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Editorial on the Research Topic

Immunosenescence and Immunoexhaustion in Chronic Kidney Disease and

Renal Transplantation

The Immune System (IS) and Kidney function are closely and interactively connected (1).
Dysregulation of the IS, as it occurs in systemic autoimmune diseases, may affect kidneys through
several pathways, including immune complex deposition, signaling transduction pathways or
complement activation, leading to an excessive variety of glomerular and interstitial disorders (2, 3).
Moreover, chronic kidney disease (CKD) per se, characterized as an “inflamm-aging” condition,
seems to affect immune integrity, in a way similar to aging process; mainly directed to adaptive
immunity, leading to a shift of lymphocytes toward senescent and exhausted phenotypes (4, 5).
Clinical consequences, including increased cardiovascular risk, susceptibility to infections and
reduced response to immunization, are critical (6, 7). Following kidney transplantation (KT), renal
function is reinstated; yet initiation of immunosuppressive treatment may simply change the scene
of IS disturbances.

Apparently, the interaction between IS and kidneys is multifaceted and extremely important
in many aspects (8). This special issue aimed to gather participation of investigators to present
their latest findings upon immune-senescent and exhaustion phenomena relative to renal function.
A group of eminent authors participated, with nine papers, four original research articles, four
reviews, and one case report.

The gut microbiome may act as a bridge between kidneys, aging and IS disorders (9).
Microbiota evolves normally from newborn to elderly, as a result of epigenetic mechanisms,
environmental factors, personal habits, nutrition, etc. Recent studies have implicated microbiota
in the pathogenesis of primary glomerular diseases, such as IgAN and membranous nephropathy
(8). In this issue, the review from Stavropoulou et al., describes that CKD side-effects, such as
metabolic disorders, dyslipidemia, oxidative stress, converging to gut dysbiosis, may generate the
“inflammaging” status, leading to immune senescent alterations.

Predicting the progression of a glomerular disease is a useful tool for clinicians in order
to determine treatment approach. Papasotiriou et al., presented the ability of survival models,
recently designed to predict long term outcome of IgA Nephropathy (IgAN), the most common
glomerulonephritis worldwide and common cause of end stage renal disease (ESRD). The authors
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showed that predictive models may overestimate the risk
probability, however they were accurate to distinguish high risk
IgAN patients.

As the adaptive immunity is predominantly affected in CKD,
resulting in lymphocyte phenotypic changes, Duni et al., analyzed
specific lymphocyte subsets, including B cells, CD14++CD16+
monocytes, Natural Killer cells (NKs) and regulatory T
lymphocytes (Tregs), in peritoneal dialysis (PD) patients. B
cell lymphopenia, together with increased CD14++CD16+
monocytes and NK cells were closely associated with the
presence of CVD, but also there was a direct association of
these lymphocyte subtypes with adequacy of PD method and
fluid balance.

Apart from the increased incidence of cardiovascular
disease, CKD patients have a phenotype of premature aging,
characterized by frailty, muscle wasting, and osteoporosis. The
shift toward senescent T cell subtypes, as the result of a
premature thymic involution, is compensated by homeostatic
expansion of highly differentiated memory T lymphocytes (10).
Potential therapeutic interventions to prevent or even reverse
ESRD-related premature immune-senescence are described by
Ducloux et al., and include increased physical activity and
dietary interventions to modulate gut microbiota and reduce
levels of protein bound uremic toxins (p-cresol, p-cresyl
sulfate). Administration of growth hormone is a safe procedure,
which leads to increased IGF1 levels and may reverse thymic
involution. The use of median cut-off or vitamin E-coded
dialyzers are preferred in hemodialysis, although PD seems more
advantageous. KT, although essentially restores renal function,
it cannot reverse thymus involution and its effect on recovering
adaptive immunity is still under investigation.

Increased risk of infection in ESRD has become more
profound the last 2 years, during the COVID-19 pandemic. Co-
morbid conditions, such as CKD and organ transplantation,
are associated with the highest mortality risk from COVID-
19 infection. Betjes presents pathogenic mechanisms of severe
COVID-19 infection in CKD patients and the role of immune
senescence in the evolution of the disease. The contracted
TcR repertoire in naïve T lymphocytes and reduced numbers
of plasmocytoid dendritic cells, in CKD patients, may have a
profound negative effect on control of viral infections. Moreover,
CKD and elderly patients are characterized by increased
proportion of CD4+CD28 null cells, advanced differentiated
cells, highly activated and poorly controlled, responding with a
cytokine storm, responsible for lung parenchyma damage.

In the study of Weiger et al., response to BNT162b2
vaccination was significantly lower in HD patients compared
to healthy controls. After the first dose almost 70% of patients

were seronegative. Anti-spike IgG levels were increased only after
the second dose, and almost disappeared over the following 4
months. These findings describe a late response to vaccination
in HD patients, with limited duration, and they advocate for
the specific management of these patients during COVID-19
pandemic with reinforced vaccination schedules.

KT is undoubtedly the treatment of choice for CKD, although
this usually comes after protracted periods undergoing on
dialysis. Patients are usually exposed to foreign HLAs, which
are processed into smaller peptides loaded onto HLA class II
and expressed on antigen presenting cells. After recognition of
the above T cell epitopes (TEs), naïve CD4+ T lymphocytes are
differentiated into donor-reactive memory cells, responsible for
the early de novo DSA (dnDSA) formation after transplantation.
Tomosugi et al., proved that evaluation of shared TEs by the in
silico assay using the PIRCHE-II algorithm, can estimate donor-
reactive memory CD4+ T cells and predict the risk of early
dnDSA formation after KT.

Phenotypic markers of lymphocytes (CD3, CD4, CD8,
CD19, CD56) monocytes (CD14, CD16, CD86, and CD54),
and endothelium-derived microvesicles (MV) (annexin
V+CD31+CD41–) were estimated in KT patients and compared
to healthy controls and CKD patients, by Ceprian et al.
Surprisingly, B-cell lymphopenia together with the increased
numbers of T-cytotoxic lymphocytes and activated monocytes
persisted after KT, and correlated negatively with MVs. Findings
of the present study were novel and may explain the persistent
adverse outcome of CVD despite KT.

B-cell lymphopenia and acquired agammaglobulinemia
further deteriorates after reaching ESRD and is complicated
by recurrent infections, however, as Pavlakou et al., presented
that administration of IVIG may be curative and can safely be
continued even after KT, together with immunosuppression.

We believe the present issue will be a valuable implement
to promote further investigation in order to understand the
Immune System-Kidney axis.
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Lupus nephritis in the context of Systemic Lupus Erythematosus (SLE) is characterized

by an unpredicted course with remissions and flare-ups. Among others, it remains

a significant cause of end-stage kidney disease (ESKD) in relatively young patients.

Therapeutic regimens with newer immunosuppressive agents have been introduced

in order to control SLE clinical manifestations more efficiently and limit organ damage

induced by immune complex formation and sustained inflammation. Treatment is usually

long-term, and the cumulative impact of immunosuppression is expressed through the

increased frequency of infections and neoplasms. However, if the observed immunity

dysregulation is secondary and pharmaceutically induced or there is a pre-existing,

primary immunodeficiency that shares common pathogenetic pathways with SLE’s

autoimmunity is not always clear. Herein, we present the case of a 39-year-old woman,

that reached ESKD due to lupus nephritis. After an upper respiratory cytomegalovirus

(CMV) infection and concomitant CMV reactivations the investigation revealed significant

immunodeficiency. Not long after the initiation of intravenous immunoglobulin (IVIG)

administration, patient received a cadaveric kidney transplant. IVIG was continued

along with standard immunosuppression so that both recurrent infections and allograft

rejection are avoided. Patient is closely monitored, and her post-transplant course is

remarkably satisfying so far. ESKD patients with immunodeficiency syndromes should

not be excluded by definition from kidney transplantation.

Keywords: kidney transplantation, immunodeficiency, systemic lupus erythematosus, hypogammaglobulinemia,

intravenous immunoglobulin

INTRODUCTION

Systemic Lupus Erythematosus and Autoimmunity
Lupus nephritis remains a significant cause of end-stage kidney disease (ESKD). Despite the
improvement in renal survival during the past decades due to new therapies, the 5-year incidence
of ESKD in patients with lupus nephritis is 11% (1). Lupus clinical course is characterized
by periods of remissions and unpredicted flareups that dictate the need and even the increase
of immunosuppressive treatment in order to control symptoms. The cumulative impact of
immunosuppression on patients is reflected on the incidence of infections (2) and even
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neoplasms (3) on the long-term, making clear the need for
minimization of toxicity. Nevertheless, the dysregulations of
immunity that are present are related to the pathophysiology
of lupus with emphasis on coexisting genetic variations,
lymphopenia and hypocomplementemia aggravating further the
susceptibility to infections (4).

Systemic lupus erythematosus (SLE) is a systemic multi-organ
chronic disease with genetic predisposition and environmental
triggering that lead to the production of autoantibodies
against nuclear antigens which are responsible for the disease
manifestations. Shared genetic pathways determine the complex
interplay between SLE and immunity disorders (4, 5). The
underlying deficiency in complement components, the defective
immunoglobulin synthesis (partial deficiencies in IgA and
IgM mostly) and/or the co-existence of granulomatous or
other autoimmunity disorders (i.e., Wiskott-Aldrich syndrome,
autoimmune lymphoproliferative syndrome etc) are the main
parameters of clinically expressed immunodeficiency and SLE
(6). Under these circumstances, there is a constant activation of
the immune system against self-antigens, a dysregulated immune
complex formation and degradation that lead to unpredicted
tissue damage enhancing further any pre-existing tendency
toward autoimmunity and SLE as well (4, 5).

Immunodeficiency Syndromes
The range of immunodeficiency syndromes (IS) is wide and
consists of primary forms with genetic predisposition and
secondarily induced immunity dysregulations that lead to
hypogammaglobulinemia and frequent infections (7). Diagnosis
demands broad investigation and exclusion of secondary causes.
Despite efforts and consensus reports on diagnostic criteria for
IS there are overlapping cases that do not fall into one category
in specific, termed unspecified hypogammaglobulinemia (8) and
mirror the complexity in diagnosing and classifying IS (8, 9). The
exact prevalence of immunodeficiency syndromes is not known
as the field is currently under study but secondary forms of
IS are adding up making the interest for the establishment of
a classification even greater (10). Secondary immunodeficiency
has been described in patients suffering from hematologic
malignancies (lymphoma, multiple myeloma) as well as those
under immunosuppressants. A special group of patients are
solid organ transplant patients who are likely to develop
hypogammaglobulinemia post transplantation but especially
those with pre-existing gamma globulin dysregulations and an
intention to receive an allograft plus immunosuppressants. As
these patients are highly prone to infections and the aetiologic
treatment of secondary IS with immunosuppressants’ withdrawal
is not an option, close monitoring and proper translation of
laboratory parameter results is a possible strategy. For example,
low levels of complement components indicate an increased risk
for bacterial infections while enzyme-linked immune absorbent
spot (ELISPOT) and flow cytometry low response of anti-
CD8 lymphocytes to cytomegalovirus (CMV) antigens reflect
increased probability for CMV infection (11).

B-cell depleting therapies are established as a highly effective
treatment option not only in lymphoproliferative disorders but
also in collagen inflammatory diseases. However, one cannot

avoid recognizing the induced rise in the rate of infections that
complicate patients’ course that may even be fatal (12), in the
context of secondary IS.

The main axis of treatment in patients with IS is the
management of infections and their prevention through
prophylactic antibiotics and antivirals. The substitution of
gamma globulins is another option that seems to benefit patients
with significantly low levels of IgG (<4 g/L), recurrent infections
with failure of prophylactic antibiotics and immunity disorders
namely failure in post-exposure immunization while the route of
administration (subcutaneous or intravenous) doesn’t affect the
effect of the regimen (13).

Case Report
A 39-year-old female patient was referred to our Nephrology
Department during late 2009. She was newly diagnosed with
SLE after a spontaneous miscarriage during the second trimester
of pregnancy. Due to significant proteinuria and microscopic
hematuria a kidney biopsy was performed which revealed
crescentic focal segmental glomerulonephritis [class III lupus
nephritis with crescents according to WHO classification (14)].
She was initially managed with a combined therapeutic regimen
of cyclophosphamide, corticosteroids and azathioprine which
was modified due to poor response, to mycophenolic acid with
the addition of rituximab. However, despite the absence of
extra-renal manifestations of lupus, kidney function gradually
deteriorated and patient reached ESKD about 4 years after
the initiation of immunosuppression. Peritoneal dialysis was
the type of renal replacement therapy that was initiated with
the concomitant administration of hydroxychloroquine and low
dose methylprednisolone.

Shortly after the induction of peritoneal dialysis, the patient
presented with fever for the first time. All possible infectious
causes were investigated including peritonitis, catheter related
infection and a lupus flair, nevertheless no definite diagnosis was
reached, and she was managed with empiric antibiotic treatment
that led to full recovery. During the next 12 months she had 3
more hospitalizations with fever as main cause of admission and
all workups were inconclusive except her last admission when
high CMV viral load with 157.000 copies/mL was found. Further
investigation revealed remarkably low serum immunoglobulin
levels and five pulses of intravenous immunoglobulin were
administered. In this direction, supplementary investigation for
hypoglobulinemia was performed with repetitive measurement
of immunoglobulin levels after a symptom free period which
confirmed earlier findings with low IgA, IgG and IgE levels
but slightly elevated IgM levels (Table 1). Then on, patient
had no major complications apart from two to three episodes
of upper respiratory infections and acute tonsilitis each year.
Evaluating both clinical course and laboratory findings the
monthly administration of intravenous immunoglobulin was
initiated as acquired immunodeficiency was themost likely cause.
The regimen was well tolerated.

In June 2020, the patient received a cadaveric kidney
transplant. The compatibility analysis revealed two shared
HLA class I antigens and the donor was CMV IgG positive.
Immunosuppression regimen included basiliximab 25mg on
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day 0 and 4, mycophenolic acid 540mg twice daily, tacrolimus
with trough levels of 8 ng/ml directly post-operatively and
methylprednisolone as well as prophylactic treatment with
trimethoprim-sulfamethoxazole and valganciclovir. There was
direct allograft function postoperatively and no need for renal
replacement therapy. The only remarkable manifestation post-
transplant was a lymphocele that was surgically managed with a
peritoneal window drainage.

Treatment with IVIG was continued seamlessly and a change
in immunoglobulin profile was noticed (Table 2). In more detail,
IgG CMV antibodies that were absent even after the resolution
of her former CMV infection were detected. Of note, our
patient had also failed to acquire immunity for hepatitis B
after vaccination, but HBV surface antibodies were now present.
Peripheral blood immunophenotyping with flow cytometry
appointed an almost absent CD20+ lymphocytes count (0.11%,
2 cells/µl).

DISCUSSION

Kidney Transplantation,
Immunosuppression and Viral Prophylaxis
Successful solid organ transplantation equals to adequate
suppression of recipient’s immunity response, so that both
self-tolerance and a well-functioning allograft are achieved.
The key target for immunosuppressive treatments in solid
organ transplantation is the major histocompatibility complex
(MHC) or HLA complex. When donor’s HLA molecules
are presented on antigen-presenting cells (APCs), they are
recognized by recipient’s MHC as foreign antigens giving rise to
an immunity response with T-lymphocytes activation (15). T cell-
mediated allorecognition and response, if not halted, is clustering
with secondary signals, cytokine production and detrimental
effects for the allograft, leading to rejection. Despite described
efforts for self-tolerance achievement with minimization or
early immunosuppression withdrawal especially in pediatric
transplant patients (16), successful kidney transplantation is
interconnected with a regimen that consists of two or more often
three immunomodulatory agents.

Along with maintenance immunosuppression, prophylactic
treatment against CMV with valganciclovir has proven efficacy
especially in CMV-IgG negative patients receiving a transplant
from CMV-IgG positive donor, who are regarded high risk
for CMV infection and invasive disease. Treatment with
valganciclovir for 3 months prevents CMV disease and ensues
protection against super-infections such as herpes simplex
virus while it can lead in medium and low-risk patients to
lower incidence of acute rejection (17). Nevertheless, in high-
risk seronegative kidney transplant recipients prophylaxis with
valganciclovir is recommended for a 6 month period post-
transplant (18). An alternative strategy to avoid CMV infection
in transplantation is pre-emptive treatment with CMV-specific
super-immune globulin, for 3 days directly postoperatively.
Results from a meta-analysis in more than 5,000 solid organ
transplant patients, show no superiority between valganciclovir
prophylaxis and pre-emptive therapy regarding CMV disease

prevention, organ rejection and superinfections. Valganciclovir
was associated with more episodes of delayed CMV infections
especially in seronegative recipients, while hematological toxicity
was more frequent in the valganciclovir group (19). Conclusions
regarding the optimal dose of valganciclovir could not be
reached (19).

Close surveillance for CMV viremia using quantitative assays
is an approach that allows both early detection of viral load
and prompt intervention in order to avoid CMV infections. The
initiation of 900mg valganciclovir twice daily when the threshold
of 400 copies/mL of CMV load is exceeded was inferior to
prophylactic treatment with 450mg of valganciclovir twice daily
in CMV episodes prevention but had similar effects on rejection
episodes and allograft and overall survival on the long run (20).
Close monitoring of CMV replication is to be considered during
the direct period post valganciclovir prophylaxis discontinuation
in high-risk patients as both myelotoxicity minimization by
avoiding prolonged exposure to valganciclovir and proper
treatment are feasible (18, 21).

Intravenous Immunoglobulin
IVIG preparations are produced via the extraction of
immunoglobulins from healthy individuals (22). Currently
IVIG is used for the management of numerous conditions which
include immunodeficiency syndromes, inflammatory systemic
diseases (SLE included) and hematologic conditions such as
idiopathic thrombocytopenic purpura (23). A big effort has been
made to describe the underlying mechanism of action for this
multi-purpose therapeutic option which is characterized by both
pro- and anti-inflammatory action. In brief, low dose IVIG seems
to exert its pro-inflammatory action through complement and
innate immunity cell activation achieved by Fc-IgG fragment
binding with its receptor (FcγR) on recipient’s cells giving
rise to the expression of stimulatory signals and enhancing cell
mediated toxicity (23, 24).While the aforementionedmechanism
is thought to summarize the benefit in patients with IS, IVIG
in higher doses acts as anti-inflammatory agent. Among the
proposed characteristics is the scavenging of anaphylatoxins that
leads to complement inhibition, the competitive action against
autoantibodies and immunocomplexes regarding ligation on
FcγRs decreasing granulocytes’ activation, the enhancement of
the inhibitory FcγRIIB expression inhibiting macrophages and
modifying cytokine profile (22).

The applicability of IVIG in renal transplantation so far,
involves desensitization protocols before transplantation as in
ABO blood type incompatibility or in highly HLA sensitized
patients, administered as monotherapy or combined with
rituximab and/or plasmapheresis and finally as substitution
in secondarily induced agammaglobulinemia in the context
of recurrent infections (BK virus, parvovirus B19, CMV) that
may cause intrinsic allograft nephropathy if left untreated
(22). Although not validated with controlled studies, another
indication for IVIG in kidney transplantation is antibody
mediated rejection (AMR) (22) with good short-term
effectiveness (25). IVIG seems to be well-tolerated and most
postulated side effects concern infusion related symptoms or rare
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TABLE 1 | Immunoglobulin levels timeline.

(Normal

range)

On CAPD

initiation

18 months

later-During

CMV infection

Measurements while

infection free (4year period)

2-months after

IVIG initiation

6-months after

IVIG initiation/3-

months

post-Tx

IgG (mg/dl) 751–1560 406 129 <33 <33 424 1160

IgA (mg/dl) 82–453 89 54 <7 <7 <7 <7

IgM (mg/dl) 46–304 59 41 573 667 347 91

IgE (mg/dl) 5–165 16 <5 8 6

A gradual restoration of IgG levels was achieved along with normalization of IgM levels, after induction of IVIG treatment.

Ig, immunoglobulin; CAPD, continuous ambulatory peritoneal dialysis; CMV, cytomegalovirus; IVIG, immunoglobulin.

TABLE 2 | Patient’s viral immunology profile changes in time.

On CMV

infection

1 month later 6 months later 4-year period on infection free

workups

4 months after

IVIG initiation

7 months after

IVIG initiation/4

months post-Tx

CMV IgM >22 positive (inconclusive) 133 100 101 64.8 67 33.9

CMV IgG >14 positive <5 <5 <5 5 82 116

PCR CMV

(copies/ml)

157.000 1.200 0 0 0 0

EBV IgM >1 positive <10 <1 <1 <1 <1 <1

EBV IgG >20 positive 11 <11 <1 <1 63.36 69.18

anti-HBs

(mIU/ml)

< 10 negative 7.2 0.086 0.07 776.4 >1000

anti-HBc

IgG

>1 positive <1 <1 <1 <1 <1

Major remarks are the absent CMV IgGs after the resolution of CMV viremia and the seroconversion on both CMV IgGs and anti-HBs after intravenous IVIG treatment.

CMV, cytomegalovirus; PCR, polymerase chain reaction; EBV, Epstein Barr virus; HBs, Hepatitis B surface antigen; HBc, Hepatitis B core antigen; IVIG, intravenous immunoglobulin;

Tx, transplantation.

incidents of acute kidney injury due to osmotic nephrosis mainly
with saccharose-containing preparations (25).

The Case
Our patient, a young woman that reached ESKD 4 years
after SLE diagnosis, remained on CAPD for 7 years. In the
meantime, there were no flare-ups of her primary disease and
no need for treatment step up apart from maintenance with
low-dose prednisolone and hydroxychloroquine. The activity
of SLE that declines in parallel with ESKD progression in
time has already been described with gradual remission of
lupus related manifestations and diminished serological activity
(26). Nevertheless, the major concern about our patient were
recurrent upper respiratory infections and the diagnosis of CMV
infection. The case is further complicated by the subsequent
severe hypogammaglobulinemia (Table 1) and patient’s failure
in acquiring immunity for CMV with undetectable CMV IgG
levels (Table 2). On the other hand, there is a sustained positivity
of low level CMV IgM antibodies with untraceable viral load
after repeated PCR exams until present, which could be of minor
importance as long as it is not accompanied by clinical and
laboratory (i.e., leukopenia) manifestations or other indications
of intrinsic disease.

Successful kidney transplantation is the best possible option
for ESKD patients. The time dependent “burn-out” effect of
autoimmunity (27), but mainly the experience gained from
kidney transplantation in patients with lupus nephritis has
improved outcomes and allograft survival (28). Available
data regarding immunodeficiency syndromes and kidney
transplantation are restricted in a small number of case reports.
In such a case, a patient with primary immunodeficiency
on maintenance IVIG proceeding to kidney transplantation
had an uncomplicated postoperative course with direct
allograft function and co-administration of immunosuppression
consisting of basiliximab, tacrolimus (trough levels 3.9 ng/mL),
mycophenolate mofetil and corticosteroids (29). This patient
presented with allograft rejection after 2 and a half years, with
de-novo donor specific antigens due to non-compliance with
medication (29). In another case, a 15-year-old transplant

patient treated with antithymocyte globulin, azathioprine,
cyclosporine A and methylprednisolone, was diagnosed with
IS 2 years post transplantation after multiple episodes of acute
sinusitis and oral candidiasis, which in several instances were
accompanied by acute allograft rejection episodes. However, after
immunoglobulin substitution with IVIG the patient remained
infection free with stable renal function (30). In a single-center
case series, 3 patients with ESKD and hypo-gammaglobulinemia
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on IVIG treatment, received a kidney transplant with minor
complications. Among them, a young woman with SLE, 6
months after transplantation suffered from extensive herpetic
skin infection and oral and vaginal candidiasis that apart
from antiviral and antifungal treatment was managed with
minimization of her immunosuppression (31). An important
aspect in this regard is the potential immunomodulatory
effect of the administered IVIG and the consequent potential
protection against antibody mediated rejection episodes. In
this light, an additional question arises about the safe reduction
of standard immunosuppressive therapy under the protective
permanent IVIG administration, with the ultimate goal of
reducing calcineurin inhibitor (CNI) toxicity on the one hand
and preventing episodes of infection on the other.

Appropriate management of our patient’s acquired
immunodeficiency was initiated with the administration of
IVIG 500 mg/kg every 2 weeks targeting at IgG levels > 500
mg/dl. About 4 months later a change in serologic profile was
observed with positive IgG for several viruses, as shown in
Table 2, and among them IgGs against surface HBV antigen.
It is worth noting that the patient was a non-responder after
the completion of HBV vaccination. Similar observations have
already been reported in two pediatric patients (32) and in
a Canadian cohort of 11 patients with ITP, 3 of whom had a
seroconversion with positive anti-core IgG for HBV, post IVIG
administration (32, 33). Retesting in the following weeks, after
pausing IVIG revealed a return to former status, concluding that
the passive transfer of pre-formed immunoglobulins was the
etiology of the case (33). Overall, substitution with IVIG in solid
organ transplant recipients with hypoglobulinemia seems to
protect against severe infections (34) including CMV infection
and lowers allograft rejection incidence (35). The restoration
of IgG levels with IVIG in patients with multiple infections
post-transplantation prevented this deleterious continuality (36)
and improved overall survival (37).

The half-life of IVIG varies from 3 to 4 weeks, depending on
the formulation administered (38). However, the question
about the effectiveness and functionality of transferred
immunoglobulins and whether they are indicative of immunity
as reflected on the laboratory measurements still remains. The
significance of this remark is further underlined when it comes to
our patient’s history of cytomegalovirus infection, the absence of
CMV IgG antibodies even after the resolution of viremia and on

the other hand the seroconversion achieved after IVIG therapy.

Queries for the clinical team are still pending: the measured
IgGs provide protection against CMV infection? Prophylactic
treatment with valganciclovir should be prolonged after 3 or
even 6 months of treatment even if there are no supporting data
available (18, 21)?

CONCLUSIONS

SLE is a disease with multiple comorbidities and ESKD may be
reached not long after the diagnosis despite all efforts for tailor
made immunosuppression. Even if renal replacement therapy
ensures patient’s survival and a good quality of life, a successful
kidney transplantation remains the gold standard of treatment.
Nevertheless, the management of a transplant patient can be
complex when immunity dysregulations coexist, as the need for
B-cell products substitution, that is, gammaglobulins via IVIG
administration on one hand and T-lymphocytes suppression
in order to avoid allograft rejection on the other may be
simultaneously necessary. The confined data regarding kidney
transplantation in patients with IS should not be discouraging
as long as there is an integrated medical team and close
monitoring so that early intervention according to patient’s needs
is undertaken.
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The gut microbiome is known as an important predictive tool for perceiving characteristic

shifts in disease states. Multiple renal diseases and pathologies seem to be associated

with gut dysbiosis which directly affects host homeostasis. The gastrointestinal-kidney

dialogue confers interesting information about the pathogenesis of multiple kidney

diseases. Moreover, aging is followed by specific shifts in the human microbiome,

and gradual elimination of physiological functions predisposes the microbiome to

inflammaging, sarcopenia, and disease. Aging is characterized by a microbiota

with an abundance of disease-associated pathobionts. Multiple factors such as the

immune system, environment, medication, diet, and genetic endowment are involved

in determining the age of the microbiome in health and disease. Our present review

promotes recently acquired knowledge and is expected to inspire researchers to advance

studies and investigations on the involved pathways of the gutmicrobiota and kidney axis.

Keywords: gut, kidney, gut-kidney axis, microbiome, ageing, immunosenescence, chronic kidney disease,

microbiota

INTRODUCING THE AGING MICROBIOME

The human newborn is devoid of bacteria at birth (1). Bacteria colonizing the sterile newborn
either come from the hospital environment and staff as in the case of caesarian section or
from normal maternal vaginal microflora (1). The establishment and progression of the human
microflora is attributed to the influence of multiple epigenetic mechanisms (2). Personal habits
and behavior, stress, hormones, antibiotics, vaccination, and infections (1) seem to be involved.
However, nutrition remains the ultimate factor that can sway newborn development processes
regulating epigenetic mechanisms during pregnancy and early life (1, 2). The importance of food
intake variations is stated by a plethora of publications (1–4). Studies comparing children in rural
Africa and Europe reported important variations in microbial populations due to eating habits
(5). African children were colonized by more bacteria belonging to Actinobacteria phylum and
Bacteroidetes than Firmicutes compared to European children group who carried more Firmicutes
and Proteobacteria.

The importance of early life colonization is understood (1). The presence of beneficial bacteria
such as Lactobacilli and Bifidobacteria protect against disease (6). The “Hygiene Hypothesis” was
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advanced to explain atopic disorders after immune dysregulation
(7). Human microbiota evolve in parallel with the immune
system supporting a bidirectional relationship resulting in
normal immune development (8).

Nowadays, the term “microflora” is used less frequently in
favor of the term “microbiota” as microbial genomes are also
involved. The term was first used by the Nobel Laureate Joshua
Lederberg (9).

Bacterial communities are involved in complex inter-
communication and network models of unique microbiomes.
In this vein, characterization of the different microbial
communities in health and disease status was achieved due
to new technological involvements and particularly 16S rRNA
sequencing. This methodology permits the identification of
complex microbial populations in the human body (10).
Additionally, metagenomics Whole Genome Shotgun (WGS)
sequencing has allowed for the identification of involved
functions in relation to our microbiome (10, 11). It seems to
be less crucial to confirm “who is there” than “what are they
doing.” The Human Microbiome Project (USA) (12) as well
as the metaHIT Consortium (Europe) (13) have shed light on
the characterization of major healthy human sites in order to
compare them with shifts occurring in disease states (14).

In developed countries, during the last century, improvements
in healthcare have led to a population of higher age and life
expectancy has risen (15). With the recognition of an aging
population (16), geriatric research has gained the interest of
multiple society sectors including topics such as social, work, and
economic impact and nutrition and health issues.

It is known that frail and elderly people encounter more
infections than younger people (17). Infections in elderly subjects
are often complicated due to multi-morbidity (17), hormonal
shifting, increased production of pro-inflammatory cytokines
and chemokines, and abnormalities of the telomeres which
finally could cause a dysfunction of the immune system called
immunosenescence and malnutrition.

The impact of aging upon the intestinal microbiota is
associated with a decrease in the anaerobic population (18, 19),
specifically the Bifidobacterial population (20, 21), while an
increase in Enterobacterial population has been reported (19, 21).

Age-related sequential changes were reported in the human
microbiota (22) by 16SrRNA methodologies. Actinobacteria
phylum (mainly Bifidobacteria) was decreased with age and
after weaning (22), while Firmicutes (mainly Clostridium cluster
XIVa and Faecalibacterium 57 prausnitzii) were more frequent
in older children but at lower levels (23). Finally, Bacteroidetes
and Proteobacteria were found in human recipients over 70 years
old (22). Taking it one step further, in analysis focusing on
bacterial co-abundance groups (CAGs) as defined by Kendall,
correlations between genera showed that several transition types
of microbiota were enriched in the adult population (22). Relative
abundance of genera was registered in elderly-associated CAGs
compared to infant- and adult-associated CAGs (22). Linkage
clustering based on the abundance of genera indicated five
age clusters with median ages 3, 33, 42, 77, and 94 years old
(22). However, when clustering was based on the proportion of
transporters evaluated by phylogenetic analysis of the bacterial

communities by reconstruction of unobserved states (PICRUSt),
the human recipients were classified into two age groups; the
adult-enriched and the infant/elderly-enriched clusters (22).

IMMUNOLOGICAL PATHWAYS IN KIDNEY

DISEASE

It is known that the intestine possesses dual functions, firstly
a role in nutrient absorption and also a function in the
synthesis of substances such as amino acids, vitamins, and
short chain fatty acids (SCFAs) (24). SCFAs exert beneficial
effects, confer energy to epithelial cells, and engage in a
potent role in the immunomodulation and barrier effect
against pathogenic invaders (24). Particularly, they hold two
basic signaling functions; the activation of G-protein-coupled
receptors (GPCRs) and the inhibition of histone deacetylases
(HDACs) (25). GPCRs are receptors of SCFAs which participate
in metabolism, inflammation, and disease processes (25). Still,
SCFAs are activated in the free fatty acid receptor-2 and−3
(FFAR2 and FFAR3) found in numerous human body sites
(26). Additionally, SCFAs upset the physiology of the intestinal
epithelial cells by inhibiting histone deacetylases (HDACs)
resulting in chromatin remodeling and changes in transcription
processes (27). Finally, HDACs seem to possess an anti-
proliferative and anti-inflammatory action either in vitro or in
vivo in developed models of inflammation (27).

In this vein, the intestinal microbiota via the intestinal barrier
seem to adjust homeostasis and functions of both innate and
adaptive immunity locally and systemically (28). However, when
the intestinal barrier is breached, a situation called “leaky gut,”
the gut bacteria and their toxins are able to infiltrate the intestinal
mucosa and then through the blood stream circulate to different
tissues and organs (1, 29). Moreover, activated immune cells
penetrate the kidney and generate pro-and anti-inflammatory
reactions and regulatory signals in order to induce a neutrophils
response (30). Neutrophils together with macrophages are
induced as part of the first line response in innate immunity
against pathogens (31) and kidney disease (32).

Impairment of the macrophages’ phagocytic ability has
a negative effect on kidney function leading to chronic
inflammation (31). Chronic systemic inflammation can be
appraised using the neutrophil-to-lymphocyte ratio (NLR) which
is associated with the risk of ESRD with stage 4 CKD. NLR could
be a prognostic marker for cardiovascular risk and mortality
in patients with CKD 3-5 and hemodialysis-peritoneal dialysis
patients, respectively (33, 34).

To this end, the role of pattern recognition receptors (PRRs),
and especially TLRs (toll like receptors) which are membrane
glycoproteins, during inflammation processes is stated (31). TLRs
are found in renal cells and activate mitogen-activated protein
kinases, nuclear factor-κB, and activator protein-1 toward a pro-
inflammatory status (35, 36). The importance of a dialogue
between the acquired immune system and the innate system is
understood (37, 38) through the production of cytokines.

Renal tubular epithelial cells participate in immunity
processes by producing chemokines, cytokines, and
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antimicrobial substances (32). In their turn, cytokines participate
in the immunological response by promoting the synthesis
of acute phase proteins and tissue proteolysis and lipolysis.
Moreover, they interact with T lymphocytes to generate the
acquired immune response (39). A cell-mediated response to the
antigen will take place and T lymphocytes will similarly produce
cytokines in order to regulate the activity of immunocompetent
cells and induce antibody production (40). Injured renal tubular
epithelial cells dedifferentiate to achieve refit and thus they incite
inflammation by recruiting myofibroblasts. In this way, tubular
epithelial cell loss stimulates residual renal hypertrophy. Thus,
the hypertrophied nephron is unable to cope with the increase
in tubular transport as it overwhelms its energy-generating
capacity, and anaerobic metabolism, acidosis, and hypoxia
occurs (41, 42).

Renal tubular epithelial cells present a crucial role in
inflammation, positively or negatively regulating T cell responses
in an alternative way, as they express co-stimulators of T
cells (ICOS-L) and B7-H1 molecules (43). Yet, macrophages,
dendritic cells (DCs), and T regulatory cells (Tregs) induce an
adaptive immune response and DC activation promotes the
production of proinflammatory cytokines such as IL-12 and IL-
6 (30). Clearly, DCs trigger the differentiation of naïve CD4+

T cells into regulatory T (Treg) cells and the maturation of
B cells into IgA-secreting ones (30, 44). The role of Treg
cells in renal disease seems to be crucial in protecting against
inflammation processes and amplifying homeostasis by boosting
microbiota (45). In support, T helper 17 (Th17) cells are activated
inducing the production of pro-inflammatory interleukin-17 (IL-
17) (46). To this end, nuclear factor-κB (NF-κB) is released by
the renal tubular epithelial cells regulating pro-inflammatory
response (47).

Furthermore, innate lymphoid cells (ILCs) tamper with pro-
inflammatory cytokines IL-1β, IL-12, IL-23, IL-22, and IFNγ

production (44, 48). It was also found that the aryl hydrocarbon
receptor of IL-22 in innate lymphoid cell response (ILC3)
suppresses inflammatory Th17 cell responses and regulates Treg-
mediated gut homeostasis (49). So then, the suppression of Th17
cells in the intestine confers positively to the translocation and
activation in the kidney (44). Gut expressed Th cells can be
activated in the kidney through the CCL20/CCR6 axis (50).

The intestinal microbiota cooperate by means of microbial
associated molecular patterns (MAMPs) or SCFAs as previously
discussed to temper inflammation in the kidney (51). It is of
note that by the aid of RT-PCR, four receptors (GPR41, GPR43,
Olfr78, and GPR109a) expressed in the kidney are linked to
particular pathologies (52) (Figure 1).

Without any doubt, important physiological changes occur in
the kidney as a result of immunoactivation. Immune cells and
inflammatory proteins contribute to the pathogenesis of kidney
diseases (53). Finally, it is worth noting the importance of the
dialogue between the kidney and gut, the so-called gut-kidney
axis in health and disease (54).

Actually, in spite of the technological advancements in
peritoneal dialysis (PD) and hemodialysis (HD) procedures,
the mortality in ESRD remains high (55) as cardiovascular
disease and infections occurred in these patients. It seems

that both complications are associated with immunological
shifts in ESRD such as uremia (55). Uremia is characterized
by immune dysfunction and immunosuppression leading to
multiple infections. The accumulation of pro-inflammatory
cytokines takes place as a result of dropped renal elimination
capacity, oxidative stress, and the accumulation of uremic
toxins. Moreover, immunoactivation results in inflammation
and cardiovascular disease. Immune dysfunction in uremia
is linked to both innate and adaptive immunity (55). Yet,
adaptive immunity is altered in ESRD patients. It seems to
be caused by uremia per se and chronic renal failure. T cell
proliferation is mitigated in an uremic environment. T helper
lymphocytes (Th) have an impact on the immune response. Th1
cells activate macrophages, while Th2 cells promote humoral
immunity (56). Interestingly, the maturation of Th cells in
hemodialysis patients (HD) does occur, these subjects showed
increased Th1 concentrations and an increased Th1/Th2 ratio
(57). Studies state that ratio increase in HD is associated with
the elevated production of IL-12 which effects T lymphocytes.
This leads to an increase in IFN-γ and a decrease in IL-4,
promoting their differentiation in Th1 cells (55). Yet, B cell
lymphopenia is apparent due to apoptosis, despite the production
of IgM and IgA in normal levels in dialysis patients (58).
Following initiation of renal replacement therapy in HD or
peritoneal dialysis (CAPD) subjects, the immunological status
of patients was appraised (59). The percentage of CD4+CD28
null and CD8+CD28 null cells was found increased in ESRD
patients. Therefore, CD4+CD28 null cells correlated with CRP
and serum albumin levels while important differences in items
of CD4+CD28 null and CD8+CD28 null cells were found in
patients with cardiovascular disease. Shifts in the population of
CD4+CD28 null cells was found following 6 months of dialysis.
However, these changes showed significant differences between
HD andCAPD patients (59), T cells subtypes are affected by CKD
and a chronic inflammation disease is installed. This turmoil is
enhanced in HD patients but alleviated in CAPD patients (59).

The intestinal microbiome of HD patients showed an
increase in Proteobacteria, Actinobacteria, and Firmicutes with
preponderance of the subphylum Clostridia, while a decrease in
the taxa Firmicutes andActinobacteria is found in CAPD patients
(60). It is known that there is an interplay between the kidney
and gut, called the gut-kidney axis (54, 61). Renal transplantation
incites changes in the gut microbiota (62). Yet, hormones,
environment, genetics, epigenetics, and pharmacogenetics seem
to impact kidney allograft receivers (62).

Gut microbiota could incite antigen-presenting cells (APCs)
and initiate immune response and alloimmune reactivity, as
is the case in allogeneic bone marrow transplantation (HSCT)
(63). However, when allograft recipients are submitted to
gut decontamination, acute graft vs. host disease declines
(64). A considerable shift in microbiota was found 1 month
after transplantation. It is of note that patients hosting
Faecalibacterium prausnitzii in their microbiota need higher
tacrolimus therapeutic doses (65).

Researchers found that gut-associated lymphoid tissue
(GALT) plays a key role in the evolvement of immunoglobulin A
(IgA) nephropathy (IgAN) (66).
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FIGURE 1 | Immunosenescence and chronic kidney disease. NK, natural killers; HSC, hematopoietic stem cells; PAMPs, pathogen-associated molecular pattern

molecules; DAMPs, damage-associated molecular pattern molecules; PMNs, polymorphonuclear leukocytes; FGF-23, fibroblast growth factor 23; GFR, glomerular

filtration rate.

Changes in gut microbiota and dysbiosis seem to be critical
for immunoglobulin A nephropathy (IgAN) (54). In IgAN
patients, an abundance of Fusobacteria is observed, while
Synergistetes were decreased (67). Genome studies showed that
IgAN and inflammatory bowel diseases are linked to the same
loci (66). This observation involves a different clinical approach
including a treatment option that focuses on subclinical intestinal
inflammation or microbiota shifting (68).

Dysbiosis of the gut microbiota was also related to
patients with idiopathic membranous nephrotic syndrome
(INS) (69). Fusobacteria, Proteobacteria, and Parabacteroides
are increased in INS patients, while Firmicutes dropped (69).
At the genus level, Providencia and Myroides were found
more frequently in INS patients (69). Yet, propionate acid
and butyric acid are found in low concentrations in INS
patients (69).
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AGING AND SENESCENCE: TWO FACETS

IN THE CONTEXT OF IMMUNITY

During aging, physiological and pathological changes emerge in
contrast to senescence where mainly non-pathological changes
occur. There is an impairment of multiple functions including
the dermal, mucosal, and epithelial barrier and (50) the barrier
effect (70). While most scientists have not found a quantitative
variation in immunological cells with aging, B lymphocytes
and T lymphocytes associated with adaptive immunity and
natural killers cells, granulocytes, monocytes, and macrophages
associated with the innate immunity were found in increased
numbers (71, 72).

Yet, in elderly people, DCs showed a reduction in antigen
presentation-function, impaired endocytosis, and reduced
chemokine production (72). This reduced chemokine production
leads to a decrease in cytotoxicity of the natural killer (NK) cells
and a decreased killing capacity. While natural killer numbers do
increase in healthy elderly people due to the enhanced activity of
the markers cells CD56dim and CD57, function is impaired due
to cytotoxicity. Therefore, an enhanced production of IL-4 and
IL-10 and a decreased production of INF-γ in elderly subjects
is observed.

The importance of natural killer (NK) cells in kidney infection
and inflammation was previously discussed. Although, natural
killer (NK) cells increase quantitatively in lymphatic organs, they
showed a low proliferative capacity in the peripheral blood (73).
Neutrophils make up 50–70% of human white blood cells and
they play an essential role in the innate immune system. They
remain stable in the peripheral blood and the bone marrow
of the elderly, although they have low phagocytic and killing
activity and are more vulnerable to apoptosis (74). Although
monocytes also have stable quantitative levels in the peripheral
blood of an aged subject, macrophage function is decreased (75,
76). Yet, a temperate phagocytosis, chemiotaxis, and oxidative
activity is seen due to the release of ROS, as superoxide radical
and hydrogen peroxide from different cells (76). Moreover, the
antigen-presenting capacity is lower. Thus, infection occurring
in the elderly will be long lasting and it is likely to develop into a
chronic inflammation state more frequently. Similarly, the same
profile was shown for dendritic cells (DCs) (77). Moreover, in the
frail elderly, an extensive reactivity against auto-antigens and an
enhanced release of the pro-inflammatory cytokines TNF-a and
IL-6 was registered (78). It is of note that these pro-inflammatory
cytokines are used as predictive biomarkers for comorbidities and
mortality (17).

Shifts observed in the immunological structure during
chronological aging induce a “prolific milieu” for the
development of a chronic inflammation state, so-called
“inflammaging.”

Age-related modifications are more pronounced in the
adaptive immune system.

Chronological aging lends itself to the decrease of naïve T
cells and the accumulation of oligoclonal memory and cytotoxic
T cells (79). Upon the end of the thymus involution process at
around 50 years of age, a drop in T cell levels is marked and

globally observed age-related shifts are more noticeable (80). The
decrease of CD8+ cells was more profound compared to CD4+
cell levels (81).

Although, B lymphocytes present a stable profile in the
peripheral blood, the numbers of mnemonic B cells is enhanced
in order to offset the drop in naïve B cells in the elderly.
In support of that observation, insufficient production of
specific antibodies following vaccination with advanced aged was
shown (82).

Recapitalizing, important shifts are shown in immune system
cells during aging which lead to thymic involution, clonal
exhaustion, and rupture (83) (Figure 1).

The term immunosenescence was coined by RoyWalford (84)
when he published his hallmark book entitled “The Immunologic
Theory of Aging” (85). The term denotes the aging-related
dysfunction of the immune system (72) associated with higher
infection possibility.

However, there is some scientific disputation in defining
the term “immunosenescence” (72). Scientists report
immunosenescence as a dysfunction of the global immune
system called the “damage theory of aging,” while others believe
that only specific parameters are altered (72) entangling the
telomere proliferation mechanisms (86). Telomeres seem to
have a crucial role in aging via regulating cellular responses
and DNA damage (87). Telomeres should “cap” chromosome
ends to inhibit activation of DNA repair. As a result, apoptosis
or cell senescence occurs when the number of “uncapped”
telomeres accrues (87) due to shortening of each telomere
length. This fact highlights the cessation of cellular proliferation
which defines the aging status. Finally, a lack of telomeres is
reported as an immunosenescence status (87). It is of note
that amplified cancer cells have active telomerases and a stable
telomere length and as a result they do not senescence and
even when telomeres are linked to oncogenes, cells tend to
immortalize (86–88).

Aging is linked to important shifts in gene expression.
Overexpression of p16 and p21 gene inhibitors of the cellular
cycle induce faster senescence (89). In this way, the induction of
senescence induced by gene inhibitors may be a new therapeutic
approach in the treatment of cancer (89).

CHRONIC KIDNEY DISEASE AND

IMMUNOSENESCENCE

The term “chronic kidney disease (CKD)” reflects lasting damage
to the kidneys that can aggravate over time. Chronic kidney
disease (CKD) and end-stage renal disease (ESRD) are a
dominant medical challenge in the 21st century (90), as more
than 1.2 million people died from CKD in 2017 showing a
considerable increase in global-age prevalence and mortality
in the last 20 years (91). In Oceania, sub-Saharan Africa, and
Latin America, the burden of CKD was much higher compared
to the disease burden in other countries (91). Patients may
develop complications such as hypertension, anemia, heart and
blood vessel diseases, and nerve damage (90). Diabetes and
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hypertension may cause CKD, susceptibility to infection, and
other associated pathologies (90).

Early detection of the disease is important, as the disease
develops and may lead to kidney impairment that necessities
dialysis and finally kidney transplantation (90) to survive.

CKD is defined according to the level of glomerular
filtration rate (GFR) into five gradual stages from asymptomatic
stage 1 to the end-stage renal disease (ESRD) stage 5. The
stages 3–5 show a glomerular filtration rate (GFR) below
60 ml/min per 1.73 m2 for 3 months or more (90). Other
pathological co-morbidities as well as additional markers of
kidney damage, such as proteinuria or hematuria for 3
months or more are co-estimated (92). The disease seems
to be more common in the elderly population considering
chronological aging. CKD is characterized by senescence, and
CKD and ESRD patients appear to be biologically older (93)
due to their global malfunction status, when compared to a
healthy population.

Kidney cellular shifts and immune cell dysfunction lead
to immunosenescence and apoptosis as previously discussed.
Moreover, important changes are registered in the kidney
glomerular filtration barrier by loss of podocytes (94) which
lead to renal impairment. Proteinuria and other lesions advance
podocyte loss or induce death (75, 94).

The autophagy process has a central role in controlling
homeostasis and adjacent involved mechanisms involved in
glomerular disease and maintains podocytes homeostasis in
aging (95, 96).

Tubulo-interstitial renal fibrosis is a condition of the aged
kidney which is defined as a progressive detrimental connective
tissue deposition on the kidney parenchyma leading to renal
function damage (43, 97). The epithelial to mesenchymal
transition (EMT) of tubular epithelial cells is converted to
mesenchymal fibroblasts. Thus, fibroblasts proliferate to the
adjacent interstitial parenchyma (97) (Figure 1).

As stated, advanced aging deteriorates the immune system,
increases susceptibility to infection (98), and converges a low-
grade activation of the inflammation system called inflammaging
(79). Stimuli such as exposure to pathogens, cellular debris,
nutrients, and the gut microbiota sustain inflammaging (53, 99).

The gut microbiota is the corner stone in inflammaging
due to its capacity to produce inflammatory products and
dialogue with other organs and systems (54). However, it is
clear that the underlying aging mechanisms still need to be
explained through this trajectory in order to gain a better
understanding of this global dysregulation and provide more
effective therapeutic approaches.
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In pre-sensitizing events, immunological memory is mainly created via indirect
allorecognition where CD4+ T cells recognize foreign peptides in the context of self-
HLA class II (pHLA) presented on antigen-presenting cells. This recognition makes it
possible for naive CD4+ T-helper cells to differentiate into memory cells, resulting in the
creation of further antibody memory. These responses contribute to effective secretion of
donor-specific anti-HLA antibodies (DSA) after second encounters with the same peptide.
Preformed donor-reactive CD4+ memory T cells may induce early immune responses after
transplantation; however, the tools to evaluate them are limited. This study evaluated
shared T cell epitopes (TEs) between the pre-sensitizing and donor HLA using an in silico
assay, an alternative to estimate donor-reactive CD4+ memory T cells before
transplantation. In 578 living donor kidney transplants without preformed DSA, 69
patients had anti-HLA antibodies before transplantation. Of them, 40 had shared TEs
and were estimated to have donor-reactive CD4+ memory T cells. De novo DSA formation
in the early phase was significantly higher in the shared TE-positive group than in the anti-
HLA antibody- and shared TE-negative groups (p=0.001 and p=0.02, respectively). In
conclusion, evaluation of shared TEs for estimating preformed donor-reactive CD4+

memory T cells may help predict the risk of early de novo DSA formation after
kidney transplantation.
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INTRODUCTION

Adaptive immunity creates immunological memory after the first
response to a specific foreign antigen; this memory leads to an
enhanced rapid response to subsequent exposure to the same antigen
and is important in organ transplantation (1). Immunological
memory is created during pre-sensitizing events such as blood
transfusion, pregnancy, and prior organ transplantation, and is
reflected by the presence of anti-HLA antibodies (2). Production
of antibodymemory involves the indirect allorecognition pathway in
which the T cell receptor of recipient naïve CD4+ T-helper cells first
recognizes a foreign-HLA-derived peptide in the context of recipient
HLA class II (pHLA), which are presented on the recipient antigen-
presenting cells (APCs) (3). Recipient naïve B cells, one of the APCs,
also presents the foreign-HLA-derived pHLA, while specifically
recognizing the foreign HLA with their B cell receptor. Unlike T
cell receptors, B cell receptors recognize fragments on the tertiary
structure of proteins, which are in structurally close contact (4). This
indirect allorecognition with the foreign-HLA-specific T cell receptor
allows naive CD4+ T-helper cells to differentiate into memory cells,
thereby helping naïve B cells with the foreign-HLA-specific B cell
receptor to differentiate into antibody-producing plasma cells and
memory B cells (5, 6). During this process, memory T cells and B
cells memorize the molecular components known as epitope, not the
foreign HLA as a whole (4). These memory cells lead an enhanced,
rapid response after second encounters with the same epitopes
derived from donor HLA (7–9).

The HLA loci have the most polymorphic regions in the
human genome, with over 25,000 HLA alleles observed so far
(10); however, the different HLA alleles often share epitopes with
each other (11). Shared epitopes among multiple HLAs make it
possible for memory cells to be recalled by not only the
past-sensitizing HLAs, but also by the newly encountering
HLAs, which creates a solid immunological defense system
toward alloantigens (12). Reactivity toward shared epitopes
was first confirmed in anti-HLA antibodies (13), whose
recognizing region explained as B cell epitopes (BEs) were
shared among multiple HLAs. The HLA groups shared with
BEs were historically classified as cross-reactive-antigen groups
(CREG) and received considerable attention as a risk predictor
after transplantation. For example, organ allocation based on
shared BEs, called CREG matching, was shown to reduce the
frequency of sensitization to the donor HLA in a multicenter
study (14). Furthermore, some recipients with preformed non-
donor-specific anti-HLA antibodies (non-DSA) toward donor-
CREG were reportedly associated with increased risks of early
antibody-mediated rejection after transplantation (15). Recently,
BEs in each HLA allele can be easily calculated using an in silico
analytical tool known as the HLAMatchmaker. The analysis of
shared BEs, such as CREG, has progressed to the current practices
for solid organ transplantation. However, the pathological
mechanisms by which organ allocation or risk stratification of
non-DSA based on shared BEs affects the prognosis of transplant
recipients remains unclear. These BE analyses could be a marker
for structural similarity between each HLA molecule; however,
these analyses are insufficient for estimating the mechanisms of
Frontiers in Immunology | www.frontiersin.org 223
acquired immunity because T cell reactivity is not considered in
these methods. When focusing on the processes that create
immunological memory, a joint approach of analyzing both BE
and T cell epitope (TE) might give a comprehensive picture of
pre-sensitization.

The reactivity of memory T cells toward shared TEs between
the pre-sensitizing HLA and donor HLA may increase the risk of
progression to early onset of rejection, resulting in poor graft
prognosis (16); however, the tools to detect them are limited.
Currently, enzyme-linked immunospot (ELISPOT) assay for the
detection of allospecific cytokines produced by individual human
peripheral blood lymphocytes is one of the main tools (17–19).
Furthermore, detecting donor-HLA-reactive memory CD4+ T
cells via the indirect allorecognition pathway is technically
difficult, although this pathway is thought to be a key
mechanism in the progression of alloreactivity in organ
transplantations (20).

Therefore, this study used the predicted indirectly recognizable
HLA epitopes (PIRCHE)-II algorithm (21), an in silico assay
focusing on the indirect allorecognition pathway, as an easy and
alternative tool to estimate donor-reactive memory CD4+ T cells.
We hypothesized that the evaluation of shared TEs between the
pre-sensitizing HLA and donor HLA for the purpose of estimating
preformed donor-reactive memory CD4+ T cells may be
reasonable and helpful in predicting the risk of early de novo
DSA (dnDSA) formation after transplantation (Figure 1), and we
compared the efficacy of the risk predictor with the conventional
evaluation of shared BEs.
MATERIALS AND METHODS

Patients
A total of 679 living donor kidney transplants from the Nagoya
Daini Red Cross Hospital between 2012 and 2018 were eligible
for this retrospective single-center cohort study. All recipients
and donors were of Japanese origin. The final follow-up of all
analyses was December 31, 2019. Informed consent was obtained
from patients and donors in accordance with the Declaration of
Helsinki. The study was approved by the Aichi Medical
University Institutional Review Board.

Patient and Donor HLA Typing
Alleles at the HLA-A, -B, -DRB1, and -DQB1 loci were identified
in all 679 pairs by xMAP® Technology of Luminex Corp. using
PCR-sequence specific oligonucleotide (SSO) probes (WAKFlow
HLA Typing kit, Wakunaga Pharmaceutical Co. Ltd., Hiroshima,
Japan or One Lambda, Canoga Park, CA, USA) at high
resolution. The typing kit can identify alleles with a frequency
of 0.1% or more by combining the results with the information
based on epidemiological allele frequency in the Japanese
population (22). DRB3/4/5 and DQA1 were estimated using a
local haplotype frequency dataset of 916 unrelated Japanese
individuals (23). This estimation is widely used in the Japanese
population because their haplotype frequencies have been
concentrated based on a single ethnicity (24).
March 2021 | Volume 12 | Article 621138
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HLA Antibody Surveillance and Definition
of Pre-Sensitizing HLA
Within the six months prior to transplantation, all patients were
tested by complement-dependent cytotoxicity crossmatch (25),
flow cytometry cross matches (26), and anti-HLA antibody
screening (27, 28) with the use of flow panel reactive antibody
Frontiers in Immunology | www.frontiersin.org 324
(PRA) (One Lambda, California, US). Preformed DSA and non-
DSA were determined by the Luminex-based LABScreen single
antigen beads (SAB) assay (One Lambda, California, US). All
serum samples used for antibody analysis were treated with
EDTA to prevent the prozone effect. Mean fluorescence intensity
(MFI) values >1000 were regarded as positive for the SAB assay.
FIGURE 1 | Mechanisms of pre-sensitization via the indirect T cell-allorecognition pathway. (1) A patient is first exposed to foreign HLAs by pre-sensitizing events,
such as blood transfusion, pregnancy, or prior organ transplantation. (2) The foreign HLAs are processed into smaller peptides by the patient’s antigen-presenting
cells. Among them, non-self peptides are loaded onto the recipient HLA class II, and the antigens are presented on the cell surface. (3) Patient’s naïve CD4+ T-helper
cells recognize T cell epitopes consisting of the foreign-HLA-derived peptide in the context of recipient HLA class II (pHLA), which allows naive CD4+ T-helper cells to
differentiate into memory cells. (4) These memory CD4+ T cells lead to an enhanced rapid response after second encounters with the same pHLAs derived from the
donor HLA. The donor-reactive memory CD4+ T-helper cells were considered to be positive if the foreign-HLA-derived pHLAs were shared with donor-HLA-derived
pHLAs, and negative if not shared.
March 2021 | Volume 12 | Article 621138
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In patients with preformed non-DSA, the HLA allele with the
highest MFI value for each of HLA class I and class II before
transplantation was considered as a pre-sensitizing HLA. All
characteristics of non-DSA (MFI values >1000), as well as TE
and BE counts shared with the donor HLA, are shown in
Supplementary Tables 1 and 2. Post-transplantation anti-HLA
antibody surveillance was annually performed by the flow PRA
and SAB assays, according to the manufacturer’s instructions. In
cases of impaired allograft function, anti-HLA antibody
surveillance was added accordingly. The HLA loci A, B, DRB1,
DRB3/4/5, DQB1, and DQA1 were considered for the definition
of DSA.

Shared TE-Analysis as a Tool to Estimate
Donor-Reactive Memory CD4+ T-Helper
Cells
The HLA-derived pHLAs, namely TEs, were all calculated using
the latest version of the PIRCHE-II algorithm version 3.0
(PIRCHE AG, Berlin, Germany). HLA DRB1, DRB3/4/5, and
DQB1/DQA1 were taken into consideration as presenting loci,
while A, B, DRB1, DRB3/4/5, DQB1, and DQA1 were considered
as presented loci. The binding probability of the presented
peptide and presenting HLA class II was estimated; affinities
with an IC50 of <1000 nM (27) were included in our analysis and
the sum total of estimated TE-mismatch in each donor and
recipient pair was defined as the PIRCHE-II score. The PIRCHE-
II scores in this study were higher in range than those in
previously reported (29, 30) in which only DRB1 was
considered as the presenting locus. Based upon reports (29,
30), the natural logarithm of the PIRCHE-II scores [ln
(PIRCHE-II)] were used to calculate the hazard ratio in the
Cox proportional hazards regression model.

In patients with preformed non-DSA, TEs derived from pre-
sensitizing HLA (see section 2.3 for details) were calculated using
PIRCHE-II and compared with calculated TEs derived from the
donor HLA. We considered the shared TEs to be positive and
estimated the presence of donor-reactive memory CD4+ T-
helper cells if the two sets of TEs shared at least one pHLA,
and negative if no pHLA were shared (Figure 1); for each non-
DSA, TE counts shared with the donor HLA are shown in
Supplementary Table 1.

HLAMatchmaker Analysis
BE mismatch levels for HLA-A, -B, -DRB1, -DRB3/4/5, and
-DQB1/DQA1 were determined using the HLAMatchmaker
software version 3.0 in each donor and recipient pair. The
HLAMatchmaker score was considered as the total number of
mismatched eplets, including antibody verified and non-verified
eplets. The HLAMatchmaker score of 10 increments was also
used to calculate the hazard ratio in the Cox proportional
hazards regression model (29).

Shared BE Analysis
In patients with preformed non-DSA, similarly to the shared-TE
analysis, the BEs derived from pre-sensitizing HLA (see section
2.3 for details) were estimated using the HLAMatchmaker
Frontiers in Immunology | www.frontiersin.org 425
software, and were compared with the calculated BEs derived
from the donor HLAs. The shared BEs were determined as
positive if the two sets of BEs shared at least one eplet, and
negative if no eplets were shared; for each non-DSA, the BE
counts shared with the donor HLA are shown in Supplementary
Table 2.

Protocol Biopsies and Diagnosis of
Rejection
Protocol biopsies were routinely performed on all patients at 2-3
weeks and 12 months after transplantation. In cases with
impaired allograft function, biopsies were added accordingly.
An experienced pathologist diagnosed antibody-mediated
rejection and T cell-mediated rejection according to the revised
Banff classification (31–34).

Immunosuppression
All patients received basiliximab as induction immunosuppression
therapy. Patients who received an ABO-incompatible graft were
additionally pretreated with rituximab and plasma exchange and/
or double-filtration plasmapheresis before transplantation.
Maintenance immunosuppression therapy consisted of triple
therapy with prednisolone, calcineurin inhibitor (tacrolimus or
cyclosporine), and mycophenolic acid. Some patients received the
mammalian target of rapamycin inhibitor (everolimus) instead of
mycophenolic acid.

Statistical Analysis
All statistical analyses were conducted using SPSS statistical
software version 21 (IBM Corp., Armonk, NY). Continuous
variables are expressed as a mean and standard deviation or
median and interquartile range (IQR) according to their
distribution and analyzed using the Student’s t-test or Mann-
Whitney U test. In cases of comparison across three groups, one-
way analysis of variance (ANOVA) with the Kruskal-Wallis test
was used. The Tukey honestly significant difference test was
performed under the significant result of ANOVA for multiple
comparisons. Categorical variables are expressed as a frequency
and percentage and were examined using the Fisher exact or Chi-
squared test according to the expected count. DSA-free graft
survival was defined as the time between kidney transplantation
and the date of the last anti-HLA antibody surveillance without
DSA detection. Time-dependent outcomes such as DSA-free
survival rates were estimated using the Kaplan-Meier survival
curves and Breslow tests. The starting time point for these time-
dependent survival analyses was determined as the day of
transplantation. In the analysis of DSA-free survival, censoring
occurred at the time of the last anti-HLA antibody surveillance.
The Cox proportional hazards regression model for univariate
analysis was used to find variables that affected DSA-free survival.
Additionally, multivariate analysis with forced entry model was
performed and adjusted for potential confounding factors that
were selected based on the previous report (29) to assess the
strength of the association after adjustment. P-values less than 0.05
were considered statistically significant. The relationships between
the PIRCHE-II and HLAMatchmaker score and between the
March 2021 | Volume 12 | Article 621138
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shared-TE and shared-BE counts were investigated using the
Spearman’s rank-correlation coefficient (rho).
RESULTS

Patient Background
Consecutive living donor kidney transplants (n=679) were
eligible for this study. We included only kidney transplants
with complete HLA typing at high-resolution level (HLA-A, -B,
-DRB1, and -DQB1) and pre- and post-transplantation follow-up
for dnDSA surveillance. Twenty-six transplants were excluded
because of incomplete post-transplantation DSA surveillance, and
27 patients whose HLA (HLA-A, -B, -DRB1, and -DQB1) were
fully matched with the donors were excluded from the study
(n=27) because dnDSA would not be detected in such patients;
furthermore, 48 patients with preformed DSA were excluded. A
total of 578 patients remained for analysis and were classified into
either the preformed anti-HLA antibody-positive group (n=69) or
anti-HLA antibody-negative group (n=509). The 69 HLA-
sensitized transplants without preformed DSA were classified
into either the shared TE-positive group (n=40) or shared TE-
negative group (n=29) (Figure 2).

Table 1 describes the baseline characteristics of the shared TE-
positive, shared TE-negative, and no anti-HLA antibody groups.
The median follow-up period after transplantation was 47 months
(IQR, 29-71.75 months; range, 1-95 months). Sensitizing events
were seen more frequently in the HLA pre-sensitized (non-DSA)
group, although there were no statistically significant differences
(p=0.06). There were also no statistically significant differences in
the other background characteristics including baseline
Frontiers in Immunology | www.frontiersin.org 526
immunosuppression therapy at transplantation, TE-mismatch
count (calculated by PIRCHE-II), and BE-mismatch count
(calculated by the HLAMatchmaker).

Characteristics of Estimated Pre-
Sensitizing HLA
There were 69 HLA pre-sensitized (non-DSA) patients. Of these
patients, 44 (63.8%) had only HLA class I, 15 (21.7%) had only
HLA class II, and 10 (14.5%) had both HLA class I and II non-
DSA. The median highest MFI of the preformed non-DSA before
transplantation was 2,436.5 (IQR 1,462.75-6,134). Thirty-seven
(53.6%) patients showed low-level MFI <3,000, 21 (30.4%)
showed moderate-level MFI between 3,000 and 7,999, and 10
(14.5%) showed high-level MFI ≥8,000. Of these patient groups,
there were no statistically significant differences in the
characteristic of pre-sensitizing HLA between the shared TE-
positive group (n=40) and shared TE-negative group (n=29),
while the shared BE-positive status was seen more frequently in
the shared TE-positive group (Table 2).

Characteristics of dnDSA
In this cohort, dnDSA were found in 52 of 578 patients (9.0%)
during the full observational period, including HLA class I (n=5),
DR (n=13), DQ (n=28), and DR+DQ (n=6). The median time to
first detection was 26.5 months post-transplantation (IQR 11.75-
37.5 months; range 0-84 months). Predominant dnDSA was
directed against HLA class II (n=47), particularly DQ (n=34) and
then DR (n=13). The incidence of class I DSA was low (n=5).
The median highest MFI of dnDSA at the time of the first
detection was 4,472.5 (IQR 2,070.5-1,1053.5) (Table 3).
FIGURE 2 | Patient flowchart. Pre-DSA, preformed-donor-specific anti-HLA antibodies; non-DSA, non-donor-specific anti-HLA antibodies; PRA, panel reactive antibody.
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Impact of the Shared TEs on dnDSA
Formation: Comparison With the
Shared BEs
To highlight the clinical impact of the pre-transplant memory CD4+

T cells rather than the primary naïve immune response, we focused
on the 3-year observational period after transplantation, which is a
relatively early phase in the overall follow-up period of this study
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(median, 47 months; IQR, 29-71.75 months; range, 1-95 months).
Within 3 years after organ transplantation, 38 patients were
diagnosed with positive dnDSA. In this period, the non-DSA
group tended to show higher incidences of dnDSA during the
early phase after transplantation than the no anti-HLA antibody
group, although this trend was not statistically significant (p=0.08)
(Figure 3A). The non-DSA group was then divided into the shared
TABLE 1 | Patient characteristics.

Characteristics Anti-HLA ab (non-DSA) No anti-HLA ab
n = 509

P-value

Shared TE-positive Shared TE-negative
n = 40 n = 29

Donor
Age, years, mean (SD) 60.1 (9.3) 60.2 (10.0) 58.1 (10.1) 0.24
Female sex, n (%) 28 (70) 20 (69.0) 336 (66.0) 0.84
Relationship, n (%) 0.65
Unrelated 22 (55) 12 (41.4) 284 (55.8)
Related (haplotype-unrelated) 2 (5) 2 (6.9) 21 (4.1)
Related (haplotype-related*) 16 (40) 15 (51.7) 204 (40.1)
Recipient
Age, years, mean (SD) 49.5 (18.2) 49.0(12.8) 47.6 (16.3) 0.65
Female sex, n (%) 15 (37.5) 13 (44.8) 155 (30.5) 0.19
ABO-i, n (%) 14 (35) 9 (31.0) 184 (36.1) 0.85
ESRD causes, n (%)
Glomerulonephritis 11 (27.5) 11 (37.9) 179 (35.2) 0.58
Polycystic kidney disease 4 (10) 1 (3.4) 33 (6.5) 0.54
Diabetes 10 (25) 5 (17.2) 116 (22.8) 0.74
Other 15 (37.5) 12 (41.4) 181 (35.6) 0.61
Months on dialysis, n (%) 0.47
0 (preemptive transplantation) 18 (45) 13 (44.8) 272 (53.4)
-6 4 (10) 6 (20.7) 66 (13.0)
6-47 10 (25) 8 (27.6) 108 (21.2)
48- 8 (20) 2 (6.9) 63 (12.4)
Pre-sensitizing event**, n (%) 19 (47.5) 14 (48.3) 170 (33.4) 0.06
Pre-transplantation 3 (7.5) 0 (0) 14 (2.8) 0.15
Pregnancy*** 10 (66.7) 11 (84.6) 95 (61.3) 0.24
Transfusion 10 (25) 5 (17.2) 96 (18.9) 0.14
Histocompatibility (HLA-A, B, DRB1/3/4/5, DQB1, DQA1), median (IQR)
HLA mismatches 6 (5 - 9) 5 (5 – 9) 6 (5 - 10) 0.34
HLAMatchmaker score
AB 11 (5 - 16) 10 (4 – 16) 12 (7 - 16) 0.09
DR 8.5 (6 - 18) 7 (4 – 14) 11 (5 - 18) 0.51
DQ 13.5 (5 - 23) 12 (5 – 22) 13 (7 – 22) 0.92
Total 36 (24 – 49.5) 29 (19 – 41) 37 (25 – 51) 0.30
PIRCHE-II score 184.5 (120 – 280.5) 168 (112 - 260) 199 (131 – 298) 0.16
Baseline immunosuppression at transplant, n (%)
Steroid 40 (100) 29 (100) 509 (100) –

Tacrolimus 24 (60) 22 (75.9) 338 (66.4) 0.39
Cyclosporin 16 (40) 7 (24.1) 171 (33.6) 0.39
Everolimus 8 (20) 7 (24.1) 103 (20.2) 0.88
Micophenolic acid 31 (77.5) 22 (75.9) 400 (78.6) 0.93
Induction, n (%)
Basiliximab 40 (100) 29 (100) 509 (100) –

Thymoglobulin 0 (0) 0 (0) 0 (0) –

Desensitization, n (%)
Anti-CD20 therapy 11 (27.5) 7 (24.1) 154 (30.3) 0.74
Plasmapheresis 14 (35) 9 (31.0) 191 (37.5) 0.75
IVIG 0 (0) 0 (0) 2 (0.4) 0.87
March 2021 | Volume 12 | Article
*Haplotype-related donors shared one HLA haplotype with the recipients.
**Pre-sensitizing events were recorded as 1 per patient, even if the patient had multiple pre-sensitizing events.
***The percentage was calculated using only the female population.
Ab, antibody; non-DSA, non-donor-specific anti-HLA antibodies; TE, T cell epitope; SD, standard deviation; ABO-I, ABO-incompatible transplantation; ESRD, end stage renal disease;
PIRCHE, predicted indirectly recognizable HLA epitopes; IVIG, intravenous immunoglobulin; HLA, human leukocyte antigen; IQR, interquartile range.
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TE-positive and shared TE-negative groups. The shared TE-positive
group showed significantly higher incidences of dnDSA than the
shared TE-negative group (p=0.02) and no anti-HLA antibody
group (p=0.001), while there was no statistically significant
difference between the shared TE-negative group and no anti-
HLA antibody group (p=0.19). The time to develop DSA after
transplantation was statistically earlier in the shared TE-positive
group than in the no anti-HLA antibody group (Figure 3B). We
also checked the contributions of shared BEs on the development of
dnDSA during the same period. Similar to the shared TE-positive
group, the time to develop DSA after transplantation was
statistically earlier in the shared BE-positive group than in the no
anti-HLA antibody group; however, there were no statistically
significant differences between the shared BE-positive and other
groups in the analysis of DSA-free survival (Figure 3C).

Analysis on the Association Between
the TE and BE
There was a moderately positive correlation between the TE-
mismatch count (PIRCHE-II score) and the BE-mismatch count
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(HLAMatchmaker score), with a Spearman’s rho of 0.68 (p < 0.001;
Figure 4A). Conversely, the positive correlation between the
shared-TE and shared-BE counts was weaker than that between
the TE-mismatch and BE-mismatch counts (rho = 0.55, p<0.001)
(Figure 4B). In each analysis, 3-year-dnDSA-positive patients
(plotted in red) showed positive correlation to a lesser extent
than all patients (TE- and BE-mismatch analysis; rho = 0.65,
p<0.001 and shared-TE and -BE analysis; rho = 0.33, p = 0.006).

Risk Factors Associated With
dnDSA Formation
During the 3-year observational period, shared TE-positive status,
and ln(PIRCHE-II) were associated with an increased risk of
dnDSA development in univariate Cox proportional hazards
regression modeling. Furthermore, shared TE-positive status and
ln(PIRCHE-II) remained significant in multivariate analysis. The
PIRCHE-II score of shared TE-positive patients (median, 184.5;
IQR, 120–280.5) was slightly lower than that of the total patients
(median, 196; IQR, 129–291), and the adjustment for this difference
might result in increased hazard ratio of shared TE-positive status in
multivariate analysis. Shared BE-positive status was not associated
with dnDSA formation in univariate Cox proportional hazards
regression models (Table 4-1). We also included a longer
observation period that spanned 5 years after transplantation.
Univariate Cox proportional hazards regression modeling
revealed that during this period, the shared TE-positive status, ln
(PIRCHE-II), and HLAMatchmaker score were associated with an
increased risk of dnDSA development. Although a longer
observation period and HLA locus-specific analysis improve the
power of the HLAMatchmaker score as a risk predictor for dnDSA
formation, the shared TE-positive status and ln(PIRCHE-II) also
remained significant risk factors inmultivariate analysis (Table 4-2).

Cumulative Incidence of Adverse
Outcomes in 5 Years
During the 5-year observational period after transplantation,
cumulative dnDSA production occurred in 8 of 40 patients
(20%) in the shared TE-positive group, in 0 of 29 patients
(0%) in the shared TE-negative group, and in 42 of 509 (8.3%)
patients in the no anti-HLA antibody group. The cumulative
incidences of dnDSA were significantly higher in the shared TE-
positive group compared with the other two groups during the
full observational period; the onset appeared to be more frequent
in the early phase, especially until 2 years after transplantation
(p<0.001). Death-censored graft loss within 5 years after
transplantation occurred in 3 (7.5%) patients in the shared TE-
positive group, 0 (0%) patients in the shared TE-negative group,
and 14 (2.8%) patients in the no anti-HLA antibody group
(Table 5). There were no statistically significant differences in
graft loss and rejection between these groups, although the
number of the incidence of these events was low. Focusing on
the 8 dnDSA cases in the shared TE-positive group, graft loss was
observed in 2 patients, while antibody-mediated rejection was
not observed within 5 years after transplantation; to evaluate the
deleterious impact of dnDSA on the prognosis after
transplantation, a longer observational period is required.
TABLE 2 | Characteristics of non-DSA with the highest MFI.

Characteristics of
Non-DSA with the highest MFI value

Anti-HLA ab (non-DSA) P-value

Shared
TE-positive

Shared
TE-negative

n = 40 n = 29

Non-DSA with the highest MFI value, n (%) 0.27
HLA class I 23 (57.5) 21 (72.4)
HLA class II 9 (22.5) 6 (20.7)
HLA class I & II 8 (20) 2 (6.9)

The highest MFI value of non-DSA, n (%) 0.66
1000–2999 20 (50) 17 (58.6)
3000–7999 13 (32.5) 9 (31.0)
8000– 7 (17.5) 3 (10.3)

Shared BE-positive, n (%) 34 (85) 13 (44.8) <0.001
Ab, antibody; non-DSA, non-donor-specific anti-HLA antibodies; TE, T cell epitope; MFI,
mean fluorescence intensity; BE, B cell epitope.
TABLE 3 | Characteristics of dnDSA in 578 patients without preformed DSA
during the full observational period.

Characteristics of
dnDSA

Anti-HLA ab (non-DSA) No anti-HLA ab
n = 509

P-
value

Shared
TE-positive

Shared
TE-negative

n = 40 n = 29

dnDSA, n (%) 8 (20) 0 (0) 44 (8.6) 0.58
HLA class I 1 (2.5) 0 (0) 4 (0.8)
HLA class II 7 (17.5) 0 (0) 40 (7.9)
HLA class I & II 0 (0) 0 (0) 0 (0)

The highest MFI
value of dnDSA, n (%)

0.15

1000–2999 3 (7.5) – 18 (3.5)
3000–7999 4 (10) – 10 (2.0)
8000– 1 (2.5) – 16 (3.1)
Ab, antibody; TE, T cell epitope; dnDSA, de novo donor-specific anti-HLA antibodies; MFI,
mean fluorescence intensity.
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FIGURE 3 | Effect of the shared TEs on dnDSA formation. (A) Three-year-dnDSA-free graft survival in the non-DSA versus no anti-HLA antibody group. The Kaplan-
Meier curves and Breslow test tend to show higher incidences of dnDSA in the early phase after transplantation in the non-DSA group than in the no anti-HLA
antibody group, although this trend is not statistically significant (p = 0.08). The time to develop DSA after transplantation is statistically earlier in the non-DSA group
than in the no anti-HLA antibody group (p = 0.01). (B) Three-year-dnDSA-free graft survival in the three groups: shared TE-positive, shared TE-negative, and no anti-
HLA antibody group. The Kaplan-Meier curves and Breslow test show a significant difference between these groups (p = 0.001). The shared TE-positive group
shows significantly higher incidences of dnDSA than the no anti-HLA antibody group (p = 0.001), while there is no statistically significant difference between the
shared TE-negative group and no anti-HLA antibody group (p = 0.19). The time to develop DSA after transplantation is statistically earlier in the shared TE-positive
group than in the no anti-HLA antibody group (p = 0.01). (C) Three-year-dnDSA-free graft survival in three groups: shared BE-positive, shared BE-negative, and no
anti-HLA antibody group. The Kaplan-Meier curves and Breslow test show no significant difference between these groups (p = 0.19). The time to develop DSA after
transplantation is statistically different between these groups (p = 0.03). *Multiple comparison results show statistical differences between only the shared BE-positive
and no anti-HLA antibody group. dnDSA, de novo donor-specific anti-HLA antibodies; non-DSA, non-donor-specific anti-HLA antibodies; TE, T cell epitope; BE, B
cell epitope; SD, standard deviation.
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Characteristics of Shared pHLAs in
the Shared TE-Positive Group
Last, we focused on the shared TE-positive group. The details of
shared pHLAs in 3-year-dnDSA-positive cases (n=7) are shown in
Table 6. In three cases (patient number 29, 38, and 40), detected
dnDSA were directed to the same HLA as the origin of the shared
peptide; however, in the remaining 4 cases, the origin of the shared
peptide was not the same HLA as the target of dnDSA. In
comparison to the 3-year dnDSA-positive versus dnDSA-negative
group in the shared TE-positive group, shared pHLAs tended to be
derived fromonlyHLA class I in the 3-year dnDSA-negative group,
although this trend was not statistically significant (Table 7).
DISCUSSION

This study was the first attempt to use the PIRCHE-II algorithm
as a tool to estimate preformed memory CD4+ T cells, which may
be reactivated by encountering pHLAs derived from the donor
HLA via the indirect allorecognition pathway. As the first step in
this study, pre-sensitizing HLA before transplantation had to be
determined in order to assess shared TEs between the pre-
sensitizing HLA and donor HLA. Clinically, it is difficult to
determine this pre-sensitizing HLA by only considering a
patient ’s medical history; thus, we focused on the
characteristics of non-DSA as an objective tool to determine
pre-sensitizing HLA. Anti-HLA antibodies toward a shared BE
were reportedly diluted across multiple beads in a SAB assay,
resulting in lowering the MFI values compared with antibodies
toward a private epitope specific to a single HLA (35). Therefore,
we considered that non-DSA with the highest MFI value may
include antibodies toward private epitopes specific to pre-
sensitizing HLA. As shown in Supplementary Table 1, the
presence or absence of shared TEs between the donor HLA
and non-DSA with the highest MFI value tended to represent the
presence of shared TEs between the donor HLA and non-DSA
with following ranks. In most cases in the shared TE-positive
group (n=39/40), the non-DSA with the highest MFI, as well as
the non-DSA with following ranks, shared TEs with the donor
HLA. Furthermore, in the majority of the cases in the shared TE-
negative group (n=23/29), both the non-DSA with the highest
MFI and the non-DSA with following ranks did not share TEs
with the donor HLA. These findings suggest that the use of non-
DSA with the highest MFI as a predictor for pre-sensitizing HLA
Frontiers in Immunology | www.frontiersin.org 930
might be effective to some extent; however, we acknowledge that
more cases are required for validation. Additionally, we analyzed
the effect of shared BEs between the pre-sensitizing HLA and
donor HLA on post-transplantation outcomes because the non-
DSA toward BEs shared with the donor HLA were
conventionally believed to be an immunological risk (15). In
this study, 69 cases with non-DSA were analyzed and 47 cases
were determined to share BEs between the pre-sensitizing HLA
and donor HLA. As shown in Supplementary Table 2, the
results for shared TEs did not always match the results for shared
BEs. Some cases from the shared TE-positive group were
determined to be shared BE-negative (n=6/40), while some
cases from the shared TE-negative group were determined to
be shared BE-positive (n=13/29). A previous report has
suggested a moderately positive correlation between the TE-
mismatch count (PIRCHE-II score) and the BE-mismatch count
(HLAMatchmaker score) (29); in our study as well, a moderately
positive correlation between the TE- and BE-mismatch counts
was noted (Figure 4A). However, such a correlation was
weakened between the shared-TE and shared-BE counts when
the analysis was focused on the epitope shared between the non-
DSA and donor HLA (Figure 4B). This weak correlation may
cause 69 cases with non-DSA to be stratified differently between
shared TE and BE, and lead to different outcomes on early dnDSA
formation. In this cohort, the time to develop DSA after
transplantation was statistically earlier in the shared BE-positive
group than in the no anti-HLA antibody group; however we could
not ascertain that shared BEs are a significant risk factor for early
dnDSA formation (Figure 3C; Tables 4-1 and 4-2). Instead,
shared TEs between the pre-sensitizing HLA and donor HLA
were suggested to be a significant risk of dnDSA formation,
especially in the early phase, implying the contribution of
preformed donor-reactive memory CD4+ T cells rather than the
primary naïve immune response (Figure 3B). Additionally, in the
multivariable Cox proportional hazards models, the shared TEs
were suggested to be an independent risk factor affecting early
dnDSA formation together with ln(PIRCHE-II), which was
previously reported to be a risk factor (29, 30) (Table 4).
Importantly, in our study, the non-DSA group tended to show
higher incidences of dnDSA in the early phase after
transplantation than the no anti-HLA antibody group, although
this trend was not statistically significant (p=0.08) (Figure 3A);
it remains controversial whether or not preformed non-DSA and
their varieties could be an immunological risk for impaired graft
March 2021 | Volume 12 | Article 621138
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survival (36, 37). Our method clearly stratified non-DSA into
deleterious or not deleterious by analyzing shared TEs.
Additionally focusing on the shared TEs, PIRCHE-estimated-
APC-presented peptides were not always derived from the same
HLA as the target of dnDSA in the shared TE-positive group
Frontiers in Immunology | www.frontiersin.org 1031
(Table 6). Similar to the shared TEs, HLAMatchmaker-estimated-
shared BEs were not always derived from the same HLA as the
target of dnDSA. For example, in one patient (shared-TE (+) - 5,
in Supplementary Table 2), the shared TEs and BEs between the
non-DSA and donor HLA were all derived fromHLA class I, while
the target of the detected dnDSA was HLA class II. This finding
implied that the HLAs boosting memory CD4+ T cells could be
different from the HLAs that were targeted by antibodies. This
could occur when patients were exposed to multiple HLAs during
organ transplantation. These results supported our hypothesis that
preformed donor-reactive memory CD4+ T-helper cells activated
by the shared TEs play a crucial role in promoting early dnDSA
formation, even though there are no preformed DSA and their
associated plasma cells and memory B cells.

However, we acknowledge that our methods may be a
pseudomarker for T cell-responses, and this method has several
limitations. First, this retrospective study in a single center features a
relatively small sample size and brief observational period. Second,
almost half of the patients with preformed non-DSA did not have
any known pre-sensitizing event, which might be the result of an
unrecognized pre-sensitizing event, such as early miscarriages in
women or heterologous immunity (38); furthermore, it might be the
result of false-positive SAB analysis (37, 39). Third, non-DSA with
the highest MFI value may not always reflect actual pre-sensitizing
history because most of the cases have been sensitized by multiple
HLAs in repeated pre-sensitizing event. Furthermore, MFI values of
SAB assays have analytic limitations in terms of quantitativeness of
the antibody amount (35). There is still room for improving the
in silico analysis to determine actual pre-sensitizing HLAs. Fourth,
although it was reported that anti-HLA-C/-DP sensitization was
also deleterious in kidney transplantation, HLA-C and DP were not
typed and taken into account for the definition of DSA in this study
(40). Fifth, this study lacks high-resolution HLA genotyping data on
DRB3/4/5 and DQA1; these missing data were extrapolated to
second field HLA typing using a local haplotype frequency dataset
of 916 unrelated Japanese individuals (23). While we acknowledge
that recent reports suggest insufficient accuracy of imputed HLA
alleles, especially in ethnically heterogeneous non-Caucasian
individuals (41), single ethnicity of our patients in this study
would lower such the error rate. Sixth, we could only assess
preformed donor-reactive memory in the non-DSA-positive
population, since we did not have objective evidence except for
anti-HLA antibodies. Detection of preformed donor-reactive
memory in the no anti-HLA antibody group would be the next
target. Considering these limitations, the validity of our findings
needs to be confirmed by combining them with in vitro assays.

Although previous studies suggest that the standard in vitro
assay of detecting preformed donor-reactive memory T cells was
interferon gamma ELISPOT assay (IFNg ELISPOT) (42), IFNg
ELISPOT can detect such T cells dominantly activated via the
direct allorecognition pathway (43). In fact, pre-transplantation
IFNg ELISPOT positivity is broadly reported to be related to a
high risk of rejection in the early phase (18, 42, 44). The in silico
assay used in our study was especially focused on detecting
preformed donor-reactive memory T cells activated via the
indirect allorecognition pathway; our results showed that this
method was related to a high risk of early dnDSA formation
A

B

FIGURE 4 | Analyses of the association between TE and BE. (A) The TE-
mismatch count (PIRCHE-II score) and the BE-mismatch count (HLAMatchmaker
score) of each recipient and donor pair are plotted. A moderately positive correlation
between the TE- and BE-mismatch counts is noted with a Spearman’s rho of 0.68
(p < 0.001). Red circles and black circles indicate the dnDSA positive and negative
patients, respectively. (B) The shared-TE count (calculated by PIRCHE-II) and the
shared-BE count (calculated by HLAMatchmaker) between every detected non-
DSA (MFI>1000) and the donor HLA are plotted. Each characteristic of non-DSA
and the corresponding shared-TE and shared-BE counts are listed in
Supplementary Tables 1 and 2. There is a weakly positive correlation between
the shared-TE and shared-BE counts, with a Spearman’s rho of 0.55 (p < 0.001).
Red circles and black circles indicate non-DSA in dnDSA positive and negative
patients, respectively. dnDSA, de novo donor-specific anti-HLA antibodies; non-
DSA, non-donor-specific anti-HLA antibodies; TE, T cell epitope; BE, B cell epitope;
PIRCHE, predicted indirectly recognizable HLA epitopes.
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(Figure 3). In terms of the clinical effect on each T cell
allorecognition pathway, these results are quite reasonable (45);
however, validation via in vitro assays with a focus on the
indirect allorecognition pathway is still required.

In addition to pre-transplantation risk stratification, further
therapeutic consideration will be needed to reduce risk and
improve prognosis, especially with the limited supply of organs.
A previous report suggested that anti-thymocyte globulin (ATG)
has the potential to control donor-reactive memory T cells
detected by IFNg ELISPOT (42). Although further clinical trial
is required, ATG could be a beneficial intervention, even in
patients with donor-reactive memory T cells, which would be
activated via the indirect allorecognition pathway.

In conclusion, the evaluation of shared TEs using the PIRCHE-
II algorithm for the purpose of estimating preformed donor-
reactive memory CD4+ T cells may help to predict the risk of
early dnDSA formation after transplantation. Focusing on the
pathogenesis of dnDSA formation, analysis of sharedTEs is crucial
for the precise understanding of the immune response to the donor
organ, and should be distinguished from the conventional analysis
of sharedBEs. It remains difficult for in vitro assays todetect donor-
reactive memory CD4+ T cells activated via the indirect
allorecognition pathway. Our study suggests that the in silico
TABLE 4-1 | Cox proportional hazards models of factors associated with dnDSA production in 3 years (n = 38).

Variables Univariate analysis P-value Multivariate analysis P-value

HR 95% CI HR 95% CI

ABO-I vs ABO-Id/C 0.83 0.42–1.65 0.60
Anti-CD20 use 0.91 0.44–1.87 0.79
Pre-sensitizing event 0.80 0.41–1.59 0.53
Count of HLA mismatches* per 1 increment 1.00 0.89–1.13 0.97
Shared BE-positive 1.70 0.66–4.36 0.27
Shared TE-positive** 3.37 1.48–7.65 0.004 3.80 1.66–8.67 0.002
ln(PIRCHE-II) score per 1 increment** 2.81 1.56–5.05 0.001 3.29 1.62–6.67 0.001
HLAMatchmaker score (A, B, DRB1/3/4/5, DQB1, and DQA1) per 10 increments 1.13 0.96–1.33 0.13
HLAMatchmaker score (DRB1/3/4/5, DQB1, and DQA1) per 10 increments** 1.18 0.99–1.40 0.073 0.95 0.75–1.21 0.68
Ma
rch 2021 | Volume 12 | Article
TABLE 4-2 | Cox proportional hazards models of factors associated with dnDSA production in 5 years (n = 50).

Variables Univariate analysis P-value Multivariate analysis P-value

HR 95% CI HR 95% CI

ABO-I vs ABO-Id/C 0.63 0.34–1.19 0.15
Anti-CD20 use 0.67 0.33–1.34 0.25
Pre-sensitizing event 0.73 0.40–1.33 0.30
Count of HLA mismatches* per 1 increment 1.02 0.92–1.13 0.66
Shared BE-positive 1.54 0.66–3.61 0.32
Shared TE-positive** 2.99 1.40–6.37 0.005 3.45 1.60–7.41 0.002
ln(PIRCHE-II) score per 1 increment** 2.71 1.64–4.50 <0.001 2.72 1.50–4.92 0.001
HLAMatchmaker score (A, B, DRB1/3/4/5, DQB1, and DQA1) per 10 increments 1.19 1.04–1.37 0.011
HLAMatchmaker score (DRB1/3/4/5, DQB1, and DQA1) per 10 increments** 1.24 1.07–1.44 0.005 1.06 0.87–1.28 0.57
*HLA mismatch consists of mismatch at HLA-A, B, DRB1/3/4/5, DQB1, and DQA1 loci.
**A multivariate analysis with forced entry model was generated using the univariate factors. Only HLAMatchmaker score (DRB1/3/4/5, DQB1, and DQA1) per 10 increments, ln(PIRCHE-II)
score per 1 increment, and shared TE-positive were included in the multivariate analysis.
dnDSA, de novo donor-specific anti-HLA antibody; HR, hazard ratio; CI, confidence interval; ABO-I, ABO-incompatible transplantation; ABO-Id/C, ABO-identical/compatible
transplantation; non-DSA, non donor-specific anti-HLA antibody; BE, B cell epitope; TE, T cell epitope; PIRCHE, predicted indirectly recognizable HLA epitopes; ln (PIRCHE-II),
natural logarithm of the PIRCHE-II scores.
TABLE 5 | Cumulative incidences of graft loss, rejection, and dnDSA.

Adverse outcomes Anti-HLA ab (non-DSA) No anti-
HLA ab
n = 509

P-
value

Shared TE-
positive

Shared TE-
negative

n = 40 n = 29

Functional, n(%)
5y graft loss 3 (7.5) 0 (0) 19 (3.7) 0.27
5y death censored
graft loss

3 (7.5) 0 (0) 14 (2.8) 0.15

Immunological, n
(%)
5y antibody-mediated
rejection

0 (0) 0 (0) 8 (1.6) 0.58

5y T cell-mediated
rejection

2 (5) 1 (3.4) 29 (5.7) 0.87

5y dnDSA* 8 (20) 0 (0) 42 (8.3) 0.009
3y dnDSA* 7 (17.5) 0 (0) 31 (6.0) 0.007
2y dnDSA* 7 (17.5) 0 (0) 17 (3.3) <0.001
1y dnDSA* 4 (10) 0 (0) 10 (2.0) 0.004
*Accumulating number of dnDSA-detected patients during each observational period,
which include both persisting and disappearing dnDSA.
Ab, antibody; non-DSA, non-donor-specific anti-HLA antibodies; TE, T cell epitope; 5/3/2/
1y, 5/3/2/1-year; dnDSA, de novo donor-specific anti-HLA antibodies.
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TABLE 6 | Details of shared pHLAs; 3-year dnDSA-positive cases in the shared TE-positive group (n = 7).

Pt DnDSA Presenting HLA loci Presented shared peptide The origin of shared peptide

No. Pre-sensitizing HLA Donor HLA

1 DQB1*06:04 DRB1*14:06 ITQRKWEAARVAEQL B*54:01 A*33:03, B*44:03
DRB1*14:06 QRKWEAARVAEQLRA B*54:01 A*33:03, B*44:03
DRB1*14:06 QLRAYLEGTCVEWLR B*54:01 A*33:03
DRB1*14:06 RAYLEGTCVEWLRRY B*54:01 A*33:03
DQA1*05:03 DQB1*03:01 QLRAYLEGTCVEWLR B*54:01 A*33:03
DQA1*05:03 DQB1*03:01 AQITQRKWEAARVAE B*54:01 A*33:03, B*44:03
DQA1*05:03 DQB1*03:01 QRKWEAARVAEQLRA B*54:01 A*33:03, B*44:03

5 DRB3*03:01, DQA1*01:03 DQB1*06:01 AQITQRKWEAARVAE B*37:01 A*33:03, B*44:03
DRB4*01:03

7 DQB1*03:01 DRB1*13:02 SMRYFYTSVSRPGRG A*26:01 A*02:06
DRB1*13:02 SHSMRYFYTSVSRPG A*26:01 A*02:06
DRB1*13:02 HSMRYFYTSVSRPGR A*26:01 A*02:06
DRB1*15:02 SMRYFYTSVSRPGRG A*26:01 A*02:06
DRB1*15:02 SHSMRYFYTSVSRPG A*26:01 A*02:06
DRB3*03:01 SHSMRYFYTSVSRPG A*26:01 A*02:06
DRB3*03:01 MRYFYTSVSRPGRGE A*26:01 A*02:06
DRB3*03:01 HSMRYFYTSVSRPGR A*26:01 A*02:06
DRB5*01:02 AVVAAVMWRRKSSDR A*26:01 A*02:06
DRB5*01:02 YTSVSRPGRGEPRFI A*26:01 A*02:06
DRB5*01:02 KETLQRTDAPKTHMT A*26:01 A*02:06
DRB5*01:02 SMRYFYTSVSRPGRG A*26:01 A*02:06
DRB5*01:02 MRYFYTSVSRPGRGE A*26:01 A*02:06
DQA1*01:02 DQB1*06:04 SHSMRYFYTSVSRPG A*26:01 A*02:06
DQA1*01:03 DQB1*06:01 SHSMRYFYTSVSRPG A*26:01 A*02:06
DQA1*01:03 DQB1*06:01 SMRYFYTSVSRPGRG A*26:01 A*02:06
DQA1*01:03 DQB1*06:04 SHSMRYFYTSVSRPG A*26:01 A*02:06

8 DRB4*01:03 DRB1*01:01 DIVADHVASYGVNLY DQA1*05:01 DQA1*03:02
DRB1*01:01 EDIVADHVASYGVNL DQA1*05:01 DQA1*03:02
DRB1*01:01 FDPQFALTNIAVLKH DQA1*05:01 DQA1*03:02
DRB1*01:01 ASYGVNLYQSYGPSG DQA1*05:01 DQA1*03:02
DRB1*01:01 VVNITWLSNGHSVTE DQA1*05:01 DQA1*03:02
DRB1*01:01 VADHVASYGVNLYQS DQA1*05:01 DQA1*03:02
DRB1*15:02 QFALTNIAVLKHNLN DQA1*05:01 DQA1*03:02
DRB1*15:02 PVVNITWLSNGHSVT DQA1*05:01 DQA1*03:02
DRB1*15:02 FDPQFALTNIAVLKH DQA1*05:01 DQA1*03:02
DRB1*15:02 PQFALTNIAVLKHNL DQA1*05:01 DQA1*03:02
DRB1*15:02 ADHVASYGVNLYQSY DQA1*05:01 DQA1*03:02
DRB5*01:02 QFALTNIAVLKHNLN DQA1*05:01 DQA1*03:02
DRB5*01:02 VVNITWLSNGHSVTE DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 ITWLSNGHSVTEGVS DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 TWLSNGHSVTEGVSE DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 RSNSTAATNEVPEVT DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 ADHVASYGVNLYQSY DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 PQFALTNIAVLKHNL DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 KRSNSTAATNEVPEV DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 FDPQFALTNIAVLKH DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 QFALTNIAVLKHNLN DQA1*05:01 DQA1*03:02
DQA1*01:01 DQB1*06:01 DIVADHVASYGVNLY DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*05:01 ADHVASYGVNLYQSY DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*05:01 VASYGVNLYQSYGPS DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 NITWLSNGHSVTEGV DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 IVADHVASYGVNLYQ DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 VNITWLSNGHSVTEG DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 TWLSNGHSVTEGVSE DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 ADHVASYGVNLYQSY DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 FDPQFALTNIAVLKH DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 PQFALTNIAVLKHNL DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 ITWLSNGHSVTEGVS DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 WLSNGHSVTEGVSET DQA1*05:01 DQA1*03:02
DQA1*01:03 DQB1*06:01 DIVADHVASYGVNLY DQA1*05:01 DQA1*03:02

29 A*01:01 DQA1*03:02 DQB1*03:03 ALNEDLRSWTAADMA A*34:01 A*01:01
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TABLE 6 | Continued

Pt DnDSA Presenting HLA loci Presented shared peptide The origin of shared peptide

No. Pre-sensitizing HLA Donor HLA

DQA1*05:03 DQB1*03:03 IALNEDLRSWTAADM A*34:01 A*01:01
DRB1*09:01 DTYCRHNYGVVESFT DRB1*15:01 DRB1*04:03
DQA1*03:02 DQB1*03:01 YCRHNYGVVESFTVQ DRB1*15:01 DRB1*04:03
DQA1*05:03 DQB1*03:01 YCRHNYGVVESFTVQ DRB1*15:01 DRB1*04:03
DQA1*05:03 DQB1*03:03 YCRHNYGVVESFTVQ DRB1*15:01 DRB1*04:03

38 DRB1*04:01 DRB1*15:01 EVTVYPAKTQPLQHH DRB1*09:01 DRB1*04:01
DRB5*01:01 EVTVYPAKTQPLQHH DRB1*09:01 DRB1*04:01
DQA1*01:02 DQB1*06:02 RNGQEEKAGVVSTGL DRB1*09:01 DRB4*01:02

40 DRB5*01:01, DRB1*08:03 RFDPQFALTNIAVLK DQA1*05:05 DQA1*03:03

DQA1*03:03 DRB1*08:03 HVASYGVNLYQSYGP DQA1*05:05 DQA1*03:03

DRB1*08:03 NITWLSNGHSVTEGV DQA1*05:05 DQA1*03:03

DRB1*08:03 DIVADHVASYGVNLY DQA1*05:05 DQA1*03:03

DRB1*08:03 IKRSNSTAATNEVPE DQA1*05:05 DQA1*03:03

DRB1*08:03 QFALTNIAVLKHNLN DQA1*05:05 DQA1*03:03

DRB1*08:03 PVVNITWLSNGHSVT DQA1*05:05 DQA1*03:03

DRB1*08:03 ADHVASYGVNLYQSY DQA1*05:05 DQA1*03:03

DRB1*13:02 VVNITWLSNGHSVTE DQA1*05:05 DQA1*03:03

DRB1*13:02 EDIVADHVASYGVNL DQA1*05:05 DQA1*03:03

DRB1*13:02 QFALTNIAVLKHNLN DQA1*05:05 DQA1*03:03

DRB3*03:01 QFALTNIAVLKHNLN DQA1*05:05 DQA1*03:03

DRB3*03:01 RFDPQFALTNIAVLK DQA1*05:05 DQA1*03:03

DRB3*03:01 PVVNITWLSNGHSVT DQA1*05:05 DQA1*03:03

DRB3*03:01 EDIVADHVASYGVNL DQA1*05:05 DQA1*03:03

DRB3*03:01 ADHVASYGVNLYQSY DQA1*05:05 DQA1*03:03

DRB3*03:01 VASYGVNLYQSYGPS DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 NITWLSNGHSVTEGV DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 IVADHVASYGVNLYQ DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 VNITWLSNGHSVTEG DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 TWLSNGHSVTEGVSE DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 ADHVASYGVNLYQSY DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 FDPQFALTNIAVLKH DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 PQFALTNIAVLKHNL DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 ITWLSNGHSVTEGVS DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 WLSNGHSVTEGVSET DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:01 DIVADHVASYGVNLY DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:04 IVADHVASYGVNLYQ DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:04 EDIVADHVASYGVNL DQA1*05:05 DQA1*03:03

DQA1*01:03 DQB1*06:04 ADHVASYGVNLYQSY DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 PVVNITWLSNGHSVT DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 NITWLSNGHSVTEGV DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 IVADHVASYGVNLYQ DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 RSNSTAATNEVPEVT DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 DPQFALTNIAVLKHN DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 ITWLSNGHSVTEGVS DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 ADHVASYGVNLYQSY DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 KRSNSTAATNEVPEV DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 FDPQFALTNIAVLKH DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 PQFALTNIAVLKHNL DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 WLSNGHSVTEGVSET DQA1*05:05 DQA1*03:03

DQA1*01:02 DQB1*06:01 DIVADHVASYGVNLY DQA1*05:05 DQA1*03:03
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assay using the PIRCHE-II algorithm may be an effective and
alternative solution for estimating this pathway. Considering the
various limitations in this study, a larger sample size and further
clinical and basic scientific approaches will be needed to validate
this emerging in silico assay.
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One year after the start of the COVID-19 pandemic it has become clear that some

groups of individuals are at particular high risk of a complicated course of infection

resulting in high morbidity and mortality. Two specific risk factors are most prominent,

old age and the presence of co-morbidity. Recent studies have shown that patients with

compromised renal function, especially those treated with renal replacement therapy

or having received a kidney transplant are at a much higher risk for severe COVID

infection and increased mortality. This may be in part due to the increased prevalence of

co-morbid conditions in these patients but specific alterations in their immune system,

reflecting premature immunological aging, may be equally important. In this review

the different aspects, in particular thymus function and memory T cell expansion, of

uremia-associated immunological aging are reviewed with respect to COVID 19 infection.

In essence, the decreased generation of naïve T cells may be instrumental in suboptimal

anti-viral immune responses while the relatively uncontrolled expansion of effector T

cells may facilitate the feared phase of the COVID-19 infection with excessive and

live-threatening inflammation of the lung parenchyma.

Keywords: uremia, chronic kidney disease, thymus, adaptive immunity, lymphopenia, immunological

aging, COVID-19

UREMIA-ASSOCIATED IMMUNOLOGICAL AGING

General Aspects
End-stage renal disease is associated with increased risks for infections, cancer and a poor
vaccination response to vaccines like Hepatitis B surface antigen (HBsAg) (1). The accumulation
of uremic toxins and increased oxidative stress leads to a pro-inflammatory state which is believed
to underlie the impaired immune system. Uremia affects all aspects of both the innate and adaptive
immune system [reviewed in (1)]. Cell numbers of innate immune cells like monocytes and
granulocytes are normal to increased. However, these cells have a more activated profile with
expansion of, for example, the subset of pro-inflammatory monocytes CD14posCD16pos while
their functionality may be comprised (2, 3). Dendritic cells are professional antigen presenting
cells and at the crossroad of the innate and adaptive immune response. In particular the subset
of lymphoid dendritic cells is affected by aging and uremia as opposed to the myeloid dendritic
cells (4–7). These lymphoid dendritic cells produce large amounts of type 1 interferon and are key
for adequate antiviral responses (8). In addition, there are less dendritic cells present in the skin
and circulation which may contribute to a less efficient adaptive immune response (5, 9).
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Progressive lymphopenia with relatively more highly
differentiated memory T cells is observed in association with
more advanced stages of chronic kidney failure (10–12). Tracking
the anti-HBsAg T cells after vaccination in patients with renal
failure showed an insufficient CD4T cell response which
correlated closely with an impaired serological response (13).

The changes within the adaptive immune system and
consequences for immune responses closely resembles the
effects of aging (Figure 1) (14). A shift in favor of myeloid
vs. lymphoid precursor hematological stem cells in the bone
marrow may be important (15). This process is driven by
epigenetics which in turn is under the influence of systemic
inflammation and oxidative stress as observed in end-stage
renal failure (16, 17). However, the adaptive immune system
is more broadly affected by aging with thymus involution as
a major cause of a decreasing output of naïve T cells, in
combination with increasing numbers of memory T cells and
changes in the regulatory T cell compartment. The first two
observations are consistently found in the elderly and patients
with end-stage renal failure. The expansion of memory T cells
in elderly individuals is usually associated with a slight increases
in markers of systemic inflammation and therefore frequently
named inflamm-aging (18).

The T cell system is studied the most intense in aging research
as peripheral blood is an easily accessible source of abundant
T cells and many assays are available to study phenotype,
differentiation status and function of T cells. In fact, such
an integrative analysis of the T cell system of ESRD patients
showed immunological aging by an average of 15–20 years,

FIGURE 1 | Progression of chronic renal failure is associated with immunological aging affecting the adaptive immune system. The typical hall marks of immunological

aging are given with an uncertain role for regulatory T cells. The changes of uremia-associated immunological aging can contribute to the substantially increased

COVID-19 infection-associated morbidity and mortality of patients with chronic renal failure.

meaning that the composition of the population of circulating
T cells of a 50-year old hemodialysis patient resembles that of
a 70-year old healthy individual (11, 19). Of note, the inter-
individual variation is substantial and for instance individuals
with a genetic background of longevity show less signs of
immunological aging (20).

Thymus Function and Aging
The thymus is important in producing naïve T cells which all have
a specific T cell receptor (21). Naïve T cells leaving the thymus
are called recent thymus emigrants (RTE) and were positively
selected for the capacity to interact with the HLA molecules of
the antigen-presenting cells but deleted if this interaction was to
strong, thereby preventing potential dangerous autoreactivity. In
addition, regulatory T cells (Tregs) are also generated which are
called natural Tregs (22). Essentially, the thymus continuously
generates the enormous diversity of T cell receptors which is
needed to combat efficiently the wide variety of pathogens that
may be encountered while controlling autoreactive T cells (23).

Aging is invariably associated with involution of the thymus
leading to a steady decline in RTEs. The RTEs can be detected
in the circulation by, for example, expression of CD31 on naïve T
cells and there is on average an almost linear relationship between
decreasing numbers of CD31 positive naïve T cells and age (24,
25). Homeostatic proliferation, particularly of CD4 naïve T cells,
is able to maintain the volume of the naïve T cell compartment
but naïve CD8T cells become severely depleted in the elderly
(26–29). This may lead to a contraction of the TCR repertoire
which in turn can limit the diversity and thereby the efficacy of
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the immunological response (30). For instance, thymus output is
crucial in the formation of protective immune responses during
the early formation of a Salmonella infection but is dispensable
once persistent Salmonella infection is established (31). Whether
the output of natural Tregs is in line with the decrease in RTE’s is
not known.

Progressive severity of renal failure is associated with
decreased numbers of naïve T cells which can be attributed
to both a decrease in RTE’s and a decrease in compensatory
homeostatic proliferation (11, 32, 33). Activation-induced cell
death of naïve T cells is increased and likely underlies part of
the pathogenesis (11). As a result, at all decades of life end-stage
renal failure results in a significant contraction of the circulating
naïve T cell compartment (33, 34). Recent studies have shown
that lymphoid and non-lymphoid tissues may also harbor naïve
T cells and the relation with circulating naïve T cells is not
clearly established (28, 35). However, comparing the percentage
of lymph node naïve T cells with the percentage of peripheral
blood naïve T cells showed a very close correlation (36).

Why the production of RTE’s is affected by uremia is not
known but from animal experiments it is clear that loss of
renal function leads to volume loss of lymphoid organs like the
thymus (37). The thymus and in particular the thymus epithelial
cells appear to be very sensitive for inflammatory and oxidative
stress which translates into an increased tendency for apoptosis
(38–43). This may not only explain the thymus involution with
normal aging, as a result of prolonged and variable exposure
to these conditions, but also the uremia-associated decrease in
thymus function in parallel with the increased pro-inflammatory
environment observed with progressive loss of renal function.

Naïve T cell numbers in both healthy individuals as in
recipients of kidney transplants were independently associated
with all-cause mortality (19, 33, 44). Although this implies a
causal relationship, this is not without uncertainty. Life events
leading to episodes of increased inflammation and oxidative
stress could accelerated thymus involution leading to “low for
age” numbers of naïve T cells but also have a broad negative
impact on the physical robustness of an individual. Therefore,
the possibility exists that low naïve T cell numbers not only
contribute to a weakened immune system but also point to a life
history with harmful events leading to frailty (45–47).

Memory T Cell Expansion and

Immunological Aging
The second hall mark of an aged T cell system is the expansion
of memory T cells which may show signs of senescence and/or
exhaustion which can be defined as the loss of proliferative
capacity and specific effector functions like cytokine production
and cytotoxicity (48). The increased numbers of memory T
cells arise during life as a natural consequence of an immune
system that has reacted to specific pathogens. When infections
persist, like chronic hepatitis C or HIV, it may lead to progressive
differentiation of virus-specific memory T cells into senescence
and susceptibility for cell death (49–51). With increasing
age, the memory T cells have undergone many rounds of
replication with consequent shortening of their telomeres (52).

Measuring telomere length therefore provides another measure
of immunological aging (11).

Expansion of particular populations of memory T cells in the
elderly persons may lead to a skewed TcR repertoire and may
cause gaps in the TcR repertoire (53–56). The latter could fit
in the concept of immunological space, which postulates that
the immune system can only support the survival of a certain
quantity of immune cells (57, 58). Of note, in recent years it
has become evident that all tissues harbor a large quantity of
resident T cells that do not circulate and that provide local
protection against pathogens (59). As a first line of defense, the
resident T cells are enriched in antigen-specific T cells that react
to pathogens which are frequently encountered within that tissue,
for example influenza-specific T cells in the lungs (60, 61). In
contrast, relatively few highly differentiated T cells are present
in the lymph nodes (36). Thus, the population of circulating T
cells is only one of the many compartments of T cells, but easy to
monitor and in general reflecting an ongoing immune response
by increased frequencies of antigen-specific T cells.

Several studies have shown that an expanded population
of differentiated effector memory T cells which have lost the
expression of the co-stimulatory molecule CD28 is associated
with less efficient vaccination and a decreased risk for rejection
after kidney transplantation (14, 62–65). The underlying
mechanisms may be multiple as the pool of CD28null T cells
harbors many different cell types including senescent T cell and
cells with a regulatory function (66, 67).

Circulating numbers of natural Tregs may increase with age
as a result of an expanded population of memory Tregs. These
inflated numbers of Tregs in the elderly can limit immune
responses like vaccination response to influenza but could also
foster autoimmunity and chronic inflammation (68). Chronic
renal failure per se does not affect numbers and function of
circulating natural Tregs (69).

Of interest is the observation from animal experiments
and young adults after thymectomy at childhood, that lower
numbers of naïve T cells facilitate an expansion of circulating
memory T cells which may be a relevant phenomenon in
immunological aging (70–72).

In patients with chronic renal failure the immunological aging
of the memory T cells is more advanced as can be shown by
the increased reduction in T cell telomere length and a higher
frequency of highly differentiated T cells (2, 11, 19, 73). In
addition, as in healthy individuals, the important intracellular
signal pathway involving the MAP kinases ERK, p38 and DUSP6
is unfavorably changed by aging (74, 75).

IMPLICATIONS FOR COVID-19 INFECTION

Increasing morbidity and mortality associated with COVID-19
infection is highly associated with elderly age and co-morbid
conditions (76). Patients on dialysis, with CKD and recipients
of organ transplant represented three of the four comorbidities
associated with the highest mortality risk from COVID-19
(77). Most likely, this is at least in part associated with their
prematurely aged immune system as a coordinated adaptive T
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cell response is associated with less severity of disease (78). Of
note, changes at many levels of the immune system other than the
adaptive T cell response have been described in association with
aging and could contribute to severity of COVID-19 infection,
but their relative importance has as yet not been established.

Fatality of COVID-19 infection is highly associated with
a dysregulated immune response with progressive and severe
inflammation of the lung parenchyma leading to extreme hypoxia
(79–81). Several mutually not exclusive scenarios may lead to
this outcome in the context of immunological aging. First, the
aged immune system may be slow or inefficiently responding to
this new viral pathogen as a result of a contracted TcR repertoire
in the naïve T cell population and a general decline in T cell
function by less effective intracellular signaling. In addition, the
decreased numbers of plasmocytoid dendritic cells may have a
profound negative effect on viral control as type 1 interferon is
important in COVID-19 clearance in an experimental hamster
model of infection (82).

Both deficiencies would lead to delayed clearance of the virus
and prolonged stimulation and expansion of memory T cells that
are COVID-19 reactive. On average lower numbers of T cells
have been found in hospital-admitted COVID-19 patients and
lower cell numbers, specifically naïve T cells, are related to disease
severity (78, 83–88). Although of considerable interest, these
observations are most likely caused by the COVID-19 infection
itself which leads to decreased T cell numbers which may restore
with clinical improvement (85, 89).

Second, immunological aging can lead to a T cell system prone
to expansion of highly reactive memory T cells as regulation
by Tregs is less efficient, low numbers of naïve T cells facilitate
such a response and time to resolution of the viral infection is
relatively slow. This scenario is not just hypothetical as shown by
the large number of studies on infection with cytomegalovirus.
Infection with this herpes virus typically leads to a strong T
cell immune response which can be recognized by an expansion
in the peripheral blood of both highly differentiated memory
CD8 and CD4T cells (90, 91). The CMV reactive CD4T
cells can be readily detected as they are negative for the co-
stimulatory molecule CD28 (CD4posCD28null T cells)(90). Both
the infectious dose and the age of the individual are related to the
expansion of CMV-specific memory T cells (92, 93). Specifically,
in elderly patients with chronic renal failure the expansion of
CD4posCD28null T cells which normally comprise <1% of the
CD4T cell population may be such that over 50% of CD4T
cells become CD28null (94, 95). The CD4posCD28null T cells
are highly cytotoxic and express the chemokine receptor CXCR3
which allows for migration over endothelial cells (96). These
cells are not without harm as they have been identified as a
non-classical risk factor for atherosclerotic disease probably by
their capacity to destabilize atherosclerotic plaques (97, 98). Thus,
CMV infection in immunologically aged individuals like patients
with chronic renal failure may cause poorly controlled memory T
cell expansion with subsequent collateral damage in patients with
atherosclerotic plaques.

Such an exaggerated and harmful T cell immune response in
elderly COVID-19 patients with a severe course of disease is of
course much more acute and intense leading to expansion of

highly activated memory T cells in association with a cytokine
storm (88). In the case of COVID-19 the large expansion of
highly reactive effector T cells is likely primarily present in the
lung parenchyma as has, for example, been shown for influenza-
specific T cells. Therefore, peripheral blood COVID-19 antigen-
specific T cells are a reflection of the intensity of the immune
response which may show different characteristics and may be
much worse at the tissue level (99–102).

In the case of severe COVID-19 infection, controlling the
inflammatory response by high dose steroid is currently the
best option (103). A recent study among recipients of a
liver transplant with COVID-19 infection showed that the
use of tacrolimus was associated with a significant reduction
of mortality (104). This findings underlines that limiting the
excessive T cell response, in this case by tacrolimus, is a key
element in harnessing themorbidity andmortality of COVID-19.

THERAPEUTIC STRATEGIES TO

INFLUENCE UREMIA-ASSOCIATED

IMMUNOLOGICAL AGING

Reversing immunological aging in humans is currently not
possible although some interventions may be beneficial (40, 105).
As thymus involution underlies ever decreasing naïve T cell
numbers with aging and possible contributes to memory T cell
expansion it would be of prime importance to control this
process. The biological process of thymus involution is now
better understood and it is clear that loss of thymus epithelial
cells is essential.

Recent studies have shown that thymus involution involves
the aging of the stromal microenvironment formed by thymus
epithelial cells (TEC)(105). Many factors like cytokines, sex
steroids and transcription factors are likely involved in TEC
aging (106). Expression of the TEC autonomous transcription
factor FOXN1 is pivotal for differentiation and maintaining TEC
integrity. A null mutation of FOXN1 in mice results in a lack of
hair and thymus, and gradual excision of FOXN1 over time in an
experimental model results in thymus involution (107, 108).

This process can be favorably attenuated by transfecting
thymus cells with FOXN1(70) and cellular therapy with FOXN1
producing stem cells or cytokine-to-TEC-based therapies using
IL-22 or keratinocyte growth factor have shown promising
results in experimental models. These approaches offer at
least proof of the concept that thymus function can be
(partially) restored (106).

Interleukin 7 is an important cytokine for T cell proliferation
and homeostasis. Administration of recombinant IL-7 in humans
appears to be safe and increases peripheral T cell numbers.
However, there is little direct impact on thymus function which
limits its use as a regenerative cytokine for the involuted thymus
(109). Of interest, targeting of IL-7 to the thymus, for example,
by a plasmid-delivered IL-7 fusion protein, was able to restore
the thymus architecture and cellularity in aged animals (110).

Restoring renal function by kidney transplantation leads
to a rapid clearance of inflammatory cytokines and relieves
oxidative stress in ESRD patients. However, there is no reversal
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in any of the markers of T cell aging even at 1 year after
transplantation (111). Thus, once established, thymus involution
seems irreversible, leaving the ESRD patient with premature
aging at a persistent increased risk for mortality, even after
regaining adequate renal function with a GFR over 60 mL/min.
The underlying mechanisms are likely epigenetic changes
induced by any combination of inflammation and oxidative stress
associated with uremia, which are not easily reversible (1).

Of considerable interest is a recent observation that a healthy
lifestyle may slow down thymus involution. Smoking and obesity
are associated with fattening of the thymus (112) and bariatric
surgery can partly reverse immunological aging (113). An
observational study showed that elderly individuals with a high
intensity of daily exercise had a better preservation of thymus
function and less senescence of their immune system (114, 115).
Having a healthy lifestyle with sufficient exercise will likely not
reverse an atrophied thymus in ESRD patients but may delay
further involution. Differences in lifestyle may also be part of
the explanation for the substantial inter-individual variation

observed at every decade of life in the number of naïve T
cells and RTE’s.

CONCLUSION

Aging of the T cell system has specific hall marks and is largely
characterized by a progressive decrease of thymus function and
expansion of highly differentiated memory T cells. Patients
with renal failure, even after successful kidney transplantation
may have severe premature immunological aging in particular
in association with CMV infection. Immunological aging may
explain why severity of COVID-19 infection is both age
dependent and significantly increased in patients with chronic
renal failure.
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End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing,

including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also

concerns the immune system. Patients with ESRD have both immune senescence and

chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune

senescence is particularly characterised by premature loss of thymic function that is

associated with hyporesponsiveness to vaccines, susceptibility to infections, and death.

ESRD-related chronic inflammation has multiple causes and participates to accelerated

cardiovascular disease. Although, both characterisation of immune senescence and its

consequences are relatively well-known, mechanisms are more uncertain. However,

prevention of immune senescence/inflammation or/and rejuvenation of the immune

system are major goal to ameliorate clinical outcomes of ESRD patients.

Keywords: immune senescence, thymus, inflammaging, end-stage renal disease, kidney transplantation

INTRODUCTION

Patients with end-stage renal disease (ESRD) are especially prone to infection (1). Furthermore,
concordant data also report that immune responses against vaccines are considerably reduced
in this population (2). Concomitantly, ESRD patients exhibit aseptic low-grade inflammation
(3, 4). These clinical features are close to those observed in elderly and suggest that inflammaging
associating both premature senescence of the immune system and inflammation is a key part of the
ESRD-related immune phenotype. What is more, some convincing studies established evidences
of accelerated immune senescence in chronic kidney disease and dialysis patients compared to the
general population (5–7).

In this review, we analyze recent knowledge on ESRD-associated accelerated immune ageing
with a special focus on thymus involution. In addition, we speculate on therapeutic tools likely to
prevent or reverse these immune alterations.
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IMMUNE SENESCENCE IN AGEING

The term immune senescence clusters all the changes that occur
in the immune system during ageing. Although this process
mainly affects T lymphocytes, all aspects of innate and adaptive
immunity are concerned. Recently, immune ageing has been
suggested to be more appropriate to design all immune changes
associated with ageing. Indeed, the ageing of the immune system
is a more general concept including two different processes.
The first one is what specifically refers to immune senescence,
which is mainly linked to age-dependent thymic involution
leading to reduced immune repertoire diversity and compounded
oligo-clonal increase in memory immune cells. Sensitivity to
infections, reduced vaccine immunity, and defect in tumour
clearance observed in elderly are thought to be at least in
part linked to these immune alterations. Immune senescence
in T cells is sometimes called cellular exhaustion even if
the two phenomenon are not exactly identical. Exhausted T
cells are defined by the loss of CD28 and the concomitant
expression of Tim-3 and PD-1 (8). The second characteristics
of aged immunity is inflammaging. Old age is associated
with low-grade systemic inflammation. Chronic innate immune
activation, pro-inflammatory cytokine profile secretion, and
age-induced accumulation of self-reactive T cells contribute
to age-related inflammation. Inflammaging is supposed to
explain some degenerative disease associated with ageing. The
term “Inflammaging” is frequently proposed to include these
two aspects.

Immune Senescence: A Pivotal Role of
Thymic Involution
T cell immune senescence is mainly linked to physiologic thymic
involution. The thymus mainly serves to the development of
a large but self-tolerant T cell repertoire. Briefly, multipotent
hematopoietic stem cells (HSC) differentiate into common
lymphoid or myeloid progenitors. T lymphoids precursors go
to the thymus where they undergo several stages of maturation
resulting in the formation of naive T lymphocytes called recent
thymic emigrant (RTE) (9). These cells present a diversified
polyclonal T cell receptor (TCR). Central tolerance occurs in
the thymus via two mechanisms. The first one is thymocyte
negative selection. This step consists in deletion of most of self-
auto-reactive T cells via apoptosis (9). The second concerns the
generation of CD4 single positive FoxP3+ regulatory T cells,
which can eliminate auto-reactive T cells having escaped to
negative selection (9).

The ability to generate RTE in the thymus declines with age.
Thymic involution consists in reduction of both thymic size and
thymocyte number and reorganisation of thymic ultrastructure.
Soon after birth, functional tissue begins to be substituted by
fat (10). After 50 years, there is almost no output of naïve T
cells. The frequency of naïve T cells greatly diminishes both in
periphery and in lymphoid organ, especially for CD8+ T cells.
Nevertheless, homeostatic proliferation of previously generated
naïve T cells enables tomaintain a broad and diverse pool of naïve
T cells, especially for CD4+ T cells. Continuous involution of the
thymus with age finally causes a decrease in the thymic output

of naïve T cells and subsequently a reduction of the peripheral
TCR repertoire.

Two non-exclusive mechanisms account for thymus
involution. The first one is mainly based on a reduced production
of HSC. Indeed, self-renewal of HSC diminishes with age and
tends to favour myeloid lineage (11, 12). Reduction in HSC
production and switch toward myeloid lineage would both
contribute to decrease the output of common lymphoid
progenitors (13, 14). In addition, aged hematopoietic stem cells
have less lymphoid differentiation potential (15). The second
one depends on age-related reduction in stromal niches of the
bone marrow () and thymus (16, 17). Recent studies mainly
plead for the latter hypothesis. Stroma cells in the thymus are
mainly thymic epithelial cells (TECs) (18). Convincing data
show that age-associated thymic involution is dependent on
TEC transcription factors involved in TEC homeostasis, such as
Forkhead box N1 (19). Indeed, FOXN1 is essential for thymus
development and thymocyte formation (19). A null mutation
in the FOXN1 gene defines the “null mice” which phenotype is
characterised, amongst others, by the absence of thymus and T
cells (20). Reduction in thymic FOXN1 expression is observed as
one the first step of thymic involution in aged individuals (21).
Conditional KO mice studies have considerably explained the
causal role of FOXN1 in thymus involution. LoxP-floxed-FoxN1
mouse with the ubiquitous CreER(T) transgene have a low dose
of spontaneous activation and exhibit progressive loss of FOXN1
(22). Progressive loss of FOXN1 is associated with accelerated
thymic involution (22). Finally, intra-thymic supplementation in
FOXN1-cDNA partially reverses thymic involution and restores
peripheral CD4+ T cell population (22).

The decrease in T cell production is compensated by
homeostatic expansion of existing peripheral T cells occurs.
This leads to an increased proportion of memory T cells and
reduction in the diversity of TCR repertoire (23). Accumulation
of memory T cells is mainly due to life-long exposure to
chronic antigen stimulation by pathogens. The most important
is cytomegalovirus. However, expansion of CD8+ T cells is only
observed in CMV-exposed old patients (24).

Inflammaging
Somatic cellular senescence is defined by the permanent arrest
of cell cycle accompanied by lack of proliferation, expression
of anti-proliferative markers, and shortening of telomeres (25).
This biological process is likely to be protective against cancer
transformation (26).

Accumulation of somatic senescent cells contribute on
one hand to organ dysfunction, and on the other hand to
inflammation through induction of somatic cell senescence-
associated secretory phenotype (SASP). Immune senescence
favours increased production of SASP (27) due to decreased
chemotaxis of immune cells toward somatic senescent cells and
reduced phagocytosis by neutrophils and macrophages (28–31).

Many other mechanisms contribute to inflammation in
ageing. Chronic viral infections, especially with CMV, induce low
level of cytokines production (32).

Moreover, involution of the thymus is accompanied by a
decrease ability to negatively select self-auto-reactive T cells,
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which explain propension to certain autoimmune diseases in
the elderly (33). Paradoxically, peripheral Treg cells accumulate
during ageing. Thomas et al. (34) developed a mock-self-antigen
chimaera mouse model, in which membrane-bound ovalbumin
transgenic mice, carrying a FOXN1-floxed gene for induction of
conditional thymic atrophy, received ovalbumin-specific T cell
receptor transgenic progenitor cells. The authors showed that a
decreased number of ovalbumin-specific tTreg and pTreg, but
not polyclonal Treg cells in chimeric mice with thymus atrophy.
The ovalbumin-specific pTreg had less suppressive activity and a
lower expression of FoxP3. This suggest that although generation
of polyclonal pan-Treg is not affected by thymus involution,
certain specific Treg clones may have aberrant agonist selection
contributing to age-related chronic inflammation.

Thus, immune ageing is characterised by both immune
deficiency (immune senescence driven by thymus involution)
and inflammation leading to the concept of inflammaging.

IMMUNE AGEING IN END-STAGE RENAL
DISEASE

Chronic kidney disease phenotype is very similar to premature
ageing. Frailty, osteoporosis, muscle wasting, and cardiovascular
disease occur at younger age in CKD patients. Many factors
such as oxidative stress, accumulation of uremic toxins, and
inflammation are supposed to contribute to accelerated ageing
(35). The immune system undergoes a similar premature ageing.
Indeed, peripheral blood mononuclear cell relative telomere
length is shorter in CKD patients as compared to healthy
individuals (5). Furthermore, ESRD patients frequently exhibit
T cell lymphopenia (6) and concomitantly have both a marked
susceptibility for infections and a decreased response to vaccines
suggesting a T cell immune defect (7). Finally, ESRD patients
exhibit a low-grade inflammation status (36). This association is
typical of the “inflammaging” state observed in elderly.

Premature thymic involution is a key component of ESRD-
associated immune senescence. Others and we reported that
thymic output decreased with progression of CKD. Thymic
output is comparable between 40-year-old uremic patients and
80 year-old non-uremic patients (5). Our group recently reported
that, in ESRD patients, low thymic output was predictive of
severe infections (5). The decrease in RTE could be the result
of a reduction in the thymic output of naïve T cells and/or
of a reduction in homeostatic proliferation. Premature loss of
thymic function is likely to explain the decrease in naïve T cells
in young patients with ESRD. Indeed, decreased CD4 naïve T
cells percentage is also observed in paediatric CKD patients (37).
Moreover, concordant data in animals suggest that acute renal
failure accelerates thymus involution (38, 39).

However, there are few data documenting potential causes
for premature thymic involution during chronic kidney disease.
Chronic inflammation is likely to markedly contribute to
immune ageing. Of note, a recent study shows that CRP levels
inversely correlates with naïve T cells in haemodialysis patients
suggesting either that inflammation and immune senescence
evolve in parallel or that one is driving the other one (40).

Activation of innate immunity, characterised by monocyte
activation and overproduction of inflammatory cytokines such
as Il-6, is a key feature of the CKD immune system (4, 41, 42).
Thus, Jurk et al. (43) reported that knockout of the nfkb1 subunit
of the transcription factor NF-κB induces chronic low-grade
inflammation that leads to premature ageing in mice. Treating
reversible source of inflammation is obviously a goal in CKD
patients and such strategy may reduce premature ageing.

Main mechanisms of premature immune ageing are
summarised in Figure 1.

IMMUNE REJUVENATION: FACTS AND
PERSPECTIVES IN CKD

Immune senescence has deleterious consequences. Susceptibility
to infection, premature cardiovascular disease, and increased
cancer incidence are some of the most frequent and serious. A
number of measures, from the simplest to the more complex,
may be susceptible to reverse immune senescence, especially
premature thymic involution (Figure 2).

PHYSICAL ACTIVITY

The impact of physical activity in maintaining thymic activity
must not be neglected. It is one of the rare therapeutic strategies
with consistent results in both animal and human studies (44).

In an immunological ageing mouse model, 4 weeks of free-
wheel running increased naïve T lymphocytes and reduced
effector ratio of cytotoxic T lymphocytes (45). Concordant data
also exist in humans. Comparing adults (55–79 years) who had
intensive sportive practise (cycling), age-matched adults and
young sedentary adults, Duggal et al. (46) observed increased
frequency of naïve T cells and RTE in cyclists. Sportsmen had
also higher levels of IL-7 and lower levels of IL-6. By contrast,
CD28-CD57+CD8+T cell frequencies did not differ between the
three groups. Evenmore powerful are the evidence that sustained
physical activity in elderly improve immune responses against
influenza vaccine (47, 48).

Skeletal muscles express and secrete different cytokines, also
called myokines. Among them, IL-7 and IL-15 are released
during exercise (49, 50). IL-6 is also released by muscle during
exercise. Nevertheless, whereas IL-6 secreted through NF-KB
signalling is pro-inflammatory, IL-6 produced by muscles is
dependent on JUN N-terminal kinase and activator protein 1
signalling and exhibits anti-inflammatory properties (51, 52).
Proof of concept is supported by experiments showing that both
exercise and IL-6 infusion suppress inflammation induced by
endotoxin injection (53). Modulation of cytokine secretion by
muscles during exercise are likely to explain the link between
physical activity and thymopoiesis.

Physical activity is often reduced in CKD patients. Sedentary
life, socio-economics conditions, comorbidities, and uremia-
related asthenia contribute to the reduced physical activity.
Although a large number of studies reported the beneficial effects
of exercise in CKD patients, no data are available concerning
the potential consequences on immune status. However, other
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FIGURE 1 | End-stage renal disease-related inflammaging: main causes and potential consequences. CMV, Cytomegalovirus; SASP, senescence-associated

secretory phenotype.

benefits of physical exercise in ESRD patients have been
largely reported and physical rehabilitation programs should be
encouraged in these patients. Further studies should analyze
whether physical activity may at least in part reverse or prevent
thymic involution and inflammation.

HORMONES

Many hormonal pathways play a role in thymic physiology.
However, most of them are impaired during chronic renal failure.

IGF-1-GH Pathway
The IGF-1–GH pathway interferes with many aspects of thymus
biology. TECs express GH receptors (54) and IGF is expressed
in the thymus (55). Growth hormone supplementation increases
thymic cytokine production and T cell progenitor recruitment
into the thymus and can reverse thymic involution (56–
58). Hansen et al. (59) reported that treatment with rhGH
increased thymus size, T cell receptor excision circles (TREC)
frequency, and total TREC content in CD4T cells in HIV-
infected patients. GH withdrawal in patients receiving GH
treatment is followed by decreased thymic output and intra-
thymic T cell proliferation (60).

The IGF-1-GH axis is profoundly altered in dialysis patients.
ESRF patients have increased GH secretion, but normal IGF-1
concentrations, indicating GH resistance (61, 62). The resistant
state is related to alterations at several levels of GH/IGF-1
axis, GH signalling, and IGF-1 action (63, 64). Several studies
reported that GH administration might increase IGF-1 levels

in dialysis patients as in healthy subjects (65). Moreover, large
studies confirmed the safety of long-term administration of GH
in dialysis patients (66).

All these data suggest that GH may be a therapeutic hope to
reverse thymopoiesis defect in ESRD patients.

Sex Hormones
The effects of sex hormones on thymus are well-known. A
number of studies demonstrated that sex steroid ablation delay or
reverse thymus involution in both animals and humans (67, 68).
Sex steroids inhibit TEC expression of Notch ligand Delta-like 4
that promotes T cell differentiation and development (69).

Surgical castration is obviously not a therapeutic option in
humans, but LHRH analogues use is also associated with thymic
rejuvenation (70). Leuprolide desensitises LHRH receptors
and reduce the release of LH and FSH. Goldberg et al.
(71) showed that Leuprolide enhances T cell reconstitution
following allogeneic bone marrow transplantation in mice.
Similar data have been obtained in non-human primates (72).
Leuprolide induces thymic rejuvenation in aged male baboons
(72). Castration by Leuprolide is reversible and, due to the
use of LHRH agonists in a variety of human diseases, safety,
pharmacokinetics and efficacy are well-known.

Nevertheless, some studies also suggest that castration-
induced thymic rejuvenation is only transient and potentially
hazardous. Indeed, sex hormones deprivation favours self-
reactivity (73, 74). Concordant with this concern, castration
decreased CD4+CD25+ Treg and increased natural (NK) cells
in humans (75). Moreover, androgens increase autoimmune
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FIGURE 2 | Potential therapeutic interventions to prevent or reverse end-stage renal disease-related inflammaging. Black, interventions with evidences; Blue,

interventions without clinical evidence but with strong background and potentiality; Red, interventions with evidences of inefficacy.

regulator (AIRE) expression in mTEC and therefore enhance
negative thymocyte selection while estrogens have opposite
effects (76).

Despite some former results, the use of chemical castration to
enhance thymic rejuvenation is consequently not a safe option.

CYTOKINES

IL-7
IL-7 is produced by both thymic stromal cells and bone marrow.
IL-7 mediates lymphopoiesis of both T and B cells, and in the
thymus, promotes proliferation, differentiation, and survival of
thymocytes (77). IL-7 signals through its receptor IL-7R (78).
Loss of function mutations in IL-7R leads to severe combined
immunodeficiency (SCID) (78).

Administration of IL-7 in mice expand both naïve and
memory CD4 and CD8 peripheral T cells (79).

RhIL-7 has been used in different clinical settings and
constantly leads to increase circulating T cell populations, with
more specific expansion of RTE, naïve T cells and central memory
T cells (80–83). TCR repertoire diversification is also observed
in rhIL-7 treated patients (84). The increase in both CD4+ and

CD8+ T cell remain for months after the end of treatment by
rhIL-7 (85).

IL-7 concentrations have been found to be elevated in CKD
(86) suggesting a possible relative resistance to this cytokine.
Nevertheless, to date, there is no study assessing the effects of
rhIL-7 in lymphopenic CKD patients. Our group recently begun
a phase II study (INDIA Study NCT. . . ) using rhIL-7 to reverse
thymic involution in ESRD patients on dialysis.

IL-22
Interleukin-22, also called IL-10-related T cell-derived inducible
factor (IL-TIF) (87), is a member of the IL-10 family, including
IL-19, IL-20, IL-24, IL-26, IL-28, and IL-29. IL-22R1 determines
the cellular sensitivity toward IL-22. This receptor is restricted
to specific cell types and is absent on immune cells (88). Il-
22 interacts with IL-2R on the surface of TEC and allows both
survival and proliferation of thymocytes.

IL-22 administration to mice having received total body
irradiation increases both thymocytes and TEC recovery (89).
Similar observations have been done after murine allogeneic
hematopoietic cell transplant (90). IL-22 increases the number
of TEC via a stat3-dependent signalling (91). More recently, it
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was shown that, after allogeneic hematopoietic transplantation,
plasma IL-22 levels positively correlated with blood TREC
levels (92).

Limitations in the therapeutic use of rhIL-22 are based on
its dual effects, which strictly depend on the context. The pro-
regenerative effects of IL-22 could be counterbalanced by its
inflammatory and tumorigenic properties.

Keratinocyte Growth Factor
KGF belongs to the fibroblast growth factor family. This cytokine
is involved in epithelial cell proliferation and differentiation in
many tissues, including the thymus. KGF KOmice have impaired
thymopoiesis and peripheral T-cell recovery after allogeneic
bone marrow transplant (93). Moreover, KGF administration
to mice enhance thymopoiesis and accelerate thymic recovery
after irradiation (93, 94). In non-human primates, KGF
enhances immune reconstitution after autologous hematopoietic
progenitor cell transplantation (95, 96).

More recently, conflicting results made the benefits of KGF
less clear. Coles et al. (97) reported on treatment with Palifermin
(KGF) in patients having received alemtuzumab, a monoclonal
anti-CD52 antibody, which induces profound and sustained T
cell lymphopenia. Six months after treatment, individuals having
received Palifermin had fewer naïve CD4+ T cells and sjTREC,
leading to study discontinuation (97). Furthermore, in HIV-
infected patients, Palifermin was not effective in either improving
thymic function or rising circulating CD4+ T cells (98). Finally,
Palifermin was associated with worse clinical outcomes in
patients with acute respiratory distress syndrome (99).

All these results underline the difficulty to export results
obtained in animal studies to humans and are to make cautious
on KGF use.

FOXN1- AND TEC-BASED APPROACHES

Some studies tested whether TEC stem cell may help to restore
thymic function.

In a mouse model, Kim et al. (100) reported that engraftment
of young TEC allows thymic growth and increased T cell
production. FOXN1-induced TEC from fibroblasts support
CD4+ and CD8+ T cells development. Transplantation of such
cells allows the formation of a complete thymus containing
all the TEC subtypes required for T-cell differentiation (101).
Another group recently confirmed the feasibility and relevance of
such a strategy (102). Moreover, forced expression of FOXN1 in
involuted thymus results in thymic regeneration with increased
thymopoiesis and naïve T cell output (103). The structure of the
regenerated thymus was very close to young thymus in terms of
architecture and gene expression. These results suggests that up-
regulation of FOXN1 is sufficient to reverse age-related thymic
involution. Finally, recombinant FOXN1 protein fused with cell-
penetrating peptides increased the number of TEC and enhanced
thymopoiesis after hematopoietic stem cell transplantation in
mice (104).

All together, these studies suggest that the FOXN1 axis
research is a valuable strategy to reverse thymic involution. To
date, there are no evaluation of FOXN1 expression during CKD.

MICROBIOTA

Microbiota interferes with the immune system lifelong and
its dysregulation results in inflammation (105). After great
variations during the neonatal and early life periods, more
subtle changes occur in microbiota until middle age before final
stabilisation (106). Nevertheless, age-related changes in intestinal
functions, inflammation, and co-morbidities may contribute to
dysbiosis (107).

Whether microbiota interferes with immune senescence is
challenging because the relative part of microbiota and health
status are difficult to isolate. Moreover, even when dysbiosis may
favour inflammation, inflammation may also promote dysbiosis
asking the question of which came first the chicken or the egg?
Indeed, chronic inflammation is a potent driver of increased
gut permeability and microbial dysbiosis. For instance, age-
induced dysbiosis is reduced in TNF KO mice as compared with
wild type (108). Moreover, some cytokines decrease expression
of tight junction proteins favours gut permeability, bacterial
translocation, and systemic inflammation (109).

There are scarce but convincing data suggesting that aged
microbiota contributes to drive immune senescence. Young
germ-free (GF) mice raised with aged mice exhibit an
inflammatory profile characterised by elevated inflammatory
cytokines and macrophage activation (108). This effect was not
observed when young GF mice were co-housed with young
mice (108). Fransen et al. (109) reported on the transfer of gut
microbiota from conventional old mice to young GF mice. T cell
activation occurs in young GF mice after transfer of microbiota.
Inflammation was related to higher levels of Proteobacteria and
lower levels of Akkermansia in old CV mice. Once again, these
alterations in immune status were not observed after transfer of
microbiota from young conventional mice.

Short-chain fatty acid levels decreased in elderly. Yet,
SCFA lead to increase Treg cell differentiation (110). SCFA
supplementation, namely butyrate, suppresses arthritis in mice
by a Breg-dependent mechanism (111). Precisely, Butyrate
increases the levels of 5-HIAA (5-hydroxyindole-3-acetic acid)
which activates the ary-hydrocarbon receptor, a transcriptional
marker for Breg function (111).

Administration of high dose probiotics in elderly subjects
enhanced CD8+CD25+ T cells and NK cells while low dose
increased CD4+CD25+ and B lymphocytes (112). Amore recent
study reported that a probiotic mixture increased naive and
regulatory T cells and decreased memory T cells (113).

Finally, best evidence of interactions between microbiota
and immune senescence come from studies reporting better
vaccine responses against influenza after treatment with pre- or
probiotics. Akatsu et al. (114) performed a randomised study
in elderly receiving enteral tube feeding. Patients received either
a placebo or Bifidobacterium longum BB536. After influenza
vaccine, patients having received BB536 exhibited higher levels
of anti-H1N1 antibodies. Boge et al. (115) also showed increased
response to influenza vaccination in elderly following prolonged
administration of a probiotic. Other recent studies suggest that
probiotics and prebiotics are effective to improve seroconversion
and seroprotection after influenza vaccines (116, 117).
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Dysbiosis is a hallmark of chronic kidney disease (118).
Accumulation of uremic toxins in CKD leads to an insuatable
excretion of urea, uric acid, and oxalates in the intestinal
lumen (119). The enrichment in uremic toxins cause substantial
modifications in gut physiology mainly an increased in
permeability and in microbiota with an increase in uricase
and urease-producing bacteria (120). Proteolytic fermentation
leads to the formation of different uremic toxins such as p-
cresyl sulphate and indoxyl-sulphate potentially aggravating the
uremic status (120). Overgrowth of Bacteroidetes, Firmicutes,
Ruminococcaceae and clostridia together with low abundance
of Lactobacilli, Prevotellae, and bifidobacterium species depict
main characteristics of intestinal microbiota of CKD patients
compared to healthy subjects (121). Dysbiosis and increased
gut permeability take account for bacterial translocation and
inflammation (122). More recently, we reported (123) that the
proportion of the inflammatory 14-carbon chain lipid A-LPS
was increased in ESRD patients compared to healthy volunteers.
Conversely, proportion of anti-inflammatory 18-carbon chain
lipid A-LPS was decreased. Moreover, sera with predominance
of 14-carbon chain lipid A-LPS induced higher secretion of pro-
inflammatory cytokines than those with predominance of 18-
carbon chain lipid A-LPS. TLR4 or LPS antagonists decreased
LPS-induced cytokine production by monocytes, demonstrating
an LPS-specific effect. This suggests that septic inflammation
observed in ESRD is at least in part related to a shift toward more
inflammatory LPS subtypes from altered microbiota.

Different uremic toxins are generated in the intestine and
contribute to inflammation in CKD patients (124). p-Cresol
is a product of the bacteria metabolization of the aromatic
amino acid tyrosine in the colon. Increased levels of p-Cresol
in CKD patients correlate with the expansion of terminally
differentiated CD8+ T cells (125). A recent randomised study
reported that nutritional intervention based on very low protein
diet modifies microbiota toward a potential anti-inflammatory
profile and reduces p-Cresyl Sulphate (126). This suggests
that dietary interventions may mitigate uremic syndrome and
immune ageing through microbiota modulation.

KIDNEY TRANSPLANTATION

Successful kidney transplantation reverses renal failure
and increases life expectancy. Contrasting effects of kidney
transplantation have been observed on immune senescence.

Our group studied markers of immune senescence before
and after kidney transplantation. In patients not having
received polyclonal antithymocyte globulins (ATG), both T cell
relative telomere length and telomerase activity increased after
transplantation whereas they were not modified in ATG-treated
patients (127). This suggests that renal function recovery may
induce a partial reversion of immunesenescence. Nevertheless,
Meijers et al. (128) did not observe such changes in T cell RTL
after transplantation.

By contrast, concordant data exist to state that thymic output
do not increase in non-ATG treated patients and decrease in
those having received ATG (127, 128). In vitro, ATG binds

to TEC and exerts a complement-independent, dose-dependent
cytotoxicity (129). Nevertheless, Preville et al. (130) suggested
that ATG could not enter into the thymus. Indeed, the authors
observed a dose-dependent T cell depletion in spleen and lymph
nodes but not in the thymus. However, these first results were not
confirmed in a swine model in which lymphodepletion occurs
in the thymus after administration of ATG (131). Alternatively,
ATG may decrease lymphoid progenitors (127).

ESRD-associated CD8+ T cell expansion tends to marginally
increase after transplantation mainly due to CMV reactivation
(132). Nevertheless, inflammation measured by CRP or
different proinflammatory cytokines substantially dropped after
transplantation (122).

All together, these results suggest that kidney transplantation
does not reverse ESRD-associated accelerated thymus involution.
Whether this absence of effect is due to fixed immune changes
or competitive effects of immunosuppressive drugs is difficult
to ascertain.

DIALYSIS PROCEDURES

Dialysis procedure itself is a source of inflammation.
Bioincompatible membranes, prosthetic vascular accesses,
PD solution are potential sources of immune activation.

Peritoneal Dialysis vs. Haemodialysis
Whether PD results in systemic inflammation is not clear. Some
studies reported that longer PD duration results in higher IL-
6 concentrations (133, 134), but others did not observe any
increase in IL-6 or CRP levels (135). By contrast, a burst in
inflammation is well-described during HD procedure (136–138).
Expression of TLR2 and TLR4 on monocytes from patients
on haemodialysis is increased (139) whereas the expression of
TLR4 has been reported to be reduced on monocytes in patients
with CKD not receiving dialysis (140). Bioincompatible dialyzer
induces intermittent activation of monocytes and up-regulation
of TLR4. Accordingly, we observed higher inflammatory
monocytes counts in patients on HD as compared to those on
PD (141).

We also reported higher relative telomerase activity in
PD patients (141). Of note, some cytokines released during
haemodialysis session, such as IFN-α, may inhibit telomerase
activity in hematopoietic cells (142, 143).

Finally, T cell exhaustion was more pronounced in HD
patients, especially in those with previous exposure to CMV
(141). Different mechanisms may explain this difference.
Persistent low-grade inflammation in HD patients may
contribute to immune responses to self-antigens and pathological
ageing by promoting T cell exhaustion. Alternatively, repeated
antigenic stimulation of T cells during haemodialysis sessionmay
cause enhanced proliferation and accelerated ageing compared
to PD.

Dialysis Membranes Choice as a
Modulator of Inflammation
Bio-incompatible membranes induce sustained activation of
innate immunity. During a dialysis session, both neutrophils
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and monocytes are recruited and activated. After activation,
these cells release a number of pro-inflammatory cytokines
and complement pathways activators (144). Simultaneously,
their phagocytic functions are markedly altered (145, 146).
Dialysis membranes also mediate complement activation (147,
148). These phenomena induce persistent pro-inflammatory
and pro-coagulant states and partly explain the oxidative burst
observed in ESRD patients. Although a direct effect of bio-
incompatibility on adaptive immunity is more difficult to
demonstrate, inter-connexions between innate and adaptive
immunity may explain the consequences of bio-incompatibility
on T cell functions (149).

A major challenge to reduce immune activation
during dialysis is the development and use of more
biocompatible membranes.

Membranes may be modified to reduce oxidative stress. For
instance, vitamin E-coded dialyzers reduced indoleamine 2,3-
dioxygenase-1 activity and nitric oxide formation (150). Of
note, TEC are especially vulnerable to oxidative DNA damage.
Thymic stromal deficiency in catalase induces thymic atrophy
(151). Treatment with antioxidant can delay the onset of thymus
involution (151).

Recently, median cut-off (MCO) membranes characterised by
wider pores and more uniformity in pore size were developed.
These membranes reduce uremic toxins at a greater degree
(152). A randomised study showed that MCO significantly
decrease the expression of TNF-α mRNA and IL-6 mRNA
in PBMC compared to high-flux dialyzers (153). Polymethyl
methacrylate (PMMA) membranes can remove large-weight
molecular substances thanks to their adsorptive capacities (154).
PMMA membranes seem to be associated with lower pre-
dialysis values of IL-6 (155). Contrary to other dialyzers, PMMA
membranes are able to clear sCD40 which accumulation in ESRD
is associated with unresponsiveness to hepatitis B vaccine (156).

Even when dialysis membrane influence cytokines clearance,
complement and coagulation activation, and removal of uremic
toxins, a direct impact on immune senescence is not yet proven.
However, there are, as described above, several mechanisms
linking inflammation and immune ageing. Further studies
should examine the effects of different membranes on adaptive
immunity, vaccine responses, and clinical outcomes.

Iron Supplementation
Iron supplementation is widely used in HD (157). Intravenous
iron administration induces oxidative stress (158). Iron overload

is associated with shorter telomere length in ESRD patients (141).
Association between iron overload and telomere length has been
reported in different studies (159–161). Reduced telomere length
is associated with mortality in dialysis patients (5). Excessive iron
load enhances ferroptosis (162), which has an important role
in sterile inflammatory conditions such as tissue acute injury,
ischemic-reperfusion injury, and neurotoxicity.

CONCLUSION

Premature thymic involution and chronic inflammation
greatly contribute to increased morbidity and mortality in
CKD patients. Mechanisms are likely to be multiple and
interlinked. Even when the quest to fountain of youth is
a pipe dream, there are many scientific opportunities to
prevent or to, at least in part, reverse CKD-related immune
senescence. Further studies should precisely define most
important pathways driving premature immune ageing in
CKD patients and best therapeutic options to control them.
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Kidney transplantation is the best option for patients with end-stage renal disease.

Despite the improvement in cardiovascular burden (leading cause of mortality among

patients with chronic kidney disease), cardiovascular adverse outcomes related to

the inflammatory process remain a problem. Thus, the aim of the present study

was to characterize the immune profile and microvesicles of patients who underwent

transplantation. We investigated the lymphocyte phenotype (CD3, CD4, CD8, CD19, and

CD56) and monocyte phenotype (CD14, CD16, CD86, and CD54) in peripheral blood,

and endothelium-derived microvesicles (annexin V+CD31+CD41–) in plasma of patients

with advanced chronic kidney disease (n= 40), patients with transplantation (n= 40), and

healthy subjects (n = 18) recruited from the University Hospital “12 de Octubre” (Madrid,

Spain). Patients with kidney transplantation had B-cell lymphopenia, an impairment in

co-stimulatory (CD86) and adhesion (CD54) molecules in monocytes, and a reduction

in endothelium-derived microvesicles in plasma. The correlations between those

parameters explained the modifications in the expression of co-stimulatory and adhesion

molecules in monocytes caused by changes in lymphocyte populations, as well as the

increase in the levels of endothelial-derivedmicrovesicles in plasma caused by changes in

lymphocyte and monocytes populations. Immunosuppressive treatment could directly or

indirectly induce those changes. Nevertheless, the particular characteristics of these cells

may partly explain the persistence of cardiovascular and renal alterations in patients who

underwent transplantation, along with the decrease in arteriosclerotic events compared

with advanced chronic kidney disease. In conclusion, the expression of adhesion

molecules by monocytes and endothelial-derived microvesicles is related to lymphocyte

alterations in patients with kidney transplantation.

Keywords: chronic kidney disease, immunity, immunosenescence, microvesicles, renal transplantation
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INTRODUCTION

Chronic kidney disease (CKD) is one of the leading causes
of mortality and morbidity in developed countries (1). This
pathology has a high frequency, affecting ∼9% of the population
worldwide (2). The incidence of CKD is expected to increase in
the future (3) due to the increase in the prevalence of risk factors,
such as hypertension and diabetes mellitus (2, 4, 5).

As CKD progresses and kidney function becomes less
effective, various substances collectively termed uremic retention
solutes accumulate in the body; those that exert adverse
biological effects are termed uremic toxins. Uremic toxins are
thought to contribute to inflammation, immune dysfunction,
vascular disease, platelet dysfunction and increased bleeding
risk, dysbiosis in the gut including increased translocation of
bacteria, altered drug metabolism, as well as CKD progression
(6–11). In addition, the risk of a cardiovascular event increases
with decreasing renal glomerular filtration rate (GFR) and
the occurrence of albuminuria (6, 12–14). The inflammatory
state in advanced chronic kidney disease (ACKD) due to
the inflammatory process in the kidney (15, 16) and the
increase in excretion products in blood (e.g., uremic toxins or
proinflammatory compounds) is particularly interesting (11, 17,
18). Both events lead to low-grade inflammation, similar to
the basal inflammation observed in aging (4, 11, 17), which
can be identified as inflamm-aging (19, 20). This low-grade
inflammation is also associated with a worsening response to
infections (21–23), an increased incidence of cancer (24, 25),
and senescent phenotypes in immune cells and the vascular
endothelium (4, 17, 18, 26–30). This inflammation and cellular
senescence entail the development of associated pathologies,
such as cardiovascular disease, which is the primary cause
of mortality in CKD (4, 31). Proinflammatory monocytes
(intermediate and non-classical) play a crucial role in the
development of this pathology (4, 27, 30–33). In recent years,
the extracellular vesicles—small particles which serve as a means
of communication between cells—have captured the attention
of researchers (34–37). The adhesion of monocytes to the
vascular endothelium leads to release of proangiogenic factors
and extracellular vesicles, including microvesicles (MV), by the
endothelial cells, thereby inducing vascular damage (4, 27, 34,
38).

Most patients reaching end-stage kidney disease are treated
with either dialysis or kidney transplantation (KT), which
is currently the best available therapeutic option (39–41).
However, KT does not entirely solve the problem primarily
because the leading cause of CKD continues to affect the
patient and prolongs the associated pathologies. Furthermore,
other conditions, such as nephrotoxicity (42), anemia (43),
oxidative stress (44), cardiovascular alterations (45, 46), or
mineral-bone alterations (47) persist in patients who underwent
transplantation. Moreover, immunosuppression (42), which is
fundamental for avoiding transplant rejection, may modulate

Abbreviations: ACKD, advanced chronic kidney disease; CKD, chronic

kidney disease; GFR, glomerular filtration rate; HS, healthy subjects; MV,

microvesicles; NK, natural killer.

FIGURE 1 | Description of cross-sectional study population.

the low-grade basal inflammation. Currently, this potential
relationship has not been extensively studied in situations of
normal renal transplantation.

Numerous alterations associated with ACKD and its different
treatments have been identified, including those that affect the
immune and vascular systems. However, the approach through
which these alterations can be corrected, at least partially by
the KT procedure, is not well-established. Thus, the aim of
the present study was to characterize the immune profile and
MVs of patients with KT. This knowledge can be advantageous
in designing strategies for monitoring patients and, above all,
assessing the effectiveness of different treatments.

MATERIALS AND METHODS

Study Population
We carried out a cross-sectional analysis involving 80 patients
with CKD and 18 healthy subjects (HS) to establish standard
criteria (Figure 1). Forty patients had stage 4–5 CKD, while
the remaining 40 had received initial KT at least 6 months
prior to sample collection. Patients with neoplasms, infections,
and inflammatory or active autoimmune diseases were excluded.
All patients were recruited at the Department of Nephrology,
University Hospital “12 de Octubre” (Madrid, Spain). All
procedures were performed according to the World Medical
Association’s Declaration of Helsinki and the protocol was
approved by the Instituto de Investigación Sanitaria Hospital 12
de Octubre Ethics Committee (CEI: 17/407).

Serum Sample Collection
Peripheral blood samples were obtained in
ethylenediaminetetraacetic acid-coated tubes during routine
medical reviews. All samples were analyzed within 18 h
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FIGURE 2 | Representative flow cytometry findings of monocyte subsets and CD54/CD86 expression in the three groups: healthy subjects (HS), patients with

advanced chronic kidney disease (ACKD), and patients with renal transplantation (RT). Monocyte subpopulations were assessed within the FSC-height/SSC-height.

The classical (CD14++CD16–), intermediate (CD14++CD16+), and non-classical (CD14+CD16+) monocytes were evaluated using anti-CD16-FITC and

anti-CD14–TRICOLOR. For each subpopulation, the expression of CD54 or CD86 was analyzed using anti-CD54-PE or anti-CD86-PE. FITC, fluorescein

isothiocyanate; FSC, forward scatter; PE, phycoerythrin; SSC, side scatter.

after collection. Biochemical and lymphocyte population
characterizations were performed at the Department of Clinical
Analysis and Department of Immunology of the “12 de
Octubre” Hospital, respectively. Monocyte population and MV
characterizations were conducted at the Department Genetics,
Physiology, and Microbiology of Complutense University of
Madrid (Spain). For MV characterization, plasma was obtained
through centrifugation of blood samples at 1,500× g for 20min.
Plasma samples were stored at−20◦C.

Lymphocyte Characterization
Total lymphocytes, T lymphocytes (CD3+), T-helper
lymphocytes (CD3+CD4+), T-cytotoxic lymphocytes

(CD3+CD8+), B lymphocytes (CD3–CD19+), and natural
killer (NK) cells (CD3–CD16+/CD56+) were analyzed (48, 49).
Whole blood was stained using BD Multitest 6-color TBNK
reagent (5:2 proportion; BD Biosciences, San José, CA, USA) for
15min. Red blood cell lysis was performed using fluorescence-
activated cell sorting (FACS) lysing solution (BD Biosciences).
The lymphocyte subpopulations were determined using a
FACSCanto II flow cytometer (BD Biosciences) and analyzed by
the FACSCanto clinical software (BD Biosciences).

Monocyte Characterization
Classical (CD14++CD16–), intermediate (CD14++CD16+)
and non-classical (CD14+CD16+) monocyte populations were
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TABLE 1 | Baseline characteristics of patients and healthy subjects.

HS Patients with ACKD Patients with KT

n 18 40 40

Age (years), mean ± SDb 51 ± 16 61 ± 17 54 ± 12

Male, n (%)a 9 (50%) 26 (65%) 27 (68%)

Etiopathology, n (%)a

Nephroangiosclerosis – 7 (17.5%) 6 (15%)

Diabetic nephropathy – 13 (32.5%) 8 (20%)

Glomerular nephropathy – 6 (15%) 4 (10%)

Polycystic kidney disease – 4 (10%) 8 (20%)

Interstitial nephritis – 6 (15%) 2 (5%)

Others – 4 (10%) 10 (25%)

Hypertension, n (%)a 1 (6%) 36 (90%)*** 39 (98%)***

Diabetes mellitus, n (%)a 2 (11%) 18 (45%)* 16 (40%)*

Dyslipidemia, n (%)a 0 (0%) 31 (78%)*** 21 (53%)***#

Hyperuricemia, n (%)a 0 (0%) 28 (70%)*** 13 (33%)***##

Smoking, n (%)a 4 (22%) 11 (28%) 10 (25%)

eGFR (mL/min/1.73 m2), mean ± SDd
>90 16 ± 17*** 49 ± 19***###

Serum creatinine (mg/dL), mean ± SDc 0.8 ± 0.2 4.2 ± 1.0*** 1.5 ± 0.5***###

Serum albumin (mg/dL), mean ± SDb 4.7 ± 0.3 4.3 ± 0.4*** 4.5 ± 0.4###

Proteins (mg/dL), mean ± SDb 7.1 ± 0.4 6.9 ± 0.5 7.0 ± 0.6

CRP (mg/dL), mean ± SDd 0.27 ± 0.5 0.45 ± 0.44** 0.47 ± 0.89*

aChi-squared test. bANOVA (Tukey test). cANOVA (Games–Howell test). dMann–Whitney U-test. Statistical significance was denoted by *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 vs. HS; #p

≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001 vs. ACKD.

ACKD, advanced chronic kidney disease; ANOVA, analysis of variance; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; HS, healthy subjects; KT, kidney transplantation;

SD, standard deviation.

analyzed as previously described (50) with modifications. In
addition, the expression of CD86/B-lymphocyte antigen B7-
2 (CD86/B7-2) and CD54/intercellular adhesion molecule 1
(CD54/ICAM1) in each population was determined. A triple-
staining immunofluorescence technique was utilized, and flow
cytometry analysis was performed. Monoclonal antibodies
conjugated with fluorochromes against CD14 (TuK4 clone,
TRI-COLOR R©; Invitrogen, Carlsbad, CA, USA), CD16 (3G8
clone, fluorescein isothiocyanate [FITC]; Invitrogen), CD86/B7.2
(BU63 clone, phycoerythrin; Biolegend, San Diego, CA, USA),
and CD54/ICAM1 (MEM-111 clone, phycoerythrin; Invitrogen)
were used.

Briefly, whole blood was incubated with the corresponding
antibody for 25min at room temperature in darkness. Red
blood lysis was performed using FACS Lysing Solution (BD
Biosciences) for 10min prior to centrifugation at 400 × g. The
cells were fixed using Cell Fix (BD Biosciences) and stored at
4◦C until assessment. The maximum storage period was 24 h.
The monocyte subpopulations and phenotypes were determined
using a FACSCalibur cytometer (BD Biosciences), with the
support of the staff of the cytometry associated research center
of Complutense University of Madrid (Spain) and analyzed by
the FlowJoTM software (Ashland, OR, USA). The results were
expressed as the percentage of monocyte subtype with respect to
the total monocyte population, in the case of three subtypes of

monocytes. Alternatively, data were presented as the percentage
of each population that expressed CD86/CD54 and the mean
fluorescence intensity (MFI), which represents the amount of
molecule expressed by each monocyte (Figure 2).

MV Characterization
The total number of MVs (AnnexinV+) and endothelial-derived
MVs (AnnexinV+CD31+CD41–), as well as the expression
of tissue factor (CD142) in endothelial-derived MVs, were
determined as previously described (49). A quadruple-staning
immunofluorescence technique was utilized, and flow cytometry
analysis was performed. Monoclonal antibodies conjugated
with fluorochromes against Annexin V (Annexin V-FITC Kit;
Miltenyi Biotec, Bergisch Gladbach, Germany), CD41/integrin
subunit alpha 2b (MEM-06 clone, peridnine chlorophyll
protein; Invitrogen), CD31/platelet and endothelial cell
adhesion molecule 1 [PECAM1] (WM-59 clone, phycoerythrin;
BD Bioscience), and CD142/tissue factor (HTF-1 clone,
allophycocyanin [APC]; Invitrogen) were used.

Briefly, platelet-free plasma samples were centrifuged at
110,000 × g for 2min and resuspended in Annexin-V binding
buffer (Annexin V-FITC Kit; Miltenyi Biotec). Subsequently,
the samples were incubated with the corresponding antibodies
for 40min at room temperature in darkness, fixed using Cell
Fix (BD Bioscience), and stored at 4◦C until assessment. The
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FIGURE 3 | Description of lymphocyte subpopulations. Number of total lymphocytesΨ (A), T lymphocytesΩ (B) (CD3+), B lymphocytesΩ (C) (CD3–CD19+), and

natural killer cellsΨ (D) (CD56+CD16+CD3–) in healthy subjects (HS), patients with advanced chronic kidney disease (ACKD), and patients with kidney transplantation

(KT). *p ≤ 0.05, **p ≤ 0.01 vs. HS. Statistical analysis: Ψ ANOVA (Tukey test). ΩANOVA (Games–Howell test). ANOVA, analysis of variance.

maximum storage period was 24 h. The MV subpopulations
were characterized through flow cytometry using a FACSCalibur
cytometer (BD Biosciences) with the support of the staff of the
cytometry associated research center of Complutense University
of Madrid (Spain) and analyzed by the FlowJoTM software. The
standardization on the FACSCalibur device was carried out as
previously described (49).

Statistical Analysis
SPSS version 21.0 (Armonk, NY, USA) was used for the
statistical analysis. The data were expressed as the mean ±

standard deviation. The normality of the samples and variance
homogeneity were checked using one-sample Kolmogorov–
Smirnov and Levene tests. Normal variables were evaluated using
one-way analysis of variance to determine individual differences
for each parameter followed by post-hoc analysis. The post-hoc
analysis was performed using Tukey’s test for variables with
homogeneous variances and the Games–Howell test for those
with heterogeneous variances. For non-normal variables, the
Mann–Whitney U-test was performed. For qualitative data, the
chi-squared test was performed, and the results were expressed
as relative and absolute frequencies. The Spearman correlation
test was carried out for correlation analysis between lymphocytes,

monocytes, and MV subpopulations in renal transplant patients.
P ≤ 0.05 denoted statistical significance.

RESULTS

Population Description
The baseline characteristics of patients with CKD and HS are
shown in Table 1. There was no difference between the age or
sex of patients with ACKD (61 ± 17 years; 65% males) and
transplantation (54 ± 12 years; 68% males). The numbers of
individuals affected by hypertension and diabetes mellitus were
similar in both groups of patients (ACKD: 90% and 45%; KT:
98% and 40%, respectively) as well as the smoking habit (ACKD:
28%; KT: 25%).Whereas de number of patients with dyslipidemia
and hyperuricemia was higher in ACKD (78%, p = 0.034; 70%,
p = 0.002, respectively) than in kidney transplantation (53;
33%, respectively). The estimated GFR was lower in patients
with ACKD (16 ± 17 mL/min/1.73 m2, p = 0.000) than
in those with kidney transplantation (49 ± 19 mL/min/1.73
m2). Moreover, there were no differences in the levels of C-
reactive protein in both patient groups (ACKD: 0.45 ± 0.44
mg/dL; KT: 0.47± 0.89 mg/dL).

Regarding the immunosuppressive treatment, the most used
treatment was a combination of tacrolimus and mycophenolic
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FIGURE 4 | Description of T lymphocyte subpopulations. NumberΨ (A) and percentageΨ (B) of T-helper lymphocytes (CD3+CD4+); numberΨ (C) and percentageΨ

(D) of T-cytotoxic lymphocytes (CD3+CD8+); relationship between helper and cytotoxic lymphocytesΩ (E) (CD4/CD8 ratio) in healthy subjects (HS), patients with

advanced chronic kidney disease (ACKD), and patients with kidney transplantation (KT). *p ≤ 0.05, ***p ≤ 0.001 vs. HS; #p ≤ 0.05, ##p ≤ 0.01, and ###p ≤

0.001 vs. ACKD. Statistical analysis: ΨANOVA (Tukey test). ΩANOVA (Games–Howell test). ANOVA, analysis of variance.

FIGURE 5 | Description of monocyte subsets. Percentage of classicalΦ (A) (CD14++CD16−); intermediateΨ (B) (CD14++CD16+) and non-classicalΨ (C)

(CD14+CD16+) monocytes in healthy subjects (HS), patients with advanced chronic kidney disease (ACKD), and patients with kidney transplantation (KT). *p ≤ 0.05

vs. HS. Statistical analysis: ΨANOVA (Tukey test). ΨMann–Whitney U-test. ANOVA, analysis of variance.

acid (26 patients, 65%), followed by a combination of tacrolimus
and everolimus (seven patients, 17.5%).

Lymphocyte Characterization
The present results did not show any differences in the total
number of lymphocytes (Figure 3A), T lymphocytes (Figure 3B),
or NK cells (Figure 3D). A decrease in the number of B

lymphocytes was observed in ACKD (130.86 ± 155.55 cells/µL)
and KT (123.05± 71.07 cells/µL) patients vs. HS (198.77± 87.08
cells/µL, p= 0.047 and 0.009, respectively) (Figure 3C).

Regarding the T-lymphocyte subpopulations, we did not find
differences in the total numbers of T-helper and T-cytotoxic
cells (Figures 4A,C, respectively). Nevertheless, patients with KT
showed a decrease in the percentage of T-helper lymphocytes
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FIGURE 6 | Expression of CD86/B7.2 in different monocyte subsets. Percentage of classicalΦ (A) (CD14++CD16–), intermediateΩ (B) (CD14++CD16+), and

non-classicalΨ (C) (CD14+CD16+) monocytes expressing CD86. Mean fluorescence intensity of CD86 in classicalΩ (D) (CD14++CD16–), intermediateΩ (E)

(CD14++CD16+), and non-classicalΩ (F) (CD14+CD16+) monocytes in healthy subjects (HS), patients with advanced chronic kidney disease (ACKD), and patients

with kidney transplantation (KT). **p ≤ 0.01, ***p ≤ 0.001 vs. HS; #p ≤ 0.05 vs. ACKD. Statistical analysis: Ψ ANOVA (Tukey test). ΩANOVA (Games–Howell test).
ΦMann–Whitney U-test. ANOVA, analysis of variance.

(40.62 ± 9.16%, p = 0.062 vs. HS and p = 0.016 vs. ACKD;
Figure 4B). They also exhibited an increase in the cytotoxic
subpopulation (33.67± 11.01%, p= 0.000; Figure 4D) compared
with HS (46.76 ± 7.64 and 23.06 ± 6.41%, respectively)
and patients with ACKD (46.51 ± 9.96 and 24.89 ± 7.97%,
respectively), resulting in a decreased CD4/CD8 ratio (KT: 1.4 ±
0.68, HS: 2.18 ± 0.93, p = 0.011; ACKD: 2.13 ± 1.11, p = 0.002;
Figure 4E).

Monocyte Characterization
There were no differences between groups in the percentages of
classical (Figure 5A) and intermediate (Figure 5B) monocytes.
Patients with KT had a lower percentage of non-classical
monocytes (6.38 ± 3.11%) (Figure 5C) compared with
HS (8.72± 3.7%, p= 0.036).

However, the most notable differences were observed in CD86
and CD54 in different subpopulations. There was a higher
percentage of classical monocytes that express CD86 in KT
patients (93.63 ± 11.99%) vs. HS (88 ± 6.15%, p = 0.000)
and ACKD patients (87.92 ± 15.15%, p = 0.03; Figure 6A).
Notably, the percentage of monocytes expressing this molecule

did not change in the intermediate (Figure 6B) and non-classical
(Figure 6C) subtypes. Meanwhile, the number of cells expressing
CD86 was increased in patients with ACKD (classical: 91.76 ±

36.68 MFI, p = 0.000; intermediate: 172.21 ± 56.94 MFI, p =

0.008; non-classical: 164.43 ± 45.79 MFI, p = 0.000) and those
with KT (classical: 100.7 ± 38.97 MFI, p = 0.000; intermediate:
208.88 ± 78.01 MFI, p = 0.000; non-classical: 188.97 ± 64.18
MFI, p= 0.000) compared with HS (classical: 58.94± 12.98 MFI;
intermediate: 133.76 ± 32.41 MFI; non-classical: 120.78 ± 31
MFI) in the three monocyte subpopulations (Figures 6D–F).

Regarding the expression of CD54 in the different subsets of
monocytes, there was an increase in the percentage of classical
monocytes expressing this molecule in patients with KT (96.13
± 4.49%) vs. HS (89 ± 6.18%, p = 0.001) and patients with
ACKD (85.95 ± 13.25%, p = 0.000; Figure 7A). However, there
was no difference in the percentage of intermediate (Figure 7B)
and non-classical monocytes (Figure 7C). The expression level of
CD54 in the three subsets (Figures 7D–F) was higher in patients
with KT (classical: 167.9 ± 66.43 MFI; intermediate: 316.6 ±

100.41 MFI; non-classical: 210 ± 64.06 MFI) compared with HS
(classical: 123.11± 30.55 MFI, p= 0.008; intermediate: 245.18±
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FIGURE 7 | Expression of CD54/ICAM1 in different monocyte subsets. Percentage of classicalΩ (A) (CD14++CD16−), intermediateΨ (B) (CD14++CD16+), and

non-classicalΨ (C) (CD14+CD16+) monocytes expressing CD54. Mean fluorescence intensity of CD54 in classicalΩ (D) (CD14++CD16−), intermediateΨ (E)

(CD14++CD16+), and non-classicalΨ (F) (CD14+CD16+) monocytes in healthy subjects (HS), patients with advanced chronic kidney disease (ACKD), and patients

with kidney transplantation (KT). **p ≤ 0.01, ***p ≤ 0.001 vs. HS; #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001 vs. ACKD. Statistical analysis: ΨANOVA (Tukey test).
ΩANOVA (Games-Howell test). ANOVA, analysis of variance.

67.73, p = 0.014; non-classical: 148.78 ± 46.05 MFI, p = 0.001),
and patients with ACKD (classical: 133.67 ± 37.29 MFI, p =

0.041; intermediate: 250.51± 68.92MFI, p= 0.004; non-classical:
171.92± 54.24 MFI, p= 0.02).

MVs Characterization
The total numbers of MVs (Figure 8A) and endothelial MVs
(Figure 8B) were increased in patients with ACKD (94,335.97 ±
124,672 MVs/µL; 66,355.47± 124,672.09 MVs/µL; respectively)
compared with HS (8,599.14 ± 5,341.19 MVs/µL, p = 0.001;
7,417.7± 11,418.63MVs/µL, p= 0.02; respectively) and patients
with KT (12,286.87 ± 11,637.93 MVs/µL, p = 0.001; 6,412.73
± 764.68 MVs/µL, p = 0.001; respectively). There were no
differences observed in the percentage of endothelial MVs
(Figure 8C). The percentage of endothelialMVs expressing tissue
factor (CD142) (Figure 8D) was higher in patients with ACKD
(8,327.29 ± 1,736.99%) vs. HS (664.29 ± 703.9%, p = 0.003)
and patients with KT (845.76 ± 1,390%, p = 0.000). A lower
number of endothelial MVs expressing tissue factor (Figure 8E)
was observed in patients with KT (128.78 ± 139.2 MVs/µL)
compared with HS (153.5 ± 151.55 MVs/µL, p = 0.017) and
patients with ACKD (378.68± 315.89 MVs/µL, p= 0.000).

Correlations
The correlations between the subpopulations of lymphocytes,
monocytes, and MVs in patients with KT are shown
in Figures 9–13.

The total number of lymphocytes showed a positive
correlation with the percentage (r= 0.376, p= 0.041; Figure 9A)
and expression (r = 0.339, p= 0.062 statistical trend; Figure 9B)
of CD86 and percentage (r = 0.589, p = 0.001; Figure 9C)
and expression (r = 0.421, p = 0.026; Figure 9D) of CD54 in
non-classical monocytes in all cases.

Regarding T lymphocytes, we observed a positive correlation
with the expression of CD86 in non-classical monocytes (r =

0.430, p = 0.018; Figure 9E), the percentage of classical (r =

0.430, p = 0.018; Figure 9F), intermediate (r = 0.471, p = 0.011;
Figure 9G) and non-classical (r = 0.494, p = 0.008, Figure 9H)
CD54+ monocytes, and the expression of CD54 in non-classical
monocytes (r = 0.363, p= 0.063 statistical trend, Figure 9I).

We found a positive correlation between B cells and
monocytes in the percentage of intermediate (r = 0.413, p =

0.017; Figure 10A) and non-classical (r = 0.323, p = 0.067;
Figure 10B) monocytes, intermediate (r = 0.433, p = 0.013;
Figure 10C) and non-classical (r= 0.354, p= 0.051; Figure 10D)
monocytes that express CD86, and the expression of CD86 in
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FIGURE 8 | Description of the microvesicles phenotype. Total number of microvesiclesΦ (A) (annexin V+); numberΩ (B) and percentageΩ (C) of endothelial

microvesicles (annexin V+CD31+CD41–); and percentageΨ (D) and numberΦ (E) of endothelial microvesicles expressing tissue factor (CD142) in healthy subjects

(HS), patients with advanced chronic kidney disease (ACKD), and patients with kidney transplantation (KT). *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001 vs. HS; ###p ≤

0.001 vs. ACKD. Statistical analysis: Ψ ANOVA (Tukey test). ΩANOVA (Games–Howell test). ΦMann–Whitney U-test. ANOVA, analysis of variance.

classical (r = 0.446, p = 0.010; Figure 10E) and intermediate (r
= 0.371, p= 0.040; Figure 10F) monocytes.

There was a positive correlation between the number of
NK cells and the percentage of non-classical monocytes that
expressed CD86 (r = 0.349, p = 0.054; Figure 10G), the
expression of CD86 in classical (r = 0.401, p = 0.023;
Figure 10H), intermediate (r = 0.461, p = 0.009; Figure 10I),
and non-classical (r = 0.469, p = 0.007; Figure 10J) monocytes,
and the percentage of non-classical monocytes that expressed
CD54 (r = 0.472, p= 0.009; Figure 10K).

Regarding the number of T-cytotoxic lymphocytes, we
observed a positive correlation with the percentage of classical
(r = 0.456, p = 0.013; Figure 11A) and non-classical (r = 0.453,
p = 0.012; Figure 11B) monocytes that expressed CD54, and the
expression of CD54 in classical (r= 0.351, p= 0.062; Figure 11C)
and intermediate (r = 0.369, p= 0.049; Figure 11D) monocytes.

With respect to the relationship between lymphocytes and
MVs, the percentage of T-helper lymphocytes was negatively
correlated with the number (r =−0.500, p= 0.006; Figure 12A)
and percentage (r = −0.364, p = 0.037; Figure 12B) of
endothelial MVs, and positively correlated with the percentage of
endothelial MVs (r = 0.588, p = 0.000; Figure 12C). CD4/CD8
was negatively correlated with the number (r = −0.429, p =

0.023; Figure 12D) and percentage (r = −0.588, p = 0.000;
Figure 12E) of endothelial MVs.

Finally, the percentage of non-classical monocytes expressing
CD86 was negatively correlated with the total number of MVs
(r = −0.447, p = 0.025; Figure 13A). Moreover, there was a
negative correlation between the expression of CD86 in classical
monocytes and the percentage of endothelial MVs expressing
tissue factor (r = −0.440, p = 0.025; Figure 13B). Of note,
the expression of CD86 in intermediate (r = 0.378, p = 0.062;
Figure 13C) and non-classical (r= 0.378, p= 0.057; Figure 13D)
monocytes was positively correlated with the number of total
MVs. There was a negative correlation between the percentage of
intermediate monocytes expressing CD54 and the total number
ofMVs (r=−0.448, p= 0.028; Figure 13E) and endothelial MVs
(r =−0.458, p= 0.037; Figure 13F).

DISCUSSION

In this cross-sectional study, we analyzed the immune phenotype
of lymphocytes, monocytes, andMVs in patients with ACKD and
KT vs. HS. The patients with KT showed B-cell lymphopenia, an
increased proportion of T-cytotoxic lymphocytes, and increased
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FIGURE 9 | Correlation between the number of total lymphocytes and T lymphocytes with monocytes in renal transplantation. Correlation of the total number of

lymphocytes with the percentage of non-classical monocytes CD86+ (A), expression of CD86 in non-classical monocytes (B), percentage of non-classical monocytes

expressing CD54 (C), and expression of CD54 in non-classical monocytes (D). Correlations of T lymphocytes with the expression of CD86 in non-classical monocytes

(E), percentage of classical (F), intermediate (G), and non-classical (H) CD54+ monocytes, and the expression of CD54 in non-classical monocytes (I) are shown.

levels of adhesion (CD54) and co-stimulatory (CD86) molecules
in all monocyte subsets. Furthermore, the changes in lymphocyte
subpopulations were positively correlated with the monocyte
phenotypes, and both types of leukocytes were negatively
correlated with changes in the MV phenotype. This is the
first study that investigated the correlations between changes
in lymphocytes, monocytes, and MVs. Although those changes
could be directly or indirectly influenced by immunosuppressive
treatment, the characteristic of those cells and molecules could
participate in the development of cardiovascular and renal
complications that persisted in patients with KT.

Currently, KT is the best therapy for CKD; however,
patients require immunosuppressive treatment to avoid allograft
rejection. The treatment may differ between patients due
to numerous factors, such as the immunological risk for
rejection, nutritional status, and the presence of other co-
morbidities (51). Most patients with KT receive different
immunosuppressive therapies that seek a balance to avoid acute
rejection, toxicity (52), and possible deleterious effects, such
as infections (53) and tumors (54). Most patients undergoing
renal transplantation receive a combination (two or more) of
calcineurin inhibitors (tacrolimus), azathioprine, mycophenolic

acid, mammalian target of rapamycin (mTOR)-inhibitors,
prednisone, and belatacept (51, 55–58).

The main objective of immunosuppressive treatment is the
regulation of the T cell-mediated alloimmune response (51),
which is induced by the response of the immune system to
non-self-antigens of the same species. In this process, T cells
play an essential role in recognizing the non-self-antigen in
the context of the major histocompatibility complex (59, 60).
Therefore, most immunosuppressors inhibited the activation of
T cells and avoided the proliferation of activated B, T, and NK
cells due to alteration in the synthesis of cytokines (61, 62). The
present findings did not show changes in the total number of
T lymphocytes and NK cells, whereas B-cell lymphopenia was
noted in both groups of patients. Thus far, only a few studies have
measured the total number of lymphocytes or the total number
of T lymphocytes, without reporting any differences (63, 64).
Other studies also showed the presence of B-cell lymphopenia
in patients with ACKD (65, 66) and KT. Meanwhile, in ACKD,
this diminution may be associated with a decrease in GFR.
Nevertheless, in renal transplantation, the effect of treatment
on GFR remains unclear. Some studies reported an increase
in the number of NK cells (63); however, the changes in NK
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FIGURE 10 | Correlation between the number of B lymphocytes and natural killer (NK) cells with monocytes in renal transplantation. Correlation between B

lymphocytes and the percentage of intermediate (A) and non-classical (B) monocytes, the percentage of intermediate (C) and non-classical (D) CD86+ monocytes

and the expression of CD86 in classical (E) and intermediate (F) monocytes. Correlations of NK cells with the percentage of CD86+ monocytes (G), expression of

CD86 in classical (H), intermediate (I), and non-classical (J) monocytes, and the percentage of non-classical monocytes expressing CD54 (K) are shown.

cells appeared to depend on the immunosuppressor treatment
(64, 67).

Changes in the T-helper and T-cytotoxic subpopulations have
been more widely investigated. The majority of the research
studies, similar to the present investigation, did not report
differences in the number of T subpopulations. Instead, they
reported an increase in the proportion of the T-cytotoxic
subpopulation compared with that of T-helper cells (63, 64).
The regulation of T-helper cells may play a key role in the
prevention of negatives outcomes in patients undergoing renal
transplantation. Persistent CD4+ lymphopenia has been related

to atherosclerosis (68) and an increase inmorbidity andmortality
in patients with KT (69).

Changes in monocyte subsets in renal transplantation have
not been thoroughly studied. Intermediate (CD14++CD16+)
and non-classical monocytes exhibited pro-inflammatory and
proatherogenic activities (CD14+CD16+) in health individuals
and in patients with CKD (4, 32, 70, 71). Some studies
showed a depletion of non-classical monocytes due to treatment
with glucocorticoids (72–74). The wide use of corticoids in
immunosuppression may explain the decrease in non-classical
monocytes recorded in the renal transplantation group.
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FIGURE 11 | Correlation between T-cytotoxic lymphocytes and monocytes in renal transplantation. Correlations between T-cytotoxic lymphocytes and the percentage

of classical (A) and non-classical (B) CD54+ monocytes, and the expression of CD54 in classical (C) and intermediate (D) monocytes are shown.

There is limited research on the expression of CD86/B7.2
and CD54/ICAM1 in the monocyte subsets, particularly in CKD.
CD80/b7.1 and CD86/B7.2 are co-stimulatory molecules, which
are essential for the activation of T cells. This co-stimulation
is exhibited by the antigen-presenting cells. Some studies did
not report changes in the expression of CD86 in monocytes
of patients with chronic renal failure (75), whereas others
showed a decrease in its expression in monocytes (75) and
dendritic cells (76) of patients undergoing dialysis. Nevertheless,
the proinflammatory and proatherogenic monocytes showed an
increase in CD86 expression (77, 78).

Although further research is warranted, the
microinflammatory state of the CKD transplant could lead
to the development of senescent monocytes with an increased
expression of CD86, explaining the present results. Regarding
the expression of CD86 by monocytes in patients with KT,
the blockage of B7/CD28 co-stimulation required a specific
antibody against B7 components (79–81). This is rarely used and
had shown more significant effect but differs between the two
subtypes of B7 due to differences in biochemical characteristics
(82, 83). CD54/ICAM1 is an adhesion molecule expressed by
immune and endothelial cells. The increased expression of
ICAM1 in allograft tissue is related to rejection (84, 85). The
monocytes of patients who underwent transplantation and

were treated with mycophenolate mofetil did not show any
differences in the expression of CD54 (86). The expression of
CD86 and CD54 is markedly increased in intermediate and
non-classical monocytes (4, 87, 88). These monocytes are highly
proinflammatory and participate in atherosclerosis (4). The
elevation in the expression of these molecules in all monocyte
subsets of patients with transplantation may indicate an increase
in senescent monocytes participating in cardiovascular disease,
which is one of the main causes of death in patients with KT (89).
The increase on the expression in costimulatory molecules has
been shown in autoimmune disease; in particular, a increase of
these costimulatory molecules in monocytes and in plasma lead
to dysregulation of the immune response toward an exacerbate
inflammatory one (90–92).

It was recently discovered that MVs are a form of extracellular
communication. They play an essential role in the development
of multiples disease (93, 94), but they have been extensively
studied in cardiovascular alterations (95–98). In disease, there is
an increase in the number and changes in the content of MVs
(96). The increase in indoxyl sulfate shown in CKD has been
related to the increase in endothelial MVs that participated in
vascular calcification (98, 99). This increase in indoxyl sulfate and
other uremic toxins may explain the increased number of MVs
and endothelial MVs in patients with ACKD. Transplantation

Frontiers in Medicine | www.frontiersin.org 12 September 2021 | Volume 8 | Article 70515970

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ceprian et al. Accelerated Immunosenescence in Renal Transplantation

FIGURE 12 | Correlation between lymphocytes and microvesicles in renal transplantation. Correlation between T-helper lymphocytes and the number (A) and

percentage (B) of endothelium microvesicles. Correlation between T-cytotoxic lymphocytes and percentage of endothelium microvesicles (C). Correlation of CD4/CD8

ratio with the number (D) and percentage (E) of endothelium microvesicles.

partially solves this problem by increasing kidney function.
Tissue factor (CD142) triggers thrombotic responses and plays an
important role in atherosclerosis. Thus, elevated levels of tissue
factor in microparticles is associated with an increased risk of
atherosclerosis and thrombosis (100–102). The elevation in the

expression of tissue factor in patients with ACKD contributes
to the increased risk of cardiovascular disease in patients
with CKD.

To the best of our knowledge, this is the first study to
correlate changes in lymphocyte subsets with different monocyte
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FIGURE 13 | Correlation between monocytes and microvesicles in renal transplantation. Correlations between the percentage of CD86+ non-classical monocytes

and the total number of microvesicles (A), the expression of CD86 in classical monocytes and the percentage of 142+ endothelium microvesicles (B), the expression

of CD86 in intermediate monocytes and the total number of microvesicles (C), the expression of CD86 in non-classical monocytes and the total number of

microvesicles (D), the percentage of CD54+ intermediate monocytes and the total number of microvesicles (E), and the percentage of CD54+ intermediate

monocytes and the number of endothelium microvesicles (F) are shown.

subtypes in renal transplantation. The cells of the immune system
communicate through cytokines and microparticles to maintain
the homeostasis of the organism. Monocytes influence T-cell
differentiation by antigenic presentation, release of cytokines,
or cell-cell communications (103). The present results showed
the correlations of different phenotypes of lymphocytes with the
three different subsets of monocytes and the expression of CD86
and CD54. Despite the renal transplantation, the leading cause of
CKD and the co-morbidities persist.

Consequently, the microinflammation process continues,
based on the persistence of the main cause of the disease
and the alteration of renal alteration function (showed by a
decreased GFR compared to with HS), which can modulate
the different subsets of leukocytes in patients who undergo
transplantation. Despite the immunosuppressive treatment, the
monocytes are influenced by these effects. This leads to
further alteration of the vascular endothelium, resulting in
adverse cardiovascular outcomes. This is more important in
the interaction between cytotoxic T-cells and endothelial MVs,
leading to an increased risk of atherogenic complications in
patients with transplantation.

Even though the promising results of this work, the vast
variety of treatment, not only immunosuppression, but also
concomitant medications such as statins and allopurinol, that
CKD patients suffers complicates the study and analysis of
these patients. Most of this concomitant medication has anti-
inflammatory effects (104–107) and affected immune phenotypes
(108–111). Also, said medication can change the number and
content of MVs (112–114).

The main limitation of this study is the number of
volunteer HS of the same socioeconomic status (2), which

is an important factor influencing the outcome of the
disease. Furthermore, the wide variety of immunosuppressive
treatment options, as well as concomitant meditation and
comorbidities, complicate the study of the effects of the
drugs in monocytes and MV subsets. However, this study
provides original and integrative knowledge regarding the
differences and relationships of leukocyte subpopulations. This
could lead to a better comprehension of the participation of
the immune function in negative outcomes in patients who
undergo transplantation.

In conclusion, B-cell lymphopenia and an increase in
the expression of costimulatory and adhesion molecules
were observed in patients with KT. These changes
were interrelated and associated with the number of
MVs. These findings can partially explain the negatives
outcomes of cardiovascular disease in patients with renal
transplantations and the persistence of adverse renal outcomes.
Further prospective studies are warranted to elucidate this
communication mechanism and its role in negative outcomes.
The increase in risk factor linked to CKD and the high
cost associated with renal substitutive therapies could
bring a heavy burden to public healthcare systems in the
near future.
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The altered expression of immune cells including monocyte subsets, natural killer (NK)

cells and CD4+CD25+ regulatory T cells (Tregs) in end-stage kidney disease, affect the

modulation of inflammation and immunity with significant clinical implications. The aim

of this study was to investigate the profile of specific immune cells subpopulations and

their correlations with phenotypes of established cardiovascular disease (CVD), including

coronary artery disease (CAD) and heart failure (HF) in peritoneal dialysis (PD) patients.

Materials and Methods: 29 stable PD patients and 13 healthy volunteers were

enrolled. Demographic, laboratory, bioimpedance measurements, lung ultrasound and

echocardiography data were collected. The peripheral blood immune cell subsets

analysis was performed using flow cytometry.

Results: PD patients compared to normal controls had lower total lymphocytes

(22.3 ± 6.28 vs. 31.3 ± 5.54%, p = <0.001) and B-lymphocytes (6.39 ± 3.75 vs.

9.72 ± 3.63%, p = 0.01) as well as higher CD14++CD16+ monocytes numbers (9.28

± 6.36 vs. 4.75 ± 2.75%, p = 0.0002). PD patients with prevalent CAD had NK cells

levels elevated above median values (85.7 vs. 40.9%, p= 0.04) and lower B cells counts

(3.85 ± 2.46 vs. 7.2 ± 3.77%, p = 0.03). Patients with increased NK cells (>15.4%) had

3.8 times higher risk of CAD comparing with patients with lower NK cell levels (95% CI,

1.86 – 77.87; p = 0.034). B cells were inversely associated with the presence of CAD

(increase of B-lymphocyte by 1% was associated with 30% less risk for presence of CAD

(95% CI, −0.71 – 0.01; p = 0.05). Overhydrated patients had lower lymphocytes counts

(18.3± 4.29% vs. 24.7± 6.18%, p= 0.006) and increased NK cells [20.5% (14.3, 23.6)
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vs. 13.21% (6.23, 19.2), p = 0.04)]. In multiple logistic regression analysis the CRP

(OR 1.43; 95% CI, 1.00 – 2.05; p = 0.04)] and lymphocytes counts (OR 0.79; 95%

CI, 0.63–0.99; p = 0.04)] were associated with the presence of lung comets. Patients

with higher NK cells (>15.4%, n = 15) were more likely to be rapid transporters (D/P

creatinine 0.76 ± 0.1 vs. 0.69 ± 0.08, p = 0.04). Patients displaying higher Tregs

(>1.79%) were older (70.8 ± 10.7 years vs. 57.7 ± 14.7years, p = 0.011) and had

higher nPCR (0.83 ± 0.14 vs. 0.91 ± 0.17, p = 0.09).

Conclusion: Future research is required to evaluate the role of immune cells

subsets as potential tools to identify patients at the highest risk for complications and

guide interventions.

Keywords: CD14++CD16+ monocytes, natural killer cells, CD4+CD25+ regulatory T cells, coronary artery

disease, overhydration, fast transporters

INTRODUCTION

The chronic inflammatory state is considered a hallmark of end-
stage kidney disease (ESKD) and is considered to play a pivotal
part in the pathogenesis and progression of the compound
phenotypes of cardiovascular disease in chronic kidney disease
(CKD), including accelerated atherosclerosis, left ventricular
hypertrophy (LVH) and heart failure (1).

The complex derangement of the innate and acquired
arms of the immune system in patients with CKD includes
a vast array of pathogenic mechanisms and effectors. It has
been suggested that the altered expression of the immune
cells including monocyte subsets, natural killer (NK) cells as
well as CD4+CD25+ regulatory T cells (Tregs) affects the
modulation of inflammation and immunity with significant
clinical implications (2). The three phenotypically and
functionally distinct human monocyte subsets are specified by
the expression of CD14 and CD16 surface antigens and include
CD14++CD16– (classical), CD14++CD16+ (intermediate)
and CD14+CD16++ (non-classical) monocytes (3). The
pro-inflammatory CD14++CD16+ intermediate monocytes
are characterized by upregulated chemokine receptors relevant
to atherosclerosis, a high capacity for oxidized low-density
lipoprotein (LDL) uptake as well as proangiogenic properties
(3, 4). NK cells, apart from being essential players in innate
immunity pathways, are currently considered to perform
important functions that bridge the innate and acquired arms of
the immune system, thus arranging adaptive immune responses
and immunoregulation (5). Although their direct role in
atherogenesis has been delineated, data regarding their role in
heart failure are limited (6). CD4+CD25+FOXP3+ regulatory
T cells (Tregs) are a specific subpopulation of T cells, comprising
5–10% of all peripheral CD4+ T cells. They hold a key position

in the regulation of the intertwining pathways of immune

homeostasis and tolerance with available evidence indicating a
potential protective role against cardiovascular disease (7).

The pathophysiology of the chronic inflammatory state

of ESKD in Peritoneal Dialysis (PD) patients includes
various potential culprits such as the gradual loss of residual

renal function, fluid overload, the endotoxinemia burden,

imbalance of adipokines as well as the biocompatibility of the
peritoneal dialysis solutions utilized (8, 9). Classical markers of
inflammation such as C-reactive protein (CRP) and interleukin-
6 levels are frequently increased in PD patients which in turn
adversely affects cardiovascular risk as well as technique and
patient survival (10, 11). The evaluation and validation of various
biomarkers in PD as potential tools for improving patient
management is currently a subject of extensive research (12).
Accordingly, the associations of immune cell subpopulations
as potential markers of inflammations with specific modality
related as well as clinical outcomes remain to be determined in
PD patients.

Thus, we conducted a pilot study in a cohort of PD patients
so as to investigate the profile of specific subpopulations of
immune cells in the circulation and their potential correlations
with phenotypes of established cardiovascular disease (CVD),
including coronary artery disease (CAD) and heart failure (HF),
as well as related clinical and laboratory indices. In addition,
associations of immune cells with the peritoneal membrane
characteristic, dialysis adequacy and various inflammatory and
nutritional markers were sought.

MATERIALS AND METHODS

Study Population
Twenty-nine stable patients receiving PD for at least 6 months
and under follow-up in our PD unit were enrolled in our study
together with 13 healthy volunteers so as to compare levels of
immune cells in the circulation. Exclusion criteria included a
history of malignancy, autoimmune disease, current treatment
with immunosuppressive medications and chronic infections.
Additionally, patients with a recent (<3 months) infection or
major adverse cardiovascular event were excluded from the
study (Figure 1). The comorbidities of all the patients including
presence of diabetes mellitus (DM), CAD, peripheral artery
disease (PAD) and HF were recorded by evaluation of their
medical records. All patients provided signed informed consent.
The study protocol was approved by the Ethical Committee
of our hospital (5/26-3-2020) and has been registered on
ClinicalTrials.gov (NCT04286477).
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FIGURE 1 | Flowchart of the study.

Laboratory Methods
The peripheral blood immune cell subsets analysis was
performed by flow cytometry (FC) in a whole-blood assay using
100 µl of whole blood, within 8 h from blood sample withdrawal.
Ethylenediaminetetraacetic acid (EDTA) blood-collecting tubes
were used for the collection of 2ml of whole-blood samples
from patients. The following monoclonal antibodies were used
for analysis: CD45(BD), CD14(BD), CD16(BD), CD4(BD),
CD8(BD), CD56(BD), CD3(BD), CD19(BD), CD25(BD), and
Fox-P3(eBioscienceTM). Immune cells subtypes were analyzed
using flow cytometry (FACSCalibur) and Cell Quest and
FACSDiva software (BD Biosciences). 100 µl of whole-blood was
added to flow cytometry tubes and incubated with respective
antibodies according to manufacturer’s instructions. 500 µl of
Versalyse (Beckman Coulter) was added and incubated for
10min at room temperature (18–25◦C) protected from light,
to lyse red blood cells. Samples were processed immediately
for flow cytometry analysis. The data were analyzed using
the CellQuest V3.1 software (Becton Dickinson). Accordingly,
CD14++CD16-, CD14++CD16+, and CD16+ percentage and
absolute number of cells out of the total monocytes were
measured. Additionally, NK cells (CD3+CD16+56+), CD3-
CD19+ B lymphocytes, CD3+ CD4+ T cells, CD3+CD8+

T cells, and Tregs (CD4+CD25+ FoxP3+) absolute values
and percentage out of the total lymphocytes were measured
(Figure 2). Blood was drawn from all subjects under standardized
conditions samples were analyzed using standard techniques.
Complete blood counts with differential counts of the white
blood cell and conventional inflammatory markers including C-
reactive protein (CRP), erythrocyte sedimentation rate (ESR)
and fibrinogen were measured. Furthermore, serum levels of
total protein, albumin, total cholesterol, triglyceride, high-density
lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL)
cholesterol, calcium, phosphorus, intact parathyroid hormone
(iPTH), 25(OH)-vitamin D and ferritin were also determined.
High sensitivity troponin I (hsTnI) was measured as a subclinical
index of myocardial damage.

All patients underwent bioimpedance analysis of body
composition and fluid status using Fresenius Body Composition
Monitor (BCM) for determination of overhydration (OH),
extracellular water (ECW), intracellular water (ICW),
total body water (TBW) content and the OH/ECW index,
simultaneously with analysis of immune cell subsets (13). A lung
ultrasound examination (VscanTM GE Healthcare’s) was likewise
simultaneously performed with estimation of extravascular lung
water by counting vertical “comets” or “B-lines and their sum
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FIGURE 2 | Flow cytometric analysis of a peritoneal dialysis patient. (A) Representative dot plots depicting monocyte subsets, differentiated according to their surface

expression pattern of CD14 and CD16 in CD14++CD16–, CD14++C16+ and CD14+CD16+ subpopulations. (B) Representative dot plots depicting lymphocyte

gating with B-lymphocytes, and T lymphocytes, natural killer (NK) cells defined as CD16+CD56+ cells, CD4+ T cells, CD8+ T cells. (C) Representative dot plots

depicting regulatory T cells (Tregs) defined as CD4+ FoxP3+ CD25high positive cells.

number (14, 15). US-B lines assessment was made in supine
position with scanning of the anterior and lateral chest from the
second to the fourth intercostal space on the left side and from
the second to the fifth intercostal space on the right side, at the
parasternal to midaxillary lines as already defined by previous
studies (14).

In addition, echocardiographic data from ultrasounds
performed within 1 month from immune cell subset analysis
were recorded, including left ventricular mass (LVM) and
left ventricular mass index (LVMI), left ventricular ejection
fraction (EF) and E/E’ ratio. Residual renal function (eGFR)
defined as the urinary clearance of urea in ml/min and PD
adequacy expressed as weekly renal plus peritoneal KT/V of
urea, peritoneal transport characteristics as determined by
performance of modified PET (16), as well as the normalized
protein catabolic rate (nPCR) were recorded.

Statistical Analysis
Descriptive statistics are reported as means ± standard
deviations in normally distributed continuous variables,
medians and interquantile range in skewed continuous

variables and percentages in dichotomous variables. Normal
distribution of all continuous variables was tested with
the parametric Shapiro-Wilk normality test. Box cox
transformation was applied to transform skewed variables
(inverse, or log-transformation). In cases normality was not
achieved by any transformation variable was transformed
to dichotomous using median as cut-off. Differences
between cases and controls were assessed by independent
samples t-test or non-parametric Mann Whitney test, in
normally and skewed continuous variables, respectively.
Differences between categorical variables were estimated
using 2x2 tables and applying chi-square or fisher’s exact test,
when applicable.

Univariate analysis was performed for any variable of
interest. Any variable having a significant univariate test at
a significance level of 0.1 was selected as a candidate for
the multivariate analysis in order to identify independent
predictors of the dependent variable. In the iterative process
of variable selection in multivariate analysis, covariates were
removed from the model if they were non-significant or
not confounders. Linear regression or logistic regression
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TABLE 1 | Laboratory, lung ultrasound, bioimpedance and echocardiographic

data of the PD patients.

Hemoglobin (g/dl) 10.9 (10.2, 11.8)

Cholesterol (mg/dl) 176.4 ± 40.5

TRG (mg/dl) 167 (110, 254)

HDL (mg/dl) 40.5 (34.0, 47.5)

LDL (mg/dl) 94.1 ± 33.2

Albumin(g/dl) 3.5 ± 0.4

Phosphate (mg/dl) 4.3 ± 0.8

iPTH (pg/ml) 235 (127, 306)

vitD (ng/ml) 8.7 ± 2.8

CRP (mg/L) 3 (2, 5)

Fibrinogen (mg/dl) 517 (453, 559)

hsTroponin (ng/ml) 12.6 (6.5, 20.0)

Ferritin(ng/ml) 215 (95, 476)

D/P creatinine 0.73 ± 0.1

KT/V 2.0 ± 0.4

RRF(ml/min) 4.5 (2.3, 6.3)

nPCR (g/kg/day) 0.86 ± 0.16

ECW (L) 15.9 ± 3.3

TBW (L) 33.4 ± 6.6

OH/ECW 0.12 (−0.25, 0.95)

Lung comets ≥ 2 11 (38%)

LVM (g) 218.2 ± 97.8

LVMI (g/m2) 130.5 ± 41.3

E/E’ 10.7 ± 4.3

EF % 60 (47.5, 65.0)

Values are expressed in mean (±SD) or median(IQR 25–75th percentiles). D/P creatinine,

dialysate to plasma ratio of creatinine; EF, ejection fraction; ECW, extracellular water; iPTH,

intact parathormone; LVM, left ventricular mass; LVMI, left ventricular mass index; nPCR,

normalized protein catabolic rate; OH, overhydration; RRF, residual renal function; TBW,

total body water.

analysis was used when applicable. Analysis was performed
by STATA package, version 14.2 (StataCorp, College
Station, TX).

RESULTS

The main laboratory, echocardiographic and bioimpedance
analysis data of the 29 PD patients enrolled are presented
in Table 1. The mean age of the study cohort was 64
years ± 14.3 and 58.6% were males. The median dialysis
vintage was 34.5 months (IQR 3.2–141). Primary renal diseases
included diabetic nephropathy (seven patients, 24.14%), IgA
nephropathy (five patients, 17.24%), whereas the cause of
nephropathy was unknown in 12 patients (41.38%). Ten
patients were diabetics, while CAD was present in seven
patients (24%), peripheral artery disease (PAD) in seven
patients (24%), with 11 (38%) patients overall displaying
atherosclerotic cardiovascular disease (ACVD). In addition, five
patients had HF (17.2 %) and echocardiographic evidence
of left ventricular hypertrophy (LVH) was present in 20
patients (71.4%).

TABLE 2 | Immune cell subpopulations in the control and PD group.

Normal controls PD patients P-value

WBC 7368.4 ± 1584.4 7451.7 ± 2880.1 0.92

Monocytes 6.4 ± 1.07 6.29 ± 2.02 0.86

CD14++CD16- 88.8 (85.7, 92.5) 87.9 (79.2, 0 90) 0.32

CD14+CD16++ 4.11 (2.08, 4.88) 4 (2.5, 6.22) 0.87

CD14++CD16+ 4.75 ± 2.75 9.28 ± 6.36 0.002

Lymphocytes (%) 31.3 ± 5.54 22.3 ± 6.28 <0.001

T-lymphocytes (%) 76.09 ± 7.11 76.8 ± 10.1 0.82

B-lymphocytes (%) 9.72 ± 3.63 6.39 ± 3.75 0.01

NK cells (%) 13.2 (8.62, 18.1) 15.4 (9.67, 20.5) 0.54

Tregs (%) 1.85 (1.48, 2.45) 1.79 (1.34, 2.62) 0.71

CD4+ T cells (%) 46.8 ± 7.65 50.1 ± 12.5 0.39

CD8+ T cells (%) 28.9 ± 9.24 25.6 ± 11.2 0.35

CD4CD8 ratio 1.74 (1.19, 2.24) 1.91 (1.40, 3.18) 0.36

Values are expressed in mean (±SD) or median (IQR 25–75th percentiles). CD, cluster of

differentiation; NK, natural killer; Tregs, T regulatory cells.

Distribution of the Immune Cell
Subpopulations in the PD and Control
Groups
Overall, PD patients had 527 ± 199 monocytes and 1731 ±

489 lymphocytes while mean percentage of CD14++CD16+
monocytes was 9.3 ±6.36% (normal range 2–8%), NK cells 16.6
± 10.3% (normal range 5–15%) and Tregs 2.1 ± 1.76% (normal
range 1–3%). Table 2 depicts the measurements results of the
immune cell subpopulations in our cohort and the control group.

Following comparison of the immune cell subpopulations of
the PD patients with the control group, we found that PD patients
had lower overall total lymphocytes and B-lymphocytes as well as
higher CD14++CD16+monocytes numbers (Figure 3).

Correlations of Immune Cell
Subpopulations With Clinical
Characteristics, Peritoneal Transport
Status and Inflammatory Markers of PD
Patients
We sought to determine potential correlations between immune
cells subpopulations and other clinical characteristics and
laboratory parameters in PD patients. Accordingly, patients with
higher NK cell levels (>15.4%, n = 15) were more likely to
be rapid transporters in the modified PET test (D/P creatinine
0.76 ± 0.1 vs. 0.69 ± 0.08, p = 0.04). Additionally, patients
with higher NK cell levels (>15.4%) had higher cholesterol levels
(191.2 ± 47.1mg/dl vs. 160.64 ± 25.1mg/dl, p = 0.03) as well as
higher CRP levels [2.5 (2, 5) mg/L vs. 5 (3, 9) mg/L, p = 0.06].
However, in multiple logistic regression analysis, only the D/P
creatinine ratio (odds ratio 7.5; 95% confidence interval, 1.13–
50.01; p= 0.036) and the total cholesterol levels (odds ratio 1.09;
95% confidence interval (CI), 1.01–1.18; p = 0.027) remained
significant independent predictors of NK levels.

Regarding Tregs, significant correlations were found between
Tregs levels with age and the nPCR, with patients displaying
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FIGURE 3 | Immune cells subpopulations counts in control and PD patients. *p < 0.05, Values are expressed as mean or medians.

higher percentage of Tregs (>1.79%) being older (70.8 ± 10.7
years vs. 57.7 ± 14.7years, p = 0.011) and having a higher nPCR
(0.83± 0.14 vs. 0.91± 0.17, p= 0.09).

Correlations of Immune Cell
Subpopulations in PD Patients With Indices
of Overhydration and Phenotypes of CVD
With regard to monocytes subtypes, an inverse correlation was
detected between CD14++CD16+ % levels and the presence of
ACVD (β-coefficient = −5.57, p = 0.019). Patients with higher

NK cell levels had a higher prevalence of CAD (40 vs. 28.6%, p
= 0.039) as well as higher E/E’ratios in cardiac ultrasound (12.57
± 4.34 vs. 8.78± 3.53, p= 0.02). Patients with higher percentage
of Tregs (>1.79%) were more likely to manifest LVH (92.8 vs.
50%, p= 0.012), a correlation however which was notmaintained
following multiple regression analysis.

Regarding phenotypes of CVD, patients with prevalent CAD
in comparison to patients without known CAD were diabetics
(71.4 vs. 22.7%, p = 0.018), had higher CRP, fibrinogen and
albumin levels [9 mg/L (5,38), 576 mg/dl (544,737), 3.5 g/dl
(3.4,3.7) vs. 3 mg/L (2,4), p = 0.0004, 486.5 mg/dl (444,530), p
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= 0.004, 3.1 g/dl (3,3.4), p= 0.005], respectively and had a higher
E/E’ ratio in heart ultrasound (14.08 ± 5.42 vs. 9.65 ± 3.49, p
= 0.018). Additionally, PD patients with prevalent CAD had NK
cells levels elevated above median values (85.7% vs. 40.9%, p =

0.04) as well as a lower percentage of B cells (3.85 ± 2.46 vs. 7.2
± 3.77%, p = 0.03). In multiple logistic regression analysis, the
percentage of NK levels and of B cells remained an independent
significant predictor of the presence of CAD. Thus, patients with
increased NK cell levels (>15.4%) had 3.8 times higher risk of
CAD comparing with patients with lower NK cell levels (95% CI,
1.86–77.87; p = 0.034). On the other hand, the percentage of B
cells was inversely associated with the presence of CAD (increase
of B-lymphocyte by 1% was independently associated with 30%
less risk for presence of CAD (95% CI,−0.71–0.01; p= 0.05).

Peritoneal dialysis patients with ACVD as compared to
patients without ACVD (n = 18) were older (71.2 ± 8.81 years
vs. 59.6 ± 15.5, p = 0.03) and mainly diabetics (63.6 vs. 16.6%,
p = 0.01), had lower serum albumin and LDL levels (3.3 ± 2.78
g/dl, 78.8 ± 29.2 mg/dl vs. 3.61 ± 0.37g/dl, p = 0.02, 103.7 ±

32.7 md/dl p = 0.06, respectively), higher CRP levels [6 mg/L
(3,9) vs. 3mg/L (2,4), p = 0.01] and displayed higher E/E’ ratio
in cardiac ultrasound (13.5 ± 5.21 vs. 9.16 ± 2.94, p = 0.01).
The percentages of CD14++CD16- monocytes and Tregs were
significantly higher in patients with ACVD [88.4 ± 8.67 vs. 82.2
± 8.44, p = 0.02 and 1.82 (1.71, 3.45) vs. 1.49 (1.26, 2.08), p
= 0.01, respectively] while the percentage of CD14++CD16+
monocytes was lower in this patient group [5.2 (2.0, 7.5) vs.
7.49 (4.84, 10.15), p = 0.017]. In multiple logistic regression
analysis, apart from presence of DM as well as serum albumin and
CRP values, the percentages of the CD14++CD16+ monocytes
and the Tregs were significantly associated with the presence of
ACVD; increase of CD14++CD16+ up to 1% was associated
with 31% less risk for ACVD (OR 0.69; 95% CI, 0.48–0.98; p
= 0.041) and increase of Tregs up to 1% was associated with
20 times higher risk for ACVD (OR 20.5; 95% CI, 1.5–274.7; p
= 0.022).

Additionally, we examined if patients with evidence of
overhydration (defined by the presence of lung comets in
lung ultrasound) had different characteristics and expression
of immune cell subpopulations as compared with euvolemic
patients. Eleven overhydrated patients as defined by presence
of ≥2 lung comets showed evidence of overhydration in
bioimpedance measurements [ECV/TBW 0.51 (0.49, 0.53) vs.
0.47 (0.43, 0.50), p= 0.03)] as well. Patients with clinical evidence
of overhydration as compared to euvolaemic patients, had higher
CRP, fibrinogen and hsTnI levels [6 mg/L (5,11), 544 mg/dl (511,
721), 17.4 ng/ml (13.1, 42.7) vs. 3 mg/L (2, 4), p = 0.004, 486
mg/dl (422, 549), p = 0.05, 10.35 ng/ml (4.7, 13.8), p = 0.03,
respectively] as well as higher E/E’ratios [13 (11.8, 15) vs. 8.4 (7,
11), p= 0.02]. Patients with lower CD14++CD16+% levels had
higher OH/ECV values in bioimpedance analysis (β-coefficient=
−0.037, p= 0.042). In addition, overhydrated patients had lower
percentages of lymphocytes (18.3 ± 4.29% vs. 24.7 ± 6.18%, p
= 0.006) and higher percentages of NK cells [20.5% (14.3, 23.6)
vs. 13.21% (6.23, 19.2), p = 0.04)]. In multiple logistic regression
analysis the CRP [for every increase of 1 mg/dL, there was 1.43
times higher risk for presence of lung comets (OR 1.43; 95%

CI, 1.00–2.05; p = 0.04)] and the percentage of lymphocytes [a
decrease of 1% is associated with 21% less risk for lung comets
(OR 0.79; 95% CI, 0.63–0.99; p = 0.04)] were independently
associated with the presence of lung comets.

DISCUSSION

There are scarce data in the literature regarding the expression of
specific immune cell subtypes, including the CD14++CD16+
proinflammatory monocyte subpopulation, NK cells and
Tregs in patients undergoing PD. In addition the potential
associations of immune cells with the indices of dialysis
adequacy and overhydration as well as the phenotypes of
prevalent cardiovascular disease have not been studied in this
patient population until now.

The results of our study showed that patients undergoing PD
display elevated levels of the pro-inflammatory CD14++CD16+
monocyte subset as compared to normal individuals, indicating
the persistence of the inflammatory milieu in this population.
Our findings confirm results from previous studies showing
that both hemodialysis and PD patients have increased
counts of CD14++CD16+ monocytes compared to individuals
without CKD (17). On the other hand, we found an inverse
correlation of CD14++CD16+ levels with presence of ACVD,
although longitudinal epidemiological studies have confirmed at
large a direct relationship between increased CD14++CD16+
monocytes and occurrence of adverse cardiovascular outcomes
in patients with CKD and dialysis patients (18, 19). However,
it should be noted that the number of peritoneal dialysis
patients evaluated by these studies was very small, with only
one study including <20 peritoneal dialysis patients (17). Our
finding support a suggested J-shaped relationship that might
exist between CD16+ monocyte subsets and adverse outcomes
in patients receiving hemodialysis, such that both high and
low CD16+ counts confer an increased risk of all-cause and
cardiovascular mortality (20). Moreover, PD patients with ACVD
were found to have higher levels of classical CD14++CD16-
monocytes. It should be noted that available data in the literature
remain controversial with regard to the specific status and role of
the classical monocytes in patients with ACVD with or without
CKD (20–23).

The multifaceted nature of NK cells and their role in the
propagation vs. modulation of inflammation remains a subject of
dispute. In addition, it should be noted that inflammation itself
has been associated both with induction of NK cell apoptosis and
augmented proliferation in the setting of cytokine stimulation.
Increased NK cell levels in the circulation have been associated
with disease activity or adverse prognosis in several disease
models of inflammation, such as sepsis and autoimmune disease
(24–27). Accordingly, both in experimental sepsis models and
in clinical studies of patients with sepsis and septic shock, NK
cells in the circulation increased in numbers and displayed
an activated phenotype whereas their counts showed a direct
association with mortality (24–26).

Furthermore, faster peritoneal transport status in PD patients
has been associated among others with intraperitoneal and
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systemic inflammation. We have found a direct correlation
between increased NK cell counts and fast peritoneal transport
status in our cohort (28). Moreover, available data suggest that
fluid overload is significantly and reciprocally associated with
systemic microinflammation and it is more frequent in fast
trasporters (29). Our study results indicate that increased NK
cells were linked to fluid overload in PD patients, determined
either as overhydration in lung ultrasound, BCM measurements
or as an increased E/E’ in heart ultrasound.

Although NK cells are suspected to play a direct role in
atherogenesis considering their abundance in the necrotic cores
of atherosclerotic plaques, it remains controversial whether they
are harmful or protective toward the vascular tissues (30).
Experimental models have shown that depletion of functional
NK cells decreases the atherosclerosis burden in atherosclerosis-
susceptible LDL receptor null mice (31). On the other hand, a
recent study in mice, lacking or having hyper-responsive NK
cells, showed that the atherosclerotic burden in the aortic sinus
and in the descending aorta did not change, thus suggesting that
these cells have no effect on the pathogenesis of atherosclerosis
(32). In our study, increased NK cell levels in PD patients were
associated with increased risk for prevalent CAD. Although
some clinical studies have found reduced NK cell counts and
cytotoxic activity in patients with prevalent CAD, others have
shown not only increased levels of total circulating NK cells in
atherosclerotic patients but a direct relationship between NK cell
counts and complications in these patients as well (6, 33–35).

Finally, we did not detect any significant differences in NK
cell counts between PD patients and healthy subjects. Previous
studies have yielded controversial results regarding NK cell
counts in patients undergoing hemodialysis or peritoneal dialysis
(36–38). However, it has been suggested that lower NK cell counts
directly correlate with the glomerular filtration rate (GFR) in
hemodialysis patients, thus allowing us to speculate that the
preservation of residual renal function as occurs in PD, might
have affected our results (36).

Our results confirm results of earlier studies regarding
total lymphocytes and B-lymphocyte depletion due to an
increased apoptosis in patients with ESKD undergoing dialysis
(39, 40). In addition, we found an inverse association of
the total lymphocytes count and percentage of B cells with
overhydration and the presence of CAD respectively in PD
patients. Reduced total lymphocyte count is an established
independent predictor of mortality in heart failure patients
whereas with regard to atherosclerosis, the mode that B
lymphocytes affect the atherosclerotic lesions currently remains
a subject of ongoing investigation (41, 42). Likewise, CD19+

B-cell lymphopenia has been suggested as an independent
predictor of all-cause and CV mortality in hemodialysis
patients (40).

With regard to Tregs, the influence of dialysis on their
counts and function remains to be further clarified (43–45).
Thus, a recent meta-analysis showed that ESKD patients not
undergoing dialysis displayed a lower percentage of Tregs on
CD4+ T-cells compared to healthy individuals, but on the other
hand no significant difference was observed with respect to

Tregs percentage between hemodialysis patients and healthy
individuals (44). We found no significant differences between the
percentage of Tregs on total lymphocytes and normal controls.
A great deal of experimental and clinical evidence indicates
a beneficial cardioprotective role of Tregs, associating their
reduced numbers and impaired function with various models of
cardiovascular diseases, including atherosclerosis, hypertension
and heart failure (46). On the other hand, we found that
patients with increased percentage of Tregs were more likely
to be older and have LVH or ACVD. Whether this finding
should be ascribed to a compensatory mechanism or specific
immunologic properties of the Tregs themselves remains to
be elucidated by future studies. Similarly, a study investigating
whether the levels of circulating Treg cells relate to the degree of
atherosclerosis showed an increase in Tregs only in patients with
acute coronary syndromes, whereas patients with stable angina
Tregs we not altered compared to healthy control subjects (47).
In addition, no difference in regulatory T cells was observed
between type 2 diabetes mellitus patients with cardiovascular
disease as compared to those without (48).

To our knowledge, this is the first study to evaluate the
association of the profiles of immune cells subpopulations with
peritoneal transport characteristics, indices of overhydration and
phenotypes of cardiovascular disease in a cohort of long-term
PD patients. Yet, there are limitations to our study, including
a relatively small sample size as well as its observational and
cross-sectional nature. Moreover, a relatively small number of
the patients included had prevalent CAD or ACVD and overt
overhydration. Finally, only the phenotypes of immune cell
subpopulations were studied but not their function or association
with other immune markers, which is the aim of another study
that our group is currently conducting.

The state of pro-inflammation and immune deregulation
appear to persist after initiating PD. Future research is required
to evaluate the role of immune cells subsets as potential tools to
identify patients who are at the highest risk for complications and
to guide interventions that may improve clinical outcomes.
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Background: Patients on hemodialysis (HD) are at higher risk for COVID-19,

overall are poor responders to vaccines, and were prioritized in the Portuguese

vaccination campaign.

Objective: This work aimed at evaluating in HD patients the immunogenicity of

BTN162b2 after the two doses induction phase, the persistence of specific antibodies

along time, and factors predicting these outcomes.

Methods: We performed a prospective, 6-month long longitudinal cohort analysis of

156 HD patients scheduled to receive BTN162b2. ELISA quantified anti-spike IgG, IgM,

and IgA levels in sera were collected every 3 weeks during the induction phase (t0 before

vaccine; t1, d21 post first dose; and t2 d21 post second dose), and every 3–4 months

during the waning phase (t3, d140, and t4, d180 post first dose). The age-matched

control cohort was similarly analyzed from t0 to t2.

Results: Upon exclusion of participants identified as previously exposed to

SARS-CoV-2, seroconversion at t1 was lower in patients than controls (29 and 50%,

respectively, p = 0.0014), while the second vaccine dose served as a boost in both

cohorts (91 and 95% positivity, respectively, at t2, p = 0.2463). Lower response in

patients than controls at t1 was a singularity of the participants ≤70 years (p = 2.01

× 10−05), associated with immunosuppressive therapies (p = 0.013), but not with lack

of responsiveness to hepatitis B. Anti-spike IgG, IgM, and IgA levels decreased at t3,
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with IgG levels further waning at t4 and resulting in >30% seronegativity. Anti-spike IgG

levels at t1 and t4 were correlated (ρ = 0.65, p < 2.2 × 10−16).

Conclusions: While most HD patients seroconvert upon 2 doses of BNT162b2

vaccination, anti-spike antibodies levels wane over the following 4 months, leading to

early seroreversion in a sizeable fraction of the patients. These findings warrant close

monitoring of COVID-19 infection in vaccinated HD patients, and advocate for further

studies following reinforced vaccination schedules.

Keywords: BNT162b2, chronic hemodialysis, COVID-19, IgG, SARS-CoV-2, vaccine

INTRODUCTION

Patients with chronic kidney disease requiring renal replacement
therapy and receiving in-center hemodialysis (HD) treatment
are at an increased risk of SARS-Cov-2 infection, and of severe
COVID-19 (1). Moreover, HD patients may pose additional
stress in the hospital dialysis capacity when admitted, as most
receive routine dialysis treatments as outpatients.

End-stage renal disease is simultaneously associated with
systemic inflammation (2) and immune deficiency (3). Systemic
inflammation contributes to atherosclerosis, cardiovascular
disease, cachexia, and anemia, contributing to enhanced
susceptibility to severe COVID, whereas immune deficiency leads
to impaired response to vaccination and increased incidence
and severity of microbial infections. Several studies evidenced
abnormal immune response both to viral infection and to
vaccination in HD patients (4–6). Blunted antibody responses
to influenza (7), pneumococcal (8), and hepatitis B vaccination
(9) are indicators of abnormal adaptative immunity in these
patients. This lack of response is in part due to uremic toxins
that may lead to alterations in B-lymphocyte function, among
others (10). Kidney deficiency is associated with vitamin D
insufficiency contributing to weakened immunity. Given the
impaired antibody response of HD patients to other vaccines,
there are concerns regarding the robustness and durability of
the humoral response induced by SARS-CoV-2 vaccines in
this population.

All patients undergoing HD (about 12,000 in Portugal)
received 2 doses of the Pfizer-BioNTech mRNA BNT162b2
vaccine 3 weeks apart, according to the manufacturer’s and
health authority’s recommendations, in January–February 2021.
The third dose of vaccination for elderly people, including
dialysis patients, was approved in October 2021, a date
posterior to the present study. Other SARS-CoV-2 vaccines
distributed in Portugal (Moderna mRNA-1273, the vectorial
Oxford/AstraZeneca-AZD1222, and Janssen-Ad26.COV2.S)
were not administrated to HD patients.

In the general population, as evidenced in the 2–3 months
follow-up of large-scale cohorts of reference health care workers
(HCW), the 2-dose regimen of BNT162b2 is highly immunogenic
and confers robust protection to COVID-19 and SARS-CoV-
2 infection (11–13). In HD patients, initial studies revealed
success in antibody generation, but reduced titers in comparison
with healthy controls (14–16). Assessing the effectiveness of

BNT162b2 in reducing infection, transmission, and severe
disease requires very large cohorts, which for HD patients would
require multicenter analysis. Hence, for SARS-CoV-2 as for other
vaccines (above), antibodies could be used as proxy/biomarkers
of vaccine immunity.

In this study, we aimed to evaluate the immunogenicity of
mRNA BTN162b2 during the induction phase, the persistence,
and decline of specific antibodies up to 6 months after initiation
of the vaccination, and factors predicting these outcomes in
patients undergoing HD.

MATERIALS AND METHODS

Ethics Statement
This study was reviewed and approved by the Ethics committees
of DaVita in Portugal (date 2021/03/06), Centro Hospitalar
Lisboa Ocidental (Reference 2102, date 2021/01/12), and the
Administração Regional de Saude Lisboa e Vale do Tejo
(Reference 2105/CES/2021-date 2021/03/22) in compliance with
the 1975 Declaration of Helsinki, as revised in 2013, and
follows the international and national guidelines for health data
protection. All participants provided their written informed
consent to participate in the study.

Study Design
Patients were recruited using a non-probabilistic method by
convenience and volunteer sampling. The study design was
planned for a universe of 170 patients, based on the number
of outpatients at the participating HD center. The study
enrolled 156 patients with stage 5 chronic kidney disease (CKD)
undergoing renal replacement therapy as outpatients at a single
HD clinic (DaVita, Eurodial) in Óbidos, Portugal. An age-
matched control cohort, without kidney disease, comprised 143
individuals selected from a larger cohort of 1,245 HCW and 146
nursing home residents (17). The effect size was calculated based
on the Cohen’s h method to establish the power analysis, which
denoted that to detect a difference of 25% with significance level
of p < 0.05 and power analysis of 80%, we need around n =

50 in each group. The group ≤70 years and >70 years are n =

66 and n = 77, respectively. Stratification by age range (27–70)
years and (71–93) years, splits both patient and control cohorts
equally in n = 66 and n = 77 participants, in the respective age
category. All patient and control participants initiated BNT162b2
mRNA vaccination (Comirnaty R©, Pfizer/BioNTech) according
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FIGURE 1 | Patient and control cohorts. (A) Enrolment and funneling of HD patients during the first and second phases of the study, showing concordance to the

study design (straight boxes), and exclusion criteria to the antibody analysis, dropouts, and death (rounded boxes). (B) Serum collections were performed at the time

of inoculation of the first dose (t0); 21 days post-first dose (t1) and 42 days post-first dose (t2), and thereafter, at t3 (140 days post-first vaccine dose) and t4 (180 days

post-first vaccine dose). (C–E) Age and sex profiles of the 143 patients and 143 controls analyzed for the first phase of the study. Differences in age and sex

distribution between the two cohorts were evaluated using the Wilcoxon rank sum test (with continuity correction) and Pearson’s Chi-squared test (with Yates’

continuity correction), respectively. HD, hemodialyzed patients; n, number of individuals with a given event; IQR, interquartile range.

to the established schedule of 2 doses with a 3-week interval.
For the first phase of the study (Immunogenicity), venous blood
was collected on the day of the first vaccine dose (time 0, t0),
3 weeks later on the day of the second dose (t1), and 3 weeks
after the second dose (t2). Participants with evidence of COVID-
19 infection were excluded [serum reactivity against SARS-CoV-
2 nucleocapsid (N) at time of enrolment (n = 3) or SARS-
CoV-2 RNA positivity in RT-PCR test before enrolment (n =

2) or during the collection time (n = 3), in the patient cohort]
(Figures 1A,B). The same selection was applied to the control
cohort (17). Between t0 and t1, two patients died, and two
patients dropped-out of the study. Between t1 and t2, one patient
was hospitalized with a non-COVID-19 respiratory infection.
For the second phase of the study (Antibody persistence),
venous blood was collected from 126 patients at 140 days (t3)

and 180 days (t4) post-first vaccine dose. In all cases, blood
collections were performed before HD procedures were initiated.
Patients who did not contribute to the 3 collection times of each
study phase were excluded from the analysis. Clinical data were
collected from medical records and a dedicated questionnaire.

Antibody Measurements
The ELISA assay, used to quantify IgG, IgM, and IgA anti-
full-length SARS-CoV-2 spike was adapted from (18), relies on
antigen produced as in (19), was semiautomized to a 384-well-
format and uses sera diluted at 1/50, according to a protocol
to be detailed elsewhere. Assay performance was determined
by testing 1,000 prepandemic sera and 40 COVID-19 patients
diagnosed at least 10 days prior to sera collection. ROC curve
analysis was determined at a specificity of 99.3, 99.2, and 99.2%,
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TABLE 1 | Clinical characterization of HD patients classified as non-responders or responders according to anti-spike IgG levels at t2.

Characteristics Non-responders Responders

(N = 13) (N = 130)

Sex, men, n (%) 9 (69.2) 88 (67.7)

Age (years), median [IQR] 86 [74–90]* 71 [59–79]*

Body Weight (Kg), median [IQR] 69 [56–74] 72 [63–83]

BMI (kg/m2 ), median [IQR] 24.7 [21.9–25.7] 26 [23–30]

Dialysis duration (months), median [IQR] 46 [30–116] 46 [20–113]

Kt/v, median [IQR] 1.8 [1.7–2.0] 1.7 [1.5–1.9]

Laboratory parameters

Hemoglobin (g/dL), median [IQR] 11.7 [11.1–12.7] 11.1 [10.4–11.8]

Serum albumin (g/dL), median [IQR] 4.0[3.6–4.1] 4.0 [3.8–4.3]

Ferritin (ng/mL), median [IQR] 348 [238–520] 368 [230–527]

nPCR (g/kg/day), median [IQR] 0.94 [0.90–1.23] 1.11 [0.95–1.22]

CRP (mg/dL), median [IQR] 0.55 [0.20–2.81] 0.48 [0.15–1.25]

25(OH)D3 (ng/mL), median [IQR] 35.0 [29.9–48.6] 35.3 [26.0–45.0]

Comorbidities

Age adjusted Charlson score, median [IQR] 8.0 [6.0–9.0] 7.0 [5.0–8.7]

Diabetes mellitus, n (%) 7 (53.8) 64 (49.2)

Cardiac disease (except essential hypertension) n (%) 7 (53.8) 55 (42.3)

Essential hypertension, n (%) 8 (61.5) 96 (73.8)

Congenital or acquired immunodeficiency, n (%) – 6 (4.6)

Chronic pulmonary disease, n (%) – 17 (13.1)

Chronic liver disease, n (%) 1 (7.7) 6 (4.6)

Rheumatic disease, n (%) 2 (15.4) 6 (4.6)

Cancer in the last 5 years (non-leukemia), n (%) 1 (7.7) 13 (10)

Tumor metastasis, n (%) – 2 (1.5)

Leukemia, n (%) 2 (15.4)† 2 (1.5)†

Past Kidney transplant, n (%) 3 (23.1) 20 (15.4)

Kidney allograft still present, n (%) 3 (23.1)‡ 7 (5.4)‡

Medication

Erythropoiesis-stimulating agent, n (%) 8 (61.5) 101 (77.7)

Angiotensin-converting-enzyme inhibitor, n (%) 1 (7.7) 29 (22.3)

Statins, n (%) 6 (46.2) 66 (50.8)

Corticosteroid (Prednisolone 2.5–5mg/day), n (%) 3 (23.1) 8 (6.2)

Other immunossupressor/immunomodulator, n (%) 2 (15.4) 3 (2.3)

Tacrolimus, n (%) 1 (7.7) 2 (1.5)

Tacrolimus and Everolimus, n (%) 1 (7.7) –

Hydroxychloroquine, n (%) – 1 (0.8)

Non-steroidal anti-inflammatory drug, n (%) 2 (15.4) 9 (6.9)

Antithrombotic, n (%) 8 (61.5) 70 (53.8)

Antiviral, total n (%) 1 (7.7) 2 (1.5)

Aciclovir, n (%) 1 (7.7) –

Abacavir, Lamivudine, Efavirenz, n (%) – 1 (0.8)

Abacavir, Lamivudine, Raltegravir, n (%) – 1 (0.8)

Ongoing Chemotherapy, n (%) – 1 (0.8)

Anti-HBc positivity, n (%) 1 (7.7) 13 (10)

Anti-HBs positivity (>10 UI/L), n (%) 5 (38.5) 62 (47.7)

Anti-HBs positivity in anti-HBc negative, n (%) 4 (30.8) 50 (38.5)

N, total number of individuals; n, number of individuals with a given event; t2, sera collected 42 days post-first vaccine dose; %, percentage; IQR, interquartile range; BMI, Body Mass
Index; KT/V, measure of dialysis adequacy; nPCR, Normalized Protein Catabolic Rate; CRP, C-reactive protein; 25(OH)D3, calcifediol or vitamin D hydroxylated at the 25 Carbon; ESA,
Erythropoiesis-stimulating agents; Anti-HBc, Hepatitis B core antigen antibodies; Anti-HBs, Hepatitis B surface antigen antibodies. Statistical tests to compare non-responders with
responders were applied according to the type of variable (categorical—Fisher’s exact test or continuous—Wilcoxon rank sum test).
*W = 1,200, p-value = 0.0128; 95% CI [3.00–18.00]; †p-value = 0.0414; ‡p-value = 0.0488; All others, not significant.
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and a sensitivity of 95.9, 61.2, and 73.7% for IgG, IgM, and
IgA, respectively. Individual assay readouts (OD values) were
standardized using calibrators (pool of positive sera at predefined
dilutions) and the normalized OD (ODnorm), adjusted to set
ODnorm = 1 as the positivity cut-off for IgG, IgM, and IgA.
Serial titration of 67 COVID-19 patients established that the assay
is semiquantitative, has a dynamic range of 3 log titer, and with
decreased discrimination power at ODnorm ≥ 1.8. Each sample
was assayed in duplicates and any identified discrepancies were
resolved by repeating the test. Antibodies against SARS-CoV-
2 N antigen were measured by an electrochemiluminescence
immunoassay from Roche Diagnostics (Elecsys R© Anti-SARS-
CoV-2). Total IgG, IgM, and IgA at t2 were quantified using three
immunoturbidimetric methods (PEG enhanced) from Siemens
Healthineers, using Siemens Atellica CH Analyzer, following
manufacturer’s instructions.

Statistical Analysis
Quade test was used to analyze individuals in temporal series,
and Wilcoxon signed-rank test to analyze pairwise group
comparisons between different time points, which includes the
Benjamini-Hochberg (BH) method for p-value adjustment. The
Wilcoxon rank sum test (Mann–Whitney U-Test) was used for
pairwise comparison between age groups or for single time-
point comparisons between control and patient groups. To test
for the effect of clinical conditions, within a given group, on
the magnitude of the antibody responses, the Wilcoxon rank
sum test was used. All p-values in multiple comparisons were
adjusted using the Benjamini-Hochberg (BH) method. Pearson’s
Chi-squared test (with Yates’ continuity correction) was used
to determine differences in Ig positivity between groups over
time, and within groups at specific time points. Fisher’s exact
test was used to test for the effect of specific clinical parameters
or treatments with categorical variables on Ig positivity when
assumptions for the chi-squared test were not met. Correlation of
Ig levels with clinical parameters was tested by linear regression
using the Spearman correlation coefficient (ρ). All p-values were
obtained with two-sided tests, at a significance level of 0.05. All
statistical tests were carried out using established R scripts. For
data management, graphical design, and statistical analysis we
used R, version 4.0.4 GUI 1.74 and Rstudio version 1.1.463, and
the main packages tidyverse, ggplot2, openxlsx, writexl, officer,
rvg, and ggpubr (references in Supplementary Material). The
text reports continuous variables as medians and interquartile
ranges (IQR), and categorical variables are summarized using
frequencies and percentages.

Missing Data Management
Anti-spike antibodies measurements were performed on all
participants who adhered to the study design (no missing data).
For correlation analysis effects of clinical conditions, clinical
parameters, or biometrics, whenever there were participants with
variables not recorded, they were excluded from the analysis, and
“n” is indicated in each figure and table.

FIGURE 2 | Anti-SARS-CoV-2-spike seroconversion upon vaccination. Sera

collected at t1 and t2 were analyzed for anti-spike IgG, IgM, and IgA

antibodies by ELISA. ODnorm≥1 was used as cut-off for positivity. Frequency

of samples testing positive (gray bar) at t1 or t2 for each antibody class. (A)

HD patients (n = 143). (B) controls (n = 143). Percentage of seroconversion

indicated inside each bar. Pearson’s Chi-squared test (with Yates’ continuity

correction) was used to determine differences over time in patients and

controls (p-values indicated in the figure) and between patients and controls at

t1, and t2 (p-values indicated in Supplementary Tables 1, 2). neg, negative;

pos, positive; t1, sera collected 21 days post-first vaccine dose; t2, sera

collected 42 days post-first vaccine dose.

RESULTS

Cohort Characterization
This longitudinal prospective cohort study enrolled 156 patients
on HD scheduled for BNT162b2 mRNA vaccination in January
and February 2021 (Figure 1). A total of 143 participants,
with no evidence of previous exposure to SARS-CoV-2 at the
first collection (anti-N-antigen negative, no previous PCR tests
positive), adhered to the three collection times of the first phase
of the study addressing the vaccine immunogenicity. The median
age was 72 years of age (y) [range (27–93), IQR (59–80)], and
women represented 32% of the cohort. Eleven patients (8.8%)
were under therapies potentially affecting immune responses,
including corticosteroids (Table 1). The control cohort included
143 individuals with median age of 73 y [range (30–96), IQR
(61–85)] and 53% women. For the second phase of the study
addressing antibody persistence, 126/143 patients adhered to the
additional two collection times.

Antispike Antibody Response in the
Induction Phase
Sera from HD patients and controls were analyzed for specific
anti-SARS-CoV-2-spike antibodies (IgG, IgM, and IgA) using an
ELISA calibrated with sera collected prior COVID-19 pandemic
and from COVID-19 patients. We first analyzed seroconversion,
discriminating positive/negative antibody reactivity (Figure 2,
Supplementary Tables 1, 2). At t0, before vaccination, 100% of
the control and 141/143 of the HD patients tested negative for
anti-spike Ig. After a single vaccine dose (t1), seroconversion was
lower in HD patients with only 42/143 (29.4%; 95%CI 22.5–37.3)
patients developing anti-spike IgG antibodies when compared
with 71/143 (49.7%; 95%CI 41.6–57.7) controls (patients vs.
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FIGURE 3 | Anti-SARS-CoV-2-spike IgG, IgM, and IgA responses to vaccination. Sera collected at t0, t1, and t2 were analyzed by ELISA for semi-quantitative

measurement of anti-spike IgG (A), IgM (B), and IgA (C) in HD patients (dark blue, n = 143) and age-matched controls (light blue, n = 143), in the full cohort (left

panels) or upon stratification by age group (≤70 y, middle panels; >70 y, right panels). Data points represent individual subjects and are overlaid with boxes

representing interquartile range (IQR), whiskers representing 1.5 IQR tails, and a central line representing median value. Differences were determined by Quade test for

antibody levels along time in the full cohort (all 9 panels), Wilcoxon signed-rank test for pairwise comparison in each panel (p-values indicated by horizontal black

bars), and Wilcoxon rank-sum to compare controls with patients at t1. Detailed p-values presented in Supplementary Tables 3–7. t0, sera collected on the day of

first vaccine dose; t1, sera collected 21 days post-first vaccine dose; t2, sera collected 42 days post-first vaccine dose.

controls at t1, p = 0.0014). The second vaccine dose acted
as a boost in both cohorts (t1 vs. t2, patients p = 8.01 ×

10−26, controls p = 2.59 × 10−17), and both cohorts reached
similar seropositivity rate (HD patients 130/143, 90.9%, 95% CI
85.1–94.6 and controls 136/143, 95.1%, 95%CI 90.2–97.6, p =

0.2463). Isotype class analysis of anti-spike antibodies revealed
progression of IgA seroconversion in HD patients from t1 to t2
(41.3%; 95%CI 33.5–49.5 at t1, 83.9%; 95%CI 77.0–89.0 at t2, p=
2.27× 10−13), reaching values similar to the control cohort (p =
0.3612). In contrast, prevalence of anti-spike IgM was low with
modest increase along the vaccination schedule in both patients
(11.9%; 95%CI 7.6–18.2 at t1 and 29.4%; 95%CI 22.5–37.3 at t2, p

= 0.0005) and controls (15.4%, 95%CI 10.4–22.2 at t1 and 25.2%,
95%CI 18.8–32.9 at t2, p= 0.0559).

Semiquantitative analysis of antibody levels using normalized
OD values (ODnorm) revealed significant increase of all three
isotypes from t0 to t1, an effect of the first vaccine dose, and from
t1 to t2, an effect of the second vaccine dose, in both patients
and controls (Figure 3, Supplementary Tables 3–7). Within the
patient cohort, most striking was the boosting effect of the second
dose on anti-spike IgG levels (median [IQR]: 0.63 [0.32–1.08]) at
t1; 2.05 [1.67–2.23] at t2, p = 2.2 × 10−16) and to a lower extent
on anti-spike IgA levels (median [IQR]: (0.85 [0.63–1.10] at t1;
1.22 [1.10–1.63] at t2, p= 2.2× 10−16), while anti-spike IgM was
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FIGURE 4 | Anti-SARS-CoV-2-spike IgG reactivity in HD patients under

immunosuppressive therapy. Partitioning of data presented in Figure 3,

showing HD patients treated with immunosuppressive drugs (IS, n = 11) or

not (CTRL, n = 50). Data points represent individual subjects and are overlaid

with boxes representing interquartile range (IQR), whiskers representing 1.5

IQR tails, and a central line representing median value. At each time point

differences in antibody levels between groups were determined with the

Wilcoxon rank sum test (with continuity correction); significant p-values
indicated in the figure. IS, immunosuppressive drugs; CTRL, controls; CS,

corticosteroids; TL, Tacrolimus; EVE, Everolimus. Detailed p-values presented

in Supplementary Table 9. t0, sera collected on the day of first vaccine dose;

t1, sera collected 21 days post-first vaccine dose; t2, sera collected 42 days

post-first vaccine dose.

only modestly increased (0.49 [0.32–0.75] at t1; 0.66 [0.45–1.07]
at t2, p= 4.5× 10−15).

Comparison between patients and controls revealed lower
anti-spike IgG levels in patients after the first vaccine dose (0.63
[0.32–1.08] in patients; 0.96 [0.46–1.39] in controls, p = 4.98 ×

10−04), an effect not observed for the other isotypes.
To test whether the lower response of HD patients to the first

vaccine dose holds across age, each cohort was partitioned in two
age groups (right panels in Figure 3), ≤ 70 y (range (27–70),
median 58, IQR [50–64), n = 66 for patients and range (30–
70), median 60, IQR [51–64], n = 66 for controls) and >70 y
(range (71–93), median 8, IQR [75–84], n = 77 for patients and
range (71–96), median 85 IQR [70–88], n = 77 for controls).
In controls and patients, elderly individuals presented similar
low anti-spike IgG levels at t1, (0.47 [0.28–1.00] in patients;
0.52 [0.38–1.21] in controls, p = 0.2492). In contrast, in the
≤ 70 y groups, HD patients presented lower IgG response at
t1 (0.68 [0.45–1.21] in patients, 1.27 [0.93–1.49] in controls, p
= 2.01 × 10−05). In controls, age was clearly associated with
lower IgG levels at t1 (p = 5.09 × 10−07), whereas in patients
age effect was barely significant (p = 0.050). Together, these
data indicate that the younger group contributed to most of the
lower response observed at t1 when analyzing the full HD cohort.
Similar analysis after the second vaccination dose could not be
directly processed, as most samples in the control group reached
values above the dynamic range of the assay.

Factors Predicting Immunogenicity of
BNT162B2 in HD Patients
The HD cohort encompassed 11 patients under
immunosuppressive (IS) therapy (age range (42–63), median
56, IQR [51.0–58.0]). All IS patients received Prednisolone

2.5–5 mg/day, a mild IS regimen. Four patients were in addition
treated with Tacrolimus, a strong IS drug (Table 1). Levels of
anti-spike IgG antibodies in this small subgroup were compared
with those of a subset of patients not on IS and selected from the
full HD cohort (age range (42–69), median 60, IQR [53.0–64.0],
n = 50) Figure 4, Supplementary Tables 8, 9). The levels of
anti-spike IgG antibodies elicited by the first vaccine dose (t1),
but not by the second dose, were lower in IS than control patients
(p = 0.013 at t1). Of the 4 patients under Tacrolimus therapy, 2
were non-responders and 2 were responders at t2.

Responsiveness to Hepatitis B vaccination is an indicator of
immune competence. Anti-HBs antibody levels were available
for 129 HD patients who tested negative for anti-HBc (hence,
presumed not previously exposed to Hepatitis B virus). Of these,
only 54/129 (42%) tested anti-HBs positive, whereas 117/129
(91%) were positive for anti-spike IgG at t2. Responsiveness to
Hepatitis B and to BNT162b2 vaccine at t2 did not correlate,
either measuring seroconversion (p = 0.53; OR = 1.49, 95%
CI [0.48–4.65]) (Figure 5A) or specific antibodies levels (ρ =

0.062, p = 0.48) (Figure 5B). Likewise, neither total IgG levels
nor lymphocyte countsmeasured for 142 patients at t2, correlated
with anti-spike IgG levels (Figure 5C, Supplementary Figure 1).

We next analyzed indicators of kidney disease severity
or activity. Neither time in dialysis nor levels of 25-
hydroxycholecalciferol, C-reactive protein, hemoglobin,
Ferritin, epoetin dosage, nor normalized protein catabolic
rate significantly correlated with anti-spike IgG levels
(Supplementary Figure 1).

Reviewing the clinical data of the 13/143 HD patients who
remained anti-spike IgG negative at t2 was not informative due
to the small sample size in each clinical category, and possible
confounding factors due to multiple comorbidities (Table 1).
Among these 13 non-responders, 3 were in their 50th, 3 in
their 70th decade, and 7 were >84 y. In the control cohort, 7
participants were non-responders, 1 was 54 and under strong
IS therapy, and 6 were >84 y. Altogether, these results support
advanced age, and incidentally, immunosuppression is a bona
fide factor affecting seroconversion in the general population,
as for HD patients. Finally, and in concordance with multiple
factors conditioning the amplitude of the humoral response to
BNT162b2 vaccine, the age-adjusted Charlson comorbidity index
was weakly inversely correlated with anti-spike IgG levels at t2 (ρ
=−0.3, p-value= 0.0003) (Figure 5D).

Persistence vs. Seroreversion of Antispike
Responses
Waning of the humoral response in HD patients was assessed in
126/143 patients who complied with two additional collections
at t3 (140 days after first vaccine dose, corresponding to 4
months post second dose) and t4 (180 days after first vaccine
dose, corresponding to 5 months post second dose) (Figure 6,
Supplementary Table 10). Anti-spike IgG levels decreased in the
100-day interval between t2 and t3 and during the following 40
days between t3 and t4 (median [IQR]: 2.03 [1.69–2.21] at t2;
1.49 [1.08–1.79] at t3; 1.28 [0.84–1.58] at t4, t2 vs. t3 and t3 vs.
t4 p < 2 × 10−16). IgM and IgA antibodies levels, which were
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FIGURE 5 | Correlation analysis of anti-spike IgG responses at t2. (A) Anti-spike positivity as in Figure 2, now in n = 75 non-responders and n = 54 responders to

previous hepatitis B vaccination (anti-HBs antibody cut-off >10 mIU/ml). Fischer’s test p-value = 0.53; OR = 1.49, 95%CI [0.48–4.65]. Fourteen anti-HBc reactive

participants (i.e., previously infected with HBV) were excluded. (B) Spearman correlation coefficients (ρ) analysis of anti-spike IgG with anti-HBs antibody levels in anti

HBc non-reactive individuals (n = 129, same as in A). (C,D) Spearman correlation coefficients (ρ) analysis of anti-spike IgG levels with total serum IgG also determined

at t2 (n = 142) (C), and with age-adjusted Charlson-comorbidity index (n = 142) (D). Shaded areas represent 95% confidence interval. Differences were determined

by Spearman’s rank-order non-parametric test; t2, sera collected 42 days post-first vaccine dose.

not elevated at t2, decreased between t2 and t3 (p < 2 × 10−16

for both) and remained at the same low values between t3 and
t4 (p = 0.750 for IgM and p = 0.410 for IgA), confirming IgG is
the dominant class of reactive antibodies elicited by BNT162b2
vaccine. Anti-spike IgG waning over time led to a progressive
decrease in positivity, resulting in 39/126 (31%) seronegatives
at t4.

Of the 39 patients who presented values below the threshold
of positivity by t4, 10 were originally non-responders whereas 29
(23% of the cohort) were bona-fide seroreverters (Table 2). As
for anti-spike seroconversion, anti-spike seroreversion did not
correlate with HBV vaccination response, with 11/29 (37.9%)
seroreverters and 44/87 (50.6%) seropositive at t4 presenting
anti-HBs antibodies (p= 0.286). Analysis of anti-spike IgG levels
along the 5 time points (Figure 7, Supplementary Tables 11–13)
revealed that patients who remained seropositive 5 months
post second dose (t4, n = 87) presented higher anti-spike
IgG levels at earlier time points. This was already evident
as early as 3 weeks after the first dose (t1) (0.80 [0.44–
1.22] in positive vs. 0.37 [0.24–0.70] in the negative, p =

7.03 × 10−04). Analysis performed on the 116 participants
that either maintained or lost IgG positivity at t4 confirmed
IgG levels at earlier time points, including t1, correlated with
values at t4 (ρ = 0.58, p < 5.6 × 10−12 for t4 vs. t1). In
agreement with the latter finding, and as for t2, age barely

contributed to seroreversion at t4 (p= 0.027), and no specific
clinical conditions or treatment could explain this outcome
(Table 2).

DISCUSSION

In this study, we evidence that while seroconversion following
priming was lower in HD patients when compared to age-
matched controls, most reach positivity for anti-spike IgG after
a second BNT162b2 vaccine dose. Furthermore, waning of the
humoral immune response is readily detectable 4 months after
the second vaccination. Together, these findings further advocate
for the specific management of HD patients during the COVID-
19 pandemic.

The original guidelines for BNT162b2 vaccine regimen were
of 2 doses administrated at 3–4 weeks interval, although the
time between doses has been debated, and more recently, a
reinforcing third dose has been approved for specific population
subgroups. Our data confirmed that the second dose is essential
to reach a high frequency of seroconversion in HD patients, as
was shown before in smaller cohorts [e.g., (20), n = 22, (21), n
= 10]. The heterogeneity we evidence in the levels of reactive
Ig after a single vaccine dose, with close to 70% seronegative
patients, advocates not to extend the interval between the 2
doses to rapidly reach high levels of antibodies. This proposition
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FIGURE 6 | Waning of anti-spike antibody responses along time. Follow-up

analysis of antibody responses for anti-spike IgG, IgM, and IgA antibodies in

HD patients (n = 126) collected at t2, t3, and t4. (A) Seroconversion is

determined and presented as in Figure 2. Pearson’s Chi-squared test (with

Yates’ continuity correction) was used to determine differences over time. (B)

anti-spike antibodies in patients, determined and presented as in Figure 3.

Differences were determined by the Quade test for antibody levels along time

(all 3 panels), the Wilcoxon signed-rank test for pairwise comparison in each

panel (p-values indicated by horizontal black bars). Detailed p-values
presented in Supplementary Table 10. t2, sera collected 42 days post-first

vaccine dose; t3, sera collected ∼140 days post-first vaccine dose; t4, sera

collected 180 days post-first vaccine dose.

is consistent with a previous study addressing a very large
population which evidenced BNT162b2 vaccine effectiveness was
of 57% after one dose and 97% after two doses (11). Other
studies argue that extending the time of prime-boost interval
enhances the recall response (22), which may be beneficial in the
long term, notably by prolonging immune memory. However,
in times of pandemic, with actual or risk of high infection
incidence, frail populations would benefit from rapidly reaching
effective immunity.

In our immunogenicity analysis, we excluded participants
who were identified as previously exposed to SARS-CoV-2, so as
to evaluate the immune response induced de novo by the vaccine.
In preexposed individuals, the first vaccine dose acts as a boost
(23–26), as confirmed in our enlarged cohort of controls after

analyzing specifically the anti-N positive participants at t0 (17),
who were excluded in this work. However, some participants may
have been preexposed to SARS-CoV-2 and already lost anti-N
reactivity by the time the study was initiated (27). It is plausible
that the 2 HD participants found anti-spike IgG positive at t0
were preexposed and had already lost anti-N reactivities by the
time of our analysis.

One strength of our study is the partitioning of the patient
and control cohort by age groups. With this approach, we
reveal the difference between HD patients and controls lies in
the younger participants. This finding is relevant as a third
booster shot has just been approved and has been prioritized
by age and specific conditions that do not include HD so far.
Analysis upon age partitioning also completes previous studies
reporting that COVID-19 vaccines are less efficacious at inducing
antibody in HD patients (14, 20, 28). Nevertheless, our analysis
confirms aging is a dominant trait affecting mRNA vaccine
effectiveness (17, 29). Finally, our finding that the younger group
of patients shows lower levels of anti-spike reactivities than age-
matched control, and is barely differentiated from aged patients,
is compatible with a signature of early immune senescence in
this population.

Although IgG is the dominant class of anti-spike antibodies
induced upon BNT162b2 vaccination, our results indicate 84% of
the patientsmounted an IgA response. Secretory IgA, the product
of a bona fide germinal center reaction, acts at the mucosa, the
site of primary SARS-CoV-2 infection, and anti-spike secretory
IgA responses with neutralizing capacity were reported following
natural SARS-CoV-2 infection (30).Whether the vaccine reactive
IgA encompasses secretory IgA remains to be assessed. The IgM
levels were relatively low in both cohorts, possibly related to
IgM being produced transiently as the result of a rather T-cell
independent process. In support of a rather T-cell independent
response for both IgA and IgM, the decline in reactivity for these
isotypes was severe by t3 in most patients.

Only 42% of patients in the HD cohort presented anti-
HBs antibodies following Hepatitis B vaccination. A similar
range of hepatitis B vaccination effectiveness was reported
previously (31). The lack of correlation between anti-spike
Ig levels, or seroconversion, after BNT162b2 vaccination at
t2 as at t4 and responsiveness to hepatitis B immunization
is in accordance with a previous publication addressing a
smaller cohort (n = 81) at early time point post SARS-CoV2
vaccination (32). The Hepatitis B vaccine is a subunit vaccine
(HBs antigen mixed with adjuvant), while BNT162b2 is an
mRNA embedded in lipid nanoparticles. The findings may
support that mRNA vaccines present increased immunogenicity
when compared with more standard subunit vaccines.
Alternatively, spike may be more immunogenic than HBs.
Irrespectively of these considerations, serial recall injections
are common practice for Hepatitis B vaccine in identified
antibody negative individuals. Similarly, serial recall BNT162b2
vaccinations may be required for those individuals identified as
poor responders.

After a prime-boost induction phase, vaccine-reactive
antibody levels are expected to decrease. However, for most
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TABLE 2 | Clinical characterization of nonresponders, responders who lost (seroreverted), and responders who maintained (seropositive) anti-spike IgG at t4.

Characteristics Sero-reverted Seropositive

(N = 29) (N = 87)

Age (years), median [IQR] 76 [64–84]* 69 [59–79]*

Sex, men, n (%) 19 (65.52) 61 (70.11)

Dialysis duration (months), median [IQR] 46 [23–99] 47 [20–121]

Comorbidities

Charlson Score (age–adjusted), median [IQR] 8 [6–9] 7 [5–8]

Obesity (BMI>30 Kg/m2), n (%) 11 (37.93) 23 (26.44)

Endocrine diseases (Diabetes mellitus and others), n (%) 17 (58.62) 41 (47.13)

Cardiovascular disease, excluding essential hypertension, n (%) 16 (55.17) 33 (37.93)

Essential hypertension, n (%) 23 (79.31) 64 (73.56)

Congenital or acquired immunodeficiency, n (%) 3 (10.34) 3 (3.45)

Chronic pulmonary disease, n (%) 8 (27.59) 10 (11.49)

Chronic liver disease, n (%) 0 6 (6.90)

Rheumatic disease, n (%) 0 5 (5.75)

Cancer in the last 5 years (non-leukemia), n (%) 4 (13.79) 16 (18.39)

Past Kidney transplant, n (%) 6 (20.69) 13 (14.94)

On immunosuppressive drugs, n (%) 1 (3.45) 6 (6.90)

N, total number of individuals; n, number of individuals with a given event; %, percentage; IQR, interquartile range; t4, sera collected 180 days post-first vaccine dose.
Statistical tests to compare sero-reverters with seropositives at t4 were applied according to the type of variable (categorical - Fisher’s exact test or continuous—Wilcoxon rank sum test).
*W = 2,042, p-value = 0.0273, 95% CI [1.00–11.00].
All others, not significant.

vaccines, long-term immunological memory is associated with
detectable antibody reactivities in healthy individuals, albeit
at low levels. This is the case for BNT162b2, as 6 months
post-second dose a vast majority of 1,370 HCW cohort were still
seropositive (33). However, waning vaccine-induced immunity
in the general population by around month 4 postvaccination
is revealed in countries with high SARS-CoV-2 incidence, a
discrepancy likely related to the change in the dominant variant
of SARS-CoV-2, which partially escapes immunity induced by
the ancestral form of the spike (34). In HD patients, longitudinal
studies addressing decreased immunity upon mRNA vaccination
are still scarce. It was recently reported that 10/172 HD patients
(6%) serorevert by 3 months after the second vaccine dose (35).
Another study conducted on 41 HD patients, indicates that
seroconversion rate decreases from 98% at 1 month to 66% at 6
months after the second dose (36). In our work, we dissociated
non-responders to the 2-dose vaccine regimen from bona fide
seroreverters, studied a cohort of similar size to that in (35), and
a duration approaching that of (36) to reveal 29/145 (20%) lost
positivity in the 4 months following the second dose, a result in
accordance with the previous studies. We evidenced that levels of
specific IgG after the first or second dose can serve as predictors
of the persistence of seroconversion, a correlation reported
previously in a smaller (n = 41) cohort (36). Altogether, our
kinetic analyses support the previous proposition of additional
booster doses for this group of vulnerable patients (37).

We tested whether seroconversion and seroreversion were
correlated with immunosuppressive therapies or with disease

duration, severity, or activity, and found only signals of little
significance. This result may be related to only few patients
being under immunosuppressors in our cohort and most of
these under mild therapies, and also to the evidence HD patients
are a heterogeneous group in what concerns comorbidities.
In concordance with multiple factors modulating humoral
immunity, only the age-adjusted Charlson comorbidity index
predicted anti-spike IgG levels at t2.

The limitations of our study include that systematic
surveillance for SARS-CoV-2 infections was not performed.
Larger cohorts of HD patients will be necessary to evaluate
vaccine effectiveness in preventing infection, morbidities or
death, and viral transmission. The study did not include
functional assays such as neutralizing antibodies, which have
been shown to be predictive of protection from severe disease
and to a lower extent from infection (38). However, levels of
anti-spike reactivity elicited by SARS-CoV-2 mRNA vaccines
correlate with in vitro neutralization of spike-pseudoviruses
and SARS-CoV-2, including variants of concern, by us and
others (39, 40). Moreover, both binding and neutralizing
antibodies correlate with mRNA vaccine efficacy (41, 42).
We also did not address cellular immunity. Previous studies
in HD patients revealed a strong correlation between anti-
spike antibody detection and the frequency or the total
number of specific plasmablasts and memory B cells (43)
and also with specific T cell responses (21). Others failed to
evidence this correlation when comparing HD and controls,
with decreased humoral but not T cell responses (44).

Frontiers in Medicine | www.frontiersin.org 10 December 2021 | Volume 8 | Article 79667696

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Weigert et al. Humoral Responses to BNT162b2 in Hemodialyzed Patients

FIGURE 7 | Anti-spike IgG levels at t1 as a predictor of seroreversion.

Longitudinal analysis of anti-spike IgG in HD patients who participated in the 5

collection time points (t0, t1, t2, t3, and t4). Ten non-responders (seronegative

at t1 and t2) were excluded from the analysis, (n = 116) (A) Partitioning of data

presented in Figures 3, 6, showing HD patients classified as negative (n = 39,

left), or positive (n = 87, right) at t4. (B) Spearman correlation coefficients (ρ)

analysis of anti-spike IgG levels at t4 vs. t1 in same (n = 126) patients, p-value
inserted in the panel was obtained by Spearman’s rank-order non-parametric

test. Detailed p-values presented in Supplementary Tables 11–13. t0, sera

collected on the day of first vaccine dose; t1, sera collected 21 days post-first

vaccine dose; t2, sera collected 42 days post-first vaccine dose; t3, sera

collected ∼140 days post-first vaccine dose; t4, sera collected 180 days

post-first vaccine dose.

Detangling such discrepancies will await further analysis
and standardized protocols. Similarly to other vaccines, it
remains likely that detection of reactive antibodies are positive
indicators of the engagement and memory of the adaptive
immune system.

Despite these limitations, our findings highlight that HD
patients may benefit from tailored COVID-19 vaccination
regimens and follow-up. This concern is acute as variants
less susceptible to vaccine-induced immunity have replaced
worldwide the ancestral virus from which BNT162b2
was derived.
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Background: Immunoglobulin A nephropathy (IgAN) is among the commonest

glomerulonephritides in Greece and an important cause of end-stage kidney disease

(ESKD) with an insidious chronic course. Thus, the recently published International

IgAN prediction tool could potentially provide valuable risk stratification and guide the

appropriate treatment module. This study aimed to externally validate this prediction tool

using a patient cohort from the IgAN registry of the Greek Society of Nephrology.

Methods: We validated the predictive performance of the two full models (with or without

race) derived from the International IgAN Prediction Tool study in the Greek Society of

Nephrology registry of patients with IgAN using external validation of survival prediction

models (Royston and Altman). The discrimination and calibration of the models were

tested using the C-statistics and stratified analysis, coefficient of determination (R2
D) for

model fit, and the regression coefficient of the linear predictor (βPI), respectively.

Results: The study included 264 patients with a median age of 39 (30–51) years where

65.2% are men. All patients were of Caucasian origin. The 5-year risk of the primary

outcome (50% reduction in estimated glomerular filtration rate or ESKD) was 8%. The

R2
D for the full models with and without race when applied to our cohort was 39 and 35%,

respectively, and both were higher than the reported R2
D for the models applied to the

original validation cohorts (26.3, 25.3, and 35.3%, respectively). Harrel’s C statistic for the

full model with race was 0.71, and for the model without race was 0.70. Renal survival

curves in the subgroups (<16th, ∼16 to <50th, ∼50 to <84th, and >84th percentiles of

100
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linear predictor) showed adequate separation. However, the calibration proved not to be

acceptable for both the models, and the risk probability was overestimated by the model.

Conclusions: The two full models with or without race were shown to accurately

distinguish the highest and higher risk patients from patients with low and intermediate

risk for disease progression in the Greek registry of IgAN.

Keywords: IgAN prediction tool, IgAN disease progression, chronic kidney disease, immunosuppression, ACE

inhibitors

INTRODUCTION

Immunoglobulin A nephropathy (IgAN) is considered to be the
most frequent biopsy and proven type of glomerulonephritis with
an estimated incidence of more than 1.5 per 100,000 persons
every year. It can cause end-stage kidney disease (ESKD), in
most instances, after a median disease course of more than 10
years (1). A particular feature of IgAN is the heterogeneous
risk of progressive kidney function deterioration, with a 10-
year risk of ESKD between 5 and 60%. Thus, IgAN treatment
can be challenging, although Kidney Disease Improving Global
Outcomes (KDIGO) guidelines recommend risk stratifying
patients so that immunosuppressive treatment can be targeted
to those at high-risk for disease progression; this stratification
is based only on the degree of proteinuria which can be highly
inaccurate. Until recently, there was no other tool available to
accurately predict kidney disease progression (2). Nevertheless,
a proportion of patients who presented with proteinuria of more
than 1 g/day, and according to guidelines should be treated with
immunosuppression therapy, have non-progressive disease. On
the contrary, many patients with lower-grade proteinuria, who
do not qualify for treatment, experience progressive disease (3, 4).
This points out the necessity for an accurate clinical tool that
predicts disease progression in IgAN.

Although there are well-accepted clinical and histological

risk factors for kidney disease progression in IgAN, when these
factors are used individually, they are unable, in many cases, to

identify high-risk patients (3). Attempts in the past to establish
a prediction model have not met widespread acceptance (5, 6).

Although the Oxford MEST [mesangial (M) and endocapillary
(E) hypercellularity, segmental sclerosis (S), and interstitial

fibrosis/tubular atrophy (T)] histologic score in IgAN has been

validated in international patient cohorts and is independently
associated with a higher or lower risk of kidney function

deterioration, it has only been recently incorporated into a risk

prediction tool (7). This tool was developed by the International
IgA Nephropathy Network, and it validated two versions: the

full model without and with race. Although this tool has been
validated and proved accurate in international cohorts of multi-

ethnicity patients, there is still a paucity of evidence for its

accuracy in single ethnic groups. Thus, this study aimed to
validate the International IgA Nephropathy Prediction Tool
using a large ethnic-based contemporary data set of patients
with IgAN who were from Greece with fully available clinical,
laboratory, and histological data.

METHODS

Patients
In this study, we included patients from the Greek Society of
Nephrology IgAN registry (8). In this registry, patients with
biopsy-proven IgAN are reported independently for research
purposes from different nephrology departments across Greece.
This cohort currently consists of 657 patients. Of these, only
patients with available MEST scores and estimated glomerular
filtration rate (eGFR) data with long-term follow-up after biopsy
(over 1 year) were included in the final analysis. Furthermore,
we included only those who were 18 years or older and
who did not have established ESKD at the time of biopsy.
This project was approved by the research ethics committee
of the University Hospital of Patras, which waived patient’s
written informed consent for using their anonymized historical
clinical data.

Definitions
Age, proteinuria, eGFR (using the Chronic Kidney Disease
Epidemiology Collaboration formula), systolic blood pressure
(SBP), diastolic blood pressure (DBP), mean arterial blood
pressure (MAP = 1/3 x SBP + 2/3 x DBP), body mass
index (BMI), prior use of medications that block the
renin-angiotensin system blockers (RASBs, including
angiotensin-converting enzyme inhibitors and angiotensin
receptor blockers), and the use of immunosuppression were
determined at the time of biopsy and during follow-up.
The decline slope of eGFR was calculated using a linear
regression line.

All patients included in this cohort were white Caucasians.
Kidney biopsies were scored according to the Oxford MEST
scoring system (Supplementary Figure 1) at the time of
diagnosis by three pathologists who were not blinded to clinical
data as a standard procedure (9). Crescent formation in kidney
biopsies (C score) was not incorporated in the prediction tool, as
according to the International IgAN tool proposed by Barbour
et al. in the original derivation cohort, this variable did not
correlate significantly with prognosis. The primary outcome
was a composite of either ESKD (eGFR < 15 mL/min/1.73
m2, dialysis or kidney transplantation) or a reduction in eGFR
below 50% of the value at biopsy for a period of more than 3
months, whichever occurred first. For validation, each covariate
and outcome were defined exactly according to the original
publication of Barbour et al. (10).
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Prediction Models for External Validation
The prediction models for external validation were derived from
the original publication of Barbour et al. (10) and described in
detail by Zhang et al. (11).

Statistical Analysis
The initial step for the model validation was to calculate
the linear predictor for each patient in our cohort based on
the exact predictors and coefficient values. Then, we assessed
the discrimination and calibration performance of the model
according to Royston and Altman, and Zhang et al. (11, 12).

Discrimination was assessed first by estimating the regression
coefficient on the linear predictor coefficient by fitting a
Cox proportional hazards model for the full model without
race and an interval format Cox proportional hazards model
for the full model with race in our data set. If the slope
on the linear predictor is >1, then the discrimination is
better, and conservatively if it is <1, the discrimination is
poorer. The model parameters for the calculation of the linear

predictor were taken by the original publication (10) but the
linear predictor itself was calculated using the equations as
described in detail by Zhang et al. (11) for each patient of
our data separately.

Second, Harrell’s C-index of concordance or C-statistic was
calculated to determine the ability of the model to discriminate
between patients who have experienced the outcome of disease
progression against those who did not. By definition, the C-
statistic must lie between 0.5 and 1, with a general consensus
that a C-statistic with an acceptable discrimination power is
≥ 0.65. In addition, the coefficient of determination (R2

D)
was also calculated using the method proposed by Royston
and Sauerbrei (13).

Third, we divided the patients into risk groups, including

<16th (low risk), approximately from 16 to< 50th (intermediate
risk),∼50th to< 84th (higher risk), and> 84th (the highest risk)
percentiles of the linear predictor from the full model without
and with race. Subgroup analyses were performed, and survival
curves were derived.

FIGURE 1 | Flow chart of patients finally included in the analysis.
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As proposed by Royston et. al., the hazard ratios can be a
sensible verification of model discrimination for comparing risk
groups, in contrast to the p-values (12). Thus, hazard ratios
were evaluated by fitting a Cox model with a dummy variable
representing each risk group referring to the lowest risk group.
When survival curves are more widely separated, the hazard
ratio tends to be greater. For model calibration, the overall
estimated regression coefficient of the linear predictor (βPI) is
the most precise estimate of relative global calibration and was
calculated accordingly.

RESULTS

Clinical Characteristics and Outcome of
Baseline Patients
The flow chart of the inclusion of the patients, in the final
analysis, is presented in Figure 1 and their clinical characteristics
are presented in Table 1. There were 264 patients included in our
analysis, all of Caucasian origin. In this cohort, the percentage
of combined outcomes was 20.07% and among these, 12.9%
reached ESKD and 13.6% showed a 50% decrease in eGFR. Mean
follow-up was 8.5 (5–10.83) years.

The rate of RASB use was 44.5% at biopsy and 84.5% after
biopsy while 46.2% received a form of immunosuppressive
regimen during follow-up. Immunosuppression treatment
prescription according to risk for disease progression is as
follows; in the lower risk group (lower 16th percentile) the
immunosuppression treatment prescription was 26.2%, in the
intermediate-risk group (16–50th percentile), it was 33.3%, in
the higher risk group (50–84th percentile), it was 58.9%, and in
the highest risk group (upper 16th percentile), it was 66.7%. The
immunosuppressive treatment options and protocols that were
followed by each center varied depending on local practices and
experience. These included 4 main treatment protocols i.e., oral
steroid treatment based on a 6-month regimen of oral prednisone
starting at 1 mg/kg/day for the first 2 months and with gradual
tapering until the end of treatment at 6 months which was
prescribed to 57 patients (6, 20, 21, and 10 patients in the
lower, intermediate, high, and highest risk groups, respectively).
Another option was the Pozzi regimen consisting of i.v. bolus
injections of 1 g of methylprednisolone for 3 days each at months
1, 3, and 5, followed by an oral steroid of 0.5 mg/kg prednisone
on alternate days for a total of 6 months which was followed by
24 patients (5, 5, 1, and 4 patients in the lower, intermediate, high,
and highest risk groups, respectively); oral steroid treatment as
mentioned in the first regimen plus azathioprine 100 mg/day
for 6 months was followed by 21 patients (0, 1, 11, and 9
patients in the lower, intermediate, high and highest risk groups,
respectively); and finally, i.v. bolus injections of 0.75 g/m2 of
body surface of cyclophosphamide every 4 weeks for 3 to 6 dosed
in total plus 500mg of i.v. methylprednisolone for 3 consecutive
days plus oral prednisone of 1 mg/kg/day for 1 month with
a maximum dose of 60 mg/day with gradual tapering over
4–6 months which was followed by 14 patients (0, 2, 8, and
4 patients in the lower, intermediate, high, and highest risk
groups, respectively). Finally, another option that was scarcely

TABLE 1 | Comparison of clinical and histological characteristics in the current

and previously reported cohorts.

Characteristics Reported

derivation

cohort

Reported

validation

cohort

This validation

cohort

Number of patients 2,781 1,146 264

Follow up (yr) 4.8 (3.0–7.6) 5.8 (3.4–8.5) 8.5 (5–10.83)

Age at biopsy (yr) 35.6 (28.2–45.4) 34.8 (26.9–45.0) 39 (30–51)

Gender (M/F %) 1,608 (57.8) /

1,173 (42.2)

565 (49.3) /

581 (50.7)

172 (65.2) /

92 (34.8)

Race n (%)

Caucasian 1,167 (42.0) 176 (15.5) 264 (100)

Chinese 1,021 (36.7) 292 (25.8) -

Japanese 569 (20.5) 616 (54.4) -

Other 22 (0.8) 49 (4.3) -

sCr at biopsy (mmol/l) 1.04 (0.8–1.4) 84.0

(66.2–111.4)

0.95 (0.75–1.29)

1.2 (0.9–1.775)

eGFR at biopsy

(ml/min/1.73 m2)

83.0

(56.7–108.0)

89.7

(65.3–112.7)

61.09

(40.27–83.41)

<30, n (%) 142 (5.1) 37 (3.2) 43 (16.3)

30–60, n (%) 657 (23.6) 191 (16.7) 85 (32.2)

60–90, n (%) 800 (28.8) 350 (30.5) 83 (31.4)

>90, n (%) 1,182 (42.5) 568 (49.6) 53 (20.1)

MAP (mmHg) 96.7

(88.7–106.3)

93.3

(85.0–103.3)

100

(88.3–106.7)

Proteinuria

<0.5, n (%) 383 (13.9) 221 (19.4) 42 (15.9)

0.5–1, n (%) 772 (28.1) 209 (18.3) 58 (21.9)

1–2, n (%) 817 (29.7) 352 (30.8) 84 (31.8)

2–3, n (%) 360 (13.1) 145 (12.7) 34 (12.9)

>3, n (%) 415 (15.1) 215 (18.8) 46 (17.4)

MEST score

M1 (%) 1,054 (38.0) 481 (42.0) 186 (71)

E1 (%) 478 (17.3) 476 (41.5) 91 (34.7)

S1 (%) 2,137 (77) 912 (79.6) 154 (58.4)

T1 (%) 686 (24.7) 207 (18.1) 67 (25.6)

T2 (%) 128 (4.6) 122 (10.6) 11 (4.2)

RASB use, n (%)

At biopsy 862 (32.4) 320 (30.0) 117 (44.5)

After biopsy 2,400 (86.7) 708 (66.4) 223 (84.5)

Immunosuppression

After biopsy 1,209 (43.5) 359 (31.3) 122 (46.2)

Primary outcome

50% eGFR decline 420 (15.1) 210 (18.3) 36 (13.6)

ESKD 372 (13.4) 155 (13.5) 34 (12.9)

Total primary outcome

events

492 (17.7) 213 (18.6) 53 (20.07)

used was the combination of oral prednisone with 1–2 g of
mycophenolate mofetil which was followed by 6 patients (0,
2, 3, and 1 in the lower, intermediate, high, and highest risk
groups, respectively). According to our data, 14 patients had
IgA vasculitis and all were treated with IV cyclophosphamide.
The use of immunosuppression ranged in older cohorts from
7.1 to 11.1% (11). Moreover, the distributions of other clinical
parameters, including baseline kidney function, age, gender, and
Oxford MEST histologic scores showed significant differences
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FIGURE 2 | Kaplan-Meier curves for survival probability of primary outcome in 4 risk groups based on the percentile of the linear predictor. Full model with race (A).

Full model without race (B). The 4 risk groups were defined as <16th (low risk), ∼16th to <50th (intermediate risk), ∼50th to <84th (higher risk), and >84th (the

highest risk) percentiles of the linear predictor from the full model without and with race, respectively.

between this and previously reported studies while proteinuria
and blood pressure were similar.

Regression on Linear Predictor in
Validation Data
The calibration slopes of linear prediction (βPI) were 0.40 for the
full model without race and 0.45 for the full model with race.
Thus, discrimination appeared not to be preserved.

Measures of Discrimination and Model Fit
By applying the reported models to our current cohort, the C-
statistic was calculated to be 0.70 for the model without race
and 0.71 for the full model with race. In addition, R2D values
were 35% for the full model without race and 39% for the full
model with race indicating an increase compared to the ∼25%
R2D values of the reported derivation cohorts. Thus, according to
R2
D, and contradictory to βPI, a good performance of the model’s

fit was suggested.

Comparison of Risk Groups
Figures below show two Kaplan-Meier curves according to risk
groups based on the percentiles of the linear predictor [<16th for
low-risk group (red),∼16th to<50th for intermediate-risk group
(green), ∼50th to <84th for higher risk group (blue), and >84th
for the highest risk group (purple)] (Figure 2).

The Kaplan-Meier curves of the risk groups were well
separated for the high and highest risk groups of the two
full models throughout the whole follow-up time. The low-
and intermediate-risk groups however became more widely
separated by 84 months of follow-up. When comparing our

validation results with the ones from the original publication,
the discrimination of groups was similar. Furthermore, the full
model with race seemedmore able to distinguish between the two
lowest risk groups in our validation cohort.

The hazard ratios between risk groups were well-maintained.
The predicted 5-year risks for patients in the 4 groups defined
in our cohort were 27.5, 64.9, 98.4, and 99.9%, respectively
for the full model without race, and 35, 73.7, 99.2, and 100%,
respectively for the full model with race. Similarly, the eGFR
decline slopes in the 4 groups were 1.67, 0.42, 1.18, and 1.77,
respectively for the full model with race and 1.23, 0.80, 0.82,
and 2.13, respectively for the full model without race. The
clinical and histological characteristics of the patients across
the risk groups based on the full model without and with race
are presented in Table 2. Accordingly, we found that clinical
characteristics were worse with increasing risk, defined as higher
baseline proteinuria, worst kidney function, and more Oxford
MEST lesions.

Model Calibration
Calibration generally describes the accuracy between the
estimation or prediction of survival and the observed survival of
the model as seen in the actual data. As previously mentioned
by Royston et al. (12) a well-accepted approach to the validation
of a model is to estimate the regression coefficient of the
prognostic index (PI) in the validation dataset. Here, the PI
was first computed for every individual in our cohort exactly
as reported for the derivation cohort. Second, the estimate of
the calibration slope or the regression coefficient for the PI
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TABLE 2 | Clinical and histological characteristics of groups of patients according to risk stratification based on the full model without and with race.

Group 1 (lower

16th

percentile)

n = 42

Group 2

(16–50th

percentile)

n = 90

Group 3

(50–84th

percentile)

n = 90

Group 4 (upper

16th

percentile)

n = 42

P-value

Full model without race

Biopsy age 30 (21.75–42) 39 (30–52.25) 42 (33–52.25) 40.5

(36.5–57.25)

<0.001

Systolic BP 105 (100–116.5) 130 (120–140) 145 (130–150) 157.5

(141.5–167.3)

<0.001

Diastolic BP 69 (60–75) 80 (75–85) 85 (80–90) 90 (80–98) <0.001

eGFR diagnosis 99.08

(74.99–120.4)

69.35

(52.1–91.9)

50.5 (33.7–67.9) 31 (23.3–46.3) <0.001

sCr diagnosis 0.85 (0.8–0.9) 1.06 (0.9–1.36) 1.4 (1.1–2.03) 1.95 (1.4–2.63) <0.001

Proteinuria diagnosis 620

(292.5–1,063)

900 (490–1,500) 1,893

(1,100–3,250)

2,329

(1,788–3,100)

<0.001

M (0/1) 20 (47.6%)/22

(52.4%)

25 (27.8%)/65

(72.2%)

23 (25.6%)/65

(72.2%)

8 (19.1%)/34

(80.9%)

0.023

E (0/1) 36 (85.7%)/6

(42.3%)

63 (70%)/27

(30%)

51 (56.7%)/37

(41.1%)

21 (50%)/21

(50%)

0.002

S (0/1) 29 (69%)/13

(31%)

41 (45.6%)/49

(54.4%)

28 (31.1%)/60

(66.7%)

11 (26.2%)/31

(73.8%)

<0.001

T (0/1/2) 41 (97.6%)/1

(2.4%)/0(0%)

85 (94.4%)/1

(1.1%)/4 (4.4%)

52 (57.8%)/29

(32.2%)/7 (7.8%)

6 (14.3%)/36

(85.7%)/0(0%)

<0.001

Full model with race n = 42 n = 90 n = 90 n = 42

Biopsy age 31.5 (22–42.5) 39 (30–53) 41 (32–52) 45.5 (38–58.25) 0.001

Systolic BP 105 (100–118.5) 128 (120–140) 140 (130–150.5) 154.5

(146.8–167)

<0.001

Diastolic BP 69.5 (60–75) 80 (70–84.5) 85 (80–90) 90 (80.75–98) <0.001

eGFR diagnosis 96.6

(76.3–114.1)

71 (57.3–92.2) 48.9 (33.7–65.7) 29.3 (21.4–42.9) <0.001

sCr diagnosis 0.9 (0.8–0.9) 1.02 (0.9–1.2) 1.5 (1.2–1.95) 2.05 (1.65–2.7) <0.001

Proteinuria diagnosis 500 (252–825) 900 (500–1500) 1800

(1200–2850)

2566

(1800–3937)

<0.001

M (0/1) 17 (40.5%)/25

(59.5%)

28 (31.1%)/61

(67.8%)

25 (27.8%)/64

(71.1%)

3 (7.1%)/36

(85.7%)

0.06

E (0/1) 33 (78.6%)/9

(21.4%)

64 (71.1%)/25

(27.8%)

54 (60%)/35

(38.9%)

20 (47.6%)/22

(52.4%)

0.009

S (0/1) 27 (64.3%)/15

(35.7%)

45 (50%)/44

(48.9%)

28 (31.1%)/61

(67.8%)

9 (21.4%)/33

(78.6%)

<0.001

T (0/1/2) 41 (97.6%)/1

(2.4%)/0 (0%)

84 (93.3%)/1

(1.1%)/4 (4.4%)

53 (58.9%)/29

(32.2%)/7 (7.8%)

6 (14.3%)/36

(85.7%)/0 (0%)

<0.001

The test used for comparison of continuous variables was ANOVA, and for categorical variables, the Chi-square test was used.

was calculated for the validation dataset. The overall estimate
of the β of the PI is the most precise estimate of the relative
global calibration. In our analysis, the estimate of the βPI for
the full model with and without race was calculated to be
0.40 (SE = 0.08) and 0.45 (SE = 0.08), respectively, which are
far from 1. Thus, it appears that both the models failed to
show adequate calibration in this validation cohort and thus
cannot accurately predict the 5-year risk for ESKD. This is also
apparent in the difference between the predicted mean 5-year
risk as calculated from the model (Table 3) and the observed
survival as shown in the Kaplan-Meier curves (Figure 2), in
which the model overestimates the mean 5-year risk between all
risk groups.

DISCUSSION

In this study, we validated two risk-prediction models which

accurately predict a 50% decline in eGFR or ESKD in
patients with IgAN using the available data set from the

national IgAN registry of the Greek society of Nephrology
(8). From this data set, we extracted and used the clinical

and histological information from patients with available MEST

scores. In this study, we examined the value and precision in
reproducing the predicted risk of a 50% decline in eGFR or
ESKD using the already available IgAN international prediction
tool from an ethnically homogeneous cohort. Moreover, we
examined the validity for both prediction models; the one that
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TABLE 3 | Discrimination measures in the current and reported cohorts.

Measure Hazard ratio Mean

predicted 5y

risk, %

eGFR decline

slope

Full model

without race

Low risk group Reference 27.5 −1.67

Intermediate risk

group

2.15 (0.6–7.6) 64.9 −0.42

High risk group 4.24 (1.2–14.29) 98.4 −1.18

Highest risk group 9.05 (2.6–30) 99.9 −1.77

Full model with

race

Low risk group Reference 35.0 −1.23

Intermediate risk

group

1.82 (0.5–6.53) 73.7 −0.80

High risk group 4.55 (1.35–15.26) 99.2 −0.82

Highest risk group 8.66 (2.54–29.5) 100 −2.13

includes race/ethnicity in calculating risk and the other without
race/ethnicity. Both the models could not accurately capture and
predict the 5-year risk; however, they were able to accurately
distinguish the highest and higher risk patients from patients
with low and intermediate risk.

As the diagnosis of IgAN is only established after a successful
renal biopsy containing more than 10 glomeruli, a prediction
model with standard histological characteristics would help
increase the accuracy of the model. Moreover, there are studies
based on urine and serum biomarkers that reflect kidney fibrosis
and ongoing disease progression. Nevertheless, the use of such
markers has not proven their efficacy in everyday clinical
practice (14). Furthermore, the established and histologically
reproducible MEST score has a proven value in the long-term
prediction of disease progression (15). On the other hand,
although some other models for predicting disease progression
were developed containing histological variables, these models
were either based on a relatively small or in a single patient
population (6, 16, 17). In this context, recently two full models
combining clinical and histological variables (Oxford MEST
score) were derived and validated in two multi-ethnic cohorts
(10). These models contain well-established factors for IgAN
progression which can easily and consistently be obtained.

Our results point out that both prediction models are fairly
suitable for implementation in ethnic Greeks and improve
kidney function risk stratification and subsequent decision-
making for appropriate clinical treatment. Our analysis showed
that survival curves of different risk groups were adequately
separated in both the models. Nevertheless, the eGFR decline
slope was not consistently larger among the lower, intermediate,
and higher risk groups, as it was for the highest risk group.
However, both the models showed that the prediction risk over
5 years was extremely overestimated in our patients. Overall,
we suggest using the full model without race for further clinical
utility assessment and decision-making for pharmacological
interventions in the Greek population with IgAN.

The use of immunosuppressive treatment after biopsy in
any risk group of our cohort reached 46.2% which is higher
than that used in the originally reported validation cohort
(10) as well as in another Asian-Caucasian cohort which
was used for external validation of the risk-prediction model
(11). Moreover, 26.2% in the lowest and 33.3% of patients
in the intermediated risk group received immunosuppressive
treatment as well. This is in accordance with other studies
which point that a large proportion of up to 75% of patients
are over-treated with immunosuppression despite having a
non-progressive disease even when its value has not been
proved in large prospective randomized trials (18–21). On
the contrary, the majority, but not all of the patients that
showed higher or the highest risk of disease progression
received immunosuppressive treatment consisting either of
corticosteroids alone (per o.s. or i.v.) or with a combination with
either azathioprine or cyclophosphamide. Although the exact
risk stratification threshold for immunosuppression initiation
is yet to be determined based on the risk-benefit ratio, having
a reliable, easy-to-use tool, will facilitate clinical trial design
by focusing on different treatment regimens according to the
individualized patient risk of disease progression. Accordingly,
this will eventually offer and configurate the appropriate risk-
based treatment protocols.

Although the IgAN risk tool was evaluated in an international,
multiethnic cohort addressing issues of previous studies, such as
small size cohorts with only a few patients across the spectrum
of disease activity and inter-ethnicity difference, we believe that
our cohort further enhances the validity of previous results.
That is because our cohort consists of an adequate number
of patients that covers the whole spectrum of disease activity
and with a long follow-up of more than 8 years. Furthermore,
as the original prediction risk tool accommodates differences
across different ethnic groups, we believe that the use of our
group of patients highlights not only specific similarities but also
disparities compared to the international population (7).

Our patients showed a similar burden of total primary
outcome events in comparison to both the originally reported
validation cohort (10) as well as in another Asian-Caucasian
cohort (11). Nevertheless, the total follow-up of these events
that were captured was significantly higher in our cohort. This
was despite a significantly lower median eGFR at diagnosis
and a higher proportion of patients with established chronic
kidney disease stage III or worst. Furthermore, this was not
accompanied by significant differences in conservative renin-
angiotensin-aldosterone system inhibitor (RAASi) treatment
trends after diagnosis, in comparison to the other validation
cohorts (10, 11). In comparison to the original validation
cohort (10), RAASi initiation before diagnosis was higher but
in comparison to the cohort by Zhang et al. (11), it was
significantly lower. This was probably due to different treatment
approaches in patients of the current and older eras that were
included in our cohort. In any case, this strengthens the analysis
as our cohort represents both current and older treatment
regimens. Concerning immunosuppression, a slightly higher
percentage of our patients received such treatment in comparison
to both previously mentioned validation cohorts. Thus, the
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unexpected better 5-year survival of our cohort could in part be
attributed not only to different treatment decisions and trends
but also highlights the differences in disease progression among
ethnic groups (22).

The strength of our study is that it used a population
of patients with long-term follow-up, far more than the
original and other validation cohorts (7, 23). This gives us
the advantage of capturing those patients with silent and
gradual but ominous disease progression well beyond after
diagnosis which is an IgAN characteristic (24). However, a
limitation of our study is the exclusion from the final cohort
of those patients who did not have an available Oxford MEST
histologic score. This group of patients is currently the largest
in the IgAN registry of the Greek society of Nephrology
which means that we have missed some intermediate-risk
patients who showed a gradual disease progression. Moreover,
Group 2 and Group 3 have 4 and 7 patients, each with
T2 lesions in biopsy thus highlighting significant interstitial
fibrosis and tubular atrophy while Group 4 does not have a
patient with T2 lesion (please refer to Table 2), nevertheless, the
percentage of patients in total with T2 lesions in our cohort
is identical to that of the original derivation cohort (4.6 vs.
4.2% in our cohort); thus, we consider that this finding cannot
compromise our results. Another limitation of the prediction
model is that it can be used only for a relatively short-term
prognosis (up to 8 years), considering that IgAN has a long-
term evolution.

In conclusion, we validated the full prediction models for

risk stratification of patients with IgAN. These models showed
an inferior performance on a personalized risk assessment in

comparison to one of the original derivation cohorts. Specifically,

this tool can precisely stratify Greek patients with IgAN into
four major risk groups (low, intermediate, high, and highest risk)

but without accurately predicting their 5-year kidney function.
Overall, this tool may help discriminate high-risk patients who
will benefit from immunosuppression treatment and avoid such
interventions in those with low risk for disease progression.
However, it is important to re-validate this tool in a larger
population to further investigate its accuracy which emphasizes
the need to expand the Greek national and other international
IgAN registries.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by University Hospital of Patras. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

DG and MP: conceptualization. GS and MP: methodology. DC:
software. DC and GS: validation. DC, GS, and MP: formal
analysis. HG and GL: investigation. SM, DX, ES, GL, EK, SZ,
MK, GM, SF, ED, AD, APd, ND, DB, and KS: resources and data
curation. MP: writing—original draft preparation. MP, MS, and
DC: writing—review and editing. MP and EP: visualization. EP,
IB, and APg: supervision. DG: project administration. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by a grant from the Hellenic Society of
Nephrology.

ACKNOWLEDGMENTS

We thank all the participating centers and their patients for their
cooperation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2022.778464/full#supplementary-material

Supplementary Figure 1 | Representative mesangial [M] and endocapillary [E]

hypercellularity, segmental sclerosis [S], and interstitial fibrosis/tubular atrophy [T]

(MEST) score kidney biopsy pictures. (A) MEST: M1; Glomerulus with global

severe mesangial hypercellularity, HE x 400. (B) MEST: E1; Mesangial

hypercellularity and segmental endocapillary hypercellularity, PAS x 400. (C)

MEST: S1; Segmental glomerulosclerosis with adhesion to Bowman’s capsule that

lies closer to the vascular pole (arrow), HE x 400. (D) MEST: S1; Segmental

glomerulosclerosis with adhesion to Bowman’s capsule that lies close to the

tubular pole (arrow), Masson x 400. (E) MEST: T0; Minimal Interstitial fibrosis in a

patient with IgA nephropathy, Masson x 200. (F) MEST: T1; Focus of tubular

atrophy and interstitial fibrosis in a patient with IgA nephropathy whose biopsy

showed moderate but no more than 50% tubular atrophy or interstitial fibrosis

(arrow), PAS x 100. (G) MEST: T2; Interstitial fibrosis and tubular atrophy in a

patient with IgA nephropathy whose biopsy showed diffuse interstitial fibrosis,

Masson x 200. (H) MEST: C1; Endocapillary hypercellularity with crescent

formation (arrow), HE x 400. HE, hematoxylin and eosin staining; PAS, periodic

acid-Schiff staining.
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