theWeibull hazard function for the age of onset of adenomas, l, and
γ, respectively, have the highest negative correlation of −0.958. The
high correlation results from the calibration of the microsimulation
model of the natural history of CRC being non-identifiable when
calibrating all 9 parameters to all the targets. The transition rates
from early preclinical CRC to late preclinical and early clinical have a
correlation of 0.784. The prevalence of adenomas and the proportion
of small adenomas at age 50, which inform the initial distribution of

TABLE 2 | Description of cost-effectiveness analysis parameters.

Parameter Value (range) Distribution Source

Screening test characteristics (location-specific)

Small adenomas
Sensitivity 0.773 (0.734–0.808) Beta Van Rijn et al. (2006)
Specificity 0.868 (0.855–0.880) Beta Schroy et al. (2013)
Large adenomas and CRC
Sensitivity 0.950 (0.920–0.990) Beta Van Rijn et al. (2006)
Specificity 0.868 (0.855–0.880) Beta Schroy et al. (2013)

Increased rates after polypectomy (hazard ratio)

Low risk 2 (1–3) Log-normal Assumed
High risk 3 (2–4) Log-normal Assumed

Costs ($)

Colonoscopy 10,000 (9,000–11,000) Log-normal Assumed
Early clinical CRC, annual costs 21,524 (20,000–23,000) Log-normal Assumed
Late clinical CRC, annual costs 37,000 (35,000–39,000) Log-normal Assumed

Utilities

Preclinical CRC 1.000 (0.980–1.000) Log-normal Assumed
Early clinical CRC 0.855 (0.700–0.900) Log-normal Ness et al. (1999)
Late clinical CRC 0.300 (0.200–0.400) Log-normal Ness et al. (1999)

TABLE 3 | Posterior means, standard deviations, maximum-a-posteriori (MAP)
estimate and 95% credible interval (CrI) of calibrated parameters of the
microsimulation model of the natural history of CRC.

Parameter Mean SD MAP 95% CrI

LB UB

padeno 0.264 0.008 0.264 0.248 0.281
psmall 0.706 0.019 0.711 0.667 0.741
l 6.24E−06 3.16E−06 4.52E−06 1.92E−06 1.41E−05
γ 2.639 0.112 2.635 2.432 2.877
λ2 0.035 0.002 0.035 0.031 0.039
λ3 0.021 0.001 0.021 0.020 0.023
λ4 0.374 0.036 0.368 0.310 0.448
λ5 0.247 0.021 0.251 0.209 0.288
λ6 0.457 0.076 0.435 0.345 0.664
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the cohort across the adenoma health states, also have a high
correlation of 0.482. These high correlations result from the
model calibration being non-identifiable. In a previous study, we
found that the estimation of the 9 parameters of this model structure
is non-identifiable via. calibration because the relationship between
the parameters is highly colinear when using the current four
calibration targets (Alarid-Escudero et al., 2018).

The calibrated model accurately predicted the calibration
targets for both the means and the uncertainty intervals.
Figure 4 shows the internal validation of the calibrated model
by comparing calibration targets with their 95% confidence
interval (CI) and the model-predicted posterior means
together with their 95% posterior PI.

The joint distribution of the incremental quality-adjusted life
years (QALYs) and incremental costs of the 10 years colonoscopy
screening strategy vs. the no-screening strategy resulting from the
PSA for the four uncertainty quantification approaches of the
calibrated parameters are shown in Figure 5. When accounting
for the uncertainty on the external parameters, there is little
difference in the spread of the CEA outcomes when considering
the joint distribution of the calibrated parameters vs. using only
the MAP estimates (approaches 1 and 2 on the top row of
Figure 5, respectively). The joint distribution of the outcomes
is slightly wider when considering uncertainty on all parameters
compared to when fixing the calibrated parameters at their MAP
estimate. The third approach reflects the impact of only varying
the calibrated parameters on the joint distribution of incremental
QALYS and incremental costs, which is much narrower than
approaches 1 and 2. The fourth approach, which characterizes

uncertainty of the calibrated parameters using the method of
moments without accounting for correlation, has the widest
spread on the distribution of the outcomes.

For the VOI analysis, we found value in eliminating
uncertainty by having a positive EVPI in the parameters of the
CEA of the 10-years colonoscopy screening strategy (Figure 6).
However, the value varies by uncertainty quantification andWTP
threshold. The first and second approaches to uncertainty
quantification had similar EVPI, reaching their maximum of
$653 and $685, respectively, at a $66,000/QALY WTP threshold.
For WTP thresholds greater than $66,000/QALY, the first
approach had a higher EVPI than the second approach. When
we consider only the uncertainty for the calibrated parameters
(approach 3), the EVPI is the lowest across all WTP thresholds
with an EVPI of $0.1 at a WTP threshold of $66,000/QALY and
reaching its highest of $212 at a WTP threshold of $71,000/
QALY. The fourth approach reaches a maximum of $809 at a
WTP threshold of $66,000/QALY and is the highest compared to
the other approaches up to aWTP threshold of $81,000/QALY, at
which the first approach has the highest EVPI.

DISCUSSION

In this study, we characterized the uncertainty of a realistic
microsimulation model of the natural history of CRC by
calibrating its parameters to different targets with varying degrees
of uncertainty using a Bayesian approach on an HPC environment
using EMEWS.We also quantified the value of the uncertainty of the

FIGURE 2 | Prior and posterior marginal distributions of calibrated parameters of the microsimulation model of the natural history of CRC.
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calibrated parameters on the cost-effectiveness of a 10-year
colonoscopy screening strategy with a VOI analysis. EMEWS has
been previously used to calibrate other microsimulation DMs
(Rutter et al., 2019; Rutter et al., 2019) but has not been
previously used to conduct a PSA with the calibrated parameters
and calculate the VOI. Although Bayesian calibration can be a
computationally intensive task, we reduce the computation time
by evaluating the likelihood of different parameter sets in multiple
cores simultaneously on an HPC setup, which IMIS allows.

We found that different characterizations of the uncertainty of
calibrated parameters affect the expected value of reducing
uncertainty on the CEA. Ignoring inherent correlation among
calibrated parameters on a PSA overestimates the value of
uncertainty. When the full posterior distribution of the
calibrated parameters is not readily available, the MAP could be
considered the best parameter set. In our example, not considering
the uncertainty of calibrated parameters on the PSA did not seem
to have a meaningful impact on the uncertainty of the CEA
outcomes and the EVPI of the screening strategy. The
uncertainty associated with the natural history was less valuable
than the uncertainty of the external parameters. However, these
results should be taken with caution because this analysis is
conducted on a fictitious model with simulated calibrated
targets. Modelers should analyze the impact of a well-conducted
characterization of the uncertainty of calibrated parameters on
CEA outcomes and VOI measures on a case-by-case basis.

There are examples of calibrated parameters being included in
a PSA. For instance, by taking a certain number of good-fitting
parameter sets (Kim et al., 2007; Kim et al., 2009), bootstrapping
with equal probability good-fitting parameter sets obtained
through directed search algorithms (e.g., Nelder-Mead) (Taylor
et al., 2012), or conducting a Bayesian calibration, which
produces the joint posterior distribution of the calibrated
parameters (Menzies et al., 2017). However, this is the first
manuscript to conduct a PSA and VOI analysis using
distributions of calibrated microsimulation DM parameters
that accurately characterize their uncertainty.

Currently, Bayesian calibration of microsimulation DMs
might not be feasible on regular desktops or laptops. To
circumvent current computational limitations from using
Bayesian methods in calibrating microsimulation models,
surrogate models -often called metamodels or emulators-have
been proposed (O’Hagan et al., 1999; O’Hagan, 2006; Oakley and
Youngman, 2017). Surrogate models are statistical models like
Gaussian processes (Sacks et al., 1989a; Sacks et al., 1989b; Oakley
and O’Hagan, 2002) or neural networks (Hauser et al., 2012; Jalal
et al., 2021) that aim to replace the relationship between inputs
and outputs of the original microsimulation DM (Barton et al.,
1992; Kleijnen, 2015), which, once fitted, are computationally
more efficient to run than the microsimulation DM. Constructing
an emulator might not be a straightforward task because the
microsimulation DM still needs to be evaluated at different

FIGURE 3 | Scatter plot of pairs of deep model parameters with correlation coefficient and posterior marginal distributions.
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FIGURE 4 | Comparison between posterior model-predicted outputs and calibration targets. Calibration targets with their 95% CI are shown in black. The shaded
area shows the 95% posterior model-predictive interval of the outcomes and colored lines shows the posterior model-predicted mean based on 5,000 simulations using
samples from the posterior distribution. Upper panel refers to adenoma-related targets and lower panel refers to CRC incidence targets by stage.

FIGURE 5 | Incremental costs and incremental QALYs of 10-years colonoscopy screening vs. no screening under different assumptions of characterization of the
uncertainty of both calibrated and external parameters. The red star corresponds to the incremental costs and incremental QALYs evaluated at the maximum-a-
posteriori estimate of the calibrated parameters and the mean values of the external parameters.
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parameter sets, which could also be computationally expensive.
Furthermore, the statistical routines to build the emulator may
not be readily available in the programming language in which
the microsimulation DM is coded. These are situations where
EMEWS can be used to construct metamodels efficiently;
however, this is a topic for further research.

Researchers might actively avoid questions that would require
HPC due to the perceived difficulties involved or make do with less-
than-ideal smaller-scale analyses (e.g., choosing the maximum
likelihood estimate or a small set of parameters instead of the
posterior distribution for uncertainty quantification) and the
robustness of the conclusions can suffer as a result.

In this article, we showed that EMEWS could facilitate the use of
HPC to implement computationally demanding Bayesian
calibration routines to correctly characterize the uncertainty of
the calibrated parameters of microsimulation DMs and propagate
it in the evaluation of CEA of screening strategies and quantify their
value of information. This study’s methodology and results could
guide a similar VOI analysis on CEAs using microsimulation DMs
to determine where more research is needed and guide research
prioritization.
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