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Crop Performance Evaluation of
Chickpea and Dry Pea Breeding
Lines Across Seasons and Locations
Using Phenomics Data
Chongyuan Zhang1, Rebecca J. McGee2, George J. Vandemark2 and
Sindhuja Sankaran1*
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The Pacific Northwest is an important pulse production region in the United States.
Currently, pulse crop (chickpea, lentil, and dry pea) breeders rely on traditional
phenotyping approaches to collect performance and agronomic data to support
decision making. Traditional phenotyping poses constraints on data availability (e.g.,
number of locations and frequency of data acquisition) and throughput. In this study,
phenomics technologies were applied to evaluate the performance and agronomic
traits in two pulse (chickpea and dry pea) breeding programs using data acquired
over multiple seasons and locations. An unmanned aerial vehicle-based multispectral
imaging system was employed to acquire image data of chickpea and dry pea advanced
yield trials from three locations during 2017–2019. The images were analyzed semi-
automatically with custom image processing algorithm and features were extracted,
such as canopy area and summary statistics associated with vegetation indices. The
study demonstrated significant correlations (P < 0.05) between image-based features
(e.g., canopy area and sum normalized difference vegetation index) with yield (r up to
0.93 and 0.85 for chickpea and dry pea, respectively), days to 50% flowering (r up
to 0.76 and 0.85, respectively), and days to physiological maturity (r up to 0.58 and
0.84, respectively). Using image-based features as predictors, seed yield was estimated
using least absolute shrinkage and selection operator regression models, during which,
coefficients of determination as high as 0.91 and 0.80 during model testing for chickpea
and dry pea, respectively, were achieved. The study demonstrated the feasibility to
monitor agronomic traits and predict seed yield in chickpea and dry pea breeding trials
across multiple locations and seasons using phenomics tools. Phenomics technologies
can assist plant breeders to evaluate the performance of breeding materials more
efficiently and accelerate breeding programs.

Keywords: image processing, multispectral imagery, unmanned aircraft vehicle, vegetation indices, yield
prediction
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INTRODUCTION

Crop cultivars are consistently selected based on their
productivity (quantity and/or quality), tolerance to biotic
and abiotic stressors, and adaptation to local production systems
and environments (Acquaah, 2009; Hatfield and Walthall, 2015).
Pulse crops, including pea (Pisum sativum L.) and chickpea
(Cicer arietinum L.), have been bred for their adaptation to the
Palouse region in the Pacific Northwest, United States, with the
overall goal of developing high-yielding and biotic and abiotic
stress-resistant cultivars. The Palouse region, which includes
parts of eastern Washington, northern Idaho, and northeastern
Oregon, is one of the largest producers of pulse crops in the
United States (USDA-NASS, 2020) and is home to several pulse
breeding programs. Pulse breeders have developed and released
multiple pea and chickpea cultivars with better seed yield,
quality, and improved disease resistance (McGee and McPhee,
2012; McGee et al., 2012, 2013; Vandemark et al., 2014, 2015;
USDA-ARS, 2018). However, plant breeders have primarily relied
on traditional methods to collect phenotypic data on breeding
lines. Some of the constraints of these traditional phenotyping
approaches are that they are labor-intensive, time-consuming,
and subjective with limited availability of data. Therefore,
sensing technologies, also referred to as phenomics technologies,
are needed to overcome these constraints to facilitate progress
of plant breeding and provide data for a more accurate and
comprehensive evaluation of breeding lines.

Plant traits evaluated by phenomics technologies in field
conditions include early vigor (Kipp et al., 2014; Sankaran et al.,
2015), canopy area and temperature (Patrignani and Ochsner,
2015; Bai et al., 2016), plant height (Madec et al., 2017; Wang
et al., 2018), heading and flower intensity (Sadeghi-Tehran et al.,
2017; Zhang et al., 2020), yield (Donohue et al., 2018; Lai et al.,
2018), and phenological stages (Yang et al., 2017). Research using
phenomics technologies to monitor or predict crop yield has been
conducted for a wide range of crops. Different image-based plant
traits, such as flowers, vegetation indices (VIs), plant height, and
canopy area (Bai et al., 2016; Tattaris et al., 2016; Thorp et al.,
2016; Sun et al., 2018), have been used to monitor and predict
crop yield. Thorp et al. (2016) used proximal digital imaging to
track Lesquerella flowering dynamics and reported that there was
a strong correlation between flower cover percentage and seed
yield (coefficient of determination or R2

≤ 0.84). Sun et al. (2018)
developed a terrestrial light detection and ranging (LiDAR)-
based high-throughput phenotyping system and applied it to
monitor cotton growth. Their results indicated that canopy
height, projected canopy area, and plant volume (R2

≤ 0.84,
0.88, and 0.85, respectively) at 67 and 109 days after planting
were positively correlated with yield. In addition to correlating
plant traits with yield, researchers have tested models to predict
seed yield and biomass of wheat, canola, and corn (Fieuzal et al.,
2017; Ballesteros et al., 2018; Donohue et al., 2018; Lai et al.,
2018; Anderson et al., 2019). Fieuzal et al. (2017) developed two
artificial neural network-based methods (a real-time approach
and a diagnostic approach) to estimate corn yield using multi-
temporal optical and radar satellite data. The diagnostic approach
using reflectance from the red spectral region predicted yield with

R2 = 0.77, while the real-time approach using reflectance from
the red spectral region and one feature from radar satellite data
resulted in a prediction accuracy of R2 = 0.69.

Other performance traits have also been evaluated using
sensing technologies, including estimation of phenological stages,
50% flowering, senescence, and maturity (Viña et al., 2004;
Yu et al., 2016; Zheng et al., 2016; Yang et al., 2017; Quirós
Vargas et al., 2019; Lindsey et al., 2020). Zheng et al. (2016)
monitored rice phenology in three growing seasons using a time
series of spectral indices obtained using portable spectrometers.
They reported that the red-edge chlorophyll index can accurately
detect the dates of jointing, middle booting, and soft dough,
while the normalized difference vegetation index (NDVI) can
detect dates of active tillering, middle heading, and maturity.
In our previous study (Quirós Vargas et al., 2019), we found
that VIs, including NDVI, green red vegetation index (GRVI),
and the normalized difference red-edge index (NDRE), were
correlated with days to 50% flowering and physiological maturity
in two winter pea experiments.

Although phenomics technologies have been tested on
many crops, the evaluation of such technologies across field
seasons, locations, and different crop types has been limited
for pulse crops. Such efforts are essential to assess the
stability and applicability of phenomics technologies to assist
breeding programs. Therefore, in this study, we applied sensing
technologies to evaluate dry pea and chickpea breeding lines for
three growing seasons (2017–2019) for phenotyping applications.
Specific objectives were to: 1) monitor yield and other agronomic
traits using quadcopter unmanned aircraft vehicle (UAV)
multispectral imaging data and 2) predict pulse crop yield with
a multivariate regression model.

MATERIALS AND METHODS

Experimental Locations and Plant
Materials
The pulse crop (chickpea and dry pea) breeding lines in this
study (2017–2019) were evaluated in multiple field locations, near
Pullman, WA (46◦41′39.0′′N, 117◦08′53.0′′W), Fairfield, WA
(47◦19′08.0′′N, 117◦10′05.0′′W), and Genesee, ID (46◦36′40.0′′N,
116◦57′39.0"W), United States (Table 1). The exact locations
of the experiment field sites within an area varied between
years due to crop rotation protocols. Advanced yield trials
of green pea (panel 01), yellow pea (panel 02), and chickpea
(panel 81) breeding lines and relevant commercial check
cultivars were planted using a randomized complete block design
with three replicates. A seed treatment was applied prior to
planting that contained the fungicides fludioxonil (0.56 g kg−1;
Syngenta, Greensboro, NC, United States), mefenoxam (0.38 g
kg−1; Syngenta), and thiabendazole (1.87 g kg−1; Syngenta),
thiamethoxam (0.66 ml kg−1; Syngenta) for insect control, and
molybdenum (0.35 g kg−1). Approximately 0.5 g Mesorhizobium
ciceri inoculant (1 × 108 CFU g−1; Novozyme, Cambridge,
MA, United States) was applied to each chickpea seed packet
1 day before planting. Chickpea plots were planted at 6.1 m
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TABLE 1 | Summary of the pulse crops’ breeding trials and data acquisition using sensing.

Year Location Sensing
altitudea

Crop Panelb Number of
lines/cultivars

Sowing date Data acquisition
dates

Growing degree
daysc

2017d Pullman 45 m Chickpea 1781 24 5/11 6/26, 7/07, 7/21,
7/28

536, 723, 959,
1087

Dry pea 1701, 1702 40, 21 5/11 6/26, 7/07, 7/21 536, 723, 959

Fairfield 45 m Dry pea 1701, 1702 40, 21 5/11 7/24e 1077

2018 Pullman 25 m Chickpea 1881 21 5/05 6/08, 6/22, 7/03,
7/19, 7/27

423, 582, 721,
991, 1124

Dry pea 1801, 1802 32, 23 5/05 6/08, 6/22, 7/03,
7/19, 7/27

423, 582, 721,
991, 1124

Genesee 25 m Chickpea 1881 21 5/08 6/08, 6/26, 7/09,
7/23, 8/06

372, 576, 752,
997, 1274

Dry pea 1801 32 5/08 6/08, 6/26, 7/09,
7/23, 8/06

372, 576, 752,
997, 1274

Fairfield 25 m Chickpea 1881 21 5/21 6/12, 6/29, 7/12,
7/25

282, 515, 716, 966

Dry pea 1801, 1802 32, 23 5/21 6/12, 6/29, 7/12,
7/25, 8/07

282, 515, 716,
966, 1274

2019 Pullman 30 m Chickpea 1981 24 5/04 6/05, 6/17, 7/05,
7/16

387, 549, 772, 939

Dry pea 1901, 1902 29, 23 5/04 6/05, 6/17, 7/05,
7/16

387, 549, 772, 939

Genesee 25 m Chickpea 1981 24 5/03 6/05, 6/18, 7/05,
7/16

384, 559, 756, 923

Dry pea 1901 29 5/03 6/05, 6/18, 7/05,
7/16

384, 559, 756, 923

Fairfield 30 m Chickpea 1981 24 5/06 6/10, 6/28, 7/12,
7/23

425, 679, 902,
1080

Dry pea 1901, 1902 29, 23 5/06 6/10, 6/28, 7/12 425, 679, 902

aSensing altitudes (25, 30, and 45 m) as above ground level used in this study resulting in 1.7, 2.0, and 3.1 cm per pixel of ground sampling distance.
bPanels ending in “01” are advanced green pea, “02” are advanced yellow pea, and “81” are advanced chickpea.
cGrowing degree days: accumulated degree days that are used to estimate temperature-based growing season; degree day = mean temperature - base temperature
(base temperature = 3◦C in this study) (Bourgeois et al., 2000; Miller et al., 2018).
dNo data were available due to failed trials in Genesee, ID.
eData from other time points were not useful (e.g., senesced plants).

long and 1.5 m wide with approximately 75 cm between plots.
After emergence, the plots were trimmed to approximately 4.9 m
long, thus leaving alleys of approximately 1.2 m between ranges.
Chickpeas were planted at a density of 43 seeds m−2 in a 1.5-
m × 6.1 m block (≈430,000 seeds ha−1). The chickpea entries
had either compound or simple leaf types. Typically, there were
four to seven entries each year with simple leaves. The dry pea
entries had either normal (cv. ‘Columbian’ only) leaves or were
semi-leafless. Data analysis was conducted without separating the
leaf types for each crop, and preliminary analysis indicated that
the ranges of the vegetation indices were similar.

Data Acquisition
A quadcopter UAV (AgBot, ATI Inc., Oregon City, OR,
United States) and a five-band multispectral camera (RedEdge,
MicaSense Inc., Seattle, WA, United States) were deployed
to acquire image data during the 3-year study (Figure 1a).
The multispectral camera mounted on the quadcopter acquired
images (12-bit image) with a resolution of 1.2 MP in the spectrum
of red (R, 668 ± 5 nm, central band and band width), green
(G, 560 ± 10 nm), blue (B, 475 ± 10 nm), near-infrared (NIR,
840 ± 20 nm), and red edge (RE, 717 ± 5 nm). Mission Planner,

an open-source ground control station software (ArduPilot
Development Team and Community), was used to plan and
monitor missions of aerial data acquisition (Figure 1b). The
UAV was programmed with Mission Planner to fly at a speed
of 2–3 m/s and at 25, 30, or 45 m above ground level (AGL),
resulting in a ground sampling distance (GSD) of 1.7, 2.0, or
3.1 cm per pixel, respectively, and to acquire images with 80%
horizontal and 70% vertical overlaps. A reflectance panel, either a
MicaSense reflectance panel (RedEdge, MicaSense Inc.) in 2017
or a Spectralon reflectance panel (99% reflectance; Spectralon,
SRS-99-120, Labsphere Inc., North Sutton, NH, United States) in
2018 and 2019, was placed in the field during image acquisition
and used for radiometric calibration during image processing.
Data were acquired between 10:00 a.m. and 3:00 p.m. local time,
and three to five time points of data acquisition were achieved for
each season (Table 1). The time points for data acquisition were
selected to acquire data representing key growth stages, such as
early growth, flowering, and seed/pod development stages, and
based on suitable weather conditions for UAV flights (e.g., clear
sky and low wind). Seed yield data from the dry pea and chickpea
trials were collected from each location, while other agronomic
and phenological traits were collected only at Pullman each year.
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FIGURE 1 | Unmanned aircraft vehicle (UAV)-based data acquisition and image processing. (a) UAV and camera. (b) Mission Planner showing data acquisition
underway. (c) Individual images. (d) Orthomosaic composite images consisting of red, green, and blue bands. (e) Heat map of the soil-adjusted vegetation index. (f)
Resulting image with the plot separated and the region of interest highlighted.

These traits include days to 50% flowering, days to physiological
maturity, pod height, pod height at maturity, overall vine length,
canopy height at maturity, node of first flower, and number of
reproductive nodes.

Image Processing and Feature
Extraction
Images from the multispectral camera (Figure 1c) were first
processed in Pix4Dmapper (Pix4D Inc., San Francisco, CA,
United States) to generate orthomosaic images covering each
experimental site. The template used in Pix4Dmapper was
based on Ag Multispectral, where the calibration method of

“Alternative” was selected in the initial processing. In this type
of calibration, the images are optimized for aerial nadir images
with accurate geolocation information, low texture content,
and relatively flat terrain. Orthomosaic images were imported
into custom semi-automated image processing algorithms
developed in MATLAB (2018b; MathWorks Inc., Natick, MA,
United States) for further processing. The image processing
algorithms prompted the user to input a degree to rotate
the image, which is prepared for plot segmentation later, and
to identify the reflectance panel for radiometric calibration.
Following that, composite RGB image and several vegetation
index maps were generated using different combinations of
orthomosaic images (Figures 1d,e, 2). A composite RGB
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image was generated for quality inspection. The vegetation
indices calculated included normalized difference vegetation
index (NDVI), green NDVI (GNDVI), soil-adjusted vegetation
index (SAVI), normalized difference red-edge index (NDRE),
and triangular vegetation index (TVI) (Harris Geospatial
Solutions, 2020). For each dataset (each crop and each
data acquisition period), a master mask that separated the
canopy from the background, such as soil and flowers (for
dry pea only), was generated by setting a threshold on
the SAVI index map prior to feature extraction. Threshold
data varied between datasets based on canopy vigor and
illumination conditions at the time of data acquisition,
and the value was selected for each dataset based on
visual assessment.

In dry pea, flowers that are white have a different reflectance
than stipules and tendrils and were excluded from canopy feature
extraction. A similar procedure was not applied to chickpea as
chickpea flowers could not be detected in five-band multispectral
images at the given resolution due to the small flower size (Zhang
et al., 2020). The master mask was overlaid on the composite RGB
image for quality inspection and optimization of the threshold for
generating a canopy mask. The developed algorithm prompted
the user to identify the four corners of the field and automatically
separated individual plots with information of the identified
corners (Figure 1f). Masks for individual plots were then shrunk
at the four edges to prevent edge effects, forming regions of
interest for each plot that were highlighted with white, as shown
in Figure 1f. The top and bottom edges of the mask for an
individual plot were reduced by 11 (2017) or 20 (2018 and
2019) pixels, while the right and left edges were reduced by 28
(2017) or 50 (2018 and 2019) pixels. More details about the
algorithm can be found in Zhang et al. (2019). Image-based

features were extracted from regions of interest in each plot,
including canopy area (in pixels), and the mean and sum statistic
of NDVI, GNDVI, SAVI, NDRE, and TVI plot images. Here, the
mean of NDVI, for example, is the average of the NDVI values
of the canopy pixels identified by the mask for an individual
plot, while the sum of NDVI is the sum of the NDVI values of
canopy pixels. At the end of image processing, the algorithms
exported the features as Excel files for further analysis. The
procedures of image processing for dry pea and chickpea were
similar with minor modifications, such as the threshold used to
create the master mask.

Data Analysis
Image-based features from the UAV data were analyzed using
Pearson’s correlation in SAS, University Edition (SAS Institute,
Cary, NC, United States). The features were correlated with yield
for all locations and with other traits for the Pullman trial only
due to availability of data. Plot-by-plot and cultivar-by-cultivar
(by averaging the replicates at each field site) correlation analyses
were also conducted. Noisy data (e.g., cloud-covered plots) were
eliminated prior to analysis.

Yield prediction models were developed using image-based
features as predictors to estimate yields in the chickpea (panel
81) and green pea (panel 01) trials. Due to the availability of
data across the three locations, only green pea breeding lines
were utilized for yield prediction. Yields were predicted using
data from each year and each location (2017: Pullman; 2018
and 2019: Pullman, Genesee, and Fairfield) and the combined
data for each year (2018 and 2019). The identity of the breeding
lines varied from year to year as lines were discarded or
added to the panels, and therefore data were only combined
within a year. In 2017, no chickpea data were available from

FIGURE 2 | Composite RGB images from different growth stages (2018) and heat map of the soil-adjusted vegetation index from different locations. Images from
the (a) early, (b) flowering, and (c) pod/seed development stages. Heat map of the soil-adjusted vegetation index from (d) Genesee, (e) Pullman, and (f) Fairfield.
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Genesee and Fairfield, and only one set of pea data was
available from Fairfield.

Datasets acquired at flowering, and pod and seed development
stages were utilized for yield model development. The data (yield
and image features) were normalized using the following formula
prior to the model development (Figure 3).

xn =
(xr −m)

σ
(1)

where xn, xr , m, and σ stand for normalized data, raw
data, mean of a feature, and standard deviation of a feature,
respectively. Normalization was conducted for each year and
each location as well as for the combined data within each
year. Yield prediction was conducted using both plot-by-plot
data and cultivar-by-cultivar data (average of three replicate
data across each field site). Least absolute shrinkage and
selection operator (LASSO) regression programmed in MATLAB
was used in this study for yield prediction. The parameters
used in LASSO included: alpha (weight of lasso versus ridge
optimization) = 1, MCReps (repetitions of cross-validation) = 3,
cross-validation = five-fold, and predictor selection method (for
cross-validation) = IndexMinMSE. More details about LASSO in
MATLAB can be found at the MathWorks website1.

For the plot-by-plot analysis, the dataset was divided into
the training and the testing datasets with a ratio of 3:1. The
training data were further resampled five times (80% of training
data to calibrate and 20% of training data to validate) to
optimize the models. Finally, the model was evaluated using
the test dataset and the process was assessed four times
(four iterations) to eliminate effects of randomization. For
the cultivar-by-cultivar analysis, due to the limited sample
size, the leave-one-out approach for model development and
evaluation was utilized (Sammut and Webb, 2010). During
model development, a five-fold cross-validation was used,
followed by testing the model for as many times as the

1https://www.mathworks.com/help/stats/lasso.html

instances (29–40 lines/cultivars depending on the dataset).
The prediction performance was reported in terms of R2

during the train and test processes and selected image-
based features.

RESULTS

Relationship Between Image Features
and Yield
In general, there were significant and positive correlations
(P < 0.05, r up to 0.74) between image-based features (e.g.,
canopy area, SAVI, and sum NDVI) and yield with the plot-
by-plot chickpea data acquired at the early growth, flowering,
and pod/seed development stages across field seasons (2017–
2019) and locations (Figure 4A and Supplementary Figure 1).
Chickpea and dry pea flowered between 721 and 772 growing
degree days. Plants were considered in the early growth stages
before flowering and in the pod/seed development stage between
the flowering stage and physiological maturity. Only a few
common image features (e.g., NDVI and SAVI) extracted from
the data acquired at the early growth stages were significantly
correlated with yield across seasons and experimental locations,
while more common image features (e.g., canopy area, NDVI,
SAVI, sum of NDVI, GNDVI, and SAVI) extracted from the
data acquired at the flowering and pod/seed development
stages were correlated with yield. A similar trend was found
when analyzing the chickpea data using the cultivar-by-cultivar
method (r up to 0.93). During the cultivar-by-cultivar data
analysis, fewer features were significantly correlated with yield
(Figure 4B and Supplementary Figure 2), which could be due
to the smaller dataset compared to the plot-by-plot analysis
method. In most cases, the correlations between the image
features and yield were greater from data acquired at the
flowering and pod/seed development stages in comparison to the
early growth stages.

FIGURE 3 | Workflow of the data analysis during yield prediction using the least absolute shrinkage and selection operator (LASSO) model. CV and N refer to
cross-validation and number of lines/cultivars, respectively.
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FIGURE 4 | Correlation coefficients between the image-based features and yield for the chickpea yield trial in 2019: (A) plot-by-plot analysis and (B)
cultivar-by-cultivar analysis. NDVI, normalized difference vegetation index; GNDVI, green NDVI; SAVI, soil-adjusted vegetation index; NDRE, normalized difference
red-edge index; TVI, triangular vegetation index; NDVI, for example, is the average of the NDVI values of canopy pixels, while sum NDVI is the sum of the NDVI
values of canopy pixels; ns, nonsignificant at the 0.05 probability level. Significant probability levels: *0.05, **0.01, and ***0.001.

Similar to chickpea, in the green pea breeding lines, significant
positive correlations (P < 0.05, r up to 0.83) between the image-
based features (e.g., canopy area and sum NDVI) extracted
from the plot-by-plot data acquired at the early growth,
flowering, and pod/seed development stages and yield were
observed across field seasons and experimental locations in
most cases (Figure 5A and Supplementary Figure 3). When
analyzing the cultivar-by-cultivar data, typically fewer image
features within a time point were significantly correlated with
yield, although the r values were up to 0.80 (Supplementary
Figure 4). It was interesting to note that four of eight trials
(field seasons × experimental locations) showed significant
negative correlations between yield and image features from
the data acquired at the early growth/pre-flowering stages using

both analysis methods (plot-by-plot or cultivar-by-cultivar). The
potential reason for the negative relationships between the image-
based features (e.g., NDVI data) at the early growth stages
and yield is unclear and requires further investigation. We
have observed that pea cultivars that flower early typically have
better early seedling vigor; however, they also have lower seed
yields, presumably because the plants do not have an extended
vegetative period during which they can produce as much
photosynthate (and hence seeds) as later flowering cultivars.
In peas, the timing of flowering is dictated by photoperiod
response rather than by biomass accumulation. In general,
phenotyping the pea trials was more challenging than for
chickpea, which may be due to the presence of tendrils in the
cultivars. The spectral reflectance of tendrils may be different
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FIGURE 5 | Correlation coefficients between the image-based features and yield for the (A) green pea and (B) yellow pea trials in 2019 (plot-by-plot analysis). NDVI,
normalized difference vegetation index; GNDVI, green NDVI; SAVI, soil-adjusted vegetation index; NDRE, normalized difference red-edge index; TVI, triangular
vegetation index; NDVI, for example, is the average of the NDVI values of canopy pixels, while sum NDVI is the sum of the NDVI values of canopy pixels; ns,
nonsignificant at the 0.05 probability level. Significant probability levels: *0.05, **0.01, and ***0.001.

from that of stipules. Similar patterns of significant correlations
(P < 0.05, r up to 0.85) with data acquired at the early
growth, flowering, and pod/seed development stages were found
in the yellow pea yield trials (Figure 5B and Supplementary
Figures 5,6). Significant negative correlations at the early stage
were rare in the yellow pea yield trials, unlike the green
pea yield trials.

Relationship Between Image Features
and Other Data Types
Correlations between the image-based features (e.g., NDVI,
SAVI, and sum SAVI) and other traits (e.g., days to 50% flowering,
days to physiological maturity, plant height, pod length, etc.)
acquired from the Pullman trials were analyzed across three
field seasons. For the chickpea yield trials, significant (P < 0.05)
and positive correlations between the image-based features and

days to 50% flowering or days to physiological maturity (r up
to 0.76 and 0.58, respectively) were found after the flowering
stage (Figure 6 and Supplementary Figures 7,8). Most of the
negative correlations observed between the image-based features
and days to 50% flowering or days to physiological maturity
at the early growth stages were not significant. On the other
hand, correlations between the image-based features and the
remaining traits were not consistent across the three field seasons
(data not presented).

With regard to the green pea yield trials, significant
and negative correlations (P < 0.05, r > −0.54) between
features (e.g., NDVI, SAVI, and sum SAVI) and days to 50%
flowering were observed at the early stages (Figure 6 and
Supplementary Figure 9) across 3 years for both analysis
methods in most cases. Negative correlations between features
and days to physiological maturity were also observed in
the early growth stages, although most correlations were not
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significant (Figure 6 and Supplementary Figure 10). Early
plant vigor (higher vegetation index data) may be associated
with early flowering and maturity (early flowering/maturity
dates), which would result in negative correlations. As with
chickpea, most image-based features acquired after flowering
were significantly and positively correlated with days to 50%
flowering or days to physiological maturity (r up to 0.75 and
0.72, respectively), especially when the images were acquired
close to physiological maturity. No consistent trends in the
correlations between the image-based features and the other
traits were found. In the yellow pea yield trials, negative
correlations between features and days to 50% flowering or days
to physiological maturity were also observed in the early growth
stages. However, significant positive correlations (r up to 0.85
and 0.84, respectively) between these two traits and most of
the image-based features were found in the datasets acquired
after flowering (Supplementary Figures 11,12). In the yellow
pea yield trials, there were some image features (e.g., NDVI,

SAVI, and sum SAVI) that were significantly correlated with
pod height index (negative) and pod height (positive) across the
three field seasons, especially in the pod/seed development stage
(data not presented).

Yield Prediction Using LASSO
Regression
Chickpea yield can be predicted using multiple image-based
features, as summarized in Table 2. The prediction accuracy
varied across field seasons and locations, regardless of the
analysis method, with testing accuracy (for individual locations)
of up to 0.84. When the data within a year were combined,
the prediction accuracy increased in 2018 and 2019 (testing
accuracy of up to 0.91; Figure 7). Regardless of whether
the data were separated for individual locations or combined
within a year, the features selected by LASSO as predictors
varied from one to seven. Only features that were selected

FIGURE 6 | Correlations between the sum normalized difference vegetation index and days to 50% flowering (F50) or days to physiological maturity (PM) for (A)
chickpea and (B) green pea in the 2018 field season (plot-by-plot analysis). Sum NDVI is the sum of the NDVI values of canopy pixels. Correlations that are
significant at the 0.05 probability level are indicated by an asterisk.

TABLE 2 | Yield prediction results of the models for chickpea crop.

Year Location

Plot-by-plot method Cultivar-by-cultivar method

Train R2 Test R2 Number of
featuresa

Train R2 Test R2 Number of
featuresa

2017 Pullman 0.55 0.32 4 0.61 0.11 2

2018 Pullman 0.63 0.53 3 0.77 0.42 6

Genesee 0.45 0.33 3 0.52 0.31 3

Fairfield NA NA NA NA NA NA

Combined 0.90 0.89 5 0.93 0.91 4

2019 Pullman 0.74 0.57 3 0.86 0.84 1

Genesee 0.67 0.51 6 0.83 0.75 2

Fairfield 0.79 0.70 2 NA NA NA

Combined 0.84 0.82 7 0.86 0.76 5

aOnly features with ≥ 75% selection occurrence during multiple iterations/runs during model development were considered.
NA indicates failure to develop yield prediction model.
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FIGURE 7 | Yield prediction results from a sample iteration using the combined data for chickpea and pea (plot-by-plot analysis). (A,B) Chickpea datasets from 2018
and 2019. (C,D) Green pea datasets from 2018 and 2019, respectively.

at least 75% of the time during multiple runs of model
development were considered. Among these features, canopy
area and NDRE or sum of NDRE were usually selected as
predictors. Features derived from the data collected at the
flowering and pod/seed development stages were both selected
during model development, indicating similar importance of
these two stages.

Yield in the green pea yield trials can also be estimated
by multiple image-based features using data from individual
locations and combined within a year (Supplementary Table 1).
Prediction (testing) accuracy reached up to 0.72 and 0.80
for the data from individual locations and the combined
datasets within a year (e.g., Figure 7), respectively. Similar to
chickpea, the features derived from the images acquired at
flowering and at pod/seed development were both selected as
predictors. However, more features (3–20) were used in the
model development for this panel, and more models performed
poorly when analyzing the cultivar-by-cultivar data. These may
be related to the complicated pea canopy architecture that
comprised stipules and tendrils. Among these features, canopy
area, NDRE, and TVI were selected more often as predictors
than other features.

DISCUSSION

The study demonstrates that image-based features including
canopy area, NDVI, SAVI, and sum NDVI derived from UAV
data can be used to monitor performance traits such as yield,
days to 50% flowering, or days to physiological maturity across
experimental locations and field seasons in two pulse crops,
chickpea and pea. Phenomics technologies, especially UAV-based
multispectral imaging systems, can be used to acquire data in a
standard, rapid, and high-throughput manner, providing plant
breeders with information for more informative decision making.
Data on other agronomic and phenological traits, such as days to
50% flowering, days to physiological maturity, and plant height,
are limited to one location or acquired at a low data acquisition
frequency, often due to resource limitations, especially given the
number of and the distance to the trial sites. However, using UAV
integrated with multispectral camera, image data can be acquired
within 30 min per trial (including setting up the UAV system),
and multiple locations and crops can be imaged in a single day
(depending on the distance to the trial sites). The efficiency of
phenomics technologies can improve the availability of such data
across multiple locations, which allows plant breeders to study
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the interaction between genotypes and the environment on the
morphological or phenological traits.

Besides ensuring data availability, phenomics technologies can
monitor a wide range of traits in pulse and other crops, including
plant height and lodging (Watanabe et al., 2017; Quirós Vargas
et al., 2019), disease (Marzougui et al., 2019; Zhang et al., 2019),
flower intensity (Yahata et al., 2017; Zhang et al., 2020), and other
traits, as discussed in this study. In addition, new traits can be
derived from high temporal resolution data, such as crop growth
and development curves based on canopy area, vigor, and plant
height (Chang et al., 2017; Malambo et al., 2018), allowing plant
breeders to assess development of each cultivar quantitatively
and intensively. Current and previous studies demonstrated that
seed yield or biomass of pulse or other crops can be predicted
with image-based features (Fieuzal et al., 2017; Yue et al., 2017;
Anderson et al., 2019; Li et al., 2019; Sankaran et al., 2019;
Moghimi et al., 2020). Different machine learning models, such
as LASSO, SVM, and deep neural networks, have been tested for
yield prediction. For example, Moghimi et al. (2020) applied deep
neural networks along with aerial hyperspectral images to predict
wheat yield, which demonstrated coefficients of determination
of 0.79 and 0.41 at the subplot and plot scales, respectively.
Yue et al. (2017) selected the 10 most important variables
among 172 variables, which were derived from multispectral
and RGB images, with random forest and LASSO and used the
selected variables to predict wheat yield through support vector
machine (SVM) and ridge regression. Their study showed that
SVM with random forest-selected variables (r = 0.36–0.77) and
ridge regression with LASSO-selected variables (r = 0.40–0.73)
slightly outperformed those with all variables (r = 0.25–0.72
and 0.22–0.73, respectively). In this regard, we found similar or
better results in the current study, especially with the combined
datasets. Such performance monitoring technologies can be
applied in agricultural production as well as plant breeding to
plan agronomic operations and save labor costs and time.

Although promising results were found in this study, some
observations need further investigation. In some high-yielding
trials (e.g., 2018 Pullman trial), low correlation coefficients and
prediction accuracy with image-based features were observed
compared to other seasons and locations. Similar observations
were found in dry bean studies (Sankaran et al., 2018, 2019).
One possible explanation that Sankaran et al. (2019) proposed
may be that low canopy vigor resulted in great differences in
the vegetation index values, which led to stronger correlations
between ground truth and the vegetation index values.

Further research is also necessary to build more robust yield
prediction models and confirm the potential yield predictors.
Although it is possible to predict the seed yield of chickpea
and dry pea, the image-based features selected in the prediction
models varied across locations, years, and analysis methods.
Yield prediction should be more consistent across locations
and seasons with universal or common features. In general,
the performance of machine learning models improves with
increased data quantity and quality, which may be exploited
in future study. Additional features can also be considered
when building such robust prediction models, such as modified
chlorophyll absorption ratio index, photochemical reflectance

index, normalized difference infrared index (Harris Geospatial
Solutions, 2020), plant height (Bendig et al., 2015; Rueda-Ayala
et al., 2019), and canopy temperature (Sankaran et al., 2019;
Zhang et al., 2019).

One of the challenges of phenotyping dry pea crop is its
unique canopy architecture. The canopies of many crops, such
as wheat, rice, corn, and soybean, consist of only leaves for a
majority of the growing season with flowers among the canopy
for a short period of time. In contrast, the pea canopy is made
up of stipules and leaflets and/or tendrils for the majority of
the growing season, and the tendrils may have different spectral
reflectance characteristics from stipules or leaflets, which could
have contributed to the lower performance of dry pea than
chickpea in this study. Further study is required to identify the
spectral reflectance characteristics of tendrils and stipules in pea
and its relationship to crop performance.

CONCLUSION

This study was conducted to evaluate phenomics technologies
for monitoring performance traits (e.g., seed yield, days to 50%
flowering, and days to physiological maturity) and predict the
seed yield of chickpea and pea in three growing seasons and three
environments (or locations). Significant correlations (P < 0.05)
between the image features derived from multispectral UAV-
based imagery and the yields of chickpea (r < 0.93) and pea
(r < 0.85) were observed at the early growth, flowering, and
pod/seed development stages, with a few exceptions. During seed
yield prediction with the combined features dataset using LASSO
regression, R2 values up to 0.91 and 0.80 (model testing) were
achieved for chickpea and pea, respectively. The image-based
features were identified by the LASSO regression models as the
yield predictors for chickpea (one to seven features) and pea (3–
20 features). The results indicated that phenomics technologies
can be employed to collect data and evaluate pulse crop
performance in multiple field seasons and environments and save
labor and time for plant breeders. With further refinement (e.g.,
a software platform for data management and image analysis),
phenomics technologies can be used to assist plant breeders in
evaluating the performance of breeding materials and accelerate
the development of new cultivars of pulse and other crops.
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Wheat is one of the world’s most economically important cereal crop, grown on 220
million hectares. Fusarium head blight (FHB) disease is considered a major threat to
durum (Triticum turgidum subsp. durum (Desfontaines) Husnache) and bread wheat
(T. aestivum L.) cultivars and is mainly managed by the application of fungicides at
anthesis. However, fungicides are applied when FHB symptoms are clearly visible and
the spikes are almost entirely bleached (% of diseased spikelets > 80%), by when it
is too late to control FHB disease. For this reason, farmers often react by performing
repeated fungicide treatments that, however, due to the advanced state of the infection,
cause a waste of money and pose significant risks to the environment and non-
target organisms. In the present study, we used unmanned aerial vehicle (UAV)-based
thermal infrared (TIR) and red-green-blue (RGB) imaging for FHB detection in T. turgidum
(cv. Marco Aurelio) under natural field conditions. TIR and RGB data coupled with
ground-based measurements such as spike’s temperature, photosynthetic efficiency
and molecular identification of FHB pathogens, detected FHB at anthesis half-way
(Zadoks stage 65, ZS 65), when the percentage (%) of diseased spikelets ranged
between 20% and 60%. Moreover, in greenhouse experiments the transcripts of the
key genes involved in stomatal closure were mostly up-regulated in F. graminearum-
inoculated plants, demonstrating that the physiological mechanism behind the spike’s
temperature increase and photosynthetic efficiency decrease could be attributed to
the closure of the guard cells in response to F. graminearum. In addition, preliminary
analysis revealed that there is differential regulation of genes between drought-stressed
and F. graminearum-inoculated plants, suggesting that there might be a possibility to
discriminate between water stress and FHB infection. This study shows the potential of
UAV-based TIR and RGB imaging for field phenotyping of wheat and other cereal crop
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species in response to environmental stresses. This is anticipated to have enormous
promise for the detection of FHB disease and tremendous implications for optimizing
the application of fungicides, since global food crop demand is to be met with minimal
environmental impacts.

Keywords: Fusarium head blight, durum wheat, high-throughput plant phenotyping, thermal imaging, RGB
imaging, gene expression, early disease detection

INTRODUCTION

Wheat is one of the most cultivated crops worldwide, grown on
220 million hectares and its annual production is estimated to
account for more than 700 million tons, providing more than 20%
of total human food calories (Khan et al., 2020; Ma et al., 2020).
Modern wheat cultivars derive from two species: bread wheat
(Triticum aestivum L.) and durum-type wheat (T. turgidum
subsp. durum (Desfontaines) Husnache) used for pasta and low-
rising bread (Peng et al., 2011; Feldman and Levy, 2012).

The current food demand will double with a projected
population of 9 billion in 2050. In response, farmers must
grow more on their lands through sustainable intensification of
agriculture, an approach to increase yield production without
having negative effects on the environment or expanding the
agricultural footprint (Giller et al., 2015).

Wheat production is challenged by several abiotic and biotic
stresses. Among the plant fungal diseases, Fusarium head blight
(FHB) is one of the most destructive diseases leading to 10–70%
of yield loss during the epidemic years (McMullen et al., 2012).
FHB is caused by the Fusarium graminearum species complex
(FGSC), which embraces 16 different species. It is considered
the most devastating wheat disease due to the lack of resistant
cultivars, the significant yield loss and grain quality reduction,
and the health risks associated with the contamination of crops
with mycotoxin such as deoxynivalenol (DON) and zearalenone
(ZEA), produced during the infection progress (Yang et al., 2013;
Dweba et al., 2017). The spectrum of Fusarium spp. causing
FHB on wheat varies at the regional level, depending on weather
conditions. Fungal growth is favored by high temperatures and
humidity during the growing season. F. graminearum Schwabe is
the predominant species that causes FHB in many countries, in
Asia, North America, South America, and Europe (Dweba et al.,
2017; Khan et al., 2020). In field conditions, the inoculum occurs
primarily from plant residues and soils while the dissemination
of the ascospores and conidia is mainly promoted by water splash
and wind. Anthesis is the most susceptible stage to infection.
With a warm and humid climate at this stage, airborne spores
proliferate and spread intracellularly into the rachial nodes and
through the rachis until FHB symptoms are clearly visible.
The symptoms include necrosis, premature bleaching of spikes,
and shriveled kernels that negatively affect photosynthesis. At
favorable conditions, FHB develops rapidly within 3–6 days after
the infection. Given the current global warming associated with
increased temperatures, major epidemics of FHB are occurring.
Thus, proper cultivation schemes and field management are
essential to alleviate its threat (Bai and Shaner, 2004; Vaughan
et al., 2016; Ma et al., 2020; Rod et al., 2020).

Since 1995, Fusarium spp. infect wheat in Italy at various
incidence (percentage of spikes showing symptoms) and severity
(percentage of areas infected in spikes) depending on the year,
the region, and the wheat cultivar involved (Pancaldi et al., 2010).
Its incidence and severity are closely related to the amounts of
precipitation during wheat anthesis, increasing from the South
to the North of Italy, being mostly reported in the Northern-
Central regions (Shah et al., 2005; Infantino et al., 2012). Between
the two major species, T. turgidum is the most widely grown in
Italy, but is also more susceptible to FHB (Oliver et al., 2008).
Consequently, being mostly used for human consumption, the
risk of mycotoxin-contaminated grain entering the food chain is
a major concern (Boutigny et al., 2008).

Chemical control of FHB using appropriate effective
fungicides and correct application methods and timing can
reduce the severity of the disease (Blandino et al., 2012). However,
no fully effective FHB fungicide is available (Haidukowski et al.,
2012), and the application window is very narrow, spanning
just a few days around anthesis (Mesterházy et al., 2003).
Recently, an organic strategy to reduce FHB incidence and
severity was proposed, but now it needs to be confirmed
on wide areas (Francesconi et al., 2020). For these reasons,
early detection and control of FHB is a key factor to gain
maximum protection of yield (Mahlein et al., 2019) from fungal
spread and mycotoxin accumulation; in fact, there is a strong
evidence base in the research literature that a prompt and early
application of fungicides instead of applying fungicides at late
stages of infection drastically reduce the FHB spread and DON
accumulation inside the grains, instead of applying fungicides at
late stage of infection (Freije and Wise, 2015; Feksa et al., 2019;
Bolanos-Carriel et al., 2020).

Recent advances in biological and bioanalytical research
enabled genome-scale capturing of biological processes at
the molecular level in plants (Weckwerth, 2011). Though
transcripts evaluation is fundamental to understand plant
responses to pathogens, these techniques are labor-intensive,
time-consuming, destructive and slow-down the acquisition of
phenotype parameters related to the gene responses, contributing
to the phenotyping bottleneck (Furbank and Tester, 2011).
Molecular data obtained in greenhouse or field trials combined
with phenotypic and environmental data discloses a wealth of
information that can be used to improve field management
(Alexandersson et al., 2014).

For plant-pathologists, coupling transcriptomics and
phenomics to agricultural practices is likely to have a large
impact on the understanding of induced plant defenses and
pathogen spread. In fact, phenomics and transcripts analysis
can reveal important physiological changes in plants in response
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to pathogens which can help detecting infections before the
appearance of their visible symptoms. Hence, these associated
techniques have the potential to be a powerful weapon that
optimizes fungicide spraying regimes for plant pathogen
management (Alexandersson et al., 2014).

To relieve the phenotyping bottleneck, phenotypic traits
should be turned into quantifiable, objective, and consistent
measures (Ludovisi et al., 2017). Automated and high-
throughput phenotyping (HTP) provides measurements
that can track the development of a plant through its life
stages and its interaction with the environment, establishing
methodologies to detect crucial physiological traits and identify
effective genotype-phenotype relationships (Goggin et al., 2015).
These methods speed up the phenotyping process and maximize
the number of studied plants per experiment (Goggin et al.,
2015). Furthermore, they enable automated, non-destructive,
and non-invasive screening of large populations and high
dimensionality data (Li et al., 2014; Fahlgren et al., 2015).

With regards to FHB, Fusarium spp. infects spikelets
within wheat spikes, decreasing stomatal conductance, and
thus, affecting the chlorophyll and water content (Yang
et al., 2016; Francesconi and Balestra, 2020). This allows
its early detection by color imaging and by measuring the
temperature of spikes and photosynthetic efficiency of plants
using thermometers and fluorometers, respectively (Cambaza
et al., 2019; Mahlein et al., 2019).

Red-green-blue (RGB) cameras are designed to emulate
human vision by sensing light in the visible range of the
electromagnetic spectrum (wavelengths from 390 to 700 nm).
In this range, the reflectance is predominantly influenced by
plant pigments (e.g., chlorophyll) (Mahlein, 2016). This allows
the calculation of different vegetation indices (VIs) by computing
the reflectance of a certain band of the green and red zone
of the electromagnetic spectrum (Barbosa et al., 2019; Brunori
et al., 2020). Photosynthetic response of green vegetation to
incident light is the basis of VIs where healthy plants exhibit
low red reflectance due to absorption of red light by chlorophyll
resulting in a high index value, whereas unhealthy, stressed plants
with reduced chlorophyll pigment display a low index value
(Khan et al., 2018).Therefore, RGB image analysis can serve as
an important tool that detects physiological changes in plants
caused by pathogen infections (Simko et al., 2016). On the other
hand, thermal infrared (TIR) sensors capture images containing
information about the energy emitted from body surfaces, such
as plant canopies. Plant pathogens affect the loss of water in
plants regulated by stomata (Fang and Ramasamy, 2015), altering
plant temperature where high values indicate areas with closed
stomata (Oerke et al., 2006; Chaerle et al., 2007). Thermography
can serve as a tool to measure these changes toward an early
detection of plant infections, ideally before symptoms appear
(Al Masri et al., 2017).

Unmanned aerial vehicles (UAVs) equipped with cameras and
sensors have become advanced field phenomics tools that provide
data with high spatial and temporal resolution to bridge the
gap between time consuming ground-based measurements and
satellite observations (Xie and Yang, 2020; Pineda et al., 2021).
UAVs allow rapid and non-destructive measurements and offer

much quicker turnaround times than satellites at competitive
costs (Ludovisi et al., 2017).

The application of UAV-based imaging techniques has
been broadening in several areas of agricultural sciences
thanks to their ability to analyze plant temperature and color
discrepancies between distinct biological samples (Padmavathi
and Thangadurai, 2016; Cambaza et al., 2019). Many recent
studies have exploited UAV-based sensors to monitor, detect
and phenotype plant stresses in forestry (Sagan et al., 2019),
as well as to estimate leaf nitrogen concentration (Lu et al.,
2021), water and nitrogen use efficiencies (Yang et al., 2020),
and salinity stress (Johansen et al., 2019) in different crops. Plant
pathologists are recently also benefiting from the application of
UAV-based sensors; in fact, UAV multispectral and hyperspectral
imaging have been used to detect Xylella fastidiosa (Castrignanò
et al., 2021) and FHB (Liu et al., 2020), respectively. Moreover,
these techniques are relatively easy to use and are becoming
cheaper (Dammer et al., 2011; Cambaza et al., 2019). Their
exploitation to monitor FHB can contribute significantly to
secure the cereal production systems (Mahlein et al., 2019).
In light of these advantages, UAV-mounted cameras and
sensors are expected to enable new applications in field-based
phenotyping of plant stress traits in large populations rapidly,
precisely and accurately (Berni et al., 2009; White et al., 2012;
Yang et al., 2017).

In this study, we exploited plant physiological and molecular
changes in response to Fusarium spp. infection to detect
FHB in T. turgidum (cv. Marco Aurelio) fields through
UAV-based TIR and RGB imaging. Particularly, (i) two VIs
as well as spike temperature were calculated using RGB
and TIR images, from both uninfected and infected areas
and were correlated to photosynthesis perturbation caused
by the infection. Additionally, (ii) transcripts of key genes
involved in stomatal conductance regulation were investigated
in greenhouse experiments, to explore the genotypic changes
behind the observed phenotypic perturbations (increase in
spike temperature and decrease in photosynthetic efficiency).
Furthermore, (iii) transcripts of F. graminearum inoculated
plants were compared to those obtained from drought-stressed
ones in order to investigate a differential response between these
two types of stresses.

MATERIALS AND METHODS

Plant Material and Experimental Design
of the Field Experiments
The FHB-susceptible T. turgidum cv. Marco Aurelio was the
cultivar of interest in the present work for both field and
greenhouse experiments. This genotype, grown in Central
and South Italy, is extensively used for pasta production
and it is characterized by excellent protein content and
high productivity, thus it is of high economic importance.
The experimental fields were located in Amelia (Central
Italy, 42◦31′22.9′′N, 12◦25′15.5′′E, Umbria Region) and
Avigliano Umbro (Central Italy, 42◦40′41.1′′N, 12◦27′44.6′′E,
Umbria Region). The T. turgidum field experiments were
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carried out during two consecutive years (2019 and 2020),
controlled and drip-irrigated with a nutrient solution containing
nitrogen, potassium, phosphorus, and small amounts of other
compounds. Therefore, abiotic stresses (nutrient deficiencies
and drought stress), diseases, or pests, which cause the same
symptoms as FHB, were significantly minimized. On the other
hand, fungicides for FHB management (tebuconazole and
azoxystrobin) were not applied in order to favor the FHB
natural infection. The fields were investigated periodically
(one time per day) by experts and farmers to prevent other
diseases, pests, or abiotic stress. An experimental plot was
allocated within each field, and individuated by a 20 m grid
by positioning 16 ground control points (GCPs) to be used for
georeferencing. During March, April, and May 2019 and 2020
weather data (minimum, maximum and average temperature,
and precipitation) were recorded daily by two meteorological
stations installed at 100 m distance from each field to monitor
the climate factors influencing the establishment of FHB
infection. Historical weather data (from 2010 to 2018) were
obtained from the Hydrographic service of Umbria Region1

to monitor the climatic trend of the last 11 years and to
compare minimum, average and maximum temperature values
(◦C) and average precipitations (mm) recorded during the
9-year seasonal average (2010–2018), 2019, and 2020. The
historical weather data were collected from two meteorological
stations located in Amelia (42◦33′25.0′′N, 12◦25′01.0′′E)
and Avigliano Umbro (42◦40′39.0′′N, 12◦26′13.0′′E). The
experimental design for the field experiments is illustrated in
Figures 1A,B.

UAV Campaigns
An unmanned DJI Matrice 600 multi-copter (DJI, China)
equipped with a Zenmuse X5 RGB camera (DJI, China) and a
Zenmuse XT TIR camera (DJI, China) has been used in this
study (Supplementary Figure 1). DJI Matrice 600 is a hexa-
copter (110 cm diagonal size) with a highly resistant carbon
fiber frame, offering a 15 kg take-off weight. Its maximum
transmission distance is 5 km and its maximum flight time is
40 min (Supplementary Figure 1).

The Zenmuse XT was equipped with a 9 mm f1.4 lens.
Its thermal sensitivity is less than 50 milliKelvins and the
camera enables measurements in the range −25◦C to +135◦C.
The image sensor is a focal plane array (FPA) based on
uncooled microbolometers with a spectral band response in
the range of 7.5 to 13 µm. The camera field of view is
equal to 69◦ (horizontally) × 56◦ (vertically), its resolution to
640 × 512 pixels at 30 frames per second (fps), and its spatial
resolution to 1.889 milliradians (mrad). The camera captures
images at an acquisition frequency of 30 Hz. The camera
was radiometrically calibrated to further increase temperature
measurement precision by setting external parameters during the
flight planning such as air temperature and flat field correction
(FFC). This is an offset calibration usually performed at power up,
when the camera changes temperature, and periodically during
the operation. This calibration compensates for certain errors

1https://annali.regione.umbria.it/

that build up during the camera operation. During the data
acquisition phase, the auto gain mode parameter was applied; the
camera automatically selected the optimal gain mode according
to the temperature range of the image (Deery et al., 2016; Gómez-
Candón et al., 2016; Ludovisi et al., 2017) and pictures were stored
as 14-bit digital raw images.

The Zenmuse X5 is a 16-megapixel RGB camera equipped
with an M4/3 sensor enabling it to capture detailed images at a
resolution of 4608× 3456 pixels and an ISO range of 100–25600.

The Zenmuse X5 and XT cameras were mounted on a
highly reliable gyrostabilized 3-axis gimbal (DJI, China) that
automatically stabilizes them in flight. The gimbal constantly
communicates with the UAV, and quickly compensates for every
minor movement with a precision accuracy of 0.02◦.

The 16 GCPs were used to georeference RGB images. For
calibration of thermal images, four 60 × 60 cm ground reference
panels (GRPs) consisting of two plastic panels covered by black
vinyl tape and two white Teflon R© were positioned along the
borders of each of the two study areas. A real-time kinematic
(RTK) global navigation satellite system (GNSS) CS10 model
(Leica Geosystems, Switzerland) with an accuracy of 1 mm was
used for capturing GCPs and GRPs locations.

UAV campaigns were conducted at the following phenological
stages: (i) three-quarters of inflorescence emerged (Zadoks stage
57, ZS 57) (Zadoks et al., 1974) on 6 May 2019 and 7 May
2020; (ii) anthesis half-way (ZS 65) on 17 May 2019 and 18
May 2020; and (iii) kernel watery ripe (ZS 71) on 28 May 2019
and 29 May 2020. Two flights were performed during each
campaign. The flight missions have been planned using Ground
Station Pro app (DJI GS Pro, China). Each flight lasted 11 min
covering an area of 1 ha at a nominal speed of 4 m/s and an
altitude of 20 m, during which both cameras acquired nadiral
images with 90% frontal and side overlap. To ensure similar solar
illumination angles flights were performed between 11:00 and
12:00 local time under stable cloudless and low-wind conditions
(Figures 1D,E).

Ground Measurements
For each of the 16 GCPs, a circumference of 1 m of
diameter was individuated and denominated as sampling area.
During the UAV campaigns, we manually measured the spike
temperature of sixteen randomly selected plants in each of
the 16 sampling areas using a portable infrared thermometer
(Fluke 568, Fluke Corporation, United States) with an accuracy
of ± 1% or ± 1.0◦C (whichever is greater), positioned at
10 cm distance from the spike. At the same time, the FHB
severity was calculated by counting the number of diseased
spikelets and the total number of spikelets for each of the
sixteen plants. Furthermore, the flag leaves of the selected
plants were sampled and dark-adapted for 1 h before measuring
their photosynthetic efficiency, by quantifying Fv/Fm reflecting
the potential quantum efficiency of photosystem II (Maxwell
and Johnson, 2000), with a portable fluorometer (V2.00f PAM
2000, Heinz Walz GmbH, Germany). Moreover, the spikes were
also sampled to distinguish FHB positive (FHB+) from FHB
negative (FHB-) areas by molecular identification of Fusarium
spp. (Figure 1C).
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FIGURE 1 | Workflow of the high-throughput field phenotyping methodology and the greenhouse experiment. (A) Plant material includes Triticum turgidum (cv.
Marco Aurelio). Two fields were established in Amelia (Central Italy, 42◦31′22.9′ ′N, 12◦25′15.5′ ′E, Umbria Region, 406 m above sea level) and Avigliano Umbro
(Central Italy, 42◦40′41.1′ ′N, 12◦27′44.6′ ′E, Umbria Region, 441 m a.s.l) to host the T. turgidum plants. Sampled spikes show the symptoms of a Fusarium head
blight (FHB)-infected plant, compared to an uninfected plant. (B) An experimental plot was allocated within each field, and a 20 m grid was identified by positioning
sixteen ground control points (GCPs) to be used for georeferencing. Around each of the GCPs, a circumference of 1 m of diameter was individuated and
denominated as a sampling area. Weather data were recorded daily by two meteorological stations installed at 100 m distance from each field. (C) Within each
sampling area, the spike temperature of sixteen randomly selected spikes was measured, and their flag leaves were sampled to measure their photosynthetic
efficiency. Finally, the spikes were also sampled to distinguish FHB positive (FHB+) ones from FHB negative (FHB-) ones by molecular identification
of Fusarium spp. (D) An unmanned DJI Matrice 600 hexacopter was equipped with Zenmuse X5 red-green-blue (RGB) and Zenmuse XT thermal infrared (TIR) sensors.

(Continued)
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FIGURE 1 | Continued
The unmanned aerial vehicle (UAV) campaign allowed capturing RGB and TIR images of both experimental plots. (E) The flight missions were planned using Ground
Station Pro app (DJI GS Pro, China). The UAV was flown in the autonomous mode at a nominal speed of 4 m/s, running parallel to plant rows to ensure complete
coverage with good overlaps. (F) Image orthorectification, georeferencing, and mosaicking were performed using 16 GCPs captured with a global positioning
system (GPS). (G) The greenhouse physiological and molecular experiments where plants were subjected to three different treatments: (i) drought stress treatment
where plants did not receive water from Zadoks stage (ZS) 51 to 65; (ii) artificial inoculation treatment where spikes were uniformly spray-inoculated at ZS 65 with a
suspension of 1 × 105 conidia/mL; and (iii) mock treatment where spikes were uniformly sprayed with a suspension of Tween-20 0.05% resuspended in sterile
distilled water at ZS 65. Spikes temperature and photosynthetic efficiency of plants were recorded at 24, 48, and 72 hours post inoculation (hpi) from three
independent experiments, each experiment consisting of 20 spikes for each treatment. Four spikes were sampled for each treatment, and were ground with mortar
and pestle in liquid nitrogen until a fine powder was obtained, from which, RNA was extracted. Finally, quantitative real-time polymerase chain reaction (RT-qPCR)
was performed to investigate transcripts of key genes involved in stomatal conductance regulation; transcripts of F. graminearum-inoculated plants were compared
to those obtained from drought-stressed ones in order to investigate a differential response between these two types of stresses.

Molecular Diagnostics of Fusarium
Pathogens
Spikes were stored in a portable fridge immediately after
sampling. Afterward, different tissues (palea, lemma, glume,
rachis, and kernel when present) from each collected spike were
plated on Petri dishes containing potato dextrose agar (PDA)
and incubated at 21◦C for 72 h. The different morphotypes
were subsequentially isolated and cultured on PDA for 1 week.
After each morphotype filled the Petri dish, the produced
mycelium was gently scraped with a glass rod. 100 mg of
mycelium were grinded and DNA was extracted using 80
µL of extraction buffer composed of Tris 100 mM, EDTA
50 mM and NaCl 500 mM; after that, 32 µL of SDS 10%
(w/v) were added and the samples were incubated at 65◦C
for 10 min. 27 µL of potassium acetate 5 M were added and
the samples were placed on ice for 20 min, then centrifuged
for 20 min at 13.000 rpm. The supernatant was recovered
and 80 µL of cold (−20◦C) isopropanol were added to each
sample; then, the samples were placed on ice for 10 min
and centrifuged for 5 min at 13.000 rpm. The supernatant
was discarded and 150 µL of cold (−20◦C) ethanol (70%
v/v) were added to the samples. Samples were centrifuged
for 3 min at 13.000 rpm, the supernatant was discarded and
the DNA was resuspended in 20 µL of DNase and RNase-
free sterile distilled water and stored at −20◦C (D’Ovidio and
Porceddu, 1996). Total DNA was quantified with QubitTM

fluorometer 1.01 (Invitrogen, United States) using the QubitTM

dsDNA BR Assay Kit (Thermo Fisher Scientific, United States)
and diluted to 10 ng/µL. The molecular identification of
Fusarium spp. was performed by amplifying the translational
elongation factor 1-α (TEF) sequence using the primer
pair EF1_F 5′-ATGGGTAAGGAGGACAAGAC-3′/EF2_R 5′-
GGAAGTACCAGTGATCATGTT-3′ designed to identify the
FHB complex spp. (Geiser et al., 2004). The polymerase chain
reaction (PCR) was performed following the instructions of
GoTaq R© Green Master Mix (Promega, United States) and
prepared in a total volume of 10 µL. The amplification conditions
consisted of: (i) an initial denaturation step of 2 min at 95◦C; (ii)
35 cycles of 30 s denaturation at 95◦C; (iii) 40 s of annealing at
53◦C; (iv) 60 s of elongation at 72◦C; and (v) a final elongation
step of 5 min at 72◦C. The amplicon unicity was visualized
on 1.5% agarose gel and sequenced by Sanger sequencing
(Eurofins Genomics, Germany). The resulted sequences were

submitted to BLASTn2 in order to identify the corresponding
Fusarium spp.

RGB Image Processing and VIs
Calculation
A total of 250 RGB images were acquired using the UAV-
mounted Zenmuse X5 camera. The camera exposure mode was
set to shutter priority (S) with a shutter speed fixed 1/500 s to
ensure minimization of motion blur, ISO of 100 and the white
balance to sunny mode.

Geometric camera calibration, orthorectification, and
mosaicking of the captured images were performed using
Pix4Dmapper (Pix4D, Switzerland) software, specifically
designed to process UAV images using techniques rooted in
both computer vision and photogrammetry to match conjugate
points in overlapped images and to define their relative
positions and orientations using bundle block adjustments
(Bollard-Breen et al., 2015; Nishar et al., 2016; Figure 1F). The
output of this step was the RGB orthomosaics of the study
areas for each flight mission. No filtering process was applied
to the images.

Finally, VIs from the orthomosaics were computed using
quantum geographic information system (QGIS) software
(version 3.4 Madeira - QGIS Development Team, Open Source
Geospatial Foundation). The VIs carried out were: vegetative
(VEG) (Hague et al., 2006) and green leaf index (GLI) (Louhaichi
et al., 2001). VEG and GLI were calculated using the following
formulas:

VEG =
G

Ra∗B(1−a) and

GLI =
(2∗ G− R− B)

(2∗G+ R+ B)

where R, G, and B are the reflectance of red, green and blue
channels, respectively, and a is equal to 0.667.

Inside each sampling area, leaves and spikes were not
separated in the images, because the upper part of the fields
was uniformly composed by spikes (Figures 1A,B), since wheat
canopies were very dense.

2https://blast.ncbi.nlm.nih.gov/
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TIR Image Processing and Temperature
Extraction
The UAV-mounted Zenmuse XT TIR camera captured 219
greyscale and georeferenced images. Thermal orthomosaics
were generated for each flight, and the radiometric conversion
was automatically performed using the Pix4Dmapper software
(Figure 1F). The removal of bare soil pixels was not necessary,
since the wheat planting were extremely dense, reducing the
mixed pixel problem. FLIR Tools software (2020© FLIR R©

Systems, United States) was used to calibrate temperatures in
TIR images using the temperature values of GRPs measured
immediately after the UAV flights using a portable infrared
thermometer (Fluke 568, Fluke Corporation, United States).
Calibration checks were performed by comparing the GRPs-
measured to the UAV-derived temperatures. No filtering process
was applied to the images. The extraction of temperature values
was performed for each of the 16 sampling areas. Inside each
sampling area, leaves and spikes were not separated in the images,
because the upper part of the fields was uniformly composed by
spikes (Figures 1A,B), since wheat canopies were very dense.

Plant Growth, Inoculation Conditions and
Experimental Design of the Greenhouse
Experiments
Greenhouse experiments were conducted in a glasshouse located
in Viterbo (Central Italy, 42◦25′35.8′′N, 12◦04′49.3′′E, Lazio
Region). The surface of the T. turgidum kernels was sterilized
with sodium hypochlorite (0.5% v/v) for 20 min and rinsed twice
with sterile distilled water for 5 min. The kernels were germinated
in the dark on a paper, soaked in sterile distilled water for 15
days at 4◦C to break dormancy, followed by 2 days at room
temperature. The seedlings were transferred to 40 × 20 cm pots,
filled with TYPical Brill soil (Brill, Germany) and grown at 16–
20◦C up to the boot stage (ZS 51), 20–24◦C during heading and
anthesis (ZS 53-69), and 24 –29◦C up to maturity (ZS 71-99). The
plants were fertilized using ammonium nitrate in the following
proportions and at the following stages: 20% at sowing (ZS 00),
40% at tillering (ZS 20), and 40% at heading (ZS 49) (Francesconi
et al., 2019). The highly virulent and mycotoxin-producing isolate
of F. graminearum wild type (WT) 3824 (Tomassini et al., 2009)
was cultured at 21◦C on synthetic nutrient-poor agar (SNA) to
obtain macroconidia (Mandalà et al., 2019). After 10 days on
SNA, the conidia were scraped with a glass rod after pipetting
1 mL of sterile distilled water onto the surface of a Petri dish.
The conidial suspension was recovered, and the concentration
was adjusted to 1 × 105 conidia/mL using a Thoma chamber
(0.100 mm depth and 0.0025 mm2). The inoculum was prepared
in sterile distilled water supplemented with 0.05% (v/v) of Tween-
20. Plants were subjected to three different treatments: (i) drought
stress treatment where plants did not receive water from ZS 51
to 65 (Zadoks et al., 1974; Tambussi et al., 2000); (ii) artificial
inoculation treatment where spikes were uniformly spray-
inoculated at ZS 65 with a suspension of 1× 105 conidia/mL; and
(iii) mock treatment where spikes were uniformly sprayed with
a suspension of Tween-20 0.05% resuspended in sterile distilled
water at ZS 65. The spikes were covered with clear plastic bags for

24 h to maintain high humidity levels (>80%). Spikes subjected
to drought and mock treatments were sampled after removing the
plastic bags, while the inoculated spikes were sampled 24, 48 and
72 hours post inoculation (hpi) to investigate an early response
to F. graminearum. Collected spikes were immediately stored
in liquid nitrogen at −80◦C until the extraction of RNA. FHB
severity (%) was monitored in the greenhouse by counting the
number of bleached spikelets and the total number of spikelets
for each spike from 3 to 21 days post inoculation (dpi). In
addition, spike temperature and photosynthetic efficiency were
recorded at 24, 48, and 72 hpi. The experimental design for the
greenhouse trial is illustrated in Figure 1G. Data were obtained
from three independent experiments, each experiment consisting
of 20 spikes for each treatment.

RNA Extraction and cDNA Synthesis
Wheat spikes were ground with mortar and pestle in liquid
nitrogen until a fine powder was obtained. The RNA was
extracted from 100 mg of powder following the instructions
provided by InviTrap R© Spin Plant RNA Mini Kit (Stratec
Molecular GmbH, Germany), resuspended in RNase-free sterile
distilled water, immediately poured onto ice and quantified
with QubitTM fluorometer 1.01 (Invitrogen, United States) using
the QubitTM RNA BR Assay Kit (Thermo Fisher Scientific,
United States). To confirm the total quantity and integrity of
the RNA, 5 µL of the extracted RNA sample was subjected to
a 10-min thermal shock at −80◦C, followed by 5 min at 65◦C
and run on 1.5% denaturing agarose gel. The synthesis of cDNA
was performed using 500 ng of RNA following the instructions
provided by Xpert cDNA Synthesis Supermix with a gDNA eraser
(GriSP Research Solutions, Portugal) in a final volume of 20 µL.
To ensure that the synthesis of the cDNA and the elimination
of the gDNA had succeeded, a reverse transcription PCR (RT-
PCR) of T. aestivum Actin (TaACT) (containing an intron in
the amplified sequence) was performed following the instructions
provided by GoTaq R© Green Master Mix (Promega, United States)
in a total volume of 10 µL. The amplification conditions consisted
of: (i) an initial denaturation step of 2 min at 95◦C; (ii) 35 cycles
of 30 s denaturation at 95◦C; (iii) 40 s of annealing at 60◦C; (iv)
30 s of elongation at 72◦C; and (v) a final elongation step of 5 min
at 72◦C. The amplification run included a no-template control
(NTC) and a genomic DNA (gDNA) control. The amplicons were
visualized on 1.5% agarose gel.

Gene Expression by Quantitative
Real-Time PCR
Supplementary Table 1 shows the list of target genes, their
functions, and the corresponding primer pairs used to perform
RT quantitative PCR (RT-qPCR) (Francesconi and Balestra,
2020). Briefly, the primer pair for T. aestivum glyceraldeyde-
3-phosphate dehydrogenase (TaGAPDH) amplification is from
Jarošová and Kundu (2010), for T. aestivum pathogenesis related
protein 1 (TaPR1) from Lu et al. (2006), for TaACT from
Tundo et al. (2016), and T. aestivumβ-tubulin2 (TaTUB) and
T. aestivum ferredoxin-NADP(H)-oxidoreductase (TaFNR) from
Tenea et al. (2011). The remaining primers are from Francesconi

Frontiers in Plant Science | www.frontiersin.org 7 April 2021 | Volume 12 | Article 62857524

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-628575 March 31, 2021 Time: 14:40 # 8

Francesconi et al. FHB Detection in Wheat

and Balestra (2020). The amplification efficiency (E) of RT-
qPCR was determined for each primer pair as follows: five 1:10
serial dilutions (1:1-1:10000) were obtained for each cDNA and
amplified in four replicates. E and coefficient of determination
(R2) values were calculated by means of the slope of the standard
curve obtained by plotting the fluorescence versus the serial
dilution concentrations using the equation (Bustin et al., 2009)

E 10
(
−

1
slope

)
− 1

Reference genes with closest E values to target genes, highest
R2, and lowest variability were selected for the quantification
cycles (Cq). The relative expression levels of target genes were
calculated on the basis of the Cq values of four independent
biological replicates, each with four technical replicates, for each
plant treatment by applying the equation (Bustin et al., 2009)

Relative expression 2−44Cq

using TaACT, TaTUB, and TaFNR as reference genes and the
mock treatment to normalize the relative expression levels.
Relative expression levels of TaPR1 and TaGAPDH were
quantified as internal control of the progression of the infection
(Muthukrishnan et al., 2001) and changes in photosynthesis
(Zhang et al., 2013). The RT-qPCR was performed following the
instructions provided by Rotor-Gene Q (Qiagen, Germany) and
Xpert Fast SYBR (uni) MasterMix (GRiSP Research Solutions,
Portugal), in a final volume of 10 µL. The amplification
conditions consisted of: (i) an initial denaturation step of 3 min
at 95◦C; (ii) 40 cycles of 5 s denaturation at 95◦C; (iii) 30 s of
annealing at 60◦C; and (iv) 20 s of elongation at 72◦C. A final
melt cycle (70–99◦C) was performed to confirm the unicity of
the amplicons. NTC controls were included and the amplification
was considered negative when a value of Cq ≥ 38 was detected
(Bustin et al., 2009).

Photosynthetic-Related Parameters
Measurements
Spike temperature and photosynthetic efficiency were measured
for each plant treatment as performed during the field trial,
described in section “Ground Measurements.” Photosynthetic-
related parameters were measured for three independent
replicates, each consisting of 20 individual spikes, for
every treatment.

Statistical Analyses
One-way analysis of variance (ANOVA) was performed to
analyze FHB severity, ground-measurements (temperature and
photosynthetic efficiency) of FHB+ and FHB- spikes during
the UAV-campaigns, UAV-based VEG, GLI and temperature of
FHB+ and FHB- sampling areas during the UAV-campaigns,
gene expression values, and temperature and photosynthetic
efficiency of drought stressed and inoculated plants during the
greenhouse experiments. One level of significance (p < 0.01) was
computed to assess the significance of the F values. A pairwise
analysis was carried out using Tukey’s honest significant
difference (HSD) test at 0.99 confidence level. Statistical analyses

were performed using XLSTAT 2020.4 software (Addinsoft,
France). Principal component analysis (PCA) was carried out
to classify spike temperature, photosynthetic efficiency and VEG
or GLI or UAV-based temperature values coming from FHB+
or FHB- areas and gene expression values, spike temperature
and photosynthetic efficiency coming from drought stressed or
F. graminearum inoculated plants. Heatmap was carried out by
computing the z-score of the relative gene expression values. PCA
and heatmap were computed by using ClustVis software (Tartu,
Estonia)3 (Metsalu and Vilo, 2015).

RESULTS

Weather Conditions Influencing the FHB
Severity
Registered data were compared to historical data (2010–2018)
(Figure 2A), showing that May 2020 was particularly hotter
than 2010–2019 (the recorded average temperatures were 20◦C,
14◦C, and 18◦C in May 2020, May 2019 and May 2010–2018,
respectively), while May 2019 was characterized by high daily
average rainfall (7 mm) compared to May 2020 (2 mm) and the
9-year seasonal average (5 mm). These conditions favored the
naturally occurring FHB in the fields of interest. In fact, in 2019,
FHB severity (Figure 2B) reached 59% and 92% at ZS 65 and
71, respectively, indicating that the wet season (mean relative
humidity was > 70%) was particularly favorable for the FHB to
spread. Although April and May 2020 were not characterized by
frequent rains (average precipitation of 2 mm), low precipitations
favored a moderate FHB infection with a severity of 27% and 68%
at ZS 65 and 71, respectively.

Ground-Based Measurements During the
UAV Campaigns
Figure 3 illustrates the results obtained by ground-based
measurements during the UAV campaigns. The molecular
identification of FHB was performed by amplifying the TEF
sequence from a bulk sample obtained from the samples collected
in each sampling area, producing an amplicon of 700 bp. At
ZS 57, all the sampling areas resulted FHB- in both 2019 and
2020; at ZS 65, 10 of the 16 sampling areas were FHB+ in
2019, while 6 sampling areas were FHB+ in 2020; at ZS 71,
all the sampling areas were FHB+ in both 2019 and 2020
(Figure 3A). In 2019, thirty Fusariummorphotypes were isolated:
ten morphotypes were F. graminearum, eleven were F. poae, eight
were F. avenaceum, and one was F. proliferatum. In 2020, twenty-
four morphotypes were identified: ten were F. graminearum,
ten were F. poae and four were F. avenaceum. The isolated
morphotypes and the data resulted from the BLASTn analyses
are listed in Supplementary Table 2. Ground-based spike
temperature values recorded in 2019 and 2020 revealed that
FHB+ spikes had a higher temperature than the FHB- ones at ZS
65 (Figures 3B,D). On the other hand, photosynthetic efficiency
had an inverse relationship with the FHB severity: variable

3https://biit.cs.ut.ee/clustvis/
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FIGURE 2 | (A) Changes in maximum (yellow triangles), average (grey crosses) and minimum (blue squares) temperature (T), and precipitation (simple bar) of weather
data recorded in 2019 in comparison with weather data recorded in 2020 and historical weather data from 2010 to 2018 for March, April, and May. The plotted
values were obtained by averaging the mean daily values for each considered period. Weather data for 2019 and 2020 were recorded daily by two meteorological
stations installed at 100 m distance from each of the experimental fields located in Amelia (Central Italy, 42◦31′22.9′ ′N, 12◦25′15.5′ ′E, Umbria Region) and Avigliano
Umbro (Central Italy, 42◦40′41.1′ ′N, 12◦27′44.6′ ′E, Umbria Region). Historical weather data (2010–2018) were collected from the Hydrographic service of Umbria
Region (https://annali.regione.umbria.it/). The historical weather data were collected from two meteorological stations located in Amelia (42◦33′25.0′ ′N,
12◦25′01.0′ ′E) and Avigliano Umbro (42◦40′39.0′ ′N, 12◦26′13.0′ ′E). (B) Severity percentage of Fusarium head blight (FHB) in Triticum turgidum (cv. Marco Aurelio) at
Zadoks stage (ZS) 57, 65, and 71 in 2019 and 2020. Data represent averages and standard errors of 256 spikes (16 spikes for each of 16 visible targets). Asterisks
(**) refer to the statistical analyses performed using one-way analysis of variance (ANOVA) with Tukey’s honest significant difference (HSD) post hoc test at 0.99
confidence level and p < 0.01.

fluorescence/maximum fluorescence (Fv/Fm) demonstrated to be
lower in FHB+ than in FHB- at ZS 65 (Figures 3C,E).

UAV-Based TIR and RGB Imaging for
FHB Detection
Recorded weather data indicated that during the two UAV-
campaigns conducted at ZS 65, the average daily air temperature
and humidity values were 15◦C (2019), 21◦C (2020), and 67%

(2019) and 72% (2020), respectively. Supplementary Figure 2
shows the 16 sampling areas resulting from RGB (A and C)
and thermal images (B and D) in Amelia (Supplementary
Figures 2A,B) and Avigliano Umbro (Supplementary
Figures 2C,D). PCA (Figure 4) demonstrated that VEG
(A), GLI (B), and UAV-based temperatures (C) distinguished
between FHB+ and FHB- plants at ZS 65 for both the 2019 and
2020 campaigns. Moreover, box-plots indicate that VEG (D),
GLI (E), and UAV-based temperature values significantly differed
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FIGURE 3 | Molecular identification of Fusarium head blight (FHB) and ground-based temperature and photosynthetic efficiency measurements recorded in
concurrence with unmanned aerial vehicle (UAV) campaigns conducted at Zadoks stage (ZS) 57, 65, and 71 of Triticum turgidum (cv. Marco Aurelio) in 2019 and
2020. (A) Molecular identification of Fusarium spp. using 1.5% agarose gel of the translational elongation factor 1-α (TEF ) sequence (700 bp) in spikes of isolates
obtained from the 16 sampling areas, sampled in 2019 and 2020 at ZS 57, 65, and 71. At ZS 57, none of the 16 sampling areas resulted FHB positive (FHB+) during
both 2019 and 2020 UAV campaigns; at ZS 65, 10 and 6 sampling areas were FHB+ in 2019 and 2020, respectively; at ZS 71, all sampling areas were FHB+ during
both 2019 and 2020 UAV campaigns. M represents a 100 bp DNA Ladder (Jena Bioscience); C- represents the negative control and C+ represents the presence of
F. graminearum wild type (WT) 3824. The figure is obtained from four gels and the original pictures of the gels are available upon request. (B,D) Box-plot of the
spikes’ temperature (◦C) and (C,E) photosynthetic efficiency (Fv/Fm). The data represent averages and standard errors for 256 spikes (16 spikes for each sampling
area) from 2019 (B,C) and 2020 (D,E). Different letters refer to the statistical analysis performed using one-way analysis of variance (ANOVA) with the Tukey’s honest
significant difference (HSD) post hoc test at 0.95 or 0.99 confidence level and p < 0.05 or p < 0.01.
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between FHB+ and FHB− areas during the two UAV-campaigns
(2019 and 2020). The average VEG values (D) recorded in FHB−
areas were 1.46 and 1.42, while in FHB+ areas were 1.00 and
1.02 in 2019 and 2020, respectively. The average GLI values (E)
recorded in FHB− areas were 0.21 and 0.13, while in FHB+
were 0.09 and 0.10 in 2019 and 2020, respectively. The average
UAV-based temperature values (F) recorded in FHB− areas were
18.32◦C and 18.94◦C, while in FHB+ were 21.06◦C and 20.94◦C
in 2019 and 2020, respectively.

Monitoring of FHB in the Greenhouse
The progress of FHB severity was monitored in F. graminearum-
inoculated plants in the greenhouse from 3 to 21 dpi (Figure 5A).
The severity gradually increased reaching values close to 100%
at 17 dpi, confirming the susceptibility of T. turgidum cv. Marco
Aurelio. Figure 5B shows the FHB symptoms at 21 dpi. While
no symptoms were observed on the mock treatment, few non-
necrotic bleached spikelets appeared on drought-stressed plants.

Monitoring Spike Temperature and
Photosynthetic Efficiency Between
Mock, Drought, and Inoculated
Treatments
Figure 6 shows the temperature of spikes (Figure 6A) and
the photosynthetic efficiency (Figure 6B) after the three
treatments. Compared to the mock treatment, the temperature
increased and the photosynthetic efficiency decreased in drought-
stressed and inoculated plants, confirming a perturbation of
the photosynthetic activity. In fact, the more the infection
progressed, the higher the differences in spike temperature
and photosynthetic efficiency between the inoculated and mock
plants: inoculated spikes reached a temperature of 17.89, 18.48,
and 18.67◦C while mock spikes measured 17.12, 16.44, and
16.19◦C, at 24, 48 and 72 hpi, respectively; the photosynthetic
efficiency measured 0.719, 0.695 and 0.618 Fv/Fm for the
inoculated spikes and 0.794, 0.793 and 0.801 Fv/Fm for the mock
at 24, 48 and 72 hpi, respectively. Notably, F. graminearum
infection perturbated the photosynthetic parameters more than
drought stress, highlighting that, by using these measures,
it is possible to distinguish between drought-stressed and
FHB−infected plants.

Expression Pattern of the Genes
Regulating Stomatal Conductance by
RT-qPCR
E, R2, and the stability of the reference genes were calculated
to validate the RT-qPCR results. E ranged from 0.9652 to
1.2741 and R2 from 0.9651 to 0.9954. Standard errors (SE)
among the Cq values of the three reference genes ranged from
0.198 to 0.369 indicating their stable expression under the three
different treatments.

Since metrics derived from TIR and RGB images allowed the
detection of infected spikes at ZS 65, the greenhouse experiments
were designed to investigate the differential stomatal regulation
response in proximity of the same phenological stage.

Moreover, drought-stressed plants were studied to
observe their gene expression differences with plants under
F. graminearum inoculation. Figure 7A shows a heatmap of
the relative expression values of plant genes under drought
stress and F. graminearum inoculation at 24, 48, and 72
hpi. Supplementary Table 3 provides the relative expression
values, SE, and the HSD test computed at 0.99 confidence
level. Under terminal drought stress, T. aestivum allene oxide
synthase (TaAOS), T. aestivum terpene synthase (TaKSL),
T. aestivum mitogen-activated protein kinases (TaMAPK),
T. aestivum calcium dependent protein kinase (TaCDPK),
T. aestivum phosphatase (TaABI), T. aestivum MYB domain
transcription factor (TaPIMP), T. aestivum NADPH oxidase
(TaRBOH), and T. aestivum zeaxanthin epoxidase (TaZEP)
were slightly up-regulated showing expression values ranging
from 1.254-fold to 1.892-fold. Among the different time-
points of F. graminearum inoculation (24, 48, and 72 hpi),
the relative expression values of TaAOS, T. aestivum abscisic
acid (ABA) aldehyde oxidase (TaAAO), T. aestivum ABA
receptor (TaREC), T. aestivumβ-1,3-glucanase (TaBG), TaMAPK,
TaCDPK, T. aestivum epoxycarotenoid dioxygenase (TaNCED),
TaRBOH, and TaZEP gradually increased from 24 to 72 hpi,
while T. aestivum hydroperoxide lyase (TaHPL) and T. aestivum
cytochrome P450 (TaCYP450) were down-regulated. Notably, the
expression patterns of TaKSL, TaAAO, TaREC, TaBG, TaCYP450,
TaNCED, and TaZEP were different between drought-stressed
and F. graminearum-inoculated plants. In particular, in the
inoculation treatment, at 72 hpi TaREC, TaBG, TaNCED, and
TaZEP were strongly up-regulated (5.729, 5.143, 4.988, and
4.256-fold change, respectively) while TaPR1 and TaGAPDH
were gradually up-regulated from 24 to 72 hpi, indicating that the
F. graminearum infection perturbated the innate immunity and
physiological photosynthesis of the plants. Figure 7B represents
the PCA obtained by computing relative gene expression values,
spike temperature and photosynthetic efficiency values from
drought-stressed and F. graminearum inoculated plants. PCA
demonstrated that these data distinguished between hydric stress
and F. graminearum inoculation.

DISCUSSION

Changes in temperature and color of spikes are a result of the
physiological defensive response of T. turgidum to FHB. Indeed,
a thickening of the vascular bundles occurs when the infection
moves from the floret to the rachilla which causes an increase
in temperature, a decrease in photosynthesis efficiency, and a
reduced transpiration due to limited water supply and stomatal
closure (Kang and Buchenauer, 2000; Kheiri et al., 2019). These
physiological changes allow remote sensing techniques to detect
and quantify FHB in T. turgidum non-destructively.

Previous studies have revealed the potential of remote sensing
methods in detecting and assessing plant diseases. For example,
Oerke and Steiner (2010) detected FHB using thermal imaging
only at a late infection stage, when it was too late for the disease
to be controlled. Al Masri et al. (2017) studied the effect of the
primary infection site by F. graminearum and F. culmorum using
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FIGURE 4 | Principal component analysis (PCA) of unmanned aerial vehicle (UAV)-based (A) vegetative index (VEG), (B) green leaf index (GLI), (C) temperature at
Zadoks stage (ZS) 65. PCA was performed by using ClustVis Software for p < 0.05 to distinguish between FHB+ and FHB– areas. Box-plot of UAV-based (D) VEG,
(E) GLI, and (F) temperature from FHB– and FHB+ areas. Data were recorded during 2019 and 2020. The data represent averages and standard errors for four
measurements for each sampling area from 2019 (B,C) and 2020 (D,E). Different letters refer to the statistical analysis performed using one-way analysis of variance
(ANOVA) with the Tukey’s honest significant difference (HSD) post hoc test at 0.95 or 0.99 confidence level and p < 0.05 or p < 0.01. Only the data deriving from 1
year were compared.
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FIGURE 5 | (A) Fusarium head blight (FHB) severity (%) in Triticum turgidum
(cv. Marco Aurelio) from 3 to 21 days post inoculation (dpi) during the
greenhouse experiments. (B) FHB symptoms in T. turgidum at 21 dpi. The
data was derived from the averages and standard errors of three treatments
(F. graminearum-inoculated, drought-stressed, and mock) with at least 20
plants for each, and three independent experiments for each treatment.

thermography under controlled conditions and they observed
that FHB infection significantly increased the temperature of
spikes as it progressed from 6 to 29 dpi. Mahlein et al. (2019)
demonstrated that Fusarium-infected spikelets showed higher
temperatures and lower Fv/Fm values compared to mock control
using a digital thermo-camera and a chlorophyll fluorometer. The
authors recorded temperature and Fv/Fm values in entire spikes
to detect FHB infection at 5 and 7 dpi.

Red-green-blue imaging was widely employed to detect FHB-
infected and FHB-damaged kernels (Jaillais et al., 2015; Cambaza
et al., 2019; Abbaspour-Gilandeh et al., 2020), but few studies
explored this technique to detect FHB on spikes. Huang et al.
(2020) proposed an FHB diagnostic model of disease severity
based on the fusion of RGB and spectral imaging. The results
showed that the model was able to identify FHB severity in plants
with an accuracy of 92%, thereby providing a technical basis for
timely and effective control of FHB. Dammer et al. (2011) made

FIGURE 6 | Box-plots of (A) spike temperatures (◦C) and (B) photosynthetic
efficiencies (Fv/Fm) of Triticum turgidum (cv. Marco Aurelio) plants subjected to
mock (M), drought stress (DS) and Fusarium graminearum artificial inoculation
(24, 48, and 72 hours post inoculation (hpi)) treatments during the greenhouse
experiments. The data was derived from the averages and standard errors of
three treatments (F. graminearum-inoculated, drought-stressed, and mock)
with at least 20 plants for each, and three independent experiments for each
treatment. Different letters refer to the statistical analysis performed using
one-way analysis of variance (ANOVA) with the Tukey’s honest significant
difference (HSD) post hoc test at 0.99 confidence level and p < 0.01.

use of RGB imaging to detect FHB in the field. Experimental
plants were artificially infected with a spore suspension and
RGB images were captured and analyzed to detect the disease
symptoms. The authors found a linear correlation between RGB-
derived and visually observed disease levels in plants. Qiu et al.
(2019) accurately detected FHB in the field using RGB imaging.
RGB-derived data correlated with the number of diseased spikes
tallied by manual count. These results are in agreement with
those obtained in our study since we observed an increase
in temperature and a decrease in photosynthetic efficiency
in FHB-infected spikes. Moreover, UAV-based measurements
distinguished FHB+ and FHB− areas, confirming that TIR and
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FIGURE 7 | (A) Heatmap of relative expression level of the genes selected in Triticum turgidum (cv. Marco Aurelio) exposed to drought stress (DS) and Fusarium
graminearum-inoculated at 24, 48, and 72 hours post inoculation (hpi)) treatments. The expression values were normalized to the mock treatment and to T. aestivum
actin (TaACT ), T. aestivumβ-tubulin2 (TaTUB), and T. aestivum ferredoxin-NADP(H)-oxidoreductase (TaFNR) as reference genes. The heatmap was constructed by
plotting the z-score of the relative gene expression values and it was generated by analyzing data with ClustVis Software. The red color represents the up-regulated
genes, while the blue color the down-regulated genes. (B) Principial component analysis (PCA) of relative gene expression values, spike temperature and
photosynthetic efficiency to distinguish between drought stress and F. graminearum infection during the greenhouse experiments. PCA was performed by using
ClustVis Software for p < 0.05.

RGB imaging are powerful tools for FHB detection. To the best
of our knowledge, for FHB detection, TIR and RGB cameras have
only been employed on ground-based phenotyping platforms,
minimizing their portability and limiting the scale at which they
can be used. Thus, this is the first study demonstrating that UAV-
mounted TIR and RGB cameras enable rapid characterization of
T. turgidum and detection of FHB in the field, overcoming the
limitations associated with ground-based phenotyping.

In the present study, the relative expression level of genes
involved in stomatal regulation was evaluated at ZS 65 to
elucidate the genetic mechanism responsible for the phenotypic
response to perturbation of photosynthesis, and to establish
whether or not a differential gene response exists between
drought-stressed and FHB-infected T. turgidum. Stomatal
closure is the primary response of plants to water deficit,
controlled by abscisic acid (ABA), a key hormone involved in
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controlling many aspects of plant growth, development, and
responses to a variety of biotic and abiotic stresses (Daszkowska-
Golec and Szarejko, 2013; Duarte et al., 2019). Our results are
in agreement with the literature since the majority of stomatal
closure positive regulating genes involved in ABA biosynthesis
(TaKSL, TaZEP, TaCDPK, TaMAPK, TaRBOH, andTaPIMP) were
induced, while the negative regulators (TaCYP450, TaBG, and
TaREC) were down-regulated after being exposed to drought
stress. In contrast, some positive regulators of stomatal closure
(TaNCED, TaAAO, and TaHPL) were down-regulated while a
negative regulator (TaABI) was induced. Our findings support
the hypothesis stating that hydric stress conditions do not
completely induce stomatal closure in drought-tolerant wheat
varieties, which correlate with lower level of closure-inducing
genes and higher expressions of genes negatively regulators of
stomatal closure (Xue et al., 2006; Ji et al., 2011; Rampino
et al., 2012; Gallé et al., 2013). Moreover, recorded temperature
values of spikes in the greenhouse revealed that Marco Aurelio is
moderately tolerant to drought stress since temperature measures
of plants exposed to drought stress did not significantly differ
from the mock. However, amongst the distinctive responses
between drought-stressed and F. graminearum-inoculated plants,
TaAAO, TaREC, TaBG, and TaNCED were down-regulated
in the former and up-regulated in the latter. On the other
hand, TaMAPK and TaCDPK were up-regulated in drought-
stressed but not in F. graminearum-inoculated plants at 24
hpi. Spikes temperature and photosynthetic efficiency values
of F. graminearum-inoculated plants differed significantly from
the mock and notably, at 72 hpi, the photosynthetic efficiency
allowed the distinction between F. graminearum-inoculated and
drought-stressed plants. These observations can be extremely
helpful to develop further methodologies aimed at distinguishing
between drought-stressed and FHB-infected plants in the
field. In this regard, biotic and abiotic stresses need to be
distinguished in order to optimize practical field management.
Shaik and Ramakrishna (2014) segregated biotic and abiotic
stresses in rice by applying machine learning approaches
to the expression levels of a set of stress-responsive genes.
Focusing on the use of imaging, hyperspectral sensors are
the most suitable to distinguish biotic and drought stresses
in many crops (Jones, 2011; Susič et al., 2018). To date,
most of the research studies distinguish between drought and
disease infection applied separately, while Ramegowda and
Senthil-Kumar (2015) amply reviewed experimental evidence
suggesting that, under combined drought and biotic stress,
plants exhibit tailored physiological and molecular responses.
Such tailored responses occur only in plants exposed to
simultaneous stresses and such information cannot be inferred
from individual stress studies.

Additionally, in F. graminearum-inoculated plants, most of
the positive regulators of stomatal closure (TaAOS, TaKSL,
TaAAO, TaNCED, TaPIMP, TaRBOH, and TaZEP) were induced
from 24 to 72 hpi while TaMAPK and TaCDPK were up-
regulated at 48 and 72 hpi, confirming that early stomatal
closure is the physiological mechanism behind the increasing
temperature and decreasing photosynthetic efficiency in spikes.
The negative stomatal closure regulators TaBG and TaREC

were also remarkably up-regulated, while TaCYP450 was down-
regulated. Our results are in agreement with the literature data,
reporting the induction of TaBG and TaREC and the down-
regulation of TaCYP450 in FHB-susceptible wheat cultivars.
TaBG belongs to the pathogenesis-related proteins family (PR2)
in wheat, which is known to be induced as a defense mechanism
in response to biotic and abiotic stresses (Muthukrishnan et al.,
2001). Particularly, De Zutter et al. (2017) investigated the
T. aestivum response to a combined attack of F. graminearum
and Sitobion avenae aphids, and observed the consistent up-
regulation of PR1 and PR2. Another study (Francesconi and
Balestra, 2020) demonstrated that TaPR1 and TaPR2 were
induced in an F. graminearum-susceptible T. aestivum (cv.
Rebelde) but not as much as in the FHB-resistant T. aestivum
(cv. Sumai3). The up-regulation of TaREC could be explained by
evidence supporting that it may be involved in FHB susceptibility,
since Gordon et al. (2016) found thatREC silencing inT. aestivum
(cv. Chinese Spring) resulted in slower progression of FHB
symptoms and decreased DON content in wheat heads. On the
other hand, TaCYP450 was down-regulated in F. graminearum-
infected T. turgidum. In fact, much evidence indicated that
CYP450 plays an active role in wheat resistance against FHB and
DON accumulation. Strong CYP450 accumulations were found
in F. graminearum- and DON-resistant but not in susceptible
wheat cultivars (Li et al., 2010; Gunupuru et al., 2018; Francesconi
and Balestra, 2020). Several studies also demonstrated that
CYP450 was able to detoxify DON in vitro (Ito et al., 2013) and
in vivo (Gunupuru et al., 2018).

The present study proved that UAV-based TIR and RGB image
analysis can detect FHB infections at ZS 65. This can improve
different aspects of FHB management and plant breeding. For
example, our methodology allows timely detection of FHB and
mapping affected locations in the field, thus optimizing the
application timing and amount of fungicides needed to control
the disease (Oerke and Steiner, 2010). It can also provide valuable
information about the severity of FHB and help meet future
food traceability requirements. Indeed, the ability to monitor
FHB severity before further processing of harvested kernels
can help determining whether the grains fit for human or
animal consumption, with special regard to mycotoxin content
(Dammer et al., 2011). For such purpose, the image-assisted
analysis coupled with prediction modeling could be a valuable
method to predict and detect the accumulated mycotoxin in
the grains (Battilani, 2016; Leplat et al., 2018; Fernando et al.,
2021). Several research studies reported also the accumulation
of mycotoxin in absence of macroscopic symptoms, while
microscopic analysis revealed that the host cells drastically
changed after the infection (Brown et al., 2010; Peiris et al., 2011;
Alisaac et al., 2021). For such reasons, the detection of mycotoxin
in asymptomatic spikes could be successfully achieved by using
multispectral imaging (Bauriegel et al., 2011; Dammer et al.,
2011; Leplat et al., 2018) to support the mycotoxin traceability
performed by the costly techniques based on chromatography
(Tittlemier et al., 2021). Furthermore, the presented methodology
can help quantifying host resistance to FHB in pre-breeding
and commercial breeding trials (Yang et al., 2017), speeding-up
breeding programs.
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CONCLUSION

The rapid detection of FHB is a key factor to gain maximum,
environmentally sustainable protection of yield. To maximize
FHB disease control efficiency, we explored the use of UAV-
based RGB and TIR imaging supported by ground-truthing to
detect the presence of FHB in T. turgidum (cv. Marco Aurelio).
The present study revealed that: (i) stomatal closure is the
physiological mechanism responsible for temperature increase
and photosynthetic efficiency decrease in T. turgidum spikes
during FHB infection; (ii) VIs and temperatures extracted from
RGB and TIR imaging data can detect these physiological
changes; and (iii) different transcriptional regulations exist
between drought-stressed and F. graminearum-inoculated plants.
These findings provide mechanisms for the detection of FHB
in T. turgidum and shed light into new valuable genomic
information to further develop a phenotyping method able
to distinguish between drought-stressed and FHB-infected
plants in the field.

Research in plant stress physiology is benefiting from new
types of precision disease management technologies based on
phenomics, genomics, and transcriptomics data. In the last
decade, plant genomics and phenomics have matured to the point
where, applied together, they can drastically reduce bottlenecks
in phenotypic and genotypic evaluation of plant traits (Flood
et al., 2011; Murchie et al., 2018; van Bezouw et al., 2019) and
when coupled with artificial intelligence and exascale computing,
they can accelerate the development of new crop varieties with
improved yield potential and enhanced tolerance to biotic and
abiotic environmental stresses (Harfouche et al., 2019; Streich
et al., 2020). Their implementation and application will elucidate
the architecture of plant physiological mechanisms to develop
innovative tools to be applied in a new green revolution
(Ray et al., 2013). To date, no studies have been carried out
attempting to use UAV-based TIR and RGB imaging data for the
detection of FHB in T. turgidum. Developing trait measurement
methodologies that combine phenomics and genomics to detect
plant diseases can provide a timely warning of their imminent
threat, allowing decisions to be made in time for fungicides to be
effective, reducing the costs and negative environmental impacts
of their unnecessary applications. Further research is needed to
test the reproducibility of UAV-based phenomics in different
environments and to explore their potentiality to distinguish
between biotic and abiotic stresses.
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The current lack of efficient methods for high throughput field phenotyping is a constraint

on the goal of increasing durum wheat yields. This study illustrates a comprehensive

methodology for phenotyping this crop’s water use through the use of the two-source

energy balance (TSEB) model employing very high resolution imagery. An unmanned

aerial vehicle (UAV) equipped with multispectral and thermal cameras was used to

phenotype 19 durum wheat cultivars grown under three contrasting irrigation treatments

matching crop evapotranspiration levels (ETc): 100%ETc treatment meeting all crop water

requirements (450mm), 50%ETc treatment meeting half of them (285mm), and a rainfed

treatment (122mm). Yield reductions of 18.3 and 48.0% were recorded in the 50%ETc

and rainfed treatments, respectively, in comparison with the 100%ETc treatment. UAV

flights were carried out during jointing (April 4th), anthesis (April 30th), and grain-filling

(May 22nd). Remotely-sensed data were used to estimate: (1) plant height from a digital

surface model (H, R2 = 0.95, RMSE = 0.18m), (2) leaf area index from multispectral

vegetation indices (LAI, R2 = 0.78, RMSE = 0.63), and (3) actual evapotranspiration

(ETa) and transpiration (T) through the TSEB model (R2 = 0.50, RMSE = 0.24 mm/h).

Compared with ground measurements, the four traits estimated at grain-filling provided

a good prediction of days from sowing to heading (DH, r = 0.58–0.86), to anthesis (DA, r

= 0.59–0.85) and to maturity (r = 0.67–0.95), grain-filling duration (GFD, r = 0.54–0.74),

plant height (r = 0.62–0.69), number of grains per spike (NGS, r = 0.41–0.64), and

thousand kernel weight (TKW, r = 0.37–0.42). The best trait to estimate yield, DH, DA,

and GFD was ETa at anthesis or during grain filling. Better forecasts for yield-related traits

were recorded in the irrigated treatments than in the rainfed one. These results show a

promising perspective in the use of energy balance models for the phenotyping of large

numbers of durum wheat genotypes under Mediterranean conditions.

Keywords: transpiration, remote sensing, plant height, yield, grain number, grain weight, LAI, UAV
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INTRODUCTION

Wheat is a staple food for humans, providing 18% of the
daily human intake of calories and 20% of protein (http://www.
fao.org/faostat/). Durum wheat (Triticum turgidum L. subsp.
durum [Desf.] Husn) represents about 6% of a global wheat
production of about 740 million tons per year (FAO, 2017).
Wheat production per unit area needs to double by 2050 to meet
the projected food demand of a global population forecast to be
9.22 billion. Achieving this objective is a significant challenge
that will require increasing the current global yield increase
rate of 1.3–2.4% y−1 (Ray et al., 2013), whilst at the same
time minimizing the use of resources and the environmental
impact (Tilman et al., 2011; Lal, 2016). Besides, in the current
scenario of global climate change, the success of sustainable
agriculture in many regions of the world is totally reliant on
water availability. The Mediterranean region –the largest durum
wheat producing area worldwide, the largest consumer of durum
wheat products and the most important import market–, is
one of the most sensitive to the effects of climate change, with
projections forecasting a precipitation decrease of 4–27% during
the cropping season (Flato et al., 2013). The development of high-
yielding cultivars adapted to water-limited conditions is therefore
critical to guarantee food security.

There is a general agreement that yield increases can only
be achieved by improving the efficiency of large-scale breeding
programs, particularly for suboptimal environments (Moshelion
and Altman, 2015). One of the major challenges facing breeding
programs centered on drought-prone areas is to develop tools
capable of quantifying the actual water use of plants under
different water regimes. The development of wheat varieties with
improved water use efficiency (WUE, yield as a function of
water used in transpiration) is seen as a way to increase yield
in rainfed environments (Condon, 2004; Condon and Maxwell,
2014). The major challenge for fast genetic progress is to connect
genetic variants (genotype) to their expression in observable
traits (phenotype), and to predict plant phenotypes from genetic
information (Cobb et al., 2013). The enormous advances in the
genome sequencing of plants are providing massive genomic
datasets, but the lack of efficient methods to rapidly collect large
volumes of high quality phenotypic data has become a bottleneck
in genomics-assisted breeding (White et al., 2012). Until now,
given the complexity of measuring actual transpiration or water
status in a large number of plots under field conditions, the
difficulty of measuring the phenotypic response of plants to water
use constraints has limited the goal of higher yields in breeding
programs. Given this difficulty, evaluations of plant transpiration
have relied mostly on surrogate traits, although this has most
likely resulted in over-dependence on the surrogates (Vadez
et al., 2014). Moreover, traditional phenotyping in germplasm

Abbreviations: ET, evapotranspiration; T, transpiration; H, predicted plant height;
PH, observed plant height; DH, days from sowing to heading; DA, days from
sowing to anthesis; DM, days from sowing to maturity; DAS, days after sowing;
GFD, grain filling duration; NSm2, number of spikes/m2; NGS, number of
grains/spike; TKW, thousand kernel weight; GFR, grain filling rate; GFD, grain
filling duration.

evaluation activities under field conditions requires substantial
investments in time, labor, and cost.

There is growing scientific interest in the application of remote
sensing for high throughput phenotyping (HTP), particularly
in breeding and germplasm evaluation activities (Furbank and
Tester, 2011, Fiorani and Schurr, 2013; Walter et al., 2015).
HTP through remote sensing allows the assessment of plant
phenotypes on a scale and with a level of precision and speed that
are unattainable with traditional methods (Dhondt et al., 2013).
Numerous studies have used either RGB, fluorescent, thermal,
hyperspectral, or 3D imaging to estimate morphological traits,
biomass, plant growth, yield, water status, canopy temperature,
or disease symptoms in many breeding programs and crops
(Deery et al., 2014; Haghighattalab et al., 2016; Watanabe et al.,
2017; Yang et al., 2017, 2020; Sagan et al., 2019). In addition,
crop growth rates and spatial mapping of crop height variations
have been obtained in wheat at field scale, as well as in individual
plots, from images obtained with an RGB camera mounted on
an unmanned aerial vehicle (UAV) (Holman et al., 2016). Madec
et al. (2017) obtained a reliable assessment of the height of wheat
plants with a digital camera with a 6,000–4,000 pixel sensor
mounted on a hexacopter. Shi et al. (2016) developed empirical
models to estimate the leaf area index (LAI) and percent canopy
cover of winter wheat. Bendig et al. (2014) estimated fresh and
dry above-ground biomass in barley from RGB images captured
from a small UAV. Chapman et al. (2014) estimated crop lodging
in wheat plots of a breeding program from images taken by
cameras mounted on a customized robotic helicopter. Detailed
reviews on remote sensing tools and platforms available for HTP
in a plant breeding context can be found in Araus and Cairns
(2014) and Araus et al. (2018).

Water status has been assessed in different crops by HTP
thermography (Costa et al., 2013; Leroux et al., 2016; Perich
et al., 2019). In many studies, different approaches have been
used to calculate the so-called crop water stress index (CWSI)
(Jackson et al., 1981; Jones, 1999; Gonzalez-Dugo et al., 2015).
However, when the CWSI is calculated either empirically through
non-water stress baselines or with reference panels, comparison
between cultivars can only be achieved in a relative way. This is
because the CWSI depends, among other factors, on the stomatal
response to the vapor pressure deficit (VPD), which varies
between cultivars and crop developmental stages. Therefore, it
is too complex to determine this response for large collections
of cultivars. Surface energy balance (SEB) models have also been
widely used for assessing the actual evapotranspiration and water
status of many crops at different scales, mostly using satellite
imagery (Bastiaanssen et al., 1998; Allen et al., 2007; McShane
et al., 2017). Among the different SEB models, the two-source
energy balance (TSEB) modeling scheme allows the estimation of
transpiration and evaporation separately (Norman et al., 1995).
However, if very high resolution thermal imagery is available, in
which case it is possible to directly retrieve soil (Tsoil) and canopy
(Tc) surface temperatures, the model can also be used, obtaining
in some cases higher accuracies (Nieto et al., 2018; Bellvert et al.,
2020). As far as we are aware, only Bellvert et al. (2021) have used
this model to date for field-based phenotyping (of a collection
of almond rootstocks in their work), but this present work is
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FIGURE 1 | (A) Study site location; (B) Layout of the field experiment showing the three irrigation treatments: 100%ETc (blue), 50%ETc (yellow), and rainfed (red).

the first to evaluate the feasibility of TSEB in a set of durum
wheat cultivars.

The primary objective of this research was to determine
the suitability of using the TSEB model for the assessment of
actual evapotranspiration and its components in a collection of
spring durum wheat cultivars grown under contrasting water
regimes in a Mediterranean environment. The specific objectives
were: (1) to quantify the yield penalty caused by a reduction
of water availability, (2) to determine the crop growing stage
most suitable for assessing important agronomic traits through
remote sensing images, and (3) to identify the agronomic traits
that can be reliably assessed by remote sensing images and the
best performing indicators for them.

MATERIALS AND METHODS

Experimental Setup
The field experiment was conducted at Sucs, Spain (41◦41′49′′N,
0◦25′46′′E, 285m elevation) during the 2018–2019 growing
season. The site has a typical Mediterranean climate, with
a rainfall and reference evapotranspiration (ET0) of 177 and
603mm, respectively, during the growing season. Soil has a fine-
loamy texture with a field capacity of 27% and wilting point
of 13% as calculated from the Saxton’s soil hydraulic calculator
(Saxton et al., 1986). Fourteen durum wheat (Triticum turgidum
ssp. durum) commercial varieties (Anvergur, Athoris, Burgos,
Calero, Carpio, Claudio, Don Ricardo, Don Sebastián, Eunoble,
Euroduro, Grador, Iberus, Sculptur, and Tussur) and five inbred
lines from the IRTA durum wheat breeding program (05D278,
07D057, 08D010, 09D066, 09D069) were evaluated under three
contrasting irrigation treatments. Irrigation treatments were
as follows: (i) 100%ETc, irrigated 100% of the seasonal crop
evapotranspiration (ETc), (ii) 50%ETc, irrigated 50% of seasonal

ETc, and (iii) Rainfed, which was not irrigated (Figure 1). In
each irrigation treatment, genotypes were planted following
an incomplete block design with four replications and plots
of 9.6 m2 (eight rows 8m long and 0.15m apart). Sowing
was carried out on December 4th 2018 at a density of 450
seeds/m2. Due to the low precipitation received from December
to February (29mm) all plots were evenly irrigated on March
1st with 20mm to guarantee the plants’ survival. Irrigation
was scheduled on a weekly basis and water was applied during
2–3 days of the week. Sprinklers were installed in a grid of
18 × 18m and water flow discharge was 7.8 l/h/m2 for the
100%ETc and 3.9 l/h/m2 for the 50%ETc treatments. Weekly
irrigation was scheduled following a water balance model (Allen
et al., 1998). ETc was calculated as a product of the Penman-
Monteith ET0 (Allen et al., 1998) and crop coefficients (Kc).
The used crop coefficients were derived from FAO-56 (Allen
et al., 1998), and started from 0.7 at the vegetative growth stage
to 1.07 at the beginning of the mid-season stage. During the
late season (from June 11th), the Kc decreased and reached
a value of 0.6. In addition, 0.8 was used as a coefficient of
efficiency of the sprinkler irrigation system (Savva et al., 2001).
Meteorological data was gathered from an automated weather
station belonging to Catalonia’s official network ofmeteorological
stations (SMC, www.ruralcat.net/web/guest/agrometeo), which
is located around 3 km from the study site. The amount of water
applied through irrigation in each treatment during the entire
growing season was also measured with digital water meters
(CZ2000-3M, Contazara, Zaragoza, Spain). Before sowing, the
field was fertilized with 162 u P2O5 and 360 u K2O ha−1 and
top dressed twice with ammonium nitro-sulfate at rates of 118 kg
N/ha at the end of tillering and 50 kg N/ha at mid-jointing.
The field was maintained free of weeds, diseases and pests by
chemical treatments.
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FIGURE 2 | Unmanned aerial vehicle (UAV) and cameras used in the study. (A)

UAV, (B) Multispectral Micasense Rededge, and (C) Thermal Flir Vue Pro

cameras.

Image Acquisition Campaign
Images were acquired with the Cóndor UAV hexacopter
(Dronetools, https://www.dronetools.es/) (Figure 2) on April 4th
(121DAS, days after sowing), April 30th (147DAS), and May
22nd (169DAS) in 2019, coinciding with the crop developmental
stages of mid-jointing, around anthesis and grain filling,
respectively (Figure 3). The vapor pressure deficit (VPD) and
air temperature (Ta) at the moment of image acquisition were
respectively, 5.5 KPa and 9.9◦C for 121DAS, 12.0 KPa and 18.8◦C
for 147DAS, and 11.0 KPa and 19.7◦C for 169DAS. Flights were
always conducted in sunny conditions and with a wind speed
below 12 m/s. The UAV was equipped with a multispectral and
a thermal camera. The former was a Micasense RedEdge-M
(Micasense, 1300N NorthlakeWay, Seattle, USA), which has five
spectral bands located at the wavelengths 475 ± 20 nm (blue),
560 ± 20 nm (green), 668 ± 10 nm (red), 717 ± 10 nm (red
edge), and 840 ± 40 nm (near infrared), and a field of view
(FOV) of 47.2◦. The thermal camera was a FLIR Vue PRO
(FLIR Systems, Wilsonville, OR, USA) with a resolution of 336
× 256 pixels and a 6.8mm focal length, with a FOV of 45 ×
35◦. The spectral response was in the range of 7.5–13.5µm. All
flights were conducted at ∼12:00 h solar time. The UAV flew
over at a height of 50m agl (above ground level), capturing
images with a resolution of 0.02 and 0.10m per pixel for the
multispectral and thermal cameras, respectively. Flight planning
had 80/60 frontal and side overlap, respectively. During image
acquisition, in situ measurements were conducted for different
targets in order to correct the atmospheric contribution to the
signal. Temperature measurements were continuously recorded
for hot and cold targets (black and white panels, bare soil, and
vegetation) with a fixed IR-temperature sensor (Calex PC151LT-
O, Pyrocouple series, Calex Electronics Limited, Bedfordshire,
UK). The radiometric calibration of the multispectral sensor
was conducted through an external incident light sensor that
measured the irradiance levels of light at the same bands as the
camera. In addition, in situ spectral measurements for ground
calibration targets were performed using a Jaz spectrometer
(OceanOptics, Inc., Dunedin, FL, USA). The Jaz has a wavelength

response from 200 to 1,100 nm and an optical resolution
of 0.3 to 10.0 nm. During spectral collection, spectrometer
calibration measurements were taken with a reference panel
(white color SpectralonTM) and dark current before and after
taking readings from radiometric calibration targets. Geometrical
correction was conducted using five ground control points
(GCP), and measuring the position in each with a handheld
global positioning system (GPS) (Geo7x, Trimble GeoExplorer
series, Sunnyvale, CA, USA). All images were mosaicked
using the Agisoft Photoscan Professional version 1.6.2 (Agisoft
LLC., St. Petersburg, Russia) software and geometrically and
radiometrically terrain corrected with QGIS 3.4 (QGIS 3.4.15).

Measurements of Agronomic Traits
Crop development was monitored on three replications per
treatment on a twice-weekly basis from booting to record the
following growth stages (Zadoks et al., 1974): GS55 (heading),
GS65 (anthesis), and GS87 (physiological maturity). A plot
was considered to have reached a given developmental stage
when ∼50% of the plants exhibited the stage-specific phenotypic
characteristics. For each UAV flight date, on-ground key crop
biophysical parameters were measured as follows. Plant height
(PH, cm) was measured in three plants per plot of one replication
for each irrigation treatment. PH was also measured at GS87 in
three main stems per plot in three replications from the tillering
node to the top of the spike, excluding the awns. The LAI was
obtained on the same days and in the same plots using a portable
linear ceptometer (AccuPAR model LP-80, Decagon Devices
Inc., Pullman, WA, USA). Measurements were conducted from
12:00 to 15:00 h (local time) in one replicate of each irrigation
treatment. In total, 63 plots were measured for each flight event.
Photosynthetically active radiation (PAR) below the wheat was
measured placing the ceptometer in a horizontal position at
ground level and recording five PAR readings in each plot. A
fixed tripod connected to the sensor allowed collection of the
incident radiation above the plants. Then, the LAI calculator
provided by AccuPAR-L80 (LAI-calculator, METER Group) was
used to estimate LAI. Concomitant to image acquisition, in three
leaves per plot of one replication in each irrigation treatment,
leaf transpiration was also measured with an infrared gas
analyzer (IRGA) (LI-7500, LI-COR Inc., Lincoln, NE). Plots were
harvested mechanically at ripening and yield (kg/ha) expressed
as dry weight. From a random sample of the plants contained
in a 0.5-m-long stretch from a central row of each plot of three
replications at ripening, the number of spikes/m2 (NSm2) and the
number of grains/spike (NGS) were assessed. Thousand kernel
weight (TKW) was estimated as the mean weight of three sets
of 100 grains per plot. Grain filling rate (GFR, mg/day) was
obtained as the quotient between grain dry weight and grain-
filling duration (GFD) considered to be the number of days
between anthesis and physiological maturity.

Remotely-Sensed Estimates of Biophysical
Traits
The three-dimensional plant height (H) was estimated from
the photogrammetric point cloud of multispectral images. The
digital surface model (DSM) and the digital terrain model
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FIGURE 3 | Pictures of each irrigation treatment for the different dates of image acquisition (April 4th, April 30th, and May 22nd).

(DTM, bare soil surface devoid of plants) were both obtained
through automatic aerial triangulation, bundle block adjustment,
and camera calibration methods using the Agisoft PhotoScan
version 1.6.2 (Agisoft, 2020; St. Petersburg, Russia) software. A
classification of bare ground pixels was used to obtain the DTM
of the field. Then, a raster corresponding to heights was obtained
by subtracting the DTM from the DSM using the band math tool
of the QGIS software (Figure 4). LAI was estimated from spectral
vegetation indices. In particular, this study used the improved
modified triangular vegetation index (MTVI2) (Yao et al., 2017),
which was calculated as:

MTVI2 =
1.5 [1.2 (R840 − R560) − 2.5 (R717 − R560)]
√

(2R840 + 1)2 −
(

6R840 − 5
√
R717

)

− 0.5
(1)

The fractional vegetation cover (fc) of each plot was also
calculated by adapting the equation proposed by Gutman and
Ignatov (1998). Instead of the normalized difference vegetation
index (NDVI), we used the MTVI2 due to its low saturation at
high LAI values:

fc =
MTVI2i −MTVI2soil
MTVI2veg −MTVI2soil

(2)

where
MTVI2i corresponds to the value on the target plot;
MTVI2soil corresponds to the value of bare soil; and
MTVI2veg corresponds to the value of pure vegetation.

FIGURE 4 | Schematic workflow used to estimate crop height. Digital terrain

model (DTM) and digital surface model (DSM) obtained through automatic

aerial triangulation. Plant height (H) estimated above ground surface.

Remotely-Sensed Estimates of
Evapotranspiration
Actual crop evapotranspiration (ETa) and its partition
components were retrieved from the two-source energy balance
(TSEB) model (Norman et al., 1995; Kustas and Anderson,
2009). Two-source models partition the surface energy fluxes
and the radiometric temperature (Trad) between nominal soil
and canopy sources. The approach is therefore able to estimate
canopy transpiration (T) and soil evaporation (E) separately.
However, because direct measurements of canopy (Tc) and soil
(Tsoil) temperatures are rarely available with satellite imagery, in
most applications these component temperatures are estimated
in an iterative process in which it is first assumed that green
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FIGURE 5 | Amount of water applied, rainfall, and reference evapotranspiration (ET0) corresponding to the different irrigation treatments (100%ETc, 50%ETc, and

rainfed) from March 2019 (87 DAS, days after sowing) to May 2020 (177 DAS).

canopy (expressed as the function of LAI that is green) transpires
at a potential rate based on the Priestley-Taylor formulation
(Priestley and Taylor, 1972). On the other hand, if very high
resolution thermal imagery is available, it is possible to obtain Ts

and Tc directly, without the need to compute an initial canopy
transpiration (Nieto et al., 2018; Bellvert et al., 2021). In this
study, Tsoil and Tc were individually obtained for each plot
from the thermal imagery. The model also requires other inputs
such as plant height, LAI and fc, the retrieval of which has been
described above. Meteorological inputs were obtained from
Catalonia’s official network of meteorological stations. For more
information, the full python script is available online (https://
github.com/hectornieto/pyTSEB, last accessed 20.08.2020)
and additional details of the TSEB model are provided by
Norman et al. (1995), Kustas and Norman (1999), and
Nieto et al. (2018).

Statistical Analyses
Analyses of variance (ANOVAs) were conducted following
a split-plot design. Means were compared with a Tukey
test at P < 0.05. Linear regression equations and Pearson
correlation coefficients were used to analyze the relationship
between variables.

RESULTS

Effect of Irrigation Treatments on the
Agronomic Performance of Durum Wheat
The amount of irrigation water applied throughout the growing
season in the 100%ETc and 50%ETc treatments was 340

and 180mm, respectively (Figure 5). When also considering
the rainfall from sowing to physiological maturity, the total
amount of water received was 450, 285, and 122mm for
the 100%ETc, 50%ETc, and rainfed treatments, respectively.
The ANOVAs showed statistically significant differences among
irrigation treatments for all of the evaluated agronomic traits
(Table 1). Yield ranged between 7,274 and 10,446 kg/ha in
the 100%ETc, between 5,910 and 8,469 kg/ha in the 50%ETc
and between 3,905 and 5,972 kg/ha in the rainfed treatments
(Table 1 and Supplementary Table 1). The effect of the total
amount of water applied on yield was huge, as the 50%ETc
and rainfed treatments reduced yield on average by 18.3 and
48.0%, respectively, in comparison to the treatment meeting all
crop water requirements. While the 50%ETc treatment did not
diminish the NSm2, it did decrease the NGS and TKW. The
absence of irrigation resulted in larger reductions in NGS than
in NSm2 and TKW. The grain filling rate increased steadily as
consequence of water shortage. Plant height was reduced 6.5
and 11.9% in the 50%ETc and rainfed treatments in comparison
with 100%ETc.

Reductions in the amount of water applied also significantly
shortened the crop cycle (Table 1). In comparison with
100%ETc, the 50%ETc treatment resulted in decreases
of 3 (2.2%), 4 (2.8%), and 6 (3.3%) days in the length
of the periods from sowing to heading, anthesis, and
maturity, respectively. The rainfed treatment additionally
shortened between 4 and 7 days the periods needed
to reach each of these growth stages. In consequence,
a significant drop was observed in the duration of the
grain-filling period.
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TABLE 1 | Mean values ± SE and ranges (between brackets) for yield and yield-related traits of the 19 durum wheat genotypes included in the study.

Trait Irrigation treatment

100% ETc 50% ETc Rainfed

Grain yield (kg/ha) 9219 ± 184a (7,274–10,446) 7534 ± 184b (5,910–8,469) 4793 ± 120c (3,905–5,972)

Number of spikes/m2 (NSm2) 501 ± 26.1a (289–742) 523 ± 16.0a (387–627) 452 ± 13.6b (356–591)

Number of grains/spike (NGS) 42.1 ± 1.53a (34.3–60.3) 35.8 ± 1.56b (23.6–53.9) 27.9 ± 1.32c (15.3–38.8)

Thousand kernel weight (TKW, g) 55.8 ± 0.69a (45.5–64.8) 53.7 ± 1.01b (44.9–61.3) 51.5 ± 0.78c (45.1–58.4)

Grain filling rate (GFR, mg/day) 1.39 ± 0.04c (1.08–1.64) 1.42 ± 0.03b (1.11–1.67) 1.47 ± 0.03a (1.24–1.68)

Plant height (PH, cm) 92 ± 1.44a (80–102) 86 ± 1.29b (73–95) 81 ± 1.01c (72–92)

Days to heading (DH) 135 ± 0.55a (130–138) 132 ± 0.52b (127–136) 128 ± 0.43c (124–130)

Days to anthesis (DA) 143 ± 0.66a (138–147) 139 ± 0.54b (135–143) 135 ± 0.28c (133–137)

Days to maturity (DM) 183 ± 0.39a (180–186) 177 ± 0.35b (174–143) 170 ± 0.45c (167–174)

Grain filling duration (GFD, days) 40 ± 0.41a (37–43) 38 ± 0.41b (35–40) 35 ± 0.38c (32–38)

Means within rows with different letters are significantly different for a Tukey test at P < 0.05.

TABLE 2 | P-values of the ANOVAs for the traits estimated through remote

sensing.

Source of variation D.F. ETa T H LAI

Flight date 2 <0.0001 <0.0001 <0.0001 <0.0001

Irrigation treatment 2 <0.0001 <0.0001 <0.0001 <0.0001

Error a 6

Flight date* Irrigation treatment 4 <0.0001 <0.0001 <0.0001 <0.0001

Error b 12

Genotype 18 <0.0001 <0.0001 <0.0001 <0.0001

Flight date × Genotype 36 ns 0.0127 ns 0.0453

Irrigation treatment × Genotype 36 0.0005 0.0479 0.0124 0.0018

Residual 396

Total 512

ETa, actual evapotranspiration; T, actual transpiration; H, estimated plant height.

Remotely-Sensed Estimates of the
Biophysical Parameters and
Evapotranspiration Components
The ANOVA showed statistically significant differences between
flights, irrigation treatments and their interaction (Table 2). This
interaction was of a cross-over nature due to the opposite
trend observed in the first flight compared with the second and
third ones, as shown in Table 3. Genotypes also differed for all
remotely-sensed traits. The interactions of genotype with flight
date and irrigation treatment were significant with the exception
of the flight date× genotype interaction for H and ETa (Table 2).

The MTVI2 vegetation index (VI) was linearly related with
LAI when aggregating data from the three flight dates (R2 =
0.78, P < 0.001, Figure 6A). Also, this regression was significant
for each specific date, with R2 values of 0.20, 0.77, and 0.87 for
April 4th, April 30th, and May 22nd, respectively. The one-to-
one relationship between observed and estimated LAI showed an
RMSE of 0.63 (Figure 6B). Average remotely-sensed estimated
LAI values significantly increased from April 4th to April 30th,

but slightly decreased at the third acquisition date (May 22nd)
(Table 3). Differences in LAI between irrigation treatments were
also significant for all image acquisition dates (P < 0.001). In
contrast with the values observed for flights conducted at anthesis
(April 30th) and grain-filling (May 22nd), the LAI values of
the rainfed treatment at the jointing stage (April 4th) were the
highest. Estimates of plant height through remote sensing were
significant, with R2 of 0.95 and RMSE of 0.18mwhen aggregating
data from the three dates (Figure 6C). Averaged observed values
of PH ranged from 0.40 to 0.96m, respectively, for the first
(April 4th) and last (May 22nd) flights. In all dates, the remotely-
sensed assessments underestimated the actual PH. Estimates of
canopy transpiration (T) obtained through the TSEB model were
compared against those measured at leaf level. The regression
obtained aggregating data from the three dates was significant
(R2 = 0.50, P < 0.001) with an RMSE of 0.24 mm/h (Figure 6D).
Differences in ETa and T between irrigation treatments were also
significant for all dates (Table 3). Similarly to LAI, the highest
and lowest values of ETa and T were respectively identified in
the 100%ETc and rainfed treatments, with the partial exception
of the flight conducted on April 4th (jointing stage), when the
values were inverted.

Relationships Between Agronomic and
Remotely-Sensed Traits
Regression analyses were carried out using the aggregated yield
of the three irrigation treatments as dependent variable and each
of the four traits assessed by remote sensing in each flight event as
explanatory ones (Figure 7). The results show that LAI, estimated
at jointing, could not predict yield. However, the relationships
between yield and H, ETa, and T were negative and statistically
significant in this first flight (Figure 7A). Significant and positive
relationships were obtained between yield and remotely-sensed
estimated traits on the other two image acquisition dates. With
the exception of H, R2 tended to be slightly higher on the last
date (May 22nd), accounting for between 82 and 90% of yield
variability (Figure 7C). ETa was the parameter which showed the
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TABLE 3 | Mean values ± SE for LAI, daily evapotranspiration (ETa), and daily transpiration (T) assessed by remote sensing imagery for each flight date and for each

water input treatment.

Irrigation treatment April 4th April 30th May 22nd

Mean Range Mean Range Mean Range

LAI

100%ETc 1.66 ± 0.03c 1.24–2.18 3.87 ± 0.05a 2.46–5.11 3.80 ± 0.07a 2.10–5.29

50%ETc 1.84 ± 0.02b 1.47–2.37 3.23 ± 0.05b 2.48–4.21 2.66 ± 0.06b 1.72–3.73

Rainfed 2.03 ± 0.04a 1.11–2.61 2.05 ± 0.04c 1.33–2.98 1.01 ± 0.03b 0.51–1.72

ETa (mm/day)

100%ETc 4.88 ± 0.04c 4.11–5.77 6.80 ± 0.03a 6.00–7.22 7.15 ± 0.07a 4.79–7.66

50%ETc 5.41 ± 0.03b 4.72–6.04 6.41 ± 0.04a 5.43–7.03 5.53 ± 0.09b 3.49–7.15

Rainfed 5.66 ± 0.06a 4.63–6.95 4.74 ± 0.08b 3.05–5.85 3.78 ± 0.03c 3.15–4.69

T (mm/day)

100%ETc 2.45 ± 0.02c 2.06–2.89 4.45 ± 0.03a 3.98–5.01 5.47 ± 0.06a 3.90–6.68

50%ETc 2.56 ± 0.02b 2.23–2.92 4.49 ± 0.03a 3.93–5.03 4.55 ± 0.08b 3.38–6.30

Rainfed 2.67 ± 0.03a 1.86–3.03 3.73 ± 0.06b 2.68–4.89 2.06 ± 0.05c 1.01–3.30

Means within columns and trait with different letters are significantly different for a Tukey test at P < 0.05.

highest R2 with yield for the last two image acquisition dates.
Although the R2 of the yield vs. T regressions were also high,
the values were slightly lower in comparison with those obtained
between yield and ETa.

For a deeper analysis, the same relationships were examined
for each irrigation treatment separately. Significant associations
(P < 0.05) between remotely-sensed traits and yield were only
found for the 100%ETc treatment (Figure 8). The non-significant
relationships of other irrigation treatments were probably due to
the lower range of yield values obtained in them, as shown in
Table 1. In addition, the relationships between H and yield in the
100%ETc treatment were also not significant (data not shown).
The accuracy of fitting yield to LAI, ETa, and T varied between
dates (Figure 8). The only trait significantly related with yield
in the three dates was ETa, which at anthesis and grain filling
accounted for 68% of yield variations (Figures 8B,C). On the
other hand, the relationship between T and yield was also slightly
lower in comparison with ETa.

Most of the relationships between traits estimated through
remote sensing (ETa, T, H, and LAI) and the agronomic
traits other than yield were statistically significant when the
data of the three irrigation treatments were aggregated for
the analyses (Table 4). The second and third flights led to
the largest number of significant and positive correlation
coefficients, in contrast with the negative associations obtained
in the first flight, as observed previously for the relationships
with yield. The largest Pearson correlation coefficients (r >

0.80, P < 0.001) corresponded to the relationships between
ETa, T, and LAI with DH, DA, and DM, particularly during
the third image acquisition data (grain filling) (Table 4).
Correlation coefficients between the four remotely-sensed
traits and PH were also positive and significant in the two
later flights. For the yield components, the largest correlation
coefficients appeared for the relationships between ETa,
T, and LAI with NGS, and between H and both PH and
TKW. Traits assessed from remote sensing could not

properly estimate GFR when data of the three irrigation
treatments were analyzed at once. Strong relationships
were observed between remotely-sensed and phenological
traits (Table 4).

On the other hand, the correlation coefficients calculated
for each irrigation treatment separately showed a completely
different picture. The number of statistically significant
associations between remotely-sensed traits and yield-related
traits was much larger for the 50 and 100%ETc treatments
than for the rainfed treatment (Table 5). The largest r value
obtained for the non-irrigated treatment corresponded to the
relationship between LAI and PH during the flight carried out
on April 4th (r = 0.65, P < 0.01), but this relationship was not
confirmed in the subsequent image acquisition dates. ETa was
negatively and significantly associated with NGS on the first
and second image acquisition dates, but this relationship was
not significant on the third date (Table 5). Moreover, positive
and significant correlation coefficients appeared between ETa
and PH on the first and third dates, but not the second. For
the 50%ETc treatment, significant correlation coefficients were
found for all yield-related traits on at least one image acquisition
event, with the exception of the NSm2 and GFD which were
not associated with any remotely-sensed estimated trait on
any date (Table 5). Predicted plant height (H) was significantly
and negatively correlated with NGS and positively with GFR
on the three image acquisition dates and T was significantly
correlated with DH and DA on the second and third dates.
No significant relationships were found between remotely-
sensed traits assessed at jointing and yield-related traits in the
100%ETc treatment, but H estimated on the second and third
dates was significantly related with NGS, TKW, GFR, and PH
(Table 5). ETa was positively associated with PH, DH, and
DA but negatively with GFD on the second and third dates.
GFD was significantly and negatively correlated with the four
remote sensing traits on the third date, and with ETa and LAI on
the second.
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FIGURE 6 | Relationships between (A) leaf area index (LAI) and the MTVI2 spectral vegetation index, (B) observed and estimated LAI by the MTVI2, (C) observed and

estimated plant height by the photogrammetric 3D point cloud, and (D) observed leaf transpiration with the IRGA device and estimated plant transpiration (T) through

the TSEB model. Different colors indicate different dates of image acquisition (n = 171). RMSE, root mean square error. ***P < 0.001; **P < 0.01; *P < 0.05.

Assessment of Genotypic Differences
Figure 7 shows that the largest difference between genotypes
for the remotely-sensed traits was recorded in the third
flight. The comparison of genotypic values for each trait and
irrigation treatment for that flight event showed that, although
genotypes differed in their yield at each irrigation treatment,
the discrimination power of the remotely-sensed traits varied
depending on the water available for the crop (Table 6).
Genotypic differences were not statistically significant for H
in the rainfed treatment in which significant differences were
obtained for LAI, Eta, and T. Genotypes did not differ in ETa and
T in either of the irrigated treatments and in LAI in the 50%ETc
treatment. In agreement with the positive relationships between

yield and either LAI, Eta, and T (Figure 8), the genotypes that
reached the highest yields in the 100%ETc treatment (Euroduro,
Anvergur, Grador, and others shown in Table 6) tended to have
superior values for these three traits, while the lowest yielding
ones showed low values for them. However, this trend was
not observed for the 50%ETc treatment, where the significant
differences detected for yield between the Sculptur and Claudio
cultivars, which obtained the highest yields, and the Don
Sebastian cultivar, which gave the least yield, were not associated
with specific values of the remotely-sensed traits. Even though the
rainfed treatment had the highest discrimination power between
cultivars, genotypic differences in remotely-sensed traits were
also independent of yield variations.

Frontiers in Plant Science | www.frontiersin.org 9 April 2021 | Volume 12 | Article 65835745

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gómez-Candón et al. TSEB Wheat Water Stress Phenotyping

FIGURE 7 | Relationships between estimated plant height, LAI, actual evapotranspiration (ETa), and transpiration (T) assessed from remote sensing imagery and yield

for the three irrigation treatments (full circles, 100%ETc; empty circles 50%ETc; +, Rainfed) for each image acquisition event: (A) April 4th (jointing), (B) April 30th

(anthesis), and (C) May 22nd (grain filling). Each point represents the mean value of a genotype across replications (n = 57). ***P < 0.001; **P < 0.01; *P < 0.05.

DISCUSSION

The present study provided a quantifiable assessment of UAV
imagery for the purpose of obtaining an accurate estimation
of the agronomic performance of durum wheat from the
field phenotyping of 19 durum wheat genotypes grown under
three contrasting water regimes. The proposed method employs
the TSEB model to estimate differences between irrigation
treatments and genotypes in actual crop evapotranspiration
(ETa) and transpiration (T). The biophysical parameters of
the vegetation, such as LAI and canopy height (H) were
respectively estimated through spectral vegetation indices and
photogrammetry. The feasibility of using this methodology for
high-throughput field phenotyping has been demonstrated, since
it is robust, repeatable and time, and cost efficient compared with
measurements made at ground level.

Effect of Water Availability on Durum
Wheat Field Performance
The experimental site is representative of the Mediterranean
climate, with a long-term mean temperature of 10.4◦C and
average rainfall of 248mm from November to June. This mean
temperature was recorded for the 2018–2019 growing season,
but rainfall was slightly lower than average. This water scarcity
allowed the testing of three contrasting irrigation treatments.
Results indicate that a water input of 450mm (rainfall +
irrigation), most of which was supplied during the spring, was
enough to cover all the evapotranspiration needs of the durum
wheat crop (Figure 5). A reduction of 36.7% in the water supplied

(285mm) covered half of these needs (50%ETc), while the non-
irrigated treatment (122mm of rainfall) represented 27.1% of the
water needed to meet evapotranspiration needs. The analyses
of the effects of water constraints on grain yield revealed that
supplying 63.3% (50%ETc) or 27.1% (rainfed treatment) of
the water needed to cover the whole crop evapotranspiration
needs, resulted in yields that corresponded to 81.7 and 52.0%,
respectively, of the yield obtained in the full irrigation treatment
(100%ET). Karam et al. (2009) obtained yield decreases between
25 and 28% in rainfed and half-irrigated durum wheat compared
with a full-irrigated treatment. These results suggest that durum
wheat could be an alternative for irrigated areas with low seasonal
water availability, since a reduction of 36.7% in water input
decreased yield by only 18.3%, and a water reduction of 72.9%
diminished yield by 48.0%. In terms of water productivity (WP),
the values were 2.05, 2.64, and 3.93 kg of DM grain/m3 of
water applied in the 100%ETc, 50%ETc, and rainfed treatments,
respectively. These results reflect the efforts made by breeders
to improve drought tolerance of modern durum wheat cultivars
adapted to drought-prone environments (Araus et al., 2003),
where yield differences between drought-tolerant and drought-
sensitive ideotypes are evident (Senapati et al., 2019).

The 18.3% yield reduction observed in the 50%ETc treatment
when compared with the 100%ETc was a consequence of
decreases of 15.0% in NGS and 3.8% in TKW, as the NSm2

was not affected. In addition, the 48.0% yield decrease of the
rainfed treatment in comparison with the fully-irrigated one was
due to a reduction of 33.7% in NGS, 9.8% in NSm2, and 7.7%
in TKW. In this study, the larger LAI values estimated for the
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FIGURE 8 | Relationships between estimated LAI, actual evapotranspiration (ETa), and transpiration (T) assessed from remote sensing images and yield for the

100%ETc treatment for each image acquisition event: (A) April 4th (jointing), (B) April 30th (anthesis), and (C) May 22nd (grain filling). Each point represents the mean

value of a genotype across replications (n = 19). Relationships involving predicted plant height are not shown because P > 0.05 in the three image acquisition dates.

***P < 0.001; **P < 0.01; *P < 0.05.

TABLE 4 | Pearson correlation coefficients (r) for the relationships between traits assessed through remote sensing and agronomic traits other than yield for each image

acquisition event across irrigation treatments (n = 57).

Trait April 4th April 30th May 22nd

ETa T H LAI ETa T H LAI ETa T H LAI

Number of spikes/m2 (NSm2) −0.01 0.08 −0.02 0.25 0.36** 0.38** 0.30* 0.37** 0.28* 0.35** 0.30* 0.35**

Number of grains/spike (NGS) −0.74*** −0.68*** −0.44*** −0.20 0.59*** 0.49*** 0.41** 0.54*** 0.64*** 0.63*** 0.41** 0.55***

Thousand kernel weight (TKW) −0.23 −0.14 0.13 0.11 0.38** 0.27* 0.50*** 0.37** 0.39** 0.37** 0.42** 0.38**

Grain filling rate (GFR) 0.28* 0.28** 0.39** 0.07 −0.19 −0.20 −0.03 −0.16 −0.19 −0.18 −0.04 −0.13

Plant height (PH) −0.40** −0.20 −0.01 0.11 0.66*** 0.55*** 0.64*** 0.64*** 0.69*** 0.67*** 0.62*** 0.65***

Days to heading (DH) 0.65*** −0.48*** −0.24 0.03 0.80*** 0.71*** 0.66*** 0.82*** 0.86*** 0.85*** 0.58*** 0.82***

Days to anthesis (DA) −0.67*** −0.49*** −0.22 −0.02 0.78*** 0.67*** 0.62*** 0.81*** 0.85*** 0.83*** 0.59*** 0.81***

Days to maturity (DM) −0.80*** −0.63*** −0.34 −0.01 0.90*** 0.76*** 0.74*** 0.89*** 0.95*** 0.92*** 0.67*** 0.87***

Grain filling duration (GFD) −0.70*** −0.59*** −0.40* 0.01 0.72*** 0.62*** 0.63*** 0.67*** 0.74*** 0.71*** 0.54*** 0.64***

ETa, actual evapotranspiration; T, actual transpiration; H, estimated plant height.

***P < 0.001; **P < 0.01; *P < 0.05.
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TABLE 5 | Significant (P < 0.05) Pearson correlation coefficients (r) for the relationships between traits assessed through remote sensing and yield, yield-related traits and

crop phenology for each irrigation treatment and each image acquisition event (n = 19).

Trait April 4th April 30th May 22nd

ETa T H LAI ETa T H LAI ETa T H LAI

Irrigation treatment: 100%ETc

Number of spikes/m2 (NSm2) 0.50* 0.48*

Number of grains per spike (NGS) −0.53* −0.69**

Thousand kernel weight (TKW) 0.63** 0.65**

Grain filling rate (GFR) 0.59** 0.71***

Plant height (PH) 0.51* 0.72*** 0.59** 0.79*** 0.57**

Days to heading (DH) 0.57* 0.47* 0.45* 0.56*

Days to anthesis (DA) 0.65** 0.49* 0.48* 0.58**

Grain filling duration (GFD) −0.71*** −0.49* −0.59** −0.64** −0.59** −0.57*

Irrigation treatment: 50%ETc

Number of grains per spike (NGS) −0.50* −0.48* −0.57* −0.67** −0.73*** −0.62**

Thousand kernel weight (TKW) 0.52* 0.48* 0.63**

Grain filling rate (GFR) 0.49* 0.51* 0.59** 0.53*

Plant height (PH) 0.52*

Days to heading (DH) 0.63** 0.48* 0.52* 0.58**

Days to anthesis (DA) 0.58** 0.47* 0.48* 0.58**

Days to maturity (DM) 0.52* 0.70*** 0.55*

Rainfed

Number of spikes/m2 (NSm2) 0.59**

Number of grains per spike (NGS) −0.57* −0.56* −0.46*

Thousand kernel weight (TKW) 0.46*

Plant height (PH) 0.50* 0.65** 0.54* 0.54*

Days to heading (DH) 0.59**

Days to maturity (DM) 0.63**

Grain filling duration (GFD) 0.55*

Traits with nonsignificant r values for any flight have been omitted. ETa, actual evapotranspiration; T, actual transpiration; H, estimated plant height.

***P < 0.001; **P < 0.01 *P < 0.05.

rainfed treatment at the jointing stage suggest that the tiller
number was probably not strongly affected by drought, which is
in agreement with the low reduction of NSm2 observed in the
rainfed treatment. Our results agree with the assumption that
NGS is typically the yield component that is most sensitive to
drought stress due to severe competition for nutrients during
stem elongation (Richards et al., 2001; Kilic and Yagbasanlar,
2010; Liu et al., 2015). Decreases in the NGS from 12.4 to 58.7%
have been found in durum wheat under drought stress compared
to well-irrigated conditions (Vahamidis et al., 2019).

When compared with the fully-irrigated treatment, the cycle
shortening observed in this study ranged between 3 days (2.2%)
for DH in the 50%ETc treatment to 13 days (7.1%) for DM in
the rainfed treatment. Similar reductions have been reported in
the literature (Liu et al., 2015; Varga et al., 2015). The reductions
observed in DA and DM in the 50%ETc and rainfed treatments
suggest that water stress likely accelerated leaf senescence, which
is a common response to water shortage (Ihsan et al., 2016;
Pour-Aboughadareh et al., 2020). In relative terms, the greatest
shortening was observed in GFD (up to 12.5%), which could
not be compensated by the increase of 5.7% in GFR. Decreases

of 14% in the duration of grain filling have been reported
previously in durum wheat subjected to pre-anthesis drought
(Liu et al., 2015). It is well-known that the reduced grain-filling
period directly affects grain number and grain size, which largely
accounts for the decrease in wheat yields (Dolferus et al., 2011).
Plant height decreased 6.5 and 12.0% in the 50%ETc and rainfed
treatments, respectively, which is in agreement with the biomass
reduction caused by drought shown by previous studies (Pour-
Aboughadareh et al., 2020 and references herein).

Predicted vs. Observed Traits
Spectral vegetation indices (VI) assessed from ground level
though field spectrometry have been widely used to estimate
several wheat traits such as growth status, biomass, yield, or
photosynthesis (Aparicio et al., 2000, 2002; Magney et al., 2016).
Moreover, UAV-derived VI [e.g., NDVI, soil adjusted VI (SAVI)
and optimized soil adjusted VI (OSAVI)] have also been used
to estimate the same traits (Yue et al., 2019; Marino and
Alvino, 2020), but with the advantages over field spectrometry
of generating surface maps in real time, higher flexibility and
more convenient operation for estimating plant traits from large
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TABLE 6 | Comparison of estimated plant height (H), leaf area index (LAI), actual evapotranspiration (ETa), actual transpiration (T), and yield in each genotype on May 22nd (grain filling).

100%ETc 50%ETc Rainfed

Genotype H LAI ETa T Yield Genotype H LAI ETa T Yield Genotype H LAI ETa T Yield

(m) (mm/day) (mm/day) (t/ha) (m) (mm/day) (mm/day) (t/ha) (m) (mm/day) (mm/day) (t/ha)

EURODURO 0.94a 4.08abc 7.45 5.63 10.45a CLAUDIO 0.86abc 2.88 6.00 5.01 8.47a SCULPTUR 0.61 1.19ab 3.85ab 2.42ab 5.97a

ANVERGUR 0.83bcde 4.18abc 7.45 5.74 10.01ab SCULPTUR 0.80abc 3.00 5.97 5.25 8.27a CLAUDIO 0.65 1.02ab 3.83ab 2.08ab 5.40ab

GRADOR 0.92ab 3.74abc 7.35 5.45 9.98ab ATHORIS 0.78bc 2.50 5.23 4.26 8.05ab IBERUS 0.59 0.98ab 3.75ab 1.99ab 5.21abc

07D057D4fba 0.84abcde 3.78abc 7.32 5.52 9.95abc 09D066D8cab 0.93a 2.81 5.60 4.63 7.90ab ANVERGUR 0.59 1.06ab 3.68ab 2.19ab 5.19abc

BURGOS 0.87abcd 4.43a 7.46 5.92 9.75abc ANVERGUR 0.81abc 2.77 5.20 4.49 7.87ab CALERO 0.49 0.78b 3.62ab 1.58b 5.13abc

CLAUDIO 0.86abcde 4.14abc 7.41 5.60 9.52abcd EURODURO 0.90ab 2.35 5.43 4.30 7.85ab DON RICARDO 0.70 1.16ab 3.82ab 2.38ab 5.11abc

ATHORIS 0.78def 3.76abc 7.26 5.61 9.45abcd 07D057D4fba 0.86abc 2.64 5.75 4.65 7.79ab BURGOS 0.54 1.07ab 3.91ab 2.16ab 5.08abc

08D010D10cab 0.88abcd 4.07abc 7.13 5.55 9.39abcd GRADOR 0.86abc 2.18 5.40 4.00 7.75ab ATHORIS 0.64 0.96ab 3.72ab 1.98ab 5.03abcd

09D066D8cab 0.91abc 3.91abc 7.38 5.47 9.21abcd CARPIO 0.87abc 2.60 5.33 4.51 7.75ab 08D010D10cab 0.64 1.16ab 4.03ab 2.34ab 4.88bcde

CARPIO 0.86abcde 3.78abc 7.28 5.60 9.20abcd IBERUS 0.81abc 2.87 6.18 4.95 7.62ab EURODURO 0.62 0.97ab 3.72ab 1.99ab 4.87bcde

SCULPTUR 0.81cdef 3.99abc 7.06 5.55 9.16abcd 08D010D10cab 0.85abc 2.69 5.33 4.59 7.59ab 07D057D4fba 0.50 0.91b 3.70ab 1.85ab 4.85bcde

09D069D1dcf 0.88abcd 3.73abc 6.70 5.25 9.09abcde 09D069D1dcf 0.86abc 2.79 5.45 4.95 7.59ab GRADOR 0.52 0.77b 3.56ab 1.57b 4.65bcde

DON RICARDO 0.92ab 3.53abc 7.16 5.48 9.02abcde CALERO 0.73c 2.52 5.82 4.47 7.58ab 09D069D1dcf 0.53 1.02ab 3.78ab 2.06ab 4.62bcde

IBERUS 0.79def 4.47a 7.46 5.95 8.97abcde BURGOS 0.84abc 3.12 5.60 4.87 7.54ab 09D066D8cab 0.55 0.92b 3.87ab 1.87ab 4.36bcde

DON SEBASTIAN 0.92ab 4.26ab 7.16 5.58 8.83abcde DON RICARDO 0.89ab 2.57 5.29 4.40 7.51ab EUNOBLE 0.60 1.06ab 3.85ab 2.17ab 4.30cde

EUNOBLE 0.89abcd 3.31abc 6.96 5.24 8.31bcde 05D278D1be 0.88abc 2.28 5.18 4.14 7.01ab CARPIO 0.57 0.98ab 3.70ab 2.01ab 4.29cde

CALERO 0.70f 2.98c 6.48 4.87 8.10cde TUSSUR 0.73c 2.47 5.34 4.18 6.64ab TUSSUR 0.48 0.83b 3.51b 1.71b 4.23cde

05D278D1be 0.83abcde 3.11bc 6.85 4.93 7.82de EUNOBLE 0.86abc 2.24 5.21 3.93 6.48ab 05D278D1be 0.74 0.87b 3.65ab 1.81b 4.00de

TUSSUR 0.76ef 3.01c 6.46 4.91 7.28e DON SEBASTIAN 0.93a 3.21 5.69 4.83 5.91b DON SEBASTIAN 0.61 1.48a 4.24a 2.92a 3.91e

Genotypes ordered by yield. Different letters in the same column mean significant differences between genotypes at p ≤ 0.05 using Tukey’s honest significant difference test.
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numbers of plots at a time (Lelong et al., 2008; Maimaitijiang
et al., 2017). UAV high-resolution VI may detect changes of
plant status, thus helping to improve crop monitoring, nitrogen
management, and crop yield estimation (Cabrera-Bosquet et al.,
2011). However, the relationships between existing VI and
biophysical parameters of the vegetation, such as LAI, usually
generate an error, in part because some of them saturate at
medium-to-high canopy covers, are sensitive to the chlorophyll
content or to internal factors such as canopy geometry, leaf
and soil optical properties (Baret and Guyot, 1990; Zhou et al.,
2017). In this study, the MTVI2 showed a linear relationship
with LAI, with an R2 of 0.78 (Figure 6A). This positive linear
regression could be attributable to the MTVI2 having a center
wavelength located at the red-edge region (717 nm), which is
mainly influenced by the plant’s structural characteristics and
chlorophyll content (Guyot et al., 1992; Yao et al., 2017; He et al.,
2020). This suggests that the MTVI2 is not as sensitive to canopy
structure as other indices which only use bands at the red and
near-infrared regions.

Crop height (H) estimates through photogrammetry were
regularly underestimated by 0.18± 0.05m. According to Lechner
et al. (2009) and Hengl (2006), the image spatial resolution has
to be at least half of the size of the target object to be accurately
discriminated though photogrammetric analysis. Therefore, it
is possible that the low leaf width of durum wheat, similar to
the pixel size (0.02m), provoked this systematic underestimation
(Figure 6C). Probably, increasing the number of images acquired
from different viewing angles, with a higher overlap, could help
to improve H estimates. However, these results are in agreement
with those obtained in previous studies at the same spatial
resolution in wheat (Holman et al., 2016; Demir et al., 2018), and
olive trees (Caruso et al., 2019). Since plant height is one of the
necessary ancillary data of the TSEB model, a precise estimation
of H is essential to assess plant evapotranspiration.

Estimates of canopy transpiration were validated against leaf
transpiration measurements (Figure 6D). Although remotely-
sensed estimates of T were higher than the measured ones, the
relationship had an R2 of 0.50. The higher T rates assessed
through remote sensing were because they were calculated at
plot level, whereas the others were calculated only at leaf level.
Differences could also be attributable to the likelihood that the
partitioning of ET into T and E contains a substantial bias error.

Relationships Between Traits Assessed
From Remote Imagery and Agronomic
Traits
The sign of the correlation coefficients between remotely-sensed
traits and most of the agronomic characteristics were negative
in the first flight and positive in the subsequent ones. This was
due to the high initial vegetative growth of the plots subjected to
the rainfed treatment, as revealed by the LAI, ETa, and T values
shown in Table 3, which likely reflects the effect of soil variations
on the growth of seedlings. It is probable that soil water holding
capacity was higher in the area were the rainfed treatment was
located. As the season evolved, this trend was reversed and the
fully-irrigated treatment showed the highest evapotranspiration

rates which previous studies have associated with higher stomatal
conductance and photosynthetic rates (Fischer et al., 1998). The
highest ETa and T values observed in the 100%ET treatment are
in agreement with high yielding wheat cultivars showing higher
rates of transpiration (Shimshi and Ephrat, 1975; Reynolds et al.,
1994) and with the strong association existing between T and LAI
(Blum, 2011).

When the analyses of the relationships between grain yield
and the four traits assessed from remote sensing images (H,
ETa, T, and LAI) were conducted using the aggregated data
of the three irrigation treatments for each flight event, the
results clearly show that forecasts were much more accurate at
anthesis and grain filling than at jointing (Figure 7). Except for
H, the correlation coefficients were in general slightly higher
in the third flight (May 22nd) than in the second (April 30th),
thus suggesting that yield predictions were more accurate when
images were captured during grain filling than around anthesis.
A lower correlation in LAI was observed at flowering (2nd flight
date, 147DAS) in comparison to grain filling (3rd flight date,
169DAS). This can probably be explained by an early senescence
reached in some of the genotypes (Table 1). Greater variability
may explain an increase in the correlation with respect to the
second flight date. The analyses conducted for the yield-related
traits confirmed that measurements at advanced crop stages were
better, as demonstrated in previous studies (Hassan et al., 2018).
This was an expected result, as only the potential number of
spikes and spikelets per spike are defined at jointing (Simane
et al., 1993), while grain setting, grain weight and final yield are
determined in subsequent developmental stages (Giunta et al.,
1993). NGS, PH, DH, DA, and DM and GFD could be properly
assessed through remotely acquired estimates of ETa, T, H, and
LAI during grain filling (Table 4). The highest R2 to estimate
yield components was observed in ETa rather than with T. It
is crucial for ET partitioning to retrieve reliable estimates of
canopy and soil temperatures, net radiation, and aerodynamic
roughness, with the latter usually obtained from vegetation
structural parameters. Therefore, any bias in those estimates
could be a source of error when attempting to obtain accurate
estimates of T. In addition, the higher range of variability of ETa
values in comparison to T contributed to obtaining the highest
R2 when it was regressed with yield. This is because ETa also uses
the soil temperature (Tsoil) of each individual plot and irrigation
treatment, with important differences in Tsoil between irrigated
and rainfed plots. On the other hand, predicted plant height (H)
was also a good estimator of DH, DA, DM, GFD, PH, and TKW
at anthesis, although the values were slightly lower in comparison
to the evapotranspiration components. While in this study H was
estimated from photogrammetry using multispectral imagery,
the advantages of using H instead of ET estimates include the
need for fewer inputs, and the lower cost and amount of time
needed. Plant height is an essential trait in wheat as it determines
the architecture of the plant canopy and has a strong effect on
grain number, harvest index and final grain yield (Maccaferri
et al., 2008; Liu et al., 2015). The relationships between plant
height and yield are environmentally dependent as positive
associations have been reported under optimal water conditions
and negative associations in water stress environments (Royo
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et al., 2008; Dogan, 2009; Talebi et al., 2010). Plant height has
been proposed as a potential indicator of tolerance to drought
stress under Mediterranean conditions (Liu et al., 2015).

Although the R2 of the relationships between the assessed
parameters and NSm2 were significant, the weaker relationships
obtained for this trait suggest that it cannot be considered a yield
component that it is possible to properly estimate through remote
imagery. GFR could not be assessed through any remotely-sensed
trait, even when considering the aggregated data of the three
irrigation treatments (Table 4). However, when the relationships
between remotely-sensed estimated traits and yield-related traits
were analyzed individually for each irrigation treatment, results
showed higher accuracy in the irrigated treatments than in the
rainfed one (Table 5). Although some r values obtained from
the regressions between remotely-sensed estimated traits and
the agronomic ones were significant under rainfed conditions,
they did not show consistency among related traits nor across
image acquisition dates. This suggests that they could be more
casual than causal, and therefore do not demonstrate enough
reliability to be recommended for accurate field assessments.
This was probably related, as discussed previously, with the
wider range of values observed for most traits in the irrigated
treatments when compared with the rainfed treatment, as shown
in Table 1, which increased the predictability of remote sensing
imagery. The comparison of the number of significant correlation
coefficients obtained in each irrigated treatment in the second
and third flights and their values revealed that assessments made
in the 100%ETc treatment showed more significant correlation
coefficients and with higher values than the ones made in the
50%ETc treatment (Table 5). As regards the growth stage most
appropriate for predicting yield-related traits, the number of
significant correlation coefficients indicated that, as in the case
of yield, the second (at anthesis) and third (during grain filling)
image acquisition dates were the most suitable, but a higher
number of positive associations were found for the third flight.

In relation to the agronomic traits that can be properly
assessed by remote sensing imagery, the negative and significant
correlation coefficients between H and NGS in the two irrigated
treatments and the two later flights (r values from −0.53 to
−0.73) suggest a causal and consistent association. Similarly,
H showed a positive and significant association with GFR in
the same four cases, with r values ranging from 0.59 to 0.71,
thus indicating a good predictive value. The analysis of the
relationships between predicted plant height and TKW showed
less consistent results given that the correlation coefficient
obtained for the third flight in the 50%ETc treatment was not
statistically significant. DH and DAwere among the phenological
characteristics that were most consistently related with remotely-
sensed traits, with ETa being the best predictor for them, mostly
during the third flight. GFD was negatively and consistently
related with the four remotely-sensed traits estimated from
images acquired during the grain filling stage in the fully-
irrigated treatment.

Remote sensing imagery has been widely used to assess yield-
related traits under a wide range of phenotypical variations
(Aparicio et al., 2002; Haghighattalab et al., 2016; Caruso et al.,
2019). In the current study, when data of the three irrigation

treatments were analyzed together, the yield ranged between
3,905 and 10,446 kg/ha. Previous studies showed that this
very wide range of variability is exceptional for durum wheat
genotypes grown in the same site where this study was carried
out when subjected to a common agronomic management, under
both irrigated and rainfed conditions (Aparicio et al., 2000). For
this reason, we also decided to assess the suitability of remotely-
sensed estimated traits within each irrigation treatment, given
that such homogeneous environmental conditions are more
representative of real-world cropping systems. In this case, the
results showed that yield could only be properly forecasted in
the 100%ETc treatment (Figure 8). The lack of water restrictions
probably allowed the genotypes to express their potentialities,
thus maximizing phenotypic differences as shown by the wider
range of yields observed in the 100%ETc treatment (3,172
kg/ha) compared with the 50%ETc (2,559 kg/ha) and the rainfed
treatment (2,067 kg/ha). Previous studies have also demonstrated
that the capacity of spectral reflectance indices to forecast durum
wheat grain yield was higher in locations where genotypes
reached potential yields (Royo et al., 2003). Under full irrigation
conditions (100%ETc), the results of this study also indicate
that ETa was the best predictor of yield, particularly when
image acquisition was performed around anthesis or during
grain filling. On both dates, it accounted for about 68% of yield
variations (Figure 8).

Capacity of Remotely-Sensed Traits to
Discriminate Among Genotypes
The analysis of the data for each genotype provided by the
remotely-sensed traits assessed during grain filling gave a wide
range of values for all of them. However, in some cases the
differences were not wide enough to be statistically significant
(Table 6). For LAI, ETa, and T, the highest statistical significance
was obtained in the rainfed treatment. Although the pattern
behind these results was not totally clear, the relatively wider
range of values recorded in the rainfed treatment when compared
with the irrigated ones could partially explain these differences.
Though the absolute values of LAI, ETa, and T were greater in
the irrigated treatments than in the rainfed one, in relative terms
the differences between the values of the genotypes showing the
highest and the lowest value for each trait were largest in the
latter. For instance, in the rainfed treatment, the T value of cv.
Don Sebastian (2.92 mm/day) was 86% superior to that of cv.
Grador, which showed the lowest estimate (1.57 mm/day). This
relative difference, which was superior to that obtained in the
100%ETc (17.9%) and the 50%ETc (33.5%) treatments was large
enough to prove statistically that these two genotypes differed
for this trait. Similarly, the relative wider variations among
the extreme values for ETa and LAI obtained in the rainfed
treatment than in the irrigated ones support the differences
obtained in statistical significances. In the case of H, the lack
of differences between genotypes in the rainfed treatment could
not be attributed to the same reason, as the relative difference
in H values was 54%, larger than that observed in the irrigated
treatments (23.7 and 27.4% in 100 and 50%ETc, respectively)
where statistically significant differences were detected. In this
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case, the reason could likely be the low H values in the rainfed
treatment resulting from the short plants, associated to drought
environments (Madec et al., 2017), and the underestimation of
actual plant height occasioned by the methodology employed
which was in accordance with previous studies (Holman et al.,
2016).

According to other studies that related durum wheat
transpiration and yield (Medina et al., 2019), the genotypes with
the highest yields in the fully-irrigated treatment showed superior
LAI, ETa, and T values. A high LAI in durum wheat genotypes at
the milk-grain growth stage denotes a delay of leaf senescence
after anthesis, a characteristic that has been positively related
with grain yield (Borojevic et al., 1980), thus underlining its
importance as a grain yield determining feature. The high values
for ETa and T in high-yielding genotypes are in agreement with
the positive associations found between T and both leaf area and
biomass in wheat grown in well-watered environments (Blum,
2011).

CONCLUSIONS

This study shows the feasibility of using the two-source
energy balance (TSEB) with very high resolution imagery
to assess differences in the evapotranspiration components
of a durum wheat panel. For this purpose, biophysical
parameters of the vegetation were successfully estimated from
multispectral imagery. Plant height and LAI estimates gave
RMSE values of 0.18m and 0.63, respectively. Significant
differences in durum wheat yield and yield components were
observed between irrigation treatments. The 50%ETc and rainfed
treatments accounted for respective yield reductions of 18.3
and 48.0% in comparison with the treatment that met all crop
water requirements (100%ETc). ETa was the remotely-sensed
parameter that, when estimated either at anthesis or during grain
filling, showed a positive relationship and the highest R2 with
yield, DH, DA, and GFD. When data were analyzed individually
for each irrigation treatment, consistent and positive associations
were found between ETa and yield, DH and DA and negative
associations with GFD in the 100%ETc treatment, but not in the
other treatments. The remotely-sensed traits that were assessed
were able to discriminate among genotypes, but the significance
of the differences depended on the irrigation treatment. As
a conclusion, this study demonstrates that remotely-sensed

estimates of ETa through the TSEBmodel are the best predictor of
yield components. R2 values at the grain filling stage were higher
in comparison with other remotely-sensed trait estimates such as
height, LAI or spectral vegetation indices.
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In recent years, the unmanned aerial vehicle (UAV) remote sensing system has been
rapidly developed and applied in accurate estimation of crop parameters and yield at
farm scale. To develop the major contribution of UAV multispectral images in predicting
winter wheat leaf area index (LAI), chlorophyll content (called soil and plant analyzer
development [SPAD]), and yield under different water treatments (low water level,
medium water level, and high water level), vegetation indices (VIs) originating from UAV
multispectral images were used during key winter wheat growth stages. The estimation
performances of the models (linear regression, quadratic polynomial regression, and
exponential and multiple linear regression models) on the basis of VIs were compared
to get the optimal prediction method of crop parameters and yield. Results showed that
LAI and SPAD derived from VIs both had high correlations compared with measured
data, with determination coefficients of 0.911 and 0.812 (multivariable regression [MLR]
model, normalized difference VI [NDVI], soil adjusted VI [SAVI], enhanced VI [EVI],
and difference VI [DVI]), 0.899 and 0.87 (quadratic polynomial regression, NDVI), and
0.749 and 0.829 (quadratic polynomial regression, NDVI) under low, medium, and high
water levels, respectively. The LAI and SPAD derived from VIs had better potential in
estimating winter wheat yield by using multivariable linear regressions, compared to the
estimation yield based on VIs directly derived from UAV multispectral images alone by
using linear regression, quadratic polynomial regression, and exponential models. When
crop parameters (LAI and SPAD) in the flowering period were adopted to estimate yield
by using multiple linear regressions, a high correlation of 0.807 was found, while the
accuracy was over 87%. Importing LAI and SPAD obtained from UAV multispectral
imagery based on VIs into the yield estimation model could significantly enhance the
estimation performance. This study indicates that the multivariable linear regression
could accurately estimate winter wheat LAI, SPAD, and yield under different water
treatments, which has a certain reference value for the popularization and application
of UAV remote sensing in precision agriculture.
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INTRODUCTION

The estimation of crop parameters (leaf area index [LAI] and
chlorophyll content) is helpful in improving the level of crop
monitoring, which is key to accurate monitoring and estimation
of crop growth in agricultural management (Huang et al.,
2016; Li et al., 2016; Liu et al., 2017; Yebra et al., 2017; Sun
et al., 2021). LAI and chlorophyll are often used to describe
canopy structure and to predict grain yield (Guo et al., 2020),
which requires efficient and rapid measurement of crop LAI
and soil and plant analyzer development (SPAD, which is
used instead of chlorophyll content). Traditional methods to
estimate crop parameter are based on destructive measurement,
which not only consume time and manpower but also are
difficult to be applied in a large area. In recent decades,
remote sensing technology has been successfully applied to
crop growth monitoring through satellite platforms, manned
airborne platforms, and ground spectral equipment (Michele
et al., 2015; Maimaitijiang et al., 2017; Ansar and Muhammad,
2020; Dehkordi et al., 2020). There are two kinds of satellite
remote sensing data for crop parameters, namely, optical image
and synthetic aperture radar data (Cougo et al., 2015; Castillo
et al., 2017; Du et al., 2017; Pham and Yoshino, 2017; Pandit
et al., 2018; Li et al., 2019), providing different spatial resolutions,
such as SPOT (20 m), MODIS (250 m), Sentinel 1A (10 m), and
ALOS-2 PLASAR2 (6 m) (Niu et al., 2019). However, several
limitations such as deficient spatiotemporal resolution and cloud
cover contamination restrain the application of satellite-based
platforms. Relatively, the operation cost of manned airborne
platforms is relatively high, and ground-based spectral devices
are laborious and suffer from inefficient operations (Zhang and
Kovacs, 2012; Yang et al., 2017; Yao et al., 2017; Katja et al., 2018).

In contrast, the rapid development of unmanned aerial
vehicle (UAV) platforms provides an economical and efficient
method to meet the increasing requirements of spatial, temporal,
and spectral resolutions (Yue et al., 2017; Zheng et al.,
2018; Heinemann et al., 2020; Qiao et al., 2020). UAV-based
multispectral images were adopted to predict crop growth status
and to predict grain yield in recent years. For example, Yao
et al. (2017) obtained narrowband multispectral images based on
UAV and used MTVI2 to estimate wheat LAI effectively, with an
accuracy of 0.79 and a relative root mean square error (RMSE)
of 24%. Guo et al. (2018) obtained remote sensing images based
on UAV and established an inversion model of mangrove LAI
by using the vegetation-level interruption index (VLOI), with
an inversion accuracy of 0.72 and an RMSE of 0.137. Gao et al.
(2016) used a multirotor UAV synchronously carrying a Canon
Power Shot G16 digital camera and ADC Lite multispectral
sensor to obtain the crown (Tian et al., 2016). Fu et al. (2020)
examined the ability of multiple image features derived from
UAV RGB images for winter wheat N status estimation across
multiple critical growth stages. Another difference of the study
on UAV-based prediction of plant LAI was that researchers
usually aimed at a few growth periods (Hua et al., 2012). There
is still little information on using UAVs to predict plant LAI
during the whole important growth stages on a large scale
of LAI, and fewer had studied the accuracy comparison of
UAV inversion of LAI under different water treatments. The

chlorophyll concentration, measured in mass per unit leaf area, is
an important biophysical parameter retrievable from reflectance
data (Zhu et al., 2020). Tian et al. (2016) used the spectral
index of UAV imaging spectrometry to retrieve the chlorophyll
concentration of cotton using multiple stepwise regression and
partial least squares regression and achieved high accuracy. The
Hekou District was selected as the core test area, and 140
ground sampling points were selected. Based on the measured
SPAD values and UAV multispectral images, UAV-based SPAD
inversion models were constructed, and the most accurate model
was selected (Zhang et al., 2019). Cao J. et al. (2020) developed
an inversion model that can predict japonica rice chlorophyll
content by using the hyperspectral image of the rice canopy
collected with a UAV. The inversion model was developed by
using an extreme learning machine (ELM), the parameters of
which are optimized by using particle swarm optimization (PSO).
The PSO-ELM algorithm could accurately model the nonlinear
relationship between hyperspectral data and chlorophyll content.
The model achieved a coefficient of determination (R2) of
0.791 and an RMSE of 8.215 mg/L. Furthermore, UAVs are
promising remote sensing platforms that is gaining more and
more attention for crop studies. For example, Jin et al. (2017)
estimated wheat plant density from UAV RGB images. Zhou
et al. (2017) estimated grain yield in rice using multitemporal
vegetation indices (VIs) from UAV-based multispectral and
digital imagery. This parameter has been extensively studied in
the field of remote sensing, while research for multispectral data
based on UAV is relatively few under different water treatments.
The techniques used are mainly based on portable spectrometers,
airborne multispectral imagers, and remote sensing satellites
(Skudra and Ruza, 2017). Portable spectrometers have difficulty
differentiating “point” from “surface,” while satellite images have
coarser spatial resolution and poor timeliness and are thus
prone to “isospectral foreign bodies,” resulting in low prediction
accuracy. Therefore, the prediction of chlorophyll concentrations
and LAI using multispectral sensors on low-altitude UAV remote
sensing platforms has gradually become a trend (Cao Y. et al.,
2020; Guo et al., 2020; Wan et al., 2020). The existing researchers
used the multispectral remote sensing images of medium and
low spatial resolutions (such as Landsat 8 and TM) to carry
out remote sensing inversion research on winter wheat LAI,
SPAD, yield estimation, and other indicators. However, due
to the limitations of spatial resolution, revisit period, weather
conditions, and other factors, there are still some limitations in
the precise monitoring of winter wheat growth.

Therefore, this study is aimed at estimating LAI, SPAD,
and yield of winter wheat based on VIs (normalized difference
VI [NDVI], soil adjusted VI [SAVI], enhanced VI [EVI], and
difference VI [DVI]) derived from UAV multispectral images.
The estimation performances of models based on VI alone and
VI combinations were also analyzed. According to the obtained
optimal estimation of LAI and SPAD values, the crop yield was
estimated. More specifically, our study paid attention to the
following:

(1) Establishment of winter wheat LAI and SPAD estimation
models under different water treatments based on VI alone
by using a linear regression model, quadratic polynomial
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regression model, and exponential regression analysis and
based on VI combinations by multivariable regression
(MLR) analysis;

(2) A comparison of the performances of winter wheat LAI
and SPAD estimating models and selection of the optimal
estimation models of LAI and SPAD;

(3) Estimation of the winter wheat yield by using multivariate
regression model based on the optimal LAI and SPAD
values obtained in (2) in the flowering stage.

MATERIALS AND METHODS

Study Area
The experiment was carried out on a field in the Daxing District
located in the south of Beijing, China (39◦37.25′N, 116◦25.51′E).
The research field with an area of approximately 1.68 km2 was
planted with winter wheat. Thirty 7.8× 7.5-m2 fields within each
region were chosen as samples for data collection (Figure 1).
According to the amount of irrigation, the 30 fields were divided
into three irrigation levels (low water [0–60 mm], medium water
[120–180 mm], and high water [240–300 mm]). The cumulated
precipitation rates of DAS210 (days after sowing [DAS], jointing

TABLE 1 | Crop management 2017–2018.

Item Winter wheat

Sowing date October 5, 2017

Variety Zhong Mai 175

Average seeding rate 289 grains/m2

Harvest date June 30, 2018

Soil type Loam sandy

stage), DAS229 (flowering stage), and DAS240 (filling stage) were
134.87, 138.43, and 138.43 mm, respectively (Figure 2). The
soil type was loam sandy (85% sand, 11.5% power, and 3.5%
clay), according to the United States Department of Agriculture
taxonomy. Winter wheat was planted on October 5, 2017, and
harvested on June 30 with a 265-day life span (Table 1).

Research Measurements
At the winter wheat key stages (DAS210–DAS240) (Du et al.,
2017; Yue et al., 2017; Ji et al., 2020; Jiang et al., 2020; Tao
et al., 2020a), crop parameters (LAI and SPAD) were measured
on DAS210, DAS229, and DAS240. Sixty sets of samples (LAI [30
sets] and SPAD [30 sets]) were obtained every 7 days.

FIGURE 1 | Research area: (A) location of the research field in China; (B) area view of the research field indicating region division; and (C) the location of sampling
plots and ground control plots; L, M, and H represent low water, medium water, and high water treatments, respectively.

FIGURE 2 | Irrigation and precipitation accumulation under different irrigation treatments (low water, medium water, and high water).
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LAI from LAI-2200C: To be synchronous with the imagery, we
took three wheat stems from each plot as one sample, separated
the green leaves, and used an LI-3000 leaf area meter to scan the
green leaf area. We had a total of 18 plots (low water: six plots;
medium water: six plots; and high water: six plots), whose length
and width are 7.8 and 7.5 m, respectively. The number of stems 1
m in length in each plot was counted manually. Based on formula
(1), the LAI of the population was calculated.

LAI =
1
D
× B×

A
C
× 10−4 (1)

where D is the distance between two rows of wheat; B is the
number of stems in 1 m in length; A is the leaf area of the
sample; and C is the number of stems of the sample. A SPAD-502
chlorophyll meter (Minolta Corporation, NJ, United States) was
used for in vivo measurement of the ratio of light transmittance
through the leaf. Instrument readings have been shown to
correlate well with laboratory measurements of chlorophyll
concentrations in several species (Haie and Keller, 2008). On
each sampling campaign, 30 SPAD measurements were collected
on average. The chlorophyll meter readings were taken midway
on fully expanded top-of-canopy leaves. Each measurement was
characterized by the mean of three replicate measurements. The
chlorophyll meter measured an area of 2 × 3 mm with an
accuracy of± 1.0 SPAD unit (at room temperature).

Acquisition and Pretreatment of UAV
Multispectral Image
In this study, a small six-spin UAV (Nanjing Hepu Aero
Science and Technology Co., Ltd.)1 was used. Multispectral
cameras were mounted synchronously on a UAV remote sensing
platform (before the camera was used, noise removal and lens
distortion correction were carried out). Table 2 illustrates the
UAV specification in more detail.

When the weather was clear and cloudless, three flights (DAS
210, DAS229, and DAS240) were carried out from 12:00 to 13:00,
when the solar zenith angle was minimal. Continuous flight
monitoring was carried out in 30 plots of the study area. The flight
altitude was 60 m, and the spatial resolution was 0.0409 cm.

The image mosaic processing was performed by using
the Pix4Dmapper software (Pix4D Inc., Switzerland)2 (Turner
et al., 2012). The preprocessing of mosaic multispectral images
included geometric correction and radiation correction, and the
geometric correction mainly used the ENVI software. With the
Orthophoto image as a reference image, 20 reference points

1http://www.agrouas.com/
2http://www.pix4d.com

TABLE 2 | UAV and multispectral camera specifications.

UAV Multispectral camera

Type Pixhawk (M600) Type Red Edge-M

Maximum payload 5 kg Band range 475–840 nm

Maximum duration 15 min Terrestrial resolution 0.0409 m

were selected uniformly in different positions of the image to
correct the geometric accuracy of the multispectral image. The
error of the geometric correction of the image was less than
0.5 pixels after verification. For radiation correction, due to
the difference between the time and weather conditions of the
multispectral data obtained from different sites, the pseudo-
standard ground object radiation correction method was used to
convert the multispectral image value into the image reflectance
value through the reflectance measured by the ground target
(Wang and Liu, 2014).

The five multispectral bands were blue (central wavelength
475 nm, bandwidth 40 nm), green (central wavelength 560 nm,
bandwidth 40 nm), red (central wavelength 668 nm, bandwidth
40 nm), red edge (central wavelength 717 nm, bandwidth 10 nm),
and near infrared (central wavelength 840 nm, bandwidth
40 nm) (Figure 3).

UAV Multispectral VI
Many previous studies have used different VIs in multispectral
imagery to estimate the crop parameters (LAI and SPAD). In
this study, VIs and one VI combination were calculated by using
visible bands, including the NDVI (Rouse et al., 1974), SAVI
(Huete, 1988), EVI (Huete et al., 2002), and DVI (Jordan, 1969;
Figure 4). Their calculation formulas are as follows:

NDVI =
Rnir − Rred

Rnir + Rred
(2)

SAVI = 1.5
Rnir − Rred

Rnir + Rred + 0.5
(3)

EVI = 2.5
Rnir − Rred

Rnir + 6Rred − 7.5Rblue + 1
(4)

DVI = Rnir − Rred (5)

Note that Rnir is the near-infrared reflectance, Rred is the red
reflectance, and Rblue is the blue reflectance.

FIGURE 3 | Reflectance of five bands under different water treatments.
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FIGURE 4 | VI of the research area. (a–d) were the NDVI, SAVI, SVI and EVI in DAS210 of research area, (e–h) were the NDVI, SAVI, SVI and EVI in DAS229 of
research area, (i–l) were the NDVI,SAVI,SVI and EVI in DAS240 of research area.

Estimation Models of Crop Parameters
(LAI and SPAD) and Yield
Figure 5 showed the main procedures of obtaining the optimal
estimation model of crop parameters and yield based on winter
wheat features derived from UAV multispectral imagery. Four
estimation models of winter wheat crop parameters were used
in this study, i.e., prediction models: (1) linear regression model,
(2) quadratic polynomial regression, (3) exponential model, and
(4) multiple linear regression based on VIs. In the establishment
of the yield prediction model, multivariable linear regression
analysis was adopted.

Statistical Analysis
For statistical analysis, SPSS 23 was adopted. For the spectral
reflectance information of winter wheat observed in different
plots, the linear regression model, quadratic polynomial
regression, exponential model, and multiple linear regression
model (Quan et al., 2017) of winter wheat VIs, LAI, and SPAD
were established. The validation set was used to fit the predicted
and measured values of the model (Marenco et al., 2009; Drusch
et al., 2012), and then the multiple linear regression model was
used to predict the output.

y = ax+ b (6)

y = ax2
+ bx+ c (7)

y = aex (8)

y = y0 + y1x1 + y2x2 + · · · + ynxn +m (9)

In the formula, y0, y1, y2, . . ., yn is the regression coefficient, and
m is the model error.

The coefficient of determination (R2) and RMSE were used
to evaluate the performance of each model. Mathematically, a
higher R2 corresponds to a smaller RMSE and thus represents
better model accuracy. The following equations were used to
calculate R2 and RMSE (Pandit et al., 2018; Li et al., 2019),
respectively:

R2
=

∑n
i=1
(
yi − xi

)2∑n
i=1
(
yi − ȳ

)2 (10)

RMSE =

√∑n
i=1
(
xi − yi

)2

n
(11)

where xi and yi are the estimated and measured values,
respectively; x̄ and ȳ are the average estimated and measured
values, respectively; and n is the sample number.

RESULTS

Table 3 shows the statistics of LAI, SPAD, and yield
measurements for different water treatments. In this study,
four VIs (NDVI, SAVI, EVI, and DVI) derived from UAV
multispectral imagery were used for the linear regression
model, quadratic polynomial regression, exponential model,
and multiple linear regression for winter wheat LAI and SPAD
under low water, medium water, and high water. In Figures
A1–A3 and Tables 4, 5, the four VIs all had significant positive

Frontiers in Plant Science | www.frontiersin.org 5 May 2021 | Volume 12 | Article 60987660

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-609876 May 19, 2021 Time: 13:21 # 6

Han et al. Application of UAV in Agriculture

FIGURE 5 | Schematic indicating the main procedures to obtain the optimal estimation model of winter wheat crop parameters and yield.

correlations (p < 0.01) with low water, medium water, and high
water on LAI and SPAD.

Estimation Models of Winter Wheat LAI
on the Basis of UAV Multispectral VIs
As shown in Table 4, the NDVI had the highest R2 values
of 0.868 (quadratic polynomial), 0.897 (exponential), and 0.749
(quadratic polynomial), followed closely by the EVI with R2

of 0.747 (quadratic polynomial), 0.8746 (quadratic polynomial),
and 0.741 (quadratic polynomial) and by the and SAVI with R2

of 0.698 (exponential), 0.852 (quadratic polynomial), and 0.740
(linear). The lowest correlations were observed by using DVI
to estimate winter wheat, with R2 values of 0.620 (exponential),
0.718 (exponential), and 0.607 (exponential). When it comes to
the RMSE, a similar observation was obtained. And for low-
water LAI, the NDVI also had a lower RMSE of 0.591, followed
closely by the EVI and SAVI with RMSE values of 0.607 and 0.615,

TABLE 3 | Descriptive statistics of LAI, SPAD, and yield from the study area.

Treatment Parameter Samples Min Mean Max SD CV (%)

Low water LAI 18 2.00 3.68 5.04 0.96 25.98

SPAD 18 42.08 51.78 63.97 6.37 12.30

Yield (kg/ha) 6 2,397.0 4,945.4 3,731.2 944.91 25.12

Medium water LAI 18 2.53 4.22 5.67 0.97 22.93

SPAD 18 42.36 53.44 63.08 6.97 13.03

Yield (kg/ha) 6 2,935.3 5,588.6 4,526.4 1,093.4 24.23

High water LAI 18 2.97 3.97 5.99 0.65 11.35

SPAD 18 50.66 60.85 72.67 6.91 16.39

Yield (kg/ha) 6 3,116.3 4,848.6 5,810.7 926.1 19.02

SD, standard deviation; CV, coefficient of variation. Six points were randomly
selected from 18 points of high water treatment.

respectively. The DVI had a larger RMSE of 0.814. For medium
and high water treatments, similar observations were found.

After estimating winter wheat LAI with different water
treatments by using a single VI, for LAI with low water treatment
(LAIl), the four VI combinations that had the higher correlations
were chosen to estimate winter wheat LAI by adopting MLR
analysis. When MLR was used, the estimation performance
of winter wheat LAI was improved (Figure 6A), with an R2

value of 0.911, with an increase of 0.0434 compared to the
highest R2 value of 0.8676 (NDVI, quadratic polynomial) for
the single VI. The RMSE of LAI decreased to 0.3663, compared
to the lowest RMSE value of 0.5914 for single VI, quadratic
polynomial. The winter wheat LAI could be calculated based on
NDVI, SAVI, EVI, and DVI by using Equation (12). However,
for LAI with medium and high water treatments (LAIm and
LAIh), when MLR was adopted, the estimation performance of
winter wheat (LAIm and LAIh) was not improved, and the R2

values were 0.73 and 0.744, with a decrease of 0.167 and 0.005,
compared to the highest R2 values of 0.897 (NDVI, exponential)
and 0.748 (NDVI, quadratic polynomial) for the single VI. The
RMSE of LAI increased by 0.046 and 0.058, compared to the
lowest RMSE values of 0.609 and 0.631 for single VI with
single linear regression, quadratic polynomial, and exponential
models, respectively. The winter wheat (LAIm and LAIh) could
be calculated based on NDVI by using Equations (13) and (14)
(Figures 6B,C).

LAIl = 14.643× NDVI − 15.293× SAVI + 33.510

×EVI − 16.431× DVI − 0.698 (12)

LAIm = 1.3626× e1.384NDVI (13)

LAIh = 13.567× NDVI2
− 14.567×NDVI+ 6.932 (14)
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TABLE 4 | Correlations between VIs derived from UAV multispectral imagery and LAI with different water treatments.

Model VIs Low water Medium water High water

R2 RMSE R2 RMSE R2 RMSE

Linear NDVI 0.8504** 0.606 0.8943** 0.6222 0.6673** 0.5992

SAVI 0.6972** 0.5979 0.818** 0.6095 0.7395** 0.6317

EVI 0.7455** 0.624 0.7643** 0.5924 0.7467** 0.6345

DVI 0.6609** 0.5915 0.7586** 0.5995 0.7162** 0.6338

Quadratic polynomial NDVI 0.8676** 0.5914 0.8951** 0.6223 0.7493** 0.6312

SAVI 0.6973** 0.5979 0.8523** 0.6189 0.7409** 0.6317

EVI 0.7466** 0.6065 0.8746** 0.6152 0.7261** 0.6298

DVI 0.6637** 0.6272 0.8208** 0.6116 0.7461** 0.6235

Exponential NDVI 0.7961** 0.6583 0.8966** 0.6094 0.6504** 0.6081

SAVI 0.6983** 0.6299 0.8223** 0.6357 0.7249** 0.6551

EVI 0.6467** 0.6178 0.7241** 0.6112 0.73** 0.6592

DVI 0.6197** 0.8136 0.7175** 0.6258 0.7038** 0.6610

Multiple Four VIs 0.911** 0.2251 0.73** 0.6558 0.744** 0.637

Four VIs, NDVI, SAVI, EVI, and DVI, were used to establish regression estimation models for LAI with different water treatments. **Significant at the level of 0.01.

Prediction Models of Winter Wheat SPAD
Based on UAV Multispectral VIs
In Table 5, the NDVI had the highest correlations with R2 values
of 0.808 (quadratic polynomial), 0.874 (exponential), and 0.829
(quadratic polynomial) followed by the SAVI with R2 values
of 0.769 (quadratic polynomial), 0.831 (quadratic polynomial),
and 0.725 (quadratic polynomial). For both low and high water
treatments, the lowest correlations were observed by using DVI
to predict SPAD, with R2 values of 0.663 (exponential) and 0.623
(exponential), respectively. However, with the medium water
treatment, the lowest correlations were observed by using EVI
to estimate SPAD, with R2 values of 0.701 (linear). For low
water level, the NDVI also had the lowest RMSE with a value
of 7.00, followed by the SAVI with an RMSE value of 7.17; the
maximum RMSE of DVI was 7.99. For the medium and high
water treatments, similar observations were found. The R2 was
negatively correlated with RMSE.

After estimating winter wheat SPAD with different water
treatments by using single VI, for SPAD with low water treatment
(SPADl), the four VI combinations, which had the highest
correlations, were chosen to estimate winter wheat SPAD by using
MLR analysis. When MLR was used, the estimation performance
of winter wheat SPADl was improved (Figure 7A); the R2 value
was 0.812, with an increase of 0.0038, compared to the highest R2

value of 0.808 (NDVI, quadratic polynomial) for the single VI.
The RMSE of SPAD decreased with a value of 0.004, compared
to the lowest RMSE value of 7.022 for single VI, quadratic
polynomial. The winter wheat SPADl could be calculated based
on NDVI, SAVI, EVI, and DVI by using Equation (15). However,
with medium and high water treatments (SPADm and SPADh),
when MLR was used, the estimation of winter wheat (SPADm
and SPADh) was not improved, and the R2 values were 0.87 and
0.822, with a decrease of 0.0042 and 0.008, respectively, compared
to the highest R2 values of 0.8742 (NDVI, exponential) and
0.830 (NDVI, quadratic polynomial) for the single VI. The RMSE
of SPAD increased with values of 0.021 and 0.286, compared

to the RMSE of 7.038 and 6.126 for single VI with the single
linear regression, quadratic polynomial, exponential models. The
winter wheat (SPADm and SPADh) could be calculated based on
NDVI by using Equations (16) and (17) (Figures 7B,C).

SPADl = 249.19× NDVI − 686.477× SAVI + 24.896

×EVI + 596.61× DVI + 24.647 (15)

SPADm = 26.499× e1.0796×NDVI (16)

SPADh = 108.21× NDVI2
− 103.02× NDVI + 74.93(17)

Prediction Models of Winter Wheat Yield
on the Basis of Both LAI and SPAD
Remote sensing estimation of winter wheat yield is based on VIs
which can reflect crop yield. It is necessary to verify whether the
relationship between wheat LAI, SPAD, and yield (measured) is
significant. Figure 8 shows the relationship between LAI, SPAD,
and winter wheat yield under different stages. It can be seen that
the relationships between LAI, SPAD, and winter wheat yield
were the most significant in different models. LAI and SPAD
could estimate winter wheat yield well under different stages.
For LAI (Figure 8A) and SPAD (Figure 8B), R2 values are
0.68 (DAS210), 0.885 (DAS229), and 0.612 (DAS240) and 0.534
(DAS210), 0.949 (DAS229),and 0.566 (DAS240), respectively.
This provided a basis for the prediction of winter wheat yield
using LAI and SPAD which are estimated by VIs.

Figures 8A,B show that the predicted values of crop growth
parameters at three stages (DAS210, DAS229, and DAS240) were
consistent with the measured values and that the R2 values
(0.885 for LAI and 0.949 for SPAD) were the highest in DAS229,
which was the best estimation period of yield; this result was
consistent with that of previous studies (Zhang et al., 2019;
Tao et al., 2020b). Under the support of the above, the optimal
estimates of winter wheat LAI and SPAD values in DAS229
based on VIs were adopted to estimate the yield of winter wheat
by using the quadratic polynomial model (Equations (18) and
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TABLE 5 | Correlations between VIs derived from UAV multispectral images and SPAD with different water treatments.

Model VIs Low water Medium water High water

R2 RMSE R2 RMSE R2 RMSE

Linear NDVI 0.7994** 7.205 0.8693** 7.632 0.748** 6.3045

SAVI 0.7423** 7.089 0.8249** 7.541 0.7061** 6.5237

EVI 0.7222** 7.048 0.7011** 7.281 0.7112** 6.5348

DVI 0.6831** 7.968 0.7842** 7.456 0.6549** 6.4787

Quadratic polynomial NDVI 0.8082** 7.022 0.8697** 7.633 0.8296** 6.1259

SAVI 0.7689** 7.143 0.8306** 7.553 0.7247** 6.6320

EVI 0.7485** 7.102 0.803** 7.514 0.7217** 6.6398

DVI 0.7375** 7.079 0.7491** 7.591 0.6637** 6.5622

Exponential NDVI 0.7788** 7.341 0.8742** 7.038 0.7369** 6.4004

SAVI 0.7212** 7.172 0.8243** 8.951 0.6789** 6.6773

EVI 0.6989** 7.121 0.7034** 7.4651 0.6813** 6.6899

DVI 0.6627** 7.989 0.7812** 7.599 0.6225** 6.6248

Multiple Four VIs 0.812** 7.018 0.87** 7.059 0.8221** 6.412

Four VIs and one VI combination, NDVI, SAVI, EVI, and DVI, were used to establish regression estimation models for SPAD with different water treatments. **Significant
at the level of 0.01.

FIGURE 6 | Correlations between winter wheat LAI estimated based on NDVI, SAVI, EVI, and DVI by using optimal regression analysis and ground-truth LAI; (A)
lower water treatment, (B) medium water treatment; (C) and higher water treatment.

FIGURE 7 | Correlations between winter wheat SPAD estimated based on NDVI, SAVI, EVI, and DVI by using optimal regression analysis and ground-truth SPAD;
(A) low water treatment, (B) medium water treatment; and (C) high water treatment.

(19) and Figure 10). The accuracy of LAI and SPAD based on
UAV multispectral imagery to estimate winter wheat yield was
over 87%.

Yield = 1095× LAI2
− 7666.6LAI + 16981 (18)

Yield = −2.214× SPAD2
− 366.9SPAD− 9689.2 (19)

Yield = 327.44× LAI+ 72.15SPAD− 1414.8 (20)

After estimating winter wheat yield based on a single parameter
(LAI or SPAD) by using quadratic polynomial, when MLR was
used in Equation (20), the estimation result of the winter wheat
yield was improved (Figure 10C), and the R2 value was 0.807,
with the increase of 0.099 and 0.137, respectively, compared to
the R2 values of 0.708 (LAI) and 0.670 (SPAD) for the single
parameter. The RMSE of yield decreased by 7.08 and 16.13 kg/ha,
compared to the RMSE values of 788.67 kg/ha (LAI, quadratic
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FIGURE 8 | Relationships between LAI, SPAD, and yield of winter wheat under different stages; (A) LAI and (B) SPAD.

FIGURE 9 | Correlations between yield of winter wheat estimated based on LAI and/or SPAD alone by using optimal regression analysis and multivariable liner
regression with ground-truth yield; (A) LAI, (B) SPAD, and (C) LAI and SPAD.

FIGURE 10 | Relationships between VIs and yield of winter wheat under different water treatments; (A) NDVI, (B) SAVI, (C) EVI, and (D) DVI.
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polynomial) and 797.72 kg/ha (SPAD, quadratic polynomial) for
the single parameter, respectively.

DISCUSSION

Estimation of Winter Wheat Parameters
at Different Water Treatments
The estimation of winter wheat LAI and SPAD with different
water treatments (low water, medium water, and high water)
using linear, quadratic polynomial, exponential models in
different days is shown in Appendix Figures A1–A3. It is
shown that the best agreement of predicted winter wheat
LAI and SPAD values was for the medium water level (120–
180 mm), followed by the low water level (0–60 mm) (LAI);
the worst was the high water level (210–240 mm). In Table 4,
the R2 values between the LAI obtained from eight estimation
models and the measured LAI were more than 0.7 in the
medium water level (0.7175–0.8966, at low water level: 0.6197–
0.8504 and at high water level: 0.650–0.749); there were few
estimation models with R2 greater than 0.8 between the
estimated LAI and the measured LAI. This indicates that
different water treatments had an effect on the inversion
of LAI-based VIs alone under the same models. However,
when multivariable liner regression was adopted (Table 4 and
Figure 6), the trend of LAI retrieval from VI-based UAV
multispectral imagery had changed (Quan et al., 2017; Berger
et al., 2018; Guo et al., 2020). The best inversion result was for
the low water level, followed by the medium water level and
high water level.

Again, it can be seen from Table 5 that all the R2 values
between the SPAD obtained estimation models and the measured
SPAD were more than 0.7 in medium water level (0.7011–0.8742);
in both low water and high water levels, 75% of them have an
R2 greater than 0.7, but in general, the estimation in the low
water level was better. However, when the multivariable linear
regression was adopted (Table 5 and Figure 7), the results here
were not similar to the LAI; the best inversion result was for
the medium water level, followed by the high water level and
low water level. It is shown that it was necessary to consider
multiple VIs to retrieve LAI and SPAD using multivariable linear
regression compared to the VI alone (Sun et al., 2012; Boegh et al.,
2013; Elarab et al., 2015; Li et al., 2015).

Prediction of Winter Wheat Yield on the
Basis of UAV
The crop parameters of winter wheat under different stages could
reflect the change of yield (Lin et al., 2009; Sid"ko et al., 2017)
(Figures 8A,B); the nonlinear values were both very significant
(R2 = 0.885 for LAI and R2 = 0.949 for SPAD), indicating
that the yield could be estimated by measuring LAI and SPAD
of winter wheat in the flowering stage (DAS229). The LAI
and SPAD of winter wheat were estimated by VI constructed
by UAV multispectral imagery (NDVI, EVI, SAVI, and DVI)
(Figures A1–A3). Figure 10 shows the estimation of winter
wheat yield with NDVI, SAVI, EVI, and DVI constructed by

UAV multispectral imagery under different water treatments,
and NDVI had the highest correlation with an R2 value of
0.673 (medium water > high water > low water), followed
by SAVI with an R2 value of 0.616 (high water > medium
water > low water).

According to the principle that LAI and SPAD were closely
related to the yield (Simonetta et al., 2009; Fang et al., 2010;
Bendig et al., 2013), it was feasible to carry out large-area remote
sensing yield estimation based on various VIs constructed by
UAV multispectral imagery (Figures 8–10). If drought caused
wilting of winter wheat, withering of lower leaves, or excessive
irrigation, crop development was abnormal, which could be
reflected by the dynamic change of crop parameters retrieved by
UAV multispectral remote sensing.

FUTURE WORK

There is an increasing need for further raising awareness on
the issue of improving estimation performance by using drone
multispectral images and constructing crop vision systems to
estimate crop parameters and yields. In order to reduce the error
in the process of image acquisition and processing, there are still
some problems to be solved. First of all, since the pixel value of the
image is the reflectivity of the incoming sunlight, the variation
of light conditions may lead to the variation of the image-
derived features. To further explore the relationship between
light changes and camera response (reflection) during UAV flight
missions, better integration of light dynamics (UAV attitude,
sun position, light scattering, clouds, etc.) is needed to describe
light changes. The number and date of data points selected are
important issues. In this study, different water treatments (lower
water, medium water, and higher water) were selected for the
dates from jointing stage to filling stage (DAS210, DAS229, and
DAS240). In addition, further research is needed to validate these
results for different crops and different sites.

CONCLUSION

The UAV multispectral remote sensing system, as an important
farmland-scale data acquisition tool, has great application
potential in rapidly, accurately, and economically estimating
farmland crop parameters and yields. The results confirmed
that the visible light directly derived from UAV multispectral
imagery had a high correlation with the measured LAI and
SPAD. Compared to the linear regression model, the quadratic
polynomial model, and the exponential model based on VIs
alone, the MLR based on NDVI, SAVI, DVI, and EVI had higher
correlations for both LAI and SPAD under low water treatment
with R2 values of 0.911 and 0.812, respectively. The quadratic
polynomial model based on NDVI alone had higher correlations
for both LAI and SPAD under medium water treatment, with
R2 values of 0.8996 and 0.87, respectively. However, under high
water treatment, the exponential model performance was better
than that of the linear model and quadratic polynomial model,
with R2 values of 0.829 and 0.749, respectively. Under different
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water treatments, the optimal regression model was different,
and with medium water treatment, the estimation was better for
both LAI and SPAD. The relationships between the measured
crop parameters and the measured yield were verified, and good
results were obtained (R2 = 0.689 for LAI and R2 = 0.717
for SPAD).

The LAI and SPAD derived from VIs had better potential
to estimate winter wheat yield; in the flowering stage, the
R2 values of winter wheat yield estimation based on LAI
(quadratic polynomial) and SPAD (quadratic polynomial)
were 0.708 and 0.670, respectively. When MLR was used to
estimate the yield based on LAI and SPAD, the result of
winter wheat yield estimation was improved (R2 = 0.807,
RMSE = 781.59 kg/ha). The ability of VI to identify different
aspects of plants is different, which results in improving
the prediction performance. Adding LAI and SPAD of UAV
multispectral images into the production prediction model
based on VIs can significantly improve the performance of
production estimation.

In conclusion, this study shows the potential of the UAV
multispectral imagery and regression model to estimate the
growth parameters and yield of winter wheat. The results
provide reference and technical support for the popularization
and application of UAV remote sensing in large-scale
precision agriculture.
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Recent advances in unmanned aerial vehicle (UAV) remote sensing and image analysis
provide large amounts of plant canopy data, but there is no method to integrate the
large imagery datasets with the much smaller manually collected datasets. A simple
geographic information system (GIS)-based analysis for a UAV-supported field study
(GAUSS) analytical framework was developed to integrate these datasets. It has three
steps: developing a model for predicting sample values from UAV imagery, field gridding
and trait value prediction, and statistical testing of predicted values. A field cultivation
experiment was conducted to examine the effectiveness of the GAUSS framework,
using a soybean–wheat crop rotation as the model system Fourteen soybean cultivars
and subsequently a single wheat cultivar were grown in the same field. The crop rotation
benefits of the soybeans for wheat yield were examined using GAUSS. Combining
manually sampled data (n = 143) and pixel-based UAV imagery indices produced a
large amount of high-spatial-resolution predicted wheat yields (n = 8,756). Significant
differences were detected among soybean cultivars in their effects on wheat yield,
and soybean plant traits were associated with the increases. This is the first reported
study that links traits of legume plants with rotational benefits to the subsequent crop.
Although some limitations and challenges remain, the GAUSS approach can be applied
to many types of field-based plant experimentation, and has potential for extensive use
in future studies.

Keywords: crop rotation, drone, experimental design, legume, wheat, yield

INTRODUCTION

Since R. A. Fisher’s initial work on statistical principles of experimental design (Fisher, 1926),
field experimentation has played a pivotal role in variety of plant sciences, including ecology,
evolutionary biology, forestry, and crop science (Box, 1980; Edmondson, 2005). In field
experiments, measured values may vary among the experimental plots owing to the treatments,
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but there is always some degree of additional variation caused by
both systematic errors, e.g., spatial variation in topography and
soil fertility, and random errors, e.g., variations from sampling
procedure (Sokal and Rohlf, 1995). Although many studies have
addressed methods to minimize these errors, the results of field
experiments are still subject to large unwanted and uncontrolled
variability (Hurlbert, 1984; Legendre et al., 2004; Payne, 2006;
Yang, 2010). In addition, a key factor in field experimentation
is the time-consuming nature of sampling coupled with
limited availability of time, resulting in small numbers of
samples, i.e., small sample size (Hurlbert, 1984). Small sample
size can cause significant analysis problems by reducing the
statistical power and inferential confidence, especially for data
with large systematic and random errors (Nakagawa and
Cuthill, 2007). Therefore, the development of cost-effective,
high-throughput, and general-purpose measurements and their
analytical framework is needed to extend the effectiveness of field
experimentation studies (Edmondson, 2005).

It is well known that legume plants such as soybeans can
acquire nitrogen from the atmosphere through a mutualistic
symbiosis with rhizobia, thereby providing a crucial service to
the ecosystem. The use of legumes in crop rotations for their
nitrogen-fixing ability has a long history (Chorley, 1981; Stinner
et al., 1992); it is widely practiced in both industrialized and
developing countries (Giller and Cadisch, 1995; Becker and
Johnson, 1998; Biederbeck et al., 2005). Many research projects
have quantified this nitrogen contribution and its net effect on
subsequent crop yields (Herridge and Rose, 2000; van Kessel
and Hartley, 2000; Walley et al., 2007; Anglade et al., 2015; Duc
et al., 2015). Interestingly, those studies have found the effects of
legume cultivation to be quite variable. Although many studies
report positive effects of legume cultivation on subsequent crop
yield, others have found neutral or even negative effects (reviewed
in Walley et al., 2007; Anglade et al., 2015). Such variations can be
partially explained by the extreme variability in nitrogen fixation
among different legume crops and among the cultivars used for
experimentation. Importantly, however, the large systematic and
random errors associated with crop rotation experiments can
increase the variability within results, and thereby reduce the
statistical power of the data analyses. In addition, the requirement
for two different crops to be grown sequentially in the same
field in crop rotation trials can magnify the potential for errors
during experiments.

To predict the effects of legume cultivation on subsequent
crops, to maximize their benefit, and to develop innovative
genotypes that can enhance rotational benefits, it is necessary
to identify which legume traits are associated with the
rotational benefits (Herridge and Rose, 2000). Comparison of
rotational effects among cultivars of the same legume species
may be the best way to achieve this goal, but no studies
have verified differences in rotational benefits among cultivars
(Duc et al., 2015). One reason for this lack of research
may be the difficulty in detecting cultivar differences using
conventional field experiments and statistical methods (e.g.,
ANOVA), because differences among cultivars are relatively
small, whereas the variations in rotational experiments are large.
To overcome this challenge, a method is needed to examine

the differences in rotational benefits among legume cultivars,
and to determine which legume traits are associated with
rotational benefits.

Recent advances in technical devices and analytical methods
have made it possible to do cost-effective remote sensing of
field-cultivated plants (Houle et al., 2010; Furbank and Tester,
2011; Tardieu et al., 2017; Tripodi et al., 2018). Proximal sensing
through the use of unmanned aerial vehicles (UAVs) is among
the most promising and popular techniques, because it is rapid,
non-destructive, cost-effective, and information dense (Sankaran
et al., 2015; Yang et al., 2017; Guo et al., 2018; Maes and Steppe,
2019). UAV remote sensing enables the acquisition of a large
amount of image data accompanied by location information.
Recent studies have shown that UAV sensing and image analysis
can be used to estimate several traits of field-cultivated plants,
e.g., cover area, volume, height, and normalized difference
vegetation index (NDVI) (Guo et al., 2017, 2020; Watanabe et al.,
2017; Zhou et al., 2017; Hassan et al., 2019). These techniques
allow researchers to cost-effectively and non-destructively obtain
large amounts of pixel-level plant canopy data with location
information. However, despite these significant benefits, there is
no general methodology to integrate the large quantities of image
data from UAV remote sensing with the manually collected data
from conventional field experimentation.

To investigate these issues, we proposed a simple analytical
framework, i.e., geographic information system (GIS)-based
analysis for UAV supported field study (GAUSS), to integrate
remote sensing data into a conventional field experiment
(Figure 1). A field cultivation experiment was conducted to
examine the effectiveness of the GAUSS framework, using a
soybean–wheat [Glycine max (L.) Merr.; Triticum aestivum L.]
crop rotation as the model system. The differences among
soybean cultivars in their effect on wheat yield were examined,
and the following questions were addressed:

(1) Which type or combination of indices from the UAV
imagery best predicted wheat yields?

(2) How did the whole distribution of estimated yields in a
plot differ from the actual yield data from manual sample
collection at selected locations?

(3) Were there differences in wheat yields associated with
different soybean cultivars?

(4) What traits of the soybean cultivars were associated with
the wheat yields?

MATERIALS AND METHODS

Field Cultivation of Soybean and Wheat
The study was conducted from June 2018 to June 2019 at
the Institute of Sustainable Agro-ecosystem Services (ISAS), the
University of Tokyo, Japan (35◦43′N, 139◦32′E). Soybeans were
grown during the summer (June to October), followed by winter
wheat in the winter (November to June). The soil was derived
from a volcanic ash, classified as a Typic Melanudand (USDA Soil
Taxonomy). Climatic data during the soybean and wheat growing
seasons are summarized in Supplementary Table 1.
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FIGURE 1 | Steps in the GIS-based analysis for UAV-supported field study (GAUSS) framework.

Fourteen soybean cultivars (Supplementary Table 2) with
different plant types and yield potentials were used (Kaga et al.,
2011). Seeds of the GmWMC (Glycine max world mini core-
collection) line were obtained from the current Genetic Resource
Center, National Agriculture and Food Research Organization,
Tsukuba, Japan. There were 70 experimental plots: 56 plots
for soybean cultivar testing, 4 plots where the natural weed
community was allowed to develop (weedy), 4 plots where the
soil was covered with an anti-weed covering (sheet), and 6
plots for destructive sampling of soybean plants (Figure 2A and
Supplementary Table 3). Each plot was 10.08 m2 (2.4 m× 4.2 m).
The cultivars were assigned to the plots in a randomized design,
with 2–6 replicates (Supplementary Table 3). Three soybean
seeds were sown per hill, on 20 June or 20 July 2018, with a
row spacing of 60 cm and a hill spacing of 30 cm. Hills were

thinned to one seedling at 3 weeks after sowing. A basal fertilizer
(N:P:K, 3:10:10) was applied at a rate of 1,000 kg ha−1 for
soybean cultivation.

The above-ground parts of the soybean plants were manually
harvested at physiological maturity during October 2018 and
dried completely at 80◦C. The whole-plant above-ground dry
weight, stem dry weight, seed dry weight, and 100-seed
weight were measured. The below-ground parts were left in
the soil. The field was tilled twice to a depth of 15 cm
using a rotovator at 2 weeks after the soybean harvest. In
November 2018, wheat (“Satonosora”) was uniformly sown
over the entire area (40 m × 50 m), including both the
location of the 70 soybean plots and the adjacent field
area (Figure 2B), at 80 kg ha−1. No fertilizer was applied
for wheat cultivation. Standard crop protection practices for
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FIGURE 2 | Experimental field P1–70 used in the work reported here. (A) Soybean (Glycine max) cultivation plots; (B) subsequent wheat (Triticum aestivum)
cultivation, with locations of preceding soybean plots superimposed on the image; (C) the field divided into 25-cm × 25-cm cells, using the UAV aerial surveillance
data.

soybean (manual weeding, pesticide application, intertillage, and
molding) and wheat (herbicide application, manual weeding, and
fungicide application) were followed.

During 5 to 10 June 2019, the above-ground parts of the
wheat plants were manually harvested from 154 sampling points
(1 m × 1 m; Supplementary Figure 1) by cutting at the soil
surface and placed in a mesh bag. The 154 sampling points
comprised one each in the 70 soybean plots and 84 in the adjacent
area of the field. A local area RTK-GPS (Real-Time Kinematic
Global Positioning System) that was conducted with Hemisphere
GNSS devices (Hemisphere GNSS, Scottsdale, AZ, United States)

was used to determine the locations of the sampling points.
After drying completely at 80◦C, the harvested wheat samples
were weighed and sorted into immature ears, mature ears, and
straw. The dry weights of mature ears and straw were measured
separately. The number of mature ears was counted.

GAUSS: An Analytical Framework to
Estimate Data Values From UAV Imagery
The GAUSS general framework was used to integrate remote
sensing data into a conventional field experiment that
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investigated plant growth benefits in a soy–wheat crop rotation.
The three main steps of this framework (represented in Figure 1)
were:

1 Development of the model for predicting sample values,
using UAV imagery

2 Field gridding and trait value prediction
3 Statistical testing of the predicted values

Detailed GAUSS Methodologies
Development of the Model for Predicting Sample
Values, Using UAV Imagery
Acquisition of Image Data
UAV remote sensing was carried out on 15 February, 14 March,
and 12 April 2019, when the target wheat plants were in various
stages of growth (tillering, early growth, and lager growth stage).
A commercial-grade UAV (DJI Inspire 1, Shenzhen, China)
equipped with a multispectral camera was used. The UAV was
flown automatically over the field (Figure 3A) at an altitude of 30
m under the control of a commercially available flight application
(Litchi, VC Technology Ltd., London, England). Two cameras—
a Zenmuse X5 (DJI, Shenzhen, China) and a Micasense RedEdge
(Micasense, Seattle, WA, United States)—were mounted on the
UAV to ensure that RGB and multispectral images were captured
during the same flight (Figure 3B). Two sets of images of a
calibrated reflectance panel placed at about 1 m height were also
captured immediately before and after each flight to improve the
accuracy of the reflectance data for multi-spectral images. Also,
acrylic plates were placed at the four corners of the field and
three locations within the field as ground control points (GCPs),
and were measured using the Hemisphere RTK differential GNSS
device to improve the geolocation accuracy.

The captured images were processed using commercial
photogrammetry software (Pix4Dmapper Pro, Pix4D, Lausanne,
Switzerland). The pixel-by-pixel values over the entire wheat
field were determined by using orthomosaic and digital surface
modeling (DSM) that are generated from RGB images to calculate
the vegetation cover area and plant height, respectively, and

reflectance maps were generated from the multi-spectral images
to calculate the NDVI (Figure 3C).

Developing the Model for Predicting Wheat Yield
To determine which of the image indices best predicted
actual wheat yield, the model selection based on the Akaike’s
information criteria (AIC) (Akaike, 1974) for results of
generalized linear models (GLMs) was used. Accurate
geolocation information for both the UAV imagery and the
manual sampling points made it possible to map the manually
sampled data (actual ground data) into the UAV imagery indices.
In the GLM analysis, the dry weight of the harvested wheat ears
from each manual sampling location was the response variable.
The means of vegetation cover area, plant height, and NDVI at
each of the sampling locations, estimated from the UAV images
recorded in February, March, and April, were the explanatory
variables. Plant height from February was excluded from the
analysis owing to low plant height (<10 cm) and consequent low
estimation accuracy. The error distribution was Gaussian with an
identity link function. The statistical model with the lowest AIC
score was selected as the best model (f ) for estimating the values
of the manually sampled wheat yield data (yp) at a sampling
point p from the UAV images, where:

ŷp = f
(
x1,p, x2,p, · · · , xm,p

)
+ ε (1)

and ŷp is the estimate of yp, xi,p represents i-th index (vegetation
cover area, plant height, or NDVI in this study) at a sampling
point p derived from the UAV images, m is the total number of
indices, and ε is measurement error, respectively. The best model
was then used in all subsequent steps.

Field Gridding and Trait Value Prediction
With the best model, the wheat yield over the entire field
was calculated in ArcGIS Spatial Analyst v. 10.6 software
(Esri, Redlands, California, United States) to map the aerial
photographs. The field was divided into 25 × 25 cm cells
(c1, c2, · · · , cnc , where nc is the total number of cells) using GIS.
With the model (f ), the pixel-by-pixel predicted values of the
target traits, including wheat yield, were calculated for the entire

FIGURE 3 | Representation of the image capture and data processing in the GAUSS system. (A) UAV overflight to capture image data; (B) types of image data
collected; (C) results of image processing.
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field (ŷp1 , ŷp2 , · · · , ŷpnp , where pi is the i-th pixel in the UAV
image of the field, and np is the total number of pixels in the
image). Then the average yield of wheat in each cell (ci) was
calculated from the pixel-by-pixel values:

ŷci =
∑
p in ci

ŷp/nci (2)

where nci is the total number of pixel in each cell.
Cells that contained two plots during soybean cultivation and

cells containing both corridor and experimental plot areas during
wheat cultivation were eliminated (Figure 2C). This resulted in
8756 cells of predicted wheat yield values (mean of 125 cells per
soybean plot). To assess the relationship between predicted yield
and manually sampled yield, the overall distributions of these
values for each plot were compared.

Statistical Testing of the Predicted Values
The experimental factors affecting the predicted wheat yields of
each cell were analyzed in two ways. The first set of analyses
examined whether the spatial variation of wheat yield was affected
by the previously grown soybean cultivar, using a generalized
linear mixed model (GLMM) with Gaussian distribution and
identity link. In this model, predicted wheat yields in each cell
were treated as the response variable, and sowing date and
cultivar were treated as the explanatory variables. To account
for systematic error due to spatial variations in the field and
to avoid pseudo-replication caused by repeated observations
from the same plots, the sowing row and plot identity (nested
within sowing row) were treated as random effects. A significant
difference among cultivars was found, so pairwise comparisons
between the cultivars that produced the lowest wheat yield and
other cultivars were carried out.

The second set of analyses investigated which soybean traits
affected the yield of the subsequently grown wheat, again
using the GLMM with Gaussian distribution and identity
link methodology. Predicted wheat yields of each cell were
treated as the response variable, and soybean stem dry weight,
seed dry weight, above-ground dry weight, 100-seed weight,
and their first-order interactions were treated as explanatory
variables. These are typical soybean traits that are measured

(Cui et al., 2001; Kaga et al., 2011; Qiu et al., 2013). The sowing
row and plot identity (nested within sowing row) were treated
as random effects.

The “lme4” package and the “lmer” function in the R software
environment for GLMM analyses (R Development Core Team,
2010; Bates et al., 2014) were used. The likelihood ratio test
was used to test the significance of the GLMM results. Graphs
of GLMM predictions were drawn in the sjPLot package for R
(Lüdecke, 2018).

RESULTS

Model Selection for Wheat Yield
AIC showed that the best model included four UAV-based indices
(i.e., vegetation cover area on 14 March and 12 April, height on
14 March, and NDVI on 12 April; Table 1). There was a high
correlation (R2 = 0.8061) between the values predicted by this
model and the observed manually measured yield (Figure 4A).
Among the models that were explored, all of the top 20 included
both cover area on 14 March and NDVI on 12 April (e.g.,
Table 1).

Comparison Between Manually Sampled
and Predicted Values
The set of predicted yields in each plot (excluding the 6 plots used
for destructive sampling of soybean plants) was determined by
using the GAUSS framework. The manually collected wheat yield
of a plot often differed from the set of predicted values for that
plot (Figure 4B). The manually collected values fell outside the
quartiles of the predicted values in 54.7% of the plots (35 of 64
plots) and most of these (25) were less than the 25% quartile of
the overall distribution of predicted values for the plot.

Differences Among Soybean Cultivars
The measured traits of the soybeans showed considerable
variability among cultivars (Supplementary Table 2).
Interestingly, conventional statistical analysis of the actual
wheat yield data did not identify significant variations among
the soybean cultivars in their effect on subsequent wheat yield

TABLE 1 | The results of model selection, ranked by Akaike information criteria (AIC), in the search to identify the best model for predicting ear dry weight of wheat
(Triticum aestivum) from UAV imagery data.

Model No. Explanatory variables included in the models R2 DF AIC 1AIC Weight

1 C_Mar.14 H_Mar.14 C_Apr.12 N_Apr.12 0.8061 6 2375.4 0 0.082

2 C_Mar.14 C_Apr.12 N_Apr.12 0.8035 5 2375.5 0.03 0.081

3 C_Mar.14 H_Mar.14 C_Apr.12 H_Apr.12 N_Apr.12 0.8083 7 2375.6 0.21 0.074

4 C_Mar.14 C_Apr.12 H_Apr.12 N_Apr.12 0.8058 6 2375.7 0.23 0.073

5 C_Feb.15 C_Mar.14 H_Mar.14 C_Apr.12 N_Apr.12 0.808 7 2375.9 0.47 0.065

16 C_Mar.14 H_Mar.14 N_Mar.14 C_Apr.12 H_Apr.12 N_Apr.12 0.809 8 2377.1 1.66 0.036

17 C_Feb.15 C_Mar.14 H_Mar.14 H_Apr.12 N_Apr.12 0.8045 7 2378.6 3.21 0.016

18 C_Mar.14 H_Mar.14 H_Apr.12 N_Apr.12 0.8016 6 2378.9 3.5 0.014

19 C_Mar.14 H_Apr.12 N_Apr.12 0.7983 5 2379.4 4.01 0.011

20 C_Feb.15 C_Mar.14 H_Apr.12 N_Apr.12 0.8 6 2380.2 4.74 0.008

C, vegetation cover area; H, averaged height; N, averaged normalized difference vegetation index (NDVI) of the sampling points.
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FIGURE 4 | Relationships between predicted and observed values. (A) Yields (wheat ear dry weight) predicted by the best model vs. observed values. (B) Boxplots
and scatter plots of the distribution of predicted wheat yields in each experimental plot (black bar within a box indicates median predicted yield; box bottom and top,
25 and 75% quartiles, respectively, whiskers, 1.5× the interquartile range; open circles outside the box, outliers) and manually sampled yield values (red bar). Note
that the 6 field plots (P31–33, P66–68) used for destructive sampling of soybean (Glycine max) plants are not included here. A total of 64 box plots are shown,
therefore the numbering of the x-axis is discontinuous. (C) Effects of the different soybean cultivars grown before the wheat crop on the predicted wheat ear dry
weights. Boxplot features are as described in (B). Asterisks indicate significant differences (∗P < 0.05; ∗∗P < 0.01) between the predicted values for cultivar v5
(which produced the lowest wheat yield) and each other soybean cultivar or weed management method.
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(ANOVA, F = 0.928, p = 0.536, Supplementary Figure 2).
However, the GAUSS analysis identified significant differences
among cultivars in the predicted wheat yields (Figure 4C and
Supplementary Table 4), after the effects of spatial variations
were removed statistically. Cultivar v5 was associated with
the lowest yield in the subsequent wheat crop, and v11 was
associated with the highest yield (Figure 4C). There was no
significant difference in wheat yields between soybean sowing
dates (Supplementary Table 4).

Soybean Traits Associated With Wheat
Yield
The interaction of soybean stem dry weight × above-ground dry
weight had a significant effect on wheat yield (ear dry weight;
P < 0.05; Supplementary Table 5). Increased above-ground dry
weight of whole soybean plants apparently reduced subsequent
wheat yield, but as the stem weight of soybean increased, the
wheat yields also increased (Figure 5A). Interestingly, where
the above-ground weight of soybean plants was low, the wheat
yield was high, regardless of the stem weight of soybean
(Figure 5A). In fact, the soybean cultivars associated with low
yields in wheat were usually those that had relatively large above-
ground weight and relatively small stem weight, and vice versa
(Figures 4C, 5B). The 100-seed weight of soybean seeds also

FIGURE 5 | Relationships between selected crop characteristics. (A) The
marginal effects of the above-ground dry weight and the stem dry weight of
soybeans (Glycine max) on the predicted ear dry weight of the subsequently
grown wheat (Triticum aestivum) crop. (B) The relationship between
above-ground dry weight and stem dry weight of the 14 soybean cultivars.

significantly affected the wheat yield (P < 0.05, Supplementary
Table 5 and Supplementary Figure 3). The interactions of
aboveground dry weight × seed dry weight and of stem dry
weight × seed dry weight did not significantly affect wheat yield
(Supplementary Table 5).

DISCUSSION

This study used a simple analytical framework, identified as
GAUSS, to analyze UAV-supported data from field experiments.
The performance of this framework was assessed by analyzing
data from a crop rotation trial of soybean and wheat. This
framework acquired a large amount of high-spatial-resolution
data for predicted wheat yield. Analysis of this data showed
significant differences among the soybean cultivars in the yield
of the wheat grown after them, and identified the soybean
traits associated with increased yield. Despite the long history
of legume plants in crop rotations (Chorley, 1981; Stinner et al.,
1992), to the best of our knowledge this is the first field study
that has identified which traits were associated with the benefits of
rotation. Although the conventional analysis of manual sampling
data did not identify significant differences among soybean
cultivars in their effect on wheat yield (Supplementary Figure 2),
the GAUSS approach did detect such differences. The large
quantity of predicted values with location information generated
by this methodology enabled the statistical analysis to include the
intra- and inter-plot variations. This suggests that GAUSS has the
potential to considerably enhance field experimentation, thereby
improving its usefulness.

Soybean cultivars with relatively small above-ground weight,
large stem weight, and low 100-seed weight were associated
with increased yield in the subsequently grown wheat crop. This
suggests several implications for studies of legume-based crop
rotations. First, the negative effect of increased above-ground
weight of soybean on wheat yield may be attributable to the
removal of the above-ground parts of soybean from the field at
harvest. Soybean cultivars with large above-ground weight likely
absorbed more soil nutrients from the soil than the cultivars
that produced small above-ground parts. This removal would
have decreased the available nutrient pool for subsequent wheat
growth. Second, a study comparing 383 soybean cultivars shows
a high correlation between stem and root weight (r2 = 0.81–
0.90; Nakamura and Sawahata, 1988). Therefore the soybean
cultivars with large stem weights likely produced large amounts
of roots, which may have affected the soil physical and chemical
conditions; for example, aggregate structure, release of nitrogen
compounds, and biological activities (decomposition) may have
been enhanced, increasing the yield of the subsequent wheat crop.
However, it should be noted that this experiment was conducted
in a single location and a single growing season. Multi-year trials
at various locations would be necessary for a more convincing
conclusion and a cost-effective GAUSS approach would be useful.

This study did not measure any below-ground soybean traits,
such as root biomass or number of nodules. Variations among
soybean cultivars in the symbiotic performance of rhizobia are
known to occur (Appunu et al., 2008). The variations in the effect
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of soybean cultivars on wheat yield observed in this experiment
may reflect these differences in rhizobial activity. However,
preliminary assessments found that the number of rhizobium
nodules on the roots of soybeans grown in this field was low.
There were no clear differences among the cultivars (data not
shown), likely owing to the relatively high soil nutrient content in
this field. Future studies are needed to clarify how soybean root
residues change soil biophysical properties and increase the yield
of subsequent crops. It remains unclear why the 100-seed weight
reduced the wheat yield. Chromosome segment substitution lines
for 100-seed weight (Liu et al., 2018) may be useful for exploring
the causal relationship, but that is beyond the scope of the work
reported here. The differences in total seed weight among the
soybean cultivars were not associated with differences in wheat
yield. This suggests that it may be possible to select soybean
cultivars that provide both sufficient soybean yields and crop
rotation benefits for the subsequent crop.

In this study, we did not measure the soil nitrate concentration
for each rotational treatment. In crop rotations with legumes, the
effect of soil nitrogen accumulation on subsequent crops has been
reported to be highly variable (Walley et al., 2007; Anglade et al.,
2015). One reason for the variation is that non-nitrogen (non-N)
factors (such as the bio-physical change in soil properties due to
legume residues, other plant nutrients, disease suppression, and
weed control) contribute significantly to crop rotational benefits
(Stevenson and Van Kessel, 1996; Arcand et al., 2014; Uzoh et al.,
2017). In order to verify how the soybean varieties affect the yield
of subsequent crops, it will be necessary not only to quantify the
change in the soil nitrogen accumulation, but to also examine
other bio-physical factors.

The present study applied the GAUSS approach to a crop
rotation experiment, but the approach is applicable to a wide
range of field experiments. For example, it could be used to
study the effects of environmental conditions (water, fertilizer,
pesticide, etc.) on yield, with high spatial resolution. GAUSS may
also be useful for field experiments in ecology and environmental
science. It could be used to measure any plant traits that can
be estimated from UAV (or potentially satellite) imagery. For
example, UAV imaging and image analysis may enable estimation
of important functional traits of complex plant communities,
such as biomass, volume, plant height, and photosynthetic
activity. The relationship between these functional traits and
plant diversity has been examined in grassland field experiments
all over the world (Tilman et al., 2006; Cardinale et al., 2007;
Zavaleta et al., 2010; Sasaki et al., 2017), but the GAUSS approach
has potential to greatly enhance these experiments.

GAUSS also has potential to markedly reduce the time needed
for yield surveys, which could facilitate greater numbers of
experimental treatments and replicates. For example, in the study
reported here, manual collection and measurement of 157 one-
square-meter wheat samples required more than 450 person-
hours, whereas the UAV drone surveillance, data processing, and
GIS analysis took approximately 20 person-hours for GAUSS
to estimate the yield of 8,756 cells (total 547.25 m2) in the
same experiment.

The GAUSS approach worked well here, but there are
many limitations and challenges that remain to be addressed

to facilitate its extensive adoption for field experimentation.
First, although the predictive model based on the UAV imagery
was relatively accurate (r2 = 0.8061), this model was based
on a relatively small number of UAV imagery datasets on 3
days (a total of seven variables: two height values, two NDVI
values, and three cover area values). Increasing the frequency
of UAV sensing and adding more explanatory variables could
produce an even better predictive model. The method used
here to identify the best model was limited by the number
of UAV surveys and the number of explanatory variables.
If the frequency of UAV sensing is increased and a large
number of explanatory variables is included, more flexible
analytical methods, such as machine learning, may be useful for
estimating models.

Second, the size of grid cells needs to be optimized. In this
study, the GIS grid size (25 cm × 25 cm) was based on the size
of an individual wheat plant. However, the grid can be any size,
depending on the size and scale of the target species.

Third, the appropriate size for experimental plots needs to be
determined. Here, the plot shape and size (2.4 m × 4.2 m) was
similar to those in typical field experiments. However, GAUSS can
detect differences using smaller plot sizes, which could improve
the efficiency of field experiments. Future studies will be needed
to identify and validate appropriate plot sizes for UAV-supported
field experiments.

Fourth, although it is more than 100 times more efficient
per unit area than manual measurement, the GAUSS method
always needs manually sampled data from which to develop its
predictive models.

Fifth, the GAUSS approach is somewhat expensive because it
requires a UAV (drone) with a multispectral camera and RTK-
GPS. However, these costs are likely to decrease substantially as
the technology develops further and becomes more widely used.

Sixth, although development of relatively good predictive
models may help overcome the inherent large variations among
manually collected samples, examinations of diverse plant species
under various field conditions (e.g., rice, potato, and maize, in
uniform vs. non-uniform fields) are needed to investigate the
variability of GAUSS data within field experiments.

Seventh, in step 1 of GAUSS, we used commercial
photogrammetric software (Pix4Dmapper Pro, Pix4D, Lausanne,
Switzerland) to run the 3D reconstruction of the field. In step
2 and 3, we also run the separated scripts to sample the field
and calculate phenotypic traits, those require several manual
operations, which are time-consuming. In the future, building
an automated pipeline (e.g., CIAT Pheno-i, Selvaraj et al., 2020)
will allow us to build predictive models more cost-effectively,
easily-to-sue, and quickly.

In conclusion, a new analytical framework for UAV-
supported field experimentation was proposed. This framework
may be applicable to a wide range of field experimentation
in crops and wild plants. It could improve the way field
experiments are conducted, which has not changed much
since Fisher’s era. Wider usage and resolution of the
limitations and challenges will likely enable the proposed
GAUSS framework to be used consistently in future
field experiments.

Frontiers in Plant Science | www.frontiersin.org 9 May 2021 | Volume 12 | Article 63769477

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-637694 May 27, 2021 Time: 8:10 # 10

Fukano et al. GIS-Based Analysis for UAV-Supported Experiments

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

YF, WG, SO, NA, SK, and HK conducted field
experiment. WG conducted drone sensing and image
analysis. All authors discussed, wrote the manuscript, and
designed the experiment.

FUNDING

This work was partially supported by JSPS KAKENHI
Grant No. 18KT0087, the Takano Life Science Research
Foundation, the JST CREST Program JPMJCR1512,
SICORP Program JPMJSC16H2, aXis program JPMJAS2018,
and Japan Science and Technology Agency PRESTO
Grants JPMJPR17Q8.

ACKNOWLEDGMENTS

We thank K. Ichikawa, D. Ishizuka, and K. Yatsuda for
assistance with GPS measurement and crop production
management, M. Nakajima and C. Tanaka for weed management,

and members of the Institute for Sustainable Agro-
ecosystem Services for helpful discussions and support
of the research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
637694/full#supplementary-material

Supplementary Figure 1 | The locations of the manual sampling points in the
experimental field.

Supplementary Figure 2 | Comparison of the effects of different soybean
(Glycine max) cultivars grown before the wheat (Triticum aestivum) crop on ear dry
weight of wheat.

Supplementary Figure 3 | The marginal effect of 100-seed dry weight of
soybean (Glycine max) on the predicted values of ear dry weight of subsequently
grown wheat (Triticum aestivum).

Supplementary Table 1 | Monthly means of mean air temperature, daily solar
radiation, and total precipitation.

Supplementary Table 2 | Cultivar identities and values of measured traits of the
soybeans (Glycine max) grown in this study.

Supplementary Table 3 | List of experimental plots.

Supplementary Table 4 | Results of generalized linear mixed model (GLMM)
analysis of wheat (Triticum aestivum) ear weight in response to previously grown
soybean (Glycine max) cultivars.

Supplementary Table 5 | Results of generalized linear mixed model (GLMM)
analysis of wheat (Triticum aestivum) ear weight in response to specific traits of
previously grown soybeans (Glycine max).

REFERENCES
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.

Automat. Contr. 19, 716–723. doi: 10.1109/TAC.1974.1100705
Anglade, J., Billen, G., and Garnier, J. (2015). Relationships for estimating N2

fixation in legumes: Incidence for N balance of legume-based cropping systems
in europe. Ecosphere 6, 1–24. doi: 10.1890/ES14-00353.1

Appunu, C. C., Sen, D., Singh, M. K., and Dh, B. (2008). Variation in symbiotic
performance of Bradyrhizobium japonicum strains and soybean cultivars
under field conditions. J. Cent. Eur. Agric. 9, 185–189. doi: 10.5513/jcea.
v9i1.509

Arcand, M. M., Knight, J. D., and Farrell, R. E. (2014). Differentiating between
the supply of N to wheat from above and belowground residues of preceding
crops of pea and canola. Biol. Fertil. Soils 50, 563–570. doi: 10.1007/s00374-013-
0877-4

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014). Fitting linear mixed-effects
models using lme4. arXiv. arXiv:1406.5823

Becker, M., and Johnson, D. E. (1998). Legumes as dry season fallow in upland
rice-based systems of West Africa. Biol. Fertil. Soils 27, 358–367. doi: 10.1007/
s003740050444

Biederbeck, V. O., Zentner, R. P., and Campbell, C. A. (2005). Soil microbial
populations and activities as influenced by legume green fallow in a
semiarid climate. Soil Biol. Biochem. 37, 1775–1784. doi: 10.1016/j.soilbio.2005.
02.011

Box, J. F. (1980). R.A. Ffisher and the design of experiments, 1922-1926. Am. Stat.
34, 1–7. doi: 10.1080/00031305.1980.10482701

Cardinale, B. J., Wright, J. P., Cadotte, M. W., Carroll, I. T., Hector, A., Srivastava,
D. S., et al. (2007). Impacts of plant diversity on biomass production increase
through time because of species complementarity. Proc. Natl. Acad. Sci. U.S.A.
104, 18123–18128. doi: 10.1073/pnas.0709069104

Chorley, G. P. H. (1981). The agricultural revolution in northern europe, 1750-
1880: nitrogen, legumes, and crop productivity. Econ. Hist. Rev. 34, 71–93.
doi: 10.1111/j.1468-0289.1981.tb02007.x

Cui, Z., Carter, T. E., Burton, J. W., and Wells, R. (2001). Phenotypic diversity
of modern Chinese and North American soybean cultivars. Crop Sci. 41,
1954–1967. doi: 10.2135/cropsci2001.1954

Duc, G., Agrama, H., Bao, S., Berger, J., Bourion, V., De Ron, A. M., et al. (2015).
Breeding a annual grain legumes for sustainable agriculture: new methods to
approach complex traits and target new ccultivar ideotypes. CRC. Crit. Rev.
Plant Sci. 34, 381–411. doi: 10.1080/07352689.2014.898469

Edmondson, R. N. (2005). Past developments and future opportunities in the
design and analysis of crop experiments. J. Agric. Sci. 143, 27–33. doi: 10.1017/
S0021859604004472

Fisher, R. A. (1926). The arrangement of field experiments. J. Minist. Agric. Gt.
Britain 33, 503–513.

Furbank, R. T., and Tester, M. (2011). Phenomics - technologies to relieve the
phenotyping bottleneck. Trends Plant Sci. 16, 635–644. doi: 10.1016/j.tplants.
2011.09.005

Giller, K. E., and Cadisch, G. (1995). Future benefits from biological nitrogen
fixation: an ecological approach to agriculture. Plant Soil 174, 255–277. doi:
10.1007/BF00032251

Guo, W., Fukano, Y., Noshita, K., and Ninomiya, S. (2020). Field-based individual
plant phenotyping of herbaceous species by unmanned aerial vehicle. Ecol. Evol.
10, 12318–12326. doi: 10.1002/ece3.6861

Guo, W., Zheng, B., Duan, T., Fukatsu, T., Chapman, S., and Ninomiya, S. (2017).
EasyPCC: benchmark datasets and tools for high-throughput measurement of
the plant canopy coverage ratio under field conditions. Sensors (Switzerland) 17,
1–13. doi: 10.3390/s17040798

Guo, W., Zheng, B., Potgieter, A. B., Diot, J., Watanabe, K., Noshita, K., et al. (2018).
Aerial imagery analysis – quantifying appearance and number of sorghum

Frontiers in Plant Science | www.frontiersin.org 10 May 2021 | Volume 12 | Article 63769478

https://www.frontiersin.org/articles/10.3389/fpls.2021.637694/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.637694/full#supplementary-material
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1890/ES14-00353.1
https://doi.org/10.5513/jcea.v9i1.509
https://doi.org/10.5513/jcea.v9i1.509
https://doi.org/10.1007/s00374-013-0877-4
https://doi.org/10.1007/s00374-013-0877-4
https://arxiv.org/abs/1406.5823
https://doi.org/10.1007/s003740050444
https://doi.org/10.1007/s003740050444
https://doi.org/10.1016/j.soilbio.2005.02.011
https://doi.org/10.1016/j.soilbio.2005.02.011
https://doi.org/10.1080/00031305.1980.10482701
https://doi.org/10.1073/pnas.0709069104
https://doi.org/10.1111/j.1468-0289.1981.tb02007.x
https://doi.org/10.2135/cropsci2001.1954
https://doi.org/10.1080/07352689.2014.898469
https://doi.org/10.1017/S0021859604004472
https://doi.org/10.1017/S0021859604004472
https://doi.org/10.1016/j.tplants.2011.09.005
https://doi.org/10.1016/j.tplants.2011.09.005
https://doi.org/10.1007/BF00032251
https://doi.org/10.1007/BF00032251
https://doi.org/10.1002/ece3.6861
https://doi.org/10.3390/s17040798
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-637694 May 27, 2021 Time: 8:10 # 11

Fukano et al. GIS-Based Analysis for UAV-Supported Experiments

heads for applications in breeding and agronomy. Front. Plant Sci. 9:1544.
doi: 10.3389/fpls.2018.01544

Hassan, M. A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X., et al.
(2019). A rapid monitoring of NDVI across the wheat growth cycle for grain
yield prediction using a multi-spectral UAV platform. Plant Sci. 282, 95–103.
doi: 10.1016/j.plantsci.2018.10.022

Herridge, D., and Rose, I. (2000). Breeding for enhanced nitrogen fixation in crop
legumes. Field Crop. Res. 65, 229–248. doi: 10.1016/S0378-4290(99)00089-1

Houle, D., Govindaraju, D. R., and Omholt, S. (2010). Phenomics:
the next challenge. Nat. Rev. Genet. 11, 855–866. doi: 10.1038/nrg
2897

Hurlbert, S. (1984). Pseudoreplication and the design of ecological field
experiments. Eciol. Monogr. 54, 187–211.

Kaga, A., Shimizu, T., Watanabe, S., Tsubokura, Y., Katayose, Y., Harada, K., et al.
(2011). Evaluation of soybean germplasm conserved in NIAS genebank and
development of mini core collections. Breed. Sci. 61, 566–592. doi: 10.1270/
jsbbs.61.566

Legendre, P., Dale, M. R. T., Fortin, M. J., Casgrain, P., and Gurevitch, J. (2004).
Effects of spatial structures on the results of field experiments. Ecology 85,
3202–3214. doi: 10.1890/03-0677

Liu, D., Yan, Y., Fujita, Y., and Xu, D. (2018). Identification and validation of QTLs
for 100-seed weight using chromosome segment substitution lines in soybean.
Breed. Sci. 68, 442–448. doi: 10.1270/jsbbs.17127

Lüdecke, D. (2018). sjPlot: Data Visualization for Statistics in Social Science. R
package version 2.1.

Maes, W. H., and Steppe, K. (2019). Perspectives for remote sensing with
unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 24, 152–
164. doi: 10.1016/j.tplants.2018.11.007

Nakagawa, S., and Cuthill, I. C. (2007). Effect size, confidence interval and statistical
significance: a practical guide for biologists. Biol. Rev. 82, 591–605. doi: 10.1111/
j.1469-185X.2007.00027.x

Nakamura, S., and Sawahata, H. (1988). Ratio of stem weight to root weight of
soybean cultivars. Jpn. J. Crop Sci. 57, 621–626.

Payne, R. W. (2006). New and traditional methods for the analysis of unreplicated
experiments. Crop Sci. 46, 2476–2481. doi: 10.2135/cropsci2006.04.0273

Qiu, L. J., Xing, L. L., Guo, Y., Wang, J., Jackson, S. A., and Chang, R. Z. (2013).
A platform for soybean molecular breeding: the utilization of core collections
for food security. Plant Mol. Biol. 83, 41–50. doi: 10.1007/s11103-013-
0076-6

R Development Core Team, (2010). R: A Language and Environment for Statistical
Computing. Vienna: R Foundation statistics Computing.

Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R.,
Vandemark, G. J., et al. (2015). Low-altitude, high-resolution aerial imaging
systems for row and field crop phenotyping: a review. Eur. J. Agron. 70, 112–123.
doi: 10.1016/j.eja.2015.07.004

Sasaki, T., Yoshihara, Y., Takahashi, M., Byambatsetseg, L., Futahashi, R.,
Nyambayar, D., et al. (2017). Differential responses and mechanisms of
productivity following experimental species loss scenarios. Oecologia 183, 785–
795. doi: 10.1007/s00442-016-3806-z

Selvaraj, M. G., Valderrama, M., Guzman, D., Valencia, M., Ruiz, H., Acharjee,
A., et al. (2020). Machine learning for high-throughput field phenotyping and
image processing provides insight into the association of above and below-
ground traits in cassava (Manihot esculenta Crantz). Plant Methods 16, 1–19.
doi: 10.1186/s13007-020-00625-1

Sokal, R. R., and Rohlf, F. J. (1995). Biometry: the Principles and Practice of Statistics
in Biological Research, 3rd Edn. New York, NY: Freeman.

Stevenson, F. C., and Van Kessel, C. (1996). The nitrogen and non-nitrogen
rotation benefits of pea to succeeding crops. Can. J. Plant Sci. 76, 735–745.
doi: 10.4141/cjps96-126

Stinner, D. H., Glick, I., and Stinner, B. R. (1992). Forage legumes and cultural
sustainability: lessons from history. Agric. Ecosyst. Environ. 40, 233–248. doi:
10.1016/0167-8809(92)90095-S

Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., and Bennett, M. (2017). Plant
phenomics, from sensors to knowledge. Curr. Biol. 27, R770–R783. doi: 10.
1016/j.cub.2017.05.055

Tilman, D., Reich, P. B., and Knops, J. M. H. (2006). Biodiversity and ecosystem
stability in a decade-long grassland experiment. Nature 441, 629–632. doi: 10.
1038/nature04742

Tripodi, P., Massa, D., Venezia, A., and Cardi, T. (2018). Sensing technologies for
precision phenotyping in vegetable crops: current status and future challenges.
Agronomy 8:57. doi: 10.3390/agronomy8040057

Uzoh, I. M., Obalum, S. E., Igwe, C. A., and Abaidoo, R. C. (2017). Quantitative
separation of nitrogen and non-nnitrogen rotation benefits for maize following
velvet bean under selected soil mmanagement practices. Agric. Res. 6, 378–388.
doi: 10.1007/s40003-017-0272-8

van Kessel, C., and Hartley, C. (2000). Agricultural management of grain legumes:
has it led to an increase in nitrogen fixation? Field Crop. Res. 65, 165–181.
doi: 10.1016/S0378-4290(99)00085-4

Walley, F. L., Clayton, G. W., Miller, P. R., Carr, P. M., and Lafond, G. P. (2007).
Nitrogen economy of pulse crop production in the Northern Great Plains.
Agron. J. 99, 1710–1718. doi: 10.2134/agronj2006.0314s

Watanabe, K., Guo, W., Arai, K., Takanashi, H., Kajiya-Kanegae, H., Kobayashi, M.,
et al. (2017). High-throughput phenotyping of sorghum plant height using an
unmanned aerial vehicle and its application to genomic prediction modeling.
Front. Plant Sci. 8:421. doi: 10.3389/fpls.2017.00421

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial
vehicle remote sensing for field-based crop phenotyping: current status and
perspectives. Front. Plant Sci 8:1111. doi: 10.3389/fpls.2017.01111

Yang, R. C. (2010). Towards understanding and use of mixed-model analysis
of agricultural experiments. Can. J. Plant Sci. 90, 605–627. doi: 10.4141/
CJPS10049

Zavaleta, E. S., Pasari, J. R., Hulvey, K. B., and Tilman, G. D. (2010). Sustaining
multiple ecosystem functions in grassland communities requires higher
biodiversity. Proc. Natl. Acad. Sci. U.S.A. 107, 1443–1446. doi: 10.1073/pnas.
0906829107

Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., Yao, X., et al.
(2017). Predicting grain yield in rice using multi-temporal vegetation
indices from UAV-based multispectral and digital imagery. ISPRS J.
Photogramm. Remote Sens. 130, 246–255. doi: 10.1016/j.isprsjprs.2017.
05.003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Fukano, Guo, Aoki, Ootsuka, Noshita, Uchida, Kato, Sasaki,
Kamikawa and Kubota. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 11 May 2021 | Volume 12 | Article 63769479

https://doi.org/10.3389/fpls.2018.01544
https://doi.org/10.1016/j.plantsci.2018.10.022
https://doi.org/10.1016/S0378-4290(99)00089-1
https://doi.org/10.1038/nrg2897
https://doi.org/10.1038/nrg2897
https://doi.org/10.1270/jsbbs.61.566
https://doi.org/10.1270/jsbbs.61.566
https://doi.org/10.1890/03-0677
https://doi.org/10.1270/jsbbs.17127
https://doi.org/10.1016/j.tplants.2018.11.007
https://doi.org/10.1111/j.1469-185X.2007.00027.x
https://doi.org/10.1111/j.1469-185X.2007.00027.x
https://doi.org/10.2135/cropsci2006.04.0273
https://doi.org/10.1007/s11103-013-0076-6
https://doi.org/10.1007/s11103-013-0076-6
https://doi.org/10.1016/j.eja.2015.07.004
https://doi.org/10.1007/s00442-016-3806-z
https://doi.org/10.1186/s13007-020-00625-1
https://doi.org/10.4141/cjps96-126
https://doi.org/10.1016/0167-8809(92)90095-S
https://doi.org/10.1016/0167-8809(92)90095-S
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1038/nature04742
https://doi.org/10.1038/nature04742
https://doi.org/10.3390/agronomy8040057
https://doi.org/10.1007/s40003-017-0272-8
https://doi.org/10.1016/S0378-4290(99)00085-4
https://doi.org/10.2134/agronj2006.0314s
https://doi.org/10.3389/fpls.2017.00421
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.4141/CJPS10049
https://doi.org/10.4141/CJPS10049
https://doi.org/10.1073/pnas.0906829107
https://doi.org/10.1073/pnas.0906829107
https://doi.org/10.1016/j.isprsjprs.2017.05.003
https://doi.org/10.1016/j.isprsjprs.2017.05.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


OPINION
published: 22 October 2021

doi: 10.3389/fpls.2021.749374

Frontiers in Plant Science | www.frontiersin.org 1 October 2021 | Volume 12 | Article 749374

Edited by:

Alessandro Matese,

National Research Council (CNR), Italy

Reviewed by:

Piero Toscano,

National Research Council (CNR), Italy

*Correspondence:

Miriam Machwitz

miriam.machwitz@list.lu

Specialty section:

This article was submitted to

Technical Advances in Plant Science,

a section of the journal

Frontiers in Plant Science

Received: 29 July 2021

Accepted: 27 September 2021

Published: 22 October 2021

Citation:

Machwitz M, Pieruschka R, Berger K,

Schlerf M, Aasen H, Fahrner S,

Jiménez-Berni J, Baret F and

Rascher U (2021) Bridging the Gap

Between Remote Sensing and Plant

Phenotyping—Challenges and

Opportunities for the Next Generation

of Sustainable Agriculture.

Front. Plant Sci. 12:749374.

doi: 10.3389/fpls.2021.749374

Bridging the Gap Between Remote
Sensing and Plant
Phenotyping—Challenges and
Opportunities for the Next
Generation of Sustainable Agriculture

Miriam Machwitz 1*, Roland Pieruschka 2, Katja Berger 3, Martin Schlerf 1, Helge Aasen 4,

Sven Fahrner 2, Jose Jiménez-Berni 5, Frédéric Baret 6 and Uwe Rascher 7

1Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belval,

Luxembourg, 2 Institute of Bio and Geosciences, Plant Sciences, Forschungszentrum Jülich, Helmholtz-Verband Deutscher

Forschungszentren, Jülich, Germany, 3Department of Geography, Ludwig-Maximilians-Universität München, Munich,

Germany, 4Department of Environmental Systems Science, Crop Science, Eidgenössische Technische Hochschule (ETH)

Zurich, Zurich, Switzerland, 5 Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Cordoba,

Spain, 6 INRAE-EMMAH-CAPTE, Avignon, France, 7 Forschungszentrum Jülich, Institute of Bio- and Geosciences Plant

Sciences (IBG-2), Jülich, Germany

Keywords: remote sensing, high-throughput field phenotyping, unmanned aerial vehicles (UAVs), multi-sensor

synergies, open-data standards, vegetation traits, radiative transfer models (RTM), smart farming

INTRODUCTION

Sustainable and resilient agriculture with a low impact on the environment is pivotal to ensure
food security for a growing global population. This is of particular importance faced with
the unprecedented challenge of climate change (FAO., 2017) for crop production. Sustainable
intensification or currently rather the conservation of yield (Rosenqvist et al., 2019) requires
the consideration of the entire crop production pipeline, ranging from breeding and identifying
varieties adapted to specific environmental conditions, to improving agricultural landmanagement
(agriculture 5.0, Saiz-Rubio and Rovira-Más, 2020). An essential aspect of these efforts is the
quantitative assessment of the plant traits contributing to increased, reliable production and the
efficient use of resources, such as nutrients or water. Faced climate change and the appearance of
more frequent and intense stress events, there is a need for resilient breeding lines, as summarized
in the review of Razzaq et al. (2021). Besides drought stress, heat stress is expected to have a major
negative impact on yield in Europe (Semenov and Shewry, 2011).

In this context, two areas of research, plant phenotyping and remote sensing, are becoming
increasingly important. Field phenotyping refers to a quantitative description of a plant’s
phenotype—i.e., its anatomical, ontogenetical, physiological, and biochemical properties—in its
natural environment (Walter et al., 2017). Remote sensing in the agricultural context is the
observation of vegetation by a remote device and the retrieval of its qualitative or quantitative
properties. While remote sensing and plant phenotyping researchers are both interested in the
interaction of plant growth with the environment (including management practices), the two
fields have a different focus. Traditionally, remote sensing is used to estimate spatial trends across
the landscape, while plant phenotyping aims to remove spatial effects in their data in order to
investigate the genetic effects of different plant varieties in response to the prevailing environmental
conditions. Nevertheless, both disciplines are united in their efforts to estimate plant traits and
explain apparent differences in the phenotype precisely (Aasen and Herrera, (under review)).
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Driven by the need for new concepts in sustainable
agriculture, an increased use of remote sensing approaches in
field phenotyping and vice versa has been observed over the
last decade. On one hand, field phenotyping has increasingly
deployed imaging instruments traditionally used in remote
sensing (Johansen et al., 2019) to meet the need for increased
throughput in field phenotyping (Araus and Cairns, 2014). The
analysis of remote sensing data by non-experts without full
knowledge of the sensing principles hampers the exploitation of
the full potential of the methods at hand. On the other hand,
remote sensing scientists have started to estimate plant traits
and analyze data from breeding experiments (Yang et al., 2017).
However, their findings are often not interpreted in light of the
physiological processes that shape the relation of a crop within
the environment. Additionally, there are differences in input
data, acquisition protocols, plant trait definitions, and retrieval
models that hinder close cooperation between the two disciplines
(Figure 1).

Facilitating exchange between the two disciplines offers
possibilities to trigger cross-fertilization: An improved
understanding of the target traits will allow the remote sensing
community to develop more precise and ultimately more useful
tools. Likewise, establishing state-of-the-art remote sensing
methods as plant phenotyping tools will allow an improved
understanding and modeling of crops in dynamic environments.
Ultimately, this exchange has the potential to stimulate growth
in both communities and their interconnection may lead to
new developments toward more sustainable agriculture. There
is a need for multiple stress-resilient breeding lines combined
with a need for multi-site and multi-regional testing (Rosenqvist
et al., 2019). Breeders and plant phenotyping need to provide
breeding lines that are able to cope with unprecedented stress
conditions. To target sustainable and resilient agriculture, we
propose that remote sensing should develop toward near-real
time monitoring of certain traits on large scales under several
environmental conditions (climate, soil etc.) as a global multi-site
experiment. The current work on real-time observations (for
example, special issue of MPDI remote sensing in 2021: “Near
Real-Time (NRT) Agriculture Monitoring” https://www.mdpi.
com/journal/remotesensing/special_issues/NRT_agriculture_
monitoring) offers, on the one hand, the possibility to give timely
management advice, which again could be optimized through
joint research between the two communities. On the other
hand, the remotely sensed information on plant traits and their
actual condition could be directed back to field phenotyping
experts to optimize the breeding lines with respect to certain
environmental constraints. A similar concept for forests was
proposed by Dungey et al. (2018).

We initiated a discussion betweenmore than 130 experts from
the remote sensing and plant phenotyping community in the
context of a joint workshop (https://www.senseco.eu/working-
groups/wg3-sensor-synergies/) of the COST action SENSECO
“Optical synergies for spatiotemporal SENsing of Scalable
ECOphysiological traits” (https://www.senseco.eu/) and the
ESFRI plant phenotyping infrastructure EMPHASIS “European
Infrastructure for Plant Phenotyping” (https://emphasis.plant-

phenotyping.eu/). During the discussion, we identified the
following key areas for future collaboration:

(i) transferring and harmonizing knowledge on protocols,
methods, and data between the two communities;

(ii) optimizing quantitative trait estimation by using new
sensors, and integrating data from different spectral
domains and spatial resolutions, preferably in real-time;

(iii) linking existing and new modeling approaches and recent
developments in artificial intelligence to bridge different
observation scales through space and time.

DATA EXCHANGE AND PROTOCOL
STANDARDIZATION

Plant phenotyping and remote sensing collect a large
amount of data, including spectral observations and
biochemical/biophysical plant traits. However, the exchange
of these data requires the standardization of measurement
protocols and harmonization of measurement procedures.
Thus, a broad exchange of measuring concepts for plant trait
assessments should be initiated, complemented by an open
data policy allowing for the broader use and re-use of data
(Fiorani and Schurr, 2013; Reynolds et al., 2019). In particular,
plant phenotyping scientists are developing a large number of
solutions to address a diversity of crops, traits, and treatments.
Since there is no one-size-fits-all solution, existing hardware
and software solutions often need to be adapted, even for the
same traits of interests in different crops. This has led to both a
“Phenotyping Dilemma” as stated by Rosenqvist et al. (2019) and
the need for harmonization. This was addressed within COST
action FA1306, “The quest for tolerant varieties – phenotyping
at plant and cellular level” (Phenomen-All) and the EU-funded
projects EPPN and EPPN2020 leading to the ESFRI research
infrastructure entitled EMPHASIS. Plant phenotyping will never
be able to measure all genotypes under all relevant conditions,
thus, further integration of the community and the use and
development of existing synergies, such as those between remote
sensing and phenotyping, are key to achieving the required
impact of improved plant production in times of climate change.
It is therefore vital to develop FAIR data approaches (Wilkinson
et al., 2016) that link the communities, and sharing phenotyping
data (Danilevicz et al., 2021) will benefit plant and crop sciences
at large.

In remote sensing, standards for metadata collection
by scientists often mainly regard information on sensor
performance or geolocation, while auxiliary data about
vegetation is often limited to the traits in focus. But, plant
status is only a small function of just one individual co-variable
and requires additional information on the biotic and abiotic
environment and genetic makeup of the plant, thus, such an
approach may result in an oversimplified interpretation of the
remote sensing signal (Galieni et al., 2021). In contrast, explicit
geolocation is essential to link the signal to the field observation
and needs to be considered in field phenotyping data collection.
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FIGURE 1 | A closer collaboration of remote sensing and plant phenotyping has the potential to foster research for a sustainable and resilient agriculture. Common

topics between the two communities (gray arrows) have been identified for collaboration and cutting-edge research. In the left and right columns, differences between

remote sensing and plant phenotyping are listed regarding the three topics. In blue, the potential for future collaboration is indicated.

The phenotyping community has developed the Minimum
Information About a Plant Phenotyping Experiment (MIAPPE)
as a bottom-up standard of metadata required to adequately
describe a plant phenotyping experiment with well-defined
data models and make the data reusable (Papoutsoglou et al.,
2020). Such standards or developed recommendations and
guidelines (Manfreda et al., 2018; Tmušić et al., 2020), like
in the COST action CA16219 Harmonious (Harmonization
of UAS techniques for agricultural and natural ecosystems
monitoring, https://www.cost.eu/actions/CA16219/ and https:/
/www.costharmonious.eu/), essentially represent a checklist of
how to describe an experiment and could be adapted and
extended by including the considerations of both communities
to improve the interpretability, reusability, and transferability of
data. This would also allow the exchange of data between the
two communities and extrapolate results from one experiment to
another. In particular, the phenotyping community could benefit
from traits estimated within the landscape by remote sensing,
while the remote sensing community could use data from the

field phenotyping community to improve model development
(c.f. section New Sensors for Quantitative Trait Estimation From
the Plot and the Ecosystem Scale).

NEW SENSORS FOR QUANTITATIVE TRAIT
ESTIMATION FROM THE PLOT AND THE
ECOSYSTEM SCALE

The availability of remote sensing data has increased significantly
over the last decade. Satellites with a high temporal, spectral, and
spatial resolution like the Sentinel-2 sensors or Hyperspectral
Precursor and Application Mission (PRISMA) allow for
new or improved agricultural applications. Moreover, the
advent of nano-satellites further improves revisit times and
spatial resolution of satellite systems. Developments in sensor
technology, measurement procedures, and data correction
workflows have matured UAVs to reliable quantitative remote
sensing systems (Aasen et al., 2018) and initiated a new era in
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the remote sensing of crops (Zarco-Tejada, 2008; Herrmann and
Berger, 2021). Today, a variety of (hyper) spectral, thermal, sun-
induced fluorescence, and 3D/LiDAR instruments are available
for UAVs. Consequently, they have also become a common tool
for (high-throughput) field phenotyping (Yang et al., 2017) and
have been proposed as a “game-changer in precision agriculture”
(Maes and Steppe, 2019). Traits such as plant height/growth,
pigments, canopy cover, and temperature, which are highly
relevant for the vitality and performance of crops (Tattaris
et al., 2016), can now be derived from UAV remote sensing
data (Zarco-Tejada et al., 2012; Aasen and Bareth, 2018; Roth
et al., 2018; Perich et al., 2020). Moreover, imaging spectroscopy
from UAVs is able to capture data with a viewing geometry
closer to the hemispherical-directional reflectance factors of
satellite products (Aasen and Bolten, 2018) and thus may bridge
the gap between field phenotyping experiments and landscape
monitoring (Aasen and Herrera, (under review)). However, UAV
flights need careful planning, consideration of regulations, and
realistic estimation of manpower (Reynolds et al., 2019).

Another example where we expect that the increasing
availability of UAV-based sensors will bridge the spatial
gap for a better understanding of plant mechanisms is the
assessment of photosynthesis (Quirós-Vargas et al., 2020). The
analysis can be performed based on solar-induced fluorescence
(SIF) in combination with established hyperspectral indices
like the photochemical reflectance index (PRI) from remote
sensing platforms (Rascher et al., 2015). SIF imaging provides
information that could be used to identify genotypes that
maintain a high level of photosynthetic activity under stress
conditions. With the start of the FLEX mission (https://earth.esa.
int/eogateway/missions/flex), global SIF data will be available to
test stress resilience under varying environmental conditions, as
stated in the introduction.

Furthermore, a combination of large-scale information with
plant phenotyping, using high spatial and temporal trait
measurement may help to identify different stress factors, in
order to assess the stress stage and underlying mechanisms. For
recent examples related to the identification of genotypes capable
of tolerating biotic and abiotic stress, see recent reviews (Araus
et al., 2018; Watt et al., 2020).

Thanks to the flexibility of remote sensing systems, the
dynamic developments of plant traits can be assessed by
standardized measurements with little effort. However, for more
complex traits, such as the identification of biotic and abiotic
crop stress, the selection of the most suitable sensor combination
is challenging (Galieni et al., 2021; Berger et al., (in prep)).
Nevertheless, remote sensing platforms such as UAVs and micro-
satellites are overcoming traditional trade-offs between spatial,
temporal, and spectral resolutions. Moreover, applying low-
altitude and close-range remote sensing methods in combination
with radiative transfer models (RTMs, c.f. section Bridging
Observation Scales With Physically-Based Radiative Transfer
Models and Machine Learning for Improved Trait Estimation)
for field phenotyping allows several of the insights gained to be
scaled to the ecosystem where they can be used for more precise
field management (Velumani et al., 2021). In conclusion, the
combined usage of different sensors may lead to an improved

understanding of the actual carbon and water fluxes and to
finding cultivars with higher resilience.

BRIDGING OBSERVATION SCALES WITH
PHYSICALLY-BASED RADIATIVE
TRANSFER MODELS AND MACHINE
LEARNING FOR IMPROVED TRAIT
ESTIMATION

In field phenotyping studies, parametric regression approaches
are typically applied to link vegetation indices derived from
multispectral data with plant traits. These models are easy to
implement and require little expert knowledge. However, large
datasets are needed for calibration and validation and still face
the limited transferability of the establishedmodels to other crops
and different environmental conditions. Moreover, especially
when hyperspectral data are used, parametric regressions tend
to under-exploit the comprehensive information content hidden
in the contiguous spectral data (Verrelst et al., 2019). Therefore,
remote sensing scientists have developed radiative transfer
models (RTMs) simulating the interactions of the full optical
wavelength range with leaves and canopies based on physical
laws. Beyond the widely used one-dimensional (1-D) RTMs,
which are suitable for homogenous canopy architectures, three-
dimensional RTMs open up opportunities to analyze data
generated by high-throughput field phenotyping experiments
over row crops (Weiss et al., 2020). Thereby, remote sensing
could provide spatio-temporal information on specific functional
traits of interest. In combination with process modeling and
data assimilation strategies, remote sensing could help to
understand the processes in plants. One example in the context
of sustainable agriculture is the estimation of nitrogen (N) use
efficiency. Usually, N content is quantified indirectly from remote
sensing data via the chlorophyll content (Chlingaryan et al.,
2018) and very often still by a parametric regression based
on vegetation indices. However, the quantification of the N
content is challenging due to the unstable relation of N and
chlorophyll, the very subtle spectral signals of proteins, and the
dilution phenomenon, which often seems to be neglected in
N concentration studies (Bossung et al. (under review)). Novel
RTMs developed within the remote sensing community now
allow the use of more flexible non-parametric models in the
estimation N, which also take into account proteins and provide
uncertainty estimations (Berger et al., 2020). Better estimating
the plant N by combining information on plant physiology
from plant phenotyping with new hyperspectral sensors giving
a near-real-time estimation can provide input for optimized
management strategies to reduce N applications and thus protect
the water resources.

The integration of information from different spectral
domains is complex and challenging. Models and tools have
been developed to observe photochemistry and energy fluxes
of the canopy. These include for example the SCOPE model
where VIS/NIR data and fluorescence data are integrated (Van
der Tol et al., 2009) but are still not perfect and are not widely
used. Models and toolboxes are a big asset for the understanding
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of the interaction between vegetation and the environment.
Further developments and interdisciplinary work are desirable
to optimally combine the information from different sensors to
fully describe the different traits, their interactions and the linked
environmental triggers.

To obtain functional traits or to indirectly assess crop stress
from the diversity of spectral data, a modeling framework
should be defined. We propose the use of (shallow) machine
learning (ML) regression algorithms combined with RTMs, such
as SCOPE coupled with leaf optical properties models (Féret
et al., 2021). Within these hybrid methods, training data sets
are generated by the RTM and are then learned by the ML
algorithm to build the specific retrieval model. Also, deep
learning algorithms could be employed, in particular when a
large number of different data sets are available and to better
describe the highly non-linear relationship between remotely
sensed signals and traits of interest. As an additional feature, the
quality of training data can be enhanced by implementing active
learning heuristics, which recently achieved outstanding results
in the estimation of specific traits (Berger et al., 2021; Verrelst
et al., 2021). All in all, these hybrid workflows may become a
cornerstone for precision agriculture and an essential element
for the development of new breeding strategies (Lammerts van
Bueren and Struik, 2017).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Plant phenotyping and remote sensing work with
complementary measurements and concepts, but address
the same challenge – namely, the quest for a more sustainable
agriculture. Facilitating exchange between the two disciplines
offers possibilities to trigger cross-fertilization: An improved
understanding of target traits will allow the remote sensing
community to develop more focused and precise tools. Likewise,
establishing state-of-the-art remote sensing methods as plant
phenotyping tools will allow improved understanding and
modeling of crops in dynamic environments.

Working on harmonization and implementing open data
standards allow the use and re-use of the data for a broader
community. Further, bridging scales and concepts offers unique
and promising approaches to address major long-term challenges
identified both on national and large-scale levels: food security
in changing climate conditions, resilient agriculture countering
land degradation and erosion, sustaining biodiversity and
ecosystem functions, and agro-ecological transition. UAVs are

one important common tool that is bridging the technical gap
between the two research domains. A huge challenge hereby
is the careful (not only short-term price-driven) selection of
sensors and appropriate spectral domains to obtain a maximum
of information. Along with extensive trait measurements, remote
sensing and crop growth models can be advanced, increasing our
understanding of plant performance in a dynamic environment.
This would result in remote sensing techniques becoming more
reliable, increasing their usefulness for practical applications in
precision farming.

We anticipate that there is a need to further stimulate
cooperation and we advocate initiating projects and network
activities between the remote sensing and plant phenotyping
communities. Ultimately, this exchange has the potential to
stimulate growth in both communities and their interconnection
may lead to new developments toward more sustainable
agriculture. These interactions may substantially contribute to
the European strategic research agenda and the relevant topics
are contributing to prominent parts of the EUGreenDeal (“From
farm to fork” and “EU Biodiversity Strategy”).
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Leaf area index (LAI) is an important variable for characterizing plant canopy in crop
models. It is traditionally defined as the total one-sided leaf area per unit ground area and
is estimated by both direct and indirect methods. This paper explores the effectiveness
of using light detection and ranging (LiDAR) data to estimate LAI for sorghum and
maize with different treatments at multiple times during the growing season from both a
wheeled vehicle and Unmanned Aerial Vehicles. Linear and nonlinear regression models
are investigated for prediction utilizing statistical and plant structure-based features
extracted from the LiDAR point cloud data with ground reference obtained from an
in-field plant canopy analyzer (indirect method). Results based on the value of the
coefficient of determination (R2) and root mean squared error for predictive models
ranged from ∼0.4 in the early season to ∼0.6 for sorghum and ∼0.5 to 0.80 for maize
from 40 Days after Sowing to harvest.

Keywords: high-throughput phenotyping, remote sensing, LiDAR, leaf area index, machine learning, row crops

INTRODUCTION

Determination of Leaf Area Index (LAI) is essential for modeling the interaction between the
atmosphere and the biosphere (Zhu et al., 2020). It is an important biophysical parameter that
acts as a primary control for energy, water, and gas exchange within a vegetated ecosystem (Jensen
et al., 2008; Zheng and Moskal, 2009). Estimation of LAI is also important for crop modeling (Lobell
et al., 2015; Akinseye et al., 2017) and plant breeding (Blancon et al., 2019). Both direct and indirect
approaches have been investigated to estimate LAI. Direct methods, which are based on measuring
the area of the leaves directly, are accurate but costly, labor-intensive, and time-consuming. In
destructive sampling, plants are defoliated within a specific area, and the one-sided leaf surface
area is measured from imagery or with an electronic area meter (White et al., 2019) such as an
LI-3100C. The average leaf biomass fraction and specific leaf weight, which is defined as leaf dry
weight (the oven-dry mass), divided by the one-sided area of the fresh leaves are used to compute
LAI, for each plot and sampling date (Yang et al., 2021).
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Indirect optical methods estimate LAI from the canopy
gap fraction that is defined as the effective LAI (LAIeff). The
relationship between LAIeff and true LAI derived from a direct
method, which assumes that the leaves are randomly distributed
within the canopy, is shown in Eq. 1 (Chen et al., 2005; Ryu et al.,
2010).

LAIeff (θ)=� (θ)× LAI (1)

where � (θ) is the canopy clumping index that describes the non-
randomness of the leaf foliage distribution; it can be estimated
through the nonrandom distribution of gap fractions using the
logarithmic gap fraction averaging method, and θ is the solar
zenith angle (Fang et al., 2019).

Digital cover photography, digital hemispherical
photography, and the LAI-2200C plant canopy analyzer are
all used to obtain indirect optically-based estimates of LAI
(Fournier and Hall, 2017; Fang et al., 2019). Direct measurement
methods and some optical methods are also used as references
for indirect measurement techniques (Richardson et al., 2009).
Indirect methods have been developed for determining LAI
over large areas using both active and passive remote sensing.
Within the last decade, light detection and ranging (LiDAR)
has been used for mapping, modeling, and spatial analysis in
many applications, including estimation of LAI. The advantage
of LiDAR compared to other remote sensing technologies is that
it directly provides three-dimensional coordinates. Promising
results have been obtained from LiDAR (Jimenez-Berni et al.,
2018) and in combination with hyperspectral imagery (Masjedi
et al., 2018, 2019) in modeling biophysical characteristics,
including vegetation height and above-ground biomass for
agriculture applications (Nie et al., 2016; ten Harkel et al., 2020).
LiDAR has also been used to model forest canopy structure
(Lefsky et al., 2002) and to estimate LAI in forests (Zhao and
Popescu, 2009; Korhonen et al., 2011; Jung and Crawford, 2012;
Alonzo et al., 2015).

To estimate LAI from LiDAR, empirical models are developed
to represent the relationship between the ground reference LAI
and LiDAR-derived metrics. Two types of LiDAR metrics are
commonly used in LAI prediction, the Beer-Lambert law based
on the laser penetration index (LPI; Richardson et al., 2009)
and allometric measurements that are statistically-based features
(Pope and Treitz, 2013). Allometric-related features include the
mean height and standard deviation, maximum height of all
returns, and the coefficient of variation of height. Features based
on the Beer-Lambert law include gap fraction and LPI (Nie et al.,
2016). Pope and Treitz (2013) demonstrated the combined use
of airborne discrete return LiDAR data and WorldView-2 high-
resolution imagery to predict LAI in a boreal mixed wood forest.
Digital hemispherical photos were used as a ground reference,
and statistically significant LiDAR-based inputs for a stepwise
linear regression model included the ratio of the first return
and total return, the vertical distribution ratio, crown closure,
and a vertical complexity index (VCI) that represents structural
homogeneity with height (Ludwig et al., 1988; van Ewijk et al.,
2011; Pope and Treitz, 2013).

Few studies have focused on estimating LAI for row crops,
such as maize, e.g., Nie et al. (2016) and sorghum, e.g.,

Lang (1986). In addition, in most remote sensing focused studies,
discrete return LiDAR data are acquired by manned aircraft
and Unmanned Aerial Vehicles (UAVs), which have lower point
density and laser penetration than ground-based platforms.
Ground-based LiDAR data can acquire data at a very high spatial
resolution over shorter crops compared to airborne platforms,
and depending on the plant structure, can potentially penetrate
deeper into the canopy. Further, these platforms are not subject
to localized changes in position, elevation, and look angle that are
common with airborne platforms, but are restricted to operation
in field conditions during which they can drive and collect data.

Nazeri (2021) investigated the destructive sampling method as
a ground reference in estimation of LAI from LiDAR acquired
by a UAV over a sorghum field experiment. Three sets of
ground reference data collected by the Purdue team in 2019
to parameterize a crop growth model were provided as ground
reference data. The relationship between the LiDAR data and
LAI computed using destructively sampled ground reference data
was weak. The results were not unexpected, as the LiDAR data
are physically more closely related to the gap fraction than the
assumptions for LAI calculations based on destructive sampling
(Hammer et al., 2010; Fang et al., 2019; Yang et al., 2021). The
low R2 of models obtained using the destructive sampling ground
reference, coupled with the practical limitations for performing
extensive destructive sampling through the season motivated
this study of an indirect ground reference method coupled with
extensive data acquisitions during the 2020 growing season.

This paper is an exploratory study of LAI prediction using
LiDAR point cloud data acquired by a converted high-clearance
tractor/sprayer with a custom sensor boom and by low altitude
UAVs over sorghum and maize plant breeding experiments.
LiDAR platforms and systems with different laser units were
evaluated at multiple altitudes for obtaining LAI. Remote sensing
acquisitions were matched to the field-based LAI measurements
using near-coincident data acquisitions. Multiple strategies for
feature extraction were investigated for developing regression-
based predictive models, including stepwise multiple linear
regression (SMLR), partial least squares regression (PLSR), and
support vector regression (SVR). The predictive models were
developed based on the indirect ground reference method and
evaluated based on the resulting R2 values and the root mean
squared error of the residuals. Contributions of the study include
investigation of multiple LiDAR-based features for multitemporal
prediction of LAI via regression models and evaluation of the
capability of LiDAR sensors and platforms for acquiring data
to predict sorghum and maize LAI at multiple times during
the growing season.

MATERIALS AND METHODS

Study Area and Experiment Setting
The experiments for this study were conducted at the Agronomy
Center for Research and Education at Purdue University, West
Lafayette, IN, United States, to evaluate the potential of sorghum
varieties for biomass production. Both ground reference and
LiDAR data were acquired during the 2020 growing season. In
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FIGURE 1 | Plot variety layout (A) SbDivTc_Cal and (B) HIPS.
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FIGURE 2 | (A) Photograph of the SbDivTc_Cal panel (7/20/2020), (B) LiDAR-Based Height Map of SbDivTc_Cal Sorghum Panel (7/20/2020).

FIGURE 3 | Measured ground reference LAI of (A) SbDivTc_Cal and (B) HIPS
using LAI–2200C (2020).

this study, near concurrent ground-based and UAV LiDAR data
were analyzed. The LiDAR data were collected from the Sorghum
Biodiversity Test Cross Calibration Panel (SbDivTc_Cal) and
the maize High-Intensity Phenotyping Sites (HIPS) Panel. The
SbDivTc_Cal experimental design included 80 varieties two
replicates in a randomized block design planted in 160 plots (plot
size: 7.6 m × 3.8 m), ten rows per plot (row number is counted

from the west to east). All 160 plots were included in the analysis
for the SbDivTc_Cal data, as LAI ground reference data were
acquired for all the plots in the experiment. The HIPS maize
experiment contained 44 varieties of maize with two replicas,
including hybrids and inbreds. This experiment had 88 plots (plot
size: 1.5 m × 5.3 m), two rows per plot. In the early stages,
sorghum and maize have very similar plant structures, although
sorghum is planted at a higher density (∼200,000 plants/hectare)
compared to maize (∼75,000 plants/hectare). During the growing
season, the geometric structure of sorghum becomes more
complex as tillers develop, decreasing canopy penetration.
Figure 1 shows the layout of the SbDivTc_Cal and HIPS plots
based on the respective genotypes.

Differences between varieties can be seen clearly in terms of
physical characteristics shown in a photo (Figure 2A), and in
the LiDAR-based height map acquired by a UAV on 7/20/2020,
68 days after sowing (DAS; Figure 2B).

Field Ground Reference Data
In 2020, reference data were collected weekly from June 29
to July 27 for sorghum and from June 22 to July 13 using a
handheld plant canopy analyzer (LAI-2200C). The LAI-2200C
is a portable instrument for acquiring an indirect measurement
of LAIeff based on canopy gap fraction analysis (Welles and
Cohen, 1996; Sonnentag et al., 2007; Černý et al., 2019). In
sorghum, to avoid the impact of adjacent plots and destructive
sampling, LiDAR data from Rows 2 and 3 of each plot were
associated with each reference value for developing the predictive
models. Two sets of five measurements one measurement above
the canopy and four measurements below the canopy near the
ground between rows 2 and 3 in the direction of the rows (north-
south) were made according to the recommended protocol, then
a representative value per plot was calculated using the Field
Viewer 2200 (FV2200) software. These values were used as the
primary reference data for developing predictive models of LAI
based on the LiDAR remote sensing data. The ground reference
values ranged from 0.5 to 6 for sorghum and 0.5 to 5 for maize,
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increasing during the period of the growing season until sampling
was stopped after flowering. The box plots in Figure 3 show the
range of values of ground reference data for both crops within
±1.96 standard deviations for the LAI–2200C based on the date
of data collection and corresponding DAS. The values of LAI
exceeding 95% were from photoperiod sensitive varieties, whose
characteristics increasingly differ from the rest of the experiment
as the season progresses. The sequence of 2020 plant canopy
analyzer data was used as a ground reference for evaluating the
LiDAR-based metrics. Remotely sensed LiDAR data and ground
reference acquisitions were separated by no more than 3 days.
Table 1 summarizes the experiment over the SbDivTc_Cal and
HIPS 2020 experiments.

Light Detection and Ranging Point Cloud
Data Acquisitions
Platforms and Sensors
Remote sensing data were collected by the UAV weekly, first prior
to planting to develop the baseline terrain model and at intervals
of 1–2 weeks thereafter, depending on the weather, throughout
the growing season. Two M600P UAVs were flown over the study
area at altitudes of 20 and 40 m and speeds of 3–5 m/s. The UAVs
were equipped with a Velodyne VLP-Puck LITE and a Velodyne
VLP-32C, respectively. The Velodyne VLP-Puck LITE has 16
channels that are aligned vertically from −15◦ to +15◦, resulting
in a total vertical field of view (FOV) of 30◦. The point capture
rate in single return mode is ∼300,000 points per second. The
range accuracy is typically±3 cm, with a maximum measurement
range of 100 m (Velodyne VLP-Puck Lite, 2020). The Velodyne
VLP-32C has 32 channels that are aligned vertically from −15◦
to +25◦, in a total vertical FOV of 40◦. The point capture rate
in a single return mode is∼600,000 points per second. The range

accuracy is typically±3 cm, with a maximum measurement range
of 200 m (Velodyne VLP-32C, 2020). The UAVs were equipped
with an integrated global navigation satellite system/inertial
navigation system (GNSS/INS) Trimble APX-15v3 for direct
georeferencing (Hasheminasab et al., 2020). LiDAR data were
acquired by a wheel-based system, a LeeAgra Avenger agricultural
high-clearance tractor/sprayer with a custom boom and mounted
sensors, referred to in this study as the PhenoRover, on an
experimental basis. The boom is constructed from 2.75 m wide
T-slot structural aluminum, and the top of the boom can be
raised to a maximum of 5.5 m height from the ground. Sensors
mounted on the boom include a Headwall hyperspectral VNIR
machine vision camera, two FLIR RGB cameras, and a Velodyne
VLP-Puck Hi-Res LiDAR, as well as the GNSS/INS navigation
system. The VLP-Puck Hi-Res has similar sensor specifications
to the VLP-Puck LITE. Its FOV is−10◦ to+10◦ (Velodyne VLP-
Puck Hi-Res, 2020). The platform speed in the field was 1.5 miles
per hour. Figure 4 shows the PhenoRover and UAV platforms for
the 2020 data collection. PhenoRover data were acquired limited
times in 2020, subject to field conditions. Table 2 details the
platforms and their mounted sensor specifications for the 2020
data collection.

Table 3 summarizes the LiDAR data collection and the
corresponding ground reference measurements in terms
of DAS relative to the data collection dates and ground
reference measurements.

PhenoRover and Unmanned Aerial Vehicle Light
Detection and Ranging Data
The average point densities of the LiDAR data acquired by the
sensors on the UAVs depend on the type of sensor, the platform
flying height, FOV, and mission characteristics such as the sidelap

TABLE 1 | Experimental design for the 2020 growing season.

Experiment Genotype # of plots # of varieties Sowing date Harvest date

HIPS Hybrid/inbred 88 44 May 12 October 1

SbDivTc_Cal Hybrid 160 80 May13 August 15

FIGURE 4 | (A) PhenoRover platform with RGB/LiDAR/Hyperspectral/GNSS/INS sensors, (B) UAV-2 with RGB/LiDAR/GNSS/INS sensors in 2020.
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TABLE 2 | Platforms and mounted sensors specification in 2020.

Platform Sensor Unit Description

UAV-1

RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R)

LiDAR sensor 1 Velodyne VLP 16-Puck LITE-range accuracy of ±3 cm

GNSS/INS 1 Trimble APX-15 v2

Hyperspectral Camera 1 Nano Hyperspectral (VINIR)

UAV-2

RGB camera 1 36.4 MP Sony Alpha 7R (ILCE-7R)

LiDAR sensor 1 Velodyne VLP 32-range accuracy of ±3 cm

GNSS/INS 1 Trimble APX-15 v2

PhenoRover

RGB camera 2 9.1 MP FLIR Grasshopper3 GigE

Hyperspectral camera 1 Headwall Machine Vision 270 band line-scanning with 4.8 mm lens

LiDAR sensors 1 Velodyne VLP-Puck Hi-Res

GNSS/INS 1 Applanix POS-LV 125

TABLE 3 | Days after sowing (DAS) relative to the available ground reference and LiDAR data in two experiments over SbDivTc_Cal and HIPS.

Experiment Platform Flying height Sowing date LiDAR data collection date DAS1 Ground reference date DAS2

HIPS UAV-1 N/A 05/12 06/25 44 06/22 41

PhenoRover N/A 06/26 45 06/29 48

UAV-2 20 m 07/07 56 07/06 55

UAV-1 20 m 07/11 60 07/13 62

UAV-2 20 m 07/11 60 07/13 62

UAV-2 20 m 07/13 62 07/13 62

PhenoRover N/A 07/13 62 07/13 62

SbDivTc_Cal PhenoRover N/A 05/13 06/26 44 06/29 47

UAV-1 40 m 07/02 50 06/29 47

UAV-2 20 m 07/07 55 07/06 54

UAV-2 20 m 07/13 61 07/13 61

UAV-1 40 m 07/17 65 07/20 68

PhenoRover N/A 07/20 68 07/20 68

UAV-1 40 m 07/20 68 07/20 68

UAV-2 20 m 07/20 68 07/20 68

UAV-1 40 m 07/28 76 07/27 75

UAV-2 20 m 07/28 76 07/27 75

DAS1: DAS with respect to data collection data; DAS2: DAS with respect to ground reference data.

TABLE 4 | Point density of sample data on 7/20/2020.

Platform Flying height DAS Point density (Points/ m2)

UAV-1 40 m 68 70

UAV-2 20 m 68 500

PhenoRover N/A 68 1,400

of the flightlines. In this study, point density is investigated based
on flying height and sensor type, and it is presumed that the rest
of the characteristics affecting point density are consistent across
the data acquisitions; these values are significantly lower than the
LiDAR point density from the PhenoRover because the sensor on
the PhenoRover operates at a much lower height (approximately
5 m from the ground). Table 4 shows the point density of the
sensors based on flying height. Figure 5 illustrates the resulting
3D point cloud from the UAV platforms and PhenoRover over

a sorghum sample row. As expected, the canopy penetration
achieved by the UAV sensors was lower than the PhenoRover
due to the higher platform altitude. UAV-2 with a Velodyne
VLP-32C had a higher point density, resulting in greater canopy
penetration compared to UAV-1 with a Velodyne VLP-Puck
LITE, due to the combined impact of being flown at 20 m and
the higher pulse rate of the sensor with more laser beams.

METHODOLOGY

Feature Extraction From Light Detection
and Ranging Data
In the HIPS experiment, LiDAR features were extracted at plot
level as there were two rows in a plot (Figure 6A), while in
the SbDivTc_Cal experiment, LiDAR features were extracted at
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FIGURE 5 | Example sensor point cloud sample data from (7/20/2020) from (A) PhenoRover, (B) UAV-2, and (C) UAV-1.

FIGURE 6 | Typical plot; (A) HIPS. (B) SbDivTc_Cal: rows 2 and 3 selected to extract features. The two arrows indicate rows 2 and 3. The orientation of the plot is
shown with arrows (E: Easting, N: Northing, and Z: Elevation).
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FIGURE 7 | Height of photoperiod sensitive variety SP SS405 FS relative to the surrounding plots 7/28/2020.

FIGURE 8 | Thematic region growing clustering steps: (A) Sample points.
(B) Initial clustering. (C) Finding common points in two close clusters.
(D) Connecting and joining two clusters.

the row-level within ten-row plots. Rows four, seven, and eight
were adjacent to rows that were destructively sampled. Rows
one and ten were “border” rows, so they were not necessarily
representative of conditions within the plot, particularly for
light accessibility when plots with tall varieties were adjacent to
plots with short varieties. Rows 2 and 3 were extracted from
the remotely sensed data and analyzed for this study. Features
were extracted from rows 2 and 3 as a spatially contiguous two-
row block (essentially equivalent to a two-row plot) where the
ground reference was collected. Figure 6B shows a typical plot
of the dataset, where rows 5 and 6 were destructively sampled

via machine harvesting, and manual destructive harvesting was
performed in row 9.

Three varieties of sorgum experiment (ATx623xDwfYellMilo,
ATx623xSC0044, and SP SS405 FS) are photoperiod sensitive, as
noted previously, and have a different plant structure than the
rest of the varieties, especially later in the growing season. For
example, “SP SS405 FS” was taller than the surrounding plots
by approximately 1.3 m on 7/28/2020 (Figure 7). The impact of
these varieties on the predictive models was investigated.

As noted in the Introduction, most LiDAR-based features
proposed in the literature are based on the height or moments
of the histograms of point cloud values in a 3D volume classified
as vegetation. The Digital Terrain Model (DTM) required to
determine plant heights was derived from a bare earth field
using UAV-based LiDAR point cloud data before planting and
assumed to be constant throughout the growing season. The
height of points was estimated by subtracting the DTM from the
“z” coordinate of each point in the dataset. Points with a height
of less than 10 cm were considered as ground points and not
included in the statistical analysis of the vegetation. The following
physically-based features were explored for this study.

Laser penetration index is defined as the fraction of laser
points that penetrate the canopy. The index can be calculated
in many ways. In this study, it is computed as the ratio between
the number of ground points (NGround) and the total number of
points in a given area (NGround + Nvegetation), which is assumed
here to be a row of a plot (Eq. 2). The number of non-ground
points is assumed to be equal to the number of points identified
as vegetation (Nvegetation):

LPI :
NGround

NGround + Nvegetation
(2)

Features commonly used for allometric relationships include
various statistically-based height features extracted from the non-
ground point cloud, including plant height at various percent
quantiles, mean height, standard deviation of the point cloud
height, coefficient of variation of height, skewness of height,
and Vegetation Complexity Index (VCI) described in Eq. 3
(van Ewijk et al., 2011).

VCI =
(−

∑HB
i=1 [pi × ln(pi)])

ln(HB)
(3)
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FIGURE 9 | Example of Clusters Area Plane (CAP) feature; (A) A typical third quartile of a row and (B) cross section at the third quartile.

FIGURE 10 | Sensitivity analysis: Feature correlation matrix (zero is the lowest
correlation and 1 is the highest correlation).

where HB = total number of height bins, pi=Proportional
abundance ( # of returns

Total # of returns ) in a height bin (i).
A new feature, referred to as the Clusters’ Area Plane (CAP),

which is based on horizontal characteristics of the point cloud
at a given height in a row, was proposed and evaluated in the
study. To obtain the CAP feature, a plane is intersected with the
point cloud within a row at a given height quartile with ±4 cm
thickness of this plate, and the associated points are extracted.
The points are clustered using a region-growing approach based
on the distance between points and the k-nearest neighbors as
follows: the points are represented using a KD tree data structure,
and the k-nearest neighbors to each point are determined within
a defined radius and assigned to the respective clusters. Then,
the clusters with common points are joined, and the cluster
number is updated iteratively until no further changes occur in
the clusters (Figure 8).

Finally, the area of clusters that is larger than a user-defined
threshold is calculated, and the total area is defined as the CAP
feature (Eq. 4).

CAP =
n∑

i=1

Ai (4)

While the feature does not have a direct physical interpretation, it
contains information for predicting LAI based on the horizontal
distribution of the plants within the canopy at a given quartile
(75% with ±4 cm thickness in this study). The CAP feature was
also calculated in other quartiles, e.g., 50% and 25%, but only
the 75% quartile provided statistically significant results for the
data in these experiments. The 50 and 25% quartiles did not
have an adequate number of samples to evaluate the index, both
due to penetration of the canopy and its geometric structure.
Figures 9A,B show a typical example of the CAP feature.

Correlation between features and LAI indicated that LPI has
the highest correlation with LAI, and the CAP feature has the
second-highest correlation with LAI. The correlation matrix in
Figure 10 also indicates that there is significant correlation
between many of the candidate features. For example, the value
of the correlation between the standard deviation of height and
the mean and third quartile height is greater than 0.9.

Regression-Based Predictive Models
Predictive models were developed using SMLR (Johnsson, 1992),
PLSR (Rosipal and Krämer, 2005), and SVR (Feng and Li,
2014). SVR models were investigated with four kernels (linear,
polynomial, RBF, and sigmoid), and their hyperparameters were
obtained via grid search. Eight features were considered as input
variables, including LPI, Height_mean, standard deviation, and
skewness, height (3rd Quartile), VCI, Volume of the vegetation
in a row based on the convex hull of the points, and CAP. In
this study, the training and test data were selected randomly
by 75% training and 25% test. Both replicates of each genotype
variety were randomly assigned to either training or test. Ten-
fold cross-validation was performed on the training set. The
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FIGURE 11 | R2 values for 2020 regression models for LAI estimation (A) SbDivTc_Cal and (B) HIPS; (PR: PhenoRover).

values of R2 for the respective models are reported in the
results section.

LEAF AREA INDEX PREDICTIVE MODEL
RESULTS

The results of the LAI predictive models are included based on
the date and the platform. SMLR, PLSR, and SVR with RBF
kernel models developed for the 2020 sorghum and maize data
are illustrated via bar charts. Figure 11A shows the results for

sorghum datasets. The models had low R2 statistics for the first
two dates acquired by PhenoRover and UAV-1 (0.28 and 0.38
for the SVR model). The primary reason was the small size
of the plants (∼35 and ∼50 cm) for 6/26/2020 and 7/02/2020,
respectively. The measurements from the LAI–2200C acquired
between the rows were also not representative of the true canopy
gap fraction at this height. The values of R2 for the rest of the
dates were consistent throughout the season, even as the plant
heights increased rapidly until flowering. Figure 11B shows the
results for maize datasets. The values of R2 for all dates were
consistent throughout the season and varied from 0.5 to 0.8. The
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FIGURE 12 | Predictions based on SVR RBF models showing R2 values and RMSE at midseason (7/20/2020) before and after removing photosensitive varieties for
three platforms: (A) UAV-1, (B) UAV-2, and (C) PhenoRover.
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results of maize show that the range of R2 in maize is consistant
with sorghum, but generally higher. This is attributed to the
maize experiment being planted less dense than sorghum (maize:
∼75,000 plants/hectare vs. sorghum: ∼200,000 plants/hectare)
and the lower complexity of the plant structure resulting in
greater laser penetration into the canopy later in the season.
The p-value from t-test statistics (0.94) showed that differences
in the mean of R2 values from pairwise comparisons of the
three regression models were not statistically significant at an α

of 0.05. The results also did not indicate significant differences
between the mean of R2 values from pairwise comparisons of
combinations of UAV-1 (VLP 16, flown at 40 m), UAV-2 (VLP
32 flown at 20 m), and the PhenoRover.

The three photoperiod sensitive varieties were removed from
the sorghum dataset, and R2 values of all models were calculated.
The p-value from t-test statistics (0.57) indicated no significant
difference between the mean of R2 obtained using data prior to
and after removing photoperiod sensitive varieties. For example,
the plots of one-to-one comparisons of reference vs. the predicted
values of SVR model from the UAVs and PhenoRover on
7/20/2020 before and after removing the photoperiod sensitive
varieties from the datasets are provided in Figure 12. The
plots show the model of UAV-1 (Figure 12A) and PhenoRover
(Figure 12C) slightly improved in terms of R2, but UAV-2 results
(Figure 12B) were essentially unchanged.

To evaluate the importance of the features, a leave-one-out
procedure was used with the SVR-RBF model, which had the
highest R2 value, and the resulting R2 (R2

new) was calculated
(Eq. 5),

Weight of feature =1−
R2

new
R2

original
(5)

where R2
new is an R2 of the model fit without the feature, and

R2
original is the R2 of the model with all features.

Figure 13 shows the feature importance in the models
developed for the three platforms on July 20, 2020.

Laser penetration index is the most highly ranked feature,
based on the correlation with the plant canopy analyzer data,
and the 2nd and 3rd ranked features are CAP and VCI, both
of which are also indicative of penetration of the canopy.
Additionally, the CAP feature is related to the horizontal
distribution of the canopy, as noted previously. The height-
related features are correlated and individually have a lower
impact on the model, while LPI and CAP represent physically
different characteristics. In complex vegetation such as sorghum,
which is planted at high density and has tillers, many laser
points are concentrated in the upper canopy, and few laser points
penetrate deeper in the canopy.

Although the sensor on the PhenoRover was much closer to
the canopy, typically between 2 and 5 m depending on the date,
and the speed of the PhenoRover was much slower, resulting
in increased point density and penetration of the canopy, R2

values of the models (Figure 11) based on data from PhenoRover,
UAV-1 (flying height 40 m) and UAV-2 (flying height 20 m) were
similar for comparable dates. In most cases, multiple stepwise
linear regression models had the lowest R2 value, and only LPI

FIGURE 13 | Feature weight evaluation using SVR (RBF) on 7/20/2020:
(A) UAV-1, (B) UAV-2, (C) PhenoRover.

and VCI features were significant at α = 0.05. As mentioned
earlier, the R2 value for the SMLR, PLSR, and SVR (with an RBF
kernel) models are generally similar, and the sample mean of the
R2 values over the season are not statistically different by pairwise
comparison in both sorghum and maize.

SUMMARY AND CONCLUSION

In this exploratory study, the capability of discrete return
LiDAR data was investigated for predicting LAIeff. The primary
contribution was to develop statistically significant predictive
models of LAI over two row crops based on physical features
from LiDAR data acquired by multiple platforms during the
growing season. In 2020, UAVs and a wheel-based LiDAR dataset
were collected and analyzed over two different experiments using
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a LAI-2200C plant canopy analyzer. The results based on R2

values indicate that the LiDAR data are capable of estimating
LAI after ∼60 DAS. The R2 results from maize were compatible
with the results from sorghum, and somewhat higher due to
less dense planting and complexity in canopy geometry. LiDAR
data acquired from the UAV-2 with a Velodyne VLP-32C were
higher density, and there was greater penetration of the canopy
compared to UAV-1 with a Velodyne VLP-Puck LITE. This was
due both to the sensor and the lower flight altitude. However, the
R2 values of the resulting models for LAI were not significantly
different. This implies either that the relationship to LAI was
dominated by the upper canopy structure or that the penetration
associated with more beams and lower flying height was not
enough greater to impact the models. Additionally, while the
lower height of the boom on the PhenoRover platform was
expected to provide improved models due to increased density
and penetration, the within-canopy scattering and movement
of plants by the platform, especially later in the season, were
offsetting problems. As the t-test showed, differences in the R2

values of the models obtained for the different platforms and
sensors were not statistically significant. In most datasets, the
UAV–based models had higher R2 values than wheel-based data
in 2020, especially later in the growing season when the complex
scattering between the near range LiDAR and the canopy
appeared to impact the models in both sorghum and maize
experiments. The inclusion of data from sorghum photoperiod
sensitive varieties did not have a significant impact on the results.

The study encountered multiple challenges, including the
limitation of acquiring more wheel-based data subject to weather
and field conditions throughout the season. The more frequent
remote sensing data acquisition and investigation of the plant
canopy analyzer data in 2020 were motivated by the need for
more frequent data acquisitions during the vegetative stages of
the growth cycle when the plants were growing rapidly and
during flowering. The LiDAR data were also impacted by multi-
path effects because of the complexity of plants associated with
plant density and geometry of sorghum. This motivates further
research on denoising approaches. In addition, data encoding
approaches may prove useful as an alternative to traditional

physical structure-based approaches. The study was conducted
in a local environmental condition, and the data were acquired
under consistent weather conditions. However, the impact of
multiple locations, years, different environmental conditions,
soil types, and edaphic factors need to be investigated for the
robustness of the models in the application of transfer learning.
Finally, further studies are also required, including investigation
of other sensor modalities and the sensitivity of the various
methods in providing ground reference data and their impact on
prediction models.
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The application of remote sensing in plant breeding is becoming a routine method for
fast and non-destructive high-throughput phenotyping (HTP) using unmanned aerial
vehicles (UAVs) equipped with sensors. Alfalfa (Medicago sativa L.) is a perennial forage
legume grown in more than 30 million hectares worldwide. Breeding alfalfa for herbage
accumulation (HA) requires frequent and multiple phenotyping efforts, which is laborious
and costly. The objective of this study was to assess the efficiency of UAV-based imagery
and spatial analysis in the selection of alfalfa for HA. The alfalfa breeding population
was composed of 145 full-sib and 34 half-sib families, and the experimental design
was a row-column with augmented representation of controls. The experiment was
established in November 2017, and HA was harvested four times between August
2018 and January 2019. A UAV equipped with a multispectral camera was used for
HTP before each harvest. Four vegetation indices (VIs) were calculated from the UAV-
based images: NDVI, NDRE, GNDVI, and GRVI. All VIs showed a high correlation with
HA, and VIs predicted HA with moderate accuracy. HA and NDVI were used for further
analyses to calculate the genetic parameters using linear mixed models. The spatial
analysis had a significant effect in both dimensions (rows and columns) for HA and NDVI,
resulting in improvements in the estimation of genetic parameters. Univariate models for
NDVI and HA, and bivariate models, were fit to predict family performance for scenarios
with various levels of HA data (simulated in silico by assigning missing values to full
dataset). The bivariate models provided higher correlation among predicted values,
higher coincidence for selection, and higher genetic gain even for scenarios with only
30% of HA data. Hence, HTP is a reliable and efficient method to aid alfalfa phenotyping
to improve HA. Additionally, the use of spatial analysis can also improve the accuracy of
selection in breeding trials.

Keywords: high-throughput phenotyping (HTP), normalized difference vegetation index (NDVI), remote sensing
(RS), spatial variation, genetic gain, forage, plant breeding
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INTRODUCTION

Alfalfa (Medicago sativa L.) is the most important perennial
forage legume globally because of its relatively high yield and
nutritional value (Annicchiarico, 2015). In the United States,
alfalfa is the fourth most valued crop behind corn, soybeans,
and wheat, with an estimated value of $8.4 billion (USDA-NASS,
2020), playing a critical role in the food supply chain (Feng et al.,
2020). In 2018, nearly 53 million tons of alfalfa and alfalfa-grass
mixtures were harvested from almost seven million hectares in
the United States. Most of the production is concentrated in the
mid-east and west coast (USDA-NASS, 2020). Despite its lower
presence as a forage crop in the lower southeastern United States
and other subtropical regions in the world, breeding efforts are
underway to develop non-dormant alfalfa cultivars adapted to
these environments (De Assis et al., 2010; Vivela et al., 2018;
Adhikari et al., 2019; Acharya et al., 2020).

Alfalfa breeding is typically conducted as phenotypic recurrent
selection using among and within half-sib family selection (Casler
and Brummer, 2008), although various breeding schemes have
been proposed to improve herbage accumulation (HA) in alfalfa
(Annicchiarico and Pecetti, 2021). The improvement of HA in
alfalfa is challenging due to long selection cycles, tetrasomic
inheritance, high inbreeding depression, and significant genotype
and environment interaction for this complex trait (Bingham
et al., 1994; Brummer, 1999; Annicchiarico, 2015). Additionally,
phenotyping for HA requires investment of significant resources
(Annicchiarico et al., 2016). In recent years, most alfalfa
breeding programs have focused on improving disease/pest
resistance, long-term persistence, and other specific traits
targeting transgenes for glyphosate tolerance or decreased
lignin. The lack of efforts to improve HA can explain the
low genetic gain in alfalfa yield observed in the last decades
(Brummer and Casler, 2015).

Nevertheless, HA has become a target breeding trait among
alfalfa breeders more recently (Sakiroglu and Brummer, 2017;
Dos Santos et al., 2018; Adhikari et al., 2019; Acharya et al., 2020;
Benabderrahim et al., 2020; He et al., 2020; Ren et al., 2021; Tang
et al., 2021). However, traditional field phenotyping for HA is
based on the destructive sampling of experimental units at the
ground level, weighing fresh samples, drying, and weighing dried
samples to estimate dry matter content. The manual phenotyping
process for HA is labor-intensive, time-consuming, and costly.

Plant phenotyping plays a central role in plant breeding,
and the accurate and rapid acquisition of phenotypic data is
valuable for exploring the association between genotypes and
phenotypes. In the last few decades, remote sensing has been
widely used in agriculture (Maes and Steppe, 2019; Galli et al.,
2020), particularly for high-throughput phenotyping (HTP) in
breeding applications (Furbank and Tester, 2011; White et al.,
2012; Araus and Cairns, 2014; Tattaris et al., 2016; Li et al.,
2017; Zhao et al., 2019). Remote sensing offers unprecedented
spectral, spatial, and temporal resolution, providing detailed
vegetation data (Maes and Steppe, 2019). Several vegetation
indices (VIs) such as normalized difference vegetation index
(NDVI), green NDVI (GNDVI), normalized difference red edge
(NDRE), or Green and Red ratio Vegetation Index (GRVI) have

been employed to assess vegetation vigor and canopy cover over
multiple crops (Lima-Cueto et al., 2019; Quirós Vargas et al.,
2019; Ranjan et al., 2019; Zhang et al., 2019).

Remote sensing techniques have shown to enable efficient and
non-destructive estimation of HA in alfalfa (Feng et al., 2020),
such as screening large breeding populations (Cazenave et al.,
2019). According to Cazenave et al. (2019), HTP can detect small
differences in alfalfa yield when screening diverse germplasm.
More recently, HTP improved the efficiency of the selection
process for biomass in small plots (1.52 m × 0.30 m) in alfalfa
breeding populations (Tang et al., 2021), and provided a good
prediction of HA in larger plots (6 m × 4 m) (Feng et al., 2020).
Remote sensing can mitigate the challenge of measuring HA in
large populations for breeding programs focusing on improving
alfalfa HA. Therefore, the implementation of HTP can streamline
the phenotyping process for HA in alfalfa.

Residual maximum likelihood (REML) is commonly
implemented in breeding programs to estimate variance
components and calculate genetic parameters using linear
mixed models. The use of best linear unbiased prediction
(BLUP) is an established technique to predict breeding values,
which are then used to guide breeding decisions. BLUP can
generate accurate predictions of breeding values even for
unbalanced experimental designs (Piepho et al., 2008). Genetic
parameters for alfalfa yield are essential to define optimal
selection schemes (Casler and Brummer, 2008). Heritability
estimates for HA in alfalfa ranged from 0.15 to 0.30 (Bowley
and Christie, 1981; Riday and Brummer, 2002; Annicchiarico,
2015; Acharya et al., 2020). These low to moderate estimates
are expected in alfalfa and other perennial forage crops with
long selection cycles, cross-pollinated breeding schemes, and
traits with significant genotype × environment interaction
(Annicchiarico, 2015). Most studies in alfalfa have focused on
yield in short-term experiments with few harvests (3–4 harvests
per year) (Annicchiarico, 2015), except for more recent studies
(Acharya et al., 2020; Annicchiarico and Pecetti, 2021). Besides
the challenges mentioned above, field trials are associated with
intrinsic and extrinsic variations, which can cause some form
of spatial variation between experimental units (Sripathi et al.,
2017). Local control, such as blocking and randomization, cannot
effectively account for all the spatial trends in large experiments
(Gilmour et al., 1997). Spatial variation is expected even using
complex experimental designs, such as those commonly used in
most plant breeding programs. A better way to control the spatial
variation is to implement spatial analysis to detect and correct
the variation patterns in multiple dimensions. Experimental
units close to each other are expected to be higher correlated
than those far apart, and improvements in model fitness and
higher selection accuracy have been reported in plant breeding
programs (Andrade et al., 2020).

The overall objective of our research was to implement HTP,
spatial analysis, and linear mixed models to improve the accuracy
of the selection process in alfalfa for HA. The specific objectives
were: (i) phenotype of an alfalfa breeding population for HA
using ground-based manual sampling and utilize a unmanned
aerial vehicle (UAV) for HTP; (ii) assess the efficiency of
controlling field variation using spatial models for HA and NDVI
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in alfalfa, (iii) calculate the genetic parameters based on HA and
NDVI using univariate models; (iv) fit bivariate models for HA
and NDVI using all data, and for scenarios with different levels
(30–90%) of HA data, and (v) quantify the correlation between
breeding values, the coincidence of selection of the best families,
and genetic gain across the different scenarios for HA data.

MATERIALS AND METHODS

Germplasm Screening and Development
of the Reference Breeding Population
Initially, 121 alfalfa populations with different fall dormancy
groups were screened for HA in Citra, FL, United States (Acharya
et al., 2020). A total of 33 populations were selected based
on high HA and persistence across all harvests. Following the
screening, controlled crosses were done in the greenhouse to
create the alfalfa reference breeding population. A single plant per
population was selected based on vigor, and cuttings were made
in the summer 2016. A factorial mating design was used to create
all possible full-sib combinations; however, some crosses did not
produce enough viable seed, and were not included in field trials.
Half-sib seed were also harvested from each parental line. All
crosses were conducted in controlled conditions in the Forage
Breeding and Genetics Lab greenhouse, at University of Florida
(Gainesville, FL, United States). Seeds from each full-sib and
half-sib families were harvested, threshed individually, planted in
72-cell Styrofoam trays in August 2017, and maintained in the
greenhouse until transplanting in November 2017. In total, 145
full-sib and 33 half-sib families were established in the field and
this population represents the reference set for the HTP study.
Acharya et al. (2020) provide more details and results for the
initial screening and crosses.

Experimental Design and Field
Management
The breeding trial with the reference population was
conducted at Citra, Florida (29◦40′ N, 82◦167′ W, 48 m
above the sea level) following a row and column design with
augmented representation of controls. Each experimental unit
(1.82 m× 1.82 m) consisted of eight rows spaced at 22.8 cm. The
three border rows on each side were seeded with the Bulldog 805
to serve as borders, and twenty alfalfa seedlings were transplanted
in the middle two rows. Three rows were seeded with Bulldog 805
on each side of the transplants to serve as borders. The breeding
population was composed of 145 full-sib and 34 half-sib families.
Three controls were used: the cultivars Bulldog 805, Florida 99,
and an advanced breeding line named UF_AP_2015. Eighty-one
families were replicated three times, 61 families were replicated
two times, and 40 families were used one time due to limited seed
availability. The experiment was established in November 2017,
and data collection occurred in August 2018, October 2018,
December 2018, and January 2019. The field was fertilized with
67.25 kg·K2O·ha−1, using Muriate of Potash, and with Boron
at the rate of 1.12 kg ha−1 and herbicide Clethodim (Select,
70.76 g AI/L-1; Valent United States Corporation, Walnut Creek,

CA, United States) was applied to control grasses at the rate of
1.05 kg ha−1 after each harvest. Manual weeding was done as
needed to control broad-leaf weeds after each harvest.

Ground-Based Data Collection
The experimental units were manually harvested to determine
HA (kg ha−1) when the control UF_AP_2015 reached 10%
blooming (Figure 1A). The harvest was performed by mowing
the six outer rows (three rows on each side) with a flail mower
at 10 cm stubble height, and then the two central rows were
cut and weighted to determine the fresh weight (g) by the plot.
Approximately 500 g of fresh shoots were collected from each plot
and placed in a dryer at 55◦C for 7 days to determine dry matter
content, and HA per plot was estimated on a dry matter basis (kg
ha−1).

Remote Sensing Data Collection
A UAV (DJI Matrice 100) equipped with a multispectral camera
(RedEdge, MicaSense, Seattle, WA, United States) was used to
obtain imagery over the entire field after the border rows were
mowed (Figure 1B). AtlasFlight app (MicaSense Inc., Seattle,
WA, United States) was used to automatically sample fields at an
altitude of 30 m, a flight speed of 6 m/s speed, and enforcing a
75% overlap in collected imagery. A calibration panel (MicaSense
Inc., Seattle, WA, United States) was set before starting each flight
to allow post-collection calibration of imagery.

Image Processing and Data Acquisition
All images were stitched into orthomosaics using AgiSoft
Photoscan (Agisoft LLC, St. Petersburg, Russia; Figure 2A).
The orthomosaic corresponded to the entire field for a single
harvest event and comprised five bands: blue (475 nm), green
(560 nm), red (668 nm), near-infrared (NIR, 840 nm), and red
edge (717 nm). The orthomosaics were further processed in
QGIS 3.14 software (QGIS.org 2020) to refine geolocation using
field-collected ground control points. We identified experimental
units from imagery and created a spatial reference frame (ESRI
Shapefile) for further analysis (Figure 2B). The shapefile was
edited to include all relevant information on the individual field
plot. Subsequently, we masked the canopy from the soil using
custom python codes (Figure 2C) and used the masked image to
calculate the total pixel count in each band (Figures 2D–F) and to
generate different Vis (NDVI, GNDVI, NDRE, and GRVI) from
zonal statistics function in QGIS. We also estimated the sum of all
VIs to allow for handling plants that died during the experiment.

Data Analysis
Vegetation Index Selection
We utilized boxplots to assess all VIs and HA distributions across
each harvest (Supplementary Figure 1). We estimated Pearson
correlations between HA and VIs-sum (an integrative indicator
of VIs) in R (R Core Team, 2020) to assess prospective best-fitting
relationships between HA and VIs. Finally, we used ordinary
linear mixed models to model HA using VIs-sum for each harvest
(R Core Team, 2020).
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FIGURE 1 | Phenotyping alfalfa for: (A) ground-based herbage accumulation (HA); and (B) High-throughput phenotyping (HTP) using an unmanned aerial vehicle
(Matrice 100) with multispectral camera (MicaSense RedEdge, Seattle, WA, United States) taking off in the experimental area.

FIGURE 2 | Workflow of image processing and data acquisition for the HTP. (A) Stitched raw images (each row is visible) from multispectral camera, (B) Shape file:
each plot is separated by grid line, (C) Masked shapefile: canopy and bare ground places are noticeable, and these images are used to generate vegetation indices,
(D) Reflectance image of infrared band, (E) Reflectance image of red band, and (F) Calculated NDVI image using panels (D,E).

Variance Component Estimation: Base Model
Linear mixed models were fit using the package ASReml-R
(Butler et al., 2009) in the software R (R Core Team, 2020). The
significance of random effects was determined by the likelihood
ratio test. Univariate models were fit for NDVI and HA by
harvest, as follows:

y = µ+ Xt + Zrur + Zcuc + Zf uf + e (1)

where y is the vector of the response variable, µ is the overall
mean; t is the fixed effect vector of the check varieties; ur is the
random effect vector of the row, ur ∼N (0, I σ2

r ); uc is the random
effect vector of the column, uc ∼ N (0, I σ2

c ); uf is the random

effect vector of the family, assuming that families are independent
uf ∼ N (0, I σ2

f ), and e is the independent error random vector
of residual, e ∼ N (0, I σ2

e ). I is the identity matrix associated
with the vector, while X, Zr , Zc, and Zf represent the incidence
matrices associated with the vectors t, ur , ur , and uf . The variance
components of the effects r, c, f , and e are represented by the σ2

r ,
σ2
c , σ2

f , and σ2
e , respectively.

Variance Component Estimation: Spatial Model
Due to the intrinsic variation in the field, we explored
spatial models to account for spatial autocorrelation among
experimental units. In this model, we assumed that the error term
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was auto correlated along the rows and columns, and we used a
first-order autoregressive process to fit the error:

y = µ+ Xt + Zrr + Zcc+ Zf f + ξ (2)

where all terms are the same as the model (1) other than the
term ξ , which is the independent error random vector of residual,
ξ ∼ N (0, Reσ

2
e ), Re is the covariance matrix of ξ , and it is

defined as: Re σξ26c(ρc)
⊗
6r(ρr). Where ρc and ρr are the

autocorrelation parameters for the spatial coordinates of row
and column; 6c(ρc) and 6r(ρr) represent the autoregressive
correlation matrices; and

⊗
represents the Kronecker product

(Andrade et al., 2020).
From both base and spatial models, we estimated the following

genetic and non-genetic parameters: broad-sense heritability
(H2), predicted error variance (PEV), and relative efficiency (RE)
between the spatial model and base model. The RE was calculated
for the spatial model in relation to the base model based on PEV
and values greater than 100 indicate higher efficiency for the
spatial model. The RE was measured as follows:

RE = 100×

(
PEVBase

PEVSpatial

)
(3)

The Akaike information criteria (AIC) for each model were
used to choose the best model. Additionally, the families were
ranked based on their predicted values from each model for the
traits HA and NDVI.

Variance Component Estimation: Bivariate Model and
Scenarios for Herbage Accumulation Data
Data for HA and NDVI were combined into a single model to
leverage information at both levels (ground-based and HTP).
As manual phenotyping for HA is time-consuming and costly,
scenarios were simulated in silico to quantify how genetic
parameter estimates would change when not all experimental
units are manually harvested. The simulation was performed
by randomly assigning missing values to the full HA dataset to
represent hypothetical scenarios when 30, 40, 50, 60, 70, 80, and
90% of the plots would be harvested. The process was repeated
30 times for each scenario. The base model contained 100% of
the HA data, and it was used as a baseline to compare with other
scenarios. The bivariate model was fitted as follows:

y = µ+ Xt + Zrur + Zcuc + Zf uf + e (4)

where y is a stacked vector of the phenotypic data for traits HA
(t1) and NDVI (t2), µ is the stacked vector of the overall mean for
each trait; t is the fixed effect stacked vector of the check varieties
for each trait; ur is the random effect stacked vector of the row for
each trait, ur ∼N (0, σ2

r ); uc is the random effect stacked vector of
the column for each trait, uc ∼ N (0, σ2

c ); uf is the random effect
stacked vector of the family for each trait, assuming that families

are independent uf ∼N (0, If
⊗

G), G =

[
σ2
ft1 σft1ft2

σft1ft2
2
ft2

]
; and e is

the independent error random stacked vector of residual for each

trait, e∼N (0, Ie
⊗

R), where R =
[

σ2
et1 σ2

et1et2
σ2
et1et2 σ2

et2

]
; X, Zr , Zc, and

Zf represent the incidence matrices associated with the vectors t,
ur , uc, and uf . The components σ2

r , σ2
c , 2

ft1, 2
ft2, 2

et1, and 2
et2 are the

variance components for row, columns, family for trait 1, family
for trait 2, error for trait 1, and error for trait 2, respectively. The
component ft1,t2 is the covariance between trait 1 and 2.

We compared the full bivariate and univariate models utilizing
HA, NDVI with the different scenarios using the following
calculations: (i) coincidence of selection (%) after applying a 10%
selection intensity and (ii) the correlation among predicted values
across all families.

Genetic gain (%) was estimated from BLUPs for each family in
each harvest (Supplementary Table 3) for the bivariate model,
and univariate models for HA and NDVI in all scenarios for
HA missing data. We calculated genetic gain using the following
equation:

Genetic Gain =
BLUPt

Y
x 100 (5)

BLUPt is the mean of the BLUPs of the t selected family for
HA, Y is the overall mean of all families for HA.

RESULTS

Pearson Correlation and Regression
Analysis Between Herbage
Accumulation and Vegetation Indices
Herbage accumulation showed variation across harvests
(Supplementary Figure 1). Harvest one and four showed higher
mean HA and variation, while harvest two had the lowest mean
HA and variation. All VIs responded similarly to the variation in
HA across harvests, as all VIs had a higher mean and variation
for harvest one, and the lowest mean and variation in harvest
two (Supplementary Figures 3A–E). The Pearson correlation
between HA and all VIs (NDVI, GNDVI, NDRE, and GRVI) were
higher than 0.71 across all four harvests (Figure 3). All VIs were
able to model HA with moderate and similar accuracy across
harvests (Figure 4 and Supplementary Figures 2–4). Harvest
one, three, and four showed better prediction (R2 > 0.60) for
HA than harvest two (R2

∼ 0.51) (Figure 4 and Supplementary
Figures 2–4). Due to the similar results observed among all VIs,
NDVI was selected for further analyses.

Spatial Analysis to Control Field Variation
Modeling the spatial variation was necessary for both traits (HA
and NDVI) since the autocorrelation in both dimensions was
significant in all harvests (Supplementary Table 1). Variograms
for the base model showed the presence of patterns in the
field that may increase error variance (peaks in the variograms
indicate trends in the field) (Figures 5A,C). The variograms
revealed that the spatial model efficiently controlled these
patterns (Figures 5B,D). The spatial models for HA and NDVI
provided better model fitness across all harvests (lower AIC and
BIC; Supplementary Table 2).

The genotypic variance was significant (P < 0.001) for HA
and NDVI across harvests, and heritability (H2) estimates ranged
from low (0.12) to moderate (0.31) (Table 1). For HA, the spatial
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FIGURE 3 | Pearson correlation coefficients between ground-based phenotyping for herbage accumulation (HA—kg ha-1) and four vegetation indices (VIs): NDVI,
normalized difference vegetation index; GNDVI, green normalized difference vegetation index; NDRE, normalized difference red edge; GRVI, green and red ratio
vegetation index. Harvests: (A) harvest one, (B) harvest two, (C) harvest three, and (D) harvest four.

model provided slightly higher H2 estimates than the base model
across the harvests (Table 1). Similarly, NDVI models accounting
for spatial variation resulted in higher H2 estimates, except for
harvest four (Table 1). The H2 estimates for HA (base and spatial
models) were higher than H2 estimates for NDVI (base and
spatial models) across all harvests. As model fitness was greater
for spatial models, PEVs were also smaller for spatial models for
HA and NDVI across harvests, except for NDVI in harvest four
(Table 1). The lower PEV in the spatial models yielded higher RE
than the base model, for all traits and harvests, except for HA in
harvest four. The best model for each trait and harvest was used
for further analyses.

Selection of Best Alfalfa Families for
Herbage Accumulation and Normalized
Difference Vegetation Index
The 179 alfalfa families were ranked based on their predicted
values estimated on each harvest for the base and spatial
models. Then, a 10% selection intensity was imposed to
select the best 17 families (highest HA and NDVI values
in each harvest). The coincidence of selection was greater

than 75% (13 families out of 17) for the base and spatial
models for HA and NDVI in all harvests, except for NDVI
in harvest three (Figure 6). The coincidence of selection
between HA and NDVI, based on the base model, ranged
from 36% in harvest 2–65% in harvest one (Figure 6).
The coincidence of selection between spatial models for HA
and NDVI ranged from 41% in harvest 2–71% in harvest
one (Figure 6).

Harvest one showed the highest coincidence of selection for
all model comparisons (Figure 6). Base and spatial models for
HA and NDVI resulted in 89% coincidence (15 families out
of 17) (Figure 6). Considering the base model in harvest one,
selecting families using HA and NDVI showed 65% coincidence
(11 families). After modeling spatial variation, there was a 71%
coincidence (12 families) when the best families were selected
based on HA and NDVI. Harvest two showed the lowest
coincidence when comparing the selected families for HA and
NDVI using base and spatial models (Figure 6). Considering
the base model in harvest two, selecting families using HA and
NDVI showed 35% coincidence (five families). There was a 43%
coincidence (seven families) for the spatial models to select the
best 10% families based on HA and NDVI data. Harvests three
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FIGURE 4 | Linear regression between herbage accumulation (HA_kg_ha) and unmanned aerial vehicles-based VIs collected in harvest one in alfalfa families
evaluated in Citra, FL. VIs: (A) NDVI, normalized difference vegetation index; (B) GNDVI, green normalized difference vegetation index; (C) NDRE, normalized
difference red edge; GRVI, (D) green and red ratio VI.

and four showed similar results to harvest one, but slightly
lower coincidence when comparing HA and NDVI for base
and spatial models.

Univariate and Bivariate Models for
Scenarios With Different Levels of
Herbage Accumulation Data
The combination of HA and NDVI data into a bivariate analysis
was compared to the univariate models for each trait, considering
scenarios with various levels of HA data for three parameters:
correlation among predicted values across all families, the
coincidence of selection for the 10% best families, and genetic
gain. In general, all parameters increased as the level of HA data
increased in all harvests (Figures 7, 8).

For the bivariate model, the correlation between the predicted
values for all families using the complete HA dataset and each
scenario with various levels of missing HA data (30–90%) varied
between 0.78 (harvest four at 30% HA data collection) and
1 (harvest one at 90% HA data collection) (Figure 7). The
correlation was consistently higher than 0.90 for three harvests
(one, two, and three), even for the scenario when only 30% of
HA data were used in the model. The coincidence of selection
for the best 10% families varied between 0.64 (harvest four at
30% HA data collection) and 0.85 (harvest one at 90% HA
data collection) (Figure 7). The correlation and coincidence of
selection were consistently higher for the bivariate model than
any univariate model across all scenarios (Figure 7). The bivariate
and univariate models for HA were similar only in harvests three
and four, for scenarios when 80 and 90% of the HA data were used
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FIGURE 5 | Variograms for HA and normalized difference vegetation index (NDVI) before (A,C) and after (B,D) the inclusion of terms to control local and global
trends for alfalfa yield in harvest one in alfalfa families evaluated in Citra, FL. (A) HA-based model, (B) HA-spatial model, (C) NDVI-based model, (D) NDVI-spatial
model. Row and column are coordinates for the rows and columns in the experimental area, respectively.

in the model (Figure 7). The genetic gain for the bivariate model
was higher than the univariate models for HA and NDVI in all
harvests (except in harvest three for HA in the scenarios when 80
and 90% of the HA data were used in the model), and it remained
stable even for scenarios with low levels of HA data (Figure 8).

For the univariate model for HA, the correlation between the
genotypic values among all families varied between 0.51 (harvest
one at 30% HA data collection) and 0.91 (harvest four for 90%
HA data collection) (Figure 7). The coincidence of selection
varied between 0.37 (harvest three at 30% HA data collection)
and 0.84 (harvest two at 90% HA data collection) (Figure 7).
The genetic gain for the univariate model for HA increased as
more HA data was used in the models across all harvests, and
higher gains were obtained for HA compared to NDVI for almost
all scenarios (Figure 8). For the univariate model for NDVI, the
correlation between genotypic values among all families varied
between 0.45 (harvests two and four at 30% HA data collection)
and 0.88 (harvest three for 90% HA data collection) (Figure 7).
The coincidence for selection varied between 0.33 (harvest four at
30% HA data collection) and 0.63 (harvest four at 90% HA data
collection) (Figure 7). In general, the univariate model for HA
provided higher correlations and % coincidence than univariate

models for NDVI (Figure 7), and lower genetic gain for HA was
obtained when the selection was performed using only NDVI
data (Figure 8).

DISCUSSION

The ultimate goal in plant breeding is to select superior breeding
units (individuals, clones, families, etc.) with the highest accuracy
level in a high throughput manner by investing the least possible
resources. Alfalfa breeders aim to develop superior cultivars with
high yield and quality, exhibiting broad adaptation to various
biotic and abiotic stresses. Breeding programs are focusing on
the improving HA invest significant resources in collecting and
quantifying HA from field trials and drying samples to determine
their dry matter content (Annicchiarico, 2015). This process is
time-consuming and expensive for large breeding populations.
A key component for increasing the efficiency in improving HA
yield is the use of fast and precise phenotypic assessment of large
breeding populations (Fu, 2015). In this study, 179 alfalfa families
were phenotyped for HA across four harvests, totaling 1,792 data
points for HA. At the same time, HTP was implemented to assess
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TABLE 1 | Estimates of broad-sense heritability (H2), predicted error variance
(PEV) and relative efficiency (RE) for alfalfa families harvested four times in Citra,
FL, United States.

Harvest Parameter HA NDVI

Base Spatial Base Spatial

1 H2 0.28*** 0.31*** 0.21*** 0.29***

PEV 31,145 29,976 413,474 368,663

RE – 103.9 – 112.2

2 H2 0.18*** 0.20*** 0.14*** 0.18***

PEV 15,503 15,048 2,140 2,099

RE – 103.1 – 101.9

3 H2 0.24*** 0.27*** 0.13*** 0.19***

PEV 19,785 19,442 54,468 51,576

RE – 101.8 – 105.6

4 H2 0.19*** 0.23*** 0.12*** 0.11***

PEV 38,223 39,548 27,300 25,200

RE – 97.4 – 108.2

Linear mixed models were fitted for herbage accumulation (HA) and normalized
difference vegetation index to estimate variance components in a model without
accounting for spatial variation (base) and by modeling the spatial variation (spatial)
in each harvest.
***denotes significance at p < 0.001 for the genetic variance using a Likelihood
Ratio Tests (LRT).

FIGURE 6 | Percent of coincidence in selection for the 10% best alfalfa
families between HA and NDVI, using the base and spatial model, across four
harvests in alfalfa families evaluated in Citra, FL, United States.

the efficiency of HTP to predict alfalfa HA. All VIs provided a
high correlation with HA, and HA in alfalfa was modeled with
moderate accuracy (R2 > 0.66 in four harvests). These results
follow similar trends from the previous studies evaluating the
efficiency of HTP in predicting HA in small plots from alfalfa
germplasm and breeding lines (Cazenave et al., 2019; Tang et al.,
2021), as well as larger alfalfa plots (Feng et al., 2020).

The progress in plant breeding is measured based on genetic
gain, which refers to the amount of increase in performance
achieved through cycles of artificial selection (Xu et al., 2017).
Several factors affect genetic gain, such as the genetic variation

available in breeding populations, trait heritability, selection
intensity, and the time required to complete a breeding cycle
(Xu et al., 2017). Estimation of heritability can be improved by
refining field experiments and statistical approaches, particularly
for understanding and controlling spatial variation. One of our
goals was to evaluate the effect of spatial models to control field
variation and improve the estimation of genetic parameters and
family selection. The autocorrelation had a significant impact
across rows and columns. The spatial models improved the
estimation of genetic and non-genetic parameters for HA in
all harvests and NDVI in harvests one, two, and three. After
applying spatial analysis, the heritability increased for both
HA and NDVI. Similarly, Sripathi et al. (2017) and Andrade
et al. (2020) reported high efficiency of spatial analysis in
the estimation of genetic parameters in potato and forage
breeding populations. These authors reported improvements in
model fitness from the base and to spatial, which supports
our results. The results presented in our study showed the
importance of the spatial model to reduce the PEV and improve
selection accuracy. These results reflected higher precision in
the selection of the best families. The spatial models for HA
and NDVI showed high levels of coincidence of selection in all
harvests (>75%, except for NDVI in harvest three), compared
to the base model.

Plant breeders can increase the selection intensity through
improvements in the scale and precision of genotyping and
phenotyping, which will result in higher genetic gain (Xu et al.,
2017). One of the strategies to improve selection intensity is
by increasing the breeding populations’ size, but this comes
at the expense of more efforts and resources dedicated to
phenotyping. HTP can lead to higher genetic gain by increasing
the size of breeding populations and making selections more
accurately (Houle et al., 2010; Tang et al., 2021). In our study,
H2 estimates were slightly lower for NDVI than HA, but both
traits showed significant genetic variation and moderate to low
H2. Considering only H2, NDVI was able to detect the genetic
variation present in this breeding population and can be used
to select breeding lines exhibiting higher NDVI values, which
would translate to breeding lines with higher HA (R2 > 0.66).
However, the coincidence of selection for the best families with
HA and NDVI for both models was low to moderate (0.35 – 0.72),
which shows that different families were selected by using NDVI
and HA data in univariate models. Moreover, the genetic gain for
HA was lower when the selection of the best 10% of the families
was performed using only NDVI data. Our results indicated the
NDVI data would complement ground-based HA measurements
to improve genetic gain for HA in alfalfa.

Costs of field experiments are the limiting factor in alfalfa
breeding programs focusing on quantifying HA across multiple
harvests in a year and across multiple years and locations. The
results presented in this study reported moderate to low H2 for
HA and high correlation coefficients between HA and NDVI
across harvests. Multi-trait selection can be applied to take
advantage of the correlation between traits and increase selection
accuracy for the target trait (Mrode, 2014). HA and NDVI data
combined into a bivariate model for each harvest showed a
higher correlation among predicted values, a higher coincidence
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FIGURE 7 | Comparison of bivariate and univariate models (shape) for HA and NDVI for coincidence of selection after applying a 10% selection intensity (red), and
correlation among breeding values for all families (green), for scenarios comparing models with increasing levels of HA data collection (30–90%) against a model with
100% HA data, across four harvests in alfalfa families evaluated in Citra, FL, United States. Harvests one (A), two (B), three (C), and four (D).

FIGURE 8 | Comparison of bivariate model (HA and NDVI, red), and univariate (HA, green; NDVI, blue) models for genetic gain for HA, after applying a 10% selection
intensity for scenarios with increasing levels of HA data collection (30–100%) across four harvests in alfalfa families evaluated in Citra, FL, United States. Harvests
one (A), two (B), three (C), and four (D).
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of selection, and greater genetic gain than univariate models for
HA and NDVI. As the level of HA data used in the models
increased (from 30 to 90% of the total data), the correlation,
coincidence of selection, and genetic gain increased. These results
highlight the importance of collecting HTP data at the harvest
time, particularly if breeders are not harvesting all experimental
units in large breeding populations. To increase genetic gain
for HA, alfalfa breeders could screen more breeding lines by
combining HA and HTP phenotyping in their pipeline since
the number of plots that need to be harvested will be smaller.
In this study, reducing phenotyping efforts by 50% (using only
50% of the available HA data) showed a range between 0.83
and 1 for correlation among all families, 0.75 to 0.89 for the
coincidence of selection, and 26.8 to 37.44% genetic gain in
bivariate models. Despite the lower correlation and coincidence
of selection, the genetic gain remained stable across all scenarios
for bivariate models in all harvests. Including NDVI in the
phenotyping pipeline for HA in alfalfa could result in greater
genetic gains by increasing the size of breeding populations
(Xu et al., 2017), while maintaining the resources for HA
phenotyping constant.

High-throughput phenotyping is a promising method to
develop improved cultivars and achieve high genetic gain. In
this study, all VIs showed a high correlation with HA, and
the inclusion of NDVI improved the selection accuracy for
HA when bivariate models were fitted, even for scenarios with
limited HA data. These results suggest that breeders could
increase population size while maintaining the same ground-
level measurement efforts, and expect increases in genetic gain
due to a higher number of breeding candidates. Similar to the
previous studies in alfalfa, HTP predicted HA with high accuracy
(Feng et al., 2020), and HTP was able to detect differences in
biomass production in large breeding populations (Cazenave
et al., 2019). The results presented in this study coincide with
the report from Tang et al. (2021), where HTP improved the
efficiency of the selection process for alfalfa biomass in small plots
(1.52 m× 0.30 m). Besides, it was also shown that spatial models
controlled field variation and improved the estimation of genetic
parameters and the accuracy of family selection.

Despite the improvements in the selection, HTP brings new
challenges into the breeding pipeline. HTP data collection,
storage, and processing require investments in computer power

and storage and programming knowledge for data analysis
and interpretation. In conclusion, the investment in time
and resources to collect, process, and analyze HTP resulted
in a more accurate selection of alfalfa families for HA.
The RS data complemented ground-based HA measurements,
and the combination of both datasets should result in
improvements in alfalfa HA.
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Crop breeding programs generally perform early field assessments of candidate
selection based on primary traits such as grain yield (GY). The traditional methods of
yield assessment are costly, inefficient, and considered a bottleneck in modern precision
agriculture. Recent advances in an unmanned aerial vehicle (UAV) and development of
sensors have opened a new avenue for data acquisition cost-effectively and rapidly.
We evaluated UAV-based multispectral and thermal images for in-season GY prediction
using 30 winter wheat genotypes under 3 water treatments. For this, multispectral
vegetation indices (VIs) and normalized relative canopy temperature (NRCT) were
calculated and selected by the gray relational analysis (GRA) at each growth stage,
i.e., jointing, booting, heading, flowering, grain filling, and maturity to reduce the data
dimension. The elastic net regression (ENR) was developed by using selected features
as input variables for yield prediction, whereas the entropy weight fusion (EWF) method
was used to combine the predicted GY values from multiple growth stages. In our
results, the fusion of dual-sensor data showed high yield prediction accuracy [coefficient
of determination (R2) = 0.527–0.667] compared to using a single multispectral sensor
(R2 = 0.130–0.461). Results showed that the grain filling stage was the optimal stage
to predict GY with R2 = 0.667, root mean square error (RMSE) = 0.881 t ha−1, relative
root-mean-square error (RRMSE) = 15.2%, and mean absolute error (MAE) = 0.721 t
ha−1. The EWF model outperformed at all the individual growth stages with R2 varying
from 0.677 to 0.729. The best prediction result (R2 = 0.729, RMSE = 0.831 t ha−1,
RRMSE = 14.3%, and MAE = 0.684 t ha−1) was achieved through combining the
predicted values of all growth stages. This study suggests that the fusion of UAV-based
multispectral and thermal IR data within an ENR-EWF framework can provide a precise
and robust prediction of wheat yield.
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INTRODUCTION

Bread wheat is one of the most important food crops that
feed 40% of the world population (Liu et al., 2020). The
timely and accurate evaluation of the grain yield (GY) before
harvest can aid the selection of elite genotypes in large breeding
programs (Mcbratney et al., 2005; Panda et al., 2010). Yield
advocating traits, such as green biomass, leaf area index (LAI),
and chlorophyll contents, have been used for within-season yield
prediction (Hassan et al., 2018, 2019a). The canopy temperature
is another important indicator of transpiration and leaf water
potential under drought and heat stress and can help facilitate
the selection of resilient genotypes (Zubler and Yoon, 2020).
However, phenotyping most of these traits is destructive, time-
consuming, and is associated with a high error probability.
Therefore, the nondestructive measurements of the above proxy
traits of the GY have been employed to increase the prediction
accuracy of crop yield cost-effectively (Yu et al., 2016; Elsayed
et al., 2017; Hassan et al., 2019a).

In the past few years, low-altitude remote sensing has
attracted interest for its application in high-throughput crop
phenotyping (Hassan et al., 2019b; Maimaitijiang et al., 2020).
The advances in sensor technology have significantly accelerated
the use of unmanned aerial vehicles (UAVs) for data collection
with high spectral resolution as compared to satellite platforms
(Colomina and Molina, 2014; Sidike et al., 2018). Various types
of sensors mounted on UAV platforms, such as multispectral,
hyperspectral, RGB, and thermal, are being widely used in the
phenotypic evaluation of crops, with satisfactory data accuracy.
The UAV-based nondestructive multispectral assessments of
the LAI (Comba et al., 2020), biomass (Yue et al., 2019),
chlorophyll content (Qiao et al., 2020), nitrogen use efficiency
(Yang et al., 2020), senescence (Hassan et al., 2021), and GY
(Hassan et al., 2019a) have been reported for several crops.
These assessments are based on the spectral reflectance from
the canopy of plants in the form of light bands with different
wavelengths (Li et al., 2014). Thermal remote sensing is also
being applied in precision agriculture to detect water stress
(Suyoung et al., 2017) and plant resistance (Ludovisi et al.,
2017). Recently, the focus has been increased on combining the
data from multiple sources, where a group of datasets from
multiple sensors is utilized obtained for plant trait estimation.
Multi-source data models have the capability to improve crop
trait estimations (Maimaitijiang et al., 2020). The use of canopy
temperature and spectral information have been demonstrated
to improve the model performance in estimating important
plant traits for assessment of biotic/abiotic stress (Appeltans
et al., 2020; Zubler and Yoon, 2020) and predicting the yield
of soybean (Elmetwalli et al., 2020), barely (Rischbeck et al.,
2014), and maize (Zhang et al., 2020). For crop yield prediction,
flowering to grain filling stages are highly reliable, with good
accuracy and repeatability (Hassan et al., 2019a; Hernandez et al.,
2015). The predictions made in most studies have been based
on the spectral information of an individual growth stage. The
accumulation of VIs from jointing to the grain filling stage
using a multiple linear regression algorithm has shown good
prediction results in rice (Zhou et al., 2017). Since UAV-based

temporal information of multispectral vegetation indices (VIs)
and temperature can be obtained cost-effectively from multiple
growth stages, combining data across the growth stages could
help to achieve higher yield prediction accuracy. Machine
learning algorithms have been employed with the canopy spectral
features as input to construct models for crop trait evaluation,
showing high prediction accuracy and adaptability (Wang et al.,
2016; Wang J. et al., 2018). The commonly used machine learning
algorithms are the random forest (RF) (Breiman, 2001), support
vector machine (SVM) (Sain, 1997), and artificial neural network
(ANN) (Bradley, 1995), and these have been successfully used
for estimating biomass (Wang et al., 2016), LAI (Wang L.
et al., 2018), chlorophyll content (Shah et al., 2019), and water
content (Tavakoli and Gebbers, 2019). Among the machine
learning algorithms, the emerging elastic net regression (ENR)
algorithm has been considered one of the most precise prediction
method for regression problems (Hui and Hastie, 2005). The
ENR algorithm combines the advantages of ridge regression
and least absolute shrinkage and selection operator (LASSO)
regression to obtain better prediction results (Ogutu et al., 2012).
At present, relatively few studies have been conducted on utilizing
information obtained by UAV-based sensors as input to the ENR
algorithm for the yield prediction of winter wheat.

The entropy weight algorithm is an emerging method in
agricultural studies. It works by allocating the weight-based
information entropy of the trait in the model (Li et al., 2011).
It has been typically used for feature selection and model
combination for combining datasets to assess ecosystem health
(Cheng et al., 2020), monitor land-use change (Lu et al.,
2014), and evaluate the coverage effectiveness of remote sensing
satellites (Li et al., 2018). To the best of our knowledge, the
entropy weight method has not been used to predict the yield
values from multiple growth stages using UAV datasets. The
objectives of this study were (1) to evaluate the potential of UAV-
based multispectral and thermal sensors for the yield prediction
of wheat using the ENR algorithm, (2) to identify the appropriate
wheat growth stage for data collection to maximize the yield
prediction accuracy, and (3) to investigate the potential of the
entropy weight method in combining the predicted GY values
from multiple growth stages.

MATERIALS AND METHODS

Germplasm and Experimental Design
Field trials were conducted at the experimental station of
the Institute of Farmland Irrigation of Chinese Academy of
Agricultural Sciences in Xinxiang (113.8◦E, 35.2◦N) during the
2019–2020 cropping season (Figure 1). In total, 30 winter
wheat varieties widely cultivated in the Yellow and Huai Valleys
Winter Wheat Zone of China were used in this experiment.
Germplasm was planted under three water stress treatments,
namely, mild irrigation, moderate irrigation, and high irrigation,
to obtain the UAV-based multispectral, thermal, and ground-
truth GY data. Irrigation for each treatment was performed in the
tillering, wintering, reviving, jointing, heading, and grain filling
stages using a laterally moving sprinkler irrigation machine. The
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FIGURE 1 | Experimental location, design, and management.

irrigation volume was calculated by the flow rate of the sprinkler
nozzle and the duration of irrigation. The total irrigation volume
for the mild, moderate, and high irrigation treatments were
145, 190, and 240 mm, respectively (Table 1). A completely
randomized block design with two replications was adopted for
the experiment. The size of each plot was maintained at 11.2 m2

with the dimensions of 8 m × 1.4 m, representing one cultivar
with six rows at a spacing of 0.20 m. Field management (e.g.,
disease and pest control, fertilizer) was maintained at optimal
levels depending on the local conditions. In the 2019–2020
growing season, the total precipitation was 115 mm, and the
monthly average temperature was highest (23◦C) in July and
lowest (−6◦C) in January. Wheat was harvested using a plot
combine harvester in June 2020. The GY of each plot was weighed
at a moisture content of approximately 12.5%.

Data Acquisition and Processing
Figure 2 shows the workflow for the data acquisition. A DJI M210
(DJI Technology Co., Shenzhen, China) carrying a RedEdge
MX (MicaSense Parrot, France) multispectral camera and a

Zenmuse XT2 (DJI Technology Co., Shenzhen, China) thermal
sensor was used to collect high-resolution multispectral and
thermal images simultaneously. The RedEdge MX featured five
spectral sensors, namely, blue (475 nm), green (560 nm), red
(668 nm), red-edge (717 nm), and near-IR (842 nm). The
RedEdge MX camera automatically adjusts the ambient light
effects through the sunshine sensor, thereby minimizing the

TABLE 1 | Irrigation strategy for each treatment.

Growth stage Mild irrigation
(mm)

Moderate irrigation
(mm)

High irrigation
(mm)

Tillering 35 35 35

Wintering 35 35 35

Turning green 20 25 35

Jointing 20 35 50

Heading 20 35 50

Grain filling 15 25 35

Total 145 190 240
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error in the multispectral images. Zenmuse XT2 contains an
8-mm lens with a 57.12◦ × 42.44◦ field of view to record
temperature measurements in the 7.5–13.5-µm spectral range
with a measurement accuracy of ± 5◦C. The DJI ground
station was used as an automated flight control system, allowing
the user to define the air route and customize the mission
plan. Flight mission was executed for all the six growth stages
from 11 a.m. to 1 p.m. under a cloudless sky. To avoid the
effect of the phenological differences between treatments, the
flight missions for each treatment were collected according
to the growth stages. To obtain high-resolution images, each
flight was set at an altitude of 30 m with 85% front and
80% side image overlapping. Before and after each flight, the
calibration board was photographed to convert the digital
number (DN) value of the multispectral image into reflectance
during subsequent data processing. During the flights, the surface
temperature of 12 boards was measured using a handheld
thermometer for the radiometric calibration of the thermal
images. To obtain the geographic reference of the multisensor
UAV image, 18 ground control points (GCPs) were evenly
arranged in the field, and their coordinates were measured
with a millimeter-level accuracy using a differential global
positioning system.

The Pix4Dmapper software (Pix4D SA, Lausanne,
Switzerland) was employed for the orthomosaic generation
using the UAV-based multispectral and thermal IR images.
The geographic coordinates (World Geodetic System, 1984)

of the GCPs were used in the photogrammetric workflow
of Pix4Dmapper to improve the accuracy of the composite
orthomosaics. Dense point clouds were generated using
the structure-from-motion (SfM) method in Pix4Dmapper
along with the photogrammetric workflow. After radiometric
correction, the DN values of the multispectral and thermal IR
images were converted to reflectance and temperature (◦C).
To extract the reflectance and temperature information for
each plot, the orthomosaic images were segmented into 180
polygon shapes with assigned IDs defining the cultivars under
different irrigation treatments. Polygon shape generation and
information extraction are completed in QGIS 3.1.0.1 A total
of 22 indices were used in this study, of which 21 VIs were
estimated from multispectral reflectance, and 1 index was
calculated from the canopy temperature across the irrigation
treatments (Table 2).

Gray Relational Analysis
In a gray relational analysis (GRA), a system with incomplete
information is called a gray system, meaning that the relationship
between the factors is uncertain (Aslan et al., 2012). When
the experiment is unclear or when the experimental method
cannot be implemented accurately, a gray analysis can help
overcome the drawbacks in statistical regression (Jin et al.,
2013). For example, there is a close relationship between VIs

1https://www.qgis.org/

TABLE 2 | Formulae of multispectral vegetation indices and normalized relative canopy temperature.

Acronym Index Formulae Developer(s)

CIRE Chlorophyll index RedEdge (RNIR/RRE)−1 Gitelson et al., 2003

DVI Difference vegetation index RNIR−RR Tucker et al., 1979

EVI Enhanced vegetation index 2.5× (RNIR−RR)/(1RNIR + 6× RR−7.5× RB) Huete et al., 2002

GNDVI Green normalized difference vegetation index (RNIR−RG)/(RNIR + RG) Gitelson et al., 1996

MCARI1 Modified chlorophyll absorption in reflectance index 1 (RREG−RR−0.2× ((RREG−RG))× (RREG/RR) Daughtry et al., 2000

PSRI Plant senescence reflectance index (RR−RB)/RNIR Merzlyak et al., 1999

MSR Modified simple ratio index ((RNIR/RR)−1)/
√

RNIR/RR1 Chen, 1996

MTCI MERIS terrestrial chlorophyll index (RNIR−RREG)/(RRE−RR) Dash and Curran, 2004

MTVI2 Modified triangular vegetation index 2 1.5× [1.2× (RNIR−RG)− 2.5× (RR−RG)]/[√
2× (RNIR + 1)2−6× RNIR + 5×

√
RR−0.5

] Haboudane et al., 2004

NDVI Normalized difference vegetation index (RNIR−RR)/(RNIR + RR) Rouse, 1972

NDVIRE Normalized difference vegetation index RedEdge (RNIR−RREG)/(RNIR + RREG) Elsayed et al., 2015

NLI Nonlinear vegetation index (RNIR × RNIR−RR)/(RNIR × RNIR + RR) Goel and Qin, 1994

OSAVI Optimized soil-adjusted vegetation index (RNIR−RR)/(RNIR + RR + 1.6)× 1.16 Rondeaux et al., 1996

PPR Plant pigment ratio (RG−RB)/(RG + RB) Metternicht, 2003

RDVI Re-normalized difference vegetation index (RNIR−RR)/
√
(RNIR + RR) Wang et al., 1998

RVI Ratio vegetation index (RNIR/RR) Ba Ret and Guyot, 1991

NRI Nitrogen reflectance index (RG−RR)/(RG + RR) Diker and Bausch, 2003

SAVI Soil-adjusted vegetation index (RNIR−RR)/(RNIR + RR + 0.5)× 1.5 Huete, 1988

SIPI Structure insensitive pigment index (RNIR−RB)/(RNIR + RB) Penuelas et al., 1995

TCARI Transformed chlorophyll absorption ratio index 3 [(RREG−RR)−0.2× (RREG−RG)× RREG/RR] Eitel et al., 2007

TVI Triangular vegetation index 0.5× [120× (RNIR−RG)− 200× (RR−RG)] Broge and Leblanc, 2001

NRCT Normalized relative canopy temperature Ti−Tmin
Tmax−Tmin

Elsayed et al., 2015

RB, RG, RR, RREG, and RNIR represent the reflectance of the blue, green, red, red-edge, and near-IR bands of RedEdge MX, respectively. T represents the canopy
temperature obtained from Zenmuse XT2.
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and yield; however, their detailed relationships remain unclear.
Therefore, the main purpose of the GRA is to measure the
degree of relationship within this system by analyzing the gray
relationships between VIs and GY. The GRA procedure includes
the following steps:

1. The reference series reflect the characteristics of the
system behavior, and the comparison series influences the
system behavior. In this study, the GY was considered
the reference series, and each index was considered a
comparison series. The reference sequence is represented
by the following formula:

X0 = X0(k)|k = 1, 2...n (1)

where n represents the number of samples, and n is 180 in this
study. Comparison data series can be expressed as follows:

Xi = Xi(k)|k = 1, 2...n, i = 1, 2...m (2)

There are m comparison data series, each containing n-values.

2. Data in each factor column in the system may have
different dimensions, making it difficult to compare or
obtain a correct conclusion when comparing. Therefore,
to ensure the reliability of the results, the following non-
dimensional processing of the data is generally required
when performing the GRA:

xi
(
k
)
=

Xi
(
k
)

Xi
(
l
) (3)

Xi(l) =
1
n

n∑
k=1

Xi
(
k
)

(4)

3. The calculation of the difference data series 4i is as follows:

4i =
(∣∣x01, − xi1

∣∣ , ∣∣x02, − xi2
∣∣ , ... ∣∣x0n, − xin

∣∣) (5)

4. The gray relational coefficient ξ i(k) for the kth data point
in the ith difference data series can be expressed as follows:

ξi(k) =
4min + ζ4max

4i(k) + ζ4max
(6)

where 4min and 4max are the global maximum and minimum
values in the difference data series, respectively. 4i(k) is the kth
value in the 4i difference data series, and ζ is the distinguishing
coefficient: ζ ∈ [0, 1]. In this study, the distinguishing
coefficient is set to 0.5.

5. Generally, the average value of the gray relational
coefficient is taken as the gray relational degree (GRD),
which is expressed as follows:

γi =
1
n

n∑
k=1

ξi(K). (7)

Elastic Net Regression
To avoid the instability of the LASSO solutions when the input
features are highly correlated (e.g., a large number of VIs
constructed from limited bands), the ENR has been proposed to
analyze the high-dimensional data. The ENR is an extension of
the LASSO, which is robust to severe multicollinearity among
the input features (Ogutu et al., 2012). The ENR combines the
penalties of the ridge regression ( `1) and LASSO ( `2) and can be
expressed as follows:

β̂(enet)=
(

1+
λ2

n

){
arg min
β ||y− Xβ|| 2

2 + λ2||β||
2
2 + λ1||β|| 1

}
(8)

On setting α = λ2/(λ1 + λ2), the ENR is equivalent to the
minimizer of the following:

β̂(enet2) = arg min
β ||y− Xβ|| 2

2 (9)

subject to Pα (β) = (1−α) ||β||1 + α||β|| 2
2 ≤ s for some s,

where Pα (β) represents the penalty of the ENR. The ENR can
be considered LASSO and ridge regression when a = 0 and
1, respectively. The `1 part of the ENR is used for automatic
variable selection, while the `2 part encourages grouped
selection and stabilizes the solution paths with respect to the
random sampling, thereby improving the prediction results.
By introducing a grouping effect when selecting the variable, a
group of highly correlated input features tends to have similar
coefficients. The ENR can choose the groups of correlated
features when these groups are unknown in advance. Notably,
the ENR selects more than n variables when p>> n, which is
different from the LASSO. In this study, there is inevitably a
high correlation between the various VIs. Therefore, the ENR
will be an ideal choice when using VIs as the input features for
yield prediction.

Modeling Framework
In this study, a 10-fold outer cross-validation method was
adopted to train and test the model. To avoid contingency, we
conducted 50 iterations for the outer cross-validation, resulting
in a total of 500 models. The average of the accuracy evaluation
index generated from the 500 models was used to evaluate the
model performance. In the process of outer cross-validation, the
inner cross-validation and the grid search were conducted for
parameter tuning of the ENR models (Figure 2). In the outer
cross-validation, the VIs and GY data were randomly divided
into 10 equal subsets. One of them was used for testing each
time, and the remaining nine subsets were used for training. Each
training set of the outer cross-validation was evenly divided into
10 sets, similar to the outer cross-validation. One of them was
used for testing, and the nine subsets were used for training.
During the inner cross-validation process, multiple combinations
of the candidate parameters were set in the inner training
set for model construction and then tested on the inner test
set. Each parameter combination was tested 10 times, and the
hyperparameter combination with the lowest average test error
was set for the outer cross-validation for model training. This
study uses the R package “caret”2 to construct the ENR model

2https://CRAN.R-project.org/package=caret
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FIGURE 2 | Schematic workflow of the methodology used in this study. P denotes the predicted grain yield (GY) value, and C1–C8 indicate the combinations of the
values predicted from multiple growth stages. CV, cross-validation; VIs, vegetation indices; NRCT, normalized relative canopy temperature.

for yield prediction. In the “caret” package, the parameters to be
adjusted are the fraction and quadratic penalty parameter lambda.
Table 3 represents the candidate ranges of these two parameters.

TABLE 3 | Candidate hyperparameters for elastic net regression.

Number Lambda Fraction Number Lambda Fraction

1 0.050 0.000E+00 16 0.541 3.162E-03

2 0.083 1.000E-04 17 0.574 4.047E-03

3 0.116 1.280E-04 18 0.607 5.179E-03

4 0.148 1.638E-04 19 0.640 6.629E-03

5 0.181 2.096E-04 20 0.672 8.483E-03

6 0.214 2.683E-04 21 0.705 1.086E-02

7 0.247 3.433E-04 22 0.738 1.389E-02

8 0.279 4.394E-04 23 0.771 1.778E-02

9 0.312 5.623E-04 24 0.803 2.276E-02

10 0.345 7.197E-04 25 0.836 2.913E-02

11 0.378 9.211E-04 26 0.869 3.728E-02

12 0.410 1.179E-03 27 0.902 4.771E-02

13 0.443 1.509E-03 28 0.934 6.105E-02

14 0.476 1.931E-03 29 0.967 7.814E-02

15 0.509 2.471E-03 30 1.000 1.000E-01

Moreover, we tested the model performance on the test
samples in the cross-validation procedure to test the adaptability
of the model. The coefficient of determination (R2), root mean
square error (RMSE), relative root-mean-square error (RRMSE),
and mean absolute error (MAE) were adopted to evaluate the
model performance. The calculation formulae of the parameters
are as follows:

R2
= 1−

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − y)2

(10)

RMSE =

√√√√ 1
n

n∑
i=1

(
yi − ŷi

)2 (11)

RRMSE =
RMSE

y
∗100% (12)

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (13)

where n represents the number of samples, yi and ŷi are the
measured and predicted GY of sample i, and y is the average
value of the measured GY. The higher the R2-value, the lower the
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RMSE, RRMSE, and MAE values and the better the performance
of the model for GY prediction.

Entropy Weight Method
The ENR algorithm was independently implemented at each
growth stage. Instead of using these results to predict the GY
individually, we proposed an entropy weight fusion (EWF) model
that combines the predicted results from the different growth
stages via weights obtained during the model training stage.
The basic mechanism of the entropy weight method is to use
the entropy to characterize the degree of disorder in the system
(Farhadinia, 2017). In this method, the relative error between
the predicted and measured values of the GY obtained in an
individual growth stage by the selected ith prediction model can
be expressed as follows:

Eij

 1,when
∣∣∣ (yj−yij)yj

∣∣∣ ≥ 1;∣∣∣ (yj−yij)yj

∣∣∣ ,when 0 ≤
∣∣∣ (yj−yij)yj

∣∣∣ ≤ 1
(14)

where i = (1, 2, 3. . .m), j = (1, 2, 3. . .n), and yij represents the
predicted value of the yield forecast model for the ith individual
growth stage on the jth plot. The process for calculating the
weights is as follows:

The relative error ratio was calculated between the predicted
value of the ith individual growth stage and the measured value
at plot j:

Pij =
Eij∑n
i=1 Eij

(15)

where
∑n

i=1 Pij = 1. The entropy value hi was calculated for the
relative error in the ith individual growth stage prediction:

hi = −k
n∑
j=1

[
Pijln(Pij)

]
k = 1/ln(n) (16)

The relative error variation coefficient was determined based on
the principle of the opposite of the entropy value and its degree
of variation:

di = 1− hi (17)

The weight was then obtained for the predicted output value
from a single growth stage:

wi =
1
n

(
1− di

/ n∑
i=1

di

)
(18)

The weights were obtained by combining the output forecast
values from the multiple growth stages. The final output forecast
value can be expressed as follows:

ŷ =
n∑

i=1

wiyij (19)

The higher the entropy of the prediction error sequence of a
single growth stage, the lower the degree of variation and the
greater the weight. The entropy weight method fully considers

the relative error in the output prediction value from the different
growth stages. Therefore, the predicted results from the multiple
growth stages complement each other to improve the accuracy
of yield prediction. In this study, eight combinations were
created to evaluate the accuracy of the entropy weight method
for GY prediction. Table 4 represents a detailed description of
each combination.

RESULTS

Descriptive Statistics of Grain Yield
The distribution of yield from wheat plots is shown in Figure 3.
The GY was normally distributed under all the irrigation
treatments as well as across the treatments. The GY was found
to be higher under high irrigation treatments than under the
moderate and mild irrigation treatments. The mean GY values
for the high, moderate, and mild irrigation treatments were 7.09,
5.99, and 4.40 t ha−1, respectively. The highest coefficient of
variation (19.51%) was observed in the mild irrigation treatment
and the lowest (12.70%) in the high irrigation treatment. The
overall range of the GY data across the irrigation treatment was
2.79–8.64 t ha−1, with a data variation of up to 24.35%. Across
treatment data with this type of variation can help evaluate the
prediction accuracy of the model.

TABLE 4 | Combination of different growth stages used in the model for grain
yield prediction.

Combination Combination of growth stages

C1 Jointing, booting, heading

C2 Jointing, booting, heading, flowering

C3 Jointing, booting, heading, flowering, grain filling

C4 Jointing, booting, heading, flowering, grain filling, maturity

C5 Booting, heading, flowering

C6 Heading, flowering, grain filling

C7 Flowering, grain filling, maturity

C8 Heading, flowering, maturity

FIGURE 3 | Grain yield distribution curves under various irrigation treatments.
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Results of Gray Relational Analysis and
Feature Selection
A total of 22 indices were ranked using the GRA method.
Table 5 lists the results for all the growth stages. The
GRD of the normalized relative canopy temperature (NRCT)
ranked first for the jointing, booting, and flowering stages
and relatively high for the heading (rank = 10) and grain
filling (rank = 9) stages. However, the NRCT ranked last at
maturity. The rankings for most VIs were unstable across all
the growth stages. For example, plant pigment ratio (PPR)
and difference vegetation index (DVI) had a high ranking at
both jointing and booting but ranked low at flowering and
grain filling. In accordance with the GRA mechanism, the
higher the GRD between the main and the reference sequence,
the more closely the sequences are related, which indicates a
close relationship between the NRCT and the yield during the
multiple growth stages.

To further explore the features with better performance and
to reduce the dimensionality of the data, the top feature was
iteratively added into the ENR. The performance of the model
(i.e., MAE) in the training process was updated until all the
features were inputted into the ENR (Figure 4). Among the six
developmental stages, the grain filling stage yielded the lowest
error, and it tended to be stable when the number of features
was 19. The highest error was observed in jointing, and the
model showed a stable tendency after inputting 16 features. The
appropriate numbers of input features for the booting, heading,
flowering, and maturity stages were found to be 18, 18, 22, and
22, respectively.

TABLE 5 | Ranking of indices using the gray relational analysis (GRA) for
six growth stages.

Rank Jointing Booting Heading Flowering Grain filling Maturity

1 NRCT NRCT NLI NRCT MSR TVI

2 PPR PPR NDVI RVI RVI NLI

3 OSAVI SAVI TCARI MSR NDVI SAVI

4 MTVI2 OSAVI MSR NDVI NLI RDVI

5 SAVI RDVI RVI NLI NRI EVI

6 RDVI MTVI2 MTVI2 OSAVI OSAVI DVI

7 MCARI PSRI OSAVI MTVI2 MTVI2 OSAVI

8 PSRI TCARI PPR TCARI CIRE MTVI2

9 TCARI DVI SAVI RDVI NRCT PSRI

10 DVI TVI NRCT NRI NDVIRE MCARI

11 TVI MCARI SIPI SAVI GNDVI MTCI

12 EVI EVI RDVI GNDVI RDVI NDVI

13 SIPI SIPI MCARI SIPI SIPI RVI

14 GNDVI NLI PSRI PSRI PSRI MSR

15 NRI NDVI EVI EVI SAVI CIRE

16 NDVIRE MSR DVI CIRE EVI NDVIRE

17 NLI RVI TVI NDVIRE TCARI SIPI

18 CIRE MTCI GNDVI DVI TVI NRI

19 MTCI CIRE NRI TVI DVI GNDVI

20 NDVI NRI NDVIRE MTCI MTCI TCARI

21 MSR GNDVI CIRE PPR MCARI PPR

22 RVI NDVIRE MTCI MCARI PPR NRCT

Performance of Elastic Net Regression
Model for Individual Growth Stage
To analyze the improvement of the thermal data for yield
prediction accuracy, the model was first built using the features
extracted from the multispectral images (Figure 5). The mean
prediction values for the grain filling stage was R2 = 0.461,
followed by flowering (R2 = 0.432), heading (R2 = 0.422),
maturity (R2 = 0.417), booting (R2 = 0.290), and jointing
(R2 = 0.130). Figure 6 represents the accuracy assessment results
of the ENR model for GY predictions by using both thermal
and multispectral features. The results show that the dual-sensor
data fusion method achieves higher prediction accuracy at all
measured stages compared to using single multispectral sensor-
based features. As with using only multispectral features, the
ENR showed the highest prediction results with a low error
at the grain filling (R2 = 0.667) stage. The mean prediction
results at jointing, booting, heading, flowering, and maturity
were R2 = 0.544, R2 = 0.571, R2 = 0.602, R2 = 0.640, and
R2 = 0.527, respectively.

After obtaining the predicted GY using thermal IR and
multispectral features, the regression between the predicted
GY from the various stages was conducted (Figure 7). High
correlations ranging from R2 = 0.59 to R2 = 0.89 between adjacent
growth stages were observed across the growth stages. Moreover,
the greater the interval between the growth stages, the lower the
R2-value. For example, the R2 between the jointing stage and
the booting, heading, flowering, grain filling, and maturity stages
were 0.78, 0.66, 0.64, 0.52, and 0.41, respectively. In comparison,
the correlations between the predicted yield in the maturity and
other growth stages were lower, with quite weak regression values
ranging from R2 = 0.41 to R2 = 0.59. There were differences in
the distribution curves of predicted GY values, which provides
complementary information.

Performance of Entropy Weight Fusion
Method
For comparison with the EWF method, multispectral and
thermal features from multiple stages were used as the inputs of
ENR to the training model. The results indicated that combining
the features of multiple stages increases the accuracy of yield
prediction than individual stages (Figure 8). The C4 yielded
the highest R2-value of 0.725, followed by C3 (R2 = 0.717) and
C2 (R2 = 0.691). The remaining combinations achieved similar
prediction accuracy (R2 = 0.669–0.681). However, the obvious
fluctuations of accuracy parameters (R2, RMSE, RRMSE, and
MAE) with wide ranges were observed.

Figure 9 represents the performance of the EWF model in
predicting the GY using the combined predicted values from the
multiple growth stages. Comparing with the individual growth
stages, the EWF model also provides a more accurate result
regardless of the number of stages adopted. Among the eight
combinations, the optimal test results of the EWF model were
observed in C4, with a mean R2 of 0.729. An increase of
0.062 compared with the highest mean R2-value was observed
in the grain filling stage (R2 = 0.667). Moreover, the RMSE,
RRMSE, and MAE values were reduced to 0.831 t ha−1, 14.3%,
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FIGURE 4 | Model training error as a function of the number of features. The order of input of features depends on the gray relational degree (GRD). MAE, mean
absolute error.

FIGURE 5 | Statistical distributions of (A) coefficient of determination (R2), (B) root mean square error (RMSE), (C) relative root-mean-square error (RRMSE), and
(D) mean absolute error (MAE) of the elastic net regression (ENR) algorithm for GY prediction using multispectral features in test phases. JS, jointing stage; BS,
booting stage; HS, heading stage; FS, flowering stage; GFS, grain filling stage; MS, maturity stage.

and 0.684 t ha−1, respectively. A low prediction was observed in
C1 (R2 = 0.681). Compared to C5 (R2 = 0.692), C6 (R2 = 0.678),
C7 (R2 = 0.677), and C8 (R2 = 0.688), C2 (R2 = 0.721) and C3

(R2 = 0.719) had a more accurate predictions. The fluctuations
in the accuracy parameters (R2, RMSE, RRMSE, and MAE) of
the EWF model were more moderate compared to the model
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FIGURE 6 | Statistical distributions of (A) R2, (B) RMSE, (C) RRMSE, and (D) MAE of the ENR for GY prediction using both multispectral and thermal features in test
phases. JS, jointing stage; BS, booting stage; HS, heading stage; FS, flowering stage; GFS, grain filling stage; MS, maturity stage.

FIGURE 7 | Regression plots, density curve, and R2-values between predicted GY in six developmental stages.
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FIGURE 8 | Statistical distributions of (A) R2, (B) RMSE, (C) RRMSE, and (D) MAE of the ENR model that uses both multispectral and thermal features from different
stages as inputs.

that directly used multistage features as inputs (Figures 8, 9),
which again demonstrates the stability of the EWF method.
A paired t-test was utilized to assess whether the EWF
models performed statistically high in terms of the R2-values
compared with the other models (Figure 10). The results showed
significantly high R2-values for the EWF model in all the growth
stage combinations.

DISCUSSION

The UAV-based phenotyping is an emerging technique in
practical crop breeding. Previous studies have shown that the
UAV-based features and the machine learning model can be used
together to predict crop yields in breeding work with a large
number of crop genotypes (Osval et al., 2017; Fei et al., 2021).
In this study, ENR is a relatively new machine learning algorithm
being used for yield prediction. ENR combines the properties of
ridge regression and LASSO (Ogutu et al., 2012), both of which
have been successfully applied to crop yield prediction (Kang
et al., 2021; Shafiee et al., 2021). The incorporation of multiple VIs
adds collinearity to the models, and the ENR is robust to severe
multicollinearity among the input features (Ogutu et al., 2012).

Another reason for using ENR was the simplicity of the linear
model compared to other machine learning algorithms such as
RF or ANNs, which makes the model run less time-consuming
and more efficient to train.

Several VIs such as normalized difference vegetation index
(NDVI) and green normalized difference vegetation index
(GNDVI) have been evaluated to monitor crop health under
stress and predict the GY. Most of the multispectral VIs that
have been reported were species-specific and easily saturated
(Hatfield and Prueger, 2013). Therefore, it is challenging to
predict important crop traits using a single VI (Wang et al., 2016).
The successful use of multiple VIs to improve the prediction
accuracy of important traits in crops has been reported in many
studies (Wang et al., 2016; Jin et al., 2020). In this study, 21
multispectral VIs and 1 temperature index (i.e., NRCT) were
measured in multiple growth stages to validate the UAV data
and ENR and check their accuracy for GY prediction. For
accurate yield predictions and to avoid model overfitting, the
machine learning algorithms may benefit from using a feature
selection algorithm to reduce the dimensionality of the data to an
appropriate level (Yoosefzadeh-Najafabadi et al., 2021). The GRA
is a widely accepted approach in feature selection (Deris et al.,
2013; Lu et al., 2019; Yao et al., 2019; Miswan et al., 2021). The
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FIGURE 9 | Statistical distributions of (A) R2, (B) RMSE, (C) RRMSE, and (D) MAE of the entropy weight fusion (EWF) method for GY prediction in the test phases.

FIGURE 10 | Results from paired t-test between model R2 obtained from the EWF method and the individual stages. ∗∗∗ significant at P ≤ 0.001; JS, jointing stage;
BS, booting stage; HS, heading stage; FS, flowering stage; GFS, grain filling stage; MS, maturity stage.

results in this study show that GRA can reduce the dimensionality
of the input features to some extent.

The model performed poorly when using multispectral VIs to
predict yield. This could be due to the saturation issue associated
with the visible-near-infrared (Vis-NIR) sensor for dense

vegetation such as wheat, soybean, and rice (Thenkabail et al.,
2000; Tilly et al., 2015). The fusion of multispectral and thermal
features includes canopy spectral and temperature information
outperformed for yield prediction, which was consistent with
previous reports (Maimaitijiang et al., 2017, 2020). Temperature
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is closely related to plant physiological processes such as
transpiration, leaf water potential, and photosynthesis (Sagan
et al., 2019). Generally, high canopy temperature is negatively
correlated with crop yield (Tattaris et al., 2016; Sagan et al.,
2019). Previously, the UAV-based thermal IR data has been
successfully applied to plant trait evaluation (Gonzalez-Dugo
et al., 2013; Ludovisi et al., 2017; Liu et al., 2018; Raeva et al.,
2019; Crusiol et al., 2020). Previous studies have also shown that
combining thermal data with multispectral data outperformed as
compared to the fusion of spectral and structural information
from RGB and multispectral images for the prediction of LAI,
biomass, chlorophyll, and nitrogen in soybean (Maimaitijiang
et al., 2017).

The spatial heterogeneity of the ground changes among the
developmental stages of the crop could lead to a significant
difference in the prediction accuracy across the growth stages
(Juliane et al., 2014). The results of yield prediction based on
the individual growth stages are similar to previous reports,
i.e., wheat yield prediction accuracy was higher at grain filling
stages under different growth environments (Hernandez et al.,
2015; Hassan et al., 2019a). During the grain filling stage, the
starch, protein, and organic matter produced by photosynthesis
are transported to the grain (Guan et al., 2017), and this stage
is closely linked to the thousand-grain weight. Therefore, the
accuracy of yield estimation was highest at the grain filling stage.
In addition, the reduction in the greenness and chlorophyll level
after the grain filling stages due to the decrease in the degree of
dry matter accumulation in the leaves of plants could influence
the detection accuracy of VIs based on the red and near-IR
light (Yue et al., 2017). This reduces the model performance
in the late developmental stage, which causes a decrease in
yield prediction accuracy at maturity. In addition, crop canopy
information at varying growth stages is associated with different
yield elements, and a combination of remote sensing data
from multiple growth stages can effectively improve the yield
prediction accuracy.

Another main objective of this study was to use an appropriate
method to acquire the prediction values from a combination of
temporal remote sensing data across the growth cycle. Although
previous studies used temporal VIs for yield prediction, most of
them used a single VI (Wang et al., 2014; Zhou et al., 2017),
which can be influenced by different degrees of saturability
or soil background (Wang et al., 2016). We first directly
used the multispectral and thermal features from multiple
stages as inputs to ENR, and this method was able to obtain
higher yield prediction accuracy than individual stages, but the
accuracy parameters fluctuated more compared to EMF and were
slightly lower than the prediction accuracy of the EMF method
for some combinations. This may be due to the redundant
information generated by the accumulation of features from
multiple growth stages. In addition, the excessive dimensionality
of input features also poses the risk of overfitting the machine
learning model (Feng et al., 2017; Coolen et al., 2020). Among
the combinations of EMF, the prediction accuracy of C2
was comparable to a combination with the highest prediction
accuracy of C4. The data required for C2 can be obtained
at the flowering stage, which is appropriate for application in

practical management. The results of this study suggest that the
fusion of multispectral and thermal features within an entropy
weight ensemble framework can provide accurate wheat yield
predictions. However, more comprehensive studies, such as
studies of different crop varieties in different environments, are
needed to determine the most accurate and efficient multistage
data for combination.

CONCLUSION

A rapid and nondestructive method for an accurate GY
prediction of wheat is desired in breeding programs. In this
study, an ensemble framework was developed to increase the
GY prediction accuracy by integrating the predicted values from
multiple stages using the UAV-based multispectral and thermal
IR imagery. The test results showed that the prediction accuracy
of the grain filling stage was the highest among the six growth
stages. The ensemble method outperformed the individual stage-
based GY prediction in terms of accuracy. Combining the
features of the first four growth stages allows for early and
accurate yield prediction to aid in decision-making. This study
offers a new method for GY prediction through UAV-based
remote sensing, and it can help in large breeding activities.
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Science and Technology, Thuwal, Saudi Arabia

Monitoring leaf Chlorophyll (Chl) in-situ is labor-intensive, limiting representative sampling 
for detailed mapping of Chl variability at field scales across time. Unmanned aeria-l vehicles 
(UAV) and hyperspectral cameras provide flexible platforms for observing agricultural 
systems, overcoming this spatio-temporal sampling constraint. Here, we evaluate a 
customized machine learning (ML) workflow to retrieve multi-temporal leaf-Chl levels, 
combining sub-centimeter resolution UAV-hyperspectral imagery (400–1,000 nm) with leaf-
level reflectance spectra and SPAD measurements, capturing temporal correlations, selecting 
relevant predictors, and retrieving accurate results under different conditions. The study is 
performed within a phenotyping experiment to monitor wild tomato plants’ development. 
Several analyses were conducted to evaluate multiple ML strategies, including: (1) exploring 
sequential versus retraining learning; (2) comparing insights gained from using 272 spectral 
bands versus 60 pigment-based vegetation indices (VIs); and (3) assessing six regression 
methods (linear, partial-least-square regression; PLSR, decision trees, support vector, 
ensemble trees, and Gaussian process; GPR). Goodness-of-fit (R2) and accuracy metrics 
(MAE, RMSE) were determined using training/testing and validation data subsets to assess 
the models’ performance. Overall, while equally good performance was obtained using 
either PLSR, GPR, or random forest, results show: (1) the retraining strategy improved the 
ability of most of the approaches to model SPAD-based Chl dynamics; (2) comparative 
analysis between retrievals and validation data distributions informed the models’ ability to 
capture Chl dynamics through SPAD levels; (3) VI predictors slightly improved R2 (e.g., from 
0.59 to 0.74 units for GPR) and accuracy (e.g., MAE and RMSE differences of up to 2 SPAD 
units) in specific algorithms; (4) feature importance examined through these methods, 
revealed strong overlaps between relevant bands and VI predictors, highlighting a few 
decisive spectral ranges and indices useful for retrieving leaf-Chl levels. The proposed ML 
framework allows the retrieval of high-quality spatially distributed and multi-temporal SPAD-
based chlorophyll maps at an ultra-high pixel resolution (e.g., 7 mm).

Keywords: chlorophyll, hyperspectral image, SPAD – leaf greenness, machine learning, UAV, multitemporal 
analyses, vegetation indices, digital phenotyping
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INTRODUCTION

Chlorophyll (Chl) is the primary pigment that drives the 
exchange of energy required for sugar production through 
photosynthesis, which ultimately sustains life, produces oxygen, 
and regulates CO2 for the entire planet. From the interaction 
of visible solar radiation with leaves (approximately 400–750 nm), 
around 85% is absorbed by leaf pigments to fuel the 
photosynthesis processes, 10% is reflected, 2% is emitted as 
fluorescence, and the rest is transmitted (Lambers and Oliveira, 
2019). However, this balance can vary depending on the 
chlorophyll content and concentration throughout the plant 
developmental phases, which itself is subject to environmental 
factors that influence physiological responses like growth, 
structural changes, and stress. The importance of Chl 
quantification, beyond its inherent ecosystem value, is widely 
documented in the agricultural literature, with efforts exploring 
its role in underpinning gross primary productivity (Houborg 
et al., 2015a), leaf nitrogen monitoring (Schlemmer et al., 2013), 
assessing health status (López-López et  al., 2016), supporting 
fertilization management practices (Gabriel et  al., 2017), and 
senescence detection (Noodén et  al., 1997). Despite the 
importance of chlorophyll for phenotyping and agricultural 
purposes, accurately quantifying its temporal dynamics at 
different spatial scales (i.e., leaf, canopy, or field) remains a 
significant challenge, given the laborious and time-consuming 
sampling procedures required for its accurate characterization. 
From the diversity of methods available for examining leaf 
chlorophyll content, two of the most widely used include a 
destructive laboratory procedure based on in vitro 
spectrophotometric techniques (Wellburn, 1994; Porra, 2002; 
Netto et  al., 2005) and a non-destructive method based on 
in-situ observations collected via chlorophyll meters, such as 
the Soil Plant Analysis Development (SPAD) system  
(Yuan et  al., 2016; Shah et  al., 2017; Dong et  al., 2019).

However, despite the high accuracy provided by the 
laboratory method, or the portability offered by handheld 
sensors, both procedures face limitations when covering large 
study areas, where numerous samples are required to assess 
entire plant populations. An alternative and complementary 
approach to tackle this limitation is through combining field-
based sampling (or scouting) with remote sensing based 
observations. Total chlorophyll can be tracked by its reflectance 
response using optical sensors (Curran, 1989), which can 
detect spectral absorption peaks within the visible wavelengths, 
centered at the 400–450 nm range and around 680 nm for 
Chl-a, and at the 450–500 nm range and around 650 nm for 
Chl-b. In recent decades, progress has been made in using 
multispectral satellite observations in combination with field 
data to estimate a range of “greenness” indices and gross 
primary productivity using MODIS (Wang et  al., 2020), 
Landsat (Croft et  al., 2015; Houborg et  al., 2015b) and 
Sentinel-2 (Clevers and Gitelson, 2013; Delloye et  al., 2018) 
platforms. Other initiatives have explored space-borne 
hyperspectral imagery from the EO-1 Hyperion sensor, tracking 
yield dynamics based on Chl content and leaf area index 
(Wu et  al., 2008; Houborg et  al., 2016). However, recent 

advances in miniaturizing optical sensors and systems, which 
can capture high spatial, spectral and temporal resolution 
data, offer new research opportunities to progress open 
questions in retrieval models and dynamics of Chl at both 
leaf and canopy scales. For example, studies based on unmanned 
aerial vehicles (UAVs) coupled with hyperspectral cameras 
have examined pigments content estimation (Zarco-Tejada 
et  al., 2013a) by replicating modeling approaches already 
implemented with satellite and airborne-base data. With the 
enhanced spatial and temporal resolution afforded by such 
systems (Aasen et  al., 2018), these technologies also bring 
new challenges in terms of the computational efficiency 
required to process, model, and analyze the large volumes 
of data collected.

Translating these massive quantities of hyperspectral imagery 
and in-situ data into useable information and knowledge 
requires improved and targeted modeling strategies. Early 
studies using UAV-based imaging spectroscopy were often 
focused on monitoring and characterizing croplands, retrieving 
Chl content, and other specific physiological properties using 
a range of methods. Broadly speaking, these approaches can 
be  grouped into parametric, machine learning (ML), radiative 
transfer models (RTM), or hybrid methods (see Verrelst et al., 
2019 for a full review). Parameterized relationships between 
spectral bands sensitive to physiological traits, more generally 
referred to as vegetation indices (VIs), are probably the most 
common approach to map pigments content (Haboudane et al., 
2002), with examples including the Photochemical Reflectance 
Index (PRI; Zarco-Tejada et  al., 2013b), the optimized soil-
adjusted vegetation index (OSAVI) and the modified chlorophyll 
absorption in reflectance index (MCARI; Domingues 
Franceschini et  al., 2017), among many others. Statistical 
regression approaches are routinely employed to capture 
relationships between spectral features and biophysical traits. 
For example, one of the more widely used linear methods is 
partial least squares regression (PLSR), which has been 
implemented to simultaneously estimate Chl and LAI (Kanning 
et al., 2018). ML regression algorithms have become increasingly 
popular due to their diversity of model types and utility for 
analyzing large datasets, with examples including random forest, 
and support vector machines. Bayesian algorithms, such as 
the Gaussian process regression (GPR; Rasmussen and Williams, 
2006; Verrelst et  al., 2012; Camps-Valls et  al., 2016), have 
gained popularity in remote sensing applications due to their 
capacity to measure uncertainty and include prior knowledge 
about the modeled variables by using kernel functions. Together 
with GPR, an ensemble of multiple algorithms (Feilhauer et al., 
2015; Vanbrabant et  al., 2019) has been shown to outperform 
what can be  achieved from application of any single method. 
Finally, more recent developments have sought to combine 
elements from the approaches mentioned above, resulting in 
hybrid methods that have the advantage of complementing 
the biophysical properties of VIs and RTMs with the 
computational efficiency and flexibility of non-parametric 
models, especially when dealing with large datasets (Capolupo 
et al., 2015). Hybrid-combinations remain an open and promising 
research path for phenotyping at canopy and leaf–level, with 
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applications including training ML regression approaches with 
simulated VIs retrieved by RTMs (Liang et  al., 2016; Houborg 
and McCabe, 2018) or producing ensembles of dimensionality 
reduction (DR) and MLR methods able to filter critical spectral 
predictors (Rivera-Caicedo et  al., 2017; Shah et  al., 2019) to 
boost hyperspectral derived results.

Machine learning has shown considerable potential for 
delivering novel insights in leaf Chl retrieval, yet there are 
numerous implementation challenges that can frustrate 
application, including algorithm choice, training data, learning 
strategies, and predictors selection (Verrelst et  al., 2019). 
Identifying the right algorithm among the many available 
depends on evaluating elements such as accuracy, interpretability, 
complexity, scalability, and computational cost: pre-analysis 
steps that are not always followed. Some approaches make 
particular assumptions about the data structure (i.e., distribution), 
demanding an exhaustive exploratory data analysis prior to 
modeling. Establishing a learning strategy has important 
implications for making the most of limited training data and 
prediction purposes. For instance, a data integration strategy 
for multi-temporal observations is required to understand how 
dynamics in Chl content combine to affect spectral responses. 
Likewise, the idea of strengthening the predictive power by 
using hundreds of spectral bands as predictors may result in 
computationally expensive models and multicollinearity issues, 
thus requiring coupled DR methods or testing transformed 
variables that bolster the spectral features sensitive to Chl (i.e., 
VIs). Overall, although there is not a generic recipe that can 
be  applied to most ML problems, a modeling framework that 
integrates the above-highlighted aspects provides a much-needed 
road-map for retrieving biophysical variables from hyperspectral  
data.

The present study aims to assess the robustness of a machine 
learning framework to map a metric of leaf-Chl through the 
use of multi-temporal ultra-high spatial resolution (e.g., order 
of millimeters) UAV-based hyperspectral imagery. This is done 
using a training dataset composed of multi-temporal in-situ 
SPAD observations, together with VI estimates from field-based 
spectra measurements (350–2,500 nm) at the leaf level. Coincident 
and high-spatial resolution UAV-based hyperspectral scans 
(400–1,000 nm across 272 continuous bands) were also collected 
to provide a spatially distributed extension to the point scale 
in-situ training collections. A novel aspect of this work is that 
the modeling framework provides strategies for selecting the 
best-suited training/retrieval combinations based on accuracy 
assessment, using multiple learning models, spectral bands, 
and VIs predictors, and performed under both sequential and 
retraining learning techniques. Three particular research 
objectives are explored in this study: (1) examining the ability 
of different training strategies (retraining versus sequential) to 
capture and exploit temporal correlations in leaf-Chl; (2) quantify 
any potential gain (via a feature selection method) from using 
pigment-based VIs as Chl content predictors versus individual 
spectral bands; and (3) evaluate the performance of different 
ML regression approaches to accurately model and retrieve a 
SPAD-based Chl metric under dynamic training and field  
conditions.

MATERIALS AND METHODS

Study Area and Experimental Design
As part of a phenotyping study of a wild tomato (Solanum 
pimpinellifolium) crop, data were acquired over an experimental 
farm located in the valley of Hada Al-Sham, approximately 
250 m above sea-level and 60 km east of Jeddah, Saudi  Arabia 
(Figure  1). The regional climate is tropical and subtropical 
desert, with annual rainfall averages of around 100 mm. Although 
there was no rainfall during the study period, several sandstorms 
occurred through the growing cycle. 1,200 individual tomato 
plants were planted across the field, spaced equally at 1.5 m 
intervals and comprising 60 rows aligned along the north-east 
direction at approximately 2 m separation. The area was divided 
into four plots, containing a total of 300 plants each. The 
substrate was predominantly sandy loam soil. Five field campaigns 
were conducted between the fall and winter seasons (from 
November 2017 to January 2018), capturing crop growth stages 
corresponding to establishment, development, flowering, fruiting, 
and pre-harvest. As the primary purpose of the original 
phenotyping study was to identify salinity tolerance within 
the chosen selections, the experiment included duplicate saline 
and freshwater irrigation across four sub-areas (see Barreto 
et  al., 2019 for further details). Here we  focus our analyses 
on a single quadrant in order to reduce the computational 
burden involved in multi-quadrant processing (considering the 
terabytes of imagery involved). Ultimately, results can 
be  expanded to the rest of the field to explore the impacts 
of salt-stress.

Field Spectra Data Collection
During each campaign, field-based reflectance spectra were 
collected close to solar noon using an ASD FieldSpec-4 
(Analytical Spectral Devices Inc., Boulder, CO, United States) 
spectroradiometer, which samples data in the visible (VIS) 
and shortwave infrared (SWIR) spectral range (from 350 nm 
to 2,500 nm), with a resampled spectral resolution of 1 nm. 
From the total population of 1,200 plants, 36 individuals 
were randomly selected, and the reflectance response from 
three of their top leaflets measured (i.e., 108 samples for 
each campaign). Eleven sampling plants died before the last 
campaign (20180114, pre-harvest) due to strong winds,  
reducing the number of samples from 108 to 75 leaflets. An 
8-degree fore optic lens was attached to a pistol grip to limit 
the field of view (FOV) diameter to 1.5 cm, measuring at a 
constant 10 cm zenith distance from each leaflet, which was 
placed on a black background. A white spectralon reference 
panel was used to calibrate the spectral measurements during 
the collection process. Five reflectance measurements were 
recorded for every leaflet, averaged, and spectrally resampled 
from 400 nm to 1,000 nm to match the spectral resolution 
of the UAV-based hyperspectral imagery (272 bands; see 
“Hyperspectral Imagery Collection and Calibration”) by using 
a Gaussian model based on the FWHM spacings and 
wavelengths information from the hyperspectral camera in 
the software ENVI.
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Ground-Truth Data Sampling
Non-destructive measurements of relative chlorophyll content 
(Chl) per leaf surface area were collected from the same 
spectrally sampled leaflets each day between 9:00 and 11:00 am 
local time, using a handheld SPAD-502 optical chlorophyll 
meter (Konica Minolta, Inc., Osaka, Japan). The operation of 
the SPAD meter is based on light transmittance at red and 
near-infrared wavelengths through a plant leaf. The instrument 
has two LEDs, one of which emits red radiance at 650 nm, 
with the other emitting near-infrared radiance at 940 nm. Most 
of the red light is absorbed by plants for photosynthesis, whereas 
longer near-infrared light passes through the leaf or is reflected. 
The ratio of transmittance at the near-infrared and red 
wavelengths is estimated and expressed as a unitless indicator, 
commonly referred to as SPAD units, which can range between 
0 and 50 under standard measurement conditions (relative 
humidity <85% at <35°C) with a ± 1 unit accuracy, and up to 
70 under high humidity/temperature conditions, with a drift 
of ±0.04 units per °C (Konica Minolta, 2009). Several studies 
have demonstrated near-linear and mostly exponential 

correlations between SPAD values and leaf chlorophyll content, 
although they can vary among species and growth habit groups 
(Markwell et  al., 1995; Uddling et  al., 2007; Cerovic et  al., 
2012; Parry et  al., 2014; Shah et  al., 2017). Since chlorophyll 
is not uniformly distributed in leaves and the device covers 
a small area of 6 mm2 (2 ×3 mm) per measurement, the SPAD 
average of five different locations across each leaflet surface 
was considered as a metric of its chlorophyll content.

Hyperspectral Imagery Collection and 
Calibration
Spatially dense hyperspectral imagery was collected using a 
Nano-Hyperspec (Headwall Photonics, 2020a) push-broom camera 
integrated onboard a DJI Matrice 600 (M600) hexacopter (DJI, 
2020). The Nano-Hyperspec was fitted with a 12 mm lens that 
afforded a horizontal field of view (FOV) of 21.1°, and collected 
data across the 400–1,000 nm spectral range in 272 continuous 
bands, with a 6 nm full-width half-maximum (FWHM). Flights 
were performed close to solar noon under clear sky conditions 
for all campaigns (see Figure  1 for specific dates), with a view 

FIGURE 1 | Temporal maps of the studied quadrant at the Hada Al-Sham experimental facility (Lat. = 21.797°, Long. = 39.725°), where a wild tomato species was 
cultivated. Five different collections were performed between November 2017 and January 2018. The globe map is part of a series of SVG locator maps of countries 
including elements that have been adapted from the file: Afro-Eurasia on the globe (red).svg, and distributed under CC-BY-SA-3.0 license.
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zenith angle of zero and at an altitude of 15 m above the ground. 
Raw data were translated into radiance values using Headwall’s 
SpectralView package (Headwall Photonics, 2020b), including 
the specific sensor calibration files for each band (Barreto et  al., 
2019). Automated georectification and mosaicking were performed 
to obtain geometrically accurate data-cubes with a ground 
sampling distance (GSD) of 0.007 m. Further details on the 
geometric calibration process can be  found in (Angel et  al., 
2020). For the spectral calibration, at-sensor radiance data-cubes 
were converted into surface reflectance by performing an empirical 
line correction method (Wang and Myint, 2015), which estimates 
a linear regression for each band, matching ground-truth reflectance 
with its correspondent radiance spectra in the hyperspectral 
image. Following the procedure of (Barreto et al., 2019), reflectance 
data were collected from six near-Lambertian gray-scale panels 
(60 ×80 cm) placed in the middle of the field before each 
hyperspectral scanning. The ASD FieldSpec-4 bare fiber optic 
(25°) was attached to the pistol grip measuring at a constant 
50 cm zenith distance, limiting the FOV diameter to approximately 
22 cm. A chess-patterned target and soil reflectance measurements 
taken from across the field were also used for validation. Finally, 
reflectance mosaics were spectrally enhanced by applying a pixel-
based Savitzky–Golay smoothing filter (Savitzky and Golay, 1964) 
and running a de-noising process with the minimum noise 
fraction (MNF) transformation approach (Green et  al., 1988), 
in order to attenuate any artifacts that may lead to distorted 
spectra shapes affecting the data reliability (Ruffin and King, 1999).

Extraction of Vegetation Indices
Vegetation indices (VIs) are mathematical formulations of spectral 
bands that are widely used to quantify structural, physiological, 
and biochemical plant characteristics. These relationships are based 
on established correlations between reflectance spectra features 
and specific phenotypic traits. In addition to band specific ratios, 
narrowband (or hyperspectral) VIs often combine many continuous 
bands to capture spectral profile features, such as slopes, curvatures, 
and absorption depths (Thenkabail et  al., 2019). Our study 
investigates 60 significant VIs that have previously been reported 
in the hyperspectral literature to be correlated with leaf chlorophyll 
content at various stages. For instance, from the Index DataBase 
(Henrich et  al., 2009; one of the most comprehensive online 
resources) we selected VIs that were reported in studies conducted 
with spectrally similar sensors (i.e., covering the 400–1,000 nm 
range, including CASI550 and PHI, with 288 and 244 bands, 
respectively). We  also include the Chl indices used by (Zarco-
Tejada et  al., 2019) to generate large-scale chlorophyll content 
maps, as well as the summary of derivative VIs in (Thenkabail 
et  al., 2019). In addition, the VIs explored by (Shah et  al., 2019) 
to retrieve leaf Chl in wheat, and those studied by (Houborg 
et  al., 2016) to detect leaf Chl dynamics from hyperspectral 
satellite imagery were added. In total, 145 unique spectral bands 
were used in the formulations of the 60 indices, which were 
arranged into nine groups based on their calculation of similar 
phenotypic properties (see Supplementary Table  1, including 
formulations and key citations, and Figure  2). The field spectral 
profiles and the hyperspectral imagery were used to calculate 
the VIs at a leaf scale and pixel level, respectively.

MACHINE LEARNING MODELING 
WORKFLOW

In this study, a variety of regression approaches were evaluated 
under a proposed machine learning framework for multi-
temporal mapping of leaf chlorophyll content (in SPAD units). 
The retrieval process combines five steps, including feature 
selection, learning different methods, cross-validating each 
model, assessing their performance, and mapping the SPAD 
predictions. SPAD data described in “Ground-Truth Data 
Sampling” are used as the response variable y, and the predictor 
variables x are derived from the field spectra samples (“Field 
Spectra Data Collection”). Two training strategies are tested: 
one considers sequential learning, and the other a time-series 
or retraining prediction (Dietterich, 2002). In sequential learning, 
the entire sequence of ground-truth observations is used to 
train each model and make all the predictions. In retraining 
prediction, models are cumulatively trained or retrained, and 
predictions are retrieved with the sampled data starting from 
the first stage t1 up to a time t1 (i.e., i = 5 growth stages). 
Retraining implies a repetition of the workflow that generated 
the previously fitted model, but based on a new training dataset 
that reflects the most recent and current status of the plants, 
which is composed of the previous data and the new data 
(i.e., t1, t1 + t2, t2 + t3, t3 + t4, t4 + t5), thus re-fitting the model 
while keeping its underlying architectural components (i.e., 
predictor variables, hyperparameters). This is an important 
strategy to explore because models can be retrained progressively 
with newly sampled data.

The learning workflow (see Figure 3) starts with the selection 
of predictor features, where each model is trained by using 
either all spectral bands (272 bands) or the set of vegetation 
indices (60 VIs), derived from the field spectra samples, allowing 
an investigation of the correlation and relevance of these 
variables as predictors. In addition, the subset of 145 bands 
that are used in the calculation of the various VIs were 
considered to examine any gain from transforming the spectral 
bands into VIs and the capability of the models to capture 
relevant and unknown relations between these selected bands 
and SPAD levels. The framework is evaluated with the most 
common nonparametric ML regression methods reported in 
retrieving biophysical variables from remote sensing applications 
(Verrelst et  al., 2019). It is worth noting that the word 
nonparametric does not imply the lack of parameters, but 
that such parameters are adjustable and can be  tuned by 
minimizing the estimation error while training takes place. 
In order to identify an optimal model structure, a total of 
17 algorithms from three main categories are trained (e.g., 
linear-based, decision tree-based, and kernel-based). These 
include multivariate linear regression, partial-least-square 
regression (PLSR), decision trees, ensemble trees, support vector 
machines (SVM), and Gaussian processes regression (GPR). 
Kernel-based methods allow for an exploration of different 
types of mathematical functions (or kernels) to model the 
unknown or non-explicit relationships in the input data under 
a specific kind of function. For instance, those most commonly 
used in Earth Observation (EO) studies include linear, 
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polynomial, and radial basis function (RBF) for SVM, and 
covariance-kernels for GPR (e.g., exponential, rational quadratic, 
RBF, and Matern; Camps-Valls et  al., 2016; See more details 
in Supplementary Material). The architecture of some of these 
nonparametric approaches have embedded automated 
dimensionality reduction (DR) mechanisms, or band analysis 
tools (BAT; Rivera-Caicedo et  al., 2017), to select relevant 
predictors, which is critical when dealing with hundreds of 
variables. For instance, the PLSR reduces the predictors to a 
smaller set of uncorrelated components, while the decision 
and ensembles of trees rely on pruning strategies, and GPR 
implicitly infers the feature’s relevance from a length-scale 
parameter enclosed in the covariance functions. 80% of the 
input dataset is used to train and test each model under a 
5-folds cross-validation routine, with their goodness of fit 
estimated using the R2 metric (1) The remaining 20% of 
observations are used to identify the best performing model 
by assessing two prediction accuracy metrics: the root mean 
square error (RMSE), (2) the mean absolute error (MAE), 
and (3) Using these metrics, the most accurate model per 
method is employed to retrieve the multi-temporal SPAD 

predictions for each data-cube at a pixel-level. Since the pixel 
size is in the order of millimeters (e.g., 7 mm), the spectral 
profile of a pixel vector is assumed at a leaf scale. Using a 
plant delineation mask to exclude soil background (see Barreto 
et  al., 2019 for further details), the best overall ML models 
are feed with the masked datacube to retrieve the SPAD maps 
and determine the most relevant predictors.
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FIGURE 2 | Spectral ranges covered by the 60 vegetation indices (VIs) explored in this study (gray bars; see Supplementary Table 1 for complete list). The 
absorption spectrum for photosynthetic pigments (Chl-a, Chl-b, and Car; dark green, light green and yellow lines, respectively; Lambers and Oliveira, 2019) and the 
typical leaf reflectance spectra (red dashed line) overlapping these ranges show the dominant pigments considered for each index. A total of 145 unique spectral 
bands were used in the formulations of the 60 VIs.
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In addition to retrieving SPAD maps, another useful output 
to examine from the selected methods is the importance of 
the features estimated by each approach while fitting the models. 
Feature selection approaches used for dimensionality reduction 
(DR), allow for the determination of each predictor’s relevance 
in any particular model by scoring the features with a relevancy 
metric. They also help to better understand the dynamics 
between dependent and independent variables and enable a 
subset of less redundant features that could lead to model 
improvement (Mladenić, 2006).

RESULTS

Exploratory Input Data Analysis
The various modeling trials performed in this study, as outlined 
in the workflow described in Figure 3, evaluate both sequential 
and retraining learning strategies. Ground-truth data comprise 
a total of 108 observations of SPAD samples and leaf spectra 
per field campaign, randomly split into two subsets: training/
testing (80%) and validation (20%), assuring their distributions 
are as similar as possible. SPAD observations, considered as 
the prediction response, are variable, symmetrically distributed, 

and rising across the growing season (Figure  4A). For the 
first date, 50% of the data ranged between 29 and 38 SPAD 
units, with a median of 33. Half of the samples reached a 
higher median of 49 for the second date, within a range of 
45–54 SPAD units. For the third campaign, the observations 
have a narrower distribution than the previous collection, with 
a minimum and maximum value of 38 and 67 units, respectively, 
although reaching a slightly higher median of 52 units. SPAD 
data for the fourth campaign were more widely distributed, 
with half ranging between 48 and 59 units, with a median 
value of 53 units. For the last date, observations were less 
variable, spanning between 40 and 66 SPAD units, with a 
median of 55 units. Although training/testing and validation 
datasets show a slightly different distribution, their median 
values follow a similar trend over time (Figure  4A).

Each of the 272 bands from the resampled field spectra 
data are considered as an individual prediction feature. Figure 4B 
shows the multi-temporal spectra mean and their standard 
deviation, which in general follow a similar pattern in the 
blue (450–510 nm) and red edge (660–730 nm) regions, although 
differing along the green (510–660 nm) and near-infrared 
(740–1,000 nm) wavelengths. For the first date (20171109), the 
maximum average green and NIR reflectance reached 18 and 

FIGURE 3 | Machine learning workflow for the retrieval of multi-temporal leaf chlorophyll dynamics using ultra-high-resolution UAV-hyperspectral imagery. The 
retraining loop should operate using the selected algorithms by starting from the first dataset (i.e., t = 1), then re-running the fitting process on the next training 
datasets, but using the previously fitted predictor variables and hyper-parameters (i.e., t1 + t2, t2 + t3). In this way, the model is updated as new training data is used in 
the learning process, and predictions are estimated accordingly.
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49%, with a standard deviation of 2 and 3%, respectively. For 
the second, third, and fourth campaigns, the mean green peak 
decreased to ~15%, with a standard deviation of ~3%, and 
the mean NIR response increased to ~50%, with a standard 
deviation of ~10%: although the NIR response during the 
second date is up to ~13% higher. For the last date, green 
reflectances were similar to previous collection times, yet the 
average NIR responses dropped to 45%, with a standard deviation 
of ~10%.

Pearson correlation matrices were calculated to visualize 
any multicollinearity in both predictor sets, bands and VIs 
(Figure  5). In the case of spectral bands, SPAD data has a 
low negative correlation (−0.2 < r < −0.3) with bands in the 
blue (400–510 nm) and red ranges (650–680 nm), but more 
highly negatively correlated (r < −0.6) with the green spectral 
window (510–650 nm) and the red-edge bands (680−730 nm). 
In contrast, near-infrared bands (730–1,000 nm) are weakly 
correlated (r ≈ 0) with SPAD, but with high multicollinearity 
between them (r > 0.8): recognized as the Hughes phenomenon, 
which is thoroughly documented in the literature (Thenkabail 
and Lyon, 2012). Concerning the VIs (Supplementary Table 1), 
the narrowband greenness indices have a stronger correlation 
with SPAD than the broadband greenness indices. In contrast, 
photosynthesis efficiency, senescence, and pigments–based indices 
are weakly correlated with both SPAD and the other indices. 
For the set of VIs that evaluate leaf chlorophyll based on 
reflectance and derivative spectra, most show a high correlation 
with SPAD, while several (10 out of 31) have low inter-correlation 

with the rest. Finally, the group of continuum-removed VIs 
exhibit a low correlation with SPAD, with two negatively 
correlated with the other indices. Overall, although some of 
the indices are strongly inter-correlated (r > 0.8), this is only 
a measure of the association between them, not their causation. 
All the bands and VIs were included as predictor variables 
to let the MLR methods evaluate their relevance in predicting 
leaf chlorophyll.

Multiple Model Regression Assessment
Three different metrics, R2, RMSE, and MAE, were used to 
undertake a comparative accuracy assessment of the models. 
R2 was used to assess the performance of the models from 
the k-fold cross-validation, and RMSE and MAE to evaluate 
their actual accuracy by using ground-truth validation data. 
Figure  6 summarizes these metrics for all the algorithms 
tested under the two training scenarios and three sets of 
predictors: all bands, selected bands used for calculating the 
VIs, and VIs.

For the sequential strategy case, PLSR coupled with band 
predictors achieved the best fitted models, either using all the 
bands (R2

AllBands = 0.80) or the selected subset (R2
SelectedBands = 0.89); 

although retrieving more accurate results when using all of them 
(RMSESelectedBands = 5.45, MAESelectedBands = 4.27 > RMSEAllBands = 4.40, 
MAEAllBands = 3.50). As can be  seen in Supplementary Table  2, 
the various GPR models, along with SVRLinear and 
SVRMediumGaussian, were the best-performing algorithms across 
both types of predictors, reaching low RMSE and MAE around 

A B C

FIGURE 4 | (A) Traditional boxplots show the multi-temporal distribution of SPAD observations divided into training/testing (left) and validation sets (right). Median 
values are shown as the horizontal lines near the box centers, and the quartiles are delimited by the horizontal lines above and below the median. Whiskers indicate 
the variability outside upper and lower quartiles, locating the maximum and minimum scores at the top and bottom ends, respectively. An outlier observation (21 
SPAD units) is shown during the second campaign (t2) in the training/testing dataset. (B) Reflectance profiles collected per field campaign (format YYYYMMDD). The 
continuous lines indicate the mean spectra, and the filled areas define the range of reflectance measured each time. Dashed lines indicate the wavelengths where 
reflectance data reaches the lowest (~650 nm) and the highest (~950 nm) variability.
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5 SPAD units when using spectral bands and below 3 SPAD 
units for the VIs case (and with an R2 above 0.7). In comparison, 
multivariate linear regression and SVRCubic models produced 
the poorest results, with higher errors (RMSE > 5, MAE > 6) and 
R2 below 0.3. Overall, the GPRSquaredExponential (i.e., with a 
squared exponential kernel) achieved the second-best scores 
when considering both types of prediction features 
(RMSEAllBands = 5.17, RMSESelectedBands = 5.09, RMSEVIs = 2.28, 
MAEAllBands = 4.06, MAESelectedBands = 3.96, MAEVIs = 1.98, R2

AllBands  
= 0.76, R2

SelectedBands = 0.76, R2
VIs = 0.77). In general, most of the 

models coupled with band predictors reached comparable R2 
and accuracy results, except for PLSR and the multivariate linear 
approaches; whereas modeling with the set of VI predictors 
was more accurate and better fitted than performing with the 
spectral bands.

For the retraining strategy, accuracy and goodness-of-fit of 
the models were assessed date by date. Overall, improved RMSE 
and MAE metrics were achieved using band predictors when 
compared to the sequential strategy case, although the R2 

decreased gradually over time (Supplementary Table 2). Results 
using VI predictors provided models that were comparable 
(i.e., similar R2) to those produced by band features, but also 
recorded a similar drop in R2 through time and producing 
slightly less accurate predictions. Particularly for the last campaign 
(t5), a considerable drop (R2 > 0.4 for all models) can be explained 
by the reduced number of spectral leaflet samples used to 
train/test the models (see “Field Spectra Data Collection”). 
For the first date (t1), the GPRSquaredExponential was the 
most accurate (RMSEAllBands = 2.14, MAEAllBands = 1.73) when paired 
with all the bands, and the best fitted (R2

AllBands = 0.86, 
R2

SelectedBands = 0.75, R2
VIs = 0.83) using the three sets of predictors: 

although beaten by PLSR when coupled with VIs (RMSEVIs = 1.93, 
MAEVIs = 0.86). For the second campaign (t2), the 
GPRSquaredExponential again produced the most accurate 
results from the all bands-based case (RMSEAllBands = 2.71, 
MAEAllBands = 2.13), while the PLSR model was better fitted using 
the selected bands (R2

SelectedBands = 0.95). In the VIs-based case, 
the PLSR was the most accurate (RMSEVIs = 2.56, MAEVIs = 0.98), 

FIGURE 5 | Correlation matrices showing Pearson’s r coefficient between SPAD and individual VIs (left-hand side), and between SPAD and individual spectral 
bands (right-hand side). The first column in the SPAD versus VIs matrix (left) and the last column in the SPAD versus Bands matrix (right) show the coefficients for 
the dependent variable SPAD. The color scale represents correlation coefficients between 1 and − 1. VIs are grouped and organized according to Supplementary 
Table 1.
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but GPRSquaredExponential was better fitted (R2
VIs = 0.74). For 

the third date (t3), the GPRSquaredExponential model achieved 
the highest accuracy (RMSEAllBands = 3.62, MAEAllBands = 3.01) under 
the all bands-based setup, and RandomForest the best fitting 

(R2
AllBands = 0.67); whereas in the selected bands-based and the 

VIs-based case, PLSR was the best fitted (R2
SelectedlBands = 0.75, 

R2
VIs = 0.79), and the most accurate (RMSESelectedBands = 3.77, 

MAESelectedBands = 2.66, RMSEVIs = 1.72, MAEVIs = 0.78). For the 

FIGURE 6 | A comparative assessment was performed between the 17 trained models by comparing three different metrics: R2, RMSE, and MAE. Model-fit and 
accuracy were evaluated under both training strategies (sequential and retraining) and considering different sets of prediction features (all spectral bands, selected 
bands from VIs, and VIs). An average prediction error threshold of 5 SPAD units was established to evaluate individual model accuracy (dashed line). Base-10 log 
scale is used for the x-axis (RMSE).
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fourth campaign (t4), the PLSR trained with the selected bands 
was the best-fitted model (R2

SelectedlBands = 0.97), although it was 
poorly accurate (RMSESelectedBands = 6.37, MAESelectedBands = 5.30) to 
the others performance. In contrast, the GPRSquaredExponential 
was the second best-fitted model (R2

AllBands = 0.61, R2
VIs = 0.64), 

reaching the highest accuracy when trained with all the band 
features (RMSEAllBands = 4.49, MAEAllBands = 3.99). However, this 
model was exceeded by the RandomForest (RMSEVIs = 3.35, 
MAEVIs = 1.53) when using VI predictors. For the last date 
(t5), the RandomForest model shown the highest accuracy 
(RMSEAllBands = 5.59, MAEAllBands = 4.37) and best-fitting 
(R2

AllBands = 0.41) when coupled with all the bands; whereas PLSR 
was the most accurate when trained with VIs (RMSEVIs = 2.89, 
MAEVIs = 0.96). Overall, sub-optimal results were retrieved using 
the selected set of bands, and all the models were poorly 
fitted with R2 below 0.1.

Under both training strategies, the three sets of predictors 
showed comparable performance, yet most of the VIs-based 
models achieved better scores than the band-based ones. Slightly 
better results were reached by most of the models when trained 
with all the bands than with the selected ones (i.e., between 
~0.1 and 0.4 units in R2 scores), except for the PLSR. Also, 
despite being the weakest approach (with the highest RMSE 
and MAE, and the lowest R2) across the different strategies 
and predictors, the multivariate linear (or linear) model scores 
were considerably improved when using the subset of selected 
bands (see Supplementary Table  2; Figure  6). For instance, 
the linear model improved relative to the medium tree model 
performance and was comparable to the random forest model 
results under the sequential strategy. Considering the slightly 
better scores retrieved by the full set of spectral bands than 
the set of selected bands, the models trained with all 272 
bands were considered together with the VIs-based ones to 
perform the predictions and select the best among them to 
produce the SPAD maps.

Multiple Model SPAD Predictions
Based on the assessment metrics, a criteria model selection 
was established to map the SPAD predictions. Different factors, 
such as leaf water content and irradiance changes, can introduce 
between 2 and 4 unit biases in SPAD readings (Martínez and 
Guiamet, 2004), in addition to the instrumental accuracy of 
±1 units. Accounting for these influences and equating the 
quality of the SPAD predictions with the SPAD readings, 
we defined an error threshold of up to 5 units for both metrics 
(RMSE and MAE) under the assumption that all of the errors 
would have the same magnitude, which is the only theoretical 
case when RMSE and MAE would be  equal. Under these 
criteria, models with average prediction errors above 5 SPAD 
units were excluded from the final selection, and the best-
fitting model from each approach was used to retrieve the 
predictions from the hyperspectral imagery (see Figure  6). 
Accordingly, PLSR, the medium trees, random forest, SVR 
linear, and GPR squared exponential models were selected 
together with the linear regression, which was only included 
for comparison purposes despite it showing inferior performance 
among all model configurations. These trained models were 

used to retrieve the SPAD values at a pixel level on the multi-
temporal hyperspectral data-cubes, then averaged at a plant 
level to evaluate the spatial and temporal distribution of the 
predictions across the study area. Figure  7 shows an array of 
the results organized by learning strategy, type of predictors, 
time, and types of models, where each box comprises a matrix 
of cells that represent the mean predicted SPAD per plant, 
following the same sowing arrangement of the field 
(rows × columns).

In the sequential strategy (Figure  7A), most of the models 
retrieved homogeneous SPAD maps across time, hence not 
showing significantly different changes during the growing 
season. Of note, the multivariate linear model produced results 
at the extremes when using different predictors, underestimating 
(≤ 20 units) when using bands, and overestimating (≥ 70 units) 
when using VI predictors. Similarly, PLSR estimates diverge 
under different predictor scenarios, realizing homogeneous 
result series (~30–50 units) through the band predictors while 
overestimating with VIs (≥ 60 units). In contrast, the medium 
tree model retrieved almost identical results for both cases, 
with SPAD values ranging around ~40 units: comparable with 
the performance of random trees when only using VI predictors. 
However, when using band features, random forest yielded 
similar results to SVR linear and GPR squared exponential 
models, with more variable retrievals between ~30 to 50 units 
(although the GPR-based map for the fourth date shows higher 
values around ~60 units). Using VI features, SVR-based results 
were more heterogeneous (around ~45 units) during the first 
two campaigns than the retrievals (≥ 60 units) during the last 
three dates. Overall, following a sequential learning strategy, 
GPR squared exponential predictions were the most dynamic 
across time, indicating its flexibility to learn and model temporal 
dynamics. However, this performance was degraded when using 
a more straightforward set of predictors like vegetation indices.

In general, for the retraining strategy (Figure  7B), the 
performance of the learning algorithms over both types of predictors 
was similar, with SPAD estimates varying over time and space  - 
except those calculated by the multivariate linear regression and 
PLSR, which led to poor retrieval performance. Again, medium 
tree and random forest methods, combined with both predictor 
sets, reached matching results, increasing across time between 
~30 and ~ 60 SPAD units during the first and last campaigns, 
respectively (although the VIs-based maps present slightly lower 
values than the bands-based ones). In the case of the SVR linear 
method, contrasting results were produced by each class of 
predictors, showing an ascendant trend across the time when 
using band features, comparable to the decision trees and GPR 
results. However, the SVR linear method underestimated results 
using VIs, even yielding values below 20 SPAD units for some 
plants during the last three campaigns (t3, t4, t5). In contrast, the 
GPR squared exponential results are congruent with the decision 
trees-based predictions under both types of predictors, although 
different estimates were achieved for the second and last dates. 
When using band features for the last campaign, the GPR-based 
map overestimated results, with values above ~60 SPAD units.

Together with the mean SPAD estimates, GPR reports the 
standard deviation at 95% (σ95%) confidence interval for each 
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prediction, which is used as an uncertainty metric to assess 
the variance of the retrievals. For the sequential learning case 
(Figure  7A), homogeneous variances were achieved across the 
whole series, with low uncertainties between 4 and 6 SPAD 
units, when training with the band predictors, but high 
uncertainties ranging between 10 and 15 SPAD units when 
using VI features. In contrast, under the retraining strategy 
(Figure  7B), heterogeneous variance levels were observed 
throughout the series. For instance, an increase in the uncertainty 
was reported when using band features, starting from 5 to 

6 units in the first date (20171109), then between 6 and 7 units 
during the second date (t2), until reaching standard deviations 
between 9 and 11 units during the third collection (t3). After 
this, the uncertainty levels decreased slightly to around 10 units 
on the fourth date (t4), achieving the lowest variance in the 
last date (t5) with 4 SPAD units. More stable variances were 
achieved using VI predictors, starting with low uncertainty 
levels between 5 and 6 SPAD units in the first three dates, 
with a minor rise of variance for the last two dates, with 
values between 6 and 8 units.

A

B

FIGURE 7 | Multi-model comparison of averaged SPAD predictions and GPR uncertainties at a plant level. (A) Sequential strategy results using All Bands versus 
VIs. (B) Retraining strategy results using All Bands versus VIs. Each box comprises a matrix of cells representing the mean predicted SPAD per plant, following the 
field sowing arrangement (rows × columns).
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Model Selection
The identification of suitable learning algorithms and predictors 
is a critical step to develop accurate SPAD retrieval maps. 
Therefore, an additional evaluation of the previously selected 
methods was performed by comparing the retrieved and original 
distributions of the validation dataset. Figure  8 presents the 
variability of SPAD predictions and in-situ collected 
measurements used for validation, with colored and gray 
delineated box-plots, respectively. As can be seen, the multivariate 
linear regression results were widely dispersed, either 
overestimated or underestimated, and divergent from the 
measured data distribution. In the case of PLSR, the distribution 
of the estimates reflected the validation reference only under 
the sequential training strategy using band predictors. Overall, 
most of the pre-selected algorithms achieved relatively consistent 
results, except SVR linear when combined with VI predictors.

For the sequential approach (Figure 8A) with band features, 
predictions from all models, except for the medium trees, 
followed the ascending trend across time observed in the in-situ 
data, although exceeding them by up to 15 units on the first 
date, if comparing their medians. The best distribution matches 
with the observations were obtained by random forest, and 
GPR squared exponential only on the third date (t3). In contrast, 
when using VI predictors, overall median estimates were below 
the ground-truth data distribution by between 10 and 20 SPAD 
units for the decision trees models, and between 3 and 10 units 
for the GPR model.

For the retraining case (Figure  8B), the performance was 
generally higher relative to the sequential strategy and more 
consistent between the assessed algorithms. In particular, the 
distribution of the results from the medium trees and random 
forest were comparable, reaching similar medians, although 
with different dispersion, over the different campaigns. The 
GPR squared exponential model achieved better results when 
combined with VI predictors, following the SPAD observations 
trend, although with less dispersed distributions and reaching 
median values between 1 and 5 SPAD units below the in-situ 
data. The best predictions were achieved by combining random 
forest with VI features, retrieving minor discrepancies between 
1 and 3 units in the median values compared to the SPAD 
measurements, and yielding matching spread distributions, as 
shown by the minimum and maximum values of each 
campaign dataset.

Based on the accuracy assessment and the analysis of the 
prediction distributions achieved by all the evaluated methods, 
three out of the 17 regression models were selected to retrieve 
the multi-temporal SPAD maps at a pixel scale. The selected 
methods included the PLSR using all bands under the sequential 
strategy, and random forest and GPR squared exponential, 
using vegetation indices as predictor variables under the 
retraining strategy.

Multi-Temporal Spatial Predictions of 
SPAD
The hyperspectral mosaics, and the vegetation index data-cubes 
derived from them for each campaign, were used as input to 

feed the three selected regression models and to retrieve the 
multi-temporal SPAD maps at a pixel scale. Figure  9 depicts 
a comparison of the results achieved by each method over some 
of the sowed furrows, showcasing the differences between PLSR, 
random forest and GPR squared exponential estimates throughout 
the study period. For the first three campaigns, the PLSR model 
reached different results than the other two methods, with a 
slight increase from an average of 48 units in the first stage (t1) 
to 50 units in the third (t3), whereas random forest and GPR 
squared exponential reached similar estimates, with an increase 
in SPAD values from an average of 30 units in the first stage 
(t1) to 55 units in the third (t3). The PLSR and GPR-based 
estimates were uniformly distributed in leaves, changing over 
time without marked differences between stages, especially during 
the last two dates. However, some negative retrievals from the 
PLSR approach during the third and fourth campaigns can 
be  seen as gap pixels in the showcased plants in Figure  9. On 
the other hand, random forest-based predictions differed from 
time to time, with a slight decrease in the last stage and showing 
more clustered estimates toward the center of the plants surface.

The plant growth dynamics can be described from the multi-
temporal SPAD retrievals detailed in Figure 9. As can be observed, 
leaf chlorophyll content increases as plants grow and increase 
their leaf density from the establishment stage (t = 1), reaching 
a maximum value at the start of flowering (t = 3). Plants reach 
a mature state and produce fruits (t = 4), where SPAD estimates 
from PLSR increase slightly, whereas random forest results 
remain at the same level, and retrievals from GPR decrease 
slightly. At the pre-harvesting stage (t = 5), leaves and stems 
gradually age, turning yellowish, which is evident from the 
low SPAD levels predicted by all the methods. These dynamics 
are consistent with the distribution analysis described previously 
(Figure  8B), and illustrate how SPAD results from the three 
methods follow a similar temporal trend, albeit with GPR 
retrievals presenting a more homogeneous and tighter distribution 
than PLSR and random forest estimates. The uncertainty maps 
retrieved by the GPR algorithm were plotted to assess the 
variance of the predictions at the pixel level. As previously 
noted, the uncertainty of the estimates varies across the map 
series, starting with low (~4–6) standard deviations during the 
first three stages and slightly higher values during the fruiting 
and pre-harvesting phases (~6–8 units). The uncertainty of the 
predictions could come from either the propagation of 
uncertainties through time or high variations in the leaf-Chl 
levels’ dynamics. Moreover, when zooming into the maps at a 
plant level, the spatially distributed uncertainty levels can 
be observed over the plant projected areas, although with some 
higher variances associated with either bright or shadowed pixels.

Important Features
The PLSR, random forest, and GPR approaches include feature 
selection mechanisms in their architecture to score the band 
and VI predictors base on their relevance toward the SPAD 
variable (see Supplementary Material). Various metrics are 
reported in each model: for instance, feature importance for 
the random forest, weakness index for GPR, and weight index 
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for PLSR (Figure  10). The PLSR weights are retrieved for 
each of the components used to fit the model, which describes 
how strongly each component depends on the original 
predictors. The number of components (i.e., seven) was tuned 
by minimizing the error of the predictions through 

cross-validation during the training/validation stage 
(Figure  10D). The predictor scores were extracted from the 
three selected models when trained under the strategy they 
perform the best (Figure  8). Thus, the fitted models under 
the sequential strategy were used for comparing the spectral 

A

B

FIGURE 8 | Assessment of multi-temporal predictions distribution (gray colored boxes) against the actual distribution (gray delineated boxes) of the validation data, 
showing (A) distribution per model under the sequential strategy using band and VI predictors; and (B) distribution per model under the retraining strategy using 
band and VI predictors.

142

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Angel and McCabe Machine Learning for Leaf-Chl Retrieval

Frontiers in Plant Science | www.frontiersin.org 15 March 2022 | Volume 13 | Article 722442

bands’ metrics, whereas their results under the retraining 
strategy were gathered for the VIs case.

Since each model has its own metric, their predictors’ scores 
cannot be directly compared. Thus, we use a quartile classification 

to rank the top features of each method, where each quartile 
contains 25% of the total predictors. For PLSR (Figure  10D) 
and random forest (Figure  10C), the highest quartile (Q3) was 
set as the threshold to denote the most important features, 

FIGURE 9 | Comparison of multi-temporal SPAD prediction maps generated with PLSR coupled with band predictors, random forest and GPR squared 
exponential models, using vegetation indices predictors (lower panels). True color-balanced pictures of a showcase plant (upper panel) depict changes throughout 
the growing cycle. The gradient-colored bars represent the estimated SPAD values in the range between 20 to 70 units, with a bin size of 2. The SPAD uncertainties 
are shown in the range between 0 to 15 units, with a bin size of 1.
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A

B

C

D

FIGURE 10  (A) Summary of the top predictors (bands and VIs) that were identified by either one (orange), two (yellow), or three (green) of the selected 
methods. A quartile classification was used to rank the top features of each method. (B) For random forest, the highest quartile was set as threshold to 
identify the most important bands (Q3 = 0.21) and VIs (Q3 = 0.27). (C) For GPR squared exponential, the lowest quartile was set as threshold to classify the 
less weak bands (Q1 = 8.02) and VIs (Q2 = 7.16). (D) The predictor weights were retrieved for the first seven components used to fit the PLSR model. The 
highest quartile was set as the threshold to denote the most relevant bands (Q3 = 0.48) and VIs (Q3 = 0.04).
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whereas the lowest quartile (Q1) was set for the GPR squared 
exponential (Figure  10B) to indicate the less weak (or most 
relevant) variables. A summary of the top predictors retrieved 
by either one, two, or three of the selected methods were 
highlighted (see Figure  10A), allowing the identification of 
those variables that might play a physically meaningful role 
in predicting Chl levels. The spectral information contained 
by the highlighted VIs can be  traced in Figure  10A. Only 
three VIs contain information from the blue spectral region 
(~450 nm), followed by a small group of VIs that gather 
information from the green wavelengths (500 nm −550 nm). 
However, most of the important indices comprise the information 
from the red edge region (650–750 nm), and few individual 
VIs collect the information from narrow spectral ranges along 
the near-infrared (~800, 870, and 970 nm).

A combination of both individual bands and band ranges 
were identified as the most relevant for each model 
(Supplementary Table  3). Groups of continuous bands 
comprising less than 10 nm spectral range were counted as a 
single variable around the central band. For instance, the bands 
around 405 nm were identified as relevant by random forest 
and GPR, but weighted low by PLSR, although with a broader 
range for the random forest (i.e., 400–410 nm) where Chl-a 
is highly absorbed. The spectral variables between 450 and 
490 nm were ranked as relevant by all the methods, coinciding 
with the most substantial Chl-b absorption. Bands from the 
green spectral range (i.e., 530 and 590 nm), where Chl reflectance 
peaks, were also highlighted as relevant by random forest and 
GPR, but not highly weighted by the first and seventh PLSR 
components. Toward the red wavelengths, random forest 
identified two narrow ranges (i.e., 610 and 620 nm), that agreed 
with GPR and PLSR in the Chl-a and Chl-b absorption crest 
(i.e., 650–670 nm). From 690 nm to 750 nm, the red-edge region 
was also highlighted as relevant by all models, although GPR 
identified two specific ranges: one spanning from 695 to 710 nm 
at the beginning of the red-edge, and another from 720 to 
760  nm, where the red-edge inflection point shifts accordingly 
to Chl content. The three methods identified a critical thin 
region between 760 and 770  nm at the end of the red-edge. 
Near-infrared (NIR) bands indicated variable relevancy levels 
among the methods: PLSR highly ranked the region between 
800 and 830  nm, while the flat sill on the plant reflectance 
spectra (i.e., 910–1,000 nm) was identified by random forest 
and PLSR, whereas GPR highlighted the very end of the NIR 
(i.e., 980–1,000 nm).

A total of 15 VIs were scored as relevant by each method 
(Supplementary Table  3; Figure  10). From the greenness 
indices, PLSR identified two of the broadband VIs (i.e., SRI 
and LAI) as significant and corresponding with random forest 
in selecting the narrowband red-edge position index REPI4. 
However, random forest highlighted two other indices of this 
category as relevant (i.e., VREI1, VRE2). The light use efficiency 
indicators (PRI and SIPI) were considered by GPR and random 
forest as critical, while the senescence index (PSRI) was only 
highlighted by random forest. In contrast, the stress-on-pigments 
production indices were highly scored by the three methods 
(i.e., CRI1, CRI2, ARI1, and ARI2). The water content index 

(WBI) was classified as relevant by the GPR and the PLSR 
models. From the 15 leaf Chl indices, random forest selected 
four of them (i.e., MTVI2, TCARI, GNDVI, and NDCI1), 
GPR selected just one (SAVI), while the PLSR model selected 
three (i.e., MCARI, MCARI/OSAVI, and NDCI2). From the 
derivative-based leaf Chl indices, all the methods highlighted 
the Datt index as critical, although random forest identified 
three more (i.e., D720, EGFN, and DSR1) and GPR identified 
another two (i.e., DPI and FDNDVI)—coinciding with PLSR 
in selecting the FDNDVI index. Finally, GPR and PLSR both 
identified ANMB from the continuum removed-based indices, 
whereas only GPR highlighted the area under the curve index 
(AUC) and the leaf plant stress detection index (LPSDI).

The feature importance analysis was extended to the models 
trained with the subset of 145 bands (i.e., the source of the 
VI predictors) to investigate how the feature selection operates 
on a smaller dataset. The same training strategies and ML 
approaches were used to retrieve, score, and classify the 145 
selected bands, following the rationale presented previously 
(Supplementary Figure 1). Supplementary Table 4 summarizes 
the relevant bands and spectral ranges identified from the 145 
bands subset.

DISCUSSION

Sequential Versus Retraining Learning
Modeling physiological traits such as leaf Chl content throughout 
a crop growing season requires treating plant traits as continuous 
processes across time, which can be  accounted for through 
implementing sequential and retraining learning strategies. 
Sequential learning is a common practice in remote sensing, 
wherein the full observed series is used to fit a single model 
assuming that the relationships between the prediction features 
and the independent variable remain fixed through time 
(Dietterich, 2002). In contrast, the retraining strategy uses a 
loop to learn a model progressively as new data is collected. 
Deciding whether to follow one or the other relies on the 
modeling problem and the data itself, since both are data-
driven strategies after all. This study followed a simple and 
useful diagnostic suggested in the machine learning literature 
by examining the target variable distribution (Sculley et al., 2014).

Leaf chlorophyll and reflectance response change significantly 
through time, which is evident in this study by analyzing the 
distributions of sampled SPAD and spectral data (Figure  4A). 
Hence, the correlation between SPAD and predictors, either 
by bands or VIs, are dynamic as well. The temporal distribution 
of the SPAD validation dataset can be  used as a reference to 
assess the coherence of the SPAD retrievals (Figure  8). In 
doing this, the accuracy metrics (MAE, RMSE) can be  used 
jointly to determine the best candidate models to retrain (i.e., 
PLSR, random forest, GPR squared exponential). That is, the 
retraining loop should operate using the selected algorithms 
by starting from the first dataset (i.e., t = 1), then re-running 
the fitting process on the next training datasets (i.e., t = 2, 
t = 3), but using the previously fitted predictor variables and 
hyper-parameters. In this way, the model is updated as new 
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training data is used in the learning process, and predictions 
are estimated accordingly.

The predicted SPAD maps averaged at a plant level and 
retrieved under the retraining strategy (Figure 7B) are coherent 
with the SPAD distributions of the in-situ validation dataset 
(Figure  8B). Such a result demonstrates the capability of the 
selected models to learn from in-situ data using a retraining 
routine, and thereby enhances the capacity to turn UAV-based 
hyperspectral imagery into valid multi-temporal SPAD maps. 
It also proves the capability and flexibility of the retraining 
strategy to capture temporal dynamics in chlorophyll levels 
from series of hyperspectral imagery by fitting multi-temporal 
regression models and advancing, for instance, uni-temporal 
approaches that develop individual growth-stage models (Aasen 
and Bolten, 2018). Such a strategy also offers a solution to 
open questions raised in some related studies, where sequential 
learning was implemented to map Chl series from satellite 
(Houborg et  al., 2016) and UAV (Vanbrabant et  al., 2019) 
hyperspectral images, and advising further investigation in 
learning regression approaches capable of capturing subtle 
temporal dynamics linked to short-term variations in plant traits.

Most of the selected algorithms performed significantly better 
under the retraining learning strategy, although the goodness-
of-fit (R2) estimated from the training/testing dataset can 
be  affected as new training data is introduced. Further 
experiments can be conducted to incorporate a time component 
(i.e., hyper-parameter, kernel) in the regression algorithms 
definition, which can be  fully dedicated to capturing temporal 
correlations, and non-stationary behavior associated to Chl 
content dynamics. One candidate to consider for advancing 
more specialized modeling structures is the Gaussian process, 
which can be  composed of temporal and spectral covariance 
kernels, as already demonstrated by other applications in 
modeling solar irradiation predictions (Camps-Valls et al., 2016).

Leaf Chl Retrieval Using Spectral Bands 
Versus Vegetation Indices
Feature transformation is a critical task in any machine learning 
framework, especially when involving datasets comprising of 
hundreds of variables. This aspect should be carefully reviewed 
by evaluating the types of variables that are part of the dataset 
and exploring possible transformations and reductions to optimize 
the model performance (Guyon and Elisseeff, 2003). In this 
study, three elements can be  highlighted regarding evaluating 
VIs as transformed variables out of reflectance spectral bands. 
First, using VIs slightly improves the goodness-of-fit and 
prediction accuracy of different types of ML models. Second, 
the VI predictors approach provide an alternative way to use 
spectral variables without affecting the capturing of temporal 
dynamics. Third, hyperspectral VI predictors add specific 
biophysical background to the training knowledge, hence 
enriching model interpretability.

Few studies in the literature have explored retrieving SPAD-
based Chl levels using VI predictors derived from hyperspectral 
datasets. For example, linear regressions (Qi et al., 2020), random 
forest (Shah et al., 2019), or Cubist (Houborg and McCabe, 2018) 

have been combined with different types of VIs, reaching more 
accurate results than using spectral bands, which has also been 
achieved in this study. Although higher R2 scores were reached 
when using all bands as predictors than the 145 selected bands 
(i.e., all except for the PLSR model). In terms of accuracy, 
higher accuracies (i.e., up to 3 SPAD units below) were  
reported when using the VI features. Indeed, these results 
follow what has been suggested in other studies regarding the 
low (or no) impact of the number of variables in the accuracy 
estimates, but rather the importance of identifying the marginal 
effect of the explanatory variables in the dependent variable 
(Alin, 2010).

Dimensional reduction can be  made via pruning spectral 
bands or transforming them into new variables related to plant 
biochemical traits (as is done herein). (Feilhauer et  al., 2015) 
pruned bands based on regression coefficients (R2) and metrics 
that measure band importance, managing to reduce predictors 
to dozens of Chl absorption channels within the range of 
500–750 nm. The same spectral region was fully covered in 
our study by 15 derivative and continuum-removal based VIs 
that also inform on Chl content. If we  apply this pruning 
approach to our dataset, it would require approximately 110 
bands (Figure  2) to train the models, which is still a large 
number compared to the available observations (i.e., three 
samples per plant and 36 plants, for a total of about 108 
samples per campaign), leading to the question: what is the 
impact of not having much larger samples than predictors? 
A clear example of the impact is evident in the performance 
of the multivariate linear regression approach presented in this 
study (“Multiple Model Regression Assessment” and “Multiple 
Model SPAD Predictions”). When observations do not sufficiently 
exceed the number of predictors, the least square cost function 
may overfit the training set, consequently producing poor 
retrievals. While the other algorithms can cope with this 
dimensionality issue, a lower-dimensional dataset is desired to 
improve the computational efficiency of the workflow, and thus 
feature transformation is a suitable alternative to follow.

Rivera-Caicedo et al. (2017) have investigated dimensionality 
reduction approaches such as principal components 
transformation and partial least squares (PLSR), among others. 
Although some of their trials led to better-fitted models than 
using all bands, only slight improvements were achieved in 
terms of accuracy. Similar results were reached in our study 
when comparing the different ML methods against PLSR 
(Supplementary Table  2; Figure  6). PLSR reached the best 
fitting and accuracy scores under the sequential strategy by 
using band predictors; however, it was exceeded by the random 
forest and GPR models when using the VIs features under 
the retraining strategy. Multicollinearity causes this performance 
by increasing the vulnerability of the predictor weights to vary 
whenever there is a small change in data, resulting in unstable 
model performances. Based on the ML algorithm designs (i.e., 
their mathematical formulations), some are inherently able to 
handle multicollinearity better than others. For instance, random 
forest deals well with large dimensional problems due to its 
pruning strategy, which uses bootstrapping and feature sampling 
to pick different sets of data and features, and estimate relative 
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importance while training each tree (Supplementary Material; 
Figure  10B). Alternatively, GPR kernels are coupled with a 
length scale parameter that measures how strong is each 
predictor variable in a model (Supplementary Material; 
Figure 10C). It was possible to perform a comparative analysis 
through such feature engineering methods to account for 
coincident relevant variables identified under each approach 
(Figure  10A). However, although few VIs and spectral ranges 
were classified as relevant by all three methods, results could 
still be  affected by multicollinearity, especially when features 
reach similar scores, leading to difficulties in ranking their 
importance. Developing reduction and transformation 
dimensionality approaches for hyperspectral data remains a 
challenge (Thenkabail and Lyon, 2012). As such, new ways to 
construct alternative prediction variables require 
continued investigation.

VIs can be  considered as a transformed version of the 
spectral bands that involve known relationships between spectral 
response and biophysical traits, and hence, are suited to track 
temporal dynamics along the phenological growth stages. At 
first glance, such patterns are traceable in our results. For 
instance, evident Chl dynamics were retrieved by retraining 
random forest and GPR squared exponential coupled either 
with VIs or spectral bands under the same strategy (Figure 7B). 
Such agreement among methods reveals that VIs can be  used 
alternatively as predictor variables. Even more, an exhaustive 
comparative analysis on the importance of the predictors 
(“Important Features”) allowed us to trace the spectral 
information in the most relevant bands and indices 
(Supplementary Tables 3, 4), revealing that although most of 
the assessed indices contain the same spectral information 
covered by the relevant bands, VIs transform the spectral data 
into new explanatory variables. As such, the VIs approach 
should be considered as a feature transformation strategy more 
than a dimensionality reduction method, with the advantages 
of providing interpretable results and being straightforward to 
implement in production.

Which ML Model to Use for Multi-Temporal 
Retrieving Leaf Chl?
Considering the wide gamut of non-parametric ML methods, 
the present study sought to examine the most commonly used 
types of supervised algorithms (Verrelst et  al., 2019). Beyond 
indicating which, if any, particular method could be  identified 
as being the best in estimating Chl metrics from high spatial, 
spectral and temporal data, some findings can be  highlighted 
based on this study’s data characteristics, the learning strategies, 
and the subsequent results.

One of the explored methods was support vector regression 
(SVR) using three different types of kernels and scales 
(Supplementary Material). Our results showed that SVR linear 
was the best performing kernel when using the 272 reflectance 
bands as predictors, although retrieving poorer results when 
the number of predictors was reduced to 60 VIs. Such behavior 
suggests that SVR algorithms require a preliminary kernel and 
feature engineering to fit the regression relationship. In a 

previous study, (Malenovský et al., 2017) found that the Gaussian 
SVR outperformed random forest in retrieving total chlorophyll 
(Cab) for Antarctic moss by using uni-temporal UAV-based 
hyperspectral data at a sub-decimeter resolution, training with 
continuum-removed bands as predictors, and advising to optimize 
feature selection if intending to use fewer predictors.

Another approach explored in this study was the ensemble 
of trees. Two general algorithms, boosted and bagged, were 
tested by training multiple individual medium trees (i.e., 
ntrees = 60). Specifically, the random forest was explored from 
the bagged approach, which in general outperformed the boosted 
ensemble, reaching higher accuracies and better-fitted regressions 
(Figure  6). However, some of these differences were minor: 
for instance, when using VI predictors under sequential learning, 
and for the first and fourth stages under retraining learning, 
which suggest both methods are suitable for modeling and 
retrieving multi-temporal Chl content dynamics. The choice 
of random forest over boosted trees was based on ease of 
use, since it relies on less tuning parameters than boosted 
ensembles, and is less prone to overfit when training highly 
variable or noisy data (Breiman, 2001). It is advised to perform 
a comparative analysis by training both algorithms, carefully 
tuning the shrinkage or learning rate parameter in boosting 
trees, which is decisive in its performance. Similar results have 
been reported in studies that followed a sequential learning 
strategy (Shah et al., 2019), finding slightly improved accuracies 
(i.e., from 5.5 to 3.5 μg/cm2 in the RMSE) and better-fitted 
models (i.e., up to 0.89–0.95 units in the R2) when training 
random forest with VIs than when using spectral bands. 
However, random forest retrievals and validation distributions 
did best with the retraining learning routine.

Finally, we also examined one of the most promising approaches 
in hyperspectral remote sensing data analysis: a Bayesian kernel-
based method referred to as Gaussian process regression (GPR; 
Camps-Valls et  al., 2016). Four different kernels or covariance 
functions were compared: exponential, squared exponential (SE), 
Matern, and rational quadratic, with all of them integrated with 
a maximum likelihood technique for auto-tuning their parameters. 
Any of these covariance functions captures the similarity between 
pairs of observations under the assumption that if the input 
predictors are close to each other, it is expected that their SPAD 
values will also be  close. Although marginal differences were 
found among the tested formulations in terms of accuracy with 
MAE and RMSE (<2 SPAD units), the SE kernel stood out 
from the rest (Figure  6). Moreover, the assessment metrics for 
the SE kernel outperformed most of the models examined in 
this study: only barely surpassed by random forest in some 
trials using VI predictors and retraining learning. However, SE 
estimates were associated with high uncertainties when using 
VIs under sequential learning (~10–15 SPAD units), and for 
the last two stages when using band features under the retraining 
routine (~10–12 SPAD units). Accordingly, distributions of the 
same trials showed discrepancies between the estimates and actual 
SPAD values from the validation samples, indicating that the 
GPR model should be  subject to optimization routines (Verrelst 
et  al., 2016; Rivera-Caicedo et  al., 2017), despite its flexibility 
and robustness to deal with multi-temporal hyperspectral data.
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Few studies in the vegetation spectroscopy literature have 
extensively compared GPR with other non-parametric regressions 
(Ashourloo et  al., 2016). In two notable examples, (Verrelst 
et  al., 2012); (Rivera-Caicedo et  al., 2014) found SE kernel 
performance exceeded decision trees, neural networks, support 
vector regression, and kernel ridge methods. To date, most of 
the ML implementations in hyperspectral applications have tended 
toward random forest implementations to retrieve biophysical 
variables (Shah et  al., 2019; Vanbrabant et  al., 2019). Based on 
this previous research and the analysis above, the GPR squared 
exponential, PLSR and random forest were moved to production 
in the last stage of our workflow, in order to plot the multi-
temporal SPAD maps at a pixel level, and including the uncertainty 
maps produced by GPR, which provides an additional level of 
information regarding the quality of the estimates. Further analysis 
based on deep learning and neural networks is recommended 
to compare their performance under the same dataset.

Practical Considerations on the Learning 
Workflow for Chl Retrieval
In general, any non-linear ML approach can be  implemented 
to model and retrieve multi-temporal physiological traits such 
as Chl content or SPAD levels. However, different strategies and 
techniques should be  explored in order to ensure the efficiency, 
accuracy, and transferability of model selections. The first general 
task to pursue in a ML framework should include an exploratory 
comparative assessment of different models within the training 
workflow, using the full training/testing data, but predicting over 
a validation subset. Numerous learning libraries and toolboxes 
(Rivera-Caicedo et  al., 2014) are available for both open-source 
and commercial applications, including multiple regression 
algorithms that can be  easily implemented to run a preliminary 
comparative analysis as soon as the first collection of data is 
available. Selecting the methods to further explore should rely 
on the data characteristics, such as spatial, spectral, and temporal 
resolution, and the number of ground-truth samples available.

For chlorophyll monitoring applications specifically, 
non-destructive in-situ sampling can be conducted using chlorophyll 
meters that provide a relative indicator of leaf Chl content (i.e., 
SPAD), which can be  considered the dependent variable to 
estimate. However, if the formulations to translate relative units 
to physical units (i.e., μmol/m2) are available, it is advised to 
translate the data and use Chl content as the dependent variable 
to estimate (Parry et  al., 2014). It is also preferable to use field 
spectra data to train and fit the models, assuring its comparability 
with the UAV hyperspectral imagery, which must be radiometrically 
calibrated and processed in advance (Angel et  al., 2020). For 
structurally vertical, complex, and mixed-species, e.g., orchards 
or cereals, it is also essential to include BDRF corrections (Aasen 
and Bolten, 2018). If field spectra data are not available, it may 
potentially be  replaced by synthetic spectral datasets generated 
through inverting radiative transfer models, although field data 
is necessary for validation (Feilhauer et  al., 2015).

A final consideration relies on quality assessment tasks. Ensuring 
sufficient observations to split between training, testing, and 
validation will improve the learning routines and the assessment 

and model selection stages. In particular, validation is a decisive 
phase in the ML workflow, and it can be  performed by cross-
validation when few data are available. When multi-temporal 
data is involved, poor results can be  overlooked if evaluating the 
validation dataset across time is skipped. Since phenotypic data 
is dynamic, modeling should be  treated as a continuous process 
by periodically retraining and validating the models, particularly 
if the new incoming data distribution varies significantly from 
the first dataset. Such a phenomenon is known as model drift 
in machine learning literature (Webb et  al., 2016) and has to 
be continuously assessed through different metrics. Complementary 
to analyzing quality metrics (i.e., RMSE, MAE, R2), some algorithms 
like GPR can provide the uncertainty associated with each prediction, 
allowing uncertainties to be mapped together with model estimates. 
Accounting for uncertainties associated with SPAD retrieval is 
of particular interest, since small variations in SPAD units will 
lead to exponential variations in the actual Chl content (Parry 
et al., 2014). Multiple evaluation techniques can be further explored 
to assess different metrics and make improvements accordingly 
until accurate and coherent results are obtained.

CONCLUSIONS

An innovative machine learning retrieval framework for mapping 
leaf chlorophyll content across a crop cycle was developed using 
ultra-high-resolution UAV-based hyperspectral imagery, in-situ 
SPAD observations, and field-based leaf spectra. The workflow 
evaluates a range of model scenarios to determine the best-
performing methods based on the production of accurate and 
coherent multi-temporal retrievals. The intercomparison of six 
different ML approaches, including some variations and kernel 
formulations, accounted for a total of 17 different models. In-situ 
observations were split into a training/testing subset used to fit 
the models through cross-validation and estimate R2, and a 
validation subset was employed to assess the accuracy of the 
models via RMSE and MAE. Three main aspects can be highlighted 
as innovations from the proposed framework, which match the 
particular research objectives explored in this study:

 • Strategies for selecting the best-suited training/retrieval 
combinations based on accuracy assessment.

 • Evaluation of sequential versus retraining learning strategies.
 • Comparison of VIs and spectral band predictors in explaining 

the SPAD variable.

It was determined that a retraining learning strategy, whereby 
a model is updated as new data becomes available, proved 
superior in capturing the temporal dynamics of SPAD-based 
Chl. In contrast, if models are trained using the full data 
series at any instance in time (i.e., a sequential learning strategy), 
only a few model combinations could yield results close to 
the validation data, vanishing Chl-level changes over time. It 
was determined that the best combination of training conditions 
was achieved by coupling sequential learning with spectral 
bands, and retraining learning with VI predictors. However, 
given the link that VIs establish between plant traits and 
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spectral responses along the phenology stages, VI predictors 
may be  preferred over spectral bands in order to add 
interpretability to the models without deteriorating their 
performance or accuracy. In this direction, PLSR, GPR and 
random forest were selected as the most promising approaches 
to optimize and estimate the SPAD predictions. Overall, PLSR 
and GPR squared exponential outperformed the other models 
in terms of accuracy and goodness-of-fit when operated under 
the sequential and retraining strategies, respectively. However, 
random forest estimates were closer than GPR to the actual 
validation data distribution, which was used as a reference to 
evaluate the multi-temporal coherence of the results. An 
additional assessment element is provided by uncertainty metrics 
that are included as part of the GPR results. Filtering of the 
most relevant predictors (bands and VIs) resulted from the 
inherent feature importance mechanisms of the PLSR, random 
forest, and GPR approaches. By scoring and classifying the 
predictors, the selected models reached some agreement on 
strong individual bands and VIs that highlighted a few decisive 
spectral ranges and indices useful for retrieving Chl levels.

While a comprehensive assessment of factors contributing 
to model accuracy and performance was evaluated herein, there 
remain several further opportunities to advance upon the 
evaluated approaches, considering the wide range of learning 
strategies, optimization, and assessment techniques available in 
open source and commercial applications. Of particular note, 
there is a need to develop approaches capable of capturing 
non-evident relationships within large, high-spectral, −temporal, 
and -spatial datasets to cover canopy scales, and solving prediction 
problems even under limited in-situ training data. Hybrid machine 
learning with radiative transfer models is a further option to 
explore the particular leaf and canopy optical properties of 
agricultural species, integrating other information from UAV 
systems (e.g., lidar-based canopy height), allowing to account 
for biochemical and structural traits simultaneously. As data-
collection technology evolves, producing ever-larger volumes of 
data, identifying how best to retrieve accurate informatics quickly 
and efficiently is an area of critical and much needed research 
interest. If such techniques and approaches are not developed, 
we  risk being overwhelmed by information, thereby losing the 
capacity for process insight and knowledge advancement.
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Unmanned aerial vehicles (UAVs) equipped with multispectral sensors offer high
spatial and temporal resolution imagery for monitoring crop stress at early stages of
development. Analysis of UAV-derived data with advanced machine learning models
could improve real-time management in agricultural systems, but guidance for this
integration is currently limited. Here we compare two deep learning-based strategies
for early warning detection of crop stress, using multitemporal imagery throughout
the growing season to predict field-scale yield in irrigated rice in eastern Arkansas.
Both deep learning strategies showed improvements upon traditional statistical learning
approaches including linear regression and gradient boosted decision trees. First, we
explicitly accounted for variation across developmental stages using a 3D convolutional
neural network (CNN) architecture that captures both spatial and temporal dimensions
of UAV images from multiple time points throughout one growing season. 3D-
CNNs achieved low prediction error on the test set, with a Root Mean Squared
Error (RMSE) of 8.8% of the mean yield. For the second strategy, a 2D-CNN, we
considered only spatial relationships among pixels for image features acquired during
a single flyover. 2D-CNNs trained on images from a single day were most accurate
when images were taken during booting stage or later, with RMSE ranging from
7.4 to 8.2% of the mean yield. A primary benefit of convolutional autoencoder-
like models (based on analyses of prediction maps and feature importance) is the
spatial denoising effect that corrects yield predictions for individual pixels based
on the values of vegetation index and thermal features for nearby pixels. Our
results highlight the promise of convolutional autoencoders for UAV-based yield
prediction in rice.

Keywords: convolutional autoencoder, remote sensing, UAS—unmanned aerial system, grain crop, precision
agriculture
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INTRODUCTION

Rice (Oryza sativa) is one of the most important staple food crops
globally (Khush, 2001). However, efficient production remains a
major challenge, and there is a growing need to increase yield
gains per unit land area while conserving natural resources to
meet current and future demands (Grassini et al., 2013). For
example, nitrogen fertilization is one of the most challenging
aspects of rice production, with recommended rates and timing
depending significantly on cultivar, soil type, and other factors
(Hardke, 2018). To optimize production while minimizing inputs
and environmental impacts, real-time monitoring could enable
more efficient identification of crop stress, yield projection, and
decision-making throughout the season.

Remotely sensed images acquired by Unmanned Aerial
Vehicles (UAVs) provide a flexible means to monitor crop stress
and other production factors throughout the growing season.
UAVs equipped with thermal sensors are sensitive to longwave
infrared radiation (7,000–12,000 nm) and since transpiration
rates and evaporative cooling decrease under water-limited
conditions, thermal sensors are particularly suitable for early
detection of drought stress (Maes and Steppe, 2019; Burns
et al., 2022). UAVs can also be equipped with multispectral
sensors that capture multiple spectral regions in relatively
broad bands. In addition to red, green, and blue (RGB)
bands, multispectral sensors capture wavelengths in the near-
infrared (NIR) range (730–900 nm). A healthy vegetative canopy
typically has very high reflectance in the NIR spectrum. Thus,
multispectral imagery is particularly adept at assessing nutrient
status for yield prediction (Maes and Steppe, 2019). Recently,
state-of-the-art deep learning approaches are proving to be
highly useful for yield prediction using analysis of images
acquired by UAVs (Nevavuori et al., 2019), outperforming
other methods.

An important consideration for the design of deep learning
models from UAV-derived data is how to account for temporal
variations in the spectral signatures of a developing crop. Rice
canopy structure changes rapidly during vegetative growth,
with early-season images mostly comprised of bare soil
during seed germination, emergence, and seedling development.
Approximately thirty days after planting at about the five-
leaf stage, the first rice tiller appears (Hardke, 2018). At this
time, flooding is initiated in the delayed-flood system used
in Arkansas. Increased tillering coincides with an increase
in green biomass, when the normalized difference vegetation
index (NDVI), calculated based on reflectance in NIR and
red bands (Table 1), begins to increase rapidly (Wang et al.,
2014). Panicle initiation marks the beginning of reproduction.
The developing panicle eventually emerges from the stem
and is fully visible at heading when flowering begins. After
pollination, the panicle develops, and the rice kernels fill,
changing in color from light green to yellow and, ultimately
tan, as the grains ripen and leaves senesce. Thus, spectral
signatures steadily change with the development and maturation
of the rice crop.

One strategy to account for variation in spectral and thermal
indices across development is to let the model learn important

features (such as changes in NDVI associated with developmental
stage) during training. For example, Nevavuori et al. (2019) used
Convolutional Neural Networks (CNNs) on wheat and malting
barley fields to predict crop yield from derived vegetation indices
and raw RGB data acquired from UAVs (∼0.3 m resolution).
These CNNs were trained on data combined from nine fields,
split into “early” and “late” growing season datasets based on
the image collection date. Mean absolute percentage error was
lower for models trained on early season (8.8%) compared to
late season data (11.4%). These results suggest that relatively high
performance can be achieved for yield prediction at the intra-
field scale, even without more fine-grained consideration of plant
developmental stage.

An alternative approach explicitly accounts for temporal
aspects of variation in plant development in the model
architecture. Recurrent neural networks (RNNs) are well-
suited for sequential data due to the use of hidden states to
capture relevant information from prior states. RNNs have
been particularly successful for classification of land cover
data from satellite imagery, due to the ability to leverage
temporal patterns across image time series (Minh et al.,
2018; Sun et al., 2019). Temporal data structures can also
be considered with CNNs, when convolutions occur across
images in the temporal dimension as well as in the spatial
dimensions, and are called 3D-CNNs or temporal CNNs.
Temporal CNNs demonstrated slightly improved performance
compared to RNNs for land cover classification when considering
spectral and temporal dimensions of the data only (Pelletier
et al., 2019) and also when temporal, spectral, and spatial
dimensions were considered (Li et al., 2017; Ji et al., 2018).
While their utility is well-demonstrated for the task of land
cover classification from satellite imagery, it is unknown whether
temporal network architectures could also demonstrate improved
accuracies for tasks such as intra-field prediction of crop yield
based on higher pixel count images (as compared to satellite
images) from UAVs.

In this study, we assume that spatial variation in nutrient
and water availability drives intra-field variation in spectral
indices, and predict this variation will manifest as deviations
from average conditions, observable from UAV imagery. We
hypothesize that a model architecture that accounts for complex
spatio-temporal patterns (e.g., 3D-CNN architecture) will be
more informative for predicting intra-field yield variation
compared to a spatial-only model (e.g., 2D-CNN architecture,
Figure 1). We further determine whether deviations from
average conditions matter most at certain time points, or
if images taken during particular developmental stages are
equally predictive of future yield. Finally, we characterize the
nature of the benefit of the tested deep learning architectures
for our dataset.

MATERIALS AND METHODS

Study Site
Our study focuses on a single study site located in the
state of Arkansas, which contributes approximately half of
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TABLE 1 | Vegetation indices.

Index Abbreviation Equationa References

Normalized difference vegetation index NDVI (ρNIR−ρr )
(ρNIR+ρr )

Tucker, 1979; Hatfield and Prueger, 2010; Sharma et al., 2015

Chlorophyll index green CIgreen
(ρNIR)

ρg
− 1 Gitelson et al., 2005, 2003; Hatfield and Prueger, 2010

Red-edge normalized difference vegetation index RENDVI (ρNIR−ρRE )
(ρNIR+ρRE ) Gitelson and Merzlyak, 1997; Hatfield and Prueger, 2010

Green normalized difference vegetation index GNDVI (ρNIR−ρg)
(ρNIR+ρg)

Gitelson and Merzlyak, 1997; Hatfield and Prueger, 2010

Normalized area vegetation index NAVI 1− (ρr )
ρNIR

Carmona et al., 2015

Triangle greenness index TGI −0.5[(670− 480) ∗
(
ρr − ρg

)
Hunt et al., 2011, 2013

− (670− 550) (ρr − ρb)]

aReflectance (ρ) is measured at the wavelength denoted by the subscript: red (r), green (g), blue (b), red-edge (RE), and near-infrared (NIR).

FIGURE 1 | Study design. UAV images were collected at 11 time points during the season. Predictions were based on thermal data and six vegetation indices
derived from red, green, blue, red-edge, and near-infrared bands (CIgreen, GNDVI, NAVI, NDVI, RENDVI, and TGI). The field was divided into training, test, and
validation images as shown for four-fold cross-validation. These larger regions were divided into 5 × 5 pixel patches (50 cm resolution pixels). Convolutional neural
networks (CNNs) used an autoencoder-like structure to predict yield on an output 5 × 5 pixel patch based on 5 × 5 pixel input images, each with seven features.
Model training for the 2D-CNN was based on a single time point; 3D-CNN used the five time points centered around the reproductive phase of crop growth.

the agricultural land area harvested for rice grown in the
United States (United States Department of Agriculture
Economic Research Service [USDA], 2021). The study site is a
16-ha, zero-grade (0% slope) field within a large farm operation
in Lonoke County (e.g., Runkle et al., 2019). The farm produces
rice using a rice-after-rice (i.e., continuous rice) production
system and a drill-seeded, delayed flood program and burns
rice straw after harvest. Field soil is classified as silt loam: 33%

Calhoun silt loam (Fine-silty, mixed, active, thermic Typic
Glossaqualfs) and 66% Calloway silt loam (Fine-silty, mixed,
active, thermic Aquic Fraglossudalfs) (United States Department
of Agriculture Natural Resources Conservation Service, 2020).

Rice Agronomics
The rice hybrid Gemini 214CL (Rice Tec, Inc., Alvin, TX) was
drill seeded on 16 May 2019 using a seeding rate of 25 kg ha−1.
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TABLE 2 | Flyover dates for the 2019 season.

Date Days after
planting

Growth stage Average canopy
height (cm) (n = 5)

Leaf area index
(LAI) (n = 2)

Floodwater depth
(cm) (n = 5)

Apr. 04 NA NA NA NA NA

May 21 6 Pre-emergence NA NA 0

June 13 29 Vegetative —tillering 25 0.26–0.30 0

June 29 45 Vegetative – Tillering 55 2.42–5.43 9–15

July 11 57 Reproductive—R0—panicle initiation 73 6.79–7.17 0–5

Aug. 01 78 Reproductive—R2—booting 82 7.16–7.27 0–3

Aug. 13 90 Reproductive—R4—flowering anthesis 111 6.51–6.57 15–23

Aug. 21 98 Grain filling—maturation—hard stage 104 6.23–6.47 10–14

Aug. 28 105 Grain filling—maturation—hard stage 104 NA 0

Sep. 07 115 Grain filling—maturation—hard stage 104 6.50–6.83 0

Sep. 13 121 One day before harvest NA NA 0

Floodwater depth and LAI are given as ranges for the minimum and maximum values. For flyover days that occurred between dates when LAI or floodwater depth were
measured, values are from the nearest day (within ± 4 days). Measurements were performed in the north side of the field within a 15-m radius.

Fertilizer was applied on 03 June (20 kg ha−1 N and 52 kg ha−1

P2O5 using diammonium phosphate), 11 June (101 kg ha−1

K2O using potassium chloride), 12 June (101 kg ha−1 N using
urea), and 25 June (50 kg ha−1 N using urea). To conserve
water resources, the field was irrigated using alternate wetting
and drying flood management (Bouman and Tuong, 2001; Henry
et al., 2017).

The field was mechanically harvested on 14 September 2019
using a commercial combine and a circular harvest pattern with
an 8.5-m header width. Rough rice yield was measured using a
calibrated yield monitor (GPS-enabled John Deere Greenstar 3
2630 harvest monitor). Yield data were excluded from a 10-m
buffer surrounding the field perimeter and associated drainage
ditch. The data were checked and filtered using Yield Editor
software (Sudduth and Drummond, 2007), and the harvest
grain moisture content was 14.6%. ArcGIS software was used to
develop a raster layer with a spatial resolution of 50 cm, using the
spherical model, within the Kriging/CoKriging tool (Burrough,
2001). To further characterize the study site, throughout the
growing season, growth, floodwater depth, canopy height and
Leaf Area Index (LAI) were measured within 4 days of each
flyover date (Table 2). Canopy height and floodwater depth
were measured in five locations, while LAI was measured in two
flagged locations with a total area of 1 m2 for each location using
the LAI-2200C (LI-COR Biosciences). These measurements were
performed on the north side of the field within a 15-m radius of
each other, and the northern field edge.

For further evaluation of trained models, we also considered
a separate 27-ha field within the same farm in the 2020 growing
season. This field was water seeded (seeds broadcasted from an
airplane over a flooded field) with CL XL745 rice hybrid cultivar
(Rice Tec, Inc., Alvin, TX) on 02 April 2020 using a seeding
rate of 32.5 kg ha−1. Fertilizer was applied on 01 June (22 kg
ha−1 N and 57 kg ha−1 P2O5 using diammonium phosphate),
11 June (52 kg ha−1 N using urea), 18 June (52 kg ha−1 N using
urea) and 25 June (52 kg ha−1 N using urea). The field was also
irrigated using alternate wetting and drying flood management to
conserve water resources, and the rice residue was also burnt. The
field was harvested on 17 August 2020 using the same combine

previously described, and the harvest moisture was 15.6%. Field
soil is classified as silty clay: Perry Silty Clay (Very-fine, smectitic,
thermic Chromic Epiaquerts) (United States Department of
Agriculture Natural Resources Conservation Service, 2020).

Unmanned Aerial Vehicle Data Collection
A UAV with an Altum sensor (multispectral and thermal)
was used for image data collection. Data were collected at
approximately 7-day intervals, weather permitting (Table 2). The
Matrice 210 V-2 quadcopter (DJI, Shenzhen, Nanshan District,
China) was used and equipped with an Altum sensor (MicaSense,
Seattle, Washington) to collect blue (B, 475 nm), green (G,
560 nm), red (R, 668 nm), red edge (RE, 717 nm), near-
infrared (NIR, 840 nm), and thermal (11,000 nm) data. Data
collection occurred within 2 h of solar noon local time. Prior
to each flight, radiometric calibration images were captured
(MicaSense, Seattle, Washington). Flight design parameters were
calculated using the MicaSense flight calculator, while the Atlas
Flight application was used to deploy flight missions (MicaSense,
Seattle, Washington). The flight altitude was 120 m above
ground level (AGL), and horizontal velocity was 10 m s−1 with
75% front/side overlap. The Pix4D mapper software (Pix4D
Inc., Prilly, Switzerland) was used to stitch the raw imagery,
producing orthomosaics. The model builder tool within ArcMap
10.7.1 (ESRI, 2011, Redlands, California) was used to calculate
six vegetation indices, including CIgreen, Normalized Area
Vegetation Index (NAVI), NDVI, Red-Edge NDVI (RENDVI),
Green NDVI (GNDVI), and Triangular Greenness Index (TGI)
based on the equations in Table 1. The six derived vegetation
indices and the thermal layer were used as the input features
for model training.

For the 2020 growing season, UAV data were collected on 05
July 2020 for the 27-ha field only, during booting stage.

Image Processing
After producing orthomosaics and generating vegetation indices,
images were further processed in R ver. 4.0 (R Core Team, 2020).
Images were downsampled from 5 to 50 cm resolution, using the
“aggregate” function of the raster package, and then split into
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5× 5 pixel tiles. This enabled faster processing of image data and
a match to the spatial resolution of yield data. Images were then
stacked across time. After cropping out the edges of the field and
removing tiles with missing values, tiles were partitioned for four-
fold cross-validation. Tiles were split into training (∼50%), test
(∼25%), and validation (∼25%) datasets, in the four-fold shown
in Figure 1. This strategy was used so that some field regions
were never seen during training, rather than randomly assigning
images to the test set, which would inflate model performance.
For the two deep learning models, the validation set is used
during model training, where model weights are updated each
epoch if performance on the validation set improves; the test set
is held out for the final evaluation after training. For the statistical
models (linear, null, and XGBoost models), the training and
validation sets can be considered equivalently. Non-overlapping
tiles of 5 × 5 pixels were output as .csv files and then converted
into .npy arrays for faster reading in Python 3.

Model Training
Evaluation Metrics
To evaluate each model, four statistical parameters were used to
assess model performance: Root Mean Squared Error (RMSE),
coefficient of determination (R2), mean absolute error (MAE),
and mean bias error (MBE), calculated as follows:

RMSE =

[
1
n

n∑
i=1

(
Yi − Ŷi

)2
]0.5

R2
=

[
∑n

i=1(Yi − Ȳobs)(Ŷi − Ȳexp)]
2∑n

i=1(Yi − Ȳobs)2 ∑n
i=1(Ŷi − Ȳexp)2

MAE =
1
n

n∑
i=1

|Ŷi − Yi|

MBE =
1
n

n∑
i=1

(
Ŷi − Yi

)
where Yi is the observed yield for pixel i, Ŷi is the predicted
yield for pixel i, n is the total number of pixels in the dataset,
Ȳobs is the mean observed yield for all pixels, and Ȳexp is the
mean predicted yield for all pixels. MAE and RMSE measure the
average magnitude of difference in the observed and predicted
response, with RMSE placing greater penalty on large errors.
MBE is also a measurement of the error between the predicted
and observed response but takes into account the sign of the
errors. However, MBE should be interpreted with caution as large
errors may cancel each other out if they are in the opposite
direction. R2 represents the proportion of variance in the dataset
that is explained by the model.

Null Models
As a baseline for comparison, we considered the difference
between each pixel and a constant layer assigned the value of the
mean yield calculated from all pixels assigned to the training set.
Evaluation metrics for the null model on the training set vary
slightly across time points as a result of differences in the number
of missing values on different days.

Linear Models
We fit linear models to predict yield using seven predictors (all six
vegetation indices and thermal rasters) using the lm() function
from R version 4.0 (R Core Team, 2020).

XGBoost
We trained gradient boosted decision trees using the R
implementation of XGBoost (Chen and Guestrin, 2016; Chen
et al., 2021). This model was designed to capture complex
interactions among predictor values, but did not consider spatial
or temporal dimensions of our data structure. We did not
perform extensive parameter tuning for every individual model,
but chose parameter values that gave similar performance on
training sets as observed for 2D-CNN models on a subset of
data. Specifically, we used default settings with the exception of
a slower learning rate (eta = 0.2), a maximum tree depth of 2
(max_depth = 2) to capture only pairwise interactions among
predictors, and 200 rounds of training (nrounds = 200). The same
parameter values were used to train all XGBoost models.

2D-Convolutional Neural Networks
We included “spatial models” (2D-CNNs) to determine whether
considering information from nearby pixels improved yield
prediction. We developed a 2D-CNN with an autoencoder-like
structure. An autoencoder is a neural network trained to encode
data into a compressed representation and then reconstruct the
original data from the encoded representation (Figure 1). Here,
we take advantage of this type of architecture to predict an output
5× 5 pixel image of yield, based on an input 5× 5 image patch for
the same location acquired by a UAV. Each image was associated
with seven input features, corresponding to values from the
thermal sensor or for a different vegetation index (Figure 1).
We did not train models using data for 13 June 2020 due to a
malfunction in the thermal sensor.

Our 2D-CNN was implemented in Python 3.8 using Keras
with a TensorFlow v2.2.0 backend (Abadi et al., 2015; Chollet,
2015). The final architecture involved one sub-network of
three convolutional layers for encoding, followed by two
fully connected layers, and a second sub-network of three
convolutional layers for decoding. The parameter specifications
for each layer are shown in Table 3. A “ReLU” activation
function was used for each layer in the network besides the
last layer, which used a linear activation function. We used
the “adam” optimizer and quantified loss based on the mean
squared error. CNNs were trained for 50 epochs, and weights
for models with the best performance on the validation set
were saved to evaluate performance on the test set. Preliminary
models were trained for up to 200 epochs, but only minor
improvements in model performance were observed with
additional training.

3D-Convolutional Neural Networks
To determine whether considering information from nearby
time points improved yield prediction, we developed “spatial-
temporal models” (3D-CNNs). For this analysis, we used 5 days
beginning just prior to the reproductive phase (flyover dates
from 29 June 2019 through 21 August 2019), which ended
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FIGURE 2 | Variation in temperature and six vegetation indices over time in 2019. Gray shaded areas indicate time prior to seeding and the reproductive phase
(panicle initiation through flowering anthesis). Additional details regarding growth stages for each flyover date are provided in Table 2. First flooding occurred on 29
June, resulting in a dip in NDVI and GNDVI. Plotted values are the mean for 50 cm × 50 cm pixels with yield in the lower 10% (n = 52,649), the upper 10%
(n = 52,537), or all pixels (n = 526,735). Thermal was not available for the flyover on 13 June.

approximately 3 weeks prior to harvest and also included the
days that we anticipated to be most informative with respect
to variation in vegetation indices (Figure 2). We also tested
3D-CNNs that included all 11 time points, but found early on
during testing that they primarily learned to weight features from
the final time point, just prior to harvest. Our 3D-CNNs were
designed to have a parallel structure to our 2D-CNNs with the
exception that convolutions occurred in three dimensions in the
encoding stage of the network (Figure 1).

Computational Infrastructure
The XGBoost, linear, and null models were trained in minutes
or less on a personal desktop computer (16 Gb RAM; Intel Core
i5 3 GHz processor). Each 2D-CNN was trained on a single
node of the Trestles cluster at the University of Arkansas High
Performance Computing Center (AHPCC). Each of these nodes
is equipped with 64 Gb of memory and four AMD 6136 2.4 GHz
CPUs for a total of 32 cores; 2D-CNNs required approximately
five hours to train (eight CPU hours) and a maximum of 10 Gb
of virtual memory. We used the same computing infrastructure
for training 3D-CNNs as for 2D-CNNs; each 3D-CNN required
approximately 18 hours (24 CPU hours) to train.

Model Comparison
In comparing our models, we sought to answer three questions:
(1a) Do model architectures that capture spatial information
improve yield prediction over traditional statistical learning
approaches? (1b) If so, do models that also include data from
multiple time points improve yield prediction over models that
only include spatial information? (2) Which day(s) have the
strongest signal for deep-learning based yield prediction? and (3)
What are the most important spectral features for prediction?

For the first two questions, we compared average test set RMSE
across time points for all models. To qualitatively determine the
impact of different model architectures on yield predictions, we
also projected models to field scale. Input images containing
vegetation indices and thermal layers were processed in R as
described for model training. CNN models were loaded into R
using the “reticulate” package to enable interoperability between
R and python codes (Ushey et al., 2020). Predictions for each tile
were generated iteratively and tiled together for the prediction
map for the field.

For the last question, we determined the relative importance
of each feature for the trained 2D-CNNs by removing variation
observed for that feature in input images from the test set. To
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TABLE 3 | Parameters for CNNs.

Layer Parameters (2D-CNN) Parameters (3D-CNN)

Conv2D (for 2D-CNN) or
Conv3D (for 3D-CNN)

Filters = 64 Filters = 64
Kernel_size = (3,3) Kernel_size = (3,3,3)

Padding = “same” Padding = “same”

Activation = “relu” Activation = “relu”

Input_shape = (5,5,7) Input_shape = (5,5,5,7)

Conv2D (for 2D-CNN) or
Conv3D (for 3D-CNN)

Filters = 128 Filters = 128
Kernel_size = (2,2) Kernel_size = (2,2,3)

Padding = “same” Padding = “same”

Activation = “relu” Activation = “relu”

Conv2D (for 2D-CNN) or
Conv3D (for 3D-CNN)

Filters = 256 Filters = 256
Kernel_size = (1,1) Kernel_size = (1,1,5)

Padding = “valid” Padding = “valid”

Activation = “relu” Activation = “relu”

Reshape Target_shape = (5,5,256)

Flatten NA

Dense Units = 256

Activation = “relu”

Dense Units = 5,400

Reshape Target_shape = (5,5,256)

Conv2D Filters = 128

Kernel_size = (2,2)

Padding = “same”

Activation = “relu”

Conv2D Filters = 64

Kernel_size = (3,3)

Padding = “same”

Activation = “relu”

Conv2D Filters = 1

Kernel_size = (1,1)

Padding = “same”

Activation = “linear”

Each Keras layer refers to a building block of the neural network, including
convolution layers (Conv2D and Conv3D), reshaping layers (Flatten and Reshape),
and fully connected layers (Dense). Besides the last layer, all layers used a rectified
linear unit (“relu”) activation function that directly outputs the input, if positive, or
zero otherwise.

“blank” variation in a feature, all actual values for that feature
in each tile were replaced by the mean value observed across all
pixels in the test set. Test set RMSE was then determined using
the function call to Keras “evaluate” (Chollet, 2015).

Code Availability
Python and R code used to process data, train and evaluate
models, and recreate Figures 2–5, is available at https://github.
com/em-bellis/XASU_rice.

RESULTS

Rice Yield Variation
We first characterized intra-field variation in yield in the 2019
growing season. Rough rice yield was 9.06 ± 0.9 Mg ha−1

(mean ± std. dev.) measured across 526,735 grid cells at 50-
cm resolution. As expected, vegetation indices varied with rice

crop developmental stage and differed between high- and low-
yielding areas of the field (Figure 2). CIgreen and RENDVI showed
the greatest contrast during reproduction, peaking at booting
stage (CIgreen) or flowering (RENDVI) in the highest-yielding
areas of the field. TGI values also differed among high- and low-
yielding areas of the field, particularly during vegetative growth
and booting stage (Figure 2).

Spatial vs. Non-Spatial Models
We next evaluated the ability of deep learning-based, spatially
explicit models to predict yield from vegetation index and
thermal feature information. Compared to the null model,
all models showed improved performance during training,
indicating that vegetation indices and thermal features provided
useful information for predicting yield (Figure 3). Linear models
performed worst for the training set data for eight out of 10 days.
Non-spatial (XGBoost) models performed best on training set
data for six of 10 days, reaching the best performance on images
acquired a week prior to harvest (Figure 3).

Performance on test sets, however, revealed a clear benefit
of our deep learning-based spatial models for predicting grain
yield both in terms of higher accuracy and lower variability in
predictions across folds (Figure 3 and Table 4). Similar ranking
of models was observed for all metrics (Table 4). 2D-CNNs
trained on images taken during booting stage (01 Aug) or later
showed the best performance (RMSE: 7.4–8.2% of mean yield;
Figure 3). Average test RMSE of XGBoost models during these
same developmental stages was higher, ranging from 8.5 to
10.3% of the mean yield. Performance of XGBoost models was
also highly variable across folds, with standard deviation up to
7.4% of the mean yield vs. 4.2% in 2D-CNNs (n = 4 folds,
based on observations over all time points). The difference in
performance of XGBoost models on training and test sets may
be indicative of overfitting. However, even for days on which
performance of CNNs and XGBoost models on the training
set was nearly identical (i.e., 29 June, 21 Aug, and 28 Aug),
2D- and 3D-CNNs showed markedly better performance on the
test set (Figure 3). 2D-CNNs also outperformed other models
with respect to MAE and R2, though not with respect to MBE,
suggesting that although they were more accurate, 2D-CNNs
tended to overpredict slightly more than other models (Table 4).
Models trained on images collected from the booting stage or
later performed best, though 2D-CNNs trained on images from
earlier time points also performed notably better than other
models (RMSE: 8.7–9.3% of mean yield; Figure 3).

To further evaluate the benefit of our spatial models, we
projected predictions from 2D-CNNs trained during the booting
stage to field scale (Figure 4). This analysis suggested that a main
benefit of the 2D-CNN model, compared to models that do not
incorporate information from nearby pixels, may be a spatial
denoising effect of the 2D-CNN. Compared to less complex
models, CNNs were less likely to underpredict yield, particularly
where yields were higher (Figures 4A,B).

Spatial vs. Spatial-Temporal Models
We observed comparable performance for the two deep learning
models using the tested architectures. Average test RMSE for
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FIGURE 3 | Summary of model performance. Root mean squared error (RMSE) relative to the mean yield for the field is shown as the average across all four data
folds. Note that results for the 3DCNN are for a single model based on input from five time points together, with relative RMSE (rRMSE) shown as a constant value
across the five included time points.

3D-CNNs only exceeded that of 2D-CNNs on 29 June and 11
July, likely due to the fact that the 3D-CNN model also included
data from the more informative, later time points (Figure 3). Our
results suggest that 2D-CNN models provide a benefit for the task
of yield prediction in rice over simpler models and may offer
similar performance to some deep learning architectures that
incorporate data from multiple timepoints. Future studies may
find further benefit of temporal network architectures relative to
the 2D-CNNs tested here, for example by altering the intervals of
the selected time points.

Spectral Feature Importance
The cost of a UAV increases with the number of sensors it carries
and sensor complexity. To assess if it is possible to achieve similar
prediction accuracy with fewer sensors or bands, we determined
the importance of each index on model performance of booting
stage 2D-CNNs. Booting stage is early enough to be useful to the
farmer, such as for determining the need for late boot nitrogen
fertilization of rice hybrids (Hardke, 2018). It was also found to
have one of the lowest RMSE values (Figure 3).

At booting stage, CIgreen was the most important feature
(index) for predicting rice yield with 2D-CNNs (Figure 5).
Depending on the fold, test-set RMSE increased by 0.03–
0.17 Mg ha−1 when variation among pixels in CIgreen was
removed, consistent with high variation in CIgreen among
yield groups at this time point (Figure 2). TGI and thermal

information were also important, but only for some data folds
(Figure 5). Other indices appeared to matter little to overall
model performance, with negligible or even positive effects on
model performance when observed variation in those features
was removed (Figure 5). However, since calculation of TGI
relies on three bands (red, green, blue), CIgreen relies on two
bands (green, NIR), and thermal information was also useful
for some models (Figure 5), a UAV equipped with all sensors
is recommended to achieve levels of performance reported here
on other datasets.

Generalization to New Datasets
To explore the extent to which our findings may generalize to new
contexts, we evaluated performance of late booting stage models
from 2019 (Figure 4) on a separate, nearby field imaged in the
2020 growing season. All 2019 models underpredicted yield in
2020 (Figure 6), consistent with substantially higher mean yield
for the 27-ha field compared to the training dataset (11.4 vs.
9.1 Mg/ha). Among all single-day UAV-based models, the 2D-
CNN model had the highest accuracy, indicating it was also more
translatable to a different field and growing season compared to
the other models (Figure 6).

Further improving performance in new contexts will require
a greater diversity of training images for different rice cultivars,
growing seasons, soil types, and management conditions. To
inform future experimental design, we determined the extent to
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FIGURE 4 | Yield prediction maps based on data for 01 Aug 2019, for models trained on the fold B dataset. Data for 2D-CNN is shown in (A,C) whereas data for
linear model is shown in (B,D). Prediction error (yield difference) is shown in (A,B) and represents observed yield minus predicted yield; (C,D) show predicted yield.
Black boxes in (A) indicate regions described in main text where yield was underpredicted to a considerably lesser degree in the 2D-CNN model compared to the
linear model. For (A,B), breakpoints for color scale are evenly spaced. For (C,D), breakpoints for the color scale are chosen based on the 10th, 25th, 50th, 75th, and
90th percentile values of observed yield. Mg/ha: megagrams/hectare.

which similar performance could be expected for models trained
on smaller datasets. A subset of 1,000 tiles was randomly selected
from the fold B dataset (Figure 1; ∼10% of tiles compared to
full-scale training). After 50 epochs, RMSE as low as 0.77 Mg/ha
was observed for the smaller training set; in contrast, lower
RMSE (0.68 Mg/ha) was achieved within 50 epochs for the full
training set. Given the modest increase in RMSE with the smaller
dataset, it may be prudent to train future deep learning models
using at least a similar-sized training set (∼7 ha) as the full-scale
training set used here.

DISCUSSION

In this study, we present an autoencoder-like CNN architecture
for intra-field prediction of rice yield. The best single-day
model showed improved performance compared to simpler
models trained on the same data, and comparable or improved
performance to similar UAV-based studies in wheat and
barley (Nevavuori et al., 2019), rice (Yang et al., 2019; Wan

et al., 2020; Duan et al., 2021), and soybean (Maimaitijiang
et al., 2020; Table 5). With respect to yield prediction
in rice, we report slightly better performance of our late
booting stage 2D-CNN compared to Yang et al. (2019), after
accounting for higher average yield in our study [RMSE of
0.72 (Table 4) vs. 0.76 Mg/ha (Yang et al., 2019)]. With
respect to RMSE, we report slightly lower performance for
rice yield prediction compared to two other studies; however,
these studies tested performance using leave-one-out cross-
validation (Duan et al., 2021) or random samples distributed
throughout the field (Wan et al., 2020), which could inflate
performance compared to the spatially explicit strategy for cross-
validation used here (Figure 1). Compared to other studies,
R2 values for our model were relatively low, likely because
of greater amount of overall yield variation in other studies
due to experimental nitrogen treatment (Wan et al., 2020)
and differing management practices (Yang et al., 2019). Our
findings additionally suggest a benefit of autoencoder-like 2D-
CNNs for spatial denoising of yield predictions by incorporating
information from nearby pixels. With the exponential rise in
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FIGURE 5 | Feature importance for model training on images from 01 Aug
2019. To blank observed variation in a feature, actual values were replaced by
the mean value across all pixels observed for that feature. 1RMSE was
calculated by subtracting the test set RMSE of the original model with no
feature blanked from the blanked feature model. 1RMSE is given relative to
the mean yield (1rRMSE). Larger, more positive 1rRMSE values indicate
higher feature importance for the respective feature.

adoption of UAVs for remote sensing in agriculture (Maes and
Steppe, 2019), this study provides timely guidance for future
large-scale training data collection efforts and their integration
with development of deep-learning models.

Surprisingly, we observed similar performance for yield
prediction for 2D-CNNs as for a 3D-CNN architecture
using data from multiple time points. However, 3D-CNN
architectures may show a greater increase in performance
if trained on diverse datasets that include multiple rice
cultivars and environments, particularly if there are significant
cultivar- or environment-specific differences in the pattern
of vegetation index change over time (Duan et al., 2021).
Exploring the benefit of 3D-CNNs for better generalization
across climate zones and cultivars is a promising area for
future work, since a primary benefit of these architectures
may be the ability to take into account shifts in phenology
across different climates and cultivars. The dataset utilized
here, which focuses on fine-scale yield prediction across a
large, heterogeneous field for a single year, minimizes variation
due to cultivar and environmental differences, and so any
temporal variation in vegetation indices associated with yield
may not contribute to a strong spectral signature in the dataset.
Our pre-processing pipeline also does not include any explicit
classification of soil- or weed-derived pixels, or inclusion of
canopy structure/texture features (e.g., Maimaitijiang et al.,
2020), which could also impact the relationships among
timepoints and the relative performance of 3D-CNNs. Use of
vegetation index features that are less sensitive to saturation
and soil background effects (e.g., Yang et al., 2019) is another
strategy which might influence 3D-CNN performance relative
to 2D-CNNs.

Our results also highlight the potential for UAVs to support
management recommendations even during early growth stages

(Nevavuori et al., 2019). Although the best single-day models
were obtained during booting stage or later, the 2D-CNNs
showed considerably better performance than other models
even when trained on data acquired during vegetative growth
stages (Figure 3). This difference in prediction for 2D-CNNs vs.
other models was observable even prior to planting when the
performance of single-day models was surprisingly competitive
with models based on information from later in the season
(Figure 3). Other studies demonstrate the success of 2D-
CNNs for corn yield prediction based only on pre-season
variables, including soil electroconductivity maps and satellite
imagery acquired after soil tillage (Barbosa et al., 2020). Bare-
soil images taken by UAVs prior to planting may also capture
features that correlate with soil properties important to yield
(Khanal et al., 2018).

For future large-scale efforts on a greater diversity of rice
cultivars from different fields, regions, years, and management
conditions, our results suggest it may be worthwhile to
focus data collection at time points just prior to common
crop management intervention points. In turn, growth-stage
specific single-day models can be trained using these data. For

TABLE 4 | Evaluation of model performance on the test set for single-day models
(trained on data at late booting stage) and 3D-CNN.

Model Fold RMSE (Mg/ha) MBE (Mg/ha) MAE (Mg/ha) R2

Null A 0.93 −0.50 0.79 n.d.

B 0.75 0.08 0.57 n.d.

C 0.80 0.30 0.60 n.d.

D 0.83 0.13 0.62 n.d.

Mean 0.83 0.00 0.65 n.d.

Linear A 1.06 −0.78 0.93 0.17

B 0.70 0.07 0.51 0.18

C 0.94 0.59 0.70 0.15

D 0.83 0.10 0.63 0.04

Mean 0.88 −0.01 0.69 0.14

XGBoost A 0.88 −0.45 0.72 0.11

B 0.74 −0.02 0.53 0.19

C 0.83 0.50 0.61 0.22

D 0.83 0.11 0.63 0.04

Mean 0.82 0.04 0.63 0.14

2D-CNN A 0.73 −0.19 0.57 0.18

B 0.68 0.13 0.47 0.29

C 0.63 0.02 0.45 0.30

D 0.84 0.28 0.62 0.10

Mean 0.72* 0.06* 0.53 0.22

3D-CNN A 0.80 −0.37 0.67 0.08

B 0.67 0.17 0.48 0.27

C 0.77 −0.24 0.61 0.37

D 0.90 0.45 0.67 0.06

Mean 0.79 0.00 0.61 0.20

*Indicates significant difference in mean value between 2D-CNN and linear model
only (p ≤ 0.05; one-way ANOVA).
RMSE, root mean squared error; MBE, mean bias error; MAE, mean absolute
error;R2, coefficient of determination. n.d., not defined (observed ∼ predicted yield
is a vertical line for the null model).
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FIGURE 6 | Average performance of late booting stage models from 2019,
evaluated on a separate nearby field in the 2020 growing season. MAE, mean
absolute error; MBE, mean bian error; R2, coefficient of determination; RMSE,
root mean squared error; 2DCNN, two-dimensional convolutional neural
network.

example, Arkansas currently recommends nitrogen fertilization
after internode elongation (for some cultivars) or at late
booting (for hybrid cultivars) (Hardke, 2018); the most robust
models might be explicitly trained for optimal performance
at those stages. The use of growth-stage specific models
may be particularly valuable because the importance of
different vegetation indices for yield prediction varies over
time (Figure 2; Duan et al., 2019). Compared to 3D-
CNNs, 2D-CNNs would also require less computational and
environmental resources for training (Strubell et al., 2019;

Henderson et al., 2020; Bender et al., 2021) and fewer flyovers to
generate yield predictions when models are deployed.

Further contributing to the simplicity of our deep learning
models is the lower resolution of images used for the models
in our study (50 cm) compared to the resolution of images
available from the Altum sensor (5 cm). Using down-sampled
images, our 2D-CNNs reached maximum performance relatively
early during training. Contributing to this, the true relationship
between yield and vegetation indices may be relatively simple;
high linear correlations with yield are often reported (Duan et al.,
2019). Furthermore, higher resolution of input images would
not match the scale of accuracy of yield maps generated using
data collected by commercial harvesters (Figure 1). Conversely,
without a combine yield monitor, it would be very difficult to
acquire a sufficient volume of labeled data needed to train deep
learning models.

If the relationship between vegetation indices and yield is
relatively simple, and the resolution of imagery used here
precludes automated detection of individual objects in images,
what is the utility of our CNN architectures for yield prediction?
One of the primary benefits may be an image denoising effect
of the autoencoder-like model architecture. Autoencoders have
been widely successful for image denoising for a variety of
applications (Xie et al., 2012). Robustness to partial destruction
of the input is a characteristic of particular interest for denoising
autoencoders (Vincent et al., 2008). Our study suggests that
similar architectures are also useful for denoising “outputs.”
For example, although yield maps used for training included
noise (e.g., circular impressions due to the driving pattern of
the combine harvester), these patterns are absent in prediction
maps (Figures 4C,D). Future models trained to predict yield
using higher resolution images from UAVs might benefit from a
two-stage approach, where yield maps from a combine harvester

TABLE 5 | Model performance for comparable studies using UAV imagery for yield prediction.

References Crop Model Performance Description

This study Rice 2D-CNN 7.9% (rRMSE) Yield predicted from thermal and six VIs using data at late booting stage.

5.8% (MAPE) Performance based on 4-fold cross validation from the same field and season.

0.22 (R2)

Duan et al. (2021) Rice Neural network 5.3–7.1% (rRMSE) Yield predicted on two individual VIs from 6 or more imaging days.

0.48–0.62 (R2) Performance based on leave-one-out cross validation from the same field and season.

Wan et al. (2020) Rice random forest 2.75% (rRMSE) Yield predicted from four RGB- and multispectral-derived features. Data set included
substantial yield variation due to experimental nitrogen treatment.

0.83 (R2) Performance based on random held-out set from the same field and season.

Yang et al. (2019) Rice 2D-CNN 26.6% (MAPE) Yield predicted from raw RGB and multispectral imagery at ripening stage.

0.49 (R2) Performance based on held-out set of independently managed plots from the same
season.

Maimaitijiang et al.
(2020)

Soybean 2D-CNN 15.9% (rRMSE) Yield predicted from 72 features derived from multispectral, thermal, and RGB sensors
on a single day. Data set included substantial yield variation due to cultivar-specific
differences.

0.72 (R2) Performance based on held-out set from the same field and season.

Nevavuori et al.
(2019)

Wheat/barley 2D-CNN 8.8–12.6% (MAPE) Yield predicted from RGB or a single VI measured on a single day.
UAV data were combined for two crops, nine fields, and multiple imaging dates. Images
for “early” or “late” season models were sub-sampled, shuffled, and split into test and
train sets.

rRMSE, relative root mean squared error; MAPE, mean absolute percentage error.
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first undergo error correction using the model architecture
presented here (Figure 1).

Taken together, our study highlights the benefits of relatively
simple CNN architectures for yield prediction in rice using
remotely sensed images. Incorporating such models into data
analysis pipelines could balance the overall costs of data
collection and model training and demonstrates the potential
benefits of deep learning for sustainable agriculture and
precision management.
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