Shading stress strongly limits the effective growth of plants. Understanding how plant morphogenesis and physiological adaptation are generated in response to the reduced low light conditions is important for food crop development. In this study, two mung bean (Vigna radiata L.) cultivars, namely, Xilv 1 and Yulv 1, were grown in the field to explore the effects of shading stress on their growth. The results of morphology, physiology, and biochemistry analyses showed that the shading stress significantly weakened the leaf photosynthetic capacity as measured by the decreased net photosynthetic rate, stomatal conductance, and transpiration rate and increased intercellular CO2 concentration. These responses resulted in plant morphological characteristics that increased the light energy absorption in low light conditions. Such variations occurred due to the leaf anatomical structure with destroyed palisade tissues and spongy tissues. Under shading stress, Yulv 1 showed higher physiological metabolic intensity than Xilv 1, which was related to changes in chlorophyll (Chl), such as Chl a and b, and Chl a/b ratio. Compared with normal light conditions, the Chl fluorescence values, photosynthetic assimilation substances, and enzyme activities in mung bean plants under shading stress were reduced to different extent. In addition, the relative expression levels of VrGA2ox, VrGA20ox1, VrGA3ox1, VrROT3, and VrBZR1, which are related to endogenous hormone in mung bean leaves, were upregulated by shading stress, further leading to the improvements in the concentrations of auxin, gibberellins (GAs), and brassinolide (BR). Combined with the morphological, physiological, and molecular responses, Yulv 1 has stronger tolerance and ecological adaptability to shading stress than Xilv 1. Therefore, our study provides insights into the agronomic traits and gene expressions of mung bean cultivars to enhance their adaptability to the shading stress.
Chlamydomonas (C.) reinhardtii is a potential microalga for lipid production. Autophagy-triggered lipid metabolism in microalgae has not being studied so far from a mutant of proton gradient regulation 1 like (PGRL1) and proton gradient regulation 5 (PGR5). In this study, C. reinhardtii cells (wild-type CC124 and cyclic electron transport dependant mutants pgrl1 and pgr5) were grown photoheterotrophically in high light 500 μmol photons m–2 s–1, where pgr5 growth was retarded due to an increase in reactive oxygen species (ROS). The lipid contents were increased; however, carbohydrate content was decreased in pgr5. Further, the Nile Red (NR) fluorescence shows many lipid bodies in pgr5 cells under high light. Similarly, the electron micrographs show that large vacuoles were formed in high light stress despite the grana stacks structure. We also observed increased production of reactive oxygen species, which could be one reason the cells underwent autophagy. Further, a significant increase of autophagy ATG8 and detections of ATG8-PE protein was noticed in pgr5, a hallmark characteristic for autophagy formation. Consequently, the triacylglycerol (TAG) content was increased due to diacylglycerol acyltransferases (DGAT) and phospholipid diacylglycerol acyl-transference (PDAT) enzymes’ expression, especially in pgr5. Here the TAG synthesis would have been obtained from degraded membrane lipids in pgr5. Additionally, mono, polyunsaturated, and saturated fatty acids were identified more in the high light condition. Our study shows that the increased light induces the reactive oxygen species, which leads to autophagy and TAG accumulation. Therefore, the enhanced accumulation of TAGs can be used as feedstock for biodiesel production and aqua feed.
Increasing temperatures and extended drought episodes are among the major constraints affecting food production. Maize has a relatively high temperature optimum for photosynthesis compared to C3 crops, however, the response of this important C4 crop to the combination of heat and drought stress is poorly understood. Here, we hypothesized that resilience to high temperature combined with water deficit (WD) would require efficient regulation of the photosynthetic traits of maize, including the C4–CO2 concentrating mechanism (CCM). Two genotypes of maize with contrasting levels of drought and heat tolerance, B73 and P0023, were acclimatized at high temperature (38°C versus 25°C) under well-watered (WW) or WD conditions. The photosynthetic performance was evaluated by gas exchange and chlorophyll a fluorescence, and in vitro activities of key enzymes for carboxylation (phosphoenolpyruvate carboxylase), decarboxylation (NADP-malic enzyme), and carbon fixation (Rubisco). Both genotypes successfully acclimatized to the high temperature, although with different mechanisms: while B73 maintained the photosynthetic rates by increasing stomatal conductance (gs), P0023 maintained gs and showed limited transpiration. When WD was experienced in combination with high temperatures, limited transpiration allowed water-savings and acted as a drought stress avoidance mechanism. The photosynthetic efficiency in P0023 was sustained by higher phosphorylated PEPC and electron transport rate (ETR) near vascular tissues, supplying chemical energy for an effective CCM. These results suggest that the key traits for drought and heat tolerance in maize are limited transpiration rate, allied with a synchronized regulation of the carbon assimilation metabolism. These findings can be exploited in future breeding efforts aimed at improving maize resilience to climate change.
The objective of this study was to investigate characteristics of phenotypic parameters such as physiology, yield, and fruit quality responses of strawberry (Fragaria × ananassa Duch.) to various light intensity conditions (VLICs), and to determine the correlations among these phenotypic parameters. Strawberry plants were cultivated in a smart greenhouse separated into four areas, three of which were completely shaded by curtains from 20:00 until 10:00 (3 hS), 12:00 (5 hS), and 14:00 (7 hS), respectively. The fourth area was a non-shaded control treatment (0 hS). The ambient light intensities during the experimental period for the 0, 3, 5, and 7 hS treatments were 1,285, 1,139, 770, and 364 mol⋅m–2, respectively. Strawberry plants grown under low light intensity conditions experienced decreases in photosynthetic rate, stomatal conductance, and sugar accumulation compared to the 0 hS. Petiole generation and fruit yield were also sharply decreased in proportion to the degree of decrease in light intensity. In contrast, photosynthetic pigment content was shown to increase under low light conditions. Organic acid contents (excluding acetic acid) and leaflet size did not change significantly under low light conditions compared to the 0 hS. Changes to light intensity are considered to induce changes to the phenotypic characteristics of strawberry plants to favor growth using the energy and carbon skeletons obtained through respiration and photosynthesis. In the 7 hS treatment, where light intensity was drastically reduced, NPQ, qP, and RFd values as chlorophyll a fluorescence parameters were significantly lowered, which could indicate their measurement as an important technique to check the stress response of plants grown in low light conditions.
The effect of biochar application on photosynthetic traits and yield in peanut (Arachis hypogaea L.) is not well understood. A 2-year field experiment was conducted in Northwest Liaoning, China to evaluate the effect of biochar application [0, 10, 20, and 40 t ha−1 (B0, B10, B20, and B40)] on leaf gas exchange parameters, chlorophyll fluorescence parameters, and yield of peanut. B10 improved photochemical quenching at flowering and pod set and reduced non-photochemical quenching at pod set, relative to B0. B10 and B20 increased actual photochemical efficiency and decreased regulated energy dissipated at pod set, relative to B0. B10 significantly increased net photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency at flowering and pod set, relative to B0. Compared with B0, B10 significantly improved peanut yield (14.6 and 13.7%) and kernel yield (20.2 and 14.4%). Biochar application increased leaf nitrogen content. B10 and B20 significantly increased plant nitrogen accumulation, as compared to B0. The net photosynthetic rate of peanut leaves had a linear correlation with plant nitrogen accumulation and peanut yield. The application of 10 t ha−1 biochar produced the highest peanut yield by enhancing leaf photosynthetic capacity, and is thus a promising strategy for peanut production in Northwest Liaoning, China.
Frontiers in Plant Science
Advancement in Photonic Sensing for Abiotic Stress Management in Horticultural and Plant Nursery Sectors