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Though there have been many developments in sensory/motor prosthetics, they have not yet 
reached the level of standard and worldwide use like pacemakers and cochlear implants. One 
challenging issue in motor prosthetics is the large variety of patient situations, which depend-
ing on the type of neurological disorder. To improve neuroprosthetic performance beyond the 
current limited use of such systems, robust bio-signal processing and model-based control 
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PLP treatment based on Myoelectric Pattern Recognition (MPR) and Augmented Reality (AR).
a) Surface electrodes and marker place on the stump.  
b) Augmented Reality – the virtual arm is controlled by phantom movements decoded using MPR.  
c) Gaming using phantom movements.  
d) Matching target limb postures as a rehabilitation task.

Figure taken from: Ortiz-Catalan M, Sander N, Kristoffersen MB, Håkansson B and Brånemark R 
(2014) Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled  
by myoelectric pattern recognition: a case study of a chronic PLP patient. Front. Neurosci. 8:24.  
doi: 10.3389/fnins.2014.00024
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involving actual sensory motor state (with biosignal feedback) would bring about new modal-
ities and applications, and could be a breakthrough toward adaptive neuroprosthetics. Recent 
advances of Brain Computer Interfaces (BCI) now enable patients to transmit their intention 
of movement. However, the functionality and controllability of motor prosthetics itself can be 
further improved to take advantage of BCI interfaces.

In this Research Topic we welcome contribution of original research articles, computational 
and experimental studies, review articles, and methodological advances related to biosignal 
processing that may enhance the functionality of sensory motor neuroprosthetics. The scope 
of this topic includes, but is not limited to, studies aimed at enhancing:

1)  computational biosignal processing in EMG (Electromyography), EEG (Electroencephalo-
graphy), and other modalities of biofeedback information;

2) the computational method in modeling and control of sensory motor neuroprosthetics;
3)  the systematic functionality aiming to provide solutions for specific pathological movement 

disorders;
4)  human interfaces such as BCI - but in the case of BCI study, manuscripts should be exper-

imental studies which are applied to sensory/motor neuroprosthetics in patients with motor 
disabilities. 

Citation: Hayashibe, M., Guiraud, D., Pons, J. L., Farina, D., eds. (2016). Biosignal Processing 
and Computational Methods to Enhance Sensory Motor Neuroprosthetics. Lausanne: Frontiers 
Media. doi: 10.3389/978-2-88919-718-7
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neurorehabilitation

Neuroprosthetics is an interdisciplinary field of study that comprises neuroscience, computer
science, physiology, and biomedical engineering. Each of these areas contributes to finally enhance
the functionality of neural prostheses for the substitution or restoration of motor, sensory or
cognitive funtions that might have been damaged as a result of an injury or a disease. For example,
heart pace makers and cochlear implants substitute the functions performed by the heart and
the ear by emulating biosignals with artificial pulses. These approaches require reliable bio-signal
processing and computational methods to provide functional augmentation of damaged senses and
actions.

This Research Topic aims at bringing together recent advances in sensory motor
neuroprosthetics. This issue includes research articles in all relevant areas of neuroprosthetics: (1)
biosignal processing, especially of Electromyography (EMG) and Electroencephalography (EEG)
signals, and other modalities of biofeedback information, (2) computational methods for modeling
parts of the sensorimotor system, (3) control strategies for delivering the optimal therapy, (4)
therapeutic systems aiming at providing solutions for specific pathological motor disorders, (5)
man-machine interfaces, such as a brain-computer interface (BCI), as an interaction modality
between the patient and the neuroprostheses.

One challenging issue in motor prosthetics is the variability in the clinical presentation
of patients, who show a variety of neurological disorders and physiological conditions. In
order to improve neuroprosthetic performance beyond the current limited use, reliable bio-
signal processing for extracting the intended neural information is needed (Farina et al., 2014).
This information extraction stage can also be based on a modeling approach. Personalized
neuroprosthetics with bio-signal feedback (Hayashibe et al., 2011; Borton et al., 2013; Li et al., 2014)
could be a break-through toward intelligent neuroprosthetics. Combining different engineering
techniques, such as in a hybrid approach (Del-Ama et al., 2014), is essential to expand the range of
technological applications for wider patient populations. Recent advances of BCI are also relevant
in this field to enable patients to transmit their intention of movement and its usage both for
functional and rehabilitative purposes.

This Research Topic comprises original research activities in different levels of maturity ranging
from hypothesis and poof-of-concept (Dutta et al., 2014; Grahn et al., 2014b) to systems already
tested with some patients. It also contains a variety of approaches from computational method to
experimental studies. Following the recent intensive developments of advanced BCI systems (Leeb
et al., 2015; Muller-Putz et al., 2015), many contributions in this Research Topic are provided in the
field of BCI, both with the aim of functional replacement and for neurorehabilitation. We overview
those contributions for each category.
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1. SIGNAL PROCESSING OF EMG AND

MECHANICAL SENSORS

Cervical spinal cord injury (SCI) paralyzes muscles of the
hand and arm, making it difficult to perform activities of daily
living. Any reaching system requires a user interface to decode
parameters of an intended reach. Corbett et al. (2014) present
the benefits of combining different signal sources to control the
reach in people with a range of impairments. A multimodal-
decoding algorithm was developed while shoulder EMGs and
gaze information were utilized for effective reaching task with
assistive robot control, which provides guiding mobilization of
the limb.

Powered prostheses are often controlled using EMG signals,
which may introduce high levels of uncertainty even for simple
tasks. According to Bayesian theories, higher uncertainty should
influence how the brain adapts the motor commands in response
to the perceived errors. Johnson et al. (2014) provide a simplified
comparison framework of prosthesis and able-bodied control by
studying adaptation with three control interfaces: joint angle,
joint torque, and EMG. Increased errors and decreased visual
uncertainty led to faster adaptation. This result suggests that
Bayesian models are useful for describing prosthesis control and
the man-machine interaction problem.

Lambrecht et al. (2014) present the first steps toward a more
user-friendly and context-aware neuroprosthesis for tremor
suppression and real-time monitoring. This methodology will
enable the monitoring of tremor with context awareness by
facilitating the automatic identification of the relative orientation
of the sensor location.

2. COMPUTATIONAL METHODS FOR

MODELING TARGETED SENSORI MOTOR

SYSTEM AND CONTROL OF

NEUROPROSTHETICS

This section overviews articles that are oriented toward new types
of modeling and control for sensory motor neuroprosthetics.

An equilibrium-point control of human elbow-joint
movement is proposed in Matsui et al. (2014) by using
multichannel functional electrical stimulation. In this study,
a computational electrical stimulation method that stimulates
units of agonist-antagonist muscle pairs is developed. Muscle
co-contraction level along with the total force was controlled for
elbow joints with FES. In Klauer et al. (2014), a feedback control
system is proposed for Neuro-Muscular Electrical Stimulation
(NMES) to enable reaching in people with no residual voluntary
control of the arm and shoulder due to high level SCI. NMES
is applied to the deltoids and the biceps muscles and integrated
with a three degrees of freedom (DoFs) passive exoskeleton,
which partially compensates gravitational forces.

As for sensory modeling, Williams and Constandinou (2014)
aimed at combining efficient implementations of biomechanical
and proprioceptor models in order to generate signals that mimic
humanmuscular proprioceptive patterns for future experimental
work in prosthesis feedback. A neuro-musculoskeletal model of
the upper limb with seven DoFs and 17 muscles is presented

and generates real time estimates of muscle spindle and Golgi
Tendon Organ neural firing patterns. The paper (Alnajjar et al.,
2015) addresses the concept of sensory synergies. In contrast to
muscle synergies, it hypothesizes that sensory synergies play an
essential role in integrating the overall environmental inputs to
provide low-dimensional information to the CNS. To examine
the hypothesis, posture control experiments were conducted
involving lateral disturbance on healthy participants.

Decoding the motor intent from recorded neural signals is
essential for the development of neuroprostheses. To facilitate
online decoding, Abdelghani et al. (2014) describe a software
platform to simulate neural motor signals recorded with
peripheral nerve electrodes, such as longitudinal intrafascicular
electrodes (LIFEs). The simulator uses stored motor intent
signals to drive a pool of simulated motoneurons with
various spike shapes, recruitment characteristics, and firing
frequencies.

A review article of Grahn et al. (2014a) summarizes
neuroprosthetic technology for improving functional restoration
following SCI and describes BCIs suitable for control of
neuroprosthetic systems with multiple degrees of freedom.
Additionally, stimulation paradigms that can improve synergy
with higher planning centers and improve fatigue-resistant
activation of paralyzed muscles are discussed.

3. THERAPEUTIC SYSTEMS TARGETED TO

SPECIFIC PATHOLOGICAL MOTOR

DISORDERS

In this section, we overview the clinical applications enhanced by
advanced computations.

Ortiz-Catalan et al. (2014) address the treatment of phantom
limb pain (PLP) based on augmented reality and gaming
controlled by myoelectric pattern recognition. The technology
applied is non-invasive and combines the prediction of motion
intent through the decoding of myoelectric signals, with the
inclusion of virtual and augmented reality. As opposed to
conventional mirror therapy, this system allows full range of
motion and direct volitional control of the virtual limb.

Grahn et al. (2014b) demonstrate a neurochemical closed-loop
controller for deep brain stimulation (DBS). This technology
report article summarizes the current understanding of
electrophysiological and electrochemical processing for control
of neuromodulation therapies. Additionally, it describes a
proof-of-principle closed-loop controller that characterizes
DBS-evoked dopamine changes to adjust stimulation parameters
in a rodent model of DBS.

Dutta et al. (2014) summarize post-stroke balance
rehabilitation under multi-level electrotherapy. This hypothesis
article presents a multi-level electrotherapy paradigm toward
motor rehabilitation that postulates that while the brain acts
as a controller to drive NMES, the state of the brain can be
altered toward improvement of visuomotor task performance
with non-invasive brain stimulation (NIBS). This leads to a
multi-level electrotherapy paradigm where a virtual reality-based
adaptive response technology is proposed for post-stroke balance
rehabilitation.
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4. BCI APPLIED FOR

NEUROPROSTHETICS ENHANCEMENT

Here, we overview four articles related to motor intention
extraction through brain signals for reaching and sit-standing by
different approaches toward BCI-driven neuroprosthetics.

Choi (2013) presents the reconstruction of the joint
angles of the shoulder and elbow from non-invasive
electroencephalographic signals. The cortical activities were
estimated from 64 channels electroencephalography (EEG)
signals using the Hierarchical Bayesian estimation while
continuous arm reaching movements. From the estimated
cortical activities, a sparse linear regression method was used to
reconstruct the electromyography (EMG) signals of nine arm
muscles. Then, a modular artificial neural network was used to
estimate four joint angles from the estimated EMG signals.

Morishita et al. (2014) address BMI to control a prosthetic
arm with monkey’s electrocorticography (ECoG) during periodic
movements. This study demonstrated an improvement of the
response time for detecting the motor intention from the cortical
signal. It focused on the generation of a trigger event by decoding
muscle activity in order to predict integrated electromyograms
(iEMGs) from the ECoGs.

In Lew et al. (2014), single trial prediction of self-paced
reaching directions from EEG signals is demonstrated. The
feasibility of predicting movement directions in self-paced
upper limb center-out reaching tasks in single trials is studied.
Spontaneous movements executed without an external cue, are
natural motor behavior in humans. Thus, BCI for self-paced
motions is important. It reports results of non-invasive EEG
recorded from mild stroke patients and healthy participants.

Bulea et al. (2014) discuss sitting and standing intention
decoded from scalp EEG recorded prior to movement execution.
Low frequency signals recorded from non-invasive EEG, in
particular movement-related cortical potentials (MRPs), are
associated with preparation and execution of the movement.
The paper investigated the ability to decode movement
intent from the delta-band (0.1–4Hz) of the EEG signal
recorded immediately before the movement execution in
healthy volunteers. This study demonstrates that delta-band
EEG recorded immediately before the movement carries
discriminative information regarding movement type.

The detection of movement-related components is useful in
brain-machine interfaces. A common approach is to classify the
brain activity into a number of templates or states. However,

complex arm movements such as reaching and grasping are
prone to cross-trial variability due to the way movements are
performed. The paper by Talakoub et al. (2015) presents amethod
of alignment that accounts for the variabilities in the way the
movements are conducted. Arm speed was used to align neural
activity. Four subjects had ECoG electrodes implanted over their
primary motor cortex using the upper limb contralateral to the
site of electrode implantation.

Human learning effect through neuro feedback in BCI are
addressed in two articles in this Research Topic. In Prins et al.
(2014), an adaptive BMI that can handle inaccuracies in the

feedback is described and it is shown that it produces adaptive
reinforcement learning based BMIs in a simulation study. A
critic confidence measure, which indicated how appropriate
the feedback is for updating the decoding parameters of the
user is introduced. The results show that with the new update
formulation, the critic accuracy is no longer a limiting factor for
the overall performance.

Restorative BCI are increasingly used to provide feedback
of neuronal states to normalize pathological brain activity
and achieve behavioral gains. However, patients often show a
large variability, or even inability of BCI control. The paper
by Bauer and Gharabaghi (2015) presents a Bayesian model
of neurofeedback and reinforcement learning for different
threshold selection strategies in a simulation to study the impact
of threshold adaptation of a linear classifier on optimizing
restorative BCIs.

The contributions in this Research Topic describe a large
variety of computational methods with unique approaches. As
we have seen the necessity of different approaches for different
applications, there are significant needs to correspond to patient-
specific problems in neurorehabilitation and neuroprosthetics.
This issue demonstrated a way to manage such complex scientific
questions through biosignal processing and computational
methods. The relevance of the presented contributions is testified
by the fact that this Research Topic is the most viewed among all
special issues in the category of neuroprosthetics under Frontiers
in Neuroscience (61,182 views as of 20 Oct 2015). We would
like to acknowledge all the authors of the 19 papers in this issue.
As neurofeedback loop is essential to improve neuroprosthetic
control, the exchanges and discussions in this interdisciplinary
field will lead the advancement of neuroprosthetics technology
with active information loop in our society. We hope this
Research Topic may take a role of triggering synergistic effect for
further development among researchers in this field.
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Cervical spinal cord injury (SCI) paralyzes muscles of the hand and arm, making it difficult
to perform activities of daily living. Restoring the ability to reach can dramatically improve
quality of life for people with cervical SCI. Any reaching system requires a user interface
to decode parameters of an intended reach, such as trajectory and target. A challenge in
developing such decoders is that often few physiological signals related to the intended
reach remain under voluntary control, especially in patients with high cervical injuries.
Furthermore, the decoding problem changes when the user is controlling the motion of
their limb, as opposed to an external device. The purpose of this study was to investigate
the benefits of combining disparate signal sources to control reach in people with a
range of impairments, and to consider the effect of two feedback approaches. Subjects
with cervical SCI performed robot-assisted reaching, controlling trajectories with either
shoulder electromyograms (EMGs) or EMGs combined with gaze. We then evaluated
how reaching performance was influenced by task-related sensory feedback, testing the
EMG-only decoder in two conditions. The first involved moving the arm with the robot,
providing congruent sensory feedback through their remaining sense of proprioception.
In the second, the subjects moved the robot without the arm attached, as in applications
that control external devices. We found that the multimodal-decoding algorithm worked
well for all subjects, enabling them to perform straight, accurate reaches. The inclusion
of gaze information, used to estimate target location, was especially important for the
most impaired subjects. In the absence of gaze information, congruent sensory feedback
improved performance. These results highlight the importance of proprioceptive feedback,
and suggest that multi-modal decoders are likely to be most beneficial for highly impaired
subjects and in tasks where such feedback is unavailable.

Keywords: eye-tracking, electromyography, spinal cord injury, Kalman filter, proprioceptive feedback

INTRODUCTION
Injuries to the cervical spinal cord can be devastating, result-
ing in lost function in both the upper and lower limbs. Many
people with such injuries consider the restoration of hand and
arm function to be of highest importance for improving their
quality of life (Anderson, 2004; Collinger et al., 2013). People
with high tetraplegia—injuries at the fourth cervical level (C4)
or above—may have no movement in the arm except for pos-
sibly shoulder shrug through upper trapezius activity. For these
individuals, simple every-day tasks such as feeding and grooming
cannot be achieved without assistance. Consequently, methods to
improve reaching and grasping could greatly increase the level of
independence for this population. One of the major difficulties
associated with developing such assistive devices is the limited set
of physiological signals available for use in a control interface.
Furthermore, sensory feedback of the reaching movement may

be vital for control, and is often impaired or absent in these indi-
viduals. As more complex systems are being developed that can
provide control of continuous reach trajectories to people with
high tetraplegia (Crema et al., 2011; Hart et al., 2011; Cooman
and Kirsch, 2012; Schearer et al., 2013), finding appropriate signal
sources and developing intuitive user interfaces is an even greater
challenge.

Many approaches for inferring an intended reach trajectory
rely on neural signals, of which electromyograms (EMGs) are
an attractive option when a non-invasive or minimally invasive
approach is desired (Kilgore et al., 2008). However, when the
set of available muscles is extremely limited or unrelated to the
intended movements, control can be difficult and unintuitive
(Williams and Kirsch, 2008). Brain-machine interfaces (BMIs)
have the potential to provide more natural control (Collinger
et al., 2012; Ethier et al., 2012; Hochberg et al., 2012), although
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most BMIs that have successfully controlled reach involve inva-
sive cortical recordings, a technology that is currently inaccessible
in most clinical situations. Combining information from dis-
parate sources has been proposed as a solution when there are
few signals accessible (Batista et al., 2008; Pfurtscheller et al.,
2010; Leeb et al., 2011; Corbett et al., 2013a; Novak et al.,
2013; Kirchner et al., 2014). As the set of usable signals from
each individual may be different, it is important to be able take
advantage of all the useful channels available. To gain an under-
standing of how the benefits afforded by different combinations
of signal sources are influenced by impairment level, interface
approaches must be tested in users with a variety of needs and
abilities.

The feedback provided to the user is also critical when con-
trolling trajectories. The type of feedback can vary depending on
the function of the interface and the needs of the user. External
robotic arms can enable people to interact with their environ-
ment (Hochberg et al., 2012), typically providing only visual
feedback of the robot during control. Recent research promises
to enhance control by artificially providing additional feedback
through electrical (Dhillon and Horch, 2005; London et al., 2008;
Rossini et al., 2010; Tan et al., 2013) or optogenetic (Gilja et al.,
2011) stimulation. However, a subset of users may be able to
take advantage of at least some natural proprioceptive informa-
tion if their arm is moved with the assistive device. This could
be achieved by mechanically moving the hand and arm with a
robotic exoskeleton (Cavallaro et al., 2006), or using functional
electrical stimulation (FES) to stimulate the motor nerves and re-
animate paralyzed muscle (Hart et al., 1998; Kilgore et al., 2008;
Schearer et al., 2013). Proprioception is critical in normal motor
control (Sainburg et al., 1995), and studies suggest that it can also
enhance BMI performance in unimpaired monkeys (Suminski
et al., 2010) and humans (Ramos-Murguialday et al., 2012). It
is still unclear how assisted reaching in paralyzed individuals is
affected by whether they are controlling movement of their arm
vs. an external device.

The objective of this study was to investigate how the control
of reach trajectories in individuals with cervical SCI was affected
under various decoding conditions, by testing two critical aspects
of the interface. We evaluated the utility of combining disparate
signal sources to enhance trajectory control, and also compared
two different feedback approaches. The participants had a wide
range of impairment levels; some had substantial control of the
proximal arm muscles, while others had little or no ability to
move the arm. We tested their performance using two decoders—
one combining gaze and EMG and another with EMG alone—in
a robot-assisted reaching paradigm that we had previously devel-
oped (Corbett et al., 2013a). We also evaluated how reaching
performance was influenced by task-related sensory feedback by
testing the decoder using EMG alone under two conditions—
comparing remote control of the robot to that when the robot
moved the arm in the task. By evaluating these tasks in people
with a variety of injury characteristics we could examine the ben-
efits of the different assisted reaching approaches with respect
to their level of impairment. Portions of this work were pre-
sented at the 6th International IEEE EMBS Conference on Neural
Engineering (Corbett et al., 2013b).

MATERIALS AND METHODS
To establish the utility of the multimodal decoder, combin-
ing gaze and EMG, we compared its performance to a decoder
that used EMG alone and one combining EMG with perfect
target information. While perfect target information would be
unlikely to be available in a practical setting, this condition was
useful for comparison, serving as a best-case scenario for the
paradigm. These comparisons were performed in subjects with
a range of injury levels, so that the benefits afforded by sen-
sor fusion for different impairment levels could be assessed.
Additionally, to assess the importance of providing the subjects
with congruent sensory feedback of the task we compared the
assisted reaching task to a remote control paradigm with the
EMG-alone decoder. This was performed by a subset of sub-
jects who could activate sufficient muscles to make control with
EMG alone viable. The decoding algorithms have been previ-
ously described in detail (Corbett et al., 2012, 2013a, 2014);
here we outline the intuition behind them before describing the
experiments, which are the main contribution of the present
work.

DECODING ALGORITHMS
We used a Bayesian approach to combining signal sources, tak-
ing into account the uncertainty inherent in the predictions of
the various models. The decoder using EMG alone was a generic
Kalman filter (KF) (Kalman, 1960; Wu et al., 2006). The state
vector that we were trying to estimate consisted of the reach kine-
matics. At each time-step the KF propagated a prior estimate of
the current state from the previous state posterior estimate using
a linear trajectory model that described the probabilistic evo-
lution of the state. This prior estimate was then updated using
that time-step’s observation—features from the corresponding
window of EMG—through a linear observation model, result-
ing in the current posterior state estimate. For the KF, trained
using reaches to a set of targets, the trajectory model biased
the movement toward an “average target,” while movements in
other directions could be generated through the observations (the
subject’s EMG).

We created a directional trajectory model by inserting the
target position into the state vector (Kemere and Meng, 2005;
Mulliken et al., 2008). With perfect knowledge of the target we
called this model the KFT. In this case the trajectory model biased
the movement toward the target, thus requiring less directional
change through the user’s EMG in the observation update. This
inclusion of the target into the trajectory model also allowed for
a more stereotyped model of the reach, where the hand would
speed up when the target was distant and slow down when it was
close (Corbett et al., 2012).

When obtaining target estimates from gaze we had to account
for multiple potential targets, as people may also look at other
locations before initiating a reach. To achieve this we used mix-
ture of KFTs (mKFT), where we initiated an instance of the KFT
for each potential target and weighted them probabilistically. The
weights were proportional to a prior probability for each target
that we obtained from the gaze data, and the likelihood of the
observations (EMG) for each model. Therefore, as the reach pro-
gressed and more EMG information was integrated the decoder
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output converged to the most likely of the possible trajectories.
The signal sources used in each of the algorithms are summarized
in Table 1.

SUBJECTS
Eight subjects with tetraplegia participated in this study. Each
subject provided informed consent to the protocol, which
was approved by Northwestern University’s Institutional Review
Board. Before commencing the experiment, we asked the sub-
ject a few basic questions to ensure safety in the experiment
and to establish the number of years since his/her injury.
We asked the subjects to perform shoulder flexion volun-
tarily, and measured the angle achieved. The subjects were
separated into two groups. Group 1 consisted of the sub-
jects who could perform more than 5◦ of shoulder flexion
in their right arm using the deltoid muscle; subjects who
had little or no voluntary ability to perform this movement
made up Group 2. Shoulder flexion was the degree of free-
dom that best reflected the subjects’ ability to perform the
task (see description in Section Experimental setup). Group
1 included subjects who participated in the decoder compar-
ison experiments (Group 1a) and the remote control experi-
ments (Group 1b). There was substantial overlap between these
groups but they were not identical due to subject availability (see
Table 2). Group 2 only participated in the decoder comparison
experiments.

Table 1 | Decoders tested and the corresponding signal sources.

Algorithm Signal Sources

Kalman filter (KF) EMG

Kalman filter with target (KFT) EMG + target location

Mixture of KFTs (mKFT) EMG + target estimates from gaze

Table 2 | Subject details.

Injury Voluntary Age Years Group Notes

shoulder since

flexion injury

(degrees)

1 C5/C6
incomplete

55 48 32 1a, 1b Possible “lazy
eye”

2 C5/C6
complete

180 47 26 1a, 1b

3 C5 complete 30 41 27 1a, 1b

4 C3/C4
incomplete

40 79 6 1a Unable to obtain
eye-tracking data

5 C4/C5
incomplete

<5 26 2 2

6 C4 complete 0 19 2 2 No deltoid
activity

7 C6/C7
complete

180 34 4 1b

8 C4/C5
dislocation

90 34 2 1b

EXPERIMENTAL SETUP
To generate reaching movements we used a robotic system that
served as an assisted reaching prosthesis. Each subject was seated
in his/her own wheelchair during the experiments. For the experi-
ments in which the subject’s arm was moved through the reaches,
his/her right arm was supported against gravity by an elevating
mobile arm support (JAECO Orthopedic MASEAL, Hot Springs,
AR), while he/she wore a wrist splint that was attached to the han-
dle of a 3 degree-of-freedom robot (HapticMaster; Moog FCS,
the Netherlands). A magnet attachment was designed to release if
excessive forces were applied at the hand. The velocities predicted
by the decoders were used to position the robot handle, enabling
a clear comparison of performance issues related to decoders and
signal sources.

All experiments involved a reaching task, either with
(Assessing the influence of impairment on decoder performance)
or without (Assessing the influence of proprioceptive feedback
on decoding performance) the subject’s arm attached to the
robot. The goal of the task was to move the robot to a tar-
get on a touch-screen monitor (Planar PT19, Beaverton, OR)
in front of the subject (Figure 1A). A spring-loaded stylus was
attached to the robot end-effector, and used to detect contact
with the target. The monitor and HapticMaster positions were
recorded using an Optotrak motion analysis system (Northern
Digital Inc., Canada) so that positions on the monitors could
be transformed into the HapticMaster coordinate system. We
recorded eye movements with an EYETRAC-6 head mounted
eye tracker (Applied Science Laboratories, Bedford, MA), whose
position was also monitored with the Optotrak. The position of
the eye was digitized relative to the eye-tracker before its use,
so that the gaze data could be projected onto the screen and
transformed into the appropriate coordinate systems. All sig-
nals were recorded simultaneously and processed at 60 Hz, so
as to generate a real-time velocity command signal to control
the robot.

Consistent with our previous experiments in able-bodied sub-
jects, we recorded EMGs from the three heads of the deltoid
and the upper trapezius from the subjects who could voluntarily
activate those muscles, and just the upper trapezius from one

FIGURE 1 | Experimental setup. (A) Subject with SCI performing
assisted-reaching task with multimodal decoder; (B) EMGs recorded in the
subjects, based on the muscles that could be voluntarily activated.
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subject who had no voluntary control of the deltoid (Figure 1B).
The EMG signals were amplified and band-pass filtered between
10 and 1000 Hz using a Bortec AMT-8 (Bortec Biomedical Ltd.,
Canada), anti-alias filtered using 5th order Bessel filters with a
cut-off frequency of 500 Hz, and sampled at 2400 Hz. Features
were extracted from a 16.6 ms window of each EMG channel
for use as observations in each of the decoders. The square-root
transformed RMS and number of zero-crossings were selected as
amplitude and frequency related features, respectively.

PROTOCOLS
Assessing the influence of impairment on decoder performance
The goal of the first set of experiments was to establish the utility
of combining gaze with EMG, compared to decoding with EMG
alone, with subjects spanning a range of needs and abilities. For
these experiments the robot moved the subjects’ arms along with
the decoded reach, providing similar feedback to an exoskeleton,
or possibly an FES interface. Before the decoders could be tested,
training data was collected to train the models. Each experiment
began with a set of training reaches in which EMG and kinematic
data were collected. This involved the robot moving automatically
along a straight-line trajectory to a set of nine targets spanning the
monitor area. Each target appeared four times in random order.
The subject was instructed to gently assist the reach as their hand
was moved along the trajectory. EMGs were recorded (Figure 2)
to quantify subject involvement and to train the decoding algo-
rithms. We chose this method because we wanted control to be
intuitive; it was important that the recorded EMGs corresponded
as closely as possible to those a subject would naturally gener-
ate when attempting to make smooth reaching movements in
our experimental setup. These same data were used to train all
three decoders listed in Table 1, as we have described previously
(Corbett et al., 2013a).

We presented subjects with a reaching task to evaluate decod-
ing quality. For each trial a target randomly appeared on the
monitor, 1 s before an auditory go cue. The goal was to place the
stylus as close to the center of the target as possible. After the go
cue, the reach was initiated when the square-root-transformed

FIGURE 2 | Example training reach and EMG. Automatically generated
robot kinematics and EMG signals produced by one subject from Group 1
as they assisted the reach during the training protocol.

RMS value of any EMG channel increased above twice its level
prior to the go cue. For the subject with no voluntary deltoid
activation, the contralateral upper trapezius was also recorded
to allow her to initiate reaches where she would not normally
activate the ipsilateral muscle, by shrugging her left shoulder.
However, this muscle was not included as a part of the decoder as
it was not involved in the natural reach. Thus, while the subjects
were unable to control the robot before the go cue, the reaches
were self-paced in the sense that they could initiate them at their
leisure after the cue. After initiation, the decoded velocity was
used to control the robot’s reach.

Upon initiation of a reach, the decoder was provided with the
initial state vector including the robot’s current position. When
testing the KFT and mKFT, target estimates were also initialized
in the state vector. In the case of the KFT, the actual location of the
target center was provided. For the mKFT, the gaze data from the
half-second period prior to initiation were used to estimate three
potential targets with which to initialize a corresponding mix-
ture component. The three-dimensional location of the eye gaze
was calculated by projecting its direction onto the monitors. The
first, middle and last samples were selected, and all other sam-
ples were assigned to a group according to which of the three was
closest. The means of these three groups were used to initialize
three KFTs in the mixture model and their priors were assigned
proportionally to the number of samples in them. If the sub-
ject looked at multiple positions prior to reaching, including the
target, the correct target would be accounted for in one of the
mixture components.

Each target consisted of a green circle of 1 cm radius sur-
rounded by five rings of various colors 1 cm thick. When the
target was attained its color changed to that of the location cor-
responding to where the stylus touched. For a missed target, or if
the reach timed out (after 10 s), the target turned red. For attain-
ing the green circle the subject received a score of 10 points and
for outer rings they received 9, 8, 7, 6, and 5 points. Feedback of
the cumulative total of the most recent 10 reaches was displayed
to increase motivation.

Each subject in Groups 1a and 2 performed an experiment
for the interface with EMG alone (KF) and one for the models
incorporating target information (KFT and mKFT). The order of
these experiments was randomized across subjects. Due to dif-
ficulty obtaining an eye-tracking signal we were unable to test
the mKFT with Subject 4, though he performed the KFT exper-
iment. The KFT, with perfect target information, represented an
idealized benchmark for the performance of a combined target
and EMG decoder. After initial setup, each experiment began
with the training protocol described above. In the KF experi-
ments this was followed by between 10 and 30 practice reaches
and 60 test reaches. For the experiments with target information,
60 KFT reaches were performed first. This was followed by eye-
tracker calibration, up to 10 practice mKFT reaches and finally 60
test reaches with the mKFT. Eye-tracker calibration was checked
periodically throughout the experiment and if found to be off,
generally due to the headset shifting on the subject’s head, we
recalibrated the system and repeated any affected trials.

To put the decoder performance in context with the subjects’
voluntary reaching abilities, we also asked them to attempt to
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reach each of the training targets while the HapticMaster was
in “free mode,” supporting its own weight against gravity. This
would differ from their unassisted reach abilities, as their arms
were supported against gravity with the mobile arm support.

Assessing the influence of proprioceptive feedback on decoding
performance
Many of the subjects could voluntarily activate sufficient EMG
at the shoulder to make control with EMG alone viable. It was
unclear whether this would be possible in a different decoding
scenario such as an external robotic arm or computer-based inter-
face, where their arm was not being moved in congruence with
the decoder. The robot-assisted reaching task was providing these
subjects with at least some natural proprioceptive information,
and we wanted to establish how important a role this played in
our results. Therefore, for the subjects who had more voluntary
ability, we compared performance of the KF (with EMG alone)
for both remote control of the robot and attached control as
described in the previous experiment.

The protocol for attached control was exactly as described
above. For remote control, the models were trained by the sub-
jects attempting to mimic the movement of the robot as naturally
as possible in the training reaches, without any physical attach-
ment to the robot. In testing, subjects were free to move their arm
as they wished while attempting to direct the robot to the tar-
gets. At least 20 practice reaches were performed before the testing
reaches. This protocol meant that the conditions were compared
using models that were trained on different data, a factor that we
had previously found to have a small effect on performance in
able-bodied subjects (Corbett et al., 2013b). However, we consid-
ered it more important to have consistency between training and
testing for these subjects as, when unassisted, it may have been
impossible for them to replicate the movements generated while
attached to the robot in training. The order of the two condi-
tions was randomized across subjects. To see whether any effect
of removing feedback would hold when target information was
included, we also tested the KFT remotely for two of the subjects.

ANALYSIS
We used two metrics to quantify performance in both experi-
ments. The first was a measure of how accurately the target was
achieved. This was quantified as the shortest distance between the
stylus tip and the target center during the reach. As the target
center had a 1 cm radius, any distance less than 1 cm would corre-
spond to perfect task performance. The second measure was one
of reach straightness, used to measure the efficiency of the gen-
erated movement. This was quantified as the path efficiency, the
ratio of the cumulative distance of the reach to the straight-line
distance. To put the results in context with the individual subjects’
abilities, these measures were compared to their voluntary perfor-
mance when the weight of the arm was supported by the passive
mobile arm support. We then used the grouping system described
above for statistical analyses. To compare the performance of the
two decoders, and how this was affected by the subjects’ impair-
ments we used an analysis of variance (ANOVA) to look at the
effect of the interaction of algorithm and group on the perfor-
mance metrics, with subject as a random effect. Tukey tests were

performed for post-hoc comparisons, and all statistical compar-
isons used a significance level of α = 0.05. To evaluate the effect
of the proprioceptive feedback in the second experiment we com-
pared the remote and attached conditions again using an ANOVA
with condition as a fixed effect and subject as a random effect, with
a Tukey post-hoc.

RESULTS
ASSESSING THE INFLUENCE OF IMPAIRMENT ON DECODER
PERFORMANCE
As would naturally be expected, the subjects’ voluntary ability
to reach the targets when assisted by the mobile arm support
depended on their impairment. In fact, some of the less impaired
subjects could reach much of the target area with only this gravity
assistance. However, the irregular shape of the trajectories, illus-
trated by one of the example reaches with typical path efficiencies
(Figure 3), suggested that they did so with substantial difficulty,
correcting for multiple errors over the course of the reach. The
errors at the target measured when the subjects reached vol-
untarily with the mobile arm support increased with subject
impairment level (Figure 4A). Path efficiencies did not follow a
similarly fixed pattern but were clearly lowest for the two most
impaired participants (Figure 4B). While some of the subjects
were clearly unable to reach the targets with gravity support, oth-
ers did better but left room for improvement, particularly in terms
of reach straightness.

The effectiveness of the KF decoder using EMG alone was
also strongly dependent on the voluntary abilities of the subjects.
Subjects from Group 1 could often guide the robot close to the
target with their EMG signals (see example reach, Figure 5A),
while those in Group 2 had greater difficulty (see example reach,
Figure 5C). Subjects 1 and 2, the least impaired subjects, were
in fact less accurate at the target with the KF than in the grav-
ity assistance condition (Figure 4A). However, the decoder clearly
provided improvements in reach straightness for these subjects

FIGURE 3 | Example reach trajectories under the various conditions

with typical path efficiencies. Kalman Filter (KF)—94.2%; mixture of KFTs
(mKFT)—99.7%; Voluntary with mobile arm support providing support
against gravity—67.5%. All reaches are by Subject 3. The monitor is for
illustration purposes and is not to scale.
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FIGURE 4 | Influence of subject impairment on decoder performance. By
subject in order of increasing impairment, along with perfect target
information case (KFT) and volitional reach performance using mobile arm

support: (A) Errors relative to the target, (B) Straightness of the reach. In
groups: (C) Target errors, (D) Straightness. Statistically significant differences
within groups are shown; ∗∗∗p < 0.001.

(Figure 4B). For all other subjects the EMG-alone decoder pro-
vided improvements in both accuracy and straightness relative
to the mobile arm support, and this was most pronounced for
the two most impaired subjects (Figures 4A,B). Nonetheless, the
accuracy and straightness of the reaches by the subjects in Group
2 were dramatically lower than those in Group 1 using the KF
(Figures 4C,D). The EMG control allowed the more impaired
subjects to reach toward the target-display monitor, but their
accuracy was very poor.

The multimodal decoders were much more consistent across
individuals and enabled accurate reaching for all subjects.
Unsurprisingly, the distance to the target center was lowest for
all subjects when perfect target information was available—there
was very little variability for this condition. The KFT results were
within the margin of error for perfect system performance, as the
task required an accuracy of 1 cm for a perfect score (Figure 4).
When gaze and EMG were combined (mKFT) the performance
deteriorated slightly from that with perfect target information
(p = 0.003), although this difference was not statistically signif-
icant when the subjects were separated into groups (p = 0.09
in Group 1, p = 0.39 in Group 2). For this decoder subjects
took time to initiate the reach when they were ready—2.3 ±0.7 s
(mean ± SD) after the go cue—as the target estimates from the
gaze position in the 0.5 s before reach initiation allowed them to
make effective reaches straight toward the target (Figures 5B,D).
Subject 1 was the least accurate of the group with the mKFT and
was again less accurate than his performance with gravity sup-
port; he had some difficulty with the eye-tracking and thought
he may have had a “lazy eye” (Figure 4A). All other subjects were
consistently accurate with the mKFT. Both subject groups showed
highly significant improvements between the mKFT and KF (p <

0.0001), and the difference between the two groups was minimal

when the gaze was incorporated (p > 0.99). The incorporation of
gaze allowed excellent target acquisition for all subjects, as would
be expected with sufficiently accurate target estimates.

Reaches were also straighter for the models incorporating tar-
get information than for the one with EMG alone (Figure 4D).
In both groups, the mKFT and KFT both averaged above 99%
path efficiencies, and were not statistically different for either
group (both p > 0.09). The KF, on the other hand, had average
path efficiencies of approximately 95% for Group 1 and 92% for
Group 2, which were significantly lower than the mKFT (both
p < 0.001). This indicated that, while dramatically better than the
gravity-supported reaches, the KF produced more errors in the
trajectories that the users needed to correct for. Incorporating the
target into the trajectory model generated more efficient, straight
reaches.

Finally, to gain some insight into the subjects’ EMG activa-
tion during mKFT control, we performed offline decoding using
the KF algorithm, trained from the standard training data, of the
reaches performed during mKFT control (KFT for Subject 4).
We evaluated the accuracy of the reaches by calculating the R2

between the decoded reach and an “ideal” straight-line reach to
the target, using the trajectory profile of the training reaches. In
the subjects in Group 2 for whom EMG-alone control was clearly
ineffective, there was no significant difference between the accu-
racy of the KF decoded offline and the online KF control (both
R2 = 0.6, p > 0.9). The KF decoded offline was more accurate
for the subjects in Group 1 (R2 = 0.7, p = 0.006), although sub-
stantially lower than online KF control in Group 1 (R2 = 0.9,
p < 0.001). It is not surprising that without online feedback from
the KF decoder the accuracy of the decoded reaches would be
reduced. This result demonstrates that the users interact with each
decoder differently, and can exploit the benefits of added target
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FIGURE 5 | Robot-assisted reach trajectories and the signal sources used

to generate them. Kinematics and square-root transformed
root-mean-squared value (RMS) of EMG for an example reach. Subject 3 with

(A) KF using EMG alone and (B) the mKFT, combining the gaze from the 0.5 s
period before the reach initiation with EMG control; and Subject 6 with (C) KF
using only the upper trapezius EMG and (D) mKFT.

information during mKFT control. Nonetheless, the higher accu-
racy of the offline KF decoding in Group 1 suggests that for these
subjects the EMG information can contribute to the decoding in
mKFT control.

ASSESSING THE INFLUENCE OF PROPRIOCEPTIVE FEEDBACK ON
DECODING PERFORMANCE
The above results show that while there was clearly an accuracy
benefit to using the mKFT, for subjects in Group 1 reasonable
control could be achieved using their EMG alone. We wanted to
test the dependence of that performance on the natural propri-
oceptive feedback that was provided to the subjects by moving
their arms. To do this, we compared the robot-assisted reach-
ing task with the KF decoder to a remote control task where
the subject had no mechanical link to the robot. We found that
the remote performance was significantly less accurate than the
attached condition, with the errors increasing from 3 to 5.5 cm
(p < 0.001, Figure 6A). Path efficiencies were also reduced from
91% to an average of 81% (p < 0.001, Figure 6B). While it is pos-
sible remote control of the robot may have improved with further
practice, this is unlikely as we did not see improvements over the
course of the experiments, suggesting that the subjects were not
learning further. Clearly, congruent proprioceptive feedback was
a critical component of the interface for the subjects in Group 1,
and reaches were less accurate and less straight without it.

To establish whether the importance of proprioceptive feed-
back extended to the decoder with target information, two sub-
jects additionally performed remote control with the KFT. In this
case errors were less than 1 cm, similar to the attached case above.

FIGURE 6 | Quantification of the influence of task related

proprioceptive feedback. (A) Reach accuracy; (B) Reach straightness.
Statistically significant differences are shown; ∗∗∗p < 0.001.

The proprioceptive feedback was apparently critical only in the
absence of target information, when the shoulder EMG alone
guided the trajectory. With target information, accurate reaching
was possible regardless of whether the subject’s own arm or an
external effector was being controlled.

DISCUSSION
Each person with an SCI will have a unique set of challenges asso-
ciated with his/her injury, and identifying the best approach to
assist with reaching involves careful consideration of a number of
factors. In this study we examined the benefits of a multimodal
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approach to decoding, considering the impact of the various
injury characteristics in the group of subjects. We also examined
the effect of the proprioceptive feedback that subjects experienced
when interacting with the reaching interface. Combining gaze
and EMG enabled effective reaching for our participants, even for
those who could volitionally activate an extremely limited set of
muscles. With proprioceptive feedback of the trajectories, sub-
jects with greater voluntary ability could also perform reaches
with their EMGs alone. However, the reaches were less accurate
and required the users to correct for errors over the course of
the trajectories. When we removed the congruent proprioceptive
information, subjects were unable to accurately control trajecto-
ries without additional information about the reach target. These
results highlight the importance of providing proprioceptive feed-
back to neuroprothesis users where possible. Furthermore, they
demonstrate the promise of incorporating target information,
such as that from gaze, in the absence of sufficient feedback or
trajectory-related physiological signals.

MULTIMODAL DECODING AND THE INFLUENCE OF SUBJECT
IMPAIRMENT
Enhancing the trajectory model with information about the reach
target was extremely useful for generating accurate trajectories in
our robot-assisted reaching task. Reassuringly, performance was
in agreement with previous tests in able-bodied subjects using
similar sets of EMGs (Corbett et al., 2013a). The incorporation
of the gaze data consistently enabled more accurate reaching than
control with EMG alone. Furthermore, the approach produced
significant improvements in path efficiencies, indicating that the
reaching required less effort from the user. In particular, gains in
accuracy from incorporating gaze (mKFT) were dramatic for the
most impaired participants in Group 2. While there was a large
difference in performance between the groups with EMG alone,
they were equally accurate when the gaze was incorporated.

Subjects adapted well to the multimodal interface, finding it
accurate and easy to use. This was perhaps surprising for Subject
6 in particular who had not moved her arm volitionally in the
2 years since her injury. When asked how she felt about using
the interface, she said it felt like she was naturally moving her
arm. This is in contrast to performance with EMG alone, where
both subjects from Group 2 had little to no control. They were
enthusiastic about the mKFT, to which it was doubtlessly more
intuitive and easier for them to adapt than the KF. The impres-
sions from the less impaired subjects in Group 1 were more
varied. As mentioned in the results, Subject 1 had some difficulty
with the eye-tracking interface, which he attributed to a “lazy eye.”
While the remaining subjects mostly found the mKFT easy to use,
a few also enjoyed the challenge of the EMG-only decoder. For
those who were particularly effective with the KF, the greater con-
trol over the trajectory was more interesting to them despite the
fact that overall it was less accurate than the mKFT. The reduced
effort that the multimodal decoder required of the user was also
reflected in the reduced offline accuracy of the KF decoder on
the mKFT reaches. This information could be useful for future
attempts to find a balance between accuracy and allowing the user
to use his/her capabilities as much as possible, allowing operation
at the “challenge point” (Guadagnoli and Lee, 2004). Hence, even

though most subjects in this study preferred the mKFT system,
this feedback from the subjects emphasizes the importance of
considering factors other than accuracy when determining the
most appropriate system for a specific individual.

Assistive devices must be targeted to an individual’s injury and,
especially with support against gravity, some of the subjects in
Group 1 could achieve remarkable performance even without a
neuroprosthesis. A device controlling the entire movement of the
arm as we have tested here would likely restrict their natural abil-
ities and be unnecessary for these subjects. Nonetheless, many
of the subjects would benefit from some assistance with reach,
particularly with more distal movements. An assistive device
working in seamless integration with their voluntary movements
could potentially be enhanced with gaze information, possi-
bly providing greatly improved ease of control. While the eye
tracking system used in this study was for proof of concept
and was not portable, there are more lightweight systems avail-
able at low cost that will be suitable for chronic use outside of
the laboratory (Abbott and Faisal, 2012), and will require the
development of robust calibration protocols. This multimodal
approach could be useful in any situation involving selection
between a small number of action candidates, and could also be
adapted to a number of different signal sources. Cortical record-
ings have been used to decode both trajectory (Kim et al., 2008)
and target information (Hatsopoulos et al., 2004), as have cor-
tical surface potentials (Schalk et al., 2007; Pistohl et al., 2008;
Flint et al., 2012) and non-invasive electroencephalogram and
magnetoencephalogram-based systems (Hammon et al., 2008;
Waldert et al., 2008). Furthermore, context about reach objectives
could be found from scanning the environment and identifying
potential targets. As it stands however, the developed interface
is far more likely to be useful to people with high tetraplegia—
injuries at C4 or above.

THE INFLUENCE OF PROPRIOCEPTIVE FEEDBACK
For those less impaired subjects who had reasonable control with
their EMG alone we found that the process of moving the arm
in congruence with the decoder output was critical to its success,
as removing this proprioceptive information resulted in a sub-
stantial drop in performance. During unimpaired motor control,
people form a sense of their arm position in space through a com-
bination of both visual and proprioceptive cues (Graziano, 1999).
Both of these components play an important role in enabling peo-
ple to reach toward targets in their workspace. However, with
many assistive technologies users must rely on visual feedback
alone. This is unfortunately unavoidable in many cases, as the
most impaired individuals may lose all sense of proprioception.
This work therefore highlights the importance of current efforts
to restore proprioceptive information through artificial stimula-
tion (London et al., 2008; Gilja et al., 2011; Berg et al., 2013),
while emphasizing that it could be extremely effective where pos-
sible to provide neuroprosthesis users with natural proprioceptive
information about the state of their device.

Some recent work has demonstrated that adding propriocep-
tive feedback is useful during BMI tasks. BMIs developed for
stroke rehabilitation have greater therapeutic impact when the
limb is passively moved by a prosthetic device (Birbaumer et al.,
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2008; Buch et al., 2008). Additionally, Ramos et al. found that
providing proprioceptive feedback of hand opening and closing
with an exoskeleton improved BMI performance in able-bodied
subjects (Ramos-Murguialday et al., 2012). Similarly, in a closed-
loop BMI based on intracortical recordings from non-human
primates, Suminski et al. found that passively moving the arm
improved performance of a 2-dimensional cursor control task
(Suminski et al., 2010). Furthermore, Gaunt et al. tested provid-
ing proprioceptive feedback to a BMI user with complete paralysis
but fully intact sensation. They found that in the absence of
vision, moving her arm in congruence with a prosthetic arm
improved control (Gaunt et al., 2013). While cortical recordings
were not involved in the current study, these findings together
highlight the parallels between general neuroprosthesis use, BMIs,
and normal motor control.

In a decoding setting where a BMI or other neural interface
is used to control an external device, the user must learn the
new mapping or coordinate transformation that the decoder per-
forms. It is critical that users are provided with effective feedback
of these transformations, as trajectories are planned to be straight
in visually perceived space (Flanagan and Rao, 1995). Therefore,
if the goal of the BMI is to control a cursor on a screen, as in
the studies mentioned above, the planning process involved may
be different to that of a real reach. Providing proprioceptive cues
may facilitate this planning process. As only the robot was being
controlled in our paradigm, through EMG signals that are actively
involved in the natural reach, we directly affected the control sig-
nals that the subjects could produce by moving their arms. This
process may have provided them with greater awareness of the
robotic system and facilitated more accurate and natural control,
despite the fact that their sense of proprioception was impaired.

CONCLUSIONS
With the amount of available signal sources and sensory informa-
tion varying widely between potential users of neuroprostheses,
the choice of assistive device and decoding approach must be con-
sidered separately for each individual’s specific needs. Moving the
arm through reaching movements clearly enables some users to
get great benefit from proprioceptive information, and should
be seriously considered for those who can take advantage of it.
Unfortunately, this approach would be ineffective for people who
have lost their sense of proprioception completely. Often, these
same individuals have few signals they can volitionally activate
that are related to a desired reach trajectory, making neuro-
prosthesis control a great challenge. A Bayesian approach taking
account of the reach goal clearly has many advantages in improv-
ing reach accuracy, regardless of the feedback experienced by
the user. Especially when the set of neural command signals is
small, or the lack of proprioceptive feedback makes trajectory
control difficult, gaze or other systems for identifying potential
target locations could provide a significant improvement to a
neuroprosthetic interface.
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Powered prostheses are controlled using electromyographic (EMG) signals, which may
introduce high levels of uncertainty even for simple tasks. According to Bayesian theories,
higher uncertainty should influence how the brain adapts motor commands in response to
perceived errors. Such adaptation may critically influence how patients interact with their
prosthetic devices; however, we do not yet understand adaptation behavior with EMG
control. Models of adaptation can offer insights on movement planning and feedback
correction, but we first need to establish their validity for EMG control interfaces. Here
we created a simplified comparison of prosthesis and able-bodied control by studying
adaptation with three control interfaces: joint angle, joint torque, and EMG. Subjects
used each of the control interfaces to perform a target-directed task with random visual
perturbations. We investigated how control interface and visual uncertainty affected
trial-by-trial adaptation. As predicted by Bayesian models, increased errors and decreased
visual uncertainty led to faster adaptation. The control interface had no significant effect
beyond influencing error sizes. This result suggests that Bayesian models are useful
for describing prosthesis control and could facilitate further investigation to characterize
the uncertainty faced by prosthesis users. A better understanding of factors affecting
movement uncertainty will guide sensory feedback strategies for powered prostheses
and clarify what feedback information best improves control.

Keywords: prosthesis control, EMG, motor adaptation, uncertainty, sensory feedback

INTRODUCTION
Powered upper limb prostheses offer the possibility of restoring
abilities lost due to amputation; however, lack of kinesthetic feed-
back requires users to devote constant visual attention to every
task. Myoelectric prostheses are controlled using electromyo-
graphic (EMG) signals, which are highly variable byproducts of
muscle contraction (Clancy et al., 2002). Despite recent improve-
ments in prosthesis technology (Weir and Sensinger, 2009) and
EMG signal processing (Parker et al., 2006), prosthesis move-
ments are imprecise, and many amputees abandon their devices
out of frustration (Biddiss and Chau, 2007; Biddiss et al., 2007).
Providing additional sensory feedback is an intuitive solution, but
this has not yet been implemented clinically (Antfolk et al., 2013).
To provide effective sensory feedback, we need to understand
how amputees incorporate feedback information into movement
planning.

The role of feedback in able-bodied movement is described
well by a sensorimotor adaptation framework. This framework
theorizes that the nervous system coordinates movements by pre-
dicting the state of the body and correcting this prediction using
sensory feedback (Wolpert et al., 1995). The state prediction and
feedback processes are each estimated with some uncertainty,
caused by many possible factors (Orbán and Wolpert, 2011).

The relative uncertainties of state prediction and sensory feedback
determine how these two sources of information are combined
(Kording and Wolpert, 2004). For example, if sensory feedback is
very uncertain (due to increased sensory variability, e.g., blurred
vision) the brain will rely more heavily on the feedforward state
prediction. Thus, the impact of sensory feedback depends on the
uncertainty of both the sensory and motor information.

Uncertainty levels are presumably high during prosthesis use,
due to EMG signal variability and limited sensory feedback.
Some studies suggest that adding sensory feedback reduces uncer-
tainty (Wheeler et al., 2010; Saunders and Vijayakumar, 2011),
although others report either no improvement or conflicting
results (Antfolk et al., 2013). In many cases, the reasons for the
ineffectiveness of sensory feedback remain unclear: Are users
perceiving high uncertainty in the feedback? Are users relying
entirely on feedforward state predictions, and ignoring feed-
back? Are users able to generate state predictions at all when
using EMG control? To accurately describe prosthesis control and
implement effective sensory feedback, we must determine the
effects of high motor uncertainty and control signal modality on
adaptation.

Several possible factors may affect adaptation with EMG
control. High motor variability may affect adaptation rate
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(Burge et al., 2008) and estimation of error relevance (Wei and
Kording, 2009). The lack of direct sensory feedback from EMG
activity may increase feedback uncertainty. Central nervous sys-
tem processes [e.g., efference copy formation (Poulet and Hedwig,
2007) and internal modeling of system dynamics (Kawato, 1999)]
are not well-understood for EMG control, which relies on indirect
biological signals. This study considers the effect of high motor
variability by measuring the effect of mean error on adaptation
rate; other factors are considered collectively by measuring the
effect of control interface on adaptation rate.

We investigated trial-by-trial adaptation with two levels of
feedback uncertainty and three different control interfaces: joint
angle, joint torque, and EMG. The control interface influenced
the motor uncertainty of the user and enabled a simplified
comparison of adaptation behavior between prosthesis and able-
bodied control. Trial-by-trial adaptation rate was examined as
a function of feedback uncertainty, control interface, and mean
error.

METHODS
Eight able-bodied subjects (three female, five male) participated
in this experiment, which was approved by the Northwestern
University Institutional Review Board. Subjects were between 23
and 32 years old.

EXPERIMENTAL PROTOCOL
Subjects sat comfortably in front of a computer display screen
(shown in Figure 1C). They used elbow extension movements to
control a virtual cursor along a single degree-of-freedom (DOF)
circular track (radius = 13 cm). The cursor started at the left side
of the circle (180◦) and a target remained stationary at the right
side of the circle (0◦). The start of each trial was indicated by
an audio signal triggered by the experimenter. Subjects had 3 s

FIGURE 1 | Experimental Setup. Subjects used elbow extension to move
a cursor with three different control interfaces: (A) joint angle and (B) joint
torque and EMG. The joint angle control interface used isotonic
contractions; joint torque and EMG control interfaces both used isometric
contractions. The cursor moved along a 1-DOF circular track (C).

to move the cursor from the starting position to the target. The
cursor then returned to the starting position.

Each experiment comprised three phases: familiarization,
training, and testing. The familiarization phase consisted of 10
trials, in which the cursor was displayed as one dot that was
unperturbed and visible throughout the trial. In the training
phase, the cursor was still unperturbed and displayed as one dot,
but visual feedback was taken away 0.5 s into the trial. The cur-
sor reappeared after the trial to give 100 ms of terminal feedback
(Baddeley et al., 2003; similar to Wei and Kording, 2010; and oth-
ers). Training continued until the subject was able to complete 10
trials with an average error of under 20◦ (this usually required 15–
20 trials). In the testing phase, subjects were given only terminal
visual feedback. The testing phase included 4 blocks of 75 trials
each, with approximately 2 min of rest between blocks.

During the testing phase, visual perturbations were applied to
the displayed cursor endpoint. Perturbations were randomly dis-
tributed between−40◦, 0◦, and 40◦. Subjects were encouraged to
hit the target as accurately as possible, and were instructed that
the terminal visual feedback represented the true cursor position.

Two levels of feedback uncertainty were created in the testing
phase by displaying the final cursor position as either one or five
dots (an approach used previously by Tassinari et al., 2006; Wei
and Kording, 2010; and others). When subjects saw the cursor as
one dot, feedback uncertainty was low. When subjects saw five
dots, feedback uncertainty was high. The location of the five dots
was drawn from a Gaussian distribution with the mean as the cur-
sor position and a standard deviation of 40◦. Level of feedback
uncertainty was randomly assigned for each trial.

CONTROL INTERFACES
Subjects completed the experimental protocol once for each of the
control interfaces: joint angle, joint torque, and EMG. Each con-
trol interface was tested on separate days, in randomized order.
The experimental setups for each control interface are shown in
Figure 1.

Joint angle control interface
In the joint angle control interface, the subject extended the right
elbow (isotonic contraction). An electrogoniometer (Biometrics
Ltd) measured the elbow angle of the right arm (Figure 1A). The
end blocks of the goniometer were attached to a hinged two-bar
planar linkage. One link was fixed to a flat surface and strapped to
the subject’s upper arm. The other link was free to rotate, slid eas-
ily across the flat surface, and was strapped to the subject’s lower
arm. A mechanical stop prevented the subject from flexing past
45◦ and served as the starting position for each trial. The subject’s
view of the arm was blocked. The angle output of the goniometer
was filtered with a low-pass cutoff frequency of 50 Hz. Elbow flex-
ion of 45–135◦ was mapped to 0–360◦ of the circular cursor track.

Joint torque and EMG control interfaces
In the torque and EMG control interfaces, the subject gener-
ated isometric extension torque about the elbow (Figure 1B).
Elbow extension torque was measured by a reaction torque sen-
sor (TFF40, Futek Inc.). EMG activity during isometric elbow
extension was measured by a self-adhesive bipolar electrode
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(Bagnoli™, Delsys Inc.) placed over the lateral head of the tri-
ceps brachii. The subject’s right arm was strapped into a modified
elbow brace that restricted motion (Elbow RANGER Motion
Control, ProCare®). The lower arm portion of the brace was fixed
to a horizontal link that coupled to the shaft of the torque sensor.
The upper arm portion of the brace was fixed to the housing of
the torque sensor.

The control signals were calibrated such that equal effort was
required to move the cursor for both torque and EMG control
interfaces. Subjects exerted approximately 4 N-m of extension
torque for 10 s by viewing a screen that indicated their current
torque and the goal torque. Both torque and EMG control signals
were normalized to the mean absolute values recorded during the
10 s calibration. Control signals were high-pass filtered at 0.1 Hz,
rectified, low-pass filtered at 5 Hz, normalized, and mapped to
cursor angle with the following transfer function:

θ (s)

u (s)
= 1250

s2 + 11s
.

Similar dynamics are commonly used as an EMG filter for clinical
prostheses (Sensinger and Weir, 2008). Parameters were chosen to
match the dynamics of a typical prosthetic arm—the LTI Boston
Digital™ elbow (Heckathorne, 2004).

RESULTS
We investigated the influence of control interface on trial-by-
trial adaption to visual perturbations with two levels of feedback
uncertainty. Subjects used three control interfaces—elbow exten-
sion angle, torque, and EMG—to move a cursor toward a station-
ary target. Terminal visual feedback was displayed as one dot (low
feedback uncertainty) or five dots (high feedback uncertainty).
Adaptation rate was assessed as a function of control interface,
feedback uncertainty level, and mean absolute endpoint error.

Every subject demonstrated trial-by-trial adaptation for all
three control interfaces (Figures 2, 4). When a visual perturbation
was applied in the negative direction, the subject typically reacted
to the perceived error by overcorrecting on the next trial. Thus,
the slope of the regression line (solid line in Figure 2) reflects the
degree to which the subject adapted to perturbations, and will
be referred to here as the adaptation rate. Note that although the
slope is always negative, here we present adaptation rates as pos-
itive values (correction opposite to perceived error) to avoid any
confusion.

Higher mean errors significantly increased adaptation rate.
The slope of the overall linear relationship between adaptation
rate and mean error is statistically significant (p < 0.01, Table 1)
and accounts for a large proportion of variance in adaptation
rate (η2

p = 0.21, Table 1). This relationship depends on control
interface and feedback condition (Figure 3A).

The control interface did not affect adaptation; there were no
significant differences in adaptation rate between control inter-
faces (p = 0.7, η2

p = 0.01, Table 1). However, control interface
did influence mean error. When using EMG control, subjects’
mean errors were significantly higher than when using joint angle
or torque control (Figure 5, p < 0.01, One-Way ANOVA with
Tukey post-hoc tests).

FIGURE 2 | Representative data from one subject using the joint angle

control interface with low feedback uncertainty. Individual trials are
plotted as circles. The x-axis shows the perturbation size for a trial with
one-dot terminal feedback, and the y-axis shows the error on the following
trial (error is defined as the unperturbed or true distance between the
cursor and the target). Adaptation rate is defined as the slope of the linear
regression between the unperturbed error of trial (N) and the perturbation
of trial (N-1). The regression is plotted as the bold solid line. If a subject
showed no adaptation, the regression slope would equal zero, illustrated by
the horizontal dotted line. If a subject showed complete adaptation, the
regression slope would equal −1, illustrated by the dashed line. Note that
the adaptation rate is negative; however, in this paper we present
adaptation rates as positive values to avoid confusion.

Table 1 | Results of Three-Way ANOVA on adaptation rate.

Factor Type Significance Effect size

Mean error Continuous p < 0.01 η2
p = 0.22

Control interface Categorical p = 0.89 η2
p = 0.01

Feedback
uncertainty

Categorical p < 0.01 η2
p = 0.32

(Control interface) ×
(Mean error)

Continuous p = 0.78 η2
p = 0.01

Categorical factors test for an offset change in the dependent variable and con-

tinuous factors test for a slope change in the dependent variable. Effect sizes

were assessed using partial eta squared, η2
p (Hentschke and Stüttgen, 2011;

Richardson, 2011).

Feedback uncertainty significantly affected adaptation rate for
all three control interfaces (p < 0.01, η2

p = 0.32, Table 1). Higher
feedback uncertainty decreased the intercept of the adaptation
rate curve (Figure 3A). This means that subjects adapted less after
trials with high feedback uncertainty, i.e., when terminal feedback
was presented as five dots instead of one.

Various factors influenced adaptation rate (Figure 3B).
Because control interface did not have a significant effect on
adaptation rate, linear regressions were calculated and plotted
across all three control interfaces. Mean error affected the slope

www.frontiersin.org September 2014 | Volume 8 | Article 302 | 22

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Johnson et al. Motor adaptation with EMG control

FIGURE 3 | Adaptation rate as a function of mean absolute endpoint

error. (A) Regression between adaptation rate and error with each control
interface, for low feedback uncertainty (solid lines), and high feedback
uncertainty (dashed lines). The range of each regression line runs from the

minimum mean error to the maximum mean error across subjects. (B)

Regression between adaptation rate and error across control interfaces for
low feedback uncertainty (solid line), and high feedback uncertainty (dashed
line). Shaded areas represent 95% confidence intervals of regression.

FIGURE 4 | Adaptation rates during each control modality and

feedback condition. Blue squares and green crosses represent the mean
adaptation rates across subjects for one dot and five dot feedback,
respectively. Bars represent standard errors of the mean.

of the adaptation curve and feedback uncertainty affected the
intercept.

DISCUSSION
In this work we investigated how prosthesis control affects trial-
by-trial adaptation by comparing three different control inter-
faces: joint angle, torque, and EMG. We found that the control
interface did not significantly affect adaptation; instead adapta-
tion rates depended primarily on mean error and on feedback
uncertainty.

Subjects were able to develop and adapt a simple internal
model using EMG control (Figure 4). Previous studies show

FIGURE 5 | Mean error levels for each control interface. Markers
represent the mean error across subjects for each control modality. Bars
represent standard errors of the mean. Mean error refers to the mean
absolute unperturbed endpoint error of all trials in a single experiment. (∗)
indicates significant difference (p < 0.01) as determined by a One-Way
ANOVA with Tukey post-hoc multiple comparisons.

that amputees maintain the central nervous system capabilities
needed for adaptation (Lotze et al., 1999, 2001). Other studies
show that subjects adapt to novel transformations when using
EMG control (Radhakrishnan et al., 2008). Our results support
these findings and motivate future studies of adaptation behav-
ior that requires more complex internal models during powered
prosthesis control.

The relationship between mean error, feedback uncertainty,
and adaptation rate supports the Bayesian framework, if we
assume that mean error influences feedforward uncertainty.
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Bayesian theory predicts that feedforward uncertainty speeds
adaptation and feedback uncertainty slows adaptation (Wei and
Kording, 2010). This interaction of feedforward and feedback
uncertainty is critical for the high uncertainty levels associated
with powered prosthesis control. When viewed in light of this
interaction, results of sensory feedback studies begin to form
cohesive patterns. Sensory feedback reduces errors if feedforward
control is noisy (Saunders and Vijayakumar, 2011) or if vision is
removed (Wheeler et al., 2010), but has no significant effect in
many other cases (Antfolk et al., 2013).

The patterns observed here have important implications for
prosthesis control. When control is more precise, prosthesis
users will rely less on feedback and more on their internal
feedforward predictions. When sensory feedback is provided,
the perceived uncertainty of this feedback determines whether
there is any impact on control. Visual feedback also intro-
duces another factor: if the uncertainty of sensory feedback
is greater than that of visual feedback, it will not notably
improve control over vision alone, since the two senses are
integrated according to their uncertainty (Ernst and Banks,
2002).

The mean error of EMG control was significantly higher
than that of both angle and torque control; however, adapta-
tion rates of EMG control were not significantly different. The
high mean error of EMG control is not surprising because EMG
signals have higher variability than angle and torque signals
(Vodovnik and Rebersek, 1974; Clancy et al., 2002). We offer two
hypotheses for why we did not find a corresponding difference
in adaptation rates. First, there may be a ceiling for adapta-
tion rates. If subjects continually see very large errors, they may
be so unsure of their feedforward signals that instead of adapt-
ing quickly, they do not adapt at all (e.g., Torres-Oviedo and
Bastian, 2012). Second, increasing adaptation rate may not be
optimal behavior in every situation. In this trial-by-trial adapta-
tion paradigm, increasing adaptation means continually making
large corrections in response to large errors. Furthermore, EMG
noise is dependent on signal size; larger control signals (from
stronger contractions) are more variable. Studies show that sub-
jects learn to use smaller control signals in the presence of such
signal-dependent noise (Chhabra and Jacobs, 2006). The noise
characteristics of EMG control signals may have altered optimal
adaptation behavior.

Higher mean error increased adaptation rates, and higher
feedback uncertainty decreased adaptation rates, but con-
trol interface did not have a significant effect (Table 1 and
Figure 3). Subjects behaved similarly when using different con-
trol modalities, including EMG signals. This result is encour-
aging, because it suggests that improved prosthesis control
systems with lower errors may enable skilled, coordinated
movement.

This study introduces the application of adaptation paradigms
to powered prosthesis control; however, many questions remain.
We chose a single DOF task for a simple initial compari-
son of EMG-controlled and able-bodied adaptation, but multi-
DOF tasks might reveal differences and should be investigated.
Similarly, only one muscle, the triceps brachii, was used for
single-site proportional EMG control, whereas many powered

prostheses are controlled by pattern recognition of multiple EMG
signal features (Kuiken et al., 2009) or other multi-site con-
trol schemes (Zecca et al., 2002). Other limitations include the
difficulties of selecting and matching control ranges for per-
formance comparisons. Furthermore, this study included only
able-bodied subjects interacting with a virtual environment.
For amputees using physical prostheses, everyday tasks may
involve higher levels of uncertainty from a greater variety of
sources.

Our results provide a strong motivation for further investiga-
tion of adaptation behavior during powered prosthesis control.
We found that subjects using EMG control adapted to pertur-
bations in a manner consistent with Bayesian predictions. A
better understanding of internal model development and adapta-
tion will guide control and sensory feedback strategies to reduce
uncertainty for prosthesis users.
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Upper limb tremor is the most prevalent movement disorder and, unfortunately, it is not
effectively managed in a large proportion of the patients. Neuroprostheses that stimulate
the sensorimotor pathways are one of the most promising alternatives although they are
still under development. To enrich the interpretation of data recorded during long-term
tremor monitoring and to increase the intelligence of tremor suppression neuroprostheses
we need to be aware of the context. Context awareness is a major challenge for
neuroprostheses and would allow these devices to react more quickly and appropriately to
the changing demands of the user and/or task. Traditionally kinematic features are used to
extract context information, with most recently the use of joint angles as highly potential
features. In this paper we present two algorithms that enable the robust extraction of
joint angle and related features to enable long-term continuous monitoring of tremor with
context awareness. First, we describe a novel relative sensor placement identification
technique based on orientation data. We focus on relative rather than absolute sensor
location, because in many medical applications magnetic and inertial measurement units
(MIMU) are used in a chain stretching over adjacent segments, or are always placed on
a fixed set of locations. Subsequently we demonstrate how tremor parameters can be
extracted from orientation data using an adaptive estimation algorithm. Relative sensor
location was detected with an accuracy of 94.12% for the 4 MIMU configuration, and
100% for the 3 MIMU configurations. Kinematic tracking error values with an average
deviation of 8% demonstrate our ability to estimate tremor from orientation data. The
methods presented in this study constitute an important step toward more user-friendly
and context-aware neuroprostheses for tremor suppression and monitoring.

Keywords: tremor, MEMS, sensor location, context awareness, real-time estimation

INTRODUCTION
Pathological tremor encompasses all types of tremors that impair
motor performance (e.g., essential tremor and parkinsonian
tremor; McAuley and Marsden, 2000), and is the most common
movement disorder (Wenning et al., 2005). Sixty five percent
(Elble and Koller, 1990) of tremor patients report serious dif-
ficulties in the performance of their activities of daily living
(ADL) (McAuley, 2000; E Rocon, 2004; Wenning et al., 2005).
Furthermore, patients suffering from pathological tremor expe-
rience functional disability to the extent that it can lead to social
isolation. In this article we refer to pathological tremor as tremor.

Recently new tremor treatment strategies, based on mechan-
ical loading, have been proposed in addition to the existing
therapies. These novel strategies are deemed necessary given the
low success rate and side effects induced by both drugs and neu-
rosurgery in some types of patients; in 25% of patients tremor is
not managed satisfactorily (Rocon et al., 2007b). Tremor suppres-
sion through mechanical loading is based on the principle that
tremor amplitude can be modified by altering limb impedance
through the application of force or by adding mass (Adelstein,
1981; Prochazka et al., 1992; Rocon et al., 2007a). For example,
Rocon et al. demonstrated for the first time that a wearable robot

that applied force to the upper limb segments could effectively
attenuate upper limb tremors (Rocon et al., 2007a). Other stud-
ies have shown that it is possible to attenuate the tremor using
the human muscle tissue as actuators, through functional electri-
cal stimulation (Javidan et al., 1992; Popović Maneski et al., 2011;
Gallego et al., 2013; Bó et al., 2014). Functional electrical stimu-
lation neuroprostheses avoid a heavier and more obtrusive rigid
structure (Gallego et al., 2011).

To avoid constant actuation and the reduction of tremor with-
out functional improvement, total movement must be separated
into voluntary and tremulous movement (Rocon et al., 2007a).
This is typically performed using adaptive algorithms (see e.g.,
Gallego et al., 2010; Bo et al., 2011). Tremor suppression devices
subsequently intervene only when tremor coincides with vol-
untary movement. Unlike wearable robots, where most sensors
are embedded in the device, neuroprostheses depend on addi-
tional sensors. Both MEMS accelerometers and gyroscopes are
used to monitor tremor (Grimaldi et al., 2008; Elble, 2009). For
example, the neuroprosthesis presented in Gallego et al. (2013)
implemented microelectromechanical (MEMS) gyroscopes for
measuring tremor. Accelerometers constitute the most popular
approach. They however measure linear acceleration, in contrast
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to human motion which is considered as rotations about joints.
Furthermore, there is no accepted model to separate gravity from
voluntary motion in the accelerometer data (Veltink et al., 1996;
Sabatini, 2011). Gyroscopes measure angular velocity and there-
fore provide a more direct representation of human movement.
Gyroscopes are thus more adequate than accelerometers to extract
tremor characteristics from motion data; however they do suffer
from a low-frequency bias resulting in an integration drift. This
bias does not affect the estimation of tremor, but is inherently
present in the voluntary movement component of the signal. The
presence of this integration drift inhibits the accurate extraction
of joint angles from gyroscope data over longer periods of time
(>10 s) (Woodman, 2007).

MEMS limitations are often addressed by sensor fusion. The
most common approach is to correct the gyroscope data with
accelerometers and magnetometers (Foxlin, 2002). Currently the
most popular fusion method is Kalman filtering. In magnetic
and inertial measurement units (MIMU) the accelerometer and
magnetometer data is used to reset the bias of the gyroscopes in
quasi-static periods or after filtering the accelerometer and mag-
netometer data (Roetenberg et al., 2005; Sabatini, 2011). We refer
to Sabatini (2011) for more information on sensor fusion and the
use of MEMS in human motion analysis. MIMUs thus allow us
to obtain orientation data by small, relatively unobtrusive sensors
that can be incorporated into a garment (see e.g., Gallego and
Rocon, 2011).

To enrich the processing of long-term tremor monitoring and
to increase the intelligence of the neuroprosthesis we need to be
aware of the context. Context is defined as “any information that
can be used to characterize the situation of an entity” (Dey, 2001)
and can refer to a situation (being in a meeting, driving a car) or
an activity the patient is performing. Context awareness is a major
challenge for neuroprosthesis and would allow these devices to
react more quickly and appropriately to the changing demands
of the user and/or task. This would also permit to monitor the
evolution of the therapy provided by the neuroprosthesis, and the
evolution of the patient’s condition. Kinematic features are tradi-
tionally used to increase context awareness. A substantial body of
literature supports the use of body-worn sensors for context and
ADL classification (Farringdon et al., 1999; Kunze et al., 2005;
Kunze and Lukowicz, 2007; Korel, 2010). Their availability and
low cost have made accelerometers the most wide spread sen-
sor modality used to extract kinematic features. Recent advances
in MIMUs and their incorporation into the latest generation of
consumer electronics however are rendering robust orientation
data easily available. To accurately obtain joint angles over time,
we need a robust measurement of the orientation or position of
each segment over time. Joint angles and features derived from
joint angles have recently demonstrated their potential (Ofli et al.,
2012) and are gaining in popularity with the advent of more
wearable and affordable motion capture equipment. In this paper
we propose a first step toward increased context awareness for
neuroprostheses for tremor management.

In order to be able to extract joint angles it is vital to know
where the sensors are placed on the body. Automated sensor loca-
tion identification facilitates the donning and doffing of patients
by medical doctors for instrumented analysis or by the patients

themselves, for use of tele-rehabilitation devices or neuropros-
theses at home. Little or no research has been done to identify
sensors location on the body. So far only one study Kunze and
Lukowicz (2007) has looked at sensor placement identification
in tasks other than walking. A limitation is that a 6 min window
was needed to achieve 85% accuracy for 4 sensor locations spread
across the body. The majority of ADLs are shorter in duration,
moreover is it not recommendable for our application that the
patient endures such a lengthy calibration period. Other studies
started from the hypothesis that the patient would be walking,
and predominantly focused on sensor placement on the lower
limbs (Kunze et al., 2005; Kunze and Lukowicz, 2007; Vahdatpour
et al., 2011; Weenk et al., 2013). All previous work has been based
on accelerometer data. Weenk et al. were the first to also introduce
gyroscopes in an attempt to make their classifier more location
invariant. Assuming that the body consists of rigid body seg-
ments angular velocity is invariant to location on the segment.
Weenk et al. furthermore used characteristics of the walking cycle
to achieve orientation invariance. They took advantage of the spe-
cific characteristics of walking and made assumptions related to
the quality of movement execution. The participant was assumed
to be walking in a straight line, the direction of which was subse-
quently used to transform from local to global sensor orientation.
No upper limb task exists that has such stable and repetitive
characteristics as walking. Movement disorders moreover severely
disrupt task execution in such a way that dominant direction is
corrupted by involuntary movement and thus advocate for more
easily applicable localization methods.

Here we present a novel method to automatically identify rela-
tive sensor location on the upper limb. Our approach is based on
an upper limb task, and relies on the observation that movement
and tremor are more pronounced distally. We demonstrate that
features extracted from the movement we selected can be used
to identify relative sensor location based on orientation data. We
focus on relative sensor location rather than pure sensor loca-
tion, because in many medical applications MIMUs are used in
a chain stretching over adjacent segments (e.g., Analysis of kine-
matics, tele-rehabilitation applications), or are always placed on
a fixed set of locations (e.g., gait segmentation). In the partic-
ular application with a neuroprothesis, this algorithm facilitates
the re-instrumentation (placing of the sensors) after cleansing the
fabric. The main contribution of this sensor location algorithm
in monitoring applications is that it ensures correct and accurate
measurements without the need for prior (technical) knowledge.
Further, this identification algorithm can be combined by stan-
dard MIMU-to-body calibration routines to obtain anatomical
joint angles. Subsequently we demonstrate for the first time how
tremor can be extracted from orientation data. Therefore, using
orientation data we are able to identify sensor location, estimate
tremor and derive context information from the same dataset,
thus reducing bandwidth requirements.

MATERIALS AND METHODS
SUBJECTS
A group of 6 patients (3 male, 3 female; 63.2± 11.8 years) affected
by essential tremor was recruited for this study. The patients
were diagnosed by the neurological personnel of the Hospital
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12 de Octubre as definite essential tremor, according to the cri-
teria described in Deuschl et al. (1998). Tremor severity was
30.2± 13.0 (ranging from 10 to 48) according to the Fahn-Tolosa-
Marin rating scale (Fahn et al., 1998). Patients continued taking
their regular medications at the time of the recordings. Informed
consent was obtained from all patients prior to starting data col-
lection. Approval for this study was obtained through the Ethics
committee of the Hospital 12 de Octubre, granting its accordance
to the Declaration of Helsinki.

Protocol
Patients were asked to perform a finger-to-nose test in repeti-
tive manner while seated. The patient was asked to alternatively
touch the nose and knee with the tip of his/her right index finger.
Contact with nose and knee had to be maintained for a few sec-
onds during each repetition; the total trial duration was 30 s. Two
trials of each patient were analyzed, with a single trial consisting
of 3 finger-to-nose cycles. Finger-to-nose is typically used in neu-
rological examinations to activate kinetic tremor (Deuschl et al.,
1998). Essential tremor is predominantly manifested during task
execution. Finger-to-nose furthermore shares the main kinematic
pattern with a multitude of ADLs related to the upper limb such
as drinking, eating, and personal hygiene.

INSTRUMENTATION
We used 4 MIMUs (Tech MCS, Technaid S.L., Madrid, Spain)
comprising tri-axial accelerometers, gyroscopes, and magne-
tometers to measure upper limb kinematics (sampling rate:
100 Hz). They are particularly suited for the estimation of tremor
due to their low weight (40 g) and small size (11× 26× 36 mm).
The sensors were attached with double sided hypo-allergenic tape
to the hand, distal forearm, proximal forearm, and humerus
(Figure 1). Orientation was calculated by the onboard extended

FIGURE 1 | MIMU sensor placement. Axes of the sensors were aligned
with the main joint axes in setup, and placement sites with little soft tissue
were selected. The 4 MIMU configurations consists of sensors 1-2-3-4, the
3 MIMU configurations are 1-2-4 and 1-3-4.

Kalman fusion (EKF) algorithm. Proper alignment between sen-
sor axes and anatomical axes was ensured upon placing the
MIMUs. Fixation on soft tissues was avoided to prevent low pass
filtering of the motion signal and to eliminate the influence of
undesired soft tissue oscillations (Tong and Granat, 1999). In
addition to the configuration shown in Figure 1, based on the
current design of the neuroprosthesis, we also tested a subset
more commonly used in biomechanics with only one sensor per
segment (hand, forearm, and humerus).

DATA ANALYSIS
Sensor location identification
We have chosen features related to angular velocity and thus need
to decompose the orientation data into angular velocity. In a
three-dimensional scenario, as is the case with orientation data,
we cannot obtain angular velocity by direct differentiation of atti-
tude angles. The non-vectorial nature of finite angular displace-
ments nullifies this assumption. We therefore use the Poisson

equation to extract the angular velocity [ .θ] (Zatsiorsky, 1998):

[ .θ] = [
.

R][R]−1

Where [ .R] represents the rate of change of the direction cosines
and [R]−1 corresponds to the body attitude. This equation has
been used to identify the instantaneous helical axis (Veldpaus
et al., 1988).

Based on pilot work on a mechanical mockup and healthy
subjects (Lambrecht and Pons, 2014) we selected 18 candidate
features (Table 1). In an attempt to make our features orientation
invariant, we rectified the sensor data and combined informa-
tion from all axes (|x|,|y|,|z|). Our approach is further based on
the observation that the kinematic chain has an additive effect
regarding movement of individual segments, i.e., movement of
proximal segments is (partly) represented in more distal seg-
ments. To an extent this pattern is also noticeable in tremor, being
more manifest at distal than at proximal segments.

A total of three sensor configurations were adopted, the cur-
rent neuroprosthesis (NP) setup as shown in Figure 1 and two
configurations each with one MIMU per segment. The latter
two differed in the location where the second sensor is placed,
being respectively distal and proximal on the forearm. All features
were used as ranked values to enhance robustness of the classi-
fiers across intensities of tremor (nearly absent to severe). These
classifiers were: random forest, decision tree, and ranking.

Random forest classification generates an ensemble of
“bagged” decision trees with random feature and sample selec-
tion, each such combination is also referred to as a “bag.” In each
bag a decision tree is trained on a bootstrap or subsample of the
initial data set. The benefit of a random forest over decision tree
is that the ensemble of trees can lead to a better result than the
best individual tree. We calculate the accuracy of the prediction of
the random forest as out-of-bag error, reflecting the accuracy in
identifying sensor location for data not used in a specific bag, The
random forest was programmed using the treebagger algorithm
in Matlab, selecting 4 leaves and 100 trees.

The decision tree, one of the most successful techniques
for supervised classification learning, is more intuitive than the
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Table 1 | Selected features for classification of sensor location.

Displacement Velocity Acceleration

1.
∑(

Total distance 5.
∑(

Max
(
|x|, |y|, |z|

) )
9.
∑(

Max (|x|, |y|, |z|) )(
|x|, |y|, |z|

) )

2.
∑(

RMS
(
|x|, |y|, |z|

) )
6.

∑(
RMS

(
|x|, |y|, |z|

) )
10.

∑((
RMS (|x|, |y|, |z|) )

3.

√(
RMS

(
|x|, |y|, |z|,

) )
7.

√(
RMS

(
|x|, |y|, |z|,

) )
11.
√(

RMS (|x|, |y|, |z|, ) )

4.
∑(

var
(
|x|, |y|, |z|

) )
8.

∑(
var

(
|x|, |y|, |z|

) )
12.
∑(

var (|x|, |y|, |z|) )

13.
∑(

eigenvalues of covariance matrix
(
|x|,|y|,|z|

))
, displacement

15.
∑(

eigenvalues of covariance matrix
(
|x|,|y|,|z|

))
, velocity

17.
∑(

eigenvalues of covariance matrix
(|x|, |y|, |z|)), acceleration

14.
∑(

principal component coefficients
)
, displacement

16.
∑(

principal component coefficients
)
, velocity

18.
∑(

principal component coefficients
)
, acceleration

To achieve a classification that is robust across various levels of tremor and sen-

sor orientations each feature is based on the rectified values across all axes of

each MIMU. The root mean square (RMS) and variance (var) values are calcu-

lated over the full trial duration. The values marked in bold are those resulting in

high classification performance.

random forest and computationally less demanding. However,
one has to be careful to not overtrain the tree. Overtraining occurs
when the classifier reaches a maximum accuracy for the train-
ing data used, but performs poorer on new data than a classifier
that was not overfitted to the training sample. To identify and
avoid overtraining we compute both the resubstitution and 10-
fold cross-validation error. The resubstitution error reflects the
accuracy of the classifier on the training data. In the case of deci-
sion trees, resubstitution error will keep decreasing upon adding
nodes to the tree. The cross-validation error represents the mis-
classification occurring on new data, not used for training. We
optimize the combined cost of resubstitution error and cross-
validation error and added a 1 standard deviation window to this
value to ensure avoiding an over-fitted sub-optimum. We used the
classregtree function in Matlab to compute the decision trees.

Ranking can be considered a form of classification, in par-
ticular when applied to chains of sensors. The most important
benefits of ranking are that no training is needed and that the
configuration of sensors can thus be modified without penalty.
Ranking furthermore has a negligible computational cost. The
advantage is that the chain of sensors can be shortened or elon-
gated, and slid up or down without the need for retraining or
changing between classifiers. The only requirement is that the
configuration is known beforehand. The features listed in Table 1
were individually sorted in descending values; the thus obtained
vector was then compared to the reference vector. The reference
for all of the above methods is the fixed order in which the sensors
were placed on the subjects, starting distally (MIMU 1 placed on
the hand, see Figure 1).

Tremor estimation
The orientation data was passed by the same protocol as used by
the classification, after which the angular velocity estimate was
upsampled to 1 kHz. To obtain joint motion we subtracted the
angular velocity data from sensors proximal and distal to the
respective joint (Rocon et al., 2006). We focused our analysis

on the wrist joint because tremor is more present and disabling
further down the kinematic chain (Belda-Lois et al., 2004).

To estimate wrist tremor from the raw movement we used
the algorithm presented in Gallego et al. (2010). This algo-
rithm assumes that tremulous and voluntary movement can
be separated by frequency distribution. The frequency of vol-
untary movement during the execution of ADL is between 0
and 2 Hz (Riviere, 1996), with mean around 1 Hz (Mann et al.,
1989). Tremor frequency range between 3 and 12 Hz (Deuschl
et al., 1998) By estimating the voluntary movement with a g-h
filter (Brookner, 1998), and subtracting it from the raw move-
ment data we obtained an estimate of the tremulous movement.
The parameter of the g-h filter was set by optimization with a
genetic algorithm over all trials, minimizing the total cost over
all patients and trials. Since our intention was to reduce the
tremor component in the signal, we set bounds at 0.8 and 1.
Lower values would likely result in a too high tremor to vol-
untary motion ratio in the signal. Selection of the initial data
was dome randomly with uniform spacing, using a population
size of 100. We further applied a crossover rate of 80% with 2
elitist survivors in mutation, and a roulette method for natural
selection. The fitness function minimized the kinematic track-
ing error (KTE) (see below). The parameters thus obtained for
the gyroscope and orientation data are respectively 0.9952 and
0.9958.

We compared our results to the online and offline methods
based on gyroscope data presented in Gallego et al. (2010). The
offline method is considered a gold standard or ideal reference
method (Rocon et al., 2006), but cannot be implemented in
the control of a neuroprosthetic. The online gyroscope method
is used as a reference to compare our results to a practical
alternative for real-time tremor estimation. The offline method
consists of filtering gyroscope data with a recursive low pass filter
(fc= 2 Hz).

The performance of the orientation based tremor estimation
was assessed through the KTE. KTE consists of two components
that together evaluate the smoothness, response time and execu-
tion time of a tracking algorithm relative to a reference method
(Rocon, 2006).

KTE =
√

ϕ2 |b| + σ 2 |b|

Where ϕ2 |b| represents the mean of the absolute estimation
error

(
b = ∣∣yk − xk+1,k

∣∣), and represents how fast the algorithm is
capable of reacting when velocity changes. The offline gyroscope
estimation, xk+ 1,k, is used as reference in the error calculations.
The second component σ 2 |b| is the variance of the absolute
estimation error and gages the smoothness of the estimated
variable.

RESULTS
SENSOR LOCATION IDENTIFICATION
Table 2 summarizes the results, percentage of MIMUs identified
correctly, of the various classifiers for all configurations tested.
Performance was unaffected by altering the forearm sensor loca-
tion from distal to proximal, therefor we report average values in
Table 2. All classifiers achieved a perfect score for the setup when
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Table 2 | Performance of the classifiers on each of the different sensor

configurations.

3MIMUs 4MIMUs

Random forest 1 0.9560
1 0.9412

Decision tree 1 0.9559
1 0.8824

Ranking 1 0.9412
1 0.9412

The values in gray refer to the gyroscope data, those in black to the orientation

data. A score of 1 corresponds with perfect classification, 0 corresponds with

incorrect classification of all sensors.

only 1 MIMU was attached to each segment (left column). In the
4 MIMU configuration, with 2 MIMUs attached to the forearm,
a decrease in performance was observed (right column Table 2).
The fact that gyroscope data (gray) provides the best classification
performance indicates that angular velocity is sufficient to iden-
tify relative sensor location. Similar results were achieved using
the orientation data (black). The poorer result obtained with the
decision tree using orientation data was likely due to an overly
conservative correction in the cross-validation. Only taking the
resubstitution error into account, the accuracy achieved by the
decision trees was 0.975. The results from ranking further support
this hypothesis.

Ranking proved to be the best option since it does not need
training and reached similar levels of accuracy as the other classi-
fiers. When using orientation data 10 features each provided the
maximum accuracy reported in Table 2 (Figure 2A), these fea-
tures are marked in bold in Table 1 and depicted in Figure 2.
Figure 2 furthermore shows that only 4 features achieve this level
of accuracy when using gyroscope data (Figure 2B). Features
proved to perform equally well across subjects and highly redun-
dant amongst each other (Figure 2C). Either of the features
marked in bold in Table 1 thus resulted in a similar classification
performance.

TREMOR ESTIMATION
The plots in Figure 3 provide an overview of the decomposition
process. In Figure 3A the joint angle obtained by Euler decompo-
sition is shown in red. This signal predominantly represents the
voluntary motion, due to the filtering process done by the EKF
used for orientation estimation. Tremor frequency is nonethe-
less preserved in the orientation (Figure 3B). The first peak, at
0–2 Hz, represents the voluntary movement whereas the second,
much smaller, peak at ∼5 Hz corresponds to tremulous move-
ment. The decomposed signal using the method presented in this
paper is depicted in black in Figure 3A. The frequency spectrum
of this signal indicates that decomposing in this form allows us to
extract the tremor characteristics but with a loss of the voluntary
signal. This however is not an issue since the voluntary movement
is present, with little to no signs of tremor, in the orientation data
and can easily be accessed directly extracting the Euler angles from
the rotation matrix.

FIGURE 2 | Performance of each feature to identify sensor location

based on ranking. The gray bars in (A,B) correspond to the 4MIMU
configurations, the black bars to the configurations with 3 MIMUs. The
orientation data is presented in (A), and the gyroscope data in (B). In (C)

the redundancy of the features is demonstrated by contrasting features 1
and 2, using orientation data both resulting in high scores in (A,B). (C) Is
representative of the redundancy among the 10 features highlighted in
Table 1.

FIGURE 3 | Example of the decomposition of orientation data during a

finger-to-nose test. (A) Shows the orientation data decomposed using the
Euler method (in red) and the raw movement (in black). (B) Shows the
amplitude spectrum of the orientation data decomposed using Euler. (C)

Shows the amplitude spectrum of the orientation data decomposed using
the proposed decomposition method.

In Figure 4 we show a representative trial using both gyro-
scope references, online and offline, as well as the proposed
method using orientation data. The top plot demonstrates the
high correspondence of the proposed method with both the
online gyroscope method and an offline gold standard method.
The first highlight showcases the strength of the orientation based
method, following both the online and offline gyroscope tremor
estimates closely in amplitude and in frequency. The second high-
light places attention to a limitation of the presented method. It
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FIGURE 4 | An example of tremor estimation using the proposed

online method based on orientation data (black), an online method

based on gyroscope data (gray), and an offline reference method

based on gyroscope data (red). (A) Shows all the signals together. (B)

Represents tremor estimated using the online gyroscope method. (C)

Shows the tremor estimate obtained using the method proposed in this
paper.

appears that upon changes in velocity the orientation method is
slow in adjusting; the orientation based method in black devi-
ates from both the gold standard in red and the online gyroscope
method. We assume that this is due to the intrinsic characteristics
of the onboard EKF of the MIMUs used. The EKF parameters are
set to track voluntary human movement, characterized by a lower
frequency than the tremor we are tracking.

To verify the hypothesis that the EKF is a limiting factor when
changes in velocity occur, we analyze both components of the
KTE separately (Figure 5). It is clear that the differences are pre-
dominantly present in the first component (KTE1; the mean of
the absolute estimation error), and thus related to the response
time of the algorithm. We believe that adapting the EKF could
increase the performance of the presented method. KTE values of
both online methods, comparing each method to the gold stan-
dard, did not differ more than 8% with respect to the value of
the orientation based KTE. Mean KTE of the online gyroscope
method was 0.2963 ± 0.1146 (min: 0.11750; max: 0.5137), and
for the method proposed in this paper 0.3704 ± 0.1548 (min:
0.2034; max: 0.6730). A more direct analysis was not possible
in the current study since the EKF used was embedded in the
MIMU and acted as a “black box.” Future studies should fur-
ther investigate what the effect of the fusion algorithm is on
errors in tremor estimation from orientation data. The current
results, although preliminary due to the small sample size and
high inter-patient variability, appear to indicate that orientation
data is suitable for NP control. Orientation data are likely best
combined with an impedance modulation control strategy for
the NP (Gallego and Rocon, 2011). Impedance control is less
reliant on highly precise data than noise canceling approach. In
impedance control, the viscosity and stiffness of the joints are

FIGURE 5 | Contribution of each of the components of the KTE

representing relative performance of the gyroscope method (gray) and

the orientation based method (black) relative to an offline reference

method based on gyroscope data. The KTE1 (mean of the absolute
tracking error) is represented by the continuous lines, whereas the KTE2

(variance of the absolute tracking error) is plotted in dotted lines. The data
plotted in the curves is the average across trials for each patient, minimum
and maximum performance is represented by “+” for each patient.

increased to generate a low pass filter effect on the tremor. This is
similar to the co-contractions of healthy subjects to stabilize their
upper limbs.

DISCUSSION
We have proposed algorithms that constitute a first step toward
a more intelligent neuroprosthesis for tremor suppression. The
algorithms are based on orientation data and respectively estimate
sensor location and tremor. Relative sensor location was detected,
without any a priori information, with an accuracy of 94.12%
for the 4 MIMU configuration, and 100% for the 3 MIMU con-
figurations. We were further able to accurately estimate tremor
based on orientation data, with a precision comparable to that
of state of the art methods. Using orientation data permits us
to identify sensor location, estimate tremor and derive context
information from the same dataset, thus reducing bandwidth
requirements.

Previous work on detecting sensor location focused on
absolute location on the body. However, in many applications
sensors are placed in a chain or always on the same site(s). This
is particularly the case when biomechanical variables are of
interest (e.g., NP control, tele-rehabilitation, motion analysis).
In such setups we can deduce absolute position of each sensor
from their relative position in the chain. We have therefore opted
to determine relative sensor location. The benefit of relative
vs. absolute sensor location is that it drastically simplifies the
classification and classifier.

Four sensors were used in our study, as is the case in the
work presented by Kunze et al. (2005); Kunze and Lukowicz
(2007). Several studies have detected more sensors, as many as
17 were identified by Weenk et al. (2013). However, our method
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is designed with the neuroprosthesis presented in Gallego et al.
(2011) in mind, and therefore focuses on one limb consisting of
3 segments. In addition, this is the first attempt to identify vari-
ous sensors placed on the same segment. The presented method
can easily be modified to have less/more sensors or segments,
as shown in the different configurations adopted in the present
work. This is also supported by previous work on healthy sub-
jects; where the trunk was added as a fourth segment (Lambrecht
and Pons, 2014).

To our knowledge this is only the second study looking at
identifying sensor location that does not rely on walking data.
Kunze et al. have previously published a classifier that was able
to determine the location of 4 sensors on specific locations spread
across the body from arbitrary movement data. They reported a
82% accuracy on 6 min windows (Kunze and Lukowicz, 2007).
We judged that for applications in health and telemedicine this
window was too long and the accuracy too low. One of our
goals is to facilitate the use of wearable sensors by patients, to
make them more user-friendly. Our method was tested on 30 s
trials, with actual movement ranging between 15 and 18 s. We
are hopeful that this window can be further reduced to incorpo-
rate only one movement cycle, without a significant decrease in
performance. Although we have only included one task, finger-
to-nose test, we believe that our method will perform equally
well on related upper limb tasks. The finger-to-nose task shares
it dominant kinematic pattern with a variety of ADLs such as
eating, drinking, combing your hair, putting on glasses, and
answering a phone. Furthermore, no training was needed in
the presented algorithm thus there is no indication as to why
it should be limited to the finger-to-nose task. Any task that
involves motion of the major joints and that triggers kinetic
tremor is expected to perform equally well on an essential tremor
population.

In recent work by Weenk et al. (2013) an attempt has been
made to investigate the sensitivity of location of the sensor on
the segment. Previous work has exclusively relied on accelerom-
eter data but Weenk et al. were the first to use gyroscopes as
an additional sensor. A slight drop in performance was reported
but they still achieved a 97.2% accuracy. In our work we only
rely on orientation data. Our algorithm only uses gyroscope and
accelerometer data indirectly, as it is based on orientation data.
This is the first time orientation data has been used for sensor
classification. To further assess the influence of sensor location we
included two configurations with 3 MIMUs (i.e., one MIMU per
body segment), where the sensor of the forearm was placed dis-
tal or proximal. No difference in accuracy was observed. Given
the results from both configurations using 3 MIMUs and the
fact that none of the features relies on movement to occur about
specific axes, we conclude that our method is location and orien-
tation invariant. The features chosen display a high redundancy
amongst each other. Future work to identify informative yet com-
plementary features could further increase the precision of the
method presented. The current features are individually very dis-
criminative and a combination of features was thus not needed,
especially given the high redundancy among them. We did how-
ever place the sensors on ideal locations to enable extraction of
tremor characteristics. Placing the sensors on different locations

and/or orientation would not affect the location identification.
The tremor estimate would require a calibration procedure to
align the sensor frame to the body-segment frame. Soft tissue arti-
facts might further filter part of the signal and/or introduce noise
through wobbling masses.

We estimated tremor based on orientation data following the
protocol presented in Gallego et al. (2010) for gyroscope data.
We compared our results to those obtained using both an online
estimation method and an offline reference method. Our results
show, for the first time, that it is possible to accurately track
tremor collecting only orientation data. The orientation based
method does appear to have more difficulties adapting quickly to
changing patterns. This observation was supported by the overall
slightly larger values for the first component of the KTE (i.e., the
mean absolute estimation error), the figure of merit used to com-
pare the performance of the tremor tracking methods. Difference
in performance relative to gyroscopes was particularly noticeable
upon changes in velocity. This is most likely due to the nature
of the EKF and the parameters defining it. Although we did not
have access to the exact parameter values, we believe that altering
the fusion filter or the filter parameters can improve the perfor-
mance of the presented method. As is, the EKF is set to perform
well for normal human motion, situated below 2 Hz in the fre-
quency spectrum. Higher sensitivity to changes up to 8–10 Hz
and a faster response time will most likely preserve the tremu-
lous movement better and thus result in a better estimate. Further
work, with customizable fusion algorithms, is needed to confirm
this hypothesis.

The ability to track tremor with orientation data simplifies
demands for bandwidth and processing power when incorpo-
rated in monitoring applications. It constitutes a significant step
toward a more intelligent neuroprosthesis for tremor suppression
and opens the door for long-term continuous tremor monitoring
with context awareness.

Our future work will be directed toward adding a task-
identifier based on joint angles and joint angle related features
to these algorithms; validating the sensor location algorithm on
other types of tremor patients and different pathologies, as well
as use the presented work to investigate context and evolution of
tremor occurrence.

CONCLUSION
The work described in this paper constitutes the first steps
toward a more user-friendly and context-aware neuroprosthe-
sis for tremor suppression and monitoring. We predict that this
methodology will enable the monitoring of tremor with con-
text awareness and will facilitate the use of wearable sensors in
tele-health and tele-medicine applications.

We have introduced a method to automatically identify rela-
tive sensor location. This is the first location detection algorithm
based on orientation data, the first that only requires upper limb
movement and does not need any training, and only the second
to be tested on a patient population.

We furthermore introduced an algorithm to track tremor
using orientation data. As a direct application we will use
this in the long-term monitoring of tremor characteristics and
context.
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Functional electrical stimulation (FES) is considered an effective technique for
aiding quadriplegic persons. However, the human musculoskeletal system has highly
non-linearity and redundancy. It is thus difficult to stably and accurately control limbs
using FES. In this paper, we propose a simple FES method that is consistent with
the motion-control mechanism observed in humans. We focus on joint motion by
a pair of agonist-antagonist muscles of the musculoskeletal system, and define the
“electrical agonist-antagonist muscle ratio (EAA ratio)” and “electrical agonist-antagonist
muscle activity (EAA activity)” in light of the agonist-antagonist muscle ratio and
agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint
stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist
muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis
that the equilibrium point and stiffness of the agonist-antagonist motion system
are controlled by the central nervous system. We derived the transfer function
between the input EAA ratio and force output of the end-point. We performed some
experiments in an isometric environment using six subjects. This transfer-function model
is expressed as a cascade-coupled dead time element and a second-order system.
High-speed, high-precision, smooth control of the hand force were achieved through the
agonist-antagonist muscle stimulation pattern determined by this transfer function model.

Keywords: functional electrical stimulation (FES), equilibrium-point control, EAA ratio, EAA activity, muscle

synergy

1. INTRODUCTION
In recent years, the number of people affected by strokes and
spinal cord injuries has increased because the rapidly aging popu-
lation and the high incidence of traffic accidents in automobilized
societies. Many studies have been conducted on movement sup-
port and functional compensation for paralyzed individuals. The
use of functional electrical stimulation (FES) to induce mus-
cle activity via direct electrical stimulation of peripheral muscles
has attracted particular attention. FES has even been used to
assist severely paralyzed patients. According to reported adapta-
tion examples (Giuffrida et al., 2001; Widjaja et al., 2011), FES
can help with spastic paralysis in stroke patients. Muscle stim-
ulation is performed by refereing to the antagonistic muscle’s
electromyogram (EMG). FES can also be used for treating tremor
paralysis patients. In this approach, muscle stimulation is per-
formed by refereing to limb tremor. Furthermore, many studies
focused on joint trajectory tracking by electrical stimulation of
multiple muscles have been reported. They are classified as open-
loop (Bernotas et al., 1987; Buckett et al., 1987; Hoshimiya et al.,
1989; Miller et al., 1989; Chizeck et al., 1991; Veltink et al., 1992;
Smith et al., 1996; Chen et al., 1997; Davoodi et al., 1998; Rakos

et al., 1999; Ferrarin et al., 2001; Watanabe et al., 2002a,b), closed-
loop (Chizeck et al., 1980; Crago et al., 1980; Wilhere et al., 1985;
Lemay et al., 1997), and hybrid type (Lan et al., 1994; Abbas et al.,
1995; Kostov et al., 1995; Chang et al., 1997; Jonic et al., 1999; Qi
et al., 1999; Adamczyk et al., 2000; Sites et al., 2000; Ianno et al.,
2002; Kurosawa et al., 2005) applications. The hybrid type use of
FES shows promise as a control method that combines the advan-
tages of feedforward control, which allows for quick movement
without delay, and feedback control, which reduces the effects
of disturbance due to fatigue and load. However, it is difficult
to derive an appropriate model for inclusion in the controller,
because (1) the electrical stimulated musculoskeletal system is
characterized by high non-linearity between stimulus current val-
ues and muscle force/length and (2) the control of joints that are
moved by agonist-antagonistic muscle pairs is an ill-posed prob-
lem (Kurosawa et al., 2005), because of the redundancy in joint
motion control.

In the field of exercise physiology, the equilibrium point
hypothesis states that the stiffness and equilibrium point of
the agonist-antagonist drive system are controlled by the cen-
tral nervous system (Feldman, 1986). In addition, it has been
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shown that the muscle agonist-antagonist ratio is closely related
to the joint angle corresponding to the equilibrium point, and
muscle agonist-antagonist activity has a close relationship with
the joint stiffness, as is evident from the results of analyses of
muscle agonist-antagonist ratio and muscle agonist-antagonist
activity (Iimura et al., 2011; Ariga et al., 2012). The muscle
agonist-antagonist ratio is represented by the ratio of the EMGs
of agonist-antagonistic muscle pair groups, which make up the
musculoskeletal system. The muscle agonist-antagonist activity is
represented by the sum of the agonist-antagonistic muscle pair
group’s EMGs. The equilibrium point and joint stiffness can be
determined independently based on muscle agonist-antagonist
ratio and activity. The muscle agonist-antagonist ratio and activ-
ity are used to control multiple pneumatic artificial muscles
(Pham et al., 2014). The concept of muscle agonist-antagonist
ratio or activity can be useful in electrically stimulating the muscle
pair group as well.

In this study, we focused on non-linearity and redundancy
in developing a method for applying the concept of the mus-
cle agonist-antagonist ratio and activity to electrical stimulation.
Problems such as non-linearity and redundancy are encoun-
tered when FES is used for controlling the human body. The
concept of the muscle agonist-antagonist ratio or activity can
be used to determine the equilibrium point and joint stiffness,
which are considered in the equilibrium point hypothesis. We
assume that we can linearly approximate human motion control
by determining the equilibrium point and joint stiffness and by
controlling the equilibrium point independently with the help
of the EAA ratio and activity, which are based on the concept
of the muscle agonist-antagonist ratio and activity. As an exam-
ple, we use the human elbow joint, which is an antagonistic
drive system. We attempt to model the human elbow joint using
the proposed method and use the modeling results to control
the end-point force (hand force) in an isometric environment.
In addition, we conducted experiments to assess the trajectory
tracking performance achieved with the method developed.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL ENVIRONMENT
The experimental environment and system configuration are
shown in Figure 1. A stimulator manufactured by Multi Channel
Systems, Inc. (STG4008) is used for electrically stimulation of the
target muscles. The STG4008 can control the stimulus current
value. Based on the results of attempts to use various modu-
lation schemes, a sinusoidal electrical stimulation pattern with
a frequency of 60 (Hz), generated using the AM (Amplitude
Modulation) method, was chosen because it yielded the great-
est effect and resulted in the least discomfort. We control only
the amplitude of the sine-wave, with the base frequency fixed at
60 (Hz). The cathode-side stimulation electrode is installed at
a motor point in the stimulated target muscles, which are the
biceps and triceps of the subject’s right upper arm (Figure 2).
A stimulation electrode made by Compex Inc. (Electrode for per-
formance/energy) is used. The motor-points are searched using
motor-point pen made by Compex Inc. Before we apply the elec-
trodes, we apply electrode gel made by Compex Inc. to the skin
to decrease impedance. During the procedure, the right upper

FIGURE 1 | Experimental setup, top view.

FIGURE 2 | Stimulation electrodes installed.

arm is held in a horizontal plane by the seat, the wrist is secured
with splint material, and the trunk is fixed to the chair with a
shoulder belt. The hand force is sampled at a rate of 1000 (Hz)
using a three-axis force sensor made by Tech-Gihan, Inc. (USL06-
H5-200N). Negative measurements denote flexion and positive
measurements denote extension. The experiment is conducted in
an isometric environment, and the angle between the upper arm
and the body surface is 45◦, while the elbow angle is maintained
at 90◦. Healthy adult males A (aged 27 years, right-handed), B
(aged 24 years, right-handed), C (aged 21 years, right-handed),
D (aged 24 years, right-handed), E (aged 24 years, right-handed),
and F (aged 24 years, right-handed) volunteered to participate in
the experiment. To eliminate the influence of fatigue, the exper-
iments were limited to 1 min in duration. The purpose and the
details of the experiment were explained to the subjects, and
they agreed to participate in the experiment. The experiments
were conducted with the approval of the Osaka University of
Engineering Science Ethics Committee and in accordance with
their prescribed procedures.
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2.2. ELECTRICAL AGONIST-ANTAGONIST MUSCLE RATIO (EAA RATIO)
AND THE EQUILIBRIUM POINT

We define the elbow joint as the control target. We focus on
coordination between the triceps and the biceps. The triceps and
biceps act during extension and flexion, respectively, of the elbow
joint. We intend to simultaneously stimulate these two muscles.
To this end, it is important to understand how humans gener-
ate this movement. Human muscle groups have multiple degrees
of freedom, and humans operate various muscle groups simul-
taneously when generating a movement. The human body has
different types of solutions that control the various body move-
ments. This implies that any of the solution can be involved in the
human body movement. For example, EMG analysis is performed
to determine humans’ primary motion control. EMG presents
a command signal to the muscle from the central nervous sys-
tem. In this study, we focused on the EMG analysis method. The
method is based on a combination of agonist-antagonist mus-
cles. Iimura et al. defined mf and me as the degrees of flexor
and extensor muscle activity, respectively, of agonist-antagonist
muscle pairs obtained from EMG. The agonist-antagonist mus-
cle ratio r and the agonist-antagonist muscle activity a are given
by Equations (1, 2), respectively. Iimura et al. showed that both r
and a contribute to the joint equilibrium point and joint stiffness.

r = me

mf +me
(1)

a = mf +me (2)

Electrical stimulation contracts human muscles. In this study, the
normalized FES intensity to the biceps and triceps are defined as If

(−) and Ie (−), respectively, and the electrical agonist-antagonist
muscle ratio (EAA ratio) rE and electrical muscle activity aE,
which are obtained using Equations (1, 2) are defined as the new
control variables.

rE = Ie

If + Ie
(3)

aE = If + Ie (4)

Note that to minimize differences in the characteristics of the
flexor and extensor and facilitate the extraction of the transfer
characteristics, the stimulus current values are normalized. The
maximum stimulus current I′fmax (mA) and current I′emax (mA)
at which the subject does not feel pain, and the minimum stimu-
lus current I′fmin (mA) and current I′emin (mA) at which muscle
contraction commences are used for normalization, as shown
bellow:

If = (I′f − I′fmin)/(I′fmax − I′fmin) (5)

Ie = (I′e − I′emin)/(I′emax − I′emin) (6)

Where, I′f , I′e are the stimulus current values. If rE is considered
to contribute to the joint equilibrium point in a manner similar

to that in EMG analysis, any change in rE appears as a change in
the hand force under constraints on hand movement, i.e., in an
isometric environment. In this study, we investigate hand force
in an isometric environment, as rE is changed while aE remains
constant.

2.3. ELECTRICAL AGONIST-ANTAGONIST MUSCLE ACTIVITY (EAA
ACTIVITY) AND THE JOINT STIFFNESS

In EMG analysis, how muscle activity a contributes to joint stiff-
ness has been shown by Iimura et al. (2011). To confirm that
EAA activity aE contributes to the joint stiffness in the same
way, we conducted an experiment to increase or decrease the
EAA ratio rE from rE = 0 to 1.0 in increments of 0.2 every 3 s
(aE = {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}). The averages of three trials
for each aE are shown along with EAA input ratio in Figure 3. The
results confirm that the displacement of the hand force increases
with aE. In addition, when we estimated the transfer func-
tion(discussed more below), we determined values of the natural
angular frequency ωn for three values of aE = {0.5, 0.8, 1.0}
for subject A. We found that for aE = 1.0, ωn = 20.5 (rad/s); for
aE = 0.8, ωn = 19.0 (rad/s); and for aE = 0.5, ωn = 14.3 (rad/s).
These findings indicate that aE contributes to the joint stiffness.

2.4. CONTROL MODEL
If we consider motion control of the elbow joint from the per-
spective of the equilibrium point hypothesis, it is possible to
define two parameters as the control variables: joint stiffness and
equilibrium point. In this paper, we report on a method for con-
trolling the elbow joint using the EAA ratio: the equilibrium
point. As Figure 4 shows, the exercise command rE from the
external FES current to the muscle groups is added to the list of
movement commands rh from the central nervous system to the
agonist-antagonist muscle groups (the agonist-antagonist muscle
ratio). Agonist-antagonist muscle pairs are driven by the move-
ment command r( = rh + rE), and as a result, hand force f is
generated in an isometric environment. To confirm this theory,
a constant value of EAA activity aE = 1.0 was used.

2.5. MODELING
2.5.1. Input–output of elbow joint system
In this study, to achieve elbow joint control using the EAA
ratio, we experimentally determined the frequency characteristics

FIGURE 3 | Hand force for various levels of EAA activity.

www.frontiersin.org June 2014 | Volume 8 | Article 164 | 37

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Matsui et al. Equilibrium-point control by FES

FIGURE 4 | EAA ratio-based FES control scheme.

between the hand force and the electrical stimulation input to
the elbow joint system so that we could determine the transfer
function for which the input is the EAA ratio and the output is
the hand force in the isometric environment. Given that we seek
the transfer function of the elbow joint system, a sine-wave EAA
ratio with various periods T (s) was input to the muscles and the
steady-state hand force was measured. We then used one cycle
of one sine-wave input, perform sin-cos approximation using a
multiple regression model, and expressed the result as a sine-
wave. Thus, we obtained the output amplitude and phase of each
period, as well as the corresponding frequency characteristics of
the values obtained. The EAA ratio can be expressed as a function
of time as follows.

rE(t) = −0.5 sin

(
2π

T
t

)
+ 0.5 (7)

For the input, the EAA ratio was set to a sine-wave with pos-
sible values from 0 to 1, and the stimulation current value was
determined. The normalized stimulation currents of each mus-
cle, Ie(t), If (t), determined using Equations (3, 4), were calculated
from the fixed electrical muscle activity aE, and the EAA ratio rE

was determined using Equation (7). The stimulus current values
I′e(t), I′f (t), that were actually applied to the muscle, were deter-

mined from the maximum stimulation amplitude I′max (mA) , and
minimum stimulus amplitude I′min (mA) determined in advance.
I′max and I′min are shown in Table 1. The resulting, I′e(t) and I′f (t)
were determined from Equations (8, 9) in the case of subject B, for
example. The hand force f (t) that appears as an output is approx-
imated using the multiple regression model and can be reduced
to a sine-wave by synthesizing the function Equation (10). The
output form can be taken as the corresponding sinusoidal input.

I′e(t) = −3.0 sin

(
2π

T
t

)
+ 8.0 (8)

I′f (t) = 4.5 sin

(
2π

T
t

)
+ 7.0 (9)

f (t) = A sin

(
2π

T
t + φ

)
+ c (10)

In these equations, A = √a2 + b2, sinφ = a/A, cosφ = b/A, the
output amplitude is A, the phase lag is φ, and the center value of
the output sine-wave is c.

Table 1 | Maximum and minimum stimulation amplitude for the six

subjects.

Subject Biceps Triceps

I ′max(mA) I ′min(mA) I ′max(mA) I ′min(mA)

A 15.5 6.5 11.5 4.0

B 11.5 2.5 11.0 5.0

C 11.5 7.0 15.0 8.0

D 12.0 4.5 10.0 6.0

E 14.0 6.0 13.0 6.0

F 12.0 3.5 14.0 8.0

2.5.2. Estimate of the transfer function
Three trials involving an input of 10 cycles in each period were
performed. The period T of the sine-wave EAA ratio represented
by Equation (7) is incremented by 0.025 (s) in the 0.1–0.5 (s)
range. The input was started 0.5 (s) after the start of measure-
ment. After the measurement, the output was approximated as
a sine-wave using multiple regression analysis. First, the output
values from the three trials were averaged; then, the measured
data was divided into 10 cycles of the input sine-wave, and the
values of cycles 3–8 were averaged. These cycles represent steady-
state behavior. We performed a multiple regression analysis on
one cycle of the averaged output, which was approximated by
the sine-wave obtained using Equation (10). We normalized the
time axis of subject B’s results, shown with the input sine-wave
EAA ratio in Figure 5. The results show that the elbow joint
system is controlled stably and smoothly via the simultaneous
stimulation of multiple muscles based on the EAA ratio when
either the hand force switches between positive and negative or
the stimulation starts. These situations tend to generate unsta-
ble responses when multiple muscles are stimulated at different
times. Furthermore, the vibration center of the output is shifted
to the positive side (the extension side) when T is 0.4 (s) or less,
but the amount of shift is approximately 0 (N) when T is 0.4 (s)
or more. This is due to the difference in the response speeds of
the extensor and the flexor, a phenomenon observed only in the
high-frequency region of the input. Given that FES is intended
to support day-to-day activities, the vibration center shift in the
high-frequency input region is not considered to be a serious
problem. Therefore, we focus only on the input–output ampli-
tude ratio and the input–output phase difference and attempt to
model the input–output relationship of the elbow joint system
using a transfer function. Figures 6A,B show the gain diagram
and phase diagram for the input and output data shown in
Figure 5. The gain is nearly constant in the low-frequency region,
and is linearly damped in the high-frequency region, which is typ-
ical of an n-order delay system. The slope of the high-frequency
region, calculated using least squares approximation, is −42.5
(dB/dec) approximation. The gain characteristic is approximated
using a second-order delay system. In contrast, the phase diagram
shows that the phase has a larger phase lag than the second-order
delay system. In this study, this phase delay, which cannot be rep-
resented as a second-order lag system, is modeled as a system with
dead time.
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FIGURE 5 | Input–output data plotted against normalized time (subject B).

FIGURE 6 | (A) Magnitude plot and (B) phase plot.

We assumed that the shape of the transfer function could be
represented by Equation (11), where, ωn is the natural angu-
lar frequency, K is a constant, and τ is dead time. We assumed
a value of ζ = 1 for the attenuation coefficient. Figures 7A,B

show the gain and phase characteristics. These are approxi-
mated as a second-order system plus a dead time system, as
expressed by Equation (12), and are represented by the bro-
ken line. We created similar models using the results obtained
for subject A, C, D, E, and F. The results for the six sub-
jects are shown in Table 2. The ωn, K, and τ values for these
five subjects differ from those for subject B, but it is under-
stood that all of the subjects’ result can be modeled by transfer
functions as a second-order system plus a dead time system.
The estimated range of dead times, 0.045–0.100 (s), is consis-
tent with the measured electrical stimulation latency results. We
assumed that differences in the parameter values of each individ-
ual are related to the ratio of slow-twitch to fast-twitch muscle
fibers of an individual and the rate of muscle development.
However, in practice, it is possible to determine the optimum
parameters values easily for individuals who exhibit some differ-
ences. These present modeling method is easy to use and very
simple.

G(s) = K · ω2
n

s2 + 2ζωns+ ω2
n
· e−τ s (11)

G(s) = 11.22 · 420.25

s2 + 41s+ 420.25
· e−0.05s (12)

3. RESULTS AND DISCUSSION
3.1. VERIFICATION
In this section, to verify the effectiveness of the model, we
present the following three types of hand force control results
obtained in the isometric environment. The results for subject B
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FIGURE 7 | Modeled (A) magnitude plot and (B) phase plot.

Table 2 | Parameter values for the six subjects.

Subject ωn (rad/s) K τ (s)

A 20.5 11.22 0.050

B 20.5 8.91 0.045

C 31.4 1.73 0.090

D 14.0 1.04 0.100

E 25.1 6.61 0.100

F 18.0 6.96 0.095

are considered to be verified because the results for all subjects
are substantially similar. The six subjects’ multiple coefficients of
determination are shown in Table 3.
(1) Response to continuously changing input
(2) Response to stepwise changing input
(3) Interaction with central movement command

3.1.1. Response to continuously changing input
We considered a task in which the direction and magnitude of the
hand force change freely. We stimulated the agonist-antagonist
muscle pair of the elbow joint using the synthesized EAA ratios
of the two types (T = 0.3 and T = 0.6).

rE = 0.6

(
−0.5sin

2π

0.3
t + 0.5

)
+ 0.4

(
−0.5sin

2π

0.6
t + 0.5

)

(13)
The hand force value estimated using model equation
(Equation 12) and the measured value of the hand force
with the input waveform are shown in Figures 8A,B. Only one

Table 3 | Multiple coefficients of determination.

Subject Experiment (1) Experiment (2) Experiment (3) [during

stimulation with +10 (N)]

A 0.86 0.90 0.95

B 0.99 0.96 0.94

C 0.86 0.71 0.83

D 0.93 0.92 0.77

E 0.97 0.87 0.80

F 0.98 0.75 0.76

Mean 0.93 0.85 0.84

SD 0.06 0.10 0.08

input–output cycle [0.6 (s) period] waveform in the steady state
are depicted. Because the estimated and measured values of hand
force are nearly equal, the validity of the model can be considered
confirmed. The EAA ratio for a period of T = 0.3 (s) leads to
a shift in the vibration center due to the difference between the
response speeds of the agonist and antagonist muscles. However,
in the input to Equation (13), when combined with the EAA
ratio with a period of T = 0.6 (s), which is longer than 0.3 (s),
there is hardly any shift in the vibration center.

3.1.2. Response to stepwise changing input
We considered a task with stepwise changes in the hand force
magnitude. We increment or decrement the EAA ratio by 0.2
every 3 (s) beginning at rE = 0. The hand force value esti-
mated using model equation (Equation 12) and the measured
value of the hand force with the input waveform are shown in
Figures 9A,B. Except when the EAA ratio was near 1 or 0, the dif-
ference between the estimated and measured hand force values
was 2 (N) or less. The results show that the model can represent
steady-state characteristics in a practical manner. When the EAA
ratio is near 1 or 0, it is assumed that the extensor or flexor acts
alone. Therefore, the model’s estimation error increases.

3.1.3. Interaction with central movement command
In this study, the elbow joint was controlled by the EAA ratio,
which is considered an equilibrium point, as shown in Figure 4. It
was assumed that the equilibrium point is operated by a scheme
representing the sum of the FES commands given based on the
external and motion commands from the central nervous system.
To validate this theory, we performed an experiment in which
electrical stimulation was provided in a state in which the subject
was generating hand force intentionally. The subject was con-
firmed that he maintained a positive or negative hand force of
approximately 10 (N) without feedback. In addition, our input
pattern given by Equation (14) was limited to only two cycles [for
1 (s)]. We repeated this pattern three times at intervals of 2.0 (s).

rE = −0.5 sin

(
2π

0.5
(t − a)

)
+ 0.5 (14)

The input stimulation was applied only when a ≤ t ≤ a+ 1 (s)
with a = {1, 4, 7}. The hand force was estimated using model
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FIGURE 8 | Responses to continuously varying (A) EAA ratio and (B)

estimated and measured.

equation (Equation 12), The measured value of the hand force
and the input waveform are shown in Figures 10A–C. We stimu-
lated the agonist-antagonist muscle pair in the elbow joint based
on the EAA ratio given by Equation (14) while the subject was
generating approximately +10 (N) of hand force (in the elbow
extension direction). The results are shown in Figure 10B. In
addition, we stimulated the agonist-antagonist muscle pair of
the elbow joint based on the EAA ratio given by Equation (14)
while the subject was generating approximately −10 (N) of hand
force (in the elbow flexion direction). The results are shown in
Figure 10C. In both cases, the results show that the hand force
was maintained at a positive or negative value of approximately 10
(N) in the section without electrical stimulation. The hand force
varied in the section with electrical stimulation, and the magni-
tude of these changes were close to the hand force value obtained
using Equation (12). These results indicate that FES stimulation
can be useful in supporting daily human motions. That is, day-to-
day human tasks, we can design the necessary movement support
system based on FES, using motion commands from the central
nervous system.

4. CONCLUSIONS
In this study, muscle co-contraction was employed in FES. We
focused on the agonist-antagonist muscle pair that drives the
elbow joints. We proposed an electrical stimulation method that
stimulates units of agonist-antagonist muscle pairs. The effective-
ness of the proposed method was validated through experiments
requiring control of the hand force of a single elbow joint with

FIGURE 9 | Responses to stepwise varying (A) EAA ratio and (B)

estimated and measured.

activation of one agonist-antagonist muscle pair in an isomet-
ric environment using six subjects. Based on the results obtained
from performing simultaneous stimulation of multiple muscles
based on the EAA ratio, we can draw the following conclusions.

• Using the electrical stimulation method proposed as an open-
loop control in this paper, stable and smooth control can be
more easily achieved than with other methods (Kurosawa et al.,
2005), especially when the sign of the hand force switches.
• We can define the elbow joint as a system with an input (the

EAA ratio corresponding to the target value of the joint equi-
librium point) and an output (the hand force). The system can
be modeled as a cascaded second-order system with dead time.
• Using the model developed in this study, the hand force that

will be generated by a predetermined electrical stimulation
pattern can be accurately estimated.

These findings indicate that our proposed method is an effective
solution to the problem of redundancy in an agonist-antagonistic
drive system and non-linearity between stimulus current values
and muscle force/length. We indicated the possibility that high-
speed, highly accurate hand force control can be achieved using
this model as an inverse system. This model can also be used for
tasks involving joint motion, if this model is applied as a rigid
body link model (input:joint torque, output:joint angle).

The results of the experiment in which electrical stimulation
was conducted together with the conscious application of hand
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FIGURE 10 | Responses to sinusoidal (A) EAA ratio in (B) positive (C) negative 10 (N) force exertion task.

force demonstrate that FES can be used to design a system to pro-
vide the necessary movement support for daily human tasks using
motion commands from the central nervous system.

It is necessary to ensure that stimulation patterns can be
adjusted according to the requirements of the FES application
to a variety of tasks. Previous FES studies might have inadver-
tently neglected the regulation of additional properties involved
in coordinating various muscles such as joint stiffness or meth-
ods of dealing with muscle redundancy (Jarc et al., 2013). Our
proposed method offers the following advantages:

• Independent control of the joint equilibrium point and joint
stiffness,
• Accurate realization of isometric tasks through EAA ratio-

based equilibrium-point control with EAA activity aE = 1,
and
• Easy extension of the proposed method to the muscle synergy

control method, which can be applied to controlling various
muscles simultaneously.

In this study, the environment was limited to being isometric,
with the moving joint limited to being only an elbow joint and
fatigue is excluded. We normalized the FES intensity to a level at
which the subject did not feel pain. In our future research, we plan
to normalize the FES intensity at a level at which the force is bal-
anced. In the future, we will apply the proposed method to tasks

with joint motion, multiple joints, and tasks performed for long
periods of time to further validate the effectiveness of the method.
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Within the European project MUNDUS, an assistive framework was developed for
the support of arm and hand functions during daily life activities in severely impaired
people. This contribution aims at designing a feedback control system for Neuro-Muscular
Electrical Stimulation (NMES) to enable reaching functions in people with no residual
voluntary control of the arm and shoulder due to high level spinal cord injury. NMES is
applied to the deltoids and the biceps muscles and integrated with a three degrees of
freedom (DoFs) passive exoskeleton, which partially compensates gravitational forces and
allows to lock each DOF. The user is able to choose the target hand position and to trigger
actions using an eyetracker system. The target position is selected by using the eyetracker
and determined by a marker-based tracking system using Microsoft Kinect. A central
controller, i.e., a finite state machine, issues a sequence of basic movement commands
to the real-time arm controller. The NMES control algorithm sequentially controls each
joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair,
pushing an alarm button, etc., can be supported by the system. The robust and easily
tunable control approach was evaluated with five healthy subjects during a drinking task.
Subjects were asked to remain passive and to allow NMES to induce the movements. In
all of them, the controller was able to perform the task, and a mean hand positioning error
of less than five centimeters was achieved. The average total time duration for moving the
hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and
for finally returning the arm to the rest position was 71 s.

Keywords: neuro-muscular electrical stimulation, neuroprosthetics, exoskeleton, feedback control, assistive

technology, eye tracking

1. INTRODUCTION
The consequences of Spinal Cord Injury (SCI) can be severe.
Depending on the level of the lesion, SCI causes a loss of motor
and sensory functions, and results in the immobilization of the
patient. The level of lesion in SCI refers to the vertebrae in the
spinal column affected by the injury. The higher the injury on
the spinal cord, the more dysfunction can occur. Cervical (neck)
injuries usually result in a full or partial tetraplegia (paralysis of
the arms, legs, and trunk of the body below the level of the associ-
ated injury to the spinal cord). Individuals with a complete lesion
at the C7 level or above (C6, C5, . . . ) usually depend on attendant
care for all daily life activities.

In SCI patients, the neural pathway from the Central Nervous
System (CNS) to the muscles is interrupted. The injury may
cause a complete or partial lesions of the upper and/or lower
motor neurons. The upper motor neuron originates in the motor

region of the cerebral cortex or the brain stem and carries motor
information down to the lower motor neurons. All lower motor
neurons (LMNs) related to voluntary movements are located in
the ventral horn of the spinal cord and anterior nerve roots (spinal
lower motor neurons) and innervate skeletal muscle fibers. They
act as a link between upper motor neurons and muscles. In
case of upper motor neuron lesions, Neuro-Muscular Electrical
Stimulation (NMES) can be applied to the lower motor neurons
that are still intact to cause artificial contractions of the inner-
vated muscles (Sheffler and Chae, 2007). This will replace the
lacking control signals from the CNS to the muscles.

Restoration of grasp function by NMES in spinal cord injured
individuals has been realized by different research groups and is
even available in form of commercial systems (for an overview
see Popovic et al., 2002; Rupp and Gerner, 2007). Available neuro-
prostheses for grasping are able to restore the two most frequently
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used grasping styles: the palmar and the lateral grasp (Popovic
et al., 2002). C7-C5 complete SCI subjects benefit the most from
a grasping neuroprosthesis and achieve a high level of indepen-
dence in Activities of Daily Living (ADL). These individuals have
sufficient residual function of the proximal upper limb muscles
that allow them to perform reaching tasks.

Injuries at the high C3 and C4 level result in a significant loss
of function at elbow and shoulder level. Deltoid and the biceps
muscles are innervated from the C5 and C6 level of the spinal
cord. These muscles may be also denervated (lower motor neuron
lesion), especially in case of C4 tetraplegia. However, the extent
of denervation is likely to vary across individuals. The feasibil-
ity to restore shoulder and elbow functions at least partially by
NMES was demonstrated by Acosta et al. (2001) in persons with
C3/C4 tetraplegia using percutaneous stimulating electrodes and
by Bryden et al. (2000) in persons with C5/C6 tetraplegia using a
fully implanted stimulation system. However, the generated force
in individuals with C3 and C4 SCI was not sufficient to hold the
arm against gravity. In this context, it should also be noted, that a
long lasting electrical stimulation of shoulder and arm muscles
is overall not appropriate due to the fast fatigue of electrically
stimulated muscles.

In order to enable reaching functions in individuals with SCI
at C3 and C4 level, NMES-hybrid orthoses have been investi-
gated. In Hoshimiya et al. (1989), a balanced forearm ortho-
sis (BFO) was used for supporting arm motions. Smith et al.
(1996) used a suspended sling to provide shoulder joint stabil-
ity, and Nathan and Ohry (1990) applied mechanical splinting.
All studies reported limited performance because of insufficient
shoulder control. The stimulation was commanded by voice con-
trol (Nathan and Ohry, 1990), by breathing patterns (Hoshimiya
et al., 1989) or by contralateral shoulder motion sensed by a
position transducer (Smith et al., 1996).

Schill et al. (2011) developed the system OrthoJacket—an
active NMES hybrid orthosis for the paralyzed upper extremity.
The system combined NMES controlled grasping with an elec-
trical/pneumatic actuation of shoulder movements and a flexible
fluid actuator for support of elbow-joint movements. For control
of the orthosis, EMG signals from arm muscles were acquired.
This means that only individuals with some residual arm/hand
functions could use this system. Furthermore, NMES was not
used for movement generation at the shoulder or elbow-joint.

Within the EU project TOBI, a further NMES hybrid ortho-
sis was developed to support both grasping and elbow-joint
movements by NMES (Rohm et al., 2010). However, this sys-
tem required sufficient residual shoulder function to be provided
by the user. To avoid an excessive stimulation of the biceps
muscle during holding tasks, the orthosis’ elbow-joint was self-
locking in direction of flexion and electrically de-lockable. A
Brain Computer Interface (BCI) and a shoulder joystick at the
non-supported side were provided as interfaces for the control of
the orthosis.

In all existing systems, either NMES was applied in an open-
loop manner using pre-defined stimulation patterns or the
patient had to adjust the stimulation intensity by himself, e.g.,
via a position transducer at the contralateral shoulder or through
EMG signals of preserved muscles. None of the systems allows

the automatic positioning of the hand at arbitrary positions in
the reachable workspace. In addition, deviations from the desired
behavior, e.g., due to muscular fatigue, are not automatically
compensated.

This study aims at developing a fully feedback-controlled arm
neuroprosthesis for individuals with no or very weak residual arm
and shoulder functions (such as persons with C3/C4 tetraple-
gia). In contrast to existing arm neuroprostheses, the proposed
solution allows to position the hand at arbitrary desired posi-
tions within the reachable workspace. This arm neuroprothesis
is a component of the modular assistive framework MUNDUS
(Pedrocchi et al., 2013), that has been developed to support and
recover arm and hand functions in severely impaired people.
The arm reaching functionality can be extended by a robotic or
NMES-based module for grasping assistance.

To reduce the amount of required stimulation for the arm and
shoulder muscles, a passive light-weight exoskeleton supports the
user in addition to NMES. The main purpose of the exoskeleton
is the gravity compensation by a passive spring mechanism. In
addition to this, the exoskeleton enables all joints to be locked
for holding the arm at given positions without NMES. Thus, only
point-to-point movements under gravity compensation have to
be realized by means of artificial muscle activation, assuming no
or insufficient residual motor control by the user over his/her arm
and shoulder musculature.

Automatic control of NMES to achieve functional shoul-
der/arm movements is challenging due to the highly non-linear
and time-varying behavior of the electrically stimulated muscles
(Lynch and Popovic, 2008). Mimicking physiological movements
would require to identify the musculo-skeletal system of the arm
for each individual and each time the system is applied. This
would require a long lasting calibration procedure infeasible in
clinical environments or at home. For the use of NMES in stroke
rehabilitation, Iterative Learning Control (ILC) has been pro-
posed in order to generate precise functional reaching movements
(Freeman et al., 2012). ILC demands a cyclic movement genera-
tion. After every movement cycle, an error trajectory with respect
to a given reference movement will be determined and used to
either update an open-loop applied stimulation pattern or to
update the reference trajectory of an underlying feedback con-
troller. The latter approach guaranties a sufficiently small tracking
error even for initial ILC trials but again requires a detailed model
in order to design the feedback controller. To avoid any huge
calibration effort, we present a simpler movement generation
strategy that involves sequential NMES control of all Degrees of
Freedoms (DoFs) available in the exoskeleton.

The manuscript is structured as follows: in Section 2.1, an
overview of the overall control system architecture is given.
Sections 2.2 and 2.3 then describe the employed exoskeleton and
the muscle actuation by NMES, respectively, in detail. In Section
2.4, we introduce the kinematic model of the exoskeleton and its
parameter identification as well as required coordinate transfor-
mations used by the arm controller. In Section 2.5, the feedback
controlled generation of arm movements is presented in detail.
Then, in Section 2.6, we describe the experimental trials per-
formed on healthy subjects to evaluate the performance of the
control system. Section 3 summarizes the results in terms of the

Frontiers in Neuroscience | Neuroprosthetics September 2014 | Volume 8 | Article 262 | 45

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Klauer et al. Feedback control of arm movements

positioning error and execution times achieved in the validation
trials. The article closes with a discussion and some conclusions.

2. MATERIALS AND METHODS
2.1. CONTROL SYSTEM ARCHITECTURE
The entire system developed for the support of the reaching
movements is depicted in Figure 1. Potential users have no or very
weak residual voluntary activation of arm, shoulder and hand
muscles, but they can still control the head and gaze fixation. They
usually sit in a wheelchair in front of a table. The target motions
supported by the system are daily life activities, such as drink-
ing, eating, brushing, touching the own body, pushing an alarm
button, and moving an object on the table.

The arm/shoulder movements are induced by NMES while an
exoskeleton guides the movement and supports the arm during
static postures in absence of NMES. The control signals (stimu-
lation intensities and on/off state of the exoskeleton brakes) are
generated by a real-time controller that receives commands from
the Central Controller (CC) implemented in form of a finite state
machine. The central controller instructs the real-time controller
to move the hand to a given target position in the reachable
workspace. Sensors integrated in the exoskeleton measure joint
angles that are used as feedback variables by the real-time con-
troller. The NMES control algorithm sequentially controls each
joint angle while locking the other DoFs.

The user interacts with the system by means of an eyetracker.
Therefore, a commercial system, the Tobii T60W system (Tobii
Technology AB, Sweden), has been extended by a specific GUI for
the MUNDUS application. The table-mounted eyetracker is inte-
grated into a 17′′ TFT monitor. During tracking, the Tobii T60
uses infrared diodes to generate reflection patterns on the corneas
of the user’s eyes. Proper image processing is used to identify the
gaze point on the screen. The three dimensional position of the
user’s hand, of the objects to be manipulated, and of the mouth
are continuously monitored by environmental sensors, i.e., two
Kinect cameras (Microsoft Corp., Redmond, USA). To this end,
colored markers are attached to the hand and the objects. The
first Kinect camera provides an image of the working space to

the eye-tracking screen. To start an interaction with a specific
object, the user has to visually fixate this object on the eyetracker
screen for a pre-defined time duration. Once an object is selected,
the corresponding Kinect coordinates are sent to the CC which
transforms these coordinates into the global (exoskeleton) 3D
coordinate system. The transformed coordinates will then be used
by the real-time controller for movement generation. The second
Kinect camera is placed in front of the user and is used to track
the face position.

The fixation detection algorithm has been exclusively devel-
oped for the specific MUNDUS application, and it comprises
user-dependent temporal (i.e., time during which the user has to
continuously fix an object or an icon on the screen to select the
gazed point) and spatial (i.e., area around the barycenter of the
cluster of gaze samples inside which each sample has to fit for a
fixation to be revealed) threshold settings. To prevent unwanted
fixation detections, a confirmation icon is shown on the eye-
tracking screen after a fixation event is detected, and the user is
asked to confirm or cancel the selection. Moreover, the working
space where the user can select the object/action to interact with
is shown only when the user him/herself has selected the START
icon from the standby interface that is provided by the eyetracking
screen when MUNDUS is waiting for user interaction.

Special parts of the eye-tracker screen are dedicated to other
available tasks (e.g., activating emergency switch off, touching
spots of the body). The emergency icon is always displayed in the
top-left corner of the screen, and it is continuously selectable to
allow the user to stop MUNDUS. If the emergency icon is fix-
ated, a message is sent by the eye-tracker that stops all MUNDUS
components. To trigger sub-actions, specific questions are dis-
played on the screen and the user can reply by fixating a GO or
a STOP icon.

The central controller interfaces all modules and inter-
acts with the eyetracker and the real-time controller. For the
purpose of system integration, the software components of
the CC and the eyetracker module have been integrated in
one single MS Windows-based PC. The real-time controller
and the data processing of the environmental sensor module

Screen &
eye-tracker

Central
Controller (CC)

Real-
time

controller

Neuro-Muscular
Electrical 

Stimulation

Exoskeleton
Eviromental 

sensors 
(Kinect for MS)

Movement commands

Ackn./errors

Live scene: 
table top-view

Stimulation 
intensities

Angles

Brake
control
signals

User interaction

Coordinates (object, etc.)

User with object

FIGURE 1 | System architecture for support of reaching function.
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are based on a computer system running Linux with RTAI
extension1 . Development and testing of the control system is
performed in Scilab/Scicos 4.1.22 using the real-time framework
OpenRTDynamics3 . The communication between all modules
is established via UDP and messages are broadcasted in XML
format.

2.2. EXOSKELETON
As a basis for the exoskeleton design, the previously mentioned
target motions were analyzed using a motion capture system
(Lukotronic, Lutz Mechatronic Technology e.U, Austria) to esti-
mate the required ranges of motion and expected loads at the
joints (Karner et al., 2012; Reichenfelser et al., 2013). The 3D
mechanical design was done in Catia V5R19 (Dassault Systmes,
France), focusing on modularity, simplicity and light weight.
The developed exoskeleton with gravity compensation is shown
in Figure 2A. The available degrees of freedom (DoF) of the
exoskeleton are:

1. Shoulder flexion/extension (angle ϑu),
2. Shoulder horizontal rotation (angle ϕu),
3. Elbow flexion/extension (angle ϑf ).

The rotation of the forearm around the upper arm axis (humeral
rotation) and pronation/supination of the forearm are locked by
the exoskeleton as these DoFs are difficult to be controlled by
NMES using surface electrodes. Due to the reduced DoFs, the
orientation of the hand is not freely adjustable in the workspace.
Thus, to allow a safe handling of objects despite this constraint,
special objects with an universal joint in the handle have been
developed (e.g., cup holder shown in Figure 2B).

The exoskeleton is equipped with magnetic encoders (Vert-
X, Contelec AG, Switzerland) to measure the angles for all three
DoFs. Electromagnetic DC brakes (Kendrion, Germany) can lock

1http://www.rtai.org
2http://www.scilab.org
3http://openrtdynamics.sourceforge.net/

the shoulder horizontal rotation with a torque of 2.5 Nm, the
shoulder flexion/extension with up to 5 Nm and the elbow flex-
ion/extension with 1.5 Nm to hold the arm in any posture when
the stimulation is switched off.

To realize gravity compensation, a pressure spring is inte-
grated in a vertical carbon tube that can be either mounted on
a wheelchair as shown in Figure 2 or alternatively attached to a
body harness for mobile use. The spring force is transferred to
the elevation lever by a rope and pulley mechanism. Figure 3
depicts an isometric view of the shoulder joint mechanism and
shows the occurring torques as a function of shoulder elevation
angle. A slight under-compensation (spring torque smaller than
gravity torque) is intended as the arm should move downwards
slowly and gravity-induced when the stimulation and the brakes
are turned off. The amount of compensation is adjusted manually
by changing the wind up length of the rope at the spring adjust-
ment module. A linear guiding provides the connection between
the elevation lever and the upper arm shell and compensates
misalignment of the anatomical and the mechanical shoulder
joint. This also minimizes the reaction forces. For the elbow-joint,
an elastic band with a variable attachment point acts as weight
support.

The exoskeleton has a total weight of 2.2 kg and can be quickly
adjusted to different anthropometric dimensions.

2.3. NEURO-MUSCULAR ELECTRICAL STIMULATION
The desired arm movements are induced by four stimulation
channels activating the anterior, posterior and medial deltoid as
well as the biceps muscle (cf. Table 1). By stimulating the medial
deltoid, the shoulder extension can be actuated, while the anterior
and posterior deltoid allow arm rotation in the horizontal plane.
Stimulation of the biceps is used to flex the elbow-joint. Shoulder
flexion as well as elbow extension are induced by gravitational
forces.

One pair of self-adhesive hydrogel electrodes (oval shaped with
size 4 × 6.4 cm) is used for each stimulated muscle. For the gen-
eration of the biphasic stimulation pulses, the current-controlled
stimulator RehaStim Pro (HASOMED GmbH, Germany) is used.

FIGURE 2 | (A) Exoskeleton with spring-based gravity compensation and electromagnetic brakes mounted on a wheelchair. (B) Cup holder with an universal
joint in the handle.

Frontiers in Neuroscience | Neuroprosthetics September 2014 | Volume 8 | Article 262 | 47

http://www.rtai.org
http://www.scilab.org
http://openrtdynamics.sourceforge.net/
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Klauer et al. Feedback control of arm movements

FIGURE 3 | Isometric view of the shoulder joint mechanism showing the

angle sensors and brakes for the two degrees of freedom. The right graph
shows the occurring torque due to gravity (black solid line) together with the
compensation torque (dashed red line) at the shoulder joint as a function of

shoulder flexion/extension angle ϑu for an averaged upper arm weight of
2.15 kg and a forearm/hand weight of 1.91 kg with the elbow flexed at 90◦.
The resulting additional torque when the electromagnetic brake is switched
on is shown as blue dash-dotted line.

Table 1 | Stimulation channels.

Channel Activated

muscle

Control

signal

Actuated angle—movement

1 Biceps νb ϑf —elbow flexion/extension

2 Deltoid,
anterior head

νd,a Positive direction of ϕu—shoulder
horizontal rotation

3 Deltoid,
posterior head

νd,p Negative direction of
ϕu—shoulder horizontal rotation

4 Deltoid, medial
head

νd,m ϑu—shoulder flexion/extension

The stimulation frequency for all channels is fixed at 25 Hz,
while the individual current amplitudes and pulse widths can
be adjusted in real-time using the open ScienceMode protocol4

through a galvanically isolated USB interface.
The stimulation intensity in terms of pulse charge νi serves as

control signal for the muscle i. Table 1 shows the used control
signal notation. The pulse charge νi of the muscle i is defined
as product of the current amplitude Ii and the pulsewidth pwi.
In this application, a given charge is equally distributed to pulse
width and current amplitude (normalized to their maximal
values) as follows:

pwi =
√

νi pwmax

Imax
, Ii =

√
νiImax

pwmax
, 0 ≤ νi ≤ (Imax pwmax),

4http://sciencestim.sf.net

where pwmax = 500 μs and Imax = 127 mA are the maximal val-
ues of pulse width and current amplitude, respectively.

In a calibration phase that is always performed before using
the MUNDUS system, the maximal tolerated pulse charge νi of
each muscle i is determined. Additionally, for the medial deltoid,
the stimulation intensity νd,m that causes the onset of a visible
muscle contraction is determined. This value is required for the
implementation of the more complex shoulder flexion/extension
controller described in Section 2.5.2.

2.4. KINEMATIC MODEL AND COORDINATE TRANSFORMATIONS
To calculate the hand position from a given set of joint angles or
vice versa, a kinematic model of the exoskeleton is required. In
addition, a transformation from the Kinect coordinate system to
the global (exoskeleton) coordinate system must be determined
for the following reason: Objects to interact with may be arbitrar-
ily located on the table in front of the user. The Kinect is required
to determine the object position in the local Kinect coordinate
system. In order to bring the hand to objects by NMES, the Kinect
coordinates must be mapped into exoskeleton 3D coordinates and
corresponding exoskeleton angles. The latter are used to describe
the hand position in the real-time arm controller.

It is assumed that the placement of the Kinect as well as the
settings of the exoskeleton may change from day to day. Therefore
parameters need to be determined with simple and fast procedure
through experimental system identification.

Figure 4 shows the simplified kinematic exoskeleton/arm
model with the global (exoskeleton) coordinate system (xg, yg, zg)
and the Kinect coordinate system (xk, yk, zk). Both are Cartesian
coordinate systems. Depicted is the right arm reaching forward.
The model assumes that the exoskeleton is completely rigid and
that the arm is perfectly aligned to the exoskeleton.
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FIGURE 4 | Simplified kinematic model of the exoskeleton with

coordinate systems and a transformation between these systems.

Depicted is the right arm reaching forward. The parameters of the
coordinate transformation φ, θ, ψ, and tk as well as the kinematic model
parameters lu, lf , and ϕf need to be identified.

The forward kinematics is given by

p
g
h(ϑu, ϕu, ϑf ) = −(luR(ϑu, ϕu)+ lf R(ϑu, ϕu)R(ϑf , ϕf ))ez. (1)

where p
g
h is the hand position in global coordinates, ez =

[0, 0, 1]T is a unity vector, and lf and lu are the lengths of the fore-
arm and upper arm, respectively. The rotation matrix R is defined
as follows:

R(ϑ, ϕ) :=
⎡
⎣

cos ϕ cos ϑ − sin ϕ − sin ϑ cos ϕ

cos ϑ sin ϕ cos ϕ − sin ϕ sin ϑ

sin ϑ 0 cos ϑ

⎤
⎦ . (2)

In the used setup, the humeral rotation angle ϕf of the shoulder is
constant, as it represents a fixed DoF, and its value is determined
by the configuration of the exoskeleton.

Equation (1) can be used to determine the hand position for
a given set of exoskeleton angles. The inverse kinematics can be
obtained by numerically solving Equation (1) to determine the
angles ϑu, ϕu and ϑf for a given hand position p

g
h within the

reachable workspace and angle ϕf . The solution is unique as the
humeral shoulder rotation angle ϕf is fixed, and the operational
space for ϑf is limited by the mechanical constraints to [0, π ].

The transformation from Kinect coordinates to global coordi-
nates is visualized in Figure 4 and can be written as

pg = Rk(φ, θ, ψ)pk + tk (3)

where pg = [xg yg zg
]T

, pk = [xk yk zk
]T

, and tk ∈ R
3× 1 is a

translation vector, and Rk ∈ R
3× 3 a rotation matrix which is

parameterized by the Euler angles φ, θ , and ψ .

2.4.1. Parameter identification
The parameters φ, θ, ψ, and tk of the coordinate transforma-
tion as well as the kinematic model parameters lu, lf , and ϕf

are unknown and have to be calibrated for each user each time
the system is set up. Therefore, a system identification proce-
dure is applied to determine the nine parameters. During the
calibration phase, the arm and the attached unlocked exoskele-
ton are manually placed by a third person (e.g., the caregiver)
at N different positions in the reachable workspace that can
be reached with the arm attached to the exoskeleton. Since
nine parameters need to be identified, N ≥ 9 positions must be
visited. The reachable workspace is at first defined by the for-
ward kinematics of the exoskeleton. However, this space may
be furthermore limited by insufficient NMES-induced muscle
force.

For each hand position i, the corresponding joint angles (ϑu,i,
ϕu,i, ϑf ,i) are measured together with the hand position vector

pk
h,i =

[
xk

h,i yk
h,i zk

h,i

]T
, (4)

which is recorded by the environmental sensor in the Kinect
coordinate frame.

The unknown parameter vector � = [lu lf ϕf φ θ ψ tk
T
]T

is
estimated by minimizing a quadratic cost function

�̂ = arg min
�

(
1

2

N∑
i= 1

eie
T
i

)
(5)

where

ei : =
(− (luR(ϑu,i, ϕu,i)+ lf R(ϑu,i, ϕu,i)R(ϑf ,i, ϕf )

)
ez
)

︸ ︷︷ ︸
pg

h,i,FK

−
(

Rk(φ, θ, ψ) · pk
h,i + tk

)
︸ ︷︷ ︸

pg
h,i,Kinect

(6)

is the error between the hand position p
g
h,i,FK, obtained by the

forward kinematic model (1), and the hand position p
g
h,i,Kinect,

obtained from the transformed Kinect measurements, both in
global coordinates. The minimization of the cost function is
achieved by the Gauss-Newton method with analytically calcu-
lated gradients.

2.5. CONTROL SYSTEM
All NMES generated arm movements are initiated by com-
mands received from the high level control system, the
Central Controller (CC), which processes, among others, the
information collected by the eye-tracker. The CC movement
commands are:
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1. Move hand to a desired 3D position,
2. Change the angle of shoulder flexion/extension by a certain

amount, and
3. Change the angle of elbow flexion/extension by a certain

amount.

Each command emits an event causing a state transition in a
finite state-machine on the real-time control system, which then
performs the actual movement.

Based on the elementary movement commands outlined
above, complex movement sequences are possible by a combina-
tion of multiple commands issued in series. An example for the
drinking use case is outlined in Figure 5.

In this study, the hand movements were performed voluntarily
by the subject. In the complete MUNDUS system, two alternative
solutions to support hand functions have been proposed: a hand
neuroprosthesis and a robotic hand orthosis (Pedrocchi et al.,
2013). The hand neuroprosthesis deploys a new stimulation sys-
tem for array electrodes (Valtin et al., 2012) in order to produce
precise finger movements. However, the description of these hand
modules is outside the scope of this study.

It should be noted that the straight lines shown in the center
of Figure 5 do not represent the actual trajectories of the hand.

The actual generation of a movement between two points by the
real-time controller will be described in the next section.

2.5.1. Sequential real-time control strategy
The real-time control system internally controls the angles of the
exoskeleton. Therefore, whenever a command is issued by the
CC, new angular references are determined by the real-time con-
trol system. This calculation involves, if required, also stored
old angular references from the last movement and the inverse
exoskeleton kinematics. The resulting reference angles of the jth

command are r
j
ϑu

, r
j
ϕu , and r

j
ϑf

for the shoulder ab-/adduction,

the horizontal shoulder rotation, and the elbow flexion/extension,
respectively.

Sequential feedback control is used to adjust the stimulation
intensities (pulse charges) in order to drive the hand to desired
positions in the reachable work space. Each DoF is controlled
separately, one after the other while all other DoFs are locked
by the exoskeleton brakes. This results in a fully decoupled sys-
tem with regard to crosstalk between the DoFs. For this reason, a
light model with few parameters can be used for each controller
design, which dramatically reduces the effort for parameter iden-
tification. Each movement to a given 3d position is divided into
three consecutive steps:

FIGURE 5 | The state automaton inside the MUNDUS Central

Controller (CC) to realize the drinking use case starting from an

arm rest position and returning to this position again. The states
(S3, S5, S7, S9, S10, S12, S14, S15) with arm movements trigger a
state machine inside the real-time arm NMES control module (cf.

Figure 6). The references for the rest position as well as for the
mouth position may be stored in the MUNDUS CC as angular
references during the system calibration phase. The object position is
online determined by the Kinect system by tracking a green marker
on the object handle.
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FIGURE 6 | Real-time arm NMES control system shown in form of a

hybrid system combining a state automaton and continuous

controllers: state transitions are indicated by black bold arrows,

while continuous signals are represented by colored thin arrows.

Not shown are short periods (states) between the activations of the
individual controllers in which all brakes are locked and the respective
initial stimulation intensities are adjusted for the next controller
activation.

1. control of the shoulder flexion/extension,
2. control of the shoulder horizontal rotation and
3. control of the elbow flexion/extension.

The real-time arm NMES controller is a hybrid control sys-
tem combining a state automaton and continuous-time feedback

controllers to reach the desired angle subsequently for each DOF
(cf. Figure 6).

2.5.2. Shoulder flexion/extension control
For the shoulder flexion/extension, a discrete-time controller
based on an identified pulse transfer-function model is employed.
The control design uses the well-known pole-placement method
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in polynomial form (Astrom and Wittenmark, 1996). For the jth
activation of the controller, the relation between the stimulation
intensity ν

j
d,m of medial deltoid and the shoulder elevation angle

ϑ
j
u can be approximately described by a second order autore-

gressive with exogenous input (ARX) model (Ljung, 1999) of the
form

ϑ
j
u(k) = B(q)

A(q)
ν

j
d,m(k)+ q2

A(q)
e j(k),

v d,m ≤ ν
j

d,m(k) ≤ νd,m, k ≥ 0, (7)

where k is the sample index, ej(k) represents white noise, and

B(q) = b0,

A(q) = (q2 + a1q+ a2)q4

are polynomials of the forward-shift operator q (qs(k) = s(k +
1)). This model possesses an input-output time delay of six sam-
pling instants, which is typically observed in the recorded I/O
data. The used sampling frequency is 25 Hz and equals to the
stimulation frequency. During the system calibration, the coef-
ficients of the polynomials are estimated from a recorded input
step response (changing νd,m from (νd,m + 0.2(νd,m − νd,m))
to (νd,m + 0.8(νd,m − νd,m))) using the instrumental variable
method (Ljung, 1999).

Based on the obtained model, a polynomial controller of the
form

ν
j
d,m(k) = S(q)

R(q)(1− q)

(
T(q)

S(q)
r

j
ϑu
− ϑ

j
u(k)

)
(8)

is designed with the controller polynomials R(q), S(q), and
T(q). Figure 7 shows the corresponding closed-loop system.
The controller has integral action [factor (1− q) in (8)].
This enables the rejection of constant and slowly vary-
ing disturbances and compensates the effects of muscu-
lar fatigue. The coefficients of the controller polynomials
R(q) and S(q) are chosen to obtain a desired characteristic
polynomial

Acl(q) = (1− q)R(q)A(q)+ S(q)B(q) (9)

the roots of which are equal to the closed-loop system poles and
should be stable and well damped. For the given system and con-
troller with integrator, the minimal degree controller is given by

FIGURE 7 | Closed-loop system with discrete-time polynomial

controller.

deg (S) = 6, deg (R) = 5 and deg Acl = 12. A common approach
is to factorize Acl(q) as follows:

Acl(q) = Acl,1(q)Acl,2(q)q8 (10)

where Acl,1(q) and Acl,2(q) are second order polynomials spec-
ified via rise-time tr,i and damping factor Di (i = 1, 2) of cor-
responding continuous-time second order systems. Eight of the
twelve closed-loop poles are located at the origin (fastest possible
mode in discrete-time). The pre-filter polynomial is set to

T(q) = Acl,2(q)q4Acl,1(1)/B(1). (11)

This yields a unity DC gain from the reference input r
j
ϑu

to

the system output ϑ
j
u . Furthermore, it cancels six closed-loop

poles defined by Acl,2(q)q4. The resulting transfer function of the
closed-loop system is then:

ϑ
j
u(k)

r
j
ϑu

(k)
= T(q)B(q)

Acl(q)
= Acl,1(1)B(q)

q4Acl,1(q)B(1)
. (12)

As a result, only the poles defined by the roots of q4Acl,1(q)
influence the system dynamics with respect to changes in the ref-
erence signal. The disturbance rejection and noise properties of
the closed-loop system, however, are depending on all closed-
loop poles defined by Equation (10). At first, the rise-time and
damping factor for Acl,1 are selected to obtain a desired refer-
ence tracking behavior. Then the rise-time and damping factor
of Acl,2 are iteratively tuned to yield satisfactory noise sensitivity
and disturbance rejection (verified by frequency response plots of
the sensitivity and the complementary sensitivity function). For
all subjects of this study, we have chosen tr,1 = 0.6 s, tr,2 = 0.5 s
and a damping factor Di = 0.999 for both polynomials.

The final controller implementation, which is shown in
Figure 8, takes the following additional aspects into account:

1. Controller initialization to apply a given constant initial stim-

ulation intensity ν
j
d, m(0) = ν

j
d, m, init .

2. Generation of a smooth reference trajectory r
j
ϑu,f (k) that

guides the arm from the initially measured angle ϑ
j
u(0) to the

given target angle r
j
ϑu

of the activation j.
3. Avoidance of integrator windup for control signals violating

the constraint νd,m ≤ ν
j
d,m(k) ≤ νd,m by using the standard

anti-windup scheme proposed in Astrom and Wittenmark
(1996) with the anti-windup observer polynomial Aaw(q) =
Acl,2(q)q4 .

The initial stimulation intensity ν
j
d,m,init is adjusted in order to

avoid undesired movements when the controller is activated.
Thus, before the controller activation and the brake release, the
stimulation intensity is increased up to the value which was used
before locking the DoF. The ramp-up period lasts about 1.5 s.
Furthermore, to avoid unwanted initial transients caused by the

controller transfer functions, the initial joint angle ϑ
j
u(k = 0) at
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FIGURE 8 | Implementation of the shoulder extension/flexion

controller including an anti-windup observer with R(q) = (1 − q)

R(q), a trajectory generator and an adjustable initial stimulation

intensity ν
j
d,m,init . The parameters of the saturation function are

ν
j
d,m = νd,m − ν

j
d,m,init and ν

j
d,m = νd,m − ν

j
d,m,init for νd,m ≤ ν

j
d,m,init ≤

νd,m.

controller activation is acquired and then subtracted from the

joint angle measurement ϑ
j
u(k) and the output of the trajectory

generator.

2.5.3. Trajectory generation
To obtain smooth shoulder flexion/extension movements, the ref-
erence trajectory r

j
ϑu,f (k) for each activation j is chosen to be a

sinusoidal reference path starting at ϑ
j
u(0) and converging to the

desired target angle r
j
ϑu

:

r
j
ϑu,f (k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϑ
j
u(0) for 0 ≤ k < N1

1
2

(
1− cos

(
πk−N1

2N

))
·(

r
j
ϑu
− ϑ

j
u(0)

)
+ ϑ

j
u(0)

for N1 ≤ k ≤ N2 = N1 + N

r
j
ϑu

for k > N2 = N1 + N

.

The parameter N1 = 69 describes the amount of samples (cor-
responding to 2.76 s) before the sinusoidal shape starts, and N
denotes the number of samples for the transient part of the tra-
jectory and is set to 150 (corresponding to 3 s). After the sample

N2 = N1 + N, the reference trajectory is equal to r
j
ϑu

. Then, the
controller will be deactivated and the brake will be locked as soon
as one of the following conditions is fulfilled:

• The absolute error |rj
ϑu
− ϑ

j
u(k)| is less than 1◦.

• The control signal ν
j
d,m(k) was continuously saturated for more

than 2 s.
• The controller was active for more than 15 s (time-out event).

Once the target is reached, the current value of stimulation inten-
sity is stored and the controller of the shoulder flexion/extension
is deactivated.

2.5.4. Shoulder horizontal rotation control
The control of the shoulder horizontal rotation involves the stim-
ulation of the anterior (for inward rotation) and the posterior (for

outward rotation) deltoid. Thus, the following switching control
law is used

ν
j
d,a =

{
u

j
r if u

j
r > 0

0 if u
j
r ≤ 0

(13)

ν
j
d,p =

{
−u

j
r if u

j
r < 0

0 if u
j
r ≥ 0

, (14)

which introduces a mapping of one single virtual actuation vari-

able u
j
r ∈ [−νd,p, νd,a] to the two stimulation intensities ν

j
d,a and

ν
j
d,p for the jth controller activation.

The virtual actuation variable u
j
r is the output of an integral

controller with constant integration slopes and is given by

u
j
r(k + 1) = sat−νd,p,νd,a

(
u

j
r(k)+ cr sgn (r

j
ϕu − ϕ

j
u(k))

)
, u

j
r(0) = 0,

where the positive gain cr is set to 0.3 µ as in this study. To avoid
integrator windup, a saturation function

sat
b1,b2

(x) :=
⎧
⎨
⎩

b1 if x ≤ b1

x if b1 < x < b2

b2 if b2 ≤ x

(15)

is used in the integral control law. This prevents the integrator
from exceeding the constraints for the actuation variable.

Conditions for the deactivation of the controller and the sub-
sequent locking of the brake are in analogy to the ones given in
Section 2.5.2.

2.5.5. Elbow extension/flexion control
The control of elbow extension/flexion is similar to the horizon-
tal shoulder rotation control, but only one muscle, the biceps, is
stimulated in order to induce elbow flexion. Downward move-
ments of the forearm (extensive movements) are caused by grav-
ity. The stimulation intensity will be linearly increased/decreased
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with the absolute slope rate ce = 6.7 nAs in each sampling
instance until the desired angle is achieved. The following integral
controller, which also includes an anti-windup strategy, is used:

ν
j
b(k + 1) = sat

0,νb

(
ν

j
b(k)+ ce sgn

(
r

j
ϑf
− ϑ

j
f (k)

))
, ν

j
b(0) = ν

j
b,init .

(16)

Here, j represents again the jth activation of the controller. The

initial stimulation intensity ν
j
b,init is adjusted in order to pre-

vent the forearm from rapidly falling down when the controller
is activated and the brake is released. Thus, before the controller
activation, the stimulation intensity is increased up to 50% of
the stimulation intensity achieved at the end of the previous
activation phase of the elbow controller. The ramp-up phase
lasts 1 s.

Conditions for the deactivation of the controller and the sub-
sequent locking of the brake are in analogy to the ones given in
Section 2.5.2.

2.6. VALIDATION OF THE CONTROL SYSTEM
The control system was validated in five healthy subjects (three
female and two male), aged 29–40 years (mean± SD 34.5± 5.3).
Average weight was 61± 17 kg. The drinking task was selected to
evaluate the performance of the system. Each subject was asked
to be completely relaxed during the arm movements entirely
induced by the system. At the hand related steps of the proce-
dure, he/she was asked to voluntarily open and close the hand in
order to grasp and release the cup. Each subject repeated the trial
five times. Before the beginning of the trials, the exoskeleton as
well as the amount of gravity compensation were adjusted to the
anthropometric measures of each subject. Then, the system was
calibrated performing the following steps:

• Set the stimulation parameters (Section 2.3),
• Determine the parameters of the kinematic model and coordi-

nate transformation (Section 2.4),
• Tune the discrete-time controller of the shoulder flex-

ion/extention by means of an experimental session aimed at
model identification (Section 2.5), and
• Teach-in the rest position and the in-front-of-mouth position.

The experimental protocol was approved by the ethical commit-
tee of the Valduce Hospital (Italy) where the validation trials have
been performed. All subjects signed a written informed consent.

To evaluate the performance of the system, the positioning
error between the target position and actually reached position
at the completion of each movement command was computed
for the hand positions 1 to 8 shown in Figure 5. Two sets of posi-
tioning errors were calculated since two different methods were
used to derive the actual position in the global coordinate system:
(1) the measured angles were applied to the forward kinematic
model; (2) the actual position measured by the Kinect was trans-
formed in the global coordinate system. Furthermore, the time
needed to execute all movement commands during the drinking
task was computed.

3. RESULTS
Figure 9 exemplarily shows the recorded angles together with
their active references (bands), the applied stimulation intensi-
ties and the states of the brakes. Vertical, dashed lines separate
the time periods of the controlled arm movements that have been
introduced and numbered in Figure 5. The stimulation intensities
νd,a, νd,m, νd,p, and νb are normalized to their bounds [0, νd,a],
[νd,m, νd,m], [0, νd,p], and [0, νb], respectively. The control sys-
tem is performing well in moving the arm such that the joint
angles are close to the reference angles. However, in this exam-
ple, an unwanted slipping of the horizontal shoulder brake can be
observed after 43, 80, 92, and 106 s that causes the shoulder hori-
zontal rotation angle ϕu to drift away from the previously reached
target angle. Figure 10 shows the desired arm posture at the end-
ing of every controlled arm movement in comparison to the real
arm position achieved by NMES. The error caused by slipping is
clearly visible for the instances of time 2∗, 4∗, 6∗, and 7∗, which
represent the endings of the corresponding movements defined in
Figure 5.

The five trials of the drinking task were successfully com-
pleted by all subjects. For each subject, Table 2 reports the mean
and standard deviation values of the position errors in xg/yg/zg-
directions obtained during the five trials of the drinking task.
The controller performance obtained in the two most important
reaching subactions, i.e., reaching the object and reaching the
mouth, and the overall performance obtained by averaging the
results obtained in all of the eight target positions are shown in
Table 2. The Euclidian norm (i.e., the mean distance error) of the
mean positioning error vectors has been calculated from data in
Table 2 and is reported in Table 3. The mean distance error for all
subjects and positions was less than two centimeters when using
the exoskeleton angles to determine the hand position. Based on
the Kinect measurements, the observed mean distance error is
smaller than five centimeters. For the majority of subjects (B–E),
a relatively large mean (systematic) error in the xg-direction of
up to 12 cm are observed for the object position (cf. Figure 5),
resulting in a mean distance of about 8 cm (see Table 3). Subject
D obtained a large standard deviation for the object positioning
error in xg-direction (see Table 2). A larger discrepancy between
the errors based on the exoskeleton sensors and the Kinect can be
observed for the mouth position in subjects C–E.

Additionally to positioning error analysis, the validity of the
identified kinematic model and coordinate transformation is
investigated for each individual subject. For the twelve positions
chosen during the kinematic model calibration, we calculated the
3D position of the hand in two ways using the found kinematic
model parameters: At first by applying the kinematic model to
the measured exoskeleton joint angles and second by transform-
ing the Kinect measurements into the global coordinate system.
Then, over all twelve positions the RMS of the distance error
between the two estimates for the hand positions is calculated.
The results are shown in Table 2.

The mean values averaged over five trials of the observed time
durations for all sub movements and for each subject are reported
in Table 4. Each individual sub movement is indicated by a num-
ber previously introduced in Figure 5. Additionally, the mean
values for the total time required to complete a full drinking
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FIGURE 9 | Exemplary results of the application of the developed control

system to one healthy subject. The transient behavior for one trial of the
described drinking task is shown. The numbers on the vertical dashed lines in
the third subplot indicate the begin (without star) and end (with star) of the
eight arm movements defined in Figure 5. In the first subplot, the active
reference angles (bold colored lines with black surrounding) are shown along
with the measured angles. In the figure, the colors blue, green and red

correspond to the elbow-joint, shoulder flexion/extension and shoulder
horizontal rotation, respectively. In the middle subplot, the applied stimulation
intensities are presented. The state of the brakes is plotted in the bottom
subplot. An individual controller for one DOF is only active for time periods in
which a reference trajectory is plotted for the corresponding angle.
Theoretically, angles should not change in periods in which no corresponding
reference trajectories are plotted due to active brakes.

task (only time durations wherein the controller was activated are
counted) are reported per subject. The average time for the exe-
cution of all eight arm movement commands was 71.4 s. The total
time for donning the system on and for calibration was less than
10 min for every subject (calibration alone required about 2 min).

4. DISCUSSION AND CONCLUSIONS
The experimental evaluation shows that the feedback control of
the hybrid NMES-exoskeleton system is feasible. Compared to the
results presented in Freeman et al. (2012), no learning phase was
required to achieve the desired functional movements. Overall,
the evaluation shows that it is possible to support the user in
performing the drinking task. Because the drinking task was con-
sidered the most complex one, we conclude that other tasks are
supported with similar effectiveness.

The observed small position errors at the mouth might be
corrected by minor head movements to allow the drinking from
the cup by means of a straw. When positioning the hand above

the object (i.e., the cup handle), in xg-direction larger errors
were observed compared to other directions. But due to the large
dimension of the cup handle, the ability to grasp the handle was
not restricted. The limited accuracy for placing the hand at objects
restricts the possible size and number of objects on the table.
Reasons for the observed errors are diverse. One major problem
observed is the limited braking torque of 2.5 Nm for the horizon-
tal shoulder rotation that sometimes cannot prevent unwanted
slipping. Despite careful placement of the stimulation electrodes,
it cannot be avoided that a stimulation of the Deltoid, medial
head, generates (besides a desired shoulder extension moment)
an unwanted horizontal shoulder rotation moment. If the lat-
ter exceeds the torque of the locked horizontal shoulder rotation
brake, then slipping occurs for this DoF. With the arm pointing
forward, an error in the shoulder horizontal rotation leads to a
large hand error in the xg-direction, especially for the extended
arm. In future research, the use of array electrodes for the deltoid
muscle might be an option to achieve a more selective stimulation
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FIGURE 10 | Static arm postures for one trial of the described

drinking task. Shown are the desired arm postures and the actually
obtained ones for the endings of the eight arm movements defined

in Figure 5. The upper body is indicated in green while the right
arm is pointing forwards. The table in front of the subject is
illustrated in blue.

and to avoid such unwanted stimulation effects and slipping.
Another solution is to increase the brake torque by re-designing
the exoskeleton.

Even when moving to a position given in Cartesian coordi-
nates, the real-time control system is based on angular control.
The position errors determined by the exoskeleton angles are
purely related to the control system. The errors determined by
the Kinect measurements additionally take problems into account
that are related to the used kinematic model and coordinate
transformations. The current controller design assumes that the
exoskeleton/arm-combination represents a rigid body system.
This is certainly only an approximation. Moreover, for the calibra-
tion of the kinematic model and the coordinate transformation,
the arm/hand is moved by an assisting person to twelve arbitrar-
ily chosen different positions in the workspace. Compared to the
later use with NMES, no loading/deformation of the exoskeleton
by the arm weight takes place. Any deviation from the rigid body
assumption causes a position error due to the use of an incor-
rect forward kinematics. Such an error can only be detected by
an external measurement system, like the Kinect, and not by the
exoskeleton’s internal angle sensors. The larger errors computed

from the Kinect measurements compared to the one derived from
the exoskeleton sensors are therefore an indicator that the rigid
body system assumption is only an approximation.

A shortcoming of the developed system is that elbow extension
and shoulder flexion are only induced by gravity. This requires a
carefully adjusted weight compensation. Any overcompensation
of the weight could drive the arm movement into a dead lock.

Huge advantages of the employed control strategy are its
robustness and its simple adaptation to new users/sessions. Only
a simple single-input single-output dynamical model needs to be
identified for the adaptation of the controller. For all subjects,
the same tuning parameters, like rise times and damping factors,
have been used for the automatic design of the shoulder exten-
sion/flexion controller. In addition to this, the same gains have
been applied to the controllers of shoulder horizontal rotation
and elbow flexion/extension in all subjects. Due to automated and
guided procedures, the system can be set up in a few minutes for
the individual user. All individual NMES controllers for the three
DoFs include an integrator which allows for the compensation
of muscular fatigue as long as the stimulation intensities do not
saturate. No deterioration of control performance was observed

www.frontiersin.org September 2014 | Volume 8 | Article 262 | 56

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Klauer et al. Feedback control of arm movements

Table 2 | Mean positioning errors along with their standard deviations in xg/yg/zg-direction for five drinking task sequences per subject

measured via the exoskeleton sensors and via Kinect.

Subject RMS [cm] error of Mean positioning errors (SD) in xg/yg/zg-direction [cm]

(Healthy) Kinematic model

calibration All positions Mouth Object

Via exo Via Kinect Via exo Via Kinect Via exo Via Kinect

A 0.4 0.4 (1.8)/
−0.1 (0.8)/
−0.1 (2.1)

1.0 (2.2)/
−0.0 (1.2)/

1.4 (2.5)

−0.3 (0.5)/
−1.3 (0.2)/

1.0 (0.3)

1.3 (0.6)/
−0.6 (1.0)/

0.8 (1.0)

−0.4 (0.9)/
−0.8 (0.5)/
−2.5 (1.6)

0.0 (0.7)/
−0.9 (0.7)/
−1.1 (0.9)

B 1.8 0.6 (7.9)/
1.8 (4.8)/
−0.2 (3.2)

−1.4 (6.7)/
3.0 (4.3)/
2.0 (3.9)

−4.8 (5.9)/
−0.1 (1.2)/

0.8 (2.0)

−0.38 (1.3)/
1.0 (1.3)/
−0.1 (5.0)

−5.5 (5.1)/
0.4 (0.7)/
1.3 (2.0)

−5.6 (2.1)/
2.1 (0.6)/
5.1 (2.8)

C 1.4 −1.4 (9.7)/
1.3 (3.9)/
−2.1 (3.6)

−3.2 (9.1)/
1.5 (3.9)/
1.4 (3.9)

1.3 (1.2)/
−0.6 (0.2)/
−0.3 (0.3)

−5.0 (1.0)/
1.2 (1.4)/
−3.0 (1.0)

−9.6 (2.1)/
1.8 (1.4)/
−1.3 (3.8)

−8.6 (1.4)/
2.0 (1.1)/
2.0 (2.0)

D 1.4 −0.1 (4.8)/
−0.6 (1.4)/
−0.4 (1.9)

−0.7 (5.4)/
−1.5 (3.5)/

4.5 (3.3)

−0.4 (0.3)/
−2.1 (0.4)/

0.2 (0.3)

−3.4 (0.6)/
−8.9 (0.9)/

4.2 (0.3)

−6.3 (10.0)/
−0.8 (0.4)/
−2.3 (0.2)

−6.5 (9.2)/
0.1 (0.3)/
1.3 (0.6)

E 1.7 −1.0 (6.9)/
1.3 (4.0)/
0.6 (2.6)

−2.8 (5.1)/
2.4 (3.8)/
3.2 (4.0)

2.5 (1.3)/
−1.1 (0.2)/
−0.7 (0.1)

−5.5 (1.5)/
−0.9 (0.3)/
−3.7 (0.1)

−12.6 (0.5)/
1.3 (0.2)/
2.1 (0.3)

−7.0 (3.1)/
2.5 (0.4)/
5.1 (0.5)

Table 3 | Euclidean norm (distance) of the mean positioning error

vector given in Table 2.

Subject Euclidean norm of the mean positioning error

(healthy) vector [cm]

All positions Mouth Object

Via Via Via Via Via Via

exo Kinect exo Kinect exo Kinect

A 0.4 1.7 1.7 1.7 2.7 1.4

B 1.9 3.8 4.9 3.9 5.6 7.8

C 2.8 3.8 1.5 5.9 9.9 9.1

D 0.8 4.8 2.1 10.4 6.8 6.7

E 1.8 4.9 2.8 6.7 12.9 9.0

Mean (SD) 1.5 (1.0) 3.8 (1.3) 2.6 (1.4) 5.7 (3.3) 7.6 (3.9) 6.8 (3.2)

for the healthy subjects during the five performed trials and from
day to day. All these advantages have to be paid by the fact
that the movements do not look very physiological and move-
ment sequences are not time optimal (cf. Table 4). However,
we hypothesize that this fact is of minor importance for final
users, and that the guaranteed functionality overbalances the tim-
ing issue for this assistive technology. The personal experience
of performing all movements by means of the own muscles is
the major advantage compared to robotic approaches for assis-
tance of reaching function (e.g., Maheu et al., 2011). Regular
use of the proposed arm neuroprosthesis and, consequently,
of the patient’s musculature will be health promoting. It will

increase muscle strength and might also improve cardiovascular
fitness.

In summary, a feedback controlled hybrid NMES-exoskeleton
which does not require any residual function at the shoulder and
arm level was developed. By combining NMES with the passive
exoskeleton for partial arm weight support, muscular fatigue can
be significantly reduced since the required amount of muscular
force is smaller compared to normal movements. The use of elec-
trically lockable joints reduces the onset of muscular fatigue even
further because no muscle function is required to hold the desired
position.

The presented study was focusing on the achievable con-
trol system performance, which was expected to be maximal for
healthy individual due to non-atrophied muscles and the absence
of spasticity. During the development of the system, a first test
involving one incomplete SCI subject (C4/C5) was performed
and showed that the system supported the subject in reaching
a cup and bring it to the mouth. The results of this test have
been previously published (Pedrocchi et al., 2013). Tests of the
final feedback controller on a group of SCI subjects will be per-
formed to observe the feasibility of the system in supporting daily
life activities. To obtain successful results, an initial conditioning
phase in order to assure that NMES is able to induce some mus-
cle force, and a longer familiarization phase with the system, are
envisaged.
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Table 4 | Mean time durations along with their standard deviations for each sub movement defined in Figure 5 and each subject.

Sub movement Mean time durations (SD) [s] for the subjects A–E Mean [s]

A B C D E

1 11.2 (0.16) 7.8 (0.22) 13.1 (1.08) 8.4 (0.17) 9.2 (0.27) 9.9

2 7.5 (0.24) 6.0 (0.35) 4.5 (0.05) 8.5 (0.50) 6.0 (0.11) 6.5

3 12.2 (0.39) 11.9 (1.26) 15.6 (0.60) 11.7 (0.14) 16.8 (0.90) 13.6

4 2.3 (0.05) 12.5 (0.49) 5.2 (0.79) 1.7 (0.04) 10.1 (0.40) 6.4

5 10.1 (0.76) 9.6 (0.51) 12.1 (0.71) 13.0 (0.81) 10.1 (0.73) 11.0

6 7.9 (0.57) 3.1 (0.93) 4.9 (0.51) 5.5 (0.29) 3.7 (0.25) 5.0

7 8.2 (0.20) 12.2 (0.61) 9.6 (0.57) 9.4 (0.22) 10.8 (0.91) 10.0

8 9.1 (0.42) 9.7 (0.61) 7.9 (0.15) 6.6 (0.29) 11.6 (0.78) 9.0

Mean of total time

duration (SD)

for five trials [s] 68.3 (2.3) 72.8 (7.8) 73.1 (13.5) 64.8 (8.7) 78.3 (11.1) 71.4 (5.1)
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Accurate models of proprioceptive neural patterns could 1 day play an important role
in the creation of an intuitive proprioceptive neural prosthesis for amputees. This paper
looks at combining efficient implementations of biomechanical and proprioceptor models
in order to generate signals that mimic human muscular proprioceptive patterns for future
experimental work in prosthesis feedback. A neuro-musculoskeletal model of the upper
limb with 7 degrees of freedom and 17 muscles is presented and generates real time
estimates of muscle spindle and Golgi Tendon Organ neural firing patterns. Unlike previous
neuro-musculoskeletal models, muscle activation and excitation levels are unknowns
in this application and an inverse dynamics tool (static optimization) is integrated to
estimate these variables. A proprioceptive prosthesis will need to be portable and this is
incompatible with the computationally demanding nature of standard biomechanical and
proprioceptor modeling. This paper uses and proposes a number of approximations and
optimizations to make real time operation on portable hardware feasible. Finally technical
obstacles to mimicking natural feedback for an intuitive proprioceptive prosthesis, as well
as issues and limitations with existing models, are identified and discussed.

Keywords: proprioceptive feedback, neuroprosthesis, neuromusculoskeletal model, upper limb, biomechanics,

muscle spindles, golgi tendon organ, static optimization

1. INTRODUCTION
A device capable of giving an amputee a sense of feeling back
from their prosthetic limb could help millions of people live hap-
pier, more productive lives (Blank et al., 2010; Weber et al., 2012).
Graded sensory feedback of almost any sort could feasibly provide
the user with proprioceptive information about their prosthesis,
and haptic, visual, auditory, vibratory and electrocutaneous feed-
back have all been explored (Clippinger et al., 1974; Ohnishi et al.,
2007). However, sensory substitution methods such as these, par-
tially deprive the user of another of their senses and suffer from
long training periods and high cognitive load as they require
the user to learn and interpret the information encoded by the
feedback stimuli. Despite decades of experimentation, sensory
substitution has not seen significant clinical application (Ohnishi
et al., 2007) and it is an approach that is likely to be increasingly
difficult to implement in future as prosthesis complexity increases
and the quantity of feedback increases correspondingly.

Direct neural feedback in the form of a neural prosthesis has
the potential to provide high quality and intuitive feedback. The
incredible capability of neural prostheses to transform lives has
already been vividly demonstrated in recent years by the rise of
cochlear implants for the deaf and the tantalizing progress in
retinal implants for the blind. A proprioceptive prosthesis on
the other hand could in theory provide a user with feedback
of their limb’s position, motion and the forces it is exerting,
as well as potentially providing therapeutic benefit for phantom
limb issues (Dhillon and Horch, 2005) and a number of groups

worldwide are working on developing just such a device (Dhillon
and Horch, 2005; Hsiao et al., 2011; Weber et al., 2012; Williams
and Constandinou, 2013b).

The ideal for a sensory neural prosthesis would be to mimic
naturally occurring neural patterns and stimulate the appropriate
neurons with those patterns—providing the user with compre-
hensive feedback that is as intuitive as possible. However, major
obstacles remain to be overcome (see section 4.1), and it seems
likely that neural prostheses will rely on the brain’s ability to
interpret limited and abnormal feedback for some time yet.

Mimicking the function and signals of specialized neurons
is an active area of focus for cochlear and retinal prostheses in
order to enhance the user’s ability to interpret the feedback. The
brain’s ability to adapt and learn is impressive, but fitting in with
its pre-existing neural processing may offer better performance.
However, this progression, (from simple graded stimulation to
systems of modulation that mimic natural patterns) has not yet
been addressed for proprioception, despite tantalizing indications
that limited but appropriate neural stimulation can generate limb
state representations in the brain (Weber et al., 2011).

The aim of this paper is to create a real time model of pro-
prioceptive signals from specific receptors to demonstrate its
feasibility and to support future work investigating the possible
benefits of mimicking natural signals. Our concept for developing
a proprioceptive prosthesis for a transhumeral amputee is shown
in Figure 1 and involves mapping the motion of a prosthetic onto
a model of the human arm so that equivalent representations
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FIGURE 1 | Proprioceptive prosthesis concept. Crosshatched area
indicates the part of the system presented here.

of muscle, tendon and receptor modulation can be calculated.
Section 4.1 discusses this approach and looks at some of the
issues involved. This paper will focus on the processing element—
creating an efficient model to convert data from sensors on a
prosthetic limb into estimates of proprioceptive neural signals
from muscle spindles and Golgi Tendon Organs (GTOs).

In the human body the generation of proprioceptive neu-
ral signals is implicitly linked with musculoskeletal biomechan-
ics as well as muscle and proprioceptor dynamics (Proske and
Gandevia, 2012). The neural signal generation in our propriocep-
tive prosthesis is likewise based on these three factors and shares
much in common with neuro-musculoskeletal models developed
for research in the field of human motor control (Lan et al., 2005;
Frigon and Rossignol, 2006; Koo and Mak, 2006; Song et al., 2008;
Colacino et al., 2010).

The integration of sensory feedback models with represen-
tations of musculoskeletal components is still a relatively new
field and most publications have focused on the lower limb
and locomotion. Upper limb models considering only 1 degree
of freedom have previously been proposed (Lan et al., 2005;
Koo and Mak, 2006; Colacino et al., 2010) and a more com-
plex 3 degree of freedom, 15 muscle “Virtual Arm” model cov-
ering shoulder and elbow joints was proposed by Song et al
in Song et al. (2008). These studies focus on understanding
limb motion and control and therefore simplifications and qual-
itative representations of proprioceptive signals are used which
are unlikely to be suitable for implementation in a proprio-
ceptive prosthesis due to limitations that include: using models
fitted to feline firing patterns despite much lower observed fir-
ing rates in humans; using individual receptor or ensemble firing
patterns interchangeably even though there may be multiple
orders of magnitude difference between the two; and using sim-
ple piecewise linear approximations to population firing rates
that do not capture the observed dynamics or non-linearities of
proprioceptive receptors. These models also have muscle acti-
vation or excitation as inputs, and limb movement as the out-
put. However, in a proprioceptive prosthesis the situation is

reversed with limb movement as an input and muscle acti-
vation an unknown. Therefore, despite the similarities in the
underlying sub-models, the final model implemented here differs
substantially.

The addition of static optimization (an inverse dynamics tool)
is proposed to estimate muscle forces and activations. However,
standard implementations are computationally demanding—
unsuited to the real-time, portable, and low-power nature of
a proprioceptive prosthesis—and as such approximations are
proposed to address this.

Numerous models of muscle spindles have been proposed
in the literature [see Prochazka and Gorassini (1998) and
Mileusnic et al. (2006a) for review]. Here the anatomically
derived Mileusnic et al muscle spindle model (Mileusnic et al.,
2006a) will be used and adjusted to fit human spindle firing
rates for a variety of muscles in the upper limb. The model is
relatively computationally intensive and as such an approxima-
tion to this model will be proposed to reduce the computational
load.

There are relatively fewer GTO models in the literature
[see Mileusnic et al. (2006b) for review]; here the model described
in Lin and Crago (2002) (based on a transfer function model by
Houk and Simon) was selected for implementation. A method to
fit this model to human data and adjust the model according to
optimal isometric muscle strength is proposed.

This paper proposes a system for modeling ensemble aver-
age proprioceptor signals (see section 4.1 for discussion of this
approach) for a simplified representation of the upper limb
with 7 degrees of freedom and 17 muscles. Approximations
to existing models and tools are proposed with the aim of
creating a real time system capable of running on portable
hardware.

2. MODELS AND METHODS
The system described here is shown in Figure 2 and broadly con-
sists of biomechanical modeling combined with two previously
described proprioceptor models. The sensor data from the pros-
thetic limb consists of joint angles and torques mapped onto the
joints of the modeled human limb; the role of the biomechanical
modeling is to convert this data into estimates of muscle length
and force. These parameters are in turn converted by the receptor
models into estimates of neural firing patterns.

2.1. MUSCULOSKELETAL MODEL
2.1.1. Skeletal structure
The biomechanical modeling is underpinned by data from a 3D
musculoskeletal model of the upper limb in OpenSim (Delp et al.,
2007). The OpenSim model used here is a reduced form of the
Stanford VA Upper Limb model which is based on the measure-
ments and proposals in Holzbaur et al. (2005). The reduced form
of the model is shown in Figure 3 and consists of the follow-
ing skeletal elements: thorax, sternum, scapula, clavicle, humerus,
radius, ulna, wrist bones and 2nd to 5th metacarpals. Mass and
inertial properties were obtained from Chandler et al. (1975) and
Winter (2009) and the mass and inertia of the not-included finger
and thumb segments were approximated as a lumped mass at the
center of gravity of the hand.
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FIGURE 2 | The models presented here: (A) overall system model; (B) static optimization model—(∗) indicate state variable values from previous

iteration. Variable labels are explained in section 2.1.3.

FIGURE 3 | The musculoskeletal model, showing the paths of the 17 muscles modeled here.

2.1.2. Joints and degrees of freedom
The model covers 7 degrees of freedom in the upper limb: 3 at
the shoulder (describing elevation angle, shoulder elevation and
shoulder rotation), 2 at the elbow (covering elbow flexion and
forearm pronation), and 2 at the wrist (covering flexion and devi-
ation). Joint kinematics and ranges of motion were unchanged
from the original model.

2.1.3. Muscle model
A standard three component dimensionless Hill type muscle
model (0◦ pennation angle) was used and scaled to fit individ-
ual muscles as proposed by Zajac (1988). This approach allows
all muscles to be modeled by the same functions with the dif-
ferences between each muscle described by only a few variables.

Normalized muscle length ( ¯LM), tendon length (L̄T), muscle force

( ¯FM) and muscle velocity ( ¯vM), were respectively calculated using:

¯LM = LM

LM
o

, L̄T = LT

LT
s

, ¯FM = FM

FM
o

, ¯vM = v M

vM
max

(1)

where LM
o is the optimal muscle length, LT

s is the tendon slack
length, FM

o is the muscle’s maximum isometric force and vM
max is

the muscle’s maximum shortening velocity. All muscle paths and
muscle insertion points are as specified in the OpenSim model.
Parameters for the muscles were obtained from the OpenSim
model and vM

max was assumed to be seven times the optimal fiber
length [a figure approximately midway between that recorded for
slow and fast twitch fibers (Brooks and Faulkner, 1988; Thelen,
2003)].
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The torque (T) produced by the 17 muscles (m) around joint
(j) is modeled as:

Tj =
17∑

m= 1

([
am · fl( ¯LM

m ) · fv( ¯vM
m )

+ fp( ¯LM
m )
]

Rm,j · FM
o,m

)
(2)

where fl, fv, and fp are functions describing the muscle’s force-
length, force-velocity, and passive force-length relationships; am

is the level of muscle activation (between 0 and 1); Rm,j is the
muscle’s moment arm around joint j; and FM

o,m is muscle m’s max-
imum isometric force. Equations for calculating force-velocity,
force-length, and passive force are as described by Thelen (2003).

2.2. BIOMECHANICAL MODELING
2.2.1. Musculotendon length and muscle moment arms
In OpenSim the musculotendon length and muscle moment
arms are calculated based on the muscle’s origin and insertion
points as well as anatomical wrapping points and constraints.
However, running a 3D model is computationally intensive.
A more efficient (although less accurate) approach based on fit-
ting a polynomial surface to the length-joint angles relationship
and another for the moment arm-joint angles relationship was
described in van den Bogert et al. (2011).

In order to determine the polynomial coefficients for this rela-
tionship, the OpenSim musculoskeletal model was swept through
the full range of motion of the various joints and at each pose the
lengths and moment arms of all the muscles were recorded. This
data was then processed in Matlab with the polyfitn function to
generate polynomial surfaces fitted to this data. The polyfitn func-
tion outputs the polynomial surface coefficients (cL

i for length
and cMA

i for moment arm) relating the musculotendon lengths

(LMT) and muscle moment arms (Rm,j) to the joint angles (qj) for
muscle m such that:

LMT
m =

NL∑
i= 1

c L
i

7∏
j= 1

q
e L
θ

j , Rm,j =
NMA∑
i= 1

cMA
i

7∏
j= 1

q
e MA
θ

j (3)

where NL and NMA are the number of polynomial terms for
length and moment arm respectively, while eL

θ and eMA
θ are

the integer exponents for length and moment arm respectively.
A cubic polynomial fit was used, therefore giving eL

θ and eMA
θ

values between 0 and 3.
The length of the muscle (LM) was calculated from the mus-

culotendon length, by subtracting an estimate of the tendon
length under tension. This estimate of tendon length was based
on the recorded strain curve of normalized tendons as described
in Thelen (2003). For efficient modeling this force strain relation-
ship was approximated by computing the equilibrium position
(removing differential equations) using a cubic polynomial fitted
to the strain curve:

L̄T = 0.04879 ¯FM
3 − 0.1009 ¯FM

2 + 0.1003 ¯FM + 1 (4)

2.2.2. Muscle activations and forces
It has been widely noted that there is redundancy in the human
musculoskeletal system and hence there is typically not a unique
combination of muscle forces to generate any particular motion.
The situation is further complicated by the fact that muscles
are often multi-articular and produce moments around each of
the joints they span. Methodologies such as static or dynamic
optimization [which rely on minimizing or maximizing some
optimization criteria (Erdemir et al., 2007)] are often used to
address this redundancy and complexity problem. Due to the real
time nature of this system, the static optimization technique will
be used here.

Probably the simplest proposed optimization criteria is to try
to minimize the total amount of muscle activation (

∑17
m= 1 am).

This approach has the advantage of being linear and hence solv-
able by fast linear programme solvers, however, this optimization
approach does not produce results that are representative of
observed patterns of muscle activation (Rasmussen et al., 2001).
There is still no clear agreement on the best optimization cri-
teria for all joints, motions and loads, however, representative
muscle activations have been produced by systems minimizing
sum of activation squared, cubed or to a higher order polynomial
(
∑17

m= 1 an
m where n is an integer greater than 1). However, solving

these criteria requires significantly higher computational power
than the linear criteria. In Rasmussen et al. (2001), Rasmussen
proposed using a min-max optimization criteria which approxi-
mates the high order polynomial, but which can be solved using
efficient linear techniques. This optimization criteria can be for-
mulated by introducing an artificial criterion variable (β):
Minimize β subject to:

am ≤ β, ∀m ∈ {1, 2, . . . 17}
0 ≤ am ≤ 1

T∗j =
17∑

m= 1

([
am · fl(L̄M

m ) · fv(v̄M
m ) + fp(L̄M

m )
]

Rm,j · FM
o,m

)
,

∀j ∈ {4, 5, 6, 7}
(5)

where, T∗j is the measured torque around joint j and the muscle
activations (am) are the variables for the algorithm.

A weakness of this optimization criteria is that once a mini-
mum β value has been calculated, the optimization process does
not try to reduce muscle activations below this value, e.g., if
muscle i needs to be fully activated (ai = 1, β = 1) there is no
optimization penalty for setting other muscles to be fully acti-
vated. To address this the optimization criteria was modified, with
the new aim being to minimize β + 0.01

∑17
m= 1 am.

The open source simplex package lp_solve was used to solve
this linear programme around the four joints in the elbow and
wrist. Given the limited subset of shoulder spanning muscles
being modeled (and the target application being a transhumeral
amputee with extant shoulder musculature), it was not possible to
resolve the torques at the three shoulder joints (j = 1, 2, 3). These
joints were, however, included in the system because their config-
uration influences the lengths of and moments developed by the
bicep and tricep muscle groups around the elbow and hence have
an impact on all distal muscle activations.
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2.2.3. Activation dynamics
Muscle activation dynamics were accounted for by using a
method similar to that used by Thelen (2003). In that paper an
idealized muscle excitation signal (u) was used as an input and
the muscle activation (a) was modeled by a non-linear first order
differential equation:

da

dt
= u− a

τa(a, u)
(6)

where τa is a time constant that varies depending on the muscle
activation level and on whether the activation level is increasing
or decreasing:

τa =
{

τact(0.5+ 1.5a) u > a
τdeact/(0.5+ 1.5a) u ≤ a

(7)

where τact is 15 ms and τdeact is 50 ms.
In our work we do not have the muscle excitation (u) available

so the problem was addressed by determining the feasible range
of activation levels (amin → amax) each muscle could have after
a time dt. This was approximated from the differential equation
describing the muscle activation by setting u = 0 to determine
amin and u = 1 to determine amax, giving:

amin = a− dt · a · (0.5+ 1.5a)
τdeact

amax = a+ dt(1− a)
τact (0.5+ 1.5a)

(8)

The feasible activation range was calculated for each muscle and
included as constraints in the linear programme solver.

2.3. PROPRIOCEPTOR MODELING
2.3.1. Muscle spindles
The muscle spindle outputs were simulated using a model based
on that proposed by Mileusnic et al. (2006a). The model inputs
are muscle length (LM) and fusimotor activation levels (γstatic and
γdynamic). The model uses this to estimate the tension in each spin-
dle fiber type’s (bag1, bag2, and chain) transduction zone, and the
resulting action potential firing. The output of the model is a non-
linearly summed contribution from each fiber type to the primary
(Ia) and secondary (II) axons that innervate the spindle. The
model works essentially by modeling the fibers as a spring mass
system and solving a second order differential equation (Equation
(6) in Mileusnic et al., 2006a) that describes the tension in each
fiber. However, integration of this differential equation requires a
small time step size and therefore a high number of calculations.
We propose that the tension in the system can be approximated by
assuming that all the stretch happens in the polar regions of the
fiber (which have a much lower spring constant) and then calcu-
lating the equilibrium tension in the fibers by modifying Equation
(3) in Mileusnic et al. (2006a) to:

T = M · ¨LM + β · C · (LM − R− Lsr
o ) · (abs( ˙LM)0.3)

· sign( ˙LM)+ Kpr · (LM − L
pr
o − Lsr

o )+ � (9)

where T is the fiber tension, LM is the muscle length, C is the coef-
ficient of asymmetry in the muscle force-velocity curve, R is the

muscle length below which force production is zero, L
pr
o and Lsr

o
are the rest lengths of the polar and sensory parts of the fiber, Kpr

is the polar region spring constant and � is the tension produced
due to fusimotor input. This modification means that there are
no differential equations to solve, so the time step for calculating
the spindle output can be increased by orders of magnitude and
the computational efficiency is likewise improved.

The parameter “G” in the Mileusnic model is a scaling term—
mapping ideal normalized spindle firing rates to feline data in the
paper—and was estimated based on changes in spindle firing rates
of up to 150 pulses per second (pps), that occur due to fusimo-
tor stimulation in a feline muscle. There is limited data about the
fusimotor sensitivity of human muscle spindle, but the maximum
observed change in spindle output due to fusimotor signals has
been observed to be <30 pps (Prochazka and Hulliger, 1998) and
as such we scaled the Mileusnic et al. (2006a) derived values of
“G” by a factor of 1

5 to better fit human spindle firing rates.

2.3.2. Golgi tendon organs
The GTO model used here is based on the model described by
Lin and Crago (2002), which in turn is based on work by Houk
and Simon (1967) studying the feline soleus muscle. The model
consists of two stages.

Firstly a non-linearity:

RNL = k1 · ln
(

FM

k2
+ 1

)
(10)

where RNL is the output of this stage, while k1 (60 impulses per
second) and k2 (4 Newtons) are constants scaling the GTO firing
rate to the force applied. However, these parameters are based on
data from the feline soleus muscle, and given the limited amount
of data from human recordings it is difficult to determine human
appropriate values for these parameters. We propose to modify
this non-linearity to use normalized muscle force:

RNL = k1 · ln
(
¯FM · FM

o,s

k2
+ 1

)
= k1 · ln( ¯FM · k3 + 1) (11)

where FM
o,s is the maximum isometric muscle force of the feline

soleus [measured as 25.8N (Scott et al., 1996)], giving k3 a
value of 6.45. In addition we propose to adjust k1 to reflect the
lower observed firing rates in human GTOs compared to feline
GTOs (Jami, 1992). Feline GTOs have been observed firing at
rates of up to 300 pps, but in normal motion don’t significantly
exceed 120 pps (Jami, 1992). A review of the literature did not find
any examples of human GTOs being subject to tests that would
produce maximal firing rates, however, a review of microneu-
rographic recordings showed firing patterns that rarely exceed
50 pps in normal motions (al Falahe et al., 1990; Jami, 1992). We
therefore propose a k1 figure scaled accordingly of 25 pps.

Secondly, the output of the non-linearity is then fed into a
linear dynamics transfer function:

H(s) = 1.7s2 + 2.58s+ 0.4

s2 + 2.2s+ 0.4
. (12)
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For efficient implementation this transfer function was trans-
formed into the z-domain in Matlab using a bilinear approxima-
tion with a sample frequency of 1 kHz and warped to fit at 6 Hz
giving a z-domain transfer function of:

H(z) = 1.69942− 3.39626z−1 + 1.69684z−2

1− 1.99780z−1 + 0.99780z−2
. (13)

3. RESULTS
3.1. MODEL VALIDATION
The focus of the work presented here is on choosing and modify-
ing existing validated models to create a real time system. As such
the approximations will be validated against the original models
and the computational efficiency compared. To generate a dataset
for realistic comparison, 30 s (at 120 Hz) of motion capture data
from the mocapdata.com website (product_id = 15,044 showing
an actor swinging his arms while walking across a room, then
brushing his teeth before walking back to the original spot) was
scaled, fed into OpenSim and the resulting joint angles for the
upper limb were used for all simulations. This data set was cho-
sen because it has a range of fast and slow upper limb motions and

because tooth brushing represents an example of where a prosthe-
sis user would not be able to visually monitor their limb and so
feedback could provide significant benefit.

3.1.1. Length and moment arm validation
The polynomial approximation for estimating length showed
close conformance with the values generated by OpenSim’s 3D
model throughout the dataset; giving a coefficient of determi-
nation (R2) of in excess of 0.99 for all muscles. The fit of the
moment arm approximation was slightly worse with R2 values of
in excess of 0.9 for the two bicep muscles and above 0.98 for all
other muscles for the four joints of interest.

3.1.2. Static optimization validation
Figure 4 shows a comparison between a baseline static opti-
mization tool and results obtained from the model proposed
here. The baseline results were obtained by running the built-
in OpenSim static optimization tool using a sum of activation
squared optimization criteria. Muscle forces and moment arms
from OpenSim were used to estimate the joint torques at each
point in time and these torques were used as the inputs to the

FIGURE 4 | Predicted muscle activations for an actor brushing his teeth. Coefficient of determination (R2) and Root Mean Square Error (RMSE) are shown
for each. (A) Standard OpenSim output. (B) Proposed system output.
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model described here.The results indicate the proposed system
can produce results qualitatively very similar to existing standard
techniques, however, it did flag up an issue in the load sharing
between the tricep muscles (see Discussion).

3.1.3. Spindle model validation
To test how well the equilibrium spindle approximation corre-
sponded to the original Mileusnic et al model, a number of the
validation runs from the original paper were repeated and the

results are shown in Figures 5, 6. Differences are generally small
and this is consistent with the observed performance for more
complex data (as shown in Figure 7), although the proposed spin-
dle model is stiffer and as a result rapid movements do give rise
to minor discrepancies—the most notable of which is shown in
Figure 5F.

There is little data available to assess the models perfor-
mance for human spindles, however, the limited validation pos-
sible did highlight a potential limitation of the Mileusnic model

FIGURE 5 | Proposed spindle model compared to original results from

paper Mileusnic et al. (2006a) for two triangular stretches with

different levels of fusimotor activity. Results are from Figure 3: A–L

showing primary and secondary afferent firing in the presence or
absence of static or dynamic fusimotor activation at 70 pps. Labels are
as in original paper.

FIGURE 6 | Proposed spindle model compared to original results

(Figure 4) from paper Mileusnic et al. (2006a) for triangular

stretches with different levels of fusimotor activity. Results are from

Figure 4: A–F showing primary afferent firing in the presence of static
or dynamic fusimotor activation at 35 or 200 pps. Labels are as in
original paper.
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which is discussed below. Figure 8 shows a comparison with the
recordings, from two sets of nine primary afferents and two sets
of seven secondary afferents, published in Edin and Vallbo (1990).
The recordings are from the radial nerve during imposed motions
about the metacarpophalangeal (MCP) joint. Predicted firing pat-
terns were generated by using the original Holzbaur et al model
in OpenSim to estimate the lengths of the two extensor muscles
innervated by the radial nerve [extensor digitorum communis

FIGURE 7 | Comparison of Mileusnic modeled data and proposed

approximation against recorded data from a cat (Figure 4A

of Prochazka et al., 1979). Fusimotor activity was assumed to be absent.

interossei (EDCI) and extensor indicis proprius (EIP)] during
MCP joint motions as described in the paper.

Spindle lengths vary significantly less from muscle to muscle
than muscle fasicle lengths do, this discrepancy is possible because
the spindle attachment to muscle endpoints or perimysium is var-
ied to provide consistent proprioceptive acuity across a range of
joints and muscles (Proske et al., 2000). The Mileusnic et al model
was optimized for muscles whose fiber length varies above and
below the optimal fiber length, whereas both the EDCI and EIP
muscles are physiologically constrained to be longer than their
optimal lengths. As such the unmodified model overestimates
spindle firing rates throughout the range of motion (even in the
absence of fusimotor input). Spindle rest and threshold lengths
in the model were therefore adjusted to correspond to the fiber
length when the MCP joint is in a physiologically neutral position
(0◦ flexion) rather than the optimal muscle length. This approach
gives the results shown in Figure 8.

3.1.4. Full system output
The system was run to generate primary afferent and GTO neural
signals to enable 3rd party validation of this work, and the neural
firing patterns are shown in Figure 9.

3.2. COMPUTATIONAL EFFICIENCY
For the purposes of this analysis the code was broken down into
two parts—a deterministic part and a non-deterministic part. The
deterministic part consisting of the newly written code (calculat-
ing muscle lengths, moment arms, force-velocity/length relation-
ships, muscle spindle output, etc.), while the non-deterministic
part of the code (formulating and solving the optimization linear
programme) used an open source library.

The 30 s 120 Hz dataset (consisting of 3600 samples) was pro-
cessed by a 2.1 GHz laptop in under 1.09 s (i.e., 27.5 times faster

FIGURE 8 | Human muscle spindle firing patterns for imposed motions.

Mean values and one standard deviation error bars are shown for recorded
data from Edin and Vallbo (1990) and contrasted with modeled primary and

secondary spindle firing patterns for the EDCI and EIP muscles. Firing
patterns for EDCI and EIP muscles are almost identical. Fusimotor input was
assumed to be absent.
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FIGURE 9 | Predicted proprioceptor firing patterns for the actor brushing his teeth. (A) Predicted primary afferent firing patterns. (B) Predicted GTO firing
patterns.

than real time). Profiling showed that 15% of that time was
spent in the deterministic part of the code and 85% in the non-
deterministic optimization code. A manual estimate of the num-
ber of instructions required to process each time sample (based
on the source code) was conducted for the deterministic part
of the code—yielding a value of approximately 77,000 instruc-
tions. A conservative estimate of the total number of instructions
(deterministic and non-deterministic) necessary for processing
each sample was made based on scaling the estimated number of
instructions by the relative processing duration of the determin-
istic and non-deterministic parts and then multiplying by a factor
of 2—this provided an estimate of 1.03 million instructions per
sample.

3.2.1. Comparison with standard implementations
Comparisons between the proposed spindle model and a C-code
implementation of the standard Mileusnic model (using a stan-
dard euler method solver) showed that the majority of the
improvement in processing speed was due to differences in the
time steps that can be used (rather than reduction in the number
of calculations per time step). The standard Mileusnic model can
become unstable if too large a time step is chosen (experimenta-
tion showed that a maximum timestep in the order of 0.1–1 ms is
required, depending on the dataset), whereas the proposed solu-
tion is stable regardless of the timestep. As such it was necessary to

upsample the 120 Hz dataset used here, by a factor of 8, to obtain
results with the standard model but not for the proposed model.
However, the maximum timestep for the proposed model will be
upper bounded by the limb position update frequency and the
maximum firing frequency of the spindle—meaning that the effi-
ciency improvement is data dependent—but in this situation was
in the region of an eightfold improvement.

The fitting of cubic polynomials to calculate length and
moment arm make these elements of the processing almost negli-
gible and appears to represent a reduction in required calculations
by multiple orders of magnitude compared to 3D modeling.
Observed execution time for all the biomechanical modeling
(length, moment arm and also the static optimization) presented
here was around five orders of magnitude faster than in OpenSim,
however, this is a deeply unfair comparison—pitting optimized
C-code against the performance of the general purpose OpenSim
package.

4. DISCUSSION
4.1. GENERATING PROPRIOCEPTIVE FEEDBACK FOR A PROSTHESIS
Providing intuitive and comprehensive feedback which is famil-
iar or trivially easy to interpret is the ultimate goal for any neural
prosthesis. However, it is unknown what the most effective and
achievable format for providing proprioceptive neural feedback
to prosthesis users is in the near term and there are numerous
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challenges in implementing, comparing and optimizing compet-
ing methods.

Stimulating a small number of neurons with a pattern that is
linearly related to prosthetic limb parameters (e.g., joint angle
or end effector force) is possibly the simplest approach and has
been demonstrated to provide benefit in a laboratory control
task (Clippinger et al., 1974; Dhillon et al., 2004; Dhillon and
Horch, 2005; Dhillon et al., 2005; Rossini et al., 2010). Stimulation
of non-proprioceptive neurons with these non-biologically rep-
resentative patterns makes this approach similar to sensory sub-
stitution feedback. It is unknown whether sensory substitution
feedback using direct neural stimulation will offer any substantial
benefit over non-implanted implementations although the abil-
ity to stimulate truncated nerves and neural pathways that would
otherwise be silent may confer advantages.

An alternative feedback modulation method is one that aims to
approximate all the naturally occurring neural feedback patterns
in the human limb. This approach is in its infancy and there is a
need for physiological experimentation to verify the suitability of
this approach and investigate how close to this ideal the feedback
needs to be in order to demonstrate benefit compared to simpler
forms of modulation, however, it seems a logical, albeit distant,
ideal to aim for. Major obstacles remain such as limitations in
our understanding of proprioceptors and the modulating signals
from the brain, as well as our limited ability to interface with and
selectively modulate large numbers of neurons. Our concept for
implementing this approach breaks the process down into three
steps:

1. Mapping from a prosthesis to a model of a normal limb
Prosthetic limb properties can differ substantially from those
of a human limb. For the purposes of this mapping the dif-
ferences between the human and prosthesis can be grouped
into three main categories: (a) physical properties—weight,
moments of inertia, size and shape (including for instance the
number of digits); (b) actuation properties—strength, speed,
joint coupling and actuator non-linearities; and (c) kine-
matic properties—degrees of freedom, range of motion, axis of
rotation and joint structure (including for instance joint com-
plexes). These differences were most evident in the days when
cable and hook prostheses dominated the market. However,
under the twin pressures of prosthesis users’ desire for cosme-
sis and functionality (in a world of tools and equipment
designed to be operated by the human hand), there has been a
strong trend toward anthropomorphic convergence. Prototype
upper limbs such as the DEKA arm or commercially available
prostheses such as the i-Limb, clearly demonstrate the progress
that has been made toward approximating the human upper
limb. Even the rise in underactuation for finger joints—which
was largely driven by actuator weight considerations—moves
prosthetics closer to the human form and with anthropomor-
phic design as a guiding principle, it is a trend that looks set to
continue.
This has important implications because the closer the
match between prosthetic limbs and human limbs, the eas-
ier the process of mapping the state of one to the other
becomes.

2. Modeling proprioceptor behavior
Assuming a modeled human limb can match the states and
motion of the prosthesis, then modeling the neural signals
can be consdered a problem of biomechanics and propriocep-
tor modeling (assuming feedback is applied in the Peripheral
Nervous System).
Receptors in the muscles, joints and skin all sense tissue
deformation and provide proprioceptive feedback to the CNS.
Ideally all these receptors would be modeled for a proprio-
ceptive prosthesis so that appropriate stimulation could be
applied to any receptors interfaced with. However, in a system
constrained by power, portability and (as a result) complex-
ity, it is necessary to prioritize. Discriminating criteria include
the importance of each receptor type to motor control, our
ability to model the underlying tissue deformation and our
understanding of the receptor firing patterns.
Here we elected to focus on muscle spindles and GTOs, both
of which stand out on the grounds of the quality of informa-
tion they provide to the CNS and the quality of the models
available for musculo-tendon and proprioception modeling.
However, even for these relatively well understood receptors
modeling limitations are evident such as a lack of parameters
for human receptors, difficulties fitting parameterized mod-
els to different muscles and uncertainty regarding fusimotor
input (see section 4.3 for further discussion).

3. Applying appropriate neuromodulation to enough target
neurons
When electrodes are implanted in or around a nerve, it is
unknown which neurons will be stimulated and what sen-
sation or motor effect they can elicit. The main factors in
determining which neurons are stimulated are the electrode-
neuron distance, the stimulus strength and the neuronal
diameter (with larger neurons recruited at lower thresholds).
There is typically a trade-off between the number of neu-
rons stimulated and the selectivity achieved; with stimulation
of non-target neurons with a synchronous barrage leading to
unusual or potentially noxious sensations (Smith and Leslie,
1990). Possible techniques to reduce the number of non-
proprioceptive neurons stimulated include: careful choice of
implantation nerve or nerve branch to increase the ratio of
proprioceptive neurons stimulated (versus motor or extero-
ceptive neurons); electrodes with designs that increase selectiv-
ity and provide greater ability to target stimulation at different
fascicles or at the sub-fascicular level; and waveforms that alter
the distance and diameter recruitment order.
The stimulation pattern to apply potentially depends on how
selectively individual neurons can be targeted. Our approach
is to target fascicle level selectivity because higher selectivity
electrodes typically need to penetrate the perineurium which
introduces a break in the blood-nerve barrier and has been
observed to cause endoneurial accumulation, fibrous build up
due to tissue rejection and neural damage caused by relative
motion (boring at the electrode tip) (Biran et al., 2005; Polikov
et al., 2005). At the fasicular level we propose to stimulate
with ensemble average signals—with the aim of making use of
the ability of the central nervous system to integrate feedback.
The extent to which the CNS can interpret a subset of normal
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feedback (even in the presence of contradictory feedback) is
largely unquantified, but is demonstrated by single muscle
tendon vibration trials and numerous psychophysical exper-
iments over the years examining proprioceptive performance
under varying conditions including local anesthesia.

4.2. APPROXIMATIONS
The system presented here is focused on real time prediction of
neural stimulation patterns and firing rates that would be suit-
able for human nerve stimulation and which are based on data
that could be available from a prosthetic limb. A number of
models and approximations were used to achieve this aim. The
cubic polynomial approximations for muscle length curves fit-
ted the OpenSim data closely, however, the equivalent moment
arm approximations showed substantially worse correlation. It
was observed that the quality of a muscle’s moment arm approx-
imation decreased as the number of joints the muscle spanned
increased and that the surface fit for moment arms about the
shoulder joints were particularly poor (although that did not mat-
ter for this application). Considering these differences in input
data and the difference in optimization criteria employed, the
output of the static optimization stage showed a reasonably good
match with the standard OpenSim tool. However, substantial dif-
ferences were visually evident in the distribution of load between
the three tricep muscle branches and this is reflected in the
very low R2 values for these branches. This was likely due to
the linear nature of the optimization, which becomes increas-
ingly poor at load sharing as the number of joints and muscles
increases. Examination of the results showed that simply aver-
aging the activations of the three tricep branches would have
closely fitted the OpenSim results (R2 values of 0.912, 0.970,
and 0.906 for the lateral, long and medial heads respectively).
In more complex systems (with greater numbers of joints and
muscles) it may be necessary to compartmentalize the optimiza-
tion process and run multiple iterations or implement some
alternative method of sharing load. Results for bicep long and
short head activation were also well below average and may be
a result of the poorer moment arm fit observed for these muscle
branches.

The simplified version of the spindle model closely matched
the outputs of the original model for the validations proposed
in the original paper as well as for some real movement data.
Discrepancies were visible during rapid movements, however,
given the duration of these transient differences and peak fir-
ing rates in humans of approximately 100 Hz, these discrepancies
represent only a low number of missed action potentials. As men-
tioned in the results, the efficiency improvement provided by the
proposed model appears to be largely data dependent and related
to the sample frequency of the system, the maximum spindle out-
put frequency and the maximum step size for stable solving of the
differential equations in the standard model. It should be noted
that the analysis here assumed a standard euler method for solv-
ing these equations, but that many alternative numerical methods
exist and could improve or guarantee stability.

The proposed parameter change and adjustment to rest and
threshold lengths allowed the model to estimate human spin-
dle recordings to within a standard deviation, but without a

significantly greater quantity of human data it is unclear how
widely applicable these adjustments are.

4.3. ISSUES AND AREAS FOR FURTHER WORK
• The proposed approach of mimicking naturally occurring neu-

ral signals seems logical, however, physiological experimental
to demonstrate and quantify benefit remains an important area
of future work.
• The inaccuracy of the polynomial fitting of moment arms

for shoulder and highly multi-articular muscles indicates that
alternative fitting models may need to be investigated to
achieve good fits if the system is to be extended to include other
joints.
• The scaling of animal spindle and GTO models to fit human

data is an area requiring further investigation. Here we have
proposed simple modifications to better align the models with
human firing rates, however, further data, validation and mod-
ification is required. The shape of the modeled human firing
patterns was qualitatively different from the recorded data—
most notably in that it lacked an initial burst or peak. Further
analysis of recorded human spindle data from Cordo et al.
(2002) (not shown), has supported this observation and indi-
cates that the Mileusnic spindle model does not accurately
represent the human spindle firing profile observed. Initial
peaks are generated with the Mileusnic spindle model, but
only at significantly faster movements—potentially indicating
greater acceleration or velocity sensitivity in human spindles
compared to feline or an area requiring further investigation
and potentially model modification.
• In addition the Mileusnic spindle model is formulated on a

limited subset of muscles and may need modification for wider
applicability. In this work we noted a need for further research
on how well the model copes with muscles whose optimal
length is above or below the range of lengths the muscle is
physiologically limited to. In our work looking at the record-
ings in Edin and Vallbo (1990), we made the assumption that
the muscle physiological rest length should be used to calculate
spindle rest and threshold parameters, this was based on the
assumption that spindles firing rates should be at their lowest
when the muscle is in a relaxed and neutral position.
• The work presented here assumed zero fusimotor activity, pro-

ducing signals that are analogous to those experienced during
passive motion of the limb. However, if the user is able to con-
trol their prosthesis naturally (i.e., the prosthesis responds to
physiologically appropriate neural commands—e.g., following
Targeted Muscle Reinnervation), then there will be a descend-
ing fusimotor signal that will act in the CNS on the pathways
carrying the stimulated proprioceptive feedback, potentially
interfering with it and reducing effectiveness. Ultimately it
would be preferential to integrate fusimotor behavior and
the Mileusnic spindle model was in part chosen to enable
future implementations to easily introduce this. However, cur-
rent proposed models of fusimotor action are in their infancy
and largely based on recordings performed on decerebrate
cats or surrogate outcomes like obtaining a linear relationship
between joint angle and spindle firing (Taylor et al., 2004, 2006;
Williams and Constandinou, 2013a).
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• The integration of motion capture, a musculoskeletal model,
static optimization and proprioceptor models enables some
proprioceptive signals to be non-invasively modeled for real
movements. Further integration of inverse dynamic modeling
to estimate joint torques, as well as a suitable musculoskele-
tal model of the feline hind limb (a preferred experimentation
model), would enhance this system, allowing novel experimen-
tation and extensive validation.

5. CONCLUSION
Realistic models that link human motion to proprioceptor signals
could 1 day form the basis for a proprioceptive neural prosthe-
sis in much the same way retinal and cochlear implants aim to
mimic auditory and retinal cells. In contrast to previous neuro-
musculoskeletal models, this work has proposed: the integration
of static optimization; modifications to approximate human pro-
prioceptors; and a variety of approximations and optimizations
to reduce computational complexity without substantial degrada-
tion of the output. A key uncertainty in aiming to provide natural
feeling proprioceptive feedback to a prosthesis user is how close
to normal it needs to be in order to provide benefit over simpler
forms of feedback modulation. This work aims to build capability
to explore this question.

The model presented here is able to simulate muscle lengths,
moment arms and activations as well as the corresponding mus-
cle spindle and GTO neural signals in real time on low power
hardware. This system potentially enables physiological experi-
mentation into intuitive proprioceptive feedback as well as novel
forms of proprioceptive and motor control and maybe 1 day
could form part of a system capable of giving amputees feeling
in their prosthetic limbs.
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The development of a method to feed proper environmental inputs back to the central
nervous system (CNS) remains one of the challenges in achieving natural movement when
part of the body is replaced with an artificial device. Muscle synergies are widely accepted
as a biologically plausible interpretation of the neural dynamics between the CNS and the
muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS
has not been investigated in detail. In this study, we address this issue by exploring the
concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory
synergy plays an essential role in integrating the overall environmental inputs to provide
low-dimensional information to the CNS. We assume that sensor synergy and muscle
synergy communicate using these low-dimensional signals. To examine our hypothesis,
we conducted posture control experiments involving lateral disturbance with nine healthy
participants. Proprioceptive information represented by the changes on muscle lengths
were estimated by using the musculoskeletal model analysis software SIMM. Changes
on muscles lengths were then used to compute sensory synergies. The experimental
results indicate that the environmental inputs were translated into the two dimensional
signals and used to move the upper limb to the desired position immediately after the
lateral disturbance. Participants who showed high skill in posture control were found to
be likely to have a strong correlation between sensory and muscle signaling as well
as high coordination between the utilized sensory synergies. These results suggest
the importance of integrating environmental inputs into suitable low-dimensional signals
before providing them to the CNS. This mechanism should be essential when designing
the prosthesis’ sensory system to make the controller simpler.

Keywords: prosthetic arms, sensorineural feedback, muscle synergy, sensory synergy, posture control, automatic

posture response

INTRODUCTION
Neuroprosthetics faces considerable challenges, especially when
it is necessary to account for neurological disorders (Ring and
Rosenthal, 2005). These challenges concern mainly the immense
variety of possible neural damage, which make it hard to define
a reliable sensorimotor pathway for controlling external devices
(Musallam et al., 2004). Conventional prosthetics focuses mainly
on motor control and pays less attention to the role of integrat-
ing sensory information as feedback. Without sensory feedback,
even the simplest actions, such as controlling a prosthetic arm,
can be slow and clumsy due to the lack of tactile sense (Kwok,
2013). Some researchers have proposed direct sensory feedback
through air pressure or electrical stimulation though these meth-
ods have a number of limitations. Neurophysiological studies
have found that the body position in space is estimated by inte-
grating information from multiple sensors modalities rather than
through direct sensory input (Zupan et al., 2002; Mergner et al.,
2003; Kuo, 2005; Ting, 2007). This integrated sensory feedback
can encode noise-robust, useful, and cost-effective information
in low-dimensional signals that are simple enough to accelerate
the construction of the desired control signal (Kargo and Giszter,
2000). Adding proper sensory integration mechanism into the

design of the prosthesis, therefore, may propose an access to
simpler controller.

In recent years, several studies have indicated that muscle syn-
ergy is a likely neural strategy that the central nervous system
(CNS) has adopted to simplify the control of our redundant mus-
culoskeletal system (D’Avella and Bizzi, 2005; Safavynia et al.,
2011; Alnajjar et al., 2013b). The concept of muscle synergy,
therefore, has been widely adopted as a quantitative interpretation
of motor control strategies on a neural level. Muscle synergy has
been investigated in detail in several areas of research, including
the clarification of the corresponding anatomical concept (Bizzi
and Cheung, 2013), the classification of the motor skills of healthy
subjects (Torres-Oviedo and Ting, 2007; Alnajjar et al., 2013a),
the synergetic motor control paradigm for managing joint redun-
dancy (Hayashibe and Shimoda, 2014) and the identification of
the degree of brain damage in stroke survivors (Cheung et al.,
2012).

One of the remaining unsettled debates concerning muscle
synergies is how they are selected and evaluated by the CNS to
adapt to the surrounding environment including body dynamics
(Latash, 2008). Answering this fundamental question is essential
to understanding the mechanism used by the CNS to handle the
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complexity of sensorimotor interactions in the body. To answer
this question, we introduce the term “sensory synergy” to sup-
plement muscle synergy in order to understand the mechanism
of mapping stimuli to behavior (Figure 1). In contrast to mus-
cle synergy, which defines suitable combinations of muscles to
adapt the behavior to the environment, we hypothesize that sen-
sory synergy plays essential roles in integrating a compendium
of sensory feedback to simplify the construction of muscle syn-
ergy. We define a single sensory synergy as a group of weighted
sensory inputs whose function is to provide the quality of the
resulting motion as feedback to the CNS through a single syn-
ergy recruitment signal in order to facilitate the generation of the
next command, thus accelerating the search time for the optimal
muscle synergy. Sensory synergies studies could be the simplified
way to understand sensory signaling. In nature, sensory signals
of different modalities are in general redundant and plastic to
ensure delivering appropriate environmental information to the
CNS (Day and Guerraz, 2007). If one sensory modality is dis-
rupted or become unavailable, the other modality can take over
(Dickstein et al., 2001; Lanska, 2002). In some cases one of the
sensory modalities can even override all others modalities and
drives them (Diedrichsen et al., 2007).

To conduct this study, we recorded the kinematics pat-
terns and muscle activities of nine healthy participants in
an automatic posture response experiment (APR). The results
highlight the synergy characteristics common to all individ-
uals, which were found to depend on the quality of their
APRs skills. Results revealed a potential link between the sen-
sory and muscle synergies in terms of synergy size that may
enhance sensorimotor transformations. This study should be use-
ful to inspire the development of sensory system for effective

neural prosthetic devices which can be operated with simple
controller.

MATERIALS AND METHODS
EXPERIMENTAL SETUP
In this study, an experiment was conducted to determine the
relation between the APR measured skills of the participants
and their computed sensory and muscle synergies. The par-
ticipants were nine healthy men (mean age, 34.5 ± 9 years).
All the participants were right-handed and had no history of
major neurological disorders or posture balance impairment.
All experimental protocols were approved by the RIKEN ethics
committee.

During the experiment, the participants were instructed to
stand upright in the akimbo position (Figure 2A) on a mov-
able platform, placing their feet on foot-ground contact sensors
located approximately 10 cm apart (Figure 2B). We chose this
standing position, in which hands are placed on a little above
the hips and the elbows are bowed outward, to reduce any
impact of the arms in restoring the body balance and to facili-
tate the capturing of motion markers attached on the participants’
bodies. The platform was programmed to perform lateral dis-
placements of 11 cm with velocity of 6.4 cm/s. The participants
were also instructed to make an effort to maintain their bal-
ance in an upright posture during the platform displacements
and to avoid any body movements other than lateral hip flex-
ion/extension and ankle inversion/eversion. The direction and
timing of displacement was chosen at random and therefore it
was unpredictable to the participants during the experiment.
Before the experiment, each participant was asked to practice
balancing on the platform for 20 min to become familiar with

FIGURE 1 | Conceptual model of a neural sensorimotor synergy system. An example of two input sensory synergies (W(1),(2), IC(1),(2)) and two output
muscle synergies (OW(1),(2), OC(1),(2)).
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FIGURE 2 | Experimental setup. (A) A participant in the akimbo position
standing on the movable platform. Body motion was captured with a VICON
motion capture system using 42 markers attached to various parts of the
participant’s body (see Supplementary Figure 1 for more information about
markers positions). (B) Experimental setup, muscle locations, joint locations,
platform motion pattern and displacement speed, EMG record range, and

representative EMG activities and muscle lengths of two muscles in response
to the platform displacement. The participant’s EMG responses occurred with
a latency of approximately 50 ms following the displacement. The sensory
synergy was computed in the period between 0 and 50 ms (shaded area in the
muscle length plots), and muscle synergy was computed in the period
between 50 and 100 ms (shaded area in the muscle activation plots).

the experimental environment. At the time of the experiment,
each participant experienced leftward and rightward platform
displacements (mean ± SD: 18 ± 4 cm), and electromyograms
obtained in five trials of leftward displacement were used for data
analysis.

DATA RECORDING
Surface electromyography (EMG)
Data on muscle activity was collected by wireless surface EMG
(BTS FREEEMG 300, BTS Bioengineering, Italy). EMG electrodes
were used to record data from six dominant leg and lumbar
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muscles (Hoy et al., 1990): the flexor hallucis longus (FHL) and
tibialis anterior (TA), which mainly control the ankle strategy in
lateral perturbation; and the tensor fasciae latae (TFL), gluteus
medius (GM), rectus abdominalis (RA), and erector spinae (ES),
which control the hip strategy and the lumbar joint in lateral per-
turbation (Runge et al., 1999). The EMG electrodes were placed
in accordance to the guidelines of the Surface Electromyography
for the Non-Invasive Assessment of Muscles (SENIAM) European
Union project (Hermens et al., 1999). The entire time-series EMG
data were rectified and processed using a low-pass filter with a
cutoff frequency of 32 Hz. EMGs were normalized by their respec-
tive maxima measured during the experiment. All signals were
resampled to 1 kHz.

Motion capture system
Kinematic patterns of the participants’ movements were cap-
tured with a motion capture system (Workstation 5.2.4, VICON).
Forty-two markers (spheres covered with reflective tape) were
attached to various parts of the participant’s body prior to the
experiment (see Supplementary Figure 1 for more information
about markers positions). The motion capture system consisted
of six cameras, and tracked and reconstructed the motion of each
of the recorded markers in 3D space.

Foot-ground contact sensors
The ground reaction forces for each participant were calcu-
lated based on data obtained from foot-ground contact sensors

(FingerTPS, Pressure Profile Systems, Los Angeles, CA) dis-
tributed over three segments of each foot.

ESTIMATION OF THE CHANGES IN MUSCLE LENGTH
Software for Interactive Musculoskeletal Modeling (SIMM), a
graphical software system for developing and analyzing models
of musculoskeletal structures, was used in this study (Delp and
Loan, 1995; Neptune et al., 2008). SIMM uses a full body model
created by a set of bones from a male adult subject. Muscle param-
eters in the middle trunk and the lower limb were adjustable
according to the scaling bone computed by the recorded mark-
ers from the subjects. Each participant’s body weight was used to
allocate the body segments of the model (de Leva, 1996). SIMM
was then used to perform inverse dynamics calculations driven by
various data collected from the experiments (i.e., motion capture
data, and foot-ground contact sensor data), see Figure 3. Changes
in muscle length that is a positive muscle stretch from resting
value, as a representation of the activation of proprioceptors
(muscle spindles), obtained through inverse dynamics calcula-
tions was used as sensory data to compute the sensory synergies.
Although 92 muscles and 34 degrees of freedom were considered
in the inverse dynamics calculations, due to the simplicity of the
applied task (i.e., the fact that the lateral disturbance of a body
standing upright can be simplified as a three-link inverted pendu-
lum model (Jiang et al., 2002), and the selected quick and short
time period to monitor both sensory and muscle data), we con-
sidered sensory synergy calculations using the lengths of the six

FIGURE 3 | General procedure for calculating sensory and muscle synergies from the collected experimental data using inverse dynamics

calculations in SIMM.
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dominant muscles for which EMG data were recorded are fair
enough at this stage (Figure 3). Although it has been argued that
the structure of synergies is dependent upon the number and
choice of muscles included within the synergies analysis (Steele
et al., 2013), we assume that the selected dominant muscles can
cope with this issue since they have more influence in carrying
out the concerned motion (Alnajjar et al., 2013b; Wojtara et al.,
2014). Adding other muscles for synergy calculations should not
affect significantly the results (Steele et al., 2013), see also the
Supplementary Figure 2.

COMPUTING SENSORY SYNERGIES
The core feature of sensory synergies is the reduction of the
dimensionality of sensory signals provided as feedback to the
CNS. Let us express the sensory data of s sensors by using a
matrix S:

S ∈ Rs×t, (1)

where s and t are the number of sensors and the sampling number,
respectively. The output of the sensor synergy computation IC is
described as follows:

IC = WS (2)

where
IC ∈ Rn×t, W ∈ Rn×s (3)

We consider that the sensor synergy computation adds the mean-
ing to the specified combination of the sensor input. The mean-
ingful signal IC is translated into the muscle synergy input
OC in the low-dimensional space. This signal transfer from IC
to OC can be considered as the semantic compression of the
body-environment interaction in the real environment descried
as the M-S transition. IC can be uniquely estimated from S
when the well-sophisticated sensor and muscle synergies are
used to control the body. Therefore, we assume that the follow-
ing equation is optimized as the inverse of the muscle synergy
computation:

S = IW
I
C + E, (4)

Where
IW ∈ Rs×n, E ∈ Rs×t (5)

W can be regarded as the pseudo-inverse of IW . We consider
that W is uniquely computed from IW when the motion is
well-sophisticated. Figure 1 describes the relationships of S, W,
and IC.

In Equation (4), n signals are used to represent s sensors
by using the sensory synergy IW and the synergy recruitment
IC. To reduce the dimensionality of the sensory data, we set
n to be smaller than s. The error between S and IW IC is
expressed as E, which must be small enough to represent s sensors.
The magnitude of E can be described by an index of similar-
ity L (Equation 6), which is sensitive to both the shape and the
magnitude of the measured and reconstructed sensory patterns
(Torres-Oviedo and Ting, 2007):

L = 100

⎛
⎜⎜⎜⎜⎝

1− 1

s

s∑
i= 1

√
1
t

t∑
j= 1

E2
ij

√
1
t

t∑
j= 1

S′2ij

⎞
⎟⎟⎟⎟⎠

, (6)

where S′ =IWIC, and Eij and S′ij are the elements of matrices E
and S’, respectively. The range of L is 0 < L < 100. When the
magnitude of E decreases, L increases. We considered a value of
L > 75% to indicate a good fit to the original data. Through pre-
liminary trial runs, we found that this criterion ensured that each
muscle would be reconstructed well. A reasonable value for n was
chosen by using the index L with the non-negative matrix factor-
ization algorithm (NMF) (Lee and Seung, 2001). See Figure 5 for
an example.

COMPUTING MUSCLE SYNERGY
Muscle synergy was calculated following similar steps as for
sensory synergy. The number of signals for representing m mus-
cles can be reduced by applying the NMF algorithm using the
following matrix:

M = OWOC+E, (7)

Where in this case

OW ∈ Rm×n,O C ∈ Rn×t, E ∈ Rm×t (8)

Again, n signals are used to represent m muscles by using
the muscle synergy OW and the synergy recruitment OC. To
reduce the dimensionality of muscle data, we set n to be smaller
than m.

SENSORY SYNERGY SIZE
The synergy coordination index (SCI) was used to evaluate the
resulting synergy space. The space here is represented by the angle
θ between the utilized synergies (Figure 4). Let us assume that
sensory synergy W is expressed as

W =
[

W (1) W (2) W (3) · · · W (n)
]
,

where W (i) ∈ Rs is a basis vector of the synergy space. Because we
use NMF to estimate W , the synergy space exists only for positive
vector components. Furthermore, vectors W (i)(i = 1 · · · n) are in
general not orthogonal to each other. The size of the synergy space
depends on the relative angles between the vectors W (i). To quan-
tify the size of the synergy space, we define the space size as the
sum of the inner products of W (i) and W (j):

SCI = 2

n(n− 1)

n∑
i �= j

W (i)W
(j)

. (9)

The range of SCI is from 0 to 1. SCI = 1 implies that all vec-
tors W (i) are identical, whereas SCI = 0 implies that all vectors
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FIGURE 4 | Conceptual model of the meaning of sensory synergy

space size. Two synergies IW (1) and IW (2) abstracted from three sensory
activations s1, s2, and s3, which are positivite. The area of the region
between IW (1) and IW (2) represents the size of the synergy space. A
similar concept is also applied to the muscle synergy space size by
replacing sensor s with muscle m.

W (i) are orthogonal to each other. The synergy space is smaller
for larger values of SCI.

SIMILARITY BETWEEN THE SENSORY/MUSCLE SYNERGY
RECRUITMENTS (S/M SIMILARITY)
The S/M similarity describes the similarity between the sensory
and muscle synergy recruitment signals IC and OC (Figure 1).
The S/M similarity is calculated using correlation coefficient:

r
(
x, y

) = |

m∑
i= 1

(xi − x)(yi − y)

mSxSy
|, (10)

Here, x and y are two vectors to be compared (in this case, IC
for x and OC for y), x and y are their mean values, and Sx and
Sy are their standard deviations. The S/M similarity ranges from
0 to 1.

A high similarity value indicates that muscle synergy recruit-
ment is highly correlated with sensory synergy recruitment. To
avoid the ordering issue in the NMF algorithm, we re-sorted the
resulting synergies to obtain the highest similarity.

MEASURING THE APR’s SKILL OF THE PARTICIPANTS
To quantify the APR’s skill of each participant, a numerical scor-
ing system, based on visual observation by an examiner, was
developed (Table 1). To encourage the participants to perform at
their best and to maintain a high level of motivation, the scores
were also displayed to the participants throughout the experiment
on a screen. To ensure the effectiveness and reliability of the scor-
ing system, a video was recorded for all the experiments and the
examiner used it to re-score offline the participant performance
and compare it to the original scores. Similarity ratios were higher
than 98% for all experiments (see an example, Supplementary
Video 1). The scoring system was designed to measure the par-
ticipants skills in responding to the designed APR task, but it
was not used to confirm or not the overall balance ability of the
participants.

Table 1 | Numerical scoring system to quantify the APR’s skill of

participants.

Case Score

The participant maintained his hands and feet on its initial
position

+2

The participant’s hand(s) were displaced/unattached from its
initial position

+1

The participant’s feet were lifted from its initial position −1

The participant was completely lost his balance and moved out
of the platform

−2

RESULTS
NUMBER OF UTILIZED SYNERGIES
All the participants successfully completed the assigned tasks,
and their respective APR scores varied considerably. The num-
ber of utilized synergies n was the same across the participants.
For sensory synergy, two synergies were enough to project the
collected sensory data (Figure 5A). Similarly, two muscle syn-
ergies were enough to represent the measured muscle activa-
tions (Figure 5B). From these findings, the sensory or muscle
synergies were analyzed on the assumption that two syner-
gies were enough for each participant to complete the assigned
task.

Figure 6 shows an example of the resulting pair of synergies for
two representative participants. Figures 6A,B show the sensory
and muscle synergies computed from data for participant #1 (rel-
atively good balance, score = 1.15), and Figures 6C,D show the
sensory and muscle synergies computed from data for participant
#7 (relatively poor balance, score=−0.9).

As seen in Figure 6, notably different strategies were adopted
by each of the participants. These appear to represent their level
of skill in responding to the disturbance. Participant #1, for
instance, seems to have utilized two muscle synergies: one to con-
trol the lumbar region with the hip joints (OW (1)) and another
to evoke the ankle and hip strategies (OW (2)). Similar strate-
gies were also represented by the sensory synergies, where the
ankle and the hip muscle length sensors were grouped together,
and the hip and lumbar joint sensors were in another group.
A correlation between the sensory and muscle synergy recruit-
ment signals IC and OC was also observed. The control signal
for precise posture control appeared with a delay of approxi-
mately 20 ms after the first signal. In contrast to these trends,
participant #7 utilized an independent synergy for the ankle strat-
egy alone (OW (2)), and another synergy to control the hip and
the lumbar joints (OW (1)). Thus, the coordination between the
utilization of these two muscle synergies seems to be weaker in
participant #7 than participant #1. Also, the sensory and muscle
synergy recruitment signals seem to show a poor match for this
participant. The following two sections highlight the details of
these characteristics and relate them to the balancing skills of the
participants.

RELATION BETWEEN APR’s SKILL LEVEL AND SYNERGY SIZE
Figure 7A shows the relation between the APR’s skill level of
the participants and their computed sensory synergy size, where
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FIGURE 5 | Similarity L between the recorded and reconstructed (A)

sensory data and (B) muscle activation patterns from all possible

computed numbers of synergies (Equation 6). The plots show means and

SD for each participant. The horizontal dashed line indicates the predefined
threshold (75%), and the vertical dashed line indicates the selected number
of utilized synergies.

FIGURE 6 | Calculated sensory and muscle synergies for two representative participants. (A,C) Sensory synergies for participant #1 / participant #7. (B,D)

Muscle synergies for the participant #1 / participant #7. Muscle order: 1, FHL; 2, TA; 3, TFL; 4, GM; 5, RA; 6, ES.

the two appear to be directly proportional (the sensory syn-
ergy size is smaller for high-skill participants than for low-skill
participants).

Figure 7B shows the relation between the sensory and
muscle synergy sizes for all the participants, where it is
clear that the sensory synergy seems to be consistent with
the muscle synergy size. The correlations between sensory
and muscle synergies are stronger when the synergy size is
smaller.

RELATION BETWEEN APR’s SKILL AND I/O SIMILARITY
Figure 8 shows the relationship between the participants’ scores
and the correlation of their sensory and muscle synergies
recruitments, IC and OC, respectively. From the figure, good
performers show high correlation between the sensory/muscle
synergies recruitments than bad performers. This high correla-
tion could be the result of the smaller size of sensory and muscle
synergies that facilitate mapping between environmental input
and motor control.
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FIGURE 7 | (A) Relation between balance skill level and sensory synergy
size. (B) Relation between sensory synergy size and muscle synergy size.
(P, Participant).

FIGURE 8 | Relation between balance skill level and sensory and

muscle synergy recruitment signals.

DISCUSSION
RELATION BETWEEN SENSORY AND MUSCLE SYNERGIES
This paper formulates a sensory synergy framework and empha-
sizes its advantage as a biologically plausible model that
offers low-dimensional environmental input feedback that may
improve on current approaches to neural prosthetic development.

The main challenge in computing sensory synergy is to deter-
mine the relation between sensory and muscle synergies in a
low-dimensional space. To that end, we adopted a simple task
in which we used the changes on muscle length as a measure of
the activation of proprioceptors over a period of 50 ms to esti-
mate the sensory synergies. The period of 50 ms from the onset of
muscle activities was considered in order to compute the muscle
synergies. Only dominant muscles which have more influence in
carrying out the motion were selected for synergies calculations.
A posture control experiment with nine healthy participants was
conducted to examine the relation between sensory and mus-
cle synergies. The results suggest that the degree of coordination
between the resulting sensory synergies (synergy size) can serve
as an effective marker for characterizing to which extend the
behavior is adapted to the environment.

Results reveal that participants with high APR scores showed
well-tuned sensory synergies that project, in a smaller synergy
size, a compendium of sensory data as feedback indicating the
body posture. This smaller size suggests the existence of a sophis-
ticated controller that simplifies and accelerates the transforma-
tion of the signal into a motor command, thus a correlation
between the input IC and output OC was observed, and a control
signal for precise posture recovery was emerged, Figures 6A,B.
The smaller synergy size tends to show that joints are not
controlled independently, thus guarantee a coordinated output
movement, Figure 7B. In participants with weak scores, on the
other hand, we observed a larger synergy size that suggests less
trained controller which hardly was able to handle the introduced
sensorimotor signaling, P7, P8, and P9, in Figures 7B, 8. The large
synergy size that appeared in this group of participants, seems to
cause passing larger amounts of unnecessary sensory information
that may obstruct the formation of an optimal sensory signaling
mapping to the desired motor control.

For future direction, we are planning to examine the contri-
bution of other sensory modalities information, such as vision,
center of pressure, etc., during a balance training phase that can be
applied to the participants who only showed weak scores (Alnajjar
et al., 2013b). We expect to observe an automatic converge of
neural representation during the participants training that would
increase the sensory weights for only those dominant sensors who
mainly contributed to trigger muscle response and decrease the
weights for those who were less efficient. This tuning of sensation
weights could be depending on the task and the environment. The
next stage of this study will be also targeting overcoming some of
the limitations of this preliminary work. For instance, the sub-
jective scoring system can be enhanced by abstracting it from the
motion capture system. The time needed for the participant to
recover his/her balance, or the degree of sway which is caused by
the platform disturbance could be utilized to design a more robust
scoring system.

From our initial results, we believe that sensory synergies are
important to clarify low dimensional meaningful signals that
simplify the work of the CNS when recruiting proper muscle syn-
ergies. It is also the key to determine the level of how much the
body adapts to the surrounding environment. Designing prosthe-
sis based upon the concept of sensory and muscle synergies can
lead to make the controller simpler.
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FIGURE 9 | A conseptual design of neural sensorimotor synergy system

(future direction). (A) The acquired sensory signals and inferred artificial
sensory synergies contribute to the sensory synergy. (B) The prosthesis
controller computes motor commands based on the artificial sensory

synergies. (C) The motor commands are recruited at the activators of the
prosthesis in order to enable the wearer to control the motors. The motion of
an artificial wrist joint adapts to the motion of the disarticulated arm in order
to facilitate grasping and manipulation tasks.

SENSORY SYNERGY AND THE FUTURE OF NEUROPROSTHETICS
A critical aspect of functional forearm prostheses is the ability to
perform sensorimotor tasks. Mainstream powered forearm pros-
theses are controlled using surface EMG signals. The interface
commonly uses EMG sensors to switch between different activa-
tion states of the prosthesis. With this control method, the user
often experiences difficulty in learning how to control the pros-
thesis or how to generate an activation signal for a larger number
of degrees of freedom and/or finer control of speed and force.
Although research has been focusing on the motor control aspect,
it is also very necessary to account for somatosensation, espe-
cially for proprioceptive and tactile modalities (Peerdeman et al.,
2011).

Work on artificial hands indicates that a reduction in dimen-
sionality can decrease the complexity of controlling prosthesis
(Jerde et al., 2003; Katsiaris et al., 2012). The integration of tactile
sense and proprioception is regarded as essential for implement-
ing the ability to perceive environmental input (Rincon-Gonzalez
et al., 2011). The identification of the sensory synergy onset may
provide valuable cues that make it possible to extract the intent of
the action, for example, the target of a reaching movement. Using
sensory synergies is expected to allow for early recognition of the
goal compared to when muscle synergies are used, as the latter
is the result of modulation. This difference may be essential for
implementing continuous and gentle movements in an activated
system.

Figure 9 shows an example of future practical applications
of this study. The neural sensorimotor synergy system extends
the system in Figure 1 by including prosthetic and exoskeletal
artifacts. The dimensionality of the sensory stimulus is reduced
through sensory synergy. A controller modulates sensory syner-
gies to motor commands, and the modulation takes place in a
space of reduced dimensionality compared to that of the input
and output spaces. Motor commands are recruited at activators.
In our ongoing research, we are applying this new principle of
control to forearm prosthesis (Figure 9), and we are currently
conducting clinical experiments involving the control of the fore-
arm prostheses in accordance with the user’s intention through
the neural sensorimotor synergy system (Oyama et al., 2013;
Iwatsuki et al., 2014). In short, from Figure 9, the dimension-
ality of the sensory stimulus to the prosthetic device is reduced
by sensory synergy as part of the sensory system of the users, as
illustrated in Figure 9A. The output from the sensory synergy is
used as the input to both the CNS and an artificial controller.
Compared with raw environmental inputs, the output from the
sensory synergy should be easier to communicate to the CNS
when sensory synergy is well defined. The control signals for the
prosthetic device are created through motor synergy (Figure 9B).
This synergy combines the signals from the CNS and the prosthe-
sis controller and creates a higher-dimensional signal to control
the prosthetic device. The prosthesis controller (Figure 9C) mod-
ulates the signal from the sensory synergy to the motor synergy.
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One of the roles of this prosthesis controller is the generation
of reflexive motions to protect the users in case of unpredictable
environmental changes.
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Decoding motor intent from recorded neural signals is essential for the development
of effective neural-controlled prostheses. To facilitate the development of online
decoding algorithms we have developed a software platform to simulate neural motor
signals recorded with peripheral nerve electrodes, such as longitudinal intrafascicular
electrodes (LIFEs). The simulator uses stored motor intent signals to drive a pool of
simulated motoneurons with various spike shapes, recruitment characteristics, and firing
frequencies. Each electrode records a weighted sum of a subset of simulated motoneuron
activity patterns. As designed, the simulator facilitates development of a suite of test
scenarios that would not be possible with actual data sets because, unlike with actual
recordings, in the simulator the individual contributions to the simulated composite
recordings are known and can be methodically varied across a set of simulation runs. In
this manner, the simulation tool is suitable for iterative development of real-time decoding
algorithms prior to definitive evaluation in amputee subjects with implanted electrodes.
The simulation tool was used to produce data sets that demonstrate its ability to capture
some features of neural recordings that pose challenges for decoding algorithms.

Keywords: prosthesis, neural control, neural recordings, electrode, decoding, fascicle, peripheral nerve, simulation

INTRODUCTION
Most commercially-available powered prostheses for upper limb
amputees provide control of a single degree-of-freedom (DOF)
(MotionControl, 2007). A few provide more than one DOF, but
they require extensive training and exert a high demand on atten-
tion (OttoBock, 2011; TouchBionics, 2013). All of these systems
fall far short of restoring the functionality of the native limb.
This limitation has driven a substantial research and development
effort to develop advanced powered prostheses (JHUAPL, 2014)
and techniques to control the prostheses with biological signals.
To afford a greater degree of control, some efforts have explored
techniques to utilize signals recorded from residual or reinner-
vated muscle (Kuiken et al., 2009; Khokhar et al., 2010; Rehbaum
et al., 2012), while others have investigated the use of signals
recorded from the central nervous system (CNS) (Wolpaw et al.,
1991; Zhu et al., 2005; Huang et al., 2012; Onose et al., 2012) or
the peripheral nervous system (PNS) (Dhillon and Horch, 2005;
Durand et al., 2008; Micera et al., 2008, 2011; Kamavuako et al.,
2010; Tang et al., 2011; Wodlinger and Durand, 2011).

Although approaches that utilize recordings from muscle, CNS
and/or PNS may prove to be suitable for controlling advanced
prostheses, the PNS interfaces have the potential advantage of
providing access to a sufficient number of signals without the risks
associated with implants into the brain or spinal cord. Signals
from the PNS have been recorded using various types of electrode
technologies (Hoffer and Loeb, 1980; Veraart et al., 1993; Tyler

and Durand, 2002). Dhillon et al. (Dhillon et al., 2004; Dhillon
and Horch, 2005) demonstrated that amputees could control
a one DOF robotic arm in a graded fashion using real-time
decoding of signals recorded from longitudinal intrafascicular
electrodes (LIFEs) implanted in the peripheral nerve stumps.
These electrodes, which are fine wires that are inserted into and
along a long axis of a fascicle, enable recordings from small groups
of axons (up to approximately 10). Subsequent demonstrations
with other electrode systems (Durand et al., 2008; Micera et al.,
2008, 2011; Kamavuako et al., 2010; Tang et al., 2011; Wodlinger
and Durand, 2011) further supports the investigation of PNS
interfaces for prosthetic control.

For control signals derived from the PNS (as well as from
muscle or from the CNS), the recorded neural signals must be
transformed in order to derive the control signals to be sent
to the motorized prosthesis. The transformation includes, either
implicitly or explicitly, a decoding of the recorded signal to infer
the intent of the user. A wide variety of algorithms to decode
the biological signals for use in controlling prostheses have been
developed (e.g., Wood et al., 2004; Fraser et al., 2009). The
specific features of the decoding algorithm may differ depend-
ing on the type of biological signal recorded, the properties of
the machine-tissue interface, and the targeted function of the
prosthesis.

To evaluate the performance of a candidate decoding algo-
rithm, the penultimate test is to use it for real-time decoding
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of signals recorded from an amputee as s/he performs a func-
tional task. However, the ability to extensively utilize such a testing
paradigm may be limited due to the experimental nature and lim-
ited deployment of the neuromuscular interface technologies, as
well as other factors. Furthermore, such testing may not afford
direct control over factors that could help to differentiate the per-
formance of candidate decoding algorithms, such as spike overlap
or the number of fibers that contribute to the signal recorded on
a given electrode. Computer models of the peripheral neuromus-
cular system and the neural interface can be used to efficiently
explore a greater range of approaches than can be readily achieved
in living systems (Durand et al., 2008; Zhou et al., 2010).

In this work, we have developed a system to simulate neural
recordings. This system is intended to accelerate the development
and evaluation of candidate decoding algorithms by enabling
the production of data sets of simulated neural recordings with
known characteristics. By affording direct control over several key
features of recorded neural signals, the system could be used to
methodically generate data sets that could identify the advantages
and disadvantages of candidate decoding algorithms.

Our simulation framework enables modeling and simulation
of spinal cord motor pools and recordings by LIFEs (or other
electrode technologies) from subpopulations of motor axons. The
simulator can be used to produce simulated recordings from mul-
tiple electrodes for multi-DOF tasks with known motor intent,
neural spike train characteristics, levels of encapsulation and
signal-to-noise ratios (SNRs). This simulator was designed to
facilitate direct comparison of candidate neural decoding algo-
rithms by enabling comprehensive assessment of the effect of
spike overlap, noise level, and electrode receptive field properties
on algorithm performance. Here, we present a description of the
model and the simulation tool as well as results of several simula-
tions using the tool. These results demonstrate that the simulation
tool can be used to systematically vary motor intent, neural fir-
ing patterns, and electrode recording characteristics in order to
produce data sets that could facilitate the development and assess-
ment of decoding algorithms for systems that use peripheral
neural interfaces.

MATERIALS AND METHODS
A model and simulation system were developed to simulate the
activity of motoneuron pools based on a multi-DOF input of
motor intent. Figure 1 presents a schematic that represents the
system that is modeled in which multiple LIFEs are implanted in
peripheral nerve of an amputee to record activity of motoneurons
that is driven by motor intent signals. The simulator (Figures 2,
3) consists of three primary components: the motoneuron acti-
vation unit, the motoneuron output unit and the electrode unit.
Each of these is described in the sections that follow.

The simulator is implemented in MATLAB®. Simulation and
user specified parameters and functions are defined using several
Excel® or text documents.

MOTONEURON ACTIVATION UNIT
The motoneuron activation unit models the transformation from
motor intent to a variable that represents the membrane poten-
tial, or state, of the motoneurons.

FIGURE 1 | Schematic organization of motor control system and

recording of motor activity with a LIFE. Motor intent (I: I1, I2, I3) can be
represented as a multi-dimensional signal from centers in the brain to
motoneurons pools in the spinal cord, which produce firing patterns in
motoneurons (M: M1, M2, M3). Axons from a given motor pool tend to
cluster together along the length of the peripheral nerve fascicle. The
diagram shows a LIFE electrode that has been implanted into one of the
fascicles of the nerve.

Motor intent is the voluntary intention of a person that leads
to activation of the neuromotor system to attain a motor goal
(Jankowska, 1992; Carp and Wolpaw, 2010). For example, motor
intent could be an attempt to flex the biceps strongly, to partially
extend the wrist or to reach and grasp an object. In an amputee,
motor intent may produce activity in the peripheral motor axons
of the residual limb that could be recorded using a neural inter-
face. In our simulation framework, we define motor intent as an
effort to stabilize and control a single joint or coupled sets of
joints. As such, realization of the motor intent would involve for-
mulation of two essential components: an intended action and a
level of effort. The intended action is the DOF to be controlled
while intended effort is the intensity of that action.

The motoneuron activation unit (Figure 2A) is modeled by,

x(t) = Gu(t), (1)

where u(t) is an n× 1 vector, where n is the number of motor
intent signals. This is a vector quantity in which the individ-
ual components represent motor intent normalized by maximum
intended effort. G maps the motor intent signals to motoneu-
rons. It is an m× n matrix, with m ≥ n, where m represents
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FIGURE 2 | Model for simulating the activity on peripheral nerve

electrodes during motor tasks. The model consists of three components
shown in (A) the motoneuron activation unit, the motoneuron output unit,
and the electrode unit. The input to the model is a vector of motor intent
signals, u(t), which is first transformed to activation states of
motoneurons, x (t), then to motoneuron outputs, y (t). The motoneuron
output signals combine with noise, W (t), to produce the vector of signals,
z(t), recorded by the electrodes. The motoneuron output model includes

three components shown in (B): the firing rate of a motoneuron is
determined by its activation state and its firing rate mapping function, the
time series of pulses is the output of a point process which is then
convolved with the spike template to produce the motoneuron output
signals, y (t). (C) Illustrates the production of spike templates with various
temporal and geometric characteristics. A spike shape is selected at
random from a pool of spikes of different morphologies �. Then the
selected spike is scaled in time by the function � and in amplitude by Ai.

the number of spinal cord motoneurons in a motor pool. x(t)
is the m× 1 vector of the motoneuron activation states. Here,
the activation state, xi(t), represents the membrane potential of
motoneuron i at the site of action potential initiation (axon
hillock). This represents the time-varying state that will deter-
mine the instantaneous firing rate of a motoneuron. Note that
the motor intent vector represents direct inputs to motor pools
through the connectivity matrix, G. Uniform values in a row of G
would be used to simulate uniformity of inputs across the set of
the motoneurons (Fuglevand et al., 1993); variations in these val-
ues would simulate a situation in which some motoneurons in the
pool received stronger input than others. Indirect motor pathways
are not included in the current implementation of the simulator
and motor intent signals are modeled as graded values, not firing
patterns.

In the simulator, the motor intent vector u(t) Equation (1) is
a set of independent functions over a time interval [0, T] that is

specified by the user prior to the start of the simulation. Users
have the option to set each component of the vector u(t). For
example, motor intent can be set as a square wave, ramp-and-
hold, sinusoid, etc. Alternatively, a dynamic model can be used
to generate motor intent signals for a task such as reaching. The
structure and values of G are specified in a parameter file.

MOTONEURON OUTPUT UNIT
This component of the model (Figure 2A) represents the trans-
formation from motoneuron state (time-varying membrane
potential just prior to the axon hillock) to time-varying extracel-
lular potential just outside the axon. This unit is responsible for
generating spike events based on the state of the motoneurons and
producing the extracellular voltage waveform based on the spike
events.

Alpha motoneurons, which comprise the motor pool, fall
into three subclasses according to the contractile properties of
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FIGURE 3 | Model representation that illustrates mappings from

motor intent to electrode recordings. The mappings being
performed by each of the components are illustrated: G maps

motor intent to motoneurons, B maps motoneuron outputs to
virtual electrodes, and C maps virtual electrodes to actual
electrodes.

the muscle fibers they innervate: fast-twitch fatigable (FF), fast-
twitch fatigue-resistant (FR), and slow-twitch fatigue-resistant
(S). These three fiber types differ in size (of the muscle fiber
and the motoneuron) recruitment characteristics, and range
of firing rates. The recruitment of motoneurons in a motor
pool is postulated to follow the size principle (Henneman and
Mendell, 2011)—small motoneurons fire first and as motor
drive increases, larger motoneurons are recruited and contrac-
tion strength increases. Variations in excitability of motoneurons
within the pool may be the primary mechanism for this orderly
recruitment (Fuglevand et al., 1993). Small motoneurons connect
to slow fibers while larger ones innervate fast twitch fibers (Brown
et al., 2006; Carp and Wolpaw, 2010). The firing rates observed in
slow fibers are lower than the rates observed in large fibers (Cisi
and Kohn, 2008).

The motoneuron output unit (Figures 2A,B) is modeled by

y(t) = μ (x(t)) (2)

where y(t) is an m× 1 vector that represents the extracellu-
lar potentials at each axon and μ is a function that maps the
activation states, x(t), of the motoneurons to y(t).

The motoneuron output model includes three components:
the first component determines the mean firing rate based on
activation state and motoneuron properties; the second produces

a train of spike events based on mean firing rate and the
specification of a point process function for spike event timing;
the third produces the time series of the extracellular potential
based on the spike event timings and the spike template. Each of
these components of the model is described in more detail below.

The mapping of motor unit activation to firing rate of the
various types of motoneurons are represented schematically in
Figure 4. For each motoneuron, the firing rate is given by

f (x) =
⎧
⎨
⎩

0, 0 ≤ x < xthr,

κf x, xthr ≤ x < xsat,

fsat, x ≥ xsat,

(3)

where the slope κf of the input/output response curve is given by,

κf = fsat − fthr

xsat − xthr
(4)

where f is the frequency of firing in Hz. xthr is the activation state
above which a motoneuron begins to fire. fthr and fsat are the min-
imum and maximum frequency of firing for a motoneuron, while
xsat is the activation level at which a the firing rate saturates. The
activation state x is normalized between 0 and 1, where 1 rep-
resents maximum activation. xthr determines the effort at which
a particular motoneuron is recruited. In the simulator, xthr , fthr ,
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FIGURE 4 | Examples of motoneuron input/output curves. The first
component of the motoneuron output unit determines motoneuron firing
rate based on the activation state of the motoneuron. In the model, this is
implemented using a piecewise linear function with threshold and
saturation. The plot shows examples of curves representing the mapping
from motor intent to firing frequency for three motoneuron pools, one for
each of the three fiber types. Note that the mapping values specified in this
example will produce sequential recruitment of the slow (S), fast fatigue
resistant (FR), and fast fatigable (FF) as motor intent is increased.

xsat , and fsat can be set by the user for each motoneuron and
can therefore be used to specify the input/output properties of
a motor pool.

The firing rate, f, represents the time varying mean instanta-
neous firing rate, but the actual spike timing is produced by one
of several point process functions (Fuglevand et al., 1993; Cisi and
Kohn, 2008; Zhou et al., 2010) described below. Let

N (ξ) ∼

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ

Poisson (ξ)

TruncatedGaussian (ξ, σ )

Gamma (ξ, σ )

Uniform (ξ, w)

(5)

be a stochastic point process having one of the distributions
listed above. The activation state x determines the mean inter-
spike interval (ISI, ξ = 1/f ). The simulator provides the option
of selecting one of the different point processes for spike trains:
Identity, Poisson, Truncated-Gaussian, Gamma, or Uniform
Equation (5). The Identity process produces a regular spike train
for testing other simulator functionalities. The Poisson process
produces an irregular spike train where the variability is depen-
dent on the mean firing rate. The Gaussian distribution has been
selected for use in prior modeling studies (Fuglevand et al., 1993)
based on some reports of firing rate variability. In the last three
processes, the variability in ISI can be set to be independent of the
mean ISI. This is useful for evaluating the performance of decod-
ing algorithms under different levels of ISI variability while the
mean ISI remains fixed.

The third component of the motoneuron output model pro-
duces the time series of the extracellular potential based on the
spike event timings and the spike template. Each motoneuron
output spike has a characteristic morphology, amplitude and
duration. The shape of the extracellular spike is influenced by the
size of the axon, the number and type of voltage gated channels,
whether or not it is myelinated, and the general health of axons,
since atrophy after amputation can alter spike shape (Dhillon
et al., 2004).

Extrinsic factors that influence the shape of spike recorded
from an extracellular electrode are the recording electrode mate-
rial type, geometry, location, and orientation with respect to
neural sources as well as characteristics of the tissue-electrode
interface such as the degree and type of encapsulation. To sim-
plify the real-time simulation process, we have chosen to include
the effects of electrode type in the shape of the spike templates.
Therefore, the spike template represents the shape and duration
of the extracellular effect of the axonal spike train as viewed by
an electrode. Note that the effect of electrode location and other
extrinsic factors that affect amplitude are represented in the elec-
trode unit. This structure streamlines the simulation process by
incorporating all of the temporal aspects of a spike in one tem-
plate; all other processes that affect the recorded signals involve
only addition (superposition) and multiplication (scaling).

Extracellular waveforms occupy a frequency bandwidth
between 100 Hz and 10 kHz depending on the recording elec-
trode (Horch and Dhillon, 2004; Plonsey et al., 2007; Gosselin,
2011). Some examples of shapes of action potentials recorded
using LIFEs have been provided in the literature (Malagodi et al.,
1989; Lefurge et al., 1991; Lawrence et al., 2004; Dhillon and
Horch, 2005; Micera et al., 2008).

In the simulator, spike shapes are specified by the user in a pro-
cess that includes several steps. First, the user selects normalized
spike morphologies (Figure 5). Spike morphologies are gener-
ated by differentiating Gaussian and Gamma functions, which
can produce a variety of spike wavelets similar to spike shapes
reported in the literature. The spike wavelets are normalized in
amplitudes between (−1, 1) and normalized in duration between
(0, 1). The spike-morphologies are then scaled in amplitude and
duration by the simulator using parameters that can be specified
by the user (Figure 2C).

Let �(t) be a m× 1 vector function that encodes spike shapes
of a motoneuron. Each component of �, ψi(t), will have the
following properties,

∫ ∞
−∞

ψi (s) ds = 0, (6)

and
∫ ∞
−∞

ψi
2 (s) ds <∞. (7)

Now, we can define output of a motoneuron i as follows
(Figure 2):

μi (xi(t)) =
∫ t

0
ψi(t − τ )dN

(
fi(xi(τ ))

)
. (8)
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FIGURE 5 | Examples of spike templates. Three spike morphologies with
normalized amplitudes between (− 1, 1) and normalized duration between
(0, 1) are scaled in time and amplitude to form a multitude of spike
templates. A spike template is a characteristic of a neuron. Spike
morphologies are classified in terms symmetry and the number of peaks
and troughs. Plots (A–C) present spike morphologies that are: symmetric
with one peak and one trough, symmetric with two peaks and two troughs,
and asymmetric with one peak and one trough. Other spike morphologies
are possible and can be directly programmed in the simulator. After scaling
in amplitude and time, each spike morphology can be used to generate
several spike templates, as shown in plots (D–F), each of which has three
spike templates generated from one spike morphology.

If N is a Poisson process, then we can rewrite the function μi as

μi (x(t)) =
∞∑

j= 0

∫ t

0
ψi(t − τ )δ(τ − τj)dτ. (9)

where δ
(
τ − τj

)
is the delta function and τj is spike event time, a

function of the input/output response map fi and Poisson process.
To implement the motoneuron output units in the simulator,

for each motoneuron the user specifies an input/ouput response
curve, a firing model (e.g., Poisson, Gaussian) and a spike tem-
plate. Spike templates are generated by a subunit of the simulator
(Figures 2C, 5).

ELECTRODE UNIT
The output of the electrode unit is the summation of signals from
the motoneurons in the vicinity of the electrode. The number of
units and their relative contributions will depend upon the design
of the electrode, its location in or near the fascicle, and the prop-
erties of the tissue between the motor axon and the electrode. The
model of the electrode unit is designed to represent each of these
factors, which are described below.

Characteristics of LIFEs
In this study, we have implemented a model of the LIFE electrode.
In studies that performed peripheral nerve recordings in animal
models, LIFEs have been fabricated from 25, 50, or 100 μm diam-
eter insulated 90%Pt–10%Ir. A 1 mm recording site is made by
removing part of the insulation (Malagodi et al., 1989; Lefurge

et al., 1991). Each LIFE is placed in a fascicle so that it is aligned
with the axons.

Superposition is the summation of neural signals from mul-
tiple sources on a single recording electrode. The amount of
superposition depends on the structure and relative position of
the electrode with respect to the neural sources. A LIFE with these
dimensions and placement typically records from 6 to 10 axons
(Lefurge et al., 1991). The amplitude of the component from each
axon will depend upon the strength of the signal and the distance
of that axon from the electrode.

Crosstalk occurs when a neural electrode picks up neural sig-
nals from motor axons emanating from different motor pools.
This may lead to superposition of two or more intended motor
actions on a single electrode recording. However, it has been
reported that peripheral nerves are somatotopically organized
even at fascicular and subfascicular level (Hallin, 1990). Given this
organization, an electrode that records from a small number of
fibers is likely to record primarily from motor axons derived from
the same, or related motor pool (Topp and Boyd, 2012).

Spike overlap refers to the temporal coincidence of two spikes
from different motor axons on one electrode. The overlap of
spikes from two or more waveforms could be constructive,
which would result in one large spike, or destructive, which
would result in a small amplitude spike. Either of these could
distort spike shapes, lead to a failure to in spike detection,
and alter the apparent firing frequencies in recorded neural
activity.

A system of multiple LIFEs implanted in multiple peripheral
nerve fascicles could record from multiple motor pools and reflect
different motor actions. The knowledge of nerve gross anatomy
helps guide the placement of electrodes into nerves that carry
information related to the targeted motor actions, but it is not
currently possible to surgically target specific regions within a
fascicle of a nerve or motoneurons from a specific muscle. The
relationship between motor intent and the signal recorded on
each electrode must be determined (decoded) experimentally.
Similar decoding procedures have been carried out for cortical
and other peripheral interfaces (Allison et al., 1992; Donoghue,
2002; Dhillon et al., 2004; Dhillon and Horch, 2005; Velliste et al.,
2008; Blakely et al., 2009; Halder et al., 2011; Krusienski and Shih,
2011; Hochberg et al., 2012).

Drift is unwanted relative motion between the neural interface
and neural sources. Drift can affect the recorded firing patterns
and crosstalk. Any increase in the distance between the axon and
the electrode would attenuate its contribution to the recorded
signal.

Encapsulation is the accumulation of biological matter on the
neural interface as a result of the tissue response to the elec-
trode (Lefurge et al., 1991; Polikov et al., 2005). Encapsulation
attenuates neural signals and can lead to dysfunctional electrodes.

The noise in recordings from LIFEs (or other electrodes)
emanates from a number of sources: activity of muscles in the
vicinity of the electrode, electrocardiac signals, background neu-
ral activity from motor or sensory axons, tissue thermal noise,
thermal and impedance properties of the neural interface, the
recording system and the recording environment (e.g., power
hum and flicker noise).
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Electrode unit: model
In the simulator, a mapping matrix is used to direct signals from
one or more motor axons to each LIFE (Figures 2A, 3). The value
of each element in the matrix represents the sum of the effects of
distance from the axon to the electrode, drift, and encapsulation.
Noise is incorporated as additive signal.

The neural component of the signal recorded on each elec-
trode is a weighted sum of the extracellular signals generated by
the motoneurons (Figure 2A) and is described by

z(t) = H
(
y(t)

)+W(t) (10)

where z(t) is a vector representing the signals recorded on each
of l electrodes, y(t) is the vector representing the activity of m
motor axons, H is a l×m matrix that maps motor axon activity
to electrodes and W(t), which represents noise, is an l× 1 vector.
The values for H reflect the location of the electrodes with respect
to the motor axon. For example, a small value for an element of
H would indicate an axon that is distant from the electrode and
would therefore contribute weakly to the recorded signals.

H can be configured by the user to test different electrode con-
figurations and recording scenarios. For example, the recording
from a LIFE electrode may include substantial contributions from
6 to 10 motor axons signals, the recording from an electrode on
a Utah array may include substantial contributions from 1 to 6
motor axons. To simulate recordings from fibers that are close to
an electrode with a low degree of encapsulation, the elements of
H should be set to high values (close to 1); the effect of increased
distance or encapsulation can be simulated with lower values to
achieve signal attenuation.

H can be defined as the product of two matrices:

H = CB (11)

where B is a l×m matrix, C is an l× l matrix, m is the number
of motor axons, l is the number of electrodes. The matrix B maps
activity from a subset of related motor axons (i.e., the same motor
pool) into activity on a set of virtual electrodes v(t) (Figure 3).

v(t) = B
(
y(t)

)
. (12)

In this formulation signals detected by the virtual electrodes
represent pure motor commands destined to a particular mus-
cle. The mapping matrix C is the degree of crosstalk between
motor pools or, in this case, virtual electrodes. This representa-
tion enables explicit specification of crosstalk that is separate from
the specification of the mapping to virtual electrodes.

Since LIFEs record from a small number of fibers that are likely
to be in the same motor pool, we assume that C is nearly the
Identity matrix. That is, cross-talk between motor pools is neg-
ligible. In this case, the LIFE’s electrode signal z(t) is given by

z(t) = Bv(t)+W(t). (13)

In Equation (10), W is the sum of all noise sources in the envi-
ronment. In the simulator, noise is modeled as power-law noise
(i.e., 1/f β) whose amplitude and β parameter can be specified by

the user. Alternatively, the user can specify band-limited Gaussian
white noise and specify the SNR or provide an additive noise time
series using an input file. In this case, the standard deviation of
the noise will be determined by

σnoise = Q99.9 − Q0.1

3 SNR
, (14)

where Q99.9 and Q0.1 are the 99.9% percentile and 0.1% percentile
of the pure neural signal recorded by the electrode.

OPERATION OF THE SIMULATOR
In order to implement a simulation run, the user must specify the
following simulation parameters:

1. Input/output response curves for each motoneuron, including
threshold motor intent and initial firing frequency and satura-
tion motor intent and firing frequency. Note that recruitment
characteristics are indirectly specified by the threshold motor
intent and saturation point.

2. Spike template for each motoneuron including: spike shape,
duration, and amplitude.

3. Firing model—Poisson, Gaussian, etc.
4. Motor intent to motoneuron mapping matrix, G.
5. Motoneuron to electrode mapping matrix, H.
6. Noise model including SNR ratio and bandwidth.

DEMONSTRATION OF SIMULATOR CAPABILITIES
The simulator was used on specific models in various scenarios
to demonstrate its capabilities with a particular emphasis on pro-
ducing data sets with characteristics that could pose challenges
for neural decoding algorithms, such as: recordings from multiple
axons with different spike morphologies and spike train charac-
teristics (Simulation run 1), recordings produced by motor intent
commands with more than one DOF (Simulation run 2), record-
ings produced by motor intent commands at slowly varying or
different levels of quasi steady-state activity (Simulation run 3),
and recordings with substantial spike overlap (Simulation run 4).

Simulation run 1 was set up to demonstrate the different
spike trains from fast and slow motor units and to demonstrate
superposition of signals from different motor pools. This model
included 5 electrodes in the vicinity of S and FF motor units with
a ramp in motor intent (1 DOF). Six motor units of each type (S
and FF) were simulated; the spike morphology used for the con-
tribution of each motor unit was the shape shown in Figure 5A.
The parameters for each motor unit were selected from a uniform
random distribution across a pre-specified range. The ranges of
values used for spike duration was 4–6 ms for S, 2–4 ms for FF;
the ranges for spike amplitudes were for 45–65 for S, 95–105 for
FF; the ranges for firing frequencies at threshold were 1–5 Hz for
S and 12–19 Hz for FF; ranges for firing frequencies at saturation
were 16–18 Hz for S, 25–30 Hz for FF; ranges for motor intent
threshold were 0–10% for S, 35–65% for FF; ranges for motor
intent saturation were 40–50% for S, 80–100% for FF. The Poisson
model for spike timing variability was used. The weights on con-
tributions of the neurons to the recorded signal (values in the H
matrix) were assigned amplitudes that were equally spaced over
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the range from 0.5 to 1 and each electrode had additive noise with
SNR = 3 (average across the set electrodes). These simulations
demonstrate recordings from electrodes that record from 1 S unit,
6 S units, 1 FF unit, 6 FF units, and 3 S and 3 FF units, respectively.

Simulation run 2 was set up to demonstrate multiple DOF
motor intent and a composite of two motor pools onto one elec-
trode. This model included 3 electrodes and a 2 DOF motor intent
signal: one electrode was modeled to be in the motor pool of the
first motor intent signal; another electrode was modeled to be in
the motor pool of the second motor intent signal; the third elec-
trode was modeled to be in the vicinity of both motor pools. The
parameters used for this run were the same as the mixed fiber elec-
trode (3 S and 3 FF) in simulation run 1 except that for the third
electrode the cross-talk matrix was set to equally weight inputs
from the two motor intent signals (0.5 for all matrix elements).

Simulation run 3 was set up to demonstrate the effect of
motor intent commands at slowly varying or different levels of
quasi steady-state activity. These simulated examples are also used
to demonstrate the qualitative similarity of the simulated traces
to recordings from the peripheral nerve of an amputee. This
model included a single DOF motor intent and additive noise;
the parameters of the model were specified to approximate the
characteristics of actual recordings from the peripheral nerve of
an amputee (Dhillon et al., 2004; Dhillon and Horch, 2005). The
first recording was from a trial in which an amputee was requested
to produce a ramp in motor intent. To produce the simulated
data set, we configured the electrode to record from 6 motor
axons, since experimental data has indicted that a LIFE with these
dimensions and placement typically records from 6 to 10 axons
(Lefurge et al., 1991). Additionally, the SNR ratio in the simulator
was set to be equal to the SNR calculated from neural data. Motor
intent was estimated from the real neural data using a simple
moving average decoder (i.e., the time series was low pass filtered
using a 200 ms moving average window). Then, we produced a
simulated motor intent signal that closely resembled the extracted
motor intent in time and amplitude but free of noise and irregu-
larities. We used this motor intent signal to generate the simulated
neural data using the specified set of neuron characteristics and
electrode characteristics.

The second group of simulations in this run was set up to
mimic a sequence of 3 trials in which an amputee was requested
to produce a steady-state value in motor intent at a low, moder-
ate and then high level, respectively. This model used a set of 30
electrodes with varying number of axons (2, 4, 6, 8, or 10) and
varying properties of the motor pool (all S, all FF, or an equal mix
of S & FF). Each was simulated under three conditions (motor
intent levels of low, moderate, and high steady-state values). For
each steady-state trial, the power spectrum was calculated from
the bandpass-filtered (4th order; 80 Hz–4 kHz) time-series data
using the Welch method (0.5 s window; 50% overlap) and the
total power, mean frequency and estimated motor intent for each
trial were calculated. In all trials in this run, neural recording
amplitudes of both simulated and experimental data were scaled
using the standard deviation of the quiescent phase (i.e., a null
motor intent) on that electrode.

Simulation run 4 uses a large set of simulation runs that was
designed to demonstrate the effect of firing rates and the number

of axons per electrode on spike overlap. This model used a set of
15 electrodes with varying number of axons (2, 4, 6, 8, or 10) and
varying properties of the motor pool (all S, all FF, or an equal
mix of S & FF). Each was simulated under 10 conditions (motor
intent levels of up to 100% in increments of 10%). For each simu-
lation run, the composite firing rate (total number of spikes from
the set of neurons contributing to the electrode) and the % spike
overlap (the percentage of the time in the simulation run where
a spike was present on more than one axon contributing to that
electrode) were calculated.

RESULTS
Figure 6 shows simulated LIFE recordings from fast and slow
motoneurons in response to a slow ramp and hold motor intent
(Simulation run 1). Each motor axon contributes different fir-
ing patterns to a LIFE electrode recording. S fibers have sparse
firing, longer spike duration and smaller amplitudes while FF
fibers have larger amplitudes shorter spikes and more dense fir-
ing patterns. A LIFE electrode, depending where it is placed in
a nerve fascicle, could either record activity from S, FR, FF or a
mix of motor axons. In this simulation, the motor intent signal
was a ramp up to a maximum contraction (Figure 6A). Figure 6B
shows action potentials from a single S motor axon and Figure 6C
shows a recording from the LIFE that is the superposition of sig-
nals from six S motor axons. Figure 6D shows firings of a single
FF motor axon and Figure 6E shows a recording from the LIFE
that is the superposition of signals from six axons of FF motoneu-
rons. Figure 6F is a LIFE recording from a set of three S and three
FF motoneurons. These plots demonstrate that the properties of
the motoneurons as specified for the FF and S fibers produce dif-
ferent contributions to the LIFE recording and demonstrate the
superposition of signals from many motoneurons onto a single
LIFE recording.

Figure 7 demonstrates the ability of the simulator to generate
simulated LIFE recordings for a multiple-DOF task (Simulation
run 2). The motor intent signals were independently specified
to represent a ramp-and-hold for the first DOF (Figure 7A) and
a series of contractions and relaxations for the second DOF
(Figure 7B). Each of these motor intent signals produced acti-
vation in a motor pool. Three electrodes were placed such that
the first recorded signals from the first motor pool (Figure 7C);
the second electrode recorded from the second motor pool
(Figure 7D); and the third recorded signals from both motor
pools (Figure 7E).

To demonstrate the ability of the simulator to produce neural
recordings that can mimic actual neural recordings (Simulation
run 3), we compared simulated traces to data acquired by a
LIFE implanted in an amputee (Dhillon et al., 2004; Dhillon
and Horch, 2005). Figure 8 demonstrates that the simulated
ramp data (Figure 8B) is qualitatively similar to the actual data
(Figure 8A). In addition, a moving-window sign-test (200 ms)
was used to compare the squares of simulated and experimental
data. This analysis indicated that the experimental and simu-
lated data are not significantly different from each other (p ≈ 1).
Figure 8C shows the decoded motor intent signals from simu-
lated and real data. Note that this comparison between simulated
and real data is limited by the nature of the recorded neural data,
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FIGURE 6 | Simulated LIFE recordings from FF and S motor axons

(Simulation run 1). Plot (A) shows motor intent, which in this case is a
slow ramp to maximum. Plot (B) shows firings of one S motor axon. Plot
(C) shows a LIFE recording from six S motor axons. Plot (D) shows firing of
one FF motor axon. Plot (E) shows a LIFE recording from six FF motor
axons. Plot (F) shows a LIFE recording from a mixture of three S and three
FF motor fibers. Each simulated recording includes additive Gaussian noise
with SNR = 3.

because we did not have an independent measure of motor intent.
Thus, the motor intent signal used to generate the simulated neu-
ral recording is the result of the simplified decoding scheme and
is not a true representation of the original motor intent signal.

Data from trials in which an amputee was asked to produce
steady-state levels of motor intent are summarized in Figure 9.
Figures 9A–C present the normalized total power, mean fre-
quency and estimated motor intent values for each motor intent
level. The values calculated for the 30 electrodes used in the
simulation run are presented in the form of box-and-whisker
plots (quartiles and 99 percentile ranges); the data calculated
from trials at each motor intent level from two amputee sub-
jects are superimposed. These data indicate that, for both the
simulated and actual recordings, as the level of motor intent
increased from low to medium to high, total power increased, the
mean frequency decreased, and the estimated motor intent value
increased.

Figure 10 presents the calculated degree of spike overlap vs.
frequency of firing of motoneurons across a set of simulations

FIGURE 7 | Simulated recording from a 2 degree of freedom

(DOF) task (Simulation run 2). Plot (A) shows motor intent
pertaining to the 1st DOF, for example, performing a grip and
hold; plot (B) shows motor intent pertaining to 2nd DOF with a
series of contractions and relaxations. Plot (C) shows recording
from a LIFE electrode recording from motor axons associated with
the first DOF, while plot (D) shows a LIFE recording associated
with the second DOF. Plot (E) shows a recording from a LIFE
electrode picking up signals from the two motor pools associated
with the first and second DOFs.

using several electrode and motor intent settings (Simulation run
4). Figure 10A presents spike overlap as a function of motor
intent for each of the electrodes. The plots demonstrate that per-
cent overlap increases as a result of increased motor intent and
the number of axons that contribute to a particular electrode.
Note that the overlap in electrodes that record solely from S
fibers reaches a plateau at motor intent = 0.5 (since this value
was specified as the saturation point for that motor pool); the
electrodes that record solely from FF fibers show overlap only
for values of motor intent greater than 0.5 (since this value was
specified as the threshold value point for that motor pool); and
the electrodes that record from a combination of S and FF show
a gradual increase in spike overlap throughout the range. Also
note that the maximum values recorded for spike overlap was
approximately the same for the three groups of electrodes (S, FF,
and S & FF) due to the fact that the effect on spike overlap of
lower firing rates of the S axons was offset by their longer spike
durations. This effect is also demonstrated in Figure 10B, which
demonstrates that overlap on electrodes that recorded from S
axons increased more rapidly as a function of composite firing
rate than those that recorded from FF axons; the rate of increase
in overlap for the S & FF electrodes was at an intermediate
level.
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FIGURE 8 | Simulated recordings from slowly varying commands in

motor intent and comparison with data recorded using LIFE electrodes

in an amputee (Simulation run 3). Experimental data from a ramp and
hold task (Dhillon et al., 2004) is plotted in (A). A simulated recording from
a ramp and hold task is plotted in (B). Both simulated and experimental
data were scaled using the standard deviation of the quiescent phase (i.e.,
a null motor intent). Plot (C) shows a plot of decoded motor intent: the blue
trace is from the actual LIFE recording in (A), the green trace is from the
simulated data shown in (B).

DISCUSSION
A TOOL TO FACILITATE THE DEVELOPMENT OF DECODING
ALGORITHMS
The purpose of this simulator is to facilitate the development of
effective and reliable decoders for the control of prostheses by
neural signals. Neural interfaces may improve the functionality
of advanced prosthetic limbs and reduce the attentional demands
required to operate them. Some of the key technical challenges
in developing these neural interface technologies are to obtain
a large number of independently controllable signals, to obtain
them reliably and to interpret them appropriately. This work was
directed at creating a tool to be used in the development of tech-
nology for interpreting, or decoding, the recorded neural signals.

In a neural controlled prosthesis, the role of the decoder is to
estimate the intent of the user from the recorded neural signal.
According to our general definition as well as our specific imple-
mentation, motor intent is a multi-dimensional signal that can
take on graded values along each dimension. The recorded neu-
ral signals are a set of waveforms, each of which is a composite
of spike trains from several motoneuron sources. In general, an
increase in the intensity of motor intent along any dimension is
likely to increase the level of activity on one or more electrodes.
Therefore, one challenge for the decoding process is to identify
changes in activity level in the recorded signals, which would
indicate a change in the intensity of motor intent. A second chal-
lenge for the decoding process is to accomplish a mapping from a
multi-dimensional space defined by electrode recordings to space
defined by dimensions of motor intent.

FIGURE 9 | Characteristics of simulated steady-state contractions at

different levels of motor intent and comparison with data recorded

using LIFE electrodes in an amputee (Simulation run 3). Normalized
total power (A) and mean frequency (B) calculated from the power spectra
from simulated and experimental data. The box-and-whisker plots at each
level of motor intent present the mean, quartiles and 99-percentile ranges
of data from 30 simulated electrodes. The calculated values for total power
and mean frequency from the spectra of experimental data from two
amputee subjects are superimposed (red symbols). Similarly, the estimated
motor intent values from simulated and experimental trials are presented
in (C).

Consider the first challenge—that of identifying changes in
activity level on a given electrode. In electrodes that record com-
posite signals, any overlap in the action potentials in neighboring
axons will produce distortion in the morphology of a given
spike. Some candidate decoding algorithms may be more sensitive
than others to such distortions due to spike overlap. In evalu-
ating a decoder on actual recordings from nerves, the amount
of overlap is not known and cannot be experimentally con-
trolled. The simulator described here will enable comprehensive
assessment of candidate algorithms with respect to their abil-
ity to identify changes in motor intent and with respect to their
sensitivity to distortions caused by spike overlap. The simulator
can be used to generate data sets with a collection of motor
intent signals and a variety of electrode configurations. These
data sets can be created to present specific and well-characterized
challenges for decoding, such as spike overlap, in order to
assess the ability of the algorithm to address that specific
issue.
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FIGURE 10 | Percent overlap as a function of motor intent and spike

frequency (Simulation run 4). These plots present data from a set of
simulations using different motoneurons pools (S, FF, and mixed S & FF)
that provide signals to a set of LIFEs. S motoneurons had spike durations of
4 ms and had firing frequencies that ranged from 5 to 18 Hz over the lower
half of the motor intent range; FF motoneurons had spike durations of 2 ms
and had firing frequencies that ranged from 18 to 35 Hz over the upper half
of the motor intent range. 15 electrodes were simulated with different
combinations of fiber type (all S, all FF, or a mix of S & FF) and number of
neurons contributing (2, 4, 6, 8, 10). Percent overlap represents the
percentage of the recording time in which there was overlap of 2 or more
spikes. Composite frequency was calculated as the total number of spikes
summed across all neurons that contribute to a particular electrode. Plot
(A) shows the percent overlap on recordings from LIFE electrodes as a
function of motor intent. Note that percent overlap is higher for electrodes
that record from more neurons and that it increases as a function of motor
intent. Plot (B) presents results from the same set of simulations, but with
the data plotted as a function of composite frequency. On the plots, the
black, red, and blue lines/markers indicate values derived from electrodes
that record from S, mixed and FF motoneurons, respectively. Note that with
this specification of motoneurons (spike duration and rates), the highest
value for percent overlap is less than 20% and that electrodes that record
signals from S motoneurons have higher values of spike overlap for a given
composite frequency than those that record from a mixed population or
from only FF motoneurons, because of the difference in spike durations.

Next consider the second challenge for the decoding process—
to accomplish a mapping from a multi-dimensional electrode
space to motor intent space. In the situation where there is cross-
talk, i.e., when signals from two or more motor pools contribute

substantially to the signal recorded by one electrode, the decoding
algorithm must be able to identify both components of the sig-
nal. Once again, it is likely that some candidate algorithms would
address this problem better than others and the simulator would
facilitate a comprehensive comparison.

In both of these cases, these capabilities of the simulator are
particularly important because it is not possible to perform such
a set of experiments in humans or an animal model. Distortions
due to spike overlap and cross-talk of several motor pools onto
one electrode cannot be controlled experimentally nor can they
be quantitatively identified when they occur.

A MODEL THAT CAPTURES THE KEY FEATURES OF RECORDED NEURAL
SIGNALS, YET CAN BE EFFICIENTLY SIMULATED
Many previous reports have described the design and develop-
ment of simulation systems for spinal motor pools (Capaday and
Stein, 1987; Fuglevand et al., 1993; Bashor, 1998; Nussbaumer
et al., 2002; Ivashko et al., 2003; Lowery and Erim, 2005;
Subramanian et al., 2005; Stienen et al., 2007; Uchiyama and
Windhorst, 2007; Cisi and Kohn, 2008) and models of record-
ings of extracellular potentials (Plonsey et al., 2007). To the best
of our knowledge, these two types of models have not been inte-
grated in a manner that would meet our stated needs. The models
of spinal motor pools include several efforts directed at studying
the neuromotor control system (Fuglevand et al., 1993; Ivashko
et al., 2003; Rybak et al., 2006) and others directed at designing
biomimetic control systems (Ijspeert, 2008). The models of neural
recordings have focused primarily on understanding and opti-
mizing the electrode-tissue interface (Perez-Orive and Durund,
2000). Although our model and simulation system draws upon
many of the concepts implemented in previous studies, we did
not directly implement these other models.

In designing the model and the simulator, our intent was to
capture the key features of recorded signals that may differenti-
ate the performance of various decoding algorithms in a system.
For the overall structure and for the individual elements, there
are clear tradeoffs between biological fidelity and operational effi-
ciency. Models that have a high degree of biological fidelity can
often incur high costs in terms of effort required to develop the
software, effort required to configure the software for a simulation
run, and computational complexity. In developing this system, we
focused on the key features of biological fidelity while striving
to achieve reasonable operational efficiency. The key features of
the neural/electrode system that we believe are suitably captured
include: gradation of motor intent, multidimensionality of motor
intent, variability in firing rates of motor pools from different
fiber types, recruitment properties of different fiber types, vari-
ability in spike morphology across motor axons and electrodes,
jitter in spike train timing, superposition of spike trains from
multiple motor axons onto one electrode, spike overlap, cross-
talk from multiple motor pools onto one electrode, variability in
the number and relative strengths of motor axons contributing to
different electrodes, and noise superimposed on the relevant neu-
ral signals. These features are captured in a model that requires
specification of parameters that affect the properties of the sys-
tem in a straightforward manner. For example, in this system the
user directly specifies the range of firing rates for a motor neuron
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of a particular type; in a model with a high degree of biologi-
cal fidelity that included a model of the biophysical properties of
the membrane and channel dynamics, the range of firing rates
would emerge from the specification of a large number of inter-
dependent model parameters and components. In this example,
the model with higher biological fidelity would incur what we
believe to be unnecessary costs in development, configuration,
and implementation. We believe that the design of our simulator
captures the key system features in a manner that is operationally
efficient.

The transformation from motor intent to neural recordings
certainly involves a large number of nonlinear, dynamic pro-
cesses. The model we have implemented includes three nonlinear
processes: the piecewise linear mapping from motoneuron state
to mean firing rate, the spike event times based on motoneu-
ron state, and the morphology of the spike template for a given
neuron. All other processes involve linear transformations: the
connectivity between motor intent and motoneuron activation,
the convolution of spike events with spike templates, and the
connectivity between motor axons and electrodes.

In neural recordings, the morphology of a recorded spike is
influenced by the relative spacing (and orientation) of the elec-
trode and the nodes of Ranvier as well as the electrical properties
of the tissue. Alterations in the relative spacing, orientation or
tissue properties could have a nonlinear effect on the spike mor-
phology. As implemented, the system allows for linear scaling of
the contribution of a motor unit to an electrode, but nonlinear
effects that would modify spike morphology would have to be
accommodated by a change in the spike template.

In a system that uses more than one electrode in a fascicle, it
is possible that one neuron may produce signals that contribute
substantively to the recordings on more than one electrode. In
this scenario, the morphology of the spike templates from that
neuron will be different on each electrode. As designed, our sim-
ulator allows for a scaled version of the same template on different
electrodes, but it does not allow for one axon to produce differ-
ent morphologies on different electrodes. This limitation, which
may be particularly important if using the simulator to study
recordings on densely packed intrafascicular electrode arrays,
could be addressed by modifying the simulator to allow one
point process to produce more than one simulated spike train,
thus producing simultaneous spikes on different electrodes with
different shapes.

SPECIFICATION OF MOTOR INTENT
In this simulator, we have implemented motor intent as a sig-
nal that has two essential components: an intended action and
a level of effort. The intended action is the DOF to be con-
trolled while intended effort is the intensity of that action. Motor
intent could be used to represent an action that is formulated in
joint torque space. That is, motor intent signals could be used
to represent quantities such as elbow flexion moment or wrist
abduction moment. We believe that this form of representation
will directly facilitate translation to a system where an amputee
controls a motorized prosthesis. There are many possible rep-
resentations of motor intent (in task space, joint space, muscle
space, or other body-referenced coordinate systems) and there is

evidence to support the existence of such representations at vari-
ous points in the neuromotor control system circuitry. We believe
that the joint torque representation is suitable because it will
directly transfer to a constrained experimental paradigm in which
an amputee is asked to issue specific motor commands, and the
motor commands are directly related to the required actions of
the prosthesis. For example, if an amputee is asked to think about
elbow flexion and wrist extension while seated quietly, motoneu-
rons in the residual limb that used to innervate elbow flexors and
wrist extensors are likely to fire. Subsequently, when attempting
to perform a functional task with a neural-controlled, powered
prosthesis those same motoneurons are likely to fire if the task
requires elbow flexion and wrist extension. These recorded com-
mands can then be directly mapped to motors on the prosthesis
to execute the desired movement.

ON-GOING AND FUTURE WORK
We are currently using the simulator to develop data sets that
will be useful in comparative assessment of decoding algorithms
for neural-controlled prostheses. Although our current effort
is directed at systems that would utilize LIFE electrodes, we
believe that the simulator can be readily configured to simulate
recordings from a Utah array, tfLIFE, TIME, or other electrodes
designed to record from peripheral nerves. The primary differ-
ences in configurations for the different electrode types would
be alterations of the spike template morphologies, the number as
well as the relative contributions of motoneurons that contribute
to a recorded signal, and the noise characteristics.

Several modifications to the existing simulation system might
enhance its utility as a tool to characterize the benefits of various
decoder designs. For example, the system described here uses a
linear function to map motor intent to motoneuron activation.
While this may be sufficient to test most of the key features of
the decoding system, it may fail to capture other influences on
the transformation that may impact decoder performance. Future
efforts will seek to identify such opportunities for improving the
utility of the simulation system.
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Movement is planned and coordinated by the brain and carried out by contracting muscles
acting on specific joints. Motor commands initiated in the brain travel through descending
pathways in the spinal cord to effector motor neurons before reaching target muscles.
Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the
injury level. However, the planning and coordination centers of the brain, as well as
peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic
devices can restore motor function following SCI by direct electrical stimulation of
the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are
limited by a myriad of factors that include, but are not limited to, a lack of characterization of
non-linear input/output system dynamics, mechanical coupling, limited number of degrees
of freedom, high power consumption, large device size, and rapid onset of muscle fatigue.
Wireless multi-channel closed-loop neuroprostheses that integrate command signals from
the brain with sensor-based feedback from the environment and the system’s state offer
the possibility of increasing device performance, ultimately improving quality of life for
people with SCI. In this manuscript, we review neuroprosthetic technology for improving
functional restoration following SCI and describe brain-machine interfaces suitable for
control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we
discuss novel stimulation paradigms that can improve synergy with higher planning
centers and improve fatigue-resistant activation of paralyzed muscles. In the near future,
integration of these technologies will provide SCI survivors with versatile closed-loop
neuroprosthetic systems for restoring function to paralyzed muscles.

Keywords: spinal cord injury, brain machine interface, closed-loop control, feedback control, neuroprosthetics,

sensors, implantable systems

INTRODUCTION
Approximately 300,000 individuals in the United States, and more
than 2.5 million individuals worldwide, are affected by traumatic
spinal cord injury (SCI) (National Spinal Cord Injury Statistical
Center, 2013). Overall health-care related cumulative costs are
estimated to exceed $9 billion annually in the United States alone
(DeVivo, 2012). In 2010, 36.5% of SCI resulted from motor vehi-
cle accidents, 28.5% from falls, 14% from violence (including
gunshot wounds), 9% from sports accidents, and 11% from other
incidences not reported in detail (National Spinal Cord Injury
Statistical Center, 2013). The demographic profile has changed
over the last 40 years to involve older aged individuals. However,
males still comprise the majority of injuries (Sekhon and Fehlings,
2001; DeVivo, 2012; Lenehan et al., 2012; National Spinal Cord
Injury Statistical Center, 2013).

Traumatic SCI can occur when an excessive load to the spinal
column is transmitted (directly or indirectly) to the spinal cord

(Rowland, 1991; Watson et al., 2009). Damage to the spinal
cord begins at the moment of injury, when displaced fragments
of bone, disc material, or ligaments typically cause bruises or
tears to spinal cord tissue (McDonald and Sadowsky, 2002).
However, paralysis has been observed with no radiographic evi-
dence of damage to the spinal cord or vertebral column (Pang
and Wilberger, 1982; Mirovsky et al., 2005; Mahajan et al., 2013).
Regardless of the injury mechanism, SCI involves permanent sen-
sorimotor and autonomic deficits (Scivoletto et al., 2014), with
long term complications including muscle atrophy and increased
risk of cardiovascular disease (Phillips et al., 1998; Chen et al.,
1999).

Most spinal cord injuries do not completely sever the spinal
cord (Marino et al., 2003; National Institute of Neurological
Disorders and Stroke, 2013). Instead, key pathways necessary for
signal transmission between the brain and the rest of the body
are disrupted. Spinal cord injuries can be classified as complete
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and incomplete injuries (Marino et al., 2003). Complete injuries
are indicated by a total lack of sensory and motor function below
the level of injury. In contrast, the ability to convey messages to
or from the brain is not completely lost in cases of incomplete
injury. That is, limited sensation and movement remain below the
level of injury. Although SCI interrupts connections between the
brain and effector muscles, key planning, coordination, and effec-
tor centers above and below the injury remain intact (Krajl et al.,
1986; Triolo et al., 1996; Jilge et al., 2004; Minassian et al., 2004;
Fisher et al., 2008, 2009; Yanagisawa et al., 2011; Wang et al., 2013;
Collinger et al., 2014). Functional electrical stimulation (FES) is
a form of therapy that applies external currents into intact neu-
romuscular circuitry below the level of injury, activating intact
neural components to cause muscle contractions that can lead to
restoration of motor function (Jackson and Zimmermann, 2012).

This manuscript reviews current therapeutic applications of
electrical stimulation of the spine for providing functional coordi-
nation of muscle contraction and restoring function to paralyzed
muscles. Additionally, this manuscript describes the develop-
ment of neurostimulation technologies and control strategies,
combining brain signals, optimal control algorithms, and emerg-
ing FES strategies to develop a clinically-translatable FES system
that optimizes restoration of neurologic function following SCI
(Figure 1).

ELECTRICAL STIMULATION OF EXCITABLE TISSUE
The use of electrical stimulation for investigating the function of
the nervous system began with the Italian physician and scientist
Luigi Galvani (Galvani and Aldini, 1792). Galvani discovered that
nerves and muscles are electrically excitable, and was able to evoke
muscle contractions in frog legs by stimulating them with brief
jolts of electricity, produced by static generators (Hambrecht,
1992). Since then, it has been well established that nerve cells

FIGURE 1 | Neuroprosthetic system. The neuroprosthetic system is
capable of interpreting volitional movement signals from the brain,
integrating these commands with sensor feedback (e.g., joint angle, limb
velocity, etc.) and, delivering appropriate commands into intact neural
circuitry below the level of injury.

can be activated using electrical currents delivered into neural tis-
sue via stimulating electrodes (Glenn et al., 1976; Branner et al.,
2001; Brill et al., 2009; Kilgore et al., 2009; Kent and Grill, 2013;
Nishimura et al., 2013). Active nerve cells fire electrical impulses,
also known as action potentials, that travel along the nerve axon
and propagate across neuromuscular junctions via neurotrans-
mitter signaling (Bean, 2007; Meriney and Dittrich, 2013). In
turn, this signaling mechanism causes muscle fibers connected to
nerve fibers (i.e., motor unit) to contract (Hughes et al., 2006).

ELECTRICALLY EVOKED MUSCLE ACTIVATION
The strength of stimulation-evoked muscle contractions can be
controlled by varying the frequency, amplitude, and pulsewidth
of the external stimuli (Grobelnik, 1973; Kralj et al., 1988; Kralj
and Bajd, 1989; Bhadra and Peckham, 1997). At low frequen-
cies, individual muscle twitches are evoked with each stimulus
pulse. At higher frequencies, responses to individual stimuli
fuse and muscles respond with smooth contractions. Higher
stimulus frequencies produce stronger muscle contractions, but
also increase the rate of muscle fatigue (Tanae et al., 1973;
McDonnall et al., 2004; Bamford, 2005). Activation of motor
units can be achieved using different stimulation modalities:
transcutaneous stimulation, percutaneous stimulation, intra-
muscular stimulation, peripheral nerve stimulation, and spinal
stimulation.

TRANSCUTANEOUS STIMULATION
Transcutaneous stimulation, also known as surface stimulation,
relies on stimulating electrodes placed on the skin surface directly
over the muscle motor points (i.e., locations that produce an
optimal balance between contraction strength and stimulation
amplitude) (Hirokawa et al., 1990; Scremin et al., 1999; Mangold
et al., 2005). This non-invasive, reversible, and inexpensive tech-
nique has been successfully used in locomotion and hand grasp
systems (Kralj and Bajd, 1989; Popovic et al., 2005). However,
transcutaneous muscle stimulation has multiple practical limita-
tions. Specifically, the skin offers a high resistance compared to
muscle tissue (Bîrlea et al., 2014). For this reason, higher stimu-
lation currents (>30 mA) are required to achieve desired motor
responses using surface stimulation (Triolo et al., 2001; Lujan and
Crago, 2009). Additionally, the limited degree of selectivity can
lead to activation of antagonist muscle groups or an inability to
selectively activate deep muscle groups (Schmit and Mortimer,
1997; Triolo et al., 2001). Furthermore, current spread due to sub-
optimal electrode placement and limited stimulation specificity
can result in pain (Niddam et al., 2001).

PERCUTANEOUS STIMULATION
Percutaneous stimulation systems rely on intramuscular nee-
dle electrodes that pass through the skin and stimulate tar-
get muscles (Caldwell and Reswick, 1975; Stanic et al., 1978;
Malezic et al., 1984; Marsolais and Kobetic, 1986; Bogataj et al.,
1989). This allows activation of deep muscles and provides iso-
lated, selective, and repeatable muscle contractions. Percutaneous
stimulation requires lower stimulation intensities compared to
transcutaneous stimulation. However, increased risks of infec-
tion, lead breakage, and movement restrictions limit the use of
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percutaneous stimulation outside of a laboratory environment
(Knutson et al., 2002).

IMPLANTED INTRAMUSCULAR AND PERIPHERAL NERVE
STIMULATION
Implanted neurostimulation systems are associated with electrical
current delivery via both intramuscular and nerve cuff electrodes
(Rabischong and Ohanna, 1992; Peckham et al., 2002; Guiraud
et al., 2006). As the name implies, intramuscular stimulation
relies on electrodes implanted directly into the muscle (Crago
et al., 1980; Hobby et al., 2001; Peckham et al., 2001, 2002;
Peckham and Knutson, 2005; Kilgore et al., 2008). Peripheral
nerve stimulation relies on electrode cuffs that are surgically
placed around nerves innervating target muscles (Stein et al.,
1975; Hoffer et al., 1996; Strange and Hoffer, 1999; Sinkjaer,
2000; Branner et al., 2001; Brill et al., 2009; Fisher et al., 2009;
Polasek et al., 2009). Although capable of evoking strong, selec-
tive, and repeatable muscle activation, intramuscular and nerve
cuff stimulation techniques often recruit the largest and most fati-
gable motor units first, resulting in early fatigue onset (Popovic
et al., 2002). Discontinuous activation of muscle compartments
and interleaved frequency stimulation have both been reported
to delay fatigue onset (Boom et al., 1993; McDonnall et al.,
2004). Saigal et al. demonstrated fatigue-resistant stepping in a
spinalized cat by stimulating the lumbrosacral cord via inter-
leaved stimulation (Saigal et al., 2004). Interleaved stimulation
reduces muscle fatigue by decreasing the stimulation frequency
(Mushahwar and Horch, 1997; Tai et al., 2000). The asynchronous
nature of interleaved stimulation is designed to evoke fused con-
tractions despite a lack of tetanic firing in individual motor units.
However, the limited number of controllable degrees of freedom,
high power consumption, and other technological and practical
limitations have restricted the widespread application of electri-
cal stimulation therapy outside research environments (Peckham
and Knutson, 2005; Ragnarsson, 2008; Creasey and Craggs, 2012).

SPINAL CORD STIMULATION
Direct stimulation of the spinal cord may be advantageous over
conventional FES techniques as spinal stimulation provides an
opportunity to directly activate higher level circuitry, which over-
sees and coordinates motor function (Minassian et al., 2004,
2007; Bamford, 2005; Gerasimenko et al., 2008; Bamford and
Mushahwar, 2011; Holinski et al., 2011; van den Brand et al.,
2012; Angeli et al., 2014). Two modalities of spinal stimulation
have been described: epidural and intraspinal stimulation.

In epidural stimulation, stimulating electrodes are placed
directly over the spinal cord (Lavrov et al., 2008; Hachmann
et al., 2013). Two recent studies reported that neuromodulation of
spinal circuitry via epidural stimulation, combined with intense
physical rehabilitation, was capable of allowing individuals with
incomplete and complete SCI to process conceptual, auditory and
visual feedback to regain voluntary control of paralyzed muscles
for short durations of time. Results of these studies suggest some
degree of residual connectivity through the area of SCI (Harkema
et al., 2011; Angeli et al., 2014). These studies, although promis-
ing, require using rigorous patient selection and replication in
larger patient populations.

In intraspinal microstimulation (ISMS), stimulating elec-
trodes are implanted within the ventral gray matter of the
spinal cord (Bamford and Mushahwar, 2011). ISMS is hypoth-
esized to directly activate alpha motor neurons, preferen-
tially activating fatigue resistant muscle fibers (Gorman, 2000;
Bamford, 2005). Several studies have highlighted the poten-
tial of ISMS to restore bladder and respiratory function, as
well as upper and lower extremity function in animal mod-
els (Mushahwar and Horch, 2000a,b; Mushahwar et al., 2002;
Moritz et al., 2007; Bamford et al., 2010; Bamford and
Mushahwar, 2011; Nishimura et al., 2013; Sunshine et al.,
2013).

INTRASPINAL MICROSTIMULATION (ISMS)
Intraspinal stimulation has been extensively used to study the
effects of electrical stimulation on the central nervous sys-
tem, as well as synaptic delays and network interconnections
across spinal pathways (Renshaw, 1946; Jankowska and Roberts,
1972a,b; Gustafsson and Jankowska, 1976). More recently, ISMS
has been used to investigate the organization of motor circuitry
within the spinal cord in amphibious, rodent, and feline animal
models (Bizzi et al., 1991; Giszter et al., 1993; Tresch and Bizzi,
1999; Lemay et al., 2001, 2009; Saltiel et al., 2001; Lemay and Grill,
2004).

Similarly, over the past 15 years, ISMS has been used to
investigate restoration of motor function in spinalized and anes-
thetized rodents and cats (Mushahwar et al., 2002; Bamford,
2005; Pikov et al., 2007; Yakovenko et al., 2007; Holinski et al.,
2011; Kasten et al., 2013; Sunshine et al., 2013). Work performed
by Lau et al. demonstrated that ISMS is capable of produc-
ing standing in cats for over 20 min (Lau et al., 2007). The
lower stimulation amplitudes associated with intraspinal stim-
ulation (in the order of a few microamperes) are believed to
be, at least in part, responsible for the longer periods of mus-
cle contraction observed (Bamford, 2005). Other studies sug-
gest that the fatigue resistance observed with ISMS techniques
is the result of preferential activation of type I slow-twitch
fatigue-resistant motor fibers (Mushahwar, 2000; Mushahwar and
Horch, 2000a; Saigal et al., 2004; Bamford, 2005; Nishimura
et al., 2013). Moreover, Bamford et al. showed ISMS recruit-
ment of up to 44% fatigue-resistant muscle fibers compared
to less than 1% fatigue-resistant muscle fibers recruited using
peripheral nerve cuff stimulation (Caldwell and Reswick, 1975;
Marsolais and Kobetic, 1986; Bamford, 2005). As such, when
combined with interleaved stimulation, ISMS has been associ-
ated with further decrease in muscle fatigue (Rack and Westbury,
1969; McDonnall et al., 2004; Lau et al., 2007; Mushahwar et al.,
2007).

The close proximity of spinal motor centers to higher con-
trol centers responsible for controlling motor function, together
with the improved fatigue response, make ISMS an excel-
lent alternative for restoring locomotor function in individuals
with SCI (Etlin et al., 2014; Guertin, 2014). However, before
spinal or other electrical stimulation technology can be clini-
cally used to optimally improve quality of life for individuals
with SCI, appropriate stimulation control paradigms must be
established.
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OPTIMAL CONTROL PARADIGMS
Electrical stimulation systems have been previously used to
assist respiratory function (Kaneyuki et al., 1977; Gorman, 2000;
Posluszny et al., 2014), hand grasp (Avestruz et al., 2008; Skarpaas
and Morrell, 2009; Rosin et al., 2011; Gan et al., 2012; Basu
et al., 2013; Grant and Lowery, 2013), locomotion (Behrend
et al., 2009), as well as bladder and bowel function (Lee et al.,
2004; Shon et al., 2010a,b; MacDonald et al., 2013) in patients
with SCI. These FES systems have relied on a variety of control
strategies, ranging from linear models to adaptive controllers, but
all aimed at enhancing stimulation-evoked functional responses.
Many neuroprosthetic control systems rely on feedforward con-
figurations (Moro et al., 1999; Molinuevo et al., 2000), in which
controller output depends only on user inputs (e.g., stimulus
parameters). These controllers have fast response times, but do
not make corrections if the target and actual outputs differ (Lee
et al., 2009). Furthermore, these controllers will not alter their
response in the face of unexpected internal or external perturba-
tions (Blaha and Phillips, 1996; Lee et al., 2006). However, the
highly non-linear nature of muscle responses, coupled with envi-
ronmental perturbations found in activities of daily living, require
that optimal neuroprosthetic control paradigms rely on feedback
signals. Feedback-based control systems continuously monitor
musculoskeletal system outputs and adjust stimulation param-
eters if the stimulation-evoked musculoskeletal system outputs
(e.g., limb position, force) differ from the desired outputs (Lujan
and Crago, 2009; Griessenauer et al., 2010; Chang et al., 2012).
This guarantees the system can respond to and compensate for
unforeseen perturbations. Feedback control has been previously
used for control of hand grasp (Lujan and Crago, 2009), stand-
ing posture (Fraix et al., 2006; Rosin et al., 2011), and locomotion
(Roham et al., 2007; Takmakov et al., 2010; Fitzgerald, 2014) in
SCI individuals. Simple feedback control can be improved by
using adaptive systems (Karniel and Inbar, 2000; Kobravi and
Erfanian, 2012). Adaptive algorithms modify controller behavior
in response to changes in the system and the environment (Chizek
et al., 1988; Narendra, 1990; Narendra and Parthasarathy, 1990;
Teixeira et al., 1991; Kostov et al., 1995; Davoodi and Andrews,
1998, 1999; Jonić et al., 1999; Abbas and Riener, 2001).

Studies have demonstrated the ability of neural networks to
successfully control motor neuroprostheses, both in paraplegic
(Riess and Abbas, 1999, 2000, 2001; Nataraj et al., 2013) and
tetraplegic individuals (Fujita et al., 1998; Lujan and Crago, 2009).
Artificial neural networks (ANNs) can model static and dynamic
non-linear systems (Durfee, 1989; Funahashi, 1989; Hornik et al.,
1989; Chakraborty et al., 1992; Barron, 1993; Lan et al., 1994;
Piche, 1994; Graupe and Kordylewski, 1995; Hassoun, 1995;
Kostov et al., 1995; Chang et al., 1996; Chen et al., 1997; Demuth
and Beale, 2000). Additionally, ANNs can generalize from exper-
imental input/output data, eliminating the need for analytical
models of the system (Funahashi, 1989; Hornik et al., 1989;
Graupe and Kordylewski, 1995; Hassoun, 1995; Narendra, 1996;
Demuth and Beale, 2000). Furthermore, ANNs are less sensi-
tive to noise and easily implemented in hardware (Narendra,
1996). Moreover, ANN-based controllers allow changes to the
controller without requiring changes in data collection or con-
troller training methods. Backpropagation neural networks have

been used to model the non-linear relationship between stimulus
intensity and stimulation-evoked responses (Fujita et al., 1998;
Lujan and Crago, 2009). Additionally, ANNs have been success-
fully used to create inverse dynamic models of musculoskeletal
systems for neuroprosthetic control (Chang et al., 1997; Yoshida
et al., 2002). These models are particularly useful for learning the
characteristics of electrically-activated muscles in coupled multi-
joint systems acted upon by redundant muscles (Adamczyk and
Crago, 1997, 2000; Lujan and Crago, 2009).

Thus, optimal neuroprosthetic control systems should rely
on a combination of non-linear feedforward and feedback tech-
niques in order to pre-emptively reduce the amount of error
in real-time while minimizing time delays inherent to feed-
back control systems. Development of such optimal closed-
loop neuroprosthetic controllers will require high-quality sensors
that can withstand daily use under a wide range of daily life
activities.

FEEDBACK SIGNALS FOR OPTIMAL CONTROL OF NEURAL
PROSTHESES
Neuroprosthetic systems with feedback control are capable of
identifying, decoding, and extracting features from appropriate
input signals in order to respond to unforeseen perturbations
and changes in the environment (Bhadra et al., 2002; Dominici
et al., 2012; Holinski et al., 2013). However, optimal feedback
modulation for clinical application will require fully implantable
smart sensors that provide consistent and reliable chronic infor-
mation to the control system (Shih et al., 2012; Peckham and
Kilgore, 2013). There is already a wide range of sensors that
can detect and measure information about the system and its
environment. The most commonly used sensors include electro-
physiological sensors, chemical sensors, force transducers, and
magnetic sensors. Electrophysiological sensors measure poten-
tial differences generated by muscle (i.e., myoelectric signals) and
neural tissue (e.g., electroencephalogram, electrocorticogram,
electroneurogram) (Leuthardt et al., 2004; Müller-Putz et al.,
2005; Holinski et al., 2013). These sensors can monitor muscle
state and evaluate expected muscle responses. In turn, this allows
adaptation of stimulation parameters in the presence of mus-
cle fatigue (Hayashibe et al., 2011; Zhang et al., 2013). Chemical
sensors (e.g., carbon fiber microelectrodes coupled to fast scan
cyclic voltammetry devices) can detect changes in stimulation-
evoked analytes (e.g., neurotransmitters) (Bledsoe et al., 2009;
Chang et al., 2012) that can be used to modulate stimulation
levels. Force transducers (e.g., piezoelectric devices, accelerom-
eters) can be used to detect changes in limb position, ground
reaction forces, heel strike, and other events that are critical for
event detection and optimal control of stimulation (Tan et al.,
2004). Magnetic sensors detect changes in magnetic fields and
can be used to detect limb position and orientation (Bhadra
et al., 2002; Tan et al., 2004). However, having reliable sensors is
not enough to develop an optimal feedback controller. In order
for the signals measured by these sensors to be of clinical use,
they must be properly decoded and integrated with both exist-
ing and novel neuroprosthetic control systems (Shadmehr et al.,
2010). This will most likely happen in the way of a brain machine
interface.
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BRAIN MACHINE INTERFACES
Brain machine interfaces (BMI) are neural interface systems that
can record, analyze, and decode brain signals (Wang et al., 2010)
to infer volitional intent, which in turn can be used to control
limb movement and assistive devices (Figure 2) (Leuthardt et al.,
2004; Hochberg et al., 2006; Schwartz et al., 2006; Miller et al.,
2010; Carmena, 2012; Fifer et al., 2012). Brain commands may
be recorded using sensors located on the scalp (electroencephalo-
gram), the surface of the brain (electrocorticogram), or the brain
parenchyma using intracortical electrodes that record activity
from single neurons (single unit recording) or groups of neu-
rons (local field potentials) (Figure 3). Electroencephalographic
recordings offer a non-invasive recording technique that is safe
and easy to implement. However, controlling multiple degrees of
freedom with electroencephalographic signals has proven diffi-
cult due to challenges with extracting and classifying individual
signal features as well as an inherent low spatial resolution (Yang
et al., 2011). Single unit recordings and local field potentials offer
excellent signal resolution, but are highly invasive (Buzsáki et al.,
2012). Single unit recordings capture the activity of distinct neu-
rons. The high spatial and temporal resolution provided by single
unit recordings allows for precise measurements of neuronal
spikes (Buzsáki et al., 2012). The downfall to single unit record-
ings is a difficulty isolating specific neural activity due to crosstalk
from neighboring cells (Bai and Wise, 2001). Furthermore, single
unit recordings can be biased toward activity from larger neurons
adjacent to the intended neuron (Buzsáki et al., 1983). Finally,
electrode migration, immune responses (e.g., glial scarring), and
disruption of surrounding neural tissue interfere with signal
quality and limit reliable single unit activity to acute record-
ing conditions (Carter and Houk, 1993; Polikov et al., 2005).
Local field potentials reflect a weighted average of integrative pro-
cesses and associations between cells that can be detected over

longer distances through extracellular space (Logothetis, 2003a,b;
Andersen et al., 2004; Bronte-Stewart et al., 2009; Buzsáki et al.,
2012; Rosa et al., 2012). Unfortunately, the longer recording range
of local field potential techniques is associated with decreased
spatial resolution. Electrocorticogram presents a good balance
between risks and benefits, as it provides good spatiotemporal res-
olution without damaging underlying cortical tissue (Leuthardt
et al., 2004; Wilson et al., 2006; Schalk et al., 2008; Moran, 2010;
Slutzky et al., 2010).

Extracted brain signals must undergo filtering to remove
movement artifacts and electrical noise before they can be used
by a BMI and neuroprosthetic controller to generate motor com-
mands (Kowalski et al., 2013). Filtered signals must be analyzed
using classifiers and signal processing algorithms that identify
unique features or signatures (Kowalski et al., 2013). In turn, these
features are mapped to specific functions and/or degrees of free-
dom that control neuroprosthetic systems and assistive devices
(Pfurtscheller et al., 2003; Musallam et al., 2004; Müller-Putz
et al., 2005; Jackson et al., 2006; Moritz et al., 2008; Daly et al.,
2009; Chadwick et al., 2011).

Pioneering work by Georgopoulos et al. used single unit
recordings to establish a high degree of correlation between arm
movement and cortical activity within a non-human primate
(Georgopoulos et al., 1986). Subsequently, several studies in non-
human primates and SCI-survivors have demonstrated stable,
chronic, intracortical recordings using microelectrode arrays such
as the Utah and Michigan arrays (Wessberg et al., 2000; Serruya
et al., 2002; Taylor et al., 2002; Pfurtscheller et al., 2003; Suner
et al., 2005; Cheung, 2007; Cheung et al., 2007; Moritz et al.,
2008; Langhals and Kipke, 2009; Sharma et al., 2010, 2011; Do
et al., 2011; Hochberg et al., 2012). Cortical signatures can be
identified from their spatial, temporal, and frequency-dependent
features (Nicolas-Alonso and Gomez-Gil, 2012). However, BMI

FIGURE 2 | Neuroprosthetic control. The neuroprosthetic controller
receives user commands (e.g., intended movement) extracted
from cortical signals, and feedback information from different

sensors. These inputs are combined and processed to adjust
the stimulation parameters responsible for evoking intended
movements.
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FIGURE 3 | Cortico-spinal neuroprostheses. Command signals from
the brain can be extracted using a variety of brain signal recording
techniques such as single unit recordings (SUR), electrocorticographic
signals (ECoG), or electroencephalographic signals (EEG). Raw signals
must be digitized and filtered to extract essential features that can

be classified by the controller in order to calculate appropriate
stimulation parameters. In turn, these parameters are used by a
neural interface to activate spinal circuitry below the level of injury.
Figure adapted from Smart Draw LifeART Collection Images and Lobel
and Lee (2014).

application to complex neuroprosthetic control has been limited
due to the difficulty of extracting sufficient numbers of unique
signatures for control of systems with multiple degrees of free-
dom (Shih et al., 2012). Ongoing efforts in decoding algorithms,
together with advances in neural training techniques such as
motor imagery, have recently improved feature extraction, allow-
ing SCI survivors to control complex movements using BMI
(Wang et al., 2009, 2013; Chao et al., 2010; Yanagisawa et al.,
2011).

CONCLUSIONS
Recent advances in the fields of BMIs and electrical stimula-
tion therapy provide a promising outlook for patients with SCI.
However, it is clear that successful restoration of independence
for SCI survivors requires integration of selective electrical stim-
ulation techniques, feedback control, and optimal control algo-
rithms. As is the case in normal human neurophysiology, selective
muscle activation as well as integration of force feedback, balance,
proprioception, and reduction of muscle fatigue are all criti-
cal for motor function. Therefore, next-generation closed-loop
neuroprosthetic systems must integrate fully implantable multi-
channel stimulators and feedback sensors with adaptive control
systems. Furthermore, control algorithms must be designed for
seamless integration with BMI systems and real-time processing,

integration, and transmission of feedback control signals. Devices
that are capable of coupling such novel stimulation, intention
detection, proprioceptive sensing, and control algorithms are cur-
rently under development, with clinical translation just beyond
the horizon. Ultimately, these technologies will provide SCI sur-
vivors with increased independence in daily life, improved overall
health, and enhanced quality of life.
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techniques for automatic determination of rules to control locomotion. IEEE
Trans. Biomed. Eng. 46, 300–310. doi: 10.1109/10.748983

Kaneyuki, T., Hogan, J. F., Glenn, W. W., and Holcomb, W. G. (1977). Diaphragm
pacing. Evaluation of current waveforms for effective ventilation. J. Thorac.
Cardiovasc. Surg. 74, 109–115.

Karniel, A., and Inbar, G. F. (2000). Human motor control: learning to control a
time-varying, nonlinear, many-to-one system. IEEE Trans. Syst. Man Cybern.
30, 1–11. doi: 10.1109/5326.827449

Kasten, M. R., Sunshine, M. D., Secrist, E. S., Horner, P. J., and Moritz, C. T.
(2013). Therapeutic intraspinal microstimulation improves forelimb function
after cervical contusion injury. J. Neural Eng. 10:044001. doi: 10.1088/1741-
2560/10/4/044001

Kent, A. R., and Grill, W. M. (2013). Model-based analysis and design of nerve
cuff electrodes for restoring bladder function by selective stimulation of the
pudendal nerve. J. Neural Eng. 10:036010. doi: 10.1088/1741-2560/10/3/036010

Kilgore, K. L., Hoyen, H. A., Bryden, A. M., Hart, R. L., Keith, M. W., and Peckham,
P. H. (2008). An implanted upper-extremity neuroprosthesis using myoelectric
control. J. Hand Surg. Am. 33, 539–550. doi: 10.1016/j.jhsa.2008.01.007

Kilgore, K. L., Peckham, P., and Keith, M. W. (2009). Twenty year experience
with implanted neuroprostheses. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009,
7212–7215. doi: 10.1109/IEMBS.2009.5335272

Knutson, J. S., Naples, G. G., Peckham, P. H., and Keith, M. W. (2002). Electrode
fracture rates and occurrences of infection and granuloma associated with
percutaneous intramuscular electrodes in upper-limb functional electrical stim-
ulation applications. J. Rehabil. Res. Dev. 39, 671–683.

Kobravi, H.-R., and Erfanian, A. (2012). A decentralized adaptive fuzzy
robust strategy for control of upright standing posture in paraplegia
using functional electrical stimulation. Med. Eng. Phys. 34, 28–37. doi:
10.1016/j.medengphy.2011.06.013
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A variety of treatments have been historically used to alleviate phantom limb pain
(PLP) with varying efficacy. Recently, virtual reality (VR) has been employed as a more
sophisticated mirror therapy. Despite the advantages of VR over a conventional mirror,
this approach has retained the use of the contralateral limb and is therefore restricted
to unilateral amputees. Moreover, this strategy disregards the actual effort made by the
patient to produce phantom motions. In this work, we investigate a treatment in which
the virtual limb responds directly to myoelectric activity at the stump, while the illusion of
a restored limb is enhanced through augmented reality (AR). Further, phantom motions
are facilitated and encouraged through gaming. The proposed set of technologies was
administered to a chronic PLP patient who has shown resistance to a variety of treatments
(including mirror therapy) for 48 years. Individual and simultaneous phantom movements
were predicted using myoelectric pattern recognition and were then used as input for VR
and AR environments, as well as for a racing game. The sustained level of pain reported
by the patient was gradually reduced to complete pain-free periods. The phantom posture
initially reported as a strongly closed fist was gradually relaxed, interestingly resembling
the neutral posture displayed by the virtual limb. The patient acquired the ability to freely
move his phantom limb, and a telescopic effect was observed where the position of the
phantom hand was restored to the anatomically correct distance. More importantly, the
effect of the interventions was positively and noticeably perceived by the patient and
his relatives. Despite the limitation of a single case study, the successful results of the
proposed system in a patient for whom other medical and non-medical treatments have
been ineffective justifies and motivates further investigation in a wider study.

Keywords: phantom limb pain, augmented reality, virtual reality, myoelectric control, electromyography, pattern

recognition, neurorehabilitation

BACKGROUND
Phantom limb pain (PLP) is a common and deteriorating con-
dition suffered by ∼70% of amputees (Dijkstra et al., 2002),
and regardless the cause of amputation (Clark et al., 2013). In
recent years, virtual reality (VR) has been used to treat PLP
as a more technologically sophisticated version of the well-
known “mirror” therapy introduced in 1996 (Ramachandra and
Rogers-Ramachandra, 1996). VR has clear advantages over the
physical constraints imposed by the conventional mirror box, as
it allows a wider range of motion and rehabilitation exercises. In
addition, VR allows interactive games that challenge patients with
varying levels of difficulty, while keeping them entertained and
motivated (Sveistrup, 2004). Contemporary reviews of the use of
VR in neuromuscular rehabilitation are given in Sveistrup (2004),
and Holden (2005).

To date, VR mirror therapy has relied on patients commanding
the same motor execution in both limbs. A virtual representation
of the missing limb is then created to match the motions of the

contralateral limb, thus delivering visual feedback (Murray et al.,
2006a,b; Mercier and Sirigu, 2009; Bach et al., 2010). Since the
sound limb is required, this approach is only suitable for unilat-
eral amputees. The patients have no direct volitional control of
their phantom limb virtual representation. Instead, they simul-
taneously execute the same motions in both limbs. In this setup,
the real effort and commitment of the patient to produce phan-
tom limb motions is not part of the intervention, i.e., the mirror
limb will move as long as the sound limb does, and regardless
of the intention of the phantom limb. Additionally, it has been
suggested that the variable efficacy of this therapy across sub-
jects is mainly due to the difference in individual susceptibility to
the visual feedback, rather than the physiological condition itself
(Mercier and Sirigu, 2009). We hypothesize that the higher degree
of realism provided by augmented reality (AR), together with
direct volitional control through the prediction of motion intent
using myoelectric signals at the stump, could improve the effi-
cacy of this therapy. Furthermore, the addition of game control
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by phantom limb motions should help to engage the patient in
executing these movements and, since only the amputated limb is
involved, it is also suitable for bilateral amputees.

VR-based treatment in which the virtual limb is controlled
by the affected side has been previously explored with motion
tracking technology (Cole et al., 2009), which inherently, and
considerably, restricts the amount of predictable motions. Here
we show that myoelectric pattern recognition allows for the accu-
rate prediction of hand, wrist, and elbow motions as intended in
an intact limb.

The utilization of the stump musculature to control conven-
tional myoelectric prostheses has been long thought to reduced
PLP (Lotze et al., 1999), despite that most commonly, the con-
trolling muscle contractions are not originally related to the end
actuation (i.e., in a trans-humeral amputee, an electrode over
the biceps muscles controls the closing of a prosthetic hand).
However, even if the musculature for physiologically appropriate
actuation is no longer present, it has been shown that amputees
are able to distinguish between imagining a phantom movement,
and actually executing it. This suggests that the ability to naturally
execute a movement is maintained after amputation, but more
importantly, the effect on neuroplasticity and inter-hemispheric
communication is different when practicing motor execution
and motor imaginary (Raffin et al., 2012a,b). Experiments with
implanted neural interfaces, which rely on the physiology of
motor execution, have been shown to reduce PLP (Di Pino et al.,
2012). This supports the use of direct volitional control through
myoelectric signals at the stump, with the advantage that the sys-
tem presented here is non-invasive, and allows the equivalent to
a physiologically appropriate control (i.e., muscle synergies gen-
erated with the intention of closing the missing hand, results in
closing of the virtual hand).

It has been suggested that incongruencies in the visual stim-
ulus and sensory perception produce varying results in terms of
pain relief, in some cases increasing it (Desmond et al., 2006).
This problem is avoided in our proposed myoelectrically con-
trolled AR environment (MCARE), where a conventional web-
cam captures the whole environment around the patient and
integrates it in the rehabilitation task. To the best of our knowl-
edge, this is the first time that AR, gaming, and the prediction
of motion intent using myoelectric pattern recognition have been
used together as a treatment for PLP. Comprehensive reviews of
PLP are given in Nikolajsen and Jensen (2001), and Flor et al.
(2006). In this work, the results of using MCARE in a chronic,
treatment-resistant PLP patient are reported.

A chronic PLP patient for whom other treatments have proven
ineffective was recruited to this study. The patient (male, 72 years
old) lost his arm just below the elbow joint in 1965 due to a
traumatic injury. He has experienced PLP since the amputation
and reported a strongly closed fist as the permanent posture
of his phantom hand. The PLP has continued over the years,
despite conventional mirror therapy, different drug-based treat-
ments, acupuncture, and self-suggested hypnosis. The patient has
reported living with constant burning pain of an intensity of 3 on
a scale from 0 to 10 (SF-MGPQ; Melzack, 1987), with episodes
that escalated up to the maximum intensity approximately every
hour for a few minutes, reported as excruciating pain. In addition,

the patient was normally woken at night due to intense episodes
of pain.

METHODS
PAIN TRACKING
Pain perception was monitored after every session using the
short-form McGill pain questionnaire (SF-MGPQ) (Melzack,
1987) translated into Swedish (Burckhardt and Bjelle, 1994). The
questionnaire was administered by a facilitator, with the excep-
tion of pain intensity where the patient noted the rating directly
on the visual analogue scale. A percentage of total time at each
level of pain was also reported. Additionally, the patient was free
to self-report any comments on the system and the treatment.

CONTROL SOURCE
The prediction of motion intent was made using BioPatRec, an
open source platform initially developed for advanced prosthetic
control strategies based on pattern recognition algorithms (Ortiz-
Catalan et al., 2013). The myoelectric activity at the patient’s
stump was utilized as the sole input to determine the intended
phantom limb motions. Once the aimed motion is known, this
can be used to command a variety of virtual environments and
robotic devices. A custom-made AR environment was developed
for this study to interface with BioPatRec and allow the patient to
visualize himself (in real-time) with a virtual arm superimposed
on his stump. The AR environment uses a conventional web-
cam which inputs a video feed that is analyzed to track a fiducial
marker, thus allowing the virtual arm to remain in the anatom-
ically correct position while the patient moves (see video in
Additional File 1). The fiducial marker can be printed with a con-
ventional printer. The virtual arm is superimposed on the marker
and changes scale and rotation based on the tracking of the
marker. These parameters can be also adjusted in real-time with
the keyboard in order to improve the fitting of the virtual arm.

MYOELECTRIC RECORDINGS
Eight bipolar electrodes (self-adhesive Ag/AgCl, Ø = 1 cm,
and ∼2 cm inter-electrode distance) and the marker were placed
around the stump, as shown in Figure 1. The location of the
electrodes was defined by asking the patient to perform differ-
ent movements and palpation of the corresponding muscular
activity. We have empirically found that this procedure, rather
than pre-defined selective placement, allows dealing with the dif-
ficulties of a commonly altered anatomy at the most distal part
of the stump. The movements requested were hand open/close,
wrist pro/supination, wrist flexion/extension and elbow flex-
ion/extension.

The amplifiers used were developed in-house (MyoAmpF2F4-
VGI8) with embedded active filtering: 4th order high-pass filter
at 20 Hz; 2nd order low-pass filter at 400 Hz; and, Notch filter
at 50 Hz. The signals were amplified with a gain of 2000 and
digitalized at 2 kHz and 16 bits.

The protocol for myoelectric signals acquisition and process-
ing is described in Ortiz-Catalan et al. (2013). The classifiers used
were Linear Discriminant Analysis in a One-Vs-One topology
(LDA-OVO), and Multi-layer Perceptron in a dedicated topol-
ogy per degree of freedom (MLP-AAM), for individual and
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FIGURE 1 | Setup for the myoelectrically controlled augmented reality

environment (MCARE). (A) Surface electrodes and a fiduciary marker
placed at the stump. (B) Environment captured by the webcam and
displayed on a computer screen, with the addition of the virtual limb
superimposed on the fiduciary marker. (C) Patient playing a racing game in
which he drives the car by phantom motions (Trackmania Nations Forever,
free version). (D) Patient using the Target Achievement Control (TAC) test
as a rehabilitation tool.

simultaneous movements, respectively. These classifiers have been
shown to be successful at both tasks in real-time studies and are
further described in Ortiz-Catalan et al. (in press).

INTERVENTION
Once the electrodes and marker were in place, and the quality
of the EMG signals was verified by short real-time myoelectric
recordings, the subject was asked to perform the eight movements
while being guided on the length and timing of the contractions
by a virtual limb. The instructions given to the patient were to
perform the motions “as if he still had the missing limb,” thus
aiming for physiologically appropriate myoelectric activity to be
used for control. The LDA-OVO was trained with this informa-
tion and the patient had a 10-min session in the AR environment
in which the facilitator prompted the patient to perform the
recorded movements one by one in random order (Figures 1A,B).

After the AR environment session, new EMG recordings were
made for simultaneous movements using wrist pro/supination
and elbow flexion/extension. This information was used to
train the MLP-AAM, which real-time predictions were used
to play a racing game (Trackmania Nations Forever, free ver-
sion). The game was controlled by using wrist pro/supination
to turn left/right, while elbow flexion/extension controlled
the car acceleration/deceleration. After a gaming session of
∼10 min, the same procedure was repeated for hand open/close
and wrist flexion/extension, always in combination with elbow

flexion/extension (Figure 1C). These combinations of motions
were also used in the Target Achievement Control (TAC) test
initially introduced by Simon et al. (2011b), with modifications
described in Ortiz-Catalan et al. (in press). The artificial limb
speed was two degrees/prediction (new predictions every 50 ms)
and the target posture was displaced in 1 and 2 degrees of freedom
(DoF). The velocity-ramp algorithm was used to facilitate con-
trollability (Simon et al., 2011a). In this work, the TAC test was
used for rehabilitation and training, rather than as an evaluation
tool (Figure 1D).

Once the TAC tasks were completed, a new set of movements
was recorded using all eight movements to conduct a “Motion
Test” (Kuiken et al., 2009), as implemented in BioPatRec (Ortiz-
Catalan et al., 2013). Similarly to the TAC test, the Motion Test
was aimed as a rehabilitation tool. Questionnaires were admin-
istered by the facilitator at the end of the Motion Tests which
concluded the session.

This protocol was applied once a week starting in March 2013
and this work includes the results up to week 18. In the last 5
weeks, two sessions a week were held, while in week eight no
session was conducted because the patient was unavailable for
reasons unrelated to treatment. A video showing examples of the
interventions is available as Additional File 1.

RESULTS
An increment in pain was reported by the patient after the first
session, however, the pain decreased slightly below the origi-
nal level in the second session, after which a slow yet consistent
improvement was seen in the sustained level of pain. Figure 2
illustrates the progress in pain reduction. After 4 weeks, the
patient reported starting to experience episodes of lower pain
intensity. After 10 weeks, episodes of almost absent pain started
occurring and this then developed into completely pain-free peri-
ods a couple of session later. This was reported by the patient as
the most dramatic effect: “These pain-free periods are something
almost new to me and it is an extremely pleasant sensation.” In
addition, pain-free periods of 15–60 min were reported immedi-
ately after the rehabilitation sessions.

As the patient is very active in agricultural activities, despite
his disabilities, he performs physical tasks that involve the use of
his prosthesis. These activities often induced sessions of pain dur-
ing the following days. Each week, the patient reported that the
periods of pain that normally came in the days following the activ-
ities had been dramatically reduced and that he was able to work
harder without being afflicted by PLP.

Surprisingly, the patient was capable of sequential control of
three DoF from the first session, which evolved to four DoF and
simultaneous control after four sessions. The patient reports that
he is now able to control the motion of his phantom limb at will in
the trained DoF. This is even possible in the absence of the visual
feedback provided by the system, as is the case when he drives.
More importantly, he reports being able to control (stop) the pain
episodes considerably more effectively than before the interven-
tions. Furthermore, he no longer wakes up at night due to PLP.
The patient’s life partner reports that it is her belief that “My hus-
band can live 10 years more than I expected, as pain now plays a less
important role in his life and those close to him can see it.”
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We have previously observed that patients using BioPatRec
reported a telescopic effect on the position of the phantom limb.
The patient initially reported the perception of his phantom hand
at the stump height, which over the course of the treatment
extended to the anatomically unaltered position. Interestingly,
when he rests his arm over a table producing sensory feedback,
the perceived position of the hand moves back to the end of
the stump. However, as soon as he starts producing phantom
motions, the perceived position is once again restored to the
unaltered anatomy. This is a phenomenon that is now perma-
nently present and it indicates the complexity of self-perception
and how it can be altered by sensory feedback and motor execu-
tion. It is worth noting that the presence of a phantom limb map
on the stump is weak, mixed, and fairly difficult for the patient
to identify, thus providing limited sensory information from the
phantom hand.

FIGURE 2 | Evolution of pain intensity over time. (A) The distribution of
pain intensity over time shows that at the beginning of the treatment, the
patient had a sustained level of pain (∼30%) during more than half of the
time, and periods with higher levels of pain the rest of the time. Over the
course of the treatment, a reduction of time at higher pain intensity levels
was reported, as well as the appearance of periods of lower or absent pain.
(B) The sustained level of pain was also the lowest pain perceived by the
patient, and it gradually decreased to around 10% over the course of the
interventions. Episodes of reduced pain started occurring after 4 weeks of
treatment and gradually became pain-free periods. In week 11, a problem
with his socket prosthesis caused him to use an old, tighter socket that had
previously been shown to induce pain.

The initial state of the phantom hand was described by the
patient as a permanently, strongly closed fist and this has been
the case for the last 48 years. After six sessions, this state evolved
to a mid-open hand position, which coincides with the neutral
(relaxed) position shown by the virtual hand. This is now the
permanent perception of phantom hand posture and it is greatly
appreciated by the patient (patient self-report). We do not have
enough data to argue that the constant visualization of such posi-
tion as the normal virtual state has influenced its perception as the
default phantom limb state, or whether this is instead the result
of the patient’s skill at moving the phantom limb. In any case, the
relaxation of such a stressed position occurred at the same time as
the appearance of reduced pain periods and it could therefore be
attributed as one of the causes of reduced PLP.

As expected, the ability of the patient to control the different
motions improved over the course of the treatment. It is worth
mentioning that no muscles directly responsible for the more dis-
tal movements were available due to the level of amputation (e.g.,
hand open and close). However, the patient was capable of vol-
untarily controlling the virtual limb to produce those motions.
We hypothesize that the patterns of myoelectric activity produced
by muscle synergies are distinctive enough to allow the classifiers
to differentiate directly related movements from those occurring
more distally at the hand. Figure 3 illustrates the learning curve
through the improvement of the classification accuracy of nine
classes (eight movements plus “no movement”). In this case, the
classification accuracy indicates how well motions can be dis-
cerned from each other using information from the recorded
sessions (offline), whereas the real-time performance once the
patient has acquired experience with the system is shown in
Table 1. Despite the relative low level of offline accuracy at the
beginning of the treatment, the interventions were still possible
because only a few movements were discriminated together for
each rehabilitation task, thereby making the differentiation easier
for the classifiers, i.e., only two DoF (four movements) were used
for game control and the TAC test.

The motion test results after week 15 show performance com-
parable to that of 17 able-bodied subjects previously evaluated
(Ortiz-Catalan et al., 2013), where the signal processing, features
and motion test settings were the same. Although these results

FIGURE 3 | Offline accuracy. The offline discrimination accuracy over time
is presented in box plots where the central mark represents the median
value; the edges of the box are the 25th and 75th percentiles; the whiskers
give the range of data values; “∗” represent average values.
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Table 1 | Motion test results.

PLP patient BioPatRec study

# Movements 8 10

# Electrodes 8 4

Selection time (s) 0.56 (±0.14) 0.62 (±0.24)

Completion time (s) 1.71 (±0.15) 1.86 (±0.31)

Completion rate (%) 98.0 (±2) 87.4 (±11)

Real-time accuracy (%) 75 (±4.2) 67.1 (±10)

cannot be compared directly, they serve as an indication of the
ability of the patient to produce distinctive motions in real-time.
It is worthy of notice that the number of electrodes has been
reduced to four since this report without a noticeable effect in
classification performance.

DISCUSSION
A complete understanding of the root causes and underlying
mechanisms of PLP has evaded the scientific community for
decades (Nikolajsen and Jensen, 2001; Flor et al., 2006). This
understanding will undoubtedly enable the creation of more
effective treatments for the condition. In this context, the sys-
tem proposed here provides empirical information on the effect
of reactivating brain areas related to motor execution, enabling
visual feedback that “tricks” the brain into believing that there
is a limb responding to motor commands, and exercising the
stump musculature, which is normally neglected. Mirror therapy
is based on the assumption that visual feedback can potentially
correct tactile deafferentation (to some degree) due to brain plas-
ticity. Evidence has been reported on the correlation between
cortical reorganization and PLP (Flor et al., 1995), which was fur-
ther investigated to argue that extensive myoelectric prosthetic
use prevents it, and thus reduces PLP (Lotze et al., 1999). The
patient reports wearing his body-powered prosthesis all the time
he is awake and he has done so for decades. In this case, although
limited visual feedback is provided by the prosthesis, the pros-
thesis does not respond to physiologically appropriate commands
and the motion of the missing limb is thus neglected. This might
explain why, although the patient has used his prosthesis exten-
sively, the PLP has remained. This underlines the importance of
a congruent relationship between feedback and motor execution,
as well as the intention to perform motion execution itself. All this
is synergistically provided by our system.

In this case study, we present a system that can be used for PLP
treatment and has had relative success in a patient with chronic
PLP who had unsuccessfully explored several other treatments.
Despite the fact that the pain has not disappeared completely
at the time of this report, its reduction and temporal absence
have considerably improved the patient’s condition (patient self-
report). It still remains to be seen whether the pain disappears
completely after the long-term use of the system. The ideal med-
ical treatment would be to administer it for a defined period of
time and permanently cure the condition. We have intentionally
avoided terminating the sessions to evaluate the long-term effect,
as we feel this would be unethical, given the satisfaction reported
by the patient after 48 years of chronic pain. As an alternative, the

patient has been provided with a stand-alone system to be used at
home and he has been instructed to use it at his own discretion.
Follow-ups will be conducted every 2 months for a year and every
year after that for 5 years.

The combination of myoelectric control of a virtual limb using
physiologically appropriate signals, the enhanced illusion given
by AR, and the entertainment provided by gaming has enabled
the patient to develop the skill to control the motion of his phan-
tom limb at will, even outside the lab. It is not clear whether this
skill alone is enough to reduce PLP, because (1) this was acquired
through visual feedback forcing the brain into the illusion that the
limb is present, thus facilitating phantom limb motions (Brodie
et al., 2003); and (2) the intervention inevitably results in motion
intent and a workout of muscles at the stump which are nor-
mally neglected. It has been argued that the second factor alone
is a cause of PLP relief (Sherman, 1980). The independent con-
tribution of these two factors could be difficult to isolate in
the proposed system. Motor intention alone has been shown
to similarly reduce PLP when comparing mirror therapy with
and without visual feedback (Brodie et al., 2007). When visual
feedback was used, however, the capabilities of phantom limb
motion increased. On the other hand, VR interventions where
the controlling side is the amputated has shown signs of PLP
relief, despite that the musculature at the stump was not directly
involved (Cole et al., 2009). Treatment-wise, the combination pre-
sented here including all the latter was successful in a particular
but complicated case, and it requires further investigation in a
wider clinical study.

The possibility of decoding distal movements using muscles
synergies was initially explored decades ago (Wirta et al., 1978).
In 1982, Saridis and Gootee used pattern recognition to decode
wrist pro/supination from biceps and triceps muscles (Saridis and
Gootee, 1982), however, they reported that they were not able
to decode hand open/close; possibly due to the limited number
of electrodes used (2 bipolars). In our experience, patients can
quickly learn to control a few distal motions and the results pre-
sented here suggest that they are able to develop that skill further
to several motions. It is worth noting that one limitation of this
non-invasive approach is that a certain degree of musculature
is required, i.e., shoulder disarticulations would hardly be treat-
able unless they were recipients of targeted muscle reinnvervation
(Kuiken et al., 2004, 2009). On the other hand, the proposed
treatment can be used seamlessly in any patient requiring neu-
romuscular rehabilitation, in cases such as stroke and incomplete
spinal cord injuries (Lee et al., 2011; Liu and Zhou, 2013), again,
given the availability of myoelectric signals.

VR treatments are commonly justified and encouraged by the
assumption that sensory stimulation boosts neuromuscular reha-
bilitation. At the current stage, the system employs only visual
feedback stimuli, mostly due to the technical difficulties involved
in providing proper somatosensory stimulation. In our experi-
ence, patients invariably prefer a virtual limb to any other visual
feedback and we are therefore presently developing rehabilita-
tion games based on AR that are specifically designed to exercise
selected motions in a controlled manner.

The proposed system incorporates different advantages of
computational rehabilitation systems, such as progress tracking,
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adjustable task difficulty, engaging rehabilitation tasks, and porta-
bility. Furthermore, the VR environment and all the source code
necessary for motion prediction using sEMG (including game
control) are freely available and open source in BioPatRec (Ortiz-
Catalan et al., 2013), which aims to enable researchers worldwide
to use this technology.

CONCLUSIONS
PLP has historically being a difficult condition to treat and it
affects the majority of amputees. In this work, we introduce a
non-invasive technological proposal that combines the prediction
of motion intent through the decoding of myoelectric signals,
virtual and augmented reality, and gaming. As opposed to con-
ventional mirror therapy, this system allows full range of motion
and direct volitional control of the virtual limb, and it is appli-
cable for bilateral amputees, in addition to having the known
motivational benefits of gaming and progress tracking by com-
puterized systems. This system is presented with a case study
of a chronic PLP patient with known resistance to conventional
PLP treatments. Having shown that the system has considerably
increased the quality of life of a single patient, where other previ-
ous conventional treatments had proved unsuccessful, we believe
that it offers sufficient justification to further explore its efficacy
on a wider PLP population.
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Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple
postoperative visits. During each visit, stimulation parameters are adjusted until desired
therapeutic effects are achieved and adverse effects are minimized. However, the efficacy
of these therapeutic parameters may decline with time due at least in part to disease
progression, interactions between the host environment and the electrode, and lead
migration. As such, development of closed-loop control systems that can respond to
changing neurochemical environments, tailoring DBS therapy to individual patients, is
paramount for improving the therapeutic efficacy of DBS. Evidence obtained using
electrophysiology and imaging techniques in both animals and humans suggests that
DBS works by modulating neural network activity. Recently, animal studies have shown
that stimulation-evoked changes in neurotransmitter release that mirror normal physiology
are associated with the therapeutic benefits of DBS. Therefore, to fully understand the
neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond
conventional electrophysiological analyses and characterize the neurochemical effects of
therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring
and mathematical modeling techniques, we can potentially replace the trial-and-error
process used in clinical programming with deterministic approaches that help attain
optimal and stable neurochemical profiles. In this manuscript, we summarize the current
understanding of electrophysiological and electrochemical processing for control of
neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop
controller that characterizes DBS-evoked dopamine changes to adjust stimulation
parameters in a rodent model of DBS. The work described herein represents the initial
steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and
psychiatric disorders.

Keywords: deep brain stimulation (DBS), feedback control systems, local field potentials (LFP), fast scan cyclic

voltammetry (FSCV), machine learning, individualized medicine

INTRODUCTION
Neurologic and psychiatric disorders can be characterized by
motor, behavioral, cognitive, affective, or perceptual traits that
affect how individuals move, feel, think, and behave (Benabid
et al., 2005; Nemeroff, 2007; Williams and Okun, 2013). These
disorders affect over 94 million people in the United States alone
with health-care related costs exceeding $648 billion (Logothetis,
2003b; Benabid et al., 2005; Speert et al., 2012; Williams and
Okun, 2013). Although most individuals suffering from neuro-
logic and psychiatric disorders are successfully treated with a
combination of medications and therapy, up to 30% of patients
are unable to respond to standard therapeutic interventions

(Olanow et al., 2000; Benabid et al., 2005; Hamani et al., 2006;
Nemeroff, 2007; Williams and Okun, 2013). For these treatment-
resistant patients, high-frequency electrical stimulation of sub-
cortical brain structures, known as deep brain stimulation (DBS),
presents a highly successful therapeutic alternative (Benabid et al.,
2005; Williams and Okun, 2013). DBS is FDA-approved for the
treatment of Parkinson’s disease (PD) and essential tremor (ET)
(Benabid et al., 1987, 1991; Burchiel et al., 1999; Koller et al., 2001;
Obeso and Guridi, 2001; Simuni et al., 2002; Rehncrona et al.,
2003; Germano et al., 2004; Rodriguez-Oroz, 2004; Blomstedt and
Hariz, 2010; Moro et al., 2010; Weiss et al., 2013). Additionally,
DBS has received humanitarian device exemptions for dystonia
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and obsessive-compulsive disorder, and there are multiple studies
underway for the treatment of other neurologic and psychiatric
disorders (Benabid et al., 1987, 1991; Burchiel et al., 1999; Obeso
and Guridi, 2001; Simuni et al., 2002; Velasco et al., 2005; Lim
et al., 2007; Mueller et al., 2008; Blomstedt and Hariz, 2010; Denys
et al., 2010; Fisher et al., 2010; Ramasubbu et al., 2013).

Brain stimulation has been an important tool in the field of
neurosurgery pioneered by Spiegel and Wycis (Blomstedt and
Hariz, 2010). Intra-operative electrical stimulation of neural tis-
sue has been used since the early days of human stereotaxis to
identify surgical targets (Gildenberg, 2003, 2005). Application of
brain stimulation in modern-day neurosurgery was revolution-
ized by Benabid and colleagues, who used high frequency stimu-
lation (typically 100–130 Hz) delivered directly into specific brain
regions to mimic the effects of surgical lesions without perform-
ing any tissue resection (Benabid et al., 1987, 1991; Blomstedt
and Hariz, 2010). DBS achieves therapeutic benefits by deliver-
ing electrical currents to specific anatomical targets within the
brain via multi-contact electrodes connected to implanted pulse
generators. In DBS therapy, a balance between maximal clini-
cal improvement and minimal stimulation-induced side effects is
typically achieved by adjusting active electrode contacts, stimulus
frequency, amplitude, and pulse duration.

Clinical DBS programming is an iterative process in which
stimulation parameters are adjusted in order to maximize ther-
apeutic benefits while minimizing side effects (Morishita et al.,
2013) Although many DBS patients require minimal stimula-
tion adjustment following surgery, many more require several
months of regular parameter adjustments before optimal ther-
apeutic results can be achieved (Okun et al., 2005; Bronstein
et al., 2011; Kluger et al., 2011). However, sustaining these ther-
apeutic benefits requires subsequent adjustment of stimulation
parameters every few months (Mayberg et al., 2000, 2005; Deuschl
et al., 2006; Moro et al., 2006; Frankemolle et al., 2010; Mure
et al., 2011). Therefore, existing clinical programming and stim-
ulation paradigms are poorly suited to cope with the dynamic
and comorbid nature of most neurologic disorders. This, in turn,
highlights the need for dynamic feedback systems that can contin-
ually and automatically adjust stimulation parameters in response
to changes within the environment of the brain.

THERAPEUTIC STIMULATION PARADIGMS
The therapeutic success of DBS depends not only on accurate
surgical targeting and electrode implantation, but also on the
ability to optimize stimulation parameters to maximize therapeu-
tic benefits while minimizing side effects. Clinical strategies for
therapeutic DBS programming require multiple post-operative
visits during which experienced clinicians perform clinical eval-
uations and corresponding device programming. In each visit, a
series of inputs (active contacts, stimulus amplitude, pulse width,
and frequency) are adjusted in an attempt to minimize adverse
effects while maximizing clinical benefits. Although this strat-
egy has provided significant patient benefit, the results are far
from optimal. First, this open loop strategy relies on the sub-
jective experiences of both the patient and clinician, without
providing objective feedback to support parameter optimization.
Second, the therapeutic response observed in this acute setting

does not guarantee sustained therapeutic effects. Disease progres-
sion, environmental factors, and behaviorally induced changes in
network activity can all render therapeutic stimulation ineffective,
requiring additional programming sessions (Obeso and Guridi,
2001; Hunka et al., 2005; Kupsch et al., 2011). Third, the pro-
cedure is costly and time consuming. As such, only a fraction
of the stimulation parameter space can be practically explored
during each session. Fourth, DBS device programming can dif-
fer according to the target chosen, the orientation of the electrode
relative to the target, the disorder being treated, and the symp-
toms being treated for a given disorder (Velasco et al., 2007; Ricchi
et al., 2012; Min et al., 2013; Miocinovic et al., 2013). Additionally,
the timing of programming as well as the waiting time between
adjustments can influence when different therapeutic responses
can be observed, and these responses also vary between disor-
ders (e.g., Tremor is nearly immediate, whereas depression could
take several weeks to observe the effect of a disorder) (Velasco
et al., 2007; Ricchi et al., 2012; Min et al., 2013; Miocinovic
et al., 2013). Therefore, it is necessary to implement DBS con-
trol strategies that can adjust stimulation parameters in real-time
according to quantifiable and objective neurochemical, physio-
logical, and behavioral changes while reducing the frequency of
clinical interventions. However, before such control strategies can
be implemented, it is necessary to improve the understanding of
the cellular mechanisms responsible for the network effects of
DBS.

The cellular response of single neurons to extracellular electri-
cal fields has been well characterized over short time scales (Smith
and Grace, 1992; Benazzouz et al., 2000; Hashimoto et al., 2003;
Maurice et al., 2003; Kita et al., 2005; Miocinovic et al., 2006).
It is known that excitation of efferent axons or fibers of passage
near the site of stimulation results in network changes in neuro-
transmission and electrical activity (Grill et al., 2004; McIntyre
et al., 2004a,b; Johnson et al., 2008; McIntyre and Hahn, 2010;
Shah et al., 2010). Furthermore, functional and metabolic imag-
ing studies have shown that successful treatment of neurologic
and psychiatric disorders is associated with metabolic normal-
ization in proximal and distal regions of the brain (Mayberg
et al., 2000, 2005; Mure et al., 2011). The precise relationships
between therapeutic improvement and changes in metabolic pat-
terns remain unknown. As such, current research efforts focus on
the use electrophysiology and electrochemistry to elucidate the
network effects of DBS (Bledsoe et al., 2009; Lee et al., 2011; Vitek
et al., 2012).

REAL-TIME MONITORING OF NEURAL ACTIVITY
Signaling within the brain occurs both electrically and chemi-
cally. Technological advances in neural activity monitoring have
enabled real-time investigation of cellular and molecular dynam-
ics using electrophysiological and neurochemical probes. While
the most used technique involves electrophysiological monitor-
ing of extra-cellular neuronal activity (Smith and Grace, 1992;
Benazzouz et al., 2000; Hashimoto et al., 2003; Maurice et al.,
2003; Johnson et al., 2005; Kita et al., 2005; Miocinovic et al.,
2006) recent advances in electrode technology allow in vivo mon-
itoring of synaptic neurotransmitter activity (Roham et al., 2007;
van Gompel et al., 2010).
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Electrophysiological analysis has been widely used to study
stimulation-evoked changes in brain activity, such as increased
pallidal (Hashimoto et al., 2003; Kita et al., 2005; Miocinovic
et al., 2006) and nigral activity (Smith and Grace, 1992;
Benazzouz et al., 2000; Maurice et al., 2003) during subthalamic
nucleus (STN) DBS. This has been accomplished by record-
ing single neuron activity (single unit recordings), activity from
local groups of neurons (multi unit activity, local field poten-
tials), and distributed signals representing global brain activity
[electrocorticograms (ECoGs), electroencephalograms (EEGs)].
Alternatively, neurochemical analysis techniques such as micro-
dialysis, amperometry, and voltammetry, can detect local changes
in neurotransmitter concentration evoked by internal and exter-
nal mechanical, electrical, and chemical stimuli (Dale et al., 2005;
Wightman, 2006). Neurochemical recordings have been used to
monitor in vivo release of analytes such as oxygen, dopamine,
adenosine, serotonin, and glutamate in small and large animal
models of DBS (Agnesi et al., 2009; Bledsoe et al., 2009; Chang
et al., 2009; Kimble et al., 2009; Griessenauer et al., 2010; Shon
et al., 2010a,b).

SINGLE-UNIT RECORDINGS
Single unit recordings capture the activity of distinct neurons
in vivo by placing a high-impedance microelectrode within the
extracellular space surrounding the cell body. These electrodes,
having surface areas under 2 × 10-5 cm2 (Loffler, 2012), record
extracellular potentials representative of intracellular action
potentials from neurons adjacent to the electrode tip. The high
spatial and temporal resolution provided by single unit record-
ings allows for precise measurements of neuronal spikes (Buzsáki
et al., 2012). However, activity from single units can be difficult
to isolate due to crosstalk from neighboring cells (Bai and Wise,
2001). Additionally, single unit recordings can be biased toward
activity from larger (e.g., pyramidal) cells (Buzsáki et al., 1983).
Furthermore, electrode migration, immune responses (e.g., glial
scarring), and disruption of surrounding neural tissue interfere
with signal quality and limit reliable single unit activity to acute
recording conditions (Carter and Houk, 1993; Polikov et al.,
2005).

MULTI-UNIT RECORDINGS
Multi unit recordings capture fast spiking activity from groups
of neurons using high-impedance microelectrode arrays. Similar
to single unit recordings, this technique provides good spatial
and temporal resolution reflecting synaptic events occurring at
high frequencies (>800 Hz) (Logothetis, 2003a,b; Mattia et al.,
2010). Unfortunately, multi-unit recording arrays suffer from stiff
form factors that result in shear-induced inflammation of the sur-
rounding tissue (Cheung, 2007). Furthermore, recording can only
occur from the tips of the electrodes, limiting recording selectivity
(Maynard et al., 1997).

LOCAL FIELD POTENTIALS
Local field potential (LFP) analysis is an electrophysiological
technique for detecting changes in brain activity that offers
great potential for understanding the network effects of DBS
(Tsang et al., 2012; Priori et al., 2013). This technique is capa-
ble of recording chronic electrical activity directly from single

and multiple neural units using micro and macro electrodes
implanted within the nucleus of interest (Bronte-Stewart et al.,
2009; Giannicola et al., 2012). LFPs are typically used to record
low-frequency changes in activity across groups of neurons within
a volume of interest (Andersen et al., 2004; Buzsáki et al., 2012;
Rosa et al., 2012). These activity changes reflect a weighted aver-
age of integrative processes and associations between cells that
can be detected over longer distances through extracellular space
(Logothetis, 2003a,b; Bronte-Stewart et al., 2009). Unfortunately,
the longer recording range of LFP techniques is associated with
decreased spatial resolution. Despite this limitation, LFP record-
ings can be performed in real-time using the same DBS electrode,
which eliminates the need for additional electrode penetrations
(Rossi et al., 2007). Therefore, local field potentials present a good
starting point for establishing closed-loop neurostimulation con-
trol systems (Rosin et al., 2011; Santaniello et al., 2011; Berényi
et al., 2012; Little et al., 2013).

GLOBAL FIELD POTENTIALS
Analysis of global brain activity can be used to identify both
spontaneous and event-related responses from large groups of
neurons. Whole-brain electrophysiological brain activity (i.e.,
global field potentials) is typically measured using far-field sen-
sors located on the scalp (EEG) or directly on the brain surface
(ECoG). These global field potentials can be used to identify
information regarding high-level sensory processing, perception,
and locomotor activity (Issa and Wang, 2013). For example, EEG
signals with low spatial resolution can be recorded non-invasively
by non-surgically attaching recording electrodes to the scalp.
Alternatively, ECoG signals offer increased spatial resolution, but
recording electrodes must be surgically attached at the cortical
surface (Buzsáki et al., 2012). Despite the advantages of global
field potentials, these signals do not provide insight into activity
changes within specific subcortical structures. As such, a system
that combines activity analysis within cortical (e.g., EcOG) and
subcortical (e.g., LFP) networks should provide a better depiction
of network dynamics which, in turn, will be required to develop
optimal closed-loop stimulation paradigms (Rosa et al., 2012).

NEUROCHEMICAL RECORDINGS
Neurochemical sensing allows real-time characterization of neu-
ral activity with high spatial resolution and signal specificity
(Lee et al., 2004). Microdialysis, amperometry, and voltammetry
are three widely used techniques for neurochemical monitoring
(Blaha and Phillips, 1996).

Microdialysis is a technique for sampling different analytes
and determining their concentration in extracellular fluid (Chefer
et al., 2009). This technique offers excellent specificity, selectiv-
ity, and sensitivity for quantifying neurotransmitter release in
a laboratory setting (Watson et al., 2006). However, it suffers
from limited temporal resolution (Smolders et al., 1997; Khan
et al., 1999). Therefore, microdialysis is not suitable for real-time
clinical application in closed-loop systems.

Amperometry is an alternative technique for measuring ana-
lytes in the extracellular space. Amperometric recordings involve
the application of a fixed electric potential through a carbon fiber
microelectrode (CFM) placed in close proximity to the target
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FIGURE 1 | Stimulation-evoked dopamine responses. (A) Dopamine redox
reactions at the tip of a carbon fiber microelectrode during fast scan cyclic
voltammetry. As the potential applied to the electrode increases from −0.4 to
0.0 V, extracellular dopamine is reduced (reduction peak at −3.5 nA). As the

applied potential is further increased from 0.0 to 1.0 V, dopamine is oxidized
(oxidation peak at 3.5 nA). Measured current background is shown in red. (B)

Pseudo-color representation of dopamine oxidation current at +0.6 V at DBS
onset (100 Hz, 2 ms, 300 µA).

cells (Gale et al., 2013; Tye et al., 2013). These CFM are coated
with specific enzymes known to react with non-electrolytic ana-
lytes of interest, resulting in electroactive products that can be
electrically measured (Oldenziel et al., 2004). This allows con-
tinuous monitoring of changes in electrical currents within the
surrounding extracellular fluid. The detected changes in current
are caused by oxidative reactions between the applied potential
and analyte molecules within the extracellular space (van Gompel
et al., 2010). The downfall of this technique is the high complex-
ity associated with chronic in vivo measurements, which require
continuous enzyme delivery to detect the breakdown products of
the neurotransmitter of interest (Jacobs et al., 2010).

Analogous to amperometry, voltammetry provides real-time
high-resolution analyte measurements (Blaha et al., 1990).
Specifically, fast scan cyclic voltammetry (FSCV) is a voltamme-
try technique in which a linearly varying potential is applied to
a carbon fiber electrode, allowing for oxidation and reduction
of surrounding electroactive molecules to take place (Robinson
et al., 2003; Lee et al., 2007). The magnitudes of the analyte oxi-
dation and reduction current peaks are directly proportional to
the concentration of analyte oxidized and reduced at the electrode
surface (Atcherley et al., 2013). Furthermore, the resulting electri-
cal current vs. applied potential relationships (Figure 1) provide
a chemical signature (i.e., voltammogram) that allows identifica-
tion of specific neurotransmitters or other electroactive analytes
(Robinson et al., 2003). FSCV detection of analytes is limited to
electroactive molecules such as dopamine, adenosine, and oxy-
gen (van Gompel et al., 2010). Furthermore, the lifetime of CFM
is limited to a few months (Kim et al., under review), restricting
clinical application of FSCV detection methods to intraoperative
approaches.

SMART DBS CONTROL
Clinical DBS systems follow an open-loop paradigm. That is,
stimulation parameters are pre-programmed into the DBS device

and held constant until the next programming session, regardless
of the internal state of the system or environmental factors
(Foltynie and Hariz, 2010). In contrast, closed-loop DBS systems
rely on sensor feedback to monitor the environment and inter-
nal state of the system in order to adjust stimulation parameters
accordingly (Abbott, 2006; Fagg et al., 2007). That is, stimula-
tion parameters (e.g., stimulation frequency, stimulus amplitude,
etc.) are automatically adjusted to maintain specific therapeu-
tic outputs such as tremor suppression in the presence of dis-
turbances, environmental perturbations, and internal network
changes (Figure 2). To date, development of closed-loop neuro-
prosthetic devices has largely focused on using electrophysiolog-
ical activity as feedback signals (Avestruz et al., 2008; Skarpaas
and Morrell, 2009; Rosin et al., 2011; Basu et al., 2013; Grant and
Lowery, 2013). Neurochemical-based feedback, however, offers
the prospect of finer control of stimulation-induced effects, as
it allows activity monitoring from individual types of neurons
by virtue of their neurotransmitters. The ability to use neuro-
chemical feedback to control DBS has been demonstrated by
characterizing glutamate release using mathematical models link-
ing electrical stimulation to glutamate release in a rat model of
DBS (Behrend et al., 2009). Thus, chemical sensing presents a
unique opportunity for developing closed-loop smart neurocon-
trol systems that are optimized for specific disorders and targets,
and which can account for intra- and inter-patient variability.

NEUROCHEMISTRY OF DBS
Studies using small and large animal models suggest that ther-
apeutic DBS coincides with changes in neurotransmitter release
(Lee et al., 2004; Shon et al., 2010a,b). It has been established
that dopaminergic cell loss in the substantia nigra leads to stri-
atal dopamine deficiency and movement abnormalities in PD
patients (MacDonald et al., 2013). It has also been shown that
therapeutic STN DBS for treatment of PD decreases the need
for exogenous levodopa (Moro et al., 1999; Molinuevo et al.,
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FIGURE 2 | Real-time closed-loop deep brain stimulation system.

Clockwise from bottom left: (1) Schematic of the human brain with two
electrodes (inset) for simultaneous stimulation (gray contacts) and recording
of neural activity (blue contacts). (2) Example voltammogram, local field
potentials, and single unit activity signals representing recorded
neurochemical and electrophysiological neural activity. (3) Computational

model of neurochemical and electrophysiological dynamics allows generation
and optimization of data beyond the time constraints imposed by
experimental conditions. (4) Smart controller uses existing neural activity to
predict stimulation parameters required to achieve therapeutic
neuromodulation. (5) Predicted stimulation parameters are applied to the
brain using an implanted neurostimulation system.

2000) and has been hypothesized to increase striatal dopamine
release (Lee et al., 2009). Complementing findings in electro-
physiological and neurochemical sensing studies have shown that
STN DBS evokes dopamine release in the striatum of parkinso-
nian rats (Blaha and Phillips, 1996; Lee et al., 2006). Similarly,
stimulation-evoked adenosine release has been recorded intra-
operatively in the ventral intermediate nucleus of the thalamus
in human patients undergoing DBS for treatment of ET (Chang
et al., 2012). However, the specific relationship between DBS and
neurochemical activity changes remains unknown. Therefore,
understanding the relationships between stimulation parame-
ters and neurotransmitter concentration levels is paramount for
developing closed-loop DBS control strategies.

In the following paragraphs, we describe a proof-of-principle
approach to closed-loop DBS that automatically adjusts stimula-
tion parameters in order to sustain stable dopamine levels in a
rodent model of DBS. The paradigm proposed herein uses FSCV
to quantify striatal dopamine release evoked by medial forebrain

bundle (MFB) DBS. Additionally, this paradigm relies on non-
linear regression, computational modeling, and constrained
optimization techniques to parameterize stimulation-evoked
dopamine responses. The inverse dynamics of stimulation-evoked
dopaminergic responses are modeled using artificial neural
networks (ANN), which also predict stimulation parameters
required for sustaining target dopaminergic concentration levels.
The performance of this closed-loop paradigm was evaluated by
comparing target dopaminergic responses to in vivo dopaminer-
gic responses achieved using ANN-predicted stimulation parame-
ters (Figure 4). While focused on DBS of ascending dopaminergic
fibers in the MFB for evoking dopamine release in the rat striatum
(Agnesi et al., 2009), this closed-loop paradigm is applicable to a
variety of analytes, targets, and neurologic disorders.

EXPERIMENTAL PARADIGM
To quantify the dynamics of stimulation-evoked dopamine
release, recording FSCV CFM and bipolar DBS macroelectrodes
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were implanted into the striatum and MFB, respectively, in four
anesthetized rats. All animal procedures were performed accord-
ing to the guidelines of the Mayo Clinic Institutional Animal
Care and Use Committee (IACUC). Animals were kept on a
standard 12 h light-dark cycle with access to food and water
ad libitum in conventional housing in accordance with National
Institutes of Health (NIH) and US Department of Agriculture
guidelines.

Animals were anesthetized and the head was fixed in a
Kopf stereotactic frame (David Kopf Instruments, California)
for electrode targeting. Following brain exposure, one bipolar
stimulating electrode, one FSCV recording electrode, and one
silver-chloride reference electrode was inserted into the left MFB,
striatum, and contralateral cortex, respectively. Recording elec-
trodes were allowed to stabilize within the tissue environment
for 20 min. Finally, the electrodes were connected to a wireless
stimulator and neurotransmitter sensor for real-time detection of
stimulation-evoked dopamine release (Kimble et al., 2009; Chang
et al., 2013).

Following electrode implantation, a comprehensive range of
stimulation parameters (Table 1) was used to determine the mag-
nitudes and temporal patterns of stimulation-evoked dopamine
release. Stimulation was divided into 65 20-s bins. Each bin corre-
sponded to one combination of stimulation parameters delivered
through the active electrode contact. Each stimulation bin was
followed by a stabilization and washout period of 180 s.

STIMULATION-EVOKED NEUROCHEMICAL MONITORING
Stimulation-evoked dopamine measurements were obtained
by changing the CFM potential from a resting potential of
−0.4–1.3 V and back, at a rate of 400 V/s. This triangular wave-
form was repeated at a frequency of 10 Hz (Chang et al., 2012).
The CFM was held at the resting potential between scans. We
converted the measured oxidation and reduction current peaks
to dopamine concentration using post-operative in vitro flow
injection analysis calibration of each CFM (Griessenauer et al.,
2010). Our preliminary results showed that as MFB DBS ampli-
tude increases, extracellular dopamine levels within the striatum
also increase (Figure 3A). A similar response is also observed
as pulse duration is increased from 0.1 to 2.0 ms (Figure 3B).
Changes in frequency, however, give rise to a different dopamin-
ergic response. Maximum response was observed at 100 Hz, fol-
lowed by a decrease in dopamine oxidation currents at higher
frequencies (Figure 3C).

Table 1 | Stimulation parameters.

Frequency (Hz) Amplitude (µA) Pulse width (ms) Duration (s)

60 100–450 2.0 2

100 100–450 2.0 2

20–200 250 2.0 2

20–200 350 2.0 2

60 300 2.0 2

100 300 0.1–2.0 2

60 300 2.0 0.5–8

NEUROCHEMICAL RESPONSE MODELING
Implementation of neurochemically-driven closed-loop DBS
control strategies requires characterization of the relationship
between electrical stimulation and neurochemical responses.
To characterize this relationship, stimulation-evoked FSCV
dopamine signals were low pass filtered (5th-order Butterworth
filter, 100 Hz cutoff frequency) to remove signal noise.
Additionally, the responses to individual stimuli were char-
acterized using a combination of 7th-degree polynomial and
2nd-order exponential mathematical models. The mathematical
model parameters (eight for the polynomial fit and four for the
exponential fit) and corresponding stimuli were presented to a
double-layer feedforward ANN with sigmoidal and linear transfer
functions (Lujan and Crago, 2009). The hidden layer contained
150-hidden neurons. The inputs to the ANN consisted on the
stimulation frequency, pulsewidth, and stimulus amplitude,
while system outputs corresponded to the 12 model parameters.
Initial weights and biases were selected at random for 10 different
initial conditions. Ten corresponding ANNs were trained on 80%
of the data (selected at random) using the Levenberg-Marquardt
algorithm. The trained ANN with the lowest generalization error,
calculated using the remaining 20% of data, was selected as a
system model. The resulting system model, when combined
with constrained optimization for minimization of stimulation
energy, can identify and eliminate mathematical redundancies
for the optimal design of the closed-loop controller (Lujan and
Crago, 2009).

STIMULATION PREDICTION
In order to provide optimal stimulation, a predictive model
that characterizes the inverse relationship between stimulation
parameters and dopamine levels was created. Similarly to the
system model, the predictive model was created using a double-
layer ANN with 600 hidden neurons, as well as sigmoidal and
linear transfer functions (Lujan and Crago, 2009). The inputs
to the predictive model corresponded to the sets of 12 model
parameters, while the outputs corresponded to the three stimu-
lation parameters. This inverse model was then used to predict
the stimulation parameters required to sustain specific extra-
cellular dopamine levels within the striatum, thus allowing for
feedback control. This was followed by stimulation of the MFB
using the predicted parameters, and simultaneous recording
of extracellular dopamine levels. Root mean squared (RMS)
errors between experimentally measured and desired stimulation-
evoked dopamine responses were used to determine controller
efficacy. Least-squares regression analysis of the dependencies of
actual dopamine levels on target levels was used in an effort to
identify systematic (e.g., slope, offset) sources of error (Lujan and
Crago, 2009).

CLOSED-LOOP CONTROL
Our preliminary results in four anesthetized rats suggest that
mathematical models can be used to describe the relationships
between stimulation-evoked extracellular dopamine responses
and DBS parameters (R2 = 0.8). Furthermore, these results
show that adjusting stimulation parameter intensity can mod-
ulate dopamine concentration, and that we can use ANN to
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FIGURE 3 | Stimulation-evoked dopamine release characterization in

four anesthetized rats. A carbon-fiber recording electrode was implanted
into the left striatum and a bipolar stimulating electrode was placed within
the ipsilateral medial forebrain bundle. A reference silver-chloride electrode

was implanted into the contralateral cortex. Current amplitude (A), pulse
duration (B), and frequency (C) were individually varied while the remaining
stimulation parameters were held constant. Stimulus duration was set at 2 s
for all experiments described above.

dynamically predict stimulation parameters required to adjust
stimulation-evoked dopamine levels (Figure 4). However, to fur-
ther understand the network effects of DBS and optimize the
therapeutic efficacy of stimulation, it may be necessary to com-
bine electrophysiological (e.g., LFP, ECoG) and neurochemical
feedback signals.

DISCUSSION
Frequent adjustment of stimulation settings has been shown to
improve the efficacy of DBS therapy (Rosin et al., 2011), which
highlights the nature of the changing brain environment. Thus,
a smart, automated system capable of dynamically adjusting
stimulation parameters in response to a changing environment
becomes critical for improving the therapeutic efficacy of DBS
therapy. The proof-of-principle closed-loop DBS system pro-
posed above offers the potential for maintaining therapeutic
responses during disease progression. By taking advantage of
mathematical models, the paradigm presented here can poten-
tially replace the trial-and-error process currently used in clinical

programming with deterministic approaches, thereby achieving
optimal therapeutic outcomes while minimizing the number of
clinical interventions. In turn, this will ultimately reduce required
hospital visits and associated healthcare costs (Fraix et al., 2006).

Before automated adjustment of stimulation parameters can
be clinically implemented, however, several key clinical questions
need to be investigated. Specifically, the relationship between neu-
rotransmitter levels and symptoms of neurologic disease needs
further elucidation. For example, there is indirect evidence to sug-
gest that dopamine depletion plays a role in the symptoms of PD
and that dopaminergic medications have a therapeutic response.
However, precise concentration changes that occur with symp-
tom exacerbation and amelioration are unknown. Additionally,
multiple neurotransmitters may play a critical role in the disease
(Fitzgerald, 2014). Thus, optimal neurotransmitters and opti-
mal recording locations should be identified for each disorder.
Future work should be directed toward validating closed-loop
algorithms, correlating neurotransmitter release to clinical benefit
in a large animal disease model of Parkinsonism or ET.
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FIGURE 4 | Controller performance. (A) Comparison of target (dotted
lines) and actual (solid lines) dopaminergic responses evoked by
stimulation parameters predicted by the artificial neural network

controller. Two typical responses are shown. (B) Target and actual
responses were compared using linear regression and Pearson’s
correlation (R2 = 0.8538).

Similarly, an important technical barrier that needs to be
addressed is that chronic recordings are not possible using cur-
rent electrode technology. CFMs are subject to electrode fouling
due to the charge imbalance of the waveforms required for FSCV.
Efforts are underway to develop electrochemical-sensing tech-
niques capable of extending electrode longevity by renewing the
electrochemically active surface following adsorption of chem-
ical species (Takmakov et al., 2010). Additionally, it has been
reported that diamond coating may potentially prolong the life
of recording electrodes (Roham et al., 2007). Once these tech-
nologies have been developed, they will need to undergo extensive
safety and efficacy testing and validation in pathological animal
models before advancing to clinical trials.

CONCLUSIONS
Conventional neuromodulation systems have been successful at
achieving therapeutic outcomes in patients with neurologic and
psychiatric disorders. However, limitations in existing technol-
ogy make ensuring optimal benefits a difficult and expensive
endeavor. Correlation of multi-modal electrophysiological and
neurochemical recordings may provide new insight into the cellu-
lar and molecular mechanisms of therapeutic neuromodulation.
Therefore, development of smart DBS controllers that rely on
the relationships between neurochemical and electrophysiologi-
cal recordings with the clinical effects of DBS offers the potential
of replacing the trial-and-error process used in clinical program-
ming with a deterministic approach. Furthermore, the versatility
and adaptability of such controllers will allow expansion of the
clinical indications that can be treated with DBS while tailor-
ing its application to individual patients and symptoms. In turn,
these will likely improve clinical outcomes, reduce the time and
frequency of patient visits, and lower overall health care costs.
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Stroke is caused when an artery carrying blood from heart to an area in the brain
bursts or a clot obstructs the blood flow thereby preventing delivery of oxygen and
nutrients. About half of the stroke survivors are left with some degree of disability.
Innovative methodologies for restorative neurorehabilitation are urgently required to
reduce long-term disability. The ability of the nervous system to respond to intrinsic
or extrinsic stimuli by reorganizing its structure, function, and connections is called
neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also
in rehabilitation. It has been shown that active cortical participation in a closed-loop brain
machine interface (BMI) can induce neuroplasticity in cortical networks where the brain
acts as a controller, e.g., during a visuomotor task. Here, the motor task can be assisted
with neuromuscular electrical stimulation (NMES) where the BMI will act as a real-time
decoder. However, the cortical control and induction of neuroplasticity in a closed-loop BMI
is also dependent on the state of brain, e.g., visuospatial attention during visuomotor task
performance. In fact, spatial neglect is a hidden disability that is a common complication of
stroke and is associated with prolonged hospital stays, accidents, falls, safety problems,
and chronic functional disability. This hypothesis and theory article presents a multi-level
electrotherapy paradigm toward motor rehabilitation in virtual reality that postulates that
while the brain acts as a controller in a closed-loop BMI to drive NMES, the state of
brain can be can be altered toward improvement of visuomotor task performance with
non-invasive brain stimulation (NIBS). This leads to a multi-level electrotherapy paradigm
where a virtual reality-based adaptive response technology is proposed for post-stroke
balance rehabilitation. In this article, we present a conceptual review of the related
experimental findings.

Keywords: virtual reality, eye tracking, neuromuscular electrical stimulation, stroke, neurorehabilitation,

non-invasive brain stimulation

INTRODUCTION
Stroke, defined as an episode of neurological dysfunction caused
by focal cerebral, spinal, or retinal infarction, is a global health
problem and fourth leading cause of disability worldwide (Strong
et al., 2007; Sacco et al., 2013). One of the most common
medical complications after stroke are falls, with a reported inci-
dence of up to 73% in the first year post-stroke (Verheyden
et al., 2013). Preliminary results from Marigold et al. (2005)
suggest that agility training programs challenging dynamic bal-
ance may be more effective than static stretching/weight-shifting
exercise programs in preventing falls in the chronic stroke pop-
ulation. Stroke-related ankle impairments, which enhance the
probability of falls, include weakness of the ankle dorsiflexor
muscles and increased spasticity of the ankle plantarflexor mus-
cles. This leads to the foot drop syndrome that is clinically
described as poor ankle dorsiflexion during the swing phase
along with a forefoot or flat-foot initial contact in the stance

phase. Here, the impact of standing balance on activities of
daily living is critical, since balance is associated with ambula-
tory ability (Patterson et al., 2007) and recovery of gross motor
function (Tyson et al., 2007). Toward improving muscle strength
and reducing muscle spasticity, we leverage recent advances in
rehabilitation technology, particularly Neuromuscular Electrical
Stimulation (NMES), for post-stroke standing balance rehabilita-
tion. NMES involves coordinated electrical stimulation of nerves
and muscles by continuous short pulses of electrical current
and has been shown to improve gait speed in subjects post-
stroke (Robbins et al., 2006). This hypothesis and theory article
first proposes a volitionally controlled NMES system for ankle
muscles, which acts as a muscle amplifier to improve adequate
ankle movement for upright stance during postural perturba-
tions (Hwang et al., 2009). The proposed NMES approach is
based on recent state-of-the-art work in humans that postulated
that the neural control of muscles may be modular, organized
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in functional groups often referred to as muscle synergies
(Piazza et al., 2012; Chvatal and Ting, 2013).

During postural perturbations, the body acts as a single seg-
ment pendulum centered about the ankle joint where the ankle
muscles provide the torque needed to retain upright posture
(Hwang et al., 2009). Gatev et al. (1999) presented a feedforward
ankle strategy based on the fact that a moderate negative zero-
phased correlation exists between the antero-posterior motion of
CoP and ankle angular motion. The antero-posterior (A-P) dis-
placements in CoM are performed by ankle plantarflexors (such
as medial gastrocnemius and soleus muscles) and dorsiflexors
(such as the anterior tibial muscle), while medio-lateral (M-L)
displacements are performed by ankle invertors (such as the ante-
rior tibial muscle) and evertors (such as the peroneus longus and
brevis muscles) (Winter et al., 1996). Therefore, stroke-related
ankle impairments, including weakness of the ankle dorsiflexor
muscles and increased spasticity of the ankle plantarflexor mus-
cles, lead to impaired postural control. Respective changes in
reflex excitability with respect to postural sway have been shown
during standing (Tokuno et al., 2009). For post-stroke stand-
ing balance rehabilitation, we thus might be able to ameliorate
these stroke-related ankle impairments via an improved mod-
ulation of ankle stiffness by modulating muscle tone (Winter
et al., 2001) via NMES. We further hypothesize that a coordi-
nated increase in corticospinal excitability of the representation
of specific ankle muscles can result in an improved modulation
of ankle stiffness. In this connection, prior work has shown that
NMES elicits lasting changes in corticospinal excitability, possibly

as a result of co-activating motor and sensory fibers (Knash et al.,
2003). Moreover, Khaslavskaia and Sinkjaer (2005) showed in
humans that concurrent motor cortical drive present at the time
of NMES goes along with enhanced motor cortical excitability.
Furthermore, at the spinal level, volitionally-driven NMES under
visual feedback may induce short-term neuroplasticity in spinal
reflexes (e.g., reciprocal Ia inhibition; Perez et al., 2003). Also, cor-
ticospinal neurons that project via descending pathways to a given
motoneuron pool can inhibit the antagonistic motoneuron pool
via Ia-inhibitory interneurons in humans (Pierrot-Deseilligny
and Burke, 2005). Consequently, post-stroke impaired recipro-
cal inhibition between antagonistic muscles may be strengthened
via increased presynaptic inhibition of group Ia-afferents under
operant conditioning with visual feedback. In this operant condi-
tioning paradigm with visual feedback (Dutta et al., 2013a), the
brain acts as the controller during the visuomotor task, where the
center of pressure (CoP) is volitionally moved across a display
monitor and this movement is assisted with volitionally-driven
NMES, as illustrated in Figure 1.

However, prior work suggests that active supraspinal con-
trol mechanisms are relevant for balance and their adaptation
is important in balance training (Taube et al., 2008). Indeed,
supraspinal control mechanisms help to counteract internal per-
turbations caused by self-initiated movements during activities of
daily living to maintain standing balance (Geurts et al., 2005).
Balance measures reveal underlying limb-specific control such
as between-limb CoP synchronization for standing balance that
appears to be a unique index of balance control, independent

FIGURE 1 | Computational neuroanatomy for motor control. Grayed boxes represent the brain regions proposed in this article to be targeted with
non-invasive brain stimulation. NMES, neuromuscular electrical stimulation.
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from postural sway, and load symmetry during stance (Mansfield
et al., 2012). A review of standing balance recovery from stroke
by Geurts et al. (2005) shows that brain lesions involving par-
ticularly the parieto-temporal junction are associated with poor
postural control, and suggests that normal multisensory inte-
gration in addition to muscle strength is critical for balance
recovery. Tokuno et al. (2009) concluded that the sensory feed-
back mechanisms do relevantly contribute, as the excitability of
the respective cortical area was modulated as a function of postu-
ral sway, where stroke-related sensorimotor impairment poten-
tially contributes to impaired balance (Mansfield et al., 2012).
Indeed, active cortical control based on sensory feedback is rel-
evant for maintaining balance during activities of daily living
(Qu and Nussbaum, 2009). In this connection, unilateral spa-
tial neglect, i.e., failure or slowness to respond, orient, or initiate
action toward contralesional stimuli, is a common neurologi-
cal syndrome following predominantly right hemisphere injuries
to ventral fronto-parietal cortex (Corbetta and Shulman, 2011).
Spatial neglect is associated with prolonged hospital stays, acci-
dents, falls, safety problems, and chronic functional disability
(Goedert et al., 2012), probably caused to a relevant degree by
compromised cortical control of balance. Here, amelioration of
spatial neglect may be possible with non-invasive brain stimu-
lation (NIBS) (Hesse et al., 2011). NIBS—namely transcranial
direct current stimulation (tDCS)—over the posterior parietal
cortex (PPC) has been shown to modulate visuospatial local-
ization (Wright and Krekelberg, 2014) and to alter perceived
position (Wright and Krekelberg, 2013). Moreover, modulation
of sensorimotor cortical excitability by tDCS is feasible (Nitsche
and Paulus, 2000), and may facilitate post-stroke rehabilitation
(Hallett, 2005; Flöel, 2014) by enhancing sensory feedback mech-
anisms for brain machine interface (BMI) control (Dutta et al.,
2014b). Matsunaga et al. (2004) have shown that anodal tDCS
over the sensorimotor cortex induces a long-lasting increase
of the size of ipsilateral cortical components of somatosensory
evoked potentials. Moreover, anodal tDCS enhances corticospinal
excitability (Nitsche and Paulus, 2000), including long-term
changes of synaptic strength (Nitsche et al., 2008), and anodal
tDCS over the primary motor cortex has an impact on spinal
network excitability in humans (Roche et al., 2009). Roche and
colleagues describe an increase of disynaptic inhibition at the
spinal level reflex pathways during anodal tDCS that was caused
by an increase in disynaptic interneuron excitability (Roche et al.,
2009).

The computational neuroanatomy for motor control
(Shadmehr and Krakauer, 2008) is shown in Figure 1. Shadmehr
and Krakauer (2008) suggested specific functions of different
parts of the brain in motor control. The main function of the

• cerebellum is system identification, i.e., to build internal mod-
els that predict sensory outcome of motor commands and
correct motor commands through internal feedback.
• parietal cortex is state estimation, i.e., to integrate the predicted

proprioceptive and visual outcomes with sensory feedback to
form a belief about how the commands affect the states of the
body and the environment.

• basal ganglia is related to optimal control, i.e., learning costs
and rewards associated with sensory states and estimating the
“cost-to-go” during execution of a motor task.
• primary and the premotor cortices are related to imple-

menting the optimal control policy by transforming beliefs
about proprioceptive and visual states, respectively, into motor
commands.

Here, during operant conditioning with visual feedback (Dutta
et al., 2013a), the brain acts as the controller for trial-by-trial
error correction during the visuomotor task which is assisted
with volitionally-driven NMES (Figure 1). The real-time decoder
for NMES (see Figure 2) acts as a intent detector to assist resid-
ual muscle function with electrical stimulation-evoked muscle
action. However, stroke survivors often suffer from heterogeneous
deficits in cortical control, e.g., delay in initiation and termina-
tion of muscle contraction (Chae et al., 2002) as well as deficits
in the visuomotor attention networks (Corbetta and Shulman,
2011) conducive for motor learning. Therefore, our hypothesis
is that the cortical control of NMES during visuomotor task and
motor learning during balance rehabilitation may be facilitated
with NIBS. The underlying concept of NIBS approaches is that
NIBS can modulate excitability of a targeted cortical region. The
sensor fusion for NIBS (see Figure 2) includes a NIBS controller
that tries to maintain a more balanced brain state (Schlaug and
Renga, 2008). The sensor fusion also includes gaze-interaction
with CoP visual feedback (Sailer et al., 2005) to objectively quan-
tify the engagement and stage of motor learning for the affected
and unaffected sides, such that the quality of error feedback
can be titrated to balance bilateral performance during operant
conditioning. The human-machine interface (HMI) integrating
biosignal sensors and motion capture with a NMES system for
post-stroke balance rehabilitation is based on a point-of-care test-
ing system (Dutta et al., 2013b) that has been shown feasible for
EMG-triggered NMES therapy (Banerjee et al., 2014).

HYPOTHESIS 1: BRAIN ACTS AS A CONTROLLER FOR
TRIAL-BY-TRIAL ERROR CORRECTION DURING
VISUOMOTOR BALANCE THERAPY
As shown in Figure 1, coordinated movement depends on inter-
actions between multiple brain areas leading to transient func-
tional connectivity networks (Shafi et al., 2012) where the brain
acts as a controller viz. state estimation, optimization, predic-
tion, cost, and reward. Active participation of motor-cortex (and
other cortical areas) may be facilitated by modulating NMES
with volitional effort where state-of-the-art prior works show
that stimulation envelopes may be controlled (Yeom and Chang,
2010) or triggered (Banerjee et al., 2014) with volitional elec-
tromyogram (EMG). During operant conditioning, post-stroke
subject volitionally drives NMES during visuomotor task per-
formance for balance rehabilitation where the goal is to reduce
error while steering a computer cursor to a peripheral target using
volitionally generated CoP excursions, as illustrated in Figure 3.
The human machine interface (HMI) integrating biosignal sen-
sors and motion capture for volitionally driven NMES toward
operant conditioning with visual feedback was evaluated in a
community setting (Banerjee et al., 2014). We present a real-time
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FIGURE 2 | Schematic drawing of the multi-level electrotherapy

paradigm toward operant conditioning to improve ankle flexor-extensor

coordination during balance therapy. Volitionally controlled NMES assists
the muscles whereas NIBS assists the brain in cortical control. EEG,

electroencephalogram; EOG, electrooculogram; EMG, electromyogram; MN,
α-motoneuron; IN, Ia-inhibitory interneuron; DRG, dorsal root ganglion;
NMES, neuromuscular electrical stimulation; NIBS, non-invasive brain
stimulation; CoP, center of pressure.

decoder in Subsection Proposed Method: Volitionally-Driven
NMES-Assisted Visuomotor Balance Therapy for volitionally
driven NMES that combines physical sensor signals with biopo-
tentials from the HMI to facilitate erect posture recovery fol-
lowing internal postural perturbations caused by self-initiated
movements.

A proof-of-concept study (without NMES) on HMI was suc-
cessfully conducted on 10 able-bodied subjects (5 right-leg dom-
inant males and 5 right-leg dominant females aged between 22
and 46 years) (unpublished material). All subjects gave their writ-
ten informed consent for the experiments in compliance with
the Declaration of Helsinki. They had no known neurological
disorder at the time of the study. Here, stroke presents with
heterogeneous deficits in motor control where the recovery of
erect posture in stroke survivors following CoP excursions is pro-
posed (Subsection Proposed Method: Volitionally-Driven NMES-
Assisted Visuomotor Balance Therapy) to be assisted with NMES.
Geurts et al. (2005) reviewed cross-sectional studies of volun-
tary weight-shifting capacity in patients after stroke compared
to age-matched healthy control subjects and provided evidence
of the following deficits: (1) multi-directionally impaired maxi-
mal weight shifting during bipedal standing, in particular toward
the paretic leg; (2) slow speed, directional imprecision and small
amplitudes of single and cyclic sub-maximal frontal plane weight
shifts, most prominently toward the paretic side. An increased
magnitude of postural sway has been described for individuals

after stroke (Mansfield et al., 2012). Post-stroke sensory deficits
may be responsible for these symptoms, because upright stand-
ing requires to be stabilized by active control strategies against
instability induced by a large neural feedback transmission delay.
Mansfield and colleagues proposed that measures of between-
limb synchronization, overall postural sway, and weight-bearing
symmetry are each independently important measures of post-
stroke standing balance control and can reveal discernable control
problems (Mansfield et al., 2012).

Prior work suggests that visual CoP feedback during a weight-
shifting task may improve performance (Ustinova et al., 2001).
Moreover, patients in the post-acute phase of stroke tend to rely
more on visual information for postural control in both antero-
posterior (A-P) and medio-lateral (M-L) planes than healthy
age-matched controls (Geurts et al., 2005). Indeed, excessive
reliance on vision for erect standing may decrease during rehabil-
itation, but can still be found in the chronic phase under more
challenging conditions. Such abnormal reliance on vision may
be related to a higher-level inability to select the pertinent sen-
sory input. There is evidence that even in the chronic phase of
stroke, visual deprivation training can reduce the degree of visual
dependence for postural control (Geurts et al., 2005). In accor-
dance, we present an operant conditioning paradigm where CoP
excursions steers the cursor on a screen and the visual feedback
of the cursor is corrupted by noise thereby effecting visual depri-
vation. We propose to vary the quality of visual feedback using
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FIGURE 3 | An example of the visuomotor task where the left panel shows the experimental setup and the right panel shows the modified functional

reach task (mFRT). The subject is required to steer a computer cursor to a peripheral target using volitionally generated Center of Pressure (CoP) excursions.

different noise levels for different locations on the screen accord-
ing to the visuospatial attention during the visuomotor task for
uniform learning of the affected and unaffected sides, and there-
fore present the subject with a virtual reality toward constrained
induced movement therapy (Morris et al., 1997), as discussed in
Section Proposed Method: Operant Conditioning Based on Gaze-
Interaction in Virtual Reality. In Section Preliminary Evidence:
Trial-by-Trial Error Correction during Operant Conditioning, we
present evidence from our proof-of-concept study on healthy for
trial-by-trial error correction during visuomotor balance therapy
under an operant conditioning paradigm.

PROPOSED METHOD: VOLITIONALLY-DRIVEN NMES-ASSISTED
VISUOMOTOR BALANCE THERAPY
The capacity to voluntarily transfer body weight while maintain-
ing standing balance over a fixed base of support is a prerequisite
for safe mobility (Geurts et al., 2005). During balance training,
the stroke survivors will voluntary shift their CoP location to steer
the cursor as fast as possible under visual feedback. The state-
of-the-art prior works show that NMES stimulation envelopes
may be controlled (Yeom and Chang, 2010; Zhang et al., 2013) or
triggered (Dutta, 2009) with volitional electromyogram (EMG)
or electroencephalogram (EEG) (Niazi et al., 2012; Takahashi
et al., 2012). However, post-stroke biopotentials often suffer from
deficits, e.g., EMG suffers from delays in initiation/termination
(Chae et al., 2002) as well as fatigue, and therefore solely biopo-
tentials based control of a NMES-assisted dynamic balance task
is challenging where such activation delays may result in falls.
Such faults may be alleviated through sensor fusion with physical
sensor signals (Dutta et al., 2011). Here, able-bodied muscle acti-
vation profiles from EMG can be used to define the NMES tem-
plates (Kobetic and Marsolais, 1994) for erect posture recovery

where (optimal) muscle synergies (Chvatal and Ting, 2013) can
be extracted from the EMG recorded bilaterally from healthy
ankle muscles approximately coincident with those targeted for
NMES (Piazza et al., 2012; Li et al., 2014) in post-stroke sub-
jects right after presentation of the visual cue. The muscle synergy
specifies the coordinated activation of several muscles, and each
muscle synergy is expected to get activated during specific pertur-
bation directions (A-P or M-L) and time bins following the visual
cue (Torres-Oviedo and Ting, 2007). Recent work in humans
demonstrates that the neural control of muscles may be modu-
lar, organized in functional groups often referred to as muscle
synergies (Chvatal and Ting, 2013). Moreover, Torres-Oviedo
and Ting (2007) showed that muscle synergies, i.e., a pattern of
task-specific co-activation of muscles, represent a general neural
strategy underlying muscle coordination in postural tasks. In fact,
the composition and temporal activation of several muscle syn-
ergies identified across subjects are consistent with “ankle” and
“hip” strategies in human postural responses (Torres-Oviedo and
Ting, 2007). Although several studies show how the motor sys-
tem elegantly circumvents the need to control its large number
of degrees of freedom through a flexible combination of motor
synergies (Chvatal and Ting, 2013), such a framework has not yet
been leveraged for the generation of NMES stimulation patterns.
Here, Alessandro et al. (2012) discussed the synthesis and adap-
tation of effective motor synergies for the solution of reaching
tasks which can be leveraged with a reduced-order biped model
for NMES template generation (Piazza et al., 2012; Li et al., 2014).
To model the performance of a dynamic balance task such as voli-
tional CoP excursions while maintaining standing balance over
a fixed Base of Support (BoS), we will apply the “extrapolated
center of mass” (xCoM) concept to define the Margin of Stability
(MoS) (Hof, 2008). Here, bipedal standing is approximated as an
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inverted pendulum centered about the ankle joint. Its eigenfre-
quency (ω0) can be computed from the leg length (l), i.e., the
height of the upper margin of the greater trochanter above the
floor,

ω0 =
√

g

l
(1)

where g is the acceleration due to gravity. Therefore, the xCoM

location,

[
x
y

]

xCoM

, can be defined from the CoM projection on

the ground,

[
x
y

]

CoM

,

[
x
y

]

xCoM

=
[

x
y

]

CoM

+
[

ẋ/ω0
ẏ/ω0

]

CoM

(2)

During performance of the bipedal reaching task, the maximum
excursion of the xCoM location which does not result in a step-
ping response can be monitored. This will provide an estimate
of the MoS within the BoS for standing balance control. Animal
studies have shown that perturbations evoke coordinated long-
latency responses that help to return the body to its postural

equilibrium (Macpherson and Fung, 1999; Deliagina et al., 2008).
A real-time decoder can detect this long-latency responses to
control and/or trigger NMES to assist the post-stroke subjects
to recover to the erect posture following internal perturbations.
NMES is based on the observation of intermittent, ballistic-type
corrective movements in healthy humans (Loram et al., 2005)
where NMES of the ankle muscles will provide the assistive torque
not only to generate basic support (i.e., adequate ankle stiffness)
(Hwang et al., 2009) for upright standing but also to provide fre-
quent, ballistic bias impulses for regaining balance from micro
falls (Loram et al., 2005).

In our proof-of-concept study on healthy (no NMES), the aug-
mented HMI system (Figure 4) was used to record CoP-CoM
trajectories while the subjects were asked to keep their body rigid,
and to maintain full feet contact with the Wii BB. The subjects
were asked to lean as far as possible toward forward, toward back-
ward, toward the right side, and toward the left side using visual
feedback of the CoP location to provide calibration values for α

and β (in Equation 3) such that the cursor does not go off the
screen during performance of the visuomotor task when the sub-
ject uses full functional reach to steer the computer cursor. During
the Central Hold task (CHT), the subjects were asked to keep the

cursor close to its origin with CoP excursions,

[
x
y

]

CoP

, which

FIGURE 4 | The human-machine-interface integrating biosignal

sensors, eye tracker, and motion capture with a neuromuscular

electrical stimulation system for post-stroke balance rehabilitation.

NMES, Neuromuscular Electrical Stimulation; EMG, Electromyogram;
EEG, Electroencephalogram; CoP, Center of Pressure; PC, Personal
Computer.
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accelerated the computer cursor,
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, according to Equation

(3) (discretized time, t, with time-step, dt)
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ẋ
ẏ
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ẏ

]t−1

Cur

dt

(3)

where ε = 0.01 s2/cm, α = 0.2 s−2, β = 0.1 s−1, η = N(0, σ =
0.1 s−2). The visuomotor task was divided into 100 trials lasting
for a random duration evenly distributed between 11.5 and 15 s
based on prior work of Stevenson et al. (2009). Every 20 ms a
new dot was shown on the screen with a position drawn from
a radially isotropic Gaussian distribution [N(0, 3.5 cm)] cen-
tered on the true position of the cursor. The subjects learned to
modulate CoP excursion to keep the cursor close to the origin
where the mean squared errors (MSEs) were monitored. It was
hypothesized that MSE will stay steady during the exploratory
stage, show a quick improvement during the skill acquisition
stage, followed by a slow improvement during the skill refine-
ment stage. Then, under amodified functional reach task (mFRT)
paradigm (Dutta et al., 2014c) in upright standing, called the
“Central hold” phase, the subject needs to steer the cursor as
fast as possible toward a randomly presented peripheral target
as cued by visual feedback (see Figure 3). Following this “Move”
phase, the subject will have to hold the cursor at the target
location for 1 s during the “Peripheral hold” phase. Following
the “Peripheral hold” phase, the cursor will “Reset” back to the
center. Following CoP excursion to steer the cursor during the
“Move” phase, the recovery of erect posture will be assisted with
NMES.

In our proof-of-concept study on healthy (no NMES), EEG
and electrooculogram (EOG) recordings were investigated to
detect motor intent during CoP excursions. EEG recordings were
conducted using the Emotiv neuroheadset (Emotiv, Australia)
which wirelessly relayed EEG data to the PC from 14 chan-
nels (saline soaked sponges of the Emotiv Neuroheadset were
replaced with Ag/AgCl electrodes) of the EEG cap (International
10–20 system)—Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4,
O1, O2 (plus Common Mode Sense/Driven Right Leg references).
EEG electrode impedance was kept below 5 kOhm by scratch-
ing the scalp and using conductive gel (Ten20, Weaver, USA).
The EEG data were analyzed using EEGlab Matlab (Mathworks,
USA) software (Delorme and Makeig, 2004). Additionally, a four-
electrode EEG, with one electrode positioned at the outer edge
of each eye to monitor the horizontal motions and one elec-
trode positioned above and one below the right eye for obtaining
vertical movements, was acquired. The eye-blinks along with sac-
cades were identified using EOGUI Matlab (Mathworks, USA)
software [“Eogui—a Software to Analyze Electro-Oculogram

(EOG) Recordings - File Exchange - MATLAB Central” 20141],
which provides the Duration (milliseconds), Amplitude (angu-
lar degree), and Viewing Direction (for the saccades in nautic
degree; 0 for upwards gazes, 90 for gaze to the right, 180 for
downwards gazes, 270 for gazes to the left). Then, eye-blink arti-
facts identified from EOG were rejected using EEGlab functions
and the artifact-free EEG was analyzed for each trial in 4.096 s
epochs using a Hanning time window (epochs were overlapped by
50%), and an estimation of the power spectra was calculated for
the absolute alpha (7.5–14 Hz) band via fast Fourier transforma-
tion using the Welch technique (“pwelch” in Matlab, MathWorks,
USA) to detect alpha event-related desynchronization (aERD)
(Pfurtscheller and Lopes da Silva, 1999). aERD appearance was
defined when the power was below the resting state value, thereby
reflecting cognitive attention during CoP visuomotor task, i.e.,

aERD% =
(

Ptask − Presting−state

Presting−state

)
× 100 (4)

where Ptask is the power spectral density estimate during the
visuomotor task and Presting−state is the power spectral density
estimate during resting state. The mFRT is proposed to quan-
tify the subjects’ ability to volitionally shift their CoP position as
quickly as possible without losing balance while cued with CoP
visual biofeedback. During CHT and mFRT, alpha event-related
desynchronization (aERD%) was found primarily in the parietal
and occipital EEG electrodes (unpublished material), shown by
an illustrative plot in Figure 5.

PROPOSED METHOD: OPERANT CONDITIONING BASED ON
GAZE-INTERACTION IN VIRTUAL REALITY
The capacity to voluntarily transfer body weight while maintain-
ing standing balance over a fixed base of support is a prerequisite
for activities of daily living. Stroke survivors use only a small
part of their base of support for voluntary weight displacements.
Also, during standing and antero-posterior (A-P) weight-shifting,
stroke patients deviate from the mid-line of the base of sup-
port more than healthy control subjects (Goldie et al., 1996).
Moreover, compared to control subjects, stroke patients have sig-
nificant deficits in the ability to weight-shift in the medio-lateral
(M-L) direction (Goldie et al., 1996). Furthermore, there is strong
evidence that physiological markers such as blink rate can be
used as effective indicator of one’s mental workload (Marshall,
2007). In our augmented HMI, two Wii Balance Board™ (Wii
BB) (Nintendo, USA) (Clark et al., 2010) were positioned side by
side without touching (i.e., <1 mm apart). Following the exper-
imental protocol of Mansfield and colleagues (Mansfield et al.,
2012), the subjects could stand with one foot on each Wii BB in
a standard position (feet oriented at 14◦ with 7◦ rotation of each
foot with an inter-malleoli distance equal to 8% of the height),
with each foot equidistant from the midline between both Wii
BBs. In our integrated system, we augment the operant condition-
ing paradigm with a gaze-sensitive virtual reality-based adaptive

1http://www.mathworks.com/matlabcentral/fileexchange/file_infos/32493-eo
gui-a-software-to-analyze-electro-oculogram-eog-recordings. Accessed
April 2.
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FIGURE 5 | (A) During functional reach test, the Center of Pressure was
volitionally moved away from the resting state (origin is static
equilibrium). (B) Feasibility results for event-related desynchronization in

able-bodied subjects: EEG amplitude (mean ± std. dev.) at Pz during
functional reach test (black color) when compared to the resting state
(red color).

response technology (Lahiri et al., 2013) that evaluates motor
learning during the performance of the visuomotor task with
regard to visuomotor coordination via applying the principles of
engagement. Specifically, making the visuomotor task easier for
the affected side in virtual reality may yield greater neuroplastic
changes and functional outcomes in neurorehabilitation (Danzl
et al., 2012).

The post-stroke subject will stand with a minimum base-
line stimulation level necessary to generate basic support for
upright standing according to clinical observation. From this
upright standing, the patient needs to steer the cursor as fast as
possible toward a randomly presented peripheral target as cued
by visual feedback (see Figure 3) under a modified functional
reach task (mFRT) paradigm, as discussed in Section Proposed
Method: Operant Conditioning Based on Gaze-Interaction in
Virtual Reality. During the bipedal reaching task using visual
feedback, the acceleration of the cursor can be controlled with
CoP excursions measured by two (one for each limb) Wii BB
according to the following dynamics (Stevenson et al., 2009),

[
ẍ
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where ε1, ε2 parameterizes the effect of recorded CoP1, CoP2
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on the cursor acceleration,
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, and α and β parameters prevent the cursor from going

off-screen, and η ∼ N(0, σp) represents the process noise with
variance σp. The increase in gain ε1, ε2 makes the task require
lesser CoP excursion range while a decrease in the variance,
σp, reduces the uncertainty. Task difficulty can be increased by
decreasing the gain ε1, ε2 and increasing the variance, σp, where
we present the subject with a virtual reality toward constrained

induced movement therapy (Morris et al., 1997). Furthermore,
toward constrained induced movement therapy (Morris et al.,
1997), visual deprivation will be effected by introducing observer
noise in the visual feedback by flashing a low contrast dot on the
screen with a position drawn from a radially isotropic Gaussian
distribution centered on the true position of the cursor. The vari-
ance representing this Gaussian cloud of points N(0, σo), will
introduce observer noise as shown by prior work (Stevenson et al.,
2009). Therefore, task difficulty can be modulated with parame-
ters ε1, ε2, σp, and σo for the affected and unaffected limbs during
operant conditioning. For example, the gain, ε2, ε2, can be set
individually for the affected and unaffected limbs for each periph-
eral target such that they present similar reaching errors during
the exploratory stage of motor learning for the unipedal reach-
ing task, which may lead to comparable reward expectations.
During performance of the bipedal reaching task, the subject can
learn to volitionally modulate CoP excursions using coordinated
bipedal muscle activity to generate cued cursor movement under
visual feedback. Here, identification of visuospatial attention and
motor learning is critical for constrained induced movement ther-
apy (Morris et al., 1997) where a Bayesian framework addresses
the problem of updating beliefs and making inferences based on
observed data. We present a standard Kalman filter to compute
the estimated state of the cursor from observations while cap-
turing user behavior during the reaching task, i.e., the “Central
hold,” “Move,” and then “Peripheral hold” phases of the task. The
peripheral targets are at the subject-specific limits (position and
velocity) of CoP excursion, which are mapped using the α and
β parameters of the Equation (5) for each target. An important
feature of the Kalman filter is how estimation changes as a func-
tion of feedback uncertainty (Stevenson et al., 2009). For example,
increasing the observation noise by increasing the variance, σo,
for a certain peripheral target while keeping the process dynam-
ics and process noise identical (ε1, ε2, σp) may have different
effects on its state updates (i.e., Kalman update) based on post-
stroke residual function. Hence, the Kalman filter model allows
to interrogate the post-stroke control mechanisms by capturing
the effects of observation noise (or, visual feedback uncertainty)
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on the control of cursor state (and reaching errors) toward multi-
directional peripheral targets. The Kalman filter assumes that the
cursor state, X = [x, y, ẋ, ẏ], at time t evolves from the state at
time, t − 1, according to linear dynamics and control:

Xt = AXt−1 + But−1 +Wt (6)

where ut is the control signal and Wt is the process noise derived
from a Gaussian distribution. Here, A and B follow from the
Equation (6) for an ideal observer and Wt reflects the effects
of process noise η ∼ N(0, σp). For example, Stevenson et al.
(2009) found bang-bang controller more similar to human con-
trol mechanisms than a linear-quadratic regulator (LQR) during
bipedal reaching tasks.

ut = λ1sign
([

cos θ sin θ
]

X
)+ λ0 (7)

Here, θ parameterizes the decision rule for a given state of the
cursor, X, and λ0, λ1 parameterizes the magnitude of the two
states for bang-bang control for each peripheral target, to capture
the “Move” phase toward that target. Moreover, Stevenson et al.
(2009) have found that healthy humans readily dampen the cur-
sor oscillations induced by the process noise, η ∼ N(0, σp) which
may be deficient post-stroke based on residual function. Here,
the cross-correlation between the fluctuations of cursor dynamics
(process noise, η ∼ N(0, σp) and CoP during the “Central hold”
and “Peripheral hold” phases of the task should be consistent with
ideal observer models in normal cases of residual function, i.e.,
subjects should respond more slowly and with lower amplitudes
when the feedback is more uncertain (increased variance, σo).
Also the gains, ε1, ε2, i.e., the range of CoP excursion required
for the reaching task, should not affect subject’s control policy
in normal cases of residual function (Stevenson et al., 2009).
Therefore, the post-stroke subject’s postural control policies can
be evaluated for each peripheral target by changing the gain to
investigate if hemiparesis affects control strategies for reaching
certain targets, e.g., at the paretic side. Especially at low gains,
the visuomotor task becomes challenging when the subject may
use compensatory mechanisms to map between CoP actions and
their visual sensory consequences. Motor learning will start from
exploratory and skill acquisition to skill refinement stages. The
reach errors will stay steady during the exploratory stage and will
show a quick improvement during the skill acquisition stage fol-
lowed by slow improvement during the skill refinement stage. In
fact, this can be detected with gaze behavior where active sensing
with eye movements during exploratory actions may contribute
to coupling of perception and action (Vickers, 2009). For exam-
ple, the quiet eye (QE) period can be defined as the elapsed time
between the last visual fixation to the target and the initiation
of the motor response, which has emerged as a characteristic of
higher levels of performance (Vickers, 2009). In fact, Mann et al.
(2007) presented a meta-analysis that supported the critical role
of visual attention in the expert advantage, revealing that experts
consistently exhibit fewer fixations of longer duration than non-
expert comparison groups. Moreover, during visuomotor tasks,
Mann et al. (2011) found that experts exhibit a prolonged QE

period and greater cortical activation in the right-central region
compared with non-experts.

Prior work on gaze behavior during eye-hand coordination
(Sailer et al., 2005) suggests that gaze interaction can provide
an evaluative feedback of motor learning. It starts with pur-
suing the cursor during the exploratory stage, continues with
predicatively marking the desired cursor positions during skill
acquisition stage, and ends up with direct shifts toward the tar-
get during the skill refinement stage. Therefore, the time delay,
τdelay, between the two signals, as determined by the argument of
the maximal cross-correlation, should indicate the stage of motor
learning. Moreover, during skill acquisition the desired cursor tra-
jectory can be decoded from gaze activity to see if the desired
cursor positions are successfully reached under visuomotor con-
trol during the “Move” phase. Here, Bayesian learning involves
computing the posterior probability distribution of the stage of
motor learning during the “Move” phase from the observed gaze-
interaction (i.e., τdelay) where a coarse estimate of the stage of
motor learning is based on the reach error at the end of the
“Move” phase. In this center-out bipedal visuomotor reaching
task with zero process and observer noise (σp = 0 and σo = 0),
two modes of performance—skilled, unskilled—are possible dur-
ing the “Move” phase. These two modes of performance (or
hypotheses) are considered to be mutually exclusive and exhaus-
tive hypotheses, H = {hskilled, hunskilled}, and can be formulated
for each cued peripheral target, Ti, during the visuomotor reach-
ing task. In the Bayesian framework, we denote the degree of belief
in a hypothesis by probabilities and determine this belief, called
posterior probabilities, using the product of data likelihood and
prior probabilities (Bayes’s rule):

P(hi|d, Ti) = P(d|hi, Ti)P(hi)∑N
i= 1 P(d|hi, Ti)P(hi)

(8)

where prior probabilities, P(hi), represent the belief before
observing the data, d (e.g., τdelay, etc.), and likelihoods,
P(d|hi, Ti), for each peripheral target, Ti, denote the probability
with which we would expect to observe the data if the hypothesis
is true. To estimate the best peripheral targets for motor learn-
ing (i.e., distinguishing hskilled, hunskilled) with subject-specific gaze
interaction data, d, the confusion probability matrix for each
possible peripheral target, Ti, can be found

CTi =
∫ √

p(d|hskilled, Ti)p(d|hunskilled, Ti)dd. (9)

Here, we present a modular neural network implementing
Bayesian learning and inference for each possible peripheral tar-
get, Ti, as described in a prior work by Kharratzadeh and Shultz
(2013).

The first module, Module 1, implements the Bayes’s rule
assuming that the values of prior and likelihood probabilities are
given as input. Its output is the posterior probability. This needs
to be run for each hypothesis.

Module 2 computes the likelihood probabilities based on
observed data. The role of Module 2 is to learn these distri-
butions as the underlying mechanisms generating the data. For
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example, positive τdelay (i.e., gaze pursuing the cursor positions)
represents unskilled performance, i.e., at the exploratory stage
and negative τdelay (i.e., gaze predicatively marking the desired
cursor positions) indicates skilled performance, i.e., at the end
of skill acquisition stage. Here, the generative process can be
described as a Gaussian with mean hi and standard deviation 1;
with positive mean for i = unskilled, negative mean for i = skilled
(Kharratzadeh and Shultz, 2013),

f (d, hi) = 1

2π
e

(d− hi)
2

2 (10)

Module 3 computes the hypothesis’s prior probabilities by learn-
ing their generative discrete distribution function. For example,
the generative function can be of the form (Kharratzadeh and
Shultz, 2013),

g(hi) = υe
h2

i
2 (11)

where υ is chosen such that the sum of the prior probabilities
equal 1.

For our hypotheses presented for each peripheral reach target,
we need to first learn Modules 1 and 3 one-time based on the gaze
behavior with respect to the cursor position during the “Move”
phase toward a peripheral reach target. During exploratory and
skill acquisition stages of operant conditioning, multiple “Move”
phases will be performed for each peripheral reach target where
the stage of motor learning can be estimated from the reach
error following each “Move” phase (Stevenson et al., 2009). A
variant of the cascade correlation method, called the sibling
descendent cascade correlation (SDCC), can be used to train the
Modules using input(s)-output training pairs as shown earlier
(Kharratzadeh and Shultz, 2013). After learning Modules 1 and
3, we will use them twice for computing the posterior and prior
of each hypothesis, which needs to be learned for each hypothe-
sis, using Module 2. After sufficient training on gaze-interaction,
the modular neural network will provide online feedback of the
subject’s stage of motor learning during the “Move” phase toward
the cued peripheral reach target, P(hi|d, Ti), that is based on the
observed saccades and gaze fixations with respect to the cursor
position (Equation 8). Here, the confusion matrix, CTi , will pro-
vide an estimate of the subject-specific performance of such a
classifier (Equation 9). Therefore, a comparable reach error can
be maintained across peripheral reach targets by online adapta-
tion of σp for operant conditioning of volitional multi-directional
CoP excursions. For example, increasing the variances, σp, will
increase the difficulty of the visuomotor task during the “Move”
phase, leading to an increase in the reach error at the end of
the “Move” phase. Such performance-based adaptive schedules
have been shown to enhance motor learning when compared to
random scheduling (Choi et al., 2008).

Based on these prior investigations and specifically on a prior
work on gaze behavior during eye-hand coordination (Sailer
et al., 2005), we postulate that gaze interaction may provide eval-
uative feedback of motor learning during the “Move” phase that
can be used to adapt cursor dynamics such that compensatory
mechanisms of the unaffected side can be constrained (Taub and

Morris, 2001) toward constrained induced movement therapy
(Morris et al., 1997). Such performance-based adaptive schedules
have been shown to enhance motor learning when compared to
random scheduling (Choi et al., 2008).

PRELIMINARY EVIDENCE: TRIAL-BY-TRIAL ERROR CORRECTION
DURING OPERANT CONDITIONING
The mean square error (MSE) and gaze-interaction (Sailer et al.,
2005) with the visual feedback can be continuously monitored
during the visuomotor task and post-stroke subjective learning in
the affected and unaffected sides may be modulated by changing
the respective error feedback in an operant conditioning frame-
work (Dutta et al., 2013a), i.e., in principle constrained induced
movement therapy (Morris et al., 1997) in a virtual reality. A
conceptual review of this operant conditioning framework for
balance training is presented in the last Subsection Proposed
Method: Operant Conditioning Based on Gaze-Interaction in
Virtual Reality. Additionally, modulation of event-related desyn-
chronization (ERD) with motor cortex tDCS in healthy vol-
unteers (Matsumoto et al., 2010) and patients with chronic
severe hemiparetic stroke has been shown feasible (Kasashima
et al., 2012). Based on our proof-of-concept study on healthy
(no NMES), the MSE normalized by the baseline value [(with-
out process noise, i.e., η = N(0, σ = 0s−2)] trended toward a
decrease (see Figure 6), the blink rate trended toward an increase
(see Figure 6), and the saccadic direction relative to the cursor
acceleration trended toward zero (see Figure 6) during the visuo-
motor task under an operant conditioning paradigm. Moreover,
Figure 7 shows that the aERD% at the position Pz correlated with
the normalized mean square error (MSEnorm) during the visuo-
motor task performance in CHT. The 95% prediction bounds
are also shown for a linear-fit which indicates a 95% chance that
a new observation is placed within the lower and upper pre-
diction bounds. The coefficients (with 95% confidence bounds)
of the linear fit, aERD% = a×MSEnormalized + b, are a = 10.97
(10.19, 11.76) and b = −18.16(−18.8,−17.52). The R2-value
was 0.4316 indicating the goodness of fit. Moreover, during
mFRT, we could correctly classify roughly 76% of the movement
directions as left or right based on pair-wise aERD% asymmetry
in P3, P4, and O1, O2 electrodes from epochs lasting 0 to 700 ms
following peripheral cue presentation (unpublished material).

Therefore, MSE and gaze-interaction (Sailer et al., 2005) can
be continuously monitored during the visuomotor task and post-
stroke subjective learning in the affected and unaffected sides
may be modulated by changing the respective error feedback in
an operant conditioning framework (Dutta et al., 2013a), i.e., in
principle constrained induced movement therapy (Morris et al.,
1997) in a virtual reality. Additionally, modulation of event-
related desynchronization (ERD) with motor cortex tDCS—a
NIBS modality—in healthy volunteers (Matsumoto et al., 2010)
and patients with chronic severe hemiparetic stroke has been
shown feasible (Kasashima et al., 2012). Also, tDCS over PPC
has been shown to modulate visuospatial localization (Wright
and Krekelberg, 2014) where lesions in human PPC can lead
to complex syndromes consisting of an inability to attend, per-
ceive and react to stimuli in the visual field contralaterally to the
lesion, an inability to voluntarily control the gaze, and an inability
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FIGURE 6 | (A) Box-plot of normalized mean squared error (MSE) across 10 subjects, (B) box-plot of the blink rate (blinks per minute) during the visuomotor
task, (C) box-plot of saccadic direction relative to the cursor acceleration during the visuomotor task.

to coordinate visually elicited hand movements (Caminiti et al.,
2010; Lindner et al., 2010; Hwang et al., 2012). Based on these
prior works, we postulate that NIBS can facilitate trial-by-trial
error correction process during visuomotor balance therapy
under operant conditioning.

HYPOTHESIS 2: NIBS CAN FACILITATE TRIAL-BY-TRIAL
ERROR CORRECTION AND ITS RETENTION DURING
OPERANT CONDITIONING
In Subsection Preliminary Evidence: Trial-by-Trial Error
Correction during Operant Conditioning, evidence for
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FIGURE 7 | Alpha event-related desynchronization (aERD%) at Pz EEG

electrode vs. baseline normalized mean squared error (MSEnorm)

during the visuomotor task performance. A linear fit with 95% prediction
bounds is additionally depicted.

trial-by-trial error correction during operant conditioning
was presented where the brain acting as a controller need to
not only perform trial-by-trial error correction but also need to
adapt in response to prior error information via retention which
is called motor adaptation. Here, active participation of cortical
areas may be facilitated with NIBS of motor and premotor
cortex, cerebellum, and/or PPC (see Figure 1). A hierarchical
error processing was proposed (Krigolson and Holroyd, 2007)
in the brain acting as a controller where error processing during
visuomotor control involves the evaluation of “high-level” errors
(i.e., failures to meet a system goal) by a frontal system involving
the anterior cingulate cortex and the basal ganglia (Krigolson and
Holroyd, 2006; Holroyd and Coles, 2008), and the evaluation of
“low-level” errors (i.e., discrepancies between actual and desired
motor commands) by a posterior system involving the PPC
and/or the cerebellum (Desmurget and Grafton, 2000; Pisella
et al., 2000; Miall et al., 2001; Gréa et al., 2002). Here, the PPC
is an important interface between sensory and motor cortices,
integrating multimodal sensory and motor signals to process
spatial information for a variety of functions including guiding
attention and planning movements (Andersen and Gnadt, 1989;
Snyder et al., 1997).

In our single-blind, sham-controlled study (Dutta et al.,
2014c), five healthy right-leg dominant subjects (age: 26.4 ±
5.3 yrs) were evaluated using the HMI system under two
conditions—with anodal tDCS of primary motor representations
of right tibialis anterior muscle and with sham tDCS. Paired t-test
(Matlab “ttest” function, The Mathworks, Inc., USA) was per-
formed for the differences in % change of stabilogram metrics
from baseline values after administrating tDCS/sham session, for
all the subjects pooled together. The results showed that anodal
tDCS of primary motor representations of the right tibialis ante-
rior muscle strongly (p < 0.0001) affected maximum CoP excur-
sions but not return reaction time in healthy volunteers. Also,
anodal tDCS had a strong (P < 0.0001) effect on the % change
(decrease) in sway area from baseline values when compared to
sham at 45 and 60 min post-tDCS. Anodal tDCS had only a mod-
erate effect (P = 0.0113) on the change (decrease) in the path
length of the CoP trajectory from the respective baseline value
when compared with sham 60 min post-tDCS. Moreover, the

results showed that anodal tDCS strongly (P < 0.0001) affected
the change in centroid of CoP data-points from baseline value
during quiet standing in the medio-lateral direction when com-
pared to sham tDCS. The reason for this change in the centroid of
CoP data-points during quiet standing (Dutta et al., 2014c) fol-
lowing motor cortex tDCS is postulated to be inadvertent parietal
tDCS due to the active electrode position roughly 1 cm left lateral
and 2 cm posterior to Cz (International 10-20 EEG system), i.e.,
close to P3, and relatively high current density (0.06 mA/cm2).
Indeed, the PPC is an important interface between sensory and
motor cortices, integrating multimodal sensory and motor signals
to process spatial information for a variety of functions includ-
ing guiding attention and planning movements (Andersen, 1997).
Therefore, a tDCS protocol targeting the PPC is presented in the
Subsection Proposed Method: NIBS Protocol to Facilitate Trial-
by-Trial Cortical Control and Adaptation During Visuomotor
Task. Here, in order to test successful trial-by-trial error cor-
rection and its retention during visuomotor balance therapy
under operant conditioning, we propose in Subsection Proposed
Method: Using Aftereffects to Evaluate Successful Trial-by-Trial
Adaptation During Operant Conditioningthe use of aftereffects
that occur in motor control when the visual or mechanical vari-
ables of the targets are perturbed in a systematic manner. This
is based on our prior work on using aftereffects to evaluate suc-
cessful adaptation during EMG-driven NMES-assisted locomotor
exploration activity for post-stroke gait training (Dutta et al.,
2014a) where we found that only stroke subjects who showed
aftereffects during systematic perturbation of the “EMG to NMES
mapping” parameters at random catch-trials during the locomo-
tor exploration activity, showed post-intervention changes in the
EMG pattern during volitional (no NMES) treadmill walking.

PROPOSED METHOD: NIBS PROTOCOL TO FACILITATE TRIAL-BY-TRIAL
CORTICAL CONTROL AND ADAPTATION DURING VISUOMOTOR TASK
Analysis of simultaneously acquired EEG/EMG and gaze-
interaction data can be used to assess potential mechanisms
underlying skill acquisition during visuomotor task (Mann et al.,
2011). During volitionally generated CoP excursions based on
visual feedback (Figure 3), the visual system must orient to and
process the relevant visual (target) cues to ascertain both distance
and direction of the required CoP excursion, while the working
memory is called upon for the required joint torques to match
the cursor with the visual (target) cues. Recent investigations
lend support to the motor programming/preparation function
of the QE period based on simultaneous EEG recordings (Mann
et al., 2011) where slow cortical potential (SCP) negative shifts
in EEG preceding voluntary movement, called bereitschaftspo-
tential (BP) (Shibasaki and Hallett, 2006), lends itself well to the
study of the preparatory period preceding task execution. Indeed,
Mann et al. (2011) found: (1) greater BP negativity (particu-
larly in central recording locations) for the expert compared with
non-experts, and (2) QE duration was associated with BP neg-
ativity in central cortical regions. Therefore, it was postulated
that the QE is a temporal period when task-relevant environ-
mental cues are processed and motor plans are coordinated for
the successful completion of an upcoming task. In our prelim-
inary study (Dutta, 2014), we found that motor cortex anodal
tDCS: (1) increased the frequency of negative epochs of the early
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(2.5 s–300 ms) phase of SCP before movement initiation, and
(2) the slope of negative epoch for the late (300 ms–0 s) phase
of SCP before movement initiation. Our NIBS protocol to facil-
itate cortical control and adaptation is based on the hypothesis
that throughout the preparation and movement phases of skill
execution, the visual attention centers (i.e., occipital and parietal
cortex) disseminate requisite commands to motor regions of the
cortex (i.e., motor cortex, premotor cortex, supplementary motor
area, basal ganglia, and cerebellum), each of which are reflected
in BP components (Mann et al., 2011). Here, our preliminary
results from healthy subjects on facilitating myoelectric-control
with tDCS (Dutta et al., 2014b) showed specific, and at least par-
tially antagonistic effects, of motor cortex and cerebellar anodal
tDCS on motor performance during myoelectric control where
cerebellum may play a critical role in both formation of motor
memory and its retention (Herzfeld et al., 2014). Moreover, dur-
ing visuomotor task performance, visual search to orient to and
process the relevant visual (target) cues require contributions of
human frontal eye fields (FEF) and PPC where PPC seems to

be involved only when a manual motor response to a stimulus
is required (Muggleton et al., 2011). Therefore, PPC may play a
critical role in the preparatory activity in the general context of
sensorimotor transformations linking perception to action where
the SCP (e.g., BP) reflects activation of subcortical and cortical
generators (cortico-basal ganglia-thalamo-cortical circuitry) nec-
essary not only in motor execution but also in its preparation
(Jahanshahi and Hallett, 2003).

Wright and Krekelberg (2014) hypothesized that each hemi-
sphere biases processing to the contralateral hemifield and that
the balance of activation between the hemispheres contributes to
position perception. They presented a bihemispheric tDCS proto-
col for PPC and hypothesized that excitability is reduced beneath
the cathode and increased beneath the anode where closed-
loop feedback control of bihemispheric tDCS for PPC using
the MatNIC and StarStim (Neuroelectrics, Spain) NIBS interface
is presented in Figure 8. Indeed, when Wright and Krekelberg
(2013) applied tDCS bilaterally, e.g., cathodal stimulation over
right PPC concurrent with anodal stimulation over left PPC

FIGURE 8 | Closed-loop feedback control of bihemispheric tDCS for posterior parietal cortex.
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(right-cathodal) or vice versa (left-cathodal), they found that
both tDCS conditions altered perceived position to the left rel-
ative to a sham stimulation baseline condition. This effect was
stronger for right-anodal than for right cathodal tDCS, and lasted
for about 15 min after stimulation. Based on these prior works,
we postulate that bihemispheric application of tDCS (Wright
and Krekelberg, 2013) at P3 and P4 (International 10–20 sys-
tem) will facilitate cortical control during visuomotor task while
cerebellar tDCS (Herzfeld et al., 2014) will facilitate up- or down-
regulation of error-dependent motor learning and retention in a
polarity-dependent manner. Bihemispheric application of tDCS
(Wright and Krekelberg, 2013) at P3 and P4 (International 10-
20 system) in conjunction with cerebellar tDCS (Herzfeld et al.,
2014) is postulated to facilitate cortical control and adaptation
during visuomotor task performance especially on the affected
side since the evaluation of “low-level” errors (i.e., discrepancies
between actual and desired motor commands) is hypothesized
to be performed by a posterior system involving the PPC and/or
the cerebellum (Desmurget and Grafton, 2000; Pisella et al., 2000;
Miall et al., 2001; Gréa et al., 2002).

PROPOSED METHOD: USING AFTEREFFECTS TO EVALUATE
SUCCESSFUL TRIAL-BY-TRIAL ADAPTATION DURING OPERANT
CONDITIONING
Trial-by-trial error correction during the visuomotor task may
be facilitated with bihemispheric application of tDCS for PPC
(Wright and Krekelberg, 2013). However, it is important to also
evaluate trial-by-trial motor adaptation during the visuomotor
task under operant conditioning paradigm that may be facilitated
with cerebellar tDCS (Herzfeld et al., 2014). Here, Held and col-
leagues (Held and Gottlieb, 1958; Held and Freedman, 1963) have
found aftereffects only with sensorimotor integration, which may
then lead to motor adaptation. In principal accordance, afteref-
fects that occur in motor control when the visual or mechanical
variables of the targets are perturbed in a systematic manner
can be used to test successful motor adaptation (Dutta et al.,
2014a). Therefore, controlled variability can be introduced in the
form of pseudorandomly interspersed catch trials in the other-
wise predictable visuomotor task where the parameter εaffected

that maps the effect of recorded CoPaffected excursions of the
affected side on the cursor acceleration (Equation 5) can be per-
turbed. Thus, catch trials are proposed to be a reasonable method
of exaggerating performance errors during the visuomotor task
without disrupting the predictive process. Therefore, the subjects
should correct both their own prediction errors and the artificially
induced errors resulting from the catch trials in the same manner.
It is postulated that in case of successful trial-by-trial adaptation
during operant conditioning, the subject should greatly change

their CoP excursion

[
x
y

]

CoPaffected

(Equation 5) on the next trials

to catch trial in response to the unusually large error in the catch
trial.

PRELIMINARY EVIDENCE: EFFECTS OF BIHEMISPHERIC tDCS FOR THE
POSTERIOR PARIETAL CORTEX
The PPC may play a critical role in sensorimotor transformations
linking perception to action during quiet standing in terms of

CoP trajectory (and stabilogram) (Dutta et al., 2014c). The proof-
of-concept pilot study was based on our prior work (Dutta et al.,
2014c) where five healthy right-leg dominant male subjects aged
between 24 and 46 years were evaluated under two conditions—
right-cathodal vs. left-cathodal—tDCS with a pair of 6.7× 6.7 cm
saline-soaked sponge-rubber electrodes (see Figure 9). The cur-
rent was 1 mA applied for 15 min such that the current density
(0.02 mA/cm2) was in agreement with Wright and Krekelberg
(2013) but lower than our prior work (0.06 mA/cm2) (Dutta et al.,
2014c). The CoP measurements were made during rest periods of
quiet standing for 3 min, just before and immediately after the
completion of the tDCS sessions. The study design was repeated-
measure, randomized-order with sufficient (1 week) “wash-out”
time in between the sessions. Paired t-tests (Matlab “ttest” func-
tion, The Mathworks, Inc., USA) were performed to compare
the impact of right-cathodal vs. left-cathodal for the % post-
tDCS change in the centroid of the CoP from baseline (pre-tDCS)
values. Indeed, right-cathodal (P4 cathodal, P3 anodal) shifted
the CoP centroid toward left by 14 ± 8% and left-cathodal (P4
anodal, P3 cathodal) shifted the CoP centroid toward right by
11 ± 9%. Consequently, a statistically significant (p < 0.1) dif-
ference was found between right-cathodal vs. left-cathodal tDCS.
Since weight bearing on the paretic lower extremity and transfer
of weight from one lower extremity to the other are important
goals of stroke rehabilitation (De Nunzio et al., 2014), tDCS-
facilitated amelioration of post-stroke limb loading asymmetry
during biofeedback rehabilitation may improve performance of
many functional activities.

DISCUSSION
The degree to which voluntary guided reaching movements are
planned in advance or adapted online is still under investiga-
tion. Most well-known models such as the “feedforward models”
assume that when motor commands are planned, the outcome
of the movement is predicted by the current position of the
limbs (Desmurget and Grafton, 2000). According to the “feed-
forward models” for the visuomotor task, the predicted position
of the cursor is compared with the actual position of the cur-
sor with respect to the reaching goal and then online-corrected
if the parameters deviate due to noise (e.g., process and observa-
tion noise). Thus, a subjects’ internal model of the visuomotor
task has to be able to adapt to the new dynamics of the envi-
ronment (Shadmehr and Mussa-Ivaldi, 1994). In fact, it has been
proposed that the P300, an ERP component with a parietal scalp
distribution, reflects the updating of an internal model of the
movement environment that is used to help to plan and execute
future motor output (Krigolson et al., 2008). Correspondingly,
lesions in the human PPC can lead to complex syndromes con-
sisting of an inability to attend, perceive and react to stimuli in
the visual field contralateral to the lesion, an inability to vol-
untarily control the eye gaze, and an inability to coordinate
visually elicited movements (Hyvärinen, 1982; Caminiti et al.,
2010; Hwang et al., 2012; Wilke et al., 2012). A recent work
demonstrated that in the resting brain, monocephalic anodal
tDCS over PPC areas altered ongoing brain activity, specifically
in the alpha band rhythm (Spitoni et al., 2013), which may facil-
itate updating of a deficient internal model during post-stroke

Frontiers in Neuroscience | Neuroprosthetics December 2014 | Volume 8 | Article 403 | 141

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Dutta et al. Multi-level electrotherapy for balance rehabilitation

FIGURE 9 | Bihemispheric tDCS protocol for the posterior parietal cortex.

rehabilitation. Here, timing of tDCS with respect to the rehabilita-
tion task is critical (Stagg et al., 2011) since regulatory metaplastic
mechanisms exist to modulate the effects of a stimulation inter-
vention in a manner dependent on prior cortical excitability,
thereby preventing destabilization of existing cortical networks.
In our study, the strongest change occurred in the first 2 min
after the stimulation ended. Spitoni et al. (2013) found that the
tDCS aftereffects diminished systematically and suggested that
tDCS affects EEGs immediately after stimulation. Our prelimi-
nary study (Dutta and Nitsche, 2013) supported this notion that
tDCS affects EEGs immediately after stimulation where Stagg
et al. (2011) showed that the application of tDCS during an
explicit sequence-learning task led to modulation of behavior in
a polarity specific manner: relative to sham stimulation, anodal
tDCS was associated with faster learning and cathodal tDCS
with slower learning. However, application of tDCS prior to per-
formance of the sequence-learning task led to slower learning
after both anodal and cathodal tDCS (Stagg et al., 2011). Based

on these prior works that showed that anodal tDCS interacts
with subsequent motor learning in a metaplastic manner and
suggested that anodal stimulation modulates cortical excitabil-
ity in a manner similar to motor learning (Stagg et al., 2011), a
closed-loop feedback control of bihemispheric tDCS for PPC is
proposed during visuomotor task performance, as illustrated in
Figure 8.

The goal of this hypothesis and theory paper was to exam-
ine prior works for a conceptual review to make a case for
multi-level electrotherapy toward post-stroke balance rehabil-
itation. Under this multi-level electrotherapy concept, both
the cortical control of NMES assisted visuomotor task and
the motor adaptation toward balance rehabilitation are facil-
itated with an adjuvant treatment with NIBS. Such a re-
conceptualization of electrotherapy approaches, where one
(NIBS) is facilitating the other (NMES) toward a common goal
(motor learning), could help to push forward electrotherapy for
neurorehabilitation.
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In this study, first the cortical activities over 2240 vertexes on the brain were estimated
from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian
estimation while 5 subjects did continuous arm reaching movements. From the estimated
cortical activities, a sparse linear regression method selected only useful features in
reconstructing the electromyography (EMG) signals and estimated the EMG signals of
9 arm muscles. Then, a modular artificial neural network was used to estimate four joint
angles from the estimated EMG signals of 9 muscles: one for movement control and the
other for posture control. The estimated joint angles using this method have the correlation
coefficient (CC) of 0.807 (±0.10) and the normalized root-mean-square error (nRMSE) of
0.176 (±0.29) with the actual joint angles.

Keywords: EEG, EMG, neural activity, primary motor cortex

INTRODUCTION
The field of Brain Machine Interface (BMI) has engaged in active
research to help paralyzed patients regain some independence and
to better integrate within societal activities. Brain-machine inter-
face can be broadly divided into invasive and non-invasive modal-
ities depending on how brain signals are harnessed. Invasive
BMI, mainly targets motor related cortical areas. Non-human
primates are often used to for example, harness the spikes and
local field potentials from the primary motor cortex, known to
interface with the spinal cord and containing signals useful to
control arm movement. Such neural signal has been used to con-
trol external devices such as a robotic arm or a mouse cursor
by reconstructing hand trajectories from the measured neural
activities (Chapin et al., 1999; Wessberg et al., 2000; Serruya
et al., 2002; Talylor et al., 2002; Carmena et al., 2003). More
recently invasive BMI has been approved to be used in humans
(Hochberg et al., 2006; Chadwick et al., 2011), including as well
electrocorticography (ECoG) (Schalk et al., 2007; Sanchez et al.,
2008).

In the case of non-invasive BMI, the state-of-the-art research
uses motor imagery, a paradigm that classifies whether the subject
performs left or right hand motor imagery using electroen-
cephalography (EEG) signals (Ramoser et al., 2000; Wolpaw and
McFarland, 2004). It was believed that the noisy EEG signal
in non-invasive BMI would be insufficient to estimate three-
dimensional hand movement (Lebedev and Nicolelis, 2006).
However, recently Bradberry et al. (2010) succeeded in recon-
structing the three-dimensional hand movements from the EEG
signals while the subjects perform natural and self-initiated reach-
ing actions.

In the present study, a new method using electromyography
(EMG) signals is proposed that first reconstructs the EMG signals
of the arm muscles from the source currents estimated from EEG
signals, and then estimates joint angles on the shoulder and the
elbow from the reconstructed EEG signals. By reconstructing the
EMG signals of the arm muscles from EEG signals, it is possi-
ble to reconstruct not only kinematics-, but also dynamics-based
information involving force generation. For example, impedance
and joint torque can be obtained to build more realistic brain-
machine interfaces, compatible with human motion execution.
Furthermore, when reconstructing EMG signals from the EEG
signals, by electrically stimulating the arm muscles of a para-
lyzed person, it is possible using a functional electrical stimulation
(FES) system to engage the person in self-adaptive control of
his/her arm.

In this study, source currents over 2240 vertexes were esti-
mated from EEG signals of 64 channels through a hierarchical
Bayesian method introducing a hierarchical prior (Sato et al.,
2004). This method can effectively incorporate both structural
and functional MRI data. In this hierarchical Bayesian method,
the variance of the source current at each source location is con-
sidered an unknown parameter and estimated from the observed
EEG data and prior information by using the Variational Bayesian
(VB) method. The fMRI information was imposed as prior infor-
mation on the variance distribution rather than the variance itself
so that it gives a soft constraint on the variance. From the esti-
mated source currents over 2240 vertexes, only 33 vertexes are
selected, which is located in the left primary motor cortex con-
tralateral to moving arm, to estimate the filtered EMG signals of
9 muscles by using a sparse linear regression method which can
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automatically select only useful features in estimating the filtered
EMG signals. A modular artificial neural network was then used
to reconstruct 4 joint angles on the shoulder and elbow from the
estimated filtered EMG signals, which trains movement data and
posture data in two different networks. This modular structure
improves the accuracy of the estimation.

MATERIALS AND METHODS
EXPERIMENTAL TASK
Five healthy right-handed subjects (five men, Mage = 22.51,
age range: 20–29 years) participated in the experiment. All five
subjects do not have any experience of participating in the exper-
iments of brain-machine interface study before. All participated
subjects submitted a written form of consent before starting the
experiment. The subjects performed a continuous arm-reaching
task as shown in Figure 1A. The task consisted of pushing buttons
in the following sequences: Hold-C-A-B, Hold-C-D-B, Hold-D-
B-A, and Hold-D-C-A. Theses sequences are explained in greater
detail below.

Here only the Hold-C-A-B sequence is explained (Figure 1B),
since the others have similar patterns. First, a subject pushes the
hold button for 1 s when the hold signals turns on. If the subject
succeeds in pushing the hold button for 1 s, the C button turns on,
and the hand of the subject has to move to the C button within 1 s.
If the subject is successful in keeping the C button pressed for 1 s,
the A button turns on. The hand of the subject is then supposed
to push the A button within 1 s and keep it pressed for 1ṡ. If the A
button is successfully pressed for 1 s, the B button turns on. The
hand of the subject then has to push the B button within 1 s and
keep it pressed for 1 s.

When the subject succeeded in pressing all three buttons cor-
rectly, it was considered as success, and only successful trials were
analyzed in this study. After pressing the three buttons, the subject
takes a rest between 3 and 4 s, then, it goes to the next trial. The
task of the next trial is decided randomly. By performing 10 trials
for one of four tasks randomly, each subject conducted 40 trials

within one set. A total of seven sets of experiment were conducted
for one subject. The leave-one-out cross-validation method was
used to analyze the measured data by using six sets for training
data and one set for the test data.

fMRI EXPERIMENT
Figure 2 shows the fMRI task used to collect fMRI data as prior
information to estimate cortical activity. One trial consisted of
the execution task in which the participant moves the right index
finger (e.g., up or down) every 1 s. This is followed by a resting
period in which the participant takes a break for 15 s. Each par-
ticipant conducted 24 trials of the fMRI task. The fMRI activity
when participants take a rest (rest periods) was subtracted from
the fMRI activity when participants moved their fingers (execu-
tion periods). All five participants conducted the fMRI task to get
their individual prior information.

ESTIMATION OF CORTICAL ACTIVITIES FROM EEG SIGNALS
EEG signals were measured at 1 kHz sampling rate on 64 channels
by using a biosemi system (Amsterdam, Netherlands). The mea-
sured EEG signals were taken baseline corrected (baseline data
from−1 to 0 s) and band-pass filtered between 8 and 30 Hz using
a fifth-order butterworth filter.

FIGURE 2 | fMRI task. During 15 s, the participant moves the right index
finger in the instructed direction every 1 s. The monitor then goes blank and
the participant takes a break for 15 s while watching the monitor.

FIGURE 1 | Experimental task. (A) A subject performs a continuous arm-reaching task while facing a touch screen displaying five lights and five buttons.
(B) Sequential arm-reaching task (Hold-C-A-B sequence).
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To estimate cortical activities from EEG signals, an inverse fil-
ter L (a matrix of dimensions 2240× 64) in Equation 1 was used.
By multiplying real-time EEG signals to the obtained inverse fil-
ter as in Equation 1, it is possible to quickly estimate the cortical
activity.

L

(∑−1

α

)
=
∑−1

α
·G′ ·

(
G ·

∑−1

α
·G′ + β−1IM

)−1

,

J(t) = L

(∑−1

α

)
· E(t) (1)

Here, E(t) represents measured real-time EEG signals given by
64× 256 Hz (sampling rate). J(t) denotes the estimated corti-
cal activities over 2240 vertexes every second and is given by
2240× 256 Hz entries. G (64× 2240) is a lead field matrix which
represents the impulse response of each source vector component
at every measurement site (Baillet et al., 2001) and G′ denotes
its transpose. The boundaries between brain, skull, and scalp
were generated by using the Curry 5 software (Compumedics,
USA). Here, the relative conductivities of the brain, skull, and
scalp are 10.0125 and 1. IM represents an identity matrix of
M-by-M (M:number of sensors), β−1 (64× 64) corresponds to
the inverse of the noise variance of the observed EEG signals.∑−1

α denotes the source covariance matrix, and is calculated as∑−1
α = diag(α−1). Here, α−1(2240× 2240) represents the source

current variance which is considered unknown parameters in this
study and estimated from the measured EEG data by applying a
hierarchical prior on current variance.

Artifact dipoles were also incorporated in the estimation
according to previous studies (Fujiwara et al., 2009; Morishige
et al., 2009). Artifact dipoles were located at the center of the
heart, the right shoulder, and wrist joints, the left and right
eyeballs, and the carotid arteries, and estimated.

Estimation of current variance
In this study, the current variance α−1was estimated by the
Automatic relevance determination (ARD) hierarchical prior
(Neal, 1996).

P(J(t)|α, β) ∝ exp

[
−β

2
J′(t) · A · J(t)

]

P(αi) = �(αi|α0i, r0) ,

P(β) = 1

β
(2)

where β is the inverse noise variance of the observed EEG signals,
A = diag(α), and α is an I-by-1 vector whose component αi is the
inverse current variance corresponding to the i-th current dipole.
� represents the Gamma distribution with mean α0i and degree
of freedom r0. Intuitively, the hyper-parameter r0 represents con-
fidence of the hierarchical prior information. A prior current
variance v0i = α−1

0i represents the prior information on current
intensity. For large and small v0i, estimated current Ji(t) tends
to be large and small, respectively. These values were determined
from the fMRI information:

v0i = vbase + (m0 − 1) · vbase ·
(
t̂i
)2

, (3)

where t̂i is a normalized T-value on the i-th vertex. Normalized
T-values are computed by dividing the original T-values by the
maximum of those T-values (thus ranging from 0 to 1).

vbase is a baseline of the current variance, which is estimated
from the pre-movement interval (1.0–0.5 s before the movement
initiation) of the EEG data by a Bayesian minimum norm estima-
tion. A variance magnification parameter m0, which is the other
hyper-parameter, specifies the scaling between the current vari-
ances in the baseline and task periods. m0 = 100 and r0 = 10 were
used.

Due to the hierarchical prior, the estimation problem becomes
non-linear and cannot be solved analytically. Therefore, the VB
method (Attias, 1999; Sato, 2001) is employed. In the VB method,
J(t), α, and β are iterately updated until convergence.

Figure 3A depicts the fMRI activity while subject 1 conducts
the Hold-C-A-B sequence task with the right arm. The left pri-
mary motor area is strongly activated. The fMRI information
was used as the prior information to estimate cortical activities.
Figure 3B shows the cortical activities of subject 1 estimated from
the EEG signals for the Hold-C-A-B task. As expected, strong cor-
tical activities are estimated in the left motor cortex. Meanwhile,
several parts in the visual cortex are activated in the figure. The
reason of the activation of the visual cortex is that while the sub-
ject performs the task of the experiment, he sees the target buttons
emitting high intensity light.

EMG SIGNAL PROCESSING
For all trials in this study, EEG, EMG signals, and the posi-
tions of the shoulder, the elbow, and the wrist of the subject
were simultaneously measured. EMG signals were collected in the
nine muscles involving four degrees of freedom (see Figure 4 and
Table 1).

In order to measure the EMG signals, a silver/silver chloride
surface electrode (NE-102, Nihon Kohden) was used. After dif-
ferential amplification, each signal was sampled at 1 kHz with
a 12-bit resolution. The signals were digitally rectified, averaged

FIGURE 3 | (A) The fMRI activity while subject 1 performs the Hold-C-A-B
sequence task. (B) Estimated cortical activities of subject 1 for the task of
the Hold-C-A-B sequence (an average of 70 trials).
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over 5 ms, and then filtered through a second-order low-pass filter
with a cut-off frequency of∼3 Hz (Koike and Kawato, 1995).

fEMG(t) =
n∑

j= 1

hjEMG(t − j+ 1), (4)

h(t) = 6.44× (exp−10.80t − exp−16.52t), (5)

The coefficient hj in Equation 4 can be acquired by sampling h(t)
in Equation 5 discretely. The resulting signal is very similar to the
actual tension; consequently, it is called quasi-tension (Basmajian
and DeLuca, 1985).

The method that uses a low-pass filter to estimate muscle
tension shows good performance when the velocity of muscle
contraction is slow. However, the method cannot estimate mus-
cle tension precisely when the velocity of contraction is very high,
and the method does not consider the non-linear characteristics
of muscles, such as length and velocity. However, it is reasonable
to assume that the output of the low-pass filter is similar to the
actual tension (Mannard and Stein, 1973).

KINEMATICS
In order to measure the position of the shoulder, the elbow, and
the wrist of the subjects, an infrared marker was attached on
their arms and measured each position by using a 3D position

FIGURE 4 | Four-degrees-of-freedom arm movement.

Table 1 | Muscles measured for EMG signals.

θ1 Adduction Pectoralis major, Teres major
Abduction Deltoid, Deltoideus

θ2 Extension Deltoid, Teres major, Triceps Brachii C. L., T. B. C.
Laterale

Flexion Deltoid, Pectoralis major, Biceps Brachii,
Deltoideus

θ3 Medial rotation Deltoid, Pectoralis major, Teres major, Deltoideus
Lateral rotation Deltoid, Infraspinatus, Deltoideus

θ4 Extension Triceps Brachii Caput Longus, Triceps Brachii
Caput Laterale

Flexion Biceps Brachii, Brachialis

measurement system (MacReflex, Qualisys). The sampling rate
was 120 Hz. In order to calculate the joint angles of the four
degrees of freedom in the shoulder and elbow from the positions
measured, the inverse kinematics equations (Koike and Kawato,
1994) was used.

In Figure 5, if we set the transition matrix of θ1θ2, · · · , θ7 to
Ax (θ1) , Ay (θ2) , · · · , Az(θ7) and the transition matrix of l1(the
length of the upper arm), l2(the length of the fore arm), and l3(the
length of the hand) to Lz(l1), Lz(l2), and Lz(l3), we can represent
the transition matrix of AE, AW , and AH , which represents the
relation from the elbow position E to the hand position H, like
below,

AE = Ax (θ1) Ay (θ2) Lz(l1) =
[

C2 C2lzl

0T 1

]
, (6)

Here,

C2 = Cx (θ1) Cy (θ2) =
⎡
⎣

1 0 0
0 c1 −s1

0 s1 c1

⎤
⎦×

⎡
⎣

c2 0 s2

0 1 0
−s2 0 c2

⎤
⎦ , (7)

lz1 =
[

0 0 −l1
]T

, (8)

Equation 6 becomes

AE =

⎡
⎢⎢⎣

c2 0 s2 −s2l1
s1s2 c1 −s1c2 s1c2l1
−c1s2 s1 c1c2 −c1c2l1

0 0 0 1

⎤
⎥⎥⎦ , (9)

The coordination of the elbow E (xE, yE, zE) is represented in the
4th column that is,

⎡
⎣

xE

yE

zE

⎤
⎦ = −l1

⎡
⎣

s2

−s1c2

c1c2

⎤
⎦ , (10)

FIGURE 5 | The structure of the joints of a human.
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Therefore,

⎡
⎣

xW

yW

zW

⎤
⎦ =

⎡
⎣

xE

yE

zE

⎤
⎦+ l2

⎡
⎣

−s2c4 − c2s3s4

s1c2c4 + (c1c3 − s1s2s3)s4

−c1c2c4 + (s1c3 − c1c2s3)s4

⎤
⎦ , (11)

Finally, we can get the following Equations (12–15).

tan θ1 = −yE

zE
, (12)

sin θ2 = −xE

l1
, (13)

sin θ3 = (xE − xW )/l2 − sin θ2 cos θ4

cos θ2 sin θ4
, (14)

cos θ4 = l21 + l22 − R2

2l1l2
, (15)

ESTIMATION OF EMG SIGNALS FROM ESTIMATED CORTICAL
ACTIVITIES
A sparse linear regression method (Toda et al., 2011) was used
to estimate filtered EMG signals from the cortical activities esti-
mated over 2240 vertexes.

f EMGi(t + δt) =
Nsource∑

j= 1

wij × Jj(t)+ bias, (16)

Here, f EMGi describes the i-th filtered EMG signal from the cor-
tical activity on the j-th vertex (Jj). Nsource denotes the number
of vertexes used in estimating filtered EMG signals. In this study,

since all subjects are right-handed, the cortical activities over 33
vertexes in the left primary motor cortex were used to estimate
the filtered EMG signals. The weighting factor wij represents the
strength influence from the cortical activity on the j-th vertex on
muscle i-th muscle. δt is the delay between the cortical activity of
the primary motor cortex and the EMG signals.

MODULAR ARTIFICIAL NEURAL NETWORK MODEL
In order to estimate joint angles from the filtered EMG signals, a
modular artificial neural network (Jacobs et al., 1991) was used, as
shown in Figure 6. Training the data of posture and movement in
different networks will improve the accuracy of estimating joint
angles compared to training the entire set of data in the same
network, since the muscle tension is different in these two cases.
Here, posture is defined as the state where the arm of the sub-
ject is in contact with a button on the screen, and movement
is defined as the condition where the arm of the subject moves
from one button to another. If training is done well, a gating net-
work will select one of the two expert networks by its input signal.
In this case, one of the two expert networks is used for posture
control and the other is used for movement control. Since the gat-
ing network determines the output ratio for each expert network
depending on its input signal, the sum of the outputs of the gating
network should always be equal to 1.

To achieve this, as shown in Equation 17, the output gj of the
gating network, which corresponds to the j-th expert network, is
normalized by using the soft max activation function.

gj = exj

N∑
i= 1

exi

, (17)

FIGURE 6 | Joint-angle estimation model with a modular architecture.
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Here, xi is the value determined by the input signal of the gat-
ing network and N is the total number of outputs of the gating
network. The total output is calculated by multiplying the output
of the gating network by the output of each expert network and
summing the result, as given in Equation 18.

θ =
N∑

i= 1

giθ̂i, (18)

The gating network and each expert network are trained to max-
imize the likelihood function lnL (Equation 19) by the back
propagation algorithm (Rumelhart et al., 1986).

ln L = ln
N∑

i= 1

gie

−‖θ− θ̂i‖2

2σ2
i , (19)

The update of the weights of the gating network is calculated by a
chain rule, as in Equation 20.

∂ ln L

∂xi
=

N∑
i= 1

(
g(i|X, θ̂i)− gi

)
, (20)

Here, X is the input of the gating network, and the posteriori

probability g
(

i|X, θ̂i

)
is

g
(

i|X, θ̂i

)
= gie

−‖θ− θ̂i‖2

2σ2
i

N∑
j= 1

gje

−
∥∥∥θ− θ̂j

∥∥∥2

2σ2
j

, (21)

The update of the weights of each expert network is calculated by
a chain rule as in Equation 22.

∂ ln L

∂ θ̂i

=
N∑

i= 1

g
(

i|X, θ̂i

) θ− θ̂i

σ2
i

, (22)

Each network is trained by using the kick-out method (Ochiai
and Usui, 1993).

The filtered EMG signals of the nine muscles were used as
the input of each expert network model. The summed-squared
velocity value of the four joint angles were used as the input
of the gating network because when the value of the cortical
activities in the primary motor cortex was directly used as the
input of the gating network, the gating network could not distin-
guish between posture and movement. However, when using the
summed-squared velocity of the four joint angles as the input, the
gating network distinguished posture and movement correctly.

ANALYSIS
The correlation coefficient (CC) was used to evaluate the sim-
ilarity between actual and predicted signals. Accuracy was also
evaluated using normalized root-mean-square error (nRMSE)

between actual and predicted signals, defined as

nRMSE =

√√√√√
n∑

i= 1

(
y

predicted
i − yactual

i

)2

n

/(
yactual

max − yactual
min

)
, (23)

where for each time i (i = 1, 2, . . . , n), y
predicted
i is the predicted

signal and yactual
i is the actual signal, and yactual

max and yactual
min are the

maximum and minimum of actual signal, respectively.

RESULTS
ESTIMATION RESULT OF FILTERED EMG SIGNALS FROM THE CORTICAL
ACTIVITIES OF THE PRIMARY MOTOR CORTEX
The filtered EMG signals were estimated from the cortical activ-
ities in the primary motor cortex by using Equation 23. To
determine the delay-time parameter, the intracortical microstim-
ulation (ICMS) method (Heusler et al., 2000) was used and the
delay time 17 ms was decided when the filtered EMG signals are
estimated from the cortical activities of the primary motor cortex.

Of the 70 trials measured for each task (Hold-C-A-B, etc.), 60
trials were used for training data and 10 trials for the test data.
The sparse linear regression method has an ability to automati-
cally select only useful features in estimation among all extracted
features. Therefore, this method is very strong against the overfit-
ting problem. Figure 7A shows the weights of the selected features
in estimating filtered EMG signals from the cortical activities in
the left primary motor cortex while subject 3 performs the exper-
imental task. In the case of Figure 7A, 20 vertexes are selected
among 33 vertexes located in the left primary motor cortex to
estimate filtered EMG signals.

Figure 7B shows the filtered EMG signals of subject 1 esti-
mated from the cortical activities over selected 20 vertexes in the
left primary motor cortex. The estimated filtered EMG signals
had a CC of 0.827 (±0.10) and nRMSE of 0.142 (±0.38) with
the actual EMG signals. Table 2 shows the CC between the actual
EMG signals and the reconstructed EMG signals of all of the 5
subjects participated in the experiment. The averaged CC and
nRMSE of 5 subjects were 0.851 (±0.11) and 0.233 (±0.17).

ESTIMATION RESULT OF JOINT ANGLES FROM FILTERED EMG
SIGNALS
After measuring 70 trials of the EMG signals and movement tra-
jectories of the subject’s arm, 60 trials were used as training data
and one trial as test data. The number of training data samples
was 1,080,720 (60 trials × 1 kHz × 4.503 s × 4 cases) and the
number of test data samples was 180,120 (10 trials × 1 kHz ×
4.503 s × 4 cases). In the case of the gating network, the net-
work was trained by the summed-squared velocity value of the
four joint angles. However, since this value cannot be used as
test data, the velocity values from the filtered EMG signals were
estimated. Figure 8 shows the four joint angles of subject 1 esti-
mated from the cortical activities of the primary motor cortex.
The CC and nRMSE between the estimated joint angles and the
actual joint angles were about 0.817 (±0.10) and 0.212(±0.04).
Table 3 depicts the CC between the actual joint angles of 5 sub-
jects and the joint angles reconstructed by the modular artificial
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FIGURE 7 | Reconstruction of the filtered EMG signals from the cortical

activities estimated on 33 vertexes in the left primary motor cortex.

(A) The weights of the important features selected by the sparse linear
regression to estimated filtered EMG signals from the cortical activities while

subject 3 performs four tasks. (B) The filtered EMG signals estimated from
the selected 20 features. Dotted lines (blue) represents the actual filtered
EMG signals, and solid lines (red) show the reconstructed filtered EMG
signals (normalized scale).
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neural network model. The averages of the CC and nRMSE of the
reconstructed joint angles were 0.807 (±0.10) and 0.176 (±0.29).

DISCUSSION
In this study, the cortical activities on 2240 vertexes were
estimated from the EEG signals of 64 channels using the
hierarchical Bayesian method. Then, of the estimated cortical

Table 2 | The correlation coefficient (CC) and normalized

root-mean-square error (nRMSE) between the actual EMG signals

and the estimated EMG signals.

Subject Statistics Task

CAB CDB DBA DCA

1 CC 0.82 (0.12) 0.83 (0.12) 0.83 (0.10) 0.83 (0.09)

nRMSE 0.28 (0.24) 0.14 (0.04) 0.12 (0.07) 0.12 (0.39)

2 CC 0.86 (0.11) 0.88 (0.09) 0.82 (0.07) 0.89 (0.10)

nRMSE 0.19 (0.25) 0.12 (0.05) 0.18 (0.10) 0.15 (0.05)

3 CC 0.82 (0.11) 0.85 (0.12) 0.86 (0.09) 0.86 (0.09)

nRMSE 0.14 (0.38) 0.23 (0.24) 0.22 (0.17) 0.23 (0.18)

4 CC 0.88 (0.10) 0.86 (0.13) 0.87 (0.08) 0.84 (0.11)

nRMSE 0.11 (0.07) 0.12 (0.05) 0.10 (0.06) 0.27 (0.43)

5 CC 0.85 (0.07) 0.86 (0.07) 0.85 (0.12) 0.86 (0.11)

nRMSE 0.23 (0.43) 0.18 (0.11) 0.22 (0.18) 0.22 (0.42)

Average CC 0.84 (0.10) 0.85 (0.11) 0.84 (0.10) 0.85 (0.12)

nRMSE 0.19 (0.06) 0.15 (0.04) 0.16 (0.05) 0.19 (0.06)

activities, only the cortical activities in the left primary motor
cortex were used to reconstruct the EMG signals of nine mus-
cles through the sparse linear regression method. When recon-
structing EMG signals from the cortical activities, we could
determine the delay time between the cortical activities and

Table 3 | The correlation coefficient (CC) and normalized

root-mean-square error (nRMSE) between the actual joint angles and

the joint angles estimated by the modular artificial neural network

model.

Subject Statistics Task

CAB CDB DBA DCA

1 CC 0.81 (0.12) 0.82 (0.11) 0.84 (0.09) 0.80 (0.10)

nRMSE 0.21 (0.22) 0.19 (0.21) 0.13 (0.12) 0.20 (0.19)

2 CC 0.82 (0.11) 0.75 (0.10) 0.75 (0.09) 0.79 (0.10)

nRMSE 0.14 (0.05) 0.25 (0.15) 0.22 (0.15) 0.21 (0.11)

3 CC 0.83 (0.11) 0.86 (0.13) 0.79 (0.08) 0.81 (0.08)

nRMSE 0.24 (0.22) 0.21 (0.24) 0.13 (0.05) 0.22 (0.20)

4 CC 0.78 (0.10) 0.78 (0.14) 0.82 (0.09) 0.88 (0.10)

nRMSE 0.24 (0.15) 0.23 (0.16) 0.11 (0.07) 0.17 (0.29)

5 CC 0.85 (0.08) 0.82(0.08) 0.84 (0.10) 0.88 (0.10)

nRMSE 0.25 (0.33) 0.19 (0.21) 0.13 (0.13) 0.20 (0.06)

Average CC 0.81 (0.08) 0.80 (0.11) 0.80 (0.08) 0.82 (0.08)

nRMSE 0.21 (0.04) 0.21 (0.02) 0.14 (0.04) 0.20 (0.01)

FIGURE 8 | Estimated joint angles from the cortical activities of the primary motor cortex. Dashed lines represent the actual joint angles and solid lines
show the estimated joint angles.
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the EMG signals by searching the correlation of those two
signals. However, the pattern of EMG signals has a simple
waveform which has one or two peaks, and that of cortical
activities is also similar. Thus, in this study, the ICMS method
was used to decide the delay time. The delay time of 17 ms
found from ICMS method was applied for all the subjects
for estimating EMG signals from the cortical activities. In the
future, we are going to study whether or not this delay time
is effective for individuals in disease state. A modular arti-
ficial neural network model was used to estimate four joint
angles on the elbow and the shoulder from the estimated EMG
signals.

WHY IS IT IMPORTANT TO RECONSTRUCT EMG SIGNALS FROM BRAIN
SIGNALS?
Morrow et al. (Morrow and Miller, 2003) succeeded in recon-
structing the EMG signals of the distal forelimb muscles from
the 50 M1 neurons of an non-human primate while performing a
stereotyped precision grips task. Furthermore, Koike et al. (2006)
estimated the EMG signals of seven arm muscles from the neural
activities of 18 neurons of an non-human primate during an arm
reaching task. Then, three joint angles (two at the shoulder and
one at the elbow) were reconstructed from the estimated EMG
signals. Similarly, most existing brain-machine interface studies
reconstruct EMG signals from the neural activities of the primary
motor cortex of non-human primates, by using invasive needle
electrodes. In such cases, it is possible to obtain relatively clean
brain signals.

When reconstructing EMG signals with non-invasive BMI
technologies however, there are several difficulties because the
skull, which is an insulator, is located between the brain and the
sensors, thus introducing noise. Ganesh et al. (2008) succeeded
in reconstructing the EMG signals of two antagonist muscles
from fMRI signals measured in the primary motor cortex and
pre-motor cortex. EEG signals have good time resolution, but its
spatial resolution is poor. Consequently, it is difficult to estimate
EMG signals with EEG signals. In this study, spatial resolution is
improved by estimating cortical activities over 2240 vertexes from
the EEG signals measured over 64 channels through the hierar-
chical Bayesian method. Among the features being abundant, the
sparse linear regression method automatically selects only useful
features in reconstructing EMG signals. The proposed method is
very robust against the overfitting problem.

When EMG signals are reconstructed from the brain signals,
there are several advantages: First, we can reconstruct not only
position related information such as hand position but also force
related information such as joint torque and stiffness from the
estimated EMG signals (Koike and Kawato, 1993, 1994, 1995). For
example, when we pick up an object, the brain stabilizes the pos-
ture of the arm by controlling muscle tensions. The stiffness is
controlled by the co-contraction of the muscles. It is difficult to
model this phenomenon by directly estimating the hand position
because co-contraction causes different muscle patterns for the
same posture. Similarly, when in addition to reconstructing the
kinematics of hand motion, we obtain force information such as
joint torque and stiffness from the brain signals, it is possible to
control a robotic arm based on these information. In such cases

it could also be possible to implement a brain-machine interface
more compatible with features of the human arm.

Second, by using the estimated EMG signals as the command
signals of the FES, we raise the possibility that a paralyzed person
could in principle control his arm once we electrically stimu-
late his paralyzed muscles (Degnan et al., 2002; Uechi et al.,
2004). Fagg et al. (2007), without modeling the characteristics of
the musculoskeletal system, controlled arm movement by electri-
cal stimulation of arm muscles through FES after reconstructing
EMG signals from the neural activities in the primary motor cor-
tex. Furthermore, Moritz et al. (2008), by facilitating the direct
control of the stimulation of muscles from the neural activities of
the primary motor cortex, made it possible for non-human pri-
mates to control bidirectional wrist torques from cortical cells.
This research suggests that it may be possible to create more real-
istic neuro-prostheses. By modeling the musculoskeletal system,
we may be able to extend non-invasive brain-machine interfaces
to control anthropomorphic robotic devices.

WHICH BRAIN PART IS MEASURED FOR RECONSTRUCTING EMG
SIGNALS?
The cortical region of choice to harness the control neural signal
from seems to be important. In the case of studies using non-
human primates, the neural activities of the primary motor cortex
are mainly measured to reconstruct EMG signals (Nicolelis et al.,
1998; Shoham et al., 2005; Wu et al., 2006). From the research
result of Fried et al. (1991), the process of motor related infor-
mation in the brain is that first the urge to move the arm occurs
from the premotor cortex, then the occurred signals goes to the
primary motor cortex via the supplementary motor area. The
primary motor cortex is the final output part of motor related
signals in the brain. The signal is transmitted to the arm muscles
through the alpha motor neuron of the spinal cord, and finally it
generates arm movement. Anatomically, since the primary motor

FIGURE 9 | The correlation coefficients when reconstructing EMG

signals from the cortical activities estimated in different brain areas

(M1, primary motor cortex; PMd, dorsal premotor cortex; PP, posterior

parietal cortex; and All, using all brain areas).
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cortex is linked to the muscles via one or more intermediate neu-
rons, the neural activities of the primary motor cortex have high
correlation with muscle activities. Figure 9 shows the CCs when
reconstructing EMG signals from the cortical activities in several
brain areas. In this study, it is found that when reconstructing
EMG signals from the cortical activities estimated in the primary
motor cortex, the highest CC is obtained.

LIMITATIONS AND FUTURE WORK
There are some limitations with the use of modular neural net-
works for joint angle estimation. The estimated joint angles have
a CC of 0.81 with the actual joint angles. The reason the modu-
lar artificial neural network model was used in estimating joint
angles is because, in the case of isotonic movement, where force
is outputted with a changing length of the muscle, the tension
is different depending on the velocity that the muscle flexes or
extends. In the case of muscle flexion, the tension decreases as
the flex velocity increases. In the case of muscle extension, the
tension increases as the extension velocity increases. The perfor-
mance of estimating joint angles could be improved by training
two networks with tension values, which change depending on
the velocity, rather than training the data in the same network.
One network was used for 0 velocity and the other for movement

velocity. When joint angles are estimated from muscle tensions,
the muscle tensions for posture have low values. In comparison,
the muscle tensions for movement have significantly high val-
ues. If we trained these data in the same network, the network
would determine that the error of posture data is much lower than
that of movement data. Consequently, in the case of posture data,
the estimated results are poor. In future work we will use differ-
ent neural network structures for joint angle estimation. Recent
advances in machine learning point at deep learning algorithms
and neural networks (Salakhutdinov and Hinton, 2009, 2012) as
a possibility for improving feature extraction to reconstruct the
joint angles. We plan to explore these new avenues of research.

In this study, five normal subject’s joint angles were estimated
from EEG signals through EMG signals. In the case of individu-
als with spinal cord injuries where the pathway between primary
motor cortex and muscles was disconnected, there was a neces-
sity of identifying the relationship between EMG signals and joint
angles of a normal subject. Then, the EEG signals of an individual
with spinal cord injury is connected to EMG signals of the normal
subject. In the future, we are going to study more about this topic
with individuals with spinal cord injury. Furthermore, there is a
possibility of using this proposed method in a study of post-stroke
individual where primary motor cortex is not damaged.
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Brain–machine interfaces (BMIs) are promising technologies for rehabilitation of upper
limb functions in patients with severe paralysis. We previously developed a BMI prosthetic
arm for a monkey implanted with electrocorticography (ECoG) electrodes, and trained
it in a reaching task. The stability of the BMI prevented incorrect movements due to
misclassification of ECoG patterns. As a trade-off for the stability, however, the latency
(the time gap between the monkey’s actual motion and the prosthetic arm movement)
was about 200 ms. Therefore, in this study, we aimed to improve the response time of
the BMI prosthetic arm. We focused on the generation of a trigger event by decoding
muscle activity in order to predict integrated electromyograms (iEMGs) from the ECoGs.
We verified the achievability of our method by conducting a performance test of the
proposed method with actual achieved iEMGs instead of predicted iEMGs. Our results
confirmed that the proposed method with predicted iEMGs eliminated the time delay. In
addition, we found that motor intention is better reflected by muscle activity estimated
from brain activity rather than actual muscle activity. Therefore, we propose that using
predicted iEMGs to guide prosthetic arm movement results in minimal delay and excellent
performance.

Keywords: brain-machine interfaces, electrocorticography, electromyography, prosthetic arm, reaching task

INTRODUCTION
Brain-machine interfaces (BMIs), which are a type of man-
machine interface that provides a direct connection between the
brain and external devices, can be divided into 2 types: input-type
and output-type. An input-type BMI is used for the recovery of
central nervous system function with an external device (Yokoi
et al., 2012), while an output-type BMI is used for the intuitive
control of an external device instead of the limbs. For patients
with severe paralysis, such as those with amyotrophic lateral scle-
rosis, output-type BMIs offer a promising technology for the
rehabilitation of upper limb function (Lebedev and Nicolelis,
2009).

In an output-type BMI, brain activities are measured from the
sensory motor area in the cerebral cortex; these signals can be
detected invasively or noninvasively. Invasive approaches usually
include the use of a multichannel needle-shaped sensor that is
inserted into the cerebral cortex. Noninvasive approaches include
the use of electroencephalography, functional near-infrared spec-
troscopy, or functional magnetic resonance imaging. Noninvasive
approaches are ideal because they have no clinical risk; however,
their spatial resolution and signal-to-noise ratio are not suit-
able for practical control. As a result, many studies continue to
focus on invasive approaches. The initial studies on BMI focused

on invasive signal detection of brain activity, and they achieved
highly successful control of a prosthetic hand (Velliste et al.,
2008) with good spatial resolution and signal-to-noise ratios.
However, degeneration and necrosis limit the long-term use of
these invasive signal detection methods (Szarowski et al., 2003;
Biran et al., 2005). To overcome this problem, an electrocor-
ticography (ECoG) electrode was developed. This is an invasive
signal detection method involving the use of a surface electrode
on the cerebral cortex under the dura matter. Importantly, it has
long-term stability with low clinical risk. Moreover, it shows pre-
cise spatial resolution with a good signal-to-noise ratio. ECoGs
have been used to develop output-type BMI systems for two-
dimensional cursor control and motion prediction of the upper
arm (Schalk et al., 2007; Pistohl et al., 2008; Uejima et al., 2009;
Yanagisawa et al., 2009; Chao et al., 2010; Yanagisawa et al., 2011).

We also developed a prosthetic arm that is controlled by a
BMI with ECoGs (Sato et al., 2012). The subject was a mon-
key (Macaca fuscata) implanted with ECoG electrodes and then
trained in a reaching task. The reaching task was performed
periodically. Therefore, decoding could be achieved by phase esti-
mation of the periodic movements. A decoder was constructed by
machine learning to map between the ECoGs and motion states,
which corresponded to the phases of periodic movement. We then
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tested whether the response delay of the prosthetic arm was con-
trolled by the proposed method. We found that the latency (the
time that elapsed between the monkey’s actual motion and the
prosthetic arm movement) was about 200 ms. Considering the
primary delay that the prosthetic arm has as a robotic arm, it is
desirable that the trigger event generated precedes the monkey’s
actual motion by about 200 ms.

Since muscle activity precedes changes in motion, and motor
intentions can be detected more quickly, one potential way of
improving the response of the BMI prosthetic arm could lie in
decoding muscle activity. In other words, as the musculoskeletal
system is the best “device” for achieving the brain’s motor inten-
tions, using the musculoskeletal system may be advantageous in
optimizing BMIs. In fact, myoelectric prosthetic hands are already
commercially available (Naidu et al., 2008), while BMI prosthetic
hands are not in practical use. Unfortunately, the body image that
is presented by a BMI prosthetic arm to the brain differs consid-
erably from that presented by a natural arm because the former
cannot reflect motor intentions as faithfully as the musculoskele-
tal system. An electromyogram (EMG) prosthetic arm estimates
motor intentions from the activities of a patient’s residual mus-
cles, and it typically accomplishes more sophisticated motions
than a BMI prosthetic arm. However, the results of our latest
study (Yokoi et al., in press), in which we compared the muscle
and brain activities of monkeys, suggested that EMG prosthetic
arms might not always be superior to BMI robotic arms in the
estimation of the brain’s motor intentions. Specifically, during
periodic movements, predicted muscle activity from brain activ-
ity maintains the periodicity rather than actual muscle activity.
Moreover, it is difficult to estimate motor intention directly from
brain activities as mentioned above. Therefore, estimating motor
intentions with predicted muscle activity from brain activity is
likely a better method than directly estimating brain activity or
actual muscle activity. Therefore, we devised a method of control-
ling a BMI prosthetic arm based on the above ideas, and sought
to experimentally confirm the validity of this method.

MATERIALS AND METHODS
ABSTRACT LEVEL OF MOTOR INTENTION
Motor intentions are divided into different types depending on
their abstract level. As an example, consider a reaching motion,
such as that in self-feeding in monkeys. This motion consists
of the following movement sequences: reaching forearm to an
object, grasping the object, and returning forearm while grasping
the object.

At first, various types of physical measures, such as the EMGs
of each muscle, the grip force, angular velocities of the joints,
three-dimensional wrist positions, and hand postures can be
determined. These are motor intentions of the lower abstract
level. Next, based on the interpretations of these physical val-
ues, the movement phase (e.g., waiting, reaching, grasping, or
resting) can be considered as the motor intention of the higher
abstract level. Of course, the monkey’s intention in perform-
ing the reaching movement is one of the motor intentions of
a higher abstract level. In this study, we considered the motor
intentions of this abstract level as task-oriented motor inten-
tions. According to the theory of localization of brain functions,

information from different abstract levels is processed in different
parts of the cerebral cortex. Following this, the planning, control,
and execution of voluntary motions are processed in the motor
cortex. Moreover, a preceding study confirmed the correlation
between the modulation of neurons in the primary motor cor-
tex and muscle activity (Morrow and Miller, 2002). In this paper,
the abstract level of motion intention is discussed based on the
brain and muscle activity that was measured in a monkey’s motor
cortex.

EXPERIMENTAL SUBJECT
A monkey (M. fuscata) implanted with EMG and ECoG elec-
trodes was used as the experimental subject. EMG and ECoG sig-
nals were recorded simultaneously with a Neural Data Acquisition
System MAP system (Plexon Inc., Dallas, TX, USA). EMG signals
were recorded as auxiliary analog inputs on an OmniPlex system.
Signals were low-pass filtered (250-Hz cutoff), and the signals
were recorded with a 500-Hz sampling rate. The target muscles
that are related to the locomotion of the upper limb and hand
and were used to measure EMGs are listed in Table 1.

Figure 1 shows the placements of the ECoG electrodes. The
target area was around the left motor cortex, including the frontal

Table 1 | Target muscles for measuring electromyograms.

Target muscle Mainly moving joint

PM (Pectoralis Major) Shoulder

DP (Deltoid Posterior)

TLoH (Triceps Long Head) Elbow

TLaH (Triceps Lateral Head)

BLH (Biceps Long Head)

B (Brachioradialis)

ECR (Extensor Carpi Radialis) Hand

EDC (Extensor Digitorum Communis) Index, little finger

FDP (Flexor Digitorum Profundus) Finger

FCU (Flexor Carpi Ulnaris) Hand

APL (Abductor Pollicis Longus) Thumb/Hand

AP (Adductor Pollicis) Thumb

FIGURE 1 | Placement of the electrocorticogram (ECoG) electrodes

around the motor cortex. FEF, frontal eye field; PMA, premotor area; M1,
primary motor cortex; S1, primary somatosensory cortex.
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eye field, the premotor area, the primary motor cortex, and the
primary somatosensory cortex.

A PROSTHETIC ARM WITH AN INTERFERENCE-BASED WIRE-DRIVEN
MECHANISM
An interference-based wire-driven mechanism was applied to the
prosthetic arm to create a balance between the high grip force
and high degree of motion retaining lightness. This mechanism
involves use of wires to transmit driving force from the actuators.
It considers the weight saving of the prosthetic hands attached
to the patient’s stump since it enables separation of the power
sources and prosthetic hands. Figure 2 shows the interference-
based wire-driven mechanism of the maniphalanx joints that
are designed for the thumb and fingers of the prosthetic hand.
When the palm-side wire is pulled and the back-side wire is
allowed to relax, the hand performs flexion. With the opposite
wire operation, it performs extension.

The joint mechanism, which has 2◦ of freedom in mutu-
ally orthogonal directions, is required for the wrist and upper
arm joints. We thus invented an interference-based parallel-wire-
driven mechanism that is hereafter referred to as a parallel wire
mechanism. Figure 3 is a schematic diagram of the structure. It
has two rotation mechanisms for x-axis and z-axis rotations. The
cylindrical wire-guide leads the wires such that they are parallel
to each other. Then, a rotating torque is generated around the x-
axis by the synchronous traction of wires, and a rotating torque
is generated around the z-axis by the asynchronous traction of
wires in the same manner. To connect the wire symmetrically to

FIGURE 2 | Interference-based wire-driven mechanism of maniphalanx

joints.

FIGURE 3 | Schematic diagram of the interference-based

parallel-wire-driven mechanism.

the pulleys of the two motors, the interference power of the two
motors is assigned for each degree of freedom.

These two types of interference-based wire-driven mecha-
nisms were applied to develop a prosthetic hand and arm as
shown in Figure 4. The shoulder joint of this arm has 2◦ of free-
dom in motion, flexion/extension and adduction/abduction, and
the elbow joint has 2◦ of freedom, flexion/extension and internal
rotation/external rotation.

It is important to consider the latency caused by power
transmission through the wire when controlling prosthetic arms
with a wire-driven mechanism. Because the wire is not rigid,
power transmission latency is inevitable. As mentioned above,
the latency of the prosthetic arm adopted in this study was about
200 ms. Here, the control operation delay was eliminated due to
the brain activities preceding the appearance of motion.

MODELING OF THE REACHING TASK
We designed a lever operation task as a reaching task based on
the self-feeding motion of monkeys. Figure 5 shows an outline of
the task, and Table 2 describes the monkey’s different movement
states during the task. The monkey was kept under restraint in a
chair. First, a push button (home button) was set up under the
monkey’s right hand, and a lever was placed in front of the mon-
key. A tube was introduced into the mouth of the monkey, and
liquid reward was given through a pump. The pump was trig-
gered when the monkey pulled the lever after the home button
was pushed. The monkey was adequately trained in performing
this task.

FIGURE 4 | The prosthetic arm with an interference-based wire-driven

mechanism.

FIGURE 5 | A model of the reaching task.
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PREPROCESSING OF THE EMG SIGNALS
The measured EMG signals were transformed into integrated
EMGs (iEMGs) as follows:

Mm(t) = 1

TW

TW − 1∑
τ = 0

|Sm(t − τ )|, (1)

where Sm(t) is the signal measured by the m-th EMG elec-
trode at time step t, Mm(t) is the iEMG of the m-th channel
of the EMG, and TW is the term of consideration. Because
iEMGs strongly correlate with the exerted muscular force and are
robust to white noise, they serve as appropriate indices of muscle
activity.

PREPROCESSING OF ECoG SIGNALS
Some frequency bands are effective for determining the locomo-
tive state of a subject (Sato et al., 2012). Table 3 shows the range
of each frequency band.

Previous studies have shown that high-gamma power strongly
correlates to locomotive events in the same way as electroen-
cephalography or local field potentials (LFPs). However, the range
of the high-gamma band used differed in previous studies. For
example, 60–200 Hz was used in a study assessing macaque LFPs
and their potential implications in ECoG (Ray et al., 2008).
On the other hand, another study used the frequency band of
80–150 Hz (Yanagisawa et al., 2011). To cover these different def-
initions, we separated the high-gamma band (80–250 Hz) into 2
ranges: γL (80–150 Hz) and γH (150–250 Hz). However, in our
experimental setting (Western Japan), hum noise superimposed
on the frequency band of 60 Hz. Therefore, the frequency band
was trimmed at around 60 Hz. Additionally, the upper limit was
decided according to the Nyquist frequency of our data acquisi-
tion system. The power of each band was determined by calculat-
ing the power spectrum with a short-time Fourier transform. The
window size L equaled 128.

Table 2 | Description of the monkey’s states.

Symbol State Description

ω1 Waiting The monkey is pushing the home button

ω2 Reaching The monkey is reaching its hand to the lever

ω3 Grasping The monkey is grasping the lever and pulling it

ω4 Resting The monkey is resting its arm and returning its
hand on the home button

Table 3 | Range of each frequency band.

Band Range [Hz]

Alpha α 7–11

Beta β 20–30

High-gamma 1 γL 80–150

High-gamma 2 γH 150–250

ESTIMATION OF EMGs FROM ECoGs BY A PARTIAL LEAST SQUARES
REGRESSION
We estimated the EMGs from ECoG signals by a partial least
squares (PLS) regression (Wold, 1975). Because of the relation-
ship between the spatial resolution of the ECoG electrodes and
the distances between the adjacent electrodes, the signals obtained
from the electrodes were collinear. In the regression analysis, the
collinearity made it difficult to determine the values of the regres-
sion coefficients and reduced the prediction accuracy. However,
the PLS regression served to remove the collinearity and improved
the precision of the regression analysis.

In this study, a PLS regression was performed with the fol-
lowing procedure. First, the feature vectors of the ECoGs were
constructed as follows:

xi(t) =

⎛
⎜⎜⎝

α(i, t)
β(i, t)
γL(i, t)
γH(i, t)

⎞
⎟⎟⎠ , (2)

x(t) =

⎛
⎜⎜⎜⎜⎝

x1(t)
x2(t)

...

xN (t)

⎞
⎟⎟⎟⎟⎠

, (3)

where xi(t) (i = 1, 2, . . . , N) is the subvector of the feature vector
x(t). Moreover, α(i, t), β(i, t), γL(i, t), and γH(i, t) are frequency
band’s power defined in Table 3 of channel i at time t. Namely,
each element of xi(t) indicates the power of the correspond-
ing frequency band. These elements are considered explanatory
variables in the PLS regression. The regression model is as follows:

y(t) = β0 +
r∑

k= 1

βkx′k(t)+ E(t), (4)

x′(t) = Ax(t), (5)

where y(t) is the iEMG of the target muscle at time step t, x′k(t) is
the k-th element of the latent variable vector x′(t) corresponding
to x(t), βk (k = 0, . . . , r) is the k-th regression coefficient, and
E(t) is the error term. By using the PLS regression, the coeffi-
cient matrix A to maximize the covariance of y and x′ is decided,
and the vector x′(t) is calculated as Equation (5). Namely, the
latent variables which express the relationship between y and xi

are achieved as the vector x′.

PATTERN CLASSIFICATION WITH A LINEAR DISCRIMINANT ANALYSIS
The linear discriminant analysis (LDA), developed by Fisher
(1936), was applied to classify the ECoGs into the four motions
defined in Table 2. The scatter matrix Sc (c = 1, 2, 3, 4) was
defined as follows:

Sc =
∑

x∈Xc

(x− x̄c)(x− x̄c)T, (6)

where Xc is a dataset of x(t) in the class ωc, x̄c is the average vector
of data set Xc, and Nc is the size of Xc. The within-class scatter
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matrix Wij is defined by Equation (7) with the 2 classes of ωi and
ωj, and the between-class covariance matrix Bij is defined with
Equation (8).

Wij = Si + Sj =
∑

n= i,j

∑
x∈Xc

(x− x̄n)(x− x̄n)T, (7)

Bij =
Nn∑

n= i,j

(x̄n − x̄)(x̄n − x̄)T, (8)

Then, the evaluation function J(wij), which indicates the separa-
tion performance, is defined by Equation (9).

J(wij) =
wT

ij Bijwij

wT
ij Wijwij

. (9)

The LDA yields the transform coefficient vector wij by maximiz-
ing the evaluation function J(wij). The discrimination function is
defined as gij(x(t)) in order to discriminate class ωi from ωj by
using the transform coefficient wij as follows:

{
x(t) ∈ ωi ⇒ gij(x(t)) > 0

x(t) ∈ ωj ⇒ gij(x(t)) < 0
, (10)

gij(x(t)) = wT
ij x(t)+ wij. (11)

For multiclass classification, ĉ(t) the class at time step t is deter-
mined with Equation (12).

ĉ(t) = argmax
i= 1...4

gij∑
j �= i

(x(t)) (12)

MOVEMENT DECISION WITH THE ACCUMULATED DISCRIMINATION
RESULTS
The movement of the prosthetic arm was determined with the
results of the ECoG pattern discrimination. The discrimination
results usually include misdiscrimination. Therefore, if the dis-
crimination results directly reflect the control of a prosthetic
arm, it can overdrive the arm. To avoid this problem, we per-
formed movement decisions with the accumulated discrimina-
tion results. A schematic diagram of the algorithm is shown in
Figure 6.

In Figure 6, Freq. is the abbreviation of frequency, and Acc.
Results is the abbreviation of Accumulated Results, which is
defined as the accumulated total of frequency of discrimination
results. Focusing attention on the first row, the actual subject’s
states changed deterministically. In short, the frequency each state
is always 100%. However, the discrimination results were prob-
abilistic when considering misdiscrimination, and these often
occurred around the point of state transition because the reaching
task is a continuous motion. Finally, the accumulated discrimina-
tion results increased monotonically, and the upward trend began
at the start of the subject’s state transition.

With a proper threshold, the point of state transition, indi-
cated by arrows, was estimated. The thresholds were determined

FIGURE 6 | Schematic diagram of the movement decision algorithm.

The solid line represents the actual values, and the dashed line represents
the predicted values.

by considering the difference in the start time and the speed of the
prosthetic arm. In addition, the waiting state was treated another
way. When the state of the prosthetic was determined to be wait-
ing, the accumulated discrimination results of the other states
expected that waiting would be reset. In addition, the accumu-
lated discrimination results of waiting reset the state when it was
determined not to be waiting. The transition of the prosthetic
arm should be proper. Otherwise, it was assumed that the sub-
ject was performing irregular motions, such as grasping the bar
of the cage, and so on. In such a case, the prosthetic arm stopped
until the state changed to waiting.

TRIGGER EVENT GENERATION ACCORDING TO THE ESTIMATED EMGs
With the algorithm mentioned in the preceding section, stable
control of the prosthetic arm was achieved with a latency of about
200 ms. The completion time was delayed even though the start
time for movement of the prosthetic arm was almost the same as
that for the monkey’s actual movement. The performance of the
monkey’s own arm was superior to the prosthetic arm. In fact, the
changes in the EMGs appeared before the changes in the motion,
and, thus, preceding control became possible to determine the
motion according to the estimated EMGs. Usually, it was diffi-
cult to reconstruct motion from EMGs. However, it was simple
to generate a trigger from the EMGs under the presupposition
that the state of the subject was waiting. The threshold process-
ing of the EMGs of a certain muscle generated the trigger, and it
was specified according to anatomical knowledge. As change of
muscle activities should precede appearance of movement, it is
possible to calculate a threshold that generates a trigger preced-
ing appearance of movement. In this study, we used a threshold
that canceled the prosthetic arm stable control latency mentioned
above (200 ms).

ETHICAL APPROVAL
All experimental procedures were performed in accordance with
the Guidelines for Proper Conduct of Animal Experiments of the
Science Council of Japan and approved by the Committee for
Animal Experiment at the National Institutes of Natural Sciences
(Approved No.: 11A157). The data presented for all experimental
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sessions were obtained from a female Japanese monkey (M. fus-
cata; body weight= 5.4 kg).

RESULTS
To confirm the usefulness of our proposed methods, we per-
formed a number of experiments. First, the results of the EMG
prediction with a PLS regression were determined to compare the
predicted values to the actual values. Next, in order to compare
the regular EMG pattern with the irregular one, we confirmed
the stability of the predicted EMGs from the ECoGs. Finally, the
results of the motion decision by using trigger event generation
according to the predicted EMGs are shown.

COMPARISON BETWEEN THE ACTUAL VALUES AND THE PREDICTED
VALUES OF EMGs
In this experiment, we acquired a data sequence that included
100 regular trials. When the state transition of the monkey
occurred in the sequence shown in Figure 6 !

, the series of movements was counted as one trial.
The coefficient matrix A was determined with data that included
90 trials, and the prediction accuracy was evaluated with sequen-
tial data that included 10 trials except for the data that were used
to determine the coefficient matrix A. The 100 regular trials were
divided into 10 groups of 10 trials each.

An example of a prediction over 2 s is shown in Figure 7. The
solid line represents the actual values, and the dashed line rep-
resents the predicted values. In most cases, the trends and peak
values were well matched. Although a peak time shift was seen in
some cases, such as for the Flexor Carpi Ulnaris (FCU), rise times
mostly matched.

For the quantitative evaluation, correlation factors and root-
mean-square errors for each muscle are shown in Table 4.
Correlation factors were calculated between actual values and
predicted values. Student’s t-test was performed under the null
hypothesis that the correlation factor equals 0. Following this,
it was confirmed that all correlation factors were significant at
the 95% confidence level. Nine factors exceeded the correlation

value and were considered highly correlated (0.7). In the case of
the Triceps Lateral Head (TLaH), Biceps Long Head (BLH), and
Extensor Carpi Radialis (ECR), the correlation values were not
very high. However, they resulted in little difference compared
to the root-mean-square error. We calculated them by applying
leave-one-out cross-validation in one group selected from the 10
groups.

EXAMPLES OF IRREGULAR EMG PATTERNS
As mentioned above, the iEMG prediction by PLS regression
seemed to work well. However, some irregular patterns were
found during the sequence that had period stability. The iEMG
of the pectoralis major provides an illustrative example. Figure 8
shows the typical regular iEMG pattern and the irregular iEMG
pattern during the 10 trials of continuous reaching motion. In 9 of
the 10 trials, a regular pattern of the actual iEMGs was observed.
However, in 1 trial, an irregular pattern was observed, as shown in
Figure 8. Nevertheless, the reaching task was performed correctly
in both of these cases. Specifically, it had period stability from a
task-oriented point of view. Similarly, the brain activity also had
stability. The waveforms of the predicted values were more similar

Table 4 | Comparative tables of correlation factors and

root-mean-square errors for each muscle.

Correlation factors Root-mean-square errors

PM DP TLoH PM DP TLoH

0.88 0.83 0.82 0.12 0.17 0.20

TLaH BLH B TLaH BLH B

0.59 0.55 0.85 0.21 0.21 0.16

ECR EDC FDP ECR EDC FDP

0.64 0.79 0.89 0.18 0.21 0.13

FCU APL AP FCU APL AP

0.75 0.83 0.71 0.20 0.19 0.18

Table 1 contains the legend for all abbreviations.

FIGURE 7 | Examples of the actual and predicted values for each muscle. Table 1 contains the leg-end for all abbreviations. The dashed line represents the
actual values, and the solid line represents the predicted values.
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FIGURE 8 | Comparison of the actual and predicted integrated electromyography (iEMG) values of the pectoralis major with typical patterns. (A) A
regular pattern of the actual iEMGs and the predicted values. (B) An irregular pattern of the actual iEMGs and the predicted values.

FIGURE 9 | Difference between the actual start time of the

subject and the determined start time of the prosthetic arm.

(A) The result of the movement decision method that used

accumulated discrimination results. (B) The result of the trigger
generation with the predicted iEMG. (C) The results obtained with
the actual iEMGs.

to the regular actual iEMG patterns than to the irregular ones.
Although the activity of the motor cortex was regular, the activity
of the muscles that differed from the typical pattern was pro-
duced because of kinematic redundancy, as known as the degrees
of freedom problem formulated by Bernstein (1967, 1996).

COMPARISON AMONG MOVEMENT DECISION METHODS FOR
PROSTHETIC ARMS
We confirmed the performance of the proposed movement deci-
sion method. To detect the start time of the upper arm movement,
the deltoid posterior was selected because it increased mono-
tonically with the upper arm movement. Figure 9 shows the
difference between the actual start time of the subject and the start
times that were determined with each method. In this section, the
movement decision method that used accumulated discrimina-
tion results is treated as the conventional method (Figure 9A).
Moreover, the result of the trigger generation with the pre-
dicted iEMG is shown as the proposed method (Figure 9B). The
results obtained with the actual iEMGs are shown for comparison
(Figure 9C).

For the conventional method, differences in start times were
almost 0. However, for the proposed method, each start time
was earlier than that with the conventional method, that is, the
response of the prosthetic arm was improved by the proposed
method. In addition, the same method was adopted with the

actual value of the iEMG instead of the predicted value. In almost
all trials, the start time was earlier than that in the conventional
method and was the same as the case in which the predicted value
was used. However, a lengthy delay occurred in the 8th trial. To
attempt to explain this phenomenon, the actual and predicted
values of the iEMG in the 8th trial and the others are shown in
Figure 10.

In the regular pattern, both the actual and predicted values had
a diphasic trend, and the heights of the 2 peaks nearly aligned.
However, in the 8th trial, the trends of the actual values and the
predicted values differed from each other. Namely, the predicted
values had trends that were the same as the regular pattern. The
trigger event can be generated with a proper threshold (e.g., 0.25
as shown with dashed lines). However, the height of the first peak
of the trend of the actual values was too low to generate a trigger
event. In this case, a trigger event was generated at the second
peak, resulting in a lengthy delay.

DISCUSSION
To construct a BMI prosthetic arm that performs a reaching task,
it is preferable for the response to use information generated by
muscle activity and not just the movement. Specifically, a trig-
ger event is generated according to the predicted iEMGs from
ECoGs by using a PLS regression. Additionally, motor intention
can be correctly estimated by using the predicted value rather than
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FIGURE 10 | Comparison of the actual and predicted iEMG values of the Deltoid Posterior. (A) The actual and predicted values of the iEMG in the others.
(B) The actual and predicted values of the iEMG in the 8th trial.

the actual values for the control of a prosthetic arm. It is usu-
ally easier to estimate motor intention with muscle activities than
with brain activities. At present, BMI prosthetic hands are not
in practical use, while myoelectric prosthetic hands are already
commercially available. This is because myoelectric prosthetic
hands typically accomplish more sophisticated motions than BMI
prosthetic hands do. However, in our current study, a converse
phenomenon was observed. Our results indicate that during peri-
odic movements, muscle activity predicted from brain activity
is maintained using the periodicity rather than the actual mus-
cle activity. To interpret this counterintuitive phenomenon, we
describe the contribution of the cerebellum to motor function,
which was clarified by Domen et al. (1998), as follows:

(a) When the environment is unstable and training for the loco-
motion is insufficient, feedback control is performed.

(b) When the environment is predictable and training is suffi-
cient, feed forward control by the internal model constructed
in the cerebellum is performed.

The brain modifies these two aforementioned modes correctly
and achieves a task. Feedback control is executed to correct
the error between target position and actual position. Because
feedback delay can be several tens or hundreds of milliseconds,
feedback control is applicable only to slow and primary motions.
On the other hand, feed forward control is executed without
feedback information from the sensory organs; it is performed
according to the internal model constructed in the cerebellum.
The monkey that was used as the experimental subject was well
trained in the lever operation task. In other words, the monkey
performed the motion that was “programmed” in its cerebel-
lum. Then, the task-oriented motor intentions were decoded by
the cerebral cortex. However, EMGs appeared due to information
processing in the central nervous system, which was slower than
in the cerebellum.

In conclusion, we found superior estimation of task-oriented
motor intentions by constructing a BMI prosthetic arm. This
was confirmed by comparing the periodicity of actual muscle
activity with the estimated activity taken from brain ECoGs
during the periodic movements of a monkey. Interestingly, if
actual muscle activity became disordered, the estimated mus-
cle activity maintained periodicity. Moreover, by comparing the
time delay between the prosthetic arm control method based on

actual muscle activity and the method based on estimated mus-
cle activity, we found that the method using estimated muscle
activity maintained greater stability than that using actual muscle
activity.

ACKNOWLEDGMENTS
A part of this study was the result of the “Brain Machine Interface
Development” that was conducted under the Strategic Research
Program for Brain Sciences by the Ministry of Education, Culture,
Sports, Science and Technology of Japan and supported by
the Strategic Information and Communication R&D Promotion
Program (SCOPE) that was conducted by the Ministry of Internal
Affairs and Communication of Japan.

REFERENCES
Bernstein, N. A. (1967). The Co-ordination and Regulation of Movements. New York,

NY: Pergamon Press.
Bernstein, N. A. (1996). Dexterity and its Development. Mahwah, NJ: Lawrence

Erlbaum Associates, Inc.
Biran, R., Martin, D. C., and Tresco, P. A. (2005). Neuronal cell loss accompanies

the brain tissue response to chronically implanted silicon microelectrode arrays.
Exp. Neurol. 195, 115–126. doi: 10.1016/j.expneurol.2005.04.020

Chao, Z. C., Nagasaka, Y., and Fujii, N. (2010). Long-term asynchronous decoding
of arm motion using electrocorticographic signals in monkeys. Front. Neuroeng.
3:3. doi: 10.3389/fneng.2010.00003

Domen, K., Rieko, O., Yoshida, N., and Kawato, M. (1998). “Evaluation of
motor function using optimal performance indices for trajectory planning in
hemiparesis patients,” in 28th Annual Meeting Society for Neuroscience (Los
Angeles, CA).

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Ann. Eugen. 7, 179–188. doi: 10.1111/j.1469-1809.1936.tb02137.x

Lebedev, M. A., and Nicolelis, M. A. (2009). Brain-machine interfaces: past,
present and future. Trends Neurosci. 29, 536–546. doi: 10.1016/j.tins.2006.
07.004

Morrow, M. M., and Miller, L. E. (2002). Prediction of muscle activity by popula-
tions of sequentially recorded primary motor cortex neurons. J. Neurophysiol.
89, 2279–2288. doi: 10.1152/jn.00632.2002

Naidu, D. S., Chen, C. H., and Perez, A., and Schoen, M. P. (2008). Control strate-
gies for smart prosthetic hand technology: an overview. Conf. Proc. IEEE Eng.
Med. Biol. Soc. 2008, 4314–4317. doi: 10.1109/IEMBS.2008.4650164

Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., and Mehring, C. (2008).
Prediction of arm movement trajectories from ECoG-recordings in humans.
J. Neurosci. Methods 167, 105–114. doi: 10.1016/j.jneumeth.2007.10.001

Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J., and Hsiao, S. S. (2008). Neural
correlates of high-gamma oscillations (60–200 Hz) in macaque local field poten-
tials and their potential implications in electrocorticography. J. Neurosci. 28,
11526–11536. doi: 10.1523/JNEUROSCI.2848-08.2008

Sato, K., Morishita, S., Nishimura, Y., Watanabe, H., Kato, R., Nambu, A., et al.
(2012). “Discrimination analysis and movement decision of the prosthesis of

Frontiers in Neuroscience | Neuroprosthetics December 2014 | Volume 8 | Article 417 | 164

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Morishita et al. BMI control of prosthetic arm

the monkey ECoGs data associated with self-feeding motions,” in TriSAI2012,
SJ19 (Chofu).

Schalk, G., Kubanek, J., Miller, K. J., Anderson, N. R., Leuthardt, E. C., Ojemann,
J. G., et al. (2007). Decoding two-dimensional movement trajectories using
electrocorticographic signal in humans. J. Neural Eng. 4, 264–275. doi:
10.1088/1741-2560/4/3/012

Szarowski, D. H., Andersen, M. D., Retterer, S., Spence, A. J., Isaacson, M.,
Craighead, H. G., et al. (2003). Brain responses to micro-machined silicon
devices. Brain Res. 983, 23–35. doi: 10.1016/S0006-8993(03)03023-3

Uejima, T., Kita, K., Fujii, T., Kato, R., Takita, M., and Yokoi, H. (2009).
Motion classification using epidural electrodes for low-invasive brain-machine
interface. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 6469–6472. doi: 10.1109/
IEMBS.2009.5333547

Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., and Schwartz, A. B. (2008).
Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1101.
doi: 10.1038/nature06996

Wold, H. (1975). “Soft modeling by latent variables: the nonlinear iterative par-
tial least squares approach,” in Perspective in Probability and Statistics, Paper in
Honour of M. S. Bartlett, ed J. Gani (Waltham, MA: Academic Press), 520–540.

Yanagisawa, T., Hirata, M., Saitoh, Y., Goto, T., Kishima, H., Fukuma, R., et al.
(2011). Real-time control of a prosthetic hand using human electrocorticog-
raphy signals. J. Neurosurg. 114, 1715–1722. doi: 10.3171/2011.1.JNS101421

Yanagisawa, T., Hirata, M., Saitoh, Y., Kato, A., Shibuya, D., Kamitani, Y., et al.
(2009). Neural decording using gyral and intrasulcal electrocorticograms.
Neuroimage 45, 1099–1106. doi: 10.1016/j.neuroimage.2008.12.069

Yokoi, H., Sato, K., Morishita, S., Nakamura, T., Kato, R., Umeda, T., et al. (2012).
“An fMRI analysis of prosthetic hand rehabilitation using a brain–machine

interface,” in Advances in Ther. Engineering, eds W. Yu, S. Chattopadhyay, T.-C.
Lim, and U. R. Acharya (Boca Raton, FL: CRC Press), 219–249.

Yokoi, H., Sato, Y., Suzuki, M., Nakamura, T., Mori, T., Morishita, S., et al.
(in press). “Engineering approach for functional recovery based on body image
adjustment by using biofeedback of electrical stimulation,” in Clinical Systems
Neuroscience, Part 2: Body Image Adjustment and Neuro-prosthetics (New York,
NY: Springer).

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 February 2014; accepted: 26 November 2014; published online: 12
December 2014.
Citation: Morishita S, Sato K, Watanabe H, Nishimura Y, Isa T, Kato R, Nakamura T
and Yokoi H (2014) Brain-machine interface to control a prosthetic arm with mon-
key ECoGs during periodic movements. Front. Neurosci. 8:417. doi: 10.3389/fnins.
2014.00417
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in
Neuroscience.
Copyright © 2014 Morishita, Sato, Watanabe, Nishimura, Isa, Kato, Nakamura
and Yokoi. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

www.frontiersin.org December 2014 | Volume 8 | Article 417 | 165

http://dx.doi.org/10.3389/fnins.2014.00417
http://dx.doi.org/10.3389/fnins.2014.00417
http://dx.doi.org/10.3389/fnins.2014.00417
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


ORIGINAL RESEARCH ARTICLE
published: 01 August 2014

doi: 10.3389/fnins.2014.00222

Single trial prediction of self-paced reaching directions
from EEG signals
Eileen Y. L. Lew1,2, Ricardo Chavarriaga1, Stefano Silvoni3 and José del R. Millán1*
1 Defitech Chair in Non-Invasive Brain-Machine Interface, Center for Neuroprosthetics, School of Engineering, Ecole Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland
2 Laboratory for Experimental Research on Behavior, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
3 Laboratory of Robotics and Kinematics, I.R.C.C.S. S. Camillo Hospital Foundation, Venice, Italy

Edited by:
Jose L. Pons, Consejo Superior de
Investigaciones Científicas, Spain

Reviewed by:
Jose Luis Contreras-Vidal, University
of Houston, USA
Surjo R. Soekadar, University
Hospital of Tübingen, Germany

*Correspondence:
José del R. Millán, Defitech Chair in
Non-Invasive Brain-Machine
Interface, Center for
Neuroprosthetics, School of
Engineering, Ecole Polytechnique
Fédérale de Lausanne, EPFL
STI-CNBI, ELB 138, Station 11, 1015
Lausanne, Switzerland
e-mail: jose.millan@epfl.ch

Early detection of movement intention could possibly minimize the delays in the
activation of neuroprosthetic devices. As yet, single trial analysis using non-invasive
approaches for understanding such movement preparation remains a challenging task.
We studied the feasibility of predicting movement directions in self-paced upper limb
center-out reaching tasks, i.e., spontaneous movements executed without an external
cue that can better reflect natural motor behavior in humans. We reported results
of non-invasive electroencephalography (EEG) recorded from mild stroke patients and
able-bodied participants. Previous studies have shown that low frequency EEG oscillations
are modulated by the intent to move and therefore, can be decoded prior to the movement
execution. Motivated by these results, we investigated whether slow cortical potentials
(SCPs) preceding movement onset can be used to classify reaching directions and
evaluated the performance using 5-fold cross-validation. For able-bodied subjects, we
obtained an average decoding accuracy of 76% (chance level of 25%) at 62.5 ms before
onset using the amplitude of on-going SCPs with above chance level performances
between 875 to 437.5 ms prior to onset. The decoding accuracy for the stroke patients
was on average 47% with their paretic arms. Comparison of the decoding accuracy
across different frequency ranges (i.e., SCPs, delta, theta, alpha, and gamma) yielded the
best accuracy using SCPs filtered between 0.1 to 1 Hz. Across all the subjects, including
stroke subjects, the best selected features were obtained mostly from the fronto-parietal
regions, hence consistent with previous neurophysiological studies on arm reaching tasks.
In summary, we concluded that SCPs allow the possibility of single trial decoding of
reaching directions at least 312.5 ms before onset of reach.

Keywords: stroke, self-paced voluntary movement, movement-related potentials, EEG, movement direction, brain-

machine interface

1. INTRODUCTION
Brain machine interfaces (BMI) have been recently used for direct
control of neuroprostheses by patients with different levels of
motor disabilities (Hochberg et al., 2012; Collinger et al., 2013;
Courtine et al., 2013; Leeb et al., 2013). In addition, BMI could
also be used to improve the efficiency of post-stroke functional
training through the use of brain signals to complement impaired
muscle control in movement-assisted rehabilitation therapy (Daly
and Wolpaw, 2008; Ang et al., 2011; Niazi et al., 2012; Biasiucci
et al., 2013; Ramos-Murguialday et al., 2013). Earlier detection of
movement intention could possibly minimize the delays in device
activation, which may result in a more natural coupling between
the motor planning activity in the cortex and the movement-
assisted devices (Krebs et al., 2003; Muralidharan et al., 2011).
This form of therapy has the potential of speeding up recovery
by enhancing the regeneration and reorganization of brain neu-
ronal structures (i.e., brain plasticity) after stroke (Schaechter,
2004; Dobkin, 2007; Kwakkel et al., 2008). For this reason, we
are motivated to study how early before the actual movement,

the intention to reach toward a target (in the form of discrete
direction planning) can be decoded from brain activity. The pri-
mary focus of this paper is on single trial decoding of self-paced
reaching movements by stroke patients and able-bodied subjects.

Different studies in human and non-human primates have
shown the possibility to decode movement parameters from
single unit neural activity—such as hand position, velocity, grip-
ping force and muscular activity—for the control of computer
cursors and robot arms (Wessberg et al., 2000; Serruya et al.,
2002; Taylor et al., 2002; Carmena et al., 2003; Schwartz, 2007;
Ganguly and Carmena, 2009; O’Doherty et al., 2011; Hochberg
et al., 2012; Collinger et al., 2013). A number of recent stud-
ies have proposed the use of non-invasive methods, in par-
ticular the electroencephalography (EEG) signal, for decoding
reaching directions (Mehring et al., 2003; Waldert et al., 2008;
Ince et al., 2010) and continuous trajectories (Wolpaw and
McFarland, 2004; Bradberry et al., 2010). Nevertheless most of
these studies, in particular those focused on decoding movement
direction (Connolly et al., 2003; Mehring et al., 2003; Musallam
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et al., 2004; Rickert et al., 2005; Rizzuto et al., 2005; Hammon
et al., 2008; Waldert et al., 2008; Robinson et al., 2013), rely on
cue-based protocols (i.e., where a “go” cue is used to instruct the
subject to perform the movement at a fixed time). In contrast,
we focus on self-paced reaching, where movements are initiated
by the subject in a spontaneous manner without any external
cue. This form of reaching movement can better reflect natural
motor behavior in humans. Throughout this paper, we define the
state prior to movement onset as the intention to reach. Intention
can be defined as an early plan to move (Andersen and Buneo,
2002) and represents a high level state which specifies the goals of
movements rather than the exact muscle activations required for
execution. Decoding of intention offers the capability to predict
the timing (Niazi et al., 2011; Lew et al., 2012a,b; Xu et al., 2014)
and, as studied in this work, the desired target.

Reaching is a complex spatial problem where different refer-
ence systems are involved in coding the hand positions directed
toward the target location (Philipona et al., 2003; Beurze et al.,
2006). Information about the upper limb position, eye position,
and target location are combined, coordinated and integrated
into a common distributed spatial representations in order to
perform a successful goal-directed reach. The posterior pari-
etal cortex (PPC) plays an important role in such coordinate
transformation between different reference frames for planning
a movement (Cohen and Andersen, 2002). The role of integra-
tion is played by a network involving the frontal and parietal
cortices for the control and execution of reaching movements,
as shown by studies with non-human primate performing visu-
ally guided movements (Burnod et al., 1999; Battaglia-Mayer
et al., 2003; Gottlieb, 2007). More recently, studies with human
subjects using fMRI have shown a similar frontal-parietal net-
work (Culham and Valyear, 2006; Filimon, 2010). These studies
suggest that brain signals in the frontal and parietal regions carry
the necessary information for decoding visually guided reaching
movements (Blohm et al., 2009; Andersen et al., 2010).

We have previously followed a data-driven approach to inves-
tigate the contribution of EEG slow cortical potentials (SCPs)
in decoding self-paced movement intention (intent to move vs.
intent not to move) of both able-bodied subjects and stroke
patients (Lew et al., 2012a). Similar conclusions were also
obtained by using intracortical recordings (Lew et al., 2012b).
Interestingly, it has also been shown that the amplitude of
motor cortical local field potentials (LFPs) in lower frequencies
(<13 Hz) is modulated with the direction of movement (Rickert
et al., 2005). In this work, we evaluate whether the same approach
based on SCP allows decoding movement directions prior to
actual execution of reaching. We also compare the decoding per-
formance of the EEG activity in different frequency bands. To the
best of our knowledge, there is no previous attempt to decode
directions of self-paced movements from non-invasive signals
before actual movement onset.

2. MATERIALS AND METHODS
We analyzed scalp EEG data recorded from three stroke patients
and two able-bodied subjects. Participants were instructed to
perform a center-out upper limb reaching task. All procedures
were approved by the Ethics Committee of the San Camillo

Hospital before the experiment. Subjects were informed about the
procedures and gave their consent.

Table 1 summarizes the subjects’ particulars, including the
Fugl-Meyer Motor Assessment score for upper extremity (FMA-
UE)—maximum score of 66—for stroke subjects. Patient P1
suffered from a left cerebellar hemorrhagic stroke, also com-
monly known as intracerebral bleed, where the ipsilateral body
part is affected. The second patient P2 suffered from a left nucleo-
capsular stroke caused by lesion in a deeper brain structure, thus
affecting the contralateral limb. The third patient P3 has had an
ischemic stroke caused by lesion in his frontal and left parietal
area, thus affecting his right limb. In general, all patients had
preserved tactile and proprioceptive sensibility of the arm with
normal cognitive abilities at the time of admission to the hospital.
All stroke subjects were able to achieve the reaching task with-
out much difficulty, but with significantly longer average reaching
time in comparison with the able-bodied subjects (c.f., Table 6).

2.1. EXPERIMENTAL PROTOCOLS
Subjects were seated in front of a computer screen holding on
to a haptic manipulandum (PHANTOM Premium 3.0/6DOF,
Sensable Technologies) with their arm resting comfortably on the
table as shown in Figure 1. The reaching task was performed with
both arms and subjects were instructed to move the manipulan-
dum that controls the position of a cursor (a green circle) on
a computer screen [c.f. Figure 1(Bottom)]. The resting position
is the condition when the green circle remains inside the white
box located in the middle of the screen. The task was to bring
the cursor to one of the 4 center-out target locations (up, down,
left, right, projected as white-frame boxes). The distance from the
home position to each target positions was approximately 15 cm.
When the target location was cued, the subject was asked to wait
at least 2 s before initiating the movement at their own pace in
order to induce a self-paced movement. The role of the visual
cue was to ensure equal distribution of target locations during
the recordings. Accordingly, when subjects moved before 2 s (an
immediate reaction, as in cued-based reaction tasks), the trial was
stopped and discarded.

Subjects were asked to stay in a relaxed position during this
idle period before initiating a reaching whenever they wish. For
each subject, there were 3 recordings of 80 trials each (targets
locations were randomly selected), thus resulting in a total of
240 trials for each arm movement. After removing early starts
and artifacts, an average of 230 trials remained for both hands
and subject groups. This is the same experimental protocol where

Table 1 | Particulars of volunteer experimental subjects.

Subject Age Medical Dominant Paretic Time since FMA-UE

condition hand arm Stroke

C1 25 Healthy Right – – –

C2 26 Healthy Right – – –

P1 50 Stroke Right Left 55 days 56/66

P2 61 Stroke Right Right 658 days 43/66

P3 66 Stroke na Right 308 days 53/66
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FIGURE 1 | (Top) Experimental setup and one of the able-bodied volunteer.
(Bottom) Experimental Protocol: Timeline of a complete trial. The circle in
green refers to the cursor being controlled with the manipulandum and the
white squares corresponds to the home (Center) and target (Left)

locations. Movement onset is defined as the time when the green cursor
exits the center square.

we have demonstrated the detection of movement onset (Lew
et al., 2012a). The design of this experiment allows voluntary ini-
tiation of movements, in contrast with most cue-based reaction
time task protocols where there is a go cue that instructs the sub-
ject when to start the movement. It has been reported that there
are neurophysiological differences between internally driven and
externally cued movement (Thut et al., 2000). A similar proto-
col has been used to investigate self-paced arm movements with
electrocorticography (ECoG) signals (Ball et al., 2009).

2.2. METHODS
We simultaneously recorded the EEG and electrooculography
(EOG) signals with a portable BioSemi ActiveTwo system using
64 electrodes arranged using an extended 10/20 montage at a
sampling rate of 2048 Hz, then downsampled to 256 Hz. EOG
channels were placed above nasion and below the outer can-
thi of both eyes in order to capture horizontal and vertical
EOG components. To reduce noise contamination, particularly
from eye movement artifacts, we performed our analysis using
a selection of 34 channels that excluded the peripheral chan-
nels and those that exhibited high correlation with the EOG

activity (Lew et al., 2012a). The signals recorded from these 34
electrodes were spatially filtered using the common average ref-
erencing (CAR) procedure to remove the global background
activity (Offner, 1950; Osselton, 1965; Bertrand et al., 1985).

The EEG signals were pre-processed by applying a zero-phase
low-pass Butterworth filter (non-causal filter) with cutoff fre-
quency at 120 Hz. The signals were further downsampled to
128 Hz. In order to evaluate direction-related information in dif-
ferent frequency bands, we applied narrow band filters between
[0.1–1] Hz for extracting SCP, [1–4] Hz for delta band, [4–8] Hz
for theta band, [7–13] Hz for the alpha band, as well as the
ranges [13–20] Hz, [20–30] Hz and [30–45] Hz covering beta and
gamma activity. For signals below 7 Hz, we directly used time
domain features (EEG amplitude). In particular, for the SCP,
Garipelli et al. (2013) have compared various spatial and spectral
filtering methods to enhance the signal to noise ratio (SNR) of
the slow potentials. Their results have shown higher separability
index with the use of narrow pass-band filters between [0.1–
1] Hz. They have also reported that CAR filter seems to be a better
choice than Laplacian filters. For frequency bands above 7 Hz, we
extracted the envelope of the filtered signal by taking the absolute
value of the real part of the analytic signal, computed using the
Hilbert transform. The Hilbert transform is commonly used in
calculating instantaneous amplitude and phase at each time point
of a narrow band signal and non-stationary time series such as the
scalp EEG signal (Huang et al., 1998; Marple, 1999).

To study the temporal characteristics of brain activity preced-
ing movement onset, referred as intention period, we analyzed
sliding windows of 250 ms overlapping every 62.5 ms in the
period from 2 s before the movement onset to 1 s after. In this
paper, the time reported always corresponds to the endpoint of
these sliding windows. For each of these windows, we applied
the Canonical Variant Analysis (CVA), which is a form of feature
selection technique that identifies the most relevant features dis-
criminating among classes, thus significantly reducing the dimen-
sionality of the input vector for the classifier. This technique
has previously been proven advantageous for BCI (Galán et al.,
2007). CVA extracts subject-specific discriminant spatial patterns
that maximizes the difference in variance between the 4 center-
out directions classes. As it remains unclear the exact time when
the intention to reach is made in a self-paced movement, this
method can yield information about movement-related modu-
lations in different brain regions during planning and how they
evolve over time. We used the features selected from the training
dataset (obtained from 5-fold cross validation) to build a classifier
(see below). The feature vector consisted of temporal amplitudes
from the 10 channels with the highest discriminant power (DP)
for each sliding window. We further reduced the data dimension-
ality by subsampling to 16 Hz for classification, thus forming a
vector of 40 features (10 channels× 4 points) within each 250 ms
window.

For classification of movement directions, we relied on Linear
Discriminant Analysis (LDA). We built a LDA classifier for each
time window. LDA is a simple approach to classification where
the samples from each class are modeled with a normal distri-
bution and it is assumed that they have the same covariance
matrix (Duda et al., 2001). The probability that the correct class
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is y given a sample x can be defined using Bayes’ rule:

P(C = y|x) = P(x|C = y)P(C = y)

P(x)
(1)

The classification of a sample x is given by argmaxyP(C = y|x)
over all classes. Data distribution, for all classes P(x|C = y), is
assumed to be normal for each class, and is modeled using the
same covariance matrix, �.

P(x|C = y) = 1

(2π)
p
2 |�| 12

e−
1
2 (x−μk)T�−1(x−μk) (2)

Finally, the performance of our method is evaluated using a 5-
fold cross validation procedure by maintaining the chronological
order when partitioning the training and testing data (Lemm
et al., 2006; Bourdaud et al., 2008). This method yields a more
realistic estimation of accuracy than random splitting of trials
from the entire recording session.

The movement direction decoding accuracy (DA) used in this
paper is derived from the confusion matrix, which interprets the
relationship between the actual class labels (i.e., 4-class target
directions) and the classified label (predicted output), where the
sum of the diagonal elements nii refers to the correctly classi-
fied trials (the actual target location). DA is defined as the ratio
between the correct predictions divided by the total number of
trials and measures the sensitivity rate. A value of 1 denotes
perfect separation between the movement directions.

As mentioned above, we want to evaluate how early before
movement onset the movement direction can be predicted. We

calculated the chance level by training several classifiers on a ran-
domized permutation of the labels of the training set (10× 5 folds
cross validation). The chance level is derived from the average per-
formance of these classifiers. The chance level is always shown as
a red horizontal dotted line in the Results Section.

In addition to assess the sensitivity rate of our classifiers during
the intention period, [-2, 1] s around movement onset, we also
evaluated its specificity during the idle period where subjects are
supposed not to prepare for the reaching movement, namely from
1 s before the visual target cue to 2 s after the cue.

3. RESULTS
3.1. PREDICTING MOVEMENT DIRECTIONS: ABLE-BODIED SUBJECTS
Figure 2 shows a summary of results obtained from single trial
classification of movement directions from SCPs ([0.1–1] Hz)
for the able-bodied subjects, C1 and C2, when utilizing their
dominant arm (right in both cases). The topographic plots in
Figure 2A depict the selected channels based on the ranking of
the discriminability power at 500, 250, 125, and 0 ms preced-
ing the onset of movement (channels marked in red refers to
the 10 highest ranked channels). These topographic maps show
the brain regions which carried the most directional information.
Figure 2B shows the average and standard deviation (gray shaded
area) of single trial DA of movement direction from time −1.750
to 1 s. We tested if the DA measure is significantly above chance
level (shown as red dotted line) with 95% confidence interval
using the non-parametric Wilcoxon rank-sum test. The green ver-
tical line in this graph shows the first time when the DA value of
a group of five consecutive samples are significantly above chance
level (p < 0.05).

FIGURE 2 | Decoding of movement direction based on the EEG

slow cortical potentials (0.1–1 Hz). Able-bodied subjects, C1 (left)
and C2 (right) performed the reaching with their dominant arm (right
for both). (A) Discriminant channels (marked in red) at different time
windows of 250 ms (ending at 500, 250, 125, and 0 ms before
movement onset), which form a fronto-parietal network. (B) Direction

decoding performances (DA) using time-specific classifiers during the
intention period. t = 0 corresponds to movement onset. (C)

Sensitivity: DA during the intention period obtained using the
time-specific classifier with the highest DA. (D) Specificity: DA during
the idle period. t = 0 corresponds to the presentation of the visual
cue (c.f. Figure 1).
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For subject C1, DA rose above chance level at 687.5 ms before
onset (t = 0 s) using amplitudes of on-going SCPs, where per-
formance consistently increased until onset of movement and
remained at high values afterwards indicating that directional
discriminant neural signatures are continuously decoded during
movement. The most discriminant channels for this subject are
located in the frontal, parietal and ipsilateral regions starting from
time 375 to 0 ms prior to onset.

At this stage of analysis we have built classifiers tuned to
each time window. This allows us to pinpoint the most perti-
nent features for decoding movement direction over time. This
approach is quite challenging due to the fact that the onset of
self-paced movements has a higher variability compared to cue-
based movements. In order to explore an online implementation
of SCP-based approaches, we have identified that the time win-
dow at 62.5 ms before movement onset yielded the highest DA
(0.83± 0.05), and contains the most discriminant features for
decoding directions, see Table 2. In this paper, windows after
onset are not taken into consideration as they represent move-
ment execution rather than movement intention. We have then
used the features and classifier associated to the window with
the peak DA to test the decoding performance during the inten-
tion period. Figure 2C illustrates the corresponding DA, which
climbed above chance level as early as 500 ms before onset.
DA increases until 62.5 ms before movement onset, and then
decreases after movement onset.

In addition to aim for high sensitivity (high DA) during the
intention period, it is also desirable to achieve high specificity
(low false positive rate) during the idle period. Figure 2D shows
that the selected SCP-based classifier performs at random level
during the idle period.

Table 2 summarizes the results of the SCP-based direction
decoding for the able-bodied subjects. Regardless of which arm
was used, the best decoding performance for both subjects (con-
sidering only time before onset) occurred at 62.5 ms before move-
ment onset, with a maximal DA of 0.83 for subject C1. The
average DA across folds for each subject was slightly lower for
the non-dominant arm. Performances with time-specific classi-
fiers exceeded chance level before onset, early detection, between
875 ms to 437.5 ms and reached DA values above 0.8 after move-
ment onset. For both subjects performance was significantly
above random level during the intention period and had a rather
low variance. Importantly, performances are quite similar when
using the selected time-specific classifier with the best DA (see
also Figure 2C). In this case, direction was decoded slightly
later—between 500 and 312.5 ms before onset. Also, as shown in

Figure 2D, for both subjects and arms DA was at random level
during the idle period.

Figure 3 depicts the channels selected at the window with
the highest DA. They represent the brain regions with highest
discriminability power to classify the 4 targets, for the left and
right arms of the two able-bodied subjects. Results from both
subjects displayed an evident fronto-parietal network, especially
when reaching with the right arm. For subject C1, this network
is more prone toward the frontal and bilateral central regions
when reaching with the left (non-dominant) arm. For subject
C2, the ipsilateral central-parietal areas are more discriminant
for decoding reaching directions than the contralateral region for
the non-dominant. The localization of brain areas will be further
analyzed in the Discussion Section.

3.2. PREDICTING MOVEMENT DIRECTIONS: STROKE PATIENTS
We evaluated our SCP-based method to decode movement direc-
tion when stroke patients performed the reaching task, notably
with their paretic arm (see Figure 4). As for able-bodied subjects,

FIGURE 3 | Selection of channels (in red) from CVA yielding the

highest DA for able-bodied subjects C1 and C2 for left and right arm

reaching movements. For both subjects and arms, channels were
selected on the window ending at 62.5 ms before movement onset.

Table 2 | Summary of decoding performances before movement onset for able-bodied subjects.

Subject Arm Highest DA Time of Early detection (ms) Early detection (ms)

ID before onset highest DA (ms) time-specific classifiers selected classifier

C1 Right 0.83 ± 0.05 −62.5 −687.5 −500.0

Left 0.75 ± 0.08 −62.5 −437.5 −375.0

C2 Right 0.68 ± 0.05 −62.5 −812.5 −312.5

Left 0.66 ± 0.08 −62.5 −875.0 −312.5

Time corresponds to the endpoint of the sample window with respect to movement onset (t = 0 ms)
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FIGURE 4 | Decoding of movement direction based on SCPs. Stroke patients P1, P2, and P3 performed the reaching with their paretic arm. (A–D) as in
Figure 2.

we first built time-specific classifiers and then selected the best
one (highest DA before movement onset) to test sensitivity
and specificity. For patient P1, first panel, the channels selected
from SCPs preceding onset were strongly focused at the centro-
parietal regions (Figure 4A), with bilateral activation of motor
areas toward the time of movement execution. DA of time-
specific classifiers (Figure 4B) started to exceed chance level at
1000 ms before onset of movement. The maximum DA was 0.51
at time 250 ms before onset. Using the selected classifier dur-
ing the intention period (Figure 4C), DA crossed chance level
at 1475 ms before onset. However, DA decreased to random
level short after and it exceeded chance level again at 550 ms

and steadily increased until onset of movement. Thereafter, DA
remained above chance till 500 ms after onset. This selected
classifier performed at random level during the idle period
(Figure 4D).

For patient P2, second panel, CVA selected channels located
mainly in the lateral parietal region starting from 500 ms before
onset (Figure 4A). Time-specific classifiers reached a peak DA of
0.45 at time 62.5 ms before movement onset, while DA exceeded
chance level at 1750 ms before onset (Figure 4B). However, when
using the selected classifier, DA crossed chance level at 625 ms
before onset (Figure 4C). This selected classifier also performed
at random level during the idle period (Figure 4D).
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Patient P3, third panel, exhibits similar DA trends to the other
patients, although discriminant features were found mostly on
the central and frontal areas (Figure 4A). Note that P3 had a
frontal and left parietal area lesion. Using time-specific classifiers
DA rose above exceeds chance level at 1062.5 ms before onset,
peaking at 125 ms before onset with a value of 0.46 (Figure 4B).
The selected classifier climbed over chance level at 312.5 ms
before movement onset (Figure 4C), while never above random
performances during the idle period (Figure 4D).

Table 3 summarizes the results of the SCP-based direction
decoding for the stroke patients. The DA values obtained for the
paretic arm were above 0.45 for all subjects. This performance was
reached between 250 ms to 62.5 ms before onset. Once movement
started, DA reached values in between 0.51 and 0.73. Regarding
early detection—i.e., when DA exceeded chance level—, time-
specific classifiers did it earlier than the selected fixed classifiers
(in between −1750 and −1000 ms vs. −625.0 and −312.5 ms,

respectively). As for able-bodied subjects, performance was sig-
nificantly above random level during the intention period and
had a rather low variance, for both time-specific and selected
classifier. Also, DA was at random level during the idle period.
In summary, patients achieved a lower performance than able-
bodied subjects, but early detection happened at similar times.

3.3. DIRECTION-RELATED SPECTRAL AND PHASIC MODULATIONS OF
EEG ACTIVITY

We evaluated direction-specific modulations in several EEG fre-
quency bands, comprising SCPs (0.1–1 Hz), delta (1–4 Hz), theta
(4–8 Hz), alpha (7–13 Hz), beta (13–20 Hz), high beta (20–
30 Hz) and low gamma (30–45 Hz). Figure 5 shows the DAs for
both left and right arm movements of the able-bodied subjects.
The x-axis of each plot corresponds to the endpoint of each
decoding window with respect to the movement onset (time =
0 s) and the y-axis provides the frequency bands. We observed

Table 3 | Summary of decoding performances before movement onset for stroke patients, paretic arm.

Subject Paretic arm Highest DA Time of Early detection (ms) Early detection (ms)

ID before onset highest DA (ms) time-specific classifiers selected classifier

P1 Left 0.51 ± 0.13 −250.0 −1000.0 −1437.5 (−550.0)

P2 Right 0.45 ± 0.04 −62.5 −1750.0 −625.0

P3 Right 0.46 ± 0.08 −125.0 −1062.5 −312.5

Time corresponds to the endpoint of the sample window with respect to movement onset (t = 0 ms)

FIGURE 5 | Comparison of average DAs for different EEG frequency bands for able-bodied subjects who executed left and right hand reach

movements. Both able-bodied subjects (first row: C1, second row: C2) are right-handed. t = 0 corresponds to the movement onset.
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direction-specific modulations in both SCPs and delta band activ-
ity. In all cases, SCPs showed DAs above chance level before
movement onset, although DAs were higher during movement
execution. Moreover, narrow band filtered SCPs [0.1–1] Hz seem
to provide information that may allow earlier decoding of move-
ment directions as compared to the wider band SCPs. We also
observed performances exceeding chance level when signals fil-
tered in the delta band, which has been studied by Waldert et al.
(2008) using signals below 4 Hz.

In the case of the stroke group (see Figure 6), SCPs yield higher
DAs than other frequency ranges. As with the able-bodied sub-
jects, discriminant modulations were observed in SCPs, although

the delta band displayed random performance. The DA for
the stroke group reached DA values above chance before the
able-bodied group during the intention period.

The use of phase-based features has remained unexplored for
decoding movement direction. However, this information has
been used in classifying motor imagery-based BCI (Wang et al.,
2006; Hamner et al., 2011), auditory target selection (Ng et al.,
2013) and decoding continuous movement trajectories (Hammer
et al., 2013). We used the instantaneous phase computed using
Hilbert transform to explore the decoding power of these features.
Figure 7 shows that the DA of phase-based decoding exceeds
chance level approximately 250 ms before movement onset for

FIGURE 6 | Comparison of average DAs for different EEG frequency bands for stroke patients who executed reach movements with their paretic arm,

(A) P1, (B) P2, and (C) P3.

FIGURE 7 | The use of instantaneous phase features across frequency bands for able-bodied subjects (first row: C1, second row: C2).
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both able-bodied subjects. However, the maximal DA values were
lower than when using SCP amplitudes. Analysis from stroke
patients showed random decoding performances. Despite this
less promising results, the use of phase information can be fur-
ther explored by studying amplitudes and frequency coupling,
as well as entrainment. Indeed, high gamma amplitudes coupled
with the phase of low-frequency alpha and theta during waiting
(pre-movement) periods in a cued grasping task have been previ-
ously used to predict movement types (Yanagisawa et al., 2012).
Similarly, Miller et al. (2012) found increased beta-phase entrain-
ment from ECoG signals recorded during the no movement
periods in finger flexion.

4. DISCUSSION
This preliminary study demonstrates the feasibility of decoding
directions of self-pace arm reaching before movement execution
from EEG slow cortical potentials. This is also the first time that
such a possibility is shown in stroke patients.

Results show good sensitivity (decoding accuracy, DA, signif-
icantly above chance level during intention period) and good
specificity (DA at chance level during idle period), which are key
requirements for its potential use in real-time rehabilitation inter-
ventions. This level of specificity indicates that decoding is due
to direction-related features from SCPs appearing before onset
and not generated by the visual cue. Although promising, the
results achieved with stroke patients must be replicated with a
larger population. Based on the comparison of different EEG fre-
quency bands (i.e., SCP, delta, theta, alpha, beta, and gamma), we
have observed that movement directions can be decoded signifi-
cantly above chance level using signals filtered at low frequencies
(<4 Hz), with SCP yielding the best performance in terms of
accuracy and early detection. We have used a systematic approach
(previously tested for detecting onset of self-paced movements
from invasive and non-invasive recordings) to select discrimi-
nant features for decoding reaching movements to four directions
at different times before movement onset. The outcome of this
feature selection process is used to identify the relevant neural
signatures associated to the intention to reach targets at differ-
ent directions. Consistently with existing literature, we observed
a frontal-parietal pattern of activity in the able-bodied group, and
a more parietal pattern for the stroke group.

4.1. ON THE ROLE OF FRONTO-PARIETAL NETWORKS IN THE
PREPARATION OF REACHING MOVEMENTS

For both able-bodied subjects, the time-resolved channel selec-
tion (Figure 2A) presented a change from an initial bilateral
pattern to a dominant ipsilateral activation between 500 and
250 ms prior to movement onset, coinciding with the increase
in decoding performance. Activation of the ipsilateral primary
motor area seems to be required for the execution of challenging
unimanual motor tasks in normal subjects (Roland et al., 1980;
Kim et al., 1993; Kobayashi et al., 2003). The selected classifiers
contain such ipsilateral primary motor features (Figure 3).

More prominently, our results showed that in the period pre-
ceding the movement onset, there is a discriminative pattern
involving frontal and/or parietal areas for both able-bodied sub-
jects and stroke patients. Our findings are in agreement with a

number of studies, with both humans and non-human primates,
where the fronto-parietal brain region seems to play a critical role
in planning a reach movement. In a center-out task, Musallam
et al. (2004) and Quian Quiroga et al. (2006) studied neural sig-
nals related to the goals (direction) of movement from electrodes
implanted in the parietal reach region (PRR) of monkeys. Using
the memory period activity in a cued paradigm (reflecting mon-
keys’ intent before the “go” signal) from eight PRR neurons, four
targets were correctly decoded with 64.4% accuracy.

With respect to human studies, ventral areas of the pre-
frontal cortex seem to encode spatial information. Intracranial
EEG recordings during a memory task allowed decoding left
vs. right target in single-trial movements using either temporal
evoked activity or spectral activity with performance between 70
and 80% (Rizzuto et al., 2005). On the other hand, neuroimag-
ing studies showed activation in the PRR, potentially encoding
information related to the subject’s intention to make a move-
ment toward a particular spatial location (Connolly et al., 2003).
Furthermore, using fMRI, Naranjo et al. (2007) showed an evo-
lution of the cortex activation during movement preparation
starting from frontal and parietal areas, slowly becoming more
focused on the frontal cortex 500ms before movement. Gallivan
et al. (2011) decoded grasping top or bottom direction (2-class
task) from BOLD signal with accuracy of 55%, which suggested
brain activation of the parietal and frontal regions during plan-
ning. Most of these studies employed a cue-based paradigm. A
similar self-paced study with human ECoG signals has shown
a steep rise in decoding accuracy starting from 200 ms before
movement onset, peaking at 500 ms post movement (67%), based
on spectral amplitude modulations in low frequencies and high
gamma band from M1 and pre-motor cortex (Ball et al., 2009).
An EEG study on visuomotor adaptation during self-initiated
center-out hand movements have shown the involvement the
fronto-parietal regions in healthy subjects (Contreras-Vidal and
Kerick, 2004). In apparent contrast with our observations, based
on the findings from Nenadic et al. (2007) with human intracra-
nial EEG from supplementary motor and parietal areas, the signal
in the period 500 ms after the appearance of the target stimulus
can be decoded with accuracies of 20% higher than the period
before onset in a cue-based protocol.

4.2. PERFORMANCE COMPARISON WITH PREVIOUS EEG STUDIES IN
DECODING MOVEMENT DIRECTION

To the best of our knowledge, all previous works aiming at
decoding movement directions from non-invasive brain signals
(EEG mainly) utilized cue-based protocols. Also, these studies
were performed with able-bodied subjects (c.f., Table 4). Column
Type refers to when decoding was attempted, either before onset
(Intention) and/or during movement (Execution).

In relation to the brain region involved in the execution
of reaching movements, Waldert et al. (2008) showed that the
motor-related areas are responsible for the execution of reaching
from magnetoencephalography (MEG). The other works listed in
Table 4 emphasize that decoding of movement direction before
onset is correlated to activity in the frontal and parietal areas.
Reaching direction planning was decoded using the first 500 ms
right after the visual stimulus presentation with performances
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between 57 and 59% for 4 directions and 80.25% (Hammon
et al., 2008) for 2 directions (Wang and Makeig, 2009). Recently,
Robinson et al. (2013) reported maximum decoding accuracy of
80% for 4 directions using features extracted from low frequency
components of EEG taken from the entire [-1 1]s windows with
respect to onset (i.e., including the signal during movement exe-
cution). As in our case, they also pointed out to the contribution
of SCPs (in particular, motor-related potentials or MRPs)—
already known to capture preparation-related modulations—for
such decoding.

4.3. ROLE OF SCPs IN UNDERSTANDING SPATIAL INTENTION
Our results showed that narrow-band SCPs contain informa-
tion that may allow earlier decoding of movement directions
as compared to broad-band SCPs. Such a level of decoding
requires proper pre-processing techniques (Garipelli et al., 2013)
to enhance the SNR of SCPs through the use of spectral and
spatial filters. This finding is consistent with previous works on
detection of movement intention (Lew et al., 2012a) and move-
ment execution (Niazi et al., 2012; Robinson et al., 2013; Xu
et al., 2014), which showed the advantage of low frequency EEG
components.

Surface EEG consists of electrical activity generated by differ-
ent sources in the active intracranial tissue and negative SCPs
reflect the unspecific thalamo-cortical activation of a cortical
area (Birbaumer, 1999). The first use of SCPs in BCI was through
self-regulation of cortical excitability by a completely paralyzed
patient (Kuebler et al., 1998). In recent years, a growing number
of studies utilized slow potentials, also known as low frequency
component (LFC) of measured neuronal population signals, such
as for decoding movement trajectories (Bradberry et al., 2010)
and for detecting movement intention (Niazi et al., 2011; Xu et al.,
2014). LFCs have also been used in invasive studies exploiting
LFPs (Rickert et al., 2005) and ECoG for decoding movement
parameters (Milekovic et al., 2012; Hammer et al., 2013). As
thalamic activation can be regarded as the allocation of atten-
tional or processing resources toward a specific cortical region,
this view has instigated the use of SCPs for studying retention
of working memory under the viewpoint of attention (Bosch
et al., 2001). The authors reported that retention of spatial loca-
tions in working memory was associated with a combination
of slow waves over frontal and parietal-occipital sites. Within
the framework of our experimental protocol, it seems likely that
there were a form of memory retention after the initiation of
the visual cue, in the form of spatial memory. A debatable ques-
tion that follows is the role of working memory in our task and
how to better elicit internally-driven intention to prevent the

confound of decoding memory retention of the spatial location.
This can be accomplished by modifying the experimental design
to a self-initiated target selection in order to exclude any form
of memory retention. On the other hand, we could explore the
feasibility to decode spatial memory retention from EEG signals.

A potential limitation of SCPs for real-time implementation
is the significant group delays introduced by filtering, which
may be a problem for applications requiring prompt response.
Xu et al. (2014) has successfully shown their use in a closed-
loop online implementation with true positive rate of 79% at a
latency of 315 ms. Further studies could be done to assess this
speed-accuracy trade-off for real-time implementation.

4.4. COMPARING DETECTION OF MOVEMENT INTENTION AND
PREDICTION OF MOVEMENT DIRECTION

Table 5 compares the early detection times (when DA exceeds
chance level with performance evaluated using the best clas-
sifier) of both the intention to initiate the self-paced move-
ment (Lew et al., 2012a) and the predicted direction. Which
component should be detected earlier remains an open ques-
tion. For all subjects but C1, movement intention was detected
earlier than direction. For subject C1, however, detection only
differs by 25 ms. Subject P1 deserves an additional comment.
Although early detection of direction appeared at −1437.5 ms,
decoding was not stable and rapidly decreased to random level.
Only at−550 ms direction decoding remained above chance level
until movement onset. It seems then that discriminant infor-
mation about movement onset shortly precedes direction-related
information.

As a future direction, we will explore the the use both
decoders, either in parallel or sequentially, to enhance the reli-
ability of upper-limb neuroprostheses. Fusion of both kind of

Table 5 | Comparison between detection of movement intention and

prediction of movement direction.

Subject Hand Time above chance level (ms)

Movement intention Direction prediction

detection

C1 Right −475.0 −500.0

C2 Right −450.0 −312.5

P1 Left −600.0 −550.0

P2 Right −725.0 −625.0

P3 Right −500.0 −312.5

Table 4 | Non-invasive methods used for decoding movement directions.

References Type Directions Features Frequency band Areas Performance

Waldert et al., 2008 Execution 4 PSD, time-domain <3 Hz MRP Motor MEG: 67.0%, EEG: 55.0%

Hammon et al., 2008 Both 3–4 Time, PSD, wavelet, ICA High Gamma Frontal EEG: 57.0–59.0%

Wang and Makeig, 2009 Intention 2 ICA <30 Hz PPC EEG: 80.25%

Robinson et al., 2013 Both 4 LFC ≤6 Hz Midline
parietal, motor

EEG: 80.0%
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Table 6 | Time to complete reaching movements and onset time

(interval between target cue presentation to start of movement).

Subject Movement time (ms) Onset time (ms)

C1 578.09± 151.96 3180.53± 1439.37

C2 660.40± 156.99 2880.47± 941.35

P1 3182.64± 1129.40 5062.50± 3427.20

P2 2333.98± 368.24 2728.32± 679.00

P3 1169.62± 403.50 2810.21± 1233.11

Able-bodied subjects: dominant arm; stroke patients: paretic arm.

decoders can be also applied during online operation of the
neuroprosthesis so as to achieve continuous control. Another
extension is to incorporate eye movements tracking into the tra-
jectory model for decoding directional reaches (Corbett et al.,
2012).

4.5. STROKE PATIENTS AND ABLE-BODIED SUBJECTS
Our results show differences in decoding performance between
able-bodied subjects and stroke patients. A reason that could
explain this difference is the time required to complete the reach-
ing movement (see Table 6). Able-bodied subjects completed the
reaching movement in less than 700 ms, while stroke patients
took more than 1000 ms when using their affected limb. These
differences were statistically significant (p < 0.001, two-tailed
Student’s t-test). These behavioral differences are in line with
other studies comparing motor deficits after stroke (Cirstea and
Levin, 2000). Despite marked differences in execution times, fur-
ther analysis showed that trajectories were similarly smooth for
able-bodied subjects and stroke patients.

Besides the difference in reaching speed, the age difference
between the able-bodied and patient groups could also potentially
be a reason for lower decoding performance of approximately
30% by the stroke patients. The issue on age-related differences
in BCI performance has been investigated in some studies (Vesco
et al., 1993; Friedman et al., 1997; Allison et al., 2010), which
reported differences in amplitudes, latencies and scalp topogra-
phy. Therefore, a fair comparison between able-bodied subjects
and stroke patients is only possible using age-matched groups in
order to avoid potential confounds. In addition, there are plenty
of references to EEG abnormalities caused by cerebrovascular dis-
ease (CVD) (Niedermeyer, 1982; Pfurtscheller et al., 1984). These
differences are caused by the location, size of damage and time
elapsed between stroke and EEG recording, thus resulting in dis-
tinct motor-related potentials as compared to able-bodied people
(Colebatch, 2007).

Robot-assisted therapy for stroke patients with moderate-to-
severe upper-limb deficits has shown promising results in terms
of improving motor functional recovery compared to traditional
therapy (Kwakkel et al., 2008). Ang et al. (2014) have shown
that motor gains obtained with BCI-based therapy were com-
parable to those attained with intensive robotic therapy. The
method proposed in this paper can be further verified in an online
implementation to control a robotic arm and, later, in combina-
tion with rehabilitation robotics (Krebs et al., 2003) for motor

recovery of spinal cord injury and stroke patients1. For this pur-
pose, it is important to assess the stability of brain patterns across
days (i.e., to determine how MRPs change during the process
of functional recovery). Furthermore, in a realistic scenario, it
is also important to study the effect of feedback generated by
the robot-assisted passive movement on the stability of the brain
patterns.
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Low frequency signals recorded from non-invasive electroencephalography (EEG), in
particular movement-related cortical potentials (MRPs), are associated with preparation
and execution of movement and thus present a target for use in brain-machine interfaces.
We investigated the ability to decode movement intent from delta-band (0.1–4 Hz) EEG
recorded immediately before movement execution in healthy volunteers. We used data
from epochs starting 1.5 s before movement onset to classify future movements into one
of three classes: stand-up, sit-down, or quiet. We assessed classification accuracy in both
externally triggered and self-paced paradigms. Movement onset was determined from
electromyography (EMG) recordings synchronized with EEG signals. We employed an
artifact subspace reconstruction (ASR) algorithm to eliminate high amplitude noise before
building our time-embedded EEG features. We applied local Fisher’s discriminant analysis
to reduce the dimensionality of our spatio-temporal features and subsequently used a
Gaussian mixture model classifier for our three class problem. Our results demonstrate
significantly better than chance classification accuracy (chance level = 33.3%) for the
self-initiated (78.0 ± 2.6%) and triggered (74.7 ± 5.7%) paradigms. Surprisingly, we
found no significant difference in classification accuracy between the self-paced and
cued paradigms when using the full set of non-peripheral electrodes. However, accuracy
was significantly increased for self-paced movements when only electrodes over the
primary motor area were used. Overall, this study demonstrates that delta-band EEG
recorded immediately before movement carries discriminative information regarding
movement type. Our results suggest that EEG-based classifiers could improve lower-limb
neuroprostheses and neurorehabilitation techniques by providing earlier detection of
movement intent, which could be used in robot-assisted strategies for motor training and
recovery of function.

Keywords: EEG, electroencephalography, movement-related cortical potentials, classification, brain-machine

interface, mobile neuroimaging, lower extremity

INTRODUCTION
Robot-assisted therapies have shown promising results, com-
pared to traditional therapy, for functional recovery of movement
after injury in the upper and lower extremities (Winchester
et al., 2005; Hogan and Krebs, 2011). These neurorehabilita-
tion paradigms could be improved by faster and more robust
detection of movement intent where it originates in the brain.
Incorporation of a brain machine interface (BMI) can reduce
the latency between motor planning in the cortex and activa-
tion of a device to execute (or assist) the movement, thereby
enhancing the opportunity for brain plasticity and motor recov-
ery (Daly and Wolpaw, 2008). The intuitive nature of a BMI
based on signals directly related to intended movement could
be advantageous for rehabilitation by expediting adaptation
of the brain to the BMI algorithm and the robotic device.
Electroencephalography (EEG) provides a non-invasive method
for imaging brain activity with enough time resolution to exert
control over an assistive device. Many strategies for deploying

EEG in a BMI by detecting movement intent (imagined and
real) have been reported (Pfurtscheller et al., 1996, 2006; Wolpaw
et al., 2002; Millán et al., 2004; Qin et al., 2004; Hung et al.,
2005; Morash et al., 2008). These systems typically leverage one
of two phenomena to detect movement intent: event related
(de)synchronization (ERD/ERS) and movement related slow cor-
tical potentials (MRPs). ERD, a decrease of power in alpha
and beta bands, is typically localized to the contralateral sen-
sorimotor areas before movement while ERS, a power increase,
has been observed after movement (Pfurtscheller and Lopes da
Silva, 1999). Modulation of these sensorimotor rhythms has
been employed for classification of imagined (Pfurtscheller et al.,
2006; Pfurtscheller and Neuper, 2006) and executed (Morash
et al., 2008) movements with some success. ERD has also shown
capacity to categorize gross lower extremity tasks, including dif-
ferentiation of right and left leg motor imagery (Boord et al.,
2010) and identification of imagined standing (Zhong et al.,
2007).
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MRPs are slow negative potentials observed in EEG preced-
ing movement. MRPs can be divided into two segments: the
first begins as early as 2 s before movement onset and has been
observed over the entire pre-supplementary motor area (SMA),
and over the SMA and lateral premotor cortex according to soma-
totopic organization (Ikeda et al., 1992; Hallett, 1993; Shibasaki
and Hallett, 2006; Bai et al., 2011). The second, or late, segment
typically has a steeper negative slope and is observed in the con-
tralateral primary motor cortex (M1) and lateral premotor cortex
according to precise somatotopic arrangement. These potentials
are well established in upper and lower extremity movements
both real and imagined (Boschert and Deecke, 1986; Shibasaki
and Hallett, 2006). Interestingly, MRPs recorded from EEG pre-
ceding toe, foot, and ankle movements tend to be larger on the
ipsilateral side of the brain, which is the opposite of upper extrem-
ity movements that create larger MRPs on the contralateral side
(Brunia and Van Den Bosch, 1984; Boschert and Deecke, 1986).
This paradoxical lateralization of the MRP during foot move-
ments may be explained by its localization along the midline deep
within the precentral gyrus of the motor cortex, thereby direct-
ing electrical current from activation of these cell columns to the
opposite hemisphere.

The type and sequence of movement affects MRPs recorded
from EEG. MRPs appear to be more pronounced during
self-initiated movements compared to triggered movements
(Jahanshahi et al., 1995; Cui and MacKinnon, 2009); the differ-
ence appears to be further enhanced if the timing of the triggered
movements is variable (Jankelowitz and Colebatch, 2002). In the
case of finger movements, force level (Slobounov et al., 2002),
finger sequence (Bortoletto et al., 2011), and task complexity
(Shibasaki and Hallett, 2006) all appear to modulate the MRP.
MRP amplitude was found to be highly correlated to joint torque
and electromyography (EMG) amplitude during isolated elbow
flexion (Siemionow et al., 2000). In the lower extremity, the rate
of torque development appears to influence the late MRPs pre-
ceding isolated ankle movements (do Nascimento et al., 2006).
Slow negative shifts in EEG similar to MRPs have been observed
during coordinated movements of the lower extremity, including
rising onto the toes (Saito et al., 1996) and self-paced forward
postural sway (Slobounov et al., 2005). The direction of gait ini-
tiation and stepping has been reported to influence both the
slope and magnitude of MRPs (do Nascimento et al., 2005).
These previously published studies suggest that slow developing,
movement related potentials observed prior to movement may
contain discriminative information regarding the movement that
is being performed. Further, MRPs appear to provide an appro-
priate measure for timing of afferent feedback to induce long term
potentiation of cortical projections. As demonstrated in the tib-
ialis anterior muscle, only peripheral stimulation delivered at the
peak of the MRP increased motor evoked potentials from tran-
scranial magnetic stimulation (TMS) targeting the ankle area of
the motor cortex (Mrachacz-Kersting et al., 2012).

Because of their small amplitude and low frequency con-
tent, the best way to extract MRPs from EEG recording is to
average across many trials of the same movement. Single trial
classification of movement intention from MRPs is possible, but
achieving high accuracy can be difficult. Classification typically

involves several steps, including signal pre-processing, feature
extraction, dimensionality reduction, and finally feature classifi-
cation (Bashashati et al., 2007). Numerous approaches to these
steps have resulted in application of many machine learning,
feature selection, and pattern recognition techniques for classi-
fication of movement intent and direction based on EEG signals
(Garrett et al., 2003; Peterson et al., 2005; Bai et al., 2007; Lotte
et al., 2007). The first example of a BMI-based spelling device uti-
lized slow cortical potentials derived from a motor imagery task
to provide individuals with amyotrophic lateral sclerosis control
of a cursor on a screen (Birbaumer et al., 1999). Two individ-
uals were able to achieve accuracies greater than 75% after 327
and 288 training sessions. Recent studies have demonstrated suc-
cess in utilizing MRPs extracted via low frequency or delta band
EEG, including classification of finger movement (Liao et al.,
2007), joystick direction (Waldert et al., 2008), wrist movement
direction (Vuckovic and Sepulveda, 2008), direction of a center
out reaching task (Robinson et al., 2013), and movement inten-
tion in a self-paced reaching task (Lew et al., 2012). The latter
study showed higher detection accuracy using the lower delta
band than alpha (7–13 Hz) or beta (13–20 Hz) bands. MRPs have
also been successfully deployed for classification of lower extrem-
ity movements. At the ankle, MRPs have been used to detect
movement intention in healthy subjects with average accuracy
of 82.5% for movement execution, and with slightly lower accu-
racy for motor imagery (64.5%) and attempted movement in
stroke patients (55%) (Niazi et al., 2011). Similar accuracies were
reported in a study that did not incorporate an individual-specific
training phase (Niazi et al., 2013), further supporting the robust-
ness of MRP as a BMI target. In addition to movement intention,
MRPs recorded during imagined plantar flexion have also been
used to distinguish between two different rates of torque devel-
opment (do Nascimento and Farina, 2008). Recent studies have
demonstrated that MRPs recorded from EEG can be deployed in
real-time BMIs. In one, MRPs preceding imagined ankle dorsi-
flexion were identified online to trigger electrical stimulation of
the tibialis anterior (Niazi et al., 2012). Not only did this study
show feasibility of MRPs for use in a BMI, but it also demon-
strated the potential benefits BMMI-based neurorehabilitation
since motor evoked potentials from TMS were enhanced follow-
ing the intervention in healthy individuals. Another study showed
that delta band EEG could reliably ascertain ankle movement ini-
tiation in real time with a mean latency of 315 ms (Xu et al.,
2014).

In addition to detecting and classifying movement type, sparse
networks of low frequency EEG have also been successful in
decoding kinematics and EMG activity during various move-
ments, including decoding of hand grasping patterns (Agashe and
Contreras-Vidal, 2013), hand and finger velocity (Bradberry et al.,
2010; Liu et al., 2011; Paek et al., 2014), and muscle synergies dur-
ing reaching (Beuchat et al., 2013). Additionally, peri-movement
neural activity representative of movement direction has been
observed in electrocorticographic (ECoG) signals over primary
motor, premotor, posterior-parietal, and lateral prefrontal cor-
tex (Ball et al., 2009). Action intention can also be decoded from
fMRI data recorded from a wide cortical network, spanning from
the parieto-occiptial sulcus through the prefrontal cortex, both
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preceding and during movement execution (Gallivan et al., 2011).
Taken together these studies suggest non-invasive EEG recorded
from large areas of the scalp immediately prior to movement
execution could carry useful information about movement.

EEG has been used to examine cortical activity during gait,
including studies demonstrating that intra-stride changes in spec-
tral power are coupled to gait cycle (Gwin et al., 2011) and that
level of user-involvement in robotic-assisted walking alters gait-
related patterns of electrocortical activity (Wagner et al., 2012).
Low frequency EEG also appears to carry useful information
regarding walking. A recent study showed that features corre-
sponding to frequencies less than 2 Hz were the most heavily
weighted during single trial classification of walking and point-
ing direction (Velu and de Sa, 2013). Delta-band EEG was used to
classify walking intention in one individual with paraplegia using
a robotic exoskeleton with accuracy greater than 98% (Kilicarslan
et al., 2013) and to decode lower limb kinematics during walk-
ing in healthy individuals (Presacco et al., 2011, 2012). MRPs
have also been used with a matched filtering technique to detect
single-trial step initiation (Jiang et al., 2014). An important con-
sideration for application of low frequency EEG to the study
of whole-body movements such as walking or sit/stand tran-
sition is the presence of movement-related artifacts. A recent
study showed similar power spectral density patterns from an
accelerometer mounted on the head and from EEG electrodes
(Castermans et al., 2014). Interestingly, the patterns were sim-
ilar only at higher walking speeds, while differences between
the accelerometer and EEG were observed at slower speeds. The
study did not compare spectral patterns from EEG during walk-
ing without the rigid plate and linkage assembly used to mount
the accelerometer on the head, so the effect of its mass and
inertia remains unknown. Also, the study did not employ active
EEG electrodes which provide amplification at the electrode to
minimize movement artifacts and increase signal-to-noise ratio.
Spatial filtering techniques, such as independent component anal-
ysis (Delorme et al., 2007), may be used to isolate gait-related
artifact, but the effectiveness of these techniques is still under
investigation. In one study, gait-related artifact remained in many
independent components of EEG, resulting in development of
a template subtraction technique to clean EEG collected during
walking (Gwin et al., 2010). This type of template regression
would not be appropriate for studying cortical contribution to
locomotion because all signals coupled to the gait cycle would
likely be removed. Another technique utilizes principal compo-
nent analysis to compare sliding windows of EEG to a baseline
recording, thereby removing high amplitude artifacts (Mullen
et al., 2013); this approach may be better suited for removing
movement artifacts but has not yet been applied to gait. Thus,
the feasibility of utilizing EEG to study cortical activations dur-
ing whole-body movement tasks is an ongoing area of research.
Nevertheless, an inherent advantage of MRPs is their presence
in EEG recorded before movement, when motion artifacts are
minimized.

In this study we examined the use of non-invasive EEG
recorded prior to movement execution to discriminate a user’s
intent to perform two coordinated whole body movements—
rising from a seated to standing posture and lowering from a

standing to a seated posture—in a three class problem, where
the third class constituted no movement or “quiet”; this class
included data collected during quiet standing and quiet sitting.
Based on the previous body of evidence regarding the discrim-
inative nature of MRPs with regards to movement, we utilized
delta band EEG to build our features for classification. We trained
and tested our classifier using time periods before executed move-
ments, as opposed to cue-based imagery, so we could precisely
align EEG recordings with movement onset detected from EMG
recordings. We studied classification accuracy during two differ-
ent paradigms: a self-initiated series of stand-to-sit and sit-to-
stand transitions and transitions which were cued by an audio
trigger. Because triggered movements are reported to produce
less prominent MRPs (Jankelowitz and Colebatch, 2002; Cui and
MacKinnon, 2009), this protocol allowed us to examine the effect
of MRP signal to noise ratio on classification accuracy. We uti-
lized time-embedding and concatenation of EEG channels from
the time before movement execution to create a feature vector
of high dimension to classify the intended movement (stand-
up, sit-down, or quiet). Given the autoregressive nature of EEG
signals (Muller et al., 2003) and the underlying neurophysiol-
ogy (e.g., volume conduction), we assume that the recorded EEG
originates from a system with fewer degrees of freedom than our
feature vector dimensions, resulting in a manifold data structure.
Recent advances in machine learning have resulted in algorithms
which preserve the local structure of a manifold data set in a
reduced dimensional subspace (Sugiyama, 2007; Li et al., 2012)
thereby enhancing the discriminative power of the data set. Based
on the observation that information pertinent to movement is
contained in low frequency EEG, we hypothesized that apply-
ing a locality preserving dimensionality reduction technique to
our high dimensional feature vector derived from time-embedded
and spatially diverse delta band EEG would reveal its under-
lying discriminative structure. We coupled this supervised data
reduction with a Gaussian mixture model classifier to test if we
could reliably ascertain the intended movement of the user from
offline analysis of EEG recordings. We believe such a classifier
could eventually be deployed in a real-time BMI system to con-
trol an assistive device or as a component of a neurorehabilitation
paradigm to restore motor control.

METHODS
DATA COLLECTION
Ten healthy adults (6 male, 4 female) with no history of neu-
rological disease participated in the study after giving informed
consent. This study protocol was approved by the Institutional
Review Board at the University of Houston. Participants com-
pleted two trials of 10 alternating sit-to-stand and stand-to-sit
transitions; one trial was self-paced and one trial was cued via
audio trigger. Each trial began with the participant standing qui-
etly in an upright posture for 15 s. In the triggered trial, an
audio cue (beep) was given after which point the participant ini-
tiated a transition to a seated posture. The seated posture was
held for a period ranging randomly from 3 to 10 s, after which
a second audio cue was given to initiate the transition from
sit-to-stand. The standing posture was held for another (ran-
dom) 3–10 s interval, at which point the process was repeated
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until 20 transitions (10 of each) were completed. The procedure
for the self-paced trial was similar. After 15 s of quiet standing,
the participant was instructed via verbal cue to begin the self-
initiated stand-to-sit and sit-to-stand transitions. The participant
was instructed to wait for a random interval of 3–10 s before
self-initiating the next transition. Finally, the participant was
notified by verbal cue once he/she had completed 20 self-initiated
transitions.

Time-locked EMG and EEG data were collected simulta-
neously using a previously developed data collection system
(Bulea et al., 2013). Surface EMG (Biometrics, Ltd, Ladysmith,
VA) was recorded at 1000 Hz bilaterally from the tibialis ante-
rior, gastrocnemius, biceps femoris, and vastus lateralis. Whole
scalp, active electrode, 64-channel EEG (Brain Products, GmbH,
Morrisville, NC) were collected at 1000 Hz and labeled by
the 10–20 international system. The impedance of each EEG
electrode was maintained below 25 k� for the entire data
collection.

DATA ANALYSIS FOR CLASSIFICATION OF MOVEMENT INTENT
Preprocessing
All data analysis and classifier optimization and evaluation were
performed off-line using custom software in Matlab (Mathworks,
Natick, MA). The data processing and classification methodol-
ogy is shown in Figure 1. Peripheral EEG channels susceptible to
eye blinks and facial/cranial muscle activity were removed from
offline analysis (all channels labeled Fp, AF, FT, T, TP, O, PO, and
F5-8, P5-8) resulting in 28 channels being retained for classifica-
tion. EEG signals were then high pass filtered at 0.05 Hz using a
zero-phase 8th order Butterworth filter. Next, we removed tran-
sient, high-amplitude artifacts from stereotypical (e.g., eye blinks)
and non-stereotypical (e.g., movement, muscle bursts) using an
automated artifact rejection method termed Artifact Subspace
Reconstruction (ASR) (Mullen et al., 2013) which is available as
a plug-in for EEGLAB software (Delorme and Makeig, 2004).
ASR uses a sliding window technique whereby each window of
EEG data is decomposed via principal component analysis so
it can be compared statistically with data from a clean baseline
EEG recording, collected here as 1 min of EEG recorded during
quiet standing. Within each sliding window the ASR algorithm
identifies principal subspaces which significantly deviate from
the baseline EEG and then reconstructs these subspaces using a
mixing matrix computed from the baseline EEG recording. In
this study, we used a sliding window of 500 ms and a threshold
of 3 standard deviations to identify corrupted subspaces. After
ASR, the cleaned EEG was band pass filtered with a zero phase,
3rd order Butterworth filter from 0.1 to 4 Hz to isolate the delta
band activity. The EEG data were then standardized by channel
by subtracting the mean and dividing by the standard deviation
(z-score).

EMG recordings from the lower extremity muscles were used
to determine movement onset of each stand-to-sit and sit-to-
stand transition. First, the Teager-Kaiser energy operator was
applied to each EMG channel to enhance the signal-to-noise ratio
for onset detection (Li et al., 2007). Next, each EMG channel
was detrended, band pass filtered (15–300 Hz), rectified, and low
pass filtered at 3 Hz to compute the linear envelope. Then, the

FIGURE 1 | Flow chart describing the EMG and EEG data processing

for neural decoding of sitting and standing movement. A threshold of 3
standard deviations was applied to the EMG linear envelope to identify
quiet periods and periods of movement (sitting and standing). Only
pre-movement epochs (1.5 s before movement to movement onset) and
quiet epochs (1.5 s after movement completion to 1.5 s before next
movement) were retained for analysis. As a control, a separate decoding
analysis using movement epochs (movement onset to 1.5 s after onset)
was also performed. Artifact subspace reconstruction (ASR) algorithm,
available as a plug-in for EEGLAB software (Delorme and Makeig, 2004),
was applied to eliminate artifacts from EEG data during pre-processing.
Note that the optimization and evaluation data sets are mutually exclusive.

linear envelope of each muscle was thresholded into a binary sig-
nal which was equal to 1 when the envelope exceeded its mean
baseline value during quiet standing and sitting by more than
3 standard deviations (Hodges and Bui, 1996) and zero when it
was within 3 standard deviations of baseline. The baseline period
of EMG activity before each movement was identified a pos-
teriori by visual inspection starting with the initial 15 s of rest
before the first movement. The baseline period between each
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successive sit-to-stand and stand-to-sit transition comprised at
least 2 s. Movement onset for each transition was determined
when any of the 8 thresholded EMG envelopes transitioned from
rest (0) to active (1). Likewise, the end of each movement was
determined when all 8 channels returned to rest (0). The algo-
rithmically determined periods of activity were visually inspected
for accuracy. Using prior knowledge of the experimental proto-
col (i.e., the order of the stand-to-sit and sit-to-stand transitions),
the periods of muscle activity were labeled as stand-to-sit or sit-
to-stand. Note that for some trials, gastrocnemius muscles were
active during the quiet stance phase and/or biceps femoris EMG
was contaminated by artifact from the leg during sitting, thereby
increasing the standard deviation in these channels and limit-
ing the ability to determine the true state using that muscle.
When these periods of activity/artifact were observed visually,
these muscles were removed from the trial; in this case the user
activity was assessed using the remaining 6 muscles.

Next, the time-locked EEG and EMG data were downsampled
to 200 Hz. EEG data were then epoched into pre-movement, post-
movement and quiet periods based on the thresholded (binary)
EMG signal. Each pre-movement epoch consisted of data from
1.5 s before movement onset up to movement onset. EEG data
from 1.5 s after movement completion until 1.5 s before the next
movement onset, with a maximum of 5 s, comprised the quiet
epochs. These epochs were then concatenated into a single time
series containing alternate periods of quiet and pre-movement.
For control purposes, we also created a second time series of data
containing concatenated quiet epochs and epochs of EEG from
movement onset to 1.5 s after movement onset (post-movement
epochs).

The concatenated EEG data sets comprised the three-class clas-
sification problem for each trial; each time point of the quiet
epochs was labeled as class 0 (quiet) while each time point of each
pre-movement epoch was labeled according to the type of move-
ment it preceded: class 1 (stand-to-sit) or class 2 (sit-to-stand).
Next, a time-embedded feature matrix was constructed for each
trial. Each time point in the feature matrix was a vector composed
of 10 lags, corresponding to 50 ms in the past, of EEG data. The
number of lags and embedded time interval was chosen based
on previous studies demonstrating accurate decoding of move-
ment kinematics from low frequency EEG (Bradberry et al., 2010;
Presacco et al., 2011). The feature vector for each time point was
constructed by concatenating the 11 lags (the current time point
plus the 10 prior) for each channel into a single vector of length
11 × N, where N is the number of EEG channels used for classi-
fication (for this study, N = 28). To avoid the problem of missing
data, the feature matrix was buffered by starting at the 11th EEG
sample of each epoch, resulting in a feature matrix of dimension
[Mt−L] × [11 × N] for each trial of self-initiated and triggered
movements where Mt is the number of time points in each trial
and L is the number of past time lags multiplied by the number of
epochs in each trial (for this study, L = 10∗41 = 410). On aver-
age, there were 18,442± 2110 time points in each feature matrix,
with exactly 2900 time points for class 1 and 2900 time points for
class 2 while the remaining time points represented class 0. For all
subjects, the original dimensionality of the feature space was 308
(11× N).

Dimensionality reduction
Since our EEG-based feature vectors were of relatively high
dimension and were composed of time lagged and spatially dis-
tributed samples, we assumed our original dataset to represent a
manifold which may contain multimodal within-class distribu-
tions. Furthermore, we sought to classify gross motor intention
and therefore had a limited number of classes (in this case
there were three: quiet, stand-to-sit, and sit-to-stand). Thus, we
performed dimensionality reduction on our feature matrices to
eliminate any redundant features, reduce computational com-
plexity, prevent over-fitting during classifier training and increase
classification performance. Many techniques have been reported
for dimensionality reduction in EEG based classifiers, including
principal component analysis (PCA), linear discriminant analysis
(LDA), and genetic algorithm (GA) (Bashashati et al., 2007; Lotte
et al., 2007). Consideration of the task, neurophysiology and EEG
recording system suggests that a supervised dimensionality reduc-
tion technique could improve feature selection for classification
purposes. EEG data generally have a low signal-to-noise ratio and
unsupervised linear dimensionality reduction techniques may be
affected by these signal distortions. PCA reduces dimensionality
by maximizing data variance in the projected subspace via a linear
transformation. The transformation, dictated by the eigenvectors
that correspond to the largest eigenvalues of the data covariance
matrix, is unsupervised and can discard useful information for
classification that is contained in the lower energy dimensions of
the original data (Prasad and Bruce, 2008). In contrast, LDA is a
supervised dimensionality reduction technique since it attempts
to maximize between-class scatter while minimizing within-class
scatter in the projected subspace. However, LDA has difficulty
doing this if the original data are heteroscedastic or multimodal.
Furthermore, the size of the LDA-reduced subspace is limited to
c-1 (where c is the number of classes).

Local Fisher’s discriminant analysis (LFDA) combines the
strategy of LDA with a locality-preserving projection to provide
a linear manifold learning technique that preserves the within-
class structure of the original space in the projected subspace;
details of the LFDA algorithm applied in this study are provided
in Sugiyama (2007). Briefly, LFDA seeks to find a transformation
that preserves local neighborhood information, thereby ensuring
that the underlying structure of the data distribution is preserved
in the lower dimensional (size r) subspace. To accomplish this, the
scatter matrices typical of LDA are scaled using an affinity matrix
that measures the closeness of any two points relative to their knn-
nearest neighbor. The parameters knn and r must be optimized in
concert with the classifier for each subject. LFDA has been previ-
ously deployed as a preprocessing step for classification of walking
intention (Kilicarslan et al., 2013) and classification of expressive
movement (Cruz-Garza et al., 2014) from EEG. A similar locality
preserving projection was also employed for detection of ankle
movement intention from low frequency EEG (Xu et al., 2014).

Classification algorithm
Once a suitable algorithm for dimensionality reduction was deter-
mined, we next identified a classification scheme to decode
movement intent from our EEG-based features. Gaussian mix-
ture model (GMM) classifiers are common in the fields of
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biometrics and biomedical engineering because GMMs are capa-
ble of representing arbitrary statistical distributions as a weighted
summation of multiple Gaussian distributions, termed compo-
nents (Paalanen et al., 2006). Utilizing a GMM to compute the
class-conditional probabilities in a maximum-likelihood classi-
fier could improve performance over the traditional formulation,
especially when the within-class feature set may be non-Gaussian,
as could be the case for the temporally and spatially diverse EEG
based features used in this study. The probability density func-
tion for a given training data set in the LFDA projected subspace,
X = {xi}ni= 1 ∈ R

r , is given by:

p(x) =
K∑

k= 1

αkφk (1)

φk(x) = exp[−0.5(x − μk)T�−1
k (x − μk)]

(2π)r/2 |�k|1/2
(2)

where K is the number of components, αk is the mixing weight,
μk is the mean vector, and

∑
k is the covariance matrix of the

k-th component. The parameters of each GMM component K,
including αk, μk, and

∑
k, are estimated as those which maximize

the log-likelihood of the training set given by:

Lk =
n∑

i= 1

log pk(xi) (3)

where p(x) is given in (1). Maximization of (3) is carried out using
an iterative expectation-maximization (EM) algorithm (Vlassis
and Likas, 2002), with the initial estimate of the parameters αk,
μk, and

∑
k established via k-means clustering (Su and Dy, 2007),

until the log-likelihood reaches a predetermined threshold. The
number of components K is a critical parameter for success-
ful implementation of a GMM classifier. During training, we
limited the maximum value of K to be 10 and computed the
maximum log likelihood from (3) for each model with values
of K ∈ {1, 2 . . . 10}. We estimated the optimal value of K as the
model that minimized the Bayes information criterion, which has
been reported as an effective measure for optimizing the number
of GMM components (Li et al., 2012). In this manner, GMMs
representing each movement class were specified for use in a
maximum-likelihood classifier.

The parameters for each class-conditional GMM were com-
puted using an optimization data set for each participant (see
Classifier optimization section). The parameter space which must
be explored in order to fit these mixture models can be quite
large, especially if the feature dimension is large. Given the lim-
ited time and training data available during EEG studies, this
learning task may be impractical, but as indicated in the pre-
vious section, LFDA has been shown to effectively reduce data
dimensionality while preserving the statistical information. Thus,
we applied LFDA dimensionality reduction on our EEG feature
set prior to training and testing a GMM model for use in a
maximum-likelihood classifier of intended motion.

Classifier optimization
The EEG feature matrix from each trial was split into two mutu-
ally exclusive sets: one for LFDA-GMM classifier optimization
and one for classifier evaluation (Figure 1). The optimization
data set was selected randomly from the full data set, and it
comprised 400 samples (2 s) of data from each class. The opti-
mization data set was then split into two equally sized exclusive
subsets, one for training and one for testing. The parameters
for the LFDA-GMM classifier (the nearest neighbor (knn) used
in the affinity matrix, the dimensionality (r) of the projected
subspace, and the number of mixture components (K) in the
mixture model) were optimized for each subject and trial type—
self initiated and triggered—using the optimization data set.
Optimization involved three steps (Figure 1): (i) dimensionality
reduction using LFDA for values of knn and r from 1 to 249 and 1
to 250, (ii) identification of the optimal value of K for each class
at each grid point in (i) using the training data from the optimiza-
tion set, and (iii) computation of the accuracy of the LFDA-GMM
classifier at each grid point in (i) using the testing data from the
optimization set. The optimal parameters {knn, r, K} for each sub-
ject were selected as those which produced the highest overall
classification accuracy from the testing data.

Classifier performance via cross validation
The performance of the LFDA-GMM classifier with the opti-
mal parameter set was analyzed for each subject and trial
using repeated random sub-sampling cross validation (Figure 1).
Repeated sub-sampling was chosen because the variable timing
of the movements in each trial would result in an unequal num-
ber of samples from each class if k-fold cross validation scheme
was used. The evaluation data set was randomly split into mutu-
ally exclusive training and testing data sets (Figure 1). Each of the
three classes in the training set contained 600 data points repre-
senting 20% of the sit and stand classes. (Because the sit and stand
classes were composed of ten 1.5 s long pre-movement epochs for
each subject, their size was always equal). After training, LFDA-
GMM classifier performance was analyzed using the testing data
set, which contained all remaining data from the sit and stand
classes, and an equal number of data points randomly selected
from the quiet class. Thus, each class in the testing set contained
1900 data points. This test set structure was used to control for
effects of class population size by assuring an equal number of
testing samples in each class. During testing a classification deci-
sion was made for each data point, which represented a single
time sample from the trial. The posterior probability of each data
point was computed using the optimized GMM for each class
and the data point was then assigned to the class that returned
the largest value. This process yielded a classification decision for
1900 data points per trial. To avoid training bias, the random
training and testing process was repeated 20 times and the aver-
age classification accuracies were reported for each subject under
each condition (self-initiated and triggered movements). We
performed post-hoc statistical comparisons between conditions
using the non-parametric Kruskal-Wallis one-way analysis of
variance.

To examine the effects of the ASR algorithm and the potential
contribution of motion artifacts, we repeated the optimization

Frontiers in Neuroscience | Neuroprosthetics November 2014 | Volume 8 | Article 376 | 184

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Bulea et al. Decoding sit/stand intention from EEG

and cross validation procedure using EEG data from pre-
movement epochs pre-processed in the same manner as Figure 1
except that the ASR process was omitted. We also examined the
classification accuracy using EEG epoched from movement onset
to 1.5 s after movement onset both with and without the ASR
algorithm. Finally, we divided the scalp into four major regions
of interest (ROI) to assess the classification ability of each area
individually. The ROIs included the frontal cortex (F3,F1, Fz, F2,
F4, FC2, FC1, FC2, and FC4), the motor strip (C5, C3, C1, Cz, C2,
C4, and C6), the parietal cortex (CP5, CP3, CP1, CPz, CP2, CP4,
CP6, P3, P1, Pz, P2, and P4) and the central midline (FC1, FC2,
C1, Cz, C2, CP1, CPz, and CP2). For each condition, we assessed
within subject differences in accuracy across ROIs using the non-
parametric Friedman test. The statistical sign test was used to
assess if the difference in accuracy between self-initiated and trig-
gered movements for each participant and ROI were significantly
different from a distribution with a median of zero.

Demonstration of simulated real-time classification
We implemented a two-fold approach to demonstrate LFDA-
GMM classifier performance in a simulated real-time environ-
ment using EEG data from the self-paced trial. The classifier was
trained using ASR-cleaned EEG data from the first half of the
trial with the optimal parameter set for each subject. Unlike dur-
ing the cross-validation procedure, the time periods immediately
following the movement execution were not trimmed from the
data set but instead were included in the quiet class. Data from
the second half of the trial, containing five transitions each of
stand-to-sit and sit-to-stand, was used to test the controller in a
simulated real-time manner resulting in a continuous time series
of classification decisions.

OBSERVATIONAL EEG MEASURES
In addition to classification of movement intent, we computed
several observational measures to help assess differences in corti-
cal activity across the experimental conditions. We computed the
MRPs from each subject during both the self-initiated and trig-
gered conditions. To compute MRPs, each EEG channel was band
pass filtered between 0.1 and 50 Hz and epoched from 2.5 s before
movement onset to 1 s after onset. Each channel and epoch was
baseline corrected using the mean voltage from 2.5 to 2 s before
onset. Each channel was then averaged over all 20 epochs for each
condition.

To ascertain differences between periods of quiet (i.e.,
rest between movements), pre-movement, and post-movement
epochs under each condition (self-initiated and triggered) we
computed the power spectral density (PSD) for each EEG chan-
nel with a frequency resolution of 0.12 Hz using the Thompson
Multitaper method in Matlab with a time bandwidth product of
4. The PSD was computed after artifact removal with ASR but
before band-pass filtering and standardization. EEG was common
average referenced for purposes of PSD computation. The spa-
tial distribution of alpha band (8–13 Hz) ERD was computed for
the pre-movement and post-movement epochs under both con-
ditions as was the change in power in the delta band (0.1–4 Hz).
The change in power for both frequency bands was computed rel-
ative to the quiet epochs for each condition (self-initiated and

triggered). We assessed statistical differences across conditions
using the non-parametric Kruskal-Wallis one-way analysis of
variance with a Bonferroni correction for multiple comparisons.

RESULTS
OBSERVATIONAL MEASURES
Standardized EEG and the linear envelope of EMG recorded dur-
ing a typical trial for one subject is shown in Figure 2. EEG
with and without ASR is shown, demonstrating the removal of
high amplitude artifacts, especially in the time periods following
movement onset. Although all 64 channels of EEG are displayed,
those channels marked with an asterisk (∗) were removed prior
to classification of movement intention. The EEG PSD computed
during rest (quiet standing) and the pre-movement epochs dur-
ing the self-initiated and triggered trials is shown in Figure 3. The
grand mean PSD across all participants and electrodes used for
classification (lower inset, Figure 3) is shown. Two identifiable
peaks are present in the rest condition, during which the sub-
ject was standing quietly; one in the theta band at approximately
7 Hz and one in the alpha band at approximately 11 Hz. Power in
these bands were significantly greater at rest than during the pre-
movement epochs under both conditions (p < 0.01 for both).
Notably, the delta band power during the pre-movement epochs
was greater than rest while the power in the theta and alpha
band was greater during rest (upper inset, Figure 3). In the pre-
movement epochs, there was significantly less power in the theta
band (4–8 Hz) during self-initiated transitions compared to trig-
gered (p = 0.004), while power in the alpha band (8–13 Hz) was
not statistically different between conditions (p = 0.107). Finally,
power roll-off, indicated by the slope of the PSD, was diminished
in theta and alpha bands compared to surrounding delta and beta
bands for the self-initiated pre-movement; however, roll-off was
only decreased in the alpha band for the triggered condition.

The change in delta and alpha band power for the pre- and
post-movement epochs, relative to the periods of quiet sitting and
standing between movement executions, averaged over all partici-
pants is shown in Figure 4. In the delta band, we observed slightly
increased power in the pre-movement epochs over all electrodes
for both conditions, with slightly more delta power present in
the self-initiated trials. In contrast, delta band power during the
post-movement epochs was much larger, especially for the trig-
gered trials, which showed nearly double the delta band power of
the rest condition. The same level of increase was not observed
over the full scalp in the self-initiated trials, although delta band
power over the central midline electrodes increased by nearly
100%. Alpha band power was similar to quiet periods across most
electrodes (note the difference in scale between alpha and delta
power in Figure 4). Bilateral alpha band ERD was observed in
both conditions; however for the triggered trials the ERD was less
prominent and restricted to the central sensorimotor and parietal
electrodes, while frontal and peripheral electrodes showed a slight
increase in alpha power. Conversely, alpha ERD was stronger in
the self-initiated condition, especially in the central-parietal areas
of the scalp.

We found the presence of MRPs to be variable across subjects
and conditions. In 3 subjects, MRPs were prominent across the
scalp during the self-initiated movement epochs but not during
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FIGURE 2 | Typical recordings of EEG and EMG data during

the sitting and standing task. (A) Standardized (z-score) EEG
data is shown before (black) and after (red) ASR algorithm for
artifact rejection. An asterisk (∗) indicates peripheral channels

which were removed prior to decoding. (B) The linear envelope
of EMG data used to determine movement onset time, shown
as vertical black lines. The type of movement is indicated at
the top of the figure.

Frontiers in Neuroscience | Neuroprosthetics November 2014 | Volume 8 | Article 376 | 186

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Bulea et al. Decoding sit/stand intention from EEG

FIGURE 3 | Grand mean power spectral density (PSD) of EEG

recordings across the 10 subjects. The PSD was computed across all
channels retained for neural decoding (left inset) during quiet standing
(black line) and concatenated pre-movement epochs during triggered

sitting and standing (pre-trigger, green line), and concatenated
pre-movement epochs during self-initiated sitting and standing (pre-self,
red line). The right inset shows the ratio of pre-trigger and pre-self
PSD to rest.

FIGURE 4 | Scalp maps of the change in power compared to rest during

pre- and post-movement epochs. The two sets of maps show the average
change in delta and alpha band power across all electrodes and subjects

during the pre-movement epoch (1.5 s before movement to movement onset)
and post-movement epoch (movement onset to 1.5 s after onset) relative to
the quiet state for both the triggered and self-initiated conditions.

the triggered movements (Figure 5A). For the remaining subjects,
less prominent MRPs were present at some electrodes for both
conditions (Figure 5B). We examine the relationship between
MRP and classification accuracy in more detail below.

CLASSIFIER VALIDATION
The LFDA-GMM classification accuracy surface followed a sim-
ilar pattern for most subjects (Figure 6), rising sharply as the
size of the reduced subspace (r) increased. Accuracy typically
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FIGURE 5 | Example of movement related potentials (MRPs) recorded in

two different subjects. (A) MRP from S5 indicating a difference between
triggered (black line) and self-initiated (red line) movements. (B) MRP from S9

indicating similar, less prominent RPs for both the triggered and self-initiated
trials. For each subject, MRPs were averaged across all 20 movements for
each condition; movement onset is at 0 s.

FIGURE 6 | Example of a subject-specific accuracy surface created

during LFDA-GMM classifier optimization. The accuracy plotted at
each point {r, knn} on the surface is the average accuracy with the
optimal number of mixture components (K ) for each class at that point.

peaked for r values between 50 and 125 before decreasing slightly,
and then reaching a plateau as the value of r was further
increased. Classification accuracy was generally insensitive to the
knn parameter with the exception of very low r values. The opti-
mal parameter set for each subject and condition is provided
in Table 1. Across subjects and conditions, the average dimen-
sion of the EEG-based feature space following LFDA was 88
(range 30–118), representing a significant reduction from the
original size of 308. With few exceptions, the optimal accuracy
was achieved using only one mixture component (K = 1) and
thus, the LFDA-reduced EEG features were generally not strongly
multimodal.

The mean overall classification accuracy obtained from the
20 times cross validation procedure for each subject and condi-
tion is shown in Figure 7 along with the overall mean across all

Table 1 | Optimized LFDA-GMM parameters for each subject and

condition.

Subject Reduced Nearest Mixture components (K ) by class:

dimension neighbor

(r) (knn) 0 1 2

(quiet) (stand-to-sit) (sit-to-stand)

1 118 62 103 1 1 1 1 1 1 1

2 106 74 101 1 1 1 1 1 1 1

3 86 106 57 37 1 1 1 1 1 1

4 86 110 17 89 1 1 1 1 1 1

5 114 34 81 5 1 1 1 8 1 9

6 90 82 25 41 1 1 1 1 1 1

7 110 102 101 37 1 1 1 1 1 1

8 34 110 83 85 2 1 1 1 7 1

9 90 102 81 33 1 1 1 1 1 1

10 30 118 21 65 3 1 8 1 10 1

The table indicates optimal parameter set for the triggered (white background)

and self-initiated (shaded background) paradigms.

subjects for each condition. The mean accuracy across subjects
was 74.1 ± 5.7% for the triggered condition and 78.0 ± 2.6%
for self-initiated. Testing sample size was equal across the three
classes (1900 samples per class for each subject and condition).
Interestingly, there was no significant difference in overall accu-
racy between self-initiated and triggered movements across the
entire group of subjects. For subjects S2, S4, S5, and S7 decoding
accuracy was significantly greater (p < 0.01) for the self-initiated
sit-to-stand and stand-to-sit transitions compared to the trig-
gered paradigm. Two subjects, S1 and S3, showed significantly
better classification accuracy for the triggered movements com-
pared to self-initiated, though with less strength (p < 0.05). The
normalized confusion matrix for each condition was computed
by summing the total number of predicted samples for each class
across all 10 subjects and then dividing each predicted sum by
the actual class sample size (Figure 8). We also computed the
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overall kappa coefficient (Cohen, 1968; Carletta, 1996) for each
condition, resulting in κ = 0.61 for triggered and κ = 0.67 for
self-initiated. For both triggered and self-initiated conditions, the
quiet class was decoded with the highest accuracy and misclassi-
fications for the quiet class were evenly distributed between the
two types of movement (sit and stand). Notably, classification
accuracy for all three classes was slightly, though not significantly,
higher during the self-initiated trials. The majority of misclas-
sifications for sit and stand movements were in the quiet class
regardless of condition. Classifier confusion between movement
types was slightly larger for the triggered paradigm, with 10.2%
of sit movements misclassified as stand (as opposed to 4.2% for
self-initiated) and 7.6% of stand movements misclassified as sit
(compared to 3.0% for self-initiated).

FIGURE 7 | Mean accuracy (n = 20) by subject for decoding

triggered and self-initiated sitting and standing from pre-movement

EEG. Error bars indicate ±1 standard deviation. Statistically significant
within subject differences across conditions are indicated as follows:
∗p < 0.01, ∗∗p < 0.05.

To assess the relationship between classifier accuracy and
MRPs we computed the grand median area under the MRP curve
for each condition and subject in a three step process. We first
computed the area under the MRP of each channel for each move-
ment epoch; a negative number for this area indicated a larger
MRP presence. Next, we computed the median area under the
curve for each electrode, and then we took the grand median
area across all electrodes. We plotted this value against the mean
classification accuracy for both the self-initiated and triggered
conditions (Figure 9A). Surprisingly, we did not find a strong
correlation between area under the MRP curve and classification
accuracy (R2 = 0.09). Based on our prior observation that some
subjects showed more prominent MRPs during the self-initiated
movement compared to triggered, we computed the individual
change in accuracy and the change in median area under the MRP
curve across these conditions for each subject (Figure 9B). There
was a slightly stronger, but still modest (R2 = 0.27) correlation
between individual change in accuracy and area under the MRP
curve. Interestingly, the subject with the most visually promi-
nent difference in MRP between conditions (S5, Figure 5A; blue
arrow in Figure 9B) showed the second largest increase in accu-
racy between the self-initiated and triggered conditions. However,
the subject with the largest increase in accuracy across conditions
(S8, red arrow in Figure 9B) showed only a moderate increase
area under the MRP curve. The two subjects with significantly
greater accuracy for the triggered condition also had larger areas
under the MRP curve in that condition (Figure 9B).

CLASSIFICATION BY ROI
The mean and subject specific classification accuracy was lower
for all four ROIs than with the full set of non-peripheral
electrodes for both self-initiated and triggered movements
(Figure 10), a result that was expected due to the lower num-
ber of electrodes used for classification. Of note, however, was
that despite the differing number of electrodes within each ROI
we observed few within subject significant differences in accu-
racy for each condition (Figures 10B,C). Similarly, when accuracy
was averaged across the 10 subjects, there were no statistically

FIGURE 8 | Normalized confusion matrices across all subjects for the

three class decoding problem for (A) triggered and (B) self-initiated

conditions. The confusion matrices were computed by totaling the
predicted number of samples from each class across all 10 subjects

and dividing by the total number of samples from each. For each
repetition of the sub-sampling cross-validation procedure there were
1900 samples included in each class. The overall kappa coefficient for
each condition is included in parentheses.
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FIGURE 9 | Relationship between pre-movement decoding accuracy

and the movement related potential (MRP). (A) The median area under
the MRP curve plotted against the mean decoding accuracy for each
subject and condition. A negative value of MRP area under the curve
indicates the presence of larger MRPs. The coefficient of determination
(R2) is indicated. (B) The change in decoding accuracy across conditions
plotted against the change in area under the MRP curve for each subject. A
large negative value for change in area indicates a stronger MRP presence
during the self-initiated condition, while a large positive value indicates a
stronger MRP presence during the triggered condition; values close to zero
indicate similar MRPs for both conditions. The coefficient of determination
(R2) is indicated. The two participants with the largest difference in
accuracy across conditions are indicated by the arrows.

significant differences between the ROIs for either condition. To
assess the effect of self-initiated vs. triggered movements, we com-
puted the within subject difference in accuracy for each ROI
between these conditions (Figure 10D). A majority of partici-
pants (8/10) showed similar or significantly greater accuracy for
all four ROIs in the self-initiated condition. The two subjects
(S1 and S3) who showed significantly greater accuracy for the
triggered movements with the full set of electrodes also showed
greater accuracy in several, but not all, ROIs in this condition.
Interestingly, when the difference was averaged across subjects,
only the motor strip ROI showed significantly increased classifi-
cation accuracy for the self-initiated condition. Indeed, decoding
accuracy of movement intent during self-initiated sitting and

standing using the motor ROI was significantly greater than dur-
ing triggered movement in 7/10 subjects, similar in 2/10 subjects,
and decreased in only 1/10 subjects.

EFFECTS OF ARTIFACT REMOVAL
To examine the effect of the ASR artifact rejection algorithm,
and the potential effect of motion or other artifacts on clas-
sification accuracy, we repeated the classifier optimization and
cross-validation procedure for the self-initiated condition using
three control data sets and compared those with the original pre-
processing (Figure 11). The original data set is termed ASRpre in
Figure 11. The first control data set was composed of the same
pre-movement epochs consisting of 1.5 s of EEG data recorded
immediately prior to movement onset, however, ASR was omitted
from the pre-processing (Figure 1); this data set is termed Rawpre.
We decoded movement intent using an equally sized epoch
encompassing the 1.5 s time period immediately after movement
onset. We processed these data with (ASRmove) and without
(Rawmove) the ASR artifact rejection algorithm. We found that
the ASR algorithm had no statistically significant affect on accu-
racy when using the pre-movement epochs to decode movement
intent (Figure 11). This result was consistent for every subject
and when accuracy was averaged across all subjects. When move-
ment type was classified with EEG from epochs immediately after
movement onset, a statistically significant increase in accuracy
was observed in every subject when the data were not cleaned with
ASR (Rawmove). Application of the ASR algorithm (ASRmove)
resulted in a statistically significant drop in accuracy for decoding
with the post-movement epochs in 9/10 subjects. When aver-
aged across participants, no significant difference in accuracy was
observed between ASR cleaned pre- and post-movement epochs,
while accuracy was significantly higher for decoding with raw
post-movement data.

SIMULATED REAL-TIME CLASSIFICATION
The results of simulated real-time decoding using cleaned EEG
data are shown in Figure 12. Class-wise accuracy in this demon-
stration was different than observed from the cross-validation
(Figure 8) an effect caused by the training sample bias inher-
ent to the two-fold procedure used for the demonstration. The
quiet class (0) contains a larger number of samples than either
stand-to-sit (class 1) or sit-to-stand (class 2) resulting in very
high accuracies during quiet periods. Confusion between classes
1 and 2 was present during most transitions; the low number
of transitions used in this demonstration likely contributed to
this confusion. Errors at the beginning and end of the movement
periods skewed toward class 0 (quiet).

DISCUSSION
CLASSIFICATION OF SELF-INITIATED AND TRIGGERED MOVEMENT
FROM PRE-MOVEMENT EEG
Our results demonstrate successful, high accuracy classification
of movement intent in healthy individuals from delta-band EEG
recorded before movement execution. We framed our experiment
into a three-class problem where each time point was classified
into one of three states: quiet, stand-to-sit transition, or sit-to-
stand transition. It is important to note that we trimmed the

Frontiers in Neuroscience | Neuroprosthetics November 2014 | Volume 8 | Article 376 | 190

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Bulea et al. Decoding sit/stand intention from EEG

FIGURE 10 | Pre-movement decoding accuracy by region of interest

(ROI). (A) Scalp map indicating the electrodes included in each ROI.
(B) Average decoding accuracy ±1 standard deviation (n = 20) using
the optimized LFDA-GMM algorithm for each ROI and subject during
the self-initiated condition. (C) Average decoding accuracy ±1
standard deviation (n = 20) using the optimized LFDA-GMM algorithm
for each ROI and subject during the triggered condition. Hash marks

(#) indicates accuracy for at least one ROI is significantly different
(p < 0. 05) for a given subject and condition based on Friedman’s
test. (D) The mean difference in pre-movement decoding accuracy
between the self-initiated and triggered conditions for each
subject ±1 standard deviation. Asterisks (∗) indicate differences which
were statistically significant (p < 0.05) from a distribution with a
median of zero based on the sign test.

time periods of actual movement execution—as determined from
EMG activity—from our EEG recordings. Thus, our classifier was
trained and tested using mutually exclusive EEG datasets recorded
during either quiet standing or quiet sitting but when subjects
presumably were preparing for the incoming action. We labeled

each time point in the 1.5 s epoch before movement onset accord-
ing to the type of movement that was executed in the future:
stand-to-sit or sit-to-stand. All other time points were placed
into a single quiet class. Classification ability was assessed in two
different movement execution paradigms, one that was cued by
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an audio signal (triggered) and one that was self-paced (self-
initiated). Interestingly, we observed no statistically significant
difference in classification accuracy between these two conditions,
though average accuracy across the 10 subjects was slightly higher
for the self-initiated condition (78.0 ± 2.6%) compared to trig-
gered (74.7 ± 5.7%) and both of these were significantly better
than chance accuracy of 33.3%.

Prominent MRPs were not visible in all subjects (Figure 5) and
we found almost no correlation between median area under the

FIGURE 11 | Classification accuracy using pre- and post-movement

epochs with and without ASR pre-processing. The classifier was trained
and tested for the self-initiated case using pre-movement epochs with the
original pre-processing pipeline (ASRpre, green) and using pre-movement
epochs omitting ASR from pre-processing (Rawpre, red). As a control, the
classifier was also trained and tested using equally sized epochs (1.5 s)
immediately following movement onset that were pre-processed with
(ASRmove, gray) and without (Rawmove) ASR for artifact rejection.

MRP curve and classification accuracy (Figure 9A). For within
subject comparisons between conditions, we observed signifi-
cantly better accuracy in four of ten subjects during the self-
initiated compared to triggered paradigm, while two subjects
had higher accuracy for triggered standing and sitting. When
examining subject specific changes in accuracy across the two
different paradigms, we found a slightly stronger correlation
between increased accuracy and area under the MRP curve. And
the two individuals that showed a decrease in accuracy in the self-
initiated vs. triggered trials also showed an increased area under
MRP curve, indicating less prominent MRPs. These results appear
to contradict previous examples which indicated that MRPs may
be more prominent in self-paced vs. cued movement paradigms
(Jahanshahi et al., 1995; Jankelowitz and Colebatch, 2002; Cui and
MacKinnon, 2009). There are several possible explanations. First,
our experimental paradigm included a relatively low number
of epochs (n = 20) for each condition, compared to traditional
studies of MRPs which typically utilize close to 100 (Shibasaki
and Hallett, 2006). This low number of epochs may be the rea-
son for the large variability in the presence of MRPs (Figure 5).
Additionally, in the self-paced experiment, participants were
instructed to pause 3–10 s between each movement though they
were also instructed not to count the seconds between each
movement. As a result, participants rarely waited 10 s between
self-paced movements; most periods of quiet lasted 5 s or less.
Previous studies have observed trial-to-trial variation in timing
and power of MRPs relating to self-paced left and right hand
movements, making classification of those movements using low
frequency features more difficult (Bai et al., 2007). Another study
found that while they were present for most—but not all—
subjects and movements, low frequency features were less critical
than ERD/ERS in classifying four different types of movement
from EEG (Morash et al., 2008). The latter study utilized the
contingent negative variation (CNV), which is a low frequency,

FIGURE 12 | Simulation of real-time decoding of movement intention

from low frequency EEG for one subject. The classifier was trained using
ASR-cleaned EEG data from the first half of the self-initiated trial; the figure
contains a time series of simulated real-time classification decisions from the

second half of the trial. The line represents the true class of each time point;
the asterisks show the LFDA-GMM classifier output. The percentage of
correct decisions is provided under each stand-to-sit and sit-to-stand
transition.
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event related-potential entailing a widespread negative shift in
EEG observed in paradigms involving conditional and imperative
stimuli (Walter et al., 1964). While our paradigm did not involve
dual stimuli, it is possible that some participants experienced a
similar effect due to the alternating nature of the movements.
That is, completing the previous maneuver (sitting or standing)
may have created a conditional response in which the subject
then began to prepare for the next movement, which would be
the opposite of the prior one. This conditional response may
be another reason that we did not observe prominent MRPs in
some subjects. Indeed, trial-to-trial variation in CNV amplitude
has been described previously and this variation may be repre-
sentative of anticipated events and/or fluctuations in attention to
the task (Scheibe et al., 2010). The observed variation in MRPs
may also be responsible for the skewed misclassification of sit and
stand movement intentions as quiet (Figure 8). Note that while
the full time series of EEG data contained more samples in the
“quiet” class than in the “sit” and “stand” class, an equal amount
of data from each class was used for cross-validation, and thus,
this pattern of misclassification was not a result of training bias.

Variable timing of movement execution and conditional
response may have affected the prominence of MRPs, but it did
not hinder classification accuracy. One reason for this may be
the time-embedding of our classification features which encom-
passed information from up to 50 ms before the current time
point, helping to alleviate previously reported MRP-based fea-
ture variability (Bai et al., 2007). Low frequency EEG has been
shown to contain information regarding intention (Lew et al.,
2012), direction (Liao et al., 2007; Vuckovic and Sepulveda, 2008;
Waldert et al., 2008; Robinson et al., 2013), velocity (Bradberry
et al., 2010), and type (Agashe and Contreras-Vidal, 2013) of
hand movement. In the lower extremity, the ability to detect
voluntary ankle dorsiflexion movement from MRPs with accura-
cies up to 80% has been reported (Niazi et al., 2011; Xu et al.,
2014). During walking, intra-stride changes in electrocortical
activity coupled to gait phase have been observed at frequencies
as low as 3 Hz (Gwin et al., 2011) and inter-limb and intra-limb
kinematics (Presacco et al., 2011, 2012) as well as the intention
to start and stop walking (Kilicarslan et al., 2013) have been
decoded using delta band EEG. In another recent study, features
extracted from the delta band were the most heavily weighted
for single trial classification of walking movement intention from
EEG recorded prior to movement (Velu and de Sa, 2013). Our
results, which classified lower extremity movement type using
pre-movement EEG, corroborate these findings and provide fur-
ther evidence that low frequency EEG contains discriminative
information pertaining to lower extremity movement intent.

CLASSIFICATION BY REGION OF INTEREST
The results from our ROI analysis (Figure 10) support the
hypothesis that stand-to-sit and sit-to-stand transitions are pre-
ceded by event-related activity across a distributed, sparse cortical
network. As expected due to the reduced number of electrodes,
no ROI reached the classification accuracy attained when all
electrodes were included in the classifier. When averaged across
subjects, there were no statistically significant differences in clas-
sification accuracy between the ROIs for either condition, despite

the difference in number of electrodes. The ROI analysis also
revealed a statistically significant increase in accuracy for within
subject differences across conditions (self-initiated vs. triggered)
when using only the electrodes over the motor area. A similar
difference was not found for any other ROI or for the entire
scalp. This result suggests that the primary motor cortex (M1)
region contains more discriminative information for identifica-
tion of standing and sitting intention when the movements are
self-initiated compared to cued. This finding is supported by pre-
vious work indicating MRPs from this region differ when the
motor task emphasized sequence initiation compared to rhythm
(Bortoletto et al., 2011). EEG recorded from these electrodes has
also been demonstrated to most accurately track movement ini-
tiation using other frequency bands such as mu/alpha ERD and
beta ERS (Wolpaw et al., 2002).

ARTIFACT SUBSPACE RECONSTRUCTION
This study, along with previously mentioned work, establishes
compelling evidence for neural correlates of movement within
EEG signals recorded immediately prior to movement execution;
however, it is important to address the possible role of artifacts,
both physiological such as muscle and eye and non-physiological,
such as movement. Our signal processing approach for classi-
fier training and evaluation (Figure 1) was designed to minimize
the effect of artifacts in several ways. First, we eliminated frontal,
temporal, and occipital electrodes which can be contaminated by
EMG and/or EOG artifacts. Second, we trimmed all EEG that
was recorded during periods of movement as indicated by lower
extremity EMG from our data set, leaving only EEG recorded dur-
ing periods of quiet sitting and standing for classification. Third,
we applied a PCA-based artifact rejection algorithm (ASR) that
was designed to eliminate high amplitude and high variance arti-
facts, such as those from movement or muscle, from EEG (Mullen
et al., 2013). Our pre-processing analysis demonstrated similar
power spectral density between rest (quiet standing) and pre-
movement periods under both conditions (Figure 3), suggesting
that our pre-processing steps were effective in removing artifacts
from EEG. We also observed alpha ERDs in the period imme-
diately following movement onset (Figure 4), especially during
self-initiated trials, an observation that would have been unlikely
if muscle activity had remained in the cleaned-EEG signals since
EMG tends to have power in this frequency band.

To further elucidate the possible role of artifacts and these steps
to mitigate them, we compared the LFDA-GMM classifier perfor-
mance when it was trained and tested with three different control
data sets with our original processing pipeline (Figure 11). This
analysis showed no statistically significant difference in accuracy,
regardless of whether the pre-movement EEG was cleaned with
ASR or not, suggesting that artifacts were not present and there-
fore did not affect classification using the pre-movement epochs.
We did observe a significant increase in accuracy when the pre-
movement epochs were replaced with equally sized epochs imme-
diately following movement onset that had not been cleaned
using ASR. After ASR cleaning, classification accuracy was com-
mensurate with pre-movement epochs, although with a slightly
larger standard deviation across subjects. The increased accuracy
using post-movement epochs without ASR suggests that artifacts
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may have been present during this time and these artifacts may
have enhanced decoding accuracy. The decreased accuracy fol-
lowing ASR suggests that this algorithm is effective at removing
high amplitude artifacts from EEG data. This conclusion is fur-
ther supported by the simulated real-time demonstration using
ASR-cleaned data. The time periods after movement onset were
included in the quiet class during training and were decoded with
high accuracy during testing (Figure 12). But, caution should be
exercised regarding the conclusion that ASR completely elim-
inates low frequency, high amplitude artifacts. We note that
while we did observe alpha ERD in ASR-cleaned post-movement
epochs, we also observed enhanced power in the delta band
across the scalp, particularly in the triggered condition (Figure 4).
One possible explanation for the post-movement increase in
delta band power in the triggered trials could be residual head
movement and/or muscle artifacts as the participant reacted to
the audio cue to stand or sit. Further spectral, topographical,
and temporal analysis should be undertaken to parse movement
related artifacts from true electrocortical sources recording dur-
ing the actual sitting and standing movements. In particular,
the parameters of the ASR algorithm can be optimized to more
aggressively remove artifacts at the expense of potentially remov-
ing true EEG. We emphasize that our primary analysis involved
only EEG from pre-movement and quiet periods, thereby limit-
ing the contribution of these potential artifactual components as
indicated by the above analysis.

EEG USE IN REHABILITATION AND RESTORATION OF MOVEMENT
To our knowledge, this is the first study that classifies this type
of gross, full lower extremity movement intention—sit-down,
stand-up, or quiet—from non-invasive EEG signals. Previously,
surface EMG from leg muscles has been used with an LDA clas-
sifier to identify standing and sitting transition in amputees with
accuracies greater than 99% (Zhang et al., 2012). Achievement of
these high accuracies required the use of a post-processing major-
ity voting step, which resulted in a decision delay of up to 400 ms.
Another approach has deployed center of pressure to detect sitting
and standing transition in individuals with paraplegia (Quintero
et al., 2011). Classification of sitting and standing using EEG
offers advantages over these approaches. On average, we were
able to achieve 78% accuracy using features extracted from the
pre-movement epochs with no post-processing required, thereby
minimizing delay between movement intention and classification.
It should be noted that our classification accuracy was assessed
using single time points that were randomly selected from each
trial. This conservative approach was necessary to prevent model
over-fitting during training and to assure an equal number of data
points in each class during testing due to the relatively low num-
ber of movements executed (20 per condition) for each subject.
An example of the LFDA-GMM algorithm in a simulated real-
time environment is shown in Figure 12. We note that classifier
training was not optimal for this demonstration; only 5 stand-to-
sit and sit-to-stand transitions were employed. Further, clinical
deployment of the classifier as a component of a BMI could be sig-
nificantly improved by addition of an aggregate post-processing
step—such as requiring a number of consecutive time points to
be predicted as the same movement type or a sliding window

moving average with a threshold—to trigger a change in state.
The parameters of this post-processing step need to be tuned for
each subject and application to maximize accuracy and minimize
false positives. Future studies will investigate this possibility and
the tradeoff between gains in accuracy and increased classification
latency from post-processing.

One drawback of utilizing GMM based classifiers is the size
of the parameter space which must be learned, which is given
by K ∗ (1+ d ∗ (d− 1)/2)+ K ∗ d, where K is the number of
Gaussian components in the mixture, and d is the dimensionality
of the data to be fit (Li et al., 2012). To fit a GMM to our time-
embedded EEG-based feature data set, which includes data from
28 channels of EEG at 11 time points and a maximum of K = 10
components for a given class, requires learning a parameter space
of dimension 4.76× 105. Our results demonstrate that LFDA
is a powerful dimensionality reduction technique; the median
dimension of the reduced subspace was 96 (Table 1), represent-
ing a median reduction of 69% across subjects. LFDA reduced
the size of the GMM parameter by an order of magnitude, result-
ing in a large decrease of computation time to fit the models of
the classifier. Classifier optimization and training was performed
using custom software developed in Matlab®, including the par-
allel processing toolbox, run on a dual core PC (2.40 GHz, 24
GB RAM). On average, optimization across the full LFDA-GMM
parameter space was complete in less than 15 min per subject, and
training of the optimized LFDA-GMM classifier in less than 5. If
deployed for control of an assistive device, LFDA-GMM classifier
optimization and training may be required before each session of
use; these results suggest this is feasible. Examination of the opti-
mization surface (Figure 6) shows that gains in accuracy level-off
at moderate values of r while accuracy is relatively insensitive to
knn. The same trend is observed in all subjects, with some showing
decreases in accuracy for increasing r-values, while in others there
is no difference in accuracy as the parameter values are increased.
Thus, these parameters could be limited to smaller values, thereby
reducing the parameter space to be searched during LFDA-GMM
optimization. However, the optimal parameter set is expected to
vary with the task and also with the ability of the subject to learn
how to operate the BMI over time, and so caution should be exer-
cised when determining the upper limits. Also, full covariance
matrices (

∑
k) were deployed for each component of the GMMs;

however, if the subspace of the data following LFDA dimensional-
ity reduction was large, employing diagonal covariance matrices
could be used as a way to speed classifier training.

The LFDA-GMM classifier presented here could be incorpo-
rated into a closed loop BMI system with an exoskeleton to restore
function to individuals with paralysis. Such a system would be
comprised of a shared control paradigm, whereby the gross motor
instruction (in this case, the intention to sit-down or stand-up)
is extracted from the user’s EEG and the commands to execute
the movement are performed autonomously by the exoskeleton.
In this setup, the exoskeleton would be triggered at the first time
point in which the BMI detected a change in class; a process that
would likely include a post-processing step requiring a sequence
of consistent classifier decisions to trigger a change in state.
The decoding algorithm would then be blanked so that no state
changes could be triggered during the execution of a movement.
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Our observed accuracy of 78% in self-paced movements would
need to be improved for clinical viability. However, the data used
in this study were purely observational, while operation of a BMI
is a learned skill that incorporates feedback to the user regard-
ing performance; thus accuracy of the BMI may increase as the
user gains additional experience with the device. In the future,
EEG and EMG could be combined to create a comprehensive
neural-machine interface for control of advanced prosthetics. The
combined EEG-EMG interface could provide intuitive control of
artificial limbs while minimizing delay between detection of vol-
untary movement intention and its execution. Our classification
approach could also be used in an intervention to treat phantom
limb pain, whereby a descending motor command is determined
from EEG and a motorized prosthesis executes the movement
providing afferent feedback which could obviate maladaptive
cortical reorganization following amputation. EEG-based classi-
fication of movement intent could also be incorporated into a
neurorehabilitation protocol to recover more normal motor func-
tion in individuals with neurologic impairments. For example,
the EEG based classifier would activate a device to assist move-
ment, thereby creating more normal afferent feedback, which
could enhance brain plasticity and speed motor recovery (Daly
and Wolpaw, 2008). Such a strategy requires extraction of motion
intent from the motor impaired population; in this study only
healthy able-bodied individuals were tested. Future studies will
examine the ability to apply LFDA-GMM classification to indi-
viduals with central nervous systems deficits with an aim toward
neurorehabilitation strategies.
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The detection of movement-related components of the brain activity is useful in the
design of brain-machine interfaces. A common approach is to classify the brain activity
into a number of templates or states. To find these templates, the neural responses are
averaged over each movement task. For averaging to be effective, one must assume that
the neural components occur at identical times over repeated trials. However, complex
arm movements such as reaching and grasping are prone to cross-trial variability due
to the way movements are performed. Typically initiation time, duration of movement
and movement speed are variable even as a subject tries to reproduce the same task
identically across trials. Therefore, movement-related neural activity will tend to occur at
different times across the trials. Due to this mismatch, the averaging of neural activity
will not bring into salience movement-related components. To address this problem,
we present a method of alignment that accounts for the variabilities in the way the
movements are conducted. In this study, arm speed was used to align neural activity.
Four subjects had electrocorticographic (ECoG) electrodes implanted over their primary
motor cortex and were asked to perform reaching and retrieving tasks using the upper
limb contralateral to the site of electrode implantation. The arm speeds were aligned using
a non-linear transformation of the temporal axes resulting in average spectrograms with
superior visualization of movement-related neural activity when compared to averaging
without alignment.

Keywords: electrocorticography, ECoG, arm movement, dynamic time warping, kinematics, movement

classification

INTRODUCTION
The challenge for a brain-machine interface (BMI) is to decode
user intent and to transform neural signals into signals which
drive an external device like a prosthetic arm. This technology
holds enormous potential as an assistive device for individuals
with limited ability to perform voluntary movements. Examples
of populations that may benefit from this technology include
individuals with stroke, advanced stages of amyotrophic lateral
sclerosis (Kübler et al., 2001, 2005; Bai et al., 2008; Nijboer et al.,
2008), severe cerebral palsy (Pfurtscheller et al., 2000), and high
level cervical spinal cord injury (Wolpaw et al., 2000). However,
the construction of a BMI platform is predicated first on the abil-
ity to identify the salient neural activity associated with upper
limb movement (Pfurtscheller et al., 2003; Leuthardt et al., 2004;
Foffani et al., 2005; Rickert, 2005; Chin et al., 2007; Schalk et al.,
2007; Bai et al., 2008; Ball et al., 2008, 2009; Miller and Ojemann,
2009; Tzagarakis et al., 2010; Zhuang et al., 2010).

One challenge in uncovering the salient neural activity asso-
ciated with movement is the variability of neural activities and
the low signal-to-noise ratio (SNR) that is commonly found for

electrophysiological recordings. While gamma power tends to be
higher in ECoG recordings, not all frequency bands have high
SNR. Moreover, the clarity of gamma activity may depend on
individual factors including placement of electrodes. As such
developing techniques for applications with low SNR is crucial
for uncovering movement-related activities. Typically, noise and
variability is dealt with by averaging a large number of repeated
trials. To do this, however, one must assume that the neural
activity is time-locked to motor-specific events like movement
onset. While the evoked brain activity from external stimuli or
highly constrained motor tasks can be thought of as being iden-
tical on a trial-by-trial basis, this is certainly not true when a
subject is performing a complex movement task like reaching.
Due to the difficulty in constraining the movement of the arm,
it would be unwise to simply take all trials and average them.
Instead, we propose a method of realignment through a non-
linear transformation in time. This transformation accounts for
differences in movement initiation, arm speeds, and movement
durations. After alignment, we expect the neural activities to
occur at near identical times and that the related neural activities
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can now be more effectively brought into salience through
averaging.

Other approaches seek to decode movement intention in real-
time without use of template matching of templates, (e.g., Wang
et al., 2012). Our study is more modest in that our primary focus
is with movement classification. This paper concerns the initial
application of time warping for movement co-registration. We
will discuss the application to classification later in the Discussion
Section.

BACKGROUND
Averaging of neural activities is a practice standard in electro-
physiology. For example, event-related potentials (ERP) are time-
averaged brain responses to a sensory or motor event. They are
simple to calculate and are widely used in clinical neurology for
diagnostic purposes. The ERP’s show mostly low frequency neural
activity since the high frequency components tend to be off-phase
from trial-to-trial thereby canceling out through averaging. An
alternative to averaging in the time-domain is to average their
time-frequency representations. The time-frequency representa-
tion of a signal (e.g., a spectrogram) details the spectral density
of the signal as a function of time. Similar to averaging over
time, averaging over time-frequency space can aid in highlighting
the time-dependent spectral density of related neural activities.
A triggered, synchronized decrease in band power is known
as event-related desynchronization (ERD) and a corresponding
increase is known as an event-related synchronization (ERS).
These events are measured with respect to a chosen baseline in
activity. The baseline is typically set to the rest state.

The electrical activity of the brain can be recorded using a
number of different methods including (1) electroencephalog-
raphy (EEG) where electrodes are placed on the scalp, and (2)
single neuron or neuronal ensemble recordings obtained through
micro-electrodes placed intra-cortically in proximity of target
neurons. Electrocorticography (ECoG) is a method of record-
ing the electrical activities of the brain using macro-electrodes
placed surgically over or under the dura. In this study, ECoG
contacts were implanted over the dura. The signals obtained
using these electrodes generally have higher SNR, a wider band-
width, and higher spatial resolution when compared to elec-
troencephalography recordings (Schalk et al., 2007; Schalk and
Leuthardt, 2011). Additionally, this technology is less invasive
than intracortical recordings since the electrodes do not pene-
trate the brain tissue. In this study, we processed the activity of
the motor cortex recorded from two ECoG contacts in a bipolar
arrangement.

Typically, neuromotor activities are aligned to a “go” signal
(Ball et al., 2009; Reddy et al., 2009; Tzagarakis et al., 2010), to
movement onset (Sergio and Kalaska, 1998; Moran and Schwartz,
1999; Rickert, 2005; Miller and Ojemann, 2009) or to movement
termination (Jurkiewicz et al., 2006). The alignment strategy is
determined in part by the experimental paradigm and by what
questions the experimenters would like to answer from their data.
For example, activities aligned to the “go” signal would allow for
the study of movement preparation. The problem with event-
based alignment is that this does not guarantee that the remainder
of the trial is similarly aligned. If we were interested also in, say,
movement termination, the trials would then need to be realigned

to the end point of movement cycle. To eliminate repeated anal-
yses, we instead introduce a new method of alignment involving
a non-linear transformation of time. We believe that this trans-
formation can account for the temporal differences in the way a
motor task is conducted.

Temporal alignment of biological signals is not new; for exam-
ple, such techniques have been employed extensively as part of
automatic speech recognition algorithms. Non-linear time warp-
ing has also been used to align physiological signals (Munhall
et al., 2004) as well as neural signals (Picton et al., 1988; Wang
et al., 2001; Casarotto et al., 2003; Cho et al., 2004; Karamzadeh
et al., 2013). More recently, Pasley et al. (2012) explored the
reconstruction of auditory speech features using ECoG record-
ings. Their work is quite similar to ours as they use dynamic
time warping to realign a transformed representation of the
neural signal. We have used warping in the context of aligning
movement-related neural activity.

Dynamic time warping (Sakoe and Chiba, 1978) is a graph-
based approach to calculate the time transform required to align
two signals. The time transformation (or time registration path)
is calculated by minimizing a cost function which measures the
similarities between the time instances of two signals. Dynamic
time warping has been used previously to align sensory evoked
responses (Picton et al., 1988; Wang et al., 2001; Casarotto et al.,
2003). Picton et al. used dynamic time warping to align the
brain-stem auditory evoked response showing improvement in
the visualization of components over simple averaging (Picton
et al., 1988). In a similar study, Wang et al. showed that the
amplitude of the derived visual ERP can be increased by up to
76% after realignment using dynamic time warping (Wang et al.,
2001). Casarotto et al. used dynamic time warping to quantify the
latencies between the ERPs obtained from normal and dyslexic
children (Casarotto et al., 2003). All of these studies show that
a simple shift or linear scaling of time is not sufficient to align
evoked components.

Earlier studies of movement-related neural activity rely on
simple or constrained movements to avoid problems with aver-
aging of trials. However, this is not possible for a study involving
complex movements due to the difficulty of constraining the
movement of a participant to allow for careful control of arm
kinematics. Instead, we introduce this new method of non-linear
alignment to correct for the temporal mismatch.

MATERIALS AND METHODS
PARTICIPANTS
Four male participants were recruited from Functional
Neurosurgery Clinic at the Hospital das Clínicas of University
of São Paulo. Subject 1 was 51 years old, Subject 2 was 48 years
old, Subject 3 was 42 years old, and Subject 4 was 58 years
old. All participants were implanted with unilateral epidural
quadripolar electrodes over the motor cortex for the treatment
of chronic pain. After the insertion of the electrodes, patients
had their systems externalized for 6 days for the selection of
optimal stimulation parameters (polarity, amplitude, frequency,
duration, etc.). Once these were chosen, the electrodes were
connected to an implantable pulse generator during a second
surgical procedure. The experiment took place over the 6 days
during which the electrode leads were externalized. The study was
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approved by the University of Sao Paulo research ethics board,
and all participants signed a letter of consent prior to taking part
in the experiments.

ELECTRODES AND POST-OPERATIVE RECORDINGS
The placement and choice of number of ECoG contacts were dic-
tated by the clinical requirements unrelated to the purpose and
consideration of this study.

The participants were implanted with two quadripolar epidu-
ral electrodes Lamitrode 3240 (St. Jude Medical Inc., U.S.A.). Each
strip consists of a single row of four platinum discs that were
4 mm in diameter and had center-to-center distance of 10 mm.
The electrodes were embedded in a silicon membrane. All par-
ticipants were implanted with two electrode strips. The electrode
strips were placed over the premotor, primary motor, and sensory
cortices associated with the upper extremity representations. The
first strip was placed on the cortices such that the second contact
(electrode #1) was over the primary motor cortex. The location
of the electrode was confirmed using electrical stimulation and
by observing muscle contractions of the contralateral upper limb.
Stimulation parameters were: (i) pulse frequency 50 Hz, (ii) pulse
duration 100 µs, (iii) monopolar pulses, and (iv) pulse amplitude
3–10 µA. Electrode contacts were numbered 0–3 from distal to
proximal. Specifically, stimulation of contact #1 implanted over
the motor cortex induced finger or wrist movements. Electrode
contacts of the second strip were numbered 4–7 from distal to
proximal. The second strip was placed dorsal to the first such that
contact #5 (the second contact of the second strip) was positioned
over the primary motor cortex and dorsal to contact #1. Figure 1

FIGURE 1 | Location of implanted ECoG contacts with respect to head

representation. Contacts of the first strip of electrodes are labeled 0–3
from distal to proximal and contacts of the second strip are similarly
indexed 4–7. Primary motor cortex is colored in velvet and the primary
sensory cortex is colored in amber. The area associated with the hand
representation is marked in green.

shows exemplary illustration of the location of implanted elec-
trodes with respect to the head and the cortical area associated
with the upper limb.

In addition to the ECoG measurements, electroencephalogra-
phy (EEG) signals were recorded at the C3/C4, Cz, Fz, and FP1
locations according to the 10-20 electrode placement system. The
purpose for recording EEG was to identify the trials contami-
nated with eye movement or muscle artifact and to reject the
trials contaminated with these artifacts. They were not otherwise
used in the analyses. Moreover, electromyography (EMG) signals
were obtained from the wrist flexors, wrist extensors, biceps, and
triceps. The EEG, ECoG, and EMG signals were recorded using
a sampling frequency of 1200 Hz with a 16-channel g.USBamp
biosignal acquisition device (g.tec, Graz, Austria). The recording
device has a built-in anti-aliasing filter which is dependent on
sampling frequency. The anti-aliasing filter is an 8th order dig-
ital Butterworth filter with pass-band frequency at 0.1–500 Hz
(g.USBamp manual, 2011). The activity of the motor cortex was
recorded from two ECoG contacts in bipolar arrangement (con-
tacts #0 and #1). The choice of contact #1 was made because its
placement was verified using stimulation of the contact to induce
finger or wrist movement. Contact #0 was chosen as we required
it to be adjacent to contact #1, and also to lie above the motor
cortex which was verified using MRI.

EXPERIMENTAL SETUP
The participants sat in a comfortable chair. The upper limb
movements were recorded using a three dimensional (X, Y, Z)
electromagnetic tracker, Fastrack (Polhemus Inc, U.S.A.) and a
customized data acquisition software written in C. A motion sen-
sor was placed over the dorsal aspect of the third metacarpal
bone of the hand. The three-dimensional position of the sen-
sor was recorded with sampling frequency of 40 Hz and was
time stamped. The upper limb kinematics were recorded using
the same computer that captured the ECoG, EEG, and EMG
data. Thus the kinematic recordings were synchronized with the
electrophysiological recordings.

EXPERIMENTAL PROTOCOL
ECoG, EEG, and EMG signals were recorded while the partici-
pants performed a reaching task. The task was carried with the
arm contralateral to the site of electrode implantation. The task
was to reach a target placed 40 cm away from the chest which the
participant could do comfortably. At the start of the task the par-
ticipant had his or her hand in a resting position where the hand
was placed on a pillow located on their lap. Under resting con-
ditions EMG muscle activity was not observed. The participants
received an auditory cue (“go” signal) to start the reaching task.
After completing this, the participants were instructed to wait for
few seconds before returning their hand to the initial resting place
(retrieving task). The time between the end of the last trial and
the cue signal of the next trial was randomized, and in the range
of 8–10 s. Although the movements are voluntary, the reach task
was triggered by an external “go” signal. As such they are not
strictly self-paced in nature. However, the return motion was self-
paced in that the subject had control as to when to initiate this
movement.
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Table 1 | Table summarizes mean and standard deviation of reaching

and retrieval tasks as well as the pause between two tasks.

Participant 3 did not pause between the tasks as was instructed.

Participant Number Reaching Pause Retrieval

of trials duration (s) duration (s) duration (s)

1 68 1.2 ± 0.3 1.3 ±0.4 1.0 ± 0.3
2 50 2.1 ± 0.7 2.7 ± 1.0 1.5 ± 0.6
3 71 1.0 ± 0.2 0.6 ± 0.28 1.0 ± 0.3
4 59 0.7 ± 0.2 2.8 ± 0.9 1.0 ± 0.4

Each participant performed at least 50 reaching tasks. Number
of trials and averaged length of movements performed by each
participant are shown in Table 1. Trials were extracted from ECoG
recordings for offline analysis. A trial was defined as the period
beginning 4 s prior to and ending 8 s after the onset of the reach-
ing task. Movement onset itself was defined as the instance where
arm speed exceeded a threshold of “0.5 cm/s” and was designated
as t = 0.

ANALYSIS
The data were analyzed in the time-frequency domain using
a spectrogram. A spectrogram gives the windowed short-time
Fourier transform of a signal by describing the frequency content
of a signal and how it changes over time. Signals were windowed
in segments of 100 ms using a Hamming window. A Fourier
transform was then computed for the windowed signal result-
ing in a spectrum with resolution of 1 Hz. The window was then
shifted forward by 10 ms, and the procedure was repeated until
the end of the epoch was reached. The resulting spectrogram
consists of a matrix where each row represents the power spec-
trum of a windowed signal. Each column of this matrix represents
the time series of power at a particular frequency. Event-related
changes (ERD/ERS) were calculated by normalizing each column
(frequency) by the baseline power. The baseline was defined as the
average power between 1 and 2 s prior to movement onset.

Spectrograms are typically averaged without realignment
along the time axis. This is the usual method of finding the spec-
tral density of neural activity and how it changes with respect to
movement. We call this method conventional averaging. In the
second method, the epochs were warped in time according to
the arm kinematics prior to averaging. One trial is chosen as the
“gold-standard” or reference trial—all the other trials are then
warped to this reference trial using a time-registration path. Given
that warping of the signal in the time-domain distorts its spec-
tral content, the time transformations were not applied to the
raw ECoG recordings. Instead, warping was performed over the
spectral densities such that the neural activity corresponding to
the same arm velocity is identical across all trials. In this case,
not only will movement onset and offset be aligned, but the neu-
ral activity at each time-point will correspond to the same arm
speed/position. We call this method time-warped averaging.

REALIGNMENT OF THE TRIALS USING DYNAMIC TIME WARPING
ACCORDING TO ARM SPEED
Dynamic time warping algorithm was implemented using a sym-
metric step pattern with no constraint on the slope according

to the method of (Sakoe and Chiba, 1978). Time-warping of
ECoG signals was carried out over arm velocity such that the
velocity profiles would be identical after alignment was com-
plete. For simplicity, we warped along the X-axis (orthogonal to
the chest surface) since it is the largest component over which
movement took place. To determine the time registration path,
we chose the Euclidean distance as a cost function and found
the corresponding time points across the two time axes such that
the Euclidean distance in arm velocities was minimized. Figure 2
shows an example of the registration path obtained by time-
warping the two trials. This process aligns the time course of the
movements (and therefore the spectral density of the associated
neural activity) to a “gold standard.”

We performed statistical analyses to evaluate the efficacy of our
approach. In this case, the reference or standard trial was per-
muted across all available trials. We compared the variability of
the spectrograms when they were warped versus when they were
not. The error obtained when the spectrograms are not warped
comprises the null distribution. Error is defined as the RMS value
calculated by a sum of square errors across all time-frequency
cells. The error values resulted in two distributions and the dis-
tance between these two distributions provides a measure of the
improvement due to warping. While non-parametric methods
can be used in the analyses, we have found that in practice the
log transform of the error resembles a normal-like distribution.
Hence the t-test was used instead.

RESULTS
CONVENTIONAL AVERAGING OF ECoG SIGNALS
Overall, the time-frequency representation of the ECoG response
shows a very distinct pattern of activity over the course of the
movement. The power in the beta activity (12–30 Hz) is atten-
uated during the course of movement execution while the power
in the gamma activity (65–140 Hz) is increased. These changes
in power are statistically significant (p < 0.05, Kolmogorov–
Smirnov test).

However, the variability in the time course of the velocity pro-
file is significant from trial to trial. Figure 3 shows 25 profiles of
arm speed for Subject 1. The movement duration deviated from
the average by as much as 600 ms across movement durations that
last only 2 s. Spectral components after averaging are visible, but
are either blurred or distorted due to temporal misalignment. To
illustrate the effects of averaging without non-linear alignment,
we carried out our analysis both by aligning to the movement
onset of the reach task (Figures 4A,D and Figures 5A,D) as well as
aligning to the movement onset of the retrieval task (Figures 4B,E
and Figures 5B,E). In each case, gamma activity for example is
scattered over the time-course of the movement and localized
into multiple components. The breakup of the components is
due to temporal misalignment, a result which we also observe
with the EMG activities. Also the average of the rectified EMG
shows a sharply increasing signal at the onset of the reaching task
(Figures 4A and Figures 5A), but as the trials become desynchro-
nized over time they do not exhibit the same sharp decrease at
the end of the reaching task, nor is the signal as visible at the
onset/completion of the retrieval task. Quantitatively, the EMG
signals fall in amplitude by as much as 50% after the completion
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FIGURE 2 | Illustration of non-linear alignment or time-warping. The time registration path defines how one time point in one trial maps to another time
point in a different trial. The difference between two velocities becomes minimal when the time axis is transformed using the time-registration path.

FIGURE 3 | Superimposed arm velocity for 25 trials when Subject

1 was reaching for a target. The subject’s arm returned to its
initial location after a pause of several seconds having reached the

target. The trials were aligned to the initial movement onset and
are marked as t = 0. The variation in the duration of movement is
clearly visible.

of the reaching task rendering the activity during the retrieval task
almost undetectable. Figures 4B,E and Figures 5B,E show align-
ment with the onset of the retrieval task but there are similar
problems here as well.

TIME-WARPED AVERAGING OF ECoG SIGNALS
It is clear that a translational shift in time is insufficient to prop-
erly align voluntary movements. Next we explore the results that
can be obtained when a non-linear alignment is used. Results are
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FIGURE 4 | (A–C) Data from Subject #1. (A) The average spectrogram
and the associated EMG activity as calculated through conventional
averaging. Epochs were aligned with respect to onset of the reaching
task with no time-warping used. Movement onset is denoted by dash
dotted line (“-.”). The average spectrogram was normalized with respect

to the baseline, which is defined as the power between 1 and 2 s
prior to movement onset. (B) Same as (A) but with data aligned to
movement onset of the retrieval task. (C) Same as (A,B) but with
non-linear warping of the time axis prior to averaging. (D–F) Shows the
same for Subject #2.

shown in Figures 4C,F and Figures 5C,F, which we compare to
the earlier results obtained through conventional averaging of the
same trials. The movement-related components (ERD/ERS) are
clearly delineated in the warped average spectrograms. Moreover,
we see that the time-course of these components matches that
of the muscular activity. That is, the gamma ERS and beta ERD
appear only when the muscles are activated. Synchronization of
the gamma activity is clearly observed for both the reaching and
retrieval tasks as single components.

Gamma activity for the rest period between the reaching and
retrieval tasks is more complicated. For Subject 4, the activity
returns to the baseline during the hold phase of the transition
between the reaching and the retrieval tasks. For two of the sub-
jects (Subjects 1 and 2), the activity for the hold phase is reduced,
but does not go entirely to the baseline. Nevertheless we observe
that time warping produces a much clearer “quiet period” in
neural activity when compared to alignment by movement onset
only. Subject 3 did not conduct the trials according to the instruc-
tions provided. There was no hold period in between the tasks
and as such no clear drop in gamma activity was observed.

Statistical analysis shows that variability in the spectrograms
was reduced significantly for all subjects (p < 1%) with the excep-
tion of Subject 1 (p < 40%). While variability for Subject 1 was
also reduced after warping, it is of interest to investigate why the

results differed dramatically for this one subject. When we exam-
ined the trajectories for this subject, we noticed that the subject
often overshot the target point (this was observed in more than
one third of their trials). Since the time-registration path is calcu-
lated from the trajectories themselves, we therefore calculated the
RMS error from warping the kinematic trajectories alone. What
we found was that the error for Subject 1 greatly exceeded the
error of the other subjects (by at least a factor of 2).

DISCUSSION
In this paper, we presented a new method for alignment
of neural events over repeated experimental trials. Self-paced
unconstrained voluntary movements are prone to movement
variability in initiation time, duration and speed. The movement-
related cortical activities would therefore occur at different
time instances across different trials. These temporal mis-
matches add to the difficulty in identifying the salient neu-
ral response underlying movement activity. Given that there
exists a direct functional relationship between neural activity
and arm kinematics, we hypothesize that neural events can be
better aligned if the kinematic profiles are identical on each
trial. Kinematic signals were used to find a non-linear trans-
formation of the time axis as calculated by the method of
dynamic time-warping. The transformations serve to remove any
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FIGURE 5 | Same as Figure 4 but with only ECoG data from Subject #3 (A–C) and Subject #4 (D–F).

temporal variabilities in the way the task was performed. The
time transformations were then applied to the spectrogram of
the corresponding ECoG signal. This resulted in well-delineated
movement-related components including event-related synchro-
nization/desynchronization. Finally, the spectrograms that are
now aligned were averaged. The outcome is a vastly improved
visualization of the neural activity for complex arm movements.
When the results are compared to that of conventional averaging
with trials aligned only by movement onset, we see instead the
movement-related components to be either blurred or absent.
The components found through alignment via warping can be
traced back to specific events like movement termination and
initiation.

Epochs of EEG data are traditionally aligned with respect to
an event of interest (e.g., movement onset). However, if the inves-
tigator wishes to study another event in the same data set, the
data must be realigned to a new marker. Dynamic time-warping
eliminates the need for this as an entire trial is aligned on one
go. This has the distinct advantage of allowing for the best possi-
ble representation of neural activity across an entire trial. Earlier
works have indicated that there is a direct, functional linear rela-
tionship between cortical activity and arm velocity (Paninski,
2003; Leuthardt et al., 2004; Chin et al., 2007; Schalk et al.,
2007; Pistohl et al., 2008; Bougrain and Liang, 2009; Ganguly
et al., 2009; Zhuang et al., 2010). We have made use of this
relationship to develop our method. The trials are aligned in
accordance with the hypothesis that specific patterns of neural
activity (particularly in the beta and gamma activity bands)

correspondence linearly with movement velocity. Alignment
with velocity would therefore result in the alignment of neural
activity.

In choosing relatively well-delineated motor tasks, we did
this not because of any limitation in our methodology. So long
as the association with velocity holds, the method of temporal
alignment should work for more complex tasks (e.g., a task-
ing involving both reaching and manipulation). However, it is
entirely conceivable that our current approach is not complete
and that future studies will allow for better methods of temporal
alignment involving more complicated movement tasks.

Our findings with ECoG data show a very distinct pattern
of activity over the course of the movement. The power in
the beta activity (12–30 Hz) was found to be attenuated during
the motor tasks whereas power in gamma activity (65–140 Hz)
increased correspondingly over the same time period. Beta activ-
ity is typically believed to have an inhibitory effect on movement
while gamma oscillations are believed to facilitate movement
(Pfurtscheller et al., 2003; Jurkiewicz et al., 2006). Activity in
both bands return to normal levels after cessation of move-
ment although the time-course for recovery is very different from
movement initiation where the neural activity is more abrupt.
Similar patterns in neural activity have been found in other
recording paradigms: single unit recording, local field, and scalp
recordings (Graimann et al., 2003, 2004; Pfurtscheller et al., 2003;
Mehring et al., 2004).

One might ask whether it is possible to obtain time-
registration paths directly from the spectrograms and to use them

www.frontiersin.org January 2015 | Volume 8 | Article 431 | 204

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Talakoub et al. Time alignment of ECoG recordings

to verify the results obtained from kinematics. In theory, it is
possible although in practice the neural response is far noisier
and thus warping with the spectrogram will not likely result in
time-registration paths with the same consistency as the kinemat-
ics. Nevertheless, we can attempt such an analysis by restricting
warping to only the gamma activity which is relatively clean in
our ECoG recordings. Gamma activity is band-passed between
65 and 90 Hz to encompass movement-related gamma activ-
ity for all three subjects. We then used gamma to obtain new
time-registration paths from which the kinematic signals were
then warped. An RMS error is calculated between the warped
kinematic signal and the target signal. The RMS error was then
compared to the error that would be obtained if only onset
alignment was used. We obtained p-values of 1%, 13%, and 9%
for subjects 1–3 respectively showing results which trend toward
significance despite the noisy nature of the neural signals.

We note that subjects with motor impairments often show
greater variability in executing motor tasks. As such, the differ-
ences between the movement phases can be less marked. In fact,
motor coherency studies in the basal ganglia have demonstrated
that subjects with Parkinson’s disease show more distinctive

changes when subjects are on medication rather than off (Cassidy
et al., 2002; Levy et al., 2002; Williams et al., 2002; Androulidakis
et al., 2007; Jenkinson and Brown, 2011). One might speculate
that the disease state introduces variability that would in turn
make temporal alignment more difficult. In more extreme cases,
where there are imagined but no actual arm movements, our
methods would require modification. For such cases, dynamic
time warping can be carried out directly on the spectrogram
without the use of kinematics. This is typically what happens
for speech where one utterance is warped directly into another
utterance (Sakoe and Chiba, 1978; Rabiner and Juang, 1993).
Although we did not study covert movements, earlier ECoG and
fMRI measurements have demonstrated that task-related cortical
activity are similar for imagined movements and actual move-
ments (Porro et al., 1996; Graimann et al., 2004; Leuthardt et al.,
2004; Shenoy et al., 2008; Miller et al., 2010). For example, Miller
et al. (2010) showed that the ECoG gamma response of the motor
cortex for imagined movements are initially 25% lower than
that of overt movements. However, over time subjects learned to
use imagined movements to control a BCI system with induced
response eventually exceeding the response of overt movements.

FIGURE 6 | Comparing the warping of spectrograms (left panels) with

the spectrograms of signals warped in the time-domain (right panels).

Percentile changes in spectral density of the ECoG activity is shown with

respect to the rest period. (A/B,C/D,E/F,G/H) shows results for Subject #1,
#2, #3, #4 respectively. The distortion is evident in the spectrograms after
warping is carried out on the time-domain signal.
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Similarly, Leuthardt et al. (2004) showed that modulations of
gamma activity are highly correlated with imagined joystick
movements. Because of this correlation, one could attempt to
warp gamma activity from one imagined movement to another
in the manner shown earlier. However, since neural activity is
far noisier than the kinematic trajectory, the warping of neu-
ral response will be less consistent. Nevertheless, this approach
holds promise for movement classification when no kinematic
measurement is available.

The results of this study were obtained through the align-
ment of the spectrograms for cortical activities. An alternative
approach is to carry out the alignment directly on the time-
domain signal itself. This is not advisable because warping the
signal directly distorts its frequency content. Nevertheless, we
show an example of what would happen if such an operation
were carried out. Warping was applied directly to the ECoG
signal followed by a calculation of its spectrogram. Figure 6 com-
pares the averaged spectrogram obtained by this new method
with the spectrograms obtained from the original (and preferred)
method. We note that the results from warping the time-domain
signals are less clear and show obvious distortions due to the
prolongation of harmonic signals from line noise as seen in
Figures 6B,D,F,H.

There are a number of ways in which a BMI system can decode
user intention. One way is to decode single trials by means of,
say, movement onset detection followed by a real-time mapping
of neural activity onto kinematic movement (Schalk et al., 2007;
Pistohl et al., 2008; Wang et al., 2012; Lew et al., 2014; Xu et al.,
2014). A second way is to classify neural activity into a num-
ber of distinct states or tasks (e.g., rest vs. reaching vs. grasping)
(Chin et al., 2007; Pistohl et al., 2012). Our immediate inter-
est is with the latter type of BMI which is more limited but
still holds important potential applications. Activity is classified
using a database of templates each corresponding to a differ-
ent task. Our present study is focused on finding better ways to
obtain an optimal set of templates through prior time alignment
of individual trials before averaging. While we do not consider
directly this problem here, it is a simple extension of our meth-
ods to allow for classification. This can be done through one of
several ways. One way is to remove the reliance on kinematics
and to warp directly one neural spectrogram onto another. The
score obtained in time-alignment will indicate to which class the
movement belongs. One expects that movements drawn from
the same class will yield a lower score than warping two move-
ments belonging to different classes (Jeong et al., 2011). A second
approach is to develop an optimal series of templates by which
any given movement can then be scored by comparing it to a “gold
standard.” The highest score then defines the class of movement.
Obviously much of our ideas are motivated by the classic work
done in speech recognition (Rabiner and Juang, 1993). While
most modern implementations of automatic speech recognition
systems use statistical models like hidden Markov models or neu-
ral networks, the basic principles remain the same. Our choice of
dynamic time warping was motivated by the ease of implementa-
tion as well as its relevance toward the basic scientific question
of finding the underlying neural components of upper limb
movements.
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Brain-Machine Interfaces (BMIs) can be used to restore function in people living with
paralysis. Current BMIs require extensive calibration that increase the set-up times
and external inputs for decoder training that may be difficult to produce in paralyzed
individuals. Both these factors have presented challenges in transitioning the technology
from research environments to activities of daily living (ADL). For BMIs to be seamlessly
used in ADL, these issues should be handled with minimal external input thus reducing
the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL)
based BMIs are a good tool to be used when there is no external training signal and
can provide an adaptive modality to train BMI decoders. However, RL based BMIs are
sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback
is provided by the critic and the overall system performance is limited by the critic
accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in
the critic feedback in an effort to produce more accurate RL based BMIs. We developed
a confidence measure, which indicated how appropriate the feedback is for updating the
decoding parameters of the actor. The results show that with the new update formulation,
the critic accuracy is no longer a limiting factor for the overall performance. We tested
and validated the system onthree different data sets: synthetic data generated by an
Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data
collected from a non-human primate engaged in a reaching task. All results indicated that
the system with the critic confidence built in always outperformed the system without the
critic confidence. Results of this study suggest the potential application of the technique
in developing an autonomous BMI that does not need an external signal for training or
extensive calibration.

Keywords: brain-machine interface, reinforcement learning, Hebbian, actor-critic, feedback

INTRODUCTION
In recent years, Brain-Machine Interfaces (BMIs) have been
shown to restore movement to people living with paralysis via
control of external devices such as computer cursors (Wolpaw and
McFarland, 2004; Simeral et al., 2011), robotic arms (Hochberg
et al., 2006, 2012; Collinger et al., 2013), or one’s own limbs
through functional electrode stimulation (FES) (Moritz et al.,
2008; Pohlmeyer et al., 2009; Ethier et al., 2012). Studies have
shown that the BMI control can be affected by several factors such
as the type of neural signals used (Wessberg et al., 2000; Mehring
et al., 2003; Andersen et al., 2004; Sanchez et al., 2004), long-
term stability of the input signals (Santhanam et al., 2006; Flint
et al., 2013), type of training signals used for decoders (Miller and
Weber, 2011), type of decoders (linear, non-linear, static, adap-
tive) (Kim et al., 2006; Shenoy et al., 2006; Bashashati et al., 2007;
Li et al., 2011), and cortical plasticity that occurs during BMI
use (Sanes and Donoghue, 2000; Birbaumer and Cohen, 2007;
Daly and Wolpaw, 2008). Other factors include the type of signal
used [local field potentials (LFPs), electrocorticograms (ECoG),

single or multiunit activity] and the long-term stability of the
signals (Schwartz et al., 2006; Chestek et al., 2011; Prasad et al.,
2012). Additionally, the performance can also be affected by per-
turbations such as loss or gain of neurons, noise in the system,
electrode failure, and changes in the neuronal firing characteris-
tics (Maynard et al., 1997; Shoham et al., 2005; Patil and Turner,
2008; Pohlmeyer et al., 2014). These factors occur dynamically in
nature and affect long-term BMI performance. Therefore, there is
a need to produce more stable, high performance BMIs that are
less affected by these daily changes in the neural input space due
to the above interactions so that they can be reliably implemented
in activities of daily living (ADL).

Traditionally, BMIs utilize a decoder that translates neural
signals into executable actions by finding the mapping between
the neural activity and output commands. Due to the non-
stationarity of the neural data (Snider and Bonds, 1998), many
of these decoders need to adapt its parameters in order to find
an optimal mapping between the neural control signals and the
output motor actions. Commonly used decoders (such as Wiener
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models and Kalman filters) are trained using supervised learn-
ing (SL) techniques that require a training data set and a desired
output value, which is usually a real or inferred kinematic sig-
nal from a limb (Schalk et al., 2007; Gilja et al., 2012). However,
this paradigm poses challenges for paralyzed individuals who may
not be able to generate a training kinematic signal in order to cre-
ate a stable mapping between the motor control signals to BMI
command outputs. Maladaptive cortical reorganization occurring
due to non-use of the paralyzed limbs further worsens the reli-
able extraction of training kinematic signals in such individuals
(Elbert and Rockstroh, 2004; Di Pino et al., 2012). Studies have
used motor imagery, baseline neural activity, random initializa-
tion of the decoder, and ipsilateral limb movements to create
training signals that can be used to initialize the BMI decoder and
then refine the decoder during the experiment (Pfurtscheller and
Neuper, 2001; Bai et al., 2010). All these approaches are based
on the SL paradigm where the presence of an external training
signal is critical to achieve optimal BMI control and requires ini-
tial time-consuming calibration (which can range from 10 min to
about an hour) of the BMI decoder before each session to adapt
to the perturbations in the neural environment.

Unsupervised learning (UL) techniques provide an alterna-
tive to SL models as they only rely on the structure of the input
data and finds patterns within the data itself (Shenoy and Rao,
2005; Rao, 2010; Vidaurre et al., 2011; Gürel and Mehring, 2012).
This is particularly useful for BMI applications where the user
may not be able to generate reliable kinematic signals and the
input signals are affected by the changing dynamics of the neural
environment. However, if the input space changes in an unpre-
dictable manner or there are perturbations present unsupervised
decoders may not be mapped appropriately to the behavior since
they rely on the structure of the training data. For example, k-
means, an unsupervised clustering method uses the structure of
the training data to define clusters. When the statistics of the
data change between training and testing, an optimal solution
is not guaranteed (Fisher and Principe, 1996; Snider and Bonds,
1998; Antoni and Randall, 2004). Therefore, in order to address
these challenges we have utilized a semi-supervised learning tech-
nique based on Reinforcement Learning (RL), which depends
on performance outcomes and not on explicit training signals
(Sutton and Barto, 1998). In comparison to SL techniques, RL
uses an instantaneous feedback to modify its parameters but does
not require an explicit training signal. Since there is a structure
already present (due to its feedback) RL is able to respond to per-
turbations better than UL. The basic idea of RL is for an “agent”
to make actions on an “environment” and receive an instanta-
neous “reward” in order to maximize the cumulative or long term
reward the “agent” receives. In this case, the “agent” is an intelli-
gent system (e.g., BMI decoder), which selects an action out of
many available actions with an aim to maximize the long-term
reward. An action will change the state of the environment (action
space) from one state to another, for example, move left or move
up. The “reward” is the evaluation of the action selected depend-
ing upon its outcome. A good outcome will lead to a high reward
and vice versa.

Theoretical models of learning have been developed for dif-
ferent brain areas which suggest that the cerebellum, the basal

ganglia, and the cerebral cortex are specialized for different types
of learning (Houk and Wise, 1995). SL, based on an error sig-
nal has been proposed to be handled by the cerebellum, while
the cerebral cortex is specialized for UL and the basal ganglia are
specialized for RL based on the reward signal (Doya, 2000). We
used a particular class of RL known as the actor-critic RL in this
study, which provides us with a framework to obtain the reward
feedback from a different source than that of the action. The
“actor” makes decisions of which action to choose from, while
the “critic” gives feedback on the appropriateness of this deci-
sion. In other words, the critic criticizes the choice made by the
actor. In contrast to SL decoders, RL does not need an explicit
training signal. RL also gives a framework for adding more bio-
logical realism into the structure of the decoder design. We have
shown earlier an actor-critic RL as a framework for using an
evaluative feedback in neuroprosthetic devices (Mahmoudi and
Sanchez, 2011). This framework provides a structure where a
user and the agent can both co-exist and work toward a com-
mon goal. We have also shown how convergence, generalization,
accuracy and perturbations take place in a Hebbian RL frame-
work (Mahmoudi et al., 2013) and that adaptation is necessary
for maintaining BMI performance following neural perturbations
(Pohlmeyer et al., 2014). In these studies, the actor was driven
by the motor neural data and the critic feedback was computed
by comparing the action taken to the desired action. The drive
is to move toward an autonomous BMI which does not need to
know the desired action and would not need an external train-
ing signal of any kind. Therefore, to bring biological realism for
building a fully autonomous BMI system, we have investigated the
possibility of using a reward signal from the brain itself to drive
the critic (Prins et al., 2013). There are multiple reward areas in
the brain, which can be used to extract such information such as
the striatum (Phillips, 1984; Wise and Bozarth, 1984; Wise and
Rompré, 1989; Schultz et al., 1992, 2000; Tanaka et al., 2004),
cingulate (Shima and Tanji, 1998; Bush et al., 2002; Shidara and
Richmond, 2002), and orbitofrontal cortices (Rolls, 2000; Schultz
et al., 2000; Tremblay and Schultz, 2000); most notably the stria-
tum that is involved in the perception action reward cycle (PARC)
(Apicella et al., 1991; Pennartz et al., 1994; Hollerman et al., 1998;
Kelley, 2004; Nicola, 2007), which is the circular flow of infor-
mation from the environment to sensory and motor structures
and back again to the environment completing the cycle during
the processing of goal-directed behavior. All adaptive behaviors
require the PARC and the control of goal-directed actions relies
on the operation of such an information-movement cycle. A critic
driven by such a biological source (biological critic) would not
only be mimicking a biological system and adding more biolog-
ical realism, but also render toward an autonomous BMI which
does not need a training signal; however, the challenge is how to
incorporate a biological critic in to this actor-critic RL framework
to maximize the BMI performance. We have found from prelim-
inary analysis that the reward signals and reward representations
are diverse and leads to lower accuracy when classified. This is
due to the finding that the overall performance of the decoder
model is limited by the critic accuracy (Pohlmeyer et al., 2014).
This occurs because updating the system with wrong feedback
perturbs the temporal sequence of the RL trajectory and can lead

Frontiers in Neuroscience | Neuroprosthetics May 2014 | Volume 8 | Article 111 | 209

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Prins et al. Confidence metric to improve RL BMIs

to a suboptimal decoding solution. When the critic feedback is
less than perfect, the actor is only able to achieve an accuracy
with the critic accuracy as its upper limit (Pohlmeyer et al., 2014).
Therefore, there is a need to develop a framework that can han-
dle inaccuracies due to uncertainty in the critic feedback so that a
biological critic can be used to drive an autonomous BMI.

In this study, we developed a novel method for decoupling the
overall performance from the accuracy of the critic by adding
a confidence measure in the critic feedback. Using this method,
the system only updates when the critic is accurate. The accu-
racy can be derived from the distance to the boundary for the
decision surface for rewarding and non-rewarding actions. We
performed simulations for this novel method on both synthetic
and non-human primate (NHP) data to show that the overall
performance can be increased above the critic accuracy to cre-
ate high performance BMIs. We used a two-choice task to show
proof of concept that a system with built-in confidence measure
is able to perform significantly better than a system without the
confidence measure. Such a system can be expanded to complex
tasks that include a larger number of targets where the critic out-
put is still in the form of two states similar to one shown in this
study (Mahmoudi et al., 2013). This new method of confidence
driven updates is particularly effective when the accuracy of the
biological critic is low.

METHODS
HEBBIAN REINFORCEMENT LEARNING
We used the actor-critic RL paradigm to test our decoder in which
the BMI decoder that decodes the action is embedded within
the actor architecture itself. We modified the weight updates
according to the Hebbian rule, called the Hebbian Reinforcement
Learning (HRL) (Pennartz, 1997). RL learns by interaction to
map neural data to output actions in order to maximize the
cumulative reward. For this, there are two functions: the value and
policy functions. The value function provides the reward value
and the policy function provides a method of choosing from a
variety of available actions. In actor-critic RL, the structure is such
that the policy is independent of the value function. The policy is
given by the “actor” and the value function is given by the “critic”
(Sutton and Barto, 1998). The actor chooses which action to exe-
cute out of the many actions possible and the parameters of the
actor is changed according to the evaluative feedback given by the
critic (Figure 1A).

The Hebbian learning rule specifies how much the weights
between two neurons must be changed in proportion to their acti-
vation (Pennartz, 1997; Bosman et al., 2004). HRL is a class of
associative RL where the local presynaptic and postsynaptic activ-
ity in the network is correlated with a global reinforcement signal
(Gullapalli, 1991; Kaelbling, 1994). Figure 1B shows the network
structure we are using for our model where the actor is an artifi-
cial neural network (ANN) with 3 layers. The input layer receives
motor neural data and the output layer gives the value for each
action available. Each processing node in the output layer repre-
sents one possible action. The policy we are using is the “greedy
policy,” which says that the action with the highest value is cho-
sen and implemented. Each node in the hidden and output layers
is a processing element (PE). Each of these PE has Equation 2

FIGURE 1 | Architecture of the actor-critic reinforcement learning (RL).

(A) Classical actor-critic RL architecture as adapted for Brain-Machine
Interface (BMI). The actor maps the neural commands into actions to
control the external device. The actor is driven by the motor neural
commands. The critic gives an evaluative feedback about the action taken
based on its reward. This evaluative feedback is used to update the weights
of the actor. The critic is driven by the neural data from the striatum for an
autonomous BMI. (B) Actor network structure in the actor-critic RL; fully
connected feed forward neural network with binary nodes, with 5 nodes in
the hidden layer. The policy function used is the “greedy” policy which
selects the node with the highest value at the output layer and channels
that action to the environment. The critic gives an evaluative feedback to all
nodes in the output and hidden layers. This modulates the synaptic weight
updates based on the local pre- and postsynaptic activity.

in its entirety which is known as the associative reward-penalty
algorithm in adaptive control theory (Barto and Anandan, 1985).
The input to each PE is xi (firing rate of the neuron i in a given
bin) and the output is xj. For the output node j, with the transfer
function f (·), xj is given by

xj = sgn
[
Pj
] = sgn

[
f

(∑
i

wijxi

)]
(1)

Where Pj = f
(∑

i wijxi
)
. We have used a hyperbolic tangent as the

transfer function. The weight update rule for HRL is given by:

�ωij = μ+r
(
xj − Pj

)
xi + μ− (1− r) (1− xj − Pj)xi (2)

where the reward, r evaluates the "appropriateness" of the PE’s
output (−1 ≤ r ≤ 1), xj, due to the input xi. μ+ and μ− rep-
resent the learning rates for the reward and penalty components,
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respectively (Mahmoudi et al., 2013). The first term corresponds
to the reward and the second term corresponds to the penalty.
There are two unique cases for this equation. The first case is
when r = 1, there is contribution only from the first term and
the weight update equation (Equation 2) becomes:

�ωij = μ+r
(
xj − Pj

)
xi (3)

This means that in rewarding trials (r = 1), only the positive com-
ponent contributes to the weight update. But in non-rewarding
trials (r = −1), both terms contribute and the system is more
sensitive to the negative feedback. The second case is when Pj

approaches xj there is contribution only from the second term,
hence the weight update becomes:

�ωij = μ− (1− r) (1− xj − Pj)xi (4)

In this case, the system will only adapt for negative feedback.
When both the above conditions are achieved, (r = 1and Pj →
xj), the weights will not update further. During instances where
there is no weight update, the system has consolidated the func-
tional relationship between input and output. Unless and until
there is a negative feedback, the system will not update further.

CRITIC CONFIDENCE
The decoder in the actor incorporated a confidence measure that
indicated the accuracy of the critic. This was motivated by our
previous findings that the overall performance of the system was
affected by the critic accuracy (Pohlmeyer et al., 2014) and that
the accuracy of extracting reward signal from the neural data was
less than 90% (Prins et al., 2013). The formulation adds an addi-
tional term in the HRL weight update equation (Equation 2),
which indicated how much confidence the critic had in the feed-
back value. We defined this term as the confidence (ρ) and hence,
the modified HRL weight update equation (Equation 2) becomes:

�ωij = μ+ρr
(
xj − Pj

)
xi + μ− (1− ρr) (1− xj − Pj)xi (5)

where ρ is the confidence in the feedback, r. Here, the critic
determines the appropriateness of the action taken by the actor.
The critic gives an output of ±1 (r = ±1) indicating if it was
an action to be rewarded or penalized. In addition, the critic
also gives a value of the confidence (ρ) it has on the feedback
given. If the confidence is high, the actor is updated but if it
is low, the actor is not updated. This is to be determined by
the value of ρ given by the critic. Depending on the confidence
given after each action is taken, the actor weights are updated
only when the critic confidence is high. Since noise in feedback
data can tend to add uncertainty closer to the decision bound-
ary, more noisy data can result in lower levels of confidence and
the actor weights are not updated as frequently. This system how-
ever, does not address the problem of mislabeled critic trials (i.e.,
wrong feedback with high confidence). By not updating (i.e.,
not changing the weights) when the confidence in critic feed-
back is low, it provides a mechanism for preventing inaccuracies
from entering into the system. The trade-off for this approach

is that the number of samples needed to train the system can
be more since every sample may not be used if the confidence
is low.

In the simulations, we varied the critic accuracy from 50 to
100%. An N% accurate critic means that (1-N)% of the time it
will be incorrect. The actor is blind to N, but for these simula-
tions we provided boolean confidence information to the actor
(ρ = {0, 1}). Thus, in these simulations, the actor with confi-
dence does not know how accurate the critic is, but knows exactly
when the critic provided accurate feedback. This actor does not
adapt at all if the feedback was inaccurate (i.e., ρ = 0). In con-
trast, the standard actor (without confidence) adapts fully to both
the accurate and inaccurate feedback.

GENERATING NEURAL DATA
We generated synthetic neural data and tested it on the HRL
update equation both without (Equation 2) and with confidence
(Equation 5) to compare the system performance. The perfor-
mance in each session was quantified by the number of correct
actions for that particular session. For synthetic data,one session
was considered as one simulation and each session consisted of
100 trials (actions). We also included additional noise by changing
the stimulus (how the synaptic current, I, is generated in Equation
6). For each different set of I, we generated data, performed the
simulations and tested the performance. Finally, we tested the
robustness of the model by using neural data from a NHP per-
forming a two choice reaching task and compared performance.
For the NHP data, one simulation consisted of 97 trials collected
over 2 consecutive days. The results presented are a mean of 1000
simulations for both synthetic and NHP data.

Generating MI synthetic data for the actor
The synthetic neural data used to test the model was generated
by the standard Izhikevich method (Izhikevich, 2003) where the
model was given by

v′ = 0.04v2 + 5v + 140− u+ I (6)

u′ = a (bv − u) (7)

with the auxiliary after-spike resetting

if v ≥ +30 mV then

{
v ← c
u ← u+ d

(8)

Here v was the membrane potential of the neuron and u rep-
resents a membrane recovery variable, which accounted for the
activation/inactivation of ionic currents, and it provided nega-
tive feedback to v. After the spike reached its apex (+30 mV),
the membrane voltage and the recovery variable were reset.
The synaptic current is given by the variable, I, which was
calculated from the stimulus of “1” for spike and “0” at all
other times. For excitatory cells, a = 0.02, b = 0.2, (c, d) =
(−65, 8)+ (15,−6) · e2 where e is a random variable uniformly
distributed, e ∈ [0, 1] (Izhikevich, 2003). We generated two
motor states (motor state 1 and motor state 2) using the above
model to depict two actions. The neural data was generated in
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3 ensembles, one ensemble each tuned to one state (activity of
the particular ensemble correlated with one state) and the third
ensemble not tuned to either state simulating noise in real neural
data.

Neural perturbations—additional noise in data
While the synthetic data was generated using a biologically realis-
tic model, there are dynamic factors, which contribute to forms
of noise not considered in the model. These are factors such
as neurons dropping, electrodes deteriorating or breaking and
encapsulation. Without making the model more complicated to
mimic the noisy physiological system, we introduced additional
noise to the synthetic data by adding a probability component
to the stimulus, which generated the I in Equation 6. The actual
value of noise in the stimulus was decided by a Gaussian distribu-
tion instead of the “1” or “0” as before. The number of neurons
with this additional noise was varied from 0 to 100% in 10%
increments. This additional probability component resulted in
overlapping classes; the higher the probability component, more
overlapping in the states generated. This was verified graphically
using the first two principal components and confirmed that
as the probability component to generate I was increased, the
overlapping of the two classes also increased.

Simulations using NHP data
To validate our simulation results, a two choice decision mak-
ing task was designed and neural signals were acquired while the
monkey performed the task. We varied the critic accuracy from 50
to 100% in 10% increments and evaluated the performance. The
experiments were conducted by a marmoset monkey (Callithrix
jacchus) implanted with a 16 channel microwire array (Tucker
Davis Technologies (TDT), Alachua, FL) targeting the hand and
arm region in the primary motor cortex (MI). Neural data was
acquired at 24,414.06 Hz using a TDT RZ2 system and band-
pass filtered 300–5000 Hz. Thresholds were set manually by the
experimenter and 20 multi-unit signals were isolated in real-time
based on waveform and amplitude of the isolated waveforms. We
did not distinguish between single unit and multi-unit activity.
All the procedures were consistent with the National Research
Council Guide for the Care and Use of Laboratory Animals and
were approved by the University of Miami Institutional Animal
Care and Use Committee.

The task was a two-choice decision making task where the
monkey was trained to move a robot arm to one of two targets
to receive a food reward (Figure 2). A trial was initiated by the
monkey when he placed his hand on a touchpad for a random
(700–1200 ms) hold period. The trial onset was an audio cue that
corresponded to a robot arm moving upwards from behind an
opaque shield and presenting its gripper in front of the animal.
The gripper held either a desirable (waxworm or marshmal-
low, “A” trials) or undesirable (wooden bead, “B” trials) object.
Simultaneously, the A (red) or B (green) spatial target LED corre-
sponding to the type of object in the gripper was illuminated. For
A trials, the monkey had a 2 s window to reach to a second sen-
sor to move the robot to A, while for B trials, he was required to
keep his hand still on the touchpad for 2.5 s and the robot would
move to B target. If the robot moved to the target illuminated, for

both A and B trials, the monkey received a food reward. If the ani-
mal either did not interact with the task or performed the wrong
action, these trials were removed from the analysis. The firing rate
over a 2 s window following the trial start cue was used as input
to the decoder.

RESULTS
We tested the model using 3 different data sets in one-step (classi-
fication) mode. Data sets used were: (1) synthetic data generated
by an Izhikevich neural spiking model, (2) synthetic data with a
Gaussian noise distribution, and (3) data collected from a non-
human primate engaged in a reaching task. We varied the critic
accuracy from 50 to 100% and ran two sets of simulations (S1 and
S2) for each of the three data sets; S1, updated the actor at every
trial and S2 updated only when the critic feedback was correct
(i.e., confidence high). This was performed to compare whether
it was better to adapt after each trial or only when the critic feed-
back was correct. For the purpose of these simulations, we used
the correct critic feedback to indicate a high confidence of “1”
and an incorrect critic feedback to indicate a low confidence of
“0.” This can be determined empirically by the critic data that
would require an in-depth evaluation, which was not the focus
of this study. Since the decoder started at a naïve state, we used a
pseudo-real time normalizing of the inputs before feeding to the
network. This prevented any bias due to the difference in the mag-
nitude of the inputs. This was done by keeping a real time record
of the highest firing rate detected for each input, and then used to
continually update the normalization parameters throughout the
session (Pohlmeyer et al., 2014).

COMPARISON OF ACTOR’S PERFORMANCE WITH AND WITHOUT
CONFIDENCE MEASURE
Figure 3A shows how the performance level increased as the critic
accuracy increased. The actor which was updated every time is
shown in blue. The performance was always below the 1:1 curve
showing how the actor performance is limited by the critic accu-
racy. However, the performance of the system where the actor
was updated only when the critic was confident (shown in red)
was able to perform above the critic accuracy level as seen in the
figure. The performance increased from 50% (±6.6%) to 70%
(±8.8%) at critic accuracy of 50% and further improved from
87% (±10.4%) to 92% (±6.9%) at critic accuracy of 90%. A
critic accuracy of 90% means that the critic gave a correct feed-
back 90% of the trials and wrong feedback 10% of the trials. For
example, in our simulations each consisting of 100 trials, a 70%
accurate critic gave correct feedback in 70 trials and wrong feed-
back in 30 trials. If there was no confidence built-in, the actor
assumes that the value was always correct. In this new system
with confidence built in, we reduced the confidence of the wrong
feedback to zero. At lower critic accuracies (50, 60, and 70%),
the system with the confidence outperformed the system without
the confidence by approximately 20%. The performance of the
two systems showed significant difference for all critic accuracy
levels from 50 to 90% (Student’s paired t-Test, with a two-tailed
distribution, alpha 0.001—shown with ∗ in the figure). By updat-
ing weights accurately, the system learned optimal mapping and
stabilized with time. Given that the system began with random
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FIGURE 2 | The experiment where the monkey controls the robot arm.

(A) A trials associated with a motor high and the left target. Sequence of
events (a) monkey triggers trial (b) Robot moves out from opaque screen,
target A lights up (c) Monkey makes arm movement (d) Robot moves to

target A. (B) B trials associated with a motor low and the right target.
Sequence of events (a) monkey triggers trial (b) Robot moves out from
opaque screen, target B lights up (c) Monkey keeps hand still (d) Robot
moves to target B.

FIGURE 3 | (A) Performance of the BMI Vs the critic accuracy with and
without confidence inbuilt. (mean ± standard deviation. One thousand
simulations. One hundred trials per simulation). Red: New update rule with
confidence. Blue: Previous method with no confidence. Black: 1:1
relationship. Critic accuracy was varied from 50 to 100% with 100% being the
best. ∗Shows the values which showed statistical significant difference (alpha

0.001). The overall performance of the blue curve is limited by the accuracy of
the critic but the overall performance of the red curve is able to go beyond
the critic accuracy, decoupling the performance from the critic accuracy. (B)

Stability of the system without (green/blue) and with (purple/red) confidence.
Plot shows the number of simulations that maintained 100% accuracy
beyond 50 trials (green/purple) and beyond 70 trials (blue/red).

initial conditions, there was no guarantee that the system would
stabilize. Figure 3B gives a summary of the number of simula-
tions out of 1000 that stabilized after 50 trials and 70 trials with
and without the confidence. The convergence or stability was
defined as maintaining 100% accuracy (last 50 trials or last 30 tri-
als). The number of simulations that did stabilize at lower critic
accuracies was higher for the system with the confidence mea-
sure. At higher critic accuracy levels, the overall performance was
no longer limited by the critic accuracy but by the data itself.
As the critic confidence increased, the difference in performance
between the two systems became smaller and converged to a sin-
gle value (94± 5.8%) since at 100% critic accuracy, both systems
effectively have the same update equation.

Figure 4 shows the details of the action selected in each trial
and also the critic values for that particular trial. Figure 4A has
two sets of simulations S1 and S2 and Figure 4B also has two
sets of simulations S1 and S2. Each simulation started with ran-
dom initial conditions. Figures 4A,B shows two such examples
with two different critic accuracy levels. The critic accuracy was
changed randomly based on the percentage given to the decoder.
In Figure 4A, the critic is 60% accurate and the top subplot shows
the performance of the system if the actor was updated every time
(S1). The overall performance in this case is 47%. The first trial
was correct, but the critic gave a wrong feedback and the actor
weights were updated with this erroneous feedback causing the
second trial to be wrong. When the critic gave a correct feedback
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FIGURE 4 | Performance of each decoder during the length of the

experiment for one simulation starting at random initial conditions.

One hundred trials. Red: Action 1, Blue: Action 2, Black: Critic. (A) Critic
accuracy 60%. Both decoders perform correctly in the first trial but the
critic gives a wrong feedback. The first system changes the weights
causing the second trial to be wrong. Again, the critic gives a wrong
feedback causing the third trial also to be wrong. Since the system weights
are updated every time, wrong critic feedback causes the system to
perform below the critic accuracy. However, in contrast even though the
second subplot also starts the first trial the same way, the erroneous
feedback does not affect it and the decoder is able to perform better than
the first system. (B) Critic accuracy 80%. The first system starts with a
correct action, but is very sensitive to wrong critic feedback. The second
system starts with a wrong action, but by the 6th trial is able to achieve
good performance and maintain throughout the rest of the session.

during the third trial, the system started performing correctly.
However, due to the erroneous feedback the performance was
not stable. Even when the actor chose the correct action, if the
critic provided a wrong feedback, it decreased the performance.
In contrast, the second subplot shows the performance when the
actor was updated with a confidence level (S2). For the same neu-
ral data, order of trials and critic feedback, the performance of
the second system is 80%. Even though the critic gave wrong
feedback at first, the actor learned to ignore this and was able
to have a better outcome. Figure 4B shows the performance of
the two systems when the critic accuracy was 80%. The top sub-
plot shows when there was no confidence measure and the actor
updated every time (S1). The bottom subplot shows the actor
updating only when the critic was correct (S2). The critic pro-
vided a similar output at the beginning. For the first system, the
system started with appropriate random weights and continued to
do well with correct critic feedback at the beginning. However, an
erroneuous critic feedback at trial 3 caused the system to perform
wrong in the next trial. In contrast, the second system started
with random weights which caused the first trial to be wrong
but the system received good feedback and was able to perform

correctly in the subsequent trials. In the first 5 trials, the first sys-
tem performed better than the second. However, since the second
system actor weights were only updated when the critic feedback
was good, it took longer for the second system to learn the ideal
mapping.

NEURAL PERTURBATIONS—ADDITIONAL NOISE IN DATA
Figure 5A shows how the system with the critic confidence level
still performed better than the system which updates the actor
weights every time even with the additional noise. At lower critic
accuracies, the system which updated at every trial performed
at chance level (50% performance), while the system with the
critic confidence performed better (at critic accuracies 80% and
below the difference in the performance was approximately 10%).
However, as the critic accuracy increased (beyond 70%), the sys-
tem accuracy did not increase as expected in both curves (i.e.,
both systems stayed below the 1:1 curve). This was due to the lim-
itations in the input data as the data to the decoder was noisy and
the states were not as clearly separable. As noted in the previous
section, the performance of the two systems showed significant
difference for all critic accuracy levels from 50 to 90% (Student’s
paired t-Test, with a two-tailed distribution, alpha 0.001—shown
with ∗ in the figure). In Figure 5A, the probability component
used to generate I was 40%, which was most similar to the NHP
data shown in the next section. Figure 5B shows how different
noise levels affected the overall performance as the critic accuracy
increased. Each colored trace is a different noise level as shown in
the legend. With low noise levels, the system was still able to per-
form amidst the critic inaccuracies. However, as the noise level
increased, the system performed at chance (50%) at low critic
accuracy levels and performed marginally above chance even at
higher critic accuracy levels.

SIMULATIONS USING NHP DATA
These results are shown in Figure 6 where the blue trace shows
the performance of the actor updating every time and the red
trace shows the actor updating only when the critic is confi-
dent. Similar to the results of the synthetic data, we can see an
improvement (from 50 to 63% at critic accuracy of 50% and
from 77 to 83% at critic accuracy of 90%) in the overall perfor-
mance by adding the confidence measure in the update equation.
This is more apparent in lower critic accuracies (At alpha =
0.001 critic accuracies 50–90% showed significant difference—
shown with ∗ in the figure). At higher critic accuracies, the system
which only updates when the critic is confident is still able to
do better but the difference in the percentages was smaller. At
lower critic accuracies (80% and below) the difference in per-
formance is approximately 13% and at 90% critic accuracy the
difference in performance is approximately 7%. Ninety percent
critic accuracy means that 9 out of 10 feedback given by the
critic is correct. When the critic feedback was always correct, the
two systems converged to approximately the same performance
value.

DISCUSSION
In this paper, we demonstrated that adding a confidence level
in the feedback to a RL-based decoder can be used to deal
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FIGURE 5 | Effect of noise on the overall performance. (A) Performance of
the BMI Vs the critic accuracy with 40% of the neurons receiving a less
stimuli than the standard (mean ± standard deviation. One thousand
simulations. One hundred trials per simulation). Red: New update rule with
confidence. Blue: Previous method with no confidence. Black: 1:1
relationship. Critic accuracy was varied from 50 to 100% with 100% being
the best. ∗Shows the values which showed statistical significant difference

(alpha 0.001). The overall performance of the blue curve is limited by the
accuracy of the critic but the overall performance of the red curve is able to
go beyond the critic accuracy. Hence, decoupling the performance from the
critic accuracy. (B) How the overall performance changes with the critic
accuracy (1000 simulations). Each curve gives a different noise level of the
data set. Percentages indicate the percentage of neurons that were given a
less stimuli.

with uncertainty in the critic feedback to improve the decoder
performance. The introduction of a confidence component in
the HRL weight update equation provided guidance on when
to update the actor so that the decoder only updated when the
feedback was correct with a high confidence. This is important
as we seek to utilize biological signals for the critic in order to
build autonomous BMIs for use in diverse ADL environments.
Preliminary work suggested that the accuracy of extracting this
reward signal in animal subjects was less than 90% (Prins et al.,
2013) thus indicating that some form of confidence metric will
ultimately be needed for real BMI use. In this work, the effects
of the critic confidence were tested and the results indicated that
the system with the confidence level incorporated outperformed
the system without the confidence level at all critic accuracies.
This was the case for all 3 different data sets we examined: arti-
ficial neural data generated by the Izhikevich method (Izhikevich,
2003), neural data with additional noise, and for data recorded
from the MI of a NHP. The system was particularly more effec-
tive at lower critic accuracies (<80%). For NHP data the system
with the confidence built in performed approximately 13% better
than the system without the confidence measure at critic accuracy
levels of 50, 60, and 70%. At critic accuracy of 80 and 90%, the
system with the confidence performed 12 and 7%, respectively,
better than the system without the confidence. For synthetic data
with no additional noise, the system with the confidence per-
formed approximately 20% better than the system without the
confidence at lower critic accuracies (50, 60, and 70%). At 80%
critic accuracy, the difference in performance was 15% and at 90%
critic accuracy, this value was 5%. When the critic accuracy was
low, updating only when the confidence was high resulted in the
actor receiving fewer erroneous feedback, thus causing the sys-
tem to perform better over time. At higher critic accuracies, since
the actor gets correct feedback most of the time, the difference
between the two systems, though still noteworthy was small. Both
systems converged to the same value when the critic is 100%

accurate. As discussed previously, the neural data proposed for
the critic input yielded less than perfect accuracies which made it
necessary to find an alternate way to deal with the actor update
rule.

NOISY NEURAL DATA
Noisy neural signals as well as complex neural representation of
reward make it a challenging task to classify rewarding vs. non
rewarding information with a high accuracy (Schultz et al., 1997;
O’doherty, 2004; Knutson et al., 2005). Building a confidence in
to the critic feedback improved the performance of the system
when the data was contaminated with noise and when the multi-
ple neural representations caused difficultly in extracting a single
feedback signal required by the actor-critic decoder. We tested
how overlapping classes in the motor data can influence the abil-
ity of the decoder to predict the correct action; more the classes
overlap, lesser the accuracy in decoding. To add noise to the data,
we used a Gaussian distribution in the stimulating current, which
resulted in reducing the stimulating current of a certain percent-
age of neurons in the ensembles that were already tuned. Here, we
also showed that with limited noise in the motor data, the system
was able to maintain performance. When the motor neural data
was noisy, the limiting factor became how well the motor neural
data represented the task.

OVERCOMING INHERENT ISSUES WITH RL—TIME FOR CONVERGENCE
Due to the inherent nature of RL that learns through inter-
action, the time taken to reach an optimal condition in the
weights can longer than for supervised decoders (Beggs, 2005).
The agent needs to “explore” its environment in order to have
a better understanding of how each action changes the state of
the environment. Once the agent has learned enough about the
environment, it will “exploit” the situation or carry out the opti-
mal action. In RL, there is always a dilemma between exploration
and exploitation. Before the agent knows the optimal action and

Frontiers in Neuroscience | Neuroprosthetics May 2014 | Volume 8 | Article 111 | 215

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Prins et al. Confidence metric to improve RL BMIs

FIGURE 6 | Results of the simulations where the monkey controls the

robot arm. Performance of the BMI Vs the critic accuracy with and without
confidence inbuilt for data collected from monkey DU. (mean ± standard
deviation. One thousand simulations). Red: New update rule with
confidence. Blue: Previous method with no confidence. Black: 1:1
relationship. Critic accuracy was varied from 50 to 100% with 100% being
the best. ∗Shows the values which showed statistical significant difference
(alpha 0.001). At lower critic accuracies, the new update with confidence
performs much higher than the one without the confidence measure. As
the critic accuracy increase, the plot with the confidence measure is able to
outperform the curve without the confidence measure. However, the
difference in the performance becomes smaller as the critic accuracy
increases suggesting as before that the critic is no longer the limitation, but
the nature of the input data itself.

exploit it, the agent has to make several sub-optimal actions in
order to explore the environment. The more exploration that
takes place, the better understanding it will have of its environ-
ment, but the longer it will take to reach an optimal solution. In
the case of BMIs, the agent does not have many trials to explore as
each trial comes at a cost. Due to this, the experience of an agent in
the BMI setting is very limited. In previous studies, we have used
real time “epoching” of the data to speed the initial adaptation
from the purely random initialization weights to functionally use-
ful ones as a method of increasing experience with limited data.
Another method for overcoming RL limitations is to use a mem-
ory of past trials. Here, we used a memory size of 1 trial. For more
complicated tasks, a memory size of 70 trials has been found out
to give the optimum results (Mahmoudi et al., 2013; Pohlmeyer
et al., 2014).

EXTRACTING OPTIMAL REWARD SIGNAL FOR BIOLOGICAL CRITIC
FEEDBACK
There are several regions of the brain that can be used to extract a
reward signal for the critic, which include the striatum (Phillips,
1984; Wise and Bozarth, 1984; Wise and Rompré, 1989; Schultz
et al., 1992; Tanaka et al., 2004), cingulate (Shima and Tanji, 1998;
Bush et al., 2002; Shidara and Richmond, 2002), and orbitofrontal
cortices (Rolls, 2000; Schultz et al., 2000; Tremblay and Schultz,

2000). Whichever region is selected, the critic will need to decode
the reward as well as the confidence it has in its decision. One
possible method of decoding the confidence is using the distance
to the boundary of a decision surface: the closer a data point is
to the decision boundary, the less confidence it has in its decision
and further away the data point is, the more confidence it has in
its decision. This method assumes that the misclassifications are
due to overlapping classes and not due to mislabeled trials. This
concept will be further developed in future work.

In this paper, we developed a new formulation for an actor-
critic BMI decoder in order to be able to use biological feedback
signals. Since RL does not need an explicit training signal to
train the decoder, it can be used to develop next-generation BMIs
that self-calibrate in scenarios where the user is paralyzed and
cannot generate a kinematic reference or training signal. The
actor-critic RL paradigm also gives us the flexibility to develop
a fully autonomous BMI provided the critic can be driven by a
biological source and thus reduce set up times and the need for
calibrations.
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Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of
neuronal states in a bid to normalize pathological brain activity and achieve behavioral
gains. However, patients and healthy subjects alike often show a large variability, or even
inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current
co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching
clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the
treatment rationale, the classifier of restorative BCIs usually has a constrained feature
space, thus limiting the possibility of classifier adaptation. In this context, we applied
a Bayesian model of neurofeedback and reinforcement learning for different threshold
selection strategies to study the impact of threshold adaptation of a linear classifier
on optimizing restorative BCIs. For each feedback iteration, we first determined the
thresholds that result in minimal action entropy and maximal instructional efficiency. We
then used the resulting vector for the simulation of continuous threshold adaptation. We
could thus show that threshold adaptation can improve reinforcement learning, particularly
in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an
explanation for the achieved benefits of adaptive threshold setting.

Keywords: reinforcement learning, classification accuracy, neurofeedback, functional restoration,

neurorehabilitation, brain-computer interface, brain-machine interface, brain-robot interface

INTRODUCTION
Restorative brain-computer and brain-machine interfaces
(BCI/BMI)—emerging rehabilitation technologies for neuro-
feedback training—seek to reduce disease-specific symptoms in a
variety of brain disorders (Wyckoff and Birbaumer, 2014). Unlike
classical assistive BCIs, whose goal is to replace lost functions by
controlling external devices, the main focus of these restorative
approaches is to provide contingent feedback of specific neuronal
states, thereby selectively inducing use-dependent neuroplasticity
to normalize pathological brain activity and achieve behavioral
gains (Daly and Wolpaw, 2008; Birbaumer et al., 2009). However,
affected patients—and even healthy subjects—often show a large
variability, or even inability of brain self-regulation, referred to
as BCI illiteracy (Vidaurre and Blankertz, 2010). This condition
is often related to a low signal-to-noise ratio of the targeted brain
activity caused by either physiological (e.g., the depth of the
signal source in EEG-based approaches) or pathological (e.g.,
loss of neural tissue after stroke) mechanisms, or is a result of a
misalignment of the mental strategy used by the subject and the
brain states targeted by the classifier.

This misalignment may occur when the subject explores differ-
ent strategies in the course of BCI training, whereas the classifier
is usually trained on the first strategy only. Alternative strategies
applied by the subject therefore become insufficient. To address

these shortcomings, various machine learning techniques and co-
adaptive algorithms have been proposed. These adjust the brain
state targeted by the classifier to the strategy switching of the
subject so as to maximize the classification accuracy (Vidaurre
et al., 2011; Bryan et al., 2013). Such approaches are powerful for
assistive BCIs which can, for example, detect the subject’s inten-
tion to move and to operate external devices. However, in these
approaches, the classifier adapts (Vidaurre et al., 2011; Bryan
et al., 2013), and so the subject has no incentive to achieve specific
brain states. These adaptation approaches therefore clash with
the goal of restorative BCIs to modify neuronal activity via oper-
ant conditioning, i.e., to achieve specific brain states regarded as
beneficial for motor recovery.

Due to the treatment rationale of modulating specific brain
features, the classifier of restorative BCIs is usually constrained.
In the case of motor rehabilitation, for example, the feature
space might be restricted to event-related spectral perturbation
in the β-range (Gharabaghi et al., 2014). Moreover, event-related
desynchronization has been shown to reflect the excitability of
the corticospinal system (Takemi et al., 2013). This interaction
between a constrained classifier and the subject, who should
be rewarded for achieving specific brain states, poses a special
challenge for the optimization of neurofeedback in restorative
BCI approaches. Thus, classifier adaptation might affect the
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treatment rationale of the intervention. In this context, thresh-
old adaptation might be an alternative approach for restorative
interventions.

However, we have no theoretical or empirical knowledge
as to how threshold adaptation during an intervention might
affect reinforcement learning. In restorative BCIs, classifiers are
often based on linear discriminant analysis (Theodoridis and
Koutroumbas, 2009), e.g., automatic feature weighting based
on common spatial patterns (Ang et al., 2014) or the visual
inspection and selection of spatially weighted frequency bands
(Ramos-Murguialday et al., 2013). These linear methods are char-
acterized by threshold selection, i.e., the definition of a specific
value on a one-dimensional continuum spanned between the two
states that are to be differentiated. Changing this threshold will
modify the sensitivity and the specificity of the classifier regard-
less of the feature weights (Thompson et al., 2013). The selection
of this threshold is currently determined by the intent to maxi-
mize the classification accuracy (Thomas et al., 2013; Thompson
et al., 2013). Furthermore, the magnitude of classification accu-
racy is usually perceived as the measure to determine the subject’s
ability to perform the neurofeedback task (Blankertz et al., 2010;
Hammer et al., 2012).

Within the framework of communication theory, a high clas-
sification accuracy pertains to a good signal-to-noise ratio of the
feedback, i.e., it represents sufficient specificity and sensitivity of
the feedback (Thompson et al., 2013). Since there is evidence
that erroneous feedback affects the reward system (Balconi and
Crivelli, 2010), training at the threshold which results in maxi-
mum classification accuracy might be considered as the optimal
instructional efficacy.

However, to date, no theoretical or empirical work is avail-
able on the relationship between instructional efficacy, thresh-
old adaptation and classification accuracy. We therefore present
a theoretical framework for adaptive approaches in restorative
BCIs. More specifically, we analyzed how classification accuracy
is related to instructional efficacy and whether this instructional
efficacy can be improved by threshold adaptation. This research
question is related to three components: (1) The theoretical
framework to model a neurofeedback environment. (2) The sim-
ulation of neurofeedback learning. (3) Adequate measures for
instructional efficacy.

On the psychological level, neurofeedback training is aptly
described as reinforcement learning (Sherlin et al., 2011).
Several mathematical algorithms, most of which were devel-
oped as machine learning algorithms (Sutton, 1998; Strens, 2000;
Szepesvári, 2010) are now available for reinforcement learning.
For various reasons, the simulation of reinforcement learning
in the present study is based on a Bayesian algorithm (Strens,
2000). There is ample evidence that sensorimotor integration and
learning can be appropriately simulated with a Bayesian model
(Körding and Wolpert, 2004; Tin and Poon, 2005; Genewein
and Braun, 2012). Bayesian reinforcement learning includes
an implicit balancing of exploitation and exploration without
the need for additional parameters (Strens, 2000). It has also
been proposed as an optimal calculus for defining the ratio-
nal action selection of human agents (Jacobs and Kruschke,
2011). We therefore developed a Bayesian reinforcement learning

model for restorative brain-computer interfaces, and explored
the predictions of this model for different threshold adaptation
strategies and classification accuracies.

MATHEMATICAL MODEL OF THE NEUROFEEDBACK
ENVIRONMENT
The basic element of any neurofeedback learning environment is
that the subject is in a specific state (s), selects one of two possible
actions (a), and is rewarded on the basis of the state (s′) result-
ing from this action selection. The training action (aT) places
the subjects into the training state (sT), which is supposed to be
rewarded, and (aF) places the subjects into the false state (sF),
which is not supposed to be rewarded.

In any neurofeedback task, the subject can select either the false
action (aF) (e.g., rest or insufficient neuromodulation), or the
trained action (aT) (i.e., sufficient neuromodulation). In an ideal
neurofeedback intervention, the therapist has perfect knowledge
about the current state of the subject and can reward accordingly.
In a practical neurofeedback intervention, the subject’s current
state is determined with only limited specificity and sensitivity,
resulting in the possibility of reward for both the trained action
P(r|aT) and the false action P(r|aF).

In addition, the state space is usually not discrete, but con-
tinuous. By including a parameter (δ) for the step size of one
action, a continuous state space can be modeled. Assuming that
the step size for both actions is equal but that it is taken in dif-
ferent directions, the current state position (σ) in this continuum
can be calculated as the number of times the trained action is cho-
sen instead of the false action, i.e., σ= nδ-mδ. The trained action
moves the subject one step toward the trained state, whereas the
false action moves the subject one step toward the false state (see
Figure 1A). This enables us to set a threshold (θ) in the state con-
tinuum to determine the probability of reward for the trained
action P(r|aT) and for the false action P(r|aF).

In any neurofeedback environment, the classification at each
threshold will therefore result in particular probabilities for
reward, thus leading to the characteristic curve shape (see
Figure 1B). At each point defined by state (σ) and threshold (θ),
the reward rate will adhere to a binomial distribution. The shape
across the threshold/state dimension can be adequately modeled
by a logistic function (see Figure 1B), which is defined by the
discriminatory steepness (D) and the relative position, i.e. the
distance (�) between the two functions.

P̂ (r | aT; θ, �, σ) = 1

1+ eD(θ −�+ σ )

P̂ (r | aF; θ, �, σ) = 1

1+ eD(θ +�+ σ )

σ = (n−m) δ

We therefore postulate that any neurofeedback task based on lin-
ear discrimination is fully described by the subject’s position in a
continuous state space σ, i.e., the history of selected actions n and
m, the subject’s step size δ, the threshold θ set by the instructor,
the classifier steepness D and the distance � between the reward
probabilities with D, � ∈ R

≥0 and θ, σ ∈ R and n, m ∈ N0. This
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FIGURE 1 | (A) is a depiction of the state-action-element fundamental to
any neurofeedback environment on the basis of linear discrimination. At any
states, the subject selects one of two actions (aF, aT), resulting in a
subsequent state step in the opposite direction (aF:false action; aT:trained
action). (B) Shows the probability of reward for a given action (blue aT and
red aF) as a function of the threshold θ. The dot markers indicate the reward
probabilities at different thresholds acquired from a real dataset (a
right-handed female subject performing a neurofeedback task based on
motor imagery-related β-modulation over sensorimotor regions with
contingent haptic feedback, identical to the task described elsewhere,
Vukelić et al., 2014). The red and blue traces are logistic functions fitted to
the raw data.

function returns symmetric curves, with the shape depending
on D only, and the location of each curve depending on
� and δ.

The parameters σ, θ, and �, δ are in arbitrary units and point
in the same dimension. We propose that D and � are determined
by the features selected for the classifier, in particular their signal-
to-noise rate and their relative weight. Regardless of these two
parameters, the probability of reward for each action is a result
of the threshold θ, which is set by the instructor, and the state
position σ, which is the result of the subject’s history of selected
actions and the ability to switch between states, i.e., the step size δ.
In this respect, δ and � define the shape of classification accuracy
across the θ/σ dimension. On account of this common influence,
the classification accuracy has ambiguously been interpreted as
indicating not only the classifier performance (Thompson et al.,
2013) but also the subject’s ability (Blankertz et al., 2010; Vidaurre
and Blankertz, 2010). However, � is determined by the classifier
and δ is determined by the subject. By altering the environmen-
tal parameter’s discrimination D, step size δ and distance �, this
parametric model enables us to model specific neurofeedback
environments. The hatted P̂ indicates that the shape of the reward
probability function remains fixed by retaining the discrimina-
tion D, the step size δ and the distance � constant within the
model. It should be noted that, for a fixed environment P̂, the

distribution of reward for any of the two actions is fully defined
by the threshold θ and the state σ.

MATHEMATICAL MODEL OF NEUROFEEDBACK LEARNING
By setting the threshold θ, the instructor may therefore influ-
ence the probability distribution of reward for both the trained
action P(r|aT) and the false action P(r|aT), even without direct
knowledge about P(aT) and P(aF). The subject controls P(aT) and
P(aF), although he/she has no direct knowledge about P(r|aT) and
P(r|aF). As a rational agent, the subject will attempt to increase
P(r), i.e., exploring and exploiting the most rewarding action, on
the basis of the knowledge about the reward probability distri-
bution gained from earlier attempts (Ortega and Braun, 2010a).
This can be simulated with a Bayesian reinforcement learning
model (Strens, 2000). Within this framework, the probability of
reward for each action is a binomial distribution that is perceived
by the subject as a beta distribution. The beta distribution is a
conjugate prior for the binomial distribution. Like the binomial
distribution, the beta distribution describes a continuous proba-
bility distribution in the interval [0,1]. In addition, it is controlled
by the parameters α and β, which allow modeling of the subject’s
belief P′ about the true reward probabilities P.

P′ (r | aT) ∼ Beta(αT, βT)

P′ (r | aF) ∼ Beta(αF, βF)

In practical terms, the anticipated reward rT and rF for each action
is determined by relative values of α and β, while the confidence of
the subject that the anticipated value is true will be determined by
the magnitude of α and β. For the novice subject, the beta distri-
butions parameters about the false and true reward (αF,αT,βF,βT)
are set to 1, and the belief is therefore a uniform distribution.

rT = αT

αT + βT

rF = αF

αF + βF

Since the instructor has only limited knowledge about the action
performed by the subject, i.e., the specificity and the sensitivity
of the classifier are not perfect, the magnitude of reward has to
be identical for aT and aF, and only their probabilities differ. By
way of a practical example: a robotic orthosis extending the hand
of a stroke patient contingent with specific brain states would
provide the same haptic/proprioceptive feedback regardless of
whether the control signal is achieved by motor imagery-related
brain modulation (the intended neurofeedback training) or by
neck muscle artifacts projecting to the scalp (Gharabaghi et al.,
2014). The false and the trained action will thus result in rewards
of identical quality, but with different probability. This is impor-
tant because it allows us to run the simulation without any scaling
factor for reward (Ortega and Braun, 2010b). The subject’s reward
belief is therefore sufficiently represented by the belief about the
reward probabilities.

In each learning iteration, the subject selects an action on
the basis of a higher probability of reward than the alternative
action. This can be calculated since the subject’s confidence that
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the reward for an action is higher than a certain value x is given
by the cumulative Beta distribution function defined by the action
parameters α and β.

F (x;α, β) = Beta(x;α, β)

Beta(α, β)

By comparing the relative confidence of both actions, the proba-
bility for each action to be selected can be calculated as follows:

P (aT) = F (rF;αT, βT)

F (rT;αF, βF)+ F (rF;αT, βT)

P (aF) = F (rT;αF, βF)

F (rT;αF, βF)+ F (rF;αT, βT)

In practical terms, if the subject has little confidence that one
action is more likely to return a reward than the other action, both
actions will be performed with the same probability, i.e., P(aT)
equals P(aF). If the subject is very confident that aT is more likely
to return a reward than aF, aT will be more probable, whereas,
in the limiting case, P(aT) and P(aF) would equal one and zero,
respectively. Learning in a neurofeedback environment is there-
fore modulated by the subject’s beliefs and confidence about the
probability for reward by each action.

In each learning iteration, the action is selected at random on
the basis of the subjects belief and confidence in the reward prob-
ability (Thompson, 1933; Ortega and Braun, 2010a). The state
position σ is subsequently updated by taking a step of the size δ

in the chosen direction (false action n + 1, trained action m +
1). Depending on the threshold θ set by the instructor within the
otherwise fixed environment P̂, a binomial distribution defines
the probability for reward. Sampling from this distribution deter-
mines whether the action is rewarded (α+ 1) or not (β+ 1), and
the subject will subsequently adjust his/her belief. Afterwards, the
next learning iteration begins. Please note that, in this framework,
every iteration has an undefined duration. Later in the discussion
section, we will reveal how a learning iteration can be understood
in a practical application.

COMPUTATIONAL APPROACH
The mathematical model presented here would enable us to esti-
mate the anticipated course of learning for different environments
and thresholds by a Monte-Carlo simulation. In this study, we
were particularly interested in the anticipated course of learn-
ing. Directly increasing the parameters of the Beta distribution by
the expectation values for the updates is computationally more
efficient than a full computational simulation followed by an
averaging across simulations. During each learning iteration, the
parameters determining the subject’s belief and the state position
were therefore updated according to the following formulae:

σi+ 1 = (ni −mi) δ = σi + E [P (aTi)− P (aFi)] δ

αi+ 1 = αi + E
[

P (ai) P̂ (r | a, θ, �, σi)
]

βi+ 1 = βi +
(

1− E
[

P (ai) P̂ (r | a, θ, �, σi)
])

Between subsequent learning iterations, the probabilities for
reward were updated according to the following formulae:

P̂ (r | aT; θ, �, σ) = 1

1+ eD(θ −�+ σ )

P̂ (r | aF; θ, �, σ) = 1

1+ eD(θ +�+ σ )

The subject’s probability for action selection is of a dynamical
nature, as can be readily recognized from these iteratively updated
functions.

MEASURES OF INSTRUCTIONAL EFFICIENCY
The goal of a neurofeedback intervention is to increase the prob-
ability of the trained action. As mentioned earlier, this can be
affected only by modulating the belief and confidence of the sub-
ject about the reward rates for the trained and the false actions,
respectively. If the features and thresholds were not adapted,
learning would depend on parameters inherent to the subject
only, i.e., step size δ. However, the instructor has the option of
either adapting the feature weights (affecting D and � directly,
and σ indirectly) or changing the threshold θ between itera-
tions whenever the environment is fixed (constant D and �) due
to a certain treatment rationale. In a restorative BCI environ-
ment, threshold adaptation will therefore be used to influence the
instructional efficiency of the neurofeedback intervention.

However, to explore the predictions of the simulation, objec-
tive measures for the instructional efficiency (IE) of the neu-
rofeedback have to be defined. Since the subject’s belief and
confidence are dynamical, the most straightforward measure
would be to take the probability of the trained action for a given
threshold θ at each learning iteration i. This would have the
advantage of being directly comparable to the optimal learn-
ing outcome, which is P (at) = 1. A further advantage of this
approach is that the measure can be translated into entropy with
regard to the action selection. This, in turn, can be psychologi-
cally interpreted as the subject’s uncertainty as to which action
is more rewarding. During the course of the training, the sub-
ject’s uncertainty H should be reduced to zero, and, accordingly,
the instructor’s goal would also be to reduce the action-entropy
to zero. The uncertainty or action entropy H can be calculated as
follows:

Hi,θ = P
(
aT,i, θ

)
log2P

(
aT,i, θ

)+ P
(
aF,i, θ

)
log2P

(
aF,i, θ

)

However, this measure does not divulge whether the subject actu-
ally learned in the course of the training, since he/she could have
started already with a high probability for the trained action,
e.g., if he/she were familiar with the task. This means that the
degree to which a subject’s uncertainty is reduced might serve as
an alternative dynamical measure. Such a measure should con-
sider that a subject’s maximum reduction of uncertainty is the
difference between the current level of uncertainty and the max-
imum level of certainty. In accordance with this logic, Georges
(1931) defined instructional efficiency as the ratio of the actual
gain to the maximum possible gain which can be formulated as
follows:
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IEi,θ = P
(
aT,i+ 1, θ

)− P
(
aT,i, θ

)

1− P
(
aT,i, θ

) = P
(
aT,i, θ

)
di

P
(
aF,i, θ

)

Due to the fact that the formula of instructional efficiency IE
includes a divisor converging to zero, a singularity will, at some
point, occur as limP(aF,i,θ)→0 IEi,θ. This singularity indicates the
transition to zero action entropy, and thus the achievement of the
training goal.

RESEARCH QUESTIONS
With these methodical discussions in mind, we now can explore
the instructional efficiency of different threshold setting proce-
dures.

FIRST STUDY
The most frequently used threshold in BCI applications is the one
resulting in maximum classification accuracy (Theodoridis and
Koutroumbas, 2009).

1. θ́1 = arg max θ (P (r | aT, θ)+ P (¬r | aF, θ))

The first research goal was to clarify whether instructional effi-
ciency is optimal at this threshold, or whether alternative thresh-
olds might result in a lower action entropy H or in a better
instructional efficiency IE. Furthermore, even if the classifica-
tion accuracy were maximal for a certain threshold, its magnitude
could still vary. A classification accuracy of below 70%, for exam-
ple, has been proposed as an indicator of BCI-illiteracy (Vidaurre
and Blankertz, 2010). Furthermore, accuracies close to chance
level and close to perfect classification are of particular interest
when seeking to improve restorative BCIs. We therefore simu-
lated different classification accuracies, i.e., 55, 70, and 95%, by
using a fixed distance � of 1 and setting the discriminatory steep-
ness value D to 0.4, 1.7, or 5.9, respectively. We termed these
the illiterate, moderate and expert environments accordingly (see
Figure 2).

SECOND STUDY
We went on to hypothesize that threshold adaptation, i.e., pur-
posefully changing the threshold between iterations, improves the
instructional efficiency (IE) and results in lower action entropy
(H). To explore the effect of adaptive threshold-setting, we first
determined which thresholds resulted in minimal action entropy
and maximal instructional efficiency at each iteration across a
range of thresholds. Then, instead of using fixed thresholds, we
applied the resulting vector as a reference table for the simulation.

1.
−→
θ i,1 = arg min θ

(−→
H i,θ

)

2.
−→
θ i,2 = arg max θ

(−→
IE i,θ

)

In practice this meant that, for every iteration, we measured the
threshold with the best instructional efficiency respectively low-
est action entropy, resulting in two vectors of thresholds. We
then repeated the simulation. In these adaptive runs, we used the
respective threshold vector instead of the fixed threshold.

REALIZATION
All simulations were performed for each research question and
environment using 10,000 iterations (i), for thresholds (θ) rang-
ing from −10 to 10 and a step size (δ) of 0.1. The prior belief
of the subject was initialized by setting αF, αT, βF, and βT to
1. The computations were realized with a custom written code
in Matlab R 2014A on a Windows 7 machine. The pseudo-
code example (Figure 3) provides a clearer description of this
algorithm.

RESULTS
EXPLORATION OF THRESHOLD SELECTION
We observed a characteristic beam-like shape of progression
toward minimal entropy originating from the threshold of max-
imum classification accuracy (see black trace in Figure 4). In
all environments, reduction of entropy first commenced at the
threshold of maximum classification accuracy, particularly in
environments with higher classification accuracy. Interestingly

FIGURE 2 | Shows the three learning environments with different

maximum classification accuracies, achieved by selecting an

appropriate discriminatory steepness of the model. (A) shows the

illiterate environment with low classification accuracy, (B) shows the
moderate environment with middle classification accuracy, and (C) shows the
expert environment with high classification accuracy.
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enough, the range of thresholds that resulted in a reduction of
action entropy was narrower for the expert than for the illiterate
environment (see Figures 4A–C). Later, the transition between
high and low entropy was at higher thresholds than at maximum
classification accuracy (CA) thresholds. However, once learning
commenced, transition to low entropy was more rapid. This was
expressed by a highly asymmetric pattern of entropy reduction
(see Figure 4).

It is also worth mentioning that the thresholds which resulted
in minimum action entropy and maximum instructional effi-
ciency were not identical to those for maximum classification
accuracy and that they varied during the iterations (see Figure 4).
The pattern was similar across environments, and was charac-
terized by an early negative and late positive deflection of the

FIGURE 3 | Shows in pseudo code the computations performed for the

reinforcement learning simulation, with the first study exploring the

effect of different fixed thresholds, and the second the effect of

threshold adaption on the basis of the findings from the first study.

action entropy minima (blue trace in Figure 4), which occurred
earlier and more steeply for the instructional efficiency maxima
(red trace in Figure 4). The negative deflection peaked between
iterations 9 and 10 at a threshold of −1.3 for the illiterate envi-
ronment, between iterations 5 and 8 at a threshold of −0.3 for
the moderate environment, and between iterations 3 and 4 at a
threshold of−0.1 for the expert environment. The positive deflec-
tion peaked between iterations 319 and 322 at a threshold of 9.1
for the illiterate environment, between iterations 198 and 202 at
a threshold of 3.7 for the moderate environment, and between
iterations 141 and 155 at a threshold of 1.6 for the expert envi-
ronment. The magnitude of the deflections was therefore higher
for low classification accuracy, whereas transitions were faster for
higher classification accuracy.

EXPLORATION OF THRESHOLD ADAPTATION
Threshold adaptation was performed either following the vector
of thresholds that resulted in maximum instructional efficiency
(see red trace in Figure 4) or minimum action entropy (see
blue trace in Figure 4), and compared to a threshold fixed at
maximum classification accuracy. The comparison showed that
adaptation based on the instructional efficiency resulted in a
phase of comparatively higher action entropy during the training.
Subsequently, however, the entropy decreased more rapidly and
more steeply, as indicated by a crossing of the trace for adaptation
(instructional efficiency) with the trace for fixed threshold (see
Figure 5). This pattern was most pronounced for the illiterate
environment (see Figure 5A), and similar in shape, but with
lower magnitude for the other environments (see Figures 5B,C).
Interestingly enough, the final relative entropy was also smaller
for the illiterate environment (see Figure 5A).

In the illiterate environment, adaptation on the basis of effi-
ciency resulted in higher action entropy, i.e., a less successful
performance, between iterations 24 and 931 and in lower action
entropy, i.e., a better performance, thereafter. Adaptation based
on entropy was less successful than training with a fixed threshold
between iterations 3 and 4 and from 48 onwards (see Figure 5A).

FIGURE 4 | Shows the time course of action entropy as black

contour lines (from 0.95 to 0.05 in steps of 0.05). The figures
also show the threshold resulting in minimum entropy (blue trace)
and maximum instructional efficiency (red trace) for each specific

iteration. Training was performed with a fixed threshold (y-axis) and
results are shown over iterations (x-axis in logarithmic scale).
Subplots depict the illiterate (A), moderate (B) and expert (C)

environment.
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FIGURE 5 | Shows the time course of action entropy (y-axis in

decibel) over iterations (x-axis in logarithmic scale) expressed as

action entropy during threshold adaptation on the basis of

minimum action entropy (blue trace), and maximum instructional

efficiency (red trace) divided by action entropy during training

with a fixed threshold at maximum classification accuracy (black

trace). Subplots show the illiterate (A), moderate (B), and expert (C)

environment.

In the same vein, adaptation based on entropy was not as good
in the moderate environment as training with a fixed thresh-
old between iterations 3 and 6 and from 37 onwards, whereas
adaptation based on efficiency resulted in a poorer performance
at iteration 3 and between 12 and 959 and in a better perfor-
mance thereafter (see Figure 5B). In the expert environment,
adaptation based on efficiency result in a poorer performance
between iterations 3 and 74 and a better performance there-
after, and adaptation on entropy resulted in a poorer perfor-
mance between iterations 3 and 15, but in a better performance
thereafter (see Figure 5C). In summary, efficiency based adap-
tation was superior to entropy based adaptation in all con-
ditions, with an initial decrease and a subsequent increase of
performance. The magnitude of improvement increased from
the expert to the moderate environment and peaked in the
illiterate environment. In the moderate and in the illiterate con-
dition, these improvements commenced later, i.e., at ∼1000
iterations.

DISCUSSION
In this study, we developed a model of neurofeedback and
reinforcement learning that allows—on a theoretical level—an
evaluation of different threshold selection approaches and their
potential to optimize neurofeedback in restorative BCIs. We pur-
sued two research questions:

DYNAMIC vs. FIXED THRESHOLD
The first goal was to investigate whether thresholds other than the
threshold resulting in maximum classification accuracy would be
reasonable within the context of neurofeedback. We observed that
learning occurred earliest at the threshold of maximum classifi-
cation accuracy. However, the pattern of entropy reduction was
asymmetric, and we detected a dynamic pattern of early nega-
tive and late positive deflection for the thresholds, resulting in
maximum instructional efficiency or minimum action entropy
(see Figure 4). Our theory is that these two findings (dynamics,
asymmetry) indicate that threshold adaptation can be superior

to training with any fixed threshold. Furthermore, we ascertained
that the magnitude of the deflection is greater for environments
with lower classification accuracy. This indicates that the effect of
adaptation might be even more pronounced for illiterate than for
expert subjects.

ADAPTATION MIGHT IMPROVE REINFORCEMENT LEARNING
Our second research goal addressed the question as to whether
adaptation can theoretically improve the efficiency of the inter-
vention. To answer this question, we used the threshold vectors
resulting in maximum instructional efficiency and minimum
action entropy derived from the first study, and applied them
dynamically during a second training. For this analysis, we used
the time course of action entropy as an outcome measure (see
Figure 5). We ascertained that threshold adaptation based on
action entropy was worse than training with a fixed thresh-
old. By contrast, adaptation for instructional efficiency caused
a delayed onset of action entropy reduction, but with a sub-
sequently steeper slope, thus resulting in a stronger and faster
overall decrease.

Due to this finding, we consider threshold adaptation as
potentially superior to training with a fixed threshold. This effect
was especially pronounced for the BCI illiterate condition. We
also discovered that the late deflection was strongest in this condi-
tion. Since a strong deflection leads to a reduced reward rate, this
result indicates that subjects can maintain a low action entropy,
even under conditions of reduced reward. This is indicative of
successful operant conditioning which is resistant to extinction
when reinforcement is lacking. This might be an important asset
with regard to the long-term clinical efficacy of restorative BCIs.

ASYMMETRIC DIVERGENCE OF REWARD PROBABILITY
Furthermore, our first study suggests that the effect of adapta-
tion is linked to the transition from negative to positive deflection
and to the asymmetry of learning across different thresholds (see
Figure 4). Such asymmetry might be relevant for a number of rea-
sons. The probability of reward is the information that is essential
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to the subject if he/she is to learn which action is more rewarding
(Ortega and Braun, 2010b). The distance between the reward
probability distribution for the trained and the false action there-
fore constitutes the most important piece of information for the
subject with regard to the question as to which action is bet-
ter. While classification accuracy is symmetric, measures for the
distance of two distributions usually are not, as indicated by the
Kullback-Leibler divergence that can be calculated as follows:

1. KL (P (r | aT , θ) , P (r | aF, θ))= P (r | aT , θ) log2
P (r | aT , θ)

P (r | aF, θ)

2. KL (P (r | aF, θ) , P (r | aT , θ))= P (r | aF, θ) log2
P (r | aF, θ)

P (r | aT , θ)

This point-wise Kullback-Leibler divergence for each threshold
measures the relative informational content of the reward gained
by preferring the trained action (see Figure 6A) or the reward lost
by preferring the false action (see Figure 6B). The visualization
for different classification accuracies shows that the gain infor-
mation peaks at positive thresholds (see Figure 6A), while the
loss information peaks at negative thresholds (see Figure 6B). As
classification accuracy increases, the divergence becomes stronger
and narrower without affecting the peak location. We postulate
that these two stable peaks explain not only the asymmetry and
the decreased magnitude of deflection but also the narrow learn-
ing space for the expert environment (see Figure 4). In the same
vein, classification accuracy narrows down and assumes a more
peaked shape in the expert environment (see Figure 2). This indi-
cates that the classification accuracy encompasses a zone in which
learning may occur, while the ideal threshold within this zone
would have to be selected dynamically in accordance with the sub-
ject’s current bias. This perspective would tally with the theory
that the classification accuracy is the zone of proximal devel-
opment (Schnotz and Kürschner, 2007; Bauer and Gharabaghi,
2015).

LIMITATION TO SIMULATION AND LINEAR CLASSIFICATION
It should be noted that our study is based on simulated—and not
on empirical—data. However, our findings suggest that threshold
adaptation is capable of increasing the instructional efficacy of a
restorative BCI. Furthermore, we show that threshold adaptation
might improve learning, particularly for conditions with low clas-
sification accuracy. However, this threshold adaptation is specif-
ically applicable in linear classification approaches. Classification
algorithms which are non-linear or which classify in multiple
dimensions (Theodoridis and Koutroumbas, 2009) might well
show different behavior. Additionally, reinforcement learning
might be of less importance for assistive or communication BCIs.
In these approaches, the performance of the classifier will prob-
ably remain the most important design factor (Thompson et al.,
2013). We therefore propose the hypothesis that threshold adap-
tation is particularly suitable for approaches dealing with linear
classification in the constrained feature space of neurofeedback
training and restorative BCIs (Vidaurre et al., 2011; Bryan et al.,
2013).

FUTURE APPLICATIONS AND VALIDATION
The simulation applied in this study is based on the theory of rein-
forcement learning, meaning that the subject continually updates
his/her beliefs about the most rewarding action. Learning itera-
tions are an essential aspect of this conceptual framework. But
how do these learning iterations translate into the practical world
of neurofeedback training and restorative BCI?

We argue that the duration of a single iteration is not an
absolute measure such as, for example, one feedback trial or 1
iteration/min of training. Instead, we suggest that it be con-
sidered as a relative measure of information processing that is
performed by the subject in a given training environment. This
being the case, every iteration is based on the processing of one
unit of reward, while the instructional efficiency of one itera-
tion serves as a measure for the efficiency of one bit of reward
to reduce entropy, i.e., to change the belief of the subject toward

FIGURE 6 | Shows the visualization of the point-wise Kullback-Leibler

divergence between the probability of reward for the trained/false

actions, with threshold θ on the y-axis and classification accuracy on the

x-axis. Red contour lines indicate negative values and blue lines positive

values (lines have a distance of 0.05). The black line depicts the threshold
resulting in maximum classification accuracy. (A) Shows the reward caused
by preference of the trained action. (B) Shows the loss caused by preference
of the false action.
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the training goal (Ortega and Braun, 2010b). Accordingly, the
duration of a single iteration may be considered as the time
required to communicate one bit of information to the subject
and for the information to be processed by the subject. It there-
fore stands to reason that the bit-rate of restorative BCIs may
differ in the same way as the one of assistive/communication BCIs
(Thompson et al., 2013). In this context, both quantitative and
qualitative influences might affect the bit-rate. Longer interven-
tions might be more effective as they transfer a larger amount
of information, resulting in a dosage effect. Moreover, some
feedback modalities, such as visual or haptic/proprioceptive feed-
back, might be more informative than others (Gomez-Rodriguez
et al., 2011; Parker et al., 2011). Furthermore, the rate at which
information could be processed might be determined by specific
traits of the subject, e.g., psychological traits such as cognitive
resources (Schnotz and Kürschner, 2007) or physiological and
anatomical traits such as the parietofrontal network (Buch et al.,
2012; Vukelić et al., 2014). In this respect, both physiological and
pathological aspects might limit the capacity of a communica-
tion channel. In healthy subjects, for example, the extraneous
load caused by distractions or feedback overload from multi-
ple senses might impair information processing (Clark, 2006).
In pathological conditions, e.g., following a stroke, patients with
impaired afferent pathways (Szameitat et al., 2012) might benefit
less from proprioceptive feedback than stroke survivors with-
out this impairment. Furthermore, technological limits, such as
the time-resolution of the classifier or the inherent signal-to-
noise ratio, may also limit the maximum attainable rate (Sanei,
2007).

On a more positive note, according to our theory, limita-
tions in one domain might be compensated by achievements in
another. Such additional measures to increase the learning rate
might include the coupling of the neurofeedback training with
brain stimulation (Lefebvre et al., 2012; Gharabaghi et al., 2014),
the monitoring of cognitive resources and engagement based on
physiological measures (Smith et al., 2001; Novak et al., 2010;
Koenig et al., 2011; Grosse-Wentrup and Schölkopf, 2012), and/or
patient screening for treatment eligibility (Stinear et al., 2012;
Bauer et al., 2014).

The model presented here might serve as a theoretical
basis to integrate this abundance of research into the frame-
work of Bayesian reinforcement learning. Further research will
be required to confirm our predictions. Most importantly,
however, these findings serve to stimulate empirical stud-
ies to seek alternatives to the “maximum classification accu-
racy” paradigm and to explore threshold adaptation as a
tool for increasing the instructional efficiency of restorative
BCIs.
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