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Sedimentary Responses to Climate
Changes and Human Activities Over
the Past 7400 Years in the Western
Sunda Shelf
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High-resolution records of grain size, major and trace elements, and Sr-Nd isotopes of
Core K17 from the western Sunda Shelf were investigated to evaluate the response
of weathering and terrigenous input to climatic changes and human activities over the
past 7400 years. Sr-Nd isotopic results indicate that the Kelantan River is the main
source of sedimentary material in the study core since the mid-Holocene. Chemical
weathering levels are represented by the chemical index of alteration (CIA), αAlNa, and
K2O/Al2O3 ratios; and geochemical and grain size proxies (including TiO2/CaO, Rb/Sr
ratios, and grain size end-member) were used to establish variations of terrigenous
input into the study core since 7400 cal yr BP. Based on these records, the evolution
of weathering and terrigenous input processes in the western Sunda Shelf can be
divided into four stages. During stage 1 (7400–3700 cal yr BP), increasing precipitation
and decreasing temperature jointly balanced the relatively stable weathering and
terrigenous sediment supply. Dramatically decreasing weathering rates were consistent
with less rainfall and lower temperatures during stage 2 (3700–2600 cal yr BP). Heavy
rainfall played a more important role than low temperature in controlling weathering
and erosion, leading to increasing terrigenous input in stage 3 (2700–1600 cal yr
BP). Because of the decoupling between weathering, erosion, and climate in the
late Holocene (stage 4, since 1600 cal yr BP), increasing agriculture and related
human activities likely dominated weathering and erosion relative to climate changes.
Furthermore, the initial time at which human activity overwhelmed natural processes
in the southern South China Sea (SCS) is similar to that in the northern SCS. Our
results highlight that human activities during the past 1600 years have gradually
overwhelmed natural climatic controls on weathering and erosion processes in the
western Sunda Shelf.
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INTRODUCTION

Continental weathering and erosion are critical processes
controlling the delivery of sediments and solutes from the land
to the ocean, shaping the terrestrial landscape, and regulating
atmospheric CO2 (Raymo and Ruddiman, 1992; Bi et al.,
2015; Wan et al., 2015; Hu et al., 2020). Climate is a critical
factor influencing weathering and erosion, because warm and
humid conditions can typically enhance weathering intensity
and erosion rates (White and Blum, 1995; West et al., 2005;
Hu et al., 2020). Additionally, anthropogenic processes can alter
landscapes and result in weathering and erosion pattern changes
(Hu et al., 2013; Huang et al., 2018). Acquiring knowledge
about the interactions between past climate, human activity, and
weathering and erosion changes is important for comparing and
understanding the present and future interactions among these
systems (Huang et al., 2018).

Some studies on the interaction between climate change,
human activities, and weathering and erosion have been
performed in different locations in the northern South China Sea
(SCS) regions and around the world (Corella et al., 2013; Hu et al.,
2013; Wan et al., 2015; Huang et al., 2018). A general consensus
is that human activities have dramatically influenced the natural
environment and overwhelmed climate signals in sedimentary
archives during the late Holocene (Wan et al., 2015; Huang et al.,
2018). However, for the southern SCS, anthropogenic impacts
have not been distinguished from natural variability in tropical
Southeast Asia (Tan et al., 2019).

The Southeast Asia, located in tropical region, is characterized
by intense rainfall and high temperatures that generally provide
the highest global weathering and erosion rates (McLennan,
1993; Milliman et al., 1999; Liu et al., 2012), and thus it
makes Southeast Asia a natural laboratory for studying the
interactions between climate change, human activities, and
weathering and erosion. As the largest low-latitude continental
shelf, the Sunda Shelf is a huge sink of terrigenous sediments
from rivers on surrounding regions due to its extremely low
gradient (Hanebuth et al., 2011). Located in the central part
of Southeast Asia, the Malay Peninsula yields and discharges
large amounts of sediments by small mountainous rivers into
the Sunda Shelf, up to ca. 35 Mt/yr (Liu et al., 2012), making
the Peninsula an important provenance for the southern SCS
region (Liu et al., 2016; Jiwarungrueangkul et al., 2019b; Wu
et al., 2019). Moreover, the fluvial discharge in this region
is largely influenced by the Asian–Australian monsoon, which
influences rainfall and temperature through seasonal changes
(Wang et al., 2011; Liu et al., 2012). Marine sediments record
abundant environmental change signals during production,
transportation, and deposition, including tectonics, climate, and
human activities (Li et al., 2019). Studying the response of
sedimentary records to rainfall and temperature in the western
Sunda Shelf is of great significance for understanding the
evolution characteristics of tropical monsoon in the geological
history. Furthermore, the Sunda Shelf is located in the
intersection of the Indian Ocean and the Pacific Ocean, and the
ocean circulation system is very complex and interconnected,
which is important for the study of the inter-oceanic material

and energy cycle (Wu et al., 2020). Additionally, human activities,
such as agriculture, began in peninsular Malaysia at least
2000 years ago (Liang et al., 2011) and influenced natural river
sediment compositions and sediment yields (Kamarudin et al.,
2015; Wang et al., 2017). Exploring long-term climate change
and the impact of human activity on past weathering and
erosion rates in the Peninsula will improve our understanding
of landscape dynamics (Hu et al., 2020). High-resolution
sedimentary archives from the western Sunda Shelf may shed
light on the details of the complicated interaction of climate
changes, human activities, and weathering and erosion in
the Southeast Asia.

Numerous studies on the Sunda Shelf primarily focus on
the impact of sea level change on sedimentary processes
and biogeography evolution since the Last Glacial Maximum
(Pelejero et al., 1999; Hanebuth et al., 2000, 2011; Voris, 2000;
Steinke et al., 2003). Since ca. 7–8 ka, the coastline reached
its modern position, and sea level was relatively stable with
little fluctuation (Steinke et al., 2003); therefore, the impact of
sea level on sedimentation was negligible. Estuary and coastal
deposits formed when sea level was at its latest transgressional
and highstand stages since 8 ka (Hanebuth et al., 2011; Zong
et al., 2012). Thus, the estuary/coastal region is an ideal location
to preserve records of regional erosion and weathering in the
tropical Malay Peninsula influenced by climate change and
human activities since the mid-Holocene on the western Sunda
Shelf. However, well-preserved records for the middle and late
Holocene in the western Sunda Shelf are scarce.

In this study, we present high-resolution grain size, major and
trace element geochemistry, and Sr-Nd isotopes from Core K17
from the inner Sunda Shelf in the southern SCS. The primary
objective is to evaluate sediment provenance and to explore
the interactions between climate changes, human activities, and
weathering and erosion on the western Sunda Shelf over the
past 7400 years.

REGIONAL SETTING

The Kelantan River, located in the northeastern Malay Peninsula
(Figure 1B), is the second largest river on the Peninsula with a
length of 335 km and flows from south to north into the SCS. It
originates from the “Main Range” of the peninsular Malaysia near
Gunong Korbu at an elevation of approximately 2100 m, and its
gradient drops less than 100 m over the last 100 km (Koopmans,
1972). The river has a drainage area of 12,691 km2, mean annual
rainfall of 2500 mm, mean annual runoff of 1500 mm, and mean
sediment load of 13.9 × 106 t (Liu et al., 2012; Table 1). Principal
surrounding rivers include the Chao Phraya (Thailand), Mekong
(Indochina Peninsula), and Pahang (peninsular Malaysia).

As a part of Sundaland, peninsular Malaysia has been
tectonically stable since the Mesozoic, with few strong tectonic
activities (Hutchison, 1968). Topographically, 90% of the coastal
plain is less than 75 m above mean sea level. Most river
drainage is covered by Quaternary alluvium; the Mesozoic
granites underlie the alluvial coastal plain and outcrop on both
sides of the Kelantan River Valley (Awadalla and Noor, 1991).
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FIGURE 1 | (A) Locations of K17 (red star) and paleoclimate records from stalagmites (red dots) referenced in the text: Northern Borneo (Partin et al., 2007).
(B) Geographic setting and prevalent hydrography of the western Sunda Shelf. Hydrography was modified from Tangang et al. (2011). The red and yellow arrows
show the southwest and northeast monsoon currents, respectively. The locations of Core K17 and Sr-Nd sites of Kelantan and Pahang rivers are exhibited by red
dot and yellow dots, respectively. (C) Regional monthly average precipitation (gray bars) and temperature over Kota Bharu from 1971 to 2000. Temperature and
rainfall data are from the World Weather Information Service (http://www.worldweather.org).

Various types of Paleozoic sedimentary and metamorphic rocks
are found between the eastern and western granitic masses.
Shale and quartzite are the predominant sedimentary rock types
(Awadalla and Noor, 1991).

The climate in peninsular Malaysia is controlled by the
East Asian–Australian monsoon (Wang et al., 2005, 2011;
Liu et al., 2012) with small seasonal temperature variations
(Figure 1C) but substantially different characteristics between
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TABLE 1 | Basic information of main rivers drained into the western Sunda Shelf (Liu et al., 2012, 2016).

River name Length (km) Annual rainfall
(mm)

Drainage area
(km2)

Annual runoff
(mm/year)

Suspended sediment
discharge (Mt/year)

Kelantan River 280 875 12,691 1500 13.9

Pahang River 459 2170 29,300 947 20.4

Mekong River 4180 1570 790,000 590 160

Chao Phraya River 1252 1487.3 160,000 188 11

the wet and dry seasons (Wang et al., 2011). From October
to January, the region is controlled by the southwesterly
East Asian monsoon and receives abundant rainfall (the wet
season) (Figure 1C). In other periods, the river basin is
controlled by the northeasterly Australian monsoon, and the
weather is relatively dry with less precipitation (the dry season)
(Liu et al., 2012).

The water depth of the Kelantan River estuary ranges
from 5 to 25 m, and the slope of the sea floor adjacent
to the estuary is extremely gentle. Furthermore, the surface
circulation in the southern SCS is primarily controlled by
the monsoon (Tangang et al., 2011; Figure 1B). The entire
southern SCS experiences cyclonic circulation during the
northeast monsoon period (winter), whereas the surface current
direction is opposite during the southwest monsoon period
(summer) (Tangang et al., 2011). Tides are irregular with
diurnal to semidiurnal tides (1.5:1). The mean spring range

and maximum tidal range are 0.6 and 1.2 m, respectively
(Raj et al., 2007).

MATERIALS AND METHODS

Materials
The gravity Core K17 (6.2◦N, 102.34◦E; 133 cm) was collected
at a water depth of 11.4 m on the Kelantan River estuary of
the northeastern Malay Peninsula during the R.V. DISCOVERY
cruise in 2017 (Figure 1). The lithology of Core K17 is primarily
olive gray homogeneous silt and sandy silt in the upper 10 cm
(Figure 2). The lower section from a depth of 10–50 cm is
composed of olive gray and dark greenish interlaid sandy silt with
a 6 cm thick high sand and a biological debris layer between
depths of 36 and 42 cm; below 42 cm to the base, the core
primarily consists of dark greenish gray homogeneous sandy

FIGURE 2 | Lithology and age model of Core K17 showing lithological description, foraminiferal AMS 14C dating, and sedimentation rate.
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silt (42–133 cm). A total of 132 samples were subsampled at
1 cm intervals for grain size, geochemical elements, and Sr-Nd
isotope analyses.

AMS14C Analyses
The chronology of Core K17 was established using AMS14C
data (Figure 2 and Table 2). Because of the estuarial location
and low carbonate content (<10%), there were few planktonic
foraminifera. We picked more than 4 mg of mixed benthic
foraminiferal species for five samples from the core. The raw
radiocarbon ages were corrected for a local reservoir age of
−15 ± 38 years (Southon et al., 2002) and converted to
calendar ages using Calib Rev 7.0.4 (Reimer et al., 2013).
The AMS14C dating was performed at the Beta Analytic
Laboratory, United States.

Grain Size Analyses
The grain size distribution of 132 samples of Core K17 was
determined using a Malvern 2000 Mastersizer Particle Size
Analyzer with a measurement range and resolution of 0.02–
2000 µm and 0.01 8, respectively, at the First Institute of
Oceanography (FIO), Ministry of Natural Resources (MNR),
Qingdao, China. Bulk sediments were treated with an excess
of 30% H2O2 and 3 mol/L HCl for 24 h at 25◦C to remove
organic matter and carbonates, respectively. Then, the samples
were washed with distilled water until excessive H2O2 and HCl
were completely removed before measurement. The relative error
of the repeated measurements was less than 3%.

Geochemical Element Analyses
The geochemical element concentrations of 122 samples of Core
K17 were analyzed using inductively coupled plasma optical
emission spectrometry (ICP-OES; SiO2, Al2O3, K2O, Na2O,
Fe2O3, TiO2, MgO, CaO, P2O5, MnO, and Sr) and inductively
coupled plasma-mass spectrometry (ICP-MS; Rb, Cu, and Pb) at
FIO. Approximately 50 mg of ground bulk sediment was digested
with ultrapure HNO3 and HF (1:1) in a Teflon digestion tank at
195◦C for 48 h before measurement (Li et al., 2019). The standard
material GSD-9 was assessed once after every 10 samples to
provide quality control of accuracy and precision, and the relative
standard deviations of analyzed elements were less than 5%.

Sr-Nd Isotope Analyses
The Sr and Nd isotopes of 10 decarbonated samples of
Core K17 were determined using a Thermo Scientific

multi-collector-inductively coupled plasma-mass spectrometer
(MC-ICP-MS Nu plasma) at FIO. The samples were
decarbonated using 0.25 N acetic acid and centrifuged and
rinsed three times using Milli-Q purified water to eliminate
traces of the carbonate fraction. Subsequently, the samples were
completely dissolved in a HF–HNO3–HClO4 mixture (Li et al.,
2018). Sr and Nd isotopes were extracted from the solution
using a standard ion-exchange procedure. 88Sr/86Sr = 0.1194
and 146Nd/144Nd = 0.7219 were adopted to calibrate the
mass bias during the Sr and Nd isotope measurements,
respectively. Repeated analyses of the NBS987 standard yielded
87Sr/86Sr = 0.71031 ± 0.00000777 (1σ), and the JNdi-1 standard
yielded 143Nd/144Nd = 0.512115 ± 0.00000556 (1σ), which is
well within the recommended range.

RESULTS

Chronological Framework
The ages of this downcore were calculated by linear interpolation
among five dated sediment layers, and the basal age was 7400 cal
yr BP (Figure 2), which was calculated by linear extension after
6298 cal yr BP based on the same sedimentary rate with upper
section under similar sedimentary environment. The ages were
reported in years before present (yr BP). The linear sedimentation
rates vary in the range of 13–39 cm/ka, with an average of
18 cm/ka (Figure 2). The sedimentation rates of the Middle
Holocene (average 22 cm/ka) were relatively higher than those
during the Late Holocene (average 13 cm/ka), and the highest
sedimentation rate occurred during 3700–4200 cal yr BP, with
a value of 39 cm/ka. The average time resolution of Core
K17 was 56 yr/cm.

Grain Size Compositions and
End-Member Extraction
The sediment fractions of the studied core are primarily silt
(37–82%), with a secondary amount of sand (5–51%) and clay
(4–25%) (Figure 3). According to Folk’s classification (Folk et al.,
1970), the sediment types are characterized by sandy silt, similar
to the western Sunda Shelf (Wu et al., 2020). The mean grain
size (Mz) of this downcore ranges from 3.4 to 6.8 8 (average
of 5.4 8). The sorting coefficient varies from 1.3 to 3.2, which
is classified as poorly sorted. The mean grain size and sorting
coefficient show a sudden increase of approximately 2900 cal yr
BP (Figure 3).

TABLE 2 | AMS14C dating age model of Core K17.

Depth
(cm)

Sample ID Sample
material

Conventional
AMS14C age (yr BP)

Calendar age
(cal yr BP)

Depth
interval (cm)

Sedimentation
rates (cm/ka)

2-3 Beta-505054 Foraminifera 103.55 ± 0.39 pMC 0 0–2.5 0

51-52 Beta-505056 Foraminifera 3780 ± 30 3737 2.5–51.5 13.1

71-72 Beta-505057 Foraminifera 4150 ± 30 4244 51.5–71.5 39.4

91-92 Beta-505058 Foraminifera 5130 ± 30 5496 71.5–91.5 16.0

121-122 Beta-505060 Foraminifera 6410 ± 60 6928 91.5–121.5 20.9

pMC, percent modern carbon.
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FIGURE 3 | Variations in grain size of Core K17.
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An inversion algorithm was used to extract grain size end-
members (Joussain et al., 2016; Li et al., 2019), and the results
display a three-end-member model that explains more than 95%
of the variance (Figure 4A). The fine end-member EM1 varies
widely range of −0.9 to 10.4 8 and explains more than 80% of
the variance (Figure 4B). EM2 varies within the wide size range
between 1.37 and 8.4 8, and the coarse end-member EM3 varies
in the size range from −0.9 to 5.7 8. The proportions of the finest
end-member EM1 vary in a large range from 20 to 100% (average
∼70%) (Figure 3), and the proportions of the EM2 vary from 0
to 80% (average ∼25%). The coarsest end-member EM3 varies
between 0 and 51% with an average value of ∼5%. EM1 and EM2
display opposite patterns from the mid-Holocene to the present
(Figure 3). The EM3 variation shows a generally similar trend
compared with the mean grain size.

Geochemical Element Concentrations
The major and trace elements of Core K17 sediment
are illustrated in Figure 5. Major elements include SiO2
(48.9–82.1%), Al2O3 (3.7–15.4%), CaO (2.1–19.1%), K2O
(0.8–2.2%), Na2O (0.5–1.6%), and TiO2 (0.3–0.9%); trace
elements are Rb (54.8–118.0 µg/g), Sr (116.4–726.4 µg/g), Cu
(5.6–17.4 µg/g), and Pb (19.8–51.4 µg/g). The temporal patterns
of Al2O3, K2O, Na2O, TiO2, Rb, Pb, and Cu are basically similar
in their distribution (Figure 5), having a drastic decrease of
approximately 2900 and 3900 cal yr BP; SiO2 displays almost
the opposite character to those elements, and CaO and Sr have
similar temporal distribution patterns, with an abrupt change
of 2600 cal yr BP.

Sr-Nd Isotopic Compositions
The 87Sr/86Sr and εNd values of the silicate fraction of Core K17
are listed in Table 3. The 87Sr/86Sr ratios ranged from 0.72018 to

0.72636, and the εNd values varied from −10.28 to −7.06. The
87Sr/86Sr ratios exhibited a slight decreasing tendency, and the
εNd values showed no significant variation during the studied
timescale, except for one point (1–2 cm) of the core.

DISCUSSION

Provenance Discrimination
Sr-Nd isotopes are one of the widely used proxies to determine
sediment provenance (Wei et al., 2012; Cao et al., 2015).
However, the isotopic composition of marine sediments could be
affected by authigenic, biogenic, and grain-size effects during the
transport and deposition processes (Bayon et al., 2002; Dou et al.,
2012; Hu et al., 2020) and, therefore, should be eliminated before
using Sr-Nd isotopes to trace provenance.

Although the grain-size effect is very common for geochemical
compositions (Wu et al., 2019), the 87Sr/86Sr ratios and εNd
values are not significantly correlated with mean grain size
(Figure 6A), indicating that the grain-size effect is negligible for
Sr-Nd isotopes. Furthermore, there are no significant correlations
between the 87Sr/86Sr and εNd values and the Fe2O3 values
in this core sediment (Figure 6B), suggesting that authigenic
Fe oxides or oxyhydroxides have little influence on isotopic
composition. 87Sr/86Sr ratios are possibly controlled by the
carbonate content, resulting from the isomorphic substitution
between Ca in calcium carbonate and Sr from seawater (Hu et al.,
2013). However, a very low correlation is observed between the
87Sr/86Sr ratios and CaO values (Figure 6C). Therefore, Sr-Nd
isotopic compositions of these core sediments are considered
reliable for tracing sediment provenances at the study site.

The potential sediment sources surrounding Core K17 include
the Kelantan River and Pahang River in the Malay Peninsula, the
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FIGURE 4 | (A) Fraction of data variance explained by the unmixing model vs. numbers of end-members. (B) Volume percent vs. grain-size (8) diagram of the three
end-members (EM1, EM2, and EM3) identified in Core K17.

Frontiers in Earth Science | www.frontiersin.org 7 April 2021 | Volume 9 | Article 63181510

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-631815 April 6, 2021 Time: 11:48 # 8

Wu et al. Climate and Human Impact Environment

FIGURE 5 | Variations in major and trace elements of Core K17.

Mekong River in the Indochina Peninsula, the Chao Phraya River
and other rivers in the Gulf of Thailand, and rivers in Borneo.
The 87Sr/86Sr ratios are plotted against εNd values in Core K17
and potential provenances in the surrounding regions (Figure 7).
Most of the εNd values and 87Sr/86Sr ratios of Core K17 are
concentrated in the range of the Kelantan River, whereas the
other three points fall in the field of the Mekong River, close to
the range of the Kelantan River in Figure 7.

It seems that both the Kelantan River and Mekong River are
the sediment sources of the Core K17. These three samples all fall
in or close to the overlapping part of Kelantan River and Mekong
River, which are 10–11, 20–21, and 30–31 cm sediment layers,
respectively. The grain sizes of these three samples are coarser
than the average grain size of other Sr-Nd sediment layers in
this core. Sr-Nd values from other older samples all fall in the
Kelantan River. Therefore, these three coarser samples may not
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TABLE 3 | Sr and Nd isotopes of sediments in the Core K17 and potential river end members.

Sediment location Depth (cm) Age (cal yr BP) 87Sr/86Sr 143Nd/144Nd ε Nd Data sources

K17 1–2 0 0.72636 0.512276 −7.06 This study

K17 10–11 610 0.72066 0.512111 −10.28 This study

K17 30–31 2135 0.72056 0.512117 −10.16 This study

K17 40–41 2898 0.72018 0.512119 −10.12 This study

K17 50–51 3660 0.72151 0.512157 −9.38 This study

K17 70–71 4218 0.72150 0.512140 −9.71 This study

K17 80–81 4807 0.72150 0.512158 −9.36 This study

K17 100–101 5925 0.72093 0.512139 −9.73 This study

K17 120–121 6880 0.72101 0.512153 −9.46 This study

K17 130–131 7358 0.72196 0.512131 −9.89 This study

Kelantan River Surface _ 0.72031 0.512132 −9.87 This study

Kelantan River Surface _ 0.72307 0.512202 −8.51 This study

Kelantan River Surface _ 0.72971 0.512225 −8.06 This study

Kelantan River Surface _ 0.72721 0.512206 −8.43 This study

Kelantan River Surface _ 0.72285 0.512285 −6.89 This study

Pahang River Surface _ 0.74043 0.512130 −9.91 This study

Pahang River Surface _ 0.74230 0.512128 −9.95 This study

Pahang River Surface _ 0.73603 0.512141 −9.69 This study

Pahang River Surface _ 0.74255 0.512156 −9.40 This study

Pahang River Surface _ 0.74366 0.512136 −9.79 This study

Tha Chin River Surface _ 0.720434 0.511878 −14.82 Wu et al., unpublished

Tha Chin River Surface _ 0.734096 0.511903 −14.33 Wu et al., unpublished

Mae Klong River Surface _ 0.753236 0.511820 −15.95 Wu et al., unpublished

Mae Klong River Surface _ 0.743226 0.511840 −15.56 Wu et al., unpublished

Bang Pakong River Surface _ 0.716848 0.512086 −10.77 Wu et al., unpublished

Bang Pakong River Surface _ 0.719631 0.512132 −9.87 Wu et al., unpublished

Chao Phraya River Surface _ 0.722863 0.512055 −11.36 Wu et al., unpublished

Chao Phraya River Surface _ 0.718993 0.512067 −11.15 Wu et al., unpublished

Mekong River Surface _ 0.720276 0.512131 −9.89 Liu et al., 2007

Mekong River Surface _ 0.720699 0.512115 −10.2 Liu et al., 2007

Mekong River Surface _ 0.721307 0.512082 −10.85 Liu et al., 2007

Mekong River Surface _ 0.722173 0.512104 −10.42 Liu et al., 2007

Mekong River Surface _ 0.721801 0.512098 −10.53 Liu et al., 2007

Offshore Borneo Surface _ 0.717031 0.512216 −8.23 Wei et al., 2012

Offshore Borneo Surface _ 0.709882 0.512282 −6.95 Wei et al., 2012

Offshore Borneo Surface _ 0.715360 0.512200 −8.54 Wei et al., 2012

Offshore Borneo Surface _ 0.720602 0.512189 −8.76 Wei et al., 2012

Offshore Borneo Surface _ 0.719912 0.512191 −8.72 Wei et al., 2012

eNd = 10,000 × (143Nd/144Nd/0.512638−1).

be transported from the Mekong River. In fact, the Core K17
is close to the Kelantan estuary; approximately 13.9 Mt/year of
sediment from the Kelantan River is discharged into the SCS (Liu
et al., 2016), most of which is deposited in the estuary, with the
remainder transported to the western Sunda Shelf (Koopmans,
1972; Wang et al., 2020). Our recent work used geochemical and
mineral evidence to reveal that fine-grained modern sediment
from the Kelantan River can be transported to the central Sunda
Shelf (Wu et al., 2020). Although the Mekong River delivers
approximately 160 Mt/year to the SCS, approximately 80% of
the Mekong-delivered sediment is trapped within the delta area
(Xue et al., 2010). Large amounts of Mekong River sediments
are deposited near the Mekong River mouth in summer, and

only a small fraction of these sediments are re-suspended and
dispersed toward the southwest into the Gulf of Thailand during
the northeast monsoon (Xue et al., 2012). During the last
glacial period with a low relative sea level, sediments from the
Mekong River were directly input into the southern SCS by
the paleo-Mekong River and not discharged into the Sundaland
(Jiwarungrueangkul et al., 2019b). Additionally, the distribution
of clay mineral assemblages in the surface sediments of the
SCS indicates that most of the kaolinite, accounting for more
than 50% of clay minerals offshore of Malaysia, is from the
Malay Peninsula and not the Mekong River (Liu et al., 2016).
Therefore, we suggest that the Kelantan River is the primary
provenance of Core K17.
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FIGURE 6 | Correlation analysis of Sr-Nd isotopic compositions, mean grain size, Fe2O3, MnO, and CaO concentrations, and weathering and terrigenous input
indicators in Core K17. (A–C) Correlations between Sr-Nd isotopic compositions and mean grain size, Fe2O3 and CaO concentrations in core K17, respectively.
(D–F) Correlations between mean grain size and chemical weathering indicators (CIA, aAlNa and K2O/Al2O3), and terrigenous input indicators (TiO2/CaO and Rb/Sr
ratios) in core K17, respectively.

Sedimentary Responses to Climate
Changes and Human Activities Over the
Past 7400 cal yr BP
Weathering and Terrigenous Input Indicators
Chemical weathering is an important process for modifying the
mineral and chemical compositions of terrigenous sediments
(Hu et al., 2020). The degree of chemical weathering under
specific environmental conditions is primarily controlled by
climate (White and Blum, 1995). Generally, high temperatures
and heavy precipitation favor more intense chemical weathering,
whereas low temperatures and less precipitation hinder the
reactions involved in chemical weathering (White and Blum,
1995; Huang et al., 2018). Here, the chemical index of alteration
(CIA), αAlNa, and the K2O/Al2O3 ratio were used to estimate
chemical weathering intensity and variation. The CIA [defined
as CIA = Al2O3/(Al2O3 + CaO∗ + Na2O + K2O) × 100,
molar proportions; CaO∗ refers to the CaO content
of the silicate fraction] and αAlNa [defined as
αAlNa = (Al/Na)sediment/(Al/Na)UCC, molar proportions]
are widely used to estimate the chemical weathering intensity
recorded in sediments (Nesbitt and Young, 1982; Garzanti et al.,
2013; Liu et al., 2020). Higher CIA and αAlE values correspond to
stronger chemical weathering intensity. CaO∗ in CIA is corrected
by comparing the molar contents of CaO with Na2O, and the
lower value is regarded as the CaO content in the silicate fraction
(Singh et al., 2005; Liu et al., 2020). K2O is preferentially leached
in aqueous fluids compared to the immobile Al2O3 during the
chemical weathering process (Nesbitt and Young, 1982);

therefore, a lower K2O/Al2O3 ratio could indicate increased
chemical weathering related to strengthened monsoon rainfall,
according to the basic principles of silicate weathering (Wei et al.,
2004; Clift et al., 2014; Jiwarungrueangkul et al., 2019a).

TiO2/CaO and Rb/Sr ratios were used to evaluate the variation
of terrigenous sediment input related to erosion in this study
(Jiwarungrueangkul et al., 2019b; Li et al., 2019). The Ti content
in terrigenous sediments is stable in hypergenesis, and the Ti
in marine sediments is widely believed to be primarily derived
from the input of terrestrial clastic materials (Chen et al., 2013;
Li et al., 2019). CaO in marine sediment primarily originates
from biogenic input; thus, the TiO2/CaO ratio can reflect the
relative magnitudes of terrigenous clastics and biogenic inputs
(Clift et al., 2014; Cao et al., 2015). Rb and Sr are primarily
distributed in minerals bearing K (e.g., mica and K-feldspar) and
Ca (e.g., carbonate), respectively; thus, Rb/Sr ratio can be used as
another indicator of terrigenous sediment input (Li et al., 2019).
Higher TiO2/CaO and Rb/Sr ratios reflect enhanced terrigenous
input to the core.

In previous studies, the finest end member was usually
interpreted as fluvial/terrigenous input (Stuut and Lamy, 2004;
Wan et al., 2007). Due to the dominant fraction of EM1 in the
three end members and the overwhelming terrigenous element
concentrations (e.g., SiO2 and Al2O3; Figure 3) of sediments in
Core K17, the finest end-member EM1 was interpreted as fluvial
terrigenous sediment input from the Kelantan River in this study.

To ensure that chemical weathering and terrigenous input
indicators are reliable for use in the study region, other factors,
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FIGURE 7 | The 87Sr/86Sr ratios versus εNd values plot for the Core K17, with sediments of Mekong River (Liu et al., 2007), Borneo offshore (Wei et al., 2012), Chao
Phraya River and other Thailand rivers (Wu et al., unpublished), and Pahang and Kelantan River (this study).

including provenance changes, sea-level change, and hydraulic
sorting by oceanic currents need to be considered (Hu et al.,
2020). Because of the relatively constant source of Core K17
(Figure 7), provenance changes could not significantly influence
weathering and terrigenous indicators. Sea level change played
an important role in controlling terrigenous sediment input
to the southern SCS before or during the early Holocene
(Jiwarungrueangkul et al., 2019a) but is relatively constant with
a weak fluctuation since ca. 7–8 ka on the Sunda Shelf, when
the coastline reached a modern position (Steinke et al., 2003;
Hanebuth et al., 2011). Thus, the influence of sea level changes
is negligible. There were no significant correlations between the
mean grain size and weathering and erosion indicators (i.e., CIA,
K2O/Al2O3, αAlNa, TiO2/CaO, and Rb/Sr; Figures 6D–F),
suggesting that these indicators are not influenced by transport
processes or hydraulic sorting.

Climatic and Anthropogenic Impacts on the
Weathering and Terrigenous Input Processes Over
the Past 7400 cal yr BP
Monsoon rainfall intensity and temperature variations in the
study area could lead to typical changes in chemical weathering

and erosion over time (Huang et al., 2018; Li et al., 2019). Based
on temporal variations in weathering and terrigenous input
related to erosion processes (Figure 8), we suggest a four-stage
sedimentary evolution in Core K17 over the last 7400 cal yr BP.

The first stage corresponds to a period of 7400–3700 cal
yr BP. Stable CIA, αAlNa, and K2O/Al2O3 values indicate
stable chemical weathering during this period (Figures 8C–E).
The relatively stable TiO2/CaO and Rb/Sr ratios during
this interval suggest relatively stable terrigenous sediment
input (Figures 8G,H). Furthermore, EM1 displays a relatively
stable pattern but contains fluctuations that indicate constant
Kelantan River discharge due to stable chemical weathering
and terrigenous input (Figure 8F). The monsoon precipitation
from the δ18O record gradually increased from 7400 to ca.
5000 cal yr BP and remained stable with heavy rainfall
during 5000–3700 cal yr BP (Partin et al., 2007; Carolin
et al., 2016; Figure 8A), contributing to more intense chemical
weathering and terrigenous sediment input from the Kelantan
River drainage. However, the temperature gradually decreased
during this interval (Figure 8B), apparently reducing weathering
and sediment input. Therefore, the relatively stable chemical
weathering and terrigenous sediment input were probably
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FIGURE 8 | Comparison of the Core K17 records with other representative paleoclimate records since 7400 cal yr BP: (A) Rainfall patterns from Borneo cave
stalagmite δ18O (Partin et al., 2007); (B) sea surface temperature (SST) of the Western Pacific Warm Pool (WPWP; Stott et al., 2004); (C) CIA from Core K17;
(D) K2O3/Al2O3 from Core K17; (E) αAlNa from Core K17; (F) EM1 volume from Core K17; (G) TiO2/CaO from Core K17; (H) Rb/Sr from Core K17; (I) Cu
enrichment factor from Core K17; and (J) Pb enrichment factor from Core K17. The shadow area represents the interval of the second stage. The dotted line
represents the boundary of third stage and fourth stage.
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balanced by increasing rainfall and decreasing temperatures
during this period.

The second stage ranged from 3700 to 2700 cal yr BP.
Decreasing CIA, αAlNa, and K2O/Al2O3 values suggest weaker
chemical weathering and less sediment production in this
interval. Less terrigenous sediment input is indicated by
decreasing TiO2/CaO and Rb/Sr ratios. Less monsoon rainfall
and decreasing temperature led to weaker chemical weathering
and less sediment transport to the western Sunda Shelf during
this period (Stott et al., 2004; Partin et al., 2007). Due to weaker
chemical weathering, fine EM1 also displayed a decreasing trend,
corresponding to less Kelantan River discharge to the western
Sunda Shelf during this interval. Additionally, weaker chemical
weathering and less precipitation in this period were reported in
the Pearl River estuary (Hu et al., 2013; Huang et al., 2018) and
the Red River estuary (Wan et al., 2015) in the northern SCS,
probably indicating the synchronous variations of climate change
during this period in the SCS.

The third stage spanned 2700–1600 cal yr BP. Increasing
CIA, αAlNa, and K2O/Al2O3 values suggest stronger chemical
weathering in this interval, and TiO2/CaO and Rb/Sr ratios
show an increasing trend, indicating more terrigenous sediment
input. Heavy rainfall during this period possibly played a more
important role than lower temperature and resulted in more
intense chemical weathering and terrigenous sediment input.
Therefore, EM1 also showed an increasing pattern similar to
chemical weathering, indicating increasing river input.

The fourth stage corresponds to the interval since 1600 cal
yr BP. Increasing CIA, αAlNa, and K2O/Al2O3 values indicate
stronger chemical weathering, which contributed to the
production of more terrigenous sediment from the Kelantan
River; decreasing monsoon precipitation from δ18O records
(Partin et al., 2007; Carolin et al., 2016) hindered river sediment
production and transportation into the western Sunda Shelf
in this period. Increasing TiO2/CaO and Rb/Sr ratios suggest
increasing terrigenous sediment input. EM1 also indicates
increasing river discharge with fluctuations corresponding
to stronger chemical weathering and increasing rainfall.
Less precipitation and falling temperature with increasing
weathering and erosion suggest no direct relationship between
weathering and erosion and precipitation and temperature in
this interval. Thus, climate change cannot be solely responsible
for weathering/erosion changes since 1600 cal yr BP. A similar
decoupling relationship between climate and weathering/erosion
was reported in the Pearl River estuary (Huang et al., 2018)
and the Red River estuary (Wan et al., 2015) in the northern
SCS. We suggest that human activities have dominated chemical
weathering and terrigenous input relative to climate change
since 1600 cal yr BP. The Malay-Thai Peninsula contains many
archeological sites from 6000 to 600 cal yr BP and had become a
primary region of settlement in the early historic period during
2000–1400 cal yr BP (Horton et al., 2005), indicating that human
society in the Malay Peninsula formed at least as early as 2000 cal
yr BP. Since ca. 2000 cal yr BP, rice cultivation has been common
in Southeast Asia (Liang et al., 2011). During 2000–1000 cal yr
BP, both sides of the Malay Peninsula were important centers
of East–West trade, and small-scale agricultural centers were

established in some river basins (Liang et al., 2011). Agricultural
development caused partial soil erosion, corresponding to the
general increase in chemical weathering and terrigenous input
(CIA, αAlNa, K2O/Al2O3, TiO2/CaO, Rb/Sr, and EM1) in Core
K17 during this period (Figure 8).

Enrichment factor (EF) is widely used to discriminate
natural and anthropogenic sources and to elevate environmental
contamination (Wan et al., 2015). EF is calculated using the
following equation: EF = (Xsample/Alsample)/(Xbaseline/Albaseline),
where Xsample (Xbaseline) and Alsample (Albaseline) are heavy metal
concentrations and aluminum contents of samples (background
references), and average elements concentration of samples below
84 cm depth (older than 5000 cal yr B P.) is chosen as the
baseline, which is regarded as not influenced by anthropogenic
process. Our results show that the EF values of Cu and Pb
increased dramatically after 1600 cal yr BP (Figures 8I,J), which
is closely related to mining and metalworking activities due to
increasing requirements of tools for agriculture, corresponding to
an increasing impact of human activities. There is a long history
of tin and gold mining in Peninsular Malaysia at least before the
9th century (Balamurugan, 1991), related metal elements such as
Cu and Pb are very common in tin or gold deposits. Burning of
trees to smelt metals in the ancient could strengthen weathering
and erosion since 1600 cal yr BP. Furthermore, the enrichment
of Cu and Pb seems to be related to the disposal of sewage
effluent, indicating an increase in human activity (Hu et al.,
2013, 2020; Huang et al., 2018). Relatively higher enrichment
of Cu and Pb were also observed in some sediment sequences
before 1600 cal yr BP (Figures 8I,J), perhaps reflecting fluvial
erosion related to harsh weather conditions during this period
(Hu et al., 2020), such as flooding, which occurs frequently in
the Kelantan River basin (Koopmans, 1972). However, more
research is needed to clarify these mechanisms. The initial time
at which human activity overwhelmed natural processes in our
study is similar to that in the Pearl River Delta (2000 cal yr
BP) (Huang et al., 2018), the Red River drainage (1800 cal
yr BP) (Wan et al., 2015), and Taiwan (1500 cal yr BP) (Hu
et al., 2020). Therefore, since 1600 cal yr BP, increased human
activity has been the dominant influence on the natural landscape
of Kelantan River drainage by agriculture and related mining
activities. Compared the established variations in erosion and
weathering rates from Sunda Shelf with other studies from the
Southeast Asia, especially in the northern SCS (Wan et al., 2015;
Huang et al., 2018), our results show a similar variation trend
with them, but the accurate changing periods between these
studies have some differences. It is worth noting that, after about
2000 cal yr BP, they all display a remarkable increasing trend.
Therefore, we believe the Southeast Asia have similar variations
trend in erosion and weathering rates, and human activities
overwhelming the nature in erosion and weathering share a
similar period in the Southeast Asia.

CONCLUSION

Provenance analysis from Sr-Nd isotopic evidence for Core
K17 in the western Sunda Shelf suggests that the Kelantan
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River is the major sediment contributor. The sediment
succession of Core K17 can be divided into four stages
according to chemical weathering and terrigenous input
indicators. During stage 1 (7400–3700 cal yr BP), increasing
precipitation and decreasing temperature jointly controlled
relatively stable chemical weathering and terrigenous sediment
input. Dramatically decreasing weathering and terrigenous input
during stage 2 (3700–2700 cal yr BP) coincides well with
less precipitation and lower temperature, resulting in weaker
weathering and erosion. The period of 2700–1600 cal yr BP
corresponds to the third stage, in which heavy rainfall played
a more important role than low temperature in controlling
weathering and erosion and led to increasing terrigenous
input. For the late Holocene (stage 4, since 1600 cal yr BP),
weathering and sediment inputs in the study core have likely been
dominantly influenced by human activities due to decoupling
between weathering/erosion and climate change and increasing
agriculture and mining activities.
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To help understanding the potential relationship between chemical weathering and
Indian summer monsoon (ISM) since the last glacial period a gravity core (BoB-56)
was retrieved from the central Bay of Bengal (BoB). The data of chemical weathering
indexes (CIA, WIP, and αAlNa) used in this study showed general synchronicity with
the regional monsoon precipitation and temperature record on precessional scale,
indicating existence of control from the ISM on weathering. Corresponding to alteration
of warm/cold period during the last deglaciation, obvious simultaneously alteration of
higher/lower values of the chemical weathering and terrestrial input proxies’ record
support our hypothesis that the ISM driving chemical weathering on the millennial
scale. However, a contradiction occurred during the Holocene period, when the ISM
precipitation and temperature rose to a higher level, while the alternative indexes
unanimously reflected a weaker chemical weathering conditions. In this study, we
discussed the applicability of chemical weathering indexes in the BoB during the
Holocene period. Besides the possible weakened monsoon during 6–3 ka, recorded
by the stalagmite δ18O and Sea Surface Temperature (SST) reconstruction results in
the northeastern Indian Ocean, other factors were responsible for this phenomenon,
including the grain size effect and distinction between the mountain high land and
floodplain low land. The chemical weathering records, during the last glaciation,
indicated the presence of control from the ISM on weathering at precessional and
millennial scales. While, during the Holocene, they failed to reflect the actual chemical
weathering dynamics of the source area. Indeed, a mixture of physical erosion and
chemical weathering seems to be representative of the chemical weathering dynamics
in the area. Our findings emphasized on the tight connections between the chemical
weathering evolution and global-regional climate conditions around the BoB, implying
possible ISM-controlled mechanisms during different time scales.

Keywords: geochemistry, chemical weathering, Indian summer monsoon, precipitation, Bay of Bengal
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INTRODUCTION

Chemical weathering is one of the most important processes
of the earth’s elemental cycle, especially for the carbon cycle,
and is closely related to tectonic, climatic, and environmental
factors (Walker et al., 1981; Berner, 1992; Gaillardet et al.,
1999; Yang et al., 2004a; Eiriksdottir et al., 2011; Miriyala
et al., 2017; He et al., 2020; Liu et al., 2020). During the
journey from “source” to “sink,” particles carry source chemical
weathering signals to the sink area, which are interfered
and modified by path signals, and form strata, containing
chemical weathering signals. Therefore, deciphering the chemical
weathering intensity records in stratigraphic signals can provide
us with information on the environmental evolution in source
regions at different time scales, helping to understand the
different control mechanisms of chemical weathering. From the
transportation characteristics of environmental signals in the
process of “source-sink,” the stronger the signal in the source
area, the shorter the transformation time, and the more stable and
continuous the strata are, the more conducive to the decoding
of environmental signals (Romans et al., 2016). In addition, the
obvious tectonic and climatic signals in the source area are likely
to be masked, modified, or damaged by other signals during
transportation (Jerolmack and Paola, 2010; Romans et al., 2016),
such as fluvial-floodplain processes, which are not affected by the
original upstream signals. Located back against “the roof of the
world,” the Tibetan Plateau, the Bay of Bengal (BoB) is considered
as the supergiant source of sediment in the Asian continent
margin, with a mixture of world-class high mountain terrain
and low relief develop in the foreland like flood plain, combined
with the developed river systems. In addition to the world-class
delta, the BoB has developed a largest submarine fan in the
world. Typical Indian monsoon climate affects the whole BoB and
surrounding areas. The drilling results show that except for the
early Eocene and late Miocene, the remaining strata are relatively
continuous (Curray and Moore, 1971), providing us with a good
target for deciphering regional chemical weathering evolution
and its control mechanism, and recorded in the sediment strata.

Tectonics, climate, and sea level fluctuations have significant
control on generating, transportation, and preservation of the
chemical weathering signals. Overall, the major tectonics around
the BoB remained stable during the last glaciation scale. The
sediment in the BoB are mainly transported from the Ganges-
Brahmaputra River (hereinafter referred to as “G-B” River), so
the influence from tectonic characteristics is mainly reflected in
the difference between the composition of the high mountainous
terrain in the upper reaches and the low plain terrain in the
middle and lower reaches (Joussain et al., 2016; Yu et al., 2020).
The sea level mainly controls the relative input between the
delta-shelf and the deep sea on a glacial-interglacial scale (Li
et al., 2019). Regardless of long or short time scales, climate
change seems to be the closest factor, controlling the chemical
weathering, with two basic parameters, i.e., the precipitation
and temperature (Liu et al., 2020). The “competition” among
these factors has been maintained throughout the late Quaternary
in the area and preserved in the sediments, transported by
rivers into the ocean. In the northeast Indian Ocean, the Indian

monsoon climate change, recorded by ocean indexes since the last
glaciation, mainly embodied in glacial-interglacial, precessional
and millennial scales variations, subjected to the global ice
condition, the latitude distribution distinction of solar radiation,
caused by the earth parameters, and the millennial climate events
in the high latitudes of the northern hemisphere, respectively
(Duplessy, 1982; Prell and Kutzbach, 1987; Schulz et al., 1998;
Clemens and Prell, 2003; Gupta et al., 2005; Caley et al., 2011;
Bolton et al., 2013; Cao et al., 2015; Mohtadi et al., 2016; Raza
et al., 2017). These periodic changes are recorded in the marine
sedimentary strata and have been subjected to study in several
research (Clemens and Prell, 2003; Cao et al., 2015; Li et al.,
2018, 2019, 2020; Sebastian et al., 2019; Liu et al., 2020; Yu et al.,
2020). If the chemical weathering evolution in the BoB is mainly
controlled by the Indian monsoon climate, one or more of the
above periodic changes should have occurred in its temporal
variation trend. Indian monsoon rainfall is mainly concentrated
in the summer monsoon period, accounting for more than 90%
of the annual precipitation (Rodolfo, 1969; Singh et al., 2007).
Therefore, summer monsoon rainfall can be regarded as a typical
alternative index of Indian monsoon intensity and its time-
evolution characteristics and control mechanism are stablished in
a large number of studies (Prell and Kutzbach, 1987; Schulz et al.,
1998; Kudrass et al., 2001; Fleitmann et al., 2003, 2007; Rashid
et al., 2007; Bolton et al., 2013), which are used as references for
our comparative analysis.

Element molar contents based proxies, e.g., Chemical Index
of Alteration (CIA; Nesbitt and Young, 1982), Weathering Index
of Parker (1970), and αAlE (Garzanti et al., 2013), have been
successfully applied in different sedimentary environments to
estimate the chemical weathering intensity (Liu et al., 2013,
2020; Li et al., 2017; Xu et al., 2018). It should be noted
that the variation of geochemical element content is controlled
not only by the changes in chemical weathering intensity, but
also by the mixing process of sediment particles from different
sources or various components. Therefore, while applying the
above parameters, the influence of provenance factors needs
to be taken into account. In this study, these three commonly
used chemical weathering index parameters, i.e., CIA, WIP, and
αAlE are analyzed to evaluate the chemical weathering dynamics
around the BoB and its response to the Indian monsoon
climate, since the last glaciation. Meanwhile, the application of
geochemical parameters, represented by the CIA are discussed to
estimate the chemical weathering dynamics in different stages.
The findings from this study can help to build a “climate-
weathering-sedimentation” connection in the BoB.

MATERIALS AND METHODS

Materials
Core BoB-56 (location: 16.56◦N, 88.55◦E; length: 3.41 m; water
depth: 2,615 m; Figure 1) was collected from the central BoB
in 2012, during China-Thailand BoB joint scientific cruise. The
general procedures of the Key Laboratory of Marine Geology
and Metallogeny, Ministry of Natural Resources, China, was
followed as a pre-treatment procedure, including a detailed core
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FIGURE 1 | Location of the BoB. The core BoB-56 and referenced cores are marked by red stars and yellow circles, respectively. The cyan color circle in the land
show location of the Mawmluh Cave. SoNG: Swatch of No Ground, the largest submarine canyon in the BoB.

description and sub-samples division. Briefly, sediments of core
BoB-56 were composed of relatively homogeneous gray clay silt
except the upper 30 cm which showed the yellow brown color
mainly due to the relative higher sand fraction. Grain size and
geochemical analyses were carried out on the 2 cm intervals.
AMS 14C age model was constructed based on mixed planktonic
foraminifera species (Figure 2; Li et al., 2018). Downcore ages
were calculated by linear interpolation between dated sediment
layers and the bottom age is 40.0 ka BP. Correspondingly, the
sedimentation rates during the Holocene period (∼3.1 cm/kyr)
were lower than those during the last glacial and deglacial periods
(∼10.9 cm/kyr). The chronology, grain size, and part of element
geochemistry (Ti, Ca, Rb, Sr, and Ba) compositions have been
reported in our previous work (Li et al., 2018, 2019). In particular,
sediment provenance of the core BoB-56 has been identified
using Sr and Nd isotope compositions (Li et al., 2018), which
confirmed that most of the sediments are from the Himalayas.
This could decrease the difficulty of interpretation of weathering
signal due to the complex sediment sources, and improve the
reliability of the indexes.

Geochemical Analyses
Each frozen and dried sample with a weight of 0.05 g was placed
in a polytetrafluoroethylene digestion tank, dissolved twice in
HF-HNO3 (1:1), and dried at 190◦C for 48 h. Subsequently, by

reacting with 1 mL of HNO3, the residual HF was removed
and the samples were digested with a mixture of 3 mL of 50%
HNO3 and 1 mL of Rh (500 ppb) for 24 h in an oven at 150◦C.
Then, 50 g of the mixture was prepared for element concentration
analyses using Inductively Coupled Plasma Optical Emission
Spectrometry. 10% of these samples were analyzed repeatedly, to
determine the measurement error. The GSD-9 reference standard
was also measured to confirm the accuracy and an approximately
5% measurement error was determined.

Chemical Weathering Indexes
Calculation
Three element molar contents based proxies, CIA (Nesbitt and
Young, 1982), Weathering Index of Parker (WIP; Parker, 1970)
and αAlE (Garzanti et al., 2013) were applied in this study to
evaluate the chemical weathering conditions, and the calculation
formulas are as follows:

CIA = Al2O3/(Al2O3 + CaO∗ + Na2O + K2O) × 100
(1)

WIP = (2Na2O/0.35 + MgO/0.9 + 2K2O/0.25

+ CaO∗/0.7) × 100 (2)

αAlE =
(
Al/E

)
sediment /

(
Al/E

)
UCC (3)
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FIGURE 2 | Depth versus calibrated AMS14C age and linear sedimentation rate (LSR) plots of core BoB-56 (Li et al., 2018). The LSR is listed for each interval in
cm/kyr.

Where, CaO∗ refers to CaO contents in the silicate. In this
study, the method from Mclennan et al. (1993) was adopted to
approximately correct the CaO∗ content for the presence of Ca
in carbonates (calcite and dolomite) and phosphates (apatite).
CaO was corrected for phosphate using P2O5. If the remaining
number of moles is less than that of Na2O, this CaO value is
adopted. Otherwise, CaO∗ is assumed to be equivalent to Na2O.
In this method, minimum CIA values could be yielded since the
Ca lost more rapidly than Na during weathering. UCC refers to
the Upper Continental Crust (Taylor and Mclennan, 1985). In
this study, E = Na.

Principal Component Analysis
To better extract the inner regularities and further constrain
the controlling mechanisms of the chemical weathering indexes,
the principal component analysis (PCA) is performed for these
chemical weathering dataset (CIA, WIP, and αAlNa), using the
IBM SPSS Statistics 19.0 software. Generally, three conditions
must be satisfied, including sufficient samples (at least five
times the number of variables), a strong correlation between
the original data (the Bartlett test of sphericity yields a value

under 0.05 or the KMO measure of sampling adequacy is
above 0.5), and significant common factors obtained (factor
rotation if necessary). In this study, 441 data points are used
and the Bartlett test of sphericity/the KMO measure of sampling
adequacy yields values 0 and 0.64. Then, controlling factors
with eigen value above 1 were extracted and the rotating
component matrix was gotten by Maximum-variance Algorithm.
Comparing with the climatic proxies, detailed variations and
controlling mechanisms of chemical weathering intensity on
different timescales were discussed.

RESULTS

Geochemical Composition Variations
The geochemical compositions and downcore variations of core
BoB-56 sediments are presented in Figure 3. Al2O3, K2O, and
TiO2 appear to vary synchronously, while the CaO contents tend
to be a mirror trend. Na2O shows a roughly similar average
contents between the Last Glaciation and the Holocene periods,
but a decreased trend since the Holocene period. Overall, higher
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contents of CaO are observed during the Holocene period and
lower contents during the last glaciation. Meanwhile, opposite
pattern is identified for other oxides. Alternation of high and
low values could be seen during the last deglaciation. The major
oxides contents, i.e., Al2O3, K2O, TiO2, CaO, and Na2O range
between 11.61 and 16.87%, 2.22 and 3.76%, 0.54 and 0.84%, 1.64
and 4 13.84%, and 2.13 and 3.06%, respectively, with average
contents of 15.03, 3.00, 0.72, 6.39, and 2.60%, respectively.
Similar to the geochemistry variations, sand fractions of core

BoB-56 sediment show significantly higher volume contents
during the Holocene period (averaged 7.08%), compared to the
last glaciation (averaged 0.62%).

Chemical Weathering Intensity
Estimation
Three chemical weathering indexes, including CIA, WIP, and
αAlNa used in this study are shown in Figure 4. All these indexes

FIGURE 3 | Downcore variations of grain size (Li et al., 2018) and elemental composition in the core BoB-56.

FIGURE 4 | Downcore variations of the chemical weathering indexes. (A) CIA; (B) WIP; and (C) αAlNa.
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TABLE 1 | Factor analysis of CIA, WIP, αAlNa, and extraction of three factors with
eigen values > 1.

F1 F2 F3

Eigen value 2.44 0.52 0.04

% variation 81.41 17.22 1.37

CIA 0.94 –0.31 0.14

WIP -0.28 0.96 –0.06

αAlNa 0.96 –0.26 –0.11

indicate a relatively weak chemical weathering condition on the
whole. Within the current chronology frame, two precessional
cycles (40–20 ka and 20 ka to present) can be identified through
the whole cores. Two obvious low values are associated with
the Last Glacial Maximum (LGM) and the Holocene period.
However, the latter cycle (20 ka to present) shows a distinct peak
with higher frequency oscillation, indicating that the elemental
data might more closely follow higher-frequency event [e.g.,
Heinrich 1 (H1), Bølling/Allerød (B/A), Younger Dryas (YD),
and Early Holocene Climate Optimum]. Actually, it reminds us of
a millennial scale variation for the chemical weathering intensity.
Briefly, the results exhibit that the chemical weathering proxies
vary in two different cycles, precessional, and millennial cycles.

Principal Component Analysis of
Chemical Weathering Indexes
The PCA results show that three components with eigen value
above 1 could be extracted and 81% of common variance could be

explained by the first component (F1; Table 1), clearly suggesting
that the variations of chemical weathering proxies are mainly
controlled by the same driving force. Considering the typical
monsoon climate around the BoB and close relationship between
climate and weathering (Romans et al., 2016; Liu et al., 2020),
simultaneously compared downcore variations of F1 with the
Indian summer monsoon (ISM) records in and around the
BoB (Figures 5, 7; Kudrass et al., 2001; Rashid et al., 2007;
Berkelhammer et al., 2012; Raza et al., 2017), we could initially
conclude that F1 represents control from the ISM, due to
the covariant relationship between chemical weathering indexes
(CIA and αAlNa) and F1 (Table 1 and Figures 4, 5).

However, 20% of the elemental weathering signal is lost to
other processes, mainly the F2 which could interpret 19% of
the variations, and the main proxy controlled by F2 is the WIP
(Table 1 and Figure 6A). Comparing the calculation formulas
of three chemical weathering proxies used in this study, the
main difference between the WIP and the others is the MgO
which is not contained in the CIA and αAlNa. We plot F2 and
these three proxies and MgO, CaO, Al2O3, K2O, and Na2O
in the binary scatter diagram (Figure 6). It shows significant
correlation between F2 and the WIP (R2 = 0.90), but distinct
expression between F2 and oxides during the last glaciation
and the Holocene period. Positive correlation occurred between
F2 and MgO, CaO during the last glaciation (R2 = 0.39, 0.55,
respectively), and significant positive correlation between F2 and
CaO (R2 = 0.97), negative correlation between F2 and MgO,
Al2O3, and K2O (R2 = 0.89, 0.76, and 0.73, respectively) during
the Holocene period could be seen. Na2O shows nothing to do

FIGURE 5 | Downcore variations of PCA components scores. (A) Curves of F1 scores; (B) curves of F2 scores; (C) curves of F3 scores.
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FIGURE 6 | Scatter diagrams between F2 and chemical weathering indexes and oxides. (A) Chemical weathering indexes (CIA-black circles, WIP-red circles and
αAlNa-blue circles) vs F2 (the second factors extracted by principal component analysis); (B) MgO vs F2; (C) CaO vs F2; (D) Al2O3 vs F2; (E) K2O vs F2; (F) Na2O
vs F2.

with F2 both in the last glaciation and the Holocene period. We
thus suggest the F2 as control from carbonate input, both from
the ocean and Ganges River (Garzanti et al., 2010). Dolomite and
calcite could be the main carrier.

DISCUSSION

Chemical Weathering Intensity
Responses to Monsoon Precipitation on
Precessional Scale
Apart from climate, other driving forces including regional
tectonic activity (Dixon et al., 2012; Liu et al., 2016a), rock
types (Babechuk et al., 2014; Yang et al., 2004b; Liu et al.,
2016b), vegetation (Galy et al., 2008; Shen et al., 2018), and
geomorphology (Albert Galy, 1999; Yang et al., 2004a; Bouchez
et al., 2012) also play important role in chemical weathering. The
mountainous areas around the BoB have tectonically been stable
during the last 40 ka. Weathering process has sensitive response
to the distinctions in the lithology (e.g., ultramafic or granitic
rocks) and landform (e.g., mountain or floodplain), mainly

through climate change (precipitation/temperature). Long-term
vegetation evolution is now suggested to be connected to the
climate change (Galy et al., 2008; Shen et al., 2018). Thus, climate
is suggested to be the main controlling factor of the chemical
weathering intensity, since the last glacial period. Typical
monsoon climate around the BoB provides us with abundant
climate signatures, which could be carried by sediment particles
and stored in the sink basins. Theoretically, our chronology
framework has a resolution of 100–200 years and therefore
has the ability to provide reliable climate signals above the
millennium scale, excluding the negative processes such as signal
attenuation and interference. Since the F1 shows co-variation
with our indexes and faithfully record the chemical weathering
dynamics and forcing mechanisms, we compared it with ISM
precipitation, temperature, July solar radiation in 20◦N, sea level
and sedimentary rate to give a systematical analyses. The Indian
monsoon intensity is affected by solar radiation, showing periodic
changes on the precession scale, which is widely recorded in the
Indian monsoon region (Prell and Kutzbach, 1987; Caley et al.,
2011; Mohtadi et al., 2016). Our sedimentary records also show
that chemical weathering indicators have roughly changed in two
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precession cycles simultaneously with the July solar radiation
in 20◦N and monsoon precipitation over the last 40,000 years
(Figures 4A,C, 7I). Here, the Ti/Ca ratio is calculated to estimate
the terrestrial input variation, based on the stable feature of Ti in
hypergenesis and considerable part of biogenic input CaO (Hu
et al., 2012; Chen et al., 2013; Clift et al., 2014; Cao et al., 2015;
Li et al., 2017, 2019) and its efficiency has been confirmed by the
roughly consistent trend of the sedimentary rate (Li et al., 2019).
The results show that the Ti/Ca ratio change simultaneously with
the chemical weathering indexes (Figures 4, 7D). Indeed, along
the studied core, enhancing the chemical weathering is associated
with the increase in the terrestrial input, vice versa. This pattern is
similar to the temperature and precipitation patterns in the Asian
monsoon regions recorded by stalagmite δ18O values (Wang
et al., 2001; Yuan et al., 2004; Berkelhammer et al., 2012; Raza
et al., 2017) and planktonic foraminifera G. ruber δ18O values
in the BoB (Kudrass et al., 2001; Figures 7A,B,E,F). Combined
with the PCA results and the low sea level (Figures 7C,H)
which could ensure that the deposition center is located in
the Bengal Fan (Curray et al., 2003; Li et al., 2019), this
indicates the ISM controlled the weathering/erosion processes on
precessional scale. During the oxygen isotope stage III and the
last deglaciation, higher temperature (Rashid et al., 2007; Raza
et al., 2017), and monsoon precipitation (Prell and Kutzbach,
1987; Kudrass et al., 2001) improved the erosion and weathering
intensity in the source area, causing overall higher records of
CIA, αAlNa, Ti/Ca values and lower records of WIP values in
the BoB (Figures 4, 7D). On the other hand, during the LGM
when temperature and monsoon precipitation decreased to the
lowest level (Prell and Kutzbach, 1987; Kudrass et al., 2001;
Rashid et al., 2007; Raza et al., 2017), both physical erosion and
chemical weathering in the source area significantly weakened.
Additionally, ice cover in the high mountains expanded, causing
decreased exposure area, and erosion production (Owen et al.,
2002). Corresponding to this cold and dry climate conditions,
sedimentary records in the BoB showed lower CIA, αAlNa, and
Ti/Ca values, as well as higher WIP values (Figures 4, 7D). It
was also supported by lower CIA∗ values (∼10 reduction) and
decreased Himalayan material contribution (∼30% reduction) in
an adjacent core SK187/PC33 (Tripathy et al., 2014). It is worth
noting that chemical weathering and terrestrial inputs are not
fully synchronized with changes in monsoon rainfall and solar
radiation, especially during the second precessional cycle (20 ka
to present; Figure 7). This is due to the fact that the short-cycle
climate changes on the millennial scale break up such long-cycle
changes on the orbital scale and special circumstances during the
Holocene period, which will be discussed in depth later.

Chemical Weathering Intensity
Responses to Temperature and Monsoon
Precipitation on Millennial Scale
Corresponding to alteration of warm/cold period during the
last deglaciation, the precipitation and temperature in the
Indian monsoon regions show a simultaneously alteration of
higher/lower values distribution (Kudrass et al., 2001; Rashid
et al., 2007; Raza et al., 2017). The obvious simultaneously

alteration of higher/lower values in the chemical weathering and
terrestrial input proxies records (Figures 4, 7D) provides us with
evidences supporting our hypothesis that monsoon climate drives
the chemical weathering on millennial scale. In detail, during
the cold periods, e.g., H1 and YD, the lower CIA, αAlNa, and
Ti/Ca values and the higher WIP values (Figures 4, 7D) indicate
the weakened chemical weathering and erosion intensity. In the
northeastern Indian Ocean, climate during these two events were
characterized by obvious weakened ISM intensity with sharply
decreased trends of precipitation and temperature (Kudrass et al.,
2001; Rashid et al., 2007; Raza et al., 2017). The lower total
organic carbon contents in the Arabian Sea can be considered
as additional evidence for a weakened ISM conditions (Schulz
et al., 1998). During this period, simultaneously decreased
precipitation and temperature improved the ice expansion
(Chauhan, 2003) and limited glacial melting process and the
water-rock interactions, thus decreased weathering reaction rate.
Opposite circumstance occurred during the warm periods, e.g.,
B/A and Early Holocene Climatic Optimum (EHCO), when the
increased ISM intensity was recorded in the Asian monsoon
regions, as evidenced by the higher volume of melted ice in
the Himalaya mountains (Benn and Owen, 1998), warmer and
wetter climate (Weber et al., 1997), the rainfall (Kudrass et al.,
2001; Yuan et al., 2004; Fleitmann et al., 2007), and runoff
reconstructions from the northeastern Indian Ocean, based
on the planktonic foraminifera G. sacculifer shell Ba/Ca ratios
(Gebregiorgis et al., 2016). The prevailing warm-wet climate
conditions improved the weathering rate again, causing the
higher CIA, αAlNa, and Ti/Ca values, as well as the lower WIP
values in our studied core (Figures 4, 7D). Briefly, it supported
our hypothesis that chemical weathering intensity responses to
temperature and monsoon precipitation on millennial scale.

Contradiction Between Chemical
Weathering and Indian Monsoon
Records During the Holocene Period:
Reason and Applicability
After a period of co-variation, the chemical weathering
indicators, and the monsoon indicators showed opposite
paths during the Holocene period: both monsoon rainfall
and temperature reconstruction results showed that ISM was
significantly stronger during the Holocene period, in comparison
with the last glaciation (Kudrass et al., 2001; Rashid et al.,
2007; Raza et al., 2017; Figures 7A,E,F), while the lower
CIA, αAlNa, and Ti/Ca values and the higher WIP values
reflected weaker chemical weathering intensity and less terrestrial
input (Figures 4, 7D). Although, between 6 and 3 ka both
stalagmites δ18O from South Asia and SST reconstruction
results in the northeastern Indian Ocean recorded a significant
reduction in rainfall and temperature (Berkelhammer et al.,
2012; Figures 7B,F), more factors were responsible for the
low chemical weathering intensity values in the whole middle-
late Holocene period on glacial-interglacial scale, especially that
chemical weathering intensity started to be decreased after the
EHCO, but the rainfall and temperature were still at a high level
(Figures 7A,C,E,F). Indeed, the chemical weathering intensity,
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FIGURE 7 | Comparison of curves for chemical weathering intensity and climate proxies. (A) G. ruber δ18O data from the core SO-126KL located in the northern
BoB (Kudrass et al., 2001); (B) Mawmluh Cave stalagmite δ18O data (Berkelhammer et al., 2012); (C) Chemical weathering stack of the core BoB-56; (D) Ti/Ca of
the core BoB-56; (E) SST from the core SK157-14 from northeastern Indian Ocean (Raza et al., 2017); (F) SST from the core RC12-344 from northeastern Indian
Ocean (Rashid et al., 2007); (G) Linear sedimentary rate of core BoB-56 (Li et al., 2019); (H) Sea level curve (Arz et al., 2007; Stanford et al., 2011); and (I) July
insolation at 20◦N (Prell and Kutzbach, 1987). The cyan and yellow color bars show the typical millennial scale intervals. LGM, Last Glacial Maximum; H1, Heinrich 1;
B/A, Bølling/Allerød; YD, Younger Dryas; EHCO, Early Holocene Climatic Optimum; MH, Middle Holocene; and SST, Sea surface temperature. The dashed lines in
(C,D) indicate the variation trends of the proxies.
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revealed by clay minerals in the BoB, is consistent with that
of the ISM intensity: e.g., a stronger intensity is identified in
the Holocene, compared to the last glaciation (Li et al., 2018;
Liu et al., 2019; Yu et al., 2020). In particular, clay mineral
index smectite/(illite + chlorite) ratio and K/Al (molar ratio)
in adjacent cores MD12-3417 and MD12-3418CQ also indicate
increasing weathering since the Holocene period (Joussain et al.,
2017). Moreover, it is widely accepted that the ISM during
the Holocene was significantly stronger than the last glaciation
(Kudrass et al., 2001; Rashid et al., 2007; Raza et al., 2017). A new
question arises: why did the chemical weathering indicators
(such as CIA, WIP, and αAlNa) sensitivities reduced during the
Holocene? Taking CIA as an example, the reasons may be, as
follows:

The CIA is significantly affected by sediment grain size. The
Ganges river “bank sediment-surface water suspension-bedload”
depth profile CIA results show that the particles with a size of
less than 0.1 µm in the bank sediment show the highest CIA
value (CIA = 94). The particles with less than 2 µm in the
bank sediment and surface water suspension show the similar
CIA value (CIA = 82–85), while, the bulk sediments contain the
lowest CIA value and the value of the surface suspension bulk
CIA (CIA = 71) is higher than that of the bedload (CIA = 58;

Garzanti et al., 2010, 2011; Figure 8A). Studies on the CIA value
of bedload and suspension in G-B River show that the CIA
value of suspension (mostly between 60 and 80) is significantly
higher than that of bedload (mostly between 50 and 60; Singh
and France-Lanord, 2002; Singh, 2009; Garzanti et al., 2010;
Figures 8B–D). The bulk sediment CIA values of core BoB-
56 are between 50 and 60 (Figure 4A), which is closer to the
CIA of the bedload, with the clay fraction content of below
30% (Figure 3). Grain size of sediments in the core BoB-56
show a coarsening upward trend from the last glaciation to the
Holocene period, with around 7% increase in the sand fractions
(Figure 3). This seems to explain why fine particles (<2 µm),
represented by clay minerals, indicates significantly stronger
chemical weathering during the Holocene period than the last
glaciation (Li et al., 2018; Yu et al., 2020), which is the opposite
of the circumstance reflected by the bulk sediment geochemistry
in this study (Figure 4).

The obvious difference of CIA between the two geomorphic
units in the source region (high mountain terrain and low plain
terrain) can be considered as another possible factor. The high
mountain terrain is dominated by physical erosion and has
relatively weak chemical weathering intensity, while, the low
terrain, represented by the Indo-Gangetic Plain, has relatively

FIGURE 8 | CIA records in the source area (modified from published literature). (A) “Bank-suspension-bedload” CIA depth profile in the Ganga River (Garzanti et al.,
2010, 2011); (B) CIA records in the Ganga River and its flood plain (Singh, 2009); (C) Bedload and suspension CIA records in the main channel and different
tributaries of the Brahmaputra River (Singh and France-Lanord, 2002); and (D) Bedload and suspension CIA records in different rivers passing the Bangladesh
(Garzanti et al., 2010).
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stronger chemical weathering intensity and the CIA value is
significantly higher than that of the mountain (Singh and France-
Lanord, 2002; Owen, 2009; Singh, 2009). Under the background
of significantly enhanced ISM during the Holocene, the erosion
rate accelerated and the erosion yield and flux to the ocean
increased significantly in both mountains and flood plains. As
a result, the largest delta in the world, the G-B River delta,
was constructed and improved. Subsequently, the continental
shelf was submerged and the deposition center shifted from
the Bengal Fan to the shelf, as a result of about 120–130 m
sea level rise during the Holocene (Arz et al., 2007; Stanford
et al., 2011), causing deduction in the sediment flux reaching
the deep sea, hence, decrease in the Ti/Ca ratio during the
Holocene (Figure 7D), though the ISM enhanced. Sediment
in the floodplain are relatively fine and contribute a lot to
the fine fractions, represented by clay minerals in the Bengal
Fan. Smectite is originated mainly from the Indo-Gangetic
Plain (Sarin et al., 1989; Huyghe et al., 2011). Therefore, the
content of smectite in the BoB increased significantly under the
background of intensified ISM during the Holocene, revealing
strong chemical weathering dynamics (Joussain et al., 2016;
Li et al., 2018; Yu et al., 2020). Studies of the adjacent cores
MD12-3417 and MD12-3418CQ provide detail evidences of
distinct weathering between high mountain terrain and the Indo-
Gangetic Plain during the Holocene period (Joussain et al., 2017),
which might be a supplement for our data during the Holocene
period. Three stages, 9.2–7, 6.0–2.5, and 2.5 ka to present were
divided and indicated more input from the mountains, the Indo-
Gangetic Plain and plain soils due to anthropogenic activity,
respectively. Due to the increase of physical erosion in the high
mountain terrain, as the main sediment supplier, together with
the grain size effect discussed above, the CIA value of bulk
sediment decreased (Figure 4A). Therefore, it can be concluded
that the bulk sediment geochemical-based weathering indicators,
including CIA, WIP, and αAlNa could not accurately reflect
the chemical weathering dynamics of the source region and
they appear to be a mixture of physical erosion and chemical
weathering signals, which should be treated with caution.

CONCLUSION

1. Three geochemistry-based indexes, CIA, WIP, and αAlNa,
were extracted to estimate chemical weathering intensity
dynamics. Overall, changes in the chemical weathering
intensity were coincide with that of 20◦N insolation,
precipitation, and temperature changes, indicating that the
ISM controlled weathering on precessional scales.

2. Obvious response between climate and chemical
weathering occurred during the last deglaciation:
stronger weathering during the B/A and EHCO periods,
weaker weathering during the H1 and YD periods. The
higher (lower) precipitation and temperature enhanced
(weakened) the chemical weathering intensity during these
warm (cold) periods, suggesting presence of control from
the ISM on weathering on millennial scales.

3. Chemical weathering indexes showed significantly
lower values during the Holocene period, which was
inconsistence with the rising ISM precipitation and
temperature. Besides the possible weakened monsoon
during 6–3 ka, the grain size effect (finer particles are
more sensitive than the bulk sediment especially when
sand fractions increased), and relative geological location
(sediment from the high mountain terrain has significant
lower chemical weathering intensity than that from the
low plain terrain) were suggested to be comprehensively
responsible for this contradiction. Thus, the CIA, WIP, and
αAlNa values from bulk sediments cannot be representative
of the chemical weathering intensity during the Holocene,
as they seem to be a mixture of physical erosion and
chemical weathering.
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Investigating the composition and distribution of pelagic marine sediments is
fundamental in the field of marine sedimentology. The spatial distributions of surface
sediment are unclear due to limited investigation along the Emperor Seamount Chain
of the North Pacific. In this study, a suite of sedimentological and geochemical proxies
were analyzed, including the sediment grain size, organic carbon, CaCO3, major and
rare earth elements of 50 surface sediment samples from the Emperor Seamount
Chain, spanning from ∼33◦N to ∼52◦N. On the basis of sedimentary components, we
divide them into three Zones (I, II, and III) spatially with distinct features. Sediments
in Zone I (∼33◦N–44◦N) and Zone III (49.8◦N–53◦N) are dominated by clayey silt,
and mainly consist of sand and silty sand in Zone II. The mean grain size of the
sortable silt shows that the hydrodynamic condition in the study area is significantly
stronger than that of the abyssal plain, especially at the water depth of 1,000–2,500
m. The CaCO3 contents in sediments above 4,000 m range from 20 to 84% but
decrease sharply to less than 1.5% below 4,000 m, confirming that the water depth
of 4,000 m is the carbonate compensation depth of the study area. Strong positive
correlations between Al2O3 and Fe2O3, TiO2, MgO, and K2O (R > 0.9) in the bulk
sediments indicate pronounced contributions of terrigenous materials from surrounding
continent mass to the study area. Furthermore, the eolian dust makes contributions
to the composition of bulk sediments as confirmed by rare earth elements. There is
no significant correlation between grain size and major and minor elements, which
indicates that the sedimentary grain size does not exert important effects on terrigenous
components. There is significant negative δCe and positive δEu anomalies at all stations.
The negative Ce anomaly mainly exists in carbonate-rich sediments, inheriting the signal
of seawater. The positive Eu anomaly indicates widespread volcanism contributions to
the study area from active volcanic islands arcs around the North Pacific. The relative
contributions of terrestrial, volcanic, and biogenic materials vary with latitude and water
depth in the study area.

Keywords: sediment grain size, spatial distribution of sediment, Ce negative anomaly, sediment provenance,
Emperor Seamount Chain
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INTRODUCTION

The geochemical composition of marine sediments, including
the contributions of terrestrial, volcanic and biogenic materials,
reveals abundant information about ocean current circulation,
ecosystem community structure, tectonic movement, and climate
change, etc. (Ding et al., 1994; Liu et al., 2009; Hu et al., 2012;
Franzese and Hemming, 2013). Determining the composition
and distribution of pelagic sediments is fundamental to marine
sedimentology, as well as the basis for studying marine ecological
assessment, resource exploitation, the reconstruction of past
oceanic environment and climatic evolution, etc.

The seamounts are widespread and prominent features of the
world’s underwater topography. More and more studies suggest
that their biological communities, benthic biodiversity, marine

biogeography, marine fisheries, hydrodynamic conditions,
mineral resources, and climate change are all vital (Clark et al.,
2010). In recent years, some studies have greatly improved
our understanding of seamount ecology (Mcclain, 2007),
especially the vulnerability of seamount communities to human
impacts. With progresses in seamount research, it is necessary
to reveal some basic characteristics of seamounts, including the
composition of sediments deposited on seamount evolution of
ecosystems and the development of resources (Mcclain, 2007).

The Emperor Seamount Chain is located in the North Pacific
Ocean, extending from ∼20◦N to ∼50◦N, with a length of more
than 6,000 km, which varies greatly in topography. It extends
from the point of junction between the Aleutian Trench and the
Kuril Trench to Hawaii Island (Jiang et al., 2019). The formation
mechanism of the Emperor Seamount Chain is related to hot

FIGURE 1 | The map of sites locations, schematic of ocean circulation (A) (Wang et al., 2016) and the sectional view of dissolved oxygen concentration (B) of
SO264 surface sediments from the Emperor Seamount Chain in North Pacific Ocean. The study sites are marked with red, blue, and green dots in panels (A,B).
Blue dots, red dots and green dots represent samples in zone I, II, and III, respectively. Black arrows and yellow dashed lines denote surface ocean circulation and
Subarctic Front (Aydin et al., 2004), respectively. EKC = East Kamchatka Current, KC = Kuroshio Current, KE = Kuroshio Extension, NPC = North Pacific Current,
OC = Oyashio Current. Map drawn with Ocean Data View (Schlitzer, 2002). NPIW = North Pacific Intermediate Water, NPDW = North Pacific Deep Water,
LCDW = Lower Circumpolar Deep Water.
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spot, and the tectonic plate beneath most parts of the Pacific
Ocean are constantly moving to the northwest, while hot spot
remains stationary, forming a chain slowly (Wilson, 1973). Due to
the existence of seamounts, atolls, shoals, ridges, and submerged
reefs, the study area is a hot area for geophysicists to investigate
plate tectonics and models (Moore, 1970; Suzanne and David,
2000). However, there is little research on the sedimentology,
paleoclimate, and paleoenvironment in this area.

To reveal the spatial distributions of sediment compositions,
here a suite of proxies were measured on 50 surface sediments
from the Emperor Seamount Chain, including the grain size,
major elements, rare earth elements, and CaCO3.

OCEANOGRAPHY BACKGROUND

The North Pacific Ocean is divided into the Subarctic Gyre and
the Subtropical Gyre by the Subarctic Front (Qiu, 2002; Wang
et al., 2016). The surface circulation to the south of the Subarctic
Front includes the North Pacific Current, the Kuroshio Current,
and the Kuroshio Extension. The Subarctic Gyre contains the
Alaska Gyre in the east and the Western Subarctic Gyre in
the west respectively (Ren et al., 2014). The ventilation of the
Western Subarctic Gyre flows into the subtropical sea along the
western boundary, which may be created by the invasion of
Oyashio Current. Along the west subarctic region, the southward
Oyashio Current deflects eastward at about 40◦N and enters
the open North Pacific Ocean. In the Aleutian forearc area,
the surface circulation is mainly composed by the Alaskan
Current, and the part extending northward to the Bering
Sea (Figure 1A).

There is no formation of deep water in the modern Pacific
Ocean, but the North Pacific Intermediate Water (NPIW) is
developed (Warner et al., 1996), mainly from the Sea of Okhotsk
(Talley, 1993) and the Gulf of Alaska (Van Scoy and Druffel, 1993;
You, 2003). The NPIW is mainly transported to 150◦W in the
east of about 40◦N, then to ∼20◦N in the south, and partially
returns to the west, forming a clockwise cycle. At present, the
NPIW is characterized by low salt, rich oxygen, and low density
(water depth of 300–800 m, salinity of 33.3–33.4, content of
dissolved oxygen is 50–150 µmol/kg and density is 26.6–27.0 σθ)
(Talley, 1993). There is also much debate about the formation
of deep water masses in the North Pacific Ocean. The water
mass with a depth of more than 3,500 m is mainly transported
northward by the lower circumpolar deep water (LCDW), which
is characterized by higher salinity and lower silicate (Kawabe and
Fujio, 2010), and deep water in the North Pacific is developed
between NPIW and LCDW and transported southward.

The open Subarctic Pacific is mainly fed by two types of
terrestrial sediments: aeolian dust and clastic deposits carried
by ocean currents (Wang et al., 2016). Eolian dust accounts
for 90% of the open Subarctic Pacific sediments, but the
volcanic contribution increased significantly and the eolian dust
contribution decreased in the Kuril Islands and the Aleutian
Arc region (Serno et al., 2014). Up to now, we have not paid
enough attention to the geochemical composition and sediments
provenance in the Emperor Seamount Chain of North Pacific.

TABLE 1 | All samples of surface sediment information are mentioned
in this article.

Sample ID Latitude Longitude Water Area

ID (◦N) (◦E) depth (m)

SO264-8-1 33.65 174.75 2,682 E’ of Kimmei
Seamount

SO264-9-1 34.767 172.333 3,866 Koko Seamount

SO264-10-1 34.917 172.133 1,599 Koko Seamount

SO264-13-1 37.783 170.717 3,933 Ojin and Jingu
Seamount

SO264-14-2 40.833 170.9 3,739 Nintoku Seamount

SO264-15-1 41.6 170.417 3,668 E’ of Ninigi Seamount

SO264-16-1 41.567 170.417 3,570 E’ of Ninigi Seamount

SO264-18-1 41.333 170.367 1,313 Nintoku Seamount

SO264-19-1 41.533 169.917 5,304 W’ of Nintoku
Seamount

SO264-21-1 42.283 170.5 1,329 Yomei Seamount

SO264-22-1 43.8 170.767 5,709 near Soga Seamount

SO264-23-1 44.8 170.6 4,248 Suiko Seamount

SO264-25-1 44.767 170.117 1,819 Suiko Seamount

SO264-26-1 44.767 170.167 1,772 Suiko Seamount

SO264-28-1 44.85 170.05 1,935 Suiko Seamount

SO264-29-2 44.867 170.05 1,966 Suiko Seamount

SO264-30-1 44.767 170.017 1,857 Suiko Seamount

SO264-31-2 44.85 170.117 1,941 Suiko Seamount

SO264-32-1 44.983 170.4 3,203 Suiko Seamount

SO264-33-1 44.967 170.35 3,141 Suiko Seamount

SO264-34-1 45.017 170.217 2,622 Suiko Seamount

SO264-41-1 45.683 170.15 3,641 Suiko Seamount

SO264-42-1 46.167 169.167 3,024 Jimmu Seamount

SO264-43-1 46.1 169.117 3,242 Jimmu Seamount

SO264-44-1 46.25 169.333 1,892 Jimmu Seamount

SO264-45-1 46.55 169.6 2,423 Minnetonka Seamount

SO264-46-4 46.8 169.4 3,992 Minnetonka Seamount

SO264-47-1 47.067 169.35 2,644 Minnetonka Seamount

SO264-49-1 47.667 169.017 2,433 Minnetonka Seamount

SO264-50-1 47.317 169.483 2,622 Minnetonka Seamount

SO264-51-1 47.167 169.417 2,933 Minnetonka Seamount

SO264-52-1 47.117 169.15 2,754 Minnetonka Seamount

SO264-53-1 47.633 169.333 2,325 Minnetonka Seamount

SO264-54-1 47.617 169.233 2,127 Minnetonka Seamount

SO264-56-1 47.733 168.667 3,946 Minnetonka Seamount

SO264-57-1 48.833 168.467 2,355 Tenji Seamount

SO264-59-1 49.067 168.5 2,916 Tenji Seamount

SO264-60-14 49.3 168.55 5,270 Tenji Seamount

SO264-61-01 49.717 168.033 2,590 N’ of Tenji Seamount

SO264-62-01 49.717 168.3 2,378 N’ of Tenji Seamount

SO264-63-01 49.8 168.633 3,772 Tenji Seamount

SO264-64-02 49.983 168.217 3,492 S’ of Detroit Seamount

SO264-65-01 50.35 168.217 2,496 S’ of Detroit Seamount

SO264-66-01 50.25 168.283 2,747 S’ of Detroit Seamount

SO264-68-01 50.483 167.85 3,285 Detroit Seamount

SO264-69-01 50.5 167.917 3,478 Detroit Seamount

SO264-70-02 50.567 168.067 3,916 Detroit Seamount

SO264-71-01 51.083 167.7 2,394 Detroit Seamount

SO264-72-01 51.017 167.75 2,615 Detroit Seamount

SO264-73-01 50.933 167.917 3,039 Detroit Seamount
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FIGURE 2 | The distribution diagrams of parameters related to grain size of surface sediments. The triangular diagram of grain size (A), the distribution curves of grain
size-volumic content (B–D), the graph of linear correlation of end members (E), and the distribution curves of grain size-frequency of modeled end members (F).

Studies of sediments on core ODP 882A in Detroit Seamount,
which is located in the northernmost part of ESC, show that
terrestrial sediments of core ODP 882A mainly consist of ice
raft debris in the high latitude regions and Asian eolian dust
brought by westerly jet (Jiang and Liu, 2011). The environment
magnetism index recognizes that the degree of drought in the
source region of terrigenous clastic material increases obviously,
which is consistent with the change record of the aggravation of
drought in the Inner Asian and the prevalence of monsoon in
East Asia recorded by the loess in East Asia (Jiang and Liu, 2011).

MATERIALS AND METHODS

Sediments Samples
Surface multicorers (MUC) sediments were investigated, which
were collected during SO264 Expedition in 2018 (Nürnberg,
2018), and all stations information are reported in Table 1. These
cores were sampled in 1 cm slice at the onboard laboratory, and
then stored in the sample cabin at 4◦C. The sampling stations are

TABLE 2 | The grain-size modeled end members of SO264 surface sediments
from the Emperor Seamount Chain in the North Pacific Ocean.

End member Grain size (µm) Sort coefficient (σ) Skewness Peakedness

EM1 9.12 3.60 0.57 3.08

EM2 64.95 1.90 −0.18 2.81

EM3 157.67 1.59 −0.44 3.15

located along the Emperor Seamount Chain shown in Figure 1A,
between ∼167◦E–175◦E and 33.5◦N–52◦N. The water depth
ranges from 1,313 to 5,709 m, covering with intermediate water
(200–1,500 m), deep water (1,500–4,000 m) and bottom water
(>4,000 m) in the North Pacific Ocean. And all the surface
sediment samples are collected from the multicores, which has
been dated on the basis of planktic foraminiferal AMS 14C. The
dating results support that the age of surface sediments belonged
to the Holocene interval.

The surface sediments (0–1 cm) from 50 stations were
used to determine grain size, major elements, and rare earth
elements. The contents of organic carbon, total carbon (TC),
and total nitrogen (TN) of the bulk samples were analyzed. All
experiment processing and analysis tests were done at the Key
Laboratory of Marine Geology and Metallogeny, First Institute of
Oceanography, Ministry of Natural Resources, China.

Sediment Grain Size Analysis
The organic matter, carbonate fractions and biogenic silica of
all samples were removed with 5 mL H2O2 (30%), 5 mL HCl
(10%), and excessive NaOH (0.2 M), respectively. After adding
different reagents, the water bath was heated in the above three
steps for 1, 1, and 2 h, respectively. Then they were rinsed with
deionized water for three times, and the pH value of supernatant
was neutral. Grain-size measurements were conducted by laser
diffraction particle size analysis using a Malvern Mastersizer
3000. The grain-size range of measurement by the Malvern
Mastersizer 3000 is 0.01–3,500 µm, and the relative error of
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TABLE 3 | Statistical results of elemental concentrations of surface sediments in the study area.

33◦N–53◦N Minimum Maximum Mean Standard Variable 33◦N–44◦N Minimum Maximum Mean Standard Variable

elements coefficient (%) elements coefficient (%)

Al2O3 (%) 1.16 12.39 6.08 3.29 54.05 Al2O3 (%) 1.16 11.84 5.49 3.37 61.28

CaO (%) 1.47 44.72 25.77 12.63 49.02 CaO (%) 1.47 44.72 27.23 13.3 48.86

Fe2O3 (%) 0.57 6.02 2.9 1.43 49.33 Fe2O3 (%) 0.57 6.02 3 1.47 49.08

K2O (%) 0.22 2.21 0.88 0.47 53.86 K2O (%) 0.29 2.21 1.01 0.53 52.6

MgO (%) 0.54 2.98 1.49 0.67 44.79 MgO (%) 0.54 2.9 1.48 0.67 45.36

MnO (%) 0.05 0.8 0.19 0.14 72.46 MnO (%) 0.05 0.8 0.27 0.22 80.35

Na2O (%) 2.1 6.29 3.51 1.15 32.77 Na2O (%) 2.1 6.29 3.52 1.46 41.57

P2O5 (%) 0.05 0.15 0.1 0.03 27.68 P2O5 (%) 0.07 0.14 0.12 0.02 18.88

TiO2 (%) 0.06 0.58 0.3 0.14 48.17 TiO2 (%) 0.06 0.58 135.71 0.29 0.14 31.83 48.79

6PEE(ππµ) 31.03 135.71 61.1 22.43 36.7 6PEE(ππµ) 35.72 119.73 78.72 28.35 40.44

63PEE(ππµ) 25.49 119.73 51.25 19.88 38.79 63PEE(ππµ) 29.21 15.98 66.98 3.62 42.32

6HPEE(ππµ)
3PEE/HPEE

5.54 15.98 9.86 2.64 26.76 6HPEE(ππµ)
3PEE/HPEE

6.35 7.49 11.74 0.86 30.81

δEυ 3.9 7.49 5.07 0.64 12.52 δEυ 4.35 4.24 5.5 0.43 15.61

δXε 2.04 4.24 3.33 0.49 14.83 δXε 2.78 0.9 3.56 0.12 12.07

CaCO3 (%) 0.47 1.1 0.74 0.13 17.15 CaCO3 (%) 0.47 83.78 0.8 25.49 15.4

TOC (%) 0.04 83.78 47.19 25.09 53.18 TOC (%) 0.86 1.36 50.69 0.35 50.29

0.07 1.36 0.32 0.21 67.33 0.17 0.53 67.28

44◦N–49.8◦N
elements

49.8◦N–53◦N
elements

Al2O3 (%) 1.55 12.39 5.17 2.87 55.52 Al2O3 (%) 7.85 11.85 9.84 1.18 12.02

CaO (%) 2.18 44.18 29.38 11.21 38.17 CaO (%) 3.62 17.02 11.95 3.77 31.52

Fe2O3 (%) 0.78 6 2.46 1.33 54.04 Fe2O3 (%) 3.39 5.3 4.27 0.57 13.35

K2O (%) 0.22 1.85 0.71 0.42 58.96 K2O (%) 1.11 1.64 1.3 0.16 12.33

MgO (%) 0.58 2.98 1.28 0.61 47.34 MgO (%) 1.88 2.77 2.17 0.27 12.44

MnO (%) 0.06 0.49 0.16 0.1 63.17 MnO (%) 0.11 0.25 0.19 0.05 24.49

Na2O (%) 2.23 6.19 3.19 0.96 30.02 Na2O (%) 3.94 5.68 4.57 0.48 10.47

P2O5 (%) 0.05 0.15 0.09 0.03 29.79 P2O5 (%) 0.1 0.13 0.12 0.01 7.05

TiO2 (%) 0.08 0.58 0.25 0.13 50.99 TiO2 (%) 0.37 0.55 0.45 0.05 11.34

6PEE(ππµ) 31.03 94.85 53.09 16.47 31.03 6PEE(ππµ) 58.99 75.38 66.27 5.63 8.49

63PEE(ππµ) 25.49 81.34 44.21 14.51 32.83 63PEE(ππµ) 48.93 63.62 55.49 5.01 9.02

6HPEE(ππµ)
3PEE/HPEE

5.54 14.07 8.89 2.04 23.01 6HPEE(ππµ)
3PEE/HPEE

9.96 11.77 10.78 0.62 5.79

δEυ 3.9 6.21 4.9 0.54 11.12 δEυ 4.86 5.41 5.14 0.17 3.35

δXε 2.31 4.13 3.34 0.44 13.16 δXε 2.04 3.91 3.05 0.59 19.28

CaCO3 (%) 0.57 0.96 0.72 0.1 14.29 CaCO3 (%) 0.58 1.1 0.76 0.17 22.76

TOC (%) 0.04 81.73 54.36 22.35 41.11 TOC (%) 2.43 29.87 18.99 7.62 40.1

0.07 0.53 0.26 0.09 34.42 0.16 0.31 0.26 0.04 16.29

repeated measurement is less than 3%. According to Weltje
(1997) and Weltje and Prins (2003), sediments are composed
of components from different provenance or dynamic processes,
and different end members (EM) can be separated by multi-
peak morphology of grain size data. Therefore, the end-member
analysis model is proposed to distinguish different provenance
or transport mechanisms (Weltje, 1997; Weltje and Prins, 2003).
Paterson and Heslop (2015) improved the analysis model of EM
based on MATLAB (Paterson and Heslop, 2015), and we utilize
the modeling algorithm to analyze grain size end-member of
surface sediments, with using the mean EM of sediment was fitted
by Gen.Webibull function.

Total Organic Carbon, TN, and CaCO3
Analysis
About 50.00 mg of sample was weighted, freeze-dried and ground
to less than 200 mesh by agate mortar, which was directly used
for determination of the content of TC and TN. The manually
powdered samples of ∼1 g were placed in the centrifuge tube,
dissolved by HCl (1M) to remove carbonate, and then they were
dried to determine the contents of total organic carbon (TOC).
Acetailide (ACET) was used as the standard sample and GSD-
9 was used as the quality control standard reference materials
during the measurement. The contents of TOC, TC, TN were
tested by Elemental Vario EL III (Bai et al., 2013).
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FIGURE 3 | The scatter plots between CaCO3 and water depth (A) and between CaO and CaCO3 (B) and between CaO and Al2O3 (C).

The content of CaCO3 is calculated according to the following
formula:

CaCO3 = (TC–TOC)× 8.33

Major and Minor Elements
About 50.00 mg of powdered sample was placed in the centrifuge
tube. And high-purity HNO3, HF and concentrated HCl were
used to completely digest sediments. Major elements (Al2O3,
Fe2O3, K2O, MgO, MnO, P2O5, CaO, and TiO2) were analyzed
on Thermal iCAP 6300 ICP-OES. Rare earth elements were
analyzed on a Thermal series II ICP-MS. GSD-9, duplicate
samples and blank samples were used for quality control during
the measurement. The analytical results of blank samples were all
below the detection limit. The results show that relative standard
deviation of major elements is less than 2.2%, and that of rare
earth elements is less than 5.1%.

RESULTS

The Grain-Size Distribution
The grain size and sorting coefficient of sediments in the study
area range from 7.74 to 192.71 µm and 0.64 to 2.61, with an
average value of 42.91 µm and 1.66, respectively. The frequency
distribution curves of sediments grain size have different modes
(Figures 2B–D), and these curves show the left trailing of some
stations, indicating that they are affected by various factors.
According to distinct features of grain size-related parameters,
including the sediment types and grain size characteristics,
the study area was divided into three areas: Zone I (33◦N–
44◦N), Zone II (44◦N–49.8◦N), and Zone III (49.8◦N–53◦N)
(Figure 2A). Sediments in Zone I and in Zone III are dominated
by clayey silt with higher value of sorting coefficient (>1.66).
The grain size-frequency distribution curves are characterized by
usually double peaks, which are concentrated between 5 and 8
µm and 140–150 µm in Zone I, respectively (Figure 2B). This
indicates that the sediments may have different provenance or
poor sorting coefficient. In zone III, the curves are dominated
by single peaks, with the peak value between 7 and 64 µm
(Figure 2D). In Zone II (44◦N–49.8◦N), the sediments are mainly
composed of sand and silty sand, with lower sorting coefficient.

The stations with grain size of less than 42.91 µm are mainly
located in this zone, and curves consist of single and double
peaks. Most of curves are single peaks, and vary between 120
and 170 µm, indicating that the sediment has a single provenance
or is well sorted.

The calculation results of grain size data shows that when
the end-member number is 1–6, the R2 is 0.6517, 0.9485,
0.9875, 0.9925, 0.9960, and 0.9979 (Figure 2E), respectively.
From the point of view of the degree of data fitting, three end-
member numbers are selected to analyze the grain size in this
paper because it can well represent the overall characteristics
of the grain size. End-member analysis of sediment grain-size
distribution has an optimal model with three EM, all of which
are single peaks and close to Gaussian distribution (Figure 2F
and Table 2). These peaks appear at 2.54–17.1, 48.40–96.75, and
136.85–230.1 µm, with mean grain size of 9.12 µm, 64.95 µm
and 157.67 µm, respectively. The abundance of EM is 0–100, 0–
75.33, and 0–100%, with average abundances of 37.85, 24.73, and
37.42% respectively.

Contents of CaCO3 and TOC
The content of calcium carbonate in surface sediments in the
study area ranges between 0.04 and 83.78%, with a mean
value of about ∼47.19% (Table 3). The calcium carbonate
content in marine sediments is mainly affected by production,
dissolution and dilution effect. Generally, the content of CaCO3
is less than 2% at stations with water depth of more than
4,000 m (Figure 3A). According to Farrell and Warren (1989),
10% calcium carbonate in the Pacific Ocean is defined as
the carbonate compensation depth (Farrell and Warren, 1989).
Therefore, the calcium carbonate content in this area indicates
that the water depth of 4,000 m is the carbonate compensation
depth of this area. There is no significant relationship between
the content of CaCO3 and water depth of above 4,000 m.
At similar water depth to the north of 49.8◦N, the content
of CaCO3 is obviously lower than that to the south of
49.8◦N in the study area. In the range of 33◦N–49.8◦N,
the content of CaCO3 in most stations is more than 30%.
The mean content of CaCO3 in the zone of 33◦N–44◦N is
about 50.69%, and which decreases gradually from south to
north on the whole.
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FIGURE 4 | Spatial variations in the contents of major elements in the study
area. The dark black vertical lines indicate stations with water depth greater
than 4,000 m. The spatial variation of water depth (A), spatial variation in the
content of CaCO3 (B), spatial variation in the content of TOC (C), spatial
variation in the content of TOC/TN (D), spatial variation in the content of Al2O3

(E), spatial variation in the content of TiO2 (F), spatial variation in the content
of CaO (G), spatial variation in the content of MnO (H) and spatial variation in
the content of Fe2O3 (I).

The content of TOC in sediments varies between 0.07 and
1.36%, averaging about 0.32% (Table 3). In general, the stations
with higher contents of TOC mainly are located between 33◦N–
44◦N (Figure 4). The correlation coefficient between TOC and
TN is insignificant (R = 0.48). The ratio of TOC/TN varies
between 2.45 and 24.0, with a mean value of 7.68. Besides the
supply from surface primary productivity, the content of organic
matter is also affected by aerobic respiration and denitrification
(Wang et al., 2018). The ratio of TOC/TN of terrestrial organic
matter is generally greater than 15, as well as between 5 and 7 for
marine organic matter (Fry and Sherr, 1984; Meyers, 1997). We
noted that the ratio of TOC/TN of 6 stations is more than 12,
although the study area is far from land, indicating a potential
supply of terrestrial organic matter to the study area, or that
nitrogen loss caused by early diagenesis, leading to an increase
of TOC/TN ratio.

Major Elements
The content of CaO in surface sediments is dominant with a
range of 1.47–44.72% and a mean value of 25.77% (Table 3).
There is a strong positive correlation between CaO and CaCO3
on the whole (R = 0.99) (Figure 3B), thus mainly reflects the
contribution of biogenic materials. Within the latitudinal range of
33◦N–44◦N, 44◦N–49.8◦N, and 49.8◦N–53◦N, the mean content
of CaO is 27.23, 29.38 and 11.95%, respectively. The lower
values mainly appears between around 44◦N and 49.8◦N, and the
highest value is found around 33.65◦N (Figure 3).

The content of Al2O3 ranges between 1.16 and 12.39% with
an average value of 6.08% (Table 3). As a whole the variation of
Al2O3 with latitude is opposite to that of CaO, the high value
of Al2O3 in the northern region of 49.8◦N and deeper than
4,000 m. The mean content of Fe2O3, K2O, MgO and TiO2
is 2.95, 0.89, 1.51, and 0.30%, respectively, which is similar to
the spatial distribution pattern of Al2O3. Correlation analysis
shows that there are significant positive correlations among Al-
Fe, Al-K, Al-Mg and Al-Ti, with correlation coefficients of 0.93,
0.93, 0.98, and 0.97, respectively (Figure 6). There is positive
correlations between Al2O3–MnO and Al2O3–P2O5, and the
correlation coefficient is 0.65 and 0.82, respectively (Figure 6).

Rare Earth Elements
The content of rare earth elements (6REE) of surface sediments
varies between∼31 and 136 µg/g, with a mean value of∼61 µg/g,
and the coefficient of variation is 36.70% (Table 3), indicating that
there are significant differences in content of different stations.
The contents of light rare earth elements (6LREE: La, Ce, Pr,
Nd, Sm, and Eu) and heavy rare earth elements (6HREE: Gd,
Tb, Td, Dy, Ho, Er, Tm, Yb, and Lu) range between 25.49–119.73
and 5.54–15.98 µg/g, with a mean value of 51.25 µg/g and 9.86
µg/g, respectively. LREE/HREE ranges from 4.60 to 7.50, with an
average value of 5.20. There is a significant positive correlation
between rare elements with correlation coefficient of more than
0.98. Also significant positive correlation is observed between
Al2O3 and 6REE (R = 0.65). Overall, the patterns of 6REE,
6LREE, and 6HREE are similar along the latitudinal zone, with
higher values at around 44◦N and 49.8◦N (Figure 7).
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FIGURE 5 | The scatter plots between grain size and contents of major elements. The correlation between water depth and grain size (R = −0.74, A), the correlation
between Al2O3 and grain size (R = −0.71, B), the correlation between MnO and grain size (R = −0.67, C), the correlation between TiO2 and grain size (R = −0.69,
D), the correlation between TOC and grain size (R = 0.15, E) and the correlation between 6REE and grain size (R = −0.79, F).

FIGURE 6 | The scatter plots between Al2O3 and other elements. The correlation between CaCO3 and Al2O3 (R = −0.99, A), the correlation between Fe2O3 and
Al2O3 (R = 0.93, B), the correlation between K2O and Al2O3 (R = 0.93, C), the correlation between TiO2 and Al2O3 (R = 0.97, D), the correlation between MnO and
Al2O3 (R = 0.65, E), the correlation between MgO and Al2O3 (R = 0.98, F), the correlation between P2O5 and Al2O3 (R = 0.82, G) and the correlation between
6REE and Al2O3 (R = 0.65, H).

We used the Post-Archean Average Shale (PAAS) to normalize
the rare earth elements in the study area as shown in Figure 8.
The distribution patterns of curves show obvious characteristics
of enrichment of HREE. The analysis shows that both Ce and

Eu range between 0.47–1.10 and 2.04–4.24, with average values
of 0.74 and 3.33, respectively. Although the contents of 6REE
at different stations in the study area are quite variable, the
distribution patterns of REE in surface sediments are roughly
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FIGURE 7 | Spatial trends of rare earth elements and related proxies. The
spatial variation of water depth (A), spatial variation in the content of 6REE
(B), spatial variation in the content of 6LREE (C), spatial variation in the
content of 6HREE (D), spatial variation of δCe (E) and spatial variation
of δEu (F).

identical, and the sediments totally appear Ce negative anomaly
and Eu positive anomaly (Figure 7).

DISCUSSION

Sediment Dynamics in the Emperor
Seamount Chain
The grain size of sediments is affected by mineral composition,
process of weathering transport and sedimentary dynamic
conditions, and the grain size and morphology of sediments
in different regions are obviously different. Negative correlation
between water depth and grain size (R = −0.74, Figure 5A) in
the study area suggests that the deeper the water depth is, the
finer the grain size of sediments is. In order to further reveal the
relationship between hydrodynamic condition and water depth,

FIGURE 8 | Comparisons of PAAS-normalized rare earth elements patterns of
surface sediments of the Emperor Seamount Chain, the content of REE of
pelagic clay (Kato et al., 2011), MORB (Klein, 2003), UCC (Taylor and
Mclennan, 1995), and seawater (Zhang and Nozaki, 1998).

we calculated the mean grain size of the sortable silt, a proxy for
deep current intensity (Mccave et al., 1995). Mean grain size of
sortable silt shows strong positive correlation with the contents
of sortable silt in the study area, suggesting that it can be used to
indicate the relative change of bottom current strength (Mccave
et al., 2020). As shown in Figure 9, there is a negative correlation
between grain size of sortable silt and water depth (R = −0.73),
and grain size of sortable silt increases significantly, indicating
strong hydrodynamic conditions. Modern observations have
shown that there are strong hydrodynamic conditions at the
water depth of ∼2,000 m in the study area (Ueno, 2003), and the
results of grain size further confirmed the observation results of
deep flow field. It can be seen from Figures 5A, 9 that the range
of water depth in different zones is discrepant, the water depth
of all sediment collected in zone II is no deeper than 4,000 m.
Therefore, the water depth could affect the geochemical proxies
variation in the study area. And we only discuss the relationship
between the overall water depth and the grain size and the mean
grain size of the sortable silt due to the lack of samples in different
water depth of discussion section, such as the lack of samples in
the 1,500–3,000 m of zone I.

Also, we conducted the sediment grain size end-member
simulations using MATLAB (Paterson and Heslop, 2015).
According to the grain size analysis of simulated EM, there
are three EM with mean grain size of 9.12 µm (EM1),
64.95 µm (EM2), and 157.67 µm (EM3), representing fine silt,
fine sand and medium sand, respectively. Furthermore, using
the same simulation method of EM analysis, we compared
our data with the results of the SO202 Expedition from the
open subarctic Pacific Ocean (Serno et al., 2014), and found
that mean grain size was about 5.33 µm. This indicates
that there are great differences in hydrodynamic conditions
between seamounts and deep plain of the open subarctic Pacific
Ocean. It has previously been observed that vortex is easily
to occur around seamount under the combined influence of
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FIGURE 9 | The correlation plot between grain size of sortable silt and water
depth.

tide and topography (Oka and Niwa, 2013), and hydrodynamic
condition is significantly enhanced, causing the sediment being
severely winnowed.

The higher contents of EM1 mainly appear at stations of
33◦N–44◦N and deeper than 4,000 m (Figure 10), which may
represent the input of terrestrial and volcanic sources by wind,
and also correspond to the westerly path of the modern Northern
Hemisphere. In this context, it is reasonable to speculate that
EM1 mainly reflects the contribution of eolian dust, including
dust of Central Asia and volcanic materials by wind-transported.
The grain sizes of EM2 and EM3 are coarser and cannot be
transported by wind over long distances, so they cannot be
explained by dust input. The content of EM3 decreases to the
north of 49.8◦N and increases to the south of 49.8◦N, which
may reflect that sediments in the study area are reworked after
deposition by strong hydrodynamic conditions.

As shown in Figure 5A and end member analysis, coarser
sediment grain size can be seen in Zone II, relative to Zone I and
III, we argue that this is mainly related to strong mid-depth and
deep-depth circulation in Zone II as mentioned above. And the
mean grain size of sortable silt (Figure 9), which shows higher
SS values, corroborating our interference. Some coarser sediment
grain size in zone II at the water depth of 3,000–4,000 m in
comparison with those of zone I and III also can be observed in
Figure 9, which may be caused by additional factors, such as the
input of volcanic materials, proximal erosion of seamount, etc.

There is significant relationship between composition of
sediment and grain size, which is especially obvious in the coastal
sediments (Zhao et al., 2002; Gao et al., 2003; Jiang et al., 2008;
Miao et al., 2008). Through the correlation analysis, we find the
grain size in the study area is negatively correlated with Al2O3
(R = −0.71, Figure 5B) and TiO2 (R = −0.69, Figure 5D),

indicating that the finer the grain size is, the higher the contents
of Al2O3 and TiO2 are. Rare earth elements are negatively
correlated with grain size (R = −0.79, Figure 5F), arguing
that rare earth elements are mainly enriches in fine-grained
sediments and depleted in coarse-grained sediments. There is no
significant correlation between grain size and MnO and TOC
(Figures 5C,E), and the coefficient of variation is higher, reaching
67.33 and 72.46%, respectively, which demonstrates that the grain
size is not the main factor controlling the composition and
distribution of MnO and TOC in surface sediments.

Negative Ce Anomaly
The δCe of surface sediments in the study area ranges from
0.5 to 1.1, with a significant negative Ce anomaly. The factors
causing Ce anomaly are very complex, involving sedimentary
environment, diagenesis, content of oxygen of bottom water and
other factors (Pattan et al., 2005). Therefore, the interpretation
and application of index of Ce anomaly must be careful. REE
analysis of different types of sediments in the Indian Ocean
reveals that there are positive Ce anomaly in siliceous ooze
and negative Ce anomaly in calcareous sediments (Nath et al.,
1992). The rare earth elements in different types of sediments
in the open Pacific Ocean showed that there is clear negative Ce
anomaly in sediments enrich in calcareous ooze. Toyoda et al.
(1990) suggested that the negative Ce anomaly in calcareous
ooze mainly is related to the enrichment of phosphorus. No Ce
anomaly was observed in the bulk sediments mainly composed of
silicate (Zou et al., 2010; Zhu et al., 2012). The analysis of leaching
experiment found that the positive Ce anomaly mainly occurred
in Fe-Mn phase of sediments (Toyoda and Masuda, 1991), which
indicated that the enrichment of Ce was closely related to Fe-Mn
oxide. In general, it is believed that Ce is easily adsorbed on the
surface of Fe-Mn oxide and subsequently result in Ce enrichment
in Fe-Mn oxides. Under anoxic condition, Ce can be removed
from the Fe-Mn oxides due to the desorption along with the
dissolution of particulate Fe-Mn oxides, leading to negative Ce
anomaly in sediments (Tachikawa et al., 1999).

Our REE data shows that there is strong positive correlation
between CaCO3 and δCe (R = −0.90), which suggests that
higher the content of CaCO3, the greater the depletion of Ce
(Figure11A). The pattern of negative Ce anomaly is consistent
with distribution pattern of REE in seawater (Figure 8),
suggesting that the negative Ce anomaly in sediments in the study
area mainly inherits the signal from seawater. No negative Ce
anomaly is observed at the depth of more than 4,000 m, which
proves that the contribution of calcareous materials decreases
significantly and is mainly composed of terrigenous materials.

As mentioned above, the change of oxidation-reduction
in sediments also has potential effects on δCe. The Mn/Fe
ratio could be used to indicate the sedimentary redox
condition changes. The main reason is that both these two
elements have contrasting geochemical behaviors under changing
redox conditions. The lower correlation coefficient between
bulk sedimentary Fe2O3 and MnO (R = 0.65, Figure 11C)
further corroborates this inference. The correlation analysis of
MnO/Fe2O3 and δCe reveals that there is no obvious positive
correlation (R = −0.10) (Figure 11B). Hence, we argue that the
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FIGURE 10 | The changing trend graph of content of three modeled grain-size end members. The spatial variation in the content of EM1 (A), spatial variation in the
content of EM2 (B) and spatial variation in the content of EM3 (C).

FIGURE 11 | The scatter plots between CaCO3 and δCe (A) and between MnO/Fe2O3 ratio of Fe-Mn phase and δCe of bulk sediments (B) and between Fe2O3 and
MnO (C).

oxidation-reduction changes in surface sediments in the study
area have no distinct effects on δCe.

Provenance of Sediments
The study area is far away from surrounding continents, therefore
lots of terrigenous materials deposited in the open northwest
Pacific Ocean mainly are delivered by eolian dust, volcanic
materials, ice raft debris, and debris carried by ocean currents.
The eolian dust mainly comes from Central Asia, and the
volcanism materials are mainly sourced from the surrounding
island arcs, including the Kuril Islands, the Aleutian Islands,
the Kamchatka Peninsula, and the volcanic arc of Alaska and
Japan. The clastic components transported by sea ice and ocean

currents may also have potential contributions to the sediments
in the study area.

In general, the provenance and composition of surface
sediments are closely related to the characteristics of parent rocks.
The large ion lithophile elements such as Al, Fe, Ti, K, and Mg are
rock forming elements, and rare earth elements are also enriched
in silicate minerals. These elements are mainly concentrated
in the upper crust with good symbiotic relationships, similar
geochemical behavior and active geochemical properties (Wang,
2014), and as shown in Figure 6, the correlation analysis shows
that there is strong positive correlation between Al2O3 and
Fe2O3, TiO2, MgO, K2O, and REE (R = 0.93, 0.97, 0.98, and
0.93), respectively, which suggests that sediments in the study
area contribute significantly to terrigenous detritus.
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FIGURE 12 | Discrimination plot of the nature of parental rock of sediment provenance (A) and the scatter plot of (LREE/REE)N and (HREE/REE)N (B), east Asian
dust sources and volcanic sources refer to Serno et al. (2014).

There are multiple sources for Ca, such as aeolian dust,
volcanic and biogenic contributions in bulk sediments. The
content of CaCO3 in the surface sediments of study area is about
47.2%, which is negatively correlated with the representative
element Al (R = −0.99, Figure 6A) of terrigenous detritus,
indicating that it is mainly contributed by biogenic material. As
shown in Figure 3B, there is strong positive correlation between
CaO and CaCO3 (R = 0.99, Figure 3B), indicating potential
biogenic input. Also a strong negative correlation (R = −0.98,
Figure 3C) can be observed between CaO and Al2O3, a lithogenic
element, indicating little contributions of detrital materials. In
terms of spatial distribution, the content of CaCO3 is less than
2% at water depth of deeper than 4,000 m, and with similar
water depth, the content of CaCO3 in sediments to the north
of 49.8◦N is significantly lower than that to the south of 49.8◦N.
This implies that the conditions to the south of 49.8◦N are more
conducive to the preservation of calcareous organisms.

The sources of P2O5 in sediments are various, mainly
consisting of rivers, atmospheric deposition and volcanic
activities (Paytan and McLaughlin, 2007). Studies over the past
years have suggested that the contribution of volcanic materials
to phosphorus is much higher than that of input of atmospheric
precipitation (Wang, 2014). Meanwhile, phosphorus from
seawater is also absorbed by organisms in seawater and related to
biogenic carbonate (Wang and Chen, 2011). There is a positive
correlation between P2O5 and Al2O3 (R = 0.64, Figure 6G),
but lower than the correlation between Fe2O3 and TiO2 and
Al2O3, while the negative correlation between CaCO3 and P2O5
indicates that the contribution of biogenic phosphorus may be
small, mainly clastic phosphorus.

The content of MnO in sediments is affected by both redox
conditions and terrestrial input. Correlation analysis of MnO and
Al2O3 shows positive correlation (R = 0.67, Figure 6E), which
indicates that MnO has significant terrestrial contributions in
surface sediments of study area. There is also a significant positive
correlation between MnO and water depth (R = 0.83), and the
lower content of stations is mainly located in which is affected by

the NPIW. Modern observations have shown that the dissolved
oxygen at this depth is low (Figure 1B), and therefore a part of
manganese oxide may be dissolved due to lower oxygenation.

In the study area, Eu generally has significant positive anomaly
with range of 1.5–4, confirming that there are significant volcanic
input. The clastic surface sediments near the Emperor Seamount
Chain is characterized by sediment with more radiogenic εNd
values (averaging −4.4 ± 4.3) that reflect inputs from volcanic
ash (Jones et al., 2000). The content of smectite at stations near
the Emperor Seamount Chain increased significantly, indicating
large input of volcanic materials (Wang et al., 2016). Positive
Eu anomaly occurred not only in the open Northwest Pacific
Ocean, but also in the Sea of Okhotsk and the Bering Sea
(Wang et al., 2016; Zhu et al., 2019). Therefore volcanic debris
makes a significant contribution for marine sediments in the
northwestern Pacific Ocean and its marginal seas.

The geochemical behavior of major elements can be used
to trace the characteristics of parent rocks of the sediment
provenance, which has been widely used in the study of
determined provenance signatures (Zhu et al., 2015, 2019).
In this paper, we employ the sediments source discriminant
function proposed by Roser and Korsch (1988) to identify the
characteristics of provenance (Figure 12A) (Roser and Korsch,
1988). The formulation is as follows, and DF1 and DF2 mainly
represent the component of felsic igneous rock source and mafic
igneous rock source, respectively:

DF1 = 30.638w(TiO2)/w(Al2O3)− 12.541w(Fe2O3)/w(Al2O3)

+7.329w(MgO)/w(Al2O3)+ 12.031w(Na2O)/w(Al2O3)

+35.402w(K2O)/w(Al2O3)− 6.382

DF2 = 56.500w(TiO2)/w(Al2O3)− 10.879w(TFe2O3)/

w(Al2O3)+ 30.875w(MgO)/w(Al2O3) − 5.404w(Na2O)/

w(Al2O3)+ 11.112w(K2O)/w(Al2O3)− 3.89
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The results suggest that the clastic materials in the study area
are mainly volcanic materials and small amount of quartzose
sediments, while the magma composition is mainly felsic magma,
which is consistent with the results based on positive Eu anomaly.
On the other hand, rare earth elements have been also widely
used as proxies for tracing sediment provenance, especially
in the open North Pacific Ocean, where rare earth elements
are considered as an effective indicator for tracing changes of
eolian dust (Serno et al., 2014). Serno et al. (2014) confirmed
the effectiveness of rare earth elements in tracing the dust
contribution in the Subarctic Pacific Ocean based on the three
independent indexes of 4He, 230Thxs and rare earth elements. The
scatter plot of (LREE/REE)N and (HREE/REE)N (Figure 12B)
shows that the composition of the surface sediments of the
Emperor Seamount Chain falls into the range of two EM: volcanic
and terrigenous dust, which can be regarded as a mixture of two
EM. Our data further reveals that the eolian dust contribution
is higher between 33◦N and 44◦N, while the volcanic materials
contribution is relatively higher between 44◦N and 49.8◦N, as
shown in Figure 12B.

IMPLICATIONS

At present, the main challenge in the study of paleoclimate in the
Subarctic Pacific is to establish a reliable and accurate age model,
which is mainly due to the lack of calcareous biogenic shells
in relation with dissolution in the sediments. Our data shows
that the depth of carbonate compensation is ∼4,000 m in the
northwestern Pacific Ocean, and the content of CaCO3 increases
significantly in the sea area south of 49.8◦N. These information
provides a useful reference for sampling implementation in the
subarctic open Pacific Ocean.

For one thing, understanding the evolution of climate and
desertification in the Asian interior and verifying the hypothesis
of eolian dust and iron fertilization have been a matter of debate
in paleoceanography and paleoclimate. The Emperor Seamount
Chain is far away from the land, and it receives continuous
deposition of large amount of eolian dust, which is a key
area for reconstructing the climate and environment of Asian
interior. Our research discovered that the current contribution
of eolian dust to Zone I is relative higher, consistent with the
present pathway of the northern westerly. For another thing,
significant input of volcanic material is also prevalent in the
study area. Effectively discriminating the sources from eolian dust
and volcanic detrital is crucial for above research. Here, we find
that some parameters related to rare earth elements are reliable
proxies for distinguishing eolian dust and volcanic materials,
which provides a useful tool for tracing environment and climate
changes in the Asian interior.

CONCLUSION

In this study, we investigate the compositions and spatial
distribution of surface sediments along the Emperor Seamount
Chain with a suite of proxies, including the grain size, organic

matter, CaCO3, major and rare earth elements. The main findings
can be drawn as follows:

The sediment composition varies with latitude and there
are significant differences in the types and composition of
sediments between 33◦N–44◦N (Zone I), 44◦N–49.8◦N (Zone
II), and 49.8◦N–53◦N (Zone III) in study area. Sediments are
dominated by clayey silt in Zone I and Zone III and mainly
consist of sand and silty sand in Zone II. The mean grain size
of sortable silt shows that the hydrodynamic condition in sea
mountain area is significantly stronger than that of the abyssal
plain, especially at the water depth of 1,000–2,500 m in study
area. The sediments in the study area mainly include three
components: terrestrial, volcanic and biogenic materials. There
are evident positive correlation between Al2O3 and Fe2O3, TiO2,
MgO, K2O, MnO, and REE, indicating that sediments in the
study area have significant contribution of terrigenous debris.
Obvious negative correlations between the content of CaCO3
and Al2O3 and positive Eu anomaly indicate contribution of
biogenic and volcanic materials, respectively. The index of rare
earth elements further shows that the contribution of eolian
dust is higher between 33◦N and 44◦N, while the contribution
of volcanic materials is higher between 44◦N and 49.8◦N. The
relative contributions of terrestrial, biogenic and volcanic sources
vary with latitude and water depth.

There are visible negative Ce anomalies in surface sediments
of the study area, which mainly occur in areas where calcareous
ooze develops. The distribution pattern of negative Ce anomaly
is the same as that of REE in seawater, and has weak
negative correlation with Mn/Fe. Therefore, we conclude that the
negative Ce anomaly in the study area mainly inherits signal of
seawater, and redox change of sediments has weak influence on
negative Ce anomaly.
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Response of Mangrove Development
to Air Temperature Variation Over the
Past 3000Years in Qinzhou Bay,
Tropical China
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Mangroves, a blue carbon ecosystem between land and ocean in the (sub)tropics, are
sensitive to changes in climate and the sea level. It is imperative to reconstruct the historical
dynamics of their development to predict the fate of mangrove ecosystems in the
backdrop of rapid global changes. This study analyzes records of the sources of
organic matter from sediment core Q43 of Qinzhou Bay in tropical China by using the
endmember mixing model based on stable organic carbon isotopes and C/N ratio.
Mangrove-derived organic matter (MOM) is regarded as a reliable indicator for
reconstructing the historical development of mangroves. The variations in MOM in
Qinzhou Bay over the past ∼3,000 cal yr BP indicate that mangrove forests underwent
two periods of flourishment: ∼2,200–1,750 cal yr BP and ∼1,370–600 cal yr BP, as well as
three periods of deterioration: ∼3,000–2,200 cal yr BP, ∼1,750–1,370 cal yr BP, and
∼600–0 cal yr BP. Of factors that might have been influential, changes in the relative
sea level and the regional hydrological environment (e.g., seawater temperature, salinity,
and hydrodynamic conditions) did not appear to have notable effects on mangrove
flourishing/degradation. However, climate change, especially the variation in air
temperature, formed the primary factor controlling mangrove development. The stages
of mangrove flourishing/deterioration corresponded to the warm/cold periods of
the climate, respectively. Noteworthy is that the rapid rise in air temperature during the
Anthropocene warm period should have promoted mangrove development, but
the increasing intensity of human activity has reversed this tendency leading to the
degradation of mangroves.

Keywords: organic matter source, mangrove-derived organic matter, mangrove development, air temperature,
anthropogenic activity, late Holocene

INTRODUCTION

Mangroves inhabit intertidal zones in tropical and subtropical regions, and control exchanges of
materials at the interfaces of the land, marine, and atmosphere ecosystems (Woodroffe et al., 2016;
Hatje et al., 2020). They provide multiple ecosystem services, such as mitigating coastal erosion from
waves and wind, guaranteeing fishery resources and food security for coastal inhabitants, and aiding
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in the protection of adjacent seagrass and coral reef ecosystems
(Duke et al., 2007; Nellemann et al., 2009; Lee et al., 2014; Himes-
Cornell et al., 2018; Hatje et al., 2020). More importantly,
mangrove forests are efficient producers, capturers, and sinks
of carbon (Jennerjahn and Ittekot, 2002; Duarte et al., 2005;
Alongi, 2014; Jennerjahn, 2021). Hence, they play a
disproportionately important role in global carbon cycling,
and are key blue carbon sinks that can contribute to climate
change mitigation (Duke et al., 2007; Duarte et al., 2013; Duarte
and Arabia, 2017; Alongi, 2020; Sasmito et al., 2020).

However, mangrove forests are sensitive and vulnerable to
environmental changes, e.g., climate change and fluctuations in
the sea level (Ellison and Stoddart, 1991; Alongi, 2008; Ellison,
2008; Jennerjahn, 2012; Ellison, 2014; Lovelock et al., 2015;
Woodroffe et al., 2016). Mangroves can migrate to landward/
seaward regions with the rise/fall in the relative sea level (RSL)
(Ellison and Stoddart, 1991; Woodroffe et al., 2016). A rapid
change in the RSL can result in the decline or even the
disappearance of mangrove habitats. Low-intensity rainfall can
also lead to mangrove degradation through reductions in
freshwater runoff, fluvial sediment, and nutrient inputs
(Alongi, 2008; Gilman et al., 2008). High-frequency winter

cooling events induced by variations in the intensity of the
monsoon can also prevent mangrove development (Meng
et al., 2016a). Likewise, high-temperature events can result in
hypersaline conditions with high evaporation rates (Gilman et al.,
2008), which lead to mangrove degradation. In addition,
anthropogenic threats, such as pollution, overexploitation, and
the conversion of patterns of land use (Bao et al., 2013; Friess
et al., 2019; Veettil et al., 2019), have vastly impacted mangrove
dynamics, especially since the Anthropocene.

The world at present is characterized by a rapid sea level rise,
rapid warming, frequent extreme climate events, and an
increasing population. Therefore, to predict the fate of
mangrove ecosystems under this rapidly changing
environment, it is imperative to understand how they have
changed or disappeared in the past (Valiela et al., 2001), by
reconstructing historical mangrove dynamics through useful
indicators recorded in sediments (Gonneea et al., 2004;
Ellison, 2008; França et al., 2013; Cohen et al., 2016; Meng
et al., 2017; Xia et al., 2019; Vaughn et al., 2021).

Tropical or subtropical Asia, a region that features a unique
climate system (Asian monsoon) and a long history of human
civilization, holds most of the world’s mangrove forests along its

FIGURE 1 | Locations of the (A) sediment core Q43 in Qinzhou Bay, (B) northern Gulf of Tonkin, (C) tropical China. The referenced sites contain HXL in Qinzhou Bay
(Xia et al., 2019), YLW02 in Yingluo Bay (Meng et al., 2017), and Dongge Cave in SW China (Wang et al., 2005). GTSC: Gulf of Tonkin Surface Current (Liu et al., 2016).
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winding and long coastline (Giri et al., 2011). Hence, it is an ideal
selection to study the mangrove development and its responses to
natural and anthropogenic factors. In this study, we use records of
organic matter (OM) sources from sediment core Q43 of
Qinzhou Bay (Figure 1) in tropical China to reconstruct the
history of mangrove development over the past 3,000 years. The
aim is to answer the question of howmangrove forests respond to
changes in the sea level, climate (air temperature and rainfall),
hydrological environment (seawater temperature, salinity, and
hydrodynamic conditions), and anthropogenic activities.

MATERIALS AND METHODS

Study Area and Sampling Site
Qinzhou Bay is located in the northern Gulf of Tonkin
(Figure 1B) in tropical China (Figure 1C), and is divided into
an inner zone (Maowei Sea) and an outer zone by a narrow
channel (Figure 1A). Two small tropical rivers, theMaoling River
and the Qin River, debouching into the Qinzhou Bay. Most of the
intertidal zone of the Maowei Sea and adjacent coasts are
occupied by mangrove forests. The Maowei Sea Mangrove
Nature Reserve was established by the local government in
2005. The mangrove forests are generally 1–4 m high and
exhibit a zonal distribution from the upper (Bruguiera
gymnorrhiza and Rhizophora stylosa), middle (Kandelia candel
and Egiceras corniculatum), and lower (Avicennia marina) tidal
flats (Li et al., 2008).

The study area is characterized by tropical monsoonal climate.
The mean annual air temperature is 22.4°C, and ranges from 0.8
to 37.4°C. The average annual rainfall is 2,150 mm, 80–85% of
which falls during the summer rainy season (April–September).
The region experiences an irregular diurnal tide with a mean tidal
range of 2.5 m (Meng and Zhang, 2014). The features of the
seawater, which are affected only by monsoonal rainfall, are
relatively stable, with a mean temperature of 23.5°C, salinity of
20–23‰, and pH of 7.6–7.8 (Fan et al., 2005). The anticlockwise
Gulf of Tonkin Surface Current (GTSC) controls the regional
hydrologic system (Liu et al., 2016).

The sediment core Q43 (108°40.49′E, 21°32.73′N), which is
150 cm long, was collected fromQinzhou Bay at a depth of 9 m in
May 2009 using a gravity piston corer (Figure 1A). The core is
located in the center of the outer zone of Qinzhou Bay, and thus
its sedimentary records best reflect the history of mangrove
development for the entire Qinzhou Bay. According to the
sedimentary features, the core can be visually divided into two
sections: the lower section (150–100 cm) is characterized by dark
yellowish-brown sandy sediments and lower water concentration,
and the upper section (150–0 cm) is mainly composed of finer
dark gray sand-silt-clay and contains many fragmentized
shells at 5–6, 56–57, and 86–88 cm. There is no clear hiatus
between the upper and lower sections. The sediment core was
sectioned by stainless steel cutters at intervals of 2 cm within
24 h of collection. All sediment subsamples were freeze-dried
for 72 h at −55°C, and were then packed in sealed polyethylene
bags and stored in a desiccator at room temperature for
subsequent analyses.

Laboratory Analyses
Shells from six horizons were selected for accelerator mass
spectrometry (AMS) 14C dating measurement at the Beta
Analyses Company in FL, United States (Table 1). The
conventional radiocarbon ages were corrected by a regional
carbon reservoir age of 10 ± 50 years (Southon et al., 2002)
and converted into calibrated calendar years by the program
Calib 7.1 with Marine 13 calibration curves (Reimer et al., 2013).
All calibrated ages were reported in years before 1950 CE (yr BP)
and in cal yr BP with a precision of 2σ.

The grain size distribution was measured by using a Malvern
Mastersizer 2000 laser particle analyzer (Malvern, Inc.,
United Kingdom), at a measurement range of 0.02–2,000 μm
and a size resolution of 0.01 φ after removing the OM and
carbonate fractions by adding 15 ml 3% H2O2 and 5 ml 10%
hydrochloric acid (HCl), respectively. All sample preparation and
measurements were completed at the Key Laboratory of Marine
Geology and Metallogeny of the First Institute of Oceanography,
China Ministry of Natural Resources.

The freeze-dried sediment samples were treated with 1 N of
HCl for 24 h at room temperature (25°C) to remove inorganic
carbon. Then, they were rinsed by ultra-pure water several times
until pH 7, and left to dry at 50°C for 72 h. Approximately
30–40 mg of homogenized dry sediments were carefully placed
in tin capsules and crimp-sealed for analysis. The contents of
stable organic carbon isotope (13Corg), total organic carbon
(TOC), and total nitrogen (TN) were determined for all
subsamples by a Delta Plus XP mass spectrometer (Thermo
Scientific, Bremen, Germany), and by a Vario EL-III Elemental
Analyzer (Elementar, Hanau, Germany) in continuous flowmode
at the Stable Isotope Laboratory of College of Resources and
Environmental Sciences of the China Agricultural University
(Beijing). The results are reported in standard delta notation
(δ) using permitted units (‰):

δ(‰) � (Rsample − Rstandard)
Rstandard

× 1000 (1)

where δ (‰) represents the stable isotope value of organic carbon
and R is the 13C/12C ratio. The reference standard used for carbon
is the Vienna PeeDee Belemnite (VPDB) standard. The analytical
precisions of 13Corg, TOC, and TN were ±0.2‰, ±0.02 wt. %, and
±0.005 wt. %, respectively. The C/N ratio was calculated by the
atomic (molar) ratio of TOC to TN.

Endmember Mixing Models for
Discriminating Organic Matter Sources
The endmember mixing model is a classical method by which the
proportional contributions of different sources to a mixture OM
can be quantified (Dittmar et al., 2001; Gonneea et al., 2004).
Models based on δ13C and/or C/N have been widely used to
identify the sources of OM in the sediments or suspended solids
of different ecosystems, such as rivers (Liu et al., 2019; Zhang
et al., 2021), lakes (Dong et al., 2020), and ocean (Gonneea et al.,
2004; Xia et al., 2015; Meng et al., 2016b, 2017). The formulae for
the ternary mixing model based on δ13C and C/N are as follows:
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δ13Csample � [fA × δ13CA] + [fB × δ13CB] + [fC × δ13CC] (2)

C
Nsample

� [fA × C
NA

] + [fB × C
NB

] + [fC × C
NC

] (3)

fA + fB + fC � 1 (4)

where A, B, and C are the potential OM endmembers, and f
represents the percentage of contribution of each endmember.
The values of δ13C and C/N of the endmembers are discussed in
Potential Sources of Organic Matter and Their Endmember
Values. When the OM in a sample is a mixture of two
sources, it should be explained by using a binary mixing
model with δ13C:

δ13Csample � [fA × δ13CA] + [fB × δ13CB] (5)

fA + fB � 1 (6)

RESULTS

Chronological Results and Sedimentary
Rates
Calibrated radiocarbon ages at depths of 6, 27, 57, 81, 101, and
122 cm produced ages of 285, 862, 1,398, 1,731, 2,147, and
3,162 cal yr BP, respectively, and no age inversion was
observed (Table 1). Downcore ages were calculated by linear
interpolation between the dated sediment layers. Based on the
ratio of the depth intervals to the time spans, the sedimentation
rates of the core sections 0–6, 6–27, 27–57, 57–81, 81–101, and
101–149 cm were about 21.1, 36.4, 56.0, 72.1, 48.0, and
47.3 cm kyr−1, respectively (Figure 2), with a mean value of
47.12 cm kyr−1. The sedimentation rates in core Q43 are
similar to the vertical accretion of mangrove forests reported
by other researchers in tropical China (Meng et al., 2017; Xia
et al., 2019), Puerto Rico (Cohen et al., 2016), and the Amazon
Region (França et al., 2013).

Features of Grain Size, Total Organic
Carbon, Total Nitrogen, C/N Ratio, and
δ13Corg
The values of and variations in the grain size, TOC, TN, C/N ratio,
and δ13Corg are shown in Figures 3A–F. The proportions of sand,
silt, and clay in the entire core were 58.6 ± 14.9%, 24.1 ± 8.1%, and
17.3 ± 7.6%, respectively. The mean grain size (Mz) varied from 0.5
to 6.1 φ, with an average of 4.0 ± 1.6 φ. The TOC and TN contents
were 0.67± 0.27% and 0.04± 0.02%, ranging between 0.16–1.3% and
0.01–0.08%, respectively. TOC was significantly and positively
correlated with TN (TOC � 9.06 × TN + 0.25, R2 � 0.52, p <
0.01), and the short intercept implies that the impact of inorganic
nitrogen could be neglected (Goñi et al., 1998). The C/N value varied
from 9.9 to 43.0 with a mean value of 19.0 ± 7.8. The average δ13Corg

value was −24.7 ± 0.6‰, ranging from −26.0 to −23.1‰. On the
whole, the grain size and δ13Corg showed a finer trend and an
increasing tendency since ∼3,000 cal yr BP, respectively, while the
TOC, TN, and C/N collectively exhibited an abrupt change during
1,370–600 cal yr BP. Based on these vertical variations in the
sediment core, it can be divided into three sections: the upper

TABLE 1 | List of AMS 14C ages from core Q43.

Depth (cm) Material Conventional
age (yr BP)

Calibrated age range
(cal yr BP, 2σ)

Mean calibrated age
(cal yr BP)

6 Shell 660 ± 30 138–431 285
27 Shell 1,340 ± 30 729–995 862
57 Shell 1,850 ± 30 1,278–1,517 1,398
81 Shell 2,160 ± 30 1,582–1,879 1,731
101 Shell 2,500 ± 30 1,994–2,300 2,147
149 Shell 3,330 ± 30 2,933–3,331 3,162

FIGURE 2 | Plots of Depth vs. Age and Sedimentary rates from
core Q43.
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section (600–0 cal yr BP), middle section (1,370–600 cal yr BP), and
lower section (3,000–1,370 cal yr BP).

In the upper section, all of the indices were relatively stable. The
minimum grain size and the highest positive δ13Corg appeared in this
section, with mean values of −24.0 ± 0.4‰, and 5.8 ± 0.2 φ,
respectively. However, most of the indicators, especially TOC, TN,
and the C/N ratio, were abnormal in the middle section. The C/N
ratio was as high as 27.3 ± 9. In the lower section, TOC, TN, and
δ13Corg showed an increasing trend, whereas the grain size became
finer and the C/N ratio was relatively stable. Themaximum grain size
and lowest TOC content occurred in this section, withmean values of
3.4 ± 1.6 φ and 0.61 ± 0.28%, respectively.

Potential Sources of Organic Matter and
Their Endmember Values
In general, the OM stored in marine sediments originates from
autochthonous (i.e., marine production) and allochthonous
contributions (i.e., terrestrial input). However, mangrove
forests are also a significant contributor to the OM in
mangrove coasts and adjacent seas. For example, a previous
study in Qinzhou Bay reported that ∼27% of the sedimentary
OM derived from mangroves (Meng et al., 2016a). Therefore,
mangrove forests, terrestrial matter, and marine production can
be considered the potential endmembers of the sources of
sedimentary OM in Qinzhou Bay (Figure 4A).

FIGURE 3 | Variations in the (A) grain size fraction, (B) mean grain size (Mz), (C) total organic carbon (TOC) and (D) total nitrogen contents (TN), (E) C/N ratio, (F)
stable organic carbon isotope (δ13Corg), and (G) composition of organic matter (OM) source in sediment core Q43. TOM, MOM, and OOM represent terrestrial organic
matter, mangrove-derived organic matter, and oceanic organic matter, respectively.

FIGURE 4 | Scatter diagrams of δ13Corg vs. C/N for (A) endmembers of organicmatter (OM) sources and (B) core Q43 sampleswith the ternarymixingmodel. The shadow
areas in (A) represent the ranges of mangrove, terrestrial (Xia et al., 2015; Meng et al., 2016b), and oceanic endmembers (Xue et al., 2009; Xia et al., 2015; Qiu, unpublished data).
The error bars show the standard deviation of the endmember values. The pink empty circles in (B) are endmember values with the tolerance interval expanded by 25%.
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Mangrove roots and leaf litter are important contributors to
carbon stocks in mangrove sediments (Duarte et al., 2005;
Bouillon et al., 2008; Alongi, 2014). However, recent studies
have shown that the values of δ13Corg and C/N of the roots
are generally within the range of, or overlap, those of leaf litter
(Kusumaningtyas et al., 2019; Sasmito et al., 2020). Therefore, the
values of δ13Corg and C/N of mangrove leaves can be regarded as
endmember values of mangrove production. The average δ13Corg

and C/N values of the leaves of different mangrove species (n �
30) collected along the Guangxi coasts were −28.6 ± 0.9‰ and
36.4 ± 12.5 (Xia et al., 2015; Meng et al., 2016b), respectively, and
are consistent with those from Hainan Island in tropical China
(Herbeck et al., 2011). They can thus be reasonably regarded as
the endmember in this study.

Riverine inputs, especially in small tropical catchments,
contribute a large amount of terrestrial OM flux that reaches
the ocean (Moyer et al., 2013; Hernes et al., 2017). In the study
region, there are two small tropical rivers, i.e., the Maoling River
and the Qin River, debouching into the Qinzhou Bay. Thus, their
riverine sediments (n � 6) can represent the terrestrial
endmember of OM sources in this study with average values
of −24.3 ± 0.6‰ for δ13Corg and 11.9 ± 0.9 for C/N (Xia et al.,
2015; Meng et al., 2016b).

Seagrass is widely distributed in the coastal waters of Guangxi,
China (Meng and Zhang, 2014), and should be considered an
important part of marine production. According to previous
studies, seagrass collected from Guangxi coasts (n � 19) has
an average δ13Corg of −13.5 ± 0.6‰ and C/N of 27.2 ± 11.9 (Qiu,
unpublished data), while marine plankton collected from the
northern South China Sea (Xue et al., 2009; Xia et al., 2015) has an
average δ13Corg of −16.1 ± 0.8‰ and C/N of 6.5 ± 0.1. The
oceanic endmember values (δ13Corg, −14.8 ± 1.3‰; C/N, 16.8 ±
10.4) of OM sources can be reasonably determined from these
values.

Quantitative Estimation for Organic Matter
Sources
Considering the indeterminacy of endmember values and
isotopic fractionation effects in the endmember mixing model,
a tolerance interval is introduced to the model, and it can be
determined by the standard deviations and mean values of each
endmember (Dittmar et al., 2001; Gonneea et al., 2004).When the
original ternary plot was expanded by a tolerance interval of 25%,
more than 90% of the samples could be explained in terms of the
endmember mixing model (Figure 4B), which confirms the
feasibility of using this method to discriminate among the
sources of OM. Notably, samples that fell outside the strict
validity (i.e., original triangle in blue) of the model, but were
within the expanded area (in pink), should be treated with their
corresponding binary mixing model based on δ13Corg.

According to the above methods, the contributions of
terrestrial organic matter (TOM), mangrove-derived organic
matter (MOM), and oceanic organic matter (OOM) to OM
sources of sediment core Q43 were determined (Figure 3G).
TOMwas the largest OM contributor with a mean value of 68.6 ±
27.6%, followed by MOM with a mean value of 24.3 ± 19.7%, and

OOM with a mean value of 7.1 ± 9.3%. Like the other indicators,
the compositions of the OM sources can be roughly divided into
three sections: the upper section (600–0 cal yr BP), middle section
(1,370–600 cal yr BP), and lower section (3,000–1,370 cal yr BP).
The MOM occupied the largest proportion of OM in the middle
section with mean value of 48.7 ± 23.4%.

DISCUSSION

Effectiveness of Mangrove-Derived Organic
Matter for Tracing Mangrove Development
Traditionally, the pollen content of mangroves is one of the most
direct and effective proxies for tracing mangrove evaluation
(Gonneea et al., 2004; Ellison, 2008; Li et al., 2008). However,
the MOM has been used to successfully reconstruct the histories
of mangrove development at different time scales (from the
Anthropocene to the Holocene) in different regions around
the world, e.g., the western coast of peninsular India (Caratini
et al., 1994), Flamenco Lagoon in Puerto Rico (França et al.,
2013), Gulf of Tonkin in tropical China (Meng et al., 2016b), and
the Amazon estuary of northern Brazil (Cohen et al., 2016). A
recent study has shown a relatively consistent tendency of
variation and significant positive correlations (0.68–0.89, p <
0.01) between the MOM and mangrove pollen from mangrove
sediment cores in different regions (Xia et al., 2021).
Consequently, MOM is a reliable proxy for reconstructing
regional mangrove development. This index has a more
significant potential to recover high-resolution mangrove
development, owing to its easily fine-cut sampling and cheaper
cost of equipment, than pollen and biomarkers (Xia et al., 2021).

Mangrove Development Over the Past
3,000 Years
According to the variations in MOM, mangrove development in
the Qinzhou Bay since ∼3,000 cal yr BP can be detailedly divided
into five stages (Figures 2G, 5A). The MOM contributions were
higher during the periods ∼2,200–1,750 and ∼1,370–600 cal yr
BP, which indicates that the mangrove forest was flourishing.
However, MOM contributions were lower in the periods
∼3,000–2,200, ∼1,750–1,370, and ∼600–0 cal yr BP, indicating
that the forest had been deteriorating in these periods. To sum up,
mangrove forests in Qinzhou Bay underwent two periods of
flourishing and three periods of degradation over the last
∼3,000 years. Notably, the period of the greatest flourishing
was ∼1,370–600 cal yr BP, with the highest MOM content of
48.7 ± 23.4%.

Factors Affecting Mangrove Development
From the Holocene to the Anthropocene, mangrove development
(i.e., flourishing or degradation) was mainly impacted by two
aspects. One is the so-called natural agents such as the sea level,
climate (air temperature and rainfall), and the hydrological
environment (seawater temperature, salinity, hydrodynamic
conditions). Another facet is anthropogenic activities. In this
section, we analyzed the factors affecting mangrove development
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through the comparisons between changes in MOM and natural
and anthropogenic records (Figure 5). Meanwhile, a visualized
model of mangrove development in Qinzhou Bay, tropical China,
over the past 3,000 years has been provided (Figure 6).

Relative Sea Level
Mangrove habitats occur on intertidal shorelines in the tropics
and subtropics, and are sensitive to changes in the RSL, i.e., they
can migrate to landward/seaward regions with RSL rise/fall
(Ellison and Stoddart, 1991; Woodroffe et al., 2016). These

consequences primarily depend on the balance between
changes in the relative sea level and the state of the mangrove
substrate (sedimentation/erosion rate) (Ellison 2008; Soares,
2009; Cohen et al., 2016). However, rapid changes in the RSL
can upset this balance, leading to a decline in or even the
disappearance of mangrove habitats. Previous studies on
worldwide mangrove development during the entire Holocene
have shown that the landward migration and communities
succession of mangrove forests occurred from the Early to
Middle Holocene, the period in which the RSL rose quickly

FIGURE 5 |Comparisons between changes in mangrove-derived organic matter (MOM) and natural and anthropogenic records: (A–C) variations in MOM from the
Q43 (this study), YLW02 (Meng et al., 2017), and HXL (Xia et al., 2019) cores, respectively, in Guangxi coasts; (D–E) temperature anomaly in China (Hou and Fang, 2011)
and the Northern Hemispheric (Ljungqvist, 2010); (F) stalagmite δ18O records from Dongge Cave, SW China (Wang et al., 2005); (G) variation in the global sea level over
the past 3,000 cal yr BP (Kemp et al., 2018; Miller et al., 2020) (H) population changes in Guangdong Province (logarithmic (base 10) scale (Zhao and Xie, 1988;
Huang et al., 2018)); (I) Chinese dynasties and climatic stages (Zhu, 1973; Ge et al., 2014). The latter includes the Zhou Dynasty cold period (ZDCP), Qin-Han warm
period (QHWP),Wei-Jin cold period (WJCP), Sui-Tangwarm period (STWP), Song-Yuan warm period (SYWP), Ming-Qing cold period (MQCP), and Anthropocene warm
period (AWP). The stages (Stage 1–Stage 5) of mangrove development in Qinzhou Bay are divided by vertical broken lines.
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(Parkinson et al., 1994; Gilman et al., 2007; Gilman et al., 2008; Li
et al., 2012), while most mangrove forests developed in situ over
the Late Holocene with a relatively stable RSL (Urrego et al., 2013;
Cohen et al., 2016). According to the variation in sea level over the
past 3,000 cal yr BP (Kemp et al., 2018; Miller et al., 2020), the
sea level in each stage of mangrove development in Qinzhou Bay
varied from 0.004 to 0.37 mm yr−1 (Figure 5G). Compared with
the vast fluctuation in the RSL in the Early Holocene or even the
Last Glacial Period, the changes in RSL have been relatively flat
since 3,000 cal yr BP, which implies that mangroves had
sufficient capacity to adapt to these changes. Notably, in the
Late Holocene, the sea level rose rapidly in the last 200 years. In
this case, the mangrove forests still had the ability to keep pace
with the RSL rise and avoid inundation via the vertical
accumulation of sediments (Lovelock et al., 2015). A previous
study on Yingluo Bay in tropical China showed that mangroves
had not been impacted by RSL over the last 150 years (Xia et al.,
2015; Meng et al., 2017). The persistence of most worldwide
mangroves also implies an ability to cope with high rates of rises
in the RSL. Further research suggests that mangrove forests in
sites with low sedimentary supply and tidal range may be
submerged as early as 2,070 (Lovelock et al., 2015).
Consequently, the changes in RSL should not have been the
primary factor influencing mangrove development in Qinzhou
Bay over the last 3,000 cal yr BP.

Hydrological Environment
Mangrove development can be impacted by the regional hydrological
environment, such as the hydrodynamic conditions, surface seawater
temperature (SST), and salinity. Variations in hydrodynamic
conditions are mainly impacted by changes in the climate, RSL,
and terrain. However, mangrove forests have the capacity to resist
changes in hydrodynamic conditions (e.g., increased wave energy)
owing to their dense and complex aerial root systems (e.g., such as
prop roots and pneumatophores) (Duke et al., 2007). Previous studies
on the Qinzhou and Yingluo bays collectively indicate that mangrove
development was little influenced by the hydrodynamic conditions
during the Late Holocene (Meng et al., 2017; Xia et al., 2019). Thus,
this factor does not require excessive consideration in this study.

The SST is dominated by air temperature through air-sea
interactions. Similar to the air temperature, an increased SST is
beneficial for mangrove growth provided the temperature does
not exceed its thresholds (Ellison, 2008; Gilman et al., 2008).
The study area is located in Qinzhou Bay (Figure 1), and
its seawater salinity is primarily diluted by freshwater input
from the Maoling and Qin rivers. Decreased precipitation can
result in a decrease in groundwater discharge and surface
freshwater water input (Duke et al., 1998), and can cause an
increase in seawater salinity. Increased salinity is likely to
cause a conversion of upper tidal zones to hypersaline flats,
which poses a significant threat to the mangrove habitats

FIGURE 6 | Model of mangrove development in (A–F) different stages in Qinzhou Bay, tropical China, over the past 3000 years.
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(Gilman et al., 2008). On the whole, the effects of the SST and
salinity on mangrove development ultimately depend on air
temperature and rainfall, owing to the coupling relationship
between them.

Air Temperature and Rainfall
As observed in most global locations, mangroves are prone to
inhabit lower latitudes with higher temperature and precipitation
(Duke et al., 1998; Giri et al., 2011). For instance, the
same mangrove species (e.g., Rhizophora sp.) can reach up to
30 m in the Amazon region (0.7°S; Matos et al., 2020), whereas its
average height in Guangxi (∼21°N) is merely about 3 m.
Therefore, air temperature and rainfall are expected to control
mangrove development by impacting their diversity,
productivity, and area (Ellison, 2008; Gilman et al., 2008;
Friess et al., 2019).

In Guangxi Province, SW China, rainfall is controlled by the
East Asian summer monsoon (EASM), changes in which during
the Holocene can be reconstructed by high-resolution stalagmite
δ18O records from the Dongge Cave in SW China (Figures 1C,
5F; Wang et al., 2005). The negative excursion of δ18O value
indicates a general increase in the strength of the EASM and
rainfall, and vice versa. If rainfall is the main factor controlling the
development of local mangroves, sections of the negative
excursion of the δ18O value should correspond to periods of
mangroves flourishing. Our results show that stages of relatively
negative excursion of δ18O (∼2,200–1,750 and ∼1,370–600 cal yr
BP) correspond to the periods of mangrove flourishing (Stage 2
and Stage 4), while sections with positive δ18O (∼1,750–1,370 and
∼600–200 cal yr BP) correspond to the periods of mangrove
deterioration (Stage 3 and early Stage 5). However, these
corresponding relationships are not prominent, and the stages
of negative excursion of δ18O (∼3,000–2,200 and ∼200–0 cal yr
BP) unconventionally correspond to the periods of deterioration
of mangroves (Stage 1 and late Stage 5). Therefore, rainfall
induced by the EASM may not have been the dominant factor
in mangrove development since 3,000 cal yr BP. In other words,
mangrove development can, but only in part, be ascribed to
changes in rainfall.

Previous study has reconstructed Holocene temperature
anomaly in China (Figure 5D; Hou and Fang, 2011), and
have found that its tendency is consistent with temperature
variation in the Northern Hemisphere over the last two
millennia (Figure 5E; Ljungqvist, 2010). Based on the
reconstructed temperature changes and historical records, the
China’s climate can be roughly divided into three cold periods
and four warm periods (Figure 5I; Zhu, 1973; Ge et al., 2014).
The cold periods mainly include the Zhou Dynasty cold period
(ZDCP), Wei-Jin cold period (WJCP, i.e., Dark Ages Cold
Period), and Ming-Qing cold period (MQCP, i.e., Little Ice
Age), while the warm periods mainly contain the Qin-Han
warm period (QHWP), Sui-Tang warm period (STWP), Song-
Yuan warm period (SYWP, i.e., Medieval Warm Period), and
Anthropocene warm period (AWP). If air temperature is the
main factor controlling mangrove development, these cold/warm
climate periods ought to correspond to the stages of mangrove
deterioration/flourishing, respectively. Our results show that the

three periods of mangrove deterioration (stages 1, 3, and 5)
approximately correspond to the ZDCP, WJCP, and MQCP,
whereas the two periods of mangrove flourishing (stages 2 and
4) approximately correspond to the QHWP and STWP-SYWP,
respectively (Figure 5). Notably, the STWP is one of the warmest
period in Chinese climate history (Ge et al., 2014), which
promoted the appearances of two famous flourishing ages
(i.e., the Zhen Guan and Kai Yuan periods) in Chinese
history. Owing to the collective occurrences of the STWP and
SYWP in Stage 4 (∼1,370–600 cal yr BP), this stage featured the
greatest flourishing of mangroves since 3,000 cal yr BP,
although a transitory cold period occurred in the middle.
Overall, the variation in air temperature is undoubtedly the
dominant factor controlling mangrove development in Qinzhou
Bay over the last 3,000 cal yr BP (Figures 6A–E). Corresponding
relationships between the stages of mangrove development and
temperature periods in Qinzhou Bay (Figures 1A,B, 5C; Xia
et al., 2019) and Yingluo Bay (Figures 1B, 5B; Meng et al., 2017),
tropical China, were very similar to our results, which further
proves the controlling role of temperature in mangrove
development.

However, another problem worth discussing is that the last
warm period (AWP) corresponds to a stage of mangrove
deterioration (late Stage 5), which implies that other factors
might have influenced mangrove development.

Human Activities
Preindustrial mangrove utilization likely did not alter the
extent and habitat quality of mangrove forests to a
substantial degree, but the effects of human beings on
mangrove resources have increased in the past few centuries
and peaked in the 20th century (Friess et al., 2019). As much as
35% of the world’s mangrove areas had been lost by the 1980s
and 1990s (Valiela et al., 2001). Human threats on mangrove
dynamics include pollution, overexploitation, and conversion
to aquaculture and agriculture (Bao et al., 2013; Friess et al.,
2019; Veettil et al., 2019). In Guangxi, the population has
rapidly risen over the last two centuries, similar to that in
an adjacent province, Guangdong (Figure 5H; Zhao and Xie,
1988). With the population growth, the mangroves area
abruptly decreased from 23,904 to 9,351 ha by 1955 (Fan,
1995), of which 97.6% was converted into aquaculture ponds
(Chen et al., 2009). These realities explain the persistent
mangrove degradation in late Stage 5 (∼50 cal yr BP to
present), i.e., the rapid temperature rise should have
promoted mangroves flourishment during the AWP just as
in other warm periods in history, but this was reversed by the
increase in the intensity of human activities, especially the
expansion of aquaculture ponds (Figure 6F). Likewise,
mangrove degradation occurred at a site (HXL) located in
mangrove interior of the Qinzhou Bay during the AWP
(Figures 1A,B, 5C; Xia et al., 2019). Interestingly, the
records of core YLW02 showed that mangroves were
flourishing in Yingluo Bay during the AWP (Figures 1B,
5B; Meng et al., 2017). Yingluo Bay is located far from
industrial areas, city centers, and river basins, such that
population-related negative disturbances can be ignored
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(Xia et al., 2015). Therefore, mangrove development in
Yingluo Bay has continued to be controlled by temperature
rather than human activities since the Anthropocene.

CONCLUSION

The contributions of terrestrial organic matter, MOM, and
oceanic organic matter to OM sources of sediment core Q43
were quantified here by using endmember mixing models based
on δ13C and C/N. The MOM is considered a reliable proxy for
reconstructing regional mangrove development. The variations in
MOM in Qinzhou Bay over the past ∼3,000 cal yr BP indicate that
the mangrove forests underwent two periods of flourishing:
∼2,200–1,750 cal yr BP (Stage 2) and ∼1,370–600 cal yr BP
(Stage 4), and three periods of deterioration: ∼3,000–2,200 cal yr
BP (Stage 1), ∼1,750–1,370 cal yr BP (Stage 3), and ∼600–0 cal yr
BP (Stage 5). Of the potential factors that impact mangrove
development, the RSL changes and the regional hydrological
environment (e.g., seawater temperature, salinity, and
hydrodynamic conditions) did not have notable effects on
mangrove flourishing/degradation. However, climate change,
especially variations in the air temperature variations, was the
primary factor controlling mangrove development. The stages
of mangrove flourishing/deterioration corresponded to warm/
cold periods of the Chinese climate, respectively. Notably, the
rapid air temperature rise should have promoted mangrove
development during the AWP, just as in other warm periods in
history, but this trend was reversed by the increase in the

intensity of human activities, especially the expansion of
aquaculture ponds.
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Multi—Proxy Reconstructions of
Climate Change and Human Impacts
Over the Past 7000 Years From an
Archive of Continental Shelf
Sediments off Eastern Hainan Island,
China
Chao Huang1,2, Deming Kong1, Fajin Chen1*, Jianfang Hu3, Peng Wang1 and Junchuan Lin1

1Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of
Guangdong Province, Guangdong Ocean University, Zhanjiang, China, 2State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China, 3State Key Laboratory of Organic Geochemistry,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China

Abrupt climatic events and the history of human activities on Hainan Island are poorly
understood, due to the lack of high-resolution records. We present high-resolution
multiproxy records from the coastal shelf off eastern Hainan Island in China to
investigate abrupt climate change and regional human–environment interaction over
the last 7,000 years. A prominent climatic anomaly occurred during 5,400–4,900 cal yr
BP. This abrupt monsoon failure has been detected in various paleoclimatic records from
monsoonal regions. Anomalous summer monsoon intensity during 5,400–4,900 cal yr BP
is probably driven by solar variability, ENSO activity and ice-rafting events in the North
Atlantic. Over the past 1,500 years, with the growing population and progress in
production technology, human activity has increasingly become the dominant factor
controlling the natural environment of Hainan Island.

Keywords: Asian summer monsoon, holocene, human activity, abrupt climate change, chemical weathering,
terrigenous influx

INTRODUCTION

Extreme weather events are becoming more frequent owing to global warming, and people are
increasingly concerned about climate change and its impacts on their lives. Over recent Earth
history, several abrupt global climatic anomalies occurred during the Holocene (Bond et al., 2001;
Mayewski et al., 2004; Wanner et al., 2011). For example, the 4200 BP climate event and the Little
Ice Age, these events had disastrous consequences for humans, and seriously influenced the
development of agriculture and the prehistoric advancement of human society (Cullen et al., 2000;
DeMenocal, 2001; Douglas et al., 2016; Sinha et al., 2019). Climatic anomaly around 5,500 cal yr
BP have recently received attention as a result of the close linkage between climate change and the
evolution of prehistoric culture (Shuman, 2012; Bai et al., 2017; Wu et al., 2018; Hou and Wu,
2021; Tan et al., 2020). A detailed understanding of abrupt climatic events in the past is therefore
critical for exploring their underlying forcing mechanisms and dealing with abrupt changes in the
climate system in the future.
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In recent years, studies have suggested that human activities
play an important role in controlling ecosystems and soil erosion
in monsoonal China. Increases in χlf and χfd over the last
2000 years in sediments from the Yangtze delta in eastern
China, Lake Xiaolongwan in northeast China, and lakes Erhai
and Xingyun in southwest China reflect an increase in soil erosion
attributed to enhanced human activity (Dearing et al., 2008;
Wang et al., 2010; Su et al., 2015; Wu et al., 2015). Numerous
studies likewise found that increasing contents of various metals,
including Cu, Pb, and Zn, could be closely linked to mining and
metalworking activities, reflecting a progressive intensification of
human activities (Zong et al., 2010; Hu et al., 2013; Hillman et al.,
2014; Wan et al., 2015; Xu et al., 2017; Huang et al., 2018).
Additionally, pollen and black carbon results indicate
significantly accelerated deforestation in monsoonal China
since 2000 cal yr BP (Zhao et al., 2010; Ma et al., 2016a;
Cheng et al., 2018; Lu et al., 2019; Pei et al., 2020).

As human populations grew and progress in production
technology increased, human influences on the natural
environment became increasingly important during the late
Holocene, and often obscure the detection of climatic
fluctuations in the archives investigated. Human activities
can mediate the terrestrial ecosystems and soil erosion,
generating unavailability of the relevant proxy indicators to
reconstruct climate change. It is therefore essential to
understand climate and human activities, as well as their
impacts upon terrestrial ecosystems on longer timescales, in
order to reconstruct each of them accurately. However, previous
studies to determine human—environment interactions were
mainly dependent on sediment cores from lakes (Dearing et al.,
2008; Hillman et al., 2014; Su et al., 2015) and river deltas
(Wang et al., 2010; Zong et al., 2010; Strong et al., 2013). High-
resolution records from continental shelves are relatively scarce.
Well dated and high-resolution data of various geologic
archives from wide regions are crucial for better
understanding the complex interplays between humans and
the Earth. Sediment cores from continental shelves would
therefore provide an excellent opportunity to understand
human–environment interactions at regional scales.

Hainan Island, the second largest island in the northern South
China Sea (SCS), is sensitive to climatic fluctuations. Previous
studies have confirmed that continental shelf sediments off
eastern Hainan provide valuable information on paleoclimate
variation and human activity (Liu et al., 2013; Wu et al., 2017; Xu
et al., 2017; Ji et al., 2020). However, most previous studies have
focused on short timescales during the past 200 years (Liu et al.,
2013; Wu et al., 2017). Accurate timing and intensity of human
activity have not been well constrained. This study presents a
high-resolution multi-proxy record with a robust chronology
spanning the last 7,000 years collected from the continental
shelf off eastern Hainan. The main aims are to investigate the
interaction between Holocene climate variability, human activity
and environmental changes, and to determine the timing and
intensity of human activity on Hainan Island during the last
1,500 years.

MATERIALS AND METHODS

Materials
Hainan Island is the second largest island in the northern SCS and
has an area of ∼33.9 × 103 km2 (Figure 1). The Wanquan River is
the third largest river on the island and originates from the
Wuzhishan Mountains. It drains southeast Hainan and
eventually discharges into the northwestern SCS at Boao
Township in Qionghai City. The river’s total length is
∼157 km and its drainage area covers 3,693 km2 (Yang et al.,
2013). The study region is dominated by a tropical monsoon
climate (Zeng and Zeng, 1989). The annual mean temperature is
22.8–25.8°C. Annual precipitation ranges 961–2,439 mm yr−1,
with about 80% occurring during the wet season from April to
September (Zhang et al., 2013).

The GH6 core (19°06′N, 110°42.85′E; 2.4 m in length) was
collected using a gravity corer from approximately 50 m water

FIGURE 1 | Location map for the GH6 sediment core retrieved from the
continental shelf off eastern Hainan Island (red dot) and related study sites in
the region (purple dots).

FIGURE 2 | Simplified lithological units and profiles of AMS 14C age for
sediment core GH6 (after Kong et al., 2021).
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depth on the continental shelf off eastern Hainan Island
(Figure 1). The sediment core was cut longitudinally and
samples were stored at 4°C prior to analysis. As shown in
Figure 2, GH6 core can be divided into three lithological
units: Unit 1 (0–20 cm) consists of yellow-brown clayey silt;
Unit 2 (20–176 cm) consists of grey silt containing occasional
shells; and Unit 3 (176–240 cm) consists of grey clayey silt.

Age Model
The chronology for the GH6 core was based on six AMS 14C dates
from mixed species of planktonic foraminifera (Table. 1;
Figure 2). 10 mg of complete and clean planktonic
foraminifera were selected hand-picked under a binocular
dissecting microscope at 40 × magnification and cleaned by
sonication in deionized water in order to remove surface
adhesions. AMS 14C dates were measured at the BETA
Laboratory in the United States. All radiocarbon dates were
calibrated to calendar ages with Calib 8.1.0 software using the
marine20 program (Reimer et al., 2020). The age models of each
sample are established by Polynomial (n � 2) fitting between these
calibrated ages. The average temporal resolution is ∼58 years, and
the average sedimentation rate is 0.03 cm/yr. For further details of
the dating method and modelling approach, see Kong et al.
(2021).

Major and Trace Element Compositions
Bulk sediment samples were freeze-dried and ground, then
heated at 650°C for 4 h to remove organic matter. The samples
were digested in an HNO3 + HF acid mixture and the solutions
then used for major and trace-element analyses at 2-cm intervals.
Major element concentrations were measured on a Varian 720 ES
inductively coupled plasma—atomic emission spectrometer
(ICP–AES). Trace element concentrations were measured on a
Varian 820 inductively coupled plasma–mass spectrometer
(ICP–MS). Precision and accuracy were monitored by
analysing several United States Geological Survey (USGS) and
Chinese certified reference standards (BHVO-2, BCR-2,
GBW07314, GBW07315, GBW07316), yielding values that
were generally within ± 10% (RSD) of the certified values.

The chemical index of alteration (CIA), defined as Al2O3/
(Al2O3 + CaO + Na2O + K2O) × 100, using molecular
proportions, has been widely used as an indicator of chemical
weathering intensity (Nesbitt and Young, 1982). In this study, it
was difficult to evaluate the CaO content of the silicate fraction.
The CIA was therefore calculated using the following formula,

excluding CaO: molar Al2O3/(Al2O3 + Na2O + K2O) × 100
(Arnaud et al., 2012; Liu et al., 2014). This amendment does
not have a significant effect on the results because only relative
variations in chemical weathering are considered (Arnaud et al.,
2012).

Environmental Magnetic Measurements
Magnetic susceptibility was determined at about 1–6 cm
intervals. The low-field magnetic susceptibility (χ) for all
discrete samples was measured using a Kappabridge MFK1-FA
(AGICO) magnetic susceptibility meter at low (976 Hz) and high
(15,616 Hz) frequencies (defined as χlf and χhf, respectively).
Frequency-dependent magnetic susceptibility (χfd%) was
calculated using the formula χfd% � 100 × (χlf—χhf)/χlf.

Particle Size Analysis
The samples used for the particle-size analysis were collected at
about 1–7 cm intervals. All samples were pre-treated with 10%
H2O2, followed by treatment with 10% HCl, to remove organic
matter and carbonates, respectively. They were then rinsed with
deionized water and dispersed with 10 ml of 0.05 mol L−1
(NaPO3)6 on an ultrasonic vibrator for 10 min. The grain-size
distribution was measured using a Malvern 3,000 laser diffraction
instrument. Mean grain size was calculated according to Folk and
Ward (1957).

RESULTS

As shown in Figure 3, the Al/K, CIA, Al, Fe, Ti, Cu and Pb values
share very similar trends through time. Generally, the variations
in multi-proxies of GH6 core can be divided into four stages.
During the interval 7,000–5,400 cal yr BP, CIA values and Al/K
ratios are relatively high, and contents of Al, Fe, Ti, Cu, and Pb are
also relatively high; both χlf and χfd values remain relatively high,
but the mean grain size has relatively low values. During the
interval 5,400–4,900 cal yr BP, all of proxies in GH6 core show an
abrupt shift; a sharp decrease in CIA and Al/K raios is observed,
and contents of Al, Fe, Ti, Cu, and Pb exhibit clear decreasing
trends; both χlf and χfd values show a rapid decrease, but the mean
grain size exhibits a rapid increase. During the interval
4,900–1,500 cal yr BP, CIA and Al/K ratios are relatively low,
and contents of Al, Fe, Ti, Cu, and Pb remain fairly constant and
relatively low values; both χlf and χfd values are relatively low
except the period of 4,000–3,200 cal yr BP, and prominent peaks

TABLE 1 | Details of 6 AMS 14C dates from the GH6 core (after Kong et al., 2021).

Sample Code Beta Lab Code Depth (cm) Material Conventional age (years,
BP)

Error (2σ) Calibrated Error (2σ)

Age (years, BP)

GH6-F10 530613 8 Foraminifera 460 30 20 30
GH6-F17 530614 37 Foraminifera 1,760 30 1,165.5 60
GH6-F84 530615 84 Foraminifera 2,240 30 1,656.5 65
GH6-F114 545408 114 Foraminifera 2,980 30 3,085 84.5
GH6-F148 532199 148 Foraminifera 4,230 30 4,142 81.5
GH6-F198 532200 198 Foraminifera 5,420 30 5,599.5 96.5
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of them would be attributed the pedogenic process; the mean
grain size show a rapid increase. After 1,500 cal yr BP, CIA, and
Al/K exhibit clear increasing trends, and contents of Al, Fe, Ti,

Cu, and Pb show an overall increasing trend; both χlf and χfd
values show an overall increase, and the mean grain size exhibits
an overall decreasing trend.

DISCUSSION

Palaeoclimatic Significance of Proxy
Indicators
Different elements behave differently during chemical weathering
processes. Elemental ratios can therefore be applied to indicate
variations in chemical weathering intensity. K tends to be
enriched in weathering products after moderate chemical
weathering, but depleted after extreme chemical weathering
(Nesbitt et al., 1980; Condie et al., 1995), whereas Al tends to
be retained and enriched in weathering products (Nesbitt and
Markovics, 1997; Nesbitt et al., 1980). Thus, Al/K ratios can be
used to reflect the intensity of chemical weathering, with higher
Al/K ratios indicating stronger chemical weathering. In our core
GH6, Al/K ratios exhibit similar variations to CIA values (Figures
3A,B). The latter have been widely used to trace the intensity of
chemical weathering; e.g., core KNG5 from the northern SCS
slope (Huang et al., 2015), core YJ from the northern SCS inner
shelf (Huang et al., 2018), and core 337 PC from the
Qiongdongnan Basin (Wan et al., 2015). In addition, Al/K
ratios have been successfully used to indicate variations in
chemical weathering intensity in the northern SCS and the
Pearl River delta (Wei et al., 2006; Hu et al., 2012; Hu et al.,
2013; Clift et al., 2014). This provides further evidence that Al/K
ratios can be employed as an indicator of chemical weathering
intensity.

Climate is believed to be the dominant factor controlling the
degree of chemical weathering under specific environmental
conditions (White and Blum, 1995). Warm and humid
conditions favour intense chemical weathering, with humidity
playing the more important role (White and Blum, 1995; West
et al., 2005; Gabet et al., 2006). Previous studies have confirmed
that sediments on the continental shelf off Hainan in the northern
SCS were primarily derived from the island itself (Tian et al.,
2013; Hu et al., 2014; Yan et al., 2016; Xu et al., 2017). Hainan
currently experiences a humid tropical climate that is strongly
influenced by the Asian summer monsoon (Liu et al., 1999). The
proxies for chemical weathering (CIA and Al/K) in core GH6 can
therefore be used to trace the strength of the summer monsoon.

In marine sediments, concentrations of Al, Ti, and Fe are
primarily derived from terrigenous detrital materials (Latimer
and Filippelli, 2001; Ishfaq et al., 2013). Thus, these elements are
widely employed as a tracer of terrigenous influx in marine
sediments (Haug et al., 2001; Peterson and Haug, 2006; Revel
et al., 2010). Al, Ti, and Fe variations in core YJ from the northern
inner shelf of the SCS have been successfully used to indicate
changes in terrigenous influx (Huang et al., 2019). This provides
further evidence that Al, Ti, and Fe concentrations in our GH6
core can be used to trace changes in terrigenous sediment input.
In southern China, numerous studies have confirmed that
continental erosion is primarily associated with monsoon
precipitation, with heavier monsoon precipitation causing

FIGURE 3 | Time series for multiple proxies measured in core GH6. The
dots indicate the raw data, and the lines represent 3-point moving average. The
grey bar indicates the recorded episode of abrupt climate change. The yellow
bar represents the recent time period dominated by human activity.
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FIGURE 4 | Comparisons between related records: (A) Al/K ratios from our GH6 core; (B) K/Al record from the northern South China Sea slope (Huang et al.,
2016); (C) compound-specific δ13C record from the Pearl River Estuary (Strong et al., 2013); (D) δ13Corg record from the Pearl River Estuary (Yu et al., 2012); (E) Al/K
ratios from the northern inner shelf of the South China Sea (Huang et al., 2019); (F) chlorophyll-α record from Huguangyan Maar Lake (Wu et al., 2012); (G) Ti/Ca record
from Huguangyan Maar Lake (Shen et al., 2013); (H) stalagmite δ18O record from Dongge Cave (Dykoski et al., 2005); and (I) TOC data from Retreat Lake in
northeastern Taiwan (Selvaraj et al., 2007).
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greater terrigenous influx (Hu et al., 2012; Clift et al., 2014; Wan
et al., 2015; Huang et al., 2019). Furthermore, Al, Ti, and Fe
variations in our GH6 core, as proxies for terrigenous influx, show
similar temporal patterns to CIA and Al/K ratios throughout the
core. Consequently, we can reasonably speculate that stronger
monsoon precipitation generates greater chemical weathering
and associated volumes of terrigenous inputs.

Abrupt Changes in Summer Monsoon
Strength 5,400–4,900 cal yr BP and Forcing
Mechanisms
During the period 5,400–4,900 cal yr BP, the intensity of chemical
weathering decreased rapidly, as inferred from the profiles of CIA
and Al/K in our GH6 core. The terrigenous influx decreased
rapidly during the same interval, as indicated by concentrations
of Al, Ti, and Fe. Simultaneously, the mean sediment grain size
increased sharply. The distinct variations in these records suggest a
rapid climatic deterioration, which was likely associated with abrupt
changes in the Asian summer monsoon. This abrupt climatic event
generally coincides with a dramatic weakening of the summer
monsoon at 5,400–4,900 cal yr BP, as inferred from various
paleoclimate records from monsoonal regions elsewhere (Dykoski
et al., 2005; Strong et al., 2013; Huang et al., 2019; Shah et al., 2020).

Chemical weathering interpreted from core KNG5, retrieved
from the northern SCS slope, shows an abrupt decrease, reflecting
reduced monsoon rainfall (Figure 4B; Huang et al., 2016). In the
Pearl River estuary, abrupt summer monsoon failure can be
detected in bulk-sedimentary δ13Corg and compound-specific
δ13C records (Figures 4C,D; Yu et al., 2012; Strong et al.,
2013). In the northern inner shelf of the SCS, Al/K ratios,
used as an indicator of chemical weathering, exhibit a rapid
decrease in response to the weakening monsoon (Figure 4E;
Huang et al., 2019). This sudden climate shift is also documented
in terrestrial sediment records in southern China. In Huguangyan
Maar Lake, the weak summer monsoon during this period is
detected from multiple climatic indices, including records of
chlorophyll α and TOC (Figure 4F; Wu et al., 2012), Ti/Ca
ratios (Figure 4G; Shen et al., 2013), and magnetic properties
(Duan et al., 2014). Similarly, a positive shift in the stalagmite
δ18O record from Dongge Cave implies a weakening of the
summer monsoon (Figure 4H; Dykoski et al., 2005). The
development of stagnant swampy environments in the
northern Wuyi Mountains is also attributed to a decline in
the summer monsoon (Ma et al., 2016b). Within age
uncertainty, the subalpine Retreat Lake in Taiwan also
experienced an abrupt weak monsoon event, as indicated by
low TOC (Figure 4I; Selvaraj et al., 2007). Taken together, these
multiple proxy records from various geological archives in
southern China capture this abrupt climatic shift (Figure 4).
In addition, the event can similarly be detected across different
monsoonal regions of China (An et al., 2012; Li et al., 2017a; Bai
et al., 2017; Goldsmith et al., 2017; Tan et al., 2020).

As shown in Figure 5, the weak monsoon between 5,400 and
4,900 cal yr BP, recorded in our GH6 core, shows good
correspondence within dating uncertainty with an interval of
weak solar activity as inferred from residual atmospheric 14C

(Δ14C) (Stuiver, et al., 1998) and ice core 10Be data (Steinhilber
et al., 2009). This synchroneity suggests a causal linkage between
solar activity and summer monsoon variability. In fact, previous
studies have linked weakmonsoon events to solar activity (Huang
et al., 2019). The solar–monsoon link can be explained by a direct
influence: solar forcing may control monsoon precipitation by
regulating the land—sea thermal contrast (Liu et al., 2009; Xu
et al., 2015). A decline in solar output would decrease the
land–sea thermal contrast, subsequently leading to southward
movement of the Intertropical Convergence Zone (ITCZ).
Reduced transportation of water vapour from the ocean to the
continents thereby causes less rainfall over monsoonal Asia
(Fleitmann et al., 2003; Dykoski et al., 2005; Li et al., 2017b).

In addition, solar activity may influence variability in the
summer monsoon indirectly, perhaps amplified by North
Atlantic teleconnection and El Niño-Southern Oscillation
(ENSO) activity (Wang et al., 2005; 2016; Marchitto et al.,
2010). During the period 5,400–4,900 cal yr BP, the weaker
monsoon inferred from our GH6 core coincides with higher
percentages of hematite-stained grains in the North Atlantic,
which can be taken as an indication of ice-rafted debris (IRD)
(Figure 5D; Bond et al., 2001). Reduced solar activity may
trigger IRD events in the North Atlantic (Bond et al., 2001) and
a slowdown of North Atlantic meridional overturning
circulation (AMOC) (Oppo et al., 2003), eventually
weakening the summer monsoon. Likewise, the abrupt
summer monsoon failure during this period is also
consistent with strong ENSO activity, indicated by sea
surface temperature (SST) records from the Western Pacific
Warm Pool (Figure 5E; Stott et al., 2004). Previous studies
have confirmed that ENSO may act as a mediator between
solar energy input and the Asian summer monsoon (Asmerom
et al., 2007; Emile-Geay et al., 2007; Marchitto et al., 2010).
These results suggest a link between East Asia, the tropical
Pacific and the North Atlantic: a potential forcing mechanism
for abrupt climate change is that solar variability can affect the
Asian summer monsoon via the North Atlantic and the ENSO
system.

Human Disturbance Over the Past
1,500 Years
AS shown in Figure 6, some decoupling have been observed
between records of climate, chemical weathering and fluvial
discharge over the past 1,500 years. Temperature reconstructions
for the Northern hemisphere and the whole of China exhibit an
overall cooling trend (Figures 6A,B; Yang et al., 2002; PAGES 2k
Consortium, 2013). There is a general decrease in the intensity of
monsoonal precipitation during this period, as inferred from
pollen-reconstructed annual rainfalls from Gonghai Lake and
annual mean precipitation reconstructions in northern China
(Figures 6C,D; Chen et al., 2015; Li et al., 2017b). Similarly, a
long-termdecrease inmonsoon precipitation can be found in high-
resolution stalagmite δ18O records from Dongge and Heshang
caves in southern China (Wang et al., 2005; Hu et al., 2008).

However, values of CIA and Al/K ratios in our GH6 core show
an overall increasing trend during the last 1,500 years
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(Figure 6E), reflecting enhanced chemical weathering. An overall
increasing trend of terrigenous supply can be also seen, as
indicated by concentrations of Al, Ti, and Fe (Figure 6F).
These trends suggest that climate alone cannot be responsible
for changes in chemical weathering and fluvial influx. The
concentrations of Cu and Pb in the GH6 core increase
dramatically over the past 1,500 years (Figures 6G,H).
Previous studies have confirmed that increasing metal contents
(Cu, Pb, and Zn) appear to be associated with mining and

smelting activities (Hu et al., 2013; Hillman et al., 2014; Wan
et al., 2015; Huang et al., 2018). Moreover, χlf and χfd values in
core GH6 exhibit a striking increase over the same period.
Mounting evidence suggests that such increases in χlf and χfd
can be attributed to human-induced soil erosion (Dearing et al.,
2008; Wang et al., 2010; Wu et al., 2015; Huang et al., 2018).

More importantly, all of the proxies in our GH6 core are
generally consistent with the historical exploitation of Hainan
Island (Figure 7; Situ, 1987). This provides further evidence for

FIGURE 5 | Comparison between various paleoclimate records: (A) Al/K ratios from core GH6; (B) atmospheric residual Δ14C record (Stuiver et al., 1998); (C)
reconstructed total solar irradiance (TSI) from ice-core 10Be data (Steinhilber et al., 2009); (D) hematite-stained grains from the subpolar North Atlantic (Bond et al., 2001);
and (E) sea surface temperature (SST) in the Western Pacific Warm Pool (Stott et al., 2004). The grey bar indicates the abrupt climate change recorded in core GH6.
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increasing influence of human activities over the last 1,500 years.
According to historical documents, the first large-scale
immigration from mainland China took place during the Sui
and Tang Dynasty (581–907 AD), with the majority of migrants
settling in eastern coastal areas of Hainan (Figure 7; Situ, 1987).
Migrant numbers increase dramatically during the Song Dynasty.

These migrants brought advanced tools and cultivation
techniques, such as metalworking and Champa rice (Situ,
1987). The advent of metal tools and metalworking activities
may be responsible for the increasing concentrations of Cu and
Pb in core GH6 during the past 1,500 years. Population expansion
and advanced cultivation techniques would have accelerated

FIGURE 6 | Comparison between GH6 core records and temperature and precipitation data: (A) standardized 30-years-mean temperature record averaged over
the whole Northern Hemisphere (PAGES 2k Consortium, 2013); (B) temperature reconstructions for the whole of China (Yang et al., 2002); (C) pollen-inferred annual
precipitation data from Gonghai Lake (Chen et al., 2015); (D) KCM-based annual precipitation record for northern China (Li et al., 2017b); (E–H) multiple proxies from
GH6 core.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6636348

Huang et al. Climate-Human-Environment Interactions in Hainan Island

67

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


deforestation for farming and caused reworking of older highly-
weathered materials. This probably enhanced the input of
terrestrial material, sourced more deeply and from a wider
area. These effects correspond to the increase of proxy
indicators in our GH6 core (i.e., CIA, Al/K, χlf, χfd, Al, Ti, Fe,
Cu, and Pb). Consequently, we can reasonably conclude that
human activities have had a growing influence on the natural
environment and landscape in eastern Hainan over the past
1,500 years.

CONCLUSION

This study presents high-resolution multi-proxy analyses
incorporating chronological, environmental-magnetic,
geochemical and grain-size evidence from the coastal shelf off
eastern Hainan Island, China. The prominent climatic anomaly
during 5,400–4,900 cal yr BP is observed, which is coincides with
a dramatic weakening of the summer monsoon. This abrupt event
is synchronous with a period of weak solar activity, strong El
Niño-Southern Oscillation (ENSO) activity and North Atlantic
ice-rafting. These results suggest a climatic link between East
Asia, the tropical Pacific and the North Atlantic. The possible
forcing mechanism for abrupt climate change is solar variability
affecting the Asian summer monsoon via the North Atlantic and
ENSO system. There are some decoupling between records of
climate, chemical weathering and fluvial discharge over the past
1,500 years. Moreover, enhanced chemical weathering and
terrigenous influx during the past 1,500 years are consistent

with increasing metal contents (Cu and Pb), and increases in
magnetic susceptibility (χlf) and frequency-dependent magnetic
susceptibility (χfd). All of these proxies are generally consistent with
the historical exploitation of Hainan Island. We therefore suggest that
enhanced human activity (deforestation, cultivation and mining) over
the past 1,500 years has overwhelmed the natural climatic controls on
the environment and landscape of Hainan Island.
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A Lacustrine Biomarker Record From
Rebun IslandReveals aWarmSummer
Climate in Northern Japan During the
Early Middle Holocene Due to a
Stronger North Pacific High
Masanobu Yamamoto1,2*, Fangxian Wang2, Tomohisa Irino1,2, Kenta Suzuki1,
Kazuyoshi Yamada3, Tsuyoshi Haraguchi4, Katsuya Gotanda5, Hitoshi Yonenobu6,
Xuan-Yu Chen7,8 and Pavel Tarasov9

1Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan, 2Graduate School of Environmental Science,
Hokkaido University, Sapporo, Japan, 3School of Human Science, Waseda University, Tokorozawa, Japan, 4Department of
Geosciences, Osaka City University, Osaka, Japan, 5Faculty of Global Studies, Chiba University of Commerce, Ichikawa, Japan,
6Graduate School of Education, Naruto University of Education, Naruto, Japan, 7State Key Laboratory of Isotope Geochemistry,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China, 8CAS Center for Excellence in Deep
Earth Science, Guangzhou, China, 9Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany

The summer climate of northern Japan since the last glacial period has likely been
determined by atmospheric and oceanic dynamics, such as changes in the North
Pacific High, the position of the westerlies, the Kuroshio Current, the Tsushima Warm
Current (TWC), and the East Asian summer monsoon. However, it is unclear which factor
has been most important. In this study, we analyzed leaf wax δ13C and δD and glycerol
dialkyl glycerol tetraethers (GDGTs) in sediments from Lake Kushu, Rebun Island, northern
Japan, and discuss changes in climate over the past 17,000 years. The GDGT-based
temperature, the averaged chain length, δ13C and δD of long-chain n-fatty acids indicated
that the climate was cold during the Oldest Dryas period ∼16 ka and warm in the early
Middle Holocene from ∼9 to 6 ka. This climate change is consistent with the sea surface
temperature in the Kuroshio–Oyashio transition, but inconsistent with changes in the TWC
in the Sea of Japan. The results imply that the summer climate of northern Japan was
controlled mainly by changes in the development of the North Pacific High via changes in
the position of the westerly jet and East Asian summer monsoon rainfall, whereas the
influence of the TWC was limited over a millennial timescale.

Keywords: climate change, Northern Japan, holocene, lateglacial, Biomarkers, rebun, RK12

INTRODUCTION

The summer climate of northern Japan is influenced by the summer position of the westerly winds
and the strength of the TsushimaWarm Current (TWC). The position of the westerly winds is linked
to the oceanic subarctic boundary between the subtropical Kuroshio and subarctic Oyashio currents
in the Pacific (Figure 1) (e.g., Yamamoto et al., 2004; Yamamoto et al., 2005; Isono et al., 2009;
Yamamoto, 2009). Yamamoto et al. (2005) and Isono et al. (2009) identified the southern summer
position of the Kuroshio–Oyashio transition (KOT) in the Oldest Dryas and Younger Dryas periods
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due to the weaker North Pacific High, a northward shift of the
KOT at the end of the Younger Dryas period, the northernmost
position at 8 ka and the gradual southward shift during the
Middle and Late Holocene. The TWC flows northwards as a
branch of the Kuroshio Current along the eastern margin of the
Sea of Japan (Figure 1). The TWC promotes moisture uptake by
the predominant winter monsoon winds and carries heat to
northern Japan. Diatom records from four offshore sites along
the Sea of Japan coast showed that TWC species appeared after
7 ka and fluctuated in abundance on a millennial timescale
(Koizumi et al., 2006).

Pollen records from Hokkaido (Igarashi, 2013 and references
therein) and Lake Kushu (Müller et al., 2016; Leipe et al., 2018) on
Rebun Island showed that the vegetation of northern Japan
changed from a boreal forest in the Late Glacial to a cool-
temperate forest in the Early Holocene due to deglacial
warming. Temperate deciduous oak trees were more widely
spread during the Middle Holocene, while forests containing

more Abies and Pinaceae trees spread during the Late Holocene
due to gradual cooling.

Other proxies such as Sphagnum and vascular plant cellulose
δ18O in peat are more sensitive to summer hydrological
conditions. They showed remarkable changes in the high
moors in Rishiri (Sites MHWL-1 and -3) and Hokkaido (Site
BKB-2) during the Late Holocene, which corresponded to
changes in the summer sea surface temperature (SST) in the
KOT and the TWC strength (Sakurai et al., 2021; Yamamoto and
Seki, unpublished data).

The summer westerly wind axis, moisture content,
temperature, precipitation, and precipitated water δD and
d-excess seasonally covaried at the study site (Figure 2),
indicating a close relationship between the position of the
summer westerly wind axis, the East Asian summer monsoon,
and precipitated water δD and d-excess (Figure 2). In summer,
the westerly wind axis shifts north, a warm and moist air mass
occupies the study site (45°N), the δD of precipitated water
is heavier, and the d-excess is lower. In winter, the westerly
wind axis shifts south, a cold and dry air mass occupies the study
site, the δD of precipitated water is lighter, and the d-excess is
higher. The higher d-excess in winter is attributed to kinetic
fractionation during the evaporation process in the Sea of Japan
under a large humidity deficit and a strong temperature contrast
in the air-sea surface interface (Sugimoto et al., 1988; Li et al.,
2017).

In this study, we analyzed leaf wax δ13C and δD and glycerol
dialkyl glycerol tetraethers (GDGTs) in sediments from Lake
Kushu, Rebun Island, northern Japan, and discuss changes in the
summer climate and the atmospheric and ocean dynamics that
affected the climate of northern Japan over the past 17 ka.

SAMPLES AND METHODS

Sediment and Chronology
Lake Kushu is located in the northern part of Rebun Island
(45°25′58″N, 141°02′05″E) (Figure 1), 230–400 m from the
modern sea coast. The bean-shaped lake has a maximum
length of ∼1,100 m. The maximum water depth is ∼6 m in
the eastern part of the lake, with average depths of 3–5 m. In
February 2012, when a thick ice layer covered the lake, Dokon
(Sapporo, Japan) performed coring in the central part of the
lake. Composite core RK12 was recovered from two boreholes
(RK12-1 and RK12-2) located within a few meters of each
other.

The composite core revealed a continuous, partly laminated,
organic-rich 20.3 m-long sediment column. The lithology is
described in Müller et al. (2016). In brief, the basal unit
contains sandy clay with pebbles, suggesting a stronger river
influence. Peat (1,925–1,935 and 1,905–1,915 cm) and organic-
rich clay (1,915–1,925 and 1,895–1,905 cm) layers appear in the
lower part of the core, suggesting shallow water or marshy
environments. The interval within 1,895–1,390 cm is
characterized by homogeneous, relatively organic-poor clay,
which is interrupted only by two sand seams (1,790–1,815 and
1,765–1,780 cm). Within 1,390–850 cm, the clay is mostly finely

FIGURE 1 | Map showing study site RK12-2 and the reference site
locations, i.e., MHWL-1 and 3 (Yamamoto and Seki, in preparation), BKB-2
(Sakurai et al., 2021), PC-6 (Minoshima et al., 2007), MD01-2421 (Yamamoto
et al., 2004), KH-84-3-9, KH-84-3-33, KH-86-2-9, and D-GC-6
(Koizumi et al., 2006), and D-GC-9 (Koizumi et al., 2006), as well as the mean
positions of the summer (June to August) westerly wind axis with the range of
variation for 30 years from 1988 to 2017 (yellow shading) of summer
westerlies, the Kuroshio, Kuroshio Extension, Oyashio, Tsushima Warm
Current (TWC), and Tsugaru Warm Current (T). T indicates the meteorological
station at Teshio.
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laminated with sections of relatively low to high organic matter
concentrations. The upper 850 cm of the sediment column
consists of homogeneous organic-rich clay.

An age–depth model of the RK12 core was established based on
57 accelerated mass spectrometry (AMS) radiocarbon dates (Müller
et al., 2016), showing continued sedimentation beginning ∼17 ka

FIGURE 2 | (A) Zonal wind velocity at 200 hPa (positive westward) along 145°E, (B) Temperature and moisture content at 850 hPa along 145°E (Sakurai et al.,
2021), (C) Precipitated water δD, d-excess, temperature and precipitation at the site of Teshio Town (2010–2013; Li et al., 2017) 80 km southeast of the study site, and
the position of the westerly wind axis. Black solid dots indicate the positions of the westerly wind axis.
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(Supplementary Table S1). All available AMS dates were converted
into calendar ages using Oxcal v4.4 (Bronk Ramsey, 2021) and the
latest IntCal20 calibration curve (Reimer et al., 2020). The 95.4%
probability ranges obtained in this study (Supplementary Table S1)
show very minor differences from the data published inMüller et al.
(2016), thus indicating general robustness of the published age
model. For the current study, an updated Bayesian age model for
the Kushu sequence has been constructed using Oxcal v4.4 (Bronk
Ramsey, 2021) based on the 57 AMS 14C dates (Müller et al., 2016)
and three tephra ages using Oxcal v4.4 (Bronk Ramsey, 2021). The
model utilizes a P_Sequence deposition model (Bronk Ramsey,
2008), with a variable k parameter (Bronk Ramsey and Lee,

2013) and a “General” Outlier_Model (Bronk Ramsey, 2009),
applying the latest IntCal20 calibration curve (Reimer et al.,
2020). The 14C dates regarded as outliers (see Müller et al., 2016
and Supplementary Table S1) have been removed from the model.
Three precise tephra ages have been incorporated into the model for
providing additional chronological constraints, given the
identification of these tephra layers in the RK12 sediment core of
Lake Kushu (Chen et al., 2016; Chen et al., 2019). These include
B-Tm tephra (composite core depth—150.5 cm; 1,004 cal yr BP;
Oppenheimer et al., 2017), Ko-g tephra (core depth—1,169 cm;
95.4% probability range—6,651–6,446 cal yr BP; Chen et al., 2021)
and Ma-f∼j tephra (core depth—1,277 cm; 95.4% probability

FIGURE 3 | Distribution of 57 calibrated AMS radiocarbon and three tephra dates used to construct Bayesian P_sequence depositional age–depth model for the
RK12 sediment core from Lake Kushu (Supplementary Table S1).
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range—7,550–7,128 cal yr BP; Chen et al., 2021). The 95.4%Highest
Probability Density (HPD) range for the deposition model is
illustrated in Figure 3.

In the upper half of the core, representing the past ∼6 ka, the
linear sedimentation rate is very high (i.e., about 1 cm every 6 years).
In the bottom half of the core, the age–depth model shows greater
variation in the sedimentation rates and substantially slower
sedimentation (i.e., about 1 cm every 20 years) before ∼9.5 ka.
Based on a multi-proxy approach (diatoms, aquatic pollen, algae,
geochemistry), Schmidt et al. (2019) reconstructed three phases of
lake basin development, including a marshy phase between 16.6 and
9.4 cal ka BP, a lagoon phase between 9.4 and 5.9 cal ka BP, and a
freshwater lake phase after 5.9 cal ka BP, as the sand bar separating
the Kushu lagoon from the sea formed.

Analytical Methods
Lipids were extracted (×3) from ∼1 g of dried sediment using a
Dionex ASE 200 Accelerated Solvent Extractor (Dionex,
Sunnyvale, CA, United States) with dichloromethane:methanol
(6:4). The extract was separated into neutral and acid fractions via
aminopropyl silica gel column chromatography (Gao et al., 2015).
The acid fraction was methylated with methanol:acetyl chloride
(95:5) and purified with SiO2 column chromatography.

The concentration of n-fatty acids in the acid fraction was
analyzed using gas chromatography (GC) with an Agilent 6890
series gas chromatograph with on-column injection and
electronic pressure control systems, and a flame ionization
detector (Agilent, Santa Clara, CA, United States). Samples
were dissolved in toluene. Helium was the carrier gas and the
flow velocity was maintained at 30 cm/s. An Agilent J&W CP-Sil
5 CB column was used (length 50 m; i.d. 0.25 mm; thickness
0.25 μm). The oven temperature was programmed from 100 to
130°C at 20°C/min and from 130 to 310°C at 4°C/min, and then
maintained at 310°C for 30 min. The average chain length (ACL)
of n-fatty acids in this study is defined as:

ACL � (26C26 + 28C28 + 30C30 + 32C32)
(C26. + C28 + C30 + C32) .

The δ13C (‰ Vienna Pee Dee Belemnite [VPDB]) of the
methylated n-fatty acids in the acid fraction was analyzed using a
Thermo Fisher Scientific (Waltham,MA, United States) GC IsoLink
II with a capillary column coated with a TG-5MS column (30m
length; i.d. 0.25 mm; 0.25 μm film thickness) combined with a Delta
V mass spectrometer through a combustion furnace at 1,000°C. The
sample was dissolved in toluene. The oven temperature was
programmed from 100 to 230°C at 30°C/min and from 230 to
310°C at 4°C/min and then maintained at 310°C for 15min. As an
internal isotopic standard, n-C36H74 was used to check the
measurement conditions. Data were converted into values relative
to VPDB using standard delta notation by comparison with CO2

standard gas. The δ13C values of fatty acids were obtained from the
measured values of fatty acid–methyl esters by correcting for methyl
carbon (−34.1‰). The reproducibility of the measurement based on
repeated analyses was better than ±0.1‰.

The neutral fraction was separated into four fractions using
SiO2 column chromatography: F1, 3 ml hexane; F2, 3 ml

hexane:toluene (3:1); F3, 4 ml toluene; and F4, 3 ml
toluene:CH3OH (3:1). An aliquot of F4 was dissolved in
hexane-2-propanol (99:1), spiked with an internal standard
(500 ng of C46 glycerol trialkyl glycerol tetraether [GTGT];
Patwardhan and Thompson, 1999), and filtered through a
short bed of Na2SO4. GDGTs were analyzed using high-
performance liquid chromatography-mass spectrometry
(HPLC-MS) with an Agilent 1260 HPLC system coupled to
an Agilent 6130 Series quadrupole mass spectrometer.
Separation was achieved on two ultra-HPLC silica columns
(ACQUITY BEH HILIC columns, 2.1 × 150 mm, 1.7 μm;
Waters, Milford, MA, United States) in series, fitted with a
2.1 × 5 m pre-column of the same material (Waters) and
maintained at 30°C. GDGTs were eluted isocratically for
25 min with 18% B, followed by a linear gradient to 35% B
in 25 min, then a linear gradient to 100% B in 30 min, where
A was hexane and B was hexane:isopropanol (9:1, v/v).
The flow rate was 0.2 ml/min. The total run time was
90 min with a 20 min re-equilibration. Ionization was
achieved using atmospheric pressure, positive ion chemical
ionization-MS. The spectrometer was run in selected ion
monitoring mode (m/z 743.8, 1,018, 1,020, 1,022, 1,032,
1,034, 1,036, 1,046, 1,048, 1,050, 1,292.3, 1,296.3, 1,298.3,
1,300.3, and 1,302.3). Compounds were identified by
comparing mass spectra and retention times with those in
the literature (Hopmans et al., 2000; De Jonge et al., 2014).
Quantification was achieved by integrating the peak area in
the (M+H)+ chromatogram and comparing these with the
peak area of an internal standard (C46 GTGT) in the (M+H)+

chromatogram according to the method of Huguet et al.
(2006). The correction value of ionization efficiency
between GDGTs and the internal standard was obtained in
our laboratory by comparing the peak areas of isolated
crenarchaeol and branched GDGTs I and II (Schouten
et al., 2013) and C46 GTGT in known amounts. In the
routine analysis, a working standard that was a mixture of
C46 GTGT and the GDGTs extracted and purified from East
China Sea sediment was inserted every 20 samples to monitor
ionization efficiency changes.

To estimate the terrestrial/in-situ production ratio of branched
GDGTs, the weighted average number of cyclopentane moieties
of tetramethylated branched GDGTs (#Ringstetra) was calculated
(Sinninghe Damsté, 2016):

#Ringstetra �
([Ib] + 2[Ic])

([Ia] + [Ib] + [Ic]).

To estimate the mean annual temperature (MAT), the
following parameters were calculated with the following
equations based on a global soil dataset obtained using
different calibration strategies (De Jonge et al., 2014):

MBT ′
5ME � ([Ia] + [Ib] + [Ic])

([Ia] + [Ib] + [Ic] + [IIa] + [IIb] + [IIc] + [IIIa]) ,

MAT � −8.57 + 31.45MBT ′
5ME

(RMSE � 4.8°C)
(1)
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FIGURE 4 | Changes in the glycerol dialkyl glycerol tetraether (GDGT)-based mean annual temperatures (MATs) obtained using different calibrations (Equations
1–4), weighted average number of cyclopentane moieties of tetramethylated branched GDGTs (#Ringstetra), average chain length (ACL), and δ13C and δD of long-chain
n-fatty acids in sediments from core RK12-2, Kushu Lake, Rebun Island, over the last 17 ka. The vertical bar of the sample value indicates 1σ. OD, Oldest Dryas period;
BA, Bølling–Allerød period; and YD, Younger Dryas period.
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Index 1 � log
([Ia] + [Ib] + [Ic] + [IIa′] + [IIIa′])
([Ic] + [IIa] + [IIc] + [IIIa] + [IIIa′]),

MAT � 5.05 + 14.86 Index 1

(RMSE � 4.7°C)

(2)

MATmr � 7.71 + 17.1[Ia] + 25.9 [Ib] + 34.4 [Ic] − 28.6 [IIa],
RMSE � 4.6°C.

(3)

MATmrs � 5.58 + 17.91[Ia] − 18.77[IIa]
(RMSE � 5.0°C) (4)

where [Ia] to [IIIc′] are the GDGTs defined in De Jonge et al.
(2014).

RESULTS AND DISCUSSION

GDGT-Based Temperature
The MAT reconstruction based on the four different calibrations
yielded similar variation within the calibration error of 4.6–5.0°C
(Figure 4). The average value of the reconstructed temperature
varied between –0.7 and 10.6°C and was low at ∼17 ka and high
between 9 and 6 ka (Figure 4). The core-top temperature
(3.3–5.8°C) was consistent with the current mean annual air
temperature ∼83 km southeast of the study site (6.4°C at
Teshio; Japan Meteorological Agency, https://weather.time-j.
net/Stations/JP/teshio) within the calibration error. Because
branched GDGTs are produced in both terrestrial and

FIGURE 5 | Abundance of pollen in sediments from the RK12 core during the last 17 ka (Müller et al., 2016).
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lacustrine environments (e.g., Schouten et al., 2012), the
reconstructed temperature may reflect both terrestrial and lake
water temperatures. The #Ringstetra index varied between 0.1 and
0.5, but was mainly 0.3–0.4 after 16 ka (Figure 4), corresponding
to the range of dominant terrestrial branched GDGTs (Sinninghe
Damsté, 2016). This indicated that the branched GDGTs were
mainly of terrestrial soil origin, with a small lacustrine
contribution after 16 ka. We assume that the GDGT-derived
MAT reflects the terrestrial air temperature rather than the
lake water temperature. The record shows a colder climate in
the Late Glacial and a warmer climate in the early Middle
Holocene (Figure 4).

The pollen assemblage in sediments from the RK12 core was
described and the paleovegetation discussed in Müller et al.
(2016) and Leipe et al. (2018) is as follows. From 16 to 11 ka,
the vegetation shifted from herbaceous (predominantly
Cyperaceae) to trees and shrubs (Pinaceae, Alnus, and Betula)
(Figure 5). The spread of woody vegetation was interrupted
during the Younger Dryas period, although the reversal was
not prominent. In the Middle Holocene between 8 and 4 ka,
there was a major spread of deciduous Quercus trees, with the
highest percentages of Quercus pollen (17–27%) between 6 and
5 ka (Figure 5) (Müller et al., 2016; Leipe et al., 2018). This is in
line with a major spread of cool mixed and cool conifer forests in
the Hokkaido Region (Igarashi, 2013). The Late Holocene section
of the RK12 record showed the highest percentages of Abies and
Pinaceae pollen by ∼2 ka (Figure 5), suggesting an increase in
coniferous tree cover in the regional forest vegetation. This pollen
record in Lake Kushu is consistent with the result of our MAT
reconstruction. The culmination of Quercus pollen was delayed
behind the MAT maximum by ∼1 ka, presumably reflecting the
time required for vegetation transition.

Distribution of n-Fatty Acids
All of the samples showed a bimodal homologous distribution of
n-fatty acids with maxima at C16 and C26 or C28. The n-fatty acids
aroundC16 are ubiquitous in eukaryotes and bacteria, while the long-
chain n-fatty acids (>C26) are derived from vascular plants (Eglinton
andHamilton, 1967). The long-chain n-fatty acids (>C26) weremore
abundant than the shorter homologs. The even carbon number
preference ranged from 5 to 18, typical fresh leaf wax.

The ACL varied between 27.5 and 28.2 and was higher in the
period between 10 and 6 ka than in other periods (Figure 4). In
modern plants, the ACL of plant leaf wax (long-chain n-alkanes)
is higher in warmer climates (Tipple and Pagani, 2013). It is also
sensitive to relative humidity, but the response is opposite in
different species (Hoffmann et al., 2013). The ACL is higher in
grasses than trees in the temperate climate zone (Bush
McInerney, 2013). The abundance variation in Poaceae and
Cyperaceae pollen was not consistent with the ACL (Figure 5;
Müller et al., 2016), suggesting that the higher ACL between 10
and 6 ka does not reflect grass abundance and aridity but rather a
warm climate, as indicated by the GDGT indices.

Relatively high ACL was also found in the Oldest Dryas period
(Figure 4). The pollen record indicated that Cyperaceae pollen
was abundant in this period (Figure 5; Müller et al., 2016),
suggesting that the high ACL reflected an abundance of sedge.

Leaf Wax δ13C
The δ13C of long-chain (C26, C28, and C30) n-fatty acids varied
between –35.6 and –26.8‰ (Figure 4). The values were higher in
the period between 9 and 5 ka (Figure 4). The δ13C of long-chain
n-fatty acids of C3 and C4 plants sampled in the early 2000s (CO2

concentration ∼370 ppm) averaged –37.1 ± 2.0‰ (n � 13) and
–19.5 ± 1.8‰ (n � 9), respectively (Chikaraishi et al., 2004).
However, these end-member values have varied in the past.
Contemporary δ13C values for both C3 and C4 plants have
been affected by the Suess effect (decreasing by ∼2‰ over the
past 250 years; Keeling et al., 2017). The δ13C values of C3 plants
have been reduced further by increasing isotopic fractionation,
which is governed by the atmospheric CO2 concentration
(Schubert and Jahren, 2015). Considering these effects, the
calculated fatty acid δ13C of C3 plants at a CO2 of 280 ppm is
–33.7‰. In comparison, the δ13C value for C4 plants is
independent of the atmospheric CO2 concentration. The fatty
acid δ13C of C4 plants before 1750 CE was –17.5‰. The δ13C of
long-chain n-fatty acids in the study samples varied around the
end-member values of C3 plants. If the variation in δ13C reflected
the mixing ratio of C3 and C4 plants, the higher δ13C between 10
and 5 ka would indicate the contribution of C4 plants. However,
the pollen record from the study core did not show evidence of a
greater contribution of C4 plants in this period, suggesting that
another factor was responsible for the reconstructed shift in the
δ13C values.

The δ13C of C3 plants is affected by photosynthetic activity
(Farquhar and Richards, 1984; Evans et al., 1986), where greater
activity induces higher δ13C. In the RK12 core, higher δ13C
appeared in a warm period (Figure 4). Therefore, we postulate
that a warm climate enhanced C3 plant photosynthesis, which
increased δ13C.

Leaf Wax δD
The δD of long-chain (C26, C28, and C30) n-fatty acids varied
between –220.6 and –151.5‰ (Figure 4). The δD was lower at
∼17, 11, and 5 ka and higher at 9–6 ka (Figure 4). The variation in
δD was similar to that in the GDGT-based MATs (Figure 4).
Dansgaard (1964) and Jouzel et al. (1994) showed that the δ18O of
global precipitation is related to the MAT. Jouzel et al. (1994) also
found that areas with a MAT below 15°C had a linear relationship
betweenMAT and the mean annual δ18O of precipitation (δ18O �
0.64 MAT—12.8). This is equivalent to the formula δD � 5.12
MAT—92.4. The MAT at the study site is 6.4°C (1981–2010;
Japan Meteorological Agency, https://weather.time-j.net/
Stations/JP/teshio) and the mean annual δD at Teshio 80 km
southeast of the sampling site is −69.6‰ (2010–2014; Li et al.,
2017). These values are consistent with the relationship
described above.

The maximum range of long-chain fatty acid δD variation was
69.1‰ (Figure 4). If this variation was caused only by a process
following the above MAT–δD relationship, a 69.1‰ variation in
δD would correspond to a 13.5°C variation in MAT. Our MAT
estimates based on the GDGT compositions indicated that the
temperature variation over the last 17 ka was 11.3°C. Summer SST
records from the northern Japan margin over the past 17 ka show
a variation of ∼8°C (Site PC-6 in Minoshima et al., 2007; Site
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GH02-1030 in Inagaki et al., 2009). This implies that the
temperature effect explains a large part of the variation
observed in C26 and C28 fatty acid δD.

Two other potential factors control long-chain fatty acid δD
via the mean annual δD of precipitation. The first factor is the
seasonal variation in the δD of precipitation. Water precipitated
in autumn has ∼30‰ higher δD values than that precipitated in
winter and spring (Figure 2) (Li et al., 2017). Thus, a large
amount of autumn precipitation or a lower amount of winter and
spring precipitation would shift the mean annual δD values in a
positive direction.

The position of the westerly wind axis is the second factor
controlling long-chain fatty acid δD via the mean annual δD of
precipitation (Li et al., 2017). Precipitation occurs in Hokkaido
when a low-pressure system migrates from west to east along
with the westerly jet. The δD values of precipitated water were
24–32‰ higher when the migration path of the low-pressure
system was located to the north of the study location relative to
times when the migration path was located to the south (Li
et al., 2017). When the westerly jet is located north of the study
site, southerly winds bring moisture from the south, inducing
more precipitation at the study site (Figure 2). Thus, a

FIGURE 6 | Changes in the glycerol dialkyl glycerol tetraether-based mean annual temperatures (MATs) obtained using different calibrations (averages and 1σ
range), UK

37’-based sea surface temperature (SST) at sites MD01-2421 (Yamamoto et al., 2004; Yamamoto et al., 2005; Isono et al., 2009; Yamamoto, 2009) and PC-6
(Minoshima et al., 2007) in the Kuroshio–Oyashio transition zone, temperature index of diatoms (Td’) and relative abundance of Fragilariopsis doliola, and Tsushima
Warm Current species in cores KH-84-3-9, KH-84-3-33, KH-86-2-9, and D-GC-6 (Koizumi et al., 2006) over the last 17 ka.
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northward shift in the position of the westerly jet increases the
δD of precipitated water, and the associated higher fraction of
summer-to-annual precipitation further increases the δD.
These results suggest that the position of the westerly jet
controls the amount of precipitation, as well as the δD of
precipitated water over a long timescale. Higher long-chain
fatty acid δD reflects a northerly position of the summer
westerly jet and the resultant increase in summer and
autumn precipitation.

One may speculate that the strengthening of the TWC
increased winter precipitation and decreased the fatty acid
δD from the Middle to Late Holocene because, in winter,
the East Asian winter monsoon influences all of Hokkaido
and brings heavy snowfall to mountainous areas. Plants
might partly use the water supplied by winter precipitation.
Even if winter precipitation was higher, the δD should be lower.
However, the precipitation from January to April is only one
third that from June to October at present (Japan
Meteorological Agency, https://weather.time-j.net/Stations/JP/
teshio). If winter precipitation was lower in the Middle
Holocene than in the Late Holocene, the effect on the δD of
annual precipitation should be small. Therefore, this case can
likely be neglected on a millennial timescale.

Evapotranspiration induces the enrichment of deuterium in
the plant body water. The evapotranspiration rate depends on the
relative humidity. When the relative humidity is low,
evapotranspiration is expected to be more active, resulting in
higher leaf wax δD. However, the low abundance of Poaceae and
Cyperaceae pollen does not indicate a dry environment during
9–6 ka (Figure 5; Müller et al., 2016) and was not consistent with
the high δD during 9–6 ka, suggesting that the higher high δD
does not reflect a dry environment.

The above discussion summarizes that the leaf wax δD at the
study site reflects the global distribution of precipitated water δD
and temperature. The latitudinal gradient of precipitated water
δD is enhanced north and south of the westerly jet (Li et al., 2017).
We thus conclude that the higher leaf wax δD during 9–6 ka likely

reflected a warmer climate and the northern position of the
westerlies.

Factors Controlling Summer Climate in
Northern Japan Over the Past 17 ka
The Hokkaido region is located at the mean position of the
modern summer westerly jet (Figure 1) and at the northern
margin of the East Asian summer monsoon, which brings a
warm, moist air mass from the Pacific Ocean to this area.
When the westerly jet is located in the north, the southerly
winds (i.e., the East Asian summer monsoon) reach Hokkaido,
resulting in a warm, wet climate (Nitta, 1987; Kawamura et al.,
1998).

The GDGT-based MATs, the ACL, and the δ13C and δD of
long-chain n-fatty acids indicated that climate was cold in the
Oldest Dryas period and warm during 10–6 ka (Figure 4). This
climate change is consistent with the SST changes in the KOT
(Figure 6) (Site PC-6 in Minoshima et al. (2007); Site MD01-
2421 in Yamamoto et al. (2004), Yamamoto et al. (2005), Isono
et al. (2009), Yamamoto, (2009)). The summer position of the
westerly wind axis in the study region is related to the strength
of the North Pacific High (Nitta, 1987; Kawamura et al., 1998),
with a stronger (weaker) North Pacific High shifting the
westerly wind axis northward (southward) (Figure 7). The
development of the North Pacific High drives the oceanic
subtropical gyre circulation in the North Pacific. The Pacific
SST in the KOT is a good indicator of the strength of the
Kuroshio and its extension, which form part of the subtropical
gyre circulation. Thus, the correspondence between the
climate of Rebun Island and the SST in the KOT suggests
that the summer position of the westerly wind axis is linked to
the oceanic subtropical gyre circulation in the North Pacific via
regional atmospheric dynamics in the northwestern Pacific
region. The postglacial climate of Rebun Island reflects
changes in the atmospheric conditions, i.e., the northward-
shifted position of the westerly jet, stronger influence of the

FIGURE 7 | Schematic maps show the postulated positions of the summer westerly jet, the Kuroshio Extension (Yamamoto, 2009) and the Tsushima Warm
Current (TWC; Koizumi et al., 2006) in different climate regimes.
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East Asian summer monsoon, and development of the North
Pacific High, and vice versa (Sakurai et al., 2021).

However, the climate change during the Holocene is not
consistent with changes in the TWC in the Sea of Japan
indicated by the temperature index of diatoms [Td’ � warm/
(warm + cold) water diatom species] or the abundance of
Fragilariopsis doliola, a marker diatom species of the TWC, in
core D-GC-6 from the southern Sea of Japan (Figure 6) (Koizumi
et al., 2006). On Rishiri Island, 40 km south of Rebun Island,
cellulose δ18O in peat cores from site MHWL showed that the
influence of the TWC on the δ18O of precipitated water appeared
after 2.8–1.3 ka (Yamamoto and Seki, unpublished data). However,
the relationship between the fatty acid δD and the strength of the
TWC on a millennial timescale during the Holocene is not clear.

The above considerations imply that the climate of
northern Japan was controlled mainly by changes in the
development of the North Pacific High via changes in the
position of the westerly jet and the East Asian summer
monsoon rainfall, while the influence of the TWC was
limited on a millennial timescale.

CONCLUSION

The GDGT-based MAT, ACL, δ13C and δD of long-chain
n-fatty acids indicated that the climate in northern Japan was
cold in the Oldest Dryas period and warm during 9–6 ka. This
climate change is consistent with the SST in the KOT, but
inconsistent with changes in the TWC in the Sea of Japan.
The results imply that the climate of northern Japan was
controlled mainly by changes in the development of the
North Pacific High via changes in the position of the
westerly jet and the East Asian summer monsoon rainfall,
whereas the influence of the TWC was limited on a
millennial timescale.
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Orbital and Millennial Variations in Sea
Ice in the Southwestern Okhotsk Sea
Since the Last Interglacial Period and
Their Implications
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Yanguang Liu1,2, Yonghua Wu1,2 and Sergey A. Gorbarenko3

1Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao,
China, 2Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China, 3V.I.
Il’ichev Pacific Oceanological Institute, Far East Branch of Russian Academy of Science, (FEB of RAS), Vladivostok, Russia

Sea ice in the Okhotsk Sea plays a significant role in global climate change. However, the
history and mechanism of changes in sea ice spanning the last glacial cycle remain
controversial. In this study, an 8.8 m core (LV55-40-1) was recovered from the
southwestern Okhotsk Sea that contains a continuous sea ice record over the past
∼110 kyr. The sand fraction and dropstones were used as ice-rafted debris proxies to
reconstruct the history of sea ice variations over the last ∼110 kyr and to determine the
underlying causes on orbital and millennial timescales. Sea ice expansions occurred during
MIS 5b, MIS 4, mid-MIS 3, and early MIS 1, which were controlled mainly by decreased
autumn insolation on an orbital timescale. Superimposed on the orbital-scale changes,
millennial-scale variations in sea ice were also observed, with 19 expansion events that
coincided with cold Dansgaard-Oeschger stadials. Millennial scale sea ice variations were
most likely controlled by both the Arctic oscillation and the East Asian summer monsoon.
During periods of negative Arctic oscillation patterns, decreased air temperatures over the
Okhotsk Sea caused more active sea ice formation. Such conditions could have been
reinforced, by a reduced influence of warm advection at the surface of the Okhotsk Sea
caused by decreased discharge from the Amur River that resulted from a weakened East
Asian summer monsoon during cold stadials.

Keywords: sea ice, ice-rafted debris, orbital scale, millennial scale, the Okhotsk Sea, the Amur River

INTRODUCTION

Sea ice is widespread in the subarctic North Pacific, and its expansion and retreat impact local and
global climate changes by modulating the sea ice-induced albedo and energy budgets at both high
and low latitudes (Turner et al., 2015; Serreze et al., 2016). Variations in sea ice influence the primary
productivity in the Okhotsk Sea (Seki et al., 2004; Iwasaki et al., 2012; Jimenez-Espejo et al., 2018), as
well as global ocean circulation and ventilation (Itaki, 2004). Consequently, sea ice variations on
geologic timescales have played a significant role in paleoclimatic changes (Harada et al., 2012).

The Okhotsk Sea is located at the southernmost boundary of the region influenced by sea ice, and
approximately two-thirds of the sea are covered by sea ice during the winter (Sakamoto et al., 2006).
Therefore, sea ice coverage in the Okhotsk Sea is very sensitive to local and global changes in
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oceanography and climate (Nürnberg and Tiedemann, 2004; Seki
et al., 2004; Sakamoto et al., 2005, Sakamoto et al., 2006; Nürnberg
et al., 2011; Vasilenko et al., 2017; Vasilenko et al., 2019). The
history of sea ice variations and their underlying causes have
attracted attention from the paleoceanography research
community (e.g., Nürnberg and Tiedemann, 2004; Sakamoto
et al., 2006; Nürnberg et al., 2011; Vasilenko et al., 2017;
Vasilenko et al., 2019; Lo et al., 2018). However, sea ice
variations and their driving mechanisms over the last glacial
cycle remain controversial. Some studies have suggested that the
entire Okhotsk Sea has been influenced by seasonal/annual sea ice
since the last interglacial period (Gorbarenko et al., 2003; Seki
et al., 2004; Sakamoto et al., 2005; Sakamoto et al., 2006;
Vasilenko et al., 2019; Gorbarenko et al., 2020), while other
studies have demonstrated that perennial sea ice was present
during severe cold stages, such as MIS 4, MIS 2 (Wang andWang,
2008; Vasilenko et al., 2019), and at ∼30 ka (Lo et al., 2018).
Moreover, the mechanisms driving sea ice variations on orbital
and millennial timescales are still debated. Previous studies have
suggested that sea ice variations on orbital scales are controlled
largely by glacial–interglacial cycles (Gorbarenko et al., 2002;
Gorbarenko et al., 2003; Nürnberg and Tiedemann, 2004;
Sakamoto et al., 2005). However, C25 highly branched
isoprenoid (IP25)-derived sea ice records suggest that
variations in sea ice in the central Okhotsk Sea were
controlled by both insolation and atmospheric CO2

concentrations (Lo et al., 2018). In contrast, sea ice variations
on millennial scales are more complex. Vasilenko et al. (2017)
demonstrated that millennial-scale sea ice expansion was
controlled by the velocity of geostrophic winds that dominated
over the Okhotsk Sea, as the direction of ice drift coincided with
the wind direction. The Arctic Oscillation (AO) is a dynamic
atmospheric process in which the associated pressure changes
over the Arctic influence atmospheric circulation over the
Eurasian continent and adjacent areas (Thompson, 1998). It
has been suggested that polar atmospheric circulation in the
northern hemisphere is a key process that affects sea ice
expansion on millennial scales (Sakamoto et al., 2006).
Sakamoto et al. (2006) also inferred that discharge from the
Amur River and polar atmospheric dynamics were potential
factors that control sea ice expansion on millennial scales.
Based on sea ice extents and inter-annual variations in Amur
River discharge, Ogi et al. (2001) found a strong correlation
between sea ice extent in the Okhotsk Sea and monsoon-induced
fluvial discharge. However, there is no evidence suggesting that
such a mechanism operates on geologic timescales. In addition,
most of the sedimentary records related to sea ice changes during
the last glacial cycle were from the central and eastern parts of the
Okhotsk Sea, records from the southwestern Okhotsk Sea that are
sensitive to fluvial effects are scarce. The southwestern Okhotsk
Sea is subject to the influence of fluvial discharge via the East
Sakhalin Current (Zhabin et al., 2010). Therefore, this is an ideal
region for studying the history of sea ice cover and its potential
connections with fluvial discharge. In this study, we analyzed an
8.8 m long core (LV55-40-1) collected from the southwestern
Okhotsk Sea to determine the history of sea ice variations since
∼110 ka. Combined with previous results, we attempted to

determine the dominant factors that control sea ice variations
at orbital and -millennial timescales during the last glacial cycle.

REGIONAL SETTING

The Okhotsk Sea is the second largest marginal sea in the Pacific
Ocean. It is surrounded by the Asian continent, Sakhalin Island,
the Kamchatka Peninsula, the Kuril Islands and the island of
Hokkaido. The Okhotsk Sea is connected to the North Pacific and
the Japan Sea by the Straits of the Kuril Islands and by the Tatar
and Soya straits, respectively (Figure 1).

Surface circulation in the Okhotsk Sea is characterized by a
cyclonic gyre composed of the West Kamchatka Current (WKC),
East Sakhalin Current (ESC), and the salty Soya Warm Current
(SWC). The ESC flows along Sakhalin Island southward toward
the Kuril Islands, and finally leaves the Okhotsk Sea through the
Bussol Strait (Lapko and Radchenko, 2000). The water mass at
300–800 m depth in the Okhotsk Sea is called the Okhotsk Sea
Intermediate Water (OSIW) and is characterized by low-density
(26.7–27σθ), low-salinity (33.8‰), and oxygen-rich water
(Morley and Hays, 1983; Talley, 1993; Yang and Honjo, 1996).
The OSIW has similar characteristics to the North Pacific
Intermediate Water (NPIW) and is regarded as the present
source of NPIW (Talley, 1991; Yasuda, 1997; Freeland et al.,
1998; Martin and Kawase, 1998; Wong et al., 1998). Below the
OSIW, ancient deep Pacific water masses enriched in CO2 flow
into the Okhotsk Sea through the Krusenstherna Strait and flow
out through the Bussol Strait (Nürnberg and Tiedemann, 2004).

The Amur River is the largest river in East Siberia and is
adjacent to the northwestern continental shelf of the Okhotsk Sea.
The drainage area of the Amur River is ∼1.85 × 106 km2

(Mclennan, 2013). The river delivers ∼14 t km−2 of sediment
to the northern Okhotsk Sea annually, which is two to three times
higher than that of other Siberian rivers, including those that
drain into the Arctic Ocean (Anikiev et al., 2001). Freshwater
input from the Amur River is approximately 310 km3 per year
(Vörösmarty et al., 1996) and is mainly affected by the East Asian
Summer Monsoon (EASM). Due to EASM precipitation and
melting snow at high altitudes, the Amur River discharge is the
highest during August–October, also producing the warmest
water in the Okhotsk Sea (∼20°C) during the same period
(Ogi et al., 2001). The formation of a low-salinity layer in the
Okhotsk Sea is mainly due to inflow from the Amur River
(Freeland et al., 1998).

Sea ice in the Okhotsk Sea initially forms in November,
starting in the northwestern part of the basin and repeatedly
expanding southward (Sakamoto et al., 2005) due to transport by
the northerly winds and the southward flow of the Okhotsk Sea
(Ohshima et al., 2001; Wang et al., 2021). This creates a polynya
along the coast and forms new sea ice (Sakamoto et al., 2005;
Sakamoto et al., 2006). Sea ice in the Okhotsk Sea reaches its
maximum extent during March, with a maximum thickness of
∼1 m (Rycroft, 1995). The sea ice disappears entirely in June, with
ice-free conditions from July to October (Parkinson et al., 1987).
The expansion and retreat of sea ice are influenced not only by
ocean–atmosphere interactions, but also by the density of the
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surface water that influences ocean circulation (Ohtani and
Nagata, 1990). Intense sea ice formation causes brine rejection
and forms Dense Shelf Water on the northern Okhotsk Sea
shelves (Martin and Kawase, 1998; Gladyshev, 2003) and
contributes to the formation and ventilation of the NPIW
(Ohtani and Nagata, 1990; Talley, 1991; Wong et al., 1998).

MATERIALS AND METHODS

Core Description
Core LV55-40-1 (48.12°N, 147.15°E) was recovered from the
northern Kuril Basin in the southwestern Okhotsk Sea at a
water depth of 1,730 m (Figure 1). The 8.8 m thick deposits
were composed of homogeneous olive gray (5Y 4/2) silty clay with
distinctive layers dominated by coarse-grained sand and gravel at
340–345 cm and 385–388 cm depths. These layers were also

characterized by extremely high magnetic susceptibility, and
abundant volcanic glass (Figure 2).

Accelerator Mass Spectrometer 14C Dating
Mixed samples of the planktonic foraminifera Neogloboquadrina
pachyderma (sinistral) andGlobigerina bulloides larger than 145 μm
were collected from the core for accelerator mass spectrometer
(AMS) 14C dating (Table 1). TheAMS 14C analyses were performed
by Beta Analytic Laboratory. Calibrated calendar ages were
converted using CALIB 8.20 (Stuiver and Reimer, 1993) with the
MARINE20 database (Heaton, 2020) and a calculated weighted
mean △R � 450 ± 90 a (Lo et al., 2018).

X-Ray Fluorescence Scanning Analyses
X-ray fluorescence (XRF) scanning was performed at 0.5 cm
intervals using an Itrax XRF core scanner with a 20 s count time,
an X-ray voltage of 30 kV, and anX-ray current of 40–55mA,which

FIGURE 1 | Map of the Okhotsk Sea showing the locations of the core used in this study (LV55-40-1, red star) and other cores (blue dots) mentioned in the text
(Sakamoto et al., 2006; Harada et al., 2008; Lo et al., 2018). Blue arrows indicate the East Sakhalin Current (ESC), West Kamchatka Current (WKC), and Soya Warm
Current (SWC). The dashed line represents the average sea ice boundary from November to June according to Lo et al. (2018). Map generated using Ocean Data View
version 4 (Schlitzer, 2021).
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allowed for rapid, non-destructive, high-resolution elemental
analyses of the sedimentary cores (Jansen et al., 1998).

Biogenic Silica Analyses
Biogenic silica (opal) analyses were performed on 440 samples
using molybdate blue with modified pretreatments (Mortlock and
Froelich, 1989). Opal was extracted using 40.0 ml of 0.2 mol/L
NaCO3 solution at 85°C for 6 h. During the analyses, 2 ml of

C₂H₂O₄ was added to avoid interference by P and As. The opal
contents were quantified using a Mettler UV5 spectrophotometer.
The relative standard deviation (RSD) was less than 3%.

Chlorin Analyses
A total of 440 samples were analyzed to determine the chlorin
concentrations with modified pretreatments (Harris and
Maxwell, 1995). Briefly, ∼1 g of each sample was extracted

FIGURE 2 | Variations in (A) Magnetic Susceptibility, (B) Numbers of dropstones, and (C) Grain-size compositions with depth in core LV55-40-1.

TABLE 1 | AMS14C ages and calendar ages obtained from core LV55-40-1.

Laboratory number Core depth
(cm)

Conventional radiocarbon
age (a. BP)

±Error(a) Cal BP age
range (95.4%)

Median cal
BP age (95.4%)

Beta-577768 111.5 6,360 30 5,891–6,367 6,127
Beta-576614 199.5 12,990 40 13,636–14,311 13,957
Beta-577769 262.5 17,960 60 19,893–20,558 20,243
Beta-577770 378.5 27,130 110 29,737–30,372 30,042

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 7107974

Wang et al. Sea Ice in Okhotsk Sea

87

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


using 20 ml of 90% acetone and stored at 4°C for 24 h in the dark.
The extracted liquor was centrifuged and filtered through GF/F
membranes. The chlorin concentrations were determined using a
TD-700 fluorometer. The RSD was less than 2%.

Ice-Rafted Debris Analyses
In the Okhotsk Sea, coarse sediment fractions with grain sizes
larger than 63 μm in the Okhotsk Sea have been defined as ice-
rafted debris (IRD) according to previous studies based on
samples from sediment traps, surface sediments, and sediment
cores from the region (Sakamoto et al., 2005). Laser diffraction
and sieving of the IRD were performed, both of which were used
to describe the grain size fractions in the core (Sakamoto et al.,
2005, Sakamoto et al., 2006). Both of these methods were used in
order to make the results more credible.

Laser Diffraction Grain-Size Analysis
Grain-size analyses were performed on 442 samples at ∼1–2 cm
intervals to characterize the sediment texture using a Malvern
Master size laser particle sizer (Malvern 3000) with a range of
∼0.02–2,000 μm. Carbonates, organic material, and diatoms were
removed before analysis following the procedure introduced by
Vasilenko et al. (2017). Briefly, ∼0.1 g of sediment was pre-treated
with excess 15% H2O2 to remove organic matter, and with excess
10%HCl to remove CaCO3. The liquid was centrifuged three times
at pH � 7, then 20ml of 2 mol/L Na2CO3 was added and water-
bathed at 85°C for 8 h to remove diatoms. Representative samples
were observed under a microscope to ensure that the diatoms were
completely removed. The accuracy of the measurements was 99%
and the repeatability error was less than 0.1%.

Sieve Analysis
Approximately 3–10 g of dry samples were weighed before
sieving and washed with water passing through a 63 μm mesh
sieve. The residual samples on the sieve were dried at 60°C and
passed through a 2,000 μm mesh sieve, and every fraction was
weighed (Sakamoto et al., 2006; Nürnberg et al., 2011). The
>2,000 μm grains (dropstones) were collected during core
description, sampling and sieving, and were counted.

Time-Series Analysis
The IRD (vol%) time series analysis was performed using the
wavelet transform in Acycle (Li et al., 2019) and a 95% confidence
level was chosen. Cross-wavelet analysis visualizes the continuous
variations in power and coherence in the time-frequency domain
(Asahi et al., 2016). Prior to spectral analysis, all of the analyzed
data were resampled at 0.2 kyr for wavelet transform and cross-
wavelet analysis, which was the mean resolution of the sequence
based on linear interpolation.

RESULTS

Chronology
The age model for core LV55-40-1 was constructed based on
AMS 14C dating of planktonic foraminifera and on correlation of
the productivity proxies, such as Ba/Ti, chlorin and opal contents

with marine and Greenland ice sheet oxygen isotopic records
(Figure 3; Andersen et al., 2004; Lisiecki and Raymo, 2005). The
Ba/Ti ratio was assumed to indicate the relative contribution of
biological and terrestrial inputs into the Okhotsk Sea, which co-
vary with glacial–interglacial cycles with higher Ba/Ti values
during the interglacial periods (Figure 3C,F; Lo et al., 2018).
Similarly, opal contents exhibited cyclic variations, with high
abundances during interglacial periods and low abundances
during glacial periods (Figure 3D). The correlation between
opal contents and marine oxygen isotopes has been widely
used to construct age models for deposits in the Okhotsk Sea
(Narita et al., 2002; Sakamoto et al., 2006). In addition, magnetic
susceptibility correlated with LR04 (Lisiecki and Raymo, 2005)
and exhibited good correlations with log (Ba/Ti) and opal
contents (Figure 3C-E).

The chlorin content in the Okhotsk Sea increased during
Dansgaarde-Oeschger interstadials (DOIs), and have also been
used to construct high-resolution age models in the Okhotsk Sea
(Gorbarenko et al., 2007; Gorbarenko et al., 2009; Gorbarenko
et al., 2010; Gorbarenko et al., 2012; Vasilenko et al., 2017;
Gorbarenko et al., 2020). Thus, the resolution of the age
model was improved further by correlating the chlorin content
to DOIs in Greenland ice cores. In core LV55-40-1, the peaks in
chlorin content correlated well with long-lasting DOIs 8, 12, 14,
19, and 21 within established MISs (Figure 2F,G). The 8.8 m core
thus revealed orbital and millennial variations with a basal age of
110 kyr (early MIS 5d; Figure 3).

Variations in Ice-Rafted Debris in Core
LV55-40-1
The IRD (vol%) content determined by laser diffraction was
calculated as the volume percentage of the total terrigenous
materials and excludes the influence of biological material.
The IRD (wt%) content determined by sieving includes both
terrigenous grains and biogenic fractions. However, in the
Okhotsk Sea, the biogenic fraction is insignificant (Sakamoto
et al., 2006) and can be ignored in the sand fraction. Moreover,
the variations in the IRD fraction between these two analytical
methods were consistent in core LV55-40-1 (Figures 4C,D),
which confirms the above inference, and indicates that both
are suitable as proxies.

Variations in IRD (vol%) ranged from 0.36 to 46.7% (Figures
4D, 5D). In general, IRD (vol%) exhibited strong cyclic variations
from ∼110 to ∼10 ka (Figure 4D), mostly ranging from ∼5 to
∼15%. High-frequency fluctuations were observed at 105, 94, 87,
80, 78, 74, 70, 62, 58, 48, 40, 37, 34, 31, 29, 27, 22, 17, and 12 ka
(Figure 5D,E). Two significant peaks in IRD (vol%), with values
of 46.7 and 39.3%, corresponded to ∼31 and ∼27 ka, respectively.
The IRD (vol%) was low during the Holocene, with a mean of
4.7%. The variations in IRD (wt%) ranged from ∼2 to ∼52%
throughout the core, and exhibited a similar pattern to those of
the IRD (vol%) (Figures 4D, 5D).

A total of 99 dropstones were collected from the core sequence
(Figure 2B), with diameters ranging from 2 to 60 mm. The
presence of dropstones verifies the presence of sea ice, as ice
rafting is the main transport method for grains larger than 2 mm
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FIGURE 3 | Age model for core LV55-40-1. (A) Linear sedimentation rate, (B) Age-depth plot, (C) XRF-scanning log (Ba/Ti) ratio (blue line) with a 3-point running
average (red line), (D) Opal content, (E)Magnetic susceptibility, (F) Chlorin concentration, (G)Oxygen isotopes from the NGRIP ice core (Andersen et al., 2004), and (H)
LR04 δ18O stack (Lisiecki and Raymo, 2005). Purple triangles represent age model tie point using AMS 14C, orange and green dashed lines represent age control points
obtained using correlations between the log (Ba/Ti) ratio, opal content, magnetic susceptibility, and LR04 δ18O, and using correlations between chlorin
concentrations and oxygen isotopes from the NGRIP ice core. Pink shadows represent glacial periods.
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FIGURE 4 | Comparisons between variations in IRD proxies in core LV55-40-1 and other proxies. (A) SON-insolation (48°N; September, October, and November
mean insolation), (B) IP25 content in core MD01-2414 from the central Okhotsk Sea, a proxy of sea ice (Lo et al., 2018), (C) IRD (wt%) in core LV55-40-1, (D) IRD (vol%) in
core LV55-40-1, (E)Number of dropstones in core LV55-40-1, (F)Opal content in core LV55-40-1, and (G) LR04 δ18O stack (Lisiecki and Raymo, 2005). Blue shadows
represent intervals of sea ice expansion.
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to hemipelagic regions, especially in areas influenced by seasonal
sea ice (Sakamoto et al., 2006). Dropstones mostly occurred in
intervals with high IRD contents, and the maximum number of
dropstones (17) was observed at ∼27 ka, which may have also
been influenced by volcanic eruption as suggested by the
extremely high magnetic susceptibility (Figure 2A).

DISCUSSION

Sea Ice Variations in the Okhotsk Sea on
Orbital Timescale
Ice rafting is the dominant method of transport for coarse-
grained terrigenous material and dropstones to hemipelagic

FIGURE 5 |Comparison betweenmillennial-scale changes in IRD proxies in core LV55-40-1 and other proxies. (A)Oxygen isotopes from stalagmites (Cheng et al.,
2016), a proxy for the East Asian summer monsoon (EASM), (B) Oxygen isotopes of the NGRIP ice core (Andersen et al., 2004), a proxy for air temperature, (C)
Alkenone-derived temperature (°C) (Harada et al., 2008), indicating AO variations, (D) IRD (vol%) and (E) IRD (wt%) in core LV55-40-1. Grey shadows represent DOSs
intervals, orange shadows represent intervals potentially affected by volcanic eruptions.
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regions in the Okhotsk Sea (Sakamoto et al., 2006; Nürnberg et al.,
2011). However, turbidity currents, gravity flows, and volcanic
eruptions can also transport coarse materials into the sea
(Nürnberg et al., 2011; Wang et al., 2017). Evidence of turbidity
currents or gravity flows was not observed in core LV55-40-1, and
has not been recorded in cores from nearby regions (Karp, 1996;
Biebow, 1999). The extremely high magnetic susceptibility
(Figure 2A) and volcanic glass observed at ∼31 and ∼27 ka
implies that abundant volcanic materials were brought by either
directly volcanic eruption or by sea ice, which was difficult to
distinguish and may have affected the IRD content only during
early MIS 2 (Figures 4D,G, 5D); however, this disturbance may be
negligible because the abundant coarse volcanic material occurred
as very thin layers in the core. The obvious effects of volcanic
material on the IRD in the rest of the core could also be precluded
due to the relatively lowmagnetic susceptibility values (Figure 2A).

The presence of IRD is generally the result of the expansion of sea
ice under cold climatic conditions (Nürnberg and Tiedemann, 2004;
Seki et al., 2004; Sakamoto et al., 2005, Sakamoto et al., 2006;
Nürnberg et al., 2011). During cold stages, lower sea levels
resulted in greater exposure of the surrounding continental shelf;
thus, more terrigenous grains were captured and transported by sea
ice to the ocean (Sakamoto et al., 2005). It has been suggested that
perennial sea ice or ice-free conditions occur when IRD contents are
0% or approximately 0% (Seki et al., 2004; Sakamoto et al., 2005;
Sakamoto et al., 2006). Seasonal sea ice is the only method that can
transport dropstones to the ocean by ice rafting (Sakamoto et al.,
2006), which is supported by the presence of dropstones during both
warm and cold stages (Figures 2B, 4E-G). Even in the modern
southwestern Okhotsk Sea, there is a small area of seasonal sea ice
cover at the study site (Figures 4C,D). IRD was abundant
throughout the sequence in core LV55-40-1, suggesting that
seasonal sea ice was predominant in the southwestern Okhotsk
Sea over the past ∼110 kyr. This is supported by analyses of IRD in
coresMD01-2412 (Sakamoto et al., 2006) and XP98-PC4 (Sakamoto
et al., 2005) from the southwestern Okhotsk Sea, which
demonstrated that seasonal sea ice cover was present during the
past ∼100 kyr. However, conditions were different in other regions.
The diatom records from the central Okhotsk Sea suggested
perennial sea ice conditions during MIS 2 and MIS 4 (Wang and
Wang, 2008), whereas IRD records from the eastern Okhotsk Sea
indicate a seasonal to perennial sea ice cover (Nürnberg et al., 2011).
Other IRD records indicate that during MIS 2 perennial sea ice
covered the Okhotsk Sea only near the northwestern and western
coasts (Vasilenko et al., 2019). However, perennial sea ice conditions
were not present at our study site, even during the Last Glacial
Maximum (LGM). Instead, a seasonal sea ice cover was present
(Figures 4C,D). This implies that sea ice variations in the Okhotsk
Sea are spatially heterogeneous on geologic timescales (Gorbarenko
et al., 2014; Bosin et al., 2015; Vasilenko et al., 2019).

Generally, sea ice variations in the Okhotsk Sea exhibit cyclic
glacial–interglacial patterns on an orbital scale, with expanding
sea ice extents during glacials and retreating sea ice extents
during interglacials (Nürnberg and Tiedemann, 2004; Sakamoto
et al., 2005; Nürnberg et al., 2011; Zou et al., 2015; Wang et al.,
2017; Jimenez-Espejo et al., 2018). Variations in core LV55-40-1
do not strictly follow the glacial-interglacial cycles, and

four obvious sea ice expansions were observed during MIS
5b, MIS 4, mid-MIS 3, and early MIS 1, as indicated by high
IRD contents (Figure 4D). The reconstructed sea ice variations
from this core are mostly consistent with the IP25 record from
core MD01-2414 in the central Okhotsk Sea (Lo et al., 2018;
Figures 4B,D).

Sea ice formation in themodernOkhotsk Seamainly occurs during
thewinter (Parkinson et al., 1987; Rycroft, 1995). Previous studies have
demonstrated that air temperature and sea-surface conditions during
autumn play an important role in sea ice formation during the
subsequent winter (Ogi et al., 2001; Ogi and Tachibana, 2006).
Therefore, local autumn insolation may be related to sea ice
formation during the winter. This inference is confirmed by a
good correlation between the variations in sea ice derived from
IRD and autumn insolation in the study area (48°N; September,
October, and November mean insolation, SON-insolation). Four sea
ice expansions corresponded to either declining or minimum SON-
insolation (Figures 4A,D). This suggests that seasonal sea ice
variations on an orbital scale in the Okhotsk Sea were controlled
by local autumn insolation, which exhibits a strong precession cycle.
This inference is further supported by the wavelet transform analysis
of IRD (Figure 6A) and a cross-wavelet analysis between IRD and
SON-insolation (Figure 6B), which exhibited a strong 20-kyr cycle
throughout the sequence (Figure 4D).

Sea Ice Variations in the Okhotsk Sea on
Millennial Timescale
High-resolution variations in IRD revealed millennial-scale sea ice
fluctuations over the past ∼110 ka, which are superimposed on the
variability at the orbital scale. In total, 19 IRD peaks were observed
throughout the sequence, which correspond with cold Dansgaarde-
Oeschger stadials (DOS) recorded by the Greenland ice sheet
(Andersen et al., 2004; Figures 5B,D). Previous studies have
reported that millennial-scale sea ice variations can be correlated
withmillennial climatic changes, such asDOcycles (Gorbarenko et al.,
2003; Sakamoto et al., 2005; Sakamoto et al., 2006; Nürnberg et al.,
2011; Vasilenko et al., 2017). A recent study suggested that the velocity
of geostrophic winds over the Okhotsk Sea dominated sea ice drift,
thereby causing the expansion of sea ice on millennial scales
(Vasilenko et al., 2017). Mayewski et al. (1994) attributed rapid
climatic changes to significant reorganization of atmospheric
circulation, which stimulated changes in sea ice cover in the ocean.
A study of the history of sea ice variations derived from IRD analyses
also highlighted the importance of millennial-scale variations in polar
atmospheric circulation for driving sea ice changes in the Okhotsk Sea
(Sakamoto et al., 2005). Therefore, atmospheric circulation in the polar
region and its correlation with pressure in the mid-latitudes might be
related to sea ice changes in the Okhotsk Sea on a millennial scale
(Sakamoto et al., 2005; Sakamoto et al., 2006; Harada et al., 2008).

The AO is a dynamic atmospheric process, and the associated
pressure changes over the Arctic are opposite to those over the
mid-latitude region in the Northern Hemisphere (Thompson,
1998). The AO exerts a strong influence on atmospheric
circulation over the Eurasian continent and adjacent areas.
Modern data suggests that sea ice cover in winter is strongly
affected by the annual integrated AO in the Okhotsk Sea (Ogi and
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Tachibana, 2006). An IRD record from the central Okhotsk Sea
also indicated that sea ice expansions in DOSs during the past
∼100 kyr were the result of variations in polar atmospheric
circulation in the Northern Hemisphere (Sakamoto et al., 2005).
Therefore, the Arctic atmospheric processes must contribute to sea
ice variations in the study area on a millennial scale. It has been
suggested that the alkenone-derived ocean surface temperatures
corresponded with AO on geologic timescales (Harada et al., 2008)
and were coupled with temperature changes in the Arctic, with low
temperatures indicating a negative AO, and vice versa. Therefore,
negative AO during stadials plays a dominant role in sea ice
expansion in the Okhotsk Sea, as negative AO patterns are
closely correlated with cold DOSs (Harada et al., 2008; Figures
5C,D). During these sea ice expansion intervals, cold air masses
could have easily penetrated through the Arctic region during
periods with negative AO pattern, lowering the air temperatures
over the Okhotsk Sea and causing more active sea ice formation
(Thompson and Wallace, 1998; Harada et al., 2008).

In addition to the effects of AO, thermal anomalies at the
ocean surface may have also influenced the sea ice formation in
the Okhotsk Sea (Ogi et al., 2001; Sakamoto et al., 2005; Sakamoto
et al., 2006; Harada et al., 2008). Such thermal anomalies are
closely related to the discharge of warm freshwater (Ogi et al.,
2001; Harada et al., 2008). In the modern Okhotsk Sea, the Amur
River discharge brings warm water advection to the surface
seawater, thereby reducing the sea ice formation during the
subsequent winter (Ogi et al., 2001). On geologic timescales,
the Amur River discharge is a potential factor that controlled sea

ice variations during warm periods (Sakamoto et al., 2006). Core
LV55-40-1 is located in an area east of the Sakhalin Islands, which
is influenced by freshwater discharge from the Amur River that is
transported by the ESC (Itoh and Ohshima, 2000; Sakamoto et al.,
2005; Figure 1). Therefore, the discharge from theAmur Rivermay
have also contributed to sea ice variations during interglacial
periods in the study area by modulating the sea-surface thermal
conditions. As fluctuations in the Amur River discharge were
controlled by the intensity of the EASM (Harada et al., 2008),
the reconstructed variations in sea ice also corresponded well with
the EASM variability on the millennial scale, with decreased sea ice
formation during warm stages (Cheng et al., 2016; Figures 5A,D).
During periods of enhanced EASM, increased monsoon
precipitation would increase the discharge from the Amur
River. The advection of this warm freshwater to the
southwestern Okhotsk Sea caused thermal anomalies at the
ocean surface (Ogi et al., 2001), thereby suppressing subsequent
sea ice formation. In contrast, less warm freshwater input during
cold stadials in the interglacials due to weak monsoonal conditions
would allow more sea ice formation in the study area.

CONCLUSION

We reconstructed the history of sea ice variations in the
southwestern Okhotsk Sea over the last ∼110 kyr and
investigated the factors controlling sea ice changes on orbital
and -millennial timescales based on the IRD proxy. Seasonal sea

FIGURE 6 | (A) Continuous wavelet transform analysis of IRD (vol%) in core LV55-40-1 and (B) Cross-wavelet analysis of IRD (vol%) in core LV55-40-1 and SON-
insolation. Blue dashed lines represent main orbital cycle of 20-kyr.
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ice was predominant in the southwestern Okhotsk Sea during
the past ∼110 kyr. Sea ice expansion occurred during MIS 5b,
MIS 4, mid-MIS 3, and early MIS 1, which corresponded to
period of less SON-insolation. Combined with the strong 20-kyr
cycles in the IRD proxy, we suggest that orbital-scale sea ice
variations in the southwestern Okhotsk Sea were controlled
primarily by local autumn insolation. The millennial-scale sea
ice variations are related to DO cycles, with sea ice expansion
corresponding to cold DOSs. We suggest that sea ice variations
were impacted by both the AO and the EASM. During intervals
of sea ice expansion, cold air masses could have easily penetrated
through the Arctic region during periods of negative AO
pattern, thereby lowering the air temperature in the Okhotsk
Sea latitudes and causing more active sea ice formation. In
addition, the high discharges of warm freshwater transported by
the Amur River to the southwestern Okhotsk Sea during warm
interstadials caused thermal anomalies at the ocean surface,
thereby suppressing the subsequent sea ice formation. In
contrast, lower warm freshwater input during cold stadials
would allow more sea ice formation in the study area.
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Reconstructing the Climate Variability
During the Last 5000 Years From the
Banni Plains, Kachchh, Western India
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The climatic conditions during the beginning of the last 5,000 years have been discussed,
debated, and documented from various parts of the Indian subcontinent, due to the
human–climate interrelationship. In the present study, we report a multi-proxy dataset
encompassing the widely used ∼ geochemical and mineral magnetic proxies supported by
radiocarbon and optical chronologies from the Banni Plains of the Rann of Kachchh,
western India. Our results support the earlier observations of the prolonged wetter climatic
condition synchronous with the mature phase of Harappan era which witnessed a short
and intense arid condition at the terminal part of the mature Harappan phase. The climate
system dramatically fluctuated during the last five millennia from pulsating between
relatively arid (4,800–4,400 years BP, 3,300–3,000 years BP, and at 2,400 years BP)
and relatively humid phases (>4,800 years BP, 4,000–3,300 years BP, 1900–1,400 years
BP, and 900–550 years BP). Themulti-proxy dataset shows a gradual strengthening of the
monsoonal conditions from the Banni Plains during the late Harappan phase. Apart from
this, the high sedimentation rate (>1mm/yr) recorded from the Banni Plains suggests it can
be tapped as a robust archive to reconstruct multi-decadal to centennial climatic events
spanning the Holocene epoch.

Keywords: paleoclimate, Banni plains, middle to late Holocene, Kachchh, Harappan civilization 2

INTRODUCTION

Southwest Indian monsoon has a high socioeconomic impact as it plays a key role in delivering
annual rainfall (nearly 80%) in the Indian subcontinent (Anderson et al., 2010; Berkelhammer et al.,
2010). An understanding of the variability of Indian summer monsoon (ISM) rainfall for the
Holocene epoch is vitally required to assess the speculated link between the climate deterioration and
the decline in ancient civilization. The mid-Holocene, in particular, has witnessed several changes in
climate with abrupt short events recorded globally as well as in the Indian subcontinent (Lamb, 1985;
Bianchi and Mc Cave, 1999; Anderson et al., 2010; Sanwal et al., 2013; Quamar and Chauhan, 2014;
Ngangom et al., 2016). Prasad et al. (2007), Prasad et al. (2014 b) reported wetter climate during the
5.5 to 2.8 ka BP from the lacustrine environments of Mainland Gujarat. Similarly, Laskar et al. (2013)
reported subhumid climatic conditions from fluvial sediments of the Mainland Gujarat region. The
period between 2.8 and 1.3 ka has reportedly experienced arid conditions from the lacustrine and
fluvial records of Mainland Gujarat (Laskar et al., 2013a; Prasad V. et al., 2014; Sridhar et al., 2014a).
Raja et al. (2019) reported paleoflood activity during 4,773 cal yr BP from the Parsons Valley Lake,
Tamil Nadu. Consequently, the mid-to-late Holocene tend to have recorded various centennial
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scaled abrupt climatic variations. However, studies documenting
the climatic variations on the centennial to decadal scale are still
limited and need to be looked upon (Binanchi andMc Cave, 1999;
Gupta et al., 2003; Sinha et al., 2007; Chauhan et al., 2009;
Makwana et al., 2019).

The Great Rann of Kachchh (GRK) in western India is a semi-
enclosed basin and a dominantly depositional
microenvironment, and hence the paleo-mudflats of Rann
have proven to be useful to decipher past climatic oscillation
in different timescales (Pillai et al., 2017, 2018; Basu et al., 2019;
Makwana et al., 2019). The recent efforts have hinted that the
Rann sediments remain a treasure trove for reconstructing
Holocene paleoclimate (Ngangom et al., 2016; Pillai et al.,
2017, 2018; Basu et al., 2019; Makwana et al., 2019; Sengupta
et al., 2019; Sarkar et al., 2020). The Rann of Kachchh is believed
to be a Holocene sediment depocenter (Maurya et al., 2013) and
also has been a hotspot of mature and late Harappan occupation,
which believed to be a riverine and trade-oriented civilization
during 7000 BP to 3900 BP (Gaur et al., 2013; Sarkar et al., 2020).
Large urban centers of mature Harappan settlements flourished
along the Indus and Ghaggar-Hakra rivers (Possehl, 2002), and
were considered to have abruptly ended around 3,900 years BP
(Possehl, 2002). Also, the mid-Holocene climatic changes are
coincident with the appearance of highly organized and
urbanized civilizations from the Afro-Asiatic monsoonal
region such as Egypt, Mesopotamia, Indus-Saraswati, and in
northern China regions that form the bulk of the deserts
today (Brooks, 2006; Prasad V. et al., 2014). However, the
reasons for the decline of these civilizations, viz. abrupt
climate change, sea level fluctuation, or reduction of natural
resources, are still a question of debate for the researchers
(Galili 1988; Staubwasser et al., 2003; Wright et al., 2008;
Giosan et al., 2012; Dixit et al., 2014, 2018; Das et al., 2017;
Sengupta et al., 2019).

Some of the intriguing questions regarding the paleoclimatic
conditions, particularly, in the Kachchh region of western India
are as follows: 1) What were the paleoenvironmental conditions
that existed in the Banni Grassland during the middle-to-late
Holocene? 2) How did the climatic fluctuations change since the
mature Harappan times? In light of this, the objective of the
present study is to reconstruct the past climatic events from the
Banni Plains and explore their nature/boundary conditions
during the last 5,000 years using a multi-proxy dataset.

STUDY AREA

The GRK is a unique and intriguing vast salt encrusted flat land,
which is an E–W trending subbasin and occupies almost half of
the area of the seismically active Kachchh paleo-rift basin
(Burnes, 1834; Glennie and Evans, 1976; Biswas, 1987). The
Banni Plain is a part of the extensive low-level hyper arid
saline tract of the Great Rann that occupies the northern part
of the seismically active Kachchh paleo-rift basin. The Banni
grassland happens to be only the inhabited part of the Great Rann
due to the fact that it occurs at the highest elevation and is free of
present-day marine submergence (Roy and Merh, 1981). Large

parts of the Banni get submerged during monsoon under a thin
sheet of water by rainfall and rivers from the Kachchh mainland
in the south.

The present study site BKR (23°32′48.12″N and
69°40′30.36″E) is situated in the central to the northern part
of the Banni Plains (Figure 1). The Banni Plains and the GRK are
covered by the quaternary deposits mostly comprising silt and
clay sediments and considered as Holocene depocenters (Gupta,
1975; Maurya et al., 2013; Khonde et al., 2017a; Makwana et al.,
2019) of three distinct sources, viz. Indus source from north,
Aravalli in east, and Kachchh Mainland in south (Maurya et al.,
2013; Khonde et al., 2017a, b). It experiences a hyper-arid to arid
climate with annual rainfall less than 30 mm per year (Figure 1).
However, till now there are limited data pertaining to the
paleoclimate, provenance, and the nature of sediment
comprising the Banni Plain. With an aim to study the
evolution of these majestic landscape features, which probably
beholds vital insights on middle-to-late Holocene climatic
fluctuations, a shallow trench from the paleo-mudflat of the
Banni Grassland has been investigated. Trench is 5.5 m deep
(BKR site) and located on Bhuj-Khavda road (Figure 1) in the
Banni Plains. Geomorphologically, the study site is surrounded
by higher Banni surface with an elevation varying from 4 to 12 m
amsl. The elevation of the trench site was 4.4 m above the present
day mean sea level (msl) measured based on a D-GPS survey. The
studied site is away from any human settlement, which assures
negligible to nil anthropological effect.

ANALYTICAL METHODS

Sediment Geochemistry
Al2O3, Fe2O3, and TiO2 are the major components of the
aluminosilicate phase group and are useful to deduce the post
depositional weathering and paleoenvironmental condition that
prevailed in the region (Nesbitt and Young, 1982; Agnihotri et al.,
2003; Tyagi et al., 2012; Das et al., 2017). Similarly, the ratio of K2O/
Al2O3 and CIA (Chemical Index of Alteration) has been used to
measure the chemical weathering intensity in the region (Nesbitt
and Young, 1982; Buggle et al., 2011; Pillai et al., 2018). The natural
samples in the near-shore and marine-influenced environments
may contain CaO content, originating from marine organisms.
Hence, the samples collected from the field were treated with 1 N
HCl until the CaO fraction was removed. These decarbonated
samples were then used for estimating CIA, which represents the
detrital content, originating due to the chemical weathering in the
source region. A total of 55 samples were collected from the BKR
site and dried at 50°C, crushed, homogenized, and sieved to
<63 µm size. A part of this fraction was used for the analysis in
XEPOS HE XRF instrument at the Institute of Seismological
Research, India. The analytical precision of major oxide was
better than 5% and that of trace elements was better than 10%
(Das et al., 2017; Makwana et al., 2019).

Mineral Magnetic Measurements
Environmental magnetic properties of sediment samples were
measured using standard rock magnetic methods (Walden et al.,
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1999; Warrier and Shankar, 2009; Basavaiah, 2011). Selected
samples were oven-dried and packed, ensuring no movement
of magnetic minerals in nonmagnetic plastic bottles of 10 cm3 for
analysis. In the present study, we have measured magnetic
susceptibility (χ), anhysteretic remnant magnetization (ARM),
and isothermal remnant magnetization (IRM) at Birbal Sahni
Institute of Palaeosciences, Lucknow, India. Low magnetic
susceptibility (χLF) was measured using a Bartigton MS2B
dual-frequency susceptibility meter at 976 Hz frequency.
Samples were first demagnetized by using the AF
demagnetizer, and then anhysteretic remnant magnetization
(ARM) was calculated in a steady 0.05mT field superimposed
over decreasing alternating field (AF) up to 100mT using the
alternating field demagnetizer, D-2000 AF demagnetizer. The
remnant magnetization of all ARMs and IRMs was measured
using a AGICO JR-6 dual speed spinner magnetometer.
Isothermal remnant magnetization (IRM) was measured at
forward fields of 20 and 1000mT and backward fields of −20,
−40, −60, −100, and −300mT using ASC scientific impulse
magnetizer. IRM measured at 1T field was considered as
saturation isothermal remnant magnetization (SIRM). The
S-ratio is indicative of the ferrimagnetic vs. anti-ferrimagnetic
minerals, and the value close to one corresponds to the
dominance of the ferrimagnetic minerals. S-ratio is often used
as paleo-monsoonal proxy calculated using the formula IRM-0.3T/
SIRM (Basavaiah and Khadkikar, 2004).

AMS C-14 Dating
AMS is a modern and more efficient radiocarbon dating method
for younger time frames to measure long-lived radionuclide that
occurs naturally in environment. We have used two different
samples of handpicked foraminifera from unit 2 to estimate the

age of sediment deposition. Foraminifera tests were separated out
from the samples and sent to Poznan Radiocarbon Laboratory,
Poland, for AMS 14C dating. For both the uncalibrated ages, we
used a marine reservoir effect (ΔR) of −8 ± 37 from northern
Arabian Sea, as it was the closest possible value available from the
studied point and represented similar semi-enclosed
environment (Dutta et al., 2001). We used the latest available
online CALIB 8.2 program for Marine13 dataset (Stuiver et al.,
2018). Calibrated ages are expressed as calendar years over a 2σ-
error range (95.4%).

RESULTS

Stratigraphy and Chronology of the BKR
Trench
Based on the visual observations of sedimentological, textural,
structures and variation in color, the entire succession was
divided into three major litho-units (Table 1). At the BKR
trench site, the bottommost exposed unit is a 70-cm-thick
sticky dark bluish clay horizon (unit-1), followed by a 330-cm-
thick brown silty clay deposit (unit-2). The foraminifera tests
were collected from this unit, which yielded a calibrated AMS 14C
age of 3,157–3,520 cal yr BP (median value: 3,339 ± 181 cal yr BP)

FIGURE 1 | Digital elevation model of Kachchh showing the location of the study area and trench site in Kachchh.

TABLE 1 | Lithostratigraphic information for the BKR trench site, Kachchh.

Litho-units Thickness (in cm) Textural class

Unit-3 170 Clayey silt horizon with faint laminations
Unit-2 330 Silty clay horizon
Unit-1 70 Sticky dark bluish clay horizon
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and 3,833–5,032 cal yr BP (median value: 4,432 ± 600 cal yr BP)
(Table 2) at depth of 2.3 and 4.1 m, respectively, from the top of
the trench surface. Unit-2 is overlain by 170-cm-thick clayey silt
dominated horizon with faint laminations, that is, Unit-3
(Figure 2). Owing to the lack of datable material and
negligible amount of foraminifers, the bottom age of 4,432 ±
600 cal yr BP shows a wider error scatter, due to mixing of
foraminifer tests from two adjacent samples. Hence, due to the
lack of available chronology, we assumed a relatively uniform
sedimentary sequence in Unit-2 to extrapolate two ages, that is,
4,800 years BP and 3,035 years BP on the basis of the
sedimentation rate between the dated depths.

Major Oxide Concentration and Their
Elemental Ratio Variation
The concentration of major oxides and trace elements along with
their ratios were studied and based on significant deviations in
statistical parameters; a total of three relatively arid and four

humid phases of paleoclimatic conditions are deduced
(Supplementary Table 1).

Zone 1
Zone 1 encompassing the concentration variation of Al2O3,
Fe2O3, and TiO2 from 14.33 to 15.62%, 4.75 to 5.48%, and
0.73 to 0.80%, respectively. The oxide ratios of K2O/Al2O3,
Na2O/TiO2, CaO/TiO2, and Fe2O3/TiO2 varied from 0.17 to
0.19, 1.58 to 2.56, 11.34 to 12.52, and 6.50 to 6.91,
respectively. Similarly, the elemental concentration of Sr and
Ca varied from 202 to 211 ppm and 6.3 to 6.7%, respectively. The
ratios of Zr/Al varied from 15.1 to 21.0. The values of weathering
intensity CIA varied from 82 to 85 (Supplementary Table 1).

Zone 2
Zone 2 shows the concentration of Al2O3, Fe2O3, and TiO2 varied
from 13.9 to 15.2%, 4.2 to 5.4%, and 0.76 to 0.81%, respectively.
The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/TiO2, and
Fe2O3/TiO2 varied from 0.17 to 0.19, 1.6 to 2.1, 11.3 to 12.8,

TABLE 2 | AMS14C ages and calibrated ages of the foraminifera from the BKR trench site, Kachchh.

Sample ID Depth of sample (m) Conventional C14 radiocarbon
age (yr BP)

Calibrated age
(cal yr BP, ± 2σ)

Median age
(cal yr BP, ± 2σ)

POZ-101421 2.3 3,600 ± 35 3,157–3,520 3,339 ± 181
POZ-112296 4.1 4,460 ± 220 3,833–5,032 4,432 ± 600

FIGURE 2 | Stratigraphy and the age depth model for the BKR trench site.
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and 5.6 to 6.7, respectively. Similarly, the elemental concentration
of Sr and Ca varied from 207 to 223 ppm and 6.4 to 6.9%,
respectively. The ratios of Zr/Al varied from 19.0 to 26.5. The
values of weathering intensity CIA varied from 79 to 83
(Supplementary Table 1).

Zone 3
Zone 3 suggests the concentration of Al2O3, Fe2O3, and TiO2

varied from 16.0 to 16.7%, 5.3 to 6.9%, and 0.78 to 0.86%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.18 to 0.21, 1.3 to 1.6, 9.3 to
11.4, and 6.6 to 8.0, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 179 to 205 ppm and
5.7 to 6.5%, respectively. The ratios of Zr/Al varied from 10.0 to
15.4. The values of weathering intensity CIA varied from 84 to 88
(Supplementary Table 1).

Zone 4
Zone 4 suggests the concentration of Al2O3, Fe2O3, and TiO2

varied from 14.3 to 15.3%, 4.1 to 5.1%, and 0.71 to 0.76%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.16 to 0.18, 1.7 to 2.1, 12.0 to
13.4, and 5.8 to 6.7, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 204 to 218 ppm and
6.5 to 6.8%, respectively. The ratios of Zr/Al varied from 16.5 to
20.2. The values of weathering intensity CIA varied from 82 to 85
(Supplementary Table 1).

Zone 5
Zone 5 suggests the concentration of Al2O3, Fe2O3, and TiO2

varied from 13.7 to 16.4%, 3.9 to 5.1%, and 0.65 to 0.77%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.16 to 0.17, 1.72 to 1.88, 11.8
to 15.8, and 5.7 to 6.7, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 199 to 220 ppm and
6.3 to 7.3%, respectively. The ratios of Zr/Al varied from 14.8 to
21.2. The values of weathering intensity CIA varied from 82 to 86
(Supplementary Table 1).

Zone 6
Zone 6 suggests the concentration variation of Al2O3, Fe2O3, and
TiO2 between 13.2–13.5%, 3.4–3.8%, and 0.61–0.73%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.16 to 0.17, 1.5 to 1.9, 14.6 to
17.8, and 5.3 to 6.0, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 224 to 229 ppm and
7.3 to 7.7%, respectively. The ratios of Zr/Al varied from 16.5 to
24.2. The values of weathering intensity CIA varied from 79 to 81
(Supplementary Table 1).

Zone 7
Zone 7 suggests the concentration of Al2O3, Fe2O3, and TiO2

varied between 14.5–16.8%, 4.5–7.0%, and 0.79–0.98%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.18 to 0.20, 0.9 to 1.4, 5.6 to
12.2, and 5.6 to 7.9, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 161 to 216 ppm and

3.7 to 6.9%, respectively. The ratios of Zr/Al varied from 11.5 to
24.8. The values of weathering intensity CIA varied from 83 to 89
(Supplementary Table 1).

Mineral Magnetic Variations
Zone 1
Zone 1 shows the magnetic susceptibility (χLF) values varied
between 1.18 × 10−8 m3/kg and 1.97 × 10−8 m3/kg, while the
values of SIRM and χarm varied between 1.23–1.84 and 1.45 ×
10–5–5.88 × 10–5, respectively. The increasing concentrations of
χLF. SIRM, and χarm are indicative of the ferrimagnetic mineral
signals. However, decreasing concentration of these parameters
implies dominance of the anti-ferrimagnetic minerals within the
section. Values of the S-ratio varied from 0.62 to 0.74, indicating
the presence of low coercivity minerals (Supplementary Table 2).

Zone 2
Zone 2 shows the magnetic susceptibility (χLF) values varied
between 1.55 × 10−8m3/kg and 1.56 × 10−8m3/kg, while the values
of SIRM and χarm varied between 1.51–1.67 and 2.61 × 10–5–3.60
× 10–5, respectively. Values of the S-ratio varied from 0.63 to 0.66
(Supplementary Table 2).

Zone 3
Zone 3 suggests the magnetic susceptibility (χLF) values varied
between 1.46 × 10−8m3/kg and 1.87 × 10−8m3/kg, while the values
of SIRM and χarm varied between 1.39–2.16 and 2.82 × 10–5–10 ×
10–5, respectively. Values of the S-ratio varied from 0.60 to 0.74
(Supplementary Table 2).

Zone 4
Zone 4 suggests the magnetic susceptibility (χLF) values varied
between 1.82 × 10−8m3/kg and 1.88 × 10−8m3/kg, while the values
of SIRM and χarm varied between 2.17–2.19 and 8.5 × 10–5–8.9 ×
10–5, respectively. Values of the S-ratio varied from 0.76 to 0.77
(Supplementary Table 2).

Zone 5
Zone 5 suggests the magnetic susceptibility (χLF) values varied
between 1.66 × 10−8m3/kg and 1.86 × 10−8m3/kg, while the values
of SIRM and χarm varied between 1.98–2.19 and 7.10 × 10–5–8.50
× 10–5, respectively. Values of the S-ratio varied from 0.73 to 0.74
(Supplementary Table 2).

Zone 6
Zone 6 suggests the magnetic susceptibility (χLF) values varied
between 1.56 × 10−8m3/kg and 1.58 × 10−8m3/kg, while
the values of SIRM and χarm varied between 1.76–1.79 and
5.71 × 10–5–6.12 × 10–5, respectively. Values of the S-ratio
varied from 0.75 to 0.77 (Supplementary Table 2).

Zone 7
Zone 7 suggests the magnetic susceptibility (χLF) values varied
between 1.68 × 10−8m3/kg and 2.37 × 10−8m3/kg, while the values
of SIRM and χarm varied between 1.91–2.76 and 6.82 × 10–5–12.8
× 10–5, respectively. Values of the S-ratio varied from 0.76 to 0.78
(Supplementary Table 2).
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DISCUSSION

Approach: Role of Geochemistry and
Magnetic Minerals in Paleoclimatic
Reconstructions
The concentration of various oxides and elements is often
derivative of weathering processes acting in the catchment of
the basins. Major elemental concentration in sediments, mineral
magnetics, and grain size often reflects the source of the origin,
which were being used as effective proxies to demonstrate the
intensity of chemical weathering, climate changes, and
precipitation variations in the region (Staubwasser and Sirocko
2002; Yancheva et al., 2007; Tyagi et al., 2012; Clift et al., 2014;
Das et al., 2017; Pillai et al., 2018; Ruifeng et al., 2020). The ratios
like Na2O/TiO2, CaO/TiO2, and Fe2O3/TiO2 can be used to infer
the changes in the paleoenvironmental condition (Pillai et al.,
2018; Makwana et al., 2019). Increased values of Fe2O3/TiO2 with
lower values of Na2O/TiO2 and CaO/TiO2 suggest increased
precipitation, owing to the depletion of mobile elements like
Ca and Na during erosion triggered by enhanced monsoon
(Muhs et al., 2001; Kotlia and Joshi, 2013; Minyuk et al., 2013;
Pillai et al., 2018). Hence, we assess the higher values of oxides like
Al2O3, Fe2O3, and TiO2 along with K2O/Al2O3 and CIA
(Chemical Index of Alteration) to mimic the enhanced
monsoonal strength (Buggle et al., 2011; Pillai et al., 2018;
Makwana et al., 2019). Similarly, concentration of magnetic
minerals and their mineralogy have widely been used as
surrogate to study the strength of the ISM (Basavaiah and
Khadkikar, 2004; Warriar and Shankar, 2009). Magnetic
susceptibility (χ) is controlled by the concentration and the
grain-size distribution of ferromagnetic minerals and is
strongly sensitive to variations of the local climate and
constitutes an accurate proxy record, along with other
parameters (Thompson and Oldfield, 1986; Phartiyal et al.,
2003). The cumulative response of major oxide, elemental,
CIA, and mineral magnetic properties is often touted to be a
robust indicator of weathering intensity and is considered as a
surrogate for reconstructing monsoonal strength (Warriar and
Shankar, 2009; Prasad et al., 2007; 2014; Makwana et al., 2019).

Climatic Variability in Banni Plains Since the
Mid-Holocene
Kachchh region in the western India experiences an arid climate
and has attracted tremendous attention for its tectonic attributes
(Chamyal et al., 2003). However, the landscape and its
modulation with climatic forcings during the Holocene have
been least explored (Pillai et al., 2017, 2018; Basu et al., 2019;
Makwana et al., 2019; Sengupta et al., 2019). Our results reveal
several alternate phases of wet and dry paleoclimatic conditions
during the last five millennia from the Banni Plains (Figure 3).

Prior to 4,800 cal yr BP (Phase I)
The zone is marked by higher CIA values and other major
elemental proxies, suggesting a higher chemical weathering
under the relatively humid climatic regime (Figure 4). This is

further indicated by the higher concentration of detrital
components such as Al2O3, TiO2, and Fe2O3 vs. reduction of
Na2O/TiO2, CaO/TiO2, Zr/Al, CaO, and Sr (Peterson et al., 2000;
Luckge et al., 2001; Kotlia and Joshi 2013; Pillai et al., 2018). Thus,
collectively, the geochemical proxies indicate a strengthened
monsoonal condition and intense chemical weathering at
period prior to 4,800 years BP in the Banni Plains region. The
mineral magnetic proxies which provide information about the
type and concentration of magnetic grains transported in the
catchment (Oldfield et al., 1994) also support the inferences
drawn from the geochemical data. The lower values of χlf in
phase one signify strengthenedmonsoonal condition, which leads
to higher erosion and weathering that lowered the concentration
of magnetic minerals. The values of the S-ratio also suggest a
combined anti-ferro to ferrimagnetic mineral assemblage with
dominance of ferrimagnetic minerals in phase I. The complied
results of multi-proxies recommend the deposition of sediments
that occurred under the relatively humid climatic condition in
phase I (i.e., period prior to 4,800 years BP).

Thakur et al. (2019) based on palynological study form
Harshad, western Saurashtra, reported a higher ISM
precipitation during the 5,400 to 5,100 years BP period.
Similar observations were also made by Kathayat et al. (2017)
from the composite Sahiya d18O record from the Himalayas.
Higher CIA and enhanced precipitation at 5.1 ka during the
mature Harappan phase have also been reported by Ngangom
et al (2016) from the nearby Eastern Great Rann of Kachchh. A
similar, wet phase of ISM was recorded by Parsons Valley Lake,
Tamilnadu, southern India (Raja et al., 2019).

4,400–4,800 cal yr BP Period (Phase II)
The zone is marked by abrupt changes to lower CIA values and
other major elemental proxies, suggesting a weaker chemical
weathering under arid climatic conditions (Figure 4). This
abrupt aridity around 4,400 years BP has been one of the most
discussed, although debated, causative factor for the
deurbanization and decentralization of Harappans as a
community that was primarily thriving on river-based
resources (Staubwasser et al., 2003; Madella and Fuller, 2006;
Dixit et al., 2014, 2018; Sengupta et al., 2019). Several studies have
shown that the brief phase of aridity experienced in western India
as well as the Himalayas led to the drying of water resources and
speculated that this might have led the Harappan migrations to
explore alternate water resources and settlement to smaller
centers (Madella and Fuller, 2006). Based on our proxy data,
which shows excessive deficient moisture conditions during this
period (4,400–4,800 years BP), we support the earlier view that
the prevalence of drought-like conditions affected the
deurbanization of the Harappan settlement from the Western
India.

Period Between 4,400 cal yr BP and
3,300 cal yr BP (Phase III)
Phase III is marked by fluctuating but an overall increasing value
of mineral magnetic parameters, higher concentration of major,
and lower ratios of geochemical proxies. An increase in CIA
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(>83%) hints an enhancement of chemical weathering signifying
higher precipitation, which is also reflected in increasing
concentration of major oxides such as Al2O3, Fe2O3, and TiO2

(Anderson et al., 2004). A significant increasing trend is also
noticeable in the ratios of K2O/Al2O3 and Fe2O3/TiO2 with lower
concentration of Na2O/TiO2 and CaO/TiO2 (Figure 4). Mineral
magnetic parameters, that is, χlf and S-ratio, showed progressive
decrease and thereafter increase in phase III, which indicates
fluctuating but overall gradual increased precipitation/monsoon
(Figure 4). Similar results of enhanced monsoonal strength have

also been reported by Pillai et al. (2017, 2018) from the Banni
Plains during 4,600 and 2,500 years BP. This period was the
initiation of deurbanization of the mighty Harappan civilization,
which was marked by the migration of Harrapans from the well-
established centers to other sites, owing to water source scarcity
(Ponton et al., 2012; Dixit et al., 2014, 2018; Pokharia et al., 2017).
On the contrary to this, recently, some studies have demonstrated
change in farming pattern and other means for survival of the
ancient settlers despite the aridity (Sarkar et al., 2020; Pokharia
et al., 2017; Singh et al., 2018).

FIGURE 3 |Climatic fluctuations since themature Harappan times (∼5,000 years) from the Banni Plains; complied observation fromMakwana et al. (2019) and BKR
trench ∼ present study.

FIGURE 4 | Temporal variation of major elements, their ratios, and mineral magnetic properties from the BKR sediments of Banni Plains, GRK.
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Period Between 3,300 cal yr BP and
3,000 cal yr BP (Phase IV)
The period from 3,300 years BP to 3,000 years BP experienced
a relatively drier climate with reduced CIA values and abruptly
decreasing concentration of major oxides such as Al2O3,
Fe2O3, and TiO2. The relative content of CaO, Sr, and
Na2O/TiO2 increases as these mobile elements remain at
the site due to the lack of hydrolysis. Prasad et al. (2014a)
from the Wadhwana Lake in alluvial plains of Gujarat reported
a short phase of low precipitation during 3,238–2,709 cal yr
BP. Similar arid conditions are also reported from Rann
sediments in northwest of the present site by Ngangom
et al. (2016).

Contrastingly, Pillai et al. (2017, 2018) reported the period
from 4,600 to 2,500 years BP as the period of enhanced
monsoonal strength, owing to the coexistence of C4 and C3
vegetation along with geochemical composition of sediments due
to chemical weathering. Recent studies from the Bednikund Lake,
Himalayas, based on mineral magnetics, organic geochemistry,
and grain size assemblages, also suggested an enhanced
monsoonal strength during 3,380 and 2,830 cal yr BP. (Rawat
et al., 2021).

Period During the Last 3,000 years (Phases
V, VI, and VII in BKR Trench and BB Trench)
Makwana et al., 2019

The depiction of last three millennia has been done based on
phases V, VI, and VII of BKR trench and previously reported BB
trench from the northwest of the Banni Plains (Makwana et al.,
2019). As we do not have age control on the top section of BKR,
we only report that the phases V and VII show signs of
strengthened monsoonal condition with enhanced values of
CIA and associated geochemical proxies, whereas on the
contrary, phase VI shows a relatively dip in CIA values and
other oxides, hinting at a weaker chemical weathering, that is, arid
climatic conditions.

On the contrary, the period from 2,900 years to 1900 years
from BB trench site also supports an overall fluctuating to arid
climatic condition with peak of that aridity around 2,400 years BP
(Makwana et al., 2019). Pillai et al. (2018) from Luna core
reported arid climatic condition during 3,000 to 2,500 years
BP. Similarly, Quamar et al. (2021) studied a lacustrine
sequence from central India and based on the pollen study
reported a decline in strength of ISM during 3,000 to
2,600 years BP period. Similarly studies from the mudflats of
Diu, Gujarat, are suggestive of the arid conditions during
2,640–1930 cal yr BP (Banerjee et al., 2017). This is in
agreement with a long drought in the Thar Desert, India,
between 3,600 and 2000 years BP (Bryson and Bryson, 1996;
Enzel et al., 1999).

The period from 1900 years BP to 200 years BP shows three
phases of prominent arid/humid climatic conditions (Makwana
et al., 2019). These periods of arid/humid conditions coincide
their timing with globally known events like the medieval climatic
anomaly (MCA). These events have also been reported from

regional archives in the past (Gupta et al., 2003; Sinha et al., 2007;
Ngangom et al., 2012; Rajamanickam et al., 2017; Rawat et al.,
2021). All the fluctuations from arid to humid climatic conditions
during the last three millennia are abrupt in nature with sharp
changes in proxy data (Figure 3). Previously, Makwana et al.
(2019) reported a sedimentation rate of 1–2.2 mm/yr from the BB
trench in the northwestern Banni Plains. The present BKR trench
based on two AMS 14C ages yields a sedimentation rate of
1.6 mm/yr during 4,432 to 3,339 cal yr BP period. The high
sedimentation rate from BB and BKR trenches (>1 mm/yr)
also aides this endeavor. Despite the poor chronological
control, the presence of abrupt arid and humid periods during
last two millennia is suggestive of Banni Plains being capable of
being used as potential archive for studying climatic
reconstructions.

CONCLUSION

Based on the multi-proxy dataset from the Banni Plains of the
Kachchh region spanning last 5,000 years, the salient findings are
as follows:

1. The periods from 4,800 to 4,400 cal yr BP are marked by
abrupt drier climatic conditions in a multi-proxy dataset,
which has also been reported by several other studies from
the regional archives owing to the initiation of synchronous
deurbanization of Harappan settlements. This is followed by a
period from 3,300 to 3,000 cal yr BP and around 2,400 cal yr
BP with pronounced aridity in the Banni Plain region.

2. The relatively humid climatic conditions were observed
during >4,800 cal yr BP, 4,400 to 3,300 cal yr BP, 1900 to
1,400 years BP, and 900–550 years BP in the multi-proxy
record. The late Harappan phase envisaged in the present
study shows an intriguing gradual strengthening of the
monsoonal intensity.

3. Based on preliminary results, the Banni Plains as an archive
shows a high sedimentation rate, that is, > 1 mm/yr, which
suggests it can act as a robust archive which can be tapped to
be an excellent sedimentary record to reconstruct multi-
decadal to centennial climatic events spanning the
Holocene epoch.

Future studies from Banni Plains with relatively deeper
information could likely aide in reconstructing the dynamics
of the region spanning the entire Holocene epoch, as the present
study validates the archiving potential of Banni sediments for
reconstructing short and long spells of paleomonsoonal
conditions.
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Coastal regions of the northern South China Sea (SCS) strongly interact with the Asian
monsoon circulation (AMC). Thus, variations of sea surface temperature (SST) here are
newly suggested to document AMC changes in an effective manner, but additional
physical parameters of oceanic conditions, probably also in relation to the AMC
system, remain poorly understood. In this study, we analyzed glycerol dialkyl glycerol
tetraethers (GDGTs) from a well-dated sediment core YJ, retrieved at the northern SCS
coast, to further scrutinize the intrinsic response of water column to winter AMC strength. It
shows that within the time frame of past ∼1,000 years, the tetraether index of lipids with 86
carbon atoms (TEX86) and published alkenone (UK′

37) temperature records together confirm
a reduced thermal gradient during the Little Ice Age (LIA), in comparison to that during the
Medieval Climate Anomaly (MCA). Considering concurrent variations of the branched and
isoprenoid tetraether (BIT) and the ratio of archaeol to caldarchaeol (ACE), for example,
with decreased values (<∼0.3) for the former and relatively high values for the latter at the
LIA, indicative of stratification and salinity changes, respectively, these multiple lines of
evidence thereby call for well mixing of onsite water at site YJ correspondingly. Our results
suggest that winter AMC strength is a critical factor for mixing subsurface waters and
modifying thermal/saline conditions at the northern SCS coasts through the last millennium
and also, perhaps, on longer timescales.

Keywords: South China Sea, coastal conditions, GDGTs, last millennium, Asian winter monsoon

INTRODUCTION

The Asian monsoon circulation (AMC), as triggered by large-scale thermal contrast between ocean
and land, characterizes a seasonal reversal of prevailing wind directions. In the summertime, it carries
an enormous amount of moisture from the Indian and Pacific Oceans toward southern and
northeastern Asia, and, consequently, exerts a considerable influence over the water cycle and
the terrestrial ecosystem (Wang et al., 2017; Zhang et al., 2017). In this regard, much attention has
been drawn until now to explore summer AMC variability and the physical mechanism(s) from
seasonal to orbital timescales (e.g., Hu et al., 2008; An et al., 2011; Liu et al., 2015; Xie et al., 2015;
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Cheng et al., 2016). In contrast, the winter component of the
AMC itself often diverges cold-dry air from the Asian countries
such as Siberia-Mongolia toward oceans, thus with little potential
to deliver water vapor directly. Despite such fact, winter AMC is
still of importance in transporting eolian dust and/or aerosol, and
therefore in regulating the regional (and global) climate system
(Maher et al., 2010; Kok et al., 2018). Combined with its impact
upon the summer AMC precipitation subsequently (Bollasina
et al., 2011; Li et al., 2016; Cai et al., 2019), a complete
understanding of winter AMC variations at present and, if
possible, before the instrumental era (after ∼1850 AD) (e.g.,
Wen et al., 2016; Kang et al., 2020) would provide
constructive insight into their intrinsic link against both
anthropogenic and natural backgrounds. Abundant analyses
based on the grain size and geochemical proxies from Chinese
loess sequences at available sparse sites (Stevens et al., 2007; Li
and Morrill 2015), on the one hand, have indeed advanced our
knowledge about this topic, but on the other hand, these
paleorecords, distributed across continental interiors, rather
face difficulty to draw a clear picture of winter AMC behavior,
for example, its far-field effect on terrestrial ecosystem especially.
For example, at Huguangyan Maar Lake, winter AMC intensity,
as inferred from diatom assemblages (Wang et al., 2012) and
magnetic susceptibility (Yancheva et al., 2007), respectively,
presents controversial temporal features during the Holocene
(since ∼11,700 years ago before present, “yr BP” hereafter).

Next to Huguangyan Maar Lake, the South China Sea (SCS) is
also strongly involved into the AMC coupling process (e.g., Xie
et al., 1998; Lau and Nath 2009; Wang et al., 2009; Liu and Zhu
2016) and hence well suited to fingerprint its variability. In fact,
along the SCS northern coasts, sea surface temperature (SST)
apparently exhibits shore-parallel gradient and intensive vertical
mixing in winter, while horizontal homogenization and vertical
stratification in summer (Figures 1A,B; Wang, 2007; Jing et al.,
2009). Such seasonality of SST variations and their difference, for
example, at both horizontal and vertical scales, are readily capable
of revealing winter AMC signals across different timescales (e.g.,
Tian et al., 2010; Huang et al., 2011; Steinke et al., 2011; Kong,
2014a, Kong et al., 2014b). Particularly, our recent study (Zhang
et al., 2019), based on a well-dated sediment core YJ, ∼200 km far
away from the Pearl River delta (Figure 1), has shown
extraordinary decrease (by up to ∼4°C) of alkenone SSTs and
remarkable increase (by two to four orders of magnitude) of
wind-borne terrigenous hopane contents during the Little Ice Age
(LIA, ∼150–550 years BP), consequently demonstrating an
overall intensification of winter AMC, relative to the Medieval
Climate Anomaly (MCA, ∼700–1,100 years BP) and other
intervals in the context of Holocene. This explanation, albeit
well corroborated by a growing number of terrestrial paleorecords
(e.g., Yancheva et al., 2007; Kang et al., 2020), still deserves
independent evidence of oceanic conditions which, as
inherently linked to SST change, would offer excellent

FIGURE 1 | Regional setting and the site of core YJ, existing paleorecords in the northern South China Sea (black dots) and at Huguang Maar Lake (orange star) as
mentioned in the main text, are plotted against long-term (1985–2006 AD) averaged January (A) and July (B) sea surface temperature (SST, color scale) from the AVHRR
dataset (Casey, 2013). Chronology (C) and lithology (D) of core YJ are cited from Huang et al. (2018) and Zhang et al. (2019). Note that the core-top (C) is calculated
based on 210Pb/137Cs dates, to be 2013 AD when our core YJ was retrieved.
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opportunity to further illustrate the fundamental role of winter
AMC variations in affecting coastal waters. To this end, the time
window of last millennium covering both the LIA and MCA, two
well-identified climate anomaly intervals during the late
Holocene (Mann et al., 2008), is specifically focused here for a
tentative attempt to examine how the northern SCS coastal
conditions, for example, in terms of both salinity and thermal
properties, would have responded to winter AMC change at
multi-centennial timescales.

Taking the advantage of sediment core YJ, including i) high-
quality control of the chronological framework (Figures 1C,D)
and ii) limited influence of the Pearl River freshwater discharge
(Figure 2), we hence directly analyzed glycerol dialkyl glycerol
tetraether (GDGT) lipid biomarkers on its uppermost ∼65 cm
section. Together with the existing measurements of the
alkenone unsaturation index (UK′

37 , see definition in Prahl
et al., 1988) and hopane components, as earlier reported by
Zhang et al. (2019), this study aimed to investigate the
hydrological properties of the onsite water column. We
hereby present proxy records of the ratio of archaeol to
caldarchaeol (ACE), the branched and isoprenoid tetraether
(BIT), respectively, and the tetraether index of lipids with 86
carbon atoms (TEX86) over the past ∼1,000 years. These results,
although potentially associated with various parameters in view
of their original interpretations, are utilized to manifest salinity
(Turich and Freeman 2011; Wang et al., 2013), stratification
(Yamamoto et al., 2013; Wang et al., 2021), and integrated
temperature of the whole water column (Xing et al., 2015; Wei
et al., 2020), respectively. On this basis, the difference of our
paired UK′

37 -TEX86 values, a rough measure of vertical thermal
gradient, could be used to infer the water column structure
changes induced by the winter AMC. Overall, this study helps
clarify the dynamical interplay between winter AMC strength
and northern SCS coastal conditions throughout the last
millennium and, as a result, evoke a careful consideration of

regional environmental settings in properly interpreting proxy-
based temperature signals.

MATERIAL AND METHODS

Core Site and Chronology
Geographically, sediment core YJ (112°8.08′ E, 21°31.44′ N) is
raised at a water depth of ∼21 m from the inner continental shelf
offshore Yangjiang city with a distance of ∼200 km to the
southwest of the Pearl River estuary. This site, according to
modern observations (e.g., Dunn and Ridgway 2002; Casey,
2013), characterizes prominent SST variations between
∼28.3°C in summer (June-July-August, JJA) and ∼20.9°C in
winter (December–January–February, DJF), but small changes
in sea surface salinity (i.e., ∼32.4 psu in JJA and ∼33.4 psu in DJF;
Figure 2) due to limited influence of the Pearl River discharge.
Most importantly, it is located at the coastal sector outside ∼1°C
cooling effect of summer upwelling (e.g., to the east of the Pearl
River delta and northeast of the Hainan Island, Figure 1B), while
surface cooling here is largely determined by vertical mixing of
the onsite water column in winter (Figure 1A). This site is hence
well suited to examine the response of northern SCS coastal
conditions to winter AMC changes, for example, by using the UK′

37
SST record in our previous study (Zhang et al., 2019).

The age model of this core, as already published before by Huang
et al. (2018) and Zhang et al. (2019), was achieved by combining both
lead (210Pb)/cesium (137Cs) and radiocarbon (14C) methods. To
summarize, measurements of 13 210Pb/137Cs radionuclide activity
and 18 14C dates (at Beta Analytic Inc., United States) were
implemented on samples of bulk sediments above 13 cm and
complete shells below this depth, respectively. These age control
points were then operated within R script BACON software (version
2.2, Blaauw and Christen 2011) and the Marine 13 calibration curve
(Reimer et al., 2013), using default parameters and a 252-year
correction of regional reservoir age (Southon et al., 2002; Yu et al.,
2010), to compute the mean age and 2σ uncertainty at 1 cm
resolution. Such a chronological framework hints a possible hiatus
of sedimentary deposit at the depth between ∼65 and 85 cm
(Figure 1C; see details in Zhang et al., 2019). Hence, we mainly
focus on the topmost 65 cm of the core YJ, roughly spanning the past
∼1,000 years, to analyze GDGT biomarkers for detecting the AMC
signal across the LIA and MCA.

Organic Biomarkers
Core YJ was sampled continuously with a step of 1 cm down its
uppermost 65 cm, which, based on our chronology as stated in
Core Site and Chronology section, guaranteed a temporal
resolution of ∼10–15 years per sample for the past
∼1,000 years. Afterward, bulk sediment samples (∼5 g) were
freeze-dried, then grounded, and soaked to extract total lipids
by solvent dichloromethane (DCM): methanol (MeOH) (9:1; v/v)
in 60 ml vials, under an ultrasonic wave in the 40°C water bath for
three cycles (∼15 min each). The extract was subsequently
hydrolyzed with 6% KOH in MeOH to remove alkenoates and
separated into three fractions via silica gel column
chromatography with successive eluents of n-hexane, DCM,

FIGURE 2 |Comparison between temperature estimates at the topmost
sample based on UK′

37 and TEX86 proxies, respectively. Observational SSTs
and salinity near the core site (112.125°N, 21.625°E, Casey, 2013; Zweng
et al., 2013) are also shown. The dashed line represents the annual mean
SST value.
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and MeOH, respectively. Finally, GDGTs were isolated in MeOH
fraction, alkenones in DCM fraction, and n-alkanes in hexane
fraction.

Analyses of MeOH fraction were conducted on high-
performance liquid chromatography atmospheric pressure
chemical ionization (HPLC-APCI)-mass spectrometry (e.g.,
Liu et al., 2013). An aliquot of the fraction was directly dried
under N2, and then redissolved in hexane: isopropanol (99:1; v/v)
and filtered after mixing with a known amount of C46 internal
standard (Huguet et al., 2006). Selected ion monitoring (SIM),
which targets specific mass numbers for GDGT components
(membrane lipids biosynthesized as multiple homolog series of
isoprenoid or methyl-branched isomers, termed isoprenoid-
GDGTs, and branched-GDGTs, respectively, see detailed
description in Schouten et al., 2013), was used to enhance the
detection sensitivity. Quantification was carried out by
integrating the peak area of [M + H]+ ions in the extracted
ion chromatogram and comparing with the C46 internal standard.
We then calculated the ACE, BIT, and TEX86 indices using
equations as given below:

ACE � archaeol
archaeol+caldarchaeol×10 × 100 (Turich and Freeman 2011;

Wang et al., 2013),

BIT � I+II+III
I+II++III+cren (Hopmans et al., 2004),

TEX86 � GDGT2+GDGT3+cren′
GDGT1+GDGT2+GDGT3+cren′ (Schouten et al., 2002).

TEX86 values were then converted to temperature estimates, using
the calibration equation: SST � 68.4 ×log (TEX86)+38.6 (Kim et al.,
2010). Analytical uncertainties for our laboratory standards are
typically less than 5% for the BIT and ACE values and 0.01 unit
for TEX86.

RESULTS

Throughout the past millennium, ACE values appear to be
relatively high during the LIA, especially at its onset (centered
around ∼500 years BP), as compared to the MCA (Figure 3A). In
contrast, the BIT index generally experiences a gradual declining
trend from ∼0.3 during the MCA (and the earlier epochs, marked
by a possible hiatus in sediment accumulation and hence not
shown here) toward ∼0.15 in the recent years (Figure 3B). Unlike
these two modes, TEX86-based temperatures, although fluctuated

FIGURE 3 | GDGT proxies of sediment core YJ during the last
millennium, for example, (A) ratio of archaeol to caldarchaeol (ACE) (higher
values downward), (B) the branched and isoprenoid tetraether (BIT), (C)
TEX86-based temperatures, (D) UK′

37-SST record, and (E) sedimentation
rates (Zhang et al., 2019). Color bars outline the Little Ice Age (LIA,
∼150–550 years BP) (green) and Medieval Climate Anomaly (MCA,
∼700–1,100 years BP) (red), and triangles denote 14C age control points.

FIGURE 4 | Organic geochemical proxies of core YJ over the last
millennium, including (A) UK′

37-SST record (Zhang et al., 2019), (B)
TEX86-based temperature, (C) vertical thermal gradient at site YJ
(UK′

37 − TEX86 values), (D) UK′
37-SST difference between two sites YJ and

NS02G (YJ minus NS02G), (E) hopane compounds (Zhang et al., 2019), (F)
the branched and isoprenoid tetraether (BIT), and (G) the ratio of archaeol to
caldarchaeol (ACE). Note that magnetic susceptibility at Lake Huguangyan
Maar (higher values downward, Yancheva et al., 2007) is also plotted (H) for
comparison (with a possible shift of their peaks due to the age uncertainty).
Color bars mark the same intervals as in Figure 3 (two cold epochs within the
LIA, e.g., ∼250 years BP and ∼500 years BP, are further highlighted).
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within a large range (nearly about 3°C in terms of magnitude,
Figure 3C), are apparently trendless over the investigated
interval. However, when placed together with the existing
UK′

37 -based SST record of the same core YJ (Figures 3D,E),
there exists certain similarity in the overall temporal patterns
between SST (despite a substantial cooling of up to ∼4°C, Zhang
et al., 2019) and TEX86 temperatures over the LIA (e.g., increase
at the first half and decrease at the second half), but for the MCA,
variations of these two independent records are clearly featured
by different structures. Collectively, the LIA interval characterizes
increase in ACE values and wind-borne hopane compounds
(Zhang et al., 2019), and decrease in BIT ratios, SST, and
vertical temperature gradient (UK′

37 − TEX86values), relative to
those during the MCA (Figure 3 and Figure 4).

DISCUSSION

Recent studies have shown that the possible source of brGDGTs,
for example, terrigenous originated (e.g., soil) or in situ
synthesized (mainly at subsurface waters), is critical to
determine the BIT index and thus its proper explanation
(Weijers et al., 2014; Xiao et al., 2016; Wang et al., 2021). For
example, more subsurface production of brGDGTs in the
Qiongzhou Strait is suggested to be responsible for higher BIT
values (∼0.4–0.6), which, as a result, reflect enhanced
stratification of the onsite water column and thus change in
summer AMC strength (Wang et al., 2021). At our study site YJ,
BIT values, primarily subjected to crenarchaeol (one major
component of isoGDGTs) rather than brGDGT variations
(Supplementary Figure 1), also imply water column
stratification. A set of field surveys, based on collection of
both the sediment trap and core-top samples, show that, at
the transition zones between the Pearl River estuary and the
SCS northern coast, the bloom of autotrophic ammonia-
oxidizing Thaumarchaeota, main producers of isoGDGTs with
limited brGDGTs, tends to preferably occur under the
hydrological conditions in the coldest months, like low light
levels (e.g., Zhang et al., 2013; Wang et al., 2015; Jia et al.,
2017) and less stratified water. Meanwhile, at normal marine
settings, including those on the continental shelf, light and redox
conditions can also yield redistribution of Euryarchaeota/
Archaea community, leading to stratification of archaeal
membrane lipids (with relatively high archaeol in subsurface
waters, Turich et al., 2007; Weijers et al., 2014; Xiao et al.,
2016; Zhu et al., 2016). In this sense, the coeval variations of
isoGDGTs and archaeol abundance in our particular case may
cause opposite temporal patterns of BIT and ACE indices
(Supplementary Figures 1, 2). This fact, in contrary to a
recent study presented by Wang et al. (2021) who have
applied the concomitant increase in these two proxies to
represent enhanced stratification of the northern SCS coastal
water, thereby calls for other interpretation(s) to reconcile
competing patterns of our BIT and ACE proxies (Figures
3A,B). Considering the small variations of BIT values and
brGDGTs (Supplementary Figure 1), we thus interpret
relatively low BIT ratios during the LIA as increased

production of the ubiquitous Thaumarchaeota, relative to
other Euryarchaeota/Archaea. Besides, it is also worth stressing
that despite similar features of changes in crenarchaeol and
caldarchaeol (GDGT-0) (Supplementary Figures 1, 2), two
most abundant components of isoGDGTs, the observed ACE
values here may still primarily respond to Euryarchaeota/Archaea
community changes, therefore no longer being an indicator of
water column stratification (e.g., Wang et al., 2021).

Based on the results of previous studies (Turich and
Freeman, 2011; He et al., 2020), the ACE index might
represent salinity if it mainly responds to Euryarchaeota/
Archaea community changes. This prerequisite indeed exists
in our case, because one could apparently see a major control
of Euryarchaeota/Archaea on the ACE record (Supplementary
Figure 2). Due to the different characteristics of BIT and ACE
records that strongly exclude the latter as a tracer of
stratification (Wang et al., 2021), we instead assume ACE to
manifest salinity. As such, multi-centennial–scale variations in
our ACE record, as depicted in Figure 4G, suggest increased
(decreased) salinity of the onsite water column across the LIA
(MCA) (Turich and Freeman, 2011). Together with the
inference of the available UK′

37 -SST record and wind-borne
hopane contents, as earlier reported (Figures 4A,E),
relatively saline conditions at our site, although only
qualitatively estimated (if also taking into account the small
range of vertical salinity gradient, Figure 2), took place along
with an intensification of winter AMC strength during the LIA,
and vice versa for the MCA. Indeed, observational datasets
confirm that, on seasonal timescales, there is a homogeneous
structure of in situ salinity and temperature changes in winter
(i.e., ∼33.4 psu and ∼20°C down the entire water column,
respectively, Supplementary Figure 3), relative to those in
summer (i.e., ∼32.4 psu/28.3°C at surface and ∼33.4 psu/27.1°C
at ∼10–15 m water depth; Zweng et al., 2013). In analogy with
this scenario, it is possible that a stronger winter AMC during
the LIA would have promoted vertical mixing of the onsite
water column which; as a result, it would have brought more
cold waters and production of (halophilic) Euryarchaeota/
Archaea community (archaeol, the major driver of ACE
values) at the subsurface layers toward upward, thereby
decreasing SSTs while increasing its salinity. Notably,
during the LIA cold interval, a less input of riverine
discharge like the Pearl River drainage, due to the
concomitant reduction of summer AMC intensity, as
effectively corroborated by a growing body of compelling
and independent evidence (e.g., Dykoski et al., 2005; Wang
et al., 2005; Zhang et al., 2008; Wang et al., 2012; Lee et al.,
2019), may have also somewhat contributed to the inferred
salinity increase here. Because these two processes are
naturally coupled together from a climatological
perspective, it is still difficult to assuredly claim which
should play a major role in driving the higher salinity
during the LIA. Still, an in-depth examination of winter
(via mixing of subsurface waters) and/or summer (via
decrease of riverine discharge) AMC impact on in situ
salinity will need additional work in the future, for example,
model simulations in particular. Regardless, variations in
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winter AMC strength, as inferred from both magnetic
susceptibility at Huguangyan Maar Lake (Yancheva et al.,
2007) (Figure 4H), the UK′

37 SST record and wind-borne
hopane contents at site YJ, are strongly suggested to
modulate the water column structure at the SCS northern
coasts, for example, by superimposing additional cooling effect
on the top of the LIA cold climate background (Zhang et al.,
2019).

The physical mechanism for our inference is further
substantiated by the BIT index and TEX86-derived
temperature records (Figures 3B,C). Based on the
observations of i) more isoGDGT abundance at the northern
SCS shelf in winter (e.g., roughly three times higher than in
summer, Jia et al., 2017) and ii) its primary role (without
contribution of terrigenous lipid input as represented by
hopane contents, Figure 4E, and brGDGTs, Supplementary
Figure 1) in regulating variations in the BIT index in our
case, lower (higher) BIT values during the LIA (MCA) hence
probably result from increased (decreased) production of the
Thaumarchaeota, which is in good support of more (less)
prevalence of wintertime conditions (Zhang et al., 2013; Wang
et al., 2015; Jia et al., 2017). Combined with small BIT values
downcore (roughly <0.3), terrigenous materials thus exert little (if
any) impact on the TEX86 proxy (and its calibrated temperature).
For the TEX86 thermometer, recent studies by Jia et al. (2017) and
Wei et al. (2020) have also suggested that at the northern SCS
coast, its estimates are commonly comparable to or slightly lower
than winter SSTs, hence indicative of temperature signals in cold
season (Figure 2). This interpretation, if true in our case, could
explain the overall resemblance between our TEX86 values and
the UK′

37 SST record over the LIA (Figure 3), as it strongly
indicates the homogeneity of thermal signals, in line with
enhanced vertical mixing of onsite water due to a stronger
AMC then. However, we still note that prior to the LIA
interval, there existed slightly cooler (∼0.5°C) values of TEX86

proxy during theMCA (Figure 3). Such observation, based on the
winter temperature signals as earlier asserted (Jia et al., 2017; Wei
et al., 2020), should necessitate a strengthening of winter AMC
strength during the MCA (relative to the LIA), evidently
contradicting not only our UK′

37 SST and hopane records
(Zhang et al., 2019) but also other terrestrial paleorecords
(e.g., Yancheva et al., 2007; Kang et al., 2020). Therefore,
additional parameter(s) must also be included here for
completely understanding our TEX86 record.

In our case, downcore TEX86 values, calculated to be ∼18.8
± 1.2°C (Figure 3C, and roughly ∼2°C higher if using regional
equation developed by Jia et al., 2017), are obviously lower than
the in situ instrumental SST in winter (Figure 2) considering that
∼20% of Thaumarchaeota is actually produced in other seasons
(Wang et al., 2015; Jia et al., 2017; Wei et al., 2020). Further, in
light of i) its different features with the UK′

37 SST record, ii) lower
BIT values (<∼0.3), and iii) use of the TEX86 proxy tomanifest the
temperature of subsurface rather than surface waters, for
example, over the western Pacific marginal sea (Xing et al.,
2015), we here apply TEX86 values as temperature indicators
of an integrated water column but also biased toward winter
season and subsurface waters (Figure 2). Although it is quite

difficult to differentiate the inhabit depths of Haptophyceae algae
(alkenone-producing species) and Thaumarchaeota at site YJ
with ∼21 m water depth, the use of UK′

37 - and TEX86-derived
temperatures to reflect the surface and subsurface thermal signals
has been confirmed at the shallow water column in the northern
SCS coast (e.g., ∼50 m in Wang et al., 2021). Following such
interpretation, within the LIA, an overall similarity in the
temporal patterns of these two paired records (Figure 3C and
Figure 4A) indicates the homogeneity of thermal signature down
the entire water column here, thus calling for an intensification of
vertical mixing due to a stronger winter AMC influence (Zhang
et al., 2019). In contrast, during the MCA, a weaker winter AMC
would have reduced vertical mixing which, together with a
stronger summer AMC simultaneously (Dykoski et al., 2005;
Zhang et al., 2008), intensified stratification of the water column
and then eliminated the similar imprint of thermal conditions at
different water depths, as extracted by UK′

37 -SST and TEX86

temperature records, respectively (Figure 3C and Figure 4A).
Since UK′

37 mainly documents annual mean SST toward
summer biases (Zhang et al., 2019) while the TEX86 index is
largely controlled by winter temperature and the subsurface
signal (Figure 2), the difference between our paired UK′

37- and
TEX86-values, roughly ∼6–7°C, can be used as a rough measure to
represent thermal contrast at both seasonal and vertical scales
(Figure 4C). As such, it shows that thermal gradient at the LIA
was relatively small, for example, particularly down to ∼4°C at a
few short-lived epochs such as ∼250 years BP, and ∼500 years BP
when the UK′

37 -SST record underwent abnormal cooling (of up
∼4°C, Figure 4A), in comparison to that at theMCA (e.g., roughly
∼8°C, Figure 4C). Together with similar variations of UK′

37 and
TEX86 records during the LIA, these multiple lines of
independent evidence call for more influence of stronger AMC
on the vertical mixing of subsurface water and thereby reduced
stratification of the water column. Notably, considering the
evolutionary role of winter AMC in regulating vertical mixing
of subsurface waters at multi-centennial timescales, as discussed
above, it is reasonable that, at our site YJ, the UK′

37 − TEX86

gradient during the MCA is also likely amplified by an
intensified stratification of the water column (and thus
characterized by relatively larger errors) simultaneously.
Reduction of vertical mixing, due to a weaker winter AMC
(than during the LIA), would yield less influence of the
subsurface cooling signal on surface temperature (generated by
the UK′

37 proxy, for example, Zhang et al., 2019). Water column
stratification could also reshape Euryarchaeota/Archaea
community and thus potentially drive TEX86 to lower values.
This could have also contributed to the TEX86 values during the
MCA, not particularly high as compared to the UK′

37 -SST values
(Figure 3C). On the other hand, the TEX86 proxy well captures
the temporal pattern of temperature changes within the LIA.
Despite the potential contribution from Euryarchaeota/Archaea
community changes, our calculation of vertical thermal gradient
apparently resembles the temporal patterns of SST difference
between the coast and open ocean (e.g., using UK′

37 -SST records at
two sites YJ and NS02G, Figure 4D), whereas the SST difference
is used to track winter AMC variability (Kong et al., 2017; Zhang
et al., 2019). Assuming that the open sea SST represents “original”
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temperature signal that is not strongly impacted by the winter
AMC, the temperature difference between the two locations could
indicate the winter AMC impact. The difference of our UK′

37
and TEX86 values captures most of the features in the two
UK′

37 -SST difference (Figures 4C,D), suggesting that the TEX86

proxy largely manifests the integrated water column/subsurface
temperature at this site, despite its complicated nature. Hence,
vertical thermal difference at the site YJ, associated with the
strengthening (weakening) of onsite vertical mixing, facilitates
our explanation of enhanced (reduced) winter AMC strength
during the LIA (MCA). Altogether, secular changes in winter
AMC intensity, for example, its intensification during the LIA, are
capable of i) transporting terrigenous biomass, as substantiated by
exponential increase of wind-borne hopane compounds (Figure 4E);
ii) exerting additional cooling signals upon typical cold climate
background (through both atmospheric and oceanic processes,
Zhang et al., 2019), as seen by abnormal SST decrease
(Figure 4A); and iii) enhancing vertical mixing (thereby reducing
stratification) of the onsite water column, as reinforced by the
similarity in UK′

37 and TEX86 temperatures and decrease in their
difference (Figure 4C), as well as lower BIT values.

CONCLUSION

We used a sediment core YJ, collected from the northern SCS coast,
to analyze GDGT lipid biomarkers during the past millennium.
These proxies, together with published alkenone (UK′

37 )-SST and
hopane records from the same core, help constrain the dynamical
interplay between northern SCS coastal conditions and winter AMC
intensity at multi-centennial timescales. In general, variations in
ACE and BIT indices, although characterized by opposite features,
indicate a more prevalent regime of the winter season at the LIA
(than the MCA). Further comparison of paired UK′

37 and TEX86

temperature records, with the caution that the latter might be
additionally affected by non-thermal factor, shows decrease
(increase) in the vertical thermal gradient during the LIA (MCA),
thereby calling for a well (less)-mixing of the onsite water column.
Therefore, winter AMC changes would have greatly regulated both
thermal and saline properties of the shallow waters at northern SCS

coasts. Our results necessitate a careful examination of the AMC
coupling processes for better understanding coastal environment in
the past, for example, during the LIA andMCA, and also in the near
future.
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Oxygen isotopic compositions (δ18O) of benthic foraminifer tests are widely used for
reconstructing paleoceanographic changes, such as global ice volumes during
glacial–interglacial cycles. Although deep-sea benthic foraminifers have been well
characterized and are considered reliable indicators, little attention has been paid to
the geochemistry of shallow-water benthic foraminifers. In this study we evaluated δ18O in
the shallow-water benthic foraminifer Hanzawaia nipponica Asano, which lives in surface
sediments on continental shelves and upper slopes under the influence of two warm
currents, the Kuroshio and Tsushima currents, in the East China Sea, northwest Pacific,
and southwestern Japan Sea. To evaluate oxygen isotope equilibrium, we analyzed δ18O
of H. nipponica and ambient seawater on the continental shelf in Tosa Bay, southwest
Japan. Seawater δ18O and salinity in Tosa Bay are similar to those of surface and
subsurface waters in the Kuroshio region in the Okinawa Trough and the northwest
Pacific. Vertical profiles of seawater δ18O show no variation with water depth (0–200m) in
Tosa Bay. However, tests of living H. nipponica (as determined by staining with Rose
Bengal) and fossil (non-stained)H. nipponica, picked from samples of the top centimeter of
seafloor sediment, yielded carbonate δ18O values that clearly increase with water depth,
suggesting a temperature-dependent relationship. A comparison of carbonate δ18O
values in living H. nipponica and those predicted on the basis of seawater δ18O and
annual mean bottom temperature shows that H. nipponica tests are in oxygen isotopic
equilibrium with ambient seawater. We determined the linear equations of
δ18O–temperature relationship, and the slope of −5.26 (0.19‰°C−1) for living and
−4.50 (0.22‰°C−1) for the fossil H. nipponica, respectively. The carbon isotopic
compositions (δ13C) of H. nipponica also closely match seawater δ13C. Thus, we
propose that the carbonate δ18O and δ13C of H. nipponica are useful proxies to
reconstruct shallow-water paleoenvironmental changes in the northwest Pacific and its
marginal seas.

Keywords: benthic foraminifer, Hanzawaia nipponica Asano, oxygen isotopic equilibrium, Tosa Bay, continental
shelf, Kuroshio
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INTRODUCTION

The oxygen isotopic composition (δ18O) of the carbonate tests of
benthic foraminifers is widely used in studying the geologic
history of the oceans, especially the deep ocean. For example,
early researchers argued that the deep-sea benthic foraminifer
Uvigerina spp. appears to record δ18O of calcite in isotopic
equilibrium with seawater (Shackleton, 1974) and that
Cibicidoides wuellerstorfi deviates from equilibrium by −0.64‰
in the Pacific (Shackleton and Opdyke, 1973). Bemis et al.
(1998) countered their argument by compiling published
δ18O data for Uvigerina and Cibicidoides species from core
tops in the Atlantic, Pacific, and Indian oceans and
comparing them with predictions from the paleotemperature
equation established by experimental results from planktic
foraminifers, finding that Cibicidoides δ18O data were in
excellent agreement with the equation whereas Uvigerina
data were scattered. They concluded that the relative 18O
enrichment of Uvigerina over Cibicidoides tests reflects the
habitat differences of the genera: Uvigerina is infaunal and
experiences low pH and decreased [CO3

2−] in pore waters,
whereas Cibicidoides inhabits the sediment surface where
bottom water pH and [CO3

2−] are higher (Bemis et al.,
1998). As a result of these and other advances, much
paleoceanographic research has made use of δ18O analyses of
epifaunal deep-sea benthic foraminifers. In contrast, shallow-
water benthic foraminifers have seen little application in
paleoceanographic studies because it is assumed that δ18O in
these species would be affected by freshwater input and larger
temperature variations in the shallow-water environment.
Although δ18O records from shallow-water settings are very
important evidence of past environmental changes of the coastal
ocean, there is presently no useful species of shallow-water
benthic foraminifer to aid in reconstructing past δ18O changes.

Hanzawaia nipponica is a species of benthic foraminifer that
was first reported from Pliocene strata in Kawasaki, on the Pacific
coast of Japan, by Asano (1944) and has been subsequently
reported from Pliocene to Pleistocene sedimentary sequences
around Japan, such as in Okinawa (LeRoy, 1964), Kochi
(Katto et al., 1953), and Shizuoka (Aoshima, 1978). Outside
Japan, it has been recorded from upper Pliocene to lower
Pleistocene shallow-marine deposits on Jeju Island in the
Korea Strait (Li et al., 1999; Kang et al., 2010) and from a
Holocene marine core in the Yellow Sea (Xiang et al., 2008).
The living species is abundant in surface sediment on the
continental shelf in the East China Sea (Inoue, 1989), off the
San’in district in the southwest Japan Sea (Inoue, 1989), and in
the Pacific Ocean near Japan off Kyushu Island (Akimoto and
Torii, 1996), off Shikoku Island (Ishiwada, 1964; Inoue, 1989), off
the Kii Peninsula (Uchio, 1968; Akimoto, 1990), in Suruga Bay
(Akimoto, 1990), and off the Boso Peninsula (Kuwano, 1963).
Living H. nipponica have been recorded at water depths ranging
from 23 to 235 m (mainly at ∼40 m) off the Pacific coast of
western Japan (Aoshima, 1978). These records suggest that the
main habitat of this species is the shallow continental shelf along
southwestern Japan, where the seafloor is influenced by two
major warm currents, the Kuroshio and Tsushima currents

(Ishiwada, 1964; Matoba, 1976; Matoba and Honma, 1986;
Inoue, 1989; Hasegawa, 1993).

Oxygen and carbon isotope compositions have been reported
for fossil specimens of H. nipponica from one horizon of middle
Pleistocene age in the lower Seogwipo Formation on Jeju Island
(Li et al., 1999); however, there is no published evidence bearing
on the oxygen isotope equilibrium of this species with seawater.
In this study, we analyzed the δ18O of ambient seawater on the
continental shelf in Tosa Bay, off Shikoku Island, Japan, and
contemporary H. nipponica tests from seafloor surface sediment
in Tosa Bay, and we determined that the tests were in isotopic
equilibrium with seawater. Our findings indicate that isotopic
analyses of H. nipponica, a regionally abundant species recorded
from the late Neogene to the present, can be valuable for
paleoceanographic studies in shallow-marine environments.

METHODS

Sediment was collected with a Smith–McIntyre grab sampler
from three sites (sites 5, 25, and 26) on the continental shelf of
Tosa Bay (Table 1; Figure 1) by T/S Toyohata-maru and T/S
Neptune operated by Kochi University. Sediment samples for this
study were collected from the uppermost centimeter of the
sediment in the grab sampler. These were stored in a
refrigerator and stained with Rose Bengal to identify living
individuals of Hanzawaia nipponica Asano. After 2 days, the
stained sediments were washed with water through a 150-µm
mesh sieve and the fractions remaining on the sieve were dried at
50°C in an oven. Stained tests larger than 150 μm, representing
mature living foraminifers, were then picked for isotope analysis
(Figure 2). These tests (7–10 specimens) were baked at 450°C in
an electric oven to remove organic matter from the tests (e.g. Erez
and Luz, 1983). Fossil individuals of H. nipponica (50 specimens)
were also picked for isotope analysis. All tests were cleaned with
methanol by ultrasonication, slightly crushed in a glass vial and
weighed, and then cleaned carbonate fragments weighing
approximately 100 µg were reacted with 100% phosphoric acid
at 90°C in a vacuum. The released CO2 was purified and analyzed
for δ18O in carbonate (δ18Oc) and carbon isotopic composition
(δ13C) using the isotope ratio mass spectrometer (IsoPrime, GV
Instruments Ltd.), with its MultiPrep automated sample
preparation module, at the Center for Advanced Marine Core
Research, Kochi University. The results are expressed in relation
to the Vienna Pee Dee Belemnite (VPDB) standard. The
estimated analytical precisions were better than 0.1‰ for both
δ18O and δ13C measurements.

Seawater samples were collected at depths representing the
entire water column (Table 2) at sites 5, 25, and 26 using a

TABLE 1 | Sampling sites in Tosa Bay, southwest Japan.

Site Latitude Longitude Water depth (m)

St.5 32°25.133′N 133°30.667′E 40
St.25 32°19.0′N 133°35.25′E 100
St.26 32°15.0′N 133°38.25′E 200
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conductivity–temperature–depth (CTD)/rosette multi-sampler
system with Niskin bottles on November 20, 2009 during a
cruise by T/S Toyohata-maru. These samples were placed in
6-ml glass vials without bubbles and stored in a refrigerator until
isotopic measurements were made. Subsamples measuring
200 µL were transferred into 10-ml vials containing CO2 gas
(99.999%) and allowed to reach CO2–H2O exchange equilibrium
at 25°C. The equilibrium CO2 gas was purified and analyzed for

seawater δ18O (δ18Osw) using the IsoPrime system at Kochi
University. The results are expressed in relation to Vienna
Standard Mean Ocean Water (VSMOW). The estimated
analytical precision was better than 0.1‰.

Profiles of water temperature and salinity were measured at
0.5-m depth intervals from the surface to the seafloor during the
same cruise using a Compact-CTD system (Alec Electronics
Ltd.). CTD profiles at these three sites were also measured

FIGURE 1 | Site location maps. (A) Index map with major surface currents in the northwest Pacific and marginal seas. The red circles indicate the location of the
isotope data in Horibe and Ogura (1968), and light purple triangles show the location of the isotope data at Kuroshio sites in Horikawa et al. (2015). Green triangles show
same at Okinawa Trough sites in Horikawa et al. (2015). (B)Bathymetric map showing site locations of surface sediment and seawater samples on the continental shelf in
Tosa Bay; map location shown in (A). Contour interval, 100 m.

FIGURE 2 | Scanning Electron Microscope (SEM) and stereo microscopic images of the benthic foraminiferHanzawaia nipponica (Asano) from surface sediment in
Tosa Bay. (A) SEM image of living (stained) H. nipponica from site 25, (B) SEM image of living H. nipponica from site 5, (C) photomicrograph of living H. nipponica from
site 5, (D) photomicrograph of fossil (non-stained) H. nipponica from site 25. Scale bars are 100 µm in (A) and (B) and 200 µm in (C) and (D).
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each month from April 2009 to February 2010 by the research
group of Usa Marine Biological Institute, Kochi University
(Table 3). In this study, the nominal depths of the seafloor
were 40 m at site 5, 100 m at site 25, and 200 m at site 26,
although actual depths varied slightly from month to month.
Accuracy of temperature and salinity measurements are ±0.02°C
and ±0.03, respectively.

RESULTS AND DISCUSSION

Oceanic Structure and δ18Osw in Shallow
Tosa Bay
Vertical profiles of monthly seawater temperature and salinity on
the continental shelf in Tosa Bay show typical seasonal variations
(Figure 3). Sea surface temperatures are about 28°C in summer
and 17°C in winter at the three study sites (Figure 3). The surface
water is thermally stratified during spring to summer, vertical
mixing begins in October to November, and the temperature
profile is almost uniform during January to March (Ichikawa and
Hirota, 2004). The vertical temperature gradients on the day of
sampling (November 20, 2009) were steeper than that of the
annual mean temperature (Figure 3). The annual mean salinity in
surface water was approximately 34.0 at site 5 and approximately
34.2 at sites 25 and 26 (Figure 3). Although the salinity of surface

water in Tosa Bay decreased from July to September as a result of
freshwater input from the Asian summer monsoon, the low-
salinity layer was limited to the upper 80–90 m of the water
column at sites 25 and 26. The sea surface salinity on the sampling
day was slightly lower at site 5 (34.0) than at sites 25 (34.2) and 26
(34.2), but near the seafloor the salinity at site 5, the shallowest
site (34.4), was similar to those at sites 25 (34.5) and 26 (34.6).

Although Tosa Bay is an open bay with a semicircular
shelf–slope topography (Figure 1), the warm water of the
Kuroshio does not flow directly through the bay. The most
dominant current pattern is a counterclockwise circulation
interacting with a cold eddy (Fujimoto, 1987; Kuroda et al.,
2008). This circulation appears to be induced by the combined
effect of changes in the position of the Kuroshio axis and the
irregular topography of the continental margin (Awaji et al.,
1991). The surface current, subsurface temperature, and vertical
thermal structure on the continental slope in Tosa Bay are
markedly influenced by the position of the Kuroshio axis, the
counterclockwise circulation being enhanced as the Kuroshio axis
moves near shore south of the Ashizuri and Muroto peninsulas
(Kuroda et al., 2008). Therefore, the seafloor environment is
affected by low-salinity coastal water only at depths shallower
than 80–90 m in Tosa Bay, and the seafloor below 100 m is
predominantly influenced by water originating from the
Kuroshio.

TABLE 2 | Temperature, salinity, and oxygen isotopic composition in seawater (δ18Osw) from three sites in Tosa Bay (November 20, 2009).

Site Water depth (m) Temperature (°C) Salinity δ18Osw

(‰, VSMOW)
Std.dev (‰)

St.5 0 22.24 34.01 0.180 0.02
10 22.43 34.05 0.154 0.03
25 22.37 34.18 0.173 0.03
40 22.14 34.41 0.236 0.06

St.25 0 22.67 34.25 0.321 0.02
10 22.71 34.25 0.169 0.03
25 22.71 34.26 0.286 0.04
50 22.71 34.27 0.292 0.03
75 22.71 34.27 0.167 0.01
100 20.87 34.52 0.244 0.02

St.26 0 22.86 34.23 0.259 0.04
10 22.87 34.28 0.295 0.03
25 22.87 34.28 0.233 0.04
50 22.83 34.29 0.295 0.06
75 22.62 34.27 0.271 0.03
100 21.25 34.54 0.263 0.02
150 18.31 34.60 0.274 0.02
200 16.22 34.61 0.209 0.03

Analytical error: ±0.02 ±0.03 <0.1

TABLE 3 | Seasonal maximum, minimum, and annual mean value of bottom water temperature and salinity from three sites in Tosa Bay.

Site Water depth (m) Bottom water temperature (°C) Bottom water salinity

max min annual mean max min annual mean

St.5 40 27.5 16.1 20.8 34.6 33.8 34.4
St.25 100 21.8 13.8 17.9 34.6 34.3 34.5
St.26 200 16.2 9.4 12.5 34.6 34.3 34.5
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On the date of sampling, the three sites in Tosa Bay had δ18Osw

ranging from 0.15 to 0.32‰ (Table 2; Figure 4). Although not all
of the Tosa Bay data lie on the regression lines of surface water
from the East China Sea to the Kuroshio region (Oba, 1990;
Horikawa et al., 2015) and their δ18Osw values appear relatively
high (Figure 4), the δ18Osw–salinity data appear to be consistent
with previously published results. These δ18Osw values and
salinity values in Tosa Bay are very close to those of Kuroshio
surface water from east of Taiwan (salinity � 34.2–34.4 and
δ18Osw � 0.1–0.2‰) and Kuroshio subsurface water

(40–100 m) in the Okinawa Trough (salinity � 34.4–34.7 and
δ18Osw � 0.15–0.35‰) (Horikawa et al., 2015). The δ18Osw values
in Tosa Bay are also consistent with those in surface and
subsurface waters (0.25‰–0.4‰; 0–200 m) from the Kuroshio
Extension and subtropical gyre (Oba and Yasuda, 1992). There is
little available δ18Osw–salinity data of typical Kuroshio waters, but
data from the Kuroshio region south of Japanese Islands show
that Kuroshio water has higher salinity and δ18O there than in the
localities just described (Horibe and Ogura, 1968) (Figure 4). The
δ18O data from Horibe and Ogura (1968) were converted from

FIGURE 3 |Measured temperature and salinity profiles at three sites in Tosa Bay. (A) temperature and (B) salinity at site 5, (C) temperature and (D) salinity at site
25, (E) temperature and (F) salinity at site 26. Thin colored lines are monthly values, heavy dashed lines are annual mean values (April 2009 to February 2010).
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δD data via the formula δ18O � δD/8.03. Slope 8.03 is derived
from the relationship between δ18O and δD of observed global
data (Mathieu et al., 2002).

The δ18Osw values averaged over the water column are 0.19‰
at site 5, 0.25‰ at site 25, and 0.26‰ at site 26. These results
suggest that site 5 might be affected by freshwater with lower δ18O
values from the Niyodo River. The δ18O values of surface water
(river, stream, and spring water) in southern Shikoku are ranging
from −5.9‰ to −7.9‰ (calculated average value −6.6‰) (Mizota
and Kusakabe, 1994), indicating that the freshwater δ18O from
Shikoku is almost consistent with the intercept of regression line a
(Figure 4), which was derived from surface water in East China
Sea and Kuroshio region in south of Japanese Islands (Oba, 1990).
However, the discrepancy at site 5 is much smaller in water near
the seafloor (Table 2), which suggests that freshwater influences
only the surface mixed layer near the mouth of the Niyodo River.
We lack data to assess the impact of seasonal changes, but because
the seasonal salinity variation in bottom-water is small
(Figure 3), we assume that the seasonal variation of δ18Osw in
bottom water is negligible.

Oxygen Isotope Equilibrium of H. nipponica
The δ18Oc values of living and fossil H. nipponica increase with
water depth in Tosa Bay, even though the vertical profile of
δ18Osw is almost constant (Table 4; Figure 5). The differences in
δ18Oc with depth may depend on water temperature, given that
δ18Osw varies so little with depth (Figure 5A). However, δ18Oc in
many foraminifer species differs from the equilibrium state (e.g.,
Shackleton, 1973; Bemis et al., 1998), and a specific offset value
should be calculated to assess the temperature dependence of
δ18Oc inH. nipponica. Although the biology ofH. nipponica is not
documented in detail, the life span of shallow-water benthic
foraminifers is typically from several months to a year
(Murray, 1991). For example, the life cycle of Planoglabratella
opercularis, a benthic inhabitant of rocky shore environments, is
completed in 40–65 days (Tsuchiya et al., 2014). We assumed that
the life span of H. nipponica is more than 3 months, and on that
basis we estimated the effect on calcification in the shallow
ambient environment in Tosa Bay. Predicted δ18Oc values
were calculated, assuming oxygen isotopic equilibrium in
foraminiferal calcite, from

FIGURE 4 | Plot of seawater δ18Osw against salinity (0–200 m) in Tosa Bay during November and published data from other northwest Pacific and East China Sea
sites. Regression line (A) is derived from surface-water data in the East China Sea and the Kuroshio south of the Japanese Islands (Oba 1990). Regression line (B) is from
shallow water (0–100 m) data in the Yellow Sea, East China Sea, and the Kuroshio off Taiwan (Horikawa et al., 2015). Regression line (C) is derived from shallow water
(0–100 m) data in the Okinawa Trough (Horikawa et al., 2015). Equations from the literature are also shown. Equation of regression line c is calculated from data in
the Okinawa Trough sites in Horikawa et al. (2015). End-member data for the Kuroshio are from northwest Pacific (Horibe and Ogura 1968).

TABLE 4 | Oxygen and carbon isotopic compositions of living (stained) and fossil (non-stained) H. nipponica from three sites in Tosa Bay.

Site Water depth (m) living Hanzawaia nipponica fossil Hanzawaia nipponica

Specimens δ18O
(‰, VPDB)

δ18C
(‰, VPDB)

Specimens δ18O
(‰, VPDB)

δ13C
(‰, VPDB)

St.5 40 10 −0.89 0.03 50 −1.00 0.77
St.25 100 9 −0.35 0.99 50 −0.38 0.94
St.26 200 7 0.68 0.80 50 0.83 0.63

Analytical error: <0.1‰
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T(+C) � 16.5 − 4.8(δ18OC − (δ18OSW − 0.27)) (1)

This equation was determined from culturing experiments
with a symbiont-bearing planktic foraminifer, Orbulina universa,
grown under low-light conditions (Bemis et al., 1998). The
adjustment of −0.27‰ to the seawater term compensates for
the δ18O difference between the VSMOW and PDB standards.
We calculated δ18Oc from the δ18Osw values at each of our three
study sites and various bottom-water temperatures for each site:
monthly values, the annual mean value, and average values for the
3-month period September to November, based on
measurements from April 2009 to February 2010.

The results (Figure 6) show that the δ18Oc values of living H.
nipponica lie well within the seasonal variation of predicted δ18Oc

at every site and are nearly equal to the predicted δ18Oc values
based on the annual mean bottom temperature. They also suggest
that the δ18Oc values of living H. nipponica are heavier than the
predicted δ18Oc values from the 3-months average. Because we
assumed a life span of 3 months for this species, the discrepancy
indicates that H. nipponica has a much longer life cycle. This
finding is also supported by the fact that δ18Oc values of living and
fossilH. nipponica are very close to each other (Figure 5B). From
these results, we conclude that the carbonate tests ofH. nipponica
are in oxygen isotopic equilibrium with the ambient seawater.
Although there are only three sites in this study, it is possible to
evaluate the relationship between δ18Oc of benthic foraminifer
and bottom water temperature. Figure 7 shows the relationship
δ18Oc of living and fossil H. nipponica and annual mean bottom
water temperature in Tosa Bay. It is clear that the relationship is
linear in both cases. The slope of the linear function is −5.26
(0.19‰°C−1) for the living and −4.50 (0.22‰°C−1) for the fossilH.
nipponica, respectively (Figure 7).

FIGURE 5 |Oxygen and carbon isotopic compositions of seawater andH. nipponica at three sites in Tosa Bay. (A) Vertical profiles of oxygen isotopic compositions
of seawater. (B) Oxygen and (C) carbon isotopic compositions of living and fossil H. nipponica specimens. Horizontal bars represent analytical error of 0.1‰. The δ13C
values of seawater at station LM6 (34°67’N, 142°05’E) in the Kuroshio region off the Boso Peninsula (Oba et al., 2006) are also plotted in (C).

FIGURE 6 | Predicted and measured δ18Oc of livingH. nipponica plotted
against water depth. Plus symbols show the monthly predicted δ18Oc values
at sites 5 (40 m), 25 (100 m), and 26 (200 m). Red filled circles and yellow filled
diamond symbols show the predicted δ18Oc values for annual mean
temperatures and 3-months average temperature (September to November),
respectively. The predicted δ18Oc values are calculated from water
temperature and δ18Osw in Tosa Bay using a calcite equilibrium equation
(Bemis et al., 1998).
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Although we applied the δ18Oc–temperature equation of Bemis
et al. (1998) to our data, there are other δ18Oc–temperature
relationships that yield various estimates for calcification of
benthic foraminifers. For instance, Shackleton (1974) used core-
top data to calibrate a δ18Oc–temperature relationship for the
benthic foraminifer Uvigerina spp., and Zahn and Mix (1991)
proposed that δ18Oc in Uvigerina peregrina at water depths
greater than 2 km could be described best by the equation of
Erez and Luz (1983), derived from culture experiments with the
planktic foraminifer Globigerinoides sacculifer. Both of these studies
assumed that Uvigerina precipitates its test in oxygen isotope
equilibrium with ambient seawater. Bemis et al. (1998) compared
Eq. 1 to an analysis of a compilation of published δ18O data for the
benthic foraminifers Uvigerina and Cibicidoides from core tops in
the Atlantic, Pacific and Indian oceans, the Arabian Sea, and theGulf
of Mexico. They found that the δ18O data for Cibicidoides were in
excellent agreement with Eq. 1, which was based on culture
experiments in low-light conditions with the planktic foraminifer
Orbulina universa. Our data for H. nipponica show that the
relationship between δ18Oc and ambient temperature closely fits
Eq. 1 (Figure 8). The δ18O data also show a similar trend with
temperature in equations based on benthic foraminifers (Shackleton,
1974) and inorganic calcite (Kim and O’Neil, 1997). We conclude
that the shallow-water benthic foraminiferH. nipponica precipitates
its test close to oxygen isotopic equilibriumwith seawater, as does the
deep-sea benthic foraminifer Cibicidoides. The equation of Bemis
et al. (1998) appears to be widely applicable to foraminifers,
including benthic foraminifers in shallow and deep-sea
environments. Although H. nipponica is restricted to continental

shelves and upper slopes, this species may be very useful for
elucidating paleoenvironmental changes in shallow-water settings
affected by the Kuroshio and Tsushima current in the northwest
Pacific and adjoining seas. Planktic foraminifer, which have been
used in many isotope studies, have relatively large depth habitat (e.g.
Schiebel and Hemleben, 2017), in contrast, benthic foraminifer have
the advantage of being able to extract information on limited water
depths, thus our new result is very important to advance
paleoceanographic research in shallow water of past ocean.

Carbon Isotopes of H. nipponica
Our determinations showed that δ13C of living H. nipponica
ranged from 0.03 to 0.99‰, and those of fossil H. nipponica
ranged from 0.63 to 0.94‰ (Table 4; Figure 5C). The differences
between living and fossil specimens were small at site 25 (0.05‰)
and site 26 (0.17‰) and much greater (0.74‰) at site 5, the
shallowest site, where living specimens exhibited relatively
depleted values (Figure 5C). Although δ13C values of seawater
in Tosa Bay have not been reported, values in the Kuroshio off the
Boso Peninsula have been reported as a gradation from ∼1.2‰ in
surface water to ∼0.8‰ in subsurface water at ∼200 m depth
(Figure 5C; Oba et al., 2006). Similarly, Kroopnick (1985)
reported δ13C values of 1.2‰ in surface water in the Kuroshio
region off central Japan (station 224; 34°25′N, 142°00′E). Our
results show that the δ13C of H. nipponica is very close to these
values in bottom water at site 25 (100 m) and site 26 (200 m)
(Figure 5C), suggesting that δ13C in H. nipponica reflects the
δ13C of ambient seawater. The depleted δ13C values of H.
nipponica at site 5 suggest that the δ13C of benthic
foraminifers in the surface mixed layer are greatly influenced

FIGURE 7 | Relationship between δ18Oc of living and fossil H. nipponica
and annual mean bottom water temperature at three sites in Tosa Bay. Green
squares show data from living H. nipponica and orange triangles indicate data
from fossil H. nipponica.

FIGURE 8 | Predicted δ18O values for living H. nipponica from surface
sediments on the continental shelf in Tosa Bay. Published relations between
temperature and δ18O are also plotted (Shackleton 1974; Kim and O’Neil
1997; Bemis et al., 1998). The H. nipponica data show a good fit to the
equation of Bemis et al. (1998).
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by factors such as photosynthetic processes, local river input, and
contributions of depleted δ13C from terrestrial organic materials.

In general, the distribution of δ13C in the ocean is controlled
by the interaction of biological uptake at the sea surface, air–sea
gas exchange, and decomposition in deeper water masses.
Photosynthesis in shallow waters preferentially extracts 12C
from the carbon-bearing ions in seawater, enriching the ΣCO2

of surface water in 13C. The δ13C value in seawater after primary
producers have removed all nutrients, then, is controlled by the
mean δ13C and the mean nutrient concentration of the ocean
(Broecker, 1982). Because the carbon taken up by phytoplankton
has a δ13C value of approximately −20‰, the surface reservoir is
enriched by 2.0‰ relative to the mean δ13C of deep water (Curry
et al., 1988). Therefore, δ13C data of fossil benthic foraminifers
can be used to reconstruct past properties of deep water and infer
past changes in ocean ventilation (e.g., Curry and Oppo, 2005;
Ullerman et al., 2016).

Although further research will be necessary to better specify
the dominant factors of δ13C in H. nipponica, the δ13C of this
species is nearly identical to that of seawater. This similarity
means that δ13C of H. nipponica can be used to reconstruct the
history of carbon circulation in subsurface to intermediate waters
in the northwest Pacific and its marginal seas.

CONCLUSION

The main findings of this study are as follows:

1) The oxygen isotopic composition (δ18Osw) and salinity of
seawater samples from Tosa Bay generally overlap with those
of the Kuroshio, which flows from the Okinawa Trough past
Tosa Bay to the northwest Pacific. Although the surface and
subsurface waters at site 5, the shallowest site, are influenced
by freshwater input, the bottom water at all sites (40–200 m) is
minimally influenced by less saline coastal water.

2) The δ18Oc values increased with water depth in living and
fossil specimens of the benthic foraminifer Hanzawaia
nipponica, whereas δ18Osw did not vary with water depth
in Tosa Bay. The δ18Oc values of living H. nipponica were
predicted well by the calcite equilibrium equation of Bemis
et al. (1998) using the annual mean bottom-water
temperature, indicating that the carbonate tests of H.
nipponica form in oxygen isotopic equilibrium with
ambient seawater. This result reinforces the utility of the
equation of Bemis et al. (1998) for calculating δ18Osw and

temperature for foraminifers, including benthic foraminifers
in shallow and deep marine environments.

3) Tests of H. nipponica faithfully record the δ13C of ambient
seawater, although the δ13C of this species in the surface
mixed layer is difficult to interpret owing to the influence of
various factors.

4) Data on δ18Oc and δ13C of H. nipponica are useful proxies to
reconstruct paleoenvironmental changes in the shallow waters
of the northwest Pacific and its marginal seas.
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Holocene Monsoonal Variations Over
Southern India: Looking Into Its
Antecedents
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A proper understanding of the paleoclimatic variability in the Southern Peninsular India
demands a high-resolution paleoclimate reconstruction record. Hence, in this paper, we
compiled all the available paleoclimate records from various locations across the
Southern India that receives the southwest and the northeast monsoon. We
delineated the southwest monsoon (SWMR) and Northeast monsoon (NEMR)
variations within the Holocene Period based on the existing paleoclimatic record
from this region. Paleoclimate records are primarily based on various paleoclimate
archives and proxies. A detailed study of these variations unravels, (i) that SWMR
gradually intensified since the younger dryas during the Early Holocene period. On the
contrary, NEMR records indicate a dry phase during the same period. (ii) During the mid-
late Holocene, precipitation in SWMR-dominated regions decreased, whereas
precipitation in NEMR-dominated regions shows an increasing trend. (iii) Then, in the
late Holocene Period, SWMR exhibits an overall wet phase with a few drier periods, and
NEMR shows an intense dry period with shorter wet phases, which can be correlated to
the demise of Chola dynasty, in the Southern India.

Keywords: southern India, SWMR and NEMR, MWP, LIA, ancient settlement

INTRODUCTION

The tropical climate system in India is dominated by the Indian Summer Monsoon (ISM), which is
characterised by regional irregularities in the general circulation of the atmosphere caused by land-
sea contrasts and seasonal reversal in wind direction. The primary cause for monsoonal variation in
the Indian subcontinent is differential heating of land and sea and/or manifestation of the seasonal
migration of the intertropical convergence zone (ITCZ) (Charney, 1969). However, during the
winter dry cold winds from Asia blow offshore (Colin et al., 1998). The interaction of these moisture
regimes with various teleconnections (El Niño, La Nina, and IODM) have resulted in decadal to
millennial-scale precipitation variations over India (Singhvi and Kale, 2010; Rajeevan et al., 2012).

The southwest or the summer monsoon (SWMR) and the northeast or winter monsoon (NEMR)
are the two monsoons that bring copious amount of rain to South Asia. While the summer monsoon
accounts for the majority of annual rainfall in India. Rainfall obtained during the northeast monsoon
is also significant, particularly along the Coromandel Coast, South India, and Sri Lanka (Figure 1).
During the summer monsoons withdrawal phase, lower-level winds in South Asia migrate from
southwest to northeast (Rajeevan et al., 2012). This shift can be attributed to the southern trend of the
tropical convergence zone. Hence, low-level winds over India switch their direction from
southwesterly to northeasterly during the NEMR, and the region becomes a subset of the
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northeast trades, which is dry, persistent, and has a smaller
vertical extent than the southwest monsoon. Hence, NEMR
has a significant impact on agricultural practises in southern
peninsular India (Rao Krishna and Jaganathan, 1953).

On a regional and temporal scale, several studies have been
attempted to reconstruct the Holocene paleoclimatic variability
(Stubwasser et al., 2003; Trauth et al., 2003; Ponton et al., 2012).
From the Indian subcontinent, various records viz. lacustrine
(Rajagopalan et al., 1997; Juyal et al., 2004; Prasad et al., 2014;
Sarkar et al., 2015; Rajaminkam et al., 2016), marine (Gupta et al.,
2003; Thamban et al., 2007; Achyuthan et al., 2014), and fluvial
records (Kale, et al., 2010; Resmi et al., 2016; Resmi and
Achyuthan, 2018) have been used to reconstruct the
paleomonsoon variability during the Holocene period.

Geographic distribution in the monsoon rainfall are of particular
implication; for instance, the southern region of India which receives
both SWMR and NEMR, perhaps, is the only region that experiences
both themonsoons (Figures 1A,B, 2A,B). In theHolocene period, the
southern peninsular India witnessed multiple cultural and adaptive
innovations, transitions, as well as the rise of several civilizations
(Figure 2C; Gupta et al., 2003; Walker et al., 2012). These ancient

civilizations developed and disappeared in tandemwith climate shifts,
the monsoons have caused a significant socioeconomic ramification.

DATA COLLECTION

Climatic reconstructions data considered for the present study is
based on the following criteria: (1) The sites are located only in
the Southern Peninsular India which is experiencing either NE or
SW monsoon. (2) The proxy data were interpreted originally in
terms of dry phase or wet phase (3) The records are within the
Holocene period. However, owing to the paucity of high-
resolution climatic records from the southern peninsular
region, chronological uncertainty was not considered as the
criteria for selection. We included and compiled all the
records of lacustrine, fluvial and marine sediments. All
records used in the compilation met the above-said criteria.
To enable the comparison, the precipitation records were
subdivided into the Southwest monsoon (SWMR) dominated
region and Northeast monsoon (NEMR) dominated region.
This strategy was adopted in the present study because of the

FIGURE 1 | (A) Represents Large-scale topographical maps with dominant seasonal hemispherical airflows (after Mishra 2014, Resmi and Achyuthan, 2018). (B)
Geographical location of the selected site.
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spatial variability of SWMR and NEMR in the southern
Peninsular India. Some of the precipitation records include
isotope data, pollen data, sedimentation rate, geochemical
records, clay mineralogy etc. We solely used proxy records of
inferred climate shifts documented in previous records for the
present study, and we did not reinterpret any original proxy
data to a climate signal.

DATASETS

The Corg/N and δ13C ratio help to differentiate the
paleoenvironment in the catchment of a lake region (Chen
et al., 2002). Corg/N ratio records are available from
Shantisagara Lake (Sandeep et al., 2007) and Kukkal Lake
(Rajamanickam et al., 2016) spanning the Holocene period.
Lake sediments from Shantisagara, Sandynallah, Parsons
Valley, and Akalagavi Cave Deposits have been assessed for
δ13C value (Sukumar et al., 1993; Rajagopalan et al., 1997;
Yadava et al., 2004; Sandeep et al., 2017; Raja et al., 2018a).
High rainfall periods are characterized by depleted δ13C values
(C3 plants), whereas low rainfall periods are marked by less
negative or enriched δ13C values (C4 plants). Speleothem
records are available from Akalagavi cave, δ18O value of the
speleothem layers are a proxy for the past variations of
precipitation (Yadava et al., 2004). Enrichment and depletion
in δ18O are the indicative of the past deficiency and excess in
rainfall of Akalagavi cave deposit (Table 1). δ18O variation in
foraminifera is also used as proxy indicator for paleoclimatic
studies (Thamban et al., 2001). Intensity of Chemical weathering
(CWI) is also a proxy for understanding precipitation (Sun et al.,
2010). In this review, CWI records from the Palar River (Resmi
and Achyuthan, 2018) and Kukkal Lake (Rajamanickam et al.,
2016) are also included. CWI is often higher in warm and humid
climates than in cold and dry climates. The Cao/MgO, Rb/Sr
records were used in this review: Under warm and dry climate
conditions, increased CaO/MgO values in the Palar River (Resmi
and Achyuthan, 2018) and Kukkal Lake (Rajamanickam et al.,
2016) demonstrated higher carbonate of authigenic origin (Wang
et al. 2004). Magnetic susceptibility (Xlf) is a major tool for
assessing climatic variations (Da Silva et al., 2014). Low (Xlf)
values suggest less rainfall, and vice versa (Bhattacharyya et al.,
2015). Magnetic susceptibility (Xlf) data are available from
Shantisagara Lake and Thimmannanayakanakere tank (Table 1).

Pollen inferred climate records from Shantisagara Lake,
Pookode Lake, Ashtamudi- Sasthamkotta Lake, Kukkal Lake,
Sandynallah Basin, Parsons Valley, Peat deposition in Kerala
and Konkan coast and mangrove vegetation of Northern Konkan
region provide a high-resolution paleoclimate data during
Holocene (Sukumar et al., 1993; Rajagopalan et al., 1997;
Kumaran et al., 2005; Nair et al., 2010; Limaye and Kumaran,
2012; Rajamanickam et al., 2016; Sandeep et al., 2017; Raja et al.,
2018a) (Table 1). Arboreals and non-arboreals pollen provides
insight into its climatic conditions of the past. Prevalence of non-
arboreal pollen with sparce vegetation suggests wet, dynamic, and
non-static climatic conditions, and vice versa. Clay mineral
assemblages can be used to deduce paleoclimate. This review

also includes clay mineralogy records from the Bay of Bengal and
Kaliveli Lake (Pattanaik, 2009; Chauhan et al., 2010)
Thecamoebians record from the Pichavaram Estuary used in
this review, A high abundance of thecamoebians indicates a better
marine environment, and vice versa (Srivastava et al., 2011)
(Table 1).

DISCUSSION

Southwest Monsoon
Greenlandian Stage (Early Holocene)
Sukumar et al. (1993), Rajamanickam et al. (2016), and Sandeep
et al. (2017) presented a detailed southwest monsoon variability
on peat and lake sediments from southern Indian Peninsula
spanning the Holocene period. Based on a high content of
carbonate, Corg/N ratio, Corg, N, and depleted δ13C values
along with dominant C4 plants indicate an overall dry phase as
presented in Shanti Sagara Lake in the initial stage of the early
Holocene period (11.1–10.7 ka) (Sandeep et al., 2017) (Figure 3)
(Table 1). This decreasing tendency was perhaps due to the
gradual transition from the Younger Dryas to the early
Holocene wet phase (Figure 3). Subsequently, enhanced
precipitation phase is marked during 10.7–8.6 ka, reflecting
high abundance of C3 plants as studied in the Shanti Sagara
Lake (Sandeep et al., 2017), Kukkal Lake (Rajamanickam et al.,
2016) (Figure 3), and peat deposits in the Nilgiris (Sukumar
et al., 1993). The interpolated ages from the pollen data of
Parsons Valley Lake, Nilgiris, indicate a dominance of arboreal,
with a subsequent shift to a significant increase in non-arboreal,
suggests a decrease in precipitation in the early Holocene (Raja
et al., 2018a) (Table 1). Based on the δ13C record, Sukumar et al.
(1993) have marked a high dominance of C3 vegetation at
∼10.6 ka which indicate an intensified rainfall during this
period, followed by a predominance of C4 vegetation
suggesting a dry period from 10 to 6 ka. Various terrestrial
proxies, such as magnetic susceptibility and element
concentration in marine core sediments extracted from the
Arabian Sea (Thamban et al., 2007), have observed a sudden
rise in the intensity of SWMR during 9.5–8 ka (Table 1), which
is coeval with the maxima in the Kaveri River discharge (Kale
et al., 2010) and the formation of thermocline anoxia in the
Arabian Sea (Staubwasser et al., 2002). Sedimentological,
palynological, and stable isotopes of sediments from the
Kallada Bay Delta suggest a rise in sea level during the early
Holocene period due to intense rainfall (Padmalal et al., 2013).
The beginning of early Holocene, optimum ∼ 10.65 ka, can be
manifested from several parts of southern India (Sukumar et al.,
1993; Rajagopalan et al., 1997; Caner et al., 2007; Kumaran et al.,
2008; Sandeep et al., 2017; Raja et al., 2018b). Thamban et al.
(2007) observed the cessation of the early Holocene climatic
optimum (HCO) event occurred gradually at ∼8.5 ka. Summer
monsoons were intense in the early Holocene times, as shown by
lake (Rawat et al., 2015a, 2015b; Sarkar et al., 2015) and sea
(Kessarkar et al., 2013; Saraswat et al., 2016) sediments from the
other part of Indian subcontinent. High-resolution speleothem
records from northern Oman and the Oman margin support the
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view that Early Holocene is marked by intense precipitation
(Neff et al., 2001; Gupta et al., 2003; Fleitmann et al., 2007).

Northgrippian Stage (Mid Holocene)
During 8.6–4.5 ka, the high Corg/N ratio and the prevalence of C4

plants indicate an overall decreasing trend of monsoon during the
mid-Holocene period, which corresponds to the 8.2 ka cold event
(Sandeep et al., 2017). Moreover, southward shift of the Inter-
Tropical Convergence Zone (ITCZ) can be linked to a long-term
drop in precipitation during the mid-Holocene (Fleitmann et al.,
2007) (Figure 3). The period between 8 and 6 ka is marked a rise
in sea level along the Kerala Coast and sinking areas of the
mangroves which were flourished at that time, followed by a
major regression at ∼5 ka (Cronin et al., 2007).

Increased carbon (TOC), total nitrogen (TN), and the C/N
ratio of Kukkal Lake are pointing towards an aridity at ∼8 ka
(Figure 3). On the contrary, the paleoclimatic data from the flood
plain of the upper Kaveri River indicate that a major flood
occurred at ∼8 ka (Kale et al., 2010) (Figure 1) (Table 1).
Enriched C/N ratio and dominant C3 terrestrial input indicate
an intense rainfall during 8.4–4.9 ka with short drier phases (Raja
et al., 2018b). As a continuation of early climatic optimum in the
Sandhyanallah Basin experienced an intense rainfall till 5 ka,
gradually an increase in C4 vegetation indicating a decreasing
trend of monsoon during mid-Holocene (Sukumar et al., 1993;
Rajagopalan et al., 1997) (Figure 3). High CaO and CaO/Al2O3

values indicated a lagoonal and/ or estuarine conditions between
6400 and 2600 cal year BP, which later on shifted to fresh water
conditions at 2600 cal yr BP (Banerji et al., 2021).

Intense rainfall in southwest coastal plains during 6.5 ka leads
to the enormous growth of forest in the abandoned river
channels. The occurrence of pollen and peat deposits in these
palaeoforests along the southwest coast of India suggests a
warmer climate, which is consistent with a mid-Holocene
thermal maximum (Kumaran et al., 2014). Studies based on
geochemical proxies such as Fe, Al, and Ti, indicated that a
most significant weaker monsoon during 6–5 Ka (Thamban et al.,
2007) that corresponds with the foraminiferal oxygen isotope
data from the sediment cores studied from the southwest coast of
India (Sarkar et al., 2000; Thamban et al., 2001).

A substantial decrease in summer monsoon rainfall is also
marked by a decrease in the kaolinite/chlorite ratio during 5.6 ka
(Thamban et al., 2001; Table 1). In the mangroves of southern
Konkan, Limaye and Kumaran (2012) suggested an increased
rainfall and higher sea level from 5.6 to 5.33 ka. The marine
sediment samples of Bay of Bengal marked a decrease in the
intensity of SWM from 5 to 3.6 ka, which at ∼4.8 ka signify an
arid climate conditions (Chauhan and Suneethi 2001).

Southern Indian palaeo-monsoonal records indicate a dry
climate phase throughout the mid-Holocene (Sukumar et al.,
1993) followed by wet spells and a high sedimentation rate
during late Holocene (Padmalal et al., 2013). Short-term abrupt
climatic fluctuations of enhanced monsoon have been inferred
at 8.5, 8.4, and 8.2 ka (Thamban et al., 2007; Kale et al., 2010;
Limaye and Kumaran, 2012). However, the 8.2 ka cold event
relates to the abrupt weakening of ISM and during this time,
solar insolation shows a decreasing tendency (Sandeep et al.,
2017).

FIGURE 2 | (A) Maps showing the monsoon precipitation during (A) June−September and December- February. (B) Monsoonal History (SWMR & NEMR) (C)
Tanks and climate in India, District-wise ratio of tank irrigation to net sown area. The Chola and Pallava tank kingdoms mostly expanded across regions (modified after
Gunnell et al., 2007).
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TABLE 1 | List of proxy records (major) from terrestrial and marine climate archives compiled in this study.

Sl.No Record Latitude Longitude Altitude
(m asl)

Proxy Reconstructed
climate

Reference

1 Shanti Sagara Lake 14°8′34″N 75°52′56″E 770 Magnetic parameters, the Corg/
N ratio, and δ13C values

SWMR Sandeep et al. (2017)

2 Pookode Lake 11°32′35″N 76°01′40″E Sediment texture, phytolith,
major oxides, palynology, and
the Chemical Weathering
Index (CWI)

SWMR Veena et al. (2014)

3 Pookode Lake 11°32′30″N 76°01′38″E 775 Palynology, particle size, and
magnetic susceptibility

SWMR Bhattacharaya et al.
(2015)

4 Ashtamudi–Sasthamkotta
Lake

08°45′–09°05′N 76°25′–76°45′E Palynology, sedimentology, and
a heavy mineral analysis

SWMR Nair et al. (2010)

5 Kukkal Lake 10°16′N 77°22′E 1887 Geochemistry, a textural
analysis, and palynology

SWMR Rajamanickam et al.
(2016)

6 Kaliveli Lake 12.11.97°N 79.8577°E Sedimentation rate, clay
mineralogy, and 10Be
abundance

NEMR Pattanaik (2009)

7 Pichavaram Lake 11°22′–11°32′N 79°45′–79°49′E Sedimentology, marine and
freshwater palynomorphs, and
salinity

NEMR Srivastava et al.
(2011), Srivastava
et al. (2012)

8 Sandynallah Basin 11°30′N 76°20′E Textural analysis, palynology,
and δ13C values

SWMR Sukumar et al. (1993)

9 Sandynallah Basin 11°30′N 7600’- 77020′E Textural analysis, palynology,
and δ13C values

SWMR Rajagopalan et al.
(1997)

10 Parsons Valley Lake 11.39°N 76.60°E Textural analysis, palynology,
and δ13C values

SWMR Raja et al. (2018a)

11 Thimmanna Nayakana Kere 14°12′N 76°24′E Particle size and magnetic
susceptibility

SWMR Shankar et al. (2006)

12 Cauvery Delta 11◦01.178′N 79◦50.446′E Geochemistry and pollen studies SWMR & NEMR Mohaptra et al. (2021)
13 Bay of Bengal 17°54N 83°33E Clay minerology NEMR Chauhan et al. (2010)
14 Arabian Sea 17°45′N 70°52′E Foraminiferal studies SWMR Thamban et al. (2007)
15 Palar River 12°37′ 78°22′ Sedimentology, geochemistry NEMR Resmi and Achyuthan

(2018)
16 Akalagavi Cave 14° 16′ 48″N 75° 7′ 19.2″E Oxygen (δ 180) and carbon

(δ 3C)
SWMR Yadava et al. (2004)

17 Kerala Coast 9°22′38″N– 76°36′05″E Peat deposits SWMR Kumaran et al. (2014)
18 Cauvery River 12.30°N 75.87°E Flood deposits SWMR Kale et al., 2010

FIGURE 3 | Schematic diagram of climate variability during the Holocene from records in the region which experiences SWMR.
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Southwest monsoon paleo-records from the other part of the
Indian subcontinent are also characterized by decreasing
monsoonal precipitation during the mid-Holocene.
Eventhough the records reveals that during the mid-Holocene,
the monsoon precipitation was waning, a few climate records

show an increasing trend in monsoon strength (Prasad and Enzel,
2006; Staubwasser and Weiss, 2006). Construction of man-made
dams, ponds, and other structures along the slope of the river or
on tributary courses allowed water to be stored during the drier
periods of the SWM-dominated regions. Around 5 ka,

FIGURE 4 | Schematic diagram of climate variability during the Holocene from records in the region which experiences NEMR.

FIGURE 5 | Paleoclimate variability in Southern Peninsular India during Holocene.
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archaeological evidence indicates that local populations were
affected, and providing alternatives to rice which was the main
staple, alternative development of tilling-based agriculture caused
a surge in sedimentation rates near the foot of the continental
slope in the Arabian Sea. It is striking that the change in
sedimentation rates roughly corresponds to the early Bronze
Age’s significant cultural shifts and massive population
migrations (Gourlan et al., 2020).

According to speleothem studies conducted by Fleitmann et al.
(2007), the ITCZ migrated southward during the middle to late
Holocene, and monsoon precipitation decreased gradually in
response to decreased solar insolation; the same trend is also
evident from the Indian and East Asian monsoon areas.
Regardless of the fact that all monsoon records reveal
unexpected and extreme monsoon events, they are short and
dramatically superimposed on the consistent pattern of
decreasing monsoon precipitation during mid- Holocene.

Meghalayan Stage (Late Holocene)
The high Corg/N ratio during 4.5–3.3 ka indicates a constant shift
from plankton-dominated deep-water environments to entirely
terrestrial vegetation as observed in the Shanti Sagara Lake. The
paleomonsoon records of the Shanti Sagara Lake indicate a
fluctuating monsoon condition from the beginning of late
Holocene and decreasing trend from 4.5 ka, which
corresponds to the 4.2 ka cold aridity event (Sandeep et al.,
2017) (Figure 3 and Table 1). In Kukkal Lake, an increase in
the intensity of chemical weathering, together with enhanced
preservation of arboreal pollens and ferns, suggests a period of
increasing rainfall during late Holocene ∼3.5 ka (Figure 3).
Subsequently, a decrease in the sand deposition at ∼1.7 ka and
replacement of forest vegetation largely by grasslands point
towards a rapid increase in SWM intensity during this period.
This is further corroborated by the establishment of Shola Forest
during 3.5–1.70 ka (Rajamanikam et al., 2016) (Figure 3). Veena
et al. (2014) noticed an increase of evergreen and semi-evergreen
pollen taxa like Apocynaceae, Arenga, Artemisia (2.6%), and
Calophyllum (2.5%) and an increase of panicoid, chloridoid,
and festucoid suggesting a wet climate phase during
1.4–0.760 ka (Figure 3). Bhattacharyya et al. (2015) suggest
that the significant high Xlf along with high influx of sand and
low influx of clay in Pookot Lake during 3.1–2.5 ka indicate high
precipitation during this period. Pookot Lake also indicates an
overall dry period during 2.5–1 ka, with a brief episodes of intense
monsoon as indicated by a rise in Xlf, sand deposition, and a
reduction in clay content. The high-rainfall environments in
Pookot Lake from 1 to 0.5 ka enhanced the growth of
vegetation, which resulted in increased pollen formation and
preservation; this time period is most likely the Medieval Warm
Period (MWP) in Pookot Lake. The 0.6–0.3 ka period is marked
by lower Xlf values, possibly indicating LIA with a cold and arid
climate. Pookot Lake witnessed substantial rainfall during the
MWP and low rainfall during the LIA, the SWMR becomes more
intense after the LIA (Bhattacharyya et al., 2015). Shankar et al.
(2006) marked that aridity conditions prevailed between 1.55 and
2.5 ka in the Nilgiris region, while an intense SWMR is noted at
∼1.7 ka BP (Raja et al., 2018b). Rajagopalan et al. (1997) noted the

abundance of C3 plants in the Sandynallah Basin, Nilgiris, while
the lake sediment samples from Parsons Valley Lake indicate a
period of weakened SWM.

Along the Kerala–Konkan Coast during the beginning of
the late Holocene period, ∼4 Ka, a decline in the distribution
of the mangrove pollen, especially of Cullenia exarillata, and
decrease in the organic matter content signifies an intense
arid conditions (Kumaran et al., 2005) (Table 1). Recent
studies carried out on mangrove vegetation from Northern
Konkan suggest a reduced rainfall and drier climatic
conditions (Limaye and Kumaran, 2012) in the late
Holocene period (Figure 3).

Yadaava et al. (2004) noted that the stalagmite deposit of
Akalagavi Cave shows an enrichment of δ18O values that indicate
a deficient in rainfall events (which occurred during the years AD
1982, 1979, 1941, 1925, 1918, 1915, 1905, 1899, 1877, 1854, 1777,
and 1796), and a depletion of δ180 designate an excess rainfall
event (AD 1988, 1975, 1961, 1956, 1953, 1917, 1910, 1894, 1893,
1884, 1878, and 1664). The records shows that all deficient and
excess rainfall years can be linked to countrywide rainfall as well
as that the same extreme events occurring across the country
(Figure 2B).

From the decadal averages, the SWMR shows a significant
trend of increasing rainfall. From 1813–1820 to 1911–1920, there
were 25 deficit years against 11 surplus years, but upto 2006 (86
years), there were 16 surplus years against seven deficit years,
suggesting a trend of increasing rainfall than deficit. According to
Verma and Bhatla (2021), the interannual variation in SWMR
precipitation has been linked to El Nino in recent years, and this
had a significant impact on the Eastern Ghats in the southern
peninsular region. During the La Nina years, however, SWMR
rainfall variation from the mean was large in the southern
peninsular region. As a result of this, future flooding situation
in the aforementioned places can be linked to the recurring and
prolonged occurrences of La Nina events. Hari et al. (2020)
suggested an increase in SWMR since 2002 because of the
variations in the dynamics of the ITCZ that propagated
northward since 2002.

North-East Monsoon (NEMR)
Greenlandian Stage: Greenlandian Stage (Early Holocene):
Resmi and Achyuthan (2018) studied the Palar River
paleochannel sediments to reconstruct NEMR variability over
the Southern Indian Peninsular spanning the Holocene period
(Figure 1). It is observed that during the Early Holocene period
∼10 ka, a decrease in CWI values and higher CIA, Rb/Sr ratio of
sediments indicate an enhanced NE monsoonal precipitation
(Figure 4). During 10 to 4.83 ka suggests an increase in CWI
values along with a decline in CIA values, and Rb/Sr ratio,
pointing a decrease in rainfall in this period. However, some
short pulses of enhanced NEM were also reported during this
period (Resmi et al., 2017). Pollen data from the Cauvery delta
sediments reveals that deposition occurred in a sub-aerial
environment at the bottom of deltaic incised valleys between
11 and 9.3 ka (Mohapatra et al., 2021) (Table 1). This reveals
that sea level was advanced during the LGM, as the region was
19 and 13 m below current mean sea level. From 9.3 to 6.5 ka, a
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rapid transgression occurred in this area, pushing the coastline
10 km inland.

Northgrippian Stage (Mid Holocene): During ∼7.3 ka SE
coast of India witnessed high stand sea level recorded from
the emerged coral colony at Rameswaram (Banerjee, 2000).
Later on, ∼6.5 to 5 ka mangroves had established in the
nearby region might be due to stabilization of sea-level.
Subsequently, an increase in NEMR precipitation is noted
during ∼5.1 ka-2.5 ka from the high abundance of Poaceae,
Cyperaceae along with the occurrence of aquatic taxa.
Significant increase in CaO/MgO and CWI value are
observed during 4.8-3.59 ka from the Palar River and its
paleochannels implies a progressive rise in the
precipitation. This inference is substantially corroborated
by low Rb/Sr and Ba/Sr ratios (Resmi and Achyuthan, 2018).

Meghalayan Stage (Late Holocene): Resmi and Achyuthan
(2018) noted a fluctuation in elemental concentrations with high
sand percentage, Rb/Sr, K/Al, Ti/Al ratios and Lower CaO/MgO
ratios during 3.59-3.26 ka indicating a rise in NEMR precipitation
during this period. The period from 3.26 to 1.88 ka shows a
significant decrease in elemental ratios of CaO/MgO, Ti/Al, CWI,
and CIA values that indicate a reducing trend of NEMR. During
3.5 ka period, Srivastava et al. (2011) observed a decline in the
abundance of thecamoebians studied from the Pichavaram
Estuary (Figure 4). This was accompanied with significant
tidal input from the Bay of Bengal and freshwater intake from
the inland, indicating an increase in the monsoon conditions.
This is further corroborated by smectite/kaolinite and Lower 10Be
content in Kaluveli Lake representing a semi-arid to humid
climate around 3.4 kyrs and humid to present day semi-arid
conditions at ∼2.24 ka (Patnaik, 2009; Figure 4). Chauhan et al.
(2010) inferred that high contribution of chlorite and kaolinite
into the Bay of Bengal during NEMR. Hence an enhanced flux of
chlorite and reduced K/C ratio indicate a high monsoon
precipitation during 2.2-1.8 ka, ∼1 ka, ∼0.45 ka-0.6 ka.
Likewise, a weakening of NEMR is noted from 1.8-1.1 ka BP
to 1.44 ka (Figures 4, 5).

Only a few studies have been conducted around the globe to
reconstruct the NEMR (winter) monsoon. Using chemical,
biological, mineralogical, and physical proxies in coastal
sediments from the Panama, Okanda, and Kirinda estuaries,
Ranasinghe et al. (2013) noticed that intervals from >7.3 to
6.75, 4 to 3, 1.1 to 0.5 ka were marked by decreased NEMR, a
short-wet interval around 6.5–6.25 ka, and a semi-arid interval
between 6.25 and 4.6 ka were marked by decreased NEMR
(Figure 4).

The decrease in NEMR intensity has a significant influence
on paddy farming, mainly in the Cauvery delta. The Grand
Anicut, also known as Kallanai, is a historic dam that spanning
the Cauvery River in Srirangam in the Thiruchirapalli District.
During the Sangam period (Singh, 2003; Hill, 2008), the dam
was built to manage water for paddy agriculture and irrigation
during the reign of Chola king Karikalan (c. 100 BC–c. 100 AD).
It is India’s oldest and still operational water-regulator
construction. With the reduction in NEMR during the
Pallava period in the 9th and 10th centuries AD, the region
around Chennai, Kanchipuram, and Chengapttu witnessed

warmer conditions (1000 AD). Further, the impacts of
rainfall on the Chola Kingdom’s wealth and prosperity
(850–1280 ce) can correlate well with the Medieval Warm
Period. However, instrumental and proxy climate data reveal
that recurring El Nino-like events occurred between 850 and
1300 CE, which can be linked to a rise in NEMR, although
SWMR suffered severe deficit during this time. The
development of water harvesting infrastructure in the Chola
Kingdom was concentrated in the NEMR-dominated area of
southeastern India, with construction peaked during El Nino-
dominated intervals. Because of the monumental architecture
and proliferation of tanks in South India (Figure 2C), the Chola
rulers are widely regarded as great supporters of culture, art, and
architecture, and their dynasty is known as the ‘Golden Age of
Tanks’ (Barah, 1996). Temple tanks were built to collect
rainwater and supply it for home and agricultural use during
the non-rainy season (Pandey et al., 2003; Ramachandran, 2006;
Rajan, 2013; Meter et al., 2014). In addition to temple tanks, the
Chola rulers favored the construction of multifunctional man-
made lakes, also known as tanks, which were primarily used to
collect runoff water for irrigation for example Veeranam Lake
and Chembarambakkam Lake are two major man-made water
bodies during the Chola period (Shanmugasundaram et al.,
2017). Overall, the Chola’s territory strengthened and
adapted to the declining NEMR conditions. As a result, it
can be concluded that the Chola Dynasty’s water
management system and infrastructure helped them to
sustain extreme climatic conditions such as droughts and
floods in the later part of its history.

The NEMR is connected to the ENSO and IOD
ocean–atmospheric phenomena, and the variability of NEM
rainfall reflects year-to-year change. NEMR rainfall variabilities
reveals different period of high and low rainfall during the last
two centuries. Furthermore, rainfall episodes near the tropical
Indian Ocean be therefore a decade or more. As a result, there are
no long-term trends in NEMR. In contrast, the variability of the
Indian Ocean dipole moment (IODM) has shifted from a
predominantly negative phase in previous decades to a
predominantly positive phase in recent decades. The northeast
monsoon activity is enhanced by the IODM’s positive phase.
Winds are converging in the positive phase of the anomalous flow
pattern, indicating moisture transport from the southeast Indian
Ocean and the Bay of Bengal to southern India. In the negative
phase, however, winds diverge and moisture is moved away from
the southern Indian subcontinent. A negative correlation between
Indian NEM and the Southern Oscillation Index (SOI), as well as
a positive relationship between NEM and El Niño, which is
opposite of ENSO’s relationship with Indian SWM rains. The
anomalously warm SST in the western Indian Ocean, the cold
SST in the eastern Indian Ocean, and the related large-scale
convergence extending towards South India are all factors in the
development of NEM rains during the positive dipole phase
(Pattanaik and Mohapatra, 2017).

Overall, the NEMR and SWMR monsoon shows variability
with important climatic events which demonstrates that the
region’s geographical positions have a considerable influence
on monsoon strength (Figure 5). Furthermore, our review
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suffers from a lack of temporal data in many regions,
particularly those experiencing NEMR. When comparing
multiproxy data from various archives from different
locations, there can be discrepancies in interpretation. It
may be due to the sensitivity of the proxies used.

CONCLUSION

To get a comprehensive picture of climatic variations of
SWMR and NEMR in southern peninsular India, we have
considered all available terrestrial and marine records.
SWMR paleoclimatic record shows a wet period in the
early Holocene and a gradual decline in monsoon
precipitation in the Mid-Holocene period. However, the
NEMR reveals a rise in precipitation at the beginning of
the Early Holocene, followed by a decrease in the Early
Holocene period. The NEMR-dominated region
experienced a significant increase in precipitation during
the Mid Holocene. Then, SWMR indicates an overall wet
phase with a few drier episodes in the late Holocene Period,
but NEMR shows an overwhelming dry period with shorter
wet phases, which corresponds with the demise of the chola
dynasty. During intense NEMR; IODM and El Nino exhibits a
positive correlation. However, NEM shows a opposite

relation to Southern Oscillation which is opposite to the
relation that ENSO exhibits with the SWM rainfall. Hence,
we inferred that since Holocene an antiphase relationship has
been existed between NEMR and SWMR as stated by Resmi
and Achythan (2018).

The SWMR records suggest that the globally known climate
event ‘Younger Dryas’, HCO, MWP and LIA is reported from
Southern India also but not evident in all paleoclimatic records.
NEMR records, on the other hand, reveals little evidence of
major climatic events apart from the MWP. Since the region is
experiencing both monsoon (mostly SWMR) though intensity
is less, NEMR also plays a major role in especially in the SE part
of India but most of the paleoclimate reconstruction record
from this region is predominately considering SWMR
influence not NEMR. Hence, the present study is pointing
to the need of reconstructing high-resolution NEMR and
SWMR records using a multi-proxy approach, and the role
of monsoon in the demise of major dynasties has yet to be
explored.
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