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Editorial on the Research Topic

Remote sensing of cloud, aerosols, and radiation from satellites

Planning a research satellite mission involves a careful study phase in which science

objectives are defined and the measurements necessary to achieve these objectives

are identified, which then determine instrument and other mission requirements.

Obtaining the necessary geophysical variables with the required accuracies necessitates

suitable retrieval algorithms and methods to assess how well the objectives can be realized,

all within a well-defined budget and schedule. The pre-launch objective assessment phase

represents a crucial and invaluable step for defining and justifying a mission. Yet, despite

their importance, these algorithms and assessments are generally not readily accessible to

researchers who are not involved directly in this mission study phase. This volume aims to

add some transparency to this process.

The goal of this research topic is to document someof the pre-launch studies being conducted

for NASA’s Atmosphere Observing System (AOS, formerly ACCP–Aerosols, Cloud, Convection

andPrecipitation) and theESA/JAXAEarthCARE satellite programs. The primary scientific focus

of thesemissions is to elucidate themultifaceted interactions between aerosols, clouds, convection

and precipitation at the process level.

Aerosols interact with radiation directly and indirectly via perturbations to macro-

and micro-physical properties of clouds. The resulting impacts on regional and global

weather and climate can perturb radiative forcing induced by changing greenhouse gas

concentrations, determine cloud feedback strengths, and their impacts on the dynamics

and thermodynamics of the atmosphere. Observing how clouds and aerosols influence

atmospheric radiative transfer, thermodynamics and the atmospheric circulation is a key

element in understanding how Earth will respond to climate change with far reaching

consequences for the hydrosphere, cryosphere and the hydrological cycle of the planet.

In order to infer the vertical properties of aerosol, clouds, precipitation and their impact on

the Earth’s climate, multiple instruments are required to make simultaneous and synergistic
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measurements. Specifically, the combination of new active and

passive sensors, combined with sensors from the Program of

Record (those satellites currently in space or planned for launch in

the coming years) can facilitate a paradigm-shift in observing and

understanding the roles of clouds and aerosols inweather and climate.

In the first paper in this volume, Stephens et al. introduces the

Atmosphere Observing System (AOS, formerly known as ACCP, the

Aerosols, Cloud, Convection and Precipitation study) being

developed by NASA in response to the 2017 Decadal Survey

(National Academies of Sciences, Engineering, and Medicine,

2018). With a suite of measurements spanning radars, lidars,

polarimeters and microwave radiometers, the AOS mission will

provide the next big step in space measurements of aerosol, clouds,

convection and precipitation. Stephens et al. describes the science

objective of AOS and key science questions it promises to elucidate.

The calculation of aerosol single scattering properties is a

computationally challenging task that is at the core of any

algorithm that retrieves aerosol microphysical parameters. In

Improved Lorenz-Mie Look-Up Table for Lidar and Polarimeter

Retrievals, Chemyakin et al. explore recent advances in

computational resources to develop a novel and improved

Lorenz-Mie look-up table of light scattering properties using an

ensemble of isotropic spheres at arbitrary wavelengths from

ultraviolet to the shortwave infrared part of the spectrum. In

addition to the look-up tables proper, the author make freely

available all the software used for the calculations.

Machine learning is fast becoming an indispensable tool in

many areas of atmospheric remote sensing. In Hu et al., a neural

network model informed by CALIOP measurements is

developed to retrieve vertically resolved macro and

microphysical properties of water clouds. A 14 + yearlong

global dataset of cloud properties is developed and validated

against airborne measurements and other measurements from

the Program of Record.

While great emphasis is placed on measurement accuracy and

instrument design when developing a space mission, other mission

design aspects such as orbit geometry, solar geometry and swathwidth

can have a profound impact on the resulting datasets.With a focus on

polarimetry, in Thompson et al., the authors examine the distribution

of scattering angles associated with the inclined and polar orbits being

considered for the AOS mission. Their thorough calculations, which

explore the sensitivity to elements such as orbit inclination and swath

width, provide critical information for the design of the AOSmission.

The concept of delta-t or tendencymeasurements–measurements

provided by a pair of microwave radiometers separated by several

tenths of seconds–have received considerable interest as an affordable

approach for gaining insights on the dynamics of convective storms.

Brogniez et al. provides an overview of the Convective Core

Observations through MicrOwave Derivatives in the TrOpics

(C2OMODO) concept, and explore the information content

provided by such measurements. In Deep Convection as Inferred

From the C2OMODO Concept of a Tandem of Microwave

Radiometers, Auguste and Chaboureau use numerical simulations

of two deep convective events, and an detailed instrument simulator,

to derive very useful relationships between the “measured” brightness

temperature, its time derivative and key geophysical quantities such as

vertical ice momentum, vertical ice velocity and ice water path. Such

measurements provide a novel approach to derive geophysical

properties that are usually accomplished with active sensors.

Spaceborne measurements of vertical air velocity by Doppler

radars is a critical component of emerging satellite missions aiming

to elucidate the dynamics of clouds and convective storms. InMind

the Gap–Part 3: Doppler Velocity Measurements from Space, Kollias

et al. present comprehensive forward simulations for assessing the

advantages and drawbacks of six Doppler radars being considered

by major space agencies around the world.

Polarized radiative transfer modeling is a foundational

tool for the development of cloud and aerosol algorithms

based on polarimetric measurements. Lin et al. give us a

detailed description of several important upgrades to the

Vector Discrete Ordinate Radiative Transfer (VDISORT)

model, a polarized (vector) radiative transfer model that

can be applied to a range of earth system retrievals. This

paper provides very valuable information for developers of

retrieval algorithms that seek to understand the internal works

of a radiative transfer model.

Finally, the benefits of synergistic lidar-polarimetry

measurements is a topic of great relevance to missions such

as NASA’s Atmosphere Observing System (AOS). In

Polarimeter + Lidar–Derived Aerosol Particle Number

Concentration, Schlosser et al. propose a simple and effective

method for deriving vertically-resolved aerosol particle number

concentration (Na) based on active lidar measurements and

passive polarimetric measurements. By using airborne

observations from the NASA ACTIVATE campaign in the

western Atlantic, the authors demonstrate that that the

vertically resolved Na represent a significant improvement

over other existing remote sensing estimates.

In summary, the papers presented in this volume provide an

excellent overview of some of the upcoming space missions to

study aerosols, clouds, convection and precipitation and the

candidate measurements that promise to revolutionize the

next decade of earth observations.
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The Spectral Nature of Earth’s
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This paper introduces the aerosol, clouds, convection and precipitation (ACCP) program
that is currently in the process of defining a number of measurement objectives for NASA
that are to be implemented toward the end of the current decade. Since a (solar) visible-
shortwave infrared (VSWIR) spectrometer is being considered as part of the ACCP
architecture, illustrations of the different ways these measurements will contribute to
this program and how these measurements can be expected to advance the science
objectives of ACCP are highlighted. These contributions range from 1) constraining cloud
radiative process and related estimates of radiative fluxes, 2) scene discrimination, 3)
providing aerosol and cloud optical properties, and 4) providing other enhanced
information such as the phase of water in clouds, and total column water vapor. The
spectral measurements also offer new capabilities that will further enhance the ACCP
science such as the discrimination of dust aerosol and the potential for the vertical profiling
cloud droplet size in shallow clouds. The areas where the maturity of approaches is lacking
is also highlighted as a way of emphasizing research topics to be a focus in the
coming years.

Keywords: solar radiation, spectral solar radiation, cloud properties, aerosol properties, cloud albedo

INTRODUCTION

The reflection of sunlight by Earth to space is a process that exerts a basic control on Earth’s climate
through the way Earth differentially scatters and absorbs solar energy from place to place which is a
basic forcing of the transport of heat poleward. The scattered sunlight also influences Earth’s climate
through the processes it shapes in the form of feedbacks that principally control the responses to
external forcings of the climate system. Insights about these processes are encoded in the spectral
nature of the reflected solar radiation to space. On a very gross Earth-system level, the relevance of
spectrally resolved measurements of reflected sunlight is underscored in the example of Figure 1fig1
from Stephens et al. (2015). It offers a commentary on an observational quirk about the broadband
albedo of planet Earth in that each hemisphere reflects exactly the same amount of sunlight (von der
Haar and Suomi, 1969; Stephens et al., 2015). This curious symmetry is not replicated by current state
of the art Earth systemmodels (e.g Haywood et al., 2016; Stephens et al., 2016).While the total energy
reflected back to space from each hemisphere of Earth is the same, the details are quite different
between hemispheres as revealed in the spectral nature of this reflected energy observed by
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SCHIAMACHY shown in Figure 1. The Northern Hemisphere
has less visible reflection due to a smaller cloud contribution but
more SWIR reflection from greater land areas. Conversely the
Southern Hemisphere reflects proportionally more at shorter
visible wavelengths than in the SWIR do to the larger cloud
cover of that hemisphere. These spectral differences hint at how
both land and clouds contribute in different ways to the reflection
by each hemisphere, hinting at a broad insight on processes that
govern the planetary albedo. This is a simple illustration of the
way spectral measurements provide a way of deciphering how
different reflecting surfaces and scattering media contribute to the
total spectrally integrated energy reflected to space.

Also encoded in the spectral properties of reflected sunlight is
important information about the scatterers themselves. The
retrieval of cloud optical properties using measurements of
reflected sunlight, for example, has a relatively long history
(e.g. Stephens and Kummerow, 2007 and references therein)
with the bi-spectral reflectance method of Twomey and Seton
(1980) being mature and now applied to measurements across a
number of different satellite sensors. Surface measurements of
spectral transmittance have also been used to deduce properties of
aerosol for more than a century (e.g. Stephens, 1994; O’Neil et al.,
2003) while satellite measurements of spectral reflectance provide
the means to deduce properties of aerosol, such as their optical
properties classified in terms of fine and coarse mode over ocean
(e.g. Kaufman et al., 1997; Levy et al., 2007; Wang et al., 2015) or
over land (e.g. Yan et al., 2019; Yan et al., 2021). In addition, UV
reflected radiation is sensitive to both aerosol scattering and
absorption which makes it possible to deduce both total
aerosol optical depth (AOD) and absorption properties
expressed as single scattering albedo (Ahn et al., 2014). Still
other important information lies in the spectral reflectance as
described below.

The purpose of this paper is to expand on the different ways
measurements of spectrally resolved VSWIR reflectances serve a

number of emerging Earth science objectives in the coming
decade. The paper begins with a brief introduction to the
Aerosol, clouds, convection and precipitation (ACCP) program
that is currently in the process of defining a number of
measurement objectives for NASA to be implemented toward
the end of the current decade. The full complement of sensor
measurements planned for ACCP, and the advantages of
combining the different information from these sensors, is not
discussed in any detail and is to be a topic of a future paper. This
paper focuses specifically on the different ways a VSWIR
spectrometer that is being considered as part of the ACCP
architecture is expected to contribute to this program and can
be expected to advance the science objectives of ACCP. These
range from 1) constraining cloud radiative process and related
estimates of radiative fluxes described in more detail below in
Top-of-Atmosphere Radiative Effects, 2) scene discrimination, 3)
providing aerosol and cloud optical properties, and 4) providing
other enhanced information such as the phase of water in clouds,
total column water vapor (TCWV), particle size profiles in
shallow clouds among other properties discussed.

THE AEROSOL, CLOUDS, CONVECTION
AND PRECIPITATION DESIGNATED
OBSERVABLE PROGRAM
The National Academies of Sciences, Engineering, and Medicine
conducted the 2017–2027 decadal survey of Earth Science and
Applications from Space and produce a series of
recommendations in the report (NAS, 2018). This was the
second such Earth science survey and it converged to a final,
small set of science, applications and observing system priorities
starting from a large number of community-provided inputs.
Emerging from these were a set of five designated observables
(DO’s) declared to be of highest priority for the decade and NASA
has commenced in developing these observable
recommendations into missions.

Observations of aerosol and separately observations of clouds
and convection and precipitation were two recommended
designated observables. It was recognized from the outset that
science of each significantly overlap. Cloud feedback was a
preeminent issue considered by the climate panel and
convection and precipitation measurements were deemed
essential to advance understanding and prediction of moist
convection and its influence on weather and extremes.
Observations of aerosol were also a high priority to climate
science due to their influence on climate forcings as well as on
clouds and precipitation. The relation between aerosol and air
quality was further considered to be a pressing
environmental risk.

The two designated observable recommendations, aerosol (A)
and clouds, convection and precipitation (CCP), were
subsequently combined into a single study (hereafter ACCP)
to define the measurement strategy to advance the observations
under these topic areas. ACCP is largely a process focused effort
that has a number of integrative elements including, 1) a wider
exploitation of the existing and planned instruments and satellites

FIGURE 1 | The hemispheric averaged spectral reflection measured by
SCIAMACHY that highlighting the nature of the difference in spectral reflection
between these two hemispheres (adapted from Stephens et al. (2015)).
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in the program of record (POR) particularly the spectral imagery
from the current ring of geostationary satellites, 2) new
spaceborne architectures framed around advanced spaceborne
lidar and Doppler radar, 3) an active effort to develop multi-
sensor approaches that combine supporting measurements from
the active systems with measurements from a polarimeter, the
VSWIR spectrometer, and microwave radiometer, 4) an
integrated sub-orbital program and 5) a desire to link directly
to modeling and analysis systems. The program is defined around
eight interconnected science objectives that focus on processes
central to low cloud feedbacks (O1), high cloud feedbacks (O2),
convective processes (O3), cold cloud and precipitation processes
(O4), aerosol property (O5), aerosol process evolution (O6), and
aerosol direct (O7) and indirect (O8) forcing.

The measurement approach of ACCP currently under
development is formulated around active profiling capabilities
provided by a high spectral resolution lidar (HSRL) and multi-
frequency Doppler radar. These active sensors will continue the
data records started by a number of NASA missions including
CloudSat, CALIPSO, TRMM and GPM as well as the ESA
mission EarthCARE (e.g. Illingworth et al., 2015).

Table 1 below offers an abbreviated overview of the principal
geophysical variables that are to be derived from a VSWIR
spectrometer, their relation to ACCP objectives and their
relationship to other candidate ACCP instruments. A VSWIR
spectrometer contributes to ACCP geophysical measurement
capabilities in four distinct ways: 1) the spectra add
information content to other observations where they overlap;
2) the spectrometer adds both swath and an imaging capability
for both context and cloud property mapping; 3) they offer new
potential capabilities highlighted in the examples of particle
profiling below and 4) the spectral information offers an
important way to constrain estimates of cloud broad band

radiation fluxes and radiation kernels at a resolution much
finer than that of the current program of record exemplified
by CERES (e.g. Wielicki et al., 1996).

VSWIR SPECTROMETRY IN THEACCPERA

Two very similar-in-capability spectrometer concepts were
offered in response to a request for information that was
solicited from the community. The concepts being considered
are relatively mature. One has roots in design for a 6U cubesat
application while the other is from a provider who has already
demonstrated the measurements of spectral solar irradiance on a
6U cubesat (Figure 2). Spectral measurements of reflection have
also been demonstrated with instruments on micro-satellites.
Zhang et al. (2018), for example, describe the vicarious
calibration of two spectrometers on two 50 kg microsatellites
(SPARK-01 and 02). The credible expectation for ACCP is that a
hyperspectral solar measurement implementation ought to be in
the form of a small class sensor. In the coming years, the
CLARREO pathfinder (CPF; Shea et al., 2020) plans to
provide traceable, accurate spectra by direct solar calibration;
see Kopp et al., (2017) against which other observing systems
would be benchmarked. The characteristics of the proposed
ACCP spectrometer is expected to largely duplicate those of
the CPF.

Although the spectrometry being discussed in this paper has
considerable space heritage, not all applications offer the same
degree of ‘science maturity’, a point emphasized below especially
in Top-of-Atmosphere Radiative Effects. Table 2 is a summary of
like-sensors flown on Earth orbiting satellites, both current and
planned. This table is not meant to be a complete review of all
such sensors flown, for example its doesn’t include OCO-class

TABLE 1 | Geophysical variables that are to be derived from solar spectrum and their relation to ACCP objectives.

Geophysical variable ACCP objectives Comments/Relationship to other

Cloud droplet effective radius O1, O6, O7, O8 • mature algorithms provide re over the full swath complementing narrow swath polarimeter estimates
• spectra offer potential to derive in-cloud re profile thereby reducing uncertainty in cloud droplet number

concentration and LWP
Cloud optical depth O1, O2, O6, O7, O8 • high spatial resolution (∼0.5 km) improves non-uniformity bias in the larger footprint of the polarimetry
Cloud liquid water path O1, O8 • derived from the re and tau

• spectra reduces uncertainty relative to imagery and profiles remove biases inherent to use of cloud top particle
sizes

Cloud phase O4 • cloud phase derived across broad swath compliments narrow swath lidar and polarimeter information
Cloud top pressure N/A • needed to derive cloud radiative effects

• mature techniques using O2 A-band absorption
• swath complements nadir lidar measurements

Areal cloud fraction O1, O4, O7, O8 • spectra increase accuracy relative to imagery by improved scene discrimination
• high spatial resolution provides improved cloud boundaries compared to polarimeter and the imagery of the POR.

Aerosol optical depth O3, O5, O6, O7, O8 • spectra increase capability of aerosol typing and aerosol property retrievals
• swath complements nadir lidar and polarimeter measurements

Aerosol finemode optical depth O5, O6, O7, O8 • mature algorithms (e.g. MODIS) use spectral information to partition fine and coarse mode AOD.
Aerosol effective radius O3, O5, O6, O7, O8 • spectra provide erosol size information
Cloud radiative effects O2, O4 • provides means to deduce broadband radiative effects by constraining bottom up deductions for broad band

fluxes. Also provides much tighter constraints of radiation kernel estimates
Column water vapor O1 • central to key questions related to convective initiation and aggregation

• May help with understanding humidification effects on erosol retrievals near clouds
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spectrometry. The characteristics of sensors already flown and
expected to be in orbit in the coming ACCP decade are noted. It
should be remarked that implementation of the measurement in
the form of micro-sat or cube-sat sensors have much less heritage
and how these sensors mature in the coming decade remains
uncertain.

THE SPECTRAL CHARACTER OF EARTH’S
REFLECTED RADIATION

The following discussion provides background to highlight how
different components of the Earth system are manifest in solar
reflection spectra thereby hinting at how information about these
components might be gleaned from measurements of such
spectra and exploited in the ACCP era. Extracting this

information in many cases is mature, being demonstrated
either with observations obtained from sensors on present day
orbiting satellites, spectrometers flown on aircraft observations,
or both. In some other cases described, the information extraction
is less mature, more heuristic in nature and requires further
development in the coming years.

Earth’s Land Surface as a Source of
Atmospheric Aerosols
The VSWIR spectral region carries rich information about
surface composition, and airborne hyperspectral reflection
measurements have been used in mineralogical exploration for
decades (e.g. Kruse et al., 1993; Clark et al., 2003). It is no accident
this measurement is a central tool of another recommended DO:
the Surface Biology and Geology (SBG) investigation that targets
observables spanning snow and glacier albedo, rock and soil
properties, vegetation canopy chemistry, and much more
(Schimel et al., 2020).

Knowledge of the mineral composition of atmospheric dust
exemplifies the direct connection between the land surface and air
advanced with hyperspectral reflection measurements. This
knowledge is also essential to our understanding of climate
forcing, dust downwind impacts on clouds and air-quality,
and dust biogeochemical feedbacks and thus relevant to a
range of ACCP goals. Dust mineralogical content may also
provide clues for understanding the mechanisms behind dust
variability and continental provenance (Sokolik et al., 2001).
Conventional aerosol retrievals at a few selected wavelengths
are designed for retrieving the aerosol optical depth and some
information on the particle size (such as fine fraction or
Angstrom exponent as noted above; Anderson et al., 2005;
Levy et al., 2005; Levy et al., 2007; Chen et al., 2020).
Multiangle and polarimetric retrievals add information on dust
shape and wavelength-dependent refractive indices
(Dubovik et al., 2019), however, the spectral resolution is not
sufficient to determine actual dust mineral composition.

To underscore this point and the further potential relevance
to ACCP, the spectral properties of different minerals known
to represent the composition of dust are shown in Figure 3A.

TABLE 2 | VSWIR spectrometer systems either flown on or proposed for Earth orbiting satellites.

Satellite sensor Spatial res @ nadir (km) Swath width (km) Spectral range (nm) Spectral resolution Radiometric
uncertainty

Availability

GOME 40 × 320 960 240–790 0.2–0.4 2–5% 1996–2011
GOME-2 40 × 80 (Metop-A) 960 240–790 0.2–0.4 2–5% 2006-Present

40 × 40 (Metop-B) 2012-Present
SCIAMACHY 32 × 215 1,000 240–2,380 0.24–1.48 2–4% 2002–2012
Hyperion 0.03 × 0.03 7.75 356–2,577 10 3–5% 2000–2017
CSIMa n/a n/a 200–2,800 1–35 nm <0.5% 2019-Present
SPARK 0.05 × 0.05 100 400–1,000 ∼<5 >∼4% 2016–2017
TRUTHS 0.04 × 0.04 40 320–2,450 5–10 0.3% 2026
CLARREO PF 0.5 × 0.5 100 320–2,300 6 0.3% 2022
EMIT 0.06 × 0.06 72 380–2,500 ∼7 <5% 2021
SBG** 0.03 × 0.03 TBD 380–2,500 10 <5% Under study

aCSIM is a solar pointed spectrometer measuring spectral solar irradiance. **Values are provisional.

FIGURE 2 | Early results from CSIM-FD comparing the solar spectral
irradiance measured by both TSIS-1 and CSIM. Both instruments have their
pre-launch spectral irradiance calibrations tied to a cryogenic radiometer. The
preliminary agreement is with an absolute SSI differences <1% between
400 – 2,400 nm (from Stephens et al. (2020)).
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The measurement of these spectra is central to the Earth
Surface Mineral Dust Source Investigation (EMIT) mission
that seeks to quantify dust source emission from the surface
(Green et al., 2020). As Figure 3B indicates the composition of
airborne dust is, however, non-uniform exemplified by the
large variability of estimated iron oxide fraction in dust and
thus a priori not readily approximated with simple
composition models as widely used today. Apart from their
utility for geology or ecology, the unique spectra of surface
materials in the VSWIR range, exploited by EMIT, provide
powerful statistical constraints on measured radiance and
form a backstop against which one can disambiguate
atmospheric effects.

Theoretically, smooth spectral scattering features of the light
scattered by aspherical size-distributed atmospheric dust can be

separated from the sharp spectral features that characterize the
mineral absorption features of Figure 3A. The ability to
determine the mineralogical composition of airborne dust has
been demonstrated with hyperspectral Hyperion satellite
observations of a dust storm near the Bodélé Depression in
Chad (Chudnovsky et al., 2009; Chudnovsky et al., 2011),
which used the longest part of the SWIR (2080–2,380 nm), in
particular, where the atmosphere is transparent, optical
properties are stable, and absorption features of hydroxyl-
bearing minerals, sulfates, and carbonates are most pronounced.

Earth’s Atmosphere
Water Vapor
Atmospheric water vapor is of critical importance to most to the
ACCP objectives, through its influence on clouds, convection as

FIGURE 3 | (A) The spectral structure of dust forming minerals. (B) The fractional contribution of iron oxides in dust.
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well as in modifying aerosol optical properties (e.g. Wu et al.,
2018, Zu et al., 2019). High quality water vapor data products
are currently available from many satellite sensors operating in
various wavelength regions. Each sensor has its specific
advantages and limitations in terms of spatio-temporal
resolution, coverage, capability and instrument sensitivity. An
extensive overview of satellite measurements of water vapor can
be found in Schröder et al. (2018). Multi-band water vapor
absorption is a dominant spectral feature of the SWIR spectrum
and its presence has significantly shaped many remote sensing
methods, either explicitly by using the absorption features, or
implicitly by avoiding these features entirely. The retrieval of
total column water vapor (TCWV) from SWIR reflectance
measurements is one example where the absorption is used
directly. The approach to estimate the TCWV can be regarded
as mature, exemplified by the column water vapor products of
MODIS (e.g. Gao and Kaufman, 2003) MERIS (Diedrich et al.,
2015) and GOME (e.g. Grossi et al., 2015). These measurements
are especially pertinent over land where microwave
measurements fail and the information is also more
decisively weighted to the boundary layer (e.g. Christi and
Stephens, 2004) than are other column methods of water
vapor retrieval. Another important advantage of the VSWIR
measurement of TCWV is that very high horizontal resolution
which provide mesoscale variability of the water vapor field, an
advantage highlighted by the example of Figure 4.

In preparing for the MERIS observations, Diedrich et al.
(2015) developed a multi-band algorithm that they tested
using MODIS data and demonstrated clearly that adding more
spectral information from multiple water vapor bands improved
known biases in the MODIS product limited only to a pair of
channels. Gao and Goetz (1990) and Thompson et al. (2015)
further illustrated how a more refined, better constrained and
accurate estimate is possible when hyperspectral reflectance
measurements of the shape of the H2O absorption bands are
more tightly fitted against forward model calculations.

It is not difficult to appreciate the value of high-spatial-
resolution boundary layer water vapor to the science objectives
of ACCP as it is central to key questions related to convective
initiation and aggregation, to cloud formation and to the
definition of aerosol properties. For example, Figure 4 is a
high-resolution MERIS TCWV field that corresponds to a
high-pressure event occurring in May 9, 2008 over central
Europe (Figure 4A) derived on ∼250 m spatial scale. Evident
is the detection of horizontal convective rolls that appear as quasi-
parallel bands of alternating low- and high-TCWV (Figure 4B).
This distinct PBL moisture structure consists of bands of high
humidity that align parallel to the boundary layer winds obtained
from a numerical weather prediction model and radiosonde data.
Closer examination further reveals that cloud streets observed in
the east extend along bands of maximum TCWV.

Aerosol
Methods for retrieving aerosol properties from spectral reflection
measurements have a long history (e.g. Kaufman et al., 1997;
Remer et al., 2005; Levy et at., 2005). Li et al. (2009) provide a
comprehensive review of different methods for estimating aerosol
optical depth. Most methods require significant amounts of
spectral information beyond that used for aerosol property
retrieval alone (e.g. Lyapustin et al., 2018). For example,
MODIS aerosol algorithms require inputs from several spectral
channels to define the scene. Reflection measurements in the
1.38 μm water band are used to test for the presence of high thin
cirrus that, when unaccounted for, contaminates retrievals. Dust
is further identified using reflection differences between at 0.47
and 0.66 μm and aerosol properties are then derived by matching
reflections in several other spectral channels to model-based look
up tables (e.g Remer et al., 2005). Clear sky screening of the
observations, critical to any aerosol retrieval method, also relies
on spectral analyses as does radiance corrections applied to clear
sky radiances, each important components of any surface
property retrieval approach to be used in SBG.

FIGURE 4 | (A),left)MERIS TCWV field overlayed with ERA-Interim wind barbs computed from the mean boundary layer wind field (B), right) TCWV field for the
area of interest as indicated by the red box in the panel to the left. Black areas in the right panel indicate cloudy regions for which no TCWV retrievals are performed
(adapted from Henken et al. (2015)).
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Analysis of data collected from recent airborne field programs
like the FIREX-AQ 2019 is ongoing and information content
assessments of hyperspectral measurements applied to selected
aerosol types, such as dust and smoke, now exist. Furthermore,
methods to retrieve AOD of different species within the same
airmass have been tested against airborne observations (e.g.
Mauceri et al., 2019). Information content analysis of Hou
et al. (2017) demonstrates that there are multiple degrees of
freedom in the signal for retrieval of aerosol properties, and that
this information is improved with observations accumulated over
time with repeat observations that further constrain surface
reflectance. Three examples are presented to highlight these
developments.

1) An example of smoke observed during the recent FIREX-AQ
2019 field campaign by the AVIRIS-C instrument (Green
et al., 1998) onboard of the high-altitude ER-2 aircraft is
demonstrated in Figure 5. A hyperspectral retrieval of aerosol
optical depth (AOD) on the right is shown together with RGB
imagery of smoke on the left, and simultaneously retrieved
surface properties under the smoke in the center of the figure.
The solution for AOD and Surface Reflectance is based on a
simultaneous model inversion of atmospheric and surface
properties (Thomson et al., 2015; Thomson et al., 2019),
permitting aerosol retrievals at high spatial resolution
(<30 m) over heterogeneous terrain without the need for
special scene content such as shadowed or dark vegetation
pixels. The uncertainties of simultaneous AOD and surface
reflectance retrievals of AVIRIS-C observations collected
during the FIREX-AQ have been evaluated and the initial

validation shows a good agreement with collocated
AERONET observations.

2) An example of the information coded in hyperspectral
measurements of African dust is highlighted in Figure 6
taken from the study of Xu et al. (2017). Shown are
spectral Jacobians (the spectral reflection sensitivity) of
dust optical depth associated with four different particle
size ranges of dust (refer to caption). The reflection spectra
exhibit distinct magnitude sensitivities and spectral variability
among different size bins. The spectral sensitivities associated
with these different size ranges of dust merely underscores the
point that information about dust particle size exists in these
measurements.

3) Su et al. (2020) demonstrate how spectral information
constrains surface albedo and thus enhance retrievals of
aerosol optical depth over reflecting surfaces. They apply a
machine learning model to estimate surface albedo in a visible
region derived from reflection measurements at longer near
infrared wavelengths that then results in a significantly
improved ability to the retrieve of AOD over land.

4) Mauceri et al. (2019) also demonstrate the utility of
hyperspectral imagery applied to a machine learning
application of aerosol retrievals and aerosol typing. Eerosol
optical thicknesses for brown carbon, dust and sulfate aerosols
were shown to be derived from hyperspectral imagery
acquired by the AVIRIS-NG instrument. The extraction of
aerosol information from these measurements requires no a
priori information about surface albedo or atmospheric state,
in many ways similar to Su et al. (2020). The model, a neural
network, was trained on atmospheric radiative transfer

FIGURE 5 | AVIRIS-C data acquired over the Williams Flat Fire, August 2019, demonstrating spectroscopic aerosol measurement at high spatial resolution over
heterogeneous terrain. Image courtesy Philip G. Brodrick (Left) Visible radiance channels (Center) Estimated surface reflectance (Right) Estimated aerosol optical
depth at 550 nm.
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simulations with varying aerosol concentration and type,
surface albedo, water vapor and viewing geometries.
Mauceri et al. were able to distinguish and retrieve AOD of
each component with a standard error of better than ±0.05
and used AVIRIS-NG imagery from a recent campaign over
India to demonstrate its performance under high and low
aerosol loadings and different aerosol types (Figure 7). As
expected, retrieval performance was degraded when using
fewer wavelengths and increased measurement uncertainty.
Agreement with independent measurements (MODIS and
AERONET) yielded an RMS closer to 0.1, which included
errors in these independent datasets as well as discrepancies in
spatiotemporal overlap. A related study by Thompson et al.
(2019) adopted a similar palette of three aerosol types
assumed in retrievals using AVIRIS-NG data also obtained
during a campaign in India. Their estimates of total AOT
matched in-situ and remote observations across a wide range
of aerosol loads, confirming the performance of the Mauceri
et al. study. Finally, field data from the FireX AQ campaign
has confirmed sensitivity to optical properties in scenes where
the aerosol compositions were well understood (Brodrick
et al., 2021).

Clouds
The spectral reflection by clouds, especially when viewed through
the lens of hyperspectral VSWIR measurements, contains a
diverse range of information described below. The study of
Gristey et al. (2019) who analyzed both global SCIAMACHY
observations and SCIAMACHY simulated observations offers a
general context for understanding cloud influences on these
spectra. Figure 8 is an example taken from that study and
shows spectra clustered according to surface types (Figure 8A)
and cloud types (Figure 8B). Absent broad-band measurements,
these cloud spectra hint the value for spectra of this type for
defining the broadband reflection from clouds (described below
in Top-of-Atmosphere Radiative Effects) and, more importantly,
how this broadband information changes as cloud properties

change. Figure 8 also hints at the potential wide range of
properties that might possibly be gleaned from these spectra.
Specifically, the different spectral character between ice and water
clouds, evident especially around the 1.6 μm ‘window,’
discriminates water from ice and is the effective basis for
cloud phase detection as described below. Reflection around
the oxygen A-band (∼0.76 μm) has well understood signatures
of cloud top height changes (eg. Fischer and Grassl, 1991). The
spectra themselves effectively discriminate clear sky from cloudy
sky scenes especially in marginal cases, an observation that has
been appreciated for some time and used in modern cloud
clearing methods. Water vapor absorption, apparent in these
spectra, can also be used to extract total column water vapor over
land as described above, and the water vapor absorption around
the 1.38 μm water vapor band provides a method not only for
detecting high thin clouds but also in deducing profiles of ice
cloud properties (Baum et al., 2000, 2005; Meyer and Platnick,
2000; Barnard et al., 2008; Wang et al., 2012). The shape of the
spectra, especially the visible portion contrasted against the SWIR
portion of the spectra, not only offers bulk information about
particle size but also information about the profile of particle size
in shallow clouds (eg. King and Vaughan, 2012).

Cloud -Aerosol Radiative Effects
Figure 9 presents spectra of downwelling irradiance measured
below a cumulus cloud field adapted from Schmidt et al. (2009).
Spectra immediately below cloud and in the gap between clouds
are shown respectively as red and blue lines, and respective model
simulated spectra are represented by symbols. These spectra are
contrasted against a modeled clear sky spectrum without cloud
influences (green). This specific contrast, expressed by the
spectral difference in black, reveals the influence of
neighboring clouds on the spectra measured between them,
and on the aerosol radiative effects there. The spectral
downwelling irradiance at visible wavelengths, less than
about 700 nm, is reduced in the gap regions compared to
the purely clear sky spectra. Although the model simulations

FIGURE 6 | (A) The optical depth of simulated African dust outbreak over the Atlantic in four size bins ranging 0.1–1.0 μm DST1), 1.0–1.8 μm (DST2), 1.8–3.0 μm
(DST3), and 3.0–6.0 μm (DST4) (B) Averaged Jacobians of reflection spectra associated with the case of (A) (after Xu et al., 2017).
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point to the aerosol as being responsible for this reduction, the
reduction is partially compensated by the increased diffuse
downward flux from cloud sides. This increase in diffuse flux is
evident at longer wavelengths where aerosol effects are small (e.g.
wavelengths longer than about 1,000 nm). This set of
measurements highlights how 3D cloud effects on radiative
transfer confound the estimation of aerosol effects in complex
cloudy environments. Although this particular example applies to
downwelling fluxes, reciprocal changes to reflected fluxes will also
occur. Clearly measurements of spectral transmittance in this
example, and by implication spectral reflectance, provide a

greater means to constrain estimates of erosol radiative effects
in fields of clouds.

Quantitative Cloud Retrieval Examples
Many of the methods for deriving cloud properties from spectral
reflectance data, such as the popular bi-spectral methods commonly
applied to radiometer measurements like those provided by
MODIS, are mature and the limitations on properties derived
are, for the most part, well understood, although often difficult
to quantify. As hinted at above, a number of different methods have
been developed to deduce clouds properties from hyperspectral

FIGURE 7 | Standard error for retrieved AOT of 12 individually trained neural networks with varying wavelength bands and a varying amount of simulated AVIRIS-
NG equivalent noise from the test set. (A–C) show the standard error when AOT is varied between 0 and 1. (D–F) show the standard error for AOT between 0 and 0.3
(Mauceri et al. (2019).
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reflectance observations and some examples are presented below
that also include a quantitative assessment of the retrieval
performance based on in situ observations. The general
improvement achieved using hyperspectral measurements for the
standard cloud retrieval problem was quantified by Coddington
et al. (2012) over the spectral range from 300 to 2,500 nm. The
spectrally dependent Shannon information was derived across the
spectrum and used to determine the cumulative information
content in hyperspectral cloud retrievals for nine different cloud
scenes, illustrating the expected improvements by added spectral
coverage and improved resolution.

Bulk Cloud properties
Bulk cloud properties here refer to properties averaged or
weighted over either an unspecified depth of cloud or over the

entire cloud layer. Little vertical profile information is implied
and by far the bulk of the cloud information from almost all
passive methods fall into this category.

Cloud Phase
Spectral reflection differences between water and ice clouds in the
region between 1.4 and 1.8 μm, noted previously (e.g. Figure 8),
serves as the basis of cloud phase detection. This too is a mature
topic dating back to studies in the 1980s (e.g. Pilewskie and
Twomey, 1987) and now formerly implemented as a MODIS
product (Baum et al., 2012). MODIS phase retrieval using limited
near-infrared channels only is, however, limited in its capability
(Riedi et al., 2010) and attempts to improve this information
include adopting complementary thermal infrared bands. Riedi
et al. 2010 developed a joint MODIS -POLDER phase
discrimination approach also in an attempt to improve phase
discrimination ambiguity and they argue this combination is
superior to the discrimination provided by either method
separately. Continuous hyperspectral measurements in the
near-infrared offers a significant step forward improving on
detection making phase discrimination somewhat trivial as the
example of Figure 10 shows. Measurements from an airborne
spectrometer, matched to co-located in situ microphysics
observations (Figure 10A), demonstrate the clear relation
between spectral indices of ice fraction using spectra between
1.4 and 1.8 μm and the appearance of ice (Figures 10B,C,
Thompson et al., 2016).

Cloud Optical Properties
Measurements of spectral sunlight reflected by clouds are inputs for
deducing cloud ‘optical’ properties most commonly expressed as the
cloud optical depth (τ) and droplet or ice crystal effective radius re.
Thismeasurement approach has a relatively long history (e.g. refer to
the review of Stephens and Kummerow, 2007). These particular
properties are minimally required for addressing ACCP O1, O2 and
O8 objectives. It was Twomey and Seton (1980) who introduced the
present widely used bi-spectral reflectance method to estimate these
two cloud variables and Nakajima and King (1990) expanded the
method into an operational algorithm that is the basis of theMODIS

FIGURE 8 | Cluster centroids of top-of-atmosphere reflectance spectra at a spatial scale of 1 km. Ten clusters are shown, separated into (A) surface clusters and
(B) cloud clusters. The cluster centroids are identified from 90,917 computed SCIAMACHY-like reflectance spectra that are re-gridded to a 0.001- micron spectral
resolution. Input for the computations is derived from A-Train satellite observations over West Africa in 2010 (Gristey et al., 2019).

FIGURE 9 | Spectra of measured and modeled downward irradiance
(blue: below cloud gaps, red: below clouds). Solid green is the spectrum in
clear air, and symbols represent modeled spectra with (solid) and without
(open) erosol. The upper spectrum is the difference between the
downwelling irradiance in gap regions and the clear sky cloud free spectrum,
expressed as a percentage of the latter (modified from Schmidt et al. (2009)).
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cloud products nowwidely used. This bi-spectral method is based on
measurements of narrow-band reflectances in two spectral regions
or channels, one at visible wavelengths where reflection varies
principally as a function of τ and a second located within the
near infrared region in which solar radiation is both absorbed and
scattered being influenced by both τ and re. The combination of
measurements thus yields information on the pair of optical
properties, τ and re. These essential aspects of the approach are
conveyed in Figure 11 taken from the study of King and Vaughan
(2012) showing the spectral distribution of Shannon information
content as defined by Rodgers (1998). The Figure 11B expresses the
initial information content above that of some a priori knowledge
associated with cloud top effective particle size rt, cloud base particle
size rb and optical thickness τc for a specific cloud state of rt � 10 μm,
rb � 5 μm, τc � 15, a solar zenith angle of 30o, nadir viewing, a
standard tropical atmosphere and 2% measurement error. Spectral

regions outside the water vapor absorption bands where single
scatter albedo ϖ0 is at a minimum (Figure 11A), like the spectral
region between 2.1–2.4 μm, offer the most information about rt
whereas the regions whereϖ0≈ 1 possessmost information about τc.
There are a number of confounding issues inhernet to the bi-spectral
approach, such as ambiguities introduced by 3D radiative transfer
effects and drizzle (Zhang et al., 2012) and the extent hyperspectal
information helps address these issues will be topics of future
research.

Droplet Number Concentration Nc

Although a number of studies report on approaches to estimate
Nc using spectral reflection measurements (e.g. Grosvernor et al.,
2018), the approaches developed for this property have large
inherent uncertainties being framed around a simple adiabatic
model of cloud properties (e.g. Stephens et al., 2019). It is

FIGURE 10 |Cloud phase results from airborne measurements with (A) cloud particles measured at identical locations, less than 10 min apart by in situ high-speed
imaging with remote imaging spectroscopy above. (B) Red (ice) and green (water) spectra plot of airborne spectrometer measurements of liquid and ice cloud
reflectances. Shown are measured and simulated cloud spectra where details of simulations are described in Thompson et al. (2016). The details of the spectral
reflectances are accurately reproduced. (C) The remotely estimated water fraction of ice (EWTice/EWTall), effectively ice to total water optical depth, derived from
spectra of (B). Each point in the plot is a spectrum from one of five flight lines (“lines 7–11”). Image inserts show direct microscopic images of cloud particles obtained in
situ, confirming the remote classification, adapted from Thompson et al. (2016).

FIGURE 11 | (A) Single scattering albedo of a gamma droplet size distribution with re � 10 μm and effective variance � 0.1 (black line). Also plotted are the relative
spectral response curves of the MODIS channels centered on 0.8, 1.2, 1.6, 2.1and 3.7 μm (blue lines) and the atmospheric transmission of a standard tropical
atmosphere (gray line) (B) Shannon information content of hyperspectral reflectances applied to selected cloud properties (cloud top, base particle size optical depth and
water vapor) where the information content is a measure of that which lies above a priori knowledge (after King and Vaughan, 2012).
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expected that the particle size profiling capability described below
that is offered by hyperspectral measurements, especially when
connected to radar observations that identify drizzle presence
(e.g. Wood et al., 2012), would improve on these restrictive and
empirical retrieval assumptions and thereby improve our ability
to deduce Nc.

Cloud Profile Properties
Cloud Top Pressure (CTP)
Retrieval of cloud top pressure from measurements of sunlight
reflected in the oxygen A-Band is mature, being supported by
several theoretical studies (e.g. Fischer and Grassl, 1991; Kuze and
Chance, 1994), analyses of airbornemeasurements (Henken et al.,
2015), as well as to satellite measurements. MERIS on ENVISAT
provided global A-band measurements and a number of
validation efforts have been developed to support the MERIS
CTP product. With OCO we now have measurements at much
finer spectral resolution than available previously and are now
able to assess and confirm the benefits of such higher spectral
resolution previously posed theoretically.

Understanding the measurement approach and the expected
performances of the different satellite systems is now well
advanced. Figure 12 illustrates this point providing two
different examples of spaceborne estimates of cloud top height.
Figure 12A is a MERIS A-Band cloud top pressure retrieval
assessed against matched under flights of an airborne lidar. The
second example is that using the A-band measurements of OCO
showing low cloud top pressure assessed in this case matched
against CALIPSO lidar observations. The uncertainty of these
CTP estimates is equivalent to about 200 m in both examples.

Low Cloud Particle Size Profiles
A few studies have explored particle-size profile information
primarily based on multi-spectral MODIS observations (e.g.
Platnick, 2000; Chang and Li, 2002). These studies have

explored this capability using the limited spectral capability of
MODIS offering some insights on the capabilities. Despite these
studies, the actual information about particle sizes within and
through the cloud that is contained in spectral data is not well
appreciated. The cloud base particle size information is one form
of expression of this profile information and the results of
Figure 11 suggest the near infrared spectra contain non-trivial
information content relating to rb, provided the measurements
have sufficient absolute accuracy. As Platnick (2000) had shown,
this information maximizes in the region around 1.6 μm which is
a where a significant proportion of photons penetrate to lower
levels provided optical depth are not so large that reflection
becomes invariant to changes in drop size (see also Nakajima
et al., 2010a; Nakajima et al., 2010b). Since the mean optical depth
of oceanic low clouds is less than 15 (e.g. Christensen et al., 2013),
hyperspectral measurements potentially offer a significant
capability for profiling droplet size in low clouds (see below)
of τc<15. However, the accuracy needed to profile to cloud base
according the King and Vaughn is order 1% and howmuch of the
profile can be retrieved practically with VSWIR measurements
from space will require more study.

King and Vaughan (2012) developed a retrieval of the profile
of drop sizes and applied the method to airborne spectrometer
measurements collected during VOCALS. These retrieved
profiles were then evaluated against matched in situ profiles of
cloud drop radius. Figure 13A is an example of two cases showing
the capability for extracting information about microphysics
profiles of low clouds. The in situ profiles each exhibit the
typical increase of re with height whereas the MODIS like bi-
spectral retrieval (indicated as TBLUT) corresponds to the
droplet sizes near to cloud top and being a bulk property then
applies through the entire layer. The difference between the
constant profile vs. a retrieved profile, as highlighted in this
figure, profoundly influences our ability to deduce liquid water
path (LWP) from solar reflection measurements as highlighted in

FIGURE 12 | (A), left) Comparison of POLIS (airborne lidar) and MERIS cloud-top heights. Gray crosses mark cases with presence of cirrus clouds. The one-to-
one line and the regression line are displayed in red and blue, respectively. Lager studies show theMERIS bias can be removed when other information is added (Henken
et al., 2015) (B), middle and right) The CTP retrieval of low clouds from OCO verified against CALIPSO CTP and contrasted against the MODIS IR based estimate
(right). The interquartile range of the difference is ∼30 hPa. The long tail are cases where CALIPSO identified high thin cloud above (Richardson et al., 2019).
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Figure 13B. When applied to all VOCALS-Rex clouds sampled
by aircraft throughout the entire experiment the histogram of
the percentage differences between the retrieved and in situ
values for MODIS-like LWP retrievals vs. that using the
profile-based retrievals made possible with hyperspectral
observations reveals a significant LWP overestimate using
MODIS. Since the MODIS-like retrieval (TBLUT)
corresponds to the larger droplet sizes near cloud top, the
total liquid water path is then overestimated by between 5 and
25% whereas the hyperspectral retrieval of liquid water path
agreed with in situ LWP to within 3% in all but two cases.
Because the results reveal that the magnitudes of this LWP
biases vary considerably, they cannot be simply be corrected by
applying some form of a priori, fixed adiabatic correction to

MODIS-like retrievals. The improvement to LWP retrievals
that profiles of particle size offers was also noted in the studies
of Chen et al., 2008; Chen et al., 2011.

TOP-OF-ATMOSPHERE RADIATIVE
EFFECTS

The need to relate broad band radiative fluxes to the cloud and
aerosol properties obtained from the measurements provided by
different sensors being proposed for ACCP is central to a number
of ACCP objectives. The desire to examine these relationships on
the sub-kilometer to kilometer scale more characteristic of clouds
and aerosol plumes and more typical of the cloud information to
be provided by ACCP measurements, and also exemplified by the
measurements discussed in relation to Figure 9, is a challenge
given that the spatial coarseness of the available single footprint
derived flux data of CERES and proposed for the Libera mission
expected in the ACCP time frame is approximately 20 km.

The ACCP approach to address this challenge is not yet
mature and advancing the approach will be the focus of much
more intense research during the early phases of ACCP. The
approach for shortwave fluxes revolves around use of the VSWIR
spectral radiance measurements combined with radiative transfer
calculations applied to inputs provided by cloud and aerosol
profile information measured by the radar and lidar of ACCP on
the cloud scale. A parallel approach for LW fluxes, not described
here, will also be based on using LW spectral radiance
measurements. The strategy will follow that first proposed by
Barker et al. (2011) for EarthCARE and is to be tested and
evaluated in greater depth using EarthCARE data as it
becomes available after the launch planned for 2023. In
contrast to the EarthCARE approach, which employs
broadband radiances at nadir and two additional angles, the
ACCP concept exploits the spectral radiance measurements at
nadir as a way of tightly constraining the derived fluxes. In a
broad sense, this overall approach that uses atmospheric profile
input is analogous to that developed for the CloudSat flux product
(Hendersen et al., 2013), although on a different spatial scale, as
well as closely following the EarthCARE approach. Both have
been shown to perform similarly to CERES observed fluxes at the
top of atmosphere while also delivering vertical flux profiles and
related radiative heating rates (Barker et al., 2015; Tornow et al.,
2018). Construction of broad band shortwave fluxes from spectral
radiances has also been demonstrated in a few studies, such as in
Doelling et al., 2013 who used geostationary spectral radiances to
derive CERES-like time resolved fluxes and Oyola et al., 2019 who
provide a case study field experiment example combining
airborne HSRL lidar measurements with spectral radiance
imagery to quantify radiative properties of aerosol.

A very preliminary, albeit empirical example of how spectral
radiances can be expected to constrain broad band flux estimates
is provided by Figure 14A. This is an example of the construction
of broadband fluxes from spectral MODIS data. The figure shows
comparison of broadband SW fluxes, globally distributed and
deduced using 11 VSWIR channels of MODIS compared to the
collocated CERES broadband SSF fluxes. In producing this result,

FIGURE 13 | (A) Two examples of in situmeasurements of cloud droplet
radius profiles measured during VOCALS plotted with the corresponding
hyperspectral retrieved profile and contrasted against a two channel MODIS-
like retrieval (vertical lines). Cloud A has a total optical thickness of 13.3
and LWP of 58.0 gm−2. Cloud B has a total optical thickness of 12.4 and a
LWP of 60.8 g m−2. (B) Histogram of the difference between retrieved and
observed total liquid water path using a hyperspectral retrieval and estimations
from a TBLUT retrieval using constant vertical profile (blue line) and adiabatic
(green line) assumptions (King and Vaughan, 2012).

Frontiers in Remote Sensing | www.frontiersin.org May 2021 | Volume 2 | Article 66429113

Stephens et al. Spectral Solar Reflection

20

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


MODIS Aqua Level 1B calibrated radiances, sub-sampled at
5 km, were co-located with CERES SSF 4.0SW fluxes and with
associated ancillary scene type information. A simple linear
regression of these 11 channels of radiances, binned by fixed
solar zenith angles (SZA), viewing zenith angles (VZA), and
relative azimuthal angle (RAA), was created by regressing these
combined channels against SSF broadband data. The training of
this regression was based on one month of data and then applied
to data collected for different times. The results of the
reconstructed broadband fluxes from the empirical regression
are then compared to the matched CERES SSF. These fluxes
correspond to instantaneous reflected solar fluxes for the local
time of approximately 1,330. The performance of this simple
empirical regression, characterized by the RMSE of 23.7 Wm−2,
is similar to the flux consistency estimated from a MODIS-based
narrow-to-broadband flux conversion (Su et al., 2015) and meets
the requirements of ACCP attached to instantaneous solar fluxes.
These requirements are currently in development and how they
are arrived at is a topic of a future paper. The performance from
this limited, and by design, simple example is consistent with
other analysis developed for EarthCARE (Barker et al., 2011) and
suggests spectral radiances will provide broadband fluxes that
meet not only EarthCARE requirements but also the ACCP
requirements currently under development. Much more work
is needed to refine the approach and quantify uncertainties that
arise across different spatial scales.

Not only does the integration of spectral data provide a
meaningful way of deriving broadband radiances and then
fluxes but more importantly spectral measurements offer a
more direct way of differentiating responses of these fluxes to
changes in aerosol and cloud properties. This is an essential step
in providing meaningful observational constraints either on
aerosol-radiative effects, as highlighted above in the
discussion of Figure 9, or on radiative kernels which

expresses the sensitivity of the fluxes to changes in given
cloud properties and is an important tool in quantitative
analyses of cloud feedback (e.g., Colman, 2003; Zelinka et al.,
2012). Figure 14B underscores this point. It shows the spectral
character of the shortwave cloud radiative effect (SWCRE)
expressed in the form of both spectral reflectance differences
and broadband flux differences both being differences between
reflected radiation from cloudy and clear skies. As in the
example of Figure 14A, the broadband SWCRE values
(provided in the legend inset) are instantaneous at the time
of satellite overpass based on an equator crossing (1,330 local
time). The spectra shown differentiate the clusters of different
cloud types identified previously in Figure 8 and reveal how
differences between the clusters emerge more clearly in the
spectra. This point is emphasized in a number of ways in
Figure 14B. For example, the changes to SWCRE spectra at
visible wavelengths, such as at 0.5 μm, reflects the sensitivity of
the reflected flux to cloud optical depth. The high and low cloud
example, labeled spectra f and h, are of clouds of the same
optical depth and thus same visible SWCRE yet the broadband
SWCRE differ by almost 50 Wm−2. This underscores the point
that factors other than optical depth obviously contribute to this
broadband SWCRE difference. Consequently, the broadband
SWCRE, and changes to it, cannot be expected to be reproduced
from visible measurements alone. Specifically, the spectral
structure of the SWCRE reveals an important sensitivity to
height, through influences of water vapor absorption on it. The
presence of a swing in reflectance around 1.6 μm between water
and ice clouds is indicative of the influence of the
thermodynamic phase of water on cloud particle scattering
discussed above. These positive and negative SWCRE
responses in different parts of the spectrum partly
compensate in the broadband obscuring the sensitivities of
these cloud properties in broadband fluxes. The broadband

FIGURE 14 | (A) A reconstructed broadband TOA solar flux from 11 MODIS channels (ordinate) compared to the CERES SSF flux (abscissa). The correlation is for
one month of global data and applies to all scenes, both cloudy and clear. The fluxes correspond to instantaneous fluxes and the RMSE is similar in magnitude to the
projected RMSE of the SSF flux itself. Results shown here is for all observations over oceans with SZA between 22o and 36o, VZA 12o and 19o, and RAA 2o and 6o. (B)
The mean spectral SWCRE (all sky minus clear) for computed SCIAMACHY- like reflectance spectra belonging to each of the six cloud clusters presented in
Figure 8B. To the right of the colon in the legend is themean broadband SWCRE of the given cluster with one standard deviation (Wm−2). Positive SWCRE represents an
increase in reflected solar radiation when clouds are present (adapted from Gristey et al. (2019)).
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SWCRE from two distinctly different cloud regimes can thus
appear similar, such as in the case of spectra g and i, respectively
associated with ice cloud and thin liquid cloud, while possessing
very different sensitivities to parameters that define them and
the environment in which they form.

SUMMARY

This paper discusses the different ways spectrally resolved
measurements of reflected sunlight can be expected to serve a
number of emerging Earth science objectives in the coming
decade. The paper briefly introduced the aerosol, clouds,
convection and precipitation (ACCP) program currently in the
process of defining a number of measurement objectives for
NASA to be implemented toward the end of the current
decade. A (solar) VSWIR spectrometer is being considered as
part of the ACCP architecture and the different ways these
measurements can be expected to advance the science
objectives of ACCP were summarized (Table 1) and examples
of how the spectral measurements might specifically be used were
presented. These potential uses range from:

1) Determining the composition of dust aerosol: Although
multiangle and polarimetric measurements contain
information on dust shape and wavelength-dependent
refractive indices, the spectral resolution is not sufficient to
determine actual dust mineral composition. Smooth spectral
scattering features of the light scattered by aspherical, size-
distributed atmospheric dust can be separated from the sharp
spectral features that characterize themineral absorption features
in hyperspectralmeasurements which thus offers some capability
for determining the mineralogical composition of dust
simultaneously with underlying surface properties.

2) Determining total column water vapor: Water vapor
absorption is a dominant spectral feature of the near
infrared reflection spectrum. The retrieval of total column
water vapor (TCWV) from reflectance measurements, over
land where microwave measurements fail and for which the
information is more decisively weighted to the boundary
layer, makes spectral SWIR measurements particularly
pertinent to ACCP. Studies have clearly demonstrated that
fitting of spectral SWIR information from multiple water
vapor bands significantly improves on biases in TCWV
products derived from a much more limited channel method.

3) Cloud properties and profiles of cloud microphysics: Existing
methods for deriving cloud properties from spectral

reflectance data, such as the popular bi-spectral methods
commonly applied to radiometer measurements provided
by MODIS, are mature and can be readily adopted to
spectral VSWIR measurements of the type being proposed
for ACCP. The advantage of more spectrally continuous
hyperspectral measurements, however, extends beyond
significant improvement on bulk layer information,
including improved estimates of cloud phase (Cloud Phase)
and more advanced information about the profile of cloud
properties. This in turn directly improves estimates of cloud
water (and ice) content properties (Figures 13A,B).

4) Radiative fluxes and radiative kernels: Although spectral
measurements will provide important constraints to
estimates of broadband fluxes reflected by clouds and
aerosol on the sub-kilometer scale more typical of clouds,
much more work is needed to mature the approach pioneered
under EarthCARE and is being adopted for ACCP including
research to quantify the expected errors, which will
undoubtedly arise not only from 3D effects at such a small
scale but also from other effects. The sensitivity of radiative
fluxes to changes in cloud and aerosol properties on these
same scales, critical in studies of aerosol radiative effects and
cloud feedbacks, are also potentially better resolved in spectra
of reflectances than in the broadband fluxes (refer to
discussions of Figures 9, 14). Quantifying these sensitivities
is an essential step in providing meaningful observational
constraints either on aerosol-radiative effects, as highlighted
above in the discussion of Figure 9, or on radiative kernels
which expresses the sensitivity of the fluxes to changes in
given cloud properties and is a main factor in quantitative
analyses of cloud feedback.
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Improved Lorenz-Mie Look-Up Table
for Lidar and Polarimeter Retrievals
Eduard Chemyakin1,2*, Snorre Stamnes2, Sharon P. Burton2, Xu Liu2, Chris Hostetler 2,
Richard Ferrare2, Brian Cairns3 and Oleg Dubovik4

1Science Systems and Applications, Inc., Hampton, VA, United States, 2NASA Langley Research Center, Hampton, VA,
United States, 3NASAGoddard Institute for Space Studies, New York, NY, United States, 4Laboratoire d’Optique Amosphérique,
Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

Lidar and polarimeter aerosol microphysical retrievals require calculating single-scattering
properties that are computationally expensive. One of the easiest ways to speed up these
calculations is to use a look-up table. Two important currently available look-up tables were
created about 15 years ago. Advancements in modern computational hardware allows us
to create a new look-up table with improved precision over a larger range of aerosol
properties. In this new and improved Lorenz-Mie look-up table we tabulate the light
scattering by an ensemble of homogeneous isotropic spheres at arbitrary wavelengths
starting from 0.355 μm. The improved look-up table covers spherical atmospheric
aerosols with radii in the range of 0.001–100 μm, with real parts of the complex
refractive index in the range of 1.29–1.65, and with imaginary parts of the complex
refractive index in the range of 0–0.05.We test twelve wavelengths from 0.355 to 2.264 μm
and find that the elements of the normalized scattering matrix as well as the asymmetry
parameter, the aerosol absorption, backscatter, extinction, and scattering coefficients are
precise to within 1% for 99.99% of cases. The look-up table together with C++, Fortran,
Matlab, and Python codes are freely available online.

Keywords: lidar, polarimeter, Lorenz-Mie theory, scattering matrix and optical coefficients, look-up table, scale
invariance rule

1 INTRODUCTION

Recently there is a growing interest in combining simultaneous lidar and polarimeter measurements
to perform retrievals of vertically-resolved aerosol properties. For example, it is expected that the
combination of lidar and polarimeter observations will significantly reduce uncertainties in aerosol
radiative forcing (National Academies of Sci, 2018).

In remote sensing, lidars are active instruments that can contribute a highly accurate assessment
of the vertically-resolved distribution of atmospheric aerosols. There are many different types of
lidars, but our Lorenz-Mie look-up table (LUT) unit tests focus on the NASA LaRC airborne second-
generation high spectral resolution lidar (HSRL-2), which makes three-wavelength lidar
measurements of the atmosphere (Burton et al., 2018). HSRL-2 measurements result in the
aerosol backscatter and extinction coefficients at wavelengths 0.355 (UV) and 0.532 μm (VIS)
accompanied by the attenuated backscatter coefficient at 1.064 μm.

Polarimeters are passive sensors that have greater sensitivity to the absorption properties of
aerosols, but the sensitivity to vertical distribution is limited. There are many different polarimeters
too, but our unit tests focus on the channels provided by the airborne NASAGISS Research Scanning
Polarimeter (RSP) (Cairns et al., 1999). The RSP has nine spectral channels that are divided into two
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groups based on the type of detector used: visible/near infrared
bands at 0.41, 0.469, 0.555, 0.67, 0.864, and 0.96 μm, accompanied
by shortwave infrared bands at 1.594, 1.88, and 2.264 μm.

Retrievals of aerosol microphysical properties using lidar and
polarimeter data separately or combined require significant light
single-scattering calculations that can consume a majority of the
computational time. In this paper, we describe the improved LUT
(which we call: SIR LUT) that uses scale invariance rule (SIR)
built on Mishchenko (Mishchenko, 2006) to speed up these
calculations with a precision target of 1% for all the optical
properties. We also target the accuracy (bias) to be negligible
compared to precision. The ± 1% precision was imposed to
reduce forward model errors in modeling state-of-the-art
airborne lidar and polarimeters, as well as the next generation
of satellite polarimetric sensors.

The fundamental design of this Lorenz-Mie LUT for lidar
and polarimetric sensors builds on the spherical kernels LUT
(SK LUT) (Dubovik and King, 2000; Dubovik et al., 2002a;
Dubovik et al., 2006). The SK LUT is already well established
and has multiple applications including but not limited to
AERONET (Dubovik et al., 2006), GRASP (Dubovik et al.,
2011; Dubovik et al., 2014), and many others. The SIR LUT
thus represents an improvement of a previously developed
approach, but we also describe its methodology in detail to
further document this powerful approach and to highlight its
beauty, elegance and simplicity. While using the same
theoretical underpinnings, we used modern computing
resources to calculate a significantly more precise LUT which
we share with the community. Simulation tests show that
precision of SIR LUT for all optical properties always exceeds
that of SK LUT by up to 34%.

Throughout this paper, we will follow the notation used by
Dubovik et al. (2006). Our LUT targets spherical aerosols,
i.e., Lorenz-Mie scattering theory is applied (Van de Hulst,
1981; Bohren and Huffman, 1983; Mishchenko et al., 2002),
but this theoretical approach can also be extended to non-
spherical aerosols (Dubovik and King, 2000; Dubovik et al.,
2002a; Dubovik et al., 2006; Dubovik et al., 2011; Dubovik
et al., 2014).

2 SCATTERING MATRIX AND OPTICAL
COEFFICIENTS

A unit test framework was developed to test the following list of
aerosol inherent optical properties (IOPs) that we target for fast
and precise estimation.

The normalized matrix that relates the incident and the
scattered Stokes parameters in the standard Lorenz-Mie theory
of light scattering by homogeneous isotropic spheres can be
represented as (Van de Hulst, 1981; Bohren and Huffman,
1983; Mishchenko et al., 2002):

P(Θ,m, λ) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P11(.) P12(.) 0 0
P12(.) P11(.) 0 0
0 0 P33(.) P34(.)
0 0 −P34(.) P33(.)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where Θ is the scattering angle in the range from 0+ to 180+, λ is
the wavelength (μm), and m � mR − i·mI is the complex
refractive index (CRI) consisting of the real part mR (no unit)
and the imaginary part mI (n.u.).

The four independent elements of the normalized scattering
matrix P(Θ,m, λ) can be computed for each vertically-resolved
atmospheric layer as

Pii′(Θ,m, λ) � 1
sca(m, λ) ∫

rmax

rmin

Cii′(Θ,m, λ, r) n(r) dr, (2)

where r is the particle radius (μm), n(r) � dN(r)/dr is the
particle size distribution (PSD) function (μm−1cm−3) such
that n(r)dr represents the number of particles with radius
between r and r + dr per cm3 of air, and N(r) is the number of
particles per cm3 in the size range [0, r], i.e., N(r) � ∫r

0
n(r*)dr*

(Seinfeld and Pandis, 2006). The terms Cii′(Θ,m, λ, r) �
πr2Qii′(Θ,m, λ, r)(m2sr−1) describe the directional scattering
cross sections corresponding to matrix elements
Pii′(Θ,m, λ) (sr−1) with subscript ii′ � {11, 12, 33, 34},
whereas Qii′(Θ,m, λ, r) (sr−1) describe the directional
efficiencies, and πr2(m2) is the geometrical cross section
(Van de Hulst, 1981; Bohren and Huffman, 1983;
Mishchenko et al., 2002). In the ideal case, the integration
should be done over the radius range from rmin � 0 to
rmax � ∞, but a non-zero rmin and a finite value of rmax

must be chosen for numerical computations.
As a reminder, the aerosol lidar backscatter coefficient

β(m, λ) (Mm−1sr−1) can be computed as

β(m, λ) � 1
4π

∫rmax

rmin

C11(180°,m, λ, r) n(r) dr

� sca(m, λ) P11(180°,m, λ)
4π

.

(3)

The aerosol scattering coefficient sca(m, λ) (Mm−1) that appears
in Eqs. 2, 3 and the aerosol extinction coefficient
α(m, λ) (Mm−1) can be computed as

{sca, α}(m, λ) � ∫rmax

rmin

Csca,α(m, λ, r) n(r) dr, (4)

where Csca,α(m, λ, r) � πr2Qsca,α(m, λ, r) (m2) is a scattering
(extinction) cross section and Qsca,α(m, λ, r) (n.u.) is a
corresponding efficiency (Van de Hulst, 1981; Bohren and
Huffman, 1983; Mishchenko et al., 2002).

The aerosol absorption coefficient (Mm−1) is another valuable
aerosol IOP to be computed as

abs(m, λ) � α(m, λ) − sca(m, λ). (5)

The ensemble-averaged asymmetry parameter (n.u.) finalizes our
list of aerosol optical properties to be tested by our unit test
framework:

〈cos(m, λ)〉 � 1
2
∫180°

0°
P11(Θ,m, λ) sinΘ cosΘ dΘ, (6)

where the P11(Θ,m, λ) element of the normalized
scattering matrix P [see Eq. 1] is traditionally referred
to as the phase function and the division by sca(m, λ)
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in Eq. 2 ensures that the following normalization condition is
satisfied:

1
2
∫180°

0°

P11(Θ,m, λ) sinΘ dΘ � 1. (7)

We already mentioned that precise computation of the elements
of the normalized scattering matrix P [see Eq. 1] and
accompanying single-scattering properties [see Eqs. 3–6]
requires significant amount of time. For the purpose of
retrieval of aerosol microphysical properties, it is convenient
to find an efficient way to compute all these aerosol IOPs to
within ± 1% precision using a precomputed LUT.

3 PRINCIPLES OF LOOK-UP TABLE

In order to reduce the size of the dataset that must be stored in
computer memory, the LUT takes advantage of features that are
universal and allow us to develop and apply a generalized
approach for all the tabulated IOPs.

One can see that Eqs. 2–4 share some commonality. The core
structure of these equations can be generalized as

p � ∫rmax

rmin

Cp(.)n(r) dr � ∫rmax

rmin

Cp(.) dN(r)
d ln r

d ln r

� ∫rmax

rmin

Cp(.)
4
3
πr3

dV(r)
d ln r

d ln r,
(8)

where p � {Pii′(Θ,m, λ), β(m, λ), sca(m, λ), α(m, λ)}. The other
common feature of Eqs. 2–4 is that it is optimal to perform the
numerical integration on a logarithmic scale because it is often
assumed in atmospheric sciences that the PSD n(r) � dN(r)/dr
has lognormal shape (Seinfeld and Pandis, 2006). The cross
sections Cp(. . . , r) � πr2Qp(. . . , r) are also often plotted and
analyzed on a logarithmic scale because they exhibit smoother
variability in equal relative steps Δr/r (i.e., in equal logarithmic
steps, since dr/r � d ln r) rather than in equal absolute steps Δr
(Dubovik et al., 2006).

In Eq. 8 we used

dN(r)
d ln r

� r
dN(r)
dr

� rn(r), (9)

dV(r)
d ln r

� 4
3
πr3

dN(r)
d ln r

� v(r) dN(r)
d ln r

, v(r) � 4
3
πr3, (10)

and switched to the volume distribution dV(r)/d ln r because, as
a rough approximation of atmospheric conditions, aerosol PSDs
are equipartitioned in volume (Thomalla and Quenzel, 1982). In
addition, light scattering by an ensemble of small particles
depends on the particle surface area or volume rather than on
the number concentration (Van de Hulst, 1981; Bohren and
Huffman, 1983; Mishchenko et al., 2002).

Let us split the finite range of radii [rmin, rmax] into a set {rj}
consisting of M≫ 1 grid bins that are logarithmically equidistant
and distributed between r1 � rmin and rM � rmax with a constant
step size Δ ln r � (ln rM − ln r1)/(M − 1). Now we can reduce the

integral of Eq. 8 to its approximation by a finite sum (Twomey,
1977):

p � ∫rmax

rmin

Cp(.)
v(r)

dV(r)
d ln r

d ln r ≈ ∑M
j�1

Cp,j,λ

dV(rj)
d ln r

. (11)

Equation 11 is based on the assumption that the PSD
dV(r)/d ln r is a smooth function of lnr and can be
quadratically approximated within the narrow range
rj−1 ≤ r ≤ rj+1 of discrete radii on a logarithmic scale. We would
like to emphasize that for improved precision we use the
quadratic approximation aj + bj ln r + cj ln

2 r of the PSD
instead of the linear (trapezoidal) approximation that has been
used previously (Twomey, 1977; Dubovik et al., 2006). Following
the original generalized procedure for the approximation of a
PSD (Twomey, 1977), the quadratic coefficients aj, bj, and cj are
computed corresponding to the volume distribution function
dV(r)/d ln r at three consecutive radii rk � rj−1, rj, and rj+1:

dV(rk)
d ln r

� aj + bj ln rk + cj ln
2 rk. (12)

Equation 12 can be expressed in terms of the quadratic
approximation coefficients as

aj � 1

2(Δ ln r)2
⎡⎣dV (rj−1)

d ln r
ln rj ln rj+1

− 2
dV(rj)
d ln r

ln rj−1 ln rj+1 +
dV (rj+1)
d ln r

ln rj−1 ln rj⎤⎦,
bj � 1

2(Δ ln r)2
⎡⎣ − dV (rj−1)

d ln r
ln(rjrj+1)

+ 2
dV (rj)
d ln r

ln (rj−1rj+1) − dV (rj+1)
d ln r

ln (rj−1rj)⎤⎦,
cj � 1

2(Δ ln r)2
⎡⎣dV (rj−1)

d ln r
− 2

dV (rj)
d ln r

+ dV (rj+1)
d ln r

⎤⎦.

(13)

The range [rj, rj+1] makes the following contribution to the
integral in Eq. 11:

∫rj+1

rj

Cp(.)
v(r) (aj + bj ln r + cj ln

2 r) d ln r. (14)

Equations 13 and 14 may be grouped by terms that include
dV(rj−1)/d ln r, dV(rj)/d ln r, or dV(rj+1)/d ln r (Twomey, 1977).
We will focus only on the contribution of dV(rj)/d ln r to the
discretization in Eq. 11:

[ln rj−1 ln rj+1(Δ ln r)2 ∫rj+1

rj

Cp(.)
v(r) d ln r

− ln(rj−1rj+1)
(Δln r)2 ∫rj+1

rj

ln r
Cp(.)
v(r) d ln r

+ 1

(Δ ln r)2 ∫
rj+1

rj

ln2 r
Cp(.)
v(r) d ln r]

dV (rj)
d ln r

+/.

(15)
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The multiplicative factor dV(rj)/d ln r also contributes to the
ranges [rj−1, rj] and [rj+1, rj+2]. Adding the contributions of the
three subranges, we finally can obtain the formula for coefficient
Cp,j,λ of Eq. 11:

Cp,j,λ � 3 ln rj−2 ln rj−1
8(Δ ln r)2 ∫rj

rj−1

Qp(., r, λ)
r

d ln r

− 3 ln (rj−2rj−1)
8(Δ ln r)2 ∫rj

rj−1
ln r

Qp(., r, λ)
r

d ln r

+ 3

8(Δ ln r)2 ∫
rj

rj−1
ln2 r

Qp(., r, λ)
r

d ln r

− 3 ln rj−1 ln rj+1
4(Δ ln r)2 ∫rj+1

rj

Qp(., r, λ)
r

d ln r

+ 3 ln (rj−1rj+1)
4(Δ ln r)2 ∫rj+1

rj

ln r
Qp(., r, λ)

r
d ln r

− 3

4(Δ ln r)2 ∫
rj+1

rj

ln2 r
Qp(., r, λ)

r
d ln r

+ 3 ln rj+1 ln rj+2
8(Δ ln r)2 ∫rj+2

rj+1

Qp(., r, λ)
r

d ln r

− 3 ln (rj+1rj+2)
8(Δ ln r)2 ∫rj+2

rj+1
ln r

Qp(., r, λ)
r

d ln r

+ 3

8(Δ ln r)2 ∫
rj+2

rj+1
ln2 r

Qp(., r, λ)
r

d ln r.

(16)

The values of coefficients Cp,j,λ are independent of the PSD and
depend only on the scattering angle Θ (directional scattering),
CRIm, and wavelength λ [see Eq. 16]. We switched to efficiencies
Qp(., r, λ) instead of cross sections Cp(., r, λ) for convenience in
the following discussion.

The sets of coefficients {Cp} can be computed once with high
precision for the selected scattering angles (directional scattering)
and CRIs, and stored as an LUT for each aerosol IOP p. Crucially, we
only need to prepare these coefficients at a single “reference”
wavelength λr which will be chosen to be the shortest wavelength
desired (see Section 4.1). Aerosol IOPs for longer wavelengths
λ ≥ λr can be estimated using the results at the reference
wavelength and the scale invariance rule (SIR) of electromagnetic
scattering (Dubovik et al., 2006; Mishchenko, 2006).

The discretization in Eq. 11 requires that the PSDs are smooth
and wide enough to cover a significant number of densely
distributed radii bins. In the case of narrow, steep PSDs, the
discretization becomes less accurate because a strongly oscillating
function dV(r)/d ln r can’t be accurately approximated by a
quadratic function on a sparse grid of radii bins.

Later we will show that Eq. 16 provides an easy and elegant
way to quickly compute all the aerosol IOPs of interest [see Eqs.
2–6], for a wide range of wavelengths using an LUT referenced to
a single wavelength.

3.1 Lognormal Particle Size Distribution
The following numerical unit tests use a particular type of
function as a PSD n(r). An earlier study mathematically

proved that the random process of sequential particle crushing
naturally leads to a lognormal distribution of particle sizes
(Kolmogorov, 1941). The monomodal lognormal PSD is
experimentally confirmed to be a good approximation for the
shape of naturally occurring aerosol PSDs in the atmosphere
(Seinfeld and Pandis, 2006), and can be considered as an example
of function n(r) in Eqs. 2–4:

n(r) � dN(r)
dr

� nt
r

���
2π

√
ln σ

exp[ − (ln r − ln rmed)2
2 ln2 σ

], (17)

where rmed describes the count median radius with respect to the
number concentration distribution. The count median radius is
defined as the radius above which there are as many particles as
there are particles with radii below rmed. The term σ is the
geometric standard deviation whereas ln σ is commonly
referred to as the mode width, and nt is the total number
concentration.

The same PSD on the logarithmic scale can be expressed in
terms of volume [see Eq. 10] as

dV(r)
d ln r

� 4
3
πr3

nt���
2π

√
ln σ

exp[− (ln r − ln rmed)2
2 ln2 σ

]. (18)

In many cases it is more convenient to analyze the monomodal
lognormal PSD in terms of effective radius reff �
rmed exp(2.5 ln2 σ) and effective variance ]eff � exp(ln2 σ) − 1.
Our analysis of the LUT performance (see Section 4.5)
includes these two quantities. In our numerical simulations for
polarimeter observables (see Section 4.7) we also will use a
bimodal PSD that is a sum of the fine and coarse mode PSDs
[see Eq. 18], each defined by its total number concentration,
effective radius and effective variance.

However, the LUT can be used with any custom PSD that is
smooth and wide enough to cover a significant number of densely
distributed radii bins.

4 LOOK-UP TABLE

4.1 Selection of the Reference Wavelength
The fundamental decision in the design of the LUT is the choice
of reference wavelength λr used to compute the stored coefficients
{Cp} [see Eq. 16]. This choice has a theoretical and practical basis
to optimize the application of the LUT.

For the reference wavelength of the LUT we decided to use the
shortest wavelength among all remote sensing instruments of
interest including the two mentioned in Section 1,
i.e., λr � 0.355 μm. Let us justify our choice by noting that the
size parameter x � 2πr/λ is used for all the Lorenz-Mie
computations (Van de Hulst, 1981; Bohren and Huffman,
1983; Mishchenko et al., 2002). The size parameter
conveniently relates the wavelength and radius such that the
Lorenz-Mie scattering properties for a given radius and
wavelength are the same as those at another wavelength after
adjusting the radius. For example, an aerosol with a radius of
1.4 μm observed at a wavelength λ � 2.264 μm will be
characterized by the same size parameter and identical
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Lorenz-Mie scattering properties as an aerosol with radius 0.355
2.264 ×

1.4 ≈ 0.22 μm observed at the reference wavelength λr � 0.355 μm:

x � 2π
1.4
2.264

� 2π
r
λ
� 2π

0.355
2.264 · 1.4
0.355

� 2π
λr
λ r

λr
. (19)

As a remark, Eq. 19 states that a shorter wavelength
delivers a greater range of size parameters for a given
range of radii.

If the CRI is fixed then Eq. 19 establishes a direct connection
between the efficiencies [see Eqs. 2–4] at wavelengths λ and λr
(for simplicity, we assume λ ≥ λr) using a simple scaling in the
radius domain given by

Qp(., r, λ) � Qp (., λr
λ
r, λr). (20)

A direct connection between the efficiencies can also be expressed
in terms of integrals using a linear scaling of the integration
range as

∫rmax

rmin

Qp(., r, λ)d ln r � ∫λr
λ rmax

λr
λ rmin

Qp(., r, λr) d ln r. (21)

Equations 20 and 21 are the key properties for understanding how
this type of LUTworks and can be seen as a practical application of the
scale invariance rule (Mishchenko, 2006). Equation 21 can be verified
numerically or proved analytically with the assumption that the
efficiency Qp(., r, λ) can be approximated as

Qp(., r, λ) ≈ ∑
j�1

∞

qp,j(.)xj, (22)

where the appropriate coefficients qp,j(.) depend on the scattering
angle Θ (directional scattering) and the CRI m.

Let us directly compute and plot (see Figure 1) the absorption
efficiency Qabs(m, λ, r) � Qα(m, λ, r) − Qsca(m, λ, r) at
wavelengths 0.355 and 2.264 μm in order to provide a
graphical demonstration of Eq. 20. We will use the CRI m �
1.65 − i · 10−5 that corresponds to an almost non-absorbing
aerosol. Figure 1 shows that the absorption efficiencies at two
selected wavelengths repeat each other with a constant scaling
factor in the radius domain. The same conclusion also applies to
the other types of efficiencies too [see Eqs. 2–4]. Equation 20
offers a simple way to obtain the efficiencies at longer wavelengths
λ if the corresponding efficiency at a shorter reference wavelength
λr is already known. For example, in order to plot the absorption
efficiency at λ � 2.264 μm from 0+ to 1.4 μm radius (from point A
to point C of dashed line in Figure 1), we can substitute 1.4 μm
with 0.355

2.264 · 1.4 ≈ 0.22 μm radius and perform an affine stretch of
the precomputed efficiency at λr � 0.355 μm (from point A to
point B of solid line in Figure 1).

From Figure 1 it is reasonable to conclude that the numerical
integration over radii in Eqs. 2–4 for a given precision will require
smaller integration steps at shorter wavelengths. The oscillations
of the absorption efficiency at the wavelength 2.264 μm (see
Figure 1, dashed line) are noticeably less pronounced
compared to the oscillations seen in the efficiency at 0.355 μm
(see Figure 1, solid line). The uniform scaling transformation is
applied in the radius domain and uses only a partial range of the
efficiency precomputed at the shortest wavelength. As the
wavelength increases, the oscillations with radius become
smoother, corresponding to a stretching of the oscillations at a
shorter wavelength (see Figure 1). Smoother functions of radius
are easier to precisely integrate. Thus, it is easier to numerically
compute precise values in Eqs. 2–6 at a wavelength of 2.264 μm
compared to 0.355 μm. With this feature in mind, we can expect
that the performance of the SIR LUT in general will also improve
as the wavelength λ increases, if we choose the shortest
wavelength of interest to be the reference wavelength λr.

Figure 1 also helps to graphically illustrate Eq. 21. For
example, Eq. 21 demonstrates that integration of the
absorption efficiency at a wavelength of 2.264 μm (see
Figure 1, dashed line) in the radii range from 0.7 to 1.4 μm
will result in the same value as integration at 0.355 μm (see
Figure 1, solid line) in the range from ∼ 0.11 to ∼ 0.22 μm. Note
the logarithmic scale of the vertical axis of Figure 1 during the
visual analysis.

Theoretical reasoning supported by numerical simulations
justify choosing the shortest wavelength as the reference
wavelength λr. To accommodate existing and anticipated
future passive and active sensors, we choose λr � 0.355 μm.
Equations 20 and 21 allow us to relate the Lorenz-Mie
scattering calculations at this reference wavelength to longer
wavelengths for any PSD. In Section 4.4 we will benefit from
using this key property.

4.2 Look-Up Table Parameters
The quadratures that define the precision of the SIR LUT, its
speed and number of stored coefficients {Cp} [see Eq. 16] are now
discussed. It is clear that a reduction of stored information can
have a negative effect on the precision of the SIR LUT. At the

FIGURE 1 | Normalized absorption efficiencies at wavelengths 0.355
and 2.264 μmare related by a uniform scaling transformation which is a type of
Euclidean affinity transformation.
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same time, it is inefficient to store redundant information that
must be read and kept in RAM. The SIR LUT represents balance
between the two conflicting criteria of precision and size.

4.2.1 Quadrature of Radii Grid Bins
Let us start with the quadrature of radii {rj} that was briefly
mentioned in Section 3. Based on numerical simulations and
earlier studies (Dubovik and King, 2000; Dubovik et al., 2002a;
Dubovik et al., 2002b; Dubovik et al., 2006), we made a decision to
use 650 logarithmically equidistant grid bins to cover a particle size
range from rmin � 10−3 to rmax � 100μm: 10−31 , 1.018 × 10−32 ,
1.036 × 10−33 , 1.055 × 10−34 , . . ., 98.2649, and 100650 μm. Most of
the values are displayed after rounding. The subscripts correspond to
the index j in Eq. 11, and is provided for reference purposes.

As we discussed in Section 4.1, the computation of efficiencies
Qp(.) [see Eqs. 2–4] is made using the size parameter. A single
size parameter value corresponds to different particle radii and
wavelength pairs. If the desired radius r at wavelength λ ≥ λr is
known then the corresponding radius paired with λr in the SIR
LUT will be [see also Eq. 19]:

rλr �
λr
λ
r. (23)

The exact range of sizes should be used if the optical properties at two
different wavelengths are compared. Otherwise, the scattering
particle systems are different. Thus, if the integration in Eqs. 2–4
at an arbitrary wavelength λ is also carried out from 10−3 to 100 μm,
then the computations at different wavelengths would require the
SIR LUT to cover the different radii range:

• from 10−3 to 100 μm at λ � λr � 0.355 μm;
• from 0.355

0.41 × 10−3 ≈ 8.7 × 10−4 to ∼ 87 μm at λ � 0.41 μm;
• from ∼ 1.6 × 10−4 to ∼ 16 μm at λ � 2.264 μm.

One can see that the minimum radius at all wavelengths λ> λr
falls below the radii range covered by LUT. In practice, for typical
aerosol PSDs, this impact is expected to be small, and as the
wavelength increases, the contribution of ultrafine aerosols is
reduced. The SIR LUT supports integration over the following
radii ranges at different wavelengths:

• from 10−3 to 100 μm at λ � λr � 0.355 μm;
• from 0.41

0.355 × 10−3 ≈ 1.2 × 10−3 to ∼ 120 μm at λ � 0.41 μm;
• from ∼ 6.4 × 10−3 to ∼ 640 μm at λ � 2.264 μm.

Thus, increasing the wavelength of interest λ increases the
minimum (rmin,λ) and the maximum (rmax,λ) radii, resulting in a
larger range of covered radii. The increase in rmin,λ means that the SIR
LUT ignores nanoparticles with radii below 10−3 μm at a wavelength
of 0.355 μm and below ∼ 6.4 × 10−3 μm at 2.264 μm.Asmentioned,
the impact of this for aerosol PSDs is negligible. Scattering of light in
this regime is best described by the Rayleigh scattering (Van de Hulst,
1981; Bohren and Huffman, 1983; Mishchenko et al., 2002).

The selected reference wavelength λr and radii range result
in the SIR LUT that covers the range of size parameters x
from ∼ 0.018 to ∼ 1,770.

4.2.2 Quadrature of Scattering Angles
Another decision that affects the number of stored coefficients
{Cp} [see Eq. 16] is the choice of a finite set of scattering angles Θ
(angular quadrature). The SIR LUT includes 123 scattering angles
Θ in the range between 0+ and 180+ (see Table 1). One may use
an appropriate interpolation scheme to estimate the values of
aerosol IOPs of interest for the other scattering angles too.

We would like to emphasize that the use of this angular
quadrature helps to reduce the size of the SIR LUT and optimize
its information content. The angular quadrature near scattering
angles of 0+ and 180+ has 0.2+ spacing because the elements of the
normalized scattering matrix P [see Eq. 1] can rapidly change there
(Hansen and Travis, 1974). The rate of change in P is relatively small
between scattering angles of 10+ and 170+ that allows a coarser
angular quadrature with 2+ spacing.

The SK LUTuses an angular quadrature consisting of 181 scattering
angles with an equidistant step of 1+ (Dubovik and King, 2000;
Dubovik et al., 2002a; Dubovik et al., 2006). This step is too coarse
to precisely describe the angular change in the elements ofmatrixP [see
Eq. 1] near scattering angles of 0+ and 180+ (Hansen andTravis, 1974).

Let us demonstrate the advantage of our angular quadrature with
the help of numerical simulations. The asymmetry parameter [see Eq.
6] is a good candidate for a quantitativemetric because its computation
requires integration over the entire range of scattering angles Θ.

As example input parameters, we select the CRIm � 1.3 − i · 0.05
and a lognormal PSD with nt � 1 cm−3, rmed � 1.5 μm and σ � 2
[see Eq. 17]. These parameters are quite unrealistic for ambient
aerosols in the visible spectrum (Dubovik et al., 2002b), but we would
like to ensure that our “± 1%” requirement is fulfilled across a wide
range of scenarios. We selected this particular scenario because it is
one of the most difficult cases that we managed to find.

We perform the integration in Eq. 6 using Simpson’s rule on an
equidistant grid consisting of 10,001 scattering anglesΘ. Out of these
10,001 angles total, the values of phase function are calculated
precisely only at a subset of scattering angles, and the rest result
from quadratic interpolation. For the tests, we use 101,181 (from 0+

to 180+ with the equidistant step of 1+ as in (Dubovik and King,
2000;Dubovik et al., 2002a; Dubovik et al., 2006)), 201, . . ., and 2,001
scattering angles. The most precise calculation of the asymmetry
parameter is therefore the one integrated using a grid of 2,001
scattering angles, and we use this as the reference value. In order to
compute the values of the phase function P11(Θ,m, λ) at a
wavelength λ � 0.355 μm, the Lorenz-Mie computations are
made using the Bohren and Huffman code (Bohren and
Huffman, 1983). The integration in Eq. 2 is performed for the 2 ×
107 logarithmically equidistant radii bins in the range from 10−3 to
100 μm (see Section 4.5 for more details).

Figure 2 and Table 2 show the results of the simulations. One
can see that the value of the asymmetry parameter computed using
101, 181, and 201 of scattering angles is different bymore than 1% of
the reference value. The “ ± 1%” requirement is fulfilled for the cases
of 401 or more scattering angles (see Figure 2 and Table 2). The
requirement is also fulfilled by the LUT (see horizontal dashed line at
Figure 2 andTable 2).With this we conclude that our quadrature of
123 scattering angles (see Table 1) performs about as well as an
equidistant grid consisting of 2,001 scattering angles.
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4.2.3 Quadrature of Complex Refractive Indexes
The choice of the CRI quadrature is the last factor which must be
chosen to balance the precision of the SIR LUT against the
number of stored coefficients {Cp} [see Eq. 16]. Based on our
numerical simulations and earlier studies (Dubovik and King,
2000; Dubovik et al., 2002a; Dubovik et al., 2002b; Dubovik et al.,
2006), we decided to use 31 · 75 � 2,325 CRIs:

• 31 real parts (mR) of the CRI in the range between 1.29 and
1.65 with a step 0.012 (see Table 3);

• 75 imaginary parts (mI) of the CRI: 0, and 74
logarithmically equidistant values between 10−5 and 5 ×
10−2 (see Table 4, most of the values are shown rounded).

Sequential numbers for the real (jR in Table 3) and imaginary
(jI in Table 4) parts are provided to help navigation inside the SIR
LUT file (see Section 4.3).

4.3 Structure of Look-Up Table File
In Section 3 we described the theoretical background of the SIR
LUT and in Section 4.2 provided a justification for the selection
of quadratures that formed the actual LUT. Starting from this
section, we switch our focus on the matters related to the practical
application of the SIR LUT.

We computed the coefficients {Cp} [see Eq. 16] at a reference
wavelength λr and stored them in a file on the computer’s hard drive.
The SIR LUT file is binary and consists of a header (3,536 bytes, see
Table 5) that is followed by 31 · 75 � 2,325 data records (1,284,408
bytes per record, see Table 6) for each CRI separately (see Section
4.2.3). The total size of the file is equal to 3,536 + 2,325 · 1,284,408 �
2,986,252,136 bytes. We intentionally limited the size of the SIR LUT
file to 3 GB because the majority of modern blade servers have at least
4 GBof RAMper core. The SIR LUT file can then be uploaded into the
memory of each core of the blade to further speed up the
computations. In the future, we plan to refine the quadratures for
the radii and CRIs when the progress in computational hardware will
allow us to increase the size of LUT file.

The header contains information defining the reference
wavelength and the quadratures for the radii, scattering angles,
and CRIs (see Table 5).

Each data record of the SIR LUT contains the sets of values {Cp}
that were computed using Eq. 16 at the reference wavelength λr �
0.355 μm (see Table 6). For the computations we used a reliable and
accurate Lorenz-Mie scattering program (Mishchenko et al., 2002;
Mishchenko, 2019). We slightly modified the program to make it

TABLE 1 | Scattering angles Θ included into the SIR LUT.

jΘ Θ jΘ Θ jΘ Θ jΘ Θ jΘ Θ jΘ Θ jΘ Θ

1 0° 19 7° 37 40° 55 76° 73 112° 91 148° 109 176°
2 0.2° 20 8° 38 42° 56 78° 74 114° 92 150° 110 176.5°
3 0.4° 21 9° 39 44° 57 80° 75 116° 93 152° 111 177°
4 0.6° 22 10° 40 46° 58 82° 76 118° 94 154° 112 177.5°
5 0.8° 23 12° 41 48° 59 84° 77 120° 95 156° 113 178°
6 1° 24 14° 42 50° 60 86° 78 122° 96 158° 114 178.2°
7 1.2° 25 16° 43 52° 61 88° 79 124° 97 160° 115 178.4°
8 1.4° 26 18° 44 54° 62 90° 80 126° 98 162° 116 178.6°
9 1.6° 27 20° 45 56° 63 92° 81 128° 99 164° 117 178.8°
10 1.8° 28 22° 46 58° 64 94° 82 130° 100 166° 118 179°
11 2° 29 24° 47 60° 65 96° 83 132° 101 168° 119 179.2°
12 2.5° 30 26° 48 62° 66 98° 84 134° 102 170° 120 179.4°
13 3° 31 28° 49 64° 67 100° 85 136° 103 171° 121 179.6°
14 3.5° 32 30° 50 66° 68 102° 86 138° 104 172° 122 179.8°
15 4° 33 32° 51 68° 69 104° 87 140° 105 173° 123 180°
16 4.5° 34 34° 52 70° 70 106° 88 142° 106 174°
17 5° 35 36° 53 72° 71 108° 89 144° 107 175°
18 6° 36 38° 54 74° 72 110° 90 146° 108 175.5°

FIGURE 2 | Example asymmetry parameter computation. The vertical
dotted line marks the result from the angular quadrature used in the SK LUT.

TABLE 2 | Computed values of the asymmetry parameter.

Number of Θ grid
bins

〈cos(m, λ)〉 Relative difference (%)

101 0.989622 1.99
181 0.960103 −1.05
201 0.960131 −1.05
401 0.967307 −0.31
601 0.969269 −0.11
801 0.969861 −0.05
/ / /

2,001. The reference value 0.970321 –

Computed from the SIR LUT 0.974039 0.38
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suitable for parallel computation of the coefficients Cp,j,λr [see Eq. 16],
but the core part of the program remained intact. We used 100,000
points over each integration range of radii [rj, rj+1] by setting the

program input parameters N � 1,000 (number of subintervals within
[rj, rj+1]) and NK � 100 (number of Gaussian division points)
(Mishchenko et al., 2002; Mishchenko, 2019). All the SIR LUT
related computations were performed on blade servers equipped
with Intel Xeon “Skylake” processors on the NASA LaRC K-Cluster.

The {C11}, {C12}, {C33}, and {C34} sets in Table 6 are two
dimensional arrays that are stored line by line, i.e., 650 lines
(corresponding to the radii quadrature, see Section 4.2.1) with
123 columns each (corresponding to the scattering angles
quadrature, see Section 4.2.2).

The beginning position in the SIR LUT file for the data record that
corresponds to a certain CRI can be computed using the sequential
numbers of the real and imaginary parts (see Section 4.2.3) as 3,536 +
1,284,408 · (75 · (jR − 1) + jI − 1) bytes. For instance, if one needs the
data record that corresponds to the CRI with real part mR � 1.362
(jR � 7) and imaginary partmI � 2.6 × 10−4 (jI � 30) then the pointer
inside of the SIR LUT file should be set at the position of 615,234,968
bytes from the beginning of file.

We also share with the community codes written in C++, Fortran,
Python and Matlab that can be used to efficiently compute all aerosol
IOPs of interest [see Eqs. 2–6] from the SIR LUT.

4.4 Usage of Look-Up Table
To make the practical use of the SIR LUT, it is necessary to
develop a way of computing the coefficients Cp,j,λ at longer
wavelengths λ using coefficients Cp,j,λr precomputed at the
reference wavelength λr. At this point, we have already
decided on reference wavelength and quadratures that define
the structure of the SIR LUT and highlighted the useful properties
of efficiencies by applying the scale invariance rule (Mishchenko,

TABLE 3 | Real parts of the CRI covered by the SIR LUT.

jR mR jR mR jR mR jR mR jR mR jR mR jR mR

1 1.29 6 1.35 11 1.41 16 1.47 21 1.53 26 1.59 31 1.65
2 1.302 7 1.362 12 1.422 17 1.482 22 1.542 27 1.602
3 1.314 8 1.374 13 1.434 18 1.494 23 1.554 28 1.614
4 1.326 9 1.386 14 1.446 19 1.506 24 1.566 29 1.626
5 1.338 10 1.398 15 1.458 20 1.518 25 1.578 30 1.638

TABLE 4 | Imaginary parts of the CRI covered by the SIR LUT.

jI mI jI mI jI mI jI mI jI mI jI mI

1 0 14 4.1×10–5 27 1.8×10–4 40 8.4×10–4 53 3.8×10–3 66 1.7×10–2
2 10–5 15 4.6×10–5 28 2.1×10–4 41 9.5×10–4 54 4.3×10–3 67 2×10–2
3 1.1×10–5 16 5.1×10–5 29 2.3×10–4 42 1.1×10–3 55 4.8×10–3 68 2.2×10–2
4 1.3×10–5 17 5.8×10–5 30 2.6×10–4 43 1.2×10–3 56 5.4×10–3 69 2.5×10–2
5 1.4×10–5 18 6.5×10–5 31 2.9×10–4 44 1.3×10–3 57 6.1×10–3 70 2.8×10–2
6 1.6×10–5 19 7.3×10–5 32 3.3×10–4 45 1.5×10–3 58 6.9×10–3 71 3.1×10–2
7 1.8×10–5 20 8.2×10–5 33 3.7×10–4 46 1.7×10–3 59 7.7×10–3 72 3.5×10–2
8 2×10–5 21 9.2×10–5 34 4.2×10–4 47 1.9×10–3 60 8.7×10–3 73 4×10–2
9 2.3×10–5 22 10–4 35 4.7×10–4 48 2.1×10–3 61 9.8×10–3 74 4.4×10–2
10 2.5×10–5 23 1.2×10–4 36 5.3×10–4 49 2.4×10–3 62 1.1×10–2 75 5×10–2
11 2.9×10–5 24 1.3×10–4 37 5.9×10–4 50 2.7×10–3 63 1.2×10–2
12 3.2×10–5 25 1.5×10–4 38 6.7×10–4 51 3×10–3 64 1.4×10–2
13 3.6×10–5 26 1.6×10–4 39 7.5×10–4 52 3.4×10–3 65 1.6×10–2

TABLE 5 | Structure of the SIR LUT header.

Description Type Size (bytes) Content

Reference wavelength (μm) Float 4 0.355
Number of radii grid bins Int 4 650
{rj} set of radii bins (μm) 650*float 2,600 See Section 4.2.1
Number of scattering angles Int 4 123
Angular quadrature {Θ} 123*float 492 See Section 4.2.2
Number of real parts Int 4 31
{mR} set of real parts 31*float 124 See Section 4.2.3
Number of imaginary parts Int 4 75
{mI} set of imaginary parts 75*float 300 See Section 4.2.3
Total 3,536

TABLE 6 | Structure of the SIR LUT data record.

Description Type Size (bytes) Content

Real part of CRI (mR) Float 4 See Section 4.2.3
Imaginary part of CRI (mI ) Float 4 See Section 4.2.3
{Cα} set 650*float 2,600 See Eqs. 4, 16
{Csca} set 650*float 2,600 See Eqs. 4, 16
{C11} set 650*123*float 319,800 See Eqs. 2, 16
{C12} set 650*123*float 319,800 See Eqs. 2, 16
{C33} set 650*123*float 319,800 See Eqs. 2, 16
{C34} set 650*123*float 319,800 See Eqs. 2, 16
Total 1,284,408
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2006). We return to theoretical derivations one last time to
complete the final assembly by collecting these fragments into
a working mechanism.

As discussed in Section 4.1, since it is the size parameter that
drives the single-scattering computations, the integration of
efficiencies at longer wavelengths can be directly expressed
through the integration of efficiencies calculated at a shorter
wavelength. Equation 21 allows us to apply a linear scaling of
the quadratic approximation range [see Eq. 12] from [rj−1, rj+1]
to [λrλ rj−1, λrλ rj+1] in order to switch in Eq. 16 from an arbitrary

wavelength λ ≥ λr to the reference wavelength λr. After
repeating the PSD quadratic approximation procedure [see
Eqs. 12–16], the coefficient Cp,j,λ in Eq. 16 can be
computed as

λr
λ
[3 ln λrλ rj−2 ln λrλ rj−1

8(Δ ln r)2 ∫λr
λ rj

λr
λ rj−1

Qp(·, r, λr)
r

d ln r

−
3 ln

λ2r
λ2
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8(Δ ln r)2 ∫λr
λ rj
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d ln r]· (24)

The common multiplier λr
λ in front of the bracket

appears in Eq. 24 to compensate the division by radius r
during each integration. If desired, one can verify the
equivalence of Eqs. 16 and 24 numerically or prove it
analytically using Eq. 22.

In practice, it is necessary to use an interpolation technique
to estimate the coefficient Cp,j,λ because in the general case the
scaled radius λr

λ rj does not coincide with any of the SIR LUT
radius quadrature points {rj} (see Sections 3 and 4.2.1). As an
option, quadratic interpolation may be used with the known
LUT values of coefficient at radius quadrature points rk−1, rk,
and rk+1:

Cp,j,λ ≈
λr
λ
[Cp,k−1,λr

(λr
λ
rj − rk)(λr

λ
rj − rk+1)

(rk−1 − rk)(rk−1 − rk+1)

+ Cp,k,λr

(λr
λ
rj − rk−1)(λr

λ
rj − rk+1)

(rk − rk−1)(rk − rk+1)

+ Cp,k+1,λr

(λr
λ
rj − rk−1)(λr

λ
rj − rk)

(rk+1 − rk−1)(rk+1 − rk)
], (25)

where the index k is generally selected to fulfill rk ≤ λr
λ rj ≤ rk+1

when the quadrature point rk−1 is available for the case λ ≥ λr and
the quadrature point rk+1 can go up to rmax � 100μm. If the index
k is found to be equal to unity then the coefficient Cp,j,λ is
computed using Eq. 25 at the radius quadrature points r1, r2,
and r3. If the scaled radius λr

λ rj is too small and not covered by the
SIR LUT at all (see discussion related to the increase of rmin,λ in
Section 4.2.1) then the coefficient Cp,j,λ vanishes. As the
wavelength of interest λ increases, the contribution from the
smallest particles is lost with the relatively minor impact.

Different interpolation techniques, instead of quadratic as in
Eq. 25, also may be applied. One should keep in mind that
quadratic interpolation provides reasonable results and requires
only nine multiplications and three divisions that can be done
quite fast considering that 650 interpolations are needed for each
aerosol IOP p [see Eq. 11].

Equation 25 offers a simple way to compute the coefficients
Cp,j,λ at longer wavelengths using the precomputed and stored
coefficients Cp,j,λr. One may skip all the mathematical theory
behind Eq. 25 as it might look complicated. In the end, the
elegance of this LUT approach allows us to exchange the
integration in Eqs. 2–4 at longer wavelengths with an
integration at a shorter reference wavelength over a range of
smaller radii.

4.5 Validation of the Scale Invariance Rule
Look-Up Table: Unit Tests
To demonstrate the improved capabilities of the SIR LUT, we will
compute the aerosol IOPs of interest [see Eqs. 2–6] using the SIR
LUT [see Eqs. 11, 25] and compare them to simulated truth
values (see Section 4.5.1).

At the beginning we set a ± 1% relative difference for
all single-scattering properties [see Eqs. 2–6] as the precision
target. The ± 1% precision shall be achieved at all the
wavelengths of interest, i.e., at {λ} � {0.355, 0.41, 0.469,
0.532, 0.555, 0.67, 0.864, 0.96, 1.064, 1.594, 1.88, 2.264} μm (see
Section 1). In Section 4.1 we anticipated that the targeted
precision would be most difficult to achieve at the shortest
wavelength, i.e. at λ � 0.355 μm, despite the fact that it is the
reference wavelength.

We compute the relative difference for the aerosol IOPs p �
{β(m, λ), sca(m, λ), α(m, λ), abs(m, λ), 〈cos(m, λ)〉} [see Eqs.
3–6] as
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δp � p − pt
pt

· 100%, (26)

where pt is the simulated truth value for the aerosol IOP p.
For the elements of the normalized scattering matrix P [see

Eq. 2] the relative difference is computed slightly differently:

δPii′(Θ) �
Pii′(Θ) − Pii′,t(Θ)
max
Θ

∣∣∣∣Pii′,t(Θ)
∣∣∣∣ · 100%, (27)

where Pii′,t(Θ) is the simulated truth of the normalized scattering
matrix element Pii′(Θ). We compare the difference between the
SIR LUT and the simulated truth values with the maximum
absolute simulated truth value because at some scattering angles
Θ the value of Pii′,t(Θ) element may be close to zero or vanish for
natural reasons. It is important to reproduce the shape of Pii′,t(Θ)
functions around their peaks, which for aerosols mainly occur at
scattering angles Θ close to 0+ and 180+ (see Section 4.2.2). By
contrast, a 1% disagreement when the absolute value of the
element is small tends to be more acceptable for our purposes
of modeling lidar and polarimeter observables.

4.5.1 Simulated Truth
It is now time to clarify the aerosol IOPs {pt, Pii′,t(Θ)} that we
consider to be the simulated truth for comparisons in the unit
tests. To compute the true IOPs {pt, Pii′,t(Θ)}, we have to decide
which CRIs, PSDs, and scattering angles Θ, as well as the
integration range [rmin, rmax] and integration settings to use in
Eqs. 2–6.

During retrievals of aerosol microphysical properties using
real lidar and polarimeter data, the values of the CRIs will not
necessarily coincide with the CRI quadrature of the SIR LUT (see
Section 4.2.3). A two-dimensional interpolation scheme is used
to obtain the off-CRI-grid values of aerosol IOPs {p, Pii′(Θ)}
using several values of the same IOP estimated using the LUT at
CRI grid points. We recommend the use of quadratic
interpolation [see Eq. 25] in two dimensions since we found it
to be fast and reliable.

In the unit tests we shall focus on the off-grid CRIs that
are covered but not directly included into the SIR LUT (see
Section 4.2.3) and that are realistic from the perspective
of ambient aerosols (Dubovik et al., 2002b). Keeping this in
mind, we selected to use the set consisting of 18 · 101 � 1,818
CRIs: 18 real parts (mR) of the CRI in the range between 1.31 and
1.65 with a step of 0.02, and 101 imaginary parts (mI) of the CRI
consisting of 0, and 100 equidistant values between 2.5 × 10−4 and
0.04975 with a step of 5 × 10−4. Among these 1,818 CRIs there are
six that form a subset {m} � {1.35, 1.41, 1.47, 1.53, 1.59, 1.65} that
intersects with the CRI quadrature of the SIR LUT (see Section
4.2.3). It is reasonable to expect high precision of the SIR LUT at
CRIs ∈ {m}. We will use this property of the {m} subset as an
additional benchmark test to help evaluate the quality of our
unit tests.

Let us use a monomodal lognormal distribution (see Section
3.1) as the function n(r) in Eqs. 2–6 to simulate an ambient
aerosol PSD (Kolmogorov, 1941; Seinfeld and Pandis, 2006). The
count median radius rmed [see Eq. 18] in our unit tests will vary

from 0.075 to 1.501 μm with a constant step of 0.002 μm (for a
total of 714 values). Twelve geometric standard deviations σ [see
Eq. 18] in the range from 1.35 to 2.01 with a constant step of 0.06
will accompany each median radius. It is enough to consider a
single total number concentration nt � 1 cm−3 [see Eq. 18] to
evaluate relative differences in the single-scattering properties.
These 714 · 12 � 8,568 PSDs cover a wide range of aerosol size
distributions (Dubovik et al., 2002b).

Thus, the total number of CRI–PSD unit tests is equal to
1,818 · 8,568 � 15,576,624 at each wavelength of interest {λ}.

Recall from Section 4.2.2, the SIR LUT uses a quadrature of
123 scattering angles that precisely represents the aerosol
asymmetry parameter as well as equidistant quadratures with
many more angles. Therefore, we use this scattering angle
quadrature in our unit test dataset as well. Let us compute the
simulated truth elements Pii′,t(Θ) of normalized scattering
matrices [see Eq. 1] for the same angular quadrature.

Putting it all together, we track 5 + 4 · 123 � 497 relative
differences [see Eqs. 26, 27] of aerosol IOPs [see Eqs. 2–6]
with a ± 1% precision target.

For all wavelengths of interest let us compute the simulated
truth {pt, Pii′,t(Θ)} by integrating over the radius range [rmin �
0.001 μm, rmax � 100 μm] that the SIR LUT uses at a wavelength
of 0.355 μm (see Section 4.2.1). This radius integration range
covers themajority of ambient fine and coarse mode aerosol PSDs
(Dubovik et al., 2002b). With nanoparticles included into
integration at all wavelengths, we can evaluate the losses of
information about nanoparticles by the SIR LUT with the
increase of wavelength (see discussion related to the increase
of rmin,λ in Section 4.2.1).

The only remaining decision is how many radius
quadrature points are used if Simpson’s rule is applied to
the numerical integration in Eqs. 2–6. The absorption
coefficient at λ � 0.355 μm is an IOP that can help us make
this decision. In Section 4.2.1 we selected the CRI m � 1.65 −
i · 10−5 as an example where the absorption efficiency oscillates
with an amplitude exceeding two orders of magnitude (see
Figure 1, solid curve). Such highly oscillatory functions
require a very narrow integration step to produce a precise
result. For such cases, if we increase the number of
logarithmically equidistant radii bins by factor of ten, we
expect the computed absorption coefficient to converge and
the relative difference to decrease and approach zero. We set
the parameters of the aerosol PSD to nt � 1 cm−3, rmed � 0.7 μm
and σ � 1.35 [see Eq. 18].

To compute the simulated truth values, the Lorenz-Mie single-
scattering calculations were performed using the well-established
Bohren and Huffman program (Bohren and Huffman, 1983). As
a reminder, the SIR LUT coefficients (see Section 4.3) were
computed using the Mishchenko et al. program (Mishchenko
et al., 2002; Mishchenko, 2019). By cross-checking the two
Lorenz-Mie programs we achieved a high level of confidence
in the unit tests.

4.5.2 Results of the Unit Tests
Table 7 lists the results of the numerical integration. As the
number of radius quadrature points increases, the value of the
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absorption coefficient converges, as expected. After the number of
points reaches 105, the ± 1% precision level is achieved, but even
more points are needed to converge to the value that would be
considered the simulated truth. The relative difference between
the 107 and 2 × 107 radius quadrature points is close to numerical
zero, which is the best we can expect in terms of convergence.

The absolute value of the absorption coefficient in this test is
small because the imaginary part of CRI is very close to zero. We
intentionally selected this almost non-absorbing aerosol because
during the SIR LUT development stage we experienced the most
difficulties in achieving ± 1% precision for the low absorbing
particles.

Based on Table 7, we made a decision to compute all the
simulated truth aerosol IOPs {pt, Pii′,t(Θ)} [see Eqs. 2–6] by
applying Simpson’s rule using 2 × 107 logarithmically equidistant
radius quadrature points in the range from 10−3 to 100 μm.Wemay
have to use even more quadrature points if, in the future, the SIR
LUT is extended to havemore imaginary parts of the CRI between 0
and 10−5. One can see that solid curve in Figure 1 has multiple
spikes at least two orders of magnitude from the basic trend. For
imaginary parts below 10−5 we expect to see efficiencies that are
even more oscillatory compared to the solid curve of Figure 1.

Moving further, we computed the simulated truth values
for all the aerosol IOPs [see Eqs. 2–6] at twelve wavelengths
{λ} and compared them [see Eqs. 26, 27] to the corresponding
LUT values [see Eqs. 11, 25]. The targeted ± 1% precision
level was achieved in all cases except for the P12(Θ) element
of the normalized scattering matrix, which turned out to be
the most difficult aerosol IOP to tabulate. All the other
aerosol IOPs were computed using the SIR LUT within the
targeted precision.

Figures 3, 4 and Table 8 show the details of the CRI–PSD unit
tests at two minimum wavelengths of interest that lead to a
relative error [see Eq. 27] larger than ± 1% for the element
P12(Θ). Panels (A) and (B) of Figures 3, 4 detail the locations of
the problematic PSDs in terms of median radius and geometric
standard deviation (A), and effective radius and effective variance
(B). Panel (C) of Figures 3, 4 depicts the locations of problematic
CRIs, and panel (D) provides the histograms of relative
differences for only the unit tests that failed to reach the 1%
precision.

One can see that the problematic PSDs describe coarse mode
aerosols with an effective radius exceeding 3.5 μm and an effective
variance exceeding 0.45 (see panel (B) of Figures 3, 4). These
effective radii and variances correspond to large aerosols with
sizes that are sparsely covered by our logarithmically equidistant
distributed set {rj} of radius quadrature points (see Sections 3 and
4.2.1). All the problematic CRIs have an imaginary part around
zero (see panel (C) of Figures 3, 4). We thus expect that the
Q12(Θ,m, λ � 0.355μm, r) directional scattering efficiency for
small imaginary parts oscillates even more vigorously than the
absorption efficiency (see solid curve of Figure 1). If we find it
necessary to improve the precision of P12(Θ), in the next version
of the SIR LUT we will need to have more radius quadrature
points M (see Section 4.2.1), denser coverage of imaginary parts
of CRI around zero (see Section 4.2.3), and possibly use
additional integration points to compute the values of

simulated truth and the SIR LUT coefficients [see Eq. 16]. The
current version of the SIR LUT allows us to estimate the P12(Θ)
element of the normalized scattering matrix to within ± 2.5%
(see panel (D) of Figures 3, 4 and Table 8).

Let us point out that panel (C) of Figures 3, 4 is missing the
points corresponding to the subset {m} mentioned earlier.
Interestingly, the CRI point (1.41, 0) ∈ {m} is absent from
panel (C) but two of its closest neighbors (1.39, 0) ∉ {m} and
(1.43, 0) ∉ {m} are marked as the problematic CRIs. Intuition
suggests that the CRI point between those two also has a potential
to be problematic. We expect to have the highest precision of the
SIR LUT at the points of the CRI quadrature and one of them is
the point (1.41, 0) ∈ {m}, which explains its absence from panel
(C). We consider this feature to be an additional indicator of
proper behavior by the SIR LUT.

Panel (D) of Figures 3, 4 show the histograms of P12(Θ) relative
differences [see Eq. 27] for the problematic CRI–PSD unit tests out

TABLE 7 | Computed values of the aerosol absorption coefficient.

Number of radius
quadrature points

Abs (Mm-1) Relative difference (%)

103 0.00175102 −5.135
104 0.00208741 13.388
105 0.00184286 0.104
106 0.00184106 0.007
107 0.00184094 ∼0
2×107. The simulated truth value 0.00184094 –

Computed from the SIR LUT 0.00183823 −0.147

FIGURE 3 | Outliers in P12(Θ) computations from the SIR LUT at λ �
0.355 μm. Description of labels is given in text.
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of 15,576,624 total tests spanning the entire scattering angle
quadrature consisting of 123 angles (see Section 4.2.2). The ± 1%
precision target was not achieved 1,494 times at a wavelength of
0.355 μm (7.8 × 10−5%; see Figure 3D and Table 8) and 529 times
at 0.41 μm (2.8 × 10−5%; see Figure 4D and Table 8). In Section
4.1 we anticipated improvement in the SIR LUT precision as the
wavelength increases and Figures 3, 4 together with Table 8
confirm this behavior. The trend of a reduction in the number of
problematic cases continues as the wavelength increases and the
number drops to zero at 0.532 μm.

To increase confidence in the precision of the SIR LUT, we
conducted an additional test using 1,000,000 random
λ–CRI–PSD unit tests. A uniform random number generator
provided evenly distributed values of wavelength λ in the range
from 0.355 to 2.264 μm, count median radius rmed from 0.075 to
1.5 μm, geometric standard deviation σ from 1.35 to 2.01, real

part of the CRI mR from 1.31 to 1.65, and imaginary part of the
CRI mI from 0 to 0.05. Using these random inputs, we computed
the simulated truth values for all the aerosol IOPs [see Eqs. 2–6]
and compared them to the corresponding SIR LUT values [see
Eqs. 11, 25]. The ± 1% precision was not achieved in eleven cases
for the aerosol absorption coefficient and once for the P12(Θ)
element of the normalized scattering matrix. All these cases have
an imaginary part of the CRI between 0 and 10−5. Qualitatively,
the assessment is very similar to what is shown in Figures 3, 4.

With the presented results of numerical simulations, we
conclude that the performance of the SIR LUT for all the
aerosol IOPs of interest is precise to within ± 1% except for a
few cases where P12(Θ) is within ± 2.5%. The impact of the
precision of P12(Θ) on polarimeter observables will be explored
in Section 4.7.

4.6 Validation of the Spherical Kernels
Look-Up Table: Unit Tests
An important topic to consider is the precision of the SK LUT that
is currently in use and served as the inspiration for the SIR
LUT (Dubovik and King, 2000; Dubovik et al., 2002a; Dubovik
et al., 2006). It is first necessary to understand what improvements,
if any, are achieved using quadratic approximation of the aerosol
PSD [see Eq. 12] and by the cost of increasing the number of stored
coefficients (see Sections 4.2–4.3). We will also provide more
details on the aerosol lidar backscatter and extinction
coefficients. For the other aerosol IOPs we provide histograms
with relative differences. It is sufficient to explore only the 0.355
and 0.532 μm wavelengths to study if the precision of the SK LUT
also improves as the wavelength increases. For brevity, we skip the
wavelength of 1.064 μm that is also used by the HSRL-2
instrument. The relative difference comparisons are made using
the same simulated truth values for the 15,576,624 unit tests that
are described in Section 4.5.

Figures 5–10 and Table 9 show the results of comparisons.
Each dot in the panels (A–C) of Figures 5–8 indicates that ± 1%
relative difference was not achieved for at least one HSRL-2
UV–VIS observable for a given CRI or PSD. The histograms in
panel (D) of Figures 5–8 and all panels of Figures 9, 10 plot the
distribution of relative differences [see Eqs. 26, 27] that are
greater than ± 1%.

FIGURE 4 | Outliers in P12(Θ) computations from the SIR LUT at λ �
0.41 μm. Description of labels is given in text.

TABLE 8 | Overview of the SIR LUT performance.

IOP λ= 0.355μm λ= 0.41 μm

Min Max Accuracy Outliers Min Max Accuracy Outliers

(%) (%) (%) Number (%) (%) (%) Number

β −0.63 0.81 −5×10–2 0 −0.58 0.62 −5×10–2 0
sca −10–2 5×10–3 −3×10–3 0 −10–2 5×10–3 −3×10–3 0
α −4×10–3 5×10–3 5×10–5 0 −4×10–3 5×10–3 −7×10–5 0
abs −5×10–2 10–2 5×10–3 0 −4×10–2 10–2 5×10–3 0
〈cos〉 −2×10–3 4×10–3 10–3 0 −2×10–3 4×10–3 10–3 0
P11 −8×10–3 10–2 −2×10–4 0 −8×10–3 10–2 3×10–4 0
P12 −2.24 1.59 3×10–4 1,494 −1.66 1.17 3×10–4 529
P33 −8×10–3 10–2 3×10–4 0 −8×10–3 10–2 3×10–4 0
P34 −0.15 0.09 3×10–4 0 −0.12 0.07 4×10–4 0
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In this test of the SK LUT, we found that the backscatter
coefficient at 0.355 μm had the worst accuracy and precision (see
Figure 5 and Table 9). The ± 1% relative difference was not
achieved 13,473,394 times at a wavelength of 0.355 μm (86.5%)
and 12,094,591 times at 0.532 μm (77.65%). The relative
differences of HSRL-2 UV–VIS observables are within ± 35%
at 0.355 μm (see Figure 5D and Table 9) and ± 31% at 0.532 μm
(see Figure 7D and Table 9). The relative difference also
improves as the wavelength increases as we anticipated in
Section 4.1 for this type of LUT, and which we have already
seen for the SIR LUT in Section 4.5. The improvement is
relatively minor and every CRI and PSD was found to result
in a computed lidar backscatter coefficient with a relative
difference of greater than ± 1% at least once (see panels
(A–C) of Figures 5, 7).

All four relative difference histograms (see panel (D) of
Figures 5–8) of the HSRL-2 UV–VIS observables are
asymmetric, and indicate a tendency of the SK LUT to
overestimate the HSRL-2 observables. It is unexpected to see
an overestimation here, because of the significant difference in the
integration range for radius. We computed the simulated truth
values with the integration range up to rmax � 100 μm [see Eqs. 3,
4]. By contrast, the SK LUT stops at ∼ 33.9 μm in terms of
particle radius (Dubovik and King, 2000; Dubovik et al., 2002a;
Dubovik et al., 2006). The information between ∼ 33.9 and
100 μm is lost, and that naturally should lead to
underestimations. The reason for systematic overestimates is
unknown but will be investigated separately.

Compared to the lidar backscatter coefficient, the accuracy
and precision of the extinction coefficient are noticeably better
(see Figures 6, 8 and Table 9). The ± 1% relative difference was
not achieved 1,330,281 times at a wavelength of 0.355 μm (8.54%)
and 2,029,788 times at 0.532 μm (13.03%). The relative
differences are within ± 3% at both 0.355 (see Figure 6D and
Table 9) and 0.532 μm (see Figure 8D and Table 9). It is
unexpected to see that the SK LUT precision for the
extinction coefficient degrades with the increase of wavelength,
but the interesting feature is that degradation appears to be
approximately proportional to the scaling factor 0.532

0.355 ≈ 1.5.
The same scaling factor of ∼ 1.5 can be noticed in terms of
the effective radius too. The estimations with SK LUT show
precision issues for PSDs with effective radius up to 1.2 μm at
wavelength 0.355 μm and up to 1.8 μm at 0.532 μm (see panel (B)
of Figures 6, 8). Most probably, this decrease in precision
happens because of features specific to the extinction
efficiencies that are amplified by the fact that the SK LUT has
only 41 radius quadrature points (Dubovik and King, 2000;
Dubovik et al., 2002a; Dubovik et al., 2006) compared to 650
for the SIR LUT (see Section 4.2.1). It is known that extinction
efficiencies are the most oscillatory for the values of the size
parameter x ≥ 10 (Van de Hulst, 1981; Bohren and Huffman,
1983; Mishchenko et al., 2002). As the size parameter increases,
the extinction efficiencies asymptotically approach a constant
value. As a result, it is sufficient to use fewer radius quadrature
points to characterize the extinction efficiency function for PSDs
of larger particles; this leads to more precise extinction
coefficients for coarse mode aerosols by the SK LUT.

The accuracy and precision of the SK LUT for the
absorption coefficient (see panel (A) of Figures 9, 10 and
Table 9) and all the four elements of the normalized
scattering matrix (see panels (C–F) of Figures 9, 10 and

FIGURE 5 | Outliers in β355 computations from the SK LUT. Description
of labels is given in text.

FIGURE 6 | Outliers in α355 computations from the SK LUT. Description
of labels is given in text.
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Table 9) also degrade as the wavelength increases. Only the
P12(Θ) element has a fairly symmetric histogram of
relative differences (see panel (D) of Figures 9, 10).
Panels (C–F) of Figures 9, 10 and Table 9 reflect the
results of comparisons that were done only at 101

scattering angles which are common between the angular
quadratures of the SIR LUT (see Section 4.2.2) and the SK
LUT (Dubovik and King, 2000; Dubovik et al., 2002a;
Dubovik et al., 2006).

One can see that the degradation with increasing
wavelength in the relative difference of the aerosol IOPs is a
general feature of the SK LUT. We do not plot the results of
comparisons for the third HSRL-2 wavelength at 1.064 μm for
brevity, but the relative difference further degrades compared
to 0.532 μm. We believe that it is related to the use of only 41
radius quadrature points, which is most probably not enough
to fulfill the conditions of Nyquist–Shannon–Kotelnikov
sampling theorem, which states that twice as many
quadrature points are needed compared to the oscillation
frequency (Lüke, 1999).

In summary, the new SIR LUT significantly improves upon the
precision of the SK LUT at a cost of a factor of ninety in computer
RAM. We recommend using the improved SIR LUT to model
lidar and polarimeter observables from high precision
instruments.

FIGURE 7 | Outliers in β532 computations from the SK LUT. Description
of labels is given in text.

FIGURE 8 | Outliers in α532 computations from the SK LUT. Description
of labels is given in text.

FIGURE 9 |Overview of the SK LUT outliers at λ � 0.355 μm. Description
of labels is given in text.
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4.7 Validation of the Scale Invariance Rule
and Spherical Kernel Look-Up Tables With
Stokes Parameters
As a final test, let us compute and compare the Stokes parameters of
scattered light for a selection of simulated cases.We will focus on the

Stokes parameters I, Q, U, and the degree of linear polarization
DLP � �������

Q2 + U2
√

/I (Van de Hulst, 1981; Bohren and Huffman,
1983; Mishchenko et al., 2002). The Stokes parameters will be
computed at the top of the atmosphere using the Advanced
Doubling-Adding code for the Earth’s atmosphere including
molecular scattering (Hansen and Travis, 1974; Stamnes et al.,
2018). We will consider 3,024 cases that are formed by seven
real parts (from 1.35 to 1.65 with a step 0.05), four imaginary
parts (0, 0.001, 0.005, and 0.03) of the CRI, three fine (reff ,f � 0.1, 0.2,
and 0.3 μm) and coarse mode (reff ,c � 0.9, 1.8, and 3.6 μm) effective
radii coupled with single fine (]eff ,f � 0.3) and coarse (]eff ,c � 0.6)
mode effective variances [see Eq. 18], accompanied by four fine
mode (0.04, 0.08, 0.3, and 0.6) and three coarsemode (0.04, 0.08, and
0.16) atmospheric optical depths.

We continue targeting ± 1% precision for all the Stokes
parameters and use Eq. 27 as a measure because I, Q, U, and
DLP depend on the scattering angle Θ. Let us use the extreme
wavelengths of {λ}, i.e., 0.355 and 2.264 μm, to reveal the
λ-dependency in the quality of performance of LUTs.

We computed 160 scattering angles Θ between −65+ and 65+

for the 3,024 cases, resulting in 483,840 test points, andwe compared
the simulated truth values of I, Q, U, and DLP for each of them to
the corresponding values computed with each of the two LUTs.
We found that for all 483,840 test values the SIR LUT reached the
± 1% precision for all the Stokes parameters. The SK LUT
demonstrated precision better than ± 1% only at wavelength
λ � 0.355 μm.

Figure 11 shows the results of comparisons for the SK LUT at
λ � 2.264 μm, but again only for the tests that failed to reach the
1% precision. The ± 1% test failed 642 times for I (0.13%; see
panel (A) of Figure 11), 6,663 times for Q (1.38%; see panel (B) of
Figure 11), 7,817 times for U (1.62%; see panel (C) of Figure 11),
and 8,533 times for DLP (1.76%; see panel (D) of Figure 11).
Figure 11 confirms that degradation with increasing wavelength
is a general feature of the SK LUT and the increase of wavelength
has negative impact on the precision of estimations.

With these results we conclude that the performance of the SIR
LUT for polarimeter observables stays within ± 1% without
degrading at increasing wavelength. Also, as another conclusion,
it is interesting to see that precise computation of Stokes parameters
requires fewer radii grid bins compared to the elements of the
normalized scattering matrix and lidar observables.

FIGURE 10 | Overview of the SK LUT outliers at λ � 0.532 μm.
Description of labels is given in text.

TABLE 9 | Overview of the SK LUT performance.

IOP λ= 0.355μm λ= 0.532 μm

Min Max Accuracy Outliers Min Max Accuracy Outliers

(%) (%) (%) Number (%) (%) (%) Number

β −22.1 34.1 6.05 13,473,394 −16.5 30.6 4.49 12,094,591
sca −2.5 3.3 0.99 10,018,378 −2.1 3.3 0.93 10,432,117
α −1.8 2.6 0.67 1,330,281 −1.8 2.6 0.62 2,029,788
abs −0.7 90.8 1.04 1,303,511 −0.7 91.8 1.09 1,870,540
〈cos〉 −1.2 1.4 −0.39 8,326 −1.2 3.7 −0.35 44,104
P11 −3.5 4.1 −0.02 10,942,269 −3.7 4.3 −0.03 18,754,373
P12 −75.4 80.2 −0.15 99,240,602 −80.7 79.7 −0.22 133,411,322
P33 −3.5 4.1 −0.02 10,937,936 −3.7 4.3 −0.03 18,744,124
P34 −4.7 8.1 −0.03 21,940,573 −4.7 27.8 −0.04 29,401,117
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5 CONCLUSION

The SIR LUT provides an improved aerosol inherent optical
properties LUT that can be used with advanced lidar and
polarimeter aerosol microphysical retrievals as well as other
remote sensing and in situ applications. Depending on the
aerosol IOP, the SIR LUT improves precision by up to 34%
compared to the SK LUT. The design of the LUT takes into
account mathematical features of Lorenz-Mie scattering theory
and can be applied to a range of wavelengths starting at 0.355 μm
and a range of aerosol PSDs. The theoretical background of the
LUT design was published as a minor part of earlier studies. In
this contribution we attempted to provide a complete and
thorough description of the most important mathematical
aspects of the SIR LUT.

We introduced several theoretical and practical improvements
to the existing LUT approach. We implemented quadratic
approximation of the aerosol PSD since we found it improves
precision over linear approximation. The new irregular angular
quadrature allows us to use fewer scattering angles and improves
precision at the same time. The range of size parameters was
widened and now covers values from ∼ 0.018 to ∼ 1,770. Due to
our access to superior computational hardware, we also increased
the number of radius quadrature points to the extent that it fulfills
the conditions of Nyquist–Shannon–Kotelnikov sampling
theorem. The larger number of radius quadrature points solves
the SK LUT’s issue that causes degraded accuracy and precision of
the aerosol IOPs as the wavelength increases.

For verification, we used two reliable Lorenz-Mie single-
scattering programs developed by two independent and well
established scientific groups in the field of light scattering by
small particles. One program was used to compute the
coefficients of the SIR LUT itself at the reference wavelength of
0.355 μm. The other program was used to compute the simulated
truth data at twelve wavelengths of interest via direct integration of
the aerosol PSD using Simpson’s rule. Aerosol IOPs computed from
the SIR LUT are precise to within ± 1% with the exception that
P12(Θ) is precise to within ± 2.5% when the imaginary part of the
CRI is below 10−5. As anticipated, the shortest tested wavelength
delivers the least precise results in terms of aerosol IOPs and the
precision of the SIR LUT improves as the wavelength increases.
Further improvements in the precision of IOPs will likely require
more radius quadrature points and denser coverage of the CRI that
will increase the size of the SIR LUT.

Overall, the precision of aerosol IOPs computed from the SIR
LUT is nearly equivalent to direct integration of the PSD using
Simpson’s rule with 2 × 107 of logarithmically equidistant radius
quadrature points from 10−3 to 100 μm, but can be used to make
calculations about 1,000 times as quickly. The SIR LUT and
examples of its use in several programming languages including
C++, Fortran, Matlab, and Python are publicly available for the
benefit of community at the web page https://science.larc.nasa.gov/
polarimetry.
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Maryland, Baltimore County, Baltimore, MD, United States, 3NASA Goddard Institute for Space Studies, New York, NY,
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A neural-network algorithm that uses CALIPSO lidar measurements to infer droplet
effective radius, extinction coefficient, liquid-water content, and droplet number
concentration for water clouds is described and assessed. These results are verified
against values inferred from High-Spectral-Resolution Lidar (HSRL) and Research
Scanning Polarimeter (RSP) measurements made on an aircraft that flew under
CALIPSO. The global cloud microphysical properties are derived from 14+ years of
CALIPSO lidar measurements, and the droplet sizes are compared to corresponding
values inferred from MODIS passive imagery. This new product will provide constraints to
improve modeling of Earth’s water cycle and cloud-climate interactions.

Keywords: CALIPSO, water cloud, microphysics, number concentration, water content

INTRODUCTION

CALIPSO Lidar measurements provide the first ever direct measurements of the global distribution of
water-cloud extinction coefficients from space. Water-cloud backscattering β decays exponentially
with propagation depth z as β � β0e

−λz , which is demonstrated in CALIPSO lidar measurements.
Without multiple scattering, the decay rate λ and extinction coefficient of vertically homogenous
water clouds σ are equal. Multiple scattering significantly reduces the decay rate of water-cloud
backscattering profiles in the CALIPSOmeasurements. The decay rate λ of the CALIPSO water-cloud
backscattering profile approximately equals the extinction coefficient σ of water cloudsmultiplied by a
multiple-scattering factor η: β � β0e

−ησz . Our previous studies (Hu et al., 2006 and, 2007; Hu, 2007)
suggest that the multiple-scattering factor is a function of water-cloud depolarization ratio δ:
η � (1−δ1+δ)

2

. The depolarization ratio is accurately measured by CALIPSO. To accurately estimate
the decay rate of water clouds from CALIPSO measurements and in turn retrieve the water-cloud
extinction coefficient, we developed an algorithm that can properly account for the measurement
issues that may cause biases, e.g. detector transient response, low-pass filter, discretized range bins,
cloud top structure and heterogeneity, as well as uncertainty associated with measurement noise.

It is also possible to estimate the water-cloud lidar ratio Sc, i.e. the ratio of the extinction to the
backscattering cross section measured at 180° scattering angle obtained from CALIPSO
measurements (Hu, 2007). Water-cloud lidar ratios are inversely proportional to cloud droplet

Edited by:
Howard Barker,

Environment and Climate Change,
Canada

Reviewed by:
Husi Letu,

Institute of Remote Sensing and Digital
Earth (CAS), China

Weizhen Hou,
Aerospace Information Research

Institute, (CAS), China

*Correspondence:
Yongxiang Hu

yongxiang.hu-1@nasa.gov

Specialty section:
This article was submitted to

Satellite Missions,
a section of the journal

Frontiers in Remote Sensing

Received: 13 June 2021
Accepted: 18 August 2021

Published: 08 September 2021

Citation:
Hu Y, Lu X, Zhai P-W, Hostetler CA,

Hair JW, Cairns B, Sun W, Stamnes S,
Omar A, Baize R, Videen G, Mace J,
McCoy DT, McCoy IL and Wood R

(2021) Liquid Phase Cloud
Microphysical Property Estimates
From CALIPSO Measurements.
Front. Remote Sens. 2:724615.
doi: 10.3389/frsen.2021.724615

Frontiers in Remote Sensing | www.frontiersin.org September 2021 | Volume 2 | Article 7246151

METHODS
published: 08 September 2021

doi: 10.3389/frsen.2021.724615

43

http://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2021.724615&domain=pdf&date_stamp=2021-09-08
https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/full
http://creativecommons.org/licenses/by/4.0/
mailto:yongxiang.hu-1@nasa.gov
https://doi.org/10.3389/frsen.2021.724615
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2021.724615


sizes (Hu et al., 2006; Mace et al., 2020). Thus, it is theoretically
possible to estimate the effective water-cloud droplet size Re from
CALIPSO measurements. There are measurement issues to be
resolved in order to derive Re accurately using CALIPSO
observations, e.g., shot noise from sunlight creates difficulty in
detecting aerosols and sub-visual clouds above water clouds, and
thus causes biases in lidar-ratio estimates. Here we develop a Re
retrieval technique that allows us to avoid such biases.

In this paper we describe the retrieval algorithm for estimating
microphysical properties of water clouds (e.g., extinction
coefficient, effective drop size, liquid water content, and
droplet number concentration) from 14 + years of global lidar
measurements acquired by NASA’s CALIPSO satellite.

Airborne measurements made by the co-manifested NASA
Langley Research Center (LaRC) high spectral resolution lidar
(HSRL) and the Goddard Institute of Space Studies (GISS)
research scanning polarimeter (RSP) have been used to derive
an identical set of water-cloud microphysical properties. The
results obtained from these joint HSRL + RSP retrievals agree
closely with the coincident in situmeasurements acquired during
multiple field campaigns conducted in various locations around
the planet. These retrievals from airborne remote-sensing
platforms are used in validating our experimental CALIPSO
water-cloud microphysics products.

While space-based passive remote sensors only derive water-
cloud microphysical parameters from daytime measurements,
our experimental CALIPSO data product provides a full set of
water-cloud microphysical information for both daytime and
nighttime. In our initial studies of diurnal differences, we have
found large day/night contrasts in water-cloud microphysical
properties. It turns out that the difference is due to depolarization
calibration inconsistency. After the inconsistency is removed, the
day-night differences in cloud microphysics are reduced
significantly.

The cloud microphysical properties derived from the
CALIPSO lidar measurements will enable new and more
accurate constraints to be developed and applied to weather
and climate models, such as cloud parameterization schemes
with their associated simulations of radiation and condensation
(e.g., Wilson et al., 2008). This study provides the community
with the first long-term, global, nighttime cloud microphysics
data products. It also provides an independent, validated daytime
water-cloud droplet number concentration data product
complementary to those from passive remote sensing (Han
et al., 1998; Wood, 2006; Grosvenor et al., 2018).

TECHNICAL APPROACH

In addition to cloud-top height (Mace et al., 2020) and cloud
thermodynamic-phase identification (Hu et al., 2007),
CALIPSO’s lidar measurements can be mined to retrieve many
other important water-cloud microphysical properties. For
example, lidar ratios derived from the CALIPSO water-cloud
measurements have been shown to be well-correlated with
effective cloud droplet size (Mace et al., 2020), and CALIPSO’s
dual polarization backscattering profiles are sensitive to changes

in extinction coefficients (Li et al., 2018). Estimation of cloud
liquid-water content and droplet number density from CALIPSO
observations hinges upon retrievals of cloud droplet effective
radius and cloud extinction (Hu et al., 2007).

The retrieval of cloud-droplet effective radius from CALIPSO
data is illustrated in Figure 1. Lidar ratios Sc of moderately thick
water clouds (in this work defined as the effective optical depths
at 532 nm larger than 2.5 and two-way transmittances less than
0.0067) can be derived from layer-integrated attenuated-
backscattering and depolarization-ratio measurements of water
clouds. The layer-integrated attenuated backscattering β of
moderately thick water clouds is inversely proportional to Sc
and the layer-integrated multiple scattering factor η; i.e., β � 1/
[2η* Sc] (Platt, 1973). The multiple-scattering factor can be
accurately computed from the layer-integrated volume
depolarization ratio δ using η�(1−δ)2/(1+δ)2 (Hu et al., 2006;
Hu, 2007; Hu et al., 2007). Lidar ratios of water clouds computed
from the Lorenz-Mie theory are inversely correlated with the
effective droplet radius (Figure 1, left panel) if the effective
variance of the size distribution is greater than 0.1 (e.g., green
and blue dotted lines). As the relationship between droplet size
and lidar ratio varies with effective variance of size distribution,
water-cloud droplet size cannot be estimated accurately from
lidar ratio alone. To estimate droplet size accurately, we also need
another independent measurement that is sensitive to the size
distribution, e.g., color-ratio measurements. The right panel of
Figure 1 shows that the color ratio also varies with particle size
and effective variance.

It is possible to estimate the effective radius of water clouds
relatively accurately from lidar-ratio and color-ratio information
derived from lidar measurements. Comparing with 532 nm,
theoretical calculations (Hu et al., 2007) suggest that multiple
scattering at 1064 nm is roughly 25% higher for CALIPSO, due to
the fact that the size parameter at 1064 nm is half of 532 nm and
multiple scattering is inversely proportional to the third power of
the size parameter (Hu et al., 2007). Thus the effective color ratio
from the CALIPSO measurements (right panels of Figure 2) is
25% higher compared with the single-scattering color ratio and is
consistent with theoretical calculations. Other information, such
as cloud temperature, estimated from CALIPSO cloud-height
measurements, can also provide extra information about the
effective variance of the droplet size distribution.

Collocated MODIS and CALIPSO measurements show that
for warm water clouds with cloud-top temperatures higher than
0°C (upper-left panel of Figure 2), the lidar ratio increases as the
effective radius decreases. The effective variance of the droplet
size distribution from both the lidar ratios and color ratios is
likely greater than 0.16 when effective radius is less than 10 μm.
For warm clouds with effective radius larger than 15 μm, lidar
ratios are considerably lower than theoretical Lorenz-Mie
calculations. For cold water clouds with cloud-top
temperatures colder than −20°C (lower panels of Figure 2),
both the lidar-ratio and color-ratio measurements suggest that
the effective variance of the size distribution is likely smaller
than 0.04.

Although there is sufficient information about cloud
droplet effective radius in lidar measurements, there are
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measurement issues that may affect the accuracy of effective-
radius estimates from the lidar-ratio and color-ratio
measurements. Subvisual cirrus and background aerosols
above the clouds may cause over-estimations of the lidar
ratio. Fine-mode aerosols above water clouds cause over-

estimation of the color ratio. For water clouds having
droplets with an effective radius larger than 20 μm, lidar
ratios estimated from the CALIPSO measurements are
significantly smaller than the ones from Lorenz-Mie
calculations.

FIGURE 1 | (A): relationship between water-cloud droplet effective radius Re and water-cloud lidar ratio Sc calculated using the Lorenz-Mie theory. (B): the single-
scattering color ratio (1064 nm backscatter cross section/532 nm backscatter cross section) as a function of Re.

FIGURE 2 | Left panels: relationship between the collocated MODIS water-cloud droplet effective radius Re and CALIPSOwater-cloud lidar ratio Sc for warmwater
clouds (A) and supercooled liquid water clouds (B). Right panel: relationship between collocated MODIS Collection 6 water cloud droplet effective radius Re (Platnick
et al., 2017) and CALIPSO water-cloud color ratio for warm water clouds (C) and supercooled liquid water clouds (D).
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A neural-network-based nonlinear functional approximation
(Beal et al., 1992; Beal et al., 2021) that links CALIPSO water-
cloud measurements to effective radius derived from collocated
MODIS observations is developed in order to overcome these
issues effectively. The neural-network algorithm takes in the
CALIPSO measurements, such as the layer-integrated
attenuated water-cloud backscattering and the vertically
integrated, attenuated backscattering of the air above water
clouds, as input and the effective radius of collocated MODIS
as output for training the neural network. The collocated MODIS
effective radius and CALIPSO lidar measurements during
January 2008 are used for training the neural-network
algorithm and applied to all CALIPSO daytime measurements

between 2008 and 2020. The effective radius from CALIPSO
(right panel of Figure 3) agrees with MODIS (left panel of
Figure 3) within ± 2 microns.

We also applied the algorithm to the CALIPSO nighttime
measurements and found that the droplet sizes are unrealistically
large compared with daytime measurements. This is most likely
due to differences in the calibration. While daytime and
nighttime statistics of all three channels of the lidar
measurements suggest good consistency of daytime and
nighttime 532 nm parallel and 1064 nm total backscattering
measurements, there are significant differences between
daytime and nighttime 532 nm perpendicular lidar
backscattering statistics. For example, while nighttime 532 nm

FIGURE 3 | Comparisons of water-cloud-droplet effective radius Re from 2008 MODIS (A) and CALIPSO (B) measurements.

FIGURE 4 |Comparisons of daytime (A) and nighttime (B) land surface depolarization ratio from CALIPSOmeasurements, as well as the 3D histogram (C) and 2D
histogram (D) of the day-night land surface difference.
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parallel-polarized backscattering from land surfaces agrees with
daytime measurements, nighttime backscattering
depolarization ratios of land surfaces (upper right panel of
Figure 4) are very different from daytime measurements
(upper left panel of Figure 4), and the nighttime
depolarization ratios are roughly 7% lower compared with
daytime measurements (lower panels of Figure 4). We raised
nighttime depolarization ratios by 7% to make it consistent with
daytime measurements and thus possible to apply the neural-
network algorithm to nighttime CALIPSO measurements for
effective radius estimation. With the adjustment of nighttime
depolarization ratios, the daytime and nighttime difference in
cloud effective radius estimated from the neural-network
algorithm is significantly reduced (Figure 5).

We also developed a second neural-network algorithm
(CALIPSO 2) to reduce potential uncertainties in cloud-droplet
radius estimates due to undetected aerosols above water clouds and
calibration errors. This method uses depolarization ratios and color
ratios as input parameters of the neural-network algorithm to
replace the three CALIPSO 1 attenuated-backscattering channels.
The effective radii derived from these two algorithms agree with
each other in general (lower right panel of Figure 8 and middle
panel of Figure 11).

We also developed two different algorithms to determine the
water-cloud extinction coefficient fromCALIPSOmeasurements.
Method #1 is a profile-shape algorithm in which the water-cloud

extinction coefficient σ is determined from the five range bins that
measure the largest attenuated-backscattering coefficients
(i.e., including one prior and three subsequent to the peak
backscattering, β-1, β0, . . . , β3). This technique is based on
simulations of the CALIPSO water-cloud measurements for
various extinction coefficients that fully account for
measurement complexity, such as the non-ideal CALIPSO
receiver transient responses (Hu et al., 2007), cloud top
bumpiness, and issues associated with averaging over 30 m range
bins (Figures 6 and 7). Using these simulated lidar measurements, a
neural network nonlinear functional approximation, f(βI) � σ, is
trained with attenuated-backscattering coefficients computed for
various extinction coefficients as the input and the extinction
coefficients as the output (Figure 7).

Extinction-coefficient retrieval method #2 derives extinction
coefficients σ from depolarization ratios δ and effective radii Re by
applying the theoretical relationship f (σ, Re, δ) � 0 established by
extensive Monte Carlo simulations of laser-light propagation in
water clouds (Hu et al., 2007; Li et al., 2011; Zeng et al., 2014)
while the formula is modified based on the measurements:

σ(2πRe

λ
)−0.333

� 216( δ

1 + δ
)2

Where λ is the lidar wavelength (0.532 μm) and the unit of
Re is μm.

FIGURE 5 | Comparisons of daytime (A) and nighttime (B) water-cloud droplet effective radius Re estimated from CALIPSO measurements (2008).

FIGURE 6 | Examples of water-cloud backscattering profiles from CALIPSO measurements.
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As seen in the lower left panel of Figure 8, the extinction
coefficients derived using the two different methods agree
reasonably well. Similarly, estimates of effective radius also can
be derived from depolarization ratios and extinction coefficients.
The water-cloud effective radii derived from this method also agree
with the effective radii obtained from lidar-ratio measurements
(lower right panel of Figure 8).

Other physical properties of water clouds, such as liquid-water
content w and droplet number concentrationNd, can be derived from
the extinction coefficient σ and effective radius Re (Hu et al., 2007):

w � 4ρReσ

3eQc
≈
2Reσ

3

Nd � σ

2πR2
e

1

(1 − ])(1 − 2])
Here ρ is the density of water (1 g/cm3), Qc is the extinction
efficiency of water-cloud droplets, which for droplets large

compared with the wavelength Qc ≈ 2, and υ is the variance of
the droplet size distribution. In this study, we assume υ � 0.13. A
study to derive the variances directly from the lidar
measurements by training it to the variances derived from
collocated POLDER measurements is in progress.

Figure 9 shows the liquid-water content (left panel) and
droplet number concentration (right panel) derived from Re

and extinction coefficient for the same section of the orbit as
in Figure 8. The blue and red lines represent w and Nd

derived from Re and extinction coefficient using Method 1
and Method 2 respectively, which agree with each other
reasonably well.

Figure 10 shows the annual mean microphysical
properties of water clouds, including Re (upper left panel),
extinction coefficient (upper right panel), liquid-water
content (lower left panel) and droplet number
concentration (lower right panel).

FIGURE 7 | Physics behind water-cloud extinction-coefficient retrievals using five largest cloud backscattering range bins. (A): transient response function
CALIPSO’s 532 nm channel. (B): one silver lining of CALIPSO’s transient response and coarse-resolution sampling is that the backscattering profiles are insensitive to
cloud-top bumpiness. (C): backscattering profiles before discretized sampling for different effective extinction coefficients. (D): a neural-network algorithm for
determining extinction coefficients.
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COMPARISONS OF CALIPSO
WATER-CLOUD PROPERTIES WITH
CLOUD MICROPHYSICAL PROPERTIES
FROM HSRL AND RSP MEASUREMENTS

Over the last several years, the NASA HSRL and RSP teams have
invested heavily in both instrument and algorithm development in
order to improve the accuracy of their measurements and optimize
their retrievals of cloud microphysical properties. The HSRL/RSP
water-cloud-microphysical-property product is validated against in
situmeasurements acquired during the North Atlantic Aerosols and
Marine Ecosystems Study (NAAMES). The extinction coefficients
from the HSRL measurements agree reasonably well with in situ
measurements (Alexandrov, et al., 2018; Hair et al., 2018). Similarly,
the mean droplet extinction cross section areas (2π * Re

2) from the
RSP measurements (Cairns et al., 2020) also show reasonable
agreement with the corresponding in situ measurements.

Water-cloud measurements have been made by the HSRL and
RSP instruments in many field campaigns that have taken place in
different parts of the world over the last few years. Thus, we can
use the global data set of HSRL and RSP measurements to assess
uncertainties in the CALIPSO water-cloud-microphysical-
property data products as discussed below.

Figure 11 shows an example of the HSRL/RSP water-cloud
measurements when the aircraft underflew the CALIPSO orbit
track (blue line in the upper panel) on May 27, 2016 during

the NAAMES mission. The water-cloud effective radii
determined from the RSP measurements (blue line in the
middle panel of Figure 11) agree better with CALIPSO’s Re

estimates derived with the lidar ratio method (green and
red line) within uniform clouds. For relatively broken clouds,
Re derived from the CALIPSO extinction coefficient and
depolarization-ratio method (red line) agrees better with the
RSP data (blue). CALIPSO extinction coefficients (green and
red lines of lower panel of Figure 11) also agree with the ones
from HSRL measurements (blue line). Cloud microphysical
properties derived from the under-flying aircraft
measurements agree similarly well with collocated water-
cloud microphysical properties derived from CALIPSO.

SUMMARY

Water-cloud lidar ratios can be derived from water-cloud layer-
integrated attenuated-backscattering and depolarization ratios of
CALIPSO lidar measurements. Lidar ratios and color ratios of
water clouds are both sensitive to changes in effective radius and
variance of the water-cloud size distribution. Using the CALIPSO
lidar measurements and collocated MODIS effective-size
measurements, a neural-network algorithm is developed to
retrieve water-cloud effective radius from CALIPSO’s water-
cloud backscattering measurements.

Vertical profiles of lidar backscattering from water clouds are
sensitive to changes in cloud extinction coefficients. It is

FIGURE 8 | Examples of the extinction coefficient (A) and effective radius (B) estimates for water-cloud measurements of a nighttime CALIPSO orbit (C). Method 1
(blue lines) and Method 2 (red lines) are two different retrieval algorithms described in the text. The unit of latitudes in all the figures are in degrees.
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challenging to deriving extinction coefficients from the CALIPSO
lidar backscattering profile because of the cloud top heterogeneity
and CALIPSO’s detector transient response. Based on
simulations of the cloud measurements, a neural-network
algorithm is developed to determine extinction coefficients
accurately from the water-cloud backscattering profile.

Based on daytime and nighttime land surface depolarization
statistics, adjustments are made to the nighttime water-cloud
depolarization ratios in order to apply an algorithm to determine
effective radii from nighttime CALIPSO measurements. This
algorithm is trained from daytime MODIS and CALIPSO
measurements.

Based on the theoretical analysis, we developed an experimental
data product that retrieves microphysical properties of water clouds

(e.g., extinction coefficient, effective drop size, liquid-water content,
and droplet number concentration) from 14 + years of global lidar
measurements acquired by NASA’s CALIPSO satellite. This new
product will provide constraints to improve modeling of the water
cycle and cloud-climate interactions. To realize this potential, the
product must be properly validated.

Airborne measurements made by the co-manifested LaRC
HSRL and the GISS RSP can be used to derive an identical set of
water-cloud microphysical properties. These retrievals from
airborne remote-sensing platforms agrees with our
experimental CALIPSO water-cloud microphysical product.

For future studies, we plan to improve the algorithm
with more sophisticated treatments of droplet variances,
vertical changes of cloud droplet sizes, and aerosols/subvisual

FIGURE 9 | CALIPSO measurements of cloud liquid-water content (A) and droplet number concentration (B) from the same section of orbit as in as Figure 8.

FIGURE 10 | Annual mean effective radius (A), extinction coefficient (B), cloud liquid-water content (C) and droplet number concentration (D) of CALIPSO water-
cloud measurements.
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clouds located above the water cloud. Additional information
from aircraft measurements and collocated MODIS, AMSR-E
and other A-Train satellite measurements will be analyzed for
future algorithm improvements.
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Deep Convection as Inferred From the
C2OMODO Concept of a Tandem of
Microwave Radiometers
Franck Auguste and Jean-Pierre Chaboureau*

Laboratoire d’Aérologie (LAERO), Université de Toulouse, CNRS, UPS, Toulouse, France

Probing the atmosphere from space using radiometers is a challenging way to improve our
knowledge of deep convection. Exploration of water absorption bands in the 183, 325,
and 448 GHz range is promising because of the radiation scattered by icy hydrometeors
produced by deep convection. We investigate what properties of deep convection could
be inferred from the Convective Core Observations through MicrOwave Derivatives in the
trOpics (C2OMODO) concept of a tandem of microwave radiometers separated by several
tens of seconds. Two tropical deep convective events (Hector the Convector and a
radiative-convective equilibrium case) are simulated with the Meso-NH non-hydrostatic
numerical model, the outputs of which are used to compute brightness temperatures (Tbs)
using the Radiative Transfer for the Television and Infrared Observation Satellite (TIROS)
Operational Vertical Sounder (RTTOV) code.We find different relationships between the ice
water path, vertical ice momentum, vertical ice velocity, and the time derivative dTb/dt.
They depend on where they are probed after separating the growing convective cores
from their surrounding environment with a radiometric point of view. Tb and dTb/dt are
highly dependent on the ice water path that depends on horizontal and vertical ice
advection and microphysical processes. Looking at deep convection in general, we find
that the ice water path increases linearly with decreasing dTb/dt. In the specific case of the
core of growing convective cells, the vertical ice momentum and the vertical ice velocity are
related to dTb/dt. However, such a relationship breaks down in the anvil because
horizontal ice advection can dominate microphysical processes. These results are
robust to horizontal resolution and time delay.

Keywords: microwave radiometer, satellite observation, deep convection, icy cloud dynamics, Meso-NH numerical
model, RTTOV

1 INTRODUCTION

Deep convection is a key driver of weather and climate. In particular, deep convective updrafts transport
momentum, mass, water, and other gases from the surface to the upper troposphere and stratosphere and
downdrafts from the upper to the lower atmosphere. Our knowledge of vertical convective motions
remains partial in part because of the lack of frequent observations at the global scale. Among the wide
range of space-based instruments, passive microwave radiometers operating at high microwave (MW)
frequencies are particularly interesting for the observation of deep convection because of the high sensitivity
of the measured signal due to the scattering by icy hydrometeors (while the absorption by ice is very low).
Another advantage is their large swath allowing polar orbiting radiometers to scan almost the whole planet

Edited by:
Matthew Lebsock,

NASA Jet Propulsion Laboratory
(JPL), United States

Reviewed by:
Bing Lin,

National Aeronautics and Space
Administration (NASA), United States

David Painemal,
Science Systems and Applications,

Inc., United States

*Correspondence:
Jean-Pierre Chaboureau

jean-pierre.chaboureau@aero.obs-
mip.fr

Specialty section:
This article was submitted to

Satellite Missions,
a section of the journal

Frontiers in Remote Sensing

Received: 11 January 2022
Accepted: 07 March 2022
Published: 06 April 2022

Citation:
Auguste F and

Chaboureau J-P (2022) Deep
Convection as Inferred From the

C2OMODO Concept of a Tandem of
Microwave Radiometers.

Front. Remote Sens. 3:852610.
doi: 10.3389/frsen.2022.852610

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 8526101

ORIGINAL RESEARCH
published: 06 April 2022

doi: 10.3389/frsen.2022.852610

53

http://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2022.852610&domain=pdf&date_stamp=2022-04-06
https://www.frontiersin.org/articles/10.3389/frsen.2022.852610/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.852610/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.852610/full
http://creativecommons.org/licenses/by/4.0/
mailto:jean-pierre.chaboureau@aero.obs-mip.fr
mailto:jean-pierre.chaboureau@aero.obs-mip.fr
https://doi.org/10.3389/frsen.2022.852610
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2022.852610


in 12 h. For example, the microwave signal at 183 GHz is used to
retrieve the ice water path (IWP) (Gong andWu, 2014; Rysman et al.,
2021) and to assess deep convection predicted by models (Rysman
et al., 2016). Measuring a microwave signal above deep convective
systems at an interval of several tens of seconds would therefore allow
us to retrieve not only IWP but also its time derivative dIWP/dt. It
might be also possible to deduce information about the vertical
velocity inside deep convective systems.

The Convective Core Observations through MicrOwave
Derivatives in the trOpics (C2OMODO) concept (Brogniez et al.,
2022) aims atmeasuringmicrowave signal at short time intervals (less
than 3min) using a train of passive microwave radiometers aboard
low-orbit satellites. Itsmain objective is to infer the vertical airmotion
in deep convection. Inferring this information would be very valuable
as it would provide an observational constraint that is currently
lacking. As shown in an intercomparison study of an intense
mesoscale convective system (Varble et al., 2014), vertical velocity
is one of the meteorological variables from which cloud-resolving
models can strongly diverge. At the time of writing this article, neither
radiometers of the C2OMODO concept nor their swathes have yet
been designed. However, it is expected that these radiometers will
measure several strong water vapor absorbing lines in the MW. The
most likely option is to have two bands at 183 and 325 GHz with a
pixel resolution of 5 and 3 km at nadir, respectively, while another
option would be to add the 448 GHz band to the other two bands.

The objective of this study is to explore the content of
information of the C2OMODO concept in order to
characterize tropical deep convective cells. The approach
consists in using an explicit model of high-resolution
atmospheric convection combined with a radiative transfer
code in order to simulate, on the one hand, a multispectral
high-frequency imaging in the microwaves and, on the other
hand, the imaging difference at different time intervals to explore
the contribution of the flight in close formation of two
radiometers. In the first step, the microwave brightness
temperature (Tb) response to deep convection is examined at
the simulation scale to describe the relationships of the Tb
response with the dynamic and microphysical fields of the
model that may exist. In the second step, the sensitivity of the
results to temporal and spatial resolutions is examined.

Section 2 describes the model and the data set of two
simulations and defines the geophysical and satellite variables.
Section 3 presents the relationships between the ice water path
and Tbs for specific frequencies. Section 4 analyzes the
relationships between geophysical and satellite variables for 10
convective cells in the growth phase in an environment free of icy
hydrometeors. Section 5 explores the robustness of these
relationships over the full data set. Section 6 presents the
conclusions and gives some perspectives.

2 MODEL AND METHOD

2.1 Meso-NH and Variable Definitions
The simulations are run with the anelastic non-hydrostatic
mesoscale model Meso-NH (Lac et al., 2018) developed by
Meteo-France and Laboratoire d’Aerologie for research

purposes (see http://mesonh.aero.obs-mip.fr/). The model
has been widely used to investigate cloud and precipitation
properties using satellite observations (e.g., Chaboureau et al.,
2000; Wiedner et al., 2004; Meirold-Mautner et al., 2007;
Chaboureau et al., 2008; Rysman et al., 2016). Momentum
variables are advected with a centered fourth-order scheme,
while scalar variables are advected with the piecewise
parabolic method advection scheme (Colella and
Woodward, 1984). Meso-NH includes the Surface
Externalisée (SURFEX) scheme for surface fluxes (Masson
et al., 2013), 1.5-order closure scheme for turbulence (Cuxart
et al., 2000), parameterization of dry thermals and shallow
cumuli (Pergaud et al., 2009), two-stream scheme of Fouquart
and Bonnel (1986) for shortwave radiation, and rapid
radiative transfer model (Mlawer et al., 1997) for longwave
radiation.

Mixed-phase clouds are parameterized using the bulk
microphysics scheme of Pinty and Jabouille (1998). It follows
the evolution of six water species including vapor, liquid cloud,
and rain and three icy species which are cloud ice, snow, and
graupel defined by increasing degree of riming. If we consider the
total ice content, that is, the sum of cloud ice, snow, and graupel,
the local conservation of the ice mixing ratio rice can be written as
follows:

z ρ�rice( )
zt

� −∇. ρ�rice�u( ) + ρ�Fice − ∇. ρrice′ u′( ), (1)

where ρ is the air density, �u the resolved air velocity field, and
�Fice the source term containing the phase change and diffusive
processes. The variable �rice (resp. rice′ ) is the resolved (resp.
unresolved) part of rice due to the large eddy type of the
simulations. The turbulent diffusion of cloud ice can be
neglected and the ‾ symbol is omitted throughout the study.

The vertical integration of Eq. 1 allows us to define several
column-average variables. The ice water path (IWP) is the vertical
integral of ρrice, the surface horizontal ice momentum (HIM) is
that of the horizontal component of ρriceu, and the surface
vertical ice momentum (VIM) is that of its vertical
component. Since the vertical integration of the vertical flux
divergence is zero, it reads as follows:

zIWP
zt

� −∇h. HIM( ) + zIWP
zt

∣∣∣∣∣∣∣μφ, (2)

where the subscript μ refers to the microphysical changes
(phase transformation and sedimentation) of IWP. The time
tendency of IWP due to the microphysical changes is
diagnosed as the residual after subtracting the ice advection
terms from the time tendency of IWP. Note that, the
contribution of ice sedimentation to Eq. 2 is small in the
core of growing convective cells. The anelastic framework
operating in Meso-NH states is ∇.(ρ u) = 0. Consequently, the
divergence of the ice flux is approximated as the sum of the
horizontal IADVh and vertical IADVv ice advections, which
are defined as the horizontal and vertical components of the
vertical integration of u∇(ρrI). In addition, we define wice, the
vertical ice velocity, as VIM divided by IWP.
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2.2 Simulations
Two simulations were carried out at the convective scale using
Meso-NH. One simulation considers Hector the Convector
(HEC) over the Tiwi Islands, while the other is a radiative-
convective equilibrium (RCE) ocean case. HEC was run for
6 h over a domain of 256 × 200 km2 with 1-km horizontal
grid spacing. The model top is at 30 km with 146 vertical
levels spaced between 60 and 200 m below 22 km. The initial
conditions are the same as those defined by Dauhut et al. (2015),
which are based on the radiosonde launched from Darwin,
Australia, at 0000 UTC 30 November 2005. Because of the
relatively high horizontal resolution of 1 km, the
parameterization of dry thermals and shallow cumuli was not
used. RCE corresponds to four periods of 15 min taken from the
configuration with a large domain (RCE_large) of the Radiative-
Convective Equilibrium Model Intercomparison Project
(RCEMIP) (Wing et al., 2020) using a sea surface temperature
of 300 K. The domain is a grid of 384 × 6000 km2 with a
horizontal resolution of 3 km. The model top is at 31 km with
76 vertical levels spaced 500 m apart above 3 km.

Brightness temperatures (Tbs) were computed in-line
every 30 s using the Radiative Transfer for the Television
and Infrared Observation Satellite (TIROS) Operational
Vertical Sounder (RTTOV) code, version 12.3 (Saunders
et al., 2018). The interface with RTTOV has been written
and included in the Meso-NH code itself (Chaboureau et al.,
2008). This allows the creation of satellite images during the
simulation, at each time step of the model if needed. For
microwave instruments at all frequencies below 1000 GHz,
the atmospheric gas absorption model of RTTOV derives its
spectroscopic parameters from the millimeter wave
propagation model of Liebe et al. (1989) updated for the
oxygen, ozone, and water vapor lines (see Saunders et al.,
2018 for more details). Under clear skies, the accuracy of
RTTOV is much better than the noise of current MW
radiometer instruments (e.g., the error with a line-by-line
reference is 0.04 K at 183 GHz). The Mie tables were created
with rttov-scatt from the RTTOV package. Scattering
properties are described for rain, cloudy liquid water, and
ice using the Mie theory. The permittivity formulation of
Rosenkranz (2015) is used for spheres composed of liquid
water and that of Matzler and Wegmuller (1987) for cloud ice.
The latter is assumed to be composed of a mixture of air and
ice making its density equal to 900 kg m−3. Their particle size
distribution follows a Marshall–Palmer shape for rain and a
modified gamma shape for cloud liquid water and ice. Snow
and graupel are represented as snowflake sector [with crystal
type 9 in the database of Liu (2008) in which the ice portion of
the particle is made of pure ice with a density of 916 kg m−3]
using the discrete dipole approximation and the tropical
version of size distribution of Field et al. (2007). This led
to generate a Tb at nadir sight for three sets of 50 channels of
bandwidth b = 200 MHz. From the three frequencies of
rotational water vapor lines at f0 = 183.3, 325.1, and
448.0 GHz, each channel n covers 10 GHz with a flat
spectral response between the frequencies f0 + (n − 1) × b
and f0 + n × b.

3 RELATIONSHIP BETWEEN IWP AND TB

A first overview of the database is shown with the temperature and
water content profiles (Figure 1). The temperature decay in the upper
troposphere is similar in the two cases with little variation around the
median profile. Up to 14-km altitude, the air is a few Kelvin warmer
in HEC than in RCE. Thus, the freezing level is 4.5 km for HEC and
4 km for RCE. In the lower and middle troposphere, the water vapor
content is higher inHEC than in RCE up to a difference of 5 g kg−1 at
the surface. The variability around themedian profile is lower inHEC
than in RCE. This is explained by the configuration of the
simulations. HEC simulates a convective system initiated from a
single atmospheric profile, while RCE simulates organized
thunderstorm systems surrounded by large-scale subsidence zones.
Due to more vigorous convection, the hydrometeor profiles have
larger median and 90 percentile values for HEC than for RCE, while
the icy hydrometeors are at a higher altitude. The lower freezing level
elevation in RCE shifts the minimum icy hydrometeor altitude and
the maximum rain altitude downward by 0.5 km.

An example of the relationship that can be obtained between
IWP and Tbs is shown for the Tb depression due to ice (Figure 2).
The Tb depression is usually obtained by subtracting the
calculated Tb omitting the ice contribution from the full Tb.
This would require calculating Tb twice and would generate a
very large data set. Instead, we take advantage of the Tbs
calculated every 30 s and search for the closest Tb in time and
space for which IWP is near zero (less than 10–6 kg m−2). More
precisely, smoothing is applied on three points in time (1 min
30 s) and space (3 km for HEC and 9 km for RCE) to limit the
small-size variations of the atmosphere variability.

As expected for ice scattering, the Tb depression decreases
with increasing IWP regardless of frequency and case. The farther
the frequency is from the center of the band, the larger the Tb
depression. This is due to the low water vapor opacity of the mid-
wing and wing channels making them more sensitive to ice
content. This results in the Tb-depression minimum to be
around −150 K or less. For the channels at band center, the
Tb-depression minimum is much smaller, around −80 K for
183.3 GHz, −120 K for 325.1 GHz, and −30 K for 448.0 GHz.

About one per thousand columns has IWP larger than
30 kg m−2 in both simulations. The maximum IWP is greater
than 50 kg m−2 in HEC, while it does not exceed 40 kg m−2 in
RCE. This is due to more intense deep convection in HEC due to
strong forcing by the surface fluxes over land. For IWPs larger
than 40 kg m−2, the slope of the Tb depression with increasing
IWP is close to zero for the 183 and 325 GHz bands but remains
constant for the 448 GHz band. This suggests that only the
448 GHz band could be used to infer the largest IWP values
because its greater water vapor opacity reduces the impact of
scattering at the lowest altitudes. Between 5 and 40 kg m−2, the
slope is steeper for RCE than for HEC. Since the freezing level
located at about 4 km for RCE and around 4.5 km for HEC, the
ice content is more likely distributed over a wide range of altitudes
for RCE than for HEC. This results in a greater sensitivity of the
Tb depression to IWP.

Another way to provide a general view of the relation between
IWP and Tbs is shown for the Tb difference between the band
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center and the wing of the upper band and the mid-wing and the
wing (Figure 3). Such Tb differences at 183 GHz have been
widely used to detect deep convection (Funatsu et al., 2007;
Rysman et al., 2016).

Regardless of the band, the Tb difference between the band center
and thewing is the largest (except for the 448 GHz bandwhen IWP is

less than 15–20 kgm−2). It increases with IWP, at least for small IWP
values. For larger IWP values, this increase is no longer valid. The
threshold at which the increase stops differs from the band. It varies
between 5 and 20 kgm−2 at 183 GHz, around 1–2 kgm−2 at
325 GHz, and 30 kgm−2 at 448 GHz. While the Tb difference
decreases even at 183 and 325 GHz, a monotonic function

FIGURE 1 | Profiles of (from left to right) temperature, water vapor, cloud water, rain, cloud ice, snow, and graupel mixing ratios. The median (bold lines) and the
10–90 percentile ranges (shadings) are shown for HEC (green) and RCE (blue).

FIGURE 2 | Tb depression as a function of IWP for (top) HEC and (bottom) RCE and for (from left to right) 183.3, 325.1, and 448.0 GHz bands. The median (bold
lines) and the interquartile ranges (shadings) are shown for the band center (blue), the mid-wing (+5 GHz, orange), and the wing (+10 GHz, green) of the upper band. In
the right column, the insert shows the data distribution in logarithmic scale.
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between IWP and the Tb difference is found at 448 GHz. This again
suggests the usefulness of this band for inferring IWP over a
wide range.

For the 325 and 448 GHz bands, the Tb difference between the
mid-wing and the wing show too little sensitivity to the change in
IWP. This makes this Tb difference irrelevant for detecting deep
convection. For the 183 GHz band, it varies from 5 to 10 K as the
IWP increases from 0 to about 5 kgm−2. However, it is much smaller
than the 40 K increase for the Tb difference between the band center
and the wing. As a result, the condition of an IWP larger than
1 kgm−2 is satisfied when the Tb difference between the band center
and the wing of the upper band is larger than −5 K at 183 GHz, + 5 K
at 325 GHz, and −25 K at 448 GHz. In the following, we used these
thresholds to detect deep convection for each band (it is expected that
each band will have a different pixel size).

4 TB AND DELTA-TB EVOLUTION DUE TO
THE GROWTH OF SINGLE CELLS

The relationship between geophysical and satellite variables is
studied in the simple framework of convective cells in the growing
phase. The selection of these cells is first presented, followed by
the Tb response to convective growth for a single cell, and finally
the Tb response for all selected cells.

4.1 Selection of Convective Cells in the
Growing Phase
Selection of convective cells in the growing phase is made based
on three criteria. First, the cell must be single in order to
distinguish its core from its anvil environment. Second, the

cell must be isolated to avoid any IWP change due to another
cell in its vicinity. Third, the cell must be characterized by a
monotonic increase of IWP and its cloud top during the selected
window time to facilitate the interpretation of the change in Tb
with time. In this study, an icy cloud is defined at a rice threshold
value of 10−4 kg kg−1. This results in a selection of 10 convective
cells (CCs). They are classified and named according to their
simulation origin and their increase in cloud tops, that is, from
CC-A to CC-D for RCE and from CC-E to CC-J for HEC
(Table 1). Their duration varies from 7 to 14 min during
which their cloud top increases from 6 to 9 km to reach an
altitude between 9 and 15 km. Their increase in IWP varies
greatly with the convective cell, from 10 kg m−2 for CC-E to
30 kg m−2 for CC-J. The decrease in Tb is also highly variable with
the convective cell and the band center frequency. It presents a
maximum of −1 K at 448.0 GHz for CC-A and CC-E and a
minimum of −80 K at 325.1 GHz for CC-J.

4.2 Icy Cloud Dynamic and Radiometric
Response for a Growing Convective Cell
An example of the growth of a convective cell is analyzed for CC-
H. CC-H grows for 10 min to reach an IWP of 22 kg m−2 and a
cloud top of 13 km (Table 1). The cell is shown at four time steps
spaced 2 min apart on a horizontal cross section of 6 × 6 km2

(Figure 4). This is a single, isolated cell consisting of a core where
the IWP is maximum and an anvil with non-zero IWP values in
the dozen, or so, grid points around it.

During this 8-min interval, the convective core is characterized
by an increase in IWP from 1 to 22 kgm−2 and VIM from 100 to
500 kgm−1 s−1. Around the core, IWP also increases with time as the
convective core supplies ice to its surrounding environment by

FIGURE 3 | Same as Figure 2 but for the Tb difference between the band center and the wing (Tbcenter − Tb+10GHz, blue), the mid-wing and the wing (Tb+5GHz −
Tb+10GHz, orange).
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advection (top detrainment) and, to a lesser extent, by mixing
(turbulent processes). When the increase in IWP is combined
with positive values of vertical velocity in the surrounding
environment of the core, the result is an increase in VIM but
with lower values than in the core.

The evolution in IWP is further examined by showing dIWP/
dt and the two dominant terms governing its change in Eq. 2
using a 1-min interval. The growing cell is characterized by a
positive dIWP/dt. This is mainly due to the ice production during
the first two time steps, as shown in the microphysical term. This
corresponds approximately to the location where VIM is positive.
At the two last time steps, IADVh shows positive values at the core
and negative around it. In other words, part of IWP is detrained
from the core to the anvil. So the surrounding environment of the
core is mainly controlled by horizontal advection of ice. As a
consequence, inferring VIM or any other variable related to the
vertical air velocity from observations sensitive to IWP variation
would be very challenging in the surrounding environment of a
convective core. It is therefore necessary to distinguish the core
from its surroundings.

In the core, IADVh remains small at 3h08 compared to the
microphysical term. The change in dIWP/dt is still controlled by
this term, in agreement with the large value of VIM. At 3h10, the
detrainment of ice is so strong that it is counterbalanced by the
microphysical production of ice, while dIWP/dt takes a smaller
value. This suggests that it is possible to infer VIM from
measurements sensitive to dIWP/dt in the convective core
when it produces more ice than it detrains. This requires
characterizing the development of the core.

The radiometric response during the convective growth is
shown with the time evolution of Tb183.3, Tb325.1, and Tb457.8
(Figure 5). The channels shown here are have the largest
sensitivity to IWP, as discussed in Section 3. They are in the
band center for the 183 and 325 GHz bands and in the wing
for the 448 GHz band. In addition, the green solid line shows
the area where deep convection is detected using the band-
depending criterion defined in Section 3, while the green
dashed line shows the convective core area detected using
another band-depending criterion. The radiometric response
during the convective growth is shown at the simulation scale
(here, 1 km) to study the Tb response to the change in IWP
and dIWP/dt.

Regardless of the band and the time, each Tb image is
characterized by minimum and larger values around. As
expected from the effect of microwave scattering by ice, the
Tb minimum is found at the location of the IWP maximum.
Except at 3h04, it is located at the core center. The decrease of Tb
with respect to the highest value outside the core is between −50 K
and −90 K depending on the band, with the lowest value for the
325.1 GHz channel. Since this decrease is due to the ice scattering
effect, the size of the area where Tb changes is similar to that
encompassed by the IWP (Figure 4).

The area size where Tb changes is larger for the 325.1 GHz
channel than for the 183.3 GHz channel. This can be explained by
a combination of two effects. First, the scattering of Tb by the
small ice is stronger at higher frequencies. Second, the dominant
process in horizontal ice advection is detrainment at the top of the
cloud where the small ice portion is important in the solid–water
composition (anvil formation). This explanation does not apply
to the 457.8 GHz channel. Indeed, a wing channel, here for the
448 GHz band, has a low sensitivity for Tb to the change of water
vapor, thus ice.

A requirement for inferring VIM from satellite
observations is to locate the growing convective core using
Tbs. In the geophysical space, the criterion for a growing
convective core is the co-location of the largest IWP and the
largest dIWP/dt. In the radiometric space, it results in the co-
location of the lowest Tb and the lowest dTb/dt (green dashed
line in Figure 5). The combination of these two conditions
leads to a growing convective core correctly found at 3h06 and
3h08 for CC-H in the center of the image. At 3h10, the
convective core is no longer growing. Therefore, the
location of the lowest Tb differs from the location of the
lowest dTb/dt.

The relationship between geophysical and radiometric
variables is examined for CC-H during its entire growth from
3h02 to 3h12 using scatter plots for the three selected channels
(Figure 6). The color code shows the horizontal distance to
the core.

In the core, VIM increases with decreasing dTb/dt up to a
value close to 500 kg m−1 s−1 whatever the channel. The same is
true for dIWP/dt up to 60 g m−2 s−1. This growth phase is
characterized by dIWP/dt values higher than that of IADVh.
Once VIM reaches 500 kg m−1 s−1 (at 3h10 as shown in Figure 5),

TABLE 1 | Overview of the convective cells in the growing phase selected in RCE and HEC.

CC index Core location (i,j) Time (duration) (min) Cloud top (km) IWP (kgm−2) Tb183.3 (K) Tb325.1 (K) Tb448.0 (K)

RCE (3 km)
A (1340,38) H1412 (2 → 12) 6 → 10 3 → 17 235 → 225 235 → 230 208 → 207
B (1261,15) H1414 (2 → 14) 8 → 12 8 → 23 235 → 210 235 → 180 208 → 206
C (1378,75) H1412 (2 → 12) 9 → 13 18 → 29 225 → 180 215 → 145 208 → 204
D (1273,59) H1414 (1 → 08) 9 → 14 17 → 30 225 → 180 210 → 140 208 → 203
HEC (1 km)
E (099,59) 0H (131 → 140) 6 → 9 2 → 12 245 → 235 245 → 230 219 → 218
F (042,55) 0H (146 → 153) 6 → 10 1 → 12 245 → 230 245 → 225 219 → 217
G (062,26) 0H (155 → 163) 6 → 11 1 → 19 245 → 220 245 → 200 219 → 216
H (118,50) 0H (182 → 192) 6 → 13 1 → 22 245 → 200 245 → 165 219 → 214
I (129,58) 0H (180 → 194) 6 → 14 1 → 24 245 → 215 245 → 190 219 → 211
J (061,52) 0H (214 → 222) 9 → 15 7 → 37 240 → 185 235 → 155 219 → 204
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the growth rate of IWP is reduced to values well below IADVh.
The relationship between VIM and dTb/dt breaks down: VIM no
longer varies with dTb/dt.

In the anvil, the relation between dTb/dt and the
geophysical variables depends on the distance to the core.
Many grid points closest to the core (in the greenish color)
show values of VIM and dIWP/dt as large as in the core. This
suggests that the core could be defined in more than one grid

point. Further away from the core, VIM remains below
200 kg m−1 s−1 at two grid points and even close to zero at
three grid points. In other words, negative values of dTb/dt
can correspond to zero VIM. If dIWP/dt can have high values
as in the core, it is partly due to ice advection as shown by the
negative values of IADVh. Note that, regardless of the process
affecting IWP, the scatter plots show an increase in dIWP/dt
with decreasing dTb/dt.

FIGURE 4 |Horizontal cross section of IWP, VIM, dIWP/dt, IADVh, and dIWPμϕ/dt (from top to bottom) at four times spaced 2-min apart (from left to right) during the
growth of CC-H (HEC simulation). The crossing of the dashed lines locates the core of CC-H.
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4.3 Tb Response to Ice Change for
Convective Cells in the Growing Phase
The Tb response to ice change for the three selected channels is
shown for all selected convective cells in HEC and RCE
(Figure 7). The core and surrounding grid points are
examined, that is, a total of 5 × 5 grid points. Because of
different grid spacing, the area covers 25 km2 for HEC and
225 km2 for RCE. This makes the implicit assumption that the
response of Tb to ice change varies independently of resolution.
The points are shaded according to their distance to the core, with
color when the growing convective core criterion is satisfied, with
grey otherwise.

VIM shows a large dispersion of positive values, up to more
than 1000 kg m−1 s−1. It is always positive because the
convective cells are in their growth phase. No apparent
dependence of VIM on dTb/dt can be found, except for
growing convective cores. In the latter case, VIM increases
quite linearly with decreasing dTb/dt regardless of the channel.
As with VIM, dIWP/dt shows a near-linear dependence on
dTb/dt for convective cores. But unlike VIM, the smaller
dispersion of dIWP/dt with dTb/dt suggests that their
relationship may also be valid outside of convective cores.

It is interesting to note that the range of values of IADVh is
similar to that of dIWP/dt. This confirms that the change in

IWP can be explained by ice detrainment (or entrainment)
alone and not necessarily by ice production in an updraft (or
ice loss in a downdraft). The large scatter of the points suggests
the difficulty of inferring such quantity using dTb/dt
information. However, a near-linear relationship between
IADVh and dTb/dt exists for convective cores. This suggests
that inferring IADVh might be possible for convective cores, as
it might be for VIM.

5 STUDY OF THE FULL DATA SET

The relationships between geophysical and satellite variables
are now explored over the full data set. The objective is to
examine whether these relationships previously found for 10
convective cells in the growth phase in a surrounding
environment free of icy hydrometeors are robust regardless
of the time in the deep convection life cycle, for the two
tropical cases examined here. In order to provide guidance for
the design of the satellite tandem, these relationships are
examined for time delays ranging from 30 s to 3 min and
for two horizontal resolutions, the one of the simulations and
the pixel resolution of 6 km. The delay range is in the order of
magnitude of what can be expected. The 6-km resolution
corresponds to the largest pixel size expected for C2OMODO,

FIGURE 5 | same as in Figure 4 but for Tb at 183.3, 325.1, and 457.8 GHz. The green solid line shows the boundary where the deep convection criterion is
satisfied and the dashed line where the growing convective core criterion is satisfied.
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that is, the 183 GHz band, while finer resolution is expected
for the higher MW frequency bands. Outputs at 6-km
resolution are obtained after linear interpolation of the
simulation outputs.

The data set is about 10 million columns for HEC and 30
millions for RCE at the resolution of the simulations. The icy
situations defined by IWP > 1 kg m−2 represent 8.9 and 6.5%
of the HEC and RCE outputs, respectively. A part of these icy
situations corresponds to cases for which the associated Tb
change is weak. These situations are filtered out considering a
radiometric uncertainty in Tb change | dTb/dt | ≤ 0.017 K s−1

whatever the MW frequency. The value of this threshold is
arbitrarily fixed at a realistic value equivalent to an
uncertainty of 1 K for a delay time of 1 min of the satellite
tandem. It can be considered as the best possible scenario
because it does not take into account the errors due to
intercalibration and geolocation between the two
radiometers. It gives an order of magnitude assuming a
noise level of 0.707 K on the Tb measurements. A doubling
of this noise level would double the value of the threshold,
while a doubling of the delay would half it. This leaves the icy
situations with | dTb/dt | > 0.017 K s−1 accounting for 4.4 ±

1.7% and 1.0 ± 0.4% (as a function of the MW frequency) of
the HEC and RCE outputs, respectively.

5.1 Relationship Between the Time
Derivatives of IWP and Tb
The relationship between the time derivatives of IWP and Tb is
examined for all the grid points satisfying the deep convection
criterion. The goal is to determine whether the quasi-linear
relationship between the time derivatives of IWP and Tb
found for convective cells in the growing phase is valid for all
these grid points. As defined in Section 3, the deep convection
criterion is designed for detecting icy situations. It changes with
MW frequency, that is, Tb183.3-Tb193.1 > − 5 K, Tb325.1-Tb334.9 >
5 K, and Tb448.0-Tb457.8 > − 25 K. After filtering out the icy
situations with | dTb/dt | ≤ 0.017 K s−1, the grid points satisfying
the deep convection criterion account for 84 ± 4% and 86 ± 9% (as
a function of the MW frequency) of the icy situations of the HEC
and RCE simulations, respectively. There are between 4 × 104 and
5 × 105 grid points depending on the frequency and case and
show a quasi-Gaussian distribution of dIWP/dt as a function of
change in Tb.

FIGURE 6 | Scatter plot of VIM, dIWP/dt, and IADVh(from top to bottom) vs. dTb/dt using a 1-min interval for the 183.3, 325.1, and 457.8 GHz channels (from left to
right) for CC-H (3h02 to 3h12). The color code indicates the horizontal distance to the convective core.
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The distribution of dIWP/dt vs. dTb/dt is examined with a delay
time of 1min for the selected channels (Figure 8). For each 0.02 K s−1

bin of dTb/dt, themedian, the interquartile values of dIWP/dt and the
least squares regression (for negative values of dTb/dt) are calculated
and shown at both the horizontal resolution of the simulations and at
a linearly interpolated 6-km pixel resolution. Overall, dIWP/dt is a
monotonically decreasing function of dTb/dt whatever the resolution
and the MW frequency. The absolute value of the slope of the
regression line is about 100 gm−2 K−1 for the 325.1 GHz channel and
150–200 gm−2 K−1 for the 183.3 and 457.8 GHz channels. These
differences in slope between the frequencies are mainly explained by
differences in atmospheric opacity due to water vapor. At the
horizontal resolution of the simulations, the slope differs between
the two tropical cases. The agreement in the slope between the cases is
better at the 6-km resolution, and the interquartile range is reduced.
Note that, regardless of channel and resolution, the range of dTb/dt is
much wider than that of the radiometric uncertainty of 0.017 K s−1

considered here. These results suggest that dIWP/dt, at least its largest
values, can be estimated such as a linear function of dTb/dt using a
delay time of 1min.

The sensitivity of the relationship of dIWP/dt with dTb/dt to
delay time is examined at both resolutions. The results are

summarized by showing the absolute value of the slope dIWP/
dt as a function of dTb/dt for the 183.3, 325.1, and 457.8 GHz
channels, at both resolutions (Figure 9). At the horizontal
resolution of the simulations, the absolute value of the slope is
higher for RCE than for HEC regardless of frequency and time
delay. It increases with time delay. At the 6-km resolution, except
for the 3-min delay, these differences disappear. For each
frequency, the absolute value of the slope is similar between
the tropical case and the time delay. In other words, these results
suggest that the change in IWP can be inferred for tropical
conditions at 6-km resolution using the C2OMODO concept.

5.2 Relationship Between the Vertical Ice
Velocity and the Time Derivative of Tb
The relationship between wice and the time derivative of Tb is
examined. The dynamical variable wice defined as VIM divided by
IWP is preferred to VIM as its unit inm s−1 is themost familiar. Note
that, the results shown below forwice are similar to those obtained for
VIM. As with the growing cells in Section 4.3, the results are
examined for grid points verifying the growing convective core
criterion. The latter is defined as the co-location of the lowest Tb

FIGURE 7 | Same as Figure 6 for the selected convective cells in HEC and RCE.
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and the lowest dTb/dt. Since the convective core producesmost of the
ice, the IWP and its variation within a convective core are statically
larger than those in its surroundings. The lowest Tb condition looks
for convective cores and the lowest dTb/dt condition for the most
intense activity of the growing convective cores. The grid points
satisfying the growing core criterion represent 1.6 ± 1.0% and 2.1 ±
1.4% (depending on the MW frequency) of the HEC and RCE icy

situations with | dTb/dt | > 0.017 K s−1. They are between 103 and 104

points depending on the frequency and case and show a quasi-
Gaussian distribution of wice as a function of change in Tb.

Figure 10 shows the distribution of wice versus dTb/dt with a
delay time of 1 min for the two resolutions and the three selected
channels. The larger and more active the convective core, the more
ice it is able to produce and transport vertically. The lowest dTb/dt

FIGURE 8 | dIWP/dt as a function of dTb/dt for the 183.3, 325.1, and 457.8 GHz channels (from left to right) at the horizontal resolution of the simulations (top) and
at a linearly interpolated 6-km pixel resolution (bottom). The time delay of the satellite tandem is 1 min. The bin interval is 0.02 K s−1. The median (bold lines), the
interquartile range (shadings), and the least squares regression (dashed lines) are shown for HEC (green) and RCE (blue). The grey band delimits a dTb/dt uncertainty of
0.017 K s−1, corresponding to a 1 K uncertainty in the Tbmeasurement for a 1-min delay in the satellite tandem. Results are shown for grid points verifying the deep
convection criterion.

FIGURE 9 | Slope of dIWP/dt as a function of dTb/dt for the 183.3, 325.1, and 457.8 GHz channels at the horizontal resolution of the simulations (left) and at a
linearly interpolated 6-km pixel resolution (right). The time delay of the satellite tandem ranges from 30 s to 3 min. Results are shown for grid points verifying the deep
convection criterion.
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values between −0.2 and −0.1 K s−1 correspond to the highest
convective velocity (~10m s−1). For the 183.3 and 457.8 GHz
channels, this minimum value is equal to −0.1 K s−1, which is
only about five times larger than the radiometric uncertainty of
0.017 K s−1. This highlights the need for a small noise level if one
wants to infer wice with the C2OMODO concept. A weak
dependence on the tropical case is found. Only the 6-km
resolution suggests a near-linear relation between wice and dTb/dt.

The sensitivity of the slope to time delay is studied for the range
between 30 s and 3min at the 6-km resolution. Figure 11 shows the
absolute value of the slope as a function of theMW frequency and the
tropical case. Its value depends weakly on the delay time but varies a
lot with the MW frequency. It is equal to about 30mK−1 for the
325.1 GHz channel and 50–60mK−1 for the 183.3 and 457.8 GHz
channels. The variation of the slope with MW frequency is similar to
that found for dIWP/dt, suggesting a link between the changes in

FIGURE 10 | Same as Figure 8 but forwice. Results are shown for grid points verifying the growing core criterion. The least squares regressions (dashed lines) are
shown for the 6-km resolution only.

FIGURE 11 | Same as Figure 9 but for wice at the 6-km resolution. Results are shown for grid points verifying the growing convective core criterion.
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IWP andwice. Overall, these results suggest thatwice could be inferred
in the growing convective cores from the C2OMODO concept.

6 CONCLUSION

A data set is built to study the feasibility of the C2OMODO concept.
This concept relies on the dependence of some microwave
observations of the ice content and on the assumption that a short
time delay in the microwave observation of deep convective systems
would inform the time derivative of ice content, hence the vertical
velocity in the updrafts. The data set is based on the two kilometer-
scale simulations of tropical cases, one over land and the other over
ocean. The relationship betweenTbs at thewing and center of the 183,
325, and 448 GHz bands and some 2D variables characterizing ice
content and convective updrafts has been examined as well as their
dependence on horizontal resolution and delay. It is shown that IWP
and dIWP/dt can be inferred in all deep convective scenes while wice

and VIM in growing convective cores only. It is explained that the
relationship wice and VIM breaks down in the anvil due to the
dominance of horizontal ice advection over microphysical processes.

The relationship between geophysical and satellite variables is
first studied for deep convective condition. The latter is defined as
an atmospheric column in which the IWP exceeds a threshold of
1 kg m−2. In the radiometric space, this criterion translates into
the difference in Tb between the wing and the center of the band
above a threshold that differs between the three bands considered
here. This highlights the difference in sensitivity of the bands to
ice change. It can be seen that the 183 and 325 GHz bands are
sensitive to IWP up to 40 kg m−2, while the 448 GHz band is
sensitive to larger IWP values. Because the time change in IWP
may depend more on horizontal advection of ice than on ice
production in the updraft, the relationship is then studied for the
growing convective cores. The latter is defined as the co-location
of the local minimum in Tb and the local minimum in dTb/dt.

The time variation of IWP shows a near-linear relationship with
dTb/dt for the center band channels at the 183 and 325 GHz bands
and the wing channel of the 448 GHz band. This relationship is valid
for both deep convection and growing convective core conditions. It
is also robust to grid spacing and time delay, at least those studied
here, that is, from 1 to 6 km and from 30 s to 3min. These results
suggest that the time variation of IWP could be easily inferred using
the C2OMODO concept.

Two variables related to vertical velocity are examined: the
vertical ice momentum VIM and the vertical ice velocity wice,
defined as VIM divided by IWP. Both are found to increase with
decreasing dTb/dt. This relationship is obtained for convective
growing core condition only. Another limitation is that the
relationship is not linear, with a slope that differs between the
oceanic and continental cases. This disagreement in slope may be
due to the difference in grid resolution between the two
simulations. This aspect deserves further investigation.

We conclude that a stand-alone use of microwave observations
using the C2OMODO concept to retrieve dIWP/dt, wice and VIM
would be possible. First, we used only pseudo-observations to state
the convective development: 1) deep convection scenes detected by
the difference in Tb between the wing and the center of the band

above a fixed threshold and 2) growing convective cores defined as
the co-localization of the local minimum of Tb and the local
minimum of dTb/dt. Second, we showed the existence of the
relationships between dIWP/dt, wice, VIM, and dTb/dt.

The conclusions drawn here are based on two tropical cases only.
Other cases should be investigated in addition to these two. At the
time of writing, the C2OMODO radiometers would also cover mid-
latitude areas. Future study will address a larger data set. Also note
that the simulations are performed with a particular microphysics
scheme of a convection-permitting model combined with a radiative
transfer model, here Meso-NH combined with RTTOV. It is of
interest to investigate the robustness of the relationships found here,
at least for mid-latitude conditions, a different microphysics scheme,
and a different radiative transfer model. Future study will be
conducted to test the sensitivity of these relationships to the
optical properties of frozen hydrometeors using the new
capabilities offered by RTTOV (Geer et al., 2021).

Another aspect worth studying is the use of hyper-spectral
information. Depending on their sensitivity to water absorption,
the 50 channels in a band probe the atmosphere at different altitudes.
This information should make it possible to deduce the vertical
structure of IWP and, hence, of dIWP/dt. This would be also useful
for retrieving VIM or wice in part of the atmospheric column. As a
pure demonstration, Brogniez et al. (2022) showed that the VIM can
be retrieved from Tbs. They found that the maximum vertical
velocity within a convective column can be estimated with low
error, especially for high velocities. More information on the
C2OMODO concept and its possibilities, including promising
synergies if a Doppler radar is aligned with the microwave
radiometer tandem, is given by Brogniez et al. (2022).
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Mind the Gap - Part 3: Doppler Velocity
Measurements From Space
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Convective motions and hydrometeor microphysical properties are highly sought-after
parameters for evaluating atmospheric numerical models. With most of Earth’s surface
covered by water, space-borne Doppler radars are ideal for acquiring such measurements
at a global scale. While these systems have proven to be useful tools for retrieving cloud
microphysical and dynamical properties from the ground, their adequacy and specific
requirements for spaceborne operation still need to be evaluated. Comprehensive forward
simulations enable us to assess the advantages and drawbacks of six different Doppler
radar architectures currently planned or under consideration by space agencies for the
study of cloud dynamics. Radar performance is examined against the state-of-the-art
numerical model simulations of well-characterized shallow and deep, continental, and
oceanic convective cases. Mean Doppler velocity (MDV) measurements collected at
multiple frequencies (13, 35, and 94 GHz) provide complementary information in deep
convective cloud systems. The high penetration capability of the 13 GHz radar enables to
obtain a complete, albeit horizontally under-sampled, view of deep convective storms. The
smaller instantaneous field of view (IFOV) of the 35 GHz radar captures more precise
information about the location and size of convective updrafts above 5–8 km height of
most systems which were determined in the portion of storms where the mass flux peak is
typically located. Finally, the lower mean Doppler velocity uncertainty of displaced phase
center antenna (DPCA) radars makes them an ideal system for studying microphysics in
shallow convection and frontal systems, as well as ice and mixed-phase clouds. It is
demonstrated that a 94 GHz DCPA system can achieve retrieval errors as low as
0.05–0.15 mm for raindrop volume-weighted mean diameter and 25% for rime fraction
(for a −10 dBZ echo).

Keywords: radar, convection, satellite, remote sensing, Doppler

1 INTRODUCTION

Improvements in weather and forecast models require thorough understanding of processes
occurring in cloud and precipitation systems (Zelinka et al., 2017; Satoh et al., 2018). An
accurate representation of cloud-scale dynamics and hydrometeor fall velocities is an important
step toward understanding these processes. Convective clouds serve as a primary mechanism for the
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transfer of thermal energy, moisture, andmomentum through the
troposphere, significantly impacting the large-scale atmospheric
circulation and local environment and also affecting the
probability of subsequent cloud formation (Hartmann et al.,
2018; Gasparini et al., 2021). Furthermore, several different
assumptions for hydrometeor terminal fall velocities are used
for different processes in models whether in large-scale
parameterized clouds and precipitation (vanZanten et al.,
2011). Climate models are very sensitive to the specification of
fall speeds. For example, Sanderson et al., 2008 found that the ice
fall speed was the second most important parameter for
determining climate sensitivity. A decrease in the fall velocity
of ice crystals can affect upper tropospheric water vapor amounts
(Mitchell and Finnegan, 2009) while changes to the fall velocity of
raindrops can induce changes in the evaporation rate and hence
affect the temperature structure in the lower part of the
atmosphere (vanZanten et al., 2011).

Despite their importance, there are considerable measurement
gaps in convective updrafts and hydrometeor fall velocities. These
gaps limit our ability to constrain these important aspects of
model parameterization and verification. Observations of the
number and magnitude of updrafts contributing to vertical
transport in deep convection are not available over the
tropical oceans and are rarely available over land. Measuring
convective motions from surface-based observatories remains
challenging owing to a shortage of profiling sensors and the
shortcoming of multi-Doppler radar retrievals (Oue et al., 2021).
On the other hand, surface-based observatories can provide high-
quality, long-term records of hydrometeor fall velocities (Kalesse
and Kollias, 2013); however, such measurements are sparse in the
southern hemisphere and over the oceans.

Spaceborne Doppler radar observations can offer global
observations of Doppler velocities, thus providing an
unprecedented opportunity to help constrain weather and
climate models (Battaglia et al., 2020a). The Earth Cloud
Aerosol and Radiation Explorer (EarthCARE) satellite is a joint
European Space Agency (ESA) and Japanese Aerospace
Exploration Agency (JAXA) mission scheduled to launch in
2023. EarthCARE (EC) will host the first 94-GHz Doppler
cloud profiling radar (CPR) in space (Illingworth et al., 2018).
However, signal attenuation by hydrometeors and the presence of
multiple scatters are expected to limit the ability of the
EarthCARE CPR to study deep convective clouds (Kollias
et al., 2018). Furthermore, the Doppler velocity measurements
in large-scale precipitation regimes will be considerably impacted
by the platform motion (Kollias et al., 2014).

Post-processing and spatial averaging of the EarthCARE CPR
raw Doppler velocity observations are expected to reduce the
uncertainty in the Doppler velocity measurements (Kollias et al.,
2014). However, a different observing platform is required to
address the remaining gap in convective dynamics and to provide
even higher quality Doppler velocity measurements in shallow
clouds and large-scale cloud and precipitation systems. These
critical measurements gaps were acknowledged in the latest
NASA Earth Science Decadal Survey Report (National
Academies of Sciences, Engineering, and Medicine, 2018).
NASA recently completed a study, known as Aerosols, Clouds,

Convection, and Precipitation (ACCP), to identify candidate
spaceborne architectures to pursue coupled aerosol-cloud-
precipitation science in the next decade. The recommended
architecture is currently being evaluated as part of NASA’s
Earth System Observatory (https://science.nasa.gov/earth-
science/earth-system-observatory) and is named as the
Atmosphere Observing System (AOS). The need for multi-
frequency Doppler radar measurements were deemed critical
to capturing all types of cloud and precipitation systems.
Other space agencies such as JAXA and ESA are looking for
future spaceborne Doppler radar missions. JAXA is currently
evaluating different options for a follow-up to the NASA/JAXA
Global Precipitation Measurement (GPM) Mission Dual-
frequency Precipitation Radar (DPR) with a 13-GHz radar
with Doppler capability and ESA recently selected WInd
VElocity Radar Nephoscope (WIVERN, Illingworth et al.,
2018), a 94-GHz conically scanning Doppler radar for
additional study as part of ESA’s Earth Explorer program.
Finally, the explosive growth in the use of CubeSats in Earth
Sciences offers ample opportunities for creative approaches on
how to best monitor and investigate cloud and precipitation
processes (Stephens et al., 2020).

Here, the third part of the “Mind the Gap” article series is
presented. The Mind the Gap articles highlight existing gaps in
satellite-based radar measurements of cloud and precipitation
systems and suggest future improvements. The first Mind the
Gap study (Lamer et al., 2020) focused on the challenge of
detecting hydrometeors in the lowest km of the atmosphere
detection due to the Earth’s surface return. The Lamer et al.
(2020) study highlighted the advantages of a short-pulse radar
(Kollias, 2007). The second Mind the Gap study (Battaglia et al.,
2020a) focused on the biases in liquid water path (LWP) estimates
due to the large radar footprint and the limited sensitivity in small
LWP amounts using Path Integrated Attenuation (PIA)
techniques. The added value of brightness temperature (TB)
derived by adopting radiometric radar modes was investigated.
The third Mind the Gap article focuses on the third large
spaceborne radar measurement gap: Doppler velocity. High
resolution model output and a comprehensive forward and
inverse spaceborne Doppler radar simulator is used to
characterize the impact of the sampling volume on the
characterization of updraft and downdraft properties.
Furthermore, the impact of the uncertainty in the Doppler
velocity measurements on the estimation of hydrometeor
mean size and density is presented. The performance of
different planned spaceborne Doppler radar systems against
these requirements is analyzed using state-of-the-art forward
and inverse simulations. The spaceborne Doppler radar
systems considered in this study operate at three different
frequencies: 94, 35, and 13 GHz, thus, covering the frequency
range of existing and planned spaceborne radar systems. The
radar systems are also separated into two categories based on the
technique they used to acquire Doppler velocity measurements
from space. Three systems that employ the displaced phase center
antenna (DPCA) technique that rely on two antennas
strategically deployed such that their combined measurements
can effectively remove the satellite motion effects on the Doppler
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velocity measurements are evaluated (Tanelli et al., 2002; Durden
et al., 2007; Tanelli et al., 2016). These systems resemble those
considered during the ACCP study. Three additional radars that
utilize a single antenna are also considered. One of them is the
EarthCARE CPR and the other two are large antenna 13-GHz
radar systems that resemble spaceborne radar concepts
considered by space agencies. The trade-offs between the
selected radar frequency, footprint, and the technology used
for the Doppler velocity estimation are presented

2 DATASETS AND METHODS

2.1 Observations
In this study, a dataset of over 20,000 5 min averaged
raindrop spectra from two-dimensional video disdrometers
(2DVDs) is used to estimate the impact of mean Doppler
velocity accuracy on the characterization of hydrometeor
diameter. The 2DVD dataset is described in Williams et al.
(2014). For the forward calculations, the raindrops are
simulated as oblate spheroids (Brandes et al., 2002), with a
terminal velocity described in Lhermitte (2002) and the
T-matrix scattering theory (Waterman, 1965) is used for
the radar reflectivity estimation.

2.2 Numerical Model Simulations
Numerical simulations obtained from high spatial resolution
(<250 m) conducted under the scope of NASA ACCP study
complement the sparse observational datasets of convective
cloud properties. ACCP relied on an array of models that
proved accurate at simulating different cloud systems ranging
from shallow to deep convection including warm, mixed-phase,

and ice clouds. The following numerical model simulations are
analyzed in the current study:

- A Weather Research and Forecasting (WRF, Model V3.8.;
Skamarock et al., 2008; Skamarock, 2008; Varble et al., 2020)
simulation on the 20 May 2011 squall-line event that took
place during the Mid-Latitude Continental Convective
Clouds Experiment (MC3E; Jensen et al., 2016) in
Oklahoma. A horizontal cross section through the MC3E
simulation taken at 12-km height allows us to appreciate the
inhomogeneity of this convective storm that presented
vigorous updrafts within only a few hundred meters of
downdrafts (Figure 1A).

- A Regional Atmospheric Modeling System (RAMS, v6.2.05;
Cotton et al., 2003; Storer and Posselt, 2019) simulation of
the deep convection cases of 11th and 17th August 1999, that
took place during the Kwajalein Experiment (KWAJEX,
Yuter et al., 2005) and of the weakly organized oceanic
convection case of 3 February 1999, that took place during
the Tropical Rainfall Measuring Mission—Large Scale
Biosphere-Atmosphere Experiment (TRMM-LBA, Silva
Dias et al., 2002). A horizontal cross section through the
TRMM-LBA simulation taken at 10 km height allows us to
appreciate the inhomogeneity of individual coherent updraft
structures that formed in this storm (Figure 1B).

- A System for Atmospheric Modeling (SAM, V6.11.2;
Khairoutdinov and Randall 2003) is simulation of the
strong tropical oceanic convection cases that occurred
during the Global Atmospheric Research Program’s
Atlantic Tropical Experiment (GATE, Zipser and Gautier,
1978; Xu and Randall, 2001) and of the shallow convective
cumulus case that took place during the Rain in Cumulus

FIGURE 1 | Horizontal cross-section showing vertical air motion (VAIR in ms−1; positive indicates upward motion) from three different model simulations: (A)MC3E
at 12 km height, (B) TRMM-LBA at 10 km height, and (C) RICO at 1 km height. Overlaid circles represent the instantaneous field of view (IFOV) of the six radars under
consideration (color coded as in Table 1).
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over the Ocean experiment (RICO, Rauber et al., 2007). A
horizontal cross section through the RICO simulation taken
at 1 km height allows us to appreciate the weak (vertical air
motion +2–6 m s−1) and sub-kilometer horizontal scale
coherent updrafts that are frequent features of this
shallow convective cloud regime (Figure 1C).

In the current study, these numerical simulation results are
directly used to quantify the individual impacts of signal
penetration, instantaneous field of view, and platform motion
on the characterization of convective updrafts (results in Section
3) and are input to a spaceborne radar forward simulator to
emulate the performance of six spaceborne Doppler radar
systems, whose specifications are listed in Table 1 (results in
Section 4).

2.3 Spaceborne Doppler Radar Forward
Simulator
The forward simulator used in the current study was designed
to forward-simulate attenuated radar reflectivity factor and
mean Doppler velocity (MDV, the sum of the vertical air
motion and reflectivity-weighted hydrometeor sedimentation
velocity) considering known instrument sampling limitations.
It uses scattering calculations to estimate the radar reflectivity
factor and the gas and liquid attenuation at the model native
resolution following T-matrix for cloud, drizzle, and rain
hydrometeor species; the Self-Similar Rayleigh-Gans
Approximation (SSRGA, Hogan and Westbrook, 2014) for
ice and snow particles; and Mie for hail and graupel particles,
that are assumed to have a spherical shape with different
densities (0.9 and 0.4 g cm−3, respectively). This information
is also combined to produce estimates of attenuated radar
reflectivity, MDV, and spectrum width. A realistic Earth’s
surface echo is added to the first model level as in Burns et al.
(2016). The addition of a surface echo produces a more
realistic radar performance in the lowest 1 km of the
atmosphere (see Lamer et al., 2020 for more details). An
instrument forward-simulator is then used to emulate
effects caused by an array of radar specifications:

- Sampling geometry parameters including antenna
beamwidth, pulse length, and satellite orbit as in the
work of Kollias et al. (2014)

- Along-track integration as in the work of Kollias et al. (2014)
- Sampling rate (i.e., pulse repetition frequency) as in the work
of Kollias et al. (2014)

- Platform motion as in the work of Kollias et al. (2014)
- Radar receiver noise in the raw I/Q radar signals, which
dictates the signal-to-noise (SNR) ratio

- Doppler estimation technique including Pulse-pair or
Doppler spectra-based moment estimation as in the work
of Kollias et al. (2014)

- Off-nadir operation as in the work of Battaglia et al. (2020a)

The forward-simulated radar observables at the radar
resolution are finally used as inputs in a retrieval
algorithm to produce “best-estimate” radar observables
(i.e., data products) for a complete end-to-end process.
Those include the following: a feature mask (location of
detected meteorological observations), as well as an MDV
field corrected for velocity aliasing as in the work of Kollias
et al. (2014).

3 RADAR SAMPLING PARAMETERS AND
THEIR INDIVIDUAL IMPACT ON
RETRIEVED CLOUD PROPERTIES
In this section, we describe key radar sampling parameters
and the radar specifications that influence them. Then,
through comparison with observed and simulated
benchmarks, we estimate their impact on retrieved cloud
properties.

3.1 Signal Penetration
Radar signal penetration is affected by attenuation caused by
gases and hydrometeors, which is wavelength specific, and has
multiple scattering, which depends on the radar IFOV and the
type of hydrometeor present in the radar sampling volume
(Battaglia et al., 2016).

TABLE 1 | Technical specifications for the six spaceborne radar architectures under consideration.
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3.1.1 The Impact of Signal Penetration on Retrieving
Convective Updraft Mass Flux
Determining signal penetration depth is important to determine
the ability of a spaceborne Doppler radar system to detect the
portions of convective storms where most of the convective
transport occurs. Here we will focus on quantifying the impact
of signal penetration on the characterization of updraft mass flux
(MF), which is central to cumulus parameterization schemes in
large-scale models (e.g., Arakawa and Schubert, 1974; Tiedtke,
1989).

The observational record of convective updraft properties is
sparse. Under shallow convective cloud conditions, vertically
pointing lidar, and radar systems have been used to characterize
the sub-cloud and cloud layer dynamics (Lamer et al., 2015;
Lamer and Kolias, 2015; Lareau et al., 2018; Endo et al., 2019).
Only recently has the information from both these been merged
to provide a comprehensive view of the dynamical field in and
around shallow convective cloud systems (Zhu et al., 2021). In
deep convection, limited aircraft observations and profiling
radar techniques are available (e.g., LeMone and Zipser,
1980; Heymsfield et al., 2010; Williams, 2012; Heymsfield
et al., 2013; Kumar et al., 2015; Wang et al., 2020). Based on
the airborne Doppler radar observations, the peak updraft
values are often above 10-km altitude (Heymsfield et al.,
2010; Heymsfield et al., 2013). Here, direct sampling of the
numerical simulations is used to construct a more
comprehensive benchmark of convective updraft properties.
A conservative threshold of 2 m s−1 is used to identify a
model grid point that contains convective updrafts (Houze,
1997). We track information about the fractional area
coverage in the entire domain of the simulation (αU) and the
mean air velocity (VU) of these convective updrafts at each

height through the atmospheric column and compute the mass
flux (MF) as

MF(Z) � ρ · αU · VU (1)
where ρ is the air density in kg m−3 and Z is the model grid level
(i.e., height).

FIGURE 2 | Profiles of storm-averaged convective updraft (A) fractional area, (B) mean velocity, and (C) mass flux estimated directly from the numerical model
simulations. Results are shown for the different cloud types under study (MC3E: blue, GATE: red, KWAJEX: yellow, TRMM-LBA: green, RICO: purple).

FIGURE 3 | Fraction of convective updraft (VAIR >2 ms−1) detected by
the (A) 94 GHz and (B) 35 GHz radars as a function of height. An estimate of
cloud height (Htop) for the various cloud types simulated is given in the legend.
Results are shown for the different cloud types under study (colors as in
Figure 2).
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The corresponding profiles for the different convective cases
are shown in Figure 2. Figure 2C indicates that mass flux through
the simulated cloud systems generally peaks at or above 6–8 km
height except for the RICO shallow convection case which is
confined below 4 km, and the KWAJEX case that peaks at 3 km
but exhibits a secondary maximum at 11 km. Thus, a spaceborne
Doppler radar should be able to penetrate down to ~6 km above
the surface to capture most of the shape and the peak of the
convective mass flux profile in deep convective systems.

Using the radar forward simulator, we further evaluate the impact
of signal penetration on the characterization of convective updraft
mass flux. Since the radar simulator used in this study accounts for
frequency but lacks representation for multiple scattering effects
(Battaglia et al., 2011; Battaglia et al., 2015), a conservative
criterion based on signal-to-noise ratio (SNR) is used to estimate
the penetration depth of the radar signal under different atmospheric
conditions. Figures 3A,B, respectively, show the fraction of
convective updrafts (VAIR >2ms−1) with SNR > +5 dB as seen by
a 35 and 94GHz radar as a function of height. Starting at 14 km, both
radar systems detect 100% of the scenes for all simulations. Moving
downwards to ~12 km, the intense MC3E and KWAJEX deep
convective cases produce strong signal attenuation at 94 GHz and,
as a result, a decrease in the fraction of updrafts is detected. The 35-
GHz system is more resilient and only begins being affected by signal
attenuation in these storms at ~9 km.Due to signal attenuationwhich
is generally strongest in the convective core, which is responsible for
the bulk of the vertical transport of energy andmoisture, even a small
loss in the fraction of echoes detected could induce a large
underestimation of the mass flux. Assuming that detection of 80%
of convective updrafts is sufficient to capture the bulk of themass flux
occurring at each height, we estimate that a 94 GHz radar could be
used to characterize the mass flux profile of deep convective systems
from cloud top through ~11 km and of weaker convective storms
from cloud top through 7 km. Since this height is generally higher
than the location of the mass flux peak, we conclude that a 94 GHz
radar system alonewould not be appropriate tomonitor themassflux
of deep convective cloud systems. As for a 35 GHz radar, the intense
continental convection (MC3E) case limits its “effective penetration”
to 9 km height above the ground. In all other cases, the 35 GHz radar
will be able to capture the peak of the convective mass flux and, in the
case of weaker convective storms, penetrate much lower. Thus, a 35
GHz radar would be appropriate tomonitor themass flux peak in all,
but the strongest deep convective systems.

3.2 Instantaneous Field of View
3.2.1 Factor Impacting Instantaneous Field of View
The IFOV of spaceborne radars is effectively the projection of
the radar sampling volume on Earth’s surface. IFOV is
modulated by four main factors: 1) frequency (f), which
inversely correlates with IFOV (ceteris paribus), 2)
antenna size (D) which directly acts to increase IFOV, 3)
number of antennas used for the Doppler velocity estimation,
which indirectly acts to increase IFOV by decreasing antenna
sizes, and 4) distance from the Earth (HSAT), which directly
acts to increase IFOV. A commonly used approximate
relationship for the radar IFOV is

IFOV � 0.369
HSAT [km]

D [m] · f[GHz] (2)

The IFOVs for six spaceborne Doppler radar architectures
considered in this study are listed in Table 1. The average orbit
height is the same (HSAT = 400 km) for all the architectures. This
results in the 94GHz radars having an overall smaller IFOV.Number
of antennas comes next, with non-DPCA systems having overall
smaller IFOV than DPCA systems.

3.2.2 The Impact of Instantaneous Field of View on
Retrieving Convective Updraft Mass Flux
The relationship between the updraft chord length (UCL) and the
spaceborne radar IFOV is very important to determine the ability
of a spaceborne Doppler radar system to resolve, and thus
characterize, convective updraft properties. The spaceborne
Doppler radar MDV measurements are the result of the
convolution of true updraft properties with the IFOV. In the
case of under sampling (IFOV > UCL), the estimated MDV is
expected to underestimate the updraft magnitude and
overestimate the updraft size. In previous studies, the impact
of the radar range resolution and IFOV on shallow cloud
properties (vertical and horizontal coverage and LWP) was
demonstrated (e.g., Battaglia et al., 2020b; Lamer et al., 2020).
Here we will assess the impact of sampling geometry on our
ability to characterize updraft mass flux (MF) and its components.

The observational record of convective updraft chord UCLs is
sparse and measurements from limited aircraft observations and
profiling radar techniques (e.g., LeMone and Zipser, 1980;
Williams, 2012; Kumar et al., 2015; Lamer et al., 2015; Wang
et al., 2020) are challenging to consolidate due to their limited
sampling of individual storms and the strong dependency of their
results on the instrument/platform sampling geometry and
strategy used. Nevertheless, most reports of deep convective
updraft cores document them as being less than 5 km, with
their distribution peaking around 2–3 km (Wang et al., 2020)
while shallow convective updraft cores were reported to be
100–500 m wide (Lamer et al., 2015).

Once again, direct sampling of the high-resolution model
outputs is used to derive additional statistics of the properties
of the convective updrafts. Spatially coherent convective updrafts
are identified as contiguous updraft regions with air motion larger
than 2 m s−1. We track information about the fractional area
coverage (αU) and the mean air velocity (VU) of convective
updrafts of different chord lengths and compute their mass
flux (MF) as

MF(UCL) � ρ · αU · VU (3)
The distribution of αU, VU, and MF as a function of the UCL

and the cumulative distribution of the contribution of updrafts
with different UCL to the total MF are shown in Figure 4. The
UCL bins are 0.25 km wide, with center values from 0.25 to
10 km. Shallow convection is characterized by the narrowest
UCL’s with only a small fraction of them exceeding 500 m.
Deep convection simulations exhibit a broader distribution of
UCLs especially for the more intense cases (MC3E, KWAJEX,
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Figure 4A). The mean VU increases with the UCL, suggesting
that broader updrafts are also characterized by stronger updraft
magnitudes. This relationship between UCL and VU can explain
the contribution to the total MF by updrafts with different UCL.
Updrafts with UCL larger than 1.5 km equally contribute to the
total updraft mass flux occurring in deep convective storms
(Figure 4C). In weaker convective systems like TRMM-LBA
and RICO, smaller convective updrafts (1.8 and 0.5 km UCL,
respectively) are seen to be responsible for the bulk of the
transport since larger updrafts do not seem to be
systematically exhibiting stronger velocities.

The cumulative fraction of MF(UCL) allows us to
determine which updraft sizes together contribute to 50%
of the convective updraft mass flux. In the intense deep
convective systems, that would be updrafts larger than
~6 km; in weakly organized oceanic deep convective
systems, that would be updrafts larger than ~3 km; in
shallow convective cloud systems, that would be updrafts
<375 m. This behavior drives a need to design radar
architectures that have an IFOV ≤ 3 km to monitor the
bulk of the mass flux in deep convective systems.

Figure 1 allows us to visualize the IFOV achieved by the 6
radar architectures relative to the simulated cloud scenes noting
that none of these architectures meet the criteria established for
monitoring the mass flux of shallow convective clouds. On the
other hand, five of the radar architectures meet the criteria
established for monitoring the mass flux of deep convective
clouds (radar 1, 2, 3, 5, and 6) except for when significant
attenuation occurs.

To further evaluate the impact of IFOV on the
characterization of convective updraft mass flux, we perform
forward simulations where only the sampling geometry is
considered. In effect, we turn on the radar instrument model
and estimate the resulting vertical air motion. From those
motions, at each radar height, the area fraction, the magnitude
of updrafts of velocity >2 m s−1, and their mass flux are
computed. Using the same model swaths, the same convective
updraft parameters are estimated at each model height using
direct sampling at the native model resolution. The differences of
these updraft properties as derived by the radar IFOV and the
direct model sampling at each height are normalized by the model
direct sampling value (i.e., relative errors). The relative errors in
the updraft properties from all heights are used to compile the
relative error distributions for different convective scenes and
radar systems (Figure 5). As expected, the 1.0 km IFOV provides
the best agreement between the model output and the forward-
simulated radar observations for all three convective updraft
parameters with most of the relative error values within ±20%.
A 2.5-km IFOV results in broader relative error distributions in
αU and VU (±35%). The MF relative error distribution is centered
around zero; however, in some cases, relative errors up to 50% in
the MF are estimated. The impact of the radar sampling volume
on the convective updraft parameters is more drastic at 5 km
IFOV with errors up to 100%.

In all cases, non-uniform beam filling (under sampling of the
model dynamics) is responsible for the observed errors. Updraft
features smaller than the IFOV presenting weak radar reflectivity
go undetected (thus causing a negative αU error) while those

FIGURE 4 | As a function of convective updraft chord length (A) fraction area, (B)mean updraft velocity, (C) contribution to the total convective updraft mass flux,
and (D) cumulative fraction of the total convective updraft mass flux starting from the largest updrafts. Results are shown for the different cloud types under study (colors
as in Figure 2). Note that the purple line in “d” is not visible as it runs along the y-axis.
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presenting large radar reflectivity appear horizontally smoothed
(thus causing a positive αU error). Beyond distorting the
fractional area of convective updrafts, non-uniform beam
filling also tends to cause an underestimation of the velocity of
small convective updraft features surrounded bymost downdrafts
or clear air (thus causing a negative VU bias). Due to the way
we defined convective updrafts (i.e., MDV >2 ms−1) this negative
VU bias may lead to convective updrafts being misclassified as
non-convective (weak) updraft, thus taking only the strongest
convective updrafts into consideration and yielding an overall
positive error in the distribution of VU and MF. It is important to
note that these results are based only on a small number of
simulated cases and that the relative error magnitude depends on
the convection type. Exploring these convective type-based errors
should be the focus of future studies.

3.3 Platform Motion
Radar mean Doppler velocity (MDV) is the reflectivity-
weighted average line of sight motion of the targets present
within the radar IFOV relative to the radar frame of reference.
The radar own motion will contribute to the Doppler signal
and its effect can be cancelled out by subtracting the
contribution due to the projection of the satellite velocity
along the antenna boresight. There is, however, an additional
effect to be accounted for. Due to the large velocity of LEO
satellites, the projection of the velocity along different lines of
sight within the IFOV will differ significantly from the
boresight projection; correspondingly, the radiation
backscattered from the forward/backward (with respect to
the satellite motion) part of the IFOV will be phase shifted
when backscattered from a target receding/approaching the
radar. In perfectly homogeneous atmospheric conditions
(i.e., where the reflectivity field is the same throughout the
IFOV), the reflectivity contributions of the perceived “away”
and “towards” motions are perfectly balanced such that the
recorded MDV is solely influenced by hydrometeor
sedimentation velocity (VSED) and air motion (VAIR). In
inhomogeneous atmospheric conditions, however, the

reflectivity contributions of the perceived “away” and
“towards” motions are out of balance, thus introducing a
bias to the MDV that, to first approximation, is proportional
to the radar reflectivity gradient within the IFOV and
proportional to IFOV2 (details are given in the work of
Battaglia et al., 2020a).

To alleviate this bias, displaced phase center antenna (DPCA)
systems rely on two antennas strategically deployed such that
their combined measurements can provide an unbiased MDV
estimate (Tanelli et al., 2002; Durden et al., 2007; Sy et al., 2014;
Tanelli et al., 2016).

3.3.1 The Impact of Platform Motion on Identifying
Convective Updrafts
To quantify the impact of platform motion on the MDV
measured by spaceborne radars, we performed forward
simulations of the weakly organized convective cloud scene
of TRMM-LBA, setting VAIR and VSED to 0 m s−1. Figure 6
shows results for radar 5, which is a non-DPCA 13-GHz
system with a 4 m antenna. Similar results are obtained
from forward-simulations of the other two non-DCPA
systems (radar 2 and radar 6; not shown). As highlighted by
Figure 6B, platform motion alone can introduce MDV biases
on the order of 30 m s−1 in this highly heterogenous cloud
scene. The MDV biases due to non-uniform beam filling
(NUBF) will occur at the edges of every convective cloud
(where large horizontal gradients of radar reflectivity occur)
and within the periphery of all convective cores since a
vertically oriented area of high radar reflectivity is one of
their characteristic radar features. Although the use of the
along-track radar reflectivity gradient can be used to correct
for most of the NUBF-induced velocity bias, considerable
residual errors from the application of an imperfect
correction could complicate the detection of convective
updrafts and could lead to false detections. Considering that
this bias is nearly double the magnitude of the strongest
dynamical features simulated by the model and the
proximity to the location of the actual convective updrafts,

FIGURE 5 | Normalized distribution of the relative error (model−radar
model · 100%) in the (A) convective updraft fraction, (B) mean convective updraft velocity, and (C)

convective updraft mass flux. Results are shown for three different instantaneous radar field of views close to that of radar 1 (1.0 km; green), radar 5 (2.5 km; cyan), radar
4 (5.0 km; black).
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we suggest that a non-DPCA system would be difficult to use
for dynamical studies in such complex cloud scenes.

3.4 Mean Doppler Velocity Uncertainty
3.4.1 Factors Impacting Mean Doppler Velocity
Uncertainty
The total MDV error budget (σMDV) for a spaceborne
Doppler radar is affected by three main factors 1) intrinsic
noise (spectral broadening) introduced by the platform
motion (σB), 2) outstanding error in correcting MDV
biases caused by non-uniform beam filling (σNUBF), and 3)

outstanding error due to uncertainty in the antenna pointing
characterization or alternatively error in the estimation of the
horizontal wind when off-nadir pointing is needed. The MDV
total error budget is given by the following expression:

σMDV �
�������������
σ2B + σ2NUBF + σ2

P

√
(4)

Figure 7 shows the individual contribution of these factors in
the 6 radar architectures under consideration in the current
study. The relationship of σB with signal-to-noise ratio (SNR)
becomes evident (Figure 7A); for any of the radar configurations

FIGURE 6 | Forward simulation of TRMM-LBA weakly organized convection: (A) radar reflectivity at 13 GHz without radar sampling effects and (B) apparent MDV
induced strictly from platform motion and NUBF conditions for radar 5 (i.e., air motion and particle sedimentation set to 0 m s-1). Overlaid on “b” are VAIR contours drawn
from forward-simulations with no platform motion effects (2 m s−1: solid and 8 m s−1: dotted).

FIGURE 7 | Doppler velocity uncertainty from (A) spectral broadening (σB ) and (B) non-uniform beam filling (σNUBF ; triangles), and mis-pointing (σP ; dashed line).
Results are shown for the 6 radars under consideration (color coded as in Table 1).
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σB is systematically lower for atmospheric features of higher radar
reflectivity. The dependency of the MDV uncertainty with SNR is
inherent to all the radar architectures; however, the DPCA radar
architectures (1, 3, and 4) have negligible σB errors, as with any
radar on a non-moving platform. On the other hand, the non-
DPCA radars (2, 5, and 6) have much higher σB errors. This is
clearly illustrated in the comparison of the two 94-GHz radar
system. Despite its larger antenna and higher sensitivity, the
EarthCARE CPR (radar 2) has a much higher σB contribution to
the overall MDV error budget than the smaller antenna, which is
a less sensitive DPCA 94-GHz radar.

In addition to SNR, the σB for the non-DPCA radar
architectures depends on the normalized spectrum width
(Kollias et al., 2014). This explains the difference in their
curves. Noticeably, for the same radar frequency, σB is lower
for the radar with larger antenna. This is illustrated in the case of
two of the 13-GHz radars (5 and 6). For a 20 dBZ echo, the σB is
1.2 and 0.28 ms−1 for radars 5 and 6, respectively. In addition to
having a negligible σB, the use of a pair of antennas by the DPCA
radars allows them to avoid the non-uniform beam filling MDV
biases, something that is not the case for the non-DPCA radars.
The along-track gradient of the radar reflectivity has been
suggested to correct the NUBF velocity bias; however, the
correction depends on the detailed distribution of the radar
reflectivity within the radar sampling volume that is not
known (Sy et al., 2014; Kollias et al., 2018). Thus, there is a
residual, unbiased velocity error from the NUBF correction
(σNUBF) that increases the total MDV error budget (σMDV).
The residual error from the NUBF correction is proportional to
the square of the radar IFOV (σNUBF ∝ IFOV2). In Battaglia et al.
(2020b), an estimate for σNUBF was provided for a gentle along-
track radar reflectivity gradients of 3 dBZkm−1 (non-convective
conditions, Kollias et al., 2014). These estimates should be
considered as a lower bound σNUBF estimate. An along-track
radar reflectivity gradient of 15 dBZkm-1 (convective conditions)
is used to provide an upper bound σNUBF estimate. The upper
and the lower bound σNUBF estimates are shown in Figure 7B.
For the EarthCARE CPR, sampling convection is expected to be
very challenging, thus, the lower bound σNUBF estimate is more
relevant (Kollias et al., 2018). Due to its very narrow IFOV, the
σNUBF is small compared to the σB term. On the other hand, the
σNUBF term dominates the MDV error budget σMDV for the two
non-DPCA 13-GHz radars (5 and 6). The σNUBF term is the
dominant term in the σMDV budget even for a 6.0-m antenna size.

Finally, the σP term represents uncertainty in the MDV
introduced by antenna pointing uncertainties related to
thermal distortions and vibrations of the antenna structure
and/or uncertainty in the estimation of the horizontal wind
when off-nadir pointing is needed. An uncertainty of
10–15 μrad in the knowledge of the spaceborne radar antenna
pointing at an altitude of 400 km corresponds to an MDV
uncertainty of 0.08–0.11 ms−1 (Battaglia and Kollias, 2015).
For the DPCA radar architectures studied here, a 2 off-nadir
forward (along-track) pointing is required to minimize the
vertical extend of the surface echo (Beauchamp et al., 2021).
In this case, a 5 ms−1 uncertainty in the knowledge of the

horizontal wind will introduce ~0.2 ms−1 uncertainty in the
MDV estimate (grey dashed line in Figure 7).

Summing these error sources allows us to conclude that DPCA
radar configurations are overall more accurate (in terms of MDV)
than non-DPCA systems especially in highly heterogenous
conditions. It is worth noting that the MDV uncertainty
depicted in Figure 7 estimates for “best-estimate” MDV
produced at the highest resolution available. For relatively
homogeneous scenes such as stratiform cloud conditions, it
may be acceptable to perform additional along-track averaging
(Kollias et al., 2014), apply noise-filtering techniques (Sy et al.,
2014) or rely on conditional sampling (Protat and Williams,
2011) to produce a coarser but high precision MDV “best-
estimate”. These techniques have been shown to lead to
reduction of the MDV uncertainty by as much as a factor of 2
In forward simulations of the EarthCARE satellite (here radar 2).

3.4.2 The Impact of Mean Doppler Velocity Uncertainty
on Retrieving Particle Diameter and Rime Fraction in
Weak Air Motion Regimes
The MDV measured by a nadir-looking spaceborne Doppler
radar represents the sum of vertical air motion (VAIR) and the
reflectivity-weighted hydrometeor sedimentation velocity (VSED):

MDV � VSED + VAIR (5)
Separating the contributions of these two terms is a necessary step

for using MDV for dynamical studies which are associated with VAIR

and microphysical studies which are associated with hydrometeor
properties that impact VSED (e.g., Kollias et al., 2002; Zhu et al., 2021).
The condition |Vair|< 2ms−1 is often used to separate stratiform and
convective cloud conditions (Houze, 1997). In stratiform clouds, (e.g.,
frontal stratiform precipitation, stratiform regions of convective
systems, ice clouds), the horizontal microphysical variability is
moderate, and the vertical air velocity is much smaller than the
hydrometeor sedimentation velocity. When these conditions are
satisfied, the MDV can be related to the shape of the particle size
distribution (PSD), to relevantmoments (e.g., rainfall rate), and, under
certain conditions, allow us to study the microphysical processes that
influence their evolution (e.g., Protat andWilliams, 2011; Kalesse and
Kollias, 2013). The extent to which such inferences can be made with
reasonable uncertainty, depends on the magnitude of σMDV.

A combination of experimental and theoretical relationships
between MDV and microphysical variables are presented here to
illustrate the impact of the MDV uncertainty on microphysical
variables in stratiform conditions. The formulation of analytical
relationships between radar observables and microphysical
variables requires a mathematical representation for the
particle size distribution (PSD). The gamma distribution first
introduced by Ulbrich (1983) and Willis (1984), and its
normalization introduced by Testud et al. (2001) has been
widely used to describe the PSD:

N(Np
0,Dm, μ) � Np

0f(μ)( D
Dm

)μ

exp( − (4 + μ) D
Dm

) (6)

where
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f(μ) � Γ(4)(4 + μ)4+μ
44Γ(4 + μ)

The three parameters (Np
0,Dm, μ) have the following meanings:

Dm is the volume-weighted mean diameter (defined as the ratio of
the 4th to the 3rdmoment of the PSD),Np

0 is the intercept parameter
of the exponential distribution that has the same water content as
Dm, and μ describes the PSD shape. TheMDV is independent ofNp

0
and for liquid phase hydrometeors (drizzle and raindrops), is a
function of only Dm and μ In addition, the MDV is the reflectivity-
weighted PSD sedimentation velocity; thus, the relationship
between MDV and (Dm, μ) depends also on the selected radar
frequency. The relationship between MDV and Dm is shown
in Figure 8 for four different μ values (−2, 0, 3, and 12) at 94
GHz radar (A), 35 GHz (B), and 13 GHz (C). Plotted under
these analytical relationships are MDV and Dm estimates from
the two-dimensional video disdrometer (2DVDs)
observations (analysis details described in Section 2.1).
Overall, the experimental data and the theoretical
relationships agree and two distinct regimes emerge for
each radar frequency.

The Dm estimation is often based on a combination of radar
observables, however, here, we assume that MDV is the only

available radar measurement. Under this assumption, the error in
the Dm estimation is controlled by the rate of change of Dm with
MDV and the MDV measurement error:

δ(Dm) ≈ z(Dm)
z(MDV) δ(MDV) (7)

At W-band, two different z(Dm)/z(MDV) regimes are present
with very different slope values, one for Dm values lower than 0.8mm
where z(Dm)/z(MDV) ≈ 0.26mm/ms−1 and another one for Dm

values higher than 0.8mm where
z(Dm)/z(MDV) ≈ 0.78mm/ms−1. The lower the
z(Dm)/z(MDV) value, lower the uncertainty in the Dm retrieval
for a set MDV uncertainty. For example, an MDV uncertainty of
0.2ms−1 translates to an error of 0.05 and 0.15mm, respectively, for
Dm values less 0.8 than and greater than 0.8mm. The range of Dm

values where the slope z(Dm)/z(MDV) is low increases at lower
radar frequencies, suggesting that lower frequency radars are preferred
for retrieving Dm from MDV measurements. On the other hand, at
high Dm values (>1.75mm) the slope z(Dm)/z(MDV) at 94-GHz
smaller thus suggesting that the 94-GHz MDV measurements will
exhibit larger dynamic (sensitivity) range to Dm changes in high-Dm

regimes. These differences are due to differences in the scattering by
raindrops at the different radar frequencies (Kollias et al., 2002; Kollias

FIGURE 8 | (A) For a 94-GHz radar, relationships between raindrop particle size distribution (PSD’s) mean volume-weighted diameter (Dm) and mean Doppler
velocity (MDV) from ground-based measurements (colormap) and from different MDV-Dm relationships derived for a gamma distribution for different shape parameter (μ)
values (colored lines). (B) Same as “a” for a 35-GHz radar. (C) Same as “a” for a 13-GHz radar. (D) relationship between rime mass fraction and mean Doppler velocity
(MDV) from literature based on studies performed with a 94 GHz (green), 35 GHz (red) and 13 GHz radar (black).
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et al., 2016). The complimentary use of MDV estimates at different
radar frequencies can provide a strong constraint for Dm estimation
(Giangrande et al., 2012; Matrosov, 2017).

The determination of the rime fraction in ice particles is another
example where the use of the MDV can provide a strong constraint
(Mason et al., 2018; Oue et al., 2021). In a recent study, Kneifel and
Moisseev (2020) analyzed a large dataset of surface-based radar and
in-situ observations and derived an experimental relationship between
MDV and rime mass fraction (FR). The average relationship between
MDV and RF for three radar frequencies (94-GHz, 35-GHz, and 13-
GHz) is shown in Figure 8D. Although there is a considerable spread,
the experimentally derived relationships offer a first order relationship
for converting MDV errors to FR errors. If we focus on the FR range

of 20–80%, an MDV uncertainty of 0.2ms−1 translates to an error of
14, 12, and 10% in FR at 94-, 35-, and 13 GHz respectively. This
assessment ignores the fact that the shape of the particle size
distribution (Dm) will also affect the MDV magnitude; thus, here
it is assumed that this information is provided by othermeasurements
(e.g., dual-wavelength radar measurements, Pfitzenmaier et al., 2019).

4 SPACEBORNE DOPPLER RADAR
PERFORMANCE IN CONVECTION

Six spaceborne Doppler radar systems, whose specifications can be
found in Table 1, are being forward simulated in this study; these

FIGURE 9 | Forward simulation of MC3E deep convection (A) radar reflectivity at 13 GHz without radar sampling effects (B) mean Doppler velocity at 13 GHz
without radar sampling effects (i.e., truth) as well as mean Doppler velocity for (C) radar 4, (D) radar 3, and (E) radar 1.
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systems resemble those under consideration byNASA’s AOSmission,
other space agencies, as well as the JAXA/ESA EarthCARE CPR.

4.1 Deep Convective Clouds
A vertical cross section of the 13 GHz radar reflectivity and
MDV from the MC3E continental squall line case at the model
resolution is shown in Figure 9 (panels a and b, respectively).
The simulation includes a deep convective core with radar
reflectivity values between 40 and 55 dBZ and a cloud top
above 15 km height trailed by stratiform precipitation. The
convective core includes a tilted, coherent updraft structure
with VAIR values of more than 30–40 ms−1. In addition, the
spaceborne Doppler radar raw, uncorrected MDV simulations
of the same event for the 3 DPCA architectures examined here
(radars 1, 3, and 4) are shown in Figure 9. This comparison
highlights tradeoffs between radar frequency, and IFOV
choices in observing deep convective cloud dynamics
from space.

Of the proposed DPCA radar architectures, radar 4 with its
13 GHz frequency experiences the least amount of attenuation
compared to the 35 and 94 GHz radar architectures. Radar 4 can
penetrate the entire depth of the convective cloud and its “best-
estimate” MDV captures many of the key dynamical features of
the squall line. It resolves the main updraft structure, especially

above 3–4 km height. A drawback of this system is that its larger
IFOV (5.06 km) causes a visible broadening of the high
reflectivity updrafts and a misdetection of low reflectivity
downdraft structures. The large radar IFOV also modulates
the magnitude of the detected updrafts and downdrafts. In
addition to the convective core, the 13 GHz MDV can
capture well the transition from frozen to melted
hydrometeors and some of the broad, weak dynamical
structures.

The 35 GHz radar signal experiences considerable attenuation in
the convective core, where the radar signal penetrates to an altitude of
9–10 km, thus capturing the upper 5 km of the convective cloud
dynamical structure. However, its superior resolution (IFOV
2.44 km) results in an improved representation of the updraft and
downdraft coherent structures, both in terms of their true size and
true velocity in the upper 5 km of the squall line.

Finally, the 94 GHz radar penetrates only the upper most 2 km
from the convective cloud top, thus, providing limited
information about the main convective updraft properties. On
the other hand, the superior resolution of the 94 GHz radar
(IFOV 1 km) allows it to retrieve several weak dynamical
structures resolved in the deep convective cloud simulations.

Together, the three simulatedMDV fields provide complimentary
information. The 13 GHz radar provides a complete view of the

FIGURE 10 | Forward simulation of TRMM-LBAweakly organized convection (A)mean Doppler velocity at 13 GHz without radar sampling effects (i.e., truth) as well
as mean Doppler velocity for (B) radar 4, (C) radar 3, and (D) radar 5. Overlaid on each plot are air motion contours drawn from forward-simulations with no platform
motion effects (2 m s−1: solid and 8 m s−1: dotted). Radar reflectivity was presented in Figure 6.
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storm’s main dynamical features from the lower levels to the cloud
top. On the other hand, the 35 GHz radar can provide higher
resolution VAIR and UCL information in the upper 5 km of the
convective core; and the 94 GHz radar can add dynamical
information outside of the deep convective core. These confirm
previous findings based on airborne observations (Battaglia et al.,
2016). Differences in MDVs observed by the different frequency
radars resulting from non-Rayleigh scattering can also be exploited
(Mroz et al., 2021).

4.2 Weakly Organized Oceanic Convection
A vertical cross section of the 13 GHz radar MDV from the
TRMM-LBA weakly organized oceanic convection at the model
resolution is shown in Figure 10A. In addition, the spaceborne
Doppler radar raw uncorrected MDV simulations of the same
event for the radar architectures (3, 4, and 5) are shown in
Figure 10. Note here that “raw” MDV is shown since current
techniques to correct for NUBF are too uncertain in this highly
heterogeneous case (Section 3.3). Comparing the two 13 GHz
radar systems highlighting the tradeoff between using 1) a DPCA
system that requires two antennas and as such achieves a larger

IFOV (radar 4) and 2) one antenna system that can achieve a
smaller IFOV (radar 5). For completeness, the performance of the
35-GHz DPCA system (radar 3) is also presented.

Although radar 5 has a smaller IFOV (2.44 km) and is
better positioned to resolve narrow dynamical features, this
advantage is lessened by the high MDV bias and uncertainty
this non-DPCA system experiences. As illustrated in
Figure 10D, the “raw” MDV from radar 5 looks widely
different from the model “truth.”

In contrast, it is evident that radar 4 cannot precisely observe
the boundaries of the narrow storm and of its narrow updrafts
and downdrafts because of its larger IFOV (5.06 km); however,
we would argue that it does reasonably well at locating the center
location of the strongest dynamical features of the storm
(comparing the location of the velocity isocontours in a and
b). In addition, the “raw”MDV that this DPCA system measures
is undeniably closer in magnitude to the model truth than that
measured by the non-DPCA system.

As for the 35-GHz DPCA radar system (radar 3), we see better
penetration in this weaker deep convective storm, only missing
the lower 3 km of the storm below the updraft core. The small

FIGURE 11 | Forward simulation of RICO shallow oceanic convection (A) radar reflectivity at 94 GHz without radar sampling effects (B)mean Doppler velocity at 94
GHz without radar sampling effects (i.e., truth) as well as mean Doppler velocity for (C) radar 1, (D) radar 3, and (E) radar 4.
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IFOV of this system (2.2 km) also allows it to better resolve the
storm boundaries as well as the boundaries and magnitude of its
dynamical features.

This comparison again suggests that 35 GHz and 13 GHz offer
complementary information and that the use of DPCA is
paramount when it comes to measuring weakly organized
convective cloud dynamics.

4.3 Shallow Oceanic Convection
A vertical cross section of the 94 GHz radar reflectivity and MDV
from the RICO shallow oceanic convection case at the model
resolution is shown in Figure 11 (panels a and b, respectively). In
addition, the spaceborne Doppler radar raw, uncorrected MDV
simulations of the same event for the 3 DPCA architectures
examined here (radars 1, 3, 4) are shown in Figure 11. This
comparison highlights the impact of IFOV choice in observing
shallow convection from space (Battaglia et al., 2020a; Lamer
et al., 2020).

In contrast to the MC3E and TRMM-LBA deep convection
cases, the location of the convective updrafts is difficult to
determine just from the MDV simulations. The main reason
is the weak VAIR magnitude (2–6 ms−1) that is often lower than
the sedimentation velocity VSED, thus, resulting in an overall
negative MDV value. Due to its narrow IFOV, the 94 GHz
DPCA radar is capable of documenting most of the cloud-scale
MDV features, especially in the most developed clouds
(Figure 11C). This is not the case for shallower cloud
(Figure 11C, 50–70 km along track). These results suggest
that the 94 GHz MDV observations will be conditionally
useful for documenting the VAIR and VSED using an
appropriate inversion technique that will be able to separate
their contributions to the observed MDV. At 35 GHz and 13
GHz, the IFOV is 2.5 and 5 km, respectively, and the
considerable impact of the radar sampling volume is obvious
(Figures 11D,E). These findings are in line with those discussed
in Lamer et al. (2020) and Battaglia et al. (2013) indicating that
this cloud type requires the deployment of spaceborne radar
with sub-kilometer IFOV, short pulse and high sensitivity.

5 SUMMARY

The estimation of the Doppler velocity from a spaceborne
platform with sufficient accuracy (2–3 ms−1) and resolution in
deep convection and 0.2–0.3 ms−1 in large particle sedimentation
regimes (e.g., weak dynamics regimes such as mid- and high-
latitude frontal systems) from low Earth orbiting (~400 km
altitude) satellite platforms that move at 7,600 ms−1 is a
daunting task.

Using an array of numerical simulation examined within the
context of the NASA Aerosols, Clouds, Convection, and
Precipitation Decadal Survey study and surveying past
airborne Doppler radar observations we established that
convective updraft mass flux peaks above 6–8 km. This finding
drives a need to rely on radar frequencies that can achieve
significant penetration to this depth. Using forward
simulations, it was determined that both a 35 GHz radar and

13 GHz radar could achieve such penetration in deep convective
cloud systems. It was further established that updrafts larger than
3 km are responsible for the bulk of the updraft mass flux through
these storms, thus driving a need to deploy radars with IFOV
smaller than 3 km.

Platform motion was showed to significantly impact the mean
Doppler velocity (MDV) measured by traditional single-antenna
radars. Biases on the order of 30m s−1 were estimated for the
simulated convective clouds. This finding strongly discourages the
use of traditional systems for deep convective cloud dynamical studies
and favors the use of displaced phase center antenna (DPCA)
systems, which are designed to compensate for non-uniform
beam filling effects on MDV. A combination of analytical and
observed relationships allow us to estimate that outstanding
sources of MDV uncertainties would lead to retrieval errors on
the order of 0.05–0.15mm for Dm and 25% for rime fraction (for
−10 dBZ echo observed by a 94-GHz DPCA).

Comprehensive forward simulations allow us to appreciate the
advantages and drawbacks of each of the six radar architectures
currently under consideration by the mission that arose from the
ACCP study. We find that the MDV collected by the 94 , 35 , and 13
GHz system provide complementary information. The 13 GHz radar
provides a complete view of the storm’s main dynamical features
from the lower levels to the cloud top. On the other hand, the 35GHz
radar can provide higher spatial resolution air motion and updraft
chord length information in the upper 5 km of the convective cores
while the 94 GHz radar can provide additional dynamical
information outside of the deep convective cores. Furthermore,
differences in MDV observed between the different frequency
radars results from non-Rayleigh scattering can also be exploited.
When it comes to the shallow convective cloud regime, the findings of
our analysis are in linewith those discussed in thework of Lamer et al.
(2020) and Battaglia et al. (2013) indicating that this cloud type
requires the deployment of spaceborne radar with sub-kilometer
IFOV, short pulse, and high sensitivity.
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Analysis of Scattering Angle Sampling
by Multi-Angle Imaging Polarimeters
for Different Orbit Geometries
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Per the 2017–2027 Decadal Survey for Earth Science and Applications from Space, many
resources are being dedicated to identifying the most cost-effective and appropriate
space-based approaches to aid in answering important questions related to the roles of
aerosols, clouds, convection, and precipitation within the climate system. This includes
developing advanced space-based multi-angle polarimetric imagers for observing
aerosols and clouds. The information content with respect to aerosol and cloud
properties of such instruments partly depends on the observed range of scattering
angles. Factors influencing the sampled scattering angle range include orbit geometry,
solar, and viewing angle geometry and swath width. The focus of this research is to gain
better insight into how each of these factors influence the scattering angle range sampled
by different polarimeter platforms. Based on calculations of example precessing and sun-
synchronous orbits, we conclude that the maximum observed scattering angles vary
primarily with local equator crossing time (LCT) and location across the swath, while the
minimum observed scattering angles vary primarily with LCT and latitude. The altitude and
inclination of a precessing orbit determines the length of cycles occurring in LCT and thus
in the scattering angle sampling statistics. For a nominal polarimeter with a 57° swath width
in an orbit with 65.5° inclination, scattering angle ranges that are suitable for aerosol and
cloud remote sensing are sampled somewhere across the swath at most covered latitudes
roughly 54% of days throughout the year. Unfavorable scattering angles are observed on
days where the orbit is near the terminator and LCT are early in the morning or late in the
evening, when solar zenith angles are generally not suited for remote sensing. Decreasing
the instrument’s swath width to 7° primarily decreases the maximum observed scattering
angle, and therefore limits the range of crossing times for which a large range of scattering
angles are observed. In addition, the fraction of days throughout the year with favorable
scattering angles decreases to roughly 37%. These calculations will aid in the development
of next-generation observing systems using combinations of instrument platforms in
different orbits, as well for other missions such as those using cubesats.
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1 INTRODUCTION

Aerosols play a major role in Earth’s climate. Depending on their
type, they can reflect and absorb solar radiation. Furthermore,
they provide the basis for cloud formation (Twomey, 1974).
Increased aerosol loading may increase cloud brightness, thus
reflecting more solar energy away from Earth to cool the planet.
In addition, aerosols can suppress precipitation formation and
thereby increase cloud lifetime (Albrecht, 1989). On the other
hand, aerosols can also prevent cloud formation by absorbing
sunlight and heating the surrounding environment (Ackerman
et al., 2000). It is because of this complex mix of indirect and
direct effects that quantifying aerosol radiative forcing has been
deemed one of the most important, yet challenging, tasks in
addressing uncertainty in our understanding of how they affect
the climate (IPCC, 2021). Aerosol-cloud interactions contribute
the largest uncertainties to estimates and interpretations of the
global radiation budget.

The 2017–2027 Decadal Survey for Earth Science and
Applications from Space (ESAS 2017) (National Academies of
Sciences, Engineering, and Medicine, 2018) generated consensus
recommendations from the Earth science community and
identified several high priority science objectives, one of which
is reducing aerosol radiative forcing uncertainty. Addressing such
uncertainty requires improving our understanding of the
processes associated with aerosol, clouds, and their
interactions. Therefore, in response to NASA’s Designated
Observables Guidance for Multi-Center Study Plans released
in June 2018, six NASA centers partnered with universities,
and the private-sector to conduct the Aerosol (A) and Cloud,
Convection, and Precipitation (CCP) Pre-formulation Study
(A-CCP), which lead to the definition of an Atmosphere
Observing System (AOS) to address science objectives related
to aerosols, clouds, convection, precipitation and their
interactions.

The orbital component of AOS includes instruments in both
precessing and sun-synchronous orbits. Precessing orbits
(i.e., with a shifting local equator crossing time) offer unique
opportunities to observe the diurnal variation in clouds and
aerosols at monthly to seasonal temporal scales. Boundary
layer height change and convection are examples of processes
that change throughout the day and can be captured with such an
orbit. However, since such an orbit has a low inclination angle by
definition, the latitudinal coverage is limited. The sun-
synchronous orbit (also often referred to as “polar orbit”)
offers coverage at essentially all latitudes and daily sampling at
a fixed local time. Such an orbit offers the possibility of extending
the record of polar observations, such as those from the
Afternoon Constellation or A-train (Stephens et al., 2002).

In 1996, the French space agency (CNES) launched the
imaging Polarization and Directionality of the Earth
Reflectances (POLDER) instrument on the Advanced Earth
Observing Satellite (ADEOS-1). After the premature end of
the ADEOS-1 mission in 1997 due to communication failure,
POLDER-2 was launched on-board ADEOS-II in 2002 to
continue recording the polarimetric observations, although this
mission ended prematurely after 10 months as well. In 2009, a

third generation POLDER (Polarization and Anisotropy of
Reflectances for Atmospheric Sciences coupled with
Observations from a Lidar, PARASOL) was launched into the
A-train constellation (Fougnie et al., 2007). In 2013, PARASOL
was permanently shut down. Since then, other polarimeters in
various orbits have been deployed and are planned in the future.
Currently, the Hyperangular Rainbow Polarimeter (HARP)
instrument is deployed on a 3U CubeSat. It was released in
2020 from the International Space Station (ISS) and is in a
precessing orbit with an inclination of about 51.6°. In the near
future, the multi-angular, multi-spectral polarimeter, SPEXone,
and the 60-view angle, four spectral band, three degree of
polarization, Hyperangular Rainbow Polarimeter-2 (HARP-2)
will be deployed on the upcoming NASA Plankton, Aerosol,
Cloud, and ocean Ecosystem (PACE) mission. These instruments
will be launched into a sun synchronous orbit with a local equator
crossing time (LCT) near 1:00 p.m (Werdell et al., 2019).
Furthermore, the Multi-Viewing-Channel-Polarisation Imager
(3MI) will be deployed on the MetOp-Second Generation
series, which will have an orbit with an early morning
crossing time (Marbach et al., 2015). Together, these
polarimeters will be used to advance our understanding of
aerosols, clouds and their interactions. For a comprehensive
list of past and planned polarimeters we refer to Dubovik
et al. (2019).

Multi-angular imaging polarimetric observations provide the
angular distribution of scattered atmospheric radiation as well as
its polarization state at multiple wavelengths (Dubovik et al.,
2019). Polarimetric remote sensing allows to accurately
characterize atmospheric aerosols and retrieve microphysical
properties of clouds (Mishchenko and Travis, 1997;
Mishchenko et al., 2004; Hasekamp and Landgraf, 2007;
Alexandrov et al., 2012a,b; van Diedenhoven et al., 2012;
Stamnes et al., 2018; Li et al., 2020, 2022). Information
content of multi-angle polarimetric measurements for aerosol
and cloud remote sensing depends on the minimum, maximum,
and range of scattering angles sampled. For instance, with a
multi-angle imaging polarimeter, cloud droplet size distribution
is determined by observing a rainbow at cloud top, properly called
“cloud bow” (Alexandrov et al., 2012a).

Cloud-bow retrievals can be performed when the minimum
scattering angles sampled is less than 135° and maximum
scattering angles are greater than 155° (Alexandrov et al.,
2012a,b). Furthermore, the angular resolution of the
observation within that scattering angle region needs to be
about 2° or better (Miller et al., 2018). Additionally, for ice-
topped clouds, the ice crystal shape and scattering asymmetry
parameter can be inferred from polarimetric observation in the
scattering angle range between about 120° and 150° (van
Diedenhoven et al., 2012; van Diedenhoven et al., 2020). For
aerosol retrievals, a recent study by Fougnie et al. (2020) has
shown that the scattering angle range distribution has a major
impact on retrieval performance. Their results indicate that
sampling minimum scattering angles close to 120° and
maximum scattering angles greater than 150° allows effective
retrieval of fine and coarse mode aerosol properties. Furthermore,
five viewing angles are generally sufficient for aerosol polarimetry
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(Wu et al., 2015). In summary, sampling scattering angles that at
least includes the 120°–155° range is generally favorable for both
aerosol and cloud polarimetric retrievals.

Fougnie et al. (2020) also discussed the general sampling of
scattering angles with multi-angle instruments across instrument
swath and with latitude, which they represent in so-called
Scattering Angle Range Distribution (ScARD) plots. Their
study is focused on platforms in a sun-synchronous orbit with
a morning LCT. However, a better understanding of variability in
scattering angle statistics for multi-angle instruments in different
orbits is imperative for mission planning and design, as well as
development of retrieval algorithms for cloud and aerosol
properties. In this paper we will analyze scattering angle
statistics as a function of solar and view geometry, as well as
season, latitude, swath width, and LCT. The occurrences of
favorable viewing geometries to perform aerosol and cloud
retrievals from different orbit configurations using multi-angle
imaging polarimeters are investigated.

The remainder of the paper is divided into three sections. In
Section 2, the calculation methods and geometry definitions are
discussed. In Section 3, the scattering angle sampling statistics are
presented, followed by the conclusions and considerations for
mission design, which are summarized in Section 4.

2 MATERIALS AND METHODS

As part of this study, a HARP-like polarimeter (Martins et al.,
2018) was modeled in a precessing and a sun-synchronous orbit
(SSO). The precessing orbit (PO) was modeled based on the
Global Precipitation Measurement (GPM) mission (Neeck et al.,
2014) with an inclination of 65.5°. The inclination of the SSO was
set to 98.2° and the LCT was set to match the LCT of Aqua in the
A-train constellation at 1:30 p m (Parkinson, 2003). They were
modeled using orbital parameters derived from Two-Line
Element (TLE) data as shown in Table 1. The TLEs were
propagated using an Simplified General Perturbations Theory
No.4 (SGP4) orbit propagator during the simulation to model a
one-year mission period. The SGP4 orbit propagator is one of five
mathematical algorithms used for satellite tracking and orbit
prediction. It uses TLE sets produced by North American
Aerospace Defense Command (NORAD) and NASA to
propagate an orbit over a specified time frame, thus
calculating the position and velocity (Vallado et al., 2006;
Vallado and Crawford, 2008). It considers effect of
perturbations due to Earth oblateness, solar and lunar
gravitational effects, and orbital decay using an atmospheric

drag model. These orbits are used as examples to study the
effects of orbital characteristics such as inclination and LCT
on the sampling of scattering angles. These two orbits were
considered as they were identified as candidates for meeting
A-CCP/AOS science objectives.

The HARP-like multi-angle polarimeter used in this study was
modeled with 996 cross-track pixels and 10 along-track viewing
angles ranging from 56.5° forward to 56.5° aft. The nominal
swath width is 57°, leading to a swath width on the surface of
about 500-km for both orbits. In addition, the effect of a
decreased swath width of 7° (or about 50-km) was
investigated. Although the original HARP-2 design includes
60 viewing angles at one wavelength band and 10 at the other
three bands (Werdell et al., 2019), here we consider only ten
along-track views per observation. However, the statistics are
not substantially affected if more viewing angles are considered.
Since we are focused on observations of multi-angle
polarimeters, only daytime segments of the orbits are
considered. Figure 1 shows the daytime segments of the
ground tracks for a single orbit of each orbit-configuration
(PO and SSO) on 1 January 2006. On this day, the LCT of both
the precessing and sun-synchronous orbit is 1:30 p.m. The year
2006 is modeled in our instrument simulator for compatibility
with the output from the high spatial resolution GEOS-5 Nature
Run (G5NR) model output, also being used in the A-CCP study
to provide synthetic observations of nature to define retrieval
algorithms and uncertainties (Castellanos et al., 2018).

The solar and viewing geometry for the ground pixels
within the polarimeter swath were determined. Solar
calculations are based on equations from Astronomical
Algorithms (Meeus, 1991). The view angles of interest
from ground-to-instrument locations are view zenith and
azimuth angles. The view zenith angle, θv, is defined as the
complement of the spacecraft elevation angle β as shown in
Figure 2. Using the Law of Sines and basic properties of
triangles, θv was determined for each observation ground-
pixel. Once the solar and view angles were determined, they
were used to compute the scattering angle γ at each
observation ground-pixel (target). Figure 3 shows the
geometrical relationship between the three angles. The
Spherical Law of Cosine was used to determine the
scattering angle γ using:

γ � 180° − arccos cos θs( )cos θv( ) + sin θs( )sin θv( )cos ϕ( )[ ], (1)
where θs and θv are the solar zenith and view zenith angles,
respectively, and ϕ is the relative view azimuth angle.

TABLE 1 | Main orbital parameters derived from two-line element (TLE) data.

Orbit Mean altitude Inclination Right ascension
of ascending

node

Eccentricity Argument of
periapsis

SSO 450-km 98.2° 304.5° 0.00026 249.8°

PO 407-km 65.5° 129.5° 0.0015 15.5°
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The output from the simulation are scattering angles,
latitudes, longitudes, and time for the multi-angle
polarimeter swath at its’ various viewing angles. These
results are then used to investigate scattering angle statistics
for each orbit.

3 ANALYSIS

The inclination of an orbit plays an important role in remote
sensing from space. It determines which parts of the Earth the
ground track will cover for a given orbit. For instance, the ground
track of the precessing orbit (PO) considered in this study is
limited to between 65.5° North and 65.5° South in latitude. The
sun-synchronous orbit (SSO), on the other hand, covers higher
latitudes owing to its high inclination. This is one of the reasons
why SSOs are leveraged for most Earth-observing remote sensing
applications. In addition to the ground coverage afforded by
choice of orbit inclination, there are other factors that come into
play for making Earth-observations from these orbits. For
instance, the observing platform on the SSO is confined to a
single observing time (mean LCT). Since its orbital inclination is
retrograde (greater than 90°), the precession of its orbital plane
around Earth’s axis of rotation (nodal precession) is positive and
thus, can be designed to match the precession of the Earth’s orbit.
This requires specific combinations of the orbital altitude and
inclination to reach a desired mean LCT for the SSO.
Furthermore, a SSO with a LCT in the afternoon/morning will
have its ascending/descending part of the orbit in daytime. In
contrast, the PO has an inclination less than 90°, making it a
prograde orbit around Earth. The precession is westward and
goes against the direction in which the Earth rotates. As a result,
the mean LCT of the orbit changes over time. The daylight orbit
segment alternates between the descending and ascending parts.
This drift in mean LCT may be advantageous for an observing

FIGURE 1 | The precessing (red) and sun-synchronous (blue) ground track for a single daytime orbit on 1 January 2006. The orbits are based on GPM and Aqua
missions, respectively. The daytime segment of the ground tracks are shown here.

FIGURE 2 | Schematic of viewing geometry relative to Earth. The
radius of Earth is represented by R⊕, h is the altitude of the spacecraft/
sensor, ϵ is the swath half-angle, β is the spacecraft elevation angle, θv is the
view zenith angle, α is the angle between the spacecraft position
vector and the ground target, and d is the ground coverage of half of the
swath [in kilometers].
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platform on this orbit, as it allows more of the diurnal cycle of
atmospheric processes to be captured at seasonal time scales. It is
important to note that the rate of precession for an orbit depends
not only on inclination, but on the ellipticity of the orbit as well.
The two orbits used in this study were circular orbits.

Figure 4 shows LCT and solar zenith angle (SZA) for the PO
and SSO for the one-year mission simulation. The data shown in
this figure was captured for the day time segment of the orbits.
The LCT and SZA for the orbits are depicted in blue and red,
respectively. The SSOmaintains a constant mean LCT of 1:30 p.m
throughout the year, while the SZA varies with season between
20° and 35° when crossing the equator. In contrast to the SSO,
both the LCT, and SZA for the PO change in a cyclical pattern
throughout the year. For instance, as the orbit moves from south-
to-north through the equatorial plane (ascending node) during
the day, then shifts to north-to-south (descending node), the LCT
changes accordingly. In the beginning of the year, the orbit
crosses the descending node during the daytime segment of
the orbit. Therefore, on the first day of January, the LCT is
roughly 2:00 p.m, then it transitions to an earlier time of roughly
11:00 a.m halfway through the month. By the end of January, the
LCT shifts to 6:00 a.m. In the beginning of February, the LCT
jumps to 6:00 p.m, as the daytime portion of the orbit switches to
the ascending part of the orbit. It then transitions back down to
about 6:00 a.m by the end of the month to early March. Then the

daytime part of the orbit switches back to descending node and
LCT jumps to 6:00 p.m again. This cycle continues throughout
the year, with minute-level changes in LCT taking place each day.
The SZA changes with the LCT accordingly, while its amplitude
varies with season.

The duration of this cycle of LCT (CLCT) for a given orbit
around Earth can be approximated based on its orbit
characteristics (Capderou, 2014), namely altitude a and
inclination i, using:

CLCT � −365.25
2k R⊕

R⊕+a( )7
2 cos i( ) + 2

, (2)

where R⊕ is the radius of Earth and k is the constant of Sun
synchronicity that takes into account the motion of Earth around
the Sun, Earth’s mass and so-called J2 perturbations exerted by a
non-spherical celestial body on an orbiting spacecraft. For Earth,
k is approximately 10.11, meaning at an orbital altitude of 0 km
and an inclination of 0°, the nodal precession rate is 10.11 times
greater than the angular speed of Earth’s axis in its motion around
the Sun. For the PO considered in this study, CLCT is
approximately -41.7 days. The negative value of CLCT indicates
that the line of nodes moves in the opposite direction in which the
Earth rotates. Hence, it takes about 41.7 days to return to the same
orbital configuration relative to the Sun (taking into account both
the ascending and descending segments). This means that about 8
or 9 of such cycles occur in a given year. Furthermore, the orbital
configuration relative to the Sun at the start of a year varies per
year, with a repeat cycle of about 4 years. The orbit altitude has a
relatively small effect on CLCT. For example, increasing the orbit
altitude to 700 km leads to a CLCT of 46.7 days. Decreasing
(increasing) the inclination angle reduces (increases) the
length of time for the platform to return to the same orbital
configuration. For the SSO, CLCT is approximately 1,344 days. It is
positive because its orbital inclination is retrograde and, hence,
the nodal precession is positive. This large number is a clear

FIGURE 4 | The local equator crossing time (blue) and solar zenith
angles at the equator (red) as a function of day of year for the precessing (solid)
and sun-synchronous orbits (dashed).

FIGURE 3 | Schematic of a given solar and viewing geometry and
corresponding scattering angle, defined as the angle between the solar
vector, indicated by the red-dashed line and the viewing vector, indicated by
the orange dashed line.
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indication that the SSO configuration relative to the Sun (and
hence, LCT) takes a long time to change. Generally, the slow drift
in LCT for polar orbits is compensated via orbital maneuvers so
that by design the orbital drift is minimized.

3.1 Scattering Angle Sampling: Variation
With Latitude and Across Instrument Swath
Figures 5A,B show the minimum and maximum scattering
angles, respectively, observed by the nominal polarimeter over
a single SSO and PO orbit on 1 January 2006. On this day, both
orbits have a LCT near 1:30 p.m. Generally, the orbits display very
similar patterns of minimum and maximum scattering angles,
and therefore, range. The minimum scattering angle strongly
varies with SZA, and thus latitude, while its variation across the
swath is relatively minor. The minimum scattering angle is
generally observed by one of the extreme viewing angles
(i.e., ±56.5°). In contrast, Figure 5B shows that the maximum
scattering angle observed is mostly determined by the viewing
angle across the swath. The maximum scattering angle is
generally observed by the viewing angle observing closest to
the anti-solar point. That is, for a SZA of 20°, the viewing
angle closest to 20° will observe the maximum scattering angle
for a given pixel. The location of the maximum scattering angle
across the swath is determined by the relative azimuth angle.

Consequently, the scattering angle range for any given pixel will
be largely determined by both latitude and place across the swath.

Figures 5C,D show the minimum and maximum scattering
angles, respectively, sampled by the POwhen LCTs are near 10:00
a.m and noon on 15 and 8 January 2006, respectively. It is
apparent that the pattern of minimum scattering angle is more
to the south for the earlier LCT, as it is mostly determined by SZA.
Furthermore, the variation of maximum scattering angle across
the swath is seen to be strongly determined by the LCT as the
relative azimuth angle changes. For the noon orbit, highest
maximum scattering angles are sampled near the middle of
the swath, i.e., by the viewing angle closest to nadir. For the
morning orbit, the highest maximum scattering angles are
sampled at the west side of the swath, while it was seen on the
east side of the swath for the afternoon orbit in Figure 5B.

From the results described above, it can be deduced that the
minimum scattering angle that can be sampled at a given latitude
anywhere within the swath of a multi-angle polarimeter is
generally determined by the along-track viewing angle range
and not substantially by the swath width. However, the
maximum scattering angle that can be sampled anywhere
within the swath and is generally determined by the LCT and
the swath width. Consequently, the scattering along-track
viewing angle range that can be sampled at a given latitude is
mostly determined by all three variables, i.e., angular range, LCT

FIGURE 5 |Minimum (A,C) andmaximum scattering angles (B,D) sampled over orbits of the SSO and PO near 13:30 local crossing time (A,B) and for the PO near
10:00 and 12:00 noon local crossing time (C,D) with the 500-km swath.
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and swath width. These results are consistent with the results
presented by Fougnie et al. (2020).

3.2 Scattering Angle Sampling: Variation
With Latitude, Day of Year and Swath Width
For both the PO and SSO, the observing platform sensor and solar
angles were simulated for an entire year. Since changes in LCT for
the PO and SSO are negligibly small during a single day, one orbit
was used to represent all orbits that occurred in a day (see
Figure 1). Only daytime segments of the orbits were analyzed
since the sun is the light source for making observations with a
passive polarimeter.

As shown in Figure 4, for each day of the year, the LCT of the
PO changes, while the SSO remains at 1:30 p.m. Scattering angles,
γ, at each observation ground-pixel within the instrument swath
were computed for each daily-orbit. The maximum and
minimum scattering angle observed anywhere within the
swath at each latitude was calculated, as well as the scattering
angle range.

Figure 6 shows the maximum, minimum, and range of
scattering angles, respectively, as a function of latitude and day
of year for the SSO. This figure includes the scattering angle
statistics for the nominal 57° (500-km) swath width, as well as the
narrower, 7° (50-km) swath. There is very little variation in
maximum scattering angles throughout the year for the 500-
km case. For most latitudes and times, maximum scattering
angles greater than 170° are sampled. In the Northern

hemisphere during winter, sampled maximum scattering
angles are between 160° and 170°.

As expected from the results discussed in Section 3.1, the
minimum scattering angles mostly vary according to solar zenith
angle, and thus with latitude. All minimum scattering angles are
smaller than 120° and the sampled scattering angle range is
mostly determined by the variation of minimum scattering
angle. Note that the minimum scattering angles needed for
polarimetric cloud remote sensing are 135° and that
availability of smaller scattering angles are not beneficial to the
retrieval capabilities (Alexandrov et al., 2012a).

For the case with a 7° (50-km) swath width, the sampled
maximum scattering angles are generally a bit lower and there is
also more variation in maximum scattering angle throughout the
year. In the beginning of the year, the larger maximum scattering
angles, between 160° and 170°, can be found in the southern
hemisphere. Between early May to early September, these larger
maximum scattering angles cover all latitudes in daytime. Then
for the remainder of the year, the maximum scattering angles
decreases by about 10°, with the exception of areas at latitudes
above 25° North, which experience about a 20° decrease. The
minimum scattering angles for the two swath widths have a
similar magnitude and variability throughout the year, as
expected. The ranges sampled for the narrow swath are
somewhat smaller, mostly caused by the lower maximum
scattering angles that are sampled throughout the swath. Note
that these temporal patterns are specifically for afternoon sun-
synchronous orbits, which an ascending node in daytime, as used

FIGURE 6 |Maximum (A,D), minimum (B,E), and range (C,F) of sampled scattering angles for the Sun-Synchronous Orbit (SSO). Results for the 57° (500-kmA–C)
and 7° (50-km D–F) swath widths are shown on the top and bottom rows, respectively.
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here. For morning sun-synchronous orbits, which have cross the
descending node in daytime, the patterns are inverted in time,
i.e., with lowest maximum scattering angles seen in the Northern
hemisphere in the beginning of the year (not shown).

For the PO, Figure 7 shows a very different sampling variation
of the maximum, minimum, and range of scattering angles,
respectively, as a function of latitude and day of year. As with
Figure 6, this figure includes the scattering angle statistics for the
57° and 7° (500-km and 50-km) swath widths. Please note that the
y-axis range is different compared to Figure 6, since the PO
covers a smaller range of latitudes. Unlike for SSO, in the PO,
there is a cyclical variation in minimum and maximum scattering
angle and its range throughout the year. This cyclical behavior ties
back to the changes in mean LCT and SZAs throughout the year,
as shown in Figure 4. As discussed in Section 3, a full cycle takes
about 42 days for this particular precessing orbit leading to about
9 similar periods within a year. For the case with a 57° (500-km)
swath width, the maximum scattering angles sampled are above
155° for most of the year. However, on days of the year when the
LCT is near 6:00 p.m, or 6:00am, the maximum scattering angles
drop to below 130°. Note also that solar zenith angles during these
periods are generally also not considered suitable for aerosol and
cloud remote sensing (Figure 4). Similarly, the minimum
scattering angle and the range show a cyclical behavior. Note
that the minimum scattering angle is still always smaller than
120°. As a result, favorable viewing conditions for cloud and
aerosol remote sensing (with maximum scattering angles greater
than or equal to 155° and minimum scattering angles of 120° or
lower) occur about 55% of the daytime for the nominal 500-km

swath. The frequency of favorable viewing conditions is highest
around the equator.

For a polarimeter with a narrower swath of 7° (50-km), the
periods during which maximum scattering angles above 155° are
sampled are substantially shorter, while the periods with low

FIGURE 7 | Maximum (A,D), minimum (B, E), and range (C, F), of sampled scattering angles for the Precessing Orbit (PO). Results for the 57° (500-km
A–C) and 7° (50-km D–F) swath widths are shown on the top and bottom plots, respectively.

FIGURE 8 | Frequency of sampling maximum scattering angles at the
equator greater than the values on the abscissa for precessing orbits with
various inclinations (indicated by colors and symbols) and for instruments with
a 57° (500-km) or 7° (50-km) swath width, indicated by solid and dotted
lines, respectively. The 155° scattering angle is indicated with the grey bar for
reference.
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maximum scattering angles (e.g., below 155°) are substantially
longer. Furthermore, the minimum scattering angles sampled are
slightly increased. Hence, for the narrower 50-km swath,
favorable viewing conditions for cloud and aerosol remote
sensing occurs less than 40% of the time, thus reducing
aerosol and cloud retrieval capabilities compared to the wider-
swath instrument.

3.3 Scattering Angle Sampling: Variation
With Orbit Inclination
Results shown in Figure 7 are for a PO with inclination of 65.5°.
Lowering the orbit inclination reduces the latitudinal extent of the
coverage, while also changing the frequency of the cycles
occurring in the scattering angle sampling, according to Eq. 2.
Furthermore, to investigate how the frequency of scattering
angles suitable for aerosol and cloud polarimetry varies with
orbital inclination, Figure 8 shows the frequency of occurrence of
observing a maximum scattering angle (X, indicated on the
abscissa) as a function of both the instrument swath width
and the orbital inclination. This metric is computed as the
ratio of, e.g., all points indicated in Figure 7 with maximum
scattering angle greater than or equal to X to the total number of
observed points shown. It is thus a relative metric of the frequency
of observing at scattering angle ≥X to the total coverage of the
platform. Note that the minimal scattering angles are generally
below 120° so that the capability for aerosol and cloud
polarimetry is mainly determined by the maximum scattering
angle sampling only.

The beneficial aspects of the wider swath coverage are
apparent in Figure 8, where we show at the equator the
frequency of days where the maximum scattering angle
observed exceeds various thresholds. For the 65° inclination,
we find that the instrument observes scattering angles greater
155° for the narrow, 50-km swath, about 37% of the time,
increasing to about 54% of the time for the 500 km swath
width. The relative frequency of observing higher scattering
angles increases as the orbital inclination decreases. For
example, at 45° inclination the frequency of observing
maximum scattering angle in excess of 155° is about 53% of
the time for the 50-km swath and 70% of the time for the 500-km
swath. This sensitivity to inclination is because lower inclination
orbits are cycling through their precession periods more
frequently and so spending a lesser fraction of the time in the
unfavorable near-terminator portion of their cycles.

4 CONCLUSION

Based on our analysis, it can be seen that scattering angle statistics
observed by a multi-angle instrument for a given orbit are largely
determined by LCT, latitude and swath width. For a nominal
multi-angle instrument with a ±56.5° viewing angle range and a
swath width of 57°, we conclude that:

• the maximum scattering angles sampled varies primarily
with LCT and location across the swath;

• the minimum scattering angles sampled varies primarily
with SZA and thus with LCT, latitude, and day of year;

• scattering angle ranges suitable for aerosol and cloud remote
sensing are sampled at least somewhere across the swath at
most covered latitudes throughout the year, except for
situations of LCT in the early morning or late evening.

Relative to our nominal HARP-like instrument in the two
orbits presented in this study, the following instrument and
mission design criteria should be taken into consideration:

• decreasing the instrument’s along-track viewing angle range
primarily increases the observed minimum scattering
angles;

• decreasing the instrument’s swath width primarily decreases
the observed maximum scattering angles and therefore the
range of equator crossing times for which scattering angle
ranges suitable for aerosol and cloud remote sensing are
observed;

• changing the inclination of the precessing orbit will change
the latitudinal extent of coverage and the frequency of the
cycles occurring in the scattering angle sampling, according
to Eq. 2. The percentage of viewing conditions favorable for
aerosol and cloud polarimetry increases with a decrease of
inclination, because of a decreased portion of the overall
time spent near the terminator.

In this analysis, we considered the sampling of maximum and
minimum scattering angles anywhere in a 57°- or 7°-wide swath.
In the case in which the combined observations of a lidar and
polarimeter are considered, only a single track within the swath
would be taken into account. For example, when considering only
the sub-satellite track slightly less favorable results as those seen
for the 7°-wide swath are expected. We also note that we assumed
the instrument to be pointing straight down. For a sun-
synchronous orbit, scattering angle ranges suitable for aerosol
and cloud remote sensing are generally sampled in a specific part
of the swath depending on LCT. Hence, a narrow-swath
instrument could be tilted perpendicular to the flight direction
to select the optimal scattering angle sampling. For a precessing
orbit, a continuous adjustment of the telescope across-track tilt,
e.g., through a gimbal, would be required to select the optimal
scattering angle sampling for the varying LCT.

These calculations will aid in decisions for instrument design
and choice of orbit for development of next-generation observing
systems that include a polarimeter. Furthermore, they may also
inform users about the sampling of upcoming multi-angle
polarimeters. For example, the SPEXone will be deployed on
PACE and, although its swath is relatively narrow at about 8°, it
will sample scattering angle ranges suitable for aerosol and cloud
remote sensing for most sampled latitudes and days of the year
because of PACE’s SSO orbit with a LCT near 1:00 p.m.
Furthermore, 3MI will be on the Metop-SG series in a SSO
with a LCT near 9:30 a.m, but, as also concluded by Fougnie et al.
(2020), will generally sample scattering angle ranges suitable for
aerosol and cloud remote sensing because of its relatively
wide swath.
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Convective clouds serve as a primary mechanism for the transfer of thermal energy,
moisture, and momentum through the troposphere. Arguably, satellite observations
are the only viable way to sample the convective updrafts over the oceans. Here, the
potential of temporal derivatives of measurements performed in H2O lines (183GHz and
325 GHz) to infer the deep convective vertical air motions is assessed. High-resolution
simulations of tropical convection are combined with radiative transfer models to
explore the information content of time-derivative maps (as short as 30 s) of
brightness temperatures (dTb/dt). The 183-GHz Tb signal from hydrometeors is
used to detect the location of convective cores. The forward simulations suggest
that within growing convective cores, the dTb/dt is related to the vertically integrated
ice mass flux and that it is sensitive to the temporal evolution of microphysical
properties along the life cycle of convection. In addition, the area-integrated dTb/dt,
is related to the amount, size, and density of detrained ice, which are controlled by
riming and aggregation process rates. These observations, particularly in conjunction
with Doppler velocity measurements, can be used to refine these assumptions in ice
microphysics parameterizations. Further analyses show that a spectral sampling of the
183 GHz absorbing line can be used to estimate the maximum in-cloud vertical velocity
that is reached as well as its altitude with reasonable uncertainties.

Keywords: microwave radiometry, time-derivative, convective mass flux, deep convection, detection of convective
updrafts, synergy Doppler radar, passive microwave radiometer

INTRODUCTION

Importance of Convective Transport for Weather and Climate
Tropical convection plays a fundamental role in the climate system by transporting air, water, and
momentum from the lower layers of the atmosphere to the free troposphere and has been the subject of
numerous field experiments and modeling studies for decades (Houze, 2018). Despite these
comprehensive efforts, observations of vertical transport in deep convection over the tropical oceans
are simply not available. The lack of understanding of the convective updraft properties and their
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relationship to environmental factors limits our ability to represent
deep convection and its feedbacks in large scale circulation models.

Efficient vertical transport occurs in deep convective cells
embedded in organized meso-scale convective cloud structures
(Houze and Betts, 1981; Schumacher and Rasmussen, 2020). The
two-way relationship between deep convection and its large-scale
environment is hence complicated owing to this intermediate
agent, that both influences and is influenced by deep convection,
and its environment as well. This complexity is perhaps the
reason for sustained research despite half a century of
dedicated efforts (Tomassini, 2021).

Vertical transport of water permits the formation of large
upper level cloud decks that interact with the radiation, the
thermodynamics and the dynamics of the large-scale
environment in which they form. In return, the cloud mass
deposited aloft can feedback onto the initial causes that
triggered deep convection in the first place. In the simplest
conceptual models, the cloud deck, also known as the
stratiform anvil cloud, is associated with a mesoscale
circulation that can perturb the surface conditions and help
release instability for new deep convective cells to form and
contribute to feeding the cloud decks again (Wang et al., 2020). In
this simple view, deep convection is a process strongly coupled
with its cloud structure. Understanding of this coupling has
remained particularly stubborn to unravel despite significant
progress over the last decades (Houze, 2018). In particular, the
reasons for the observed duration of these convective systems are
still debated. From the earlier cold pools-deep convection
dynamical coupling theory (Rotunno et al., 1988), the
stratiform-cold pools connection (Lafore and Moncrieff, 1989)
to the role of radiation in sustaining the system duration (Roca
et al., 2020; Gasparini et al., 2021) to the aerosol invigoration
process (Seigel and Van Den Heever, 2013), a large suite of
candidate lead-processes are at hands. What these considerations
all have in common, is the need to couple the deep convection to
the cloud deck through, in short, an articulated water budget of
the anvil cloud (Redelsperger, 1997). The pathway from deep
convection to stratiform anvil mass can be quantified with the
convective mass flux. Elsaesser et al. (2021) recently proposed a
simple formulation of this relationship. Noting A the surface of
the cloud shield of the convective system, Ac the surface of the
convective part of cloud shield, Mc the convective mass flux and τ
the characteristic decay time, then the growth rate of the surface
of the cloud shield of the convective system can be linked to the
growth rate of the convective surface Ac and the vertical
convergence of the convective mass flux and reads:

dA

dt
≈
dAc

dt
− 1
ρ

dMc

dz
− A

τ
(1)

with Mc, the convective mass flux over an area that can be
spelled out

Mc � ρ σwc (2)
where ρ is the air density, σ the surface occupied by deep
convective cells and wc the areal-averaged vertical velocity
over the surface σ; the major difficulty is to specify the relative

contribution of σ and wc to Mc (Schubert et al., 2018). This
illustrates the importance of both the knowledge of the convective
surface and the convective vertical velocity to the cloud budget.
While recent investigations seem to favor convective surface
variability to explain the variability of cloud mass flux over
that of the vertical velocity in the tropics (Feng et al., 2012;
Kumar et al., 2015; Giangrande et al., 2016; Masunaga and Luo,
2016; Wang et al., 2020) strong scale dependence is also found
and a thorough assessment at the global scale is much needed.
Relative humidity in the troposphere also is impacted differently
by deep convection with different aggregated states (Bony et al.,
2020; Romps, 2021).

Observing the Dynamics of Deep
Convection
The role of field campaigns in the investigation of the properties
of storm and their control is unquestionable. From the GATE
experiment in 1974 that targeted oceanic convection over the
tropical Atlantic and its predictability, extensive multi-
instrumental campaigns have been conducted. Such campaigns
include (cf Houze, 2018): TOGA-COARE in 1992–1993 for the
documentation on ocean/atmosphere coupling, AMMA in
2006–2007 for the study of the West African Monsoon,
TWPICE in 2006 focusing on the tropical Warm Pool and the
Australian Monsoon, DYNAMO in 2011–2012 that deployed
over the equatorial Indian Ocean and looked at the Madden-
Julian Oscillation. The tremendous deployment of active, passive
and in-situ instruments during these 2-to-6 months field
experiments has been extensively used to develop a better
understanding on the micro- and macro-physical properties of
convection. Field campaigns are major opportunities to measure
vertical motion intensity using airborne instrumentation (Zipser
and LeMone 1980; LeMone et al., 1998), in spite of limitations due
to aircraft safety.

More recently, using profiling and scanning radars installed on
well-instrumented ground-based sites, population of convective
updrafts and downdrafts has been statistically characterized at
different locations (May and Rajopadhyaya 1999; Ray et al., 2012;
Giangrande et al., 2013, 2016; Kumar et al., 2015; North et al., 2017;
Kollias et al., 2018; Ovchinnikov et al., 2019;Wang et al., 2020). These
studies show that vertical velocity increases with altitude in spite of a
competition between entrainment and mixing with the environment
and hydrometeor loading that tends to slow the vertical velocity on
the one hand and latent heat release on the other (Zipser 2003). They
also demonstrate that the vertical mass flux is mainly controlled by
the updraft and downdraft core width. These long time series also
allow to study the sensitivity of the vertical mass flux to
environmental parameters (convective inhibition - CIN, convective
available potential energy—CAPE, for instance). Updraft size seems
to be strongly related to large scale vertical velocity and to the CIN,
whereas higher vertical velocities are observed in relatively dry
conditions in the low levels (Kumar et al., 2015; Giangrande et al.,
2016).

The quantitative documentation of the properties of
embedded deep convection and convective mass flux would
help to understand the coupling between deep convection and
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the associated cloud system. Some works already rely on
observations with short revisit time to investigate cloud
dynamics. Adler and Fenn (1979) demonstrated the use of
infra-red (IR, GOES satellite) imagers and their rapid-scan
modes (5min) onboard geostationary platforms to infer the
cloud top vertical velocity from the decreasing rate of the IR
measurements, assuming a moist adiabatic lapse rate, for a few
thunderstorms. This approach was expanded to MTSAT-1R
measurements by Hamada and Takayabu (2016) to study
cloud top vertical velocity during the growing phase of
convection. Low earth orbit (LEO) satellites have also been
analyzed in a similar method by Luo et al. (2014) who used
the close configuration (1–2min) of the infra-red imagers of the
A-Train to study the vertical velocity of convective tops.

As noted, this approach has been applied to IR imagers, which
limits the interpretations to cloud tops. In order to reach in-cloud
vertical velocities, microwave radiometers and radars in LEO are
the instruments to use. However, owing to their long wavelengths
(relative to visible light), such instruments must be placed on LEO
to achieve the necessary spatial resolution, which makes their
temporal sampling quite limited. Indeed, a single LEO instrument
will very rarely observe a weather system more than once during
the lifetime of the system. On the rare occasion that a single
instrument may revisit a storm on two consecutive orbits, the
visits are nevertheless separated by the typical amount of time it
takes the satellite to complete one orbit, i.e., ~ 90 min. During this
re-visit gap, the cloud will typically have undergone dramatic
changes, observed only by geostationary satellites orbiting at
much higher altitudes.

Recent technological advances have enabled the design of
miniaturized microwave instruments that are quite capable
and, at the same time, inexpensive enough to consider the
formation of a convoy of identical sensors in low-Earth orbit.

Several missions aiming at looking the fast changes of clouds
have been proposed in recent years with, for some of them, launch
of the demonstrator. For instance, the TEMPEST mission
(TEMPoral Experiment for Storms and Tropical systems, JPL/
NASA-Colorado State University; Reising et al., 2015;
Padmanabhan et al., 2020) proposes to deploy five Smallsats
flying 5 min apart to observe the global clouds and their transition
to precipitation with microwave sensors. Its demonstrator,
TEMPEST-D, successfully deployed from the ISS and operated
over 05/2018–07/2021. Rotation maneuvers of the spacecraft
allowed to approach the feasibility of the exploitation of
measurements of a same scene with a very short revisit time
(Schulte et al., 2020). The TROPICS constellation (Time-
Resolved Observations of Precipitation structure and storm
Intensity with a Constellation of Smallsats, GFSC/NASA-MIT
Lincoln Laboratory; Blackwell et al., 2018) will combine six
CubeSats distributed into three orbital planes for a 30min
revisit time and aims at providing microwave measurements
on the lifecycles of extreme meteorological events like storms
and cyclones. The test satellite TROPICS-Pathfinder was
launched on June 2020 and will be joined in 2022 by the rest
of the constellation. One can also mention the C3IEL mission
(Cluster for Cloud evolution, ClImatE and Lightning, CNES and
ISA; Rosenfeld et al., 2019), that focused on the 3D envelope of

clouds from stereocameras onboard two to three nanosats, taking
snapshots of the same scene every 20s at two to three different
viewing angles. Finally, the 10th Earth Explorer Mission of ESA
called Harmony will be a convoy of satellites carrying a multi-
beam IR instrument that will measure height-resolved cloud-top
movements.

A rather closer formation of satellites, separated in time by Δt
~ 1 min, would reach the temporal scale required to observe the
highly nonlinear cloud dynamics present in convective updrafts
(Haddad et al., 2017; Sy et al., 2017; Stephens et al., 2019). For
instance, Sy et al. (2017) have shown that pairs of Ka-band
profiling radars 90s apart would be able to resolve the dry air
mass flux and condensed-water flux above the melting level
(~5 km in tropical storms). The INCUS mission
(“Investigation of Convective UpdraftS”) relies on such a
constellation of 3 Ka-band radars accompanied by a
TEMPEST-D passive radiometer and has been selected
recently by NASA as part of its Earth Venture Program.

Inspired by these studies, the proposed C2OMODO mission
consists of a tandem of identical passive microwave radiometers
separated by less than 3min, that would provide the scientific
community with measurements of the convective mass flux Mc

and, thanks to the swath of the radiometer, to the surface of the
convective cells σ (Eqs. 1, 2).

In Section 2 we describe further the C2OMODO mission.
Section 3 is dedicated to unravelling the information content of
such an observing system thanks to several case studies, idealized
(3.1) or nature-like (3.2), to the promising synergies if a Doppler
radar is aligned with the tandem (3.3). Section 4 presents the
main lines of retrieval algorithms, from the question of the
detection of a convectively active column from d/dt
measurements (4.1) to operational “Level-2” products (4.2).
Section 5 draws the main implications of the C2OMODO
tandem.

THE C2OMODO “MINI-TRAIN”: OVERVIEW
OF THE INSTRUMENTS

C2OMODO stands for “Convective Core Observations through
MicrOwave Derivatives in the trOpics”. This project has been
conceptualized in 2018, following a round-table meeting that
focused on distributed small instruments (such as radiometers or
radars) as an emerging strategy to observe atmospheric dynamics
of clouds and storms at very fine temporal scales (Haddad et al.,
2017; Sy et al., 2017; Stephens et al., 2019).

The time-delayed observations are conceptually similar to
those obtained from ground weather radars, as well as
geostationary imagery, which readily show the evolution of
precipitation (in the radar case) or cloud tops (in the imagery
case) over minutes. The satellite convoys overcome the
limitations of geostationary images (sensitive only to the very
top of the clouds), and those of ground radar (not available over
the tropical oceans). While passive microwave radiometers tend
to be more sensitive to the total amount of condensed water in the
column (Crewell et al., 2009), multi-channel microwave
radiometry, with adequately selected frequencies, may be used
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to provide vertical information on hydrometeors (Evans et al.,
2012; Birman et al., 2017). Then if each satellite instrument is
sensitive to the 3-dimensional distribution of condensed water
within its field of view, the convoy is sensitive to the change in this
condensed water over the minute(s) separating the convoy
members.

The C2OMODO mission concept explores this time-
difference approach with passive microwave radiometers flying
30–180s apart. The time-lag between the two radiometers is part
of ongoing sensitivity studies and is not yet fixed. This is
illustrated on Figure 1 using simulations of the weather
forecast model AROME (Application of Research to
Operations at MEsoscale) of Météo-France. For this
illustration, the two passive radiometers provide the horizontal
map of the time difference in brightness temperatures
(henceforth Tb and dTb/dt) measured in a 183.31 ± 11 GHz
channel, and surround a 94 GHz radar looking at nadir,
reflectivity providing vertically resolved distribution of cloud
hydrometeors. The convective core sampled for this schematic,
associated with the highest values of reflectivities, is clearly visible
on the time-difference map and its horizontal structure reveals
patterns associated to the convective activity.

The two passive microwave radiometers inherit from the
SAPHIR moisture sounder on Megha-Tropiques (Brogniez
et al., 2013; Roca et al., 2015), which underwent technical
improvements to have a more compact (more receivers for the
same volume) and less energy-consuming instrument (Puech
et al., 2021), as well as from the ICI sounder onboard the
upcoming MetOP-SG (Thomas et al., 2012). This so-called
SAPHIR-New Generation (SAPHIR-NG) sounder will
observe the 183.31 GHz and 325.15 GHz strong H2O
absorption lines and will be completed by a window
channel at 89 GHz (Puech et al., 2021).

At these frequencies, the upwelling radiation from the low
troposphere is quite large, and the interaction with the icy
hydrometeors that accumulate in the clouds is mostly by
scattering. Therefore 183 GHz measurements are generally
used very successfully to detect deep convection and
overshoots (Burns et al., 1997; Greenwald and Christopher,
2002; Rysman et al., 2016; Chen and Bennartz, 2020; among
many others). Since the scattering is strongly dependent to the
size of the particle, measurements at 325 GHz will be sensitive to
smaller ice particles, thus providing complementary observations
to 183 GHz measurements during the formation and dissipation
of convection. Hence in presence of hydrometeors the intensity of
the depression in the Tb with respect to the Tb of the surrounding
clear sky is modulated by the concentration of hydrometeors in
the column.

A hyperspectral configuration is also currently considered as
an option for the 183 and 325 GHz channels. A reinforced
spectral sampling would be valuable for the vertical profiling
both for the water vapor estimates in clear sky and the profiling of
hydrometeors (Birman et al., 2017). Note that the added-value of
this hyperspectral sampling is not considered in the
present study.

PRELIMINARY INFORMATION CONTENT
STUDIES

This section presents information content studies based on
numerical models. An idealized simulation of a single
convective cell is first studied and used to test sensitivities to
microphysical properties, followed by nature-like simulations
covering large domains that convey a wide range of convective
activity. The complementarity of the C2OMODO tandem with a
Doppler radar is finally addressed with a case study from a large-
eddy simulation.

Idealized Study of Individual Convective
Cells
The Goddard Cumulus Ensemble (GCE) model was used to
conduct two idealized simulations, one with strong and one
with weak convection. Warm bubbles are set-up to trigger the
convection: a 10-km diameter bubble and peak temperature
perturbation of 1K for the strong case and a 3-km diameter
bubble and peak temperature perturbation of 3K for the weak
case. The characteristics of the GCE model are provided in
Appendix A.1. For each of the two idealized situations, four
simulations have been conducted: a “control” simulation, a
“graupel” simulation that produces less and smaller graupel; a
“+cloud ice” simulation that produces more pristine ice particles;
and a “graupel and +ice” simulation that combines the changes in
“graupel” and “+cloud ice”.

Time series of several parameters from these simulations are
shown in Figure 2.

Despite the perturbations to the microphysics there are only
minor (<10%) differences in the maximum and total condensate
at any given time step (Figure 2 b-c-e-f). This is because the

FIGURE 1 | schematic of a convoy of satellites carrying passive
microwave instruments providing the horizontal map. The map reveals the
intensity of in-cloud upward motion associated to condensed water from time
differences of the brightness temperature (in K, over dt = 30s) measured
at 183 ± 11 GHz. The vertical cross-section is the vertically-resolved
concentration of hydrometeors (reflectivity) as provided by a radar (in the
present case, the CloudSat radar at 94 GHz).
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instability-driven updraft dominates the condensation process;
changes in microphysical process rates affect the partitioning
among species, but not the total condensate. There is some
separation between experiments after the initial updraft (t >
30 min), where the general effect of the perturbations is to
reduce the maximum of ice water path (via reduction of
riming, henceforth IWP in kg/m2), but increase the total ice
condensate (by reducing the fall speed as more ice is present in
the slower-falling aggregates and cloud ice categories).

The eight GCE simulations were used as input to a radiative
transfer model to forward simulate the SAPHIR-NG channels
at the radiometer resolution and at 1-min time steps (cf
Appendix A.1 for details). Two variables were examined for
each channel: the minimum brightness temperature (Tbmin,
spatial minimum) and the Integrated Scattering Depression
(ISD). The ISD (in K.km2) is defined as the inverse area
integral of the Tb at time step t (Tb(t)) subtracted from the
mean background Tb at the first time step of the simulation,
prior to any condensation (Tb(t=0)):

ISD(t) � ∫∫(Tb(t�0) − Tb(t))dydx (in K.km2) (3)

The ISD is computed for each frequency. The time series of
Tbmin and its derivative dTbmin/dt are shown in Figure 3 for
two selected channels in the 183 and 325 GHz bands. These
channels were chosen for their similar weighting functions and
clear-sky Tb. Differences are therefore due to the frequency

dependence of the scattering properties of the various
hydrometeor species.

The initial pattern, for both frequencies and convective cell
strengths, is a rapid decline of Tbmin caused by the formation of
large quantities of condensate. Tbmin decreases sharply during the
initial period when IWP is increasing. There are some differences
between the 183 and 325 GHz frequencies: The magnitude of the
dTbmin/dt is higher and occurs earlier in time at the 325 ±
3.5 GHz channel compared to that of the 183 ± 2.8 GHz
channel. This is due to the contribution of supercooled liquid
water, which absorbs more strongly at 325 than 183 GHz, which
damps the scattering signal more strongly at the higher frequency
until the cloud fully glaciates. Thus, dTbmin/dt can be used to infer
the glaciation state of a convective plume. There is relatively little
sensitivity of Tbmin or of dTbmin/dt to the microphysics
perturbations, although the “+cloud ice” experiment did
consistently increase Tbmin at 325 GHz after the initial updraft
stage, due to the change in particle size distribution (smaller cloud
ice particles have a lower single scatter albedo than larger
aggregate or graupel particles).

The ISD and its time derivative d (ISD)/dt, can also be readily
estimated from C2OMODO simulated swath measurements. The
time series of these parameters for two selected channels with
similar clear-sky weighting functions so the differences can again
be attributed to the frequency-dependent scattering properties of
the condensed water species that are shown in Figure 2.

The ISD is, to the first order, a proxy for the total condensed
ice water (Figure 4), although some notable differences between

FIGURE 2 | Time series of the maximum updraft speed at four altitudes [in m/s, subplots (A,C)], maximum ice and liquid water paths (in kg/m2, subplots (B,E), and
total ice and liquid condensate mass [in kg, subplots (C,F)] for the strong (top) and weak (bottom) convection cell simulations and for the four microphysical situations.
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FIGURE 3 | Time series of minimum brightness temperature (Tbmin in K, subplots (A,C) and its time derivative (dTbmin/dt in K/min, subplots (B,D); note the change
in time scale) for the C3 (183 ± 2.8 GHz in red) and C8 (325 ± 3.5 GHz in blue) SAPHIR-NG channels. The right panels are temporal zooms of the left panels, covering the
period in grey shadings. Top row: strong convection; bottom row: weak convection. The line styles indicate the microphysics perturbation experiments (see Figure 2).

FIGURE 4 | Time series of Integrated Scattering Depression (ISD, in K.km2, subplots (A,C) and its time derivative dISD/dt (in K.km2/min, subplots (B,D) for the C4
(183 ± 4.9 GH, in red) and the C9 (325 ± 9.5 GHz, in blue) SAPHIR-NG channels. Top row: strong convection; bottom row: weak convection. The line styles indicate the
microphysics perturbation experiments (see Figure 2).
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frequencies and microphysics experiments can be observed. First,
the ISD at 325 GHz exceeds that at 183 GHz, due to the increased
scattering optical depth with frequency (Buehler et al., 2007). For
the two cases, after the initial updraft (~40min for the strong
convective case, ~30min for the weak convective case) the
325 GHz ISD continues to grow or reaches a steady state as
the anvil expands, even as the 183 GHz ISD begins to decrease.
This is a consequence of the nonlinear dependence of the Tb on
IWP. At 325 GHz, the scattering signal saturates at a lower IWP
than at 183 GHz and the size of the anvil (not the average IWP) is
the dominant factor in determining the ISD.

As with the Tbmin, the increase cloud ice experiment (”+cloud
ice”) had the most consistent effect in reducing the ISD by
partitioning the condensed ice into smaller particles with
lower single scattering albedos, without a compensating
increase in the areal coverage of the anvil. The time
derivatives of ISD appear to be more sensitive to the
microphysics perturbations at 325 GHz than 183 GHz and are
rather noisy on the 1-min scale, especially for the weak
convection, suggesting that a longer separation time (~5 min)
may be optimal for discerning the microphysical processes that

govern anvil evolution than the short (~1 min) timescales that
capture the processes in the initial updraft.

Nature-Like Situations Over a Large
Domain
In addition to the two idealized simulations described previously,
convective-scale simulations from the non-hydrostatic model
Meso-NH are used to complete the information content study
of the C2OMODO concept. One situation considers the
thunderstorm Hector that develops almost on a daily basis
during the period September - April over the Tiwi Islands
North of Darwin, Australia (henceforth HEC, initialized by a
radiosounding launched on Nov. 30th 2005 at 0000 UTC, Dauhut
et al., 2015) while the other situation is a radiative-convective
equilibrium ocean case (RCE) from the RCEMIP exercise (Wing
et al., 2020). The characteristics of Meso-NH and the details of the
simulations are provided in Appendix A.2. Again, the SAPHIR-
NG channels are simulated for each set of simulations. Figure 5
presents a snapshot of the Meso-NH HEC set of simulations in
the Tb space for two channels (C1 at 183.31 ± 0.2 GHzand C6 at

FIGURE 5 | Snapshots from the Meso-NH HEC simulations (model resolution at 1 km). Top panels show the Tb (K) for (A) C1 and (B) C6 channels, and bottom
panels show the dTb/dt for (c) C1 (183.31 ± 0.2 GHz) and (d) C6 (183.31 ± 11 GHz) channels, for a time interval of dt = 1min. On figures (C) and (D), the white areas are
masked using a deep convection criterion (following Rysman et al, 2016) as well as dTb/dt < 0 (see text for details).
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183.31 ± 11 GHz) and the corresponding time derivative dTb/dt,
for a 1 min time step (dt = 1 min).

The minimum Tbs for channels C1 (183.31 ± 0.2 GHz,
sounding in the upper troposphere) and C6 (183.31 ± 11 GHz,
reaching the top of the boundary layer) are colocated as expected,
the intensity of the depression with respect to the surrounding
clear sky is much stronger for channel C6 than for channel C1.
The maps of the corresponding dTb/dt seem to show that the
largest temporal variations are on the edges of the minimum of
the Tbs, linking to the anvil evolution as mentioned previously
(Section 3.1). It should be noted, however, that the true
radiometer resolution (5 km at 183 GHz at nadir, see Table 1)
will reduce the amplitude of the differences.

The relationship between the simulated Tbs and the model
variables is examined for both the HEC and RCE simulations.
The focus is on the center of two absorption bands defined from
the optional hyperspectral configuration at [183.31; 183.31 + 0.2]
= 183.41 GHz and [325.15; 325.15 + 0.2] = 325.25 GHz and for a
1-min delay of the satellite tandem.

To match the expected observational pixel resolution (see
IFOV on Table 1), the simulation outputs were averaged at the
6 km resolution at 183.31 GHz and 3 km at 325.15 GHz. As
underlined in the previous section, the Tbs are strongly
sensitive to IWP in deep convection. Two model variables
for which a relationship with the observations of the
C2OMODO concept is expected are thus examined: the
time derivative of IWP (dIWP/dt), and the IWP-weighted
vertical velocity (wice). More precisely, wice is computed
from the vertically integrated momentum of ice (VIM, in
kg/m/s) following

VIM(x, y, t) � ∫
z
ρ(z)rice(z)w(z) dz (in kg/m/s) (4)

wice(x, y, t) � VIM/IWP (in m/s) (5)
rice is the mixing ratio of the total ice (kg/kg), including cloud ice,
graupel and snow, ρ is the density of air (kg/m3), and w is the
vertical velocity (m/s). The variable wice thus characterizes the
vertical wind speed within the icy cloud weighted by the ice
content and integrated over the atmospheric column.

Results for the 183.41 GHz channel are shown in Figure 6. The
grey shading delineates the impact of a 1-K uncertainty on the Tb,
which can be considered as a best-case scenario. It is indeed
expected that the intercalibration and geolocalization between the
two radiometers will add noise to the dTb/dt. Only grid points
where the criterion Tb183.31-Tb193.31 > 0 is satisfied are kept, a
criterion successfully used by Rysman et al. (2016) among others
to detect deep convection. Due to stronger deep convection
activity for HEC than for RCE, the dTb/dt reaches larger
negative values in the former simulations (-0.2 K/s) than in
the later (-0.1 K/s). Consistently, the median value of dIWP/dt
extends up to about 40 g/m2/s (HEC) and 30 g/m2/s (RCE). For
both simulations, a linear relationship between dTb/dt and
dIWP/dt is found. The slope of the regression line taken as
the median is equal to -200 g/m2/K and the interquartile range
of the distribution remains close to the median. The good
agreement between HEC and RCE suggests that this
relationship is weakly dependent on meteorological conditions,
at least under tropical situations.

The variation of wice with dTb/dt is analyzed for a subset of
situations, keeping only the deep convective cores in growing
stage (Figure 6, right). For this, we consider only the grid points
where deep convection occurs (Tb183.31-Tb193.31 > 0, as above)
and local minima of Tb and dTb/dt in the horizontal space for the
183.41 GHz channel are found. These additional filters are
important because the temporal variation in IWP is due to ice
transport in both the horizontal and vertical direction and to
microphysical changes in the ice. Therefore, a relationship
between wice and dTb/dt is expected only in the deep
convective cores where the vertical transport of ice may be the
dominant contributor. As previously, a quasi-linear relationship
is found between dTb/dt and wice (Figure 6, right). This time, the
slope of the linear regression differs between the simulations:
200 m/K for HEC and -100 m/K for RCE. This difference may be
due to differences in the characteristics of deep convection
(strength, size, lifetime, . . . ) over land (HEC) and over ocean
(RCE). Further work is needed to evaluate this hypothesis.

Figure 7 presents the evolution of the same variables dIWP/dt
and wice with respect to dTb/dt for the 325.25 GHz channel. The
criterion for the detection of deep convection is adapted at this

TABLE 1 | Main characteristics of the SAPHIR-NG radiometer. DDR: Direct Detection Radiometer. DSB: Double-Sided Band.

Nb of channels Channels [GHz] Bandwidth [MHz] Effective IFOV [km]

1 (DDR) 89 (C0) 4000 ≤ 20, 10 km at nadir

6 (DSB) (rec. SAPHIR/Megha-Tropiques) ≤ 10, 5 km at nadir
183.31 ± 0.2 (C1) 2 x 200
183.31 ± 1.1 (C2) 2 x 350
183.31 ± 2.8 (C3) 2 x 500
183.31 ± 4.2 (C4) 2 x 700
183.31 ± 6.8 (C5) 2 x 1200
183.31 ± 11 (C6) 2 x 2000

3 (DSB) (rec. ICI/MetOp-SG) ≤ 6, 3 km at nadir
325.15 ± 1.5 (C7) 2 x 1600
325.15 ± 3.5 (C8) 2 x 2400
325.15 ± 9.5 (C9) 2 x 3000
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channel such as only gridpoints where Tb325.15-Tb335.15 > 0 are
kept. The range of dTb/dt goes down to -0.3 K/s. This value is
larger than that at 183 GHz because the 3 km resolution at
325 GHz allows to capture more spatial variability in the Tb
than the 6-km resolution. The median value of dIWP/dt ranges to
about 30 g/m2/s for both RCE and HEC. This contrasts with the
40 g/m2/s found for HEC at 183.41 GHz. The stronger absorption
of water vapor at 325.25 GHz could explain a lower sensitivity to
change in IWP. The time derivative of IWP, dIWP/dt, also varies
quasi-linearily with dTb/dt, with an interquartile range closely
following the median, but with a slope of the linear regression at
median value of about -100 g/m2/K. This value of the slope is half
the value obtained for the 183.41 GHz channel indicating less
sensitivity of the 325.25 GHz channel to the amplitude in dIWP/
dt. Obtaining information on the time change of the IWP at 3 km
resolution is interesting however, to get fine-scale variability.

The variation of wice with dTb/dt for the 325.25 GHz channel
is also shown (Figure 7, right). In these cases, a quasi-linear
relationship between the two variables can be found with a slope
around -40 m/K for HEC and -70 m/K for RCE. Again, the

difference in slope for HEC could be due to the contrast of
deep convection between land and sea, which requires
further study.

Synergy With Doppler Radar
As briefly mentioned previously, the C2OMODO tandem may
potentially fly in train with active instruments, in particular a
Doppler cloud radar. This section aims at exploring the
information content complementarity of both instruments.
While the major limitation of a spaceborne Doppler radar is
its limited swath, its main strength is its ability to resolve the
whole cloud vertical profile. The synergy with the C2OMODO
concept and its capability of characterising vertical mass flux at
fine resolution over a wide swath is then of particular interest.

This synergy is studied here by simulating a spaceborne
35.5 GHz Doppler radar track. This simulated transect is
computed from the Meso-NH RCE runs at 200 m horizontal
resolution (large-eddy simulation, see Appendix A.2) The
spaceborne Doppler radar simulator (Kollias et al., 2014;
Kollias et al., 2018) estimates the total backscatter

FIGURE 6 |Histogram of dIWP/dt (left, in g/m2/s) and wice (right, in m/s) as a function of dTb/dt for the 183.41 GHz channel, at 6 km resolution andwith a time delay
of the satellite tandem of 1 min. The bin interval is 0.02 K/s. The median (bold lines) and the interquartile ranges (shadings) are shown for HECTOR (HEC/green) and RCE
(blue). The grey band delimits a dTb/dt uncertainty of 0.017 K/s, corresponding to a 1 K uncertainty in the Tbmeasurement for a 1 min time-delay between the satellites.
Results are shown for gridpoints verifying the deep convection criterion at 183 GHz (see text), restricted to growing cores for wice (right).

FIGURE 7 | Same as Fig. 6, but for the 325.25 GHz channel and at 3 km resolution.
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(unattenuated radar reflectivity factor, dBZ), gaseous and
hydrometeor signal extinction (dBZ/km) and mean Doppler
velocity. T-matrix scattering is used for the cloud, drizzle, and
rain hydrometeor species, and the Self-Similar Rayleigh-Gans
Approximation (SSRGA, Hogan and Westbrook, 2014) is used
for ice and snow particles. Hail and graupel particles are assumed
to have spherical shape with different densities (0.9 and 0.4 g/cm3

respectively). A realistic Earth’s surface echo (Lamer et al., 2020;
Burns et al., 1997) is introduce to account for missed detections
near the Earth’s surface and for estimating PIA estimates. These

radar observables are used as input to a comprehensive
spaceborne Doppler simulator that estimates the raw
simulated spaceborne radar signals. The radar simulator
accounts for the instrument sampling geometry (antenna and
range weighting function, along track integration), receiver noise
and platform motion.

Figure 8 shows the simulated 35.5 GHz reflectivity and the
corresponding Doppler vertical velocity, as well as the associated
183 GHz Tb and their 1-min temporal derivatives centred over
the radar observations. This configuration would correspond to

FIGURE 8 | Attenuated radar reflectivity (Z, in dBZ, top panel) and corresponding mean Doppler velocity (Vd in m/s, middle panel) without satellite motion effects at
35.5 GHz emulated from the 200 m resolution RCE simulation. Upward vertical velocity (in m/s) and water mass flux (in g/m2/s) are respectively superimposed on the two
top panels as contour levels. The two lower panels show the Tbs and dTb/dt of the six channels sampling the 183.31 GHz line.
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two radiometers flying respectively 30s before and after a
35.5 GHz radar. All these simulated instruments have been
averaged on a common 2.4 km resolution corresponding to
the radar resolution and a sample is provided every kilometre.

This simple version of a C2OMODO/Doppler radar simulator
shows that the depression in the Tb with respect to clear sky is of
the same order of magnitude whatever the intensity of convection
(compare at x = 20 km and x = 200 km). This saturation effect
limits the retrieval of the intense vertical transport of
hydrometeors by convective motions. As underlined in the
previous sections, the dTb/dt encompasses convective strength,
which allows for accurately locating the convective and
intensifying cores in a wider swath than what is possible with
a radar. Indeed, the lower values in dTb/dt are associated to the
atmospheric columns where the more intense vertical motions
and condensed mass fluxes are observed. At each altitude, during
this short 1-min time interval, hydrometeors are produced
through microphysical processes or transported from below
(modulus their fall speed) analogous to a Doppler velocity
(Stephens et al., 2019).

Figure 9 shows the correlation at each altitude of the radar
Doppler velocity Vd with the dTb/dt for the six 183 GHz channels
for the situations of deep convection identified using the

detection criteria described in Section 3.3. The highest values
of correlation (that can be higher than 0.8) are reached at different
altitude according to the channel because of their different
weighting functions. Under clear sky situations, the peaks of
183 GHz channels are between 7 (183 ± 1 GHz) and 2 km (183 ±
7 GHz) altitude, the actual altitude depending on the water vapor
content (Chen and Bennartz, 2020), with upward shifts in cloudy
situations. The correlations displayed in Figure 8 reach the
highest values close to the altitude of the peak of the
weighting functions. This suggests that the signal that is
contained in the Doppler velocity is also contained in the
dTb/dt of the passive instruments.

The scatter plots of Figure 9 show the dTB/dt of the C2 (183 ±
1.1 GHz), the C3 (183 ± 2.8 GHz) and the C5 (183 ± 6.8 GHz)
SAPHIR-NG channels as function of the radar Doppler velocity
vd averaged in 1 km-depth layers roughly centered around the
peaks of the weighting functions. For these three layers, a linear
relationship is found between the dTB/dt and the layer-averaged
Vd: a reinforcement of the upward mass flux translates into a
higher IWP and thus a larger reduction of the Tb (Chen and
Bennartz, 2020).

This is exactly where the synergy between the two sets of
observations lies: the vertically-resolved profiles of Doppler

FIGURE 9 | Correlation coefficient computed at each altitude between radar Doppler velocity and temporal derivatives of the six SAPHIR bands sampling the
183 GHz water vapor absorbing band for convective profiles (first vertical panel). Brightness temperature temporal derivatives (dTb/dt in K/s) as a function of Doppler
velocity Vd (in m/s) for convective profiles in 1 km-depth altitude layer centered on the peaks of the weighting functions (second vertical panel) for SAPHIR channels C2,
C3 and C5. The black lines are linear regressions and the associated R2 are provided.
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vertical velocity provided by the radar can be extrapolated to the
swath of the C2OMODO passive radiometers to obtain layer-
averaged upwardmotion of ice particles as well as their horizontal
extent.

TOWARDS A RETRIEVAL ALGORITHM

The previous sections have shown that there is a link between the
vertical mass flux in a convective atmosphere and passive
microwave observations spaced in time by a short delay dt.
Here we draw the main lines of the data processing involving
both the observations and their time-derivatives. Such data
processing needs to quantify the extent to which the vertical
transport in a cloudy column over a discrete time interval dt can
be characterized from a set of measurements O = [ Tb1(t),. . .,
TbN(t), Tb1 (t + dt), . . ., TbN(t + dt) ] measured in N channels at
the initial and final times t and t + dt.

A straightforward approach is to proceed in two steps:

1. Quantify how well the observational setup can detect if the
column has any significant vertical transport in the first
place—this is the detection step;

2. Then, and only for those columns where vertical transport is
detected, quantify how well the coarse vertical characteristics
of the transport can be retrieved. The characteristics will
necessarily be coarse, because the passive measurements
have already been shown to be sensitive to the coarse-scale
vertical distribution of condensed water (Jiang et al., 2017;
Chen and Bennartz, 2020) without the ability to resolve
changes at resolutions on the order of 1,000 m or finer.

Detection of a Convectively Active Column
The first step requires the derivation and evaluation of a detector.
Starting with a set of convection-permitting model simulations
(CPMs), conducted at horizontal resolution sufficiently fine to
represent the vertical transport reasonably accurately (i.e., on the
order of 100 m), one can try to derive the joint distribution pup of
one’s observations O = [ Tb1(t), . . ., TbN(t), Tb1 (t + dt), . . .,
TbN(t + dt) ] conditioned on there being a significant vertical
transport in the column (subscript “up”), and quantify how
different this distribution is from the joint distribution pnot
when there is no significant vertical transport in the column

(subscript “not”). For simplicity, one can define “there is a
significant vertical transport in the column” to mean that
there is a height h in the column where the vertical velocity
w(h) exceeds a threshold wmin and where the condensed water
content q(h) also exceeds a threshold qmin. Each distribution can
be approximated by a Gaussian, so that one only needs to
compute the two conditional means Om,up = E{O | updraft}
and Om,not = E{O | no updraft}, and the two corresponding
conditional covariance matrices Cup = Cov{O | updraft} and Cnot

= Cov{O | no updraft}.
Here our CPMs is the WRF model which was set-up to

simulate Hurricane Isabel at the expected radiometer
resolution. The details of the model are provided in Appendix
A.3. One half of the simulations obtained during the first 10 min
of the run was used as the reference and one half of the
simulations in the latter half of the run was used to evaluate
the retrieval errors. The columns produced by our CPM have
been analyzed for different combinations of wmin = 1, two or 3 m/
s and qmin = 0.05 or 0.2 g/m3. Only three channels are retained for
simplicity: at 166 GHz (a window channel very similar to the C6
channel of SAPHIR-NG), 184 GHz (close to C2), and 190 GHz
(close to C5). The results are summarized in Table 2.

This observational configuration allows to detect correctly
the presence of a significant updraft in the column more than
70% of the time. In the case of the lower detection threshold
(qmin = 0.05 g/m3) the probabilities of detection reach higher
values (>80%). The false-alarm rates seem to stay the same
regardless of what is chosen for qmin at a given vertical velocity
wmin. These results highlight that passive microwave
radiometers aligned in a convoy separated by a short time
(~1min) can achieve a success rate in excess of 80% for the
identification of convective updrafts.

The approach to evaluate the detection can be used to
quantify the sensitivity of the observations to the coarse
vertical characteristics of the underlying updraft. To the
extent that the prototypical updraft, as a function of
height, should start with w = 0 at the lowest level (by
definition) increasing to a maximum value wmax somewhere
in the column and then decreasing down to 0 past the top of
the cloud, it is not unreasonable to try to determine the value
wmax along with the height hmax at which it is achieved. To
determine how sensitive the observation vector O is to the pair
(wmax, hmax), one can start by partitioning the two-
dimensional (wmax, hmax)-space into a set of contiguous

TABLE 2 | Probabilities of detection/false-alarm of non-shallow convective core from measurements of a pair of radiometers, according to different minimum thresholds in
condensed water qmin and vertical velocities wmin.

Minimum Threshold in
Condensed Water qmin

Minimum Threshold in
Vertical Velocity wmin

Probability of Detection Probability of False-Alarm

0.05 g/m3 1 m/s 0.8522 0.3123
2 m/s 0.8352 0.2051
3 m/s 0.838 0.1556

0.2 g/m3 1 m/s 0.7149 0.3149
2 m/s 0.7227 0.2259
3 m/s 0.7255 0.1649
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tiles, indexed by a pair of indices (i,j) where i indicates the
discrete interval of values of wmax and j the discrete interval of
values of hmax. The CPMs columns that fall in each tile can
then be used to approximate the conditional distribution pi,j
of O in that tile, namely by considering that pi,j is normal and
hence completely determined by the conditional mean mi,j = E
{O | the underlying column is in tile (i,j)}and the conditional
covariance Mi,j = Cov{O | the underlying column is in tile
(i,j)}, which can be readily computed given the columns in
each tile. Armed with these distributions, i.e. the conditional-

mean vectors mi,j and conditional-covariance matrices Mi,j,
one can easily determine which tile a given arbitrary
observation O “belongs” to: indeed, O is most likely to be
from the population (i,j) for which pi,j(O) > pi’,j’(O) for all
other (i’,j’). In other words, for a given observation O one can
compute the values of all the conditional distributions pi,j(O)
and then choose the one with the largest value as the
distribution that O most likely belongs to—and thereby
attribute to O the value of (wmax, hmax) in that maximum-
likelihood tile. Rather than stopping at the mean value of

TABLE 3 | Root-mean-square errors on wmax (in m/s) and hmax (in km) for different tiles of the space (wmax, hmax).

Interval on hmax <6.35 km 6.35–7.75 km 7.75–9.25 km 9.25–10.5 km >10.5 km

Interval on wmax

wmax <2 m/s 1.842 2.972 3.872 5.161 4.842
2–4 m/s 1.461 1.490 2.355 3.396 3.640
4–6 m/s 1.849 1.593 1.021 1.838 2.374
6–8 m/s 2.994 3.136 2.099 0.932 1.028
>8 m/s 4.909 6.930 5.336 3.9566 2.711

hmax <2 m/s 3.233 1.438 2.421 2.574 3.421
2–4 m/s 2.039 0.831 1.133 2.049 3.459
4–6 m/s 2.320 0.996 1.038 2.011 3.140
6–8 m/s 2.670 1.058 0.976 1.469 2.380
>8 m/s 2.328 1.326 0.742 1.669 1.509

FIGURE10 | Six examples of profiles of vertical mass flux retrieved the Tbs obtained at t and t + dt: the Tbs are used to estimate wmax and hmax, which are combined
to the cloud top height (CTH) and the top three principal components of each profile obtained from a PCA (see text for details). The blue curve is the original profile, and
the red curve is the reconstruction of that profile using only its top three principal components. The black curves are the profiles retrieved from wmax, hmax and CTH.
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(wmax, hmax) in that tile, we derived a linear regression for
(wmax, hmax) in terms of the entries of O, for each tile. The
resulting estimate of wmax(O) and hmax(O) can then be
compared with the true values for the column, to quantify
the error in this simple characterization.

In a nutshell, we first compile a reference database D of stormy
columns and we partition the database D into tiles Di,j according to
the true values of (wmax, hmax), so that in real time, given an
observation vector O, we can calculate the different probabilities
pi,j(O) of observing O if the truth was in either one of the tiles and
then select the tile for which this probability is the largest: that is the
tile to which Omost likely “belongs” and therefore the mean of wmax

and hmax in that tile are the values that we associate as the retrieval for
the observed O. Table 3 summarizes the results with root-mean-
square errors (rmse).

The values of rmse for wmax are highest for the slowest (<2 m/
s) and fastest (>8 m/s) updrafts, whatever their altitude in the
column. In between, the linear regression established from the
observation vector O allows to estimate the maximum vertical
velocity wmax for each of the pre-defined atmospheric layers with
reasonably small uncertainties. In parallel, this detector can also
attribute with a good accuracy the altitude hmax of wmax for each
layer, thus enabling to determine vertically the altitude of
maximum velocity within the column.

The estimates of wmax and hmax, together with the estimate of
the cloud top height (CTH), defined as the maximum height for
which q > qmin, provide a coarse description of the vertical shape
of the vertical transport of mass. Hence, using wmax, hmax and
CTH as well as the top three principal components of the profiles
computed from a Principal Component Analysis onto the
reference database D (gathering the stormy columns only),
one can reconstruct the profile of vertical transport. Examples
of reconstructed profiles of mass flux are presented on Figure 10
and compared with the original ones. As illustrated the retrieved

profiles are not perfect replicas of the originals, but the
discrepancies follow the errors summarized in Table 3.

Development of “Level-2” Geophysical
Products
These information content studies make it possible to fully
explore the swath of the C2OMODO concept to infer the
upward motion of ice within convection, through the
development of a retrieval method. Here we present an
insight of such retrieval, as a first stage of future Level-2
products derived from time-differences of microwave Tb.

Both machine learning or deep learning methods are well suited
for multi-variate retrievals (Aires et al., 2011; Sivira et al., 2015). For
the sake of simplicity in this overview paper on the C2OMODO
mission, we focus on a retrieval based on full convolutional neural
networks (also called U-Net, Ronneberger et al., 2015). Such
approaches, adapted to image detection and classification, have
been recently applied very successfully to highly resolved satellite
images and the retrieval of parameters like surface winds (Shen et al.,
2019) or rain rates (Veillette et al., 2018; Choi and Kim, 2019;
Sadeghi et al., 2020; Duan et al., 2021). Basically, the architecture of
U-Net is made of a series of blocks of convolutional functions that
detect the spatial structures of the input image and encode them into
feature representations at different spatial resolutions. The decoder
part of the U-Net projects the features that have been detected into
the original image. The advantage of deep learning methods over
traditional (e.g. Bayesian) methods lies a lot on the learning of the
spatial structures, not just on the signal itself.

The baseline simulation of HEC discussed above underwent
slight perturbations to increase the size of available simulations
(increases of 10% RH to 40% RH with or without wind, yielding
to 10 different versions of HEC). Each one of the simulations
underwent a procedure of data augmentation with a random

FIGURE 11 | (A) Vertically integrated ice mass flux (VIM, kg/m/s) as simulated by MESO-NH for a snapshot of the HEC set of simulations. (B)Meso-NH VIM (x-axis)
versus predicted VIM (y-axis) for the filtered deep convective situations within the entire validation dataset. The Pearson correlation coefficient (R), root-mean-square error
(RMSE) and mean bias (MBE) are indicated. The color scale for the scatter plot represents the normalized density of data, in log scale.
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horizontal and vertically flipping to prevent the U-Net from just
learning the position of the spatial structures within the maps.
The training and prediction stages use these 10 available versions
of HEC, through cross-validation procedure: nine out of 10 are
used for the training (80%)/validation (20%) steps while the last
one is dedicated to test the retrieval. A gradient descent is used to
update the weight during the training while the optimization
method is ADAM (Kingma and Ba, 2014). The deep convection
criteria defined above (Tb183.31-Tb193.31 > 0, see Sect 3.3.2) is
applied to all the simulations, in order to focus on the learning of
deep convective structures and not the surrounding clear air.

For the present case, which is purely a demonstration, we
make use of the (Tb, d Tb/dt) variables of the six channels at
183 GHz and the three channels at 325 GHz, without the
hyperspectral option. A U-Net is thus trained on this subset of
18 variables (dt = 1min) to learn their non-linear relationships
with the vertically integrated ice mass flux (VIM, Eq. (4)). The
results of the VIM retrieved from this U-Net are illustrated in
Figure 11 as a demonstration. The map (Figure 11A) shows the
structure of the convective systems as defined from the VIM
variable for one time step of HEC.

The comparison of the VIM provided by MESO-NH and the
predicted VIM from the U-Net for the full set of the validation
dataset is presented on Figure 11B. The U-Net algorithm
performs already really well for the retrieval of the VIM
parameter with a good correlation (0.72), a small bias
(11.56 kg/m/s) and a quite reasonable RMSE (76.88 kg/m/s).
One can also notice a slight tendency to underestimate the
large values of VIM. This most certainly comes from the
definition of VIM which can lead to values near 0 kg/m/s
when there are both downdrafts and updrafts in the column,
even if there is a large amount of ice. In such situations the U-Net
model learns the relationship between the Tbs and VIM with
some complicated situations where the Tb are low (near 130 K),
associated to large amount of ice in the column, whereas the VIM
is small.

Of course, the retrieval approach can be refined and better tuned
to the information content of the C2OMODO tandem. Several factors
can improve the estimations and are currently under study: the use of
the hyperspectral option mentioned above; the refinement of the
criteria to detect deep convection; an increase of the dataset used for
the U-Net training; a more sophisticated architecture thanU-Net; the
retrieval of the vertical ice mass flux profile instead the integrated
column in order to separate downdraft and updraft regions. The
retrieval of the pairs (wmax; hmax) is also under study.

SUMMARY AND WAY FORWARD

Measurement from passive radiometers, organized in a convoy
with very short revisit-time Δt ~ 1-min, can be smartly used to
look at the fast changes that occur within the updrafts that
characterize deep convection.

Within the current trend in miniaturized instruments (active/
passive) on Smallsats, the C2OMODO mission proposes to
exploit the information content of microwave measurements
at 183 and 325 GHz and their time-derivatives. Numerical

models were used to perform idealized simulations of a single
convective cell as well as nature-like simulations covering large
domains to look at a wide range of convective activity. These
simulations were used to infer the information content of the
C2OMODO mission. A third simulation involved a Doppler
nadir-viewing radar (35.5 GHz). From these preliminary
studies, several aspects can be drawn from the set of
observations (Tb, dTB/dt) provided by the C2OMODO payload:

- the time-derivative dTb/dt at both 183 and 325 GHz can be
used to infer the glaciation state of convection via the signature
of IWP at these two frequencies that reflects the microphysical
changes during the development of convection;

- the relationships between upward ice mass flux and dTb/dt
seem weakly dependent on the weather conditions, at least
in our set of tropical experiments;

- the maximum vertical velocity reached within a convective
atmospheric column, as well as its height can be estimated
with a small error, depending on the range of velocity
(smaller error for higher speeds) and on the height (more
or less close to the ground).

- the vertical information included within the Tb and dTb/dt,
via the weighting functions of the channels can be related to
the vertically-resolved profiles of vertical velocity from
nadir-viewing Doppler radar, thus showing a path of very
strong synergy between C2OMODO and a Doppler radar.

Such new set of observations can be explored to dig further
into the physics of deep convection and its place within the
energy and water cycle. Emerging global kilometer-scale
models are now anticipated for both climate and forecast
applications (Neumann et al., 2019; Bauer et al., 2021). The
C2OMODO observations together with the various
innovative satellite missions under development will bring
an invaluable and much needed observational constraint to
help improving these models that suffers from long enduring
uncertainty on the vertical mass flux and vertical velocity
(Varble et al., 2011; Marinescu et al., 2021).
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Polarimeter + Lidar–Derived Aerosol
Particle Number Concentration
Joseph S. Schlosser1, Snorre Stamnes2*, Sharon P. Burton2, Brian Cairns3, Ewan Crosbie2,4,
Bastiaan Van Diedenhoven5, Glenn Diskin2, Sanja Dmitrovic6, Richard Ferrare2,
Johnathan W. Hair 2, Chris A. Hostetler 2, Yongxiang Hu2, Xu Liu2, Richard H. Moore2,
Taylor Shingler2, Michael A. Shook2, Kenneth Lee Thornhill 2,4, Edward Winstead2,4,
Luke Ziemba2 and Armin Sorooshian1,6,7*

1University of Arizona, Department of Chemical and Environmental Engineering, Tucson, AZ, United States, 2NASA Langley
Research Center, Hampton, VA, United States, 3NASA Goddard Institute for Space Studies, New York, NY, United States,
4Science Systems and Applications, Inc., Lanham, MD, United States, 5Netherlands Institute for Space Research, Utrecht,
Netherlands, 6University of Arizona, James C. Wyant College of Optical Sciences, Tucson, AZ, United States, 7University of
Arizona, Department of Hydrology and Atmospheric Sciences, Tucson, AZ, United States

In this study, we propose a simple method to derive vertically resolved aerosol particle
number concentration (Na) using combined polarimetric and lidar remote sensing
observations. This method relies on accurate polarimeter retrievals of the fine-mode
column-averaged aerosol particle extinction cross section and accurate lidar
measurements of vertically resolved aerosol particle extinction coefficient such as
those provided by multiwavelength high spectral resolution lidar. We compare the
resulting lidar + polarimeter vertically resolved Na product to in situ Na data collected
by airborne instruments during the NASA aerosol cloud meteorology interactions over the
western Atlantic experiment (ACTIVATE). Based on all 35 joint ACTIVATE flights in 2020,
we find a total of 32 collocated in situ and remote sensing profiles that occur on 11
separate days, which contain a total of 322 cloud-free vertically resolved altitude bins of
150m resolution.We demonstrate that the lidar + polarimeterNa agrees to within 106% for
90% of the 322 vertically resolved points. We also demonstrate similar agreement to within
121% for the polarimeter-derived column-averaged Na. We find that the range-normalized
mean absolute deviation (NMAD) for the polarimeter-derived column-averaged Na is 21%,
and the NMAD for the lidar + polarimeter-derived vertically resolved Na is 16%. Taken
together, these findings suggest that the error in the polarimeter-only column-averaged Na

and the lidar + polarimeter vertically resolved Na are of similar magnitude and represent a
significant improvement upon current remote sensing estimates of Na.

Keywords: RSP, HSRL-2, column-averaged Na, vertically resolved Na, AOD, ACTIVATE, EVS-3, aerosol

1 INTRODUCTION

Aerosol particle number concentration (Na) is an important aerosol microphysical property for
many applications including air quality and aerosol–cloud interactions. Historically, Na has been
difficult to retrieve from remote sensing measurements that are sensitive to the aerosol scattering
cross section, which scales with Na to the first power and particle diameter (D) to a higher power.
Thus, uncertainty in the aerosol size distribution translates directly into a much greater uncertainty
in the retrieved Na than would be the case when trying to retrieve the higher order moments of the
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aerosol population (e.g., surface area and volume) (Knobelspiesse
et al., 2011; Georgoulias et al., 2020). While still limited to
optically-active particles (i.e., D ≳ 150 nm), the combination of
next-generation polarimeter and lidar measurements makes the
retrieval of Na possible. First, multi-angle, multichannel
polarimeter observations, such as those from the research
scanning polarimeter (RSP), allow for accurate retrieval of
column-averaged fine- and coarse-mode aerosol properties
(Cairns et al., 1999; Stamnes et al., 2018). Second,
multiwavelength high spectral resolution lidar (HSRL-2)
measurements provide accurate, vertically resolved
measurements of aerosol extinction and depolarization (Hair
et al., 2008). The HSRL-2 observations also provide accurate
(within ~30 m) retrieval of the mixed layer height (MLH, Scarino
et al., 2014).

A previous study demonstrated a median relative bias between
HSRL-2 lidar- and in situ–derived Na of 33% and 47%; the lidar-
derived Na was retrieved by inverting HSRL-2–only aerosol
products to produce vertically resolved Na (Sawamura et al.,
2017; Müller et al., 2019). In this study, we demonstrate a
simple yet powerful method that uses combined lidar and
polarimeter aerosol products to derive vertically resolved Na in
the troposphere that has a median relative bias of 30%. This lidar
+ polarimeter method has the benefit of being able to rapidly take
advantage of column-averaged fine-mode aerosol cross section
retrieved by polarimeters such as the RSP and collocated lidar
measurements of aerosol extinction coefficient at 532 nm from
HSRL lidar such as the HSRL-2 and HSRL-1. However, the two
approaches are complementary, particularly since HSRL-2–type
lidar with an added 355 nm channel are capable of retrieving the
vertically resolved aerosol effective radius, which is one of the
main parameters that determines the aerosol extinction cross
section, and can be used together with the column-averaged fine-
and coarse-mode effective radii retrieved by polarimeters such as
RSP to correct the column-averaged aerosol extinction cross
section for vertical changes due to changes in aerosol size.
Since the lidar + polarimeter method presented in this study
requires only profiles of the extinction coefficient at 532 nm, it
can be readily applied to lidar + polarimeter data sets that have
high spectral resolution capability at 532 nm, such as the NASA
airborne HSRL-1 and HSRL-2 lidar, and the HSRL-1–type lidar
system that will be onboard the future NASA atmosphere
observing system (AOS) mission that is expected to launch
by 2030.

Both aerosol index (AI) and aerosol optical depth (AOD) are
commonly used as proxies for vertically variable cloud
condensation nuclei (CCN) concentrations to quantify
aerosol–cloud interactions, but there are limitations to using
such proxies. The aerosol index convolves the Na, size, single-
scattering albedo, and complex refractive index into one number,
and the accurate retrieval of AI can be subject to accuracy issues
depending on which wavelengths are used (Buchard et al., 2015;
Hammer et al., 2016). Furthermore, the relationships between
AOD (or AI) and cloud drop number concentration (Nd) in pre-
industrial and present-day conditions are different, whereas the
relationship between CCN and Nd is similar in both of these
periods (Gryspeerdt et al., 2017; Grosvenor et al., 2018). It is

therefore highly desirable to use observational data to retrieve an
aerosol proxy that is as close to CCN as possible since such
relationships are expected to be more robust than those using
more distant proxies such as AOD and AI (Shinozuka et al., 2015;
Hasekamp et al., 2019). A significantly more direct proxy for
CCN is the vertically resolved accumulation mode Na.

There have only been a limited number of aerosol–cloud
interaction studies that are historically focused on the western
North Atlantic Na (Sorooshian et al., 2020), but its gradients of
low to high aerosol number concentrations provide an excellent
environment to demonstrate the capability to remotely sense Na

(Quinn et al., 2019; Dadashazar et al., 2021b,a). For the majority
of the year, the western North Atlantic’s persistent cloud cover,
only temporarily interspersed with clear-sky conditions of broken
cloud fields, makes passive remote sensing measurements of
aerosol properties in this region very challenging (Feingold,
2003; Braun et al., 2021; Painemal et al., 2021). Methods to
process polarimeter and lidar data that perform well across the
extreme situations encountered in the western North Atlantic
may be expected to work well globally. For this study, we use
measurements from the first two deployments of ACTIVATE
in 2020.

The first and second ACTIVATE deployments were carried out
from 14 February to 12 March 2020 and from 13 August to 30
September 20, respectively. ACTIVATE features a unique data set
collected during 35 joint science flights with two aircraft flying in
synchronous flight patterns (Sorooshian et al., 2019). One of the
two ACTIVATE aircraft, a Beechcraft King Air, was collecting
remote sensing data (i.e., lidar and polarimetry) while flying at high
altitudes between 8 and 9 km. Simultaneously, the second aircraft, a
HU-25 Falcon, was collecting in situ data while operating between
the ocean surface and the top of the PBL. Throughout ACTIVATE,
these two aircraft operated with close spatiotemporal proximity
(within 6 min and 15 km) to each other whenever possible.

The experimental design and study region of ACTIVATE offer
an ideal opportunity to evaluate the reliability of the novel
vertically resolved Na developed in this work. First, in Section
2, we present the instrumentation and corresponding
measurements used from the each of the two aircraft to both
produce and validate vertically resolved Na. In Section 2 we also
present the formulation for deriving vertically resolved Na from
1) column-averaged fine- and coarse-mode aerosol particle
extinction cross section (σext) from the polarimeter and 2) the
total aerosol particle extinction coefficient (αext) from the lidar.
Next, we describe the processing of the in situ data that we use to
validate the novel Na product presented in this work. After
describing the data processing and collocation methods, we
show results of the in situ validation of this novel vertically
resolved Na performed using case studies that have acceptable
collocation and environmental conditions in Section 3. Our
conclusions for this method are summarized in Section 4.

2 METHODOLOGY

A glossary of all acronyms and symbols used in this study is
provided in Table 1.
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2.1 Study Region Description
Figure 1 demonstrates the spatial coverage that was observed
during the first two deployments of ACTIVATE. The
ACTIVATE study region is characterized as predominately a
marine environment impacted by anthropogenic continental
outflow (Corral et al., 2021; Painemal et al., 2021). In most
marine conditions the coarse-mode aerosol concentrations are
composed primarily of sea salt, which accounts for a small
percentage of the Na in the troposphere (Murphy et al., 2019).
This is especially true when the marine background is influenced
by anthropogenic continental outflow where total Na can be on
the order of 1,000 cm−3.

2.2 Measurement Summary
A list of instruments and corresponding measurements utilized
from each of the ACTIVATE aircraft is provided in Table 2. The
RSP aerosol product is based on an optimal estimate using the

research scanning polarimeter–microphysical aerosol properties
from polarimetery (RSP-MAPP) algorithm (Stamnes et al., 2018).
Fine- and coarse-mode aerosol optical and microphysical
properties are directly retrieved using seven channels that
measure the total and polarized radiance across the
visible–shortwave spectrum (wavelength = 410–2,260 nm) with
over 100 viewing angles between ±55°. The RSP has a field of view
of 14 mrad, which results in a ~126 m footprint for an aircraft at
9 km altitude. This RSP retrieval uses a coupled
atmosphere–ocean radiative transfer model to improve the
accuracy of the retrieved aerosol properties.

The RSP-MAPP retrieval algorithm (v1.48) inverts RSP data
under the assumption that the aerosols are bimodal, split into a
fine-mode and coarse-mode aerosol, with each mode defined by a
lognormal size distribution. This version of RSP-MAPP assumes
that the aerosol size distribution has one fine-mode and one
coarse-mode comprising non-absorbing sea salt particles. Such a

TABLE 1 | Definition of acronyms, variables, and optional subscripts used to mark mode-specific parameters in alphabetical order.

Acronym Definition

ACTIVATE Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment
AI Aerosol index
AOD Aerosol optical depth
AOS Atmosphere observing system
ATH Aerosol top height
CCN Cloud condensation nuclei
CDP Cloud droplet probe
DLH Diode laser hygrometer
HSRL-2 Multiwavelength high spectral resolution lidar
LAS Laser aerosol spectrometer
LDR Linear depolarization ratio
LWC Liquid water content
MLH Mixed layer height
NMAD Range-normalized mean absolute deviation
NRMSD Range-normalized root-mean-square deviation
PBL Planetary boundary layer
RH Relative humidity
RSP Research scanning polarimeter

Variable Definition

αext Aerosol particle extinction coefficient
D Particle diameter
np Number of points used for comparison
Na Aerosol particle number concentration
NRSP Column-averaged aerosol particle number concentration derived from the RSP data
NHSRL+RSP Vertically resolved aerosol particle number concentration derived from HSRL and RSP data
NLAS Aerosol particle number concentration of particles with dry optical diameters between 94 and 3,488 nm
NCDP Number concentration of particles with ambient optical diameters between 2000 and 50,000 nm
Nd Cloud drop number concentration
p-value Probability that the two parameters are not correlated (i.e., probability that the null-hypothesis is true)
P75 75th percentile
P90 90th percentile
r Correlation coefficient
re Aerosol particle size distribution effective radius
re,94–1130 Effective radius of the particles that have dry optical diameters between 94 and 1,130 nm
σext Aerosol particle extinction cross section

Subscript Definition

f Parameter is specific to the fine mode of aerosol particle size distribution
c Parameter is specific to the coarse mode of aerosol particle size distribution
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bimodal aerosol model works well over the ocean because the RSP
visible to shortwave-infrared channels are not sensitive to
particles D ≲ 100 nm. The fine-mode aerosol properties
including aerosol absorption are fully retrieved, namely, fine-
mode AOD, size distribution parameters of effective radius and
effective variance, and complex refractive index. The coarse-
mode AOD, effective radius, and effective variance are also
retrieved under the assumption that the coarse-mode consists
of non-absorbing sea salt particles with a real refractive index
close to water. The coarse-mode sea salt aerosol is assumed to be
located from the ocean surface to 1 km, while the fine-mode
aerosol is assumed to be mixed homogeneously from the ocean
surface to the aerosol top height, which is also retrieved. From the
aerosol optical and microphysical properties, RSP-MAPP
implicitly retrieves the column-averaged fine- and coarse-mode
σext (σext,f and σext,c, respectively). The RSP-MAPP algorithm also
provides an estimate of fine- and coarse-mode column-averaged
Na (Na,f and Na,c, respectively). In cloud-free conditions, RSP and
HSRL-2 column AODs have been shown to agree to within
0.02 at 532 nm (Stamnes et al., 2018). The column-averaged
aerosol particle number concentration derived from the RSP
data (NRSP) is defined as the following:

NRSP � �Na � AOD
�σext × ATH

, (1)

where we explicitly use a bar to represent the column-averaged
polarimeter-retrieved aerosol cross section and number
concentration. The AOD and σext are referenced at 532 nm.
Both AOD and NRSP are, in part, governed by a retrieval of
the aerosol top height (ATH, Wu et al., 2016). RSP-MAPP
retrieves the ATH under the assumption that the fine-mode
size and composition are uniform throughout the column, and
as a result the fine-mode σext is implicitly retrieved as a
uniform value.

The HSRL-2 products include ambient vertically resolved lidar
backscattering and extinction coefficients and ambient linear
depolarization ratio (LDR) at wavelengths of 355, 532, and
1,064 nm (Fernald, 1984; Hair et al., 2008; Burton et al., 2018).
The HSRL-2 field of view is 1 mrad, which corresponds to a ~9 m
footprint for an aircraft at 9 km altitude. Similar to the RSP, the
HSRL-2 is not very sensitive to particles that fall in or below the
Aitken size range (Burton et al., 2016). The HSRL-2 can also
provide AOD by using the difference in the molecular channel
signals at the top and bottom of the layer. Finally, the HSRL-2
retrieves the MLH (Scarino et al., 2014). To limit the scope of this
analysis to spherical particles, LDR is used to filter out non-
spherical from the data set (Burton et al., 2013). A LDR threshold
of > 13% was used to filter out non-spherical particles from the
analysis. This LDR threshold was chosen because the ACTIVATE
study region is characterized as predominately a marine
environment impacted by anthropogenic continental outflow
(Corral et al., 2021; Painemal et al., 2021).

The measured in situ Na values are used for the validation of
the Na product presented in this work. These data are taken from
the laser aerosol spectrometer (LAS, Model 3,340, TSI, Inc.),
which measures concentrations of particles with dry D ranging in
sizes from 94 to 7,500 nm at a 1 Hz temporal resolution. The Na

measurements provided by the LAS are provided at standard
temperature and pressures (273.15 K and 1,013 mb). While the
LAS has a measurement range up to 7,500 nm, the maximum
cutoff D of the sample inlet prevents the measurement of particles
with ambient D greater than 5,000 nm (McNaughton et al., 2007;
Chen et al., 2011). To take into account potential hygroscopic
effects, we only include particles with dry optical D up to
3,488 nm in this analysis. The total Na measured by the LAS is
referred to from this point forward as NLAS. The lower dry D
cutoff of 94 nm is similar to the lower cutoff of the remotely-

FIGURE 1 | Flight tracks from the 35 two-aircraft research flights that
were carried out during the first two deployments of ACTIVATE in the winter
and summer of 2020. Each flight track color corresponds to a different
ACTIVATE research flight.

TABLE 2 | List of measurement products used in this study, which are grouped by the both the instrument each measurement was derived from and the ACTIVATE aircraft
each instrument was mounted on.

Aircraft Instrument Aerosol property

King Air HSRL-2 Vertically resolved αext at 532 nm, vertically resolved LDR at 532 nm, total AOD at 532 nm, and MLH
King Air RSP Fine- and coarse-mode AOD at 532 nm, column-averaged σext,f at 532 nm, column-averaged Na,f, and ATH
Falcon LAS NLAS and re,94–1130
Falcon DLH RH
Falcon CDP LWC and Nd (i.e., NCDP)
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sensed Na values but the NLAS unavoidably misses some of the
coarse-mode Na due to the aforementioned inlet limitations.

The LAS has a low counting efficiency at three low size bins:
94–106 nm, 106–119 nm, and 119–133 nm, which we
compensate for by multiplying the number concentration
measured in those size ranges by correction factors of 1.90,
1.45, and 1.20, respectively. Losses for the LAS are calculated
at nominal cabin temperature (20 °C) and pressure for low-
altitude flight segments (900 mb). These correction factors are
calculated using the product of losses by impaction, gravitational
settling, and diffusion (Baron and Willeke, 2011). All tubing is
conductive silicone and flows are laminar from the inlet manifold
to both the LAS optical block. In addition to NLAS, the aerosol
particle size distribution effective radius (re) of the fine-mode is
derived from the corrected LAS and defined as effective radius of
the particles that have dry optical diameters between 94 and
1,130 nm (re,94–1130). The re,94–1130 is used primarily to assess the
homogeneity of the fine-mode aerosol particles that is assumed to
be true for the RSP-MAPP–derived fine-mode σext.

Ambient liquid water content (LWC) and Nd are used to
classify in situ data as cloud-free, ambiguous, or cloud. Ambient
LWC and Nd are both derived from ambient particle size
distribution measured by using a cloud droplet probe (CDP,

Droplet Measurement Technologies, Sinclair et al., 2019). The
CDP can measure particles in the ambient D size range of
2,000–50,000 nm, and the Nd-CDP derived by the CDP is
noted by NCDP. An important limitation with deriving LWC
from the CDP is an integration of the particle size distribution
assuming unit density and constrained to the real refractive index
of water. If the particles are anything other than spherical, with
unit density and with real refractive index of 1.33, this LWC
number has no meaning. Previous studies of aerosol–cloud
interactions in marine environments have used a LWC
threshold of < 0.02 g m−3 to classify data as cloud-free (Wang
et al., 2014; Dadashazar et al., 2017; MacDonald et al., 2018).
While this LWC threshold generally works well, the LWC of
stratiform clouds has been shown to be as low as 0.0012 g m−3

(Yin et al., 2014). To ensure the avoidance of cloud edges,
measurements where LWC was between 0.001 and 0.02 g m−3

and where Nd was between 5 and 50 cm−3 are classified as
ambiguous. Only measurements where LWC and Nd were less
than 0.001 g m−3 and 5 cm−3, respectively, are classified as cloud-
free.

To further illustrate the three cloud classifications (cloud-free,
ambiguous, and cloud) used in this study, Figure 2 provides a
heat map (with marginal histograms) of all available 1 Hz LWC
and NCDP measurements taken during ACTIVATE 2020. In
addition to the LWC and Nd thresholds, a sampling inlet flag
is used to verify the Falcon aircraft’s sampling inlet was sampling
air via the isokinetic inlet or via the counterflow virtual impactor
(BMI Inc.; Shingler et al., 2012). The former is used to sample
aerosol particles, while the latter is used to sample cloud droplets.
Finally, ambient relative humidity (RH) is derived from
measurements of the water vapor mixing ratio, which is
measured by using a diode laser hygrometer (DLH, Diskin
et al., 2002), and of temperature, which is measured by using
the turbulent air motion measurement system (TAMMS,
Thornhill et al., 2003). Ambient RH is used for an indication
of the impacts of water vapor on re,94–1130.

2.3 Deriving Vertically Resolved Aerosol
Number Concentration
In this section, we describe the mathematical formulation used to
derive Na from standard HSRL-2 and RSP products. The
formulation to derive Na described in this study has its
foundation in the spherical particle Mie theory (Bohren and
Huffman, 1983). Using the Mie theory and the environmental
setup established in Section 2.1, we describe how column-
averaged σext,f (from RSP-MAPP) and vertically resolved αext
(fromHSRL-2) can be used to calculate vertically resolvedNa. We
limit this analysis to the 532 nm wavelength for simplicity. While
the RSP-derived σext is a column average and is separated into
fine- and coarse-modes, we assume the fine- and coarse-mode
aerosols are externally mixed as two distinct aerosol types. This
assumption allows us to calculate a mixed σext using number
concentration weighted averaging as follows:

σext ≡ σext z( ) � Na,f z( ) × σext,f z( ) +Na,c z( ) × σext,c z( )
Na,f z( ) +Na,c z( ) , (2)

FIGURE 2 | Log-log heat map of liquid water content (LWC) and cloud
drop number concentration (Nd) with corresponding marginal semi-log
histograms generated using all available 1 Hz cloud droplet probe (CDP) data
measured during ACTIVATE 2020. The number of points used for
comparison (np) on each panel is 465, 292. Points on the heat map that are
classified as cloud-free have LWC and Nd values that are below horizontal (at
0.001 g m−3) and vertical (at 5 cm−3) dashed-black lines, respectively. Points
on the heat map that are classified as cloud have LWC and Nd values that are
above the horizontal (at 0.02 g m−3) and vertical (at 50 cm−3) solid-black lines,
respectively. Points on the heat map that fall outside of the cloud or the cloud-
free classifications are classified as ambiguous.
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where we show explicitly the vertically resolved dependence on
altitude z. Aerosol particle extinction cross section is related toNa

at every altitude layer by αext using the following:

Na ≡ Na z( ) � Na,f z( ) +Na,c z( ) � αext z( )
σext z( ) ≡

αext

σext
. (3)

However, we choose cases based on the HSRL-2 and in situ
measurements where the coarse-mode αext has a minimal
impact, and accordingly simplify the equation to remove the
coarse-mode terms. By setting the Na,c and σext,c terms to zero
we obtain the following relationship for the aerosol number
concentration from Eqs (2), (3), resulting in the method
proposed in this study:

Na ≡ Na z( ) � Na,f z( ) ≊ αext z( )
�σext,f

≡
αext
σext,f

, (4)

where Equation (4) is applied to every altitude bin of the
vertically resolved αext measured by the lidar (HSRL-2), while
σext,f is set equal to the column-averaged value retrieved by the
polarimeter (RSP). The σext,f is dependent on only the fine-
mode aerosol size and composition. That the fine-mode
aerosol cross section is kept constant is an assumption that
the fine-mode aerosol properties do not significantly differ
from the column-averaged value in such a way that it
significantly biases the retrieval of Na. Another limitation
related to this assumption is that both extinction cross
section and extinction coefficient are expected to increase
with increasing RH. Using an average cross section could
cause NHSRL+RSP to biased high/low with an increase/decrease
of ambient size.

2.4 Data Handling and Analysis
This section describes how remote sensing and in situ data are
processed to apply the Na derivation outlined in Section 2.3.
First, we limit the application of the method to observations
of spherical aerosol particles using the LDR threshold of
≤ 13% to filter out non-spherical data points from the
smoothed αext data. Next, the αext and LDR data are
smoothed into temporal-altitude grids of 0.0167 Hz and
150 m. The HSRL-2–derived AOD are also smoothed to a
temporal resolution of 0.0167 Hz. Once the HSRL-2–derived
αext and AOD data are smoothed, they are then collocated
with the RSP by comparing the timestamps and selecting the
nearest HSRL-2 data point (in time) to each of the RSP data
points. A total of 7,727 RSP data points are collocated with
HSRL-2–derived AOD and vertically resolved profiles of αext.
Once the remote sensing data are placed in the native RSP
temporal resolution, any scenes where the HSRL-2- and RSP-
derived AOD deviate from each other are discarded. Points
are discarded when deviation between the two AOD
measurements exceeds whichever is greater 0.05 or 50% of
the HSRL-2–derived AOD. As an additional constraint the
fine-mode AOD derived from the RSP must be within 0.10 of
the HSRL-2 AOD. The HSRL-2- and RSP-derived AOD can
deviate from each other when there are cirrus clouds above
the King Air, when there is at least one aerosol layer above the

King Air, or when there are one or more detached
troposphere aerosol layers. As a result of this filtering step,
there are 774 collocated data points removed from the total
set of 7,727. This empirical method of cloud and multiple
aerosol layer influence does not guarantee the removal of all
such contamination. In the future, the Na derivation can be
upgraded to be applied to conditions where aerosols are
present in one or more detached troposphere layer(s) and
in the presence of significant amounts of non-spherical
aerosol particles.

After the remote sensing data are aligned and filtered, the
aerosol particle number concentration of particles with dry
optical diameters between 94 and 3,488 nm (NLAS) data are
filtered for clouds and adjusted to ambient temperature and
pressure for direct comparison with the remote sensing
observations. From the cloud filtered ambient NLAS data, all
available in situ vertical profiles (e.g., spirals, in-line descents,
and in-line ascents) are organized for collocation with the remote
sensing data. For this collocation stage the remote sensing profiles
are collocated with the in situ profiles. The nearest remote sensing
profile within 6 min and 15 km to the start or end of the in situ
profile is selected for comparison. After collocation, NLAS from
each in situ profile is averaged to the same altitude grid as the
HSRL-2 data (i.e., altitude bins that are 150 m in depth and
extend from 0 to 9 km).

With collocation performed, the HSRL-2 + RSP-derived Na

(i.e.,NHSRL+RSP) can be equivalently compared to theNLAS at each
altitude grid point of each collocated vertical profile. In order to
validate the column-averaged Na that is derived from the RSP
(i.e., NRSP), the column-averaged NLAS is calculated by taking an
arithmetic mean of the entire NLAS profile. With this final step,
both NHSRL+RSP and NRSP can be equivalently quantitatively
validated using vertically resolved NLAS or column-averaged
NLAS, respectively. This study makes use of correlation
coefficient (r), range-normalized root-mean-square deviation
(NRMSD), range-normalized mean absolute deviation
(NMAD), and relative bias, which have been previously used
for quantitative validation of aerosol microphysical properties
(Sawamura et al., 2017; Stamnes et al., 2018). Each of these
statistical metrics has the following formulations:

r � ∑np
j�1[(X(j) − �X) × (Y(j) − �Y)]

∑np
j�1[X(j) − �X]2 × ∑np

j�1[Y(j) − �Y]2, (5)

NRMSD � 100%
max(X) −min(X) ×

���������������∑np
j�1[Y(j) − X(j)]2

np

√
, (6)

NMAD � 100%
max(X) −min(X) ×

∑np
j�1|Y(j) − X(j)|

np
, (7)

relative bias � Y(j) − X(j)
Y(j) + X(j) × 2 × 100%, (8)

where X and Y are the set of in situ–derived Na and remote
sensing–derived Na, respectively; np is the total number of points
for each set; and �X and �Y are the mean of sets X and Y,
respectively. This study also makes use of the p-value
corresponding to each r.
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3 RESULTS

Out of the 35 two-aircraft flights in the first two deployments
of ACTIVATE, there are a total of 42 full vertical profiles
successfully collocated using the process described in Section
2.4. In order to be considered as an in situ vertical profile,
each of these collocated profiles was required to have
measurements across at least four altitude grid points.
These 42 profiles are placed into three categories based on
whether there are ambiguous- or cloud-flagged in situ data in
the profile (see Section 2.2). The three classifications are
described as follows: (1, cloud-free profile) vertical profiles

where there are no in situ data flagged as ambiguous or cloud;
(2, ambiguous profile) vertical profiles that have one or more
in situ data point that is flagged as ambiguous but no points
flagged as cloud; and (3, cloud profile) vertical profiles where
at least one data point was classified as cloud. There are 32
profiles classified as cloud-free, two profiles classified as
ambiguous, eight profiles classified as cloud of the profiles
classified as cloud-free, and two profiles that featured
extended spiral vertical profiles, which are fairly unusual
for ACTIVATE, and targeted relatively high aerosol
loading. These two “optimal” aerosol profiles extended to
at least 5 km in altitude; hence, they offer an unprecedented

FIGURE 3 | Horizontal curtain (A) and vertical profiles (B–F) of remote sensing and in situ data gathered from the ‘optimal’ flight that occurred on 26 August 2020.
The vertical profiles were taken from the in situ profile that occurred between 15:46:25 and 15:58:12 (UTC) on 26 August 2020. Panel (A) shows the flight track and
surface plot colored by NLAS and NHSRL+RSP, respectively, where the magenta vertical lines mark the start and stop locations of the first optimal vertical in situ profile.
Panel (B) show vertical profiles of average aerosol particle number concentration (derived from the various methods), (C)RH, (D) re,94–1130, (E) 532 nm αext, and (F)
532 nm LDR; where the whiskers mark ± one standard deviation. The horizontal dashed-black and solid-magenta lines mark the MLH and the ATH, respectively.
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opportunity to validate the novel NHSRL+RSP. In Section 3.1
we analyze these two optimal profiles with more detail and
show that the novel NHSRL+RSP has reasonable closure with
NLAS. Following this case study analysis, we analyze the entire
in situ validation set in Section 3.2. These result
demonstrated in this analysis warrant further study in
future ACTIVATE deployments and other missions with
combined lidar-polarimeter aerosol measurements.

3.1 Case Study of Optimal Aerosol Profiles
In this section, we examine the two optimal aerosol profiles from
the first deployment of ACTIVATE 2020 (Figures 3, 4). For these

two profiles, each corresponding research flight took place in a
generally cloud-free conditions (both low level and cirrus), that
allow for the use of the novelNHSRL+RSP product to create altitude
vs. longitude color maps of Na to provide some spatial context to
each profile (Figure 3A, Figure 4A). The NHSRL+RSP is gridded
into 0.01° longitude bins (maintaining the 150 m altitude bins),
but the in situ sampling flight track is displayed in the native 1Hz
resolution for qualitative, observational comparison of NLAS and
theNHSRL+RSP. From this qualitative comparison, it is evident that
theNLAS andNHSRL+RSP reasonably agree for these two flights that
include the optimal profiles. In addition to the qualitative
comparison between NLAS and NHSRL+RSP, these vertically

FIGURE 4 | Horizontal curtain (A) and vertical profiles (B–F) of remote sensing and in situ data gathered from the ‘optimal’ flight that occurred on 28 August 2020.
The vertical profiles were taken from the in situ profile that occurred between 17:35:18 and 17:54:11 (UTC) on 28 August 2020. Panel (A) shows the flight track and
surface plot colored by NLAS and NHSRL+RSP, respectively, where the magenta vertical lines mark the start and stop locations of the first optimal vertical in situ profile.
Panel (B) show vertical profiles of average aerosol particle number concentration (derived from the various methods), (C)RH, (D) re,94–1130, (E) 532 nm αext, and (F)
532 nm LDR, where the whiskers mark ± one standard deviation. The horizontal dashed-black and solid-magenta lines mark the MLH and the ATH, respectively.
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resolved profiles illustrate the significant differences in the two
profiles.

The first optimal profile’s research flight occurred from 13:
52:27 to 17:08:12 on 26 August 2020 (Figure 3). This first
optimal flight appears to have had two aerosol layers, one below
1 km and one between 1 and 2 km (e.g., smoke aerosol), as well
as NLAS and NHSRL+RSP ranges that reached as high as 2,508 and
9,103 cm−3, respectively. The second optimal flight occurred
from 16:45:10 to 20:01:40 on 28 August 2020 (Figure 4) and had
lower maximum NLAS and NHSRL+RSP (1,031 and 4,209 cm−3,
respectively), relative to the first optimal flight. The second
optimal profile’s research flight had possibly more than one
aerosol layer between 1 and 4 km, in addition to a homogeneous

aerosol layer up to 1 km. Both of these profiles were observed to
have detached aerosol layers above the PBL (e.g., smoke
aerosol). Smoke aerosol was found to be present in this
region on 26 August (Mardi et al., 2021) and on 28 August
(Sorooshian et al., 2021).

Another contrast between the two optimal flight study
regions was the MLH, which had the ranges of 0:00–0:88 km
and 0:00–0:67 km for the first and second optimal flights,
respectively. Both flights had similar RSP-ATH ranges that
were 1:14–4:83 km and 1:83–4:85 km for the first and second
optimal flights, respectively. In order to better analyze the
closure between NLAS and NHSRL+RSP, we examine the closure
statistics that result from the optimal profiles (Figure 3B,
Figure 4B) where the aircraft horizontal-temporal separation
is constrained (see Section 2.4).

The horizontal spatial and temporal aircraft separation of the
first and second optimal profiles is 1.94 km–3.79 min and
11.99 km–5.97 min, respectively. The MLH of the first and
second optimal profiles are at 0.59 and 0.35 km, respectively.
The ATH of the first and second optimal profiles are at 4.15 and
4.00 km, respectively. The median relative bias, NMAD, and
NRMSD observed in the first case study were generally worse
(median relative bias = 64%, NMAD = 29%, and NRMSD = 33%),
relative to the second case study (median relative bias = 42%,
NMAD = 21%, and NRMSD = 28%). The r between NHSRL+RSP

andNLAS for the first and second optimal flights are 0.92 and 0.81,
respectively, and both profiles are among those that have the most
statistically significant correlations in the set of collocated profiles
(i.e., r > 0.80 and p-value ≤ 10−9). In addition to these statistics
Figure 5 also provides a visual illustration of the vertically
resolved NLAS-NHSRL+RSP and column-averaged NLAS-
NHSRL+RSP closure.

To provide insight into the reasons for differences in the NLAS-
NHSRL+RSP closure, we examine the differences in the vertical profiles
of RH, re,94–1130, αext, and LDR that correspond to the optimal profile
that occurred on 26 August 2020 (Figures 3C–F) and the optimal
profile that occurred on 28 August 2020 (Figures 4C–F). The RH
sampled in the first optimal profile overall decreases with increasing
altitude up the ATH at ~ 4 km, while the RH sampled in the second
optimal profile remains relatively constant until the ATH, also at ~ 4
km. In both optimal profiles, the RH decreases sharply right above
the MLH. Then, in the first optimal profile, both the αext and RH
increase with altitude above the MLH to 1.5 km. In the second
optimal profile, αext and RH and αext and RH are relatively constant
except for a sharp increase about 1.5 km. We found that the RH is
negatively correlated with re,94–1130 between 1 and 2 km in the first
optimal profile. This behavior is in contrast to the second optimal
profile, where the re,94–1130 increases around the spike in RH at 2 km
altitude. The increase in αext might otherwise seem to indicate
multiple aerosol layers sampled in both optimal profiles, but the
profiles of RH and re,94–1130 suggest that the changes are a result of
increases in RH rather than a separate unmixed layer, except in the
second optimal profile around 1.5 km. At this location it is observed
that LDR is elevated in the second optimal profile, and indicates the
presence of non-spherical coarse-mode dust particles in the second
optimal profile associated with the sharp increase in αext at 1.5 km.
The dust is likely coarse-mode since there is little change in re,94–1130.

FIGURE 5 | Log-log plots of NHSRL+RSP versus NLAS from (A) optimal in
situ profile that occurred between 15:46:25 and 15:58:12 (UTC) on 26 August
2020 and (B) optimal in situ profile that occurred between 17:35:18 and 17:
54:11 (UTC) on 28 August 2020. The goodness of fit statistics that
correspond to panel (A) are r = 0.92, median relative bias = 64%, NMAD =
29%, NRMSD = 33%, and np = 34. The goodness of fit statistics for panel (B)
are r = 0.81, median relative bias = 42%, NMAD = 21%, NRMSD = 28%, and
np = 47.
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Despite the presence of coarse-mode dust, the retrieval of the
vertically resolved NHSRL+RSP, which is driven σext in addition to
αext, does not seem to be generally impacted except at 1.5 km where
the coarse-mode dust loading peaks.

In addition to examining the profiles to identifymultiple aerosol
layers, the αext profile, in combination with re,94–1130 and RH
profiles, allow us to examine the assumption of using a single
fine-mode σext to derive vertically resolved NHSRL+RSP. The narrow
re,94–1130 range observed in the second profile suggests that there is
no significant change in the fine-mode aerosol composition and
size distribution. Because re,94–1130 can be dependent on NLAS, and
RH can indicate the mixing state of the atmosphere, the positive
correlation between both NLAS and RH with re,94–1130 near the
surface (≤200 km altitude) seen in each profile may indicate that
changes in re,94–1130 for near the surface are partly related to
atmospheric mixing rather than composition change.

These findings from the analysis of the first optimal profile
suggest that method is robust in that the correlation for NHSRL+RSP

is high despite a ~60% bias at elevated Na and despite the separate
smoke aerosol observed in the first profile. The analysis of the LDR
profile suggests that non-spherical particles are not impacting the

retrieval ofNHSRL+RSP significantly. In the next section, we combine
data from these optimal profiles with the remaining cloud-free
collocated profiles of NHSRL+RSP and NLAS to further support these
findings and strengthen the validation of the NHSRL+RSP product.

3.2 Statistical Validation
Following the initial validation with the optimal case studies, we
use all collocated vertically resolved NLAS data to perform a more
statistically weighted validation of NHSRL+RSP product using
Figure 6A. Furthermore, we show that this error is generally
similar to the error observed in the validation of NRSP with
column-averaged NLAS (Figure 6B). Finally we examine
Figures 6C,D and Table 3 to demonstrate the improvements
gained in validation of both vertically resolved and column-
averaged Na by removing profiles where cloud presence is
detected in the column.

As noted above, there are 32 cloud-free profiles, two ambiguous
profiles, and eight cloud profiles, which contain 322, 13, and 47,
respectively, vertically resolved points for the comparison
validation of NHSRL+RSP and NLAS. The r, median relative bias,
NMAD, andNRMSD that result from the comparison of the points

FIGURE 6 | Log-log plots of (A) vertically resolved NHSRL+RSP vs. in situ NLAS and (B) column-averaged NRSP vs. in situ NLAS. The collocated vertical profile data
come from ACTIVATE 2020. The green squares correspond to data from vertical profiles where all in situ data are classified as cloud-free, blue diamonds correspond to
the vertical profiles that have one or more in situ data point that is classified as ambiguous but no points classified as cloud, and the red circles correspond to data from
vertical profiles where at least one data point was classified as cloud. The dashed-magenta line indicates the one-to-one line. Panels (C) and (D) are box plots
illustrating the spread in relative bias of panel (A) and panel (B), respectively. Data for these box plots correspond to the same categories as panels (A) and (B) (i.e., cloud-
free, ambiguous, and cloud). Additional goodness of fit statistics for panels (A) and (B) are shown in Tbl. 3. Redmarkers on panels (C) or (D) are points that were flagged
as statistical outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the bottom or top of box.
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contained in the cloud-free profiles are 0.76, 33%, 16%, and 24%,
respectively. Additionally, this cloud-free data set resulted in a P90
of 106% in absolute relative bias. Data from both the ambiguous
profiles and the cloud profiles resulted in worse, i.e., increases in
NMAD (28% and 26%, respectively) and NRMSD (34% and 33%,
respectively), relative to the NMAD andNMAD that resulted from
the data cloud-free profiles. Relative to the cloud-free profile
dataset, the r (0.71) and P90 in absolute relative bias (107%) did
not change much for the ambiguous profile data set but r decreases
to 0.50 and P90 in absolute relative bias increases to 145% for the
cloud profile dataset.

Due to the limited number of column-averaged Na points (np
= 2) that are classified as ambiguous, the validation statistics for
this set is not meaningful and will be omitted here. The validation
statistics resulting from the comparison of the column-averaged
Na points classified as cloud-free and cloud are similar to that
resulting from the vertically resolved Na closure, with the
exception of relative bias. The NMAD improves,
i.e., decreases, from 42% to 21% and the NRMSD decreases
from 47% to 28%. In contrast to the vertically resolved Na, the
median relative bias resulting from the column-averaged Na

comparison of the eight collocated points is −0.76, which
improves to −0.53 for the 32 profiles from the column-
averaged cloud-free dataset. In addition, the P90 in absolute
relative bias of the column-averaged cloud data set is larger
(131%), relative to the column-averaged cloud-free data set
(121%). These findings suggest that the significantly improved
performance of one set over the other, which is likely due to the
fact that the retrieval of column-averaged Na is more sensitive to
deviations from ideal cloud-free conditions than the vertically
resolved Na. It is also possible that the retrieval of column-
averaged Na is more sensitive to separated aerosol layers that
are possibly present. However, due to the relatively limited
number of collocated points and profiles, wider application is
needed to definitively conclude the main reason for the
difference.

4 CONCLUSION

In this study we provide a simple and direct approach to
derive vertically resolved aerosol number concentration from
collocated polarimeter–lidar measurements. This method has

the benefit of rapidly taking advantage of column-averaged
polarimeter-derived aerosol cross section from the RSP and
collocated lidar measurements of the aerosol extinction
coefficient at 532 nm. Since this method only requires
profiles of the extinction coefficient at 532 nm, it can be
readily applied to lidar + polarimeter datasets provided
that the lidar has a 532 nm high spectral resolution channel
such as the NASA airborne HSRL-1 and HSRL-2 lidar, and the
HSRL-1–type lidar system that will be onboard the future
NASA AOS mission. We characterize the retrieval error that is
observed from vertically resolved NHSRL+RSP, which is derived
from column-averaged σext from polarimeter retrievals and
vertically resolved αext from HSRL-2 measurements. We
demonstrate that the vertically resolved NHSRL+RSP product
has a median relative bias, P90 in absolute relative bias,
NMAD, and NRMSD that are 0.33, 106%, 16%, and 24%,
respectively. Our results also suggest that the vertically
resolved NHSRL+RSP product has similar NMAD and
NRMSD as the column-averaged NRSP. We demonstrate
that column-averaged NRSP validation is more sensitive
than the vertically resolved NHSRL+RSP to deviations from
ideal conditions (e.g., cloud-free with a single aerosol
layer), however elevated LDR > 10% does not appear to
have a significant impact on either vertically resolved or
column-averaged Na.

Although a fully combined polarimeter–lidar retrieval is
expected to provide the optimal retrieval of aerosol optical
and microphysical properties including aerosol number
concentrations, this method provides a simple and direct
approach to corroborate the results from such complex
retrievals, particularly for simpler cases of single or two-
layer aerosol systems. The ACTIVATE field campaign
features combined polarimeter (RSP) and lidar (HSRL-2)
remote sensing measurements with collocated in situ aerosol
measurements from a second, low-flying aircraft. The
ACTIVATE datasets of simultaneous remote and in situ
measurements of aerosols in clear-sky conditions will enable
us to extensively test the approach outlined here, as well as
perform detailed closure studies for relating dry-wet aerosol
microphysical and optical properties across passive, active,
and in situ aerosol measurement techniques. The promise
shown by the NHSRL+RSP method can be further explored by
applying the method to the rest of the ACTIVATE datasets

TABLE 3 | Comparison statistics resulting from the comparison of vertically resolved NLAS with NHSRL+RSP and resulting from the comparison of column-averaged NLAS with
NRSP for the in situ profiles that were classified as cloud-free, ambiguous, and cloud. The statistics presented for each category are as follows (from left to right): r, p-value,
P75 and P90 of the absolute relative bias (i.e., |relative bias|), NMAD, NRMSD, minimum and maximum NLAS (either vertically resolved or column-averaged), and np.

Conditions r p-value |relative bias| NMAD NRMSD NLAS np

(%) (cm−3)

P75 P90 (%) (%) min max

Vertically resolved Cloud-free 0.76 6.1 · 10–62 81 106 16 24 26 1,495 322
Ambiguous 0.71 6.8 · 10–3 69 107 28 34 109 615 13
Cloud 0.50 3.9 · 10–4 112 145 26 33 51 983 47

Column-averaged Cloud-free 0.35 5.3 · 10–2 90 121 21 28 59 1,327 32
Cloud 0.36 3.8 · 10–1 1.20 131 42 47 61 832 8
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(i.e., 2021 and 2022 flights) and to future analyses that can
incorporate retrievals of the vertical structure of Na in the
atmosphere to study Na-Nd relationships for aerosol–cloud
interactions. Further application will also allow for in-depth
examination of the validity of the assumption of column-
averaged extinction cross sections, and the impact of
scattering by coarse-mode aerosols such as sea salt
aerosol on the retrieved aerosol number concentration.
The hope is that the NHSRL+RSP product can be a robust
method to provide required vertical profiles of Na for many
research applications ranging from aerosol–cloud
interactions to improving estimates of air quality
parameters such as PM2.5.
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Polarized Radiative Transfer
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Ordinate Radiative Transfer
Computational Tool
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Alexander Berk5, Jeannette van den Bosch6 and Knut Stamnes1*
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Goddard Space Flight Center, Greenbelt, MD, United States, 5Spectral Sciences, Burlington, MA, United States, 6Air Force
Research Laboratory, Albuquerque, NM, United States

We present an overview and several important upgrades to the Vector Discrete Ordinate
Radiative Transfer (VDISORT) code. VDISORT is a polarized (vector) radiative transfer code
that can be applied to a wide range of research problems including the Earth’s atmosphere
and ocean system. First, a solution is developed to the complex algebraic eigenvalue
problem resulting when the b2 component of the Stokes scattering matrix is non-zero. This
solution is needed to compute the V component of the Stokes vector I � [I‖, I⊥,U,V]T .
Second, a significant improvement in computational efficiency is obtained by reducing the
dimension of the algebraic eigenvalue by a factor of 2 resulting in a speed increase of about
23 = 8. Third, an important upgrade of the VDISORT code is obtained by developing and
implementing a method to enable output at arbitrary polar angles by the integration of the
source function (ISF) method for partially reflecting Lambertian as well as general non-
Lambertian surfaces. Fourth, a pseudo-spherical treatment has been implemented to
provide important corrections for Earth curvature effects at near horizontal solar zenith and
observation (viewing) polar angles. Fifth, a post-processing single-scattering correction
procedure has been developed to enhance the accuracy and speed for strongly forward-
peaked scattering. With these significant improvements the results from the upgraded
version of the VDISORT code match published benchmark results for Rayleigh scattering,
Mie scattering, and scattering by non-spherical cirrus particles. The performance of
VDISORT for a polarized incident beam source is equally satisfactory. The VDISORT
vector radiative transfer code is made public and freely available for use by the growing
polarimetric research community including the space-borne polarimeters on the future
NASA PACE and AOS missions.
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1 INTRODUCTION

This paper documents a state-of-the-art numerical code called
VDISORT for monochromatic polarized radiative transfer in
non-isothermal, vertically inhomogeneous, but horizontally
homogeneous media. The physical processes included are
Planckian thermal emission, scattering with a general phase
matrix, absorption, and surface reflection. The system may be
driven by parallel or isotropic unpolarized or polarized radiation
incident at the boundaries, as well as by internal thermal sources
and thermal emission from the boundaries. The Stokes vector is
returned at user-specified angles and levels. The azimuthally-
averaged Stokes components are also available. Irradiances and
mean radiances can be generated from the azimuthally-averaged
radiance, i.e., the first component of the Stokes vector [I,Q,U,V]T.

VDISORT is based on articles published in the open literature,
but its theoretical background and algorithmic developments
have not been systematically described in one single
document. This paper provides an up-to-date complete
description of VDISORT including a self-contained account of
its theoretical basis and a discussion of the numerical
implementation of the theory.

Like DISORT, the scalar version, VDISORT has been designed
to be a good scientific software package and a numerical code of
general utility. The VDISORT package takes advantage of robust
existing software tools to make it numerically well-conditioned,
and user-friendly. A set of test cases have been adopted to verify
the numerical code against published results.

1.1 Outline of Paper
This paper is organized as follows. Section 1 provides the
motivation for and a brief history of VDISORT, while Section
2 provides theoretical background, introduces the radiative
transfer equation for unpolarized and polarized radiation, and
discusses the inherent optical properties including the phase
matrix. The solution of the vector radiative transfer equation
(VRTE) is discussed in Section 3 including the discrete ordinate
method, important upgrades of the vector discrete ordinate code
(VDISORT), the ISF method, and treatment of polarized
reflectance from the lower boundary. Section 4 discusses the
merits of the 4 × 4 solution versus the 3 × 3 approximation, while
Section 5 is devoted to the single-scattering approximation,
which is used in a post-processing step to enhance the
accuracy of the computed results for a given number of
discrete ordinate streams. Test results are presented in Section
6 including comparisons with published benchmarks. Finally, in
Section 7 a brief summary and concluding remarks are provided.

1.2 Brief History
The discrete ordinate radiative transfer algorithm (DISORT) has
proven to be an accurate, versatile and reliable method for the
solution of the scalar radiative transfer problem in plane-parallel,
vertically inhomogeneous media (Stamnes et al., 1988; Lin et al.,
2015; Laszlo et al., 2016; Stamnes K. et al., 2017). An extension of
the scalar discrete ordinate theory to solve for the complete Stokes
vector I = [I,Q,U,V]T was reported by Weng (1992), who adopted
an approach to the solution of the vector problem completely

analogous to the scalar case. Hence, the computer code for the
vector problem, VDISORT, could rely on the same well-tested
routine to obtain the eigenvalues and eigenvectors as the one used
in the scalar version (DISORT). Also, the same scaling
transformation (Stamnes and Conklin, 1984) could be applied
to circumvent the notorious ill-conditioning that occurs when
applying boundary and layer interface continuity conditions.

The first version of the FORTRAN code developed by Weng
(1992) had a few shortcomings related to the fact that it had been
applied exclusively in the microwave region, and thus had not
been tested for beam source applications. In addition, the
procedure employed to compute the Fourier components of
the phase matrix turned out to be both inaccurate and
inefficient. To correct these shortcomings an improved version
of the code was developed by Schulz et al. (1999). In this new
version of the code 1) errors in the numerical implementation
were corrected, 2) the procedure used to compute the Fourier
components of the phase matrix was replaced by a more accurate
and efficient method, 3) the basic performance of the code was
tested against benchmark results. However, although the code
seemed to have the potential to become an accurate and reliable
tool for a variety of applications, no attempt was made to test it in
a systematic and comprehensive manner. Also, no attempt was
made to document the code thoroughly and extensively, and it
was assumed that the homogeneous solution involved only real
eigenvalues/eigenvectors, which are sufficient to solve for the I,Q,
and U Stokes parameters, but the V component requires complex
arithmetic.

The original code provided solutions for the I, Q, and U Stokes
parameters at the discrete ordinates (i.e. at the quadrature polar
angles). Since the computing time required for the discrete ordinate
method increases cubically with the number of quadrature angles, it
becomes cost-effective to obtain the solution at a limited number of
quadrature angles and then generate the solution at additional angles
by using an efficient interpolation scheme. To this end analytic
expressions were developed that were shown to be accurate for
the I, Q, and U components, but not for the V component, at
arbitrary angles and optical depths (Schulz and Stamnes, 2000) in
much the same way they were developed for the scalar version
(Stamnes, 1982). These analytic expressions obtained by the ISF
method (Stamnes, 1982) satisfy not only the radiative transfer
equation, but also the boundary and layer-interface continuity
conditions at arbitrary polar angles, and they have proven to be
superior to standard interpolation schemes such as cubic splines
(Stamnes, 1982; Schulz and Stamnes, 2000). To complete this
development, an extension of this ISF method to include accurate
computation of the V Stokes parameter, which requires complex
arithmetic, is described Section 3.5.

2 THEORETICAL BASIS

2.1 Unpolarized Radiation
We consider an inhomogeneous horizontal slab of scattering/
absorbing material with inherent optical properties that vary only
in the vertical direction z, where z increases upward. The
corresponding vertical optical depth is defined by
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τ z( ) � ∫∞

z
α z′( ) + β z′( )[ ]dz′ (1)

where α and β are the absorption and scattering coefficients in
units of reciprocal length, respectively, and the vertical optical
depth is defined to increase downward from τ(z = ∞) = 0 at the
top of the slab. The slab is assumed to be in local thermodynamic
equilibrium so that it emits radiation according to the local
temperature T (τ(z)). The diffuse radiance distribution I (τ, u,
ϕ) can be described by the scalar radiative transfer
equation (RTE)

u
dI τ, u, ϕ( )

dτ
� I τ, u,ϕ( ) − S τ, u,ϕ( ) (2)

where the source function is given by

S τ, u, ϕ( ) � Sp τ, u,ϕ( ) + [1 − ϖ— +( )]B τ( )

+ ϖ— τ( )
4π

∫2π

0
dϕ′∫1

−1
p τ, u′, ϕ′; u, ϕ( )I τ, u′, ϕ′( )du′.

(3)

Here u is the cosine of the polar angle θ, ϕ is the azimuth angle,
ϖ(τ) = β(τ)/[α(τ) + β(τ)] is the single-scattering albedo, p (τ, u′,
ϕ′; u, ϕ) is the scattering phase function, and B(τ) is the thermal
radiation field given by the Planck function. The single-scattering
source term is given by

Sp τ, u,ϕ( ) � ϖ τ( )
4π

p τ,−μ0, ϕ0; u,ϕ( )Sbe−τ/μ0 (4)

where Sb is the incident (solar) irradiance and μ0 is the cosine
of the solar zenith angle. The differential vertical optical depth is
[see Eq. 1]

dτ z( ) � − α τ( ) + β τ( )[ ]dz (5)
where the minus sign indicates that τ increases in the

downward direction, whereas z increases in the upward
direction, as noted above. The scattering angle Θ and the
polar and azimuth angles are related by (see Figure 1)

Ω̂′ · Ω̂ � cosΘ � cos θ cos θ′ + sin θ′ sin θ cos ϕ′ − ϕ( ).
Here Ω̂′ is the unit vector of the incident beam direction and Ω̂

is the unit vector of the scattered direction. By definition, θ = 180°

is directed toward nadir (straight down) and θ = 0° toward zenith
(straight up). Thus, u = cos θ varies in the range [ − 1, 1] (from
nadir to zenith). For oblique illumination of the slab, ϕ0 = 180° is
defined to be the azimuth angle of the incident light.

2.2 Polarized Radiation
To generalize Eq. 2 to apply to polarized radiation, the scalar
source function must be replaced by the appropriate vector
version. Hence, the multiple-scattering term Sms(τ, u, ϕ) �
ϖ(τ)
4π ∫2π

0
dϕ′∫1

−1 du′p(τ, u′, ϕ′; u, ϕ)I(τ, u′, ϕ′) in Eq. 3 must be
replaced by

Sms τ, u, ϕ( ) � ϖ τ( )
4π

∫
2π

0

dϕ′∫
1

−1
du′P τ, u′, ϕ′; u, ϕ( )I τ, u′, ϕ′( ) (6)

FIGURE 1 | Coordinate system for scattering by a volume element atO. The points C, A and B are located on the unit sphere. The incident light beam with Stokes
vector IincS is in direction OA (θ′, ϕ′) with unit vector Ω̂′, the scattered beam with Stokes vector IscaS is in direction OB(θ, ϕ) with unit vector Ω̂ (Hovenier et al., 2004).
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where I (τ, u′, ϕ′) is the Stokes vector, and P (τ, u′, ϕ′; u, ϕ) is
the scattering phase matrix. The first element of the vector Sms(τ,
u, ϕ) represents the energy per unit solid angle, per unit frequency
interval, and per unit time that is scattered by a unit volume in the
direction (u = cos θ, ϕ). Hence, in a plane-parallel (slab) geometry,
the integro-differential vector radiative transfer equation (VRTE)
for polarized radiation is expressed in terms of a Stokes vector I
(τ, u, ϕ) as

u
d I τ, u,ϕ( )

dτ
� I τ, u,ϕ( ) − S τ, u,ϕ( ) (7)

where the vector source function is

S τ, u, ϕ( ) � Sms τ, u, ϕ( ) + Q τ, u, ϕ( ). (8)
Here Sms(τ, u, ϕ) is given by Eq. 6 and the source termQ (τ, u,

ϕ), due to beam and thermal sources, is given by:

Q τ, u, ϕ( ) � ϖ τ( )
4π

P τ,−μ0, ϕ0; u,ϕ( )Sbe−τ/μ0 + 1 − ϖ τ( )[ ] St τ( ).
(9)

The first term on the right hand side of Eq. 9 describes the
incident beam Sb in direction (−μ0, ϕ0), which is attenuated at
depth τ by a factor e−τ/μ0 and undergoes single scattering into the
direction (u, ϕ). For an unpolarized incident beam Sb has the form

Sb � I0/2, I0/2, 0, 0[ ]T or I0, 0, 0, 0[ ]T (10)
where the superscript T denotes the transpose, and where the

first or second expression corresponds to the choice of Stokes
vector representation, [I‖, I⊥, U, V]T or [I,Q,U,V]T. The second
term on the right hand side of Eq. 9 is due to thermal emission,
which is unpolarized, and St(τ) is given by

St τ( ) � B T τ( )( )/2, B T τ( )( )/2, 0, 0[ ]T or B T τ( )( ), 0, 0, 0[ ]T
(11)

where B is the Planck function, and where the first or second
expression corresponds to the choice of Stokes vector
representation. We have set μ0 ≡|u0|≡| cos θ0|, where θ0 is the
polar angle of the incident light beam.

2.3 Effects of Earth Curvature–The
Pseudo-Spherical Approximation
For many applications plane-parallel geometry is adequate. For
large solar zenith angles (θ0 ≥ 70° and for near horizontal polar
viewing angles θ), however, the plane-parallel approximation
(PPA) provides inaccurate results. Then the Earth curvature
must be considered. Large solar zenith angles occur around
the times of sunrise and sunset at any location on a planet.
Such large solar zenith angles are present, for example, in
observations made by instruments onboard geostationary
satellites that observe a large part of Earth’s disk throughout
the day. Sensors deployed on polar-orbiting satellite platforms
also observe at large solar zenith angles at high latitudes.

As discussed by several investigators (see He et al. (2018) and
references therein), the so-called pseudo-spherical approximation

(PSA) (Dahlback and Stamnes, 1991) represents a very useful
correction to the plane-parallel approximation. In the PSA the
direct beam single-scattering term, also called the solar pseudo-
source term, is treated in spherical geometry while the multiple-
scattering term is treated using the PPA. Hence, in the PSA the
exponential attenuation in Eqs. 4 and 9 is replaced by the
Chapman function, that is, exp (−τ/μ0) → exp (−τCh(μ0)),
where the Chapman function Ch(μ0) takes Earth curvature into
account, but ignores refraction. As shown by He et al. (2018) the
influence of Earth curvature increases rapidly with solar zenith
angle, being up to 1, 3, and 12% for solar zenith angles of 75°, 80°,
and 85°, respectively.

2.4 Scattering Phase Matrix
The development of vector radiative transfer theory may start
with the Stokes vector representation I � [I‖, I⊥, U, V]T. In terms
of the complex transverse electric field components of the
radiation field E‖ � |E‖|e−iδ‖ and E⊥ � |E⊥|e−iδ⊥ , these Stokes
vector components are given by:

I‖ � E‖Ep
‖

I⊥ � E⊥E
p
⊥

U � 2|E‖||E⊥| cos δ
V � 2|E‖||E⊥| sin δ

(12)

where the phase difference δ is δ‖ − δ⊥. The connection
between the I � [I‖, I⊥, U, V]T Stokes vector representation
and the more commonly used IS = [I,Q,U,V]T representation,
where I = I‖ + I⊥ and Q = I‖ − I⊥, is given by:

IS � DI (13)
where

D �
1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, D−1 � 1
2

1 1 0 0
1 −1 0 0
0 0 2 0
0 0 0 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

The degree of polarization is defined as

p � Q2 + U2 + V2[ ]1/2/I (15)
so that 0 ≤ p ≤ 1, where p = 1 corresponds to completely

polarized light and p = 0 to natural (unpolarized) light. The
degree of circular polarization is defined as

pc � V/I, (16)
the degree of linear polarization as

pl � Q2 + U2[ ]1/2/I, (17)
and alternatively, when U = 0 as

pl U � 0( ) � −Q
I
� I⊥ − I‖
I⊥ + I‖

. (18)

The transverse electric field vector [E‖, E⊥]T of the scattered
field can be obtained in terms of the transverse field vector
[E‖0, E⊥0]T of the incident field by a linear transformation:
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E‖
E⊥

( ) � A
E‖0
E⊥0

( ) (19)

where A is a 2 × 2 matrix, referred to as the amplitude
scattering matrix. The corresponding linear transformation
connecting the Stokes vectors of the incident and scattered
fields in the scattering plane is called the Mueller matrix (in
the case of a single scattering event). For scattering by a small
volume containing an ensemble of particles, the ensemble-
averaged Mueller matrix is referred to as the Stokes scattering
matrix F. Finally, when transforming from the scattering plane to
a fixed laboratory frame, the corresponding matrix is referred to
as the scattering phase matrix P.

2.4.1 Stokes Vector Representation IS = [I,Q,U,V]T

The scattering geometry is illustrated in Figure 1. The plane
AOB, defined as the scattering plane, is spanned by the directions
of propagation of the incident parallel beam with Stokes vector
IincS and the scattered parallel beam with Stokes vector IscaS . Here
the subscript S pertains to the Stokes vector representation IS =
[I,Q,U,V]T. The scattered radiation, represented by the Stokes
vector IscaS , is related to the incident radiation, represented by the
Stokes vector IincS , by a 4 × 4 scattering matrix [see Eqs. 20 and 21
below].

If in a small volume of particles any of the following conditions
are met (Hovenier and van der Mee, 1983) 1) each particle in the
volume element has a plane of symmetry, and the particles are
randomly oriented, 2) each volume element contains an equal
number of particles and their mirror particles in random
orientation, 3) the particles are much smaller than the
wavelength of the incident light, then the Stokes scattering
matrix in the IS = [I,Q,U,V]T representation has the following
form

FS Θ( ) �
a1 Θ( ) b1 Θ( ) 0 0
b1 Θ( ) a2 Θ( ) 0 0
0 0 a3 Θ( ) b2 Θ( )
0 0 −b2 Θ( ) a4 Θ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (20)

Each of the six independent matrix elements in Eq. 20 depends
on the scattering angle Θ, and will in general also depend on the
position in the medium. For spherical particles, the matrix in Eq.
20 simplifies, since a1 = a2 and a3 = a4, so that only four
independent elements remain.

Two rotations are required to connect the Stokes vector of the
scattered radiation to that of the incident radiation. As illustrated
in Figure 1, the first rotation is from the meridian plane OAC,
associated with the Stokes vector IincS , into the scattering plane
OAB, whereas the second rotation is from the scattering plane
OAB into the meridian plane OBC, associated with the Stokes
vector IscaS . Hence, the Stokes vector for the scattered radiation is
given by (Chandrasekhar, 1960)

IscaS � RS π − i2( )FS Θ( )RS −i1( )IincS ≡ PS Θ( )IincS . (21)
Here i1 and i2 are the angles between the meridian planes of

the incident and the scattered radiation, respectively, and the
scattering plane (Figure 1).The Stokes rotation matrix RS

represents a rotation in the clockwise direction with respect to
an observer looking into the direction of propagation
(Chandrasekhar, 1960). For rotation by an arbitrary angle of ω
(0 ≤ ω ≤ 2π) it can be written as

RS ω( ) �
1 0 0 0
0 cos 2ω( ) −sin 2ω( ) 0
0 sin 2ω( ) cos 2ω( ) 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

Hence, according to Eq. 21, the scattering phase matrix, which
connects the Stokes vector of the scattered radiation to that of the
incident radiation, is obtained from the Stokes scattering matrix
FS(Θ) in Eq. 20 by

PS θ′, ϕ′; θ, ϕ( ) � RS π − i2( )FS Θ( )RS −i1( )
� RS −i2( )FS Θ( )RS −i1( ) (23)

where RS (π − i2) = RS (−i2) since the rotation matrix is
periodic with a period π.

According to Eq. 21 (see also Figure 1), the Stokes vector IincS
of the incident parallel beam must be multiplied by the rotation
matrix RS (−i1) before it is multiplied by the Stokes scattering
matrix FS(Θ), whereafter it must be multiplied by the rotation
matrix RS (π − i2). In some radiative transfer (RT) models
including Monte Carlo simulations these matrix
multiplications are carried out explicitly. In other types of RT
models such as the adding-doubling method (De Haan et al.,
1987) and the discrete ordinate method (Siewert, 2000;
Sommersten et al., 2010; Cohen et al., 2013) they are taken
care of implicitly through the expansion of the scattering
phase matrix in generalized spherical functions (Siewert, 1981,
1982) as discussed in Section 2.4.3.

Carrying out the matrix multiplications in Eq. 23 one finds:

PS Θ( ) �
a1 b1C1 −b1S1 0
b1C2 C2a2C1 − S2a3S1 −C2a2S1 − S2a3C1 −b2S2
b1S2 S2a2C1 + C2a3S1 −S2a2S1 + C2a3C1 −b2C2

0 −b2S1 −b2C1 a4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)
where aj = aj(Θ), j = 1, . . . , 4, bj = bj(Θ), j = 1, 2, and

C1 � cos 2i1, C2 � cos 2i2 (25)
S1 � sin 2i1, S2 � sin 2i2. (26)

A comparison of Eqs. 20 and 24 shows that only the corner
elements of FS(Θ) remain unchanged by the rotations of the
reference planes. The (1.1)-element of both the scattering phase
matrix PS(Θ) and the Stokes scattering matrix FS(Θ) is the
scattering phase function. Also, since the (4.4)-element of the
scattering phase matrix remains unchanged by the rotations, the
state of circular polarization of the incident light does not affect
the intensity of the scattered radiation after one scattering event.

To compute PS(θ′, ϕ′; θ, ϕ) given by Eq. 23 we must relate the
angles θ′, ϕ′, θ, and ϕ on the left side with the angles i1, i2, and Θ
on the right side. Using spherical geometry, we may apply the
cosine rule forΘ, θ, and θ′ successively, in Figure 1, to obtain (u =
cos θ, u′ = cos θ′) (Hovenier et al., 2004)
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cosΘ � uu′ + 1 − u2( )1/2 1 − u′2( )1/2 cos ϕ′ − ϕ( ) (27)

cos i1 � −u + u′ cosΘ
1 − u′2( )1/2 1 − cos2Θ( )1/2 (28)

cos i2 � −u′ + u cosΘ
1 − u2( )1/2 1 − cos2Θ( )1/2. (29)

The trigonometric functions for the double angles can be
obtained by using

cos 2 i � 2 cos2 i − 1 (30)
and

sin 2 i � 2 sin i cos i (31)
or

sin 2 i � 2 1 − cos2 i( )1/2 cos i if 0< ϕ′ − ϕ< π
−2 1 − cos2 i( )1/2 cos i if π < ϕ′−{ (32)

where i is i1 or i2.
Equations 25–32 describe the conventional way to determine

the variables C1, S1, C2, and S2.
A better approach to compute the variables C1, S1, C2, and S2

appearing in PS(θ′, ϕ′; θ, ϕ) given by Eq. 24 is described in a
recent publication (Berk, 2022). This new approach can be
described as follows. Defining

Δθ � θ′ − θ and Δϕ � ϕ′ − ϕ, (33)
we have

sin2Θ � sin2Δθ + 4 cosΔθ sin θ sin θ′ sin2 Δϕ/2( )
− 4 sin2 θ sin2θ′ sin4 Δϕ/2( ), (34)

and it can be shown that the variables C1, S1, C2, and S2 are
given by

C1 �
1 if sinΘ � 0

2 sin θ cos θ′ sin2 Δϕ/2( ) + sinΔθ[ ]2 − sin2 θ sin2Δϕ
sin2Θ otherwise

⎧⎪⎪⎨⎪⎪⎩
(35)

S1 �
0 if sinΘ � 0

−2 sin θ sinΔϕ[ 2 sin θ cos θ′ sin2 Δϕ/2( ) + sinΔθ[ ]
sin2Θ otherwise

⎧⎪⎪⎨⎪⎪⎩
(36)

C2 �
1 if sinΘ � 0

2 sin θ′ cos θ sin2 Δϕ/2( ) − sinΔθ[ ]2 − sin2θ′ sin2Δϕ
sin2Θ otherwise

⎧⎪⎪⎨⎪⎪⎩
(37)

S2 �
0 if sinΘ � 0

−2 sin θ′ sinΔϕ[ 2 sin θ′ cos θ sin2 Δϕ/2( ) − sinΔθ[ ]
sin2Θ otherwise.

⎧⎪⎪⎨⎪⎪⎩
(38)

The advantage of using Eqs. 33–38 instead of Eqs. 25–32 is
that they eliminate numerical instability issues and the need to
treat positive and negative relative azimuth angles as separate
cases (Berk, 2022).

We now have all the information needed to compute the
scattering phase matrix [see Eq. 24] as a function of the three
variables u = cos θ, u′ = cos θ′, and Δϕ = ϕ′ − ϕ. If there is no
difference in azimuth (i.e. ϕ′ − ϕ = 0), then the meridian planes of
the incident and scattered beams in Fig. 1 coincide with the
scattering plane. Hence, there is no need to rotate the reference
planes (R( − i2) andR( − i1) both reduce to the identity matrix), so
that

PS u′, u, 0( ) � PS u′, u, π( ) � FS Θ( ). (39)
It follows from the cosine law of spherical geometry

cosΘ � uu′ + 1 − u2( )1/21 − u′2)1/2 cos ϕ′ − ϕ( ) (40)
that the phase matrix is invariant to three basic changes in the

polar angles u′ and u and azimuthal angles ϕ′ and ϕ which leave
the scattering angle unaltered: 1) changing the signs of u and u′
simultaneously: PS(−u′, − u, ϕ′ − ϕ) = PS(u′, u, ϕ′ − ϕ), 2)
interchange of u and u′: PS(u′, u, ϕ′ − ϕ) = PS(u, u′, ϕ′ − ϕ) 3)
interchange of ϕ and ϕ′: PS(u′, u, ϕ′ − ϕ) = PS(u′, u, ϕ − ϕ′). Also,
if the b2-element in Eq. 24 is zero, then the Stokes parameter V is
scattered independently of the others, according to the phase
function a4(Θ), and the remaining part of the scattering phase
matrix referring to I, Q, and U becomes a 3 × 3 matrix:

PS Θ( ) �
a1 b1C1 −b1S1
b1C2 C2a2C1 − S2a3S1 −C2a2S1 − S2a3C1

b1S2 S2a2C1 + C2a3S1 −S2a2S1 + C2a3C1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (41)

Finally, in a plane-parallel or slab geometry, there is no
azimuth-dependence for light beams traveling in directions
perpendicular to the slab (either up or down). Thus, if either
the incident or the scattered beam travels in a perpendicular
direction, we may use the meridian plane of the other beam as a
reference plane for both beams. Since this plane coincides with
the scattering plane, Eq. 39 applies in this situation too.

For Rayleigh scattering with parameter f � 1−ρ
1+ρ, where ρ is the

depolarization factor defined in Eq. 53, the Stokes scattering
matrix in the Stokes vector representation IS = [I,Q,U,V]T is given
by (Chandrasekhar, 1960; Sommersten et al., 2010)

FS Θ( ) � 3
3 + f

1 + f cos2Θ −f sin2Θ 0 0
−f sin2Θ f 1 + cos2Θ( ) 0 0

0 0 2f cosΘ 0
0 0 0 3f − 1( )cosΘ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(42)

For the first scattering event of the scalar RTE, only the (1.1)-
element of Eq. 42 matters, and leads to the scattering phase
function given by

pRay Θ( ) � 3
3 + f

1 + f cos2Θ( ). (43)

2.4.2 Stokes Vector Representation I � [I‖, I⊥, U, V]T
The Stokes vector I � [I‖, I⊥, U,V]T is related to IS = [I,Q,U,V]T by

IS � DI (44)
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where D is given by Eq. 14, so that I = I‖ + I⊥, and Q = I‖ − I⊥.
Denoting the Stokes vector obtained after a rotation by

IS′ � RS ω( )IS (45)
we find

I′ � D−1IS′ � D−1RS ω( )IS � D−1RS ω( )DI � R ω( )I. (46)
Hence, the rotation matrix for the Stokes vector in the
representation I � [I‖, I⊥, U, V]T becomes:

R ω( ) � D−1RS ω( )D �

cos2 ω sin2 ω −1
2
sin 2ω( ) 0

sin2 ω cos2 ω
1
2
sin 2ω( ) 0

sin 2ω( ) −sin 2ω( ) cos 2ω( ) 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(47)
The scattering phase matrix P(Θ) in the Stokes vector

representation I � [I‖, I⊥, U, V]T is related to the scattering
phase matrix PS(Θ) in the Stokes vector representation IS =
[I,Q,U,V]T by

P Θ( ) � D−1PS Θ( )D. (48)
Similarly, the Stokes scattering matrix F(Θ) associated with the

Stokes vector representation I � [I‖, I⊥, U, V]T is related to the
Stokes scattering matrix FS(Θ) in Eq. 20 by

F Θ( ) � D−1FS Θ( )D

�

1
2

a1 + a2 + 2b1( ) 1
2

a1 − a2( ) 0 0

1
2

a1 − a2( ) 1
2

a1 + a2 − 2b1( ) 0 0

0 0 a3 b2

0 0 −b2 a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

In the Stokes vector representation I � [I‖, I⊥, U, V]T, the
Stokes scattering matrix for Rayleigh scattering becomes (using
Eqs. 42 and 49 (Chandrasekhar, 1960)):

F Θ( ) � 3
2 1 + 2ζ( )

cos2Θ + ζ sin2Θ ζ 0 0
ζ 1 0 0
0 0 1 − ζ( )cosΘ 0
0 0 0 1 − 3ζ( )cosΘ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(50)

where ζ � ρ/(2 − ρ) � 1−f
1+3f.

From Eq. 50 we see that for an incident beam of natural
unpolarized light given by
Iinc � [Iinc‖ , Iinc⊥ , Uinc, Vinc]T � [12Iinc, 12Iinc, 0, 0]T, the scattered
intensities in the plane parallel and perpendicular to the
scattering plane are obtained by carrying out the
multiplication Isca = F(Θ)Iinc:

Isca‖ ∝
3

4 1 + 2ζ( ) 2ζ + 1 − ζ( )cos2Θ[ ]Iinc (51)

Isca⊥ ∝
3

4 1 + 2ζ( ) 1 + ζ( )[ ]Iinc. (52)

Thus, for unpolarized incident light, the scattered light at right
angles (Θ = 90°) to the direction of incidence defines the
depolarization ratio:

ρ ≡
Isca‖
Isca⊥

( )
Θ�90°

� 2ζ
1 + ζ

(53)

whereas the degree of linear polarization becomes [Eq. 18]:

pl � I⊥ − I‖
I⊥ + I‖

� 1 − ζ( ) 1 − cos2Θ( )
1 + 3ζ + 1 − ζ( )cos2Θ → 1 − ζ

1 + 3ζ
� 1 − ρ

1 + ρ

� f as Θ → 90°. (54)

2.4.3 Generalized Spherical Functions–The Greek
Constants
For the scalar RTE, only the a1(Θ) element of the Stokes
scattering matrix Eq. 20 is relevant, and this element is the
scattering phase function given by Eq. 69 in general, and by
Eq. 43 for Rayleigh scattering. The scattering phase function can
be expanded in Legendre polynomials [see Eq. 69], which enables
expression as a Fourier cosine series.

In a similar manner, the scattering phase matrix can be
expanded in generalized spherical functions. In the Stokes
vector representation IS = [I,Q,U,V]T, the scattering phase
matrix is PS(Θ) = PS(u′, u; ϕ′ − ϕ) with u = cos θ, θ being the
polar angle after scattering, and u′ = cos θ′, θ′ being the polar
angle prior to scattering. Similarly, ϕ and ϕ′ are the azimuth
angles after and prior to scattering, respectively. To expand in
generalized spherical functions, the scattering phase matrix is first
expanded in a (M + 1)-term Fourier series in the azimuth angle
difference (Δϕ′ = ϕ′ − ϕ):

PS u′, u;Δϕ( ) � ∑M
m�0

Pm
c u′, u( )cos m Δϕ′( ) + Pm

s u′, u( )sin m Δϕ′( ){ }
(55)

where Pm
c (u′, u) and Pm

s (u′, u) are the coefficient matrices of
the cosine and sine terms, respectively, of the Fourier series.

We use an addition theorem for the generalized spherical
functions to express the Fourier expansion coefficient matrices
directly in terms of the expansion coefficients of the Stokes
scattering matrix FS(Θ) [see Eq. 20] as follows (Siewert, 1981;
Siewert, 1982; Mishchenko, 1991):

Pm
c u′, u( ) � Am u′, u( ) + Δ3,4A

m u′, u( )Δ3,4 (56)
Pm
s u′, u( ) � Am u′, u( )Δ3,4 − Δ3,4A

m u′, u( ) (57)
where Δ3,4 = diag (1, 1, −1, 1). The matrix Am (u′, u) is

given by:

Am u′, u( ) � ∑M
ℓ�m

Pm
ℓ

u( )ΛℓP
m
ℓ

u′( ). (58)

The matrix Pm
ℓ
(u) is given by:
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Pm
ℓ

u( ) �
Pm,0
ℓ

u( ) 0 0 0
0 Pm,+

ℓ
u( ) Pm,−

ℓ
u( ) 0

0 Pm,−
ℓ

u( ) Pm,+
ℓ

u( ) 0
0 0 0 Pm,0

ℓ
u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (59)

where

Pm,±
ℓ

u( ) � 1
2

Pm,−2
ℓ

u( ) ± Pm,2
ℓ

u( )[ ] (60)

and the functions Pm,0
ℓ

(u) and Pm,±2
ℓ

(u) are the generalized
spherical functions (Hovenier et al., 2004). ThematrixΛℓ inEq. 58 is

Λℓ �
α1,ℓ β1,ℓ 0 0
β1,ℓ α2,ℓ 0 0
0 0 α3,ℓ β2,ℓ
0 0 −β2,ℓ α4,ℓ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (61)

and

a1 Θ( ) � ∑M
ℓ�0

α1,ℓP
0,0
ℓ

cosΘ( ) (62)

a2 Θ( ) + a3 Θ( ) � ∑M
ℓ�2

α2,ℓ + α3,ℓ( )P2,2
ℓ

cosΘ( ) (63)

a2 Θ( ) − a3 Θ( ) � ∑M
ℓ�2

α2,ℓ − α3,ℓ( )P2,−2
ℓ

cosΘ( ) (64)

a4 Θ( ) � ∑M
ℓ�0

α4,ℓP
0,0
ℓ

cosΘ( ) (65)

b1 Θ( ) � ∑M
ℓ�2

β1,ℓP
0,2
ℓ

cosΘ( ) (66)

b2 Θ( ) � ∑M
ℓ�2

β2,ℓP
0,2
ℓ

cosΘ( ). (67)

Here the Greek constants αj,ℓ and βj,ℓ are expansion
coefficients, and aj(Θ) and bj(Θ) are the elements of the Stokes
scattering matrix FS(Θ) in Eq. 20. An example of Greek constants
for Rayleigh scattering is provided in Table 1 (see Mishchenko
and Travis (1997)) where

c � 2 1 − ρ( )
2 + ρ

d � 2 1 − 2ρ( )
2 + ρ

(68)

and ρ is the depolarization ratio given by Eq. 53.
We note that in the scalar (unpolarized) case all components

of the Stokes scattering matrix FS(Θ) [see Eq. 20] are zero except
for a1(Θ), and:

a1 Θ( ) � ∑M
ℓ�0

α1,ℓ τ( )P0,0
ℓ

cosΘ( ) ≡ p τ, cosΘ( ) ≈ ∑M
ℓ�0

2ℓ + 1( )χ
ℓ
τ( )Pℓ cosΘ( )

(69)
since P0,0

ℓ
(cosΘ) ≡ Pℓ(cosΘ), where Pℓ(cosΘ) is the

Legendre polynomial of order ℓ, and α1,ℓ(τ) ≡ (2ℓ + 1)χℓ(τ).
Here the coefficients χℓ(τ) are the moments of the phase function
expanded in Legendre polynomials. Note also that the expansion
coefficients given above [Eq. 61] are for the scattering phase
matrix PS(Θ), which relates the incident and scattered Stokes
vectors in the representation IS = [I,Q,U,V]T.

3 SOLUTION OF THE VECTOR RADIATIVE
TRANSFER EQUATION

3.1 Isolation of Azimuth Dependence
We start from the scattering phase matrix expanded in a Fourier
series (see Eq. 55) (Δϕ′ = ϕ′ − ϕ):

P u′, u;Δϕ′( ) � ∑M
m�0

Pm
c u′, u( )cosmΔϕ′ + Pm

s u′, u( )sinmΔϕ′{ }.
(70)

To isolate the azimuth dependence of the radiation field we
expand the Stokes vector I (τ, u, ϕ) in the VRTE [Eq. 7] and
the source termQ (τ, u, ϕ) in Eq. 9 in a Fourier series in a manner
similar to the expansion of the scattering phase matrix in Eq. 70
(Δϕ0 = ϕ0 − ϕ):

I τ, u, ϕ( ) � ∑M
m�0

Imc τ, u( )cosmΔϕ0 + Ims τ, u( )sinmΔϕ0{ } (71)

Q τ, u,ϕ( ) � ∑M
m�0

Qm
c τ, u( )cosmΔϕ0 +Qm

s τ, u( )sinmΔϕ0{ }
(72)

where the subscript s or c denotes sine or cosine mode. Using
these expansions, we obtain the following equations for the
Fourier components of the VRTE (see Stamnes and Stamnes
(2015) for details)

u
dImc τ, u( )

dτ
� Imc τ, u( ) − ϖ τ( )

4
∫1

−1
du′ Pm

c τ, u′, u( ) Imc τ, u′( ) 1 + δ0m( ){
−Pm

s τ, u′, u( ) Ims τ, u′( )} −Qm
c τ, u( )

(73)

u
dIms τ, u( )

dτ
� Ims τ, u( ) − ϖ τ( )

4
∫1

−1
du′ Pm

c τ, u′, u( ){ Ims τ, u′( )
+Pm

s τ, u′, u( ) Imc τ, u′( )} −Qm
s τ, u( ).

(74)
For scattering by randomly oriented particles, the Fourier

coefficient matrix Pm
c (u, u′) has two (2 × 2) zero submatrices,

one in the upper right corner and one in the lower left corner, and
the matrix Pm

s (u, u′) has a (2 × 2) zero submatrix in the upper left
corner and one in the lower right corner (Hovenier and van der
Mee, 1983). Hence

TABLE 1 | Expansion coefficients for Rayleigh scattering.

ℓ α1,ℓ α2,ℓ α3,ℓ α4,ℓ β1,ℓ β2,ℓ

0 1 0 0 0 0 0
1 0 0 0 3d/2 0 0
2 c/2 3c 0 0

"""
3/2

√
c 0
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Pm
c u, u′( ) �

Cm
11 Cm

12 0 0
Cm

21 Cm
22 0 0

0 0 Cm
33 Cm

34

0 0 Cm
43 Cm

44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Pm
s u, u′( ) �

0 0 Sm13 Sm14
0 0 Sm23 Sm24
Sm31 Sm32 0 0
Sm41 Sm42 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (75)

where we have defined Pm
c (u, u′)i,j ≡ Cm(u, u′)i,j and

Pm
s (u, u′)i,j ≡ Sm(u, u′)i,j to simplify the notation. Therefore,

the homogeneous VRTE [Q = 0 in Eqs. 73 and 74] may be
rewritten as (m ∈ [0, 1, 2, . . . , 2N])

u
dImc τ, u( )

dτ
� Imc τ, u( )

− ϖ τ( )
4

∫1

−1
Cm u, u′( )Imc τ, u′( ) − 1 − δ0m( )Sm u, u′( )Ims τ, u′( )[ ]du′

(76)

u
dIms τ, u( )

dτ
� Ims τ, u( ) − ϖ τ( )

4
1 − δ0m( )

∫1

−1
Cm u, u′( )Ims τ, u′( ) + Sm u, u′( )Imc τ, u′( )[ ]du′. (77)

3.1.1 Vector Radiative Transfer Equation for the
Combined Mode
We note that the Imc (τ, u) and Ims (τ, u) components in Eqs. 76 and
77 are still coupled. To produce a pair of independent differential
equations, we define combined cosine and sine modes as

~I
m

c τ, u( ) ≡
Im‖c τ, u( )
Im⊥c τ, u( )
Um

s τ, u( )
Vm

s τ, u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ~I
m

s τ, u( ) ≡
Im‖s τ, u( )
Im⊥s τ, u( )
Um

c τ, u( )
Vm

c τ, u( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (78)

After substantial manipulations, one can show that the mth
term of the homogeneous VRTE of the combined modes can now
be written as (m ∈ [0, 1, 2, . . . , 2N]):

u
d~I

m

c τ, u( )
dτ

� ~I
m

c τ, u( ) − ϖ τ( )
2

∫1

−1
~P
m

c u, u′( )~Imc τ, u′( )du′ (79)

u
d~I

m

s τ, u( )
dτ

� ~I
m

s τ, u( ) − ϖ τ( )
2

∫1

−1
~P
m

s u, u′( )Ims τ, u′( )du′ (80)

where the combined scattering phase matrices are defined as:

~P
m

c u, u′( ) �
Cm

11 Cm
12 −Sm13 −Sm14

Cm
21 Cm

22 −Sm23 −Sm24
Sm31 Sm32 Cm

33 Cm
34

Sm41 Sm42 Cm
43 Cm

44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

~P
m

s u, u′( ) �
Cm

11 Cm
12 Sm13 Sm14

Cm
21 Cm

22 Sm23 Sm24
−Sm31 −Sm32 Cm

33 Cm
34−Sm41 −Sm42 Cm

43 Cm
44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (81)

For the special m = 0 case, we have

~P
0

c u, u′( ) �
C0

11 C0
12 0 0

C0
21 C0

22 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ~P
0

s u, u′( ) �
0 0 0 0
0 0 0 0
0 0 C0

33 C0
34

0 0 C0
43 C0

44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(82)
Equations 79 and 80 are two independent differential

equations to be solved.

3.2 The Discrete Ordinate Method
The discrete ordinate method consists of replacing the integration
over u′ in Eqs. 79 and 80 by a discrete sum by introducing the
Gaussian quadrature points uj (the discrete ordinates) and
corresponding weights wj. For each Fourier component one
obtains (i = ±1, ±2, . . . , ±2N):

ui
d~I

m

c τ, ui( )
dτ

� ~I
m

c τ, ui( ) − ϖ τ( )
2

∑N
j�−N
j≠0

ωj
~P
m

c ui, uj( )~Imc τ, uj( )
(83)

ui
d~I

m

s τ, ui( )
dτ

� ~I
m

s τ, ui( ) − ϖ τ( )
2

∑N
j�−N
j≠0

ωj
~P
m

s ui, uj( )Ims τ, uj( )
(84)

The convention for the indices of the quadrature points is such
that uj < 0 for j < 0, and uj > 0 for j > 0. These points are
distributed symmetrically about zero, i.e., u−j = −uj, and the
corresponding weights are equal, i.e. w−j = wj.

The solution of the discrete ordinate approximation to the
VRTE Eqs. 83 and 84 is analogous to that of the scalar RTE.
Detailed derivations, including the removal of the notorious ill-
conditioning problem, can be found elsewhere (Schulz et al.,
1999; Siewert, 2000; Stamnes and Stamnes, 2015), and will not be
repeated here.

3.3 Discrete Ordinate Radiative Transfer
Upgrades
Below we describe some new important upgrades of VDISORT:

• First, a new algorithm to handle the complex eigenvalue/
eigenvector problem is developed and implemented in
VDISORT to give an accurate computation of the V
component of the Stokes vector.

• Second, a reduction of the dimension of the complex
eigenvalue problem is developed to reduce the
computational burden, and the boundary condition for
the complex eigenvalue/vector case is discussed.

• Third, to obtain solutions at arbitrary polar angles, we have
developed and implemented an accurate ISF approach that
works for both real and complex eigensolutions and an arbitrary
bidirectional reflectance distribution matrix is added to
compute the polarized reflectance at the lower boundary.
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• Fourth, a pseudo-spherical treatment has been
implemented to provide important corrections for Earth
curvature effects at large (near horizontal) solar zenith and
observation polar angles.

• Finally, a single-scattering solution is developed and used to
enhance the accuracy and speed for strongly forward-
peaked scattering, such as by large water droplets or ice
particles.

3.3.1 Complex Eigenvalues/Eigenvectors
The appearance of complex eigenvalues/eigenvectors in the
vector radiative transfer problem stems from the
asymmetric structure of the Stokes scattering matrix [ ±
b2(Θ) in Eq. 20], or equivalently, from the Greek constant
matrix [ ± β2 in Eq. 61]. In the scalar DISORT model, this 4
× 4 scattering matrix degenerates into the scalar scattering
phase function Eq. 69 and the complex eigenvalue problem
does not occur.

3.3.2 The Complex Homogeneous Solution
By seeking exponential solutions to the homogeneous VRTE’s,
Eqs. 83 and 84, one obtains a standard algebraic eigenvalue
problem.Writing the VRTE separately for the upward (u > 0) and
downward (u < 0) hemispheres, and defining μ = |u| and α = c, s,
the homogeneous version of the Fourier components of the
VRTE becomes (i = 1, 2, . . . , 2N):

+μi
d~I

m

α τ,+μi( )
dτ

� ~I
m

α τ,+μi( ) −ϖ τ( )
2

∑N
j�1

wj
~P
m

α +μi,−μj( )~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α +μi,+μj( )~Imα τ,+μj( )
(85)

−μi
d~I

m

α τ,−μi( )
ddτ

� ~I
m

α τ,−μi( ) −ϖ τ( )
2

∑N
j�1

wj
~P
m

α −μi ,−μj( )~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α −μi ,+μj( )~Imα τ,+μj( ).
(86)

Seeking solutions to Eqs. 85 and 86 of the form
~I
m
α (τ,+μi) � g(μi) exp(−kτ), we obtain an algebraic eigenvalue
problem: Ag = kg, where the 8N × 8N eigenmatrix A can be
written as (here the italic I is the identity matrix):

−ϖ τ( )w1~P
m

μ1 , μ1( )
2μ1

+ I
μ1

/
−ϖ τ( )wN

~P
m

μ1 , μN( )
2μ1

−ϖ τ( )w1 ~P
m

μ1 ,−μ1( )
2μ1

/
−ϖ τ( )wN

~P
m

μ1 ,−μN( )
2μ1

..

.
1 ..

. ..
.

1 ..
.

−ϖ τ( )w1 ~P
m

μN, μ1( )
2μN

/
−ϖ τ( )wN

~P
m

μN , μN( )
2μN

+ I
μN

−ϖ τ( )w1 ~P
m

μN, −μ1( )
2μN

/
−ϖ τ( )wN

~P
m

μN,−μN( )
2μN

−ϖ τ( )w1 ~P
m −μ1 , μ1( )

−2μ1
/

−ϖ τ( )wN
~P
m −μ1 , μN( )

−2μ1
−ϖ τ( )w1 ~P

m −μ1 ,−μ1( )
−2μ1

+ I
−μ1

/
−ϖ τ( )wN

~P
m −μ1 ,−μN( )

−2μ1
..
.

1 ..
. ..

.
1 ..

.

−ϖ τ( )w1~P
m −μN , μ1( )

−2μN
/

−ϖ τ( )wN
~P
m −μN, μN( )

−2μN
−ϖ τ( )w1 ~P

m −μN,−μ1( )
−2μN

/
−ϖ τ( )wN

~P
m −μN,−μN( )

−2μN
+ I
−μN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(87)

In the scalar DISORT case real eigenvalues ± kj and eigenvectors
g±j (±μj) are obtained, so that the homogeneous solution can be
written as a linear combination of the eigensolutions:

Ihomogenous τ,± μi( ) � ∑N
j�1

C−jg−j ± μi( )ekjτ + ∑N
j�1

Cjgj ± μi( )e−kjτ .
(88)

For the 4 × 4 VDISORT problem the g±j (±μi) eigenvector in
the scalar case must be replaced by a 4 × 1 eigenvector g±j (±μi) for
[I‖, I⊥, U, V]T. Since we have 2N quadrature angles ± μ1, ±μ2, . . . ,
±μN, the dimension of the full eigenvector g±j is 8N × 1. A matrix
with real elements has eigenvalue/eigenvector solutions that
either are real or occur in complex conjugate pairs. Therefore,
defining kc, k

p
c as a complex conjugate pair of eigenvalues, gc, g

p
c as

a complex conjugate pair of eigenvectors, and C ± 1, C ± 2 as
arbitrary coefficients, we may, in analogy with the scalar case with
only real solutions, write the complex solution to the
homogeneous VRTE as:

Ihomo τ,± μi( ) � ∑Nr

j�1
Cjgj ± μi( )e−kjτ +∑Nr

j�1
C−jg−j ± μi( )ekjτ

︸$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$︸
IREAL

+∑Ni

j�1
C1j gcj ± μi( )e−kcjτ + C2j g

p
cj ± μi( )e−kpcjτ[ ]

+∑Ni

j�1
C−1j g−cj ± μi( )ekpcjτ + C−2j gp−cj ± μi( )ekcjτ[ ]

︸$$$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$$$︸
ICOMPLEX

(89)
where Nr is the number of real solutions, Ni is the number of

complex conjugate pair solutions, andN =Nr + 2Ni is the number
of streams in each hemisphere.

The homogeneous solution in Eq. 89 contains complex
numbers that must be converted into real values before
solving for the coefficients. Since linear combinations of
g±ce

±kcτ and g⊥c* e±kc*τ are also a solution of Eqs. 85 and 86,
we can separate the real and imaginary parts. As shown in
Section 8 (Supplementary Appendix A1) the complex
homogeneous solutions may be converted into the
following real solutions:

Ihomo τ,± μi( ) � ∑Nr

j�1
Cjgj ± μi( )e−kjτ +∑Nr

j�1
C−jg−j ± μi( )ekjτ

︸$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$︸
IREAL

+ ∑Ni

j�1
C1j ĝ1j τ,± μi( ) + C2j ĝ2j τ,± μi( )[ ] e−krjτ

+ ∑Ni

j�1
C−1j ĝ−1j τ,± μi( ) + C−2j ĝ−2j τ,± μi( )[ ] ekrjτ .

︸$$$$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$$$$︸
ICOMPLEX

(90)
The new eigenvalue/vector pairs are real numbers, and the

coefficients C ± 1j, C ± 2j will be determined by the top/lower
boundary as well as the layer continuity conditions. The beauty of
Eq. 90 is that (after the conversion) it has the same form as that of
the scalar homogeneous solution, with all of the differences
incorporated in the new (4 × 1) eigenvectors ĝ±1(τ,± μi) and
ĝ±2(τ,± μi).
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3.3.3 Reduction of the Dimension of the Algebraic
Eigenvalue Problem
A reduction of the dimension of the eigenmatrix by a factor of
2 saves a significant amount of computing time. In the scalar
DISORT code, this reduction is based on the symmetry pm (μi,
μj) = pm (−μi, − μj) of the phase function as explained in detail
elsewhere (Stamnes K. et al., 2017).

However, in the vector case, the phase matrix
pmα (μi, μj) ≠ pmα (−μi,−μj), implying that the reduction of
dimension can not be applied directly, and that a
transformation must be done first as follows:

Pm
α −μ,−μ′( ) � DPm

α +μ,+μ′( )D (91)
where the matrix D = diag (1, 1, −1, −1).
This result just tells us that we need to introduce a new phase

matrix DPm
α (μi, μj)D in the VRTE to restore the special

symmetry structure of the eigenmatrix. For the downward
VRTE in Eq. 86, we multiply it by D on both sides, and then
add D ·D = I on the RHS, so that Eq. 86 becomes:

−μi
d~I

m

α τ,−μj( )
dτ

D � D~I
m

α τ,−μj( ) − ϖ τ( )
2

∑N
j�1

wjD · ~Pm

α −μi ,−μj( )D ·D~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wjD · ~Pm

α −μi ,+μj( )D ·D~Imα τ,+μj( )
� D~I

m

α τ,−μj( ) − ϖ τ( )
2

∑N
j�1

wj
~P
m

α +μi ,+μj( )D~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α +μi ,−μj( )D~Imα τ,+μj( ).
(92)

In Eq. 85, we simply just multiply by D ·D = I in front of the
term ~I

m
α (τ,−μj) on the RHS, so that it becomes

+μi
d~I

m

α τ,+μi( )
dτ

� ~I
m

α τ,+μi( ) − ϖ τ( )
2

∑N
j�1

wj
~P
m

α +μi,−μj( )D ·D~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α +μi,+μj( )~Imα τ,+μj( ).
(93)

Now we may rewrite the VRTE with the proper symmetry
structure, which is suitable for the reduction of dimension.

+μi
d~I

m

α τ,+μi( )
dτ

� ~I
m

α τ,+μi( ) − ϖ τ( )
2

∑N
j�1

wj
~P
m

α +μi,−μj( )D ·D~Imα τ,−μj( )
−ϖ τ( )

2
∑N
j�1

wj
~P
m

α +μi,+μj( )~Imα τ,+μj( )
(94)

−μi
dD~I

m

α τ,−μj( )
dτ

� D~I
m

α τ,−μj( ) − ϖ τ( )
2

∑N
j�1

wj
~P
m +μi,+μj( )D~Imα τ,−μj( )

−ϖ τ( )
2

∑N
j�1

wj
~P
m +μi,−μj( )D~Imα τ,+μj( ).

(95)

Equations 94 and 95 are identical with Eqs. 85 and 86 if we
make the following connections:

~I
m

α τ,+μi( ) → ~I
m

α τ,+μi( ) unchanged( )
~I
m

α τ,−μj( ) → D~I
m

α τ,−μj( )[ ]
~P
m

α +μi,+μj( ) → ~P
m

α +μi,+μj( ) unchanged( )
~P
m

α +μi,−μj( ) → ~P
m

α +μi,−μj( )D[ ].
To accomplish the reduction of dimension, we define

eigenvectors

~gα,+ � gα,+ �
gα,+1
..
.

gα,+N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ unchanged( ) ~gα,− �
Dgα,−1

..

.

Dgα,−N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

as well as two 4N × 4N matrices as we did in the scalar case
(Lin et al., 2015):

Eα �

ϖ τ( )w1
~P
m

α μ1, μ1( )
2μ1

− I
μ1

/
ϖ τ( )wN

~P
m

α μ1, μN( )
2μ1

..

.
1 ..

.

ϖ τ( )w1
~P
m

α μN, μ1( )
2μN

/
ϖ τ( )wN

~P
m

α μN, μN( )
2μN

− I
μN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fα �

ϖ τ( )w1
~P
m

α μ1,−μ1( )D
2μ1

/
ϖ τ( )wN

~P
m

α μ1,−μN( )D
2μ1

..

.
1 ..

.

ϖ τ( )w1
~P
m

α μN,−μ1( )D
2μN

/
ϖ τ( )wN

~P
m

α μN,−μN( )D
2μN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
to obtain

Eα + Fα( ) Eα − Fα( ) � k2α ~gα,+ + ~gα,−( ). (96)
Equation 96 is similar to the one obtained in the scalar case, so

we may proceed exactly as in that case (Lin et al., 2015).

3.4 Discrete-Ordinate Approximation of the
Vector Source Function
In VDISORT, the source function is a 4 × 1 vector, and the
discrete-ordinate approximation of the mth Fourier component
of the vector source function may be written as

Smα τ,± μ( ) � ϖ
2

∑N
i�1

ωi
~P
m

α −μi,± μ( )Imα τ,−μi( )
+ ϖ

2
∑N
i�1

ωi
~P
m

α +μi,± μ( )Imα τ,+μi( )
+ Xm

0 ± μ( )e−τ/μ0
(97)

Xm
0 ± μ( ) � 2 − δ0m( ) ϖ

4π
~P
m

α −μ0,± μ( )Sb. (98)

In Eq. 97, the Stokes vector Imα (τ,−μi) is given at the
quadrature angles where i = 1, 2, . . . , 2N. For the complex
eigenvalue/vector case, according to Eq. 168, the general solution
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can be written as (ignoring the thermal source, which can be
treated in a similar manner):

~I
m

α τ,± μi( ) � ∑Nr

j�1
Cjgj ± μi( )e−kjτ +∑Nr

j�1
C−jg−j ± μi( )ekjτ

︸$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$︸
IREAL

+Z0 ± μi( )e−τ/μ0︸$$$$$$︷︷$$$$$$︸
IPARTICULAR

+ ∑Ni

j�1
C1j ĝ1j τ,± μi( ) + C2j ĝ2j τ,± μi( )[ ] e−krjτ

+ ∑Ni

j�1
C−1j ĝ−1j τ,± μi( ) + C−2j ĝ−2j τ,± μi( )[ ] ekrjτ

︸$$$$$$$$$$$$$$$$$$$$︷︷$$$$$$$$$$$$$$$$$$$$︸
ICOMPLEX

(99)
where the first two summation terms on the right hand side are

the homogeneous solution for real eigenvalues/vectors, the
following term is the particular solution, and the last two
summation terms are the homogeneous solution for complex
conjugate eigenvalues/vectors. The real vectors ĝ1j(τ, ± μi) and
ĝ2j(τ,± μi) are defined in Eqs. 163–167.

Substituting Eq. 99 into the vector source function given by
Eq. 97, we may write the vector source function [Eq. 97] in a
compact form similar to the general solutions [Eq. 99]:

Smα τ,± μ( ) � ∑Nr

j�1
Cj~gj ± μ( )e−kjτ +∑Nr

j�1
C−j~g−j ± μ( )ekjτ + ~Z0 ± μ( )e−τ/μ0

+ ∑Ni

j�1
C1j

˜̂g1j τ,± μ( ) + C2j
˜̂g2j τ,± μ( )[ ] e−krjτ

+ ∑Ni

j�1
C−1j ˜̂g−1j τ,± μ( ) + C−2j ˜̂g−2j τ,± μ( )[ ] ekrjτ .

(100)
In Eq. 100 the following expressions.

~g±j ± μ( ) � ϖ
2

∑Nr

i�1
ωiP

m
α −μi,± μ( )g±j −μi( ) + ωiP

m
α μi,± μ( )g±j +μi( ){ }

(101)
˜̂g±1j τ,± μ( ) � ϖ

2
∑Ni

i�1
ωiP

m
α −μi,± μ( )ĝ±1j τ,−μi( ) + ωiP

m
α μi,± μ( )ĝ±1j τ, μi( ){ }

(102)
˜̂g±2j τ,± μ( ) � ϖ

2
∑Ni

i�1
ωiP

m
α −μi,± μ( )ĝ±2j τ,−μi( ) + ωiP

m
α μi,± μ( )ĝ±2j τ, μi( ){ }

(103)

~Z0 ± μ( ) � ϖ
2

∑N
i�1

ωiP
m
α −μi,± μ( )Z0 −μi( ){

+ωiP
m
α μi,± μ( )Z0 μi( ) + X0 ± μ( )} (104)

are simply convenient analytic interpolation formulas of g, ĝ1,
ĝ2, and Z0. They clearly reveal the interpolatory nature of Eq. 100
for the vector source function. The fact that they are derived from
the basic VRTE to which we seek solutions indicates that these
expressions, like the analogous expressions in the scalar case, will
be superior to any other interpolation scheme (Stamnes et al.,
1988; Schulz and Stamnes, 2000; Lin et al., 2015; Stamnes K. et al.,
2017).

3.5 Integration of the Source Function
Method–Solutions at User-Desired Polar
Angles
The discrete ordinate solutions for the Stokes vector are
computed at the quadrature angles as discussed in the
previous section. To obtain values at arbitrary angles as
desired by the user, an interpolation algorithm has to be
implemented. In previous versions of VDISORT, a standard
spline interpolation scheme, shown to work well for Rayleigh
scattering (Schulz et al., 1999), was used to obtain output at
arbitrary polar angles. However, the spline interpolation generally
requires a large number of quadrature angles (number of
streams), and it may fail when the particles have sharp
forward scattering peaks, such as for large cloud droplets or
ice crystals, when the Stokes components may change rapidly
with polar angle.

A better approach to interpolation is to use the discrete-
ordinate solution to derive explicit expressions for the source
function that can be integrated analytically. This ISF method
is implemented in DISORT (Stamnes et al., 1988; Lin et al.,
2015; Stamnes K. et al., 2017) and also in a previous version of
VDISORT (Schulz and Stamnes, 2000), but that solution is not
valid for the V component of the Stokes vector because the
eigenvalues/vectors were assumed to be real. Therefore, the
solution must be extended to apply to the general case for
which some of the eigenvalues/eigenvectors may be complex.
By doing so, we obtain results at arbitrary polar angles for any
given number of streams, and we may save computing time by
getting accurate results at arbitrary polar angles for a relatively
small number of streams. Below we will use the ISF method to
derive a new interpolation algorithm that works well also for
the complex eigensolutions.

3.5.1 Single-Layer (Homogeneous) Medium
For a slab of thickness τ*, we may solve Eqs. 83 and 84 to obtain.

~I
m

α τ,+μ( ) � ~I
m

α τp,+μ( )e− τp−τ( )/μ + ∫τp

τ

dt

μ
Smα t,+μ( )e− t−τ( )/μ

(105)
~I
m

α τ,−μ( ) � ~I
m

α 0,−μ( )e−τ/μ + ∫τ

0

dt

μ
Smα t,−μ( )e− τ−t( )/μ. (106)

Using Eq. 100 in Eqs. 105 and 106, we find that for a slab of
thickness τ*, the Stokes vectors become

~I τ,+μ( ) � ~I τ*,+μ( )e−τ*−τ
μ + ∑Nr

j�−Nr
j ≠ 0

Cj

~gj +μ( )
1 + kjμ

e−kjτ − e− kjτ*+ τ*−τ( )/μ[ ]{ }

+ ∑Ni

j�−Ni
j ≠ 0

Gj τ,+μ( )e−krjτ − Gj τ*,+μ( )e− krjτ*+ τ*−τ( )/μ[ ]{ }

+ ~Z0 +μ( )
1 + μ/μ0 e−τ/μ0 − e− τ*/μ0+ τ*−τ( )/μ[ ]{ }

(107)
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~I τ,−μ( ) � ~I 0,−μ( )e−τ
μ + ∑Nr

j�−Nr
j ≠ 0

Cj

~gj −μ( )
1 − kjμ

e−kjτ − e−τ/μ{ }

+ ∑Ni

j�−Ni
j ≠ 0

Gj τ,−μ( )e−krjτ − Gj 0,−μ( )e−τ/μ{ }

+ ~Z0 −μ( )
1 − μ/μ0 e−τ/μ0 − e−τ/μ{ }

(108)

where

Gj τ,± μ( ) � 1

μkij( )2 + 1 ± μkrj( )2
× 1 ± μkrj( ) C1j

˜̂g1j τ,± μ( ) + C2j
˜̂g2j τ,± μ( )[ ]{

± μkij C1j
˜̂g2j τ,± μ( ) − C2j

˜̂g1j τ,± μ( )[ ]}.
(109)

Here we assumed k−j = −kj, k−rj = −krj and k−ij = −kij and thus
k−cj = −kcj = −krj − ikij.

In Eqs. 107 and 108, the first term on the RHS is due to
beam attenuation of the Stokes vector. The first of the
following summation terms stems from the integration of
the homogeneous solution with real eigensolutions in the
vector source function [Eq. 100], whereas the second
summation is a new term needed for the complex
eigensolutions in the vector source function [Eq. 100].
Because ˜̂g1j(τ,+μ) and ˜̂g2j(τ,+μ) are functions of ĝ1j(τ,+μ)
and ĝ2j(τ,+μ) that depend on cos (kiτ) and sin (kiτ), we used
the following equations to handle the integration of the
complex eigenvector/vectors:

∫ cos ax ebx dx � 1
a2 + b2

ebx a sin ax + b cos ax( ) (110)

∫ sin ax ebxdx � 1
a2 + b2

ebx b sin ax − a cos ax( ). (111)

3.5.2 Multi-Layer (Inhomogenous) Medium
The single-layer case can be extended into a multi-layer medium,
for which we need to evaluate the integral by integrating layer-by-
layer as follows.

~I
m

α τ,+μ( ) � ~I
m

α τL,+μ( )e− τL−τ( )/μ + ∫τp

τ

dt

μ
Smα,p t,+μ( )e− t−τ( )/μ

+ ∑L
n�p+1

∫τn

τn−1

dt

μ
Smα,n t,+μ( )e− t−τ( )/μ

(112)
~I
m

α τ,−μ( ) � ~I
m

α 0,−μ( )e−τ/μ + ∫τ

τp−1

dt

μ
Smα,p t,−μ( )e− τ−t( )/μ

+∑p−1
n�1

∫τn

τn−1

dt

μ
Smα,n t,−μ( )e− τ−t( )/μ

(113)

Using Eq. 100 for Smα,n(t,−μ) in the nth layer, Eqs. 112 and 113
become:

~I
m

α τ,+μ( ) � ~I
m

α τL,+μ( )e−τL−τ
μ

+∑L
n�p

∑N
j�−N
j≠0

Cjn

~gjn +μ( )
1 + kjnμ

e−kjnτn−1+ τn−1−τ( )/μ − e− kjnτn+ τn−τ( )/μ[ ]{ }

+∑L
n�p

∑N
j�−N
j≠0

Gjn τn−1,+μ( )e−krjnτn−1+ τn−1−τ( )/μ − Gjn τn,+μ( )e− kjnτn+ τn−τ( )/μ[ ]{ }

+∑L
n�p

~Z0n +μ( )
1 + μ/μ0 e− τn−1/μ0+ τn−1−τ( )/μ[ ] − e− τn/μ0+ τn−τ( )/μ[ ]{ }

(114)
with τn−1 replaced by τ for n = p, and

~I
m

α τ,−μ( ) � ~I
m

α 0,−μ( )e−τ
μ

+∑p
n�1

∑N
j�−N
j≠0

Cjn

~gjn −μ( )
1 − kjnμ

e− kjnτn+ τ−τn( )/μ[ ] − e− kjnτn−1+ τ−τn−1( )/μ[ ]{ }

+ ∑p
n�1

∑N
j�−N
j≠0

Gjn τn,−μ( )e− krjnτn+ τ−τn( )/μ[ ] − Gjn τn−1,−μ( )e− krjnτn−1+ τ−τn−1( )/μ[ ]{ }

+ ∑p
n�1

~Z0n −μ( )
1 − μ/μ0 e− τn/μ0+ τ−τn( )/μ[ ] − e− τn−1/mu0+ τ−τn−1( )/μ[ ]{ }

(115)
with τn replaced by τ for n = p, and where

Gjn τ,± μ( ) � 1

μkijn( )2 + 1 ± μkrjn( )2
× 1 ± μkrjn( ) C1jn

˜̂g1jn τ,± μ( ) + C2jn
˜̂g2jn τ,± μ( )[ ]{

± μkijn C1jn
˜̂g2jn τ,± μ( ) − C2jn

˜̂g1jn τ,± μ( )[ ]}.
(116)

It can be verified that for a single layer τn−1 = τ, τn = τL = τ* in
Eq. 114; τn = τ, τn−1 = 0 in Eq. 115, they are reduced to Eqs. 107
and 108, as they should.

3.5.3 Numerical Example
Many practical problems including remote sensing applications
require Stokes vector components at sensor observing angles.
Even though one could envision generating results at sensor
observing angles by interpolating or extrapolating the quadrature
values to such angles, accurate interpolation of these values is
difficult, particularly for optical depths close to zero (upper
boundary) and for extrapolation to angles close to μ = 0 and μ
= 1.0. For example, Figure 2 shows an example of inaccurate
spline interpolation for a benchmark case (Garcia and Siewert,
1989) that has been reproduced by VDISORT.We note that the
spline interpolation produces large oscillations, whereas the ISF
method, see Eqs. 105 and 106 yields accurate analytic results that
agree with the benchmark values at the quadrature angles.

We emphasize that the ISF method allows one to compute
analytically the radiation field at arbitrary angles and optical
depths from the discrete ordinate solutions, both for the scalar
radiative transfer problem (Lin et al., 2015; Stamnes K. et al.,
2017) and, as shown here, for the vector problem including the
complete Stokes vector IS = [I, Q, U, V]T. This capability is one of
the unique advantages of the discrete ordinate method. Also, the
ISF solutions satisfy the boundary and continuity conditions not
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only at the discrete set of quadrature angles, but at arbitrary
angles μ. In fact, we have found that the ISF method improves the
accuracy of the discrete ordinate solution (Schulz and Stamnes,
2000).

3.6 Polarized Reflectance at the Lower
Boundary
In Eq. 99 the homogeneous solution contains unknown constants
C±j, C ± 1j, and C ± 2j, which are to be determined by the boundary
conditions at the top and bottom of the medium and continuity
conditions at layer interfaces.

3.6.1 Top Boundary
In VDISORT, we assume that the light at the top of the
atmosphere is a direct beam such that the diffuse light
contribution is zero:

~I
m

α 0,−μ( ) � 0, 0, 0, 0[ ]T (117)
for m = 0, . . . , 2N − 1.

3.6.2 Layer Interfaces
At layer interfaces the Stokes vector must satisfy continuity
conditions, because by assumption there is no change in the
refractive index between layers. Assuming that τn,bottom is the
optical depth at the bottom of the nth layer, and that τn+1,top is the
optical depth at the top of the (n + 1)th layer, we have.

τn,bottom � τn+1,top (118)

~I
m

α τn,bottom,± μ( ) � ~I
m

α τn+1,top,± μ( ) (119)
where the Stokes vector ~Iα(τ,± μ) is given by the sum of

homogeneous and particular solutions in Eq. 99.The continuity
conditions are applied layer by layer for n = 1, . . . , L − 1. One
important difference from the scalar DISORT model is that the
new real eigenvectors associated with the complex solutions
depend on the optical depth τ in each layer [Eq. 90].
Therefore, for jth eigenvector in the nth layer, we have.

ĝ1j τn,top,± μi( ) ≠ ĝ1j τn,bottom,± μi( ) (120)
ĝ2j τn,top,± μi( ) ≠ ĝ2j τn,bottom,± μi( ). (121)

3.6.3 Lower Boundary
For the RTE, the lower boundary is determined by the
bidirectional reflectance distribution function/matrix (BRDF).
We introduce the matrix or polarized BRDF as the 4 × 4
reflection matrix R by writing:

I μ, ϕ, τL( ) � ∫2π

0
dϕ′∫1

0
dμ′R −μ′, μ, ϕ − ϕ′( )I −μ′, ϕ′, τL( )

+R −μ0, μ, ϕ − ϕ0( )Sbe−τL/μ0 .
(122)

The reflection matrix R (−μ′, μ, ϕ − ϕ′) is then expanded in a
Fourier series:

R −μ′, μ, ϕ − ϕ′( ) � ∑L
m�1

Rm
c −μ′, μ( )cosm ϕ − ϕ′( )

+ ∑L
m�1

Rm
s −μ′, μ( )sinm ϕ − ϕ′( ).

(123)

The Fourier mode ~I
m
α (τL, μ) of the Stokes vector at the polar

angle μ just above the lower boundary can then be expressed
in terms of ~R(μ, μ′) by (detailed derivation omitted for
brevity):

~I
m

α τL, μ( ) � ~R
m

α,beam −μ0, μ( )Sbe−τL/μ0
+ π∑N

j�1
ωj

~R
m

α −μj, μ( )~Imα τL,−μj( ) (124)

where.

~R
m

c,beam −μ0, μ( ) �
Rm
c11 Rm

c12 0 0
Rm
c21 Rm

c22 0 0
Rm
s31 Rm

s32 0 0
Rm
s41 Rm

s42 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (125)

~R
m

s,beam −μ0, μ( ) �
0 0 Rm

s11 Rm
s12

0 0 Rm
s21 Rm

s22

0 0 Rm
c31 Rm

c32

0 0 Rm
c41 Rm

c42

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (126)

~R
m

c −μj, μ( ) �
Δ+
0mRc11 Δ+

0mRc12 −Δ−
0mRs13 −Δ−

0mRs14

Δ+
0mRc21 Δ+

0mRc22 −Δ−
0mRs23 −Δ−

0mRs24

Δ−
0mRs31 Δ−

0mRs32 Δ−
0mRc33 Δ−

0mRc34

Δ−
0mRs41 Δ−

0mRs42 Δ−
0mRc43 Δ−

0mRc44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (127)

FIGURE 2 | Comparison of output for (i) quadrature angles (μ = cos θ,
where θ is the polar angle); (ii) spline interpolation; and (iii) analytic results at
arbitrary output angles.
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~R
m

s −μj, μ( ) �
Δ−
0mRc11 Δ−

0mRc12 Δ−
0mRs13 Δ−

0mRs14

Δ−
0mRc21 Δ−

0mRc22 Δ−
0mRs23 Δ−

0mRs24

−Δ−
0mRs31 −Δ−

0mRs32 Δ+
0mRc33 Δ+

0mRc34

−Δ−
0mRs41 −Δ−

0mRs42 Δ+
0mRc43 Δ+

0mRc44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (128)

where Δ±
0m ≡ 1 ± δ0m.

In VDISORT, the implementation of the polarized BRDF has
been tested by assuming a vacuum layer above a rough ocean
surface (Tsang et al., 1985) and by matching the values of the
Stokes vector just above the surface (in the upward direction)
with analytic values of the BRDF computed without the Fourier
expansion. Figure 3 shows an example of a comparison between
VDISORT upward reflected Stokes parameters and analytic Cox-
Munk BRDF results for a 1-D Gaussian surface with a wind speed
of 5 m/s. The V component vanishes because the reflection from
an unpolarized direct beam does not produce circular
polarization. The results show that VDISORT reproduced the
analytic results except for backscattering (ϕ = 180°) of the U
component where the value of zero is given as numerical noise
(~ 10−10) by VDISORT.

4 THE 4 × 4 SOLUTION VERSUS THE 3 × 3
APPROXIMATION

In the discrete ordinate method of radiative transfer, we need to
determine homogenous and particular solutions to arrive at the
general solution. The particular solution is formulated as a set of
linear equations Ax = b that can quickly be solved using standard
techniques of linear algebra, for example Gaussian elimination.
The most time-consuming step is solving the homogenous
problem, which is formulated as a standard algebraic
eigenvalue problem (A− λ)x = 0. In the case of the 4 × 4
solution, this eigenvalue problem involves matrices of size
4N × 4N, where N is the number of quadrature points or
“streams” in the upper and lower hemispheres, since a
reduction of dimension step (Section 3.3.3) is used to reduce
the matrix dimension from 8N × 8N–4N × 4N. This step is
completely analogous to that used in DISORT (Stamnes et al.,
1988) to reduce a matrix of dimension 2N × 2N to N × N. Since
the presence of the sign on b2 in Eq. 20 leads to a matrix A in the
algebraic eigenvalue problem that cannot be made symmetric, the
eigenvalues and corresponding eigenvectors in the 4 × 4

FIGURE 3 | Upper panel: The upward reflection of Stokes parameter I (μ, τL, ϕ) just above the lower boundary for a 1-D Gaussian surface with a ‘Cox-Munk’ slope
variance distribution for a wind speed of 5 m/s. Middle panel: Same as upper panel except for the Stokes parameter Q (μ, τL, ϕ). Lower panel: Same as upper panel
except for the Stokes parameter U (μ, τL, ϕ).
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representation occur in complex conjugate pairs. In the 3 × 3
approximation, the 4th row and column in Eq. 20 are simply
omitted, and the resulting impact on the scattering phase matrix
is obtained by setting b2 = 0 in Eq. 24 which results in Eq. 41.
Then the matrix A is symmetric implying that the resulting
eigenvalues and eigenvectors are real. Note that setting b2 = 0
in the 4 × 4 representation leads to I, Q, and U parameters
identical to those obtained in the 3 × 3 approximation.

Since setting b2 = 0 decouples the V component from I, Q, and
U, the eigenvalue problem required to solve the homogeneous
system in N discrete ordinates is reduced from solving a 4N × 4N
system to solving a 3N × 3N system. The computational burden of
solving an eigenvalue problem scales like n3 where n is the
dimension of the matrix. Therefore, the 3 × 3 approximation
reduces the computational burden by a theoretical factor of 43/33

≈ 2.37. Since the resulting eigenvectors and eigenvalues for the
3N × 3N system are real, significant further computational
savings are obtained by using an eigensolver, such as
ASYMTX available in the DISORT package (Stamnes et al.,
1988) that avoids unnecessary complex arithmetic. In the 4 ×
4 case some of the eigenvectors and eigenvalues occur in complex
conjugate pairs implying that complex arithmetic must be
considered to obtain accurate solutions when b2 ≠ 0.

A comparison of results produced by VDISORT and by a
doubling-adding method (VLBLE) is provided in Figure 4
(Stamnes S. et al., 2017), where the reflected components are
plotted against the polar angle θR, where θR = 0° is the zenith

direction, and θR = 90° is the horizon. The transmitted components
are plotted against the polar angle θT, where θT = 0° is the nadir
direction, and θT = 90° is the horizon. We note that the results for I
and Q produced by the 3 × 3 approximation are essentially
identical to the more computationally demanding 4 × 4 results.

The results shown in Figure 4 pertain to a cirrus cloud consisting
of non-spherical ice crystals. The adequacy of the 3 × 3
approximation was investigated for spherical particles by Hansen
(1971) who concluded that it is usually adequate to work with 3 × 3
matrices to compute multiple-scattering polarization properties.
Hansen (1971) investigated errors only of the reflected radiance
and the degree of polarization; errors for the individual Stokes
components Q and U, and transmittances were not considered.
The results shown in Figure 4 suggest that the 3 × 3
approximation holds not only for water clouds, but also for non-
spherical ice crystals, and that it applies not just to the reflected
radiation, but also to the transmitted radiation and to the Stokes
parameters Q and U (not shown) (Stamnes S. et al., 2017).

5 SINGLE-SCATTERING SOLUTION

Introducing the half-range Stokes vectors (the ± signs denote the
upper (+) and the lower (-) hemispheres, respectively).

I+ τ, θ, ϕ( ) ≡ I+ τ, θ ≤ π/2, ϕ( ) � I+ τ, μ, ϕ( ) (129)
I− τ, θ, ϕ( ) ≡ I− τ, θ > π/2, ϕ( ) � I− τ, μ, ϕ( ) (130)

FIGURE 4 | Top panels: reflected I and Q components at polar angles θR; bottom panels: transmitted I and Q components at polar angles θT. The incident Stokes
vector is IS =[1,0,0,0]. The actual reflection and transmission for I and Q are scaled by a factor π

μ0F0
where F0=1 and μ0 is the cosine of the solar zenith angle θ0. NSTR =

120. The input parameters (phase matrix) for this ice (cirrus) cloud consisting on non-spherical ice crystals are described elsewhere (Stamnes S. et al., 2017).
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FIGURE 5 | (A) Normalized phase function a1; (B) − b1/a1; (C) a4/a1; (D) b2/a1 (Kokhanovsky et al., 2010).

FIGURE 6 | The Stokes parameter I (τ, μ, ϕ) for the aerosol scattering case for reflected (top) and transmitted (bottom) light. Number of discrete ordinate streams,
NSTR = 148.
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and similar definitions for S±(τ, μ, ϕ), Eq. 7may be re-written
as (μ ≡|u|).

μ
dI+ τ, μ, ϕ( )

dτ
� I+ τ, μ, ϕ( ) − S+ τ, μ, ϕ( ) (131)

−μ dI
− τ, μ, ϕ( )
dτ

� I− τ, μ, ϕ( ) − S− τ, μ, ϕ( ). (132)

5.1 Single-Layer (Homogeneous) Medium
For a homogeneous slab, we adopt the following notation:

1) τ0 is the optical depth at the upper boundary (top of the slab);
2) τb is the optical depth at the lower boundary (bottom of the slab).

Integrating Eq. 131 from τb to τ and Eq. 132 from τ0 to τ (τ0 ≤
τ ≤ τb), and solving for I±(τ, μ, ϕ) we obtain.

I+ τ, μ, ϕ( ) � I+ τb, μ, ϕ( )e− τb−τ( )/μ + ∫τb

τ

dt

μ
S+ t, μ, ϕ( )e− t−τ( )

μ (133)

I− τ, μ, ϕ( ) � I− τ0, μ, ϕ( )e− τ−τ0( )/μ + ∫τ

τ0

dt

μ
S− t, μ, ϕ( )e− τ−t( )

μ . (134)

Equations 133 and 134 show that if the source functions S±(t,
μ, ϕ) are known, we can obtain a solution to the radiative transfer
problem by integration (numerically or analytically).

In the single-scattering approximation, we omit the multiple-
scattering term in Eq. 8, so that the source function S±(τ, μ, ϕ) in
Eq. 9 simply becomes:

S± τ, μ, ϕ( ) ≡ Q± τ, μ, ϕ( ) � ϖ τ( )
4π

P τ,−μ0, ϕ0; u,ϕ( )Sbe−τ/μ0
+ 1 − ϖ τ( )[ ] St τ( ).

(135)
The first term on the RHS of Eq. 135 is proportional to the

incident beam Sbwhich for an unpolarized incident beam is given
by Eq. 10, while the second term is due to thermal emission,
which is unpolarized, and St(τ) and is given by Eq. 11.

5.2 Multi-Layer (Inhomogeneous) Medium
The vertical variation of the inherent optical properties (IOPs) in
a slab may be dealt with by dividing it into a number of adjacent,
horizontal layers in which the IOPs are taken to be constant
within each layer, but allowed to vary from layer to layer. The
number of layers should be large enough to resolve the vertical
variation in the IOPs. In such a multi-layered medium, consisting
of a total of L layers, wemay evaluate the integrals in Eqs. 133 and
134 by integrating layer by layer as follows (τp−1 ≤ τ ≤ τp and μ >
0, τb = τL, τ0 = 0) ignoring the boundary terms (setting I+(τb, μ, ϕ)
= 0 and I−(τ0, μ, ϕ) = 0):

I+ τ, μ, ϕ( ) � ∫τp

τ

dt

μ
S+p t, μ, ϕ( )e− t−τ( )/μ + ∑L

n�p+1

∫τn

τn−1

dt

μ
S+n t, μ, ϕ( )e− t−τ( )/μ (136)

FIGURE 7 | The Stokes parameter Q (τ, μ, ϕ) for the aerosol scattering case for reflected (top) and transmitted (bottom) light. NSTR = 148.
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I− τ, μ, ϕ( ) � ∑p−1
n�1

∫τn

τn−1

dt

μ
S−n t, μ, ϕ( )e− τ−t( )/μ

+ ∫τ

τp−1

dt

μ
S−p t, μ, ϕ( )e− τ−t( )/μ. (137)

We can evaluate the integrals in Eqs. 136 and 137 either
numerically or analytically if the source function S±i (t, μ, ϕ) in a
layer denoted by subscript i = n, or p is known. Explicit solutions
obtained in the single-scattering approximation are provided in
Section 9 (Supplementary Appendix A2).

5.3 Alternative Single Scattering Solution
Another way to understand the one-layer single-scattering solution
is to consider the output I±(τ, μ, ϕ) as coming from two sources: 1)
the attenuated incident radiation from the layer boundary and in
the same direction (μ±, ϕ), and 2) the source term contribution
from the direct beam scattering. As seen in Section 5.1 [Eqs. 133
and 134], the attenuated boundary contribution is the first term on
the right, while the source term is the second term on the right.

Next, we consider the single-scattering solution at layer
boundaries τn with n ∈ [0, 1, 2, /L] for a multi-layer
medium. Since there is no diffuse radiation at the following
two boundaries: 1) TOA (Top-Of-Atmosphere) downward τ0;
2) BOA (Bottom-Of-Atmosphere) upward τL, we have1:

I− τ0, μ, ϕ( ) � 0 (138)
I+ τL, μ, ϕ( ) � 0. (139)

Once we have specified the boundary conditions, the one-layer
solution can be called consecutively to create the layer boundary
radiation of the next layer. Hence, for n = 1, 2, . . . , L, we may
recursively compute the downward radiation as:

I− τn, μ, ϕ( ) � I− τn−1, μ, ϕ( )e− τn−τn−1( )/μ + ∫τn

τn−1

dt

μ
S−n t, μ, ϕ( )e−τn−t

μ .

(140)
Similarly, for n = L, . . . , 2, 1, we may recursively compute the

upward radiation as:

FIGURE 8 | The Stokes parameter U (τ, μ, ϕ) (left) and V (τ, μ, ϕ) (right) for the aerosol scattering case for reflected (top) and transmitted (bottom) light. The U and V
components vanish for ϕ =0° and ϕ =180°. NSTR = 148.
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I+ τn−1, μ, ϕ( ) � I+ τn, μ, ϕ( )e− τn−τn−1( )/μ + ∫τn−1

τn

dt

μ
S+n t, μ, ϕ( )e−t−τn−1

μ .

(141)
Having obtained all layer boundary contributions in this

manner, we may simply apply the single-layer solution again
to get the I±(τ, μ, ϕ) at arbitrary optical depth τ.

5.4 Single Scattering Correction
The single-scattering correction is a post-processing step that
further improves the accuracy of radiance output by correcting
the single-scattering term. It was developed by Nakajima and
Tanaka Nakajima and Tanaka (1988) and can be used together
with several phase matrix truncation methods (Wiscombe, 1977;
Hu et al., 2000; Lin et al., 2018).

FIGURE 9 | Upper panel: The Stokes parameter I (τ, μ, ϕ) for the cloud scattering case for reflected (top) and transmitted (bottom) light. NSTR = 148. Lower panel:
Same as the upper panel except for the Stokes parameter Q (τ, μ, ϕ).
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In many radiative transfer models, the phase function/matrix
is expanded in generalized spherical functions (see Section 2.4.3).
However, for strongly forward-peaked scattering a large number
of phase element expansion coefficients are needed for accurate
representation of the phase function/matrix. Due to the
computational burden incurred by use of such a large number
expansion coefficients, a truncation method is commonly applied
so that only the first 2N elements are used, where 2N is set to be
equal to the number of streams. This method greatly improves the
computational efficiency, but also introduces radiance errors due
to the approximate phase matrix representation. Since the
truncation reduces the scattering cross-section and thereby
enhances the direct beam contribution, the differential optical
depth dτ and the single-scattering albedo ϖ are both being scaled
as follows.

d̂τ � 1 − fϖ( )dτ (142)
ϖ̂ � 1 − f( )ϖ

1 − fϖ (143)

where the factor f depends on the particular truncation
method used (Wiscombe, 1977; Hu et al., 2000; Lin et al., 2018).

The single-scattering correction method (Nakajima and
Tanaka, 1988) was designed to decrease the error incurred by
the truncation. To this end we replace the approximate single-
scattering solution obtained by use of the truncated phase matrix
by the correct single-scattering solution obtained from the
accurate phase matrix as described in Section 5.3. Denoting P
and P* as the original and truncated phase matrix, and I* as the
singly-scattered radiance, we may write the single-scattering
correction algorithm as follows (Nakajima and Tanaka, 1988):

Icorrected τ̂, ϖ̂, P*( ) � I τ̂, ϖ̂, P*( ) − I* τ̂, ϖ̂, P*( )
+ I* τ̂,ϖ/ 1 − fϖ( ), P( ). (144)

On the right hand side of Eq. 144, the first term I(τ̂, ϖ̂, Pp) is the
uncorrected radiance computed with the truncated phase matrix P*,
the scaled optical depth τ̂ and the scaled single-scattering albedo ϖ̂.
The second (subtracted) term Ip(τ̂, ϖ̂, Pp) is the uncorrected singly-
scattered radiance obtained by use of the truncated phase matrix Pp,
the scaled single-scattering albedo ϖ̂ and the scaled optical depth τ̂ (as
in the first term). The (added) third term Ip(τ̂,ϖ/(1 − fϖ), P) is the
accurate singly-scattered radiance obtained by use of the accurate

FIGURE 10 | The Stokes parameter U (τ, μ, ϕ) (left) and V (τ, μ, ϕ) (right) for the cloud scattering case for reflected (top) and transmitted (bottom) light. The U and V
components vanish for ϕ =0° and ϕ =180°. NSTR = 148.
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phase matrix P, the scaled τ̂, and another scaled single-scattering
albedo ϖ/(1 − fϖ).

6 DISCRETE ORDINATE RADIATIVE
TRANSFER TEST RESULTS

Schulz et al. (1999) tested a previous of VDISORT against
benchmark results provided by Garcia and Siewert (1989). The
result of the first three Stokes components were reproduced,
but the V component was not considered. In our new version,
this issue is fixed by implementing the complex eigensolutions
as already discussed. The current version of VDISORT has
been tested against benchmark results provided by (Garcia and
Siewert, 1989) and Siewert (2000), and excellent agreement
was found (Lin, 2016). Here we provide comparisons with
benchmark results provided Kokhanovsky et al. (2010) for
more challenging phase matrices that require more than 100
terms in the phase matrix expansion.

6.1 Comparison With Benchmark Results
The Kokhanovsky et al. (2010) benchmark results were provided
for the Stokes parameters of both reflected and transmitted light

in the case of molecular, aerosol, and cloudy multiple-scattering
media at the wavelength λ = 412 nm. A black underlying surface
for three values of the relative azimuth angles ϕ − ϕ0 = 0, 90, 180°

were considered and the solar zenith angle was set to 60°. The
optical thickness was set to 0.3262 for all three single layer cases.
Since the Rayleigh test is simple and has been well tested in
previous versions of VDISORT, we will focus on the more
challenging aerosol and cloud cases.

The phase matrix elements for all three cases are shown in
Figure 5. Because aerosol and cloud particles are much larger
than molecules, their phase matrices were calculated using Mie
theory (Kokhanovsky et al., 2010). In contrast to Rayleigh
scattering, aerosol and cloud particles both have a strong
forward-scattering peak. There are also two peaks around 137°

in scattering angle that correspond to the primary and secondary
rainbows.

The sharp forward-peaked scattering of aerosol and cloud
particles shown in Figure 5 implies that a large number of terms
in the Fourier expansion is required for accurate representation of
the phase matrix. In fact, Kokhanovsky et al. (2010) provide about
1,000 terms of Greek constants, and below we use the first 148
terms for both the aerosol and cloud cases in VDISORT in an
attempt to match the benchmark results.

FIGURE 11 | TOA polarization components of sunlight reflected from a molecular atmosphere overlying a wind-roughened water surface for three different wind
speeds.
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6.1.1 Aerosol Case
The normalized log-normal density distribution of aerosol particles
considered in the benchmark computations of Kokhanovsky et al.
(2010) had mode radius rg = 0.3 μm corresponding to a mode size
parameter of ~ 2.3 at 412 nm, and a standard deviation σg= 0.92. The
size distributionwas integrated from r1 = 0.005 μmto r2 = 30 μm.The
refractive index of the aerosol particles was set to m = 1.385, which
yields a single-scattering albedo of 1.0, and an asymmetry factor g =
0.79275. Figure 6 shows reflected (top) and transmitted (bottom)
results for the Stokes parameter I (τ, μ, ϕ) for solar beam incidence at
60° solar zenith angle on a homogeneous slab of optical thickness
0.3262 overlying a black surface. Similar results for the Stokes
parameter Q (τ, μ, ϕ) are shown in Figure 7 and for the Stokes
parameters U (τ, μ, ϕ) and V (τ, μ, ϕ) in Figure 8.

6.1.2 Cloud Case
Benchmark results for a homogeneous slab of optical thickness 5
consisting of a log-normal distribution of cloud particles with rg =
5 μm (mode size parameter of ~ 38 at 412 nm), and σg = 0.4 were
also provided by Kokhanovsky et al. (2010). The smallest and largest
particle radii were selected to be r1 = 0.005 μm and r2 = 100 μm, and
the refractive index was set tom= 1.339. These choices yield a single-
scattering albedo of 1.0, and an asymmetry factor g = 0.86114 for this

ensemble of cloud particles. Figures 9, 10 show that VDISORT
simulations with NSTR = 148 yield good agreement with the
benchmark results for all four Stokes parameters.

6.2 The Bidirectional Polarized Reflectance
Distribution Function (BPrDF)
The BPrDF is the vector equivalent that corresponds to the
Bidirectional Reflectance Distribution Function (BRDF) in
scalar radiative problems for which only the first component
of the Stokes vector, the radiance I, is considered. In this version
of VDISORT, BPrDFs for two surface types were implemented: a
Lambertian surface and a rough surface with a Gaussian
distribution of surface slopes, which is frequently used to
model scattering from wind-roughened water surfaces.

In general, both the diffuse light and the direct beam are
reflected by BPrDF shown as below:

Irefl τp, μ, ϕ( ) � ∫1

0
dμ′∫2π

0
dϕ′ μ′~R μ′, μ, ϕ − ϕ′( )Iinc τ*, μ′, ϕ′( )

+ μ0
4π

~R μ0, μ, ϕ − ϕ0( )Sbe−τ*/μ0
(145)

FIGURE 12 | The Stokes parameter I (τ, μ, ϕ) for the aerosol scattering case. Top row: Reflected light. Same as top row of Figure 6, but using NSTR = 16 (NSTR =
148 in Figure 6) andwith andwithout SSC. Bottom row: Transmitted light; same as bottom row of Figure 6, but using NSTR = 16 (NSTR = 148 in Figure 6) andwith and
without SSC.
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where μ and μ′ are cosines of the polar angles θ and θ′ and ϕ′
and ϕ are the corresponding azimuth angles. The downward
Stokes vector at the surface is denoted Iinc (τ*, μ′, ϕ′), and Sb �
[I0/2, I0/2, 0, 0]T is the TOA direct beam illumination assumed to
consist of unpolarized light of irradiance I0. The 4 × 4 reflection
matrix ~R depends on the surface properties. It is expanded into a
Fourier series to isolate the azimuth dependence and that
expansion is consistent with the expansion of the phase matrix.

A Lambertian surface is a special surface that, regardless of the
state of polarization of the incident radiation, gives rise to
reflected radiation that is uniform, i.e. isotropic over the
upward hemisphere, and unpolarized. Therefore, only the first
(m = 0) term in the Fourier expansion contributes. The reflection
matrix is given by

~R
m�0 � ρL

0.5 0.5 0 0
0.5 0.5 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (146)

where ρL is the surface albedo.
For a wind-roughened water surface, an explicit expression for

the reflectance matrix ~R is given by

~R μ′, μ, ϕ − ϕ′( ) � 1
4μ′ μ μ4n

p μn( ) · Cr
rs μ′, μ; ϕ′, ϕ( ) · S μ′, μ, σ( ).

(147)
In Eq. 147, the matrix Cr

rs is determined by the relative
refractive index m and is derived from the Fresnel
reflectance, with details described in Supplementary
Appendix A3 of Stamnes and Stamnes (2015). p (μn) is
the rough surface slope probability approximated by a
one-dimensional Gaussian distribution (Cox and Munk,
1954).

p μn( ) � 1
πσ2

exp −1 − μ2n
σ2μ2n

( ) (148)

μn �
μ + μ′"""""""""""

2 1 − cosΘ( )√ (149)

cosΘ � −μ′μ +
""""""
1 − μ′2

√ """""
1 − μ2

√
cos ϕ′ − ϕ( ) (150)

σ2 � 0.003 + 0.00512 · w. (151)
σ2 is the mean square surface slope determined by the water

surface wind speed w in m s−1. S (μ, μ′, σ) is the shadow term

FIGURE 13 | The Stokes parameterQ (τ, μ, ϕ) for the aerosol scattering case. Top row: Reflected light. Same as top row of Figure 7, but using NSTR = 16 (NSTR =
148 in Figure 7) andwith andwithout SSC. Bottom row: Transmitted light; same as bottom row of Figure 7, but using NSTR = 16 (NSTR = 148 in Figure 7) andwith and
without SSC.
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that is only important for the conditions of large wind speeds
and large viewing zenith angles (Tsang et al., 1985). To
demonstrate how the surface reflectance is applied, a simple
example of an atmospheric simulation is considered with a
layer of non-absorbing molecules of scattering optical
thickness 0.32 and a depolarization factor of 0.04 at 412 nm
(Bodhaine et al., 1999) overlying wind-roughened water
surfaces with different wind speeds (2, 5, 10 m s−1). The
solar zenith angle is set to 30°. Figure 11 shows the upward
I, Q, and U components at the top of atmosphere. A glint
pattern is clearly evident in the principal plane (Δϕ = (ϕ′ − ϕ) =
0°) for all wind speeds.

6.3 The Single-Scattering Correction
To demonstrate the efficiency and accuracy gained by use of
the single-scattering correction (SSC), we provide some
examples in this Section. For strongly forward-peaked
scattering occurring for particles that are large compared
to the light wavelength, use of the delta-M scaling
transformation is very useful. Also, use of the ISF method
discussed in Section 3.5 helps producing accurate results at
polar angles other than the quadrature angles. Figure 12

shows that accurate results for the total polarized radiance
(the I Stokes parameter) can be obtained with as little as 16
streams when the SSC is applied in addition to the delta-M
and ISF methods. Similar results for the Q and U Stokes
parameters are shown in Figures 13, 14.

6.4 Polarized Beam Incidence
So far we have assumed that the incident beam consisted of
natural (unpolarized) light (like sunlight). For some applications,
like laser (lidar) or lunar beam illumination, the source would be a
polarized beam. VDISORT is capable of handling also the general
case of an arbitrarily polarized incident beam source. To test the
performance of VDISORT for polarized beam incidence, a
polarized beam source term Iinc = [I,Q,U,V]T = π[1.0,−0.4.0.2.0.05]
T (corresponding to Iinc � [I‖, I⊥,U,V]T � π[0.3, 0.7, 0.2, 0.05]T)
was chosen as input for the so-called L = 13 case reported by Garcia
and Siewert (1989). In this test case the optical thickness of the slab
was assumed to be 1.0, the single-scattering albedo was taken to be
0.99, and the surface was assumed to be a Lambertian reflector with
albedo 0.1. We calculated the Stokes parameters I, Q, and U and the
degree of polarization (DOP) for this test case and reproduced
Figure 5 of Schulz et al. (1999) as shown in Figure 15. Schulz

FIGURE 14 | The Stokes parameterU (τ, μ, ϕ) for the aerosol scattering case. Top row: Reflected light. Same as top row of Figure 8, but using NSTR = 16 (NSTR =
148 in Figure 8) andwith andwithout SSC. Bottom row: Transmitted light; same as bottom row of Figure 8, but using NSTR = 16 (NSTR = 148 in Figure 8) andwith and
without SSC.
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et al. (1999) verified their results by comparing with output produced
by the accurate General Adding Program (GAP) described by De
Haan et al. (1987).

7 CONCLUDING REMARKS

A review is provided of the vector discrete ordinate (VDISORT)
method of solution to the radiative transfer equation pertinent for
polarized transfer of radiation in a vertically stratified medium.
Several new features are described and discussed including how to
1) deal with the complex solutions required to compute the V
component of the Stokes vector I = [I Q U V]T, 2) obtain
accurate radiances at any desired polar observation angles by use
of the ISFmethod, 3) deal with polarized beam incidence at the top of
the atmosphere as well as polarized reflectance by the lower
boundary, 4) use a pseudo-spherical treatment to correct for Earth
curvature effects, and 5) use the single-scattering correction to
enhance the efficiency of the method without sacrificing accuracy.
Comparisons with benchmark results are provided to demonstrate
the versatility of the VDISORT computer code to provide reliable
solutions for aerosol and cloud cases including non-spherical ice
cloud phase matrices. In particular, it has been shown that as few as
2N = 16 discrete-ordinate streams are sufficient to compute accurate

polarized radiances for phase matrices appropriate for ensembles of
aerosol particles. We encourage future users to help us improve this
freely available tool by 1) reporting on bugs found and how they were
fixed, 2) making suggestions for how this tool can be improved, and
3) help make it known to friends and co-workers in need of such a
resource that this tool is available.
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