About this Research Topic
Diverse biological processes involve changes in the shape of cellular membranes, and are accompanied by spatial redistribution of proteins and lipids forming them. Among the major challenges of contemporary biophysics is to explain how these dynamic rearrangements are induced and controlled by biomolecular interactions. Novel approaches tackling this general challenge constitute a central objective of this Research Topic. Of particular interest are experimental approaches probing multiple length scales, as well as computational methods ranging from all-atom molecular dynamics to coarse-grained molecular simulations, to mesoscale membrane models. By combining the different levels of modeling, simulations and experiments – from molecular to subcellular and cellular – one can attempt to bridge the knowledge about biogenesis and shapes of biological membranes with the information about structures and dynamics of their molecular components. A parallel objective of the Research Topic is to advance and apply multiscale approaches – both experimental and computational – to design physicochemical properties and novel functionalities of biomimetic membranes.
The scope of the Research Topic covers original studies on biological and biomimetic membranes that employ relevant methods at the interface of physics, chemistry and biology. Review articles on biological and biomimetic membranes are also welcome.
Specific topics are focused on, but not restricted to:
• structure, dynamics and function of membrane proteins;
• interactions of proteins with lipids;
• lipid transport and formation of lipid droplets;
• functions, properties and dynamics of lipid rafts;
• formation of pores and domains in membranes;
• remodeling of cellular organelles;
• fusion, fission and division of lipid vesicles;
• interactions of nanoparticles, nanodroplets and biomolecular condensates with membranes;
• membrane adhesion and cell migration;
• design of novel physicochemical properties and functionalities of biomimetic membranes.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.