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Editorial on the Research Topic

Antimicrobial Resistance in Aquatic Environments

The current SARS-CoV-2 pandemic has exacerbated the rapid diagnosis of infectious diseases
outbreaks to take suitable epidemiological measures to minimize negative impacts (OudeMunnink
et al., 2021). However, the silent pandemic of antimicrobial resistance (AMR) faces several
outstanding questions about its evolution and dissemination. The urgency of an integrated
approach involving all ecological compartments, where antimicrobials and antimicrobial resistance
genes (ARGs) reservoirs are generated, maintained, and disseminated, is urgently required (Da
Silva et al., 2020). Aquatic environments are critical for understanding how the AMR develops
and spreads worldwide, considering their role as an endpoint of effluents of wastewater treatment
plants (WWTPs) or direct disposition of sewage from human or animal origin (Zheng et al., 2021;
Miłobedzka et al., 2022), the runoff of biosolids in the agriculture (Buta et al., 2021), and other
anthropogenic factors that contribute to the propagation of antimicrobial resistance determinants.

Therefore, this Research Topic aimed to deliver state-of-the-art knowledge and ideas on aquatic
environments’ role in selecting, maintaining, and dispersing AMR determinants. Fourteen articles
from Europe, Asia, America, and Africa have been published on this topic that complements our
knowledge and formulate several questions for the scientific community worldwide.

HOSPITAL WASTEWATER ROLE ON AMR DISSEMINATION

Hospital wastewaters represent a broad reservoir of antibiotic-resistant bacteria (ARB) and
ARGs, which include extended-spectrum β-lactamases (ESBLs) and carbapenemase-producing
Enterobacteriaceae (CPE), for instance (Hassoun-Kheir et al., 2020). However, there are significant
knowledge gaps about the proper wastewater treatment technologies to be applied and a lack of
protocols and indicators for executing an appropriate risk assessment (Nguyen et al., 2021). This
Research Topic includes articles that cover the influence of hospital discharges on their receiving
water bodies. In Romania, the study of Popa et al. describes the transmission of multidrug-
resistant Klebsiella pneumoniae ST101 clone from hospital to wastewater and its persistence after
chlorine treatment. The article highlights the risk of inappropriate hospital sewage disposition onto
the surface water and their potential implications on the trophic chain. In Brazil, the study of
Esposito et al. reports the genomic data and the virulence potential of Pseudomonas aeruginosa

5
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that harbor the São-Paulo-Metallo-β-lactamase (SPM-1), carried
by high-risk clone ST277 isolated from urban rivers. The authors
observed a common resistome and virulome between clinical and
environmental SPM-1-producing P. aeruginosa strains endemic
from Brazil. Additionally, the SNP-based phylogenomics showed
a high similarity between clinical and environmental genomes,
suggesting that these clones could be disseminated onto water
bodies from hospital settings.

METAGENOMICS AS A PROMISING TOOL

FOR AMR SURVEILLANCE IN THE

ENVIRONMENT

One of the current outstanding questions about the analysis
of AMR in the environment is the standardization of genomic
and metagenomic assays that could minimize the spatiotemporal
variability, the allochthonous ARG levels, the environmental
resistome complexity, and the biases about genomic extraction,
sequencing, and genomic analyses (Calero-Cáceres et al., 2019;
Li et al., 2020). Two articles that highlight the advantages of
metagenomics in AMR analysis were included in this Research
Topic. First, Perry et al. analyzed the influence of different
hospital clinical activities on the abundance of ARGs in hospital
wastewater in Scotland, highlighting the advantages of shotgun
metagenomics to identify a full range of ARGs that could be used
to guide environmental policies about AMR. Additionally, the
article of Guo et al., using a high-throughput sequencing-based
metagenomic approach, investigated the composition of bacteria
and ARGs in wastewater from hospitals in China, suggesting a
correlation between the abundance of ARGs and specific bacterial
genera and remarking that it is necessary to complement their
study including physicochemical analysis for the raw wastewater.
Both articles show interesting results and note the necessity to
develop an integrative framework that would include omics,
physicochemical and epidemiological research to enhance the
evaluation of ARGs pollution in environmental sources.

URBAN WWTP INFLUENCE ON AMR

DISSEMINATION

Several papers of this special issue analyzed the influence of
WWTPs and their discharges on AMR dissemination: In South
Korea, Shin et al. characterized an extensively drug-resistant
(XDR) E. coli isolated from influents of a WWTP. This study
suggests that these isolates could be disseminated into the
outgoing river from WWTP. The sewage could act as a potential
spreader of ARGs, including emerging carbapenemase genes like
blaNDM−5. In South Africa, Mbanga et al. characterized isolates
of Enterococcus spp. from a WWTP and their receiving water
bodies that serve as a water source for domestic, agricultural,
and recreational purposes. Those isolates harbor a wide plethora
of ARGs and virulence factors, showing that the effluents of
the WWTP could act as a dissemination vector of multidrug-
resistant (MDR) microorganisms. This Research Topic includes
a review paper by Uluseker et al. that extensively reviews the
current knowledge on sources, spread, and removal mechanisms

of ARGs in microbial communities of wastewaters, WWTPs,
and downstream recipients. This review includes the basis of
antibiotic resistance, an explanation about the dynamics of AMR
and antibiotics in WWTPs, and suggestions to be considered for
the operation, regulation, and design of WWTPs. These studies
suggest the urgent need for regular surveillance andmanagement
of water bodies to limit the spread of these isolates.

ANTHROPOGENIC INFLUENCE ON WATER

BODIES

Singh et al. analyzed Escherichia coli from the river Yamuna
(India), a highly polluted river that receives an intense
anthropogenic influence from urban and animal origin. Their
results showed high AMR profiles, highlighting the presence of
CTX-M-15 type ESBLs and the occurrence of class I integrons in
their isolates. In Ireland, Sala-Comorera et al. demonstrated the
strong impact of different watercourses discharges onto the levels
of AMR in both bacterial and bacteriophage fractions in marine
bathing waters, which may expose the users to fecal pollution and
therefore could increase the probability to be exposed to ARGs.
Another outstanding question about AMR in the environment is
to demonstrate which levels of AMR are necessary to represent
a real environmental danger. Finally, Pallares-Vega et al., shown
by in vitro assays the role of ecological factors that could hamper
conjugative plasmid transfer from gut bacteria once discharged
into the environment. Their findings highlight the possibility that
the fecal organisms may transfer plasmids in aquatic ecosystems,
despite the variable conditions that could occur environmentally.

AMR IMPACT ON THE FOOD CHAIN

The food supply chain connects environmental sources of
bacteria with humans and represents another outstanding field in
the One Health perspective for understanding the dissemination
and evolution of AMR. The article of Montero et al. analyzed
ESBL producing E. coli isolated from irrigation waters, vegetables,
and fruits in Ecuador. These authors detected that the allelic
variants of the blaCTX−M gene found in irrigation channels and
vegetables were the same as those observed in commensal E. coli
from domestic animals, and commensal and pathogenic E. coli
from humans, suggesting a connection between these different
sources. In addition, the article of Cheng et al. analyzed sediments
from aquaculture farms in China by constructing network plots
based on 16S rRNA metagenomics, physicochemical analysis,
and quantification of ARGs. Their results provide evidence
for understanding the environmental risks associated with
aquaculture practices. On the other hand, Ye et al. showed in
Edwardsiella tarda, an important pathogen in aquaculture, that
reactive oxygen species (ROS) play a role in bacterial resistance
and sensitivity to ceftazidime. They saw a lower ROS production
in ceftazidime-resistant E. tarda than in a sensitive strain related
to the inactivation of the pyruvate cycle. Additionally, their
study reveals a new mechanism that increases ROS production,
the activation of the pyruvate cycle by Fe3+. These findings

Frontiers in Microbiology | www.frontiersin.org 2 February 2022 | Volume 13 | Article 8662686

https://doi.org/10.3389/fmicb.2021.703560
https://doi.org/10.3389/fmicb.2021.709051
https://doi.org/10.3389/fmicb.2021.645411
https://doi.org/10.3389/fmicb.2021.648454
https://doi.org/10.3389/fmicb.2021.717809
https://doi.org/10.3389/fmicb.2021.62156
https://doi.org/10.3389/fmicb.2021.718234
https://doi.org/10.3389/fmicb.2021.656250
https://doi.org/10.3389/fmicb.2021.709418
https://doi.org/10.3389/fmicb.2021.679805
https://doi.org/10.3389/fmicb.2021.654783
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Calero-Cáceres et al. Editorial: Antimicrobial Resistance in Aquatic Environments

provide tools and knowledge for future new strategies to fight
MDR pathogens.

ROLE OF WILDLIFE AS A POTENTIAL

RESERVOIR OF AMR

Zeballos-Gross et al. comprehensively reviewed the potential role
of gulls as reservoirs and vectors of AMR in the environment,
highlighting the current knowledge about related research, the
phenotypic and molecular characterization of AMR, limitations
about the existing methodologies, and suggestions for improving
the derived results.

In summary, this Research Topic provides an excellent
update of the role of aquatic ecosystems on the evolution

and dissemination of AMR worldwide. Therefore, the editors
encourage the scientific community to consider the results and
challenges of this special issue.
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Multidrug Resistant Klebsiella
pneumoniae ST101 Clone Survival
Chain From Inpatients to Hospital
Effluent After Chlorine Treatment
Laura Ioana Popa1,2,3†, Irina Gheorghe1,2†, Ilda Czobor Barbu1,2* , Marius Surleac2,4,
Simona Paraschiv4, Luminiţa Măruţescu1,2, Marcela Popa2,
Graţiela Grădişteanu Pîrcălăbioru2, Daniela Talapan4, Mihai Niţă5,
Anca Streinu-Cercel4,6, Adrian Streinu-Cercel4,6, Dan Oţelea4 and
Mariana Carmen Chifiriuc1,2

1 Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania, 2 Research
Institute of the University of Bucharest, Bucharest, Romania, 3 Department of Bioinformatics, National Institute of Research
and Development for Biological Sciences, Bucharest, Romania, 4 National Institute for Infectious Diseases “Matei Bals”,
Bucharest, Romania, 5 National Research and Development Institute for Industrial Ecology (ECOIND), Bucharest, Romania,
6 Department II – Infectious Diseases, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania

In this paper we describe the transmission of a multi-drug resistant Klebsiella
pneumoniae ST101 clone from hospital to wastewater and its persistence after chlorine
treatment. Water samples from influents and effluents of the sewage tank of an infectious
diseases hospital and clinical strains collected from the intra-hospital infections, during
a period of 10 days prior to wastewater sampling were analyzed. Antibiotic resistant
K. pneumoniae strains from wastewaters were recovered on selective media. Based
on antibiotic susceptibility profiles and PCR analyses of antibiotic resistance (AR)
genetic background, as well as whole-genome sequencing (Illumina MiSeq) and
subsequent bioinformatic analyses, 11 ST101 K. pneumoniae strains isolated from
hospital wastewater influent, wastewater effluent and clinical sector were identified as
clonally related. The SNP and core genome analyses pointed out that five strains were
found to be closely related (with ≤18 SNPs and identical cgMLST profile). The strains
belonging to this clone harbored multiple acquired AR genes [blaCTX−M−15, blaOXA−48,
blaOXA−1, blaSHV−106, blaTEM−150, aac(3)-IIa, aac(6′)-Ib-cr, oqxA10, oqxB17, fosA,
catB3, dfrA14, tet(D)] and chromosomal mutations involved in AR (1mgrB, 1ompK35,
amino acid substitutions in GyrA Ser83Tyr, Asp87Asn, ParC Ser80Tyr). Twenty-nine
virulence genes involved in iron acquisition, biofilm and pili formation, adherence, and the
type six secretion system – T6SS-III were identified. Our study proves the transmission
of MDR K. pneumoniae from hospital to the hospital effluent and its persistence after
the chlorine treatment, raising the risk of surface water contamination and further
dissemination to different components of the trophic chain, including humans.

Keywords: wastewater treatment plant, MDR Klebsiella pneumoniae, whole-genome sequencing, hospital
wastewater chlorine treatment, hospital sewage
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INTRODUCTION

Due to the worldwide use of antibiotics in the treatment of
human and animal infectious diseases, but also in livestock
and agriculture, a large amount of antibiotics of pharmaceutical
origin are found in anthropic environments, such as sewage
and wastewater treatment plants (WWTPs) and ends up being
discharged in the natural environment (Kraemer et al., 2019;
Zhang T. et al., 2019; Zhang Z. et al., 2019). The extensive use of
antibiotics leads to the spread of antibiotic resistance (AR), which
currently represents a major public health concern. AR rates
are particularly high in acute care hospitals driven by selective
pressure of antibiotic usage (Hocquet et al., 2016), hospitals
being main ecological niches for the selection, accumulation, and
spread of antibiotic resistant bacteria (ARB).

Water plays a crucial role in the spreading of AR, through
inappropriate release of human and animal effluents in
the surface waters through hospital wastewaters, WWTPs,
aquaculture farms, surface, and groundwater. Hospital
wastewaters are highly complex effluents, carrying a wide range
of micro- and macropollutants, including antibiotic compounds,
metabolized drugs, disinfectants, patient excrements, and
microorganisms. The presence of ARB as well as of antibiotic
residues, which could inhibit the growth of susceptible bacteria,
are thereby increasing the population of resistant bacteria in the
receiving water (Kaur et al., 2020; Rozman et al., 2020).

Hospitals generate a large amount of wastewater per day. The
hospital effluents are loaded with pathogenic microorganisms,
antibiotics, and other pharmaceutical or toxic substances, which
are only partially removed during wastewater treatments, driving
the pollution of the natural environments, including selection,
and dissemination of AR (Kummerer et al., 2000; Kim and Aga,
2007; Alrhmoun et al., 2014; Laffite et al., 2016). Antibiotic
pollutants, as well as heavy metals and even chlorination, could
increase the general rates of mutation, recombination, and lateral
gene transfer, thus recruiting more genes into the resistome and
mobilome, and simultaneously providing the selective force to
fix such changes, acting as drivers of bacterial evolution, with
potentially adverse consequences for human welfare (Gillings,
2013). To minimize the risk of superbugs selection, the World
Health Organization (WHO, 2014) recommends that hospitals
have onsite facilities for the pre-treatment of hospital effluent
prior to discharge into the general wastewater streaming1; the
purpose is to eliminate different contaminants, such as bacterial
pathogens, antibiotics, disinfectants, radioactive substances,
toxic chemicals, etc.

Considering the increasing risk of microbial infections by
reclaiming water through processing it in WWTPs, advanced
treatment technologies and disinfection process are considered
a major tool to control the spread of ARB into the environment
(Rizzo et al., 2013), one of the most widely used and accepted
ways to achieve it being through chlorine treatment (Huang
et al., 2011). Chlorine efficiency depends on the concentration,
exposure time and the formulation used. It has been shown
that chlorine may also contribute to the selection of bacteria

1https://www.who.int/

highly resistant to tetracycline, chloramphenicol, trimethoprim,
and to the accumulation of various ARGs (such as ampC, aphA2,
blaTEM−1, tetA/G, ermA/B, plasmids, insertion sequences, and
integrons) (Shi et al., 2013). In addition, metagenomic analyses
performed on wastewater samples after chlorine treatment,
shows that up to 40% of erythromycin resistance genes and
80% of tetracycline resistance genes cannot be removed (Yuan
et al., 2015). Furthermore, chlorine treatment may promote
conjugation and the ARGs transmission through horizontal
gene transfer of mobile genetic elements and also plasmid
over-replication and the emergence of multi-drug resistance
(MDR) through activation of multi-drug efflux pumps (Shi
et al., 2013; Popa et al., 2018; Sanganyado and Gwenzi, 2019;
Vrancianu et al., 2020).

Multi-drug resistant Klebsiella pneumoniae is a major
nosocomial pathogen, causing infections with high morbidity
and mortality rates (up to 50%) (Bassetti et al., 2018), caused
by limited treatment options. This pathogen harbors a wide
resistome that could evolve under antibiotic and biocide selective
pressure, leading to the occurrence of extremely drug resistant
(XDR) or high-risk (HiR) clones, with great epidemic potential
(Navon-Venezia et al., 2017).

As many as 90,000 infections and more than 7,000 deaths
in Europe are attributable to K. pneumoniae resistant to
carbapenems, to colistin or producing extended spectrum
β-lactamase (ESBL) (Cassini et al., 2015). In 2018, resistance to
carbapenems (last resort antibiotics) in K. pneumoniae ranged in
various countries from 0 to 63.9%, the highest prevalence being
encountered in Greece, followed by Romania (29.5%) and Italy
(26.8%) (EARSS-Net), Europe being considered “epidemic” for
carbapenemase- producing K. pneumoniae (Bassetti et al., 2018).
The dissemination of MDR K. pneumoniae strains from hospitals
to the environment was previously demonstrated (Mahon et al.,
2017; Khan et al., 2018; Lepuschitz et al., 2019), highlighting the
ability of these strains to survive and persists in environmental
conditions. Despite this evidence, primary treatment of hospital
wastewaters before their discharge in the urban sewage is not
mandatory in many countries (Hocquet et al., 2016; Rozman
et al., 2020), these wastewaters ending up being treated in urban
wastewater treatment plants. One of the primary treatments
of hospital wastewaters used in Romania is represented by
chlorine treatment, but the knowledge regarding the effects of
chlorination on ARB is scarce. The current literature reports
conflicting results, since some studies describe the removal of
some ARB by chlorine treatment (Zhang et al., 2015; Lin et al.,
2016), while other data suggest that this treatment is ineffective
(Yuan et al., 2015).

Previous data from our research team (Surleac et al.,
2020) showed that MDR, carbapenemase and ESBL-producing
K. pneumoniae isolated from clinics, hospital wastewater, and
urban WWTPs in different regions of the country exhibit
multiple antibiotic and antiseptic resistance, as well as virulence
genes, the ST101 clone being the most frequently encountered
in all sampling sites. The K. pneumoniae ST101 clone seems to
be well established in Romanian hospitals (Dortet et al., 2015;
Czobor et al., 2016) and wastewaters (Surleac et al., 2020), this
determining us to investigate its possible transmission from
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hospital to wastewater, aiming to comparatively characterize
the K. pneumoniae ST101 isolated from an infectious diseases
hospital and its wastewaters.

MATERIALS AND METHODS

Isolation of ARB From Clinical and
Wastewater Samples
Grab water samples were collected in November (21st and 23rd)
2018, and March (20) 2019 from the influent and the effluent
of the hospital collecting sewage tank (Figure 1), in which
active chlorine solution (0.06 g/L) is intermittently pulverized,
according to the hospital standard operating procedure. Water
samples were processed following the recommendations of SR
EN ISO 9308-2/2014 (coliform bacteria). Briefly, different water
volumes and dilutions (undiluted 1 ml, 10 ml, and 30 ml
as well as 1 ml and 3 ml out of ten-fold dilutions – 1/10
and 1/100, respectively) were filtered through 0.45 µm pore
size membranes (Millipore, France), subsequently inoculated on
antibiotic-enriched, chromogenic media (BioMérieux, France),
namely ChromID ESBL (for ESBL-producing enterobacteria),
ChromID OXA-48 agar and ChromID CARBA agar for
carbapenemase (CRE)-producing strains. Up to ten colonies
with KESC (Klebsiella – Enterobacter – Serratia – Citrobacter)
carbapenem-resistance phenotype were randomly selected from
each culture media per sample. The isolates were confirmed
by subsequent cultivation on the same type of chromogenic
media used for their isolation, identified using the MALDI-
TOF-MS Bruker system and subsequently introduced in the
microbial collection of the Research Institute of the University
of Bucharest. In order to evaluate the occurrence of particular
clones of MDR K. pneumoniae in hospital wastewater, 10 days
prior to water sampling, all K. pneumoniae strains isolated

from positive clinical specimens, were collected by the hospital
microbiology laboratory and provided for comparative analysis
(Supplementary Table 1). The clinical strains were sampled from
inpatients, cultured and subsequently isolated on blood agar,
and Cystine Lactose Electrolyte Deficient (CLED) agar (Rafila
et al., 2015), identified using MALDI-TOF-MS Bruker system,
and included in the microbial collection of the Research Institute
of the University of Bucharest without any link to personal data
regarding the patients.

Antibiotic Susceptibility Testing
The two colonies of K. pneumoniae selected from each
chromogenic media (ChromID ESBL, OXA-48, and CARBA)
and each volume/dilution used for isolation, as well as the
clinical K. pneumoniae strains were further studied using the
disk diffusion method (CLSI, 2019) and the following 16
antibiotics: amikacin (AK), amoxicillin-clavulanic acid (AMC),
ampicillin (AMP), aztreonam (ATM), cefepime (FEP), cefoxitin
(FOX), ceftriaxone (CRO), cefuroxime (CXM), ciprofloxacin
(CIP), ertapenem (ETP), gentamicin (CN), imipenem (IMP),
meropenem (MEM), piperacillin (PRL), tetracycline (TET),
trimethoprim-sulfamethoxazole (SXT). Escherichia coli ATCC
25922 strain was used for quality control.

Screening of β-Lactam Resistance
Genes (ARGs)
In order to investigate the genetic support of β-lactam enzymatic
resistance (carbapenemases, ESBLs), bacterial DNA was extracted
using an adapted alkaline extraction method (Almahdawy et al.,
2019). The genetic background of AR was investigated by PCR
(PCR Master Mix 2X, Thermo Scientific), using 1 µl of DNA
and specific primers for blaTEM (Quinteros et al., 2003), blaSHV
(Kim and Lee, 2000), blaCTX−M (Israil et al., 2013), blaOXA−48
(Poirel et al., 2011), blaVIM (Shirani et al., 2016), blaIMP (Shirani

FIGURE 1 | Schematic representation of the sampling sites.
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et al., 2016), blaNDM (Nordmann et al., 2011), blaSIM (Qi et al.,
2008), blaSPM (Ellington et al., 2007), and blaKPC (Poirel et al.,
2011) genes (Supplementary Table 2). All reactions were carried
out using the temperature of 55◦C for primers annealing, except
for blaTEM and blaIMP, for which the annealing was performed
at 52◦C.

WGS and Bioinformatics Setup
The aquatic strains from the three sampling points (n = 23)
showing matching AR profiles with the clinical strains (n = 8)
(Supplementary Table 3) were selected for whole genome
sequencing. Total DNA was extracted (DNeasy UltraClean
Microbial Kit Qiagen optimized with an additional mechanical
and chemical bacterial lysis step and ethanol precipitation)
and subjected to Illumina (Nextera DNA Flex Library Prep
Kit) sequencing. Both quality (2100 Bioanalyzer, Agilent)
and quantity (Qubit 4 Fluorometer, Thermo Fisher Scientific,
United States) checks were performed on the DNA pool libraries
before starting the paired-end shotgun sequencing on the MiSeq
platform (Illumina, United States). MiSeq reagent kit v.3 (600
cycles) was chosen for the high quality of the generated output.

Raw reads were quality-checked using FastQC (Andrews,
2010), assembled using Shovill pipeline (Seemann, 2018), and
primarily annotated using Prokka (Seemann, 2014). Specific
gene profiling was assessed using ABRicate (Seemann, 2020b)
software, with specific databases for AR (Feldgarden et al., 2019),
virulence (Chen et al., 2016), and plasmid replicons (Carattoli
et al., 2014). ARIBA was also used for predicting the resistance
genes for each sample (Hunt et al., 2017). Moreover, we also
interrogated the database provided by the online CGE platform –
http://www.genomicepidemiology.org/- (CGE Platform, 2020),
regarding the resistance (Zankari et al., 2012), virulence (Joensen
et al., 2014) and the pathogenic potential using Pathogen Finder
predictor software (Cosentino et al., 2013). Capsular and LPS
antigens (K and O loci) and chromosomal mutations involved
in AR were annotated using Kleborate (Wyres et al., 2016;
Wick et al., 2018). Strain relatedness was investigated using
MLST (Seemann, 2020a), cgMLST (Jolley and Maiden, 2010)
Snippy (Seemann, 2015) and kSNP3 (Gardner et al., 2015).
Comparative gene analyses were performed using Roary (Page
et al., 2015) and the output was used to infer phylogenies
using RAxML (Stamatakis, 2014) and visualized using iTOL
(Letunic and Bork, 2019).

Strains Selection Based on Phenotypic
and Molecular Data
Out of a total of 101 carbapenem resistant K. pneumoniae strains,
78 isolated from wastewater and 23 from inpatients, some of them
previously characterized for their antibiotic susceptibility profiles
(Surleac et al., 2020), 31 were initially selected for the present
study, based on their sampling location and MDR phenotype, as
defined by Magiorakos et al., 2012 (Supplementary Table 3). For
all the 31 strains, the MLST profile was inferred from WGS data
(Surleac et al., 2020). The MLST profiles revealed by WGS data
analyses highlighted that the K. pneumoniae ST101 subtype was
the most prevalent (n = 11, 36%) in all three sampling points

(Supplementary Figure 2). Thus, these isolated were further
selected for characterization.

RESULTS

For the 31 strains selected, the antibiotic susceptibility profiles,
the genetic background of β-lactam resistance and ST-types were
compared, (Supplementary Table 3) revealing the presence of
matching patterns of AR profiles (i.e., resistance to same classes of
antibiotics, or to a single antibiotic from an antibiotic class), the
presence/absence of ARGs and the abundance of K. pneumoniae
ST101 The PCR for detection of β-lactam resistance genes
revealed the presence of carbapenemases genes, which were, in
decreasing frequency order, blaOXA−48, blaNDM, and blaKPC as
well as of the blaCTX−M encoding for ESBLs. The blaSHV gene
was detected in all isolates (Supplementary Table 3).

All these strains were further characterized by whole genome
sequencing. The ARGs identified by gene prediction were
diverse and encoded resistance to β-lactams, aminoglycosides,
quinolones, folate inhibitors, tetracyclines and others; no
significant decrease of ARG distribution in the chlorine-
treated effluent of vs. untreated influent of the hospital
chlorination tank was observed, the majority of the ARGs
being present in the aquatic strains isolated from all three
sampling points. The most frequent genes encoding for β-lactam
resistance were blaCTX−M−15, blaOXA−1, blaOXA−48, blaSHV−106,
blaTEM−1, and blaSHV−158, for aminoglycosides were aac(3)II-
a, aph(6)-Id, aph(3′′)-Ib, and aadA2, while for quinolone
resistance the transferable qnrS1 gene was the most abundant
(Supplementary Figure 1).

The main characteristics of the selected K. pneumoniae
ST101 strains were: the presence of the MDR phenotype, three
wastewater-sourced strains being resistant to all tested antibiotics
(22 bac, 23 bac, 34bac), while the other two were susceptible only
to aztreonam (29 bac, 82 bac). All six clinical strains were resistant
to all tested antibiotics except for amikacin to which four strains
were susceptible (Supplementary Table 3).

ST101 K. pneumoniae Clones Carry
Multiple Antibiotic Resistance, Virulence,
and Biocides Resistance Determinants
All K. pneumoniae ST101 strains selected for WGS presented the
KL17/O1v1 serotype (as predicted by Kleborate software). All
of them harbored multiple common ARGs (Table 1) encoding
for β-lactam (mainly carbapenemase blaOXA−48), quinolone
(oqxA10, oqxB17) and trimethoprim (dfrA14) resistance, as well
as chromosomal mutations involved in resistance to quinolones
(mutations of gyrA and parC), colistin (truncation of mgrB gene)
and linked with the decreased susceptibility to cephalosporins
and carbapenems (truncation of porin encoding gene OmpK35).

Virulence determinants harbored by the analyzed strains were
represented by siderophores, such as enterobactin (entABCDEF,
fepABCDG) and yersiniabactin (irp1, irp2, ybtSXQPA, fyuA),
as well as the operon ecpRABCDE, involved in adherence and
biofilm formation. The biocides resistance gene mdfA encodes
resistance to quaternary-ammonium compounds, sodium
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TABLE 1 | Various features of the K. pneumoniae ST101 selected strains.

Water
sampling
date

Source Chromogenic
media

Strain code Common features Additional features

Serotype Acquired
antibiotic
resistance

Chromosomal
mutations involved in
antibiotic resistance

Virulence
genes

Biocides
resistance genes

Acquired antibiotic resistance Chromosomal mutations
involved in antibiotic

resistance

21 Nov
2018

Influent ChromID
CARBA

29bac blaOXA−1 aph(6)-Id,
aph(3′′)-Ib

tet(D), sulII,
catB3

OmpK 36GD

34bac

23 Nov
2018

Influent ChromID
OXA-48

22bac blaOXA−1

blaCTX−M−15

blaTEM−150

aac (3)-IIa
aac (6)-Ib-cr

tet(D), catB3 –entA; entB;

entE; entS;

fepA; fepB;

Effluent ChromID
CARBA

23bac fepC; fepD;

fepG; fimC;

Nov 2018 Clinical – 36bac fimE; fyuA; OmpK 36GD

37bac blaOXA−48, 1OmpK35, irp1; irp2; blaNDM−1 rmtC;
aph(6)-Id,
aph(3′′)-Ib

dfrA12, sulII, OmpK 36GD

blaSHV−106 ompA;

yagV/ecpE; merA

41bac K17/O1v1 dfrA14 1mgrB, yagW/ecpD; mdfA aac (3)-IIa tet(D), catB3

fosA GyrA-83Y yagX/ecpC;

43bac oqxA10 GyrA-87N yagY/ecpB; aac (6)-Ib-cr OmpK 36GD

yagZ/ecpA; blaOXA−1

20 Mar
2020

Effluent ChromID
CARBA

82bac oqxB17 ParC-80I ybtA; ybtE; blaCTX−M−15

blaTEM−150

aac (3)-IIa –

ybtP; ybtQ;

March
2020

Clinical – 86bac ybtS; ybtT;

89bac ybtU; ybtX; –

ykgK/ecpR

Bold values represents the closely related strains.
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hydroxide and other biocides, while merA encodes resistance to
mercury (Table 1).

Additionally, the majority of the strains harbored
ESBL (blaTEM−150, blaCTX−M−15), tetracyclines – tet(D),
aminoglycoside- mainly aac(3)-IIa, chloramphenicol -catB3
genes and presented an amino acid substitution in OmpK36
porin, which is known to be associated with carbapenem
resistance (Table 1).

The pathogenic potential was estimated to 90%, according to
Pathogen Finder predictor software (Cosentino et al., 2013). All
strains harbored the same plasmid replicons: IncFIA, IncL/M,
IncR_1, and Col, respectively.

The mobile genetic platform harboring aac(6′)-Ib-cr –
blaOXA−1 – catB3 was encountered in all isolates, in three of
them, respectively, the clinical strain 36bac and the wastewater
isolates 34bac and 29bac being flanked by IS26 at both ends. In
the other tested strains the aac(6′)-Ib-cr gene was truncated (this
might be probably due to sequencing limitations) (Figure 2).

K. pneumoniae ST101 Clone Survives in
Hospital Chlorinated Effluent
Core SNPs analyses revealed that three clinical strains isolated in
November 2018 (36bac, 41bac, and 43 bac) are closely related
(≤18 SNPs) with two strains isolated on the 23rd November

2018 from influent (22bac) and effluent (23bac), respectively; the
wastewater sourced strains presented no SNPs in their core site
(Table 2). Moreover, cgMLST profiling revealed the same allelic
content. Additionally, 99% of the total genes detected in these
strains were common (core-genes). This low variability allowed
us to hypothesize that the three selected strains belong to the
same clone, more as they were tracked in the same temporal
sequence, in three spatial points of the hospital-wastewater
transmission chain.

These strains, isolated in November 2018, were related with
those isolated in March 2019 (Table 2), where one clinical strain
(89 bac) was found to be closely related with a strain isolated
from the hospital effluent (82 bac) and having the same cgMLST
profile. All strains presented in Table 1 are clustered together in
the Maximum likelihood phylogeny (Figure 3). Two strains from
influent (29 bac, 34 bac) and one clinical strain (37 bac) isolated in
November 2018, although belonging to ST101 clone, were more
distantly related (55–799 SNPs) and belong to a different cluster.

DISCUSSION

Although clinically relevant clones, such as carbapenem
producing K. pneumoniae have been isolated in different
environments, data on the occurrence and characteristics of

FIGURE 2 | Antibiotic resistance (AR) platform carrying three different resistance genes: aac (6′) lb-cr, blaOXA−1, and catB3. (A) The whole fragment flanked by two
copies of IS26. (B) Truncated aac(6′) Ib-cr gene.

TABLE 2 | Matrix representation of calculated SNPs distances between the closely related strains (≤18 SNPs highlighted in gray).

Strain isolation point-date Code Number of SNPs

IN-23 Nov 2018 22bac 0

EF-23 Nov 2018 23bac 0 0

CL-Nov 2018 36bac 4 4 0

CL-Nov 2018 41bac 8 7 18 0

CL-Nov 2018 43bac 5 5 15 14 0

EF-20 Mar 2020 82bac 39 40 33 51 193 0

CL-Mar 2020 86bac 31 38 27 74 194 28 0

CL-Mar 2020 89bac 38 38 31 50 193 2 26 0

22bac 23bac 36bac 41bac 43bac 82bac 86bac 89bac
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FIGURE 3 | Maximum likelihood phylogeny of all ST101 K. pneumoniae isolated from hospital sewage: influent (IN), effluent (EF) of chlorination tank, and from clinical
samples (CL) with isolation date.

K. pneumoniae resistant strains in environmental sources are still
scarce (Chi et al., 2019). Our study describes the presence of the
same clone of K. pneumoniae MDR in the hospital wastewater, in
the untreated influent as well in the effluent of the chlorination
tank, highlighting the inefficiency of the chlorine treatment in
removing MDR K. pneumoniae from hospital wastewater before
being released to urban wastewater collecting system.

In order to prove the clonal dissemination of K. pneumoniae
from the clinical compartment to the hospital wastewater, a
detailed characterization of the ST101 MDR K. pneumoniae
strains recovered from hospital wastewater before and
after chlorination and inpatients was performed. We have
demonstrated that five MDR K. pneumoniae ST101 strains
isolated from intra-hospital infections and two strains isolated
from hospital wastewater (hospital WWTP influent and effluent)
in November 2018 belong to the same clone, harboring common
AR, virulence, and biocides resistance genes, two strains
belonging to the same clone being isolated also in March
2019 (isolated from inpatients and from the hospital WWTP
effluent, respectively).

The most important feature of the successful K. pneumoniae
ST101 clone isolated in November 2018 was its resistance to
multiple antibiotics, encoded by chromosomal mutations, as
well as by resistance genes acquired through horizontal gene

transfer, located within mobile genetic elements which could
potentially disseminate to commensal bacterial strains. The
virulence determinants harbored by this successful clone were
represented by siderophores such as enterobactin (entABCDEF,
fepABCDG) and yersiniabactin (irp1, irp2, ybtSXQPA, fyuA),
their co-presence being associated with an increased risk of
respiratory tract infections (Bachman et al., 2011), as well as
the operon ecpRABCDE, involved in adherence and biofilm
formation. The variants of capsular and somatic antigens
KL17 and O1v1 were described as strongly associated with
K. pneumoniae ST101 (Roe et al., 2019). In addition, the O1
antigen has been described as a major contributor to the
virulence of pyogenic liver abscess causing K. pneumoniae
(Hsieh et al., 2012). Additionally, the biocides resistance gene
mdfA encodes resistance to quaternary-ammonium compounds,
sodium hydroxide and other biocides, while merA encodes
resistance to mercury. Although genes associated with resistance
and virulence are usually identified in separate subpopulations
of K. pneumoniae there are strains harboring both high
resistance and virulence (Lam et al., 2019; Wyres et al., 2020b)
making them highly pathogenic and almost impossible to treat
(Wyres et al., 2020b).

Our data point that the K. pneumoniae clone presented here
may have the ability to survive in the urban wastewater after
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being released in the hospital sewage. The persistence of this
clone in the hospital effluent after chlorination indicates its
dissemination potential in surface and recreational waters, as
previously suggested by other authors (Lepuschitz et al., 2019;
Suzuki et al., 2020).

Therefore, multi-level studies are needed for increasing
knowledge on ecology, population structure and pathogenicity
of resistant K. pneumoniae strains and to elucidate the possible
transmission of clinical strains into the environment and the
subsequent potential risk posed to human and environmental
health (Wyres et al., 2020a).

Extended spectrum β-lactamase and carbapenem producing
K. pneumoniae were previously isolated from different
components of the hospital sewage treatment facilities,
demonstrating the dissemination of ESBL producers between
intra-hospital infections and the final effluent after the treatment
process (Prado et al., 2008). The identification of VIM and KPC-
producing Klebsiella spp. in the treated wastewater of a hospital
(Gomi et al., 2018), of OXA-48 producing K. pneumoniae
from hospital sewage (Zurfluh et al., 2017), or of the presence
of the same clone in the hospital sewage and receiving river
(Suzuki et al., 2020) raises concerns. Since its first detection
in Székely et al. (2013), OXA-48 was the most frequently
encountered carbapenemase in Romania (Lixandru et al., 2015;
Grundmann et al., 2017; Popescu et al., 2017; Baicus et al., 2018;
Surleac et al., 2020).

The IncFII, IncN, IncR, and IncX3 incompatibility groups are
most often associated with the horizontal gene transfer of AR
genes in K. pneumoniae determined mainly by the presence of
the following replicons: FIBK, FIIK, R, Col, FII, FIA (all identified
in this study) FIB, X, N, HI1B, AC/2 (Wyres et al., 2020a). Beside
these replicons, we have also identified the IncL/M replicon in all
isolates. The acquired ARGs in K. pneumoniae ST101 isolates are
associated with particular mobile elements, e.g., the association
of blaCTX−M−15 with IncFII plasmids while blaOXA−48 was often
identified in IncL/M plasmids (Wyres and Holt, 2016), as also
revealed by our results.

One might consider a limitation of this study the low number
of the selected MDR K. pneumoniae strains belonging to the same
clone traveling from hospital to WWTP effluents. Further studies,
with more sampling campaigns and more isolates are required to
provide the epidemiological link from the clinical compartment
to the water bodies through hospital wastewater as well as the
correlation between the persistence of the clones and different
exposure times to chlorination treatment.

CONCLUSION

The survival of ARB in treated hospital wastewater is very
alarming and highlights the necessity of an improved surveillance
and the need to elucidate the role of the environment in the
transmission and dissemination of MDR K. pneumoniae strains.
The isolation of the same clone from both hospital and WWTP
influent and effluent after chlorination suggests the highly
adaptive potential of the clone and highlights the need for further
studies designed to track the fate of these clones after release from

hospital in the aquatic environment. In addition, disinfection
strategies for hospital wastewaters should be reconsidered, in the
light of such novel epidemiological data.
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High Prevalence of Drug Resistance
and Class 1 Integrons in Escherichia
coli Isolated From River Yamuna,
India: A Serious Public Health Risk
Nambram Somendro Singh1,2, Neelja Singhal2* , Manish Kumar2 and
Jugsharan Singh Virdi1*

1 Department of Microbiology, University of Delhi South Campus, New Delhi, India, 2 Department of Biophysics, University
of Delhi South Campus, New Delhi, India

Globally, urban water bodies have emerged as an environmental reservoir of
antimicrobial resistance (AMR) genes because resistant bacteria residing here might
easily disseminate these traits to other waterborne pathogens. In the present study,
we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes,
and integrons in commensal strains of Escherichia coli, the predominant fecal indicator
bacteria isolated from a major urban river of northern India Yamuna. The genetic
environment of blaCTX−M−15 was also investigated. Our results indicated that 57.5%
of the E. coli strains were resistant to at least two antibiotic classes and 20% strains
were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple
antibiotic resistance index of about one-third of the E. coli strains was quite high
(>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to
plasmid-mediated AMR genes, blaTEM−1 was present in 95% of the strains, followed
by qnrS1 and armA (17% each), blaCTX−M−15 (15%), strA-strB (12%), and tetA
(7%). Contrary to the earlier reports where blaCTX−M−15 was mostly associated with
pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-
spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and
B1, also. The genetic organization of blaCTX−M−15 was similar to that reported for
E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of
blaCTX−M−15. The integrons of classes 2 and 3 were absent, but class 1 integron
gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli
of river Yamuna. These evidences indicate that due to high prevalence of plasmid-
mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread
dissemination of AMR in the environment. Thus, regular surveillance and management
of urban rivers is necessary to curtail the spread of AMR and associated health risks.

Keywords: commensal E. coli, plasmid-mediated antimicrobial resistance genes, integrons, multidrug resistance,
horizontal transfer of genes
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INTRODUCTION

The gastrointestinal tract of humans and animals is regarded
as the primary/natural habitat of Escherichia coli. Besides its
natural habitat, E. coli is also found in secondary habitats
like aquatic and terrestrial reservoirs (Méric et al., 2013).
Aquatic environments, especially urban water bodies, harbor a
heterogeneous collection of microorganisms originating from
fecal, hospital, agricultural, and veterinary sources. Moreover,
several studies have suggested that aquatic environments serve as
genetic reactors that promote transfer of antimicrobial resistance
(AMR) and virulence genes among bacteria (Baquero et al., 2008;
Hasegawa et al., 2018).

The phylogrouping methods commonly used for
population/clonal studies of E. coli include multilocus sequence
typing (MLST) (Aanensen and Spratt, 2005), multilocus enzyme
electrophoresis (MLEE), triplex PCR, etc. Triplex PCR is a widely
used rapid and simple technique for phylotyping E. coli. In triplex
PCR, three genes (chuA, yjaA, and a gene encoding a fragment
of a putative lipase esterase) are PCR-amplified (Clermont et al.,
2000). Based on the presence or absence of these three genetic
elements, a strain can be assigned to belong to any of the four
phylogroups—A, B1, B2, and D (Clermont et al., 2000). Several
researchers have studied AMR in E. coli isolated from aquatic
environments and have reported that these traits are easily
transmissible among bacterial species with the help of several
mobile genetic elements like integrons, insertion sequences (ISs),
plasmids, and transposons (Su et al., 2012; Koczura et al., 2013;
Liebana et al., 2013; Pereira et al., 2013; Kaushik et al., 2018).
Integrons are regarded as the primary vehicles that disseminate
AMR genes among bacterial species (Gillings, 2014) because they
can be located on conjugative plasmids, which enhance their
horizontal spread.

River Yamuna is a major river of northern India, which is
associated with several anthropogenic activities of the population
residing in the National Capital Region of India. It gets
contaminated with effluents originating from hospital and
municipal wastewaters; discharge from livestock, poultry, and
agriculture production plants; industries; etc. The high levels of
pollutants are expected to provide a positive selection pressure
for increasing AMR in bacterial population residing there
(Kümmerer, 2009; Tacão et al., 2012). Thus, it is expected to be
a crucial reservoir of a diverse E. coli populations and an ideal
ecological niche for studying strains with diverse phenotypes,
genotypes, and AMR. In an earlier study published from our
laboratory, we had described the β-lactam susceptibilities and
β-lactamase genes in 61 E. coli strains of all phylogroups
(A, B1, B2, and D) isolated from river Yamuna (Bajaj et al.,
2015). Though AMR resistance has been investigated for
commensal phylogroups of E. coli isolated from veterinary
or clinical sources, only a few studies have investigated the
AMR phenotypes, genes, and integrons in commensal E. coli
isolated from urban rivers. The commensal strains of E. coli
in urban rivers can easily disseminate AMR determinants to
pathogenic E. coli or other waterborne pathogens via mobile
genetic elements. Thus, it is important to study the AMR
determinants and integrons in commensal strains residing in

water bodies also. Our study is the first report on AMR
phenotypes, plasmid-mediated AMR genes, and integrons in the
strains of commensal phylogroups (A and B1) of E. coli from
river Yamuna, India.

MATERIALS AND METHODS

Sample Processing and Isolation of
Escherichia coli
Two hundred water samples were collected from different sites
along the entire stretch of the river Yamuna, which flows through
the National Capital Region of India in sterile screw-capped
bottles, transported to the laboratory on ice, and processed within
6 h of the sample collection. A schematic figure showing the
details of the sampling sites has been published earlier (Bajaj et al.,
2015). Enrichment of the samples for isolation of Escherichia coli
was performed using a published method (Ram et al., 2008).
Briefly, 100 ml of water sample was filtered through a 0.45 µm
membrane filter (Millipore, MA, United States). The membrane
filter was cut into four pieces, and each piece was incubated in
50 ml of MacConkey broth at 37◦C, 220 rpm, overnight. The next
day, a loopful of the broth culture was streaked on the surface
of MacConkey agar plates and incubated at 35◦C for 18–20 h.
One hundred sixty-two typical E. coli colonies were selected and
maintained as pure cultures on Luria–Bertani (LB) agar slants
at 4◦C. Of these, 126 isolates were presumptively identified as
E. coli using API 20E strips (bioMérieux, France). API 20E is a
standardized kit of biochemical tests used to identify members
of the family Enterobacteriaceae and other non-fastidious Gram-
negative rods.

Isolation of Genomic DNA, and PCR
Amplification of Gene Encoding 16s
rRNA and Phylogrouping Based on
Triplex PCR
DNA was extracted from the E. coli strains using the boiling
lysis method (Rodríguez-Baño et al., 2004). The gene encoding
16S rRNA was PCR-amplified using universal eubacterial
forward primer 27F (5′AGAGTTTGATCCTGGCTCAG3′) and
reverse primer 1492R (5′ACGGCTACCTTGTTACGACTT3′).
The contents of the PCR mixture were 1 × PCR buffer
(1.5 MgCl2, 1.5 mM of KCl, 10 mM of Tris–HCl, and
0.1% Triton X-100), 200 µM of the four dNTPs, 1 U of
Taq DNA polymerase (New England Biolabs, Ipswich, MA,
United States), 10 pmol of forward and reverse primers, and
1 ng of genomic DNA in a final volume of 25 µl. The PCR
conditions and methods for purification of PCR amplicons
and sequencing have been described earlier (Singhal et al.,
2019). Briefly, the PCR amplicons were purified by HiYieldTM

extraction kit (RBC Bioscience, New Taipei City, Taiwan) and
sequenced at a commercial facility using Sanger sequencing
(Invitrogen BioServices India Pvt. Ltd., Bangalore, India). The
nucleotide sequence homology was analyzed using the nucleotide
BLAST (BLASTn) algorithm available at the National Center for
Biotechnology Information (NCBI).
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The phylogenetic profiles of all the isolates were determined
by triplex PCR (Clermont et al., 2000); and 40 strains
representing the commensal phylogroups (A and B1) were
selected for studying the AMR phenotypes, plasmid-mediated
AMR genes, and integrons.

Determining Antimicrobial
Susceptibilities, and Extended-Spectrum
β-Lactamase and AmpC Production
Antimicrobial susceptibilities of E. coli strains for various classes
of antibiotics like β-lactams, aminoglycosides, quinolones, and
tetracycline were determined by Kirby–Bauer disk diffusion
method. The antibiotic disks (Himedia, India) that were
used in this study were (charge in µg/disk) as follows:
ampicillin (10 µg), piperacillin (100 µg), amoxicillin–clavulanic
acid (20/10 µg), cefazolin (30 µg), cefuroxime (30 µg),
cefotaxime (30 µg), cefepime (30 µg), streptomycin (10 µg),
kanamycin (30 µg), tobramycin (10 µg), netilmicin (30 µg),
amikacin (30 µg), nalidixic acid (30 µg), ciprofloxacin (5 µg),
ofloxacin (5 µg), and tetracycline (30 µg). The results of
antimicrobial susceptibility testing were interpreted following
the guidelines of Clinical and Laboratory Standards Institute
(Clinical and Laboratory Standards Institute [CLSI], 2018).
The multiple antibiotic resistance (MAR) index of each strain
was calculated by dividing the number of antibiotics to
which a strains was resistant by the number of antibiotics
that were tested (Krumperman, 1983). Here, the number of
antibiotics to which an E. coli strain exhibited resistance
was divided by 16 because susceptibility of each strain was
tested for 16 antibiotics. The E. coli strains were tested
for production of extended-spectrum β-lactamases (ESBLs)
using a phenotypic confirmatory test recommended by the
CLSI (Clinical and Laboratory Standards Institute [CLSI],
2018). Briefly, cefotaxime and ceftazidime disks (30 µg)
alone and in combination with clavulanic acid (30/10 µg)
were placed on the surface of bacterial lawn spread over
Mueller–Hinton agar petri plates. Strains whose zone diameter
in the presence of antibiotic–clavulanic acid combination
was ≥5 mm were considered as ESBL producers. The
strains were tested for phenotypic production of AmpC using
AmpC E-test strips (bioMérieux Inc., MO, United States)
following the manufacturer’s instructions. Strains that showed
cefotetan/cefotetan + cloxacillin (CN/CNI) ratio of ≥8 were
considered as AmpC producers (Bajaj et al., 2015).

Detection and Analysis of Antimicrobial
Resistance Genes
Detection of Genes Encoding β-Lactamases and
Genetic Environment of blaCTX−M−15
Genes encoding β-lactamases and ESBLs, viz., blaTEM , blaSHV ,
and blaCTX−M , were detected by PCR amplification of the AMR
genes using group-specific primers that amplified the internal
coding regions of the genes (Dhanji et al., 2011; Bajaj et al.,
2015). The presence of plasmid-encoded AmpC enzymes of the
CMY types was determined by PCR amplification of the AMR
gene using published primers (Pérez-Pérez and Hanson, 2002).

The promoter region and genetic environment of blaCTX−M−15
were studied in blaCTX−M−15-positive E. coli strains by PCR
amplification of the corresponding regions using the primers
and methods described earlier (Saladin et al., 2002; Dhanji
et al., 2011). The primers and the annealing temperatures
for amplification of the blaTEM , blaSHV , and blaCTX−M and
genetic environment of blaCTX−M are described in Table 1.
The contents of the PCR mixture and methods for purification
of the PCR amplicons and sequencing were the same as
used for 16s rRNA gene sequencing. The nucleotide sequence
homology was analyzed using the nucleotide BLAST (BLASTn)
available at NCBI.

PCR Amplification of Genes Encoding
Plasmid-Mediated Quinolone Resistance,
Aminoglycoside Resistance, and Tetracycline
Resistance
The presence of genes encoding plasmid-mediated quinolone
resistance (PMQR) was determined by PCR amplification
of genes encoding for (i) proteins that protect DNA from
quinolone binding (qnrA, qnrB, qnrC, and qnrD); (ii) aac(6’)-
Ib-cr acetyltransferase (aac), which modifies fluoroquinolones
like ciprofloxacin and enrofloxacin; and (iii) active efflux
pump (qepA).

The presence of aminoglycoside resistance genes was
determined by PCR amplification of the genes encoding
for linked strA-strB genes and four types of plasmid-
mediated 16S rRNA methylases—armA, rmtA, rmtB,
and rmtC— using published primers and annealing
temperatures described in Table 1 (Sunde and Norstrom,
2005; Yamane et al., 2007).

The presence of tetracycline resistance genes was determined
by PCR amplification of the tetracycline efflux gene tetA using
self-designed primers and genes encoding ribosome protective
proteins tetM and tetW using published primers and annealing
temperatures (Aminov et al., 2002; Table 1). The contents of
the PCR mixture and protocols for purification of the PCR
amplicons, sequencing of PMQR, and aminoglycoside- and
tetracycline-resistance genes and homology search were the same
as used for the 16S rRNA genes.

Detection and Analysis of Integrons and
Gene Cassettes
The presence and distribution of integrase genes intI1, intI2,
intI3, and integron class 1 gene cassette were determined
by PCR amplification using published primers (Kraft
et al., 1986; Goldstein et al., 2001; White et al., 2001). The
variable regions (VRs) of class 1 integrons, which mainly
contain an array of gene cassettes, are flanked at 3′ by a
conserved segment containing qacE11 and genes coding
for quaternary ammonium and sulfonamide, respectively.
VRs were investigated as previously reported in all isolates
containing class 1 integrons (Guo et al., 2011). The PCR
conditions for amplifying the VRs of integrons were the same
as for amplifying the 16S rRNA gene except for the primers
and annealing temperatures, which have been summarized in
Table 1. The PCR amplicons were purified and sequenced as
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TABLE 1 | Primers and PCR conditions for amplification of antimicrobial resistance genes, integrons and genetic environment of blaCTX−M.

Primers Nucleotide sequence Target genes Amplicon
size (bp)

Annealing
temperature (◦C)

References

TEM1-FTEM-1-R 5′-TCAACAGCGGTAAGATCCTTGA-3′

5′-TGCAACTTTATCCGCCTCCA-3′
blaTEM 500 60 Bajaj et al., 2015

SHV-fSHV-r 5′-AAATGGATCTGGCCAGCG-3′

5′-AGCAGCTGCCGTTGCGAA-3′
blaSHV 481 60 Bajaj et al., 2015

ISEcp1/U1MA3 5′-AAAAATGATTGAAAGGTGGT-3′

5′-ACYTTACTGGTRCTGCACAT-3′
ISEcp1,

blaCTX−M−15

900 48 Saladin et al., 2002

CTX-MORF477 5′-CCGTTTCCGCTATTACAAAC-3′

5′-CTGGGACCTACGTGCGCCCG-3′
blaCTX−M−15,

orf477
1050 55 Dhanji et al., 2011

CMY-fCMY-r 5′-AACACACTGATTGCGTCTGAC-3′

5′- CTGGGCCTCATCGTCAGTTA-3′
blaCMY 1,226 55 Pérez-Pérez and

Hanson, 2002

RMTA-FRMTA-R 5′-CTAGCGTCCATCCTTTCCTC-3′

5′-TTTGCTTCCATGCCCTTGCC-3′
rmtA 653 57 Yamane et al., 2007

RMTB-FRMTB-R 5′-GCTTTCTGCGGGCGATGTAA-3′

5′-ATGCAATGCCGCGCTCGT AT-3′
rmtB 173 60 Yamane et al., 2007

RMTC-FRMTC-R 5′-CGAAGAAGTAACAGCCAAAG-3′

5′-ATCCCAACATCTCTCCCACT-3′
rmtC 711 55 Yamane et al., 2007

ARMA-FARMA-R 5′-ATTCTGCCTATCCTAATTGG-3′

5′-ACC TATACTTTATCGTCGTC-3′
armA 315 46 Yamane et al., 2007

str-Fstr-R 5′-TATCTGCGATTGGACCCTCTG-3′

5′-CATTGCTCATCATTTGATCGGCT-3′
strA-strB 538 62 Sunde and

Norstrom, 2005

aacC2-FaacC2-R 5′-TAGAGGAGTATCGCGATGC-3′

5′ATTATCATTGTCGACGGCCT-3′
aacC2 861 55 Ho et al., 2010

TetA-FTetA-R 5′-CAACAGACCCCTGATCGTAA-3′

5′-AAAATTGCTTGCAGCGCC-3′
tetA 962 57 This study

TetM-FTetM-R 5′-ACAGAAAGCTTATTATATAAC-3′

5′-TGGCGTGTCTATGATGTTCAC-3′
tetM 171 55 Aminov et al., 2002

TetW-FTetW-R 5′-GAGAGCCTGCTATATGCCAGC-3′

5′-GGGCGTATCCACAATGTTAAC-3′
tetW 168 64 Aminov et al., 2002

QA-FQA-R 5′-TCGCCGCTGCCGCTTTTAT-3′

5′-TTCGAGGTTGACCCGTCTG-3′
qnrA 517 60 Wang et al., 2009

QB-FQB-R 5′-AACCTGAAAGATGCCATT-3′

5′-AAGGCCTTGTAAATCAAC-3′
qnrB 405 50 Wang et al., 2009

QC-FQC-R 5′-GGGTTGTACATTTATTGAATC-3′

5′-TCCACTTTACGAGGTTCT-3′
qnrC 447 50 Wang et al., 2009

QD-FQD-R 5′-CGAGATCAATTTACGGGGAATA-3′

5′-CGAGATCAATTTACGGGGAATA-3′
qnrD 582 57 Cavaco et al., 2009

QS-FQS-R 5′-GACGTGCTAACTTGCGTGAT-3′

5′-GATCTAAACCGTCGAGTTCG-3′
qnrS 456 55 Bajaj et al., 2016

ACC-FACC-R 5′TTGCGATGCTCTATGAGTGGCTA-3′

5′-CTCGAATGCCTGGCGTGTTT-3′
aac(6’)-Ib 482 60 Chen et al., 2012

Int1-FInt1-R 5′-CCT CCC GCA CGA TGA TC-3′

5′-TCC ACG CAT CGT CAG GC-3′
intI1 280 60 Kraft et al., 1986

hep58hep59 5′-TCATGGCTTGTTATGACTGT-3′

5′-GTAGGGCTTATTATGCACGC-3′
Variable region of
class 1 integron

Variable 55 White et al., 2000

qacE1-Fsul1-R 5′-AAGTAATCGCAACATCCG-3′

5′-GGGTTTCCGAGAAGGTGATTGC-3′
qacE11, sul1 878 57 Bass et al., 1999;

Nandi et al., 2004

described for the 16S rRNA gene, and nucleotide sequence
homology was analyzed using the nucleotide BLAST (BLASTn)
available at NCBI.

Accession Numbers
Gene sequencing revealed that the blaCTX−M−15 genes of the
seven blaCTX−M−15-positive strains were identical to each other;
hence, the partial coding sequence (CDS) of a representative
strain (KP20) was submitted to GenBank (NCBI) with the

accession number KF040057. The partial CDS of blaTEM−1
was also identical to each other; hence, the sequence of one
representative strain (IP1N) was submitted to GenBank (NCBI)
with the accession number KF055435. The partial CDS of
qnrS was also identical; hence, the CDS of a representative
strain (KP20) was submitted to NCBI GenBank under accession
number KF055436. The partial CDS of tetA gene of all the three
strains (IS47, WB3, and KKC) was submitted under the accession
numbers KJ409940–KJ409942.
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RESULTS AND DISCUSSION

Molecular Identification and
Phylogrouping Based on Triplex PCR
The results of 16S rRNA gene sequencing and homology search
using BLAST confirmed that the strains presumptively identified
using API 20E strips (bioMérieux, France) were Escherichia
coli. The results of the triplex PCR and Clermont classification
indicated that 50% (n= 20) of the strains belonged to phylogroup
A [chuA (−), yjaA (−/+), and TSPE4.C2 (−)] while 50% (n= 20)
to phylogroup B1 [chuA (−), yjaA (−), and TSPE4.C2 (+)].
Earlier studies have reported that E. coli strains of all phylogroups
were present in river Yamuna (Bajaj et al., 2015; Kaushik et al.,
2018). Phylogroups A and B1 of E. coli represent commensal
strains, while phylogroups B2 and D represent pathogenic strains
(Herzer et al., 1990; Bingen et al., 1998; Lecointre et al., 1998;
Picard et al., 1999). Several studies have indicated that the
prevalence of virulence genes in commensal strains of E. coli
was lesser than in pathogenic strains (Johnson, 1991; Boyd and
Hartl, 1998; Lecointre et al., 1998; Picard et al., 1999) but that
the commensal strains can easily disseminate AMR determinants
to pathogenic E. coli or other waterborne pathogens via mobile
genetic elements. Thus, AMR determinants and integrons were
investigated in these 40 commensal E. coli strains.

Phenotypic Testing of Antimicrobial
Susceptibilities and Extended-Spectrum
β-Lactamase Production
Antibiotic susceptibility testing revealed that 95% (n = 38)
of the commensal E. coli strains were resistant to ampicillin,
while 32% (n = 13) of the strains were resistant to piperacillin.
Among the cephalosporins, 42.5% (n= 17) strains were resistant
to cefazolin (first-generation cephalosporin), 17.5% (n = 7) to
cefuroxime (second-generation cephalosporin), 22.5% (n= 9) to
cefotaxime (third-generation cephalosporin), and 15% (n = 6)
to cefepime (fourth-generation cephalosporin). The fact that
commensal waterborne E. coli were less resistant to new-
generation cephalosporins than ampicillin is normal because
ampicillin was a widely prescribed broad-spectrum penicillin,
and over time, bacteria might have developed resistance to
this antibiotic. Earlier studies have also reported that ampicillin
resistance was highly prevalent in commensal strains of E. coli
isolated from India and from other parts of the globe like
Vietnam, China, Sudan, and Thailand (Dyar et al., 2012;
Abdelgader et al., 2018; Lugsomya et al., 2018; Singh A. K. et al.,
2018; Purohit et al., 2019). With regard to ESBL production,
17.5% (n = 7) of the commensal E. coli strains tested positive,
while none of the strain tested positive for AmpC production
(Table 2). All the ESBL-producing strains were resistant to four
or more β-lactam antibiotics, and 57% (n = 4) of the ESBL
producers were resistant to ciprofloxacin. Since, penicillins and
cephalosporins are the most frequently used antibiotics in India,
it is normal that all the seven ESBL-producing E. coli strains
were resistant to many antibiotics of these classes. The fact
that some ESBL producers were also resistant to ciprofloxacin
and streptomycin/kanamycin suggests that besides β-lactam

antibiotics, resistance to other antibiotic classes also exhibited co-
selection.

With regard to quinolone resistance, 35% (n= 14) strains were
resistant to older quinolones like nalidixic acid, while 20% (n= 8)
and 15% (n = 6) strains were resistant to newer quinolones
like ciprofloxacin and ofloxacin, respectively. In this regard,
our results are similar to those of other studies that reported
lower ciprofloxacin and ofloxacin resistance in waterborne E. coli
isolated from other parts of the world (Odonkor and Addo,
2018). Aminoglycoside resistance was observably less prevalent
with 12.5% (n = 5) strains resistant to older aminoglycosides
like streptomycin and less than 7% strains resistant to new
aminoglycosides like kanamycin, tobramycin, netilmicin, and
amikacin. An earlier study also reported that a low level of
aminoglycoside resistance was present in E. coli strains isolated
from aquatic environments of Kuala Lumpur, Malaysia (Hara
et al., 2018). With regard to tetracycline, 27.5% (n = 11)
of the strains exhibited resistance. The frequent use/misuse
of ampicillin, streptomycin, and tetracycline due to frequent
prescription, availability, and affordability might be a probable
reason for higher bacterial resistance to these antibiotics (Shakya
et al., 2013). Additionally, 57.5% (n = 23) E. coli strains were
resistant to at least two antibiotic classes, and 20% (n = 8) of
the strains were multidrug resistant (MDR), i.e., resistant to three
or more antibiotic classes. MDR E. coli were defined as bacteria
resistant to antibiotics belonging to three or more antimicrobial
classes (Magiorakos et al., 2012). An analysis of MAR index
revealed that the MAR indexes of 13 MDR E. coli strains were
quite high (>0.2). Tambekar et al. (2006) reported that bacteria
isolated from environments where several antibiotics are used
usually show MAR index >0.2. The high MAR index of the
E. coli strains observed in this study is not surprising because river
Yamuna is highly contaminated with effluents originating from
hospital and municipal wastewaters; discharge from livestock,
poultry, and agriculture production plants; etc.

Antimicrobial Resistance Genes
β-Lactam Resistance and Extended-Spectrum
β-Lactamase Encoding Genes
With regard to β-lactam resistance genes, blaTEM−1 was present
in 95% of the strains (n = 38) followed by blaCTX−M−15,
which was present in 15% (n = 7) of the E. coli strains.
The plasmid-encoded AmpC enzymes (CMY types) were not
found in any strain. The presence of blaTEM−1 correlated well
with ampicillin resistance in all the strains. Similarly, all the
blaCTX−M−15-positive strains showed phenotypic production of
ESBLs. Earlier studies had reported that blaTEM−1 was widely
present in E. coli strains isolated from water bodies of India
and other countries like Spain, Australia, France, China, and
Poland (Lartigue et al., 2002; Tristram and Nichols, 2006; Garcia-
Cobos et al., 2008; Ortega et al., 2012; Liu et al., 2014; Ojdana
et al., 2014; Bajaj et al., 2015; Singh N. S. et al., 2018). CTX-
M enzymes belong to the family of ESBLs and are the most
widely disseminated ESBLs among Enterobacteriaceae all over
the globe (Poirel et al., 2002). Among these, blaCTX−M−15 is
the most widely globally disseminated CTX-M type, which was
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TABLE 2 | Detailed information about the commensal strains of E. coli isolated from river Yamuna, antimicrobial resistance phenotypes, multiple antibiotic resistance
index (MAR index) and antimicrobial resistance genes along with the genetic environment of blaCTX−M−15.

Strain designation
(Phylogroup)

Antimicrobial resistance and ESBLa phenotype MARb index Antimicrobial resistance genes Genetic environment
of blaCTX−M−15

KKC (A) PIP, AMP, AMC, STM, TE 0.312 blaTEM−1, tetA, strA-strB,qnrS1 –

WB3 (A) AMP,TE 0.125 blaTEM−1, tetA, strA-strB, qnrS1 –

NG23 (A) AMP, NA 0.125 blaTEM−1, armA –

IS47 (A) PIP, AMP, AMC, CTX, S, TE, ESBL 0.375 blaTEM−1, blaCTX−M−15, tetA,
strA-strB, qnrS1

ISEcp1, orf477

KP6 (A) – – – –

IPB (A) AMP, NA 0.125 blaTEM−1 –

KK5 (A) PIP, AMP, NA, CIP, OF, STM 0.375 blaTEM−1, armA, strA-strB -

KP20 (A) PIP, AMP, AMC, CZ, CXM, CTX, CPM, STM, TE, ESBL 0.565 blaTEM−1, blaCTX−M−15, armA,
strA-strB, qnrsS1

ISEcp1, orf477

ISF (A) AMP, AMC, CZ, CXM, CTX, TE,TOB 0.437 blaTEM−1, armA, strA-strB –

NG35 (A) AMP, NA, CIP, OF 0.25 blaTEM−1, qnrS1 –

WB2 (A) PIP, AMP, AMC, CZ, STM 0.312 blaTEM−1, armA, qnrS1 –

KK47 (A) AMP 0.062 blaTEM−1 –

DND24 (A) AMP, NA 0.125 blaTEM−1 –

IP1N (A) PIP, AMP, AMC, CZ, CXM, CTX, CPM, NA, CIP, OF,TE,
KAN, ESBL

0.75 blaTEM−1, blaCTX−M−15, armA ISEcp1, orf477

KK1 (A) AMP, CZ 0.125 blaTEM−1 –

NeG15 (A) AMP, CZ 0.125 blaTEM−1 –

NG6 (A) AMP, NA 0.125 blaTEM−1 –

ISJ (A) AMP, CZ 0.125 blaTEM−1 –

KK26 (A) AMP, CZ 0.125 blaTEM−1 –

PA18 (A) AMP, CZ 0.125 blaTEM−1 –

NG41 (B1) PIP, AMP, CZ, CXM, CTX, CPM, NA, CIP, ESBL 0.5 blaTEM−1, blaCTX−M−15 ISEcp1, orf477

NG31(B1) PIP, AMP, CZ, CXM, CTX, CPM, CIP, NA, ESBL 0.5 blaTEM−1, blaCTX−M−15 ISEcp1, orf477

DND3(B1) AMP, CZ, NA 0.187 blaTEM−1, armA –

KK15(B1) AMP, CZ 0.125 blaTEM−1 –

PA1(B1) AMP, CZ 0.125 blaTEM−1 –

KK21(B1) AMP 0.062 blaTEM−1 –

PA3(B1) PIP, AMP, TE 0.187 blaTEM−1 –

SVN(B1) PIP, AMP, AMC, CZ, NA, CIP, OF, TE,TOB,KAN,NET,AK 0.75 blaTEM−1 –

MKNA(B1) – – – –

DND1(B1) AMP, AMC 0.125 blaTEM−1 –

PA32(B1) AMP 0.062 blaTEM−1 –

KK39(B1) AMP, NA 0.125 blaTEM−1 –

IPK(B1) AMP 0.062 blaTEM−1 –

WB20(B1) AMP, CTX,TE 0.185 blaTEM−1 –

NG25(B1) PIP, AMP, AMC, CZ, CXM, CPM, CTX, CIP, OF, NA,
ESBL

0.625 blaTEM−1 blaCTX−M−15 ISEcp1, orf477

DND11(B1) AMP 0.062 blaTEM−1 –

IS68(B1) AMP, TE 0.125 blaTEM−1 –

SP13N(B1) PIP, AMP, AMC, CZ, CXM, CTX, CPM, ESBL 0.437 blaTEM−1, blaCTX−M−15, qnrS1 ISEcp1, orf477

IS45(B1) PIP, AMP, AMC, CIP, NA, OF, TE, TOB, KAN, NET, AK 0.685 blaTEM−1, armA –

WB9(B1) AMP 0.062 blaTEM−1 –

PIP, piperacillin; AMP, ampicillin; AMC, amoxicillin-clavulanic acid; CZ, cefazolin; CXM, cefuroxime; CTX, cefotaxime; CPM, cefepime; NA, nalidixic acid; CIP, ciprofloxacin;
OF, ofloxacin; STM, streptomycin; TOB, tobramycin; KAN, kanamycin; NET, netilmycin; AK, amikacin; TE, tetracycline; ESBLa: extended-spectrum β-lactamase; MARb

index: multiple antibiotic resistance index.

first reported from the Indian isolates in 2001 (Karim et al.,
2001; Poirel et al., 2002). Later, several studies also reported
the prevalence of blaCTX−M−15 in aquatic E. coli isolated from
India (Bajaj et al., 2015; Singh N. S. et al., 2018; Kaushik et al.,
2019). Previous studies have associated blaCTX−M−15 in aquatic

E. coli with the pathogenic phylogroups B2 (especially those
belonging to the genetic lineage ST131) and D (Nicolas-Chanoine
et al., 2008; Coque et al., 2008). However, our study revealed
that CTX-M-15 type ESBLs were present in the commensal
phylogroups A and B1, also.
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Aminoglycoside Resistance Genes
The linked strA-strB genes are the most widely prevalent
streptomycin resistance genes in E. coli worldwide and
encode for phosphotransferases (Poirel et al., 2018). However,
strA-strB genes were present in only 12% (n = 5) of the
waterborne E. coli. Of these, four strains exhibited phenotypic
resistance to streptomycin, while one strain (ISF), despite
harboring strA-strB, was phenotypically susceptible for
streptomycin. The 16S rRNA methylases methylate certain
amino acid residues of the 16S RNA, resulting in resistance
to amikacin, tobramycin, gentamicin, and netilmicin (Griffey
et al., 1999). Of the four types of plasmid-mediated 16S
rRNA methylase investigated, only armA was found to be
present in 17.5% (n = 7) of the strains. Earlier studies also
reported that a low level of aminoglycoside resistance was
present in E. coli strains isolated from aquatic environments
in Kuala Lumpur, Malaysia (Hara et al., 2018). No correlation
was observed in aminoglycoside resistance and presence
of armA, except in the E. coli strain IS45, which also
exhibited phenotypic resistance to amikacin, tobramycin,
kanamycin, and netilmicin.

Plasmid-Mediated Quinolone Resistance
and Tetracycline Resistance Genes
Of the several PMQR genes (qnrA, qnrB, qnrC, qnrD, qnrS,
qep, and aac) tested, only qnrS was detected in the E. coli
strains isolated from river Yamuna. The qnrS1 was detected
as the predominant PMQR gene in about 17% of the aquatic
strains (n = 7). Earlier studies have also reported that the qnrS
type gene was the most frequently detected PMQR gene in
E. coli isolated from environmental E. coli worldwide (Bonemann
et al., 2006; Cattoir et al., 2008; Rodriguez-Mozaz et al., 2015;
Varela et al., 2016; Hara et al., 2018). The presence of qnrS1
did not correlate with fluoroquinolone resistance, except in
E. coli strain NG35. This suggests that the presence of the qnrS
gene alone might not be a true indicator of fluoroquinolone
resistance and the isolate despite that the presence of qnrS
might exhibit phenotypic susceptibility for fluoroquinolones
(Mahmud et al., 2020).

Of the three tetracycline resistance genes, tetM and
tetW were absent and only tetA was present in 7.5%
(n = 3) of the strains. Earlier studies have also indicated
that tetracycline efflux-related genes like tetA, tetB, and
tetC were more prevalent than ribosomal protection-
related genes (like tetM and tetW) in waterborne E. coli
(Zhang et al., 2015; Stange et al., 2016). The presence of
tetA correlated well with phenotypic resistance because
the three strains that harbored tetA also exhibited
tetracycline resistance.

Genetic Environment of blaCTX−M−15
Of the 40 E. coli strains investigated in this study, only
seven strains (15%) harbored the blaCTX−M−15 gene. The
upstream region of the blaCTX−M−15 was analyzed in these seven
strains by PCR amplification and sequencing. Gene sequencing
revealed that the ISEcp1 was present in the upstream region of

blaCTX−M−15 and orf477 was present in the downstream region
of all the seven strains (Table 2). Several investigators have also
reported the presence of orf477 in the downstream region of
blaCTX−M−15 (Eckert et al., 2006; Dhanji et al., 2011; Wang et al.,
2014; Ben Said et al., 2016). ISEcp1 is the most common and
widely reported IS element (Dhanji et al., 2011; Liu et al., 2014;
Upadhyay et al., 2015; Ben Said et al., 2016; Singh N. S. et al.,
2018). In the present study, IS sequence ISEcp1 was found to
be present at 48-bp upstream region of blaCTX−M−15. The 42-
to 266-bp upstream region has been reported as the preferred
insertion site of ISEcp1 for different blaCTX−M genes like CTX-
M-1, CTX-M-2, and CTX-M-9. An analysis of the −35 and −10
promoter regions of the blaCTX−M−15 gene of the seven strains
revealed that the −35 (TTGAAA) and −10 (TACAAT) regions
were present within 3′ terminus end of ISEcp1 and 48 bp away
from the blaCTX−M−15 start codon. The same organization was
previously reported from E. coli strains isolated from different
countries of the world (Saladin et al., 2002; Boyd et al., 2004;
Canton and Coque, 2006; Lavollay et al., 2006; Dhanji et al., 2011;

TABLE 3 | Characteristics of integrons present in commensal E. coli strains
isolated from river Yamuna, India.

E. coli
strains

Class of
integron gene

Size of variable
gene cassettes (bp)

Gene cassette
array

KKC intI1 – –

DND24 intI1 – –

KP20 intI1 – –

KK5 intI1 – –

WB2 intI1 2,800 aacA4, catB3,
dfrA1

KK26 intI1 1,700 dfrA1, aadA1

IPB intI1 1,700 dfrA1, aadA1

KK1 intI1 – –

PA18 int1 – –

KP6 intI1 – –

NG6 intI1 – –

WB3 intI1 – –

IP1N intI1 – –

NG35 intI1 – –

NG23 intI1 – –

PA3 intI1 – –

NG41 intI1 – –

NG31 intI1 – –

MKNA intI1 – –

PA1 intI1 – –

IS47 intI1 – –

SVN intI1 – –

WB9 intI1 – –

NG25 intI1 – –

WB20 int1 1,900 dhfr12, aadA2

IS68 intI1 – –

DND11 intI1 – –

IS45 intI1 – –

SP13N intI1 – –

KK39 intI1 – –
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Liu et al., 2014). The presence of ISEcp1 along with blaCTX−M
has been reported from E. coli strains isolated from different
parts of the world, indicating that ISEcp1 might be evolutionary
associated with blaCTX−M (Karim et al., 2001; Saladin et al., 2002;
Dhanji et al., 2011; Liu et al., 2014; Wang et al., 2014). ISEcp1
can mobilize an adjacent gene as a part of transposition units
of varying sizes (Zong et al., 2010). It has also been reported
that ISEcp1 helps in improving the expression of blaCTX−M in
enteric bacteria (Poirel et al., 2003). This is a matter of great
concern because the subsequent transfer of ESBL genes from
these commensal E. coli to pathogenic E. coli or other bacteria
in aquatic water bodies might pose a serious health challenge
(Figueira et al., 2011).

Detection and Analysis of Integrons
The class 1 integron gene intI1 was detected in 75% (n = 30) of
the isolates (Table 3). None of the strains harbored class 2 and 3
integrase genes intI2 and intI3. Though some strains of E. coli
reportedly harbored class 2 integrons, mostly class 1 integrons
have been reported from E. coli isolated from India (Kaushik
et al., 2018). Several studies have indicated that integrons of the
class 3 were absent in E. coli isolated from water bodies across the
globe (Laroche et al., 2009; Su et al., 2012; Pereira et al., 2013). Of
the 30 intI1 harboring strains, gene cassette arrays were detected
in only 10% (n = 4) of the intI1-positive E. coli strains. Three
different types of gene cassette arrays of class 1 were present in the
downstream region of intI1 whose size ranged from 1.7 to 2.8 kb
(Table 2). Gene sequencing revealed that five gene cassettes of
the dihydrofolate reductase (dfr) resistance gene family (dhfr12
and dfrA1), aminoglycoside (aad) resistance gene family (aadA1,
aadA2, and aacA4), and chloramphenicol (CHL) resistance gene
family (catB3) were present (Table 3). The prevalence of class
1 integron intI1 in Indian aquatic isolates was quite high (75%)
and alarmingly more than that reported for E. coli isolated from
global aquatic environments (Dolejska et al., 2009; Laroche et al.,
2009; Pereira et al., 2013; Ghaderpour et al., 2015; Sidhu et al.,
2017). E. coli isolates harboring class 1 integrons have been
associated with a significantly higher probability for multidrug
resistance than those devoid of class 1 integrons (Chen et al.,
2011). Moreover, class 1 integron genes intI1 are accompanied
by resistance genes for disinfectants and heavy metals (Partridge
et al., 2001) and can also easily horizontally transfer between
strains originating from different sources (Nagachinta and Chen,
2008; Zhang et al., 2009). Thus, due to high prevalence of class 1
integron gene intI1, the commensal strains of E. coli can become
vehicles for widespread dissemination of antibiotic resistance to
pathogenic E. coli and other waterborne bacterial pathogens.

CONCLUSION

Our results indicated a high prevalence of drug resistance
in Escherichia coli strains of river Yamuna. With regard to
plasmid-mediated AMR genes, blaTEM−1 was present in 95%
strains followed by qnrS1 and armA (17% each), blaCTX−M−15
(15%), strA-strB (12%), and tetA (7%). Though most of the
earlier studies have reported that blaCTX−M−15 in waterborne
E. coli was mostly present in pathogenic phylogroup B2, our
study revealed that CTX-M-15 type ESBLs were present in the
commensal phylogroups A and B1, also. The genetic organization
of blaCTX−M−15 was similar to that reported for E. coli globally,
and ISEcp1 was present in the upstream region of blaCTX−M−15.
Though integrons of classes 2 and 3 were absent, class 1 integron
gene intI was detected in 75% of the isolates, which indicates
its high prevalence in the E. coli isolates of the river Yamuna
than that reported, globally. The presence of MDR phenotypes,
plasmid-mediated AMR genes, and class 1 integron gene intI1 in
E. coli is a serious public health risk, because these commensal
strains can become potent vehicles for widespread dissemination
of AMR determinants to pathogenic E. coli and other waterborne
pathogens. Thus, our study suggests an urgent need for regular
surveillance and management of natural water bodies to curtail
the spread of antibiotic resistance in microorganisms.
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High level carbapenem and extensively drug resistant (XDR) Escherichia coli strain N7,
which produces a variant of New Delhi metallo-β-lactamase (NDM-5), was isolated
from the influent of the Jungnang wastewater treatment plant located on Han River,
Seoul, South Korea. Phenotypic and genotypic resistances to carbapenem were tested
using agar and broth dilution methods, and polymerase chain reaction. Whole-genome
sequencing was performed to characterize the genetic structure of strain N7. E. coli
strain N7, which harbors the blaNDM−5 gene, showed high level of carbapenem
resistance at concentrations of doripenem (512 mg/L) and meropenem (256 mg/L),
and XDR to 15 antibiotics. Based on the genomic sequence analysis, two plasmids,
a hybrid IncHI2/N-type and an IncX3 type, were present. The former contains a
cluster (blaNDM−5-bleMBL-trpF-dsbD) bracketed by multi-insertional sequences, IS3000,
ISAba125, IS5, and IS26. The latter carries the following resistance genes: blaCTX−14,
aac(3)-IV, aadA1, aadA2, aph(3′)-Ia, aph(4)-Ia, sul1, sul2, sul3, dfrA12, fosA3, oqxA,
oqxB, mph(A), and floR, and cmlA1. The chromosome, contig3, and contig5 also carry
blaCTX−64 and mdf(A), tet(A), and erm(B), tet(M) and aadA22, respectively. Strain N7
also harbors virulence factors such as fimH, flu, ecpABCDE, sfmA, hlyE, and gadA.
This study demonstrates the emergence of high level carbapenem resistant XDR E. coli
strain N7 containing blaNDM−5 in aquatic environment, Seoul, South Korea. Due to the
presence of mobile genetic elements, this strain could horizontally transfer resistance
genes, including blaNDM−5 to environmental bacteria. Thus, it is necessary to conduct
continuous surveillance for carbapenem resistance in various aquatic environments.

Keywords: carbapenem resistance, extensively drug resistance, blaNDM gene, wastewater treatment plants,
Escherichia coli, horizontal gene transfer, aquatic environment
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INTRODUCTION

Carbapenem-resistant Enterobacteriaceae (CRE) is one of the
most critical pathogens, together with carbapenem-resistant
Acinetobacter baumannii and Pseudomonas aeruginosa, and has
been clinically issued with growing concerns in need of new
antibiotics (Tacconelli et al., 2017). CRE can produce several
enzymes belonging to the class of New Delhi metallo-β-lactamase
(NDM) to hydrolyze carbapenems (Doi and Paterson, 2015).
Since the first report of NDM (Yong et al., 2009), a series
of NDM variants, which possess distinct hydrolytic activity
against β-lactams (blaNDM) from NDM-1 to NDM-29, have been
identified with the clinical evolution of NDM (Cheng et al.,
2018). In particular, NDM-5 producing Escherichia coli shows
higher level of resistance to carbapenems compared to previously
reported NDM-1 producing bacteria (Hornsey et al., 2011).

The first occurrence of NDM-5 producing E. coli EC405 was
reported in a patient in the United Kingdom in 2011, and it
showed a high level of resistance to cephalosporins, carbapenems,
aminoglycosides, and quinolones, while being susceptible to
colistin and tigecycline (Hornsey et al., 2011). Following this
discovery, two carbapenemase-producing Enterobacteriaceae
(NDM-5 producing E. coli and NDM-1 producing Klebsiella
pneumoniae) showing distinct hydrolytic activity against
imipenem were isolated from a traveler from Bangladesh in
2013 and Indonesia in 2014, respectively (Nakano et al., 2014).
Subsequently, in South Korea, NDM-9 and NDM-5 producing
Klebsiella variicola and E. coli strains were recovered from a
river in 2017 (Di et al., 2017) and patients in 2018 (Jhang et al.,
2018), respectively, suggesting that environmental and clinical
NDM-producing bacteria are in circulation.

The blaNDM genes have been predominantly found in
opportunistic pathogenic bacteria displaying resistance to
multiple antimicrobials, particularly, Enterobacteriaceae, such as
E. coli, Klebsiella sp., and Enterobacter sp. (Bush, 2010). Since
the isolation of clinical NDM-1 producing Acinetobacter spp. and
Pseudomonas spp. in 2012 (Bharadwaj, 2012), the occurrence of
NDM-producing bacteria has been on the rise in various aquatic
environments including river stream, wastewater treatment
plants (WWTPs), and tap water (Walsh et al., 2011; Luo et al.,
2013; Di et al., 2017). WWTPs have been suggested as potential
hot spots for antibiotic resistance (Karkman et al., 2018).
Contamination determinants from households, hospitals, farms,
and other non-point source pollutions may play a role in selective
pressure for the increase in antibiotic resistance, escalating
antibiotic resistance that enables the development of multi-drug
resistant (MDR), extensively drug resistant (XDR), and/or pan-
drug resistant (PDR) bacteria, which make it increasingly difficult
to treat infections.

In this study, we report the emergence of pathogenic, and
highly carbapenem-resistant and XDR E. coli strain N7, isolated
from the urban influent of Jungnang WWTP on the Han
River located in Seoul, the capital city of South Korea. Whole-
genome sequencing analyses of E. coli strain N7 indicated that
23 antibiotic resistance genes (ARGs) including blaNDM−5, a
variant of NDM, were present in chromosome, plasmids, and
contigs. Among them, seventeen were carried on two plasmids,

which were formulated structurally in a manner of well-known
conserved clusters with either class 1 integron and/or insertional
sequences (ISs), suggesting that E. coli strain N7 can act as a
carrier of ARGs in the aquatic environment.

MATERIALS AND METHODS

Isolation and Identification of
Carbapenem-Resistant Bacteria From a
WWTP
The influent sample was collected from the Jungnang (JN)
WWTP on the Han River, Seoul, South Korea in May of
2018 by using sterile bottles. After collection, the samples were
immediately shipped to the laboratory under cool conditions
(4◦C) and filtered through a 0.22 µm pore size membrane
filter (Advantec, Tokyo, Japan). The membranes were suspended
in 10 mL of Mueller-Hinton (MH) broth (MBCell, Seoul,
South Korea), thoroughly vortexed, and then processed with
a serial dilution up to 10−3 times (100, 10−1, 10−2, and
10−3). A 100 µL of sample of the MH broth was spread
on mSuperCARBA (CHROMagar, France) agar plates and the
plates were incubated at 37◦C for 48 h. After incubation, the
colonies on the plates were streaked on new MH agar plates
containing 8 mg/L of meropenem to obtain a single colony
of presumptive carbapenemase-producing bacteria. The isolate
grown on the plates were taxonomically identified using 16S
rDNA gene sequencing (Macrogen, Seoul, South Korea).

Phenotypic and Genotypic Resistance
Test
Eleven carbapenem resistance genes (blaIMP, blaVIM , blaNDM ,
blaSPM , blaAIM , blaDIM , blaGIM , blaSIM , blaKPC, blaBIC, and
blaOXA−48) (Poirel et al., 2011) were screened using PCR
detection from the presumptive carbapenemase-producing
bacteria. The amplicons were sequenced (Macrogen) and
identified using NCBI BLAST1. For the screened carbapenemase-
producing bacteria, MDR to 16 antibiotics was determined
using Kirby-Bauer disk diffusion, and resistance to colistin
was determined using broth dilution methods. For MDR, the
following antibiotic disks were used: ampicillin-sulbactam
(10/10 µg), cefotaxime (30 µg), ceftazidime (30 µg),
chloramphenicol (30 µg) ciprofloxacin (5 µg), colistin (2 mg/L),
doripenem (10 µg), fosfomycin (200 µg), gentamicin (10 µg),
levofloxacin (5 µg), meropenem (10 µg), netilmicin (10 µg),
piperacillin (100 µg), tetracycline (30 µg), tobramycin (10 µg),
and trimethoprim-sulfamethoxazole (1.25/23.75 µg) (Liofilchem,
Roseto degli Abruzzi, Italy). Resistance to the antibiotics was
determined according to the Clinical and Laboratory Standards
Institute (CLSI) guideline (Clinical Laboratory Standars and
Institue, 2016). Subsequently, MICs of 16 antibiotics for E. coli
strain N7 were evaluated using the broth dilution method
(Hasselmann, 2003).

1http://www.ncbi.nlm.nih.gov
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Whole Genome Sequencing
The genome was constructed de novo using PacBio sequencing
data (Pacific Biosciences, Menlo Park, CA, United States).
Sequencing analysis was performed at Chunlab Inc. (Seoul,
South Korea). PacBio sequencing data were assembled with
PacBio SMRT Analysis 2.3.0 using the HGAP2 protocol (Pacific
Biosciences). The resulting contigs from PacBio sequencing
data were circularized using Circulator 1.4.0 (Sanger Institute,
Hinxton, Cambridgeshire, United Kingdom) (Yoon et al., 2017).
Circular maps for plasmid structures and linear maps generated
by Circulator 1.4.0 and geneCo (Jung et al., 2019), respectively,
were manually modified. The chromosomal and plasmid origins
of replication were identified using DoriC 5.0 and the plasmid
types were determined by PlasmidFinder 1.3, using FASTA file
(Carattoli et al., 2014). ARGs were identified using ResFinder
(Zankari et al., 2012). Multi-locus sequence type (MLST) was
determined by sequences of seven housekeeping genes (adk,
fumC, gyrB, icd, mdh, purA, and recA) according to a previous
description (Clermont et al., 2000). The WGS data were deposited
in GenBank under the accession JABWPS000000000.

Serotyping and Virulence Determinants
Carbapenemase-producing E. coli strain was serotyped with four
O-antisera (O26, O111, O146, and O157) (SSI Diagnostica,
Hillerød, Denmark) by incubation in MH broth for 16 h, boiling
at 95◦C for 15 min. Equal volume of the lysate and antisera were
mixed in a 96-well culture plate, and then incubated at 52◦C
overnight. The agglutination of O-antigen and O-antisera was
visually checked according to a previously described protocol
(SSI Diagnostica). Virulence genes and serotype were determined
from WGS data using VirulenceFinder and SerotypeFinder 2.0
(Carattoli et al., 2014; Joensen et al., 2015).

RESULTS

Isolation and Identification of
Carbapenem-Resistant Bacteria
Among the 50 isolates from the influent of JN WWTP, 24
isolates were presumptive carbapenem-resistant bacteria. The
PCR detection of 11 carbapenemase genes (blaIMP, blaVIM ,
blaNDM , blaSPM , blaAIM , blaDIM , blaGIM , blaSIM , blaKPC, blaBIC,
and blaOXA−48) revealed that only one isolate was positive for the
blaNDM . This isolate, N7, was taxonomically identified as E. coli
by 16S rDNA gene sequencing. MLST revealed that E. coli strain
N7 belonged to ST746.

Phenotypic Antimicrobial Resistance
Escherichia coli strain N7 showed resistance to ampicillin
(MIC, 1,024 mg/L), cefotaxime (MIC, 256 mg/L), ceftazidime
(MIC, 512 mg/L), ciprofloxacin (MIC, 1,024 mg/L), colistin
(MIC, 8 mg/L), doripenem (MIC, 512 mg/L), fosfomycin
(MIC, 1,024 mg/L), gentamycin (MIC, 512 mg/L), imipenem
(MIC, 256 mg/L) levofloxacin (MIC, 256 mg/L), meropenem
(MIC, 256 mg/L), netilmicin (MIC, 256 mg/L), piperacillin
(MIC, 1,024 mg/L), tetracycline (MIC, 512 mg/L), tobramycin

(MIC, 256 mg/L), and trimethoprim-sulfamethoxazole (MIC,
4/76 mg/L), but was susceptible to chloramphenicol (Table 1).
Compared to the CLSI clinical breakpoint, E. coli strain N7
exhibited high level of resistance to eight classes of the antibiotics
tested, except for trimethoprim-sulfamethoxazole. Regarding the
extent of the antibiotic resistance up to 15 of 16 antibiotics tested,
strain N7 is likely to be an XDR bacterium.

Determinants for Antimicrobial
Resistance and Pathogenicity
WGS data showed that 23 ARGs were present in E. coli strain
N7 and 21 ARGs were found on two incompatible plasmids and
contigs, except for the blaCTX−64 and mdf(A) genes, which were
located on the chromosome (Table 2). We found two plasmids in
E. coli strain N7, identified as an IncX3 plasmid (pKJNI-5), and a
hybrid plasmid consisting of IncHI2 and N-type (pKJNI-2).

Figure 1A shows the structure of the IncX3 type plasmid
pKJNI-5 containing the blaNDM−5 gene. As shown in the figure,
the blaNDM−5 gene was always followed by a gene cluster
composed of bleomycin resistance gene (bleMBL), phosphoribosyl
anthranilate isomerase (trpF), and protein-disulfide reductase
(dsbD), as previously reported (Nakano et al., 2014; Zhu et al.,
2016; Ho et al., 2018; Yuan et al., 2019). The gene cluster
of blaNDM−5-bleMBL-trpF-dsbD was also bracketed by IS3000-
ISAba125-IS5 in the upstream region and IS26 in the downstream
region (Figure 1B), which was also well conserved among diverse
bacteria with the blaNDM-5 and blaNDM-1 genes (Nakano et al.,
2014; Zhu et al., 2016; Ho et al., 2018; Yuan et al., 2019). It should
be noted that IS3000 was always found upstream of the gene
cluster of blaNDM−5-bleMBL-trpF-dsbC/D regions among diverse
bacteria. In addition, except in E. coil pTK1044, IS26 is always
located downstream of the gene cluster. Figure 1A shows the
presence of a type IV secretion system (virD2-virB1-virB4-virB5-
virB6-virB8-virB9-virB10-virB11-virD4) at a site opposite that of
blaNDM−5 on the plasmid pKJNI-5.

Figure 2A shows the IncHI2/N hybrid-type plasmid pKJNI-
2, which carries 16 ARGs {aminoglycosides [aac(3)-IV, aadA1,
aadA2, aph(3′)-Ia, and aph(4)-Ia], β-lactams (blaCTX−14),
fosfomycin (fosA3), macrolide [mph(A)], phenicols (floR and
cmlA1), quinolones (oqxA and oqxB), sulfonamide (sul1, sul2,
and sul3), and trimethoprim (dfrA12)}. Even in the presence
of the phenicol resistance gene on the IncHI2/N hybrid
plasmid, E. coli strain N7 was susceptible to chloramphenicol.
IS257 brackets 15 ARGs except for macrolide [mph(A)], and
contains a class 1 integron, which carries resistance genes to
aminoglycoside (aadA1 and aadA2), chloramphenicol (cmlA1),
and trimethoprim (dfrA12) (Figure 2B). The gene cassette
associated with class 1 integron of E. coli strain N7 was compared
with that of previously submitted genomic data of other
bacterial strains including Aeromonas caviae, A. baumannii,
Salmonella Typhimurium, P. aeruginosa (Figure 2B). It shows
similar patterns of carrying a narrow range of resistance genes
to aminoglycoside, β-lactam, chloramphenicol, sulfonamide,
and trimethoprim.

In addition, E. coli strain N7 carries the following eight
virulence factors: adhesion-associated molecules (fimH, flu,
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TABLE 1 | MICs of antimicrobials tested for E. coli strain N7 compared with other E. coli strains.

No. Antibiotics MICs (mg/L) of E. coli strains CLSI clinical
breakpoint (mg/L)

N7 QD28 (Rahman
et al., 2014)

QD29 (Rahman
et al., 2014)

EC405 (Zhu et al.,
2016)

1 GEN 512 32 ≥256 – 16

2 CIP 1024 6 ≥32 – 4

3 MEM 256 ≥32 ≥32 ≥32 4

4 SXT >4/76 – – – 4/76

5 CTX 256 ≥256 ≥256 ≥256 4

6 CAZ 512 ≥256 ≥256 ≥256 16

7 AMP 1024 – – – 32

8 PIP 1024 – – – 128

9 TET 512 16

10 FOF 1024 2 ≥1024 – 256

11 NET 256 – – – 32

12 DOR 512 – – – 4

13 LVX 256 – – – 8

14 TOB 256 10 ≥256 – 16

15 CHL S – – – 32

16 CST 8 0.38 0.5 – 2

17 IMP 256 – – – 4

GEN: gentamicin; CIP: ciprofloxacin, MEM, meropenem; SXT, trimethoprim-sulfamethoxazole; CTX, cefotaxime; CAZ, ceftazidime; AMP, ampicillin; PIP, piperacillin; TET,
tetracycline; FOF, fosfomycin; NET, netilmicin; DOR, doripenem; LVX, levofloxacin; TOB, tobramycin; CHL, chloramphenicol; CST, colistin; IMP, imipenem S, susceptible.

TABLE 2 | Genome features of E. coli N7 and its antimicrobial resistance genes.

Sequence type Replicon Origin of
replication/plasmid
incompatibility

Length (bp) GC (%) Resistance genes(n = 23) Class of antimicrobials

ST746 Chromosome oriC 4,614,699 50.84 blaCTX−64 β-Lactam

mdf(A) Macrolide

Plasmid pKJNI-2 IncHI2, IncN 255,628 46.75 blaCTX−14 β-Lactam

aac(3)-IV, aadA1, aadA2,
aph(3′)-Ia, aph(4)-Ia

Aminoglycoside

sul1, sul2, sul3 Sulfonamide

dfrA12 Trimethoprim

fosA3 Fosfomycin

oqxA, oqxB Quinolone

mph(A) Macrolide

floR, cmlA1 Phenicol

Plasmid pKJNI-5 IncX3 71,870 47.54 blaNDM−5 β-Lactam

Contig 3 19,713 52.99 tet(A) Tetracycline

Contig 5 8,333 57.82 erm(B) Macrolide

tet(M) Tetracycline

aadA22 Aminoglycoside

ecpABCDE, and sfmA), and toxins-encoding genes (hlyE and
gadA). E. coli strain N7 belongs to H37 but O-serotype
was not determined.

DISCUSSION

In the present study, we report on the emergence of XDR E. coli
strain N7 which is positive for blaNDM−5 and characterization
of the genetic context of ARGs, including blaNDM−5. Since

the discovery of NDM in a Swedish patient who traveled to
India, its variants have grown to 28 different types from diverse
bacteria, mostly isolated from clinical samples. In South Korea,
NDM-5 producing Enterobacteriaceae have been reported only
in clinical environments (Park et al., 2016, 2019; Kim et al.,
2020), and NDM-9 producing K. variicola were found in river
(Di et al., 2017).

Escherichia coli strain N7 belonging to ST746 isolated
from the urban influent of JN WWTP shows a variant
of the NDM, NDM-5 type. From the WGS, we identified
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FIGURE 1 | Structure of pKJNI-5 plasmid (IncX3 type) of E. coli N7 harboring blaNDM−5 (A) and comparative sequence analysis of regions of blaNDM−5 of E. coli N7
with other previously reported genetic structures of blaNDM (B). (A) From outermost to innermost ring of plasmid, forward and reverse CDS, track for rRNA and
tRNA, GC Skew and GC Ratio was drawn. (B) The genetic environment of blaNDM−5 of (a) pKJNI-5 isolated in this study, (b) pBJ01, (c) pTK1044, (d)
pNDM-MGR194, (e) pP744-T-NDM-5, (f) pNDM5-SCNJ were compared. Indication of each color was described below the genetic structures.

FIGURE 2 | Circular map and comparative sequence analysis of pKJNI-2 plasmid (IncHI2/IncN hybrid type) and comparison of class 1 integron structures. (A) From
outermost to innermost ring of plasmid, forward and reverse CDS, track for rRNA and tRNA, GC Skew and GC Ratio was drawn. ARGs and mobile genetic
elements were indicated in black and red colors, respectively. (B) Class 1 integron structure of pKJNI-2 was compared with those previously reported. The int1 gene
and ARGs were colored in yellow and red colors, respectively.

two plasmids such as a narrow host range plasmid IncX3
(Johnson et al., 2012) and a hybrid IncHI2/N. The narrow host
range plasmid IncX3 carries a cluster structure of 5′-IS3000-
DISAba125-IS5-blaNDM−5-bleMBL-trpF-dsbD-IS26-3′ containing
the blaNDM−5 gene. Figure 1A shows the composition of ISs,
which cassettes structural genes of 5′-blaNDM−5-bleMBL-trpF-
dsbD-3′ (Liu et al., 2013; Nakano et al., 2014; Zhu et al.,
2016; Yuan et al., 2019) with a minor change in the presence

and absence of IS5 and the extent of truncated ISAba125
among the analyzed E. coli and K. pneumoniae strains. The
question is still remained why the structural genes of 5′-bleMBL-
trpF-dsbD-3′ with blaNDM−5 are always clustered together.
In addition, the IncX3 type plasmid in E. coli strain N7
also contains a type IV secretion system (virD2-virB1-virB4-
virB5-virB6-virB8-virB9-virB10-virB11-virD4) located at a site
opposite that of blaNDM−5. It should be noted that the type
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IV secretion system has also been hypothesized to be involved
in horizontal gene transfer between other bacteria (Juhas et al.,
2008). Taken together, E. coli strain N7 is likely to have a
system to transfer recently emerged blaNDM−5 gene to other
bacteria due to multiple ISs and type IV secretion system,
although it contains the narrow host range vector system
(Liakopoul et al., 2018).

It is known that E. coli ST746 carries extended-spectrum
β-lactamase (ESBL) genes from fishes (Sellera et al., 2018) and
human patients (Wu et al., 2018). In this study, E. coli strain
N7 harbored ESBL and eight virulence factors. Surprisingly,
E. coli strain N7, which showed MIC of meropenem at
256 mg/L, was also resistant to several antibiotics with very high
MIC values for the tested antimicrobials (Table 1), compared
to other NDM-5 producing E. coli strains (Hornsey et al.,
2011; Rahman et al., 2014; Zhu et al., 2016; Jhang et al.,
2018). This XDR pattern can be explained by the presence
of several resistance genes located on the broad host range
plasmid (Figure 2; Zhao et al., 2018). Therefore, the presence
of XDR E. coli, isolated from the influent of WWTP located
in a city, along with the carbapenem-resistance gene raises
public health concerns due to the possible dissemination of
ARGs to other pathogenic bacteria, and difficulty in treatment
of infections. Indeed, XDR pathogenic E. coli strains have
been reported from human patients (harboring blaKPC−2)
(Jeong et al., 2018) and from chickens (co-producing blaNDM
and mcr-1) (Lv et al., 2018), increasing the likelihood of
infectious disease outbreaks. The characteristics of XDR E. coli
strain N7 can be attributed to the presence of corresponding
resistance genes located on two plasmids of an IncX3 and a
hybrid IncHI2/N. The occurrence of the IncHI2 plasmid has
been frequently reported in Salmonella strains with multiple
ARGs (Chen et al., 2016). In our experiments, most of the
resistance genes were found on the hybrid plasmid IncHI2/N
of E. coli strain N7, containing diverse resistance determinants,
including aminoglycoside [aac(3)-IV, aadA1, aadA2, aph(3′)-Ia,
and aph(4)-Ia], β-lactam (blaCTX−64, blaCTX−14, and blaNDM−5),
fosfomycin (fosA5), macrolide [mdf(A) and mph(A)], phenicol

(floR and cmlA1), quinolone (oqxA and oqxB), sulfonamide (sul1,
sul2, and sul3), and trimethoprim (dfrA12).

CONCLUSION

In conclusion, NDM-5 producing E. coli strain N7, which shows
a high level of carbapenem resistance and an XDR pattern,
was found in the megacity influent of Jungnang WWTP, Seoul,
South Korea. Our findings suggest that pathogenic XDR E. coli
originating from urban activities may be disseminated into the
river from WWTP and is a potential carrier or spreader of ARGs,
including emerging carbapenemase genes. Thus, we need to focus
on the continuous surveillance of carbapenemase-producing
bacteria in diverse environments.
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Reactive oxygen species (ROS) are related to antibiotic resistance and have been
reported in bacteria. However, whether ROS contribute to ceftazidime resistance and
plays a role in ceftazidime-mediated killing is unknown. The present study showed lower
ROS production in ceftazidime-resistant Edwardsiella tarda (LTB4-RCAZ ) than that in
LTB4-sensitive E. tarda (LTB4-S), two isogenic E. tarda LTB4 strains, which was related
to bacterial viability in the presence of ceftazidime. Consistently, ROS promoter Fe3+ and
inhibitor thiourea elevated and reduced the ceftazidime-mediated killing, respectively.
Further investigation indicated that the reduction of ROS is related to inactivation of
the pyruvate cycle, which provides sources for ROS biosynthesis, but not superoxide
dismutase (SOD) and catalase (CAT), which degrade ROS. Interestingly, Fe3+ promoted
the P cycle, increased ROS biosynthesis, and thereby promoted ceftazidime-mediated
killing. The Fe3+-induced potentiation is generalizable to cephalosporins and clinically
isolated multidrug-resistant pathogens. These results show that ROS play a role in
bacterial resistance and sensitivity to ceftazidime. More importantly, the present study
reveals a previously unknown mechanism that Fe3+ elevates ROS production via
promoting the P cycle.

Keywords: antibiotic resistance, reactive oxygen species, Edwardsiella tarda, the pyruvate cycle, ceftazidime

INTRODUCTION

Edwardsiella tarda is known for causing diseases in both humans and fish, in both of which these
diseases can potentially be fatal if untreated. In aquaculture, the bacterium targets at a wide range
of fish species and thereby leads to extensive economic losses in the industry (Wang et al., 2011;
Abayneh et al., 2013). Various antibiotics are used to prevent and control the infections caused by
the bacterium. Unfortunately, the overuse of antibiotics has inadvertently promoted the emergence
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and rapid spread of antibiotic-resistant bacteria (Cabello et al.,
2016). The emergence of antibiotic-resistant bacteria poses a
major challenge for health practitioners and a huge threat to
human health and aquaculture since antibiotic-resistant bacteria
are insensitive to antibiotics. As the process of developing new
pharmaceutical agents to control antibiotic-resistant pathogens
is slow and not a viable approach to manage the growing
infectious diseases, further understanding of antibiotic resistance
mechanisms for control of these antibiotic-resistant pathogens is
an important scientific issue and becomes a major research focus
(Defoirdt et al., 2011; Blair et al., 2015).

A line of evidences has indicated that microbial metabolic
environment confounds antibiotic sensitivity (Peng et al., 2015;
Yao et al., 2016; Cheng et al., 2019; Stokes et al., 2019;
Jiang et al., 2020a; Li et al., 2020), where reactive oxygen
species (ROS) are related to bacterial resistance to antibiotics
and antibiotic-mediated killing efficacy (Dwyer et al., 2009;
Van Acker and Coenye, 2017; Zhao and Drlica, 2014). The
tricarboxylic acid cycle (TCA) cycle plays a crucial role in
ROS formation (Van Acker and Coenye, 2017). Therefore,
antibiotic-resistant bacteria exhibit the occurrence of reduced or
fluctuated TCA cycle and decreased ROS (Ye et al., 2018; Zhang
et al., 2020), indicating that low ROS concentrations induce
resistance (Van Acker and Coenye, 2017). In the antibiotic-
mediated killing mechanisms, antibiotics belonging to different
classes activate the TCA cycle, supporting the formation of
ROS (superoxide and hydrogen peroxide) via hyperactivation
of the electron transport chain (Dwyer et al., 2009; Van Acker
and Coenye, 2017). Fe3+ causes the activation of the Fenton
reaction to generate abundant ROS against methicillin−resistant
Staphylococcus aureus (MRSA) infection (Song et al., 2020).
Our recent publications have showed that the ROS induced by
exogenous metabolites elevate aminoglycoside-mediated killing
efficacy to EIB202 and Vibrio alginolyticus (Ye et al., 2018;
Zhang et al., 2020). Reports also indicate that the beta-
lactam stress increased the intracellular ROS level (Rosato
et al., 2014; Huang et al., 2019), but whether ROS promote
beta-lactam-mediated killing is unknown. Therefore, further
understanding of ROS role is required for control of beta-lactam-
resistant pathogens.

Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam
antibiotic, playing a bactericidal action by inhibiting enzymes
responsible for cell wall synthesis, primarily penicillin-binding
protein 3 (PBP3). The drug is a commonly used antibiotic
in clinics. However, with a wide use of cephalosporins in
clinics, resistance to cephalosporins including ceftazidime is
predominant. Inactivation of β-lactams by β-lactamases, failure
in binding to penicillin-binding proteins, and alteration of
binding affinity to penicillin-binding proteins are identified as
the three common mechanisms of resistance to β-lactams (Peng
et al., 2019). However, whether ROS play a role in ceftazidime
sensitivity and resistance is largely unknown. Furthermore,
information regarding mechanisms for Fe3+-mediated ROS
is not available.

In this study, we showed that the intracellular ROS production
was lower in LTB4-RCAZ than that in LTB4-S due to a decrease of
ROS generation. The decrease of ROS generation was attributed

to inactivation of the pyruvate cycle (the P cycle) (Ye et al., 2018).
Fe3+ promoted the P cycle for elevation of ROS production,
thereby elevating ceftazidime-mediated killing. These results are
described below.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
Edwardsiella tarda LTB4 used in this study was obtained from
Professor Xiaohua Zhang, Ocean University of China University.
LTB4 was grown at 30◦C for 24 h in 50 ml Luria-Bertani (LB)
broth in 250-ml flasks.

Measurement of Minimum Inhibitory
Concentration
Measurement of minimum inhibitory concentration (MIC) was
performed as previously described (National Committee for
Clinical Laboratory Standards, 1999). In brief, LTB4 was cultured
in LB medium with twofold serially diluted ceftazidime (CAZ,
Guangzhou QiYun Biological Technology) ranging from 0.01
to 160 µg/ml. Overnight bacterial cultures were diluted 1:100
in fresh LB medium and cultured at 30◦C to an OD600
of 0.5. The tray contained a series of twofold dilutions of
antibiotics. Ninety microliters of LB containing CAZ and
10 µl of logarithmic phase cells with 107 CFU/ml of LTB4-
RCAZ or LTB4-RCAZ were incubated in a microwell plate for
24 h at 30◦C. The lowest concentration showing no visible
growth was recorded as the MIC. At least three biologic
replicates were performed.

Real-Time Quantitative PCR
Real-time quantitative PCR (qRT-PCR) was carried out as
previously described (Li et al., 2016). Bacterial cells were
harvested at OD600 = 1.0. The total RNA of each sample
was isolated with TRIzol (Invitrogen, United States). Reverse
transcription-PCR was carried out on a PrimeScriptTM RT
Reagent Kit with gDNA eraser (Takara, Japan) with 1 µg of
total RNA according to manufacturer’s instructions. qRT-PCR
was performed in 384-well plates, and each well contained a
total volume of 10 ml liquid including 5 ml 2X SYBR Premix
Ex TaqTM, 2.6 µl PCR-grade water, 2 µl cDNA template, and
0.2 µl each pair of primers (10 mM). The primers are listed
in Supplementary Table 1. All the assays were performed on
the LightCycler 480 system (Roche, Germany) according to the
manufacturer’s instructions, and four independent samples were
assayed for both the control group and the test group. The
cycling parameters were listed as follows: 95◦C for 30 s to
activate the polymerase; 40 cycles of 95◦C for 10 s; and 60◦C
for 30 s. Fluorescence measurements were performed at 70◦C
for 1 s during each cycle. Cycling was terminated at 95◦C with
a calefactive velocity of 5◦C per second, and a melting curve
was obtained. To analyze the relative expression level of the
target gene, we converted the data to percentages relative to the
value of no-treatment group. At least triplicate biological repeats
were carried out.
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Metabolomics Analysis
Bacterial sample preparation was carried out as previously
described (Zhang et al., 2019). In brief, 10 ml OD600 = 1.0
cells were quenched with cold methanol and sonicated for
5 min at 200 W. Samples were centrifuged at 12,000 rpm
for 10 min. Supernatant, containing 1 µg/ml ribitol (Sigma–
Aldrich) as internal analytical standard, was transferred
into a new tube and dried by vacuum centrifugation device
(LABCONCO). The dried extracts were then incubated
with 80 µl methoxyamine hydrochloride (20 mg/ml, Sigma–
Aldrich) in pyridine (Sigma–Aldrich) for 90 min at 37◦C
and derivatization was done with an identical volume of
N-methyl-N-(trimethylsilyl)trifluoroacetamide (Sigma–Aldrich)
for another 30 min. Samples were centrifuged at 12,000 rpm
for 10 min, and the supernatant was transferred into new tubes.
Gas chromatography-mass spectrometry (GC-MS) analysis
was performed with an Agilent GC-MS instrument. Spectral
deconvolution and calibration were performed using AMDIS
and internal standards as previously described. A retention
time (RT) correction was performed for all the samples,
and then the RT was used as a reference against which the
remaining spectra were queried, and a file containing the
abundance information for each metabolite in all the samples
was assembled. Metabolites from the GC-MS spectra were
identified by searching in the National Institute of Standards
and Technology (NIST11.L) Mass Spectral Library. Among
the detected peaks of all chromatograms, compound peaks
were considered as endogenous metabolites and the same
metabolite names were merged. The resulting data matrix was
normalized by the concentrations of added internal standards
and the total intensity. This file was then used for subsequent
statistical analyses. The abundance of a metabolite was scaled
by total abundance of all metabolites in a sample as its relative
abundance for further analysis. Hierarchical clustering was
completed in the R platform with the package gplots1 using
the distance matrix. Multivariate statistical analysis included
principal component analysis (SIMCA-P 12.0.1), which was used
to discriminate sample patterns. GraphPad Prism 7 was used
to draw figures.

Measurement of the Activity of Enzymes
in the P Cycle
Measurement of enzyme activity was performed as previously
described with a few modifications (Zhang et al., 2019; Jiang
et al., 2020c). In brief, the harvested cells were collected
at OD600 = 1.0 and then re-suspended in sterile saline to
OD600 = 1.0 after washing. Samples of 30 ml were collected
by centrifugation at 8,000 rpm for 5 min. Pellets were re-
suspended in phosphate-buffered saline (PBS) and broke down
by sonication for 2 min at a 200-W power setting on ice, and
then centrifuged at 12,000 rpm for 10 min to remove insoluble
materials. Supernatants containing 200 µg of total proteins were
transferred to a pyruvate dehydrogenase (PDH) reaction mix
(0.15 mM MTT, 1 mM MgCl2, 0.5 mM PMS, 0.2 mM TPP,

1https://cran.r-project.org/web/packages/gplots/

2 mM sodium pyruvate, and 50 mM PBS), an α-ketoglutarate
dehydrogenase (KGDH) reaction mix (0.15 mM MTT, 1 mM
MgCl2, 0.5 mM PMS, 0.2 mM TPP, 50 mM α-ketoglutaric acid
potassium salt, and 50 mM PBS), a succinate dehydrogenase
(SDH) reaction mix (0.15 mM MTT, 1 mM PMS, 5 mM sodium
succinate, and 50 mM PBS), and a malate dehydrogenase (MDH)
reaction mix (0.15 mM MTT, 1 mM PMS, 50 mM PBS, and
50 mM malate) to a final volume of 200 µl in a 96-well plate.
Subsequently, the plate was incubated at 37◦C for 5 min for
PDH/KGDH/SDH/MDH assay and then measured at 566 nm
for colorimetric readings. The plate was protected from light
during the incubation. The dehydrogenase activity was assayed
in quadruplicate.

Detection of Superoxide Dismutase and
Catalase Activity
The activity of superoxide dismutase (SOD) and catalase (CAT)
was determined by commercial kits (Nanjing Jiancheng, China).
The process is as follows: 10 ml of bacteria with OD600 = 1.0 was
collected, washed twice with PBS, and suspended in PBS. The
suspension was broke down by sonication for 2 min at a 200-
W power setting on ice and then centrifuged at 12,000 rpm for
10 min to remove insoluble materials. The supernatant was taken,
and the protein concentration was determined. The activity of
SOD was measured with 150 µg total protein. The follow-up
test was carried out according to the manufacturer’s instructions.
Then, SOD activity was measured at 450 nm, and CAT activity
was measured at 405 nm. The plate was protected from light
during the incubation.

Measurement of ATP
Detection of ATP was determined by a BacTiter-GloTM Microbial
Cell Viability Assay (Cat. G8231, Promega, Madison, WI,
United States) as previously described (Cheng et al., 2019). In
brief, bacterial cells were harvested in the OD600 of 1.0 by
centrifugation for 10 min at 12,000 g and washed twice by
centrifugation with sterile saline. Cells were resuspended with
saline solution and adjusted the OD600 to 1.0. Then, 50-µl
samples were added to a 96-well plate and mixed with an equal
volume of the kit solution. Then, the absorbance was measured
using VICTOR X5 (PerkinElmer, Turku, Finland) according to
the manufacturer’s instructions. The concentration of ATP was
calculated according to the standard curve of ATP.

Antibiotic Bactericidal Assays
Antibacterial assay was carried out as described previously (Peng
et al., 2015). Overnight bacterial cultures were diluted 1:100 in
fresh LB medium and cultured at 30◦C to an OD600 of 1.0.
Bacterial cells were collected by centrifugation at 8,000 rpm
for 5 min. The samples were then washed with sterile saline
three times; suspended in M9 minimal media containing 10 mM
acetate, 1 mM MgSO4, and 100 µM CaCl2; and diluted to
an OD600 of 0.2. Fe3+ or/and ceftazidime were added and
incubated at 30◦C and 200 rpm for 6 h. To determine bacterial
count, 100 µl of cultures was obtained and then serially diluted.
An aliquot of 10µl of each dilution was plated in TSB agar
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FIGURE 1 | Ceftazidime resistance and reactive oxygen species (ROS) level in LTB4-RCAZ . (A) Minimum inhibitory concentration (MIC) of LTB4-S and LTB4-RCAZ .
(B) Killing efficiency of ceftazidime to LTB4-S and LTB4-RCAZ . (C) ROS of LTB4-S and LTB4-RCAZ . Results (B,C) are displayed as mean ± SEM, as determined by
two-tailed Student’s t-test. Four biological repeats are carried out. **P < 0.01.

FIGURE 2 | The role of ROS in ceftazidime-mediated killing. (A) ROS was quantified in LTB4-RCAZ in the absence or presence of ceftazidime plus Fe3+, H2O2,
or/and thiourea as indicated by fluorescence. (B) Percent survival of LTB4-RCAZ in the presence of ceftazidime and the indicated concentrations of Fe3+. (C) Percent
survival of LTB4-RCAZ in the presence or absence of Fe3+ plus the indicated concentrations of ceftazidime. (D) ROS level in the presence or absence of ROS
promoter and inhibitor plus ceftazidime. Results are displayed as mean ± SEM, as determined by two-tailed Student’s t-test. Four biological repeats are carried out.
* < 0.05 and ** < 0.01.

plates and incubated at 30◦C for 22 h. The plates only with
20–200 colonies were counted, and the colony-forming unit per
milliliter was calculated.

Measurement of Membrane Potential
Bacterial membrane potential was measured by BacLight
Bacterial Membrane Potential Kit (Invitrogen). In brief, bacteria
were diluted to 106 CFU/ml and stained with 10 µl of 3 mM
DiOC2, followed by incubation for 30 min. Samples were
analyzed using a FACSCalibur flow cytometer (Becton Dickinson,
San Jose, CA, United States). The green/red fluorescence was

detected with 488–530/610 nm. The membrane potential was
determined and normalized as the intensity ratio of the red
fluorescence and the green fluorescence. Relative proton motive
force (PMF) was determined by test samples compared with
control samples.

RESULTS

ROS Is Reduced in LTB4-RCAZ
LTB4 was cultured in LB medium with or without twofold
serially diluted ceftazidime, leading to LTB4-RCAZ and LTB4-S,
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FIGURE 3 | The P cycle, NADH, and ATP in LTB4-S and LTB4-RCAZ . (A) Sketch diagram describing the effect of the P cycle on ROS. (B) Real-time quantitative
PCR (qRT-PCR) for the expression of the P cycle-related genes in LTB4-RCAZ compared to LTB4-S. (C) A global view for transcription level of the P cycle genes.
Red and blue indicate upregulated and downregulated expression, respectively. (D) The activity of PDH, KGDH, SDH, and MDH in the P cycle. NADH (E),
membrane potential (F), and ATP (G) concentrations in LTB4-S and LTB4-RCAZ . The activity of superoxide dismutase (SOD) (H) and catalase (CAT) (I) in LTB4-S and
LTB4-RCAZ . Results (B,D–I) are displayed as mean ± SEM, as determined by two-tailed Student’s t-test. Four biological repeats are carried out. **P < 0.01.
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FIGURE 4 | Differential metabolomics of LTB4-RCAZ in response to Fe3+. (A) Heat map showing differential abundance of metabolites. Yellow and blue indicate
increase and decrease of metabolites relative to the median metabolite level of the control, respectively (see color scale). (B) Pathway enrichment of varied
metabolites in LTB4-RCAZ . (C) Integrative analysis of metabolites in significantly enriched pathways. Yellow and blue indicate increased and decreased metabolites,
respectively. (D) PCA of LTB4-S and LTB4-RCAZ . Each dot represents the technical replicate analysis of samples in the plot. (E) S-plot generated from OPLS-DA.
Predictive component p [1] and correlation p (corr) [1] differentiate LTB4-RCAZ from LTB4-S. Dot represents metabolites, and candidate biomarkers are highlighted in
blue.
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FIGURE 5 | The effect of Fe3+ on the P cycle. (A) qRT-PCR for expression of the P cycle genes in the presence of Fe3+. (B) A global view for transcription level of
the P cycle genes. Red and blue indicate upregulated and downregulated expression, respectively. The activity of enzymes of the P cycle (C), NADH level (D),
membrane potential (E), and ATP (F) of LTB4-RCAZ in the presence or absence of Fe3+. (G) The activity of SOD and CAT in the presence or absence of ceftazidime
or/and Fe3+. Results (A,C–G) are displayed as mean ± SEM, as determined by two-tailed Student’s t-test. Four biological repeats are carried out. *p < 0.05 and
**p < 0.01.

respectively. The MIC of LTB4-S was 0.039 µg/ml CAZ, while
that of LTB4-RCAZ was 0.625 µg/ml CAZ. There was a 16-fold
difference between the two strains (Figure 1A). Consistently,
a higher viability was detected in LTB4-RCAZ than LTB4-S
(Figure 1B). To explore whether LTB4-RCAZ had a reduced
ROS production, ROS production was detected in LTB4-RCAZ
and LTB4-S. A lower ROS production was determined in LTB4-
RCAZ than LTB4-S (Figure 1C). These results indicate that ROS
production is reduced in LTB4-RCAZ compared with LTB4-S.

ROS Promoter and Inhibitor Affect
Ceftazidime Resistance and
Ceftazidime-Mediated Killing
These above results motivated us to speculate that ROS plays an
important role in ceftazidime resistance. To demonstrate this, the
viability of LTB4-RCAZ was detected in the presence or absence

of ROS promoter or/and inhibitor with ceftazidime. There
was a stronger resistance to H2O2 in LTB4-S than Escherichia
coli K12 and thereby 5 mM H2O2 was used (Supplementary
Figure 1). The promoters Fe3+ and H2O2 (positive control)
potentiated ceftazidime-mediated killing. However, the inhibitor
thiourea not only eliminated the potentiation caused by the
promoters but also inhibited the ceftazidime-mediated killing
(Figure 2A). The effect of Fe3+ was increased in a dose-
dependent manner and was related to the concentration of
ceftazidime used (Figure 2B). When the concentration of
Fe3+ was fixed, the killing efficacy was ceftazidime dose
dependent (Figure 2C). To validate the role of the ROS
promoter or/and inhibitor in the ceftazidime-mediated killing,
we measured the ROS production of LTB4-RCAZ in the
presence or absence of the ROS promoter or/and inhibitor. ROS
production was elevated and reduced in the presence of the
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inhibitor thiourea and promoters Fe3+, H2O2, or ceftazidime
alone, respectively. Comparatively, the elevated ROS ranked
as H2O2 > ceftazidime > Fe3+. When the synergistic use of
ceftazidime with one of the promoters or/and the inhibitor was
performed, they promoted and inhibited ROS level, respectively
(Figure 2D). These results support the conclusion that ROS
is related to ceftazidime resistance and promotes ceftazidime-
mediated killing.

The P Cycle Is Inactivated and the
Activity of Antioxidant Enzymes Is Not
Changed in LTB4-RCAZ
To understand why ROS are reduced in LTB4-RCAZ , the P cycle
and SOD degradation were investigated. The P cycle is a recently
illustrated cycle, which provides respiratory energy in E. tarda (Su
et al., 2018), and is related to ROS biosynthesis (Figure 3A). For
the investigation of the P cycle, qRT-PCR was used to measure the
expression of genes in the P cycle. Among the 18 genes detected,
11, 2, and 5 were reduced, elevated, and unchanged, respectively.
Specifically, the 11 reduced genes encode all enzymes detected
except for citrate synthase (CS) and isocitrate dehydrogenase
(ICDH). The two elevated genes encode PDH and MDH. The five
unchanged genes encode CS, ICDH, SDH, fumarate reductase
(FRD), and pyruvate kinase (PK) (Figures 3B,C). Consistently,
a lower activity of PDH, KGDH, and SDH was detected in
LTB4-RCAZ than that in LTB4-S (Figure 3D). NADH, membrane
potential, and ATP were reduced in LTB4-RCAZ compared
with LTB4-S (Figures 3E–G). These results indicate that the
inactivation of the P cycle forms a characteristic feature in
LTB4-RCAZ , which is related to the reduced ROS production.
For the investigation of ROS degradation, the activity of ROS
degradation enzymes was measured. Among these enzymes
working for the ROS degradation, SOD and CAT are widely
employed to indicate the antioxidant response. Therefore, the
activity of SOD and CAT was detected in LTB4-RCAZ and
LTB4-S. A similar activity of SOD and CAT was measured
between LTB4-RCAZ and LTB4-S (Figures 3H,I). These results
indicate that antioxidant response is not changed in LTB4-
RCAZ . Taken together, the lower ROS in LTB4-RCAZ is attributed
to a reduction of ROS generation instead of an increase of
ROS degradation.

Fe3+ Impacts Metabolic Profile
The above results motivated us to explore whether Fe3+

promotes global metabolism including the P cycle to elevate
ROS level and potentiate ceftazidime-mediated killing. To
do this, GC-MS-based metabolomics was used to compare
metabolic profiles between media with or without Fe3+. Four
biological and two technical replicates were performed in each
group, yielding eight data sets with 65 metabolites in a sample.
Among the 65 metabolites, 33 (50.8%) showed differential
abundance (p < 0.05), with 27 at higher abundance and 6
at lower abundance in the presence of Fe3+ (Figure 4A).
Fourteen pathways were enriched, of which alanine, aspartate,
and glutamate metabolism; the TCA cycle; and aminoacyl-
tRNA biosynthesis were the top three pathways by impact

FIGURE 6 | Promotion of Fe3+ to the P cycle. (A) ROS of LTB4-RCAZ in the
presence of Fe3+ and CAZ plus inhibitors of the P cycle. (B) Percent survival
of LTB4-RCAZ in the presence of Fe3+ and CAZ plus inhibitors of the P cycle.
(C) The activity of PDH, KGDH, SDH, and MDH in the presence of Fe3+.
Results are displayed as mean ± SEM, as determined by two-tailed Student’s
t-test. Four biological repeats are carried out. *p < 0.05 and **p < 0.01.

(Figure 4B). Differential metabolites at abundance are listed
in Figure 4C, where all detected metabolites were elevated
in the TCA cycle (Figure 4C). Principal component analysis
identified two principal components, where component
t[1] distinguished LTB4-RCAZ from LTB4-RCAZ + Fe3+

(Figure 4D). Discriminating variables were identified on an
S-plot (Figure 4E). Cutoff values were ≥ 0.05 for absolute
value of the covariance p and ≥ 0.5 for correlation p (corr).
Nine putative biomarkers were identified, including decreased
abundance of 9-hexadecenoic acid, acetic acid, and myo-inositol
and elevated abundance of citric acid, oxalic acid, putrescine,
butanoic acid, threonine, aspartic acid, and palmitic acid. Among
the elevated metabolites, citric acid plays a role in the P cycle.
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FIGURE 7 | Percent survival of clinically isolated pathogens in the presence of Fe3+ and ceftazidime, cefoperazone, or cefazolin. (A) E. tarda. (B) E. coli. (C)
K. pneumoniae. (D) P. aeruginosa.

These results indicate that Fe3+ impacts the metabolic profile,
where the P cycle is elevated.

Fe3+ Activates the P Cycle
To further demonstrate the Fe3+-mediated activation, gene
expression and enzyme activity were measured in the

P cycle. qRT-PCR analysis showed that out of 18 genes
tested, 5, 3, and 10 were elevated, reduced, and unchanged,
respectively. In detail, the five elevated genes encode PDH,
ACO, ICDH, SCS, and FRD, and the reduced genes encode
KGDH, SDH, and PK (these enzymes are encoded by two
genes) (Figures 5A,B). The activity of PDH, KGDH, SDH,
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FIGURE 8 | Sketch diagram describing a mechanism by which Fe3+ promotes ROS level.

and MDH was elevated (Figure 5C), which was further
supported by increased NADH, membrane potential, and ATP
(Figures 5D–F). These results indicate that Fe3+ promotes
the P cycle but does not affect the activity of SOD and
CAT (Figure 5G).

Fe3+ Promotes ROS via the P Cycle
To further validate that Fe3+ promotes ROS via the P cycle,
inhibitors of the P cycle were used to investigate whether
the inhibition affects ROS and viability of LTB4-RCAZ in the
presence of both Fe3+ and ceftazidime. Furfural is a non-
competitive inhibitor for PDH, and malonic acid is competitive
against SDH. Lower ROS were detected in the presence than
the absence of furfural or malonic acid, while higher ROS were
determined in the medium with than without Fe3+ in the
presence or absence of ceftazidime and furfural or malonic acid
(Figure 6A), suggesting that Fe3+ partly reverts the inhibition
mediated by the two inhibitors. Consistently, a lower viability
was detected in the medium with than without Fe3+ in the
presence of furfural or malonic acid (Figure 6B). To understand
the mechanisms by which Fe3+ promotes the P cycle, we
supposed that Fe3+ activates the activity of enzymes in the
P cycle. To explore this, the activity of PDH, KGDH, SDH,
and MDH was measured in a medium with the indicated
concentrations of Fe3+. The activity of the four enzymes
was increased in a Fe3+ dose-dependent manner in vitro
(Figure 6C). These results indicate that Fe3+ promotes the
activity of PDH, KGDH, SDH, and MDH in the P cycle
directly, which is related to the elevation of ROS level in the
presence of Fe3+.

Fe3+ Promotes the
Cephalosporin-Mediated Killing to
Clinically Isolated Pathogens
To ensure the Fe3+-induced potentiation is generalizable to
cephalosporins and clinically isolated pathogens, three types of
cephalosporins (ceftazidime, cefoperazone, and cefazolin) and
12 strains of bacterial pathogens (E. tarda, E. coli, Klebsiella
pneumoniae, and Pseudomonas aeruginosa) were used. The 12
strains of pathogens are resistant to at least three classes of
antibiotics and thereby belong to multidrug-resistant bacteria.
However, Fe3+ effectively promotes the three drugs to kill
all pathogens (Figure 7). These results indicate that the
Fe3+-induced potentiation is generalizable to the drugs and
bacterial pathogens.

DISCUSSION

The present study first investigated whether ceftazidime
resistance is related to ROS level and then explored whether
Fe3+-potentiated ROS elevation in ceftazidime-mediated
killing is related to the P cycle, which contributes to ROS
biosynthesis. For this purpose, ROS level was compared
between LTB4-S and LTB4-RCAZ . Lower ROS was detected in
LTB4-RCAZ than in LTB4-S. The reduction is accompanied
with the inactivation of the P cycle. Since the P cycle is
related to ROS generation, the inactivated P cycle should
be one reason by which ROS is reduced in LTB4-RCAZ .
Moreover, the role of ROS in ceftazidime-mediated killing
was demonstrated by the ROS promoter Fe3+ and inhibitor
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thiourea. They increased and decreased the ceftazidime-
mediated killing, respectively, suggesting that the ROS
promoter and inhibitor affect the killing via regulation of
ROS biosynthesis. These results indicate that the ceftazidime-
mediated resistance and killing are regulated by ROS level.
We further show that the Fe3+-induced potentiation is
generalizable to ceftazidime and other cephalosporins to
kill clinically multidrug-resistant pathogens E. tarda, E. coli,
K. pneumoniae,and P. aeruginosa.

It has been reported that ROS level is a characteristic feature
as a consequence of antibiotic resistance and sensitivity (Ma
et al., 2016; Ye et al., 2018). Rosato et al. indicated that
TCA cycle-mediated generation of ROS is a key mediator for
MRSA survival under beta-lactam antibiotic exposure (Rosato
et al., 2014). Hayakawa et al. (2019) demonstrated that anti-
ROS agent prevents the acquisition of multi-drug resistance
in clinical isolates of P. aeruginosa. Thomas et al. (2013)
showed that a dysfunctional TCA cycle enables Staphylococcus
epidermidis to resist oxidative stress and alter its cell surface
properties, making it less susceptible to beta-lactam antibiotics.
In addition, Battán et al. (2004) found that resistance to
oxidative stress caused by ceftazidime and piperacillin in a
biofilm of Pseudomonas is related to bacterial strains. On
the other hand, ROS act as an antibiotic sensitizer for the
treatment of antibiotic-resistant bacteria involved in infectious
diseases (Guo et al., 2018). Recent observations have linked ROS
production with bactericidal action of antibiotics, pointing to
antibiotic-induced TCA cycle- and respiratory chain-dependent
ROS production as playing a role in cell death (Dwyer
et al., 2009; Van Acker and Coenye, 2017; Ye et al., 2018).
The present study identified that both actions play a role.
Specifically, decreased ROS production is a characteristic feature
in LTB4-RCAZ , and ceftazidime-induced ROS production is
required for ceftazidime-mediated killing in LTB4-RCAZ . These
results indicate that the decreased ROS production contributes
to the insensitivity to ceftazidime, and thereby reduction
of ROS production is a mechanism by which E. tarda
resist to ceftazidime.

The present study further explored why ROS production
is reduced in LTB4-RCAZ based on the P cycle-mediated
generation and ROS degradation. It is documented that the
reduction of ROS production is attributed to the decreased
biosynthesis caused by inactivation of the P cycle instead of the
degradation. The understanding of the biosynthesis of ROS is
especially important for promoting antibiotic-mediated killing
since ROS production contributes to antibiotic resistance. Wang
et al. (2014) showed that loss of sigma(s) rendered stationary-
phase E. coli more sensitive to the bactericidal antibiotic
gentamicin due to a weakened antioxidant defense. Our recent
publication indicates that alanine enhances aminoglycoside-
induced ROS production through promoting ROS biosynthesis
pathways and repressing transcription of antioxidant-encoding
genes (Ye et al., 2018). Thus, a synergistic use of antibiotics
with ROS generation promoter or/and ROS degradation
inhibitor will elevate the antibiotic-mediated killing. In addition,
metabolites promoting hosts to eliminate bacterial pathogens
have been reported (Jiang et al., 2019a,b, 2020b; Gong et al.,

2020a,b; Yang et al., 2020), where ROS are involved (Sarr
et al., 2018; Gong et al., 2020b). Thus, it is possible to
select the promoters or/and inhibitors that simultaneously
elevate the ROS level of both hosts and bacteria. This
approach will make both the host’s anti-infective ability
and antibiotic-mediated killing play a role, having the most
effect on the elimination of bacterial pathogens via ROS-
mediated pathways.

A line of evidence has indicated that Fe3+ reduces ROS via
the Fenton system (Song et al., 2020). However, information
regarding whether Fe3+ regulates ROS by other ways is absent
in bacteria. The present study showed that Fe3+ reverts the
inactivity of the P cycle, which elevates ROS biosynthesis. Further
evidences include the elevated activity of PDH, KGDH, SDH, and
MDH in the presence of Fe3+ in vitro, suggesting that Fe3+ is an
activator of these enzymes. Therefore, Fe3+ as a ROS promoter
plays a role in the P cycle and Fenton system, which is not
reported before in bacteria.

In summary, ROS production is decreased as a crucial
characteristic of LTB4-RCAZ , which is related to inactivation
of the P cycle. Fe3+ promotes the activation of the P cycle
and thereby elevates ROS level. The elevated ROS potentiates
ceftazidime-mediated killing. When ROS inhibitor is used,
the killing is reduced (Figure 8). These results expand our
understanding for the role of Fe3+-induced ROS in antibiotic
resistance. They may also provide tools and/or knowledge for
future new strategies to stop infections by multidrug-resistant
human pathogens.
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We investigated the antibiotic resistome, mobilome, virulome, and phylogenomic
lineages of Enterococcus spp. obtained from a wastewater treatment plant and its
associated waters using whole-genome sequencing (WGS) and bioinformatics tools.
The whole genomes of Enterococcus isolates including Enterococcus faecalis (n = 4),
Enterococcus faecium (n = 5), Enterococcus hirae (n = 2), and Enterococcus durans
(n = 1) with similar resistance patterns from different sampling sites and time points were
sequenced on an Illumina MiSeq machine. Multilocus sequence typing (MLST) analysis
revealed two E. faecalis isolates that had a common sequence type ST179; the rest
had unique sequence types ST841, and ST300. The E. faecium genomes belonged
to 3 sequence types, ST94 (n = 2), ST361 (n = 2), and ST1096 (n = 1). Detected
resistance genes included those encoding tetracycline [tet(S), tet(M), and tet(L)], and
macrolides [msr(C), msr(D), erm(B), and mef (A)] resistance. Antibiotic resistance genes
were associated with insertion sequences (IS6, ISL3, and IS982), and transposons
(Tn3 and Tn6000). The tet(M) resistance gene was consistently found associated with
a conjugative transposon protein (TcpC). A total of 20 different virulence genes were
identified in E. faecalis and E. faecium including those encoding for sex pheromones
(cCF10, cOB1, cad, and came), adhesion (ace, SrtA, ebpA, ebpC, and efaAfs),
and cell invasion (hylA and hylB). Several virulence genes were associated with the
insertion sequence IS256. No virulence genes were detected in E. hirae and E. durans.
Phylogenetic analysis revealed that all Enterococcus spp. isolates were more closely
related to animal and environmental isolates than clinical isolates. Enterococcus spp.
with a diverse range of resistance and virulence genes as well as associated mobile
genetic elements (MGEs) exist in the wastewater environment in South Africa.

Keywords: Enterococcus spp., whole-genome sequencing, wastewater treatment plant, antibiotic resistance,
South Africa
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INTRODUCTION

The efficiency of wastewater treatment plants (WWTPs)
is critical to preventing the spread of antibiotic resistant
bacteria (ARB) and antibiotic resistance genes (ARGs) into
the environment (Karkman et al., 2017; Alexander et al.,
2020). Although AMR surveillance in clinical settings and
animals is well established in most developed and some
developing countries, surveillance in the environment still lags
behind (Huijbers et al., 2019). The emergence of ARB and
ARGs in the water environment has become an important
environmental health issue (Conte et al., 2017; Karkman
et al., 2017; Alexander et al., 2020). Dissemination of ARGs
is thought to occur in the environment mainly through
the transfer of mobile genetic elements (MGEs) such as
plasmids, transposons, integrons, gene cassettes, Integrative and
conjugative elements (ICE), and insertion sequence common
regions between bacterial species (Sanderson et al., 2020).
The selection pressure in a given environment is crucial as
it influences the spread and accumulation of ARGs some
of which may be novel (Bengtsson-Palme et al., 2018).
The risk of transfer of ARGs to pathogens increases in
environments with a high fecal load and associated fecal bacteria
(Huijbers et al., 2019).

Enterococcus species are Gram positive non-sporulating
organisms that mainly exist as commensals in the intestinal flora
of healthy animals and humans. They can thus be excreted into
environmental sources including soil and surface water as fecal
matter and are thus commonly used as indicator organisms
in water environments (Berendonk et al., 2013; Karkman
et al., 2018). Some like faecalis and Enterococcus faecium are
opportunistic pathogens whilst other species such as Enterococcus
hirae and Enterococcus durans are rarely pathogenic in humans
(Bourafa et al., 2015; Ryu et al., 2019). Enterococcus spp. can
easily acquire and disseminate resistance determinants (Medeiros
et al., 2014) making them suitable for antibiotic resistance
surveillance studies.

Whole-genome sequencing (WGS) is a highly discriminatory
technique for studying bacterial species, including Enterococci.
However, very few studies have used WGS to study
environmental enterococcal isolates (Sanderson et al., 2020;
Zaheer et al., 2020). The application of WGS to antibiotic
resistance surveillance remains largely confined to clinical
and animal settings, with very little attention given to
the environment (Hendriksen et al., 2019; Su et al., 2019;
WHO, 2020). There is therefore a paucity of data on the
role that genomic surveillance plays in understanding the
environmental dimensions of antibiotic resistance, particularly
in Africa.

In this study, we investigated the antibiotic resistome,
mobilome, virulome, and phylogenomic lineages of
Enterococcus spp. obtained from a WWTP and its associated
waters. Additionally, we assayed the role of the water
environment in the dissemination of multi-drug resistant
Enterococcus spp. which could be of clinical or veterinary
importance.

MATERIALS AND METHODS

Ethical Consideration
Ethical approval was received from the Biomedical Research
Ethics Committee (Reference: BCA444/16) of the University of
KwaZulu-Natal. Permission to collect water samples was sought
and granted by uMgeni Water which owns and operates the
investigated WWTP.

Study Site
Manual grab water samples were collected in sterile 500-mL
containers from the influent (29◦36′3.70′′S 30◦25′41.71′′E), final
effluent (29◦35′49.97′′S 30◦26′19.74′′E) of a major WWTP as
well as upstream (29◦36′10.73′′S 30◦25′29.97′′E) and downstream
(29◦36′27.54′′S 30◦27′0.76′′E) of its associated receiving water
body in uMgungundlovu District, KwaZulu-Natal, South Africa.

The WWTP is the largest in Pietermaritzburg, the provincial
capital of KwaZulu-Natal in South Africa. The WWTP discharges
its final effluent into the uMsunduzi river, a key water
source for domestic, agricultural, and recreational purposes to
inhabitants of the several informal settlements along its banks
(Moodley et al., 2016).

Bacterial Isolates
Enterococcus spp. were isolated from water samples collected
fortnightly over 7 months (May 2018 to November 2018).

Putative identification was accomplished during enumeration
using the Enterolert R© / Quanti-Tray R© 2000 system followed by
phenotypic confirmation on Bile Aesculin Azide agar (Merck,
Germany) or Slanetz and Bartley agar (Merck, Germany).
Samples from, upstream and downstream river water as well
as final effluent were diluted 1 mL in 100 mL (0.01 dilution)
while the influent with its higher bacterial load was o diluted by
0.05 mL in 100 mL (0.005 dilution) using sterile water. A volume
of 100 mL of each sample was analyzed using the Enterolert R©

Quanti-Tray R© 2000 system (IDEXX Laboratories (Pty.) Ltd.,
Johannesburg, South Africa). Enterococcus spp. were obtained
from positive quanti-trays, sub-cultured on Bile Aesculin Azide
or Slanetz and Bartley agar and incubated at 41◦C for 24–
48 h. At least ten distinct colonies representing each sampling
site were randomly selected from the Bile Aesculin Azide or
Slanetz and Bartley agar and further sub-cultured onto the
same media, respectively, to obtain pure colonies. Molecular
confirmation of Enterococcus spp. was done using real-time
polymerase chain reaction (rtPCR) of the tuf (Elongation factor
tu) gene (Ke et al., 1999).

Antibiotic susceptibility determination was undertaken using
the Kirby-Bauer method on a panel of sixteen commercial
antibiotic discs which included: chloramphenicol (CHL,
30 µg), tetracycline (TET, 30 µg), ampicillin (AMP, 10 µg),
nitrofurantoin (NIT, 300 µg), ciprofloxacin (CIP, 5 µg),
levofloxacin (LVX, 5 µg), imipenem (IPM, 10 µg), linezolid
(LZD, 30 µg), erythromycin (E, 15 µg), quinupristin–dalfopristin
(Q–D, 15 µg) against E. faecium only, tigecycline (TGC, 15 µg),
trimethoprim-sulfamethoxazole (SXT, 25 µg), vancomycin
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(VAN, 30 µg) and teicoplanin (TEC, 30 µg). Detection
of high-level aminoglycoside resistance was ascertained using
gentamicin (GEN, 120 µg) and streptomycin (STR, 300 µg) discs.
Inhibition zones were measured, and the results were interpreted
using the European Committee on Antimicrobial Testing
(EUCAST) breakpoint tables (EUCAST, 2020). Breakpoints
for chloramphenicol, tetracycline, erythromycin, linezolid,
nitrofurantoin, vancomycin, and gentamicin were obtained
from the Clinical and Laboratory Standards Institute (CLSI)
interpretative charts (CLSI, 2020). Enterococcus faecalis ATCC
29212 was used for quality control.

Whole-Genome Sequencing and Analysis
Twelve MDR Enterococcus spp. isolates with similar antibiograms
obtained from all four sampled sites were selected for WGS.
Genomic DNA was extracted using the GenElute Bacterial
Genomic DNA kit (Sigma Aldrich, St. Louis, United States)
followed by quantification using the 260/280 nm wavelength
on a Nanodrop 8000 (Thermo Scientific Waltham, MA,
United States). Library preparation was done using the Nextera
XT DNA Library Preparation Kit (Illumina, San Diego, CA,
United States). WGS was undertaken using an Illumina MiSeq
machine (Illumina, San Diego, CA, United States). The raw
reads were quality trimming using Sickle v1.331 and assembled
spontaneously using the SPAdes v3.6.2 assembler. All contiguous
sequences were subsequently submitted to GenBank and
assigned accession numbers under Bio project PRJNA609064
(Supplementary Table 1).

The assembled genomes were analyzed for MLST sequence
types on the MLST 1.8 database (Larsen et al., 2012) hosted
by the Centre for Genomic Epidemiology (CGE)2. Acquired
antimicrobial resistance genes and chromosomal point mutations
including the DNA gyrase gyrA and parC genes (quinolone
resistance) and the pbp5 gene (ampicillin resistance) were
annotated using ResFinder3 set at default threshold ID (90%)
and minimum length (60%) values. Plasmid replicons types
were identified using PlasmidFinder 2.1 on the CGE website4.
Virulence genes were determined using VirulenceFinder 2.0 on
the CGE website5.

The assembled genomes were further analyzed for MGEs,
including insertion sequences, using ISFinder6 (Siguier, 2006),
and intact prophages using PHASTER7 (Zhou et al., 2011;
Arndt et al., 2016). ICE and putative integrative and mobilisable
elements (IME) were identified using the ICEberg database8.
RAST SEEDVIEWER9 was also used to annotate and identify
the genomes with integrons, and transposons. The synteny
and genetic environment of ARGs and associated MGEs were

1https://github.com/najoshi/sickle
2http://cge.cbs.dtu.dk/services/MLST/
3https://cge.cbs.dtu.dk/services/ResFinder/
4https://cge.cbs.dtu.dk/services/PlasmidFinder/
5https://cge.cbs.dtu.dk/services/VirulenceFinder/
6https://isfinder.biotoul.fr/
7https://phaster.ca/
8http://db-mml.sjtu.edu.cn/ICEberg/
9http://rast.nmpdr.org/seedviewer.cgi

investigated using the general feature format (GFF3) files
from GenBank. The genetic environment of virulence genes
detected in the study were also determined using a similar
approach. The GFF files were imported into Geneious prime
2020.210 for analysis.

Phylogenetic Reconstruction
Whole-genome sequences of the E. faecalis and E. faecium isolates
were compared with isolates curated from the PATRIC website11

from different African countries including South Africa. The
genomes of E. hirae and E. durans isolates were compared to
those of isolates belonging to the respective species curated
from the PATRIC website from different countries across
the world as there were no/few entries from Africa. Whole-
genome sequences of all isolates were uploaded and analyzed
on the CSI Phylogeny 1.4 pipeline12 that recognizes, screens,
and validates the location of single nucleotide polymorphisms
(SNPs) before deducing a phylogeny based on the concatenated
alignment of the high-quality SNPs. SNPs were identified
from the alignments using the mpileup module in SAMTools
version 0.1.18 (Li et al., 2009). Selection of SNPs was based
on default parameters in CSI Phylogeny (Kaas et al., 2014).
The following reference genomes were used for each alignment;
E. faecalis, (E. faecalis V583), E. faecium (E. faecium DO),
E. hirae (E. hirae ATCC 9790), and E. durans (E. durans ATCC
6056). The phylogenetic tree was constructed using FastTree
(Price et al., 2010). The generated phylogenetic trees were
viewed, annotated, and edited using the Iterative Tree of Life
(iTOL)13.

RESULTS

Isolate Source and Antibiotic
Susceptibility Patterns
A total of 579 Enterococcus spp. isolates were obtained from the
different sampling points. Of these, 12 isolates were selected for
WGS, distributed as follows: three isolates from the upstream
site of the WWTP along the receiving river, four from the
downstream site, three from the raw influent, and two were
from the final effluent of the WWTP (Supplementary Table 1).
Selected isolates consisted of E. faecalis (4 isolates), E. faecium (5),
E. hirae (2), and E. durans (1) (Supplementary Table 1).

The resistance patterns displayed by the selected isolates
from different time points and sampling sites are shown in
Table 1. The resistance profile TET-SXT-STR was found in two
isolates, one E. faecalis obtained from raw influent and one
E. durans isolate from the influent. Two E. faecalis isolates from
downstream and upstream sites had the same resistance profile
ERY-TEC-TET-SXT, other resistance profiles shared by at least
two isolates from different sites included E. faecium (QD-TET-
SXT, QD-TET-SXT-STR), and E. hirae (NIT-SXT-STR) isolates.

10https://www.geneious.com
11https://www.patricbrc.org/
12https://cge.cbs.dtu.dk/services/CSIPhylogeny/
13https://itol.embl.de/
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TABLE 1 | Distribution of antibiotic resistance genes and mobile genetic elements in environmental Enterococcus spp.

Isolate ID
(MLST)

Resistance
pattern

Date of
isolation

Point of
isolation

Detected ARG Insertion
sequences

Intact prophages Putative
ICE

Putative
IME

Plasmid replicon
type

E. faecalis
◦D21 (ST
179)

ERY-TEC-TET-
SXT

Jun 12, 2018 Downstream dfrG, erm(B),
lsa(A), tet(M),

aac(6′)-aph(2′′),
ant(6)-Ia,
aph(3′)-III

ISEfa10,
ISEfa11, ISEfa5,

ISLsa2

No intact prophage T4SS type
ICE

None
detected

repUS43

◦U84 (ST
300)

ERY-TEC-TET-
SXT

Sep 11, 2018 Upstream dfrG, erm(B),
lsa(A), tet(L),

tet(M)

ISCac2,
ISCysp18,
TnBth2,
ISMspa1

Entero_phiFL1AEntero_
phiFL3A

None
detected

1 repUS43 rep9b

◦ IN127 (ST
179)

ERY-TEC-
LZD-TET-SXT-

GEN-STR

Oct 23, 2018 Influent erm(B), lsa(A),
tet(M)

ISEfa10,
ISEfa11, ISEfa5,

ISLsa2

Entero_phiFL1A
Entero_phiFL3A

None
detected

1 repUS43 rep9c

◦ IN133 (ST
841)

TET-SXT-STR Nov 6, 2018 Influent lsa(A), msr(C),
tet(M), aac(6′)-Ii

ISMspa1,
ISLar7, ISArch1,

ISBsp1

Lister_LP_101 T4SS type
ICE

2 repUS15 repUS43

E. faecium
◦E21 (ST
1096)

TEC-QD-TET-
SXT

Jun 12, 2018 Effluent msr(C), tet(M) ISEfa10,
ISSpn11,

ISSmu1, ISLgar1

Lister_B025 T4SS type
ICE

1 No hits

◦ IN91 (ST
361)

QD-TET-SXT Sep 11, 2018 Influent msr(C), tet(M) ISGaba2,
ISFnu4, ISFnu3,

MICBce1

Lister_B025,
Bacill_BCJA1c

None
detected

1 rep29, repUS43,
repUS15

◦D95 (ST
94)

QD-TET-SXT-
STR

Sep 11, 2018 Downstream msr(C), tet(M) IS1485, ISLgar4,
ISS1W, IS1216V

Entero_vB_IME197 T4SS type
ICE

None
detected

repUS43

◦D98 (ST
94)

QD-TET-SXT Sep 11, 2018 Downstream msr(C), tet(M) IS1485, ISEfa12,
ISEfa8, ISSag12

Entero_vB_IME197 T4SS type
ICE

None
detected

repUS43, repUS15

◦U129 (ST
361)

QD-TET-SXT-
STR

Nov 6, 2018 Upstream lsa(A), msr(C),
tet(M)

ISPye7,
ISShes9,

ISBth14, ISFnu2

Entero_EFC_1 T4SS type
ICE (3)

None
detected

repUS24, repUS15,
repUS43

E. hirae
◦D76 NIT-SXT-STR Aug 14, 2018 Downstream aac(6′)-Iid ISEfa11, ISEfa5,

IS1251, ISEfa10
No intact prophage None

detected
None

detected
No hits

◦U73 NIT-SXT-STR Aug 28, 2018 Upstream aac(6′)-Iid ISEfa11, ISEfa5,
IS1251, ISEfa12

No intact prophage None
detected

None
detected

No hits

E. durans
◦E115 TET-SXT-STR Oct 9, 2018 Effluent dfrG, mef(A),

msr(D), tet(S),
tet(M), aac(6′)-

Iih,ant(6)-Ia

ISEfa11, ISEfa5,
ISSsu4, ISDha13

Bacill_BCJA1c
Entero_phiFL1A

T4SS type
ICE (3)

None
detected

repUS15repUS1

TET, tetracycline; NIT, nitrofurantoin; Q–D, quinupristin–dalfopristin; GEN, gentamicin; STR, streptomycin; LZD, Linezolid; ERY, erythromycin; SXT, trimethoprim-
sulfamethoxazole; TEC, teicoplanin.

The resistance profiles TEC-QD-TET-SXT, and ERY-TEC-LZD-
TET-SXT-GEN-STR were unique to individual isolates (Table 1).

Genome Characteristics
The genome and assembly characteristics of the Enterococcus spp.
sequences are presented in Supplementary Table 1. The total
assembled genome size ranged from 2.5–3.2 MB, the GC content
ranged from 36.6–38.4, the N50, L50; the total number of contigs
are also shown in Supplementary Table 1.

Antibiotic Resistance Genes
Several ARGs were present in the isolates, with each
isolate harboring at least one ARG (Table 1). Most of
the isolates belonging to all the sub-species harboured
macrolides/streptogramins/lincosamides resistance genes
lsa(A), msr(C), msr(D), erm(B), and mef(A). Other ARGs
included the tetracycline resistance [tet(S), tet(M), and tet(L)],

aminoglycoside resistance [aac(6′)-aph(2′′), ant(6)-Ia, aph(3′)-
III, aac(6′)-Iid, aac(6′)-Iih], and trimethoprim resistance (dfrG)
gene (Table 1). In E. faecalis macrolide resistance was mediated
by the erm(B) gene – two isolates from the influent (IN127,
ST179), and downstream (D21, ST179) sites had the erm (B),
isa(A), and tet(M) genes in common. Tetracycline resistance was
mediated mainly by the tet(M) gene in all the TET resistant 10/12
(83.3%) isolates except for one E. faecalis isolate (U84 ST300)
from the upstream site that had tet(M) and tet(L), as well as an
E. durans, isolate (E115) from the effluent that had tet(M) and
tet(S). In the E. faecium isolates resistance genes could not be
linked to sequence type or source of isolation as all the isolates
had the msr(C), and tet(M) genes in common (Table 1).

The quinolone resistance determinant regions (QRDRs) of the
DNA gyrase (gyrA) and DNA topoisomerase IV genes (parC),
were assayed for point mutations in all isolates. The gyrA (I259L∗,
I306V∗, N708D∗, D759N∗, A811V∗, G819A∗, S820T∗, N708D∗),
and parC (I699V∗, E707D∗, L773I∗) showed putatively novel

Frontiers in Microbiology | www.frontiersin.org 4 June 2021 | Volume 12 | Article 64845453

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-648454 June 8, 2021 Time: 16:52 # 5

Mbanga et al. Genomic Analysis of Wastewater Enterococcus spp.

mutations that were not linked to phenotypic resistance (Table 2).
Only E. faecium isolates harboured mutations in all the assayed
genes (Table 2). Point mutations in the pbp5 gene which encodes
ampicillin resistance were mostly putatively novel mutations
(Table 2). No mutations were found in E. faecalis, E. hirae, and
E. durans.

Mobile Gene Elements (Plasmids,
Insertion Sequences, Intact Prophages,
and Integrons)
PlasmidFinder revealed a total of seven different plasmid
associated replication genes (repUS15, repUS43, rep9c,
rep9b, rep29, repUS24, repUS1). The repUS43 and repUS15
were the most common replicon types occurring in eight
(66.7%) and five (41.6%) isolates, respectively (Table 1).
A total of seven (58.3%) isolates had more than one
plasmid replicon; however, no plasmid replicon types were
detected in three isolates (one Enterococcus feacium and
two E. hirae) (Table 1). There was no unique pattern
concerning the replicon type, sequence type, and source of
isolation. However, replicon type rep9b/c was only found
in E. faecalis isolates with rep24 and rep29 being unique to
E. faecium isolates.

Some ARGs were associated with insertion sequences (IS6,
ISL3, and IS982), and transposons (Tn3 and Tn6000) with most
of those associated with MGE being plasmid-borne (Table 3).
However, the majority of ARGs were located on chromosomes
and not associated with any MGEs (Supplementary Table 2). An
E. faecium isolate (D95) from the downstream site harboured
an efflux pump encoding macrolide resistance gene msr(A)
that was associated with insertion sequence IS982. The contig
carrying the msr(A) gene and associated MGE had very
high similarity (99–100%) to a target sequence E. faecium
HB-1 chromosome (CP040878.1) in GenBank (Table 3). An
E. faecalis isolate (D21) from the downstream site had a plasmid-
encoded trimethoprim resistance gene dfrG whose genetic
environment had ISL3. The contig was highly similar to a
target sequence in GenBank E. faecalis strain 133170041-3

plasmid pAD1 (CP046109.1) confirming carriage of the gene
on a plasmid. Another isolate (U84) from the upstream
site had a plasmid that co-carried the tetracycline resistance
[tet(M) and tet(L)] and macrolide resistance erm(B) genes.
The genetic environment of the resistance genes consisted
of a recombinase and the Tn3 transposons and the contig
was closely related to E. faecalis S7316 plasmid Ps7316optrA
(LC499744.1) (Table 3). The E. durans isolate (E115) from
the effluent site had an antibiotic resistance genetic island
consisting of genes encoding resistance to aminoglycosides
[ant(6)-Ia], chloramphenicol (catB), macrolides [msr(D) and
mef(A)], and trimethoprim (dfrG). The resistance island had
MGEs including several recombinases and the insertion sequence
IS6 (Table 3). The resistance island was located on a contig
that closely resembled a target sequence in GenBank E. faecalis
strain transconjugant T4 plasmid pJH-T4 (KY290886.1) implying
that it was located on a plasmid. The genetic environment
of the tetracycline resistance gene tet(S) was associated with
the insertion sequence IS6. Interestingly the contig carrying
this tet(S) gene was highly similar to an E. faecalis strain
C386 transposon Tn6000 (JN208881.1) (Table 3). The tet(M)
resistance gene was consistently found associated with the
tetracycline resistance leader peptide (tetrLpep) and a conjugative
transposon/transfer protein (TcpC), genetic context tet(M):
tetrLpep: TcpC (IN127, IN133, E21, E115, D21, U129) and the
reverse context TcpC:tetrLpep:tet(M) in D95, D98, U84). The
TcpC conjugative TcpC is required for efficient conjugative
transfer and mediates tetracycline resistance. Notably, the genetic
context was found on contigs with high similarity (98–100%) to
Enterococcus spp. chromosomal sequences deposited in GenBank
except in E. faecalis isolate U84 where the genes were co-carried
on a plasmid with other ARGs (Table 3).

A total of 32 IS families were detected in the genomes
(Table 1). Ten IS families occurred more than once, with
the ISEfa5 (5 isolates), ISEfa11 (5), and ISEfa10 (4) being
predominant. ISEfa5 and ISEfa11 occurred in the same five
isolates, covering all four species (Table 1). The IS did not follow
source or sequence type, albeit two E. faecalis isolates (IN127,
D21) belonging to ST179 had the same four ISs.

TABLE 2 | Point mutation in the gyrA, parC (quinolone resistance), and pbp5 (ampicillin resistance) genes in environmental Enterococcus spp.

Isolate ID Pbp5 gyrA parC

E. faecium
◦ IN91 V24A, S27G, K144Q, K2E*, T25A*, S39T*, A73T*, R347C* I259L*, I306V*, N708D*, D759N*, A811V*,

G819A*, S820T*
I699V*, E707D*,

L773I*

R390C*, R474G*, Y475C*, K492Q*, K501E*, L573I*, S622N*

E646K*, K647E*, V684A*, T25A*, S39T*, D644N*
◦D95 V24A, S27G, K144Q, T324A, T25A*, S39T*, A73T*, D644N* I259L*, I306V*, N708D*, D759N*, A811V*,

G819A*, S820T*
I699V*, E707D*,

L773I*
◦D98 V24A, S27G, K144Q, T324A, T25A*, S39T*, A73T*, D644N* I259L*, I306V*, N708D*, D759N*, A811V*,

G819A*, S820T*
I699V*, E707D*,

L773I*
◦E21 V24A, S27G, R34Q, G66E, E100Q, K144Q, T172A, L177I, A216S,

T324A, N496K, A499I, E525D, T25A*, S39T*, A401S*, D644N*
N708D*

◦U129 T25A*, S39T*, D644N* I259L*, I306V*, N708D*, D759N*, A811V*,
G819A*S820T*

I699V*, E707D*,
L773I*

*Putatively novel mutations.
No mutations found in E. faecalis, E. hirae, and E. durans.
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TABLE 3 | Mobile genetic elements associated with antibiotic resistance genes in Enterococcus spp.

Isolate (MLST) Contig Synteny of resistance genes and MGE Plasmid/chromosomal sequence with closest
nucleotide homology (accession number)

E. faecium
◦D95/9 (ST94) 4 Transposase:::::IS982:msr(A) E. faecium HB-1 chromosome (CP040878.1)

39 TcpC: tetrLpep :tet(M) E. faecium HB-1 chromosome (CP040878.1)
◦D98/9 (ST94) 34 TcpC:tetrLpep:tet(M) E. faecium HB-1 chromosome (CP040878.1)
◦E21/6 (ST1096) 2 tet(M): tetrLpep: TcpC E. faecium isolate e4456 chromosome

(LR135482.1)
◦U129/11 (ST361) 57 tet(M): tetrLpep: TcpC E. faecium HB-1 chromosome (CP040878.1)

E. faecalis
◦ IN133/11 (ST841) 3 tet(M): tetrLpep: TcpC E. faecium isolate E0139 chromosome

(LR132067.1)
◦ IN127/10 (ST179) 33 tet(M): tetrLpep: TcpC E. faecalis strain HA-1 chromosome (CP040898.1)
◦D21/6 (ST179) 1 ISL3:::::dfrG E. faecalis strain 133170041-3 plasmid pAD1

(CP046109.1)

23 tet(M): tetrLpep: TcpC E. faecalis strain JY32 chromosome (CP045045.1)

27 aph(2′′)-Ia::: aph(3′)-IIIa E. faecalis strain TH4125 chromosome
(CP051005.1)

◦U84/9 (ST300) 2 TcpC : tetrLpep :tet(M): tet(L)::::::::::recombinase: Tn3:::: Tn3:recombinase:erm(B) E. faecalis S7316 plasmid Ps7316optrA
(LC499744.1)

E. durans
◦E115/10 7 tet(M): tetrLpep: TcpC E. faecalis 62 chromosome (CP022712.1)

22 ant(6)-Ia::::catB::msr(D):mef(A):recombinase:recombinase:::recombinase
:::IS6:::::::::::::dfrG::recombinase

E. faecalis strain Transconjugant T4 plasmid
pJH-T4 (KY290886.1)

40 tet(S)::::IS6 E. faecalis strain C386 transposon Tn6000
(JN208881.1)

Intact prophages were found within 9/12 (75%) of the
genomes. Three isolates comprising one E. faecalis and two
E. hirae did not possess any intact prophages. A total of
seven intact prophages were identified across all the investigated
isolates, with Lister_LP_101 and Entero_EFC_1 being unique
to individual isolates (Table 1). The Entero_phiFL1A was
the most common prophage occurring in three different
isolates from the upstream, influent, and effluent sites. The
Entero_phiFL3A (n = 2) occurred in E. faecalis isolates from
the upstream and influent site, Lister_B025 (n = 2) occurred
in E. faecium isolates from the influent and effluent sites. The
occurrence of intact prophages was not according to species,
as several prophages occurred in different species including
Entero_phiFL1A (E. faecalis and E. durans), Lister_B025
(E. faecium and E. hirae), and Bacill_BCJA1c (E. faecium and
E. durans). E. faecalis and E. faecium isolates did not have
any intact prophages in common. The intact prophages did
not occur according to sequence type, although E. faecium
isolates (D95, D98) belonging to ST179 had the same prophage
Entero_vB_IME197.

Seven isolates had regions encoding the T4SS type ICE,
with one E. faecium isolate (U129) from the upstream site and
the effluent isolate E. durans (E115) having three regions each
(Table 1). The IMEs were detected in five isolates (3 E. faecalis
and 2 E. faecium). Two isolates (one E. faecalis and one E. faecium
isolate) harboured both the ICE and IME. E. hirae isolates did not
harbour any of the stated MGEs except for insertion sequences
implying that these might be central in horizontal gene transfer,
however, none of the ARGs in these isolates were associated with
MGEs. The genome of environmental Enterococcus spp. consists

of a rich diversity of MGEs including ISs, transposons, prophages,
and plasmids that probably drive genetic exchange within and
among these species.

Virulome of Enterococcus Isolates
A diversity of virulence genes was found in the E. faecium
and E. faecalis isolates with none identified in E. hirae and
E. durans (Table 4). For E. faecalis, a total of 20 different virulence
genes were identified, including genes encoding sex pheromones,
adhesion, cell invasion, aggregation, toxins, biofilm formation,
cytolysin production, immunity, antiphagocytic activity, and
proteases (Table 4). All the E. faecalis isolates had eleven of these
genes (cCF10, cOB1, cad, camE, ace, SrtA, ebpA, ebpC, efaAfs, tpx,
and gelE) in common. In E. faecium, only four virulence genes
were identified and included adhesins (acm and efaAfm), a sex
pheromone (cad), and an antiphagocytic factor (tpx) (Table 4).

The virulence genes in E. faecium were mostly devoid of
any association with MGEs. Among the E. faecalis isolates the
gelE (protease) was co-carried with the fsrC (biofilm formation)
virulence gene in a genetic environment that had an integrase
and IS256. This occurred in two isolates from the influent
(IN127) and downstream (D21) sites with genetic context
gelE:fsrC::::integrase:::: IS256 (Table 5). The contigs bearing
these virulence genes were highly similar (99 - 100%) to a
chromosomal sequence in GenBank Enterococcus faecalis strain
FDAARGOS_324 chromosome (CP028285.1) implying their
carriage in the chromosome. Although, several virulence genes
were found to occur together in other E. faecalis isolates their
genetic environment did not contain any MGEs (Table 5). This
implies that in addition to MGEs like ISs the transfer of virulence

Frontiers in Microbiology | www.frontiersin.org 6 June 2021 | Volume 12 | Article 64845455

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-648454 June 8, 2021 Time: 16:52 # 7

Mbanga et al. Genomic Analysis of Wastewater Enterococcus spp.

TABLE 4 | Virulence gene profiles of environmental Enterococcus spp.

Isolate ID Point of
isolation

Virulence genes

Sex
pheromones

Adhesion Invasin Aggregation Cytolytic
toxin

Biofilm
formation

Antiphagocytic Immunity Protease

E. faecalis

IN133 (ST
841)

Influent cCF10, cOB1,
cad,camE

acm, ace,
SrtA, efaAfs,
ebpA,ebpC

hylB agg cylA,
cylL,cylM

fsrB tpx ElrA gelE

IN127 (ST
179)

Influent cCF10, cOB1,
cad, camE

ace, SrtA,
ebpA, ebpC,

efaAfs

hylA agg cylA, cylL,
cylM

– tpx ElrA gelE

D21 (ST
179)

Downstream cCF10, cOB1,
cad, camE

ace, SrtA,
efaAfs, ebpA,

ebpC

hylA agg cylA, cylL,
cylM

– tpx ElrA gelE

U84 (ST
300)

Upstream cCF10, cOB1,
cad, camE

ace, SrtA,
ebpA, ebpC,

efaAfs

hylB agg – fsrB tpx – gelE

E. faecium

IN91 (ST
361)

Influent – Acm, efaAfm – – – – – – –

D95 (ST
94)

Downstream = Acm, efaAfm – – – – – – –

D98 (ST
94)

Downstream – acm, efaAfm – – – – – – –

E21 (ST
1096)

Effluent – efaAfm – – – – – – –

U129 (ST
361)

Upstream cad – – – – – tpx – –

No virulence genes found in E. hirae and E. duran.

TABLE 5 | Mobile genetic elements associated with virulence genes in E. faecalis isolates.

Isolate Contig Synteny of virulence genes and MGE Plasmid/chromosomal sequence with closest nucleotide
homology (accession number)

E. faecalis

IN133/11 (ST841) 13 SrtC:ebpC:ebpB:epbA Enterococcus faecalis strain TK-P4B chromosome
(CP045598.1)

45 CylR2:cylL:cylS Enterococcus faecalis strain FDAARGOS_528 chromosome
(CP033787.1)

48 gelE:fsrC::fsrA Enterococcus faecalis strain L15 chromosome (CP042231.1)

IN127/10 (ST179) 8 Cyl:::cyL-S:cylL-L:cylR2 Enterococcus faecalis strain JY32 chromosome (CP045045.1)

22 gelE:fsrC::::integrase::::IS256 Enterococcus faecalis strain FDAARGOS_324 chromosome
(CP028285.1)

25 SrtC:ebpC:ebpB:epbA Enterococcus faecalis strain JY32 chromosome (CP045045.1)

D21/6 (ST179) 16 gelE:fsrC::::integrase::::IS256 Enterococcus faecalis strain FDAARGOS_324 chromosome
(CP028285.1)

30 Cyl:::cyL-S:cylL-L:cylR2 Enterococcus faecalis strain JY32 chromosome (CP045045.1)

U84/9 (ST300) 17 ebpA:ebpB:ebpC:srtC Enterococcus faecalis strain SF28073 chromosome
(CP060804.1)

17 gelE:fsrC::fsrA Enterococcus faecalis strain SF28073 chromosome
(CP060804.1)

genes may be moderated by other processes that facilitate genetic
exchange e.g., natural transformation.

MLST and Phylogenomics
MLST analysis revealed that two E. faecalis isolates had a
common sequence type ST179; the rest of the isolates had unique
sequence types, ST841, and ST300 (Table 1). The E. faecium

genomes belonged to three sequence types, ST94 (n = 2), ST361
(n = 2), and ST1096 (n = 1).

Phylogenetic analysis of the E. faecalis genomes from this
study and those from other studies in Africa showed that the
isolates were more closely related to animal and environmental
isolates than to clinical isolates (Figure 1). An isolate obtained
from the influent (IN133 and ST841) was more closely related
to a Tunisian isolate (1351.1813, ST859) from chicken meat. An
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FIGURE 1 | A phylogenomic tree showing the relationship of E. faecalis isolates from this study with African isolates from humans (red), animals (blue), and the
environment (black) obtained from the PATRIC database (https://www.patricbrc.org/).

isolate (U84, ST300) from the upstream site was closely related
to an isolate (1351.4175, ST271) from agricultural soil obtained
in the same district of uMgungundlovu in KZN, South Africa.
However, the other two isolates (D21, IN127), both ST179,
clustered together and were in the same node as environmental
isolates obtained from the soil and chicken litter of a sugarcane
farm in KZN, South Africa (Figure 1).

Comparison of E. faecium genomes with other WGS isolates
from Africa revealed that the isolates from this study D95, D98
(ST94), and IN91, U129 (ST361) clustered together according to
sequence type, but formed a separate clade with isolates obtained
from the chicken litter at a sugarcane farm in KZN, South Africa.
An isolate E21 (ST1096), was found in a different clade and
clustered closely with a South African soil isolate from the same
farm in KZN (Figure 2).

Phylogenetic analysis of E. hirae isolates revealed that the
E. hirae isolates were more closely related to livestock and
environmental isolates. The upstream isolate U73 was closely
related and clustered closely with isolates from Goa (Tibetan
antelope) fecal matter obtained in China, suggesting that the
isolate could be of animal origin. The other isolate (D76) was
also closely related and clustered together with isolates from

fermented vegetables from Malaysia, signifying that the isolate
may be from an agricultural source (Figure 3). The E. durans
isolate clustered closely with a bovine isolate (53345.56) obtained
from South Africa and an isolate frim chicken (53345.33)
from the United States implying that it is an animal-associated
isolate (Figure 4).

DISCUSSION

Bioinformatics tools were used to analyze the whole genomes of
MDR Enterococcus isolates (n = 12) with similar antibiograms
obtained from a WWTP and the receiving water bodies at
different sampled points and at different timelines. While many
ARGs were carried on plasmids, transposable elements, and
insertion sequences, most were, carried on chromosomes with
no association with MGEs. A few virulence genes were associated
with ISs, with most occurring on chromosomes. The abundance
of MGEs observed in the Enterococci genomes, however, signifies
their importance in gene rearrangements and horizontal gene
transfer in these environmental isolates. This study is one of
the first studies to explore the resistome, virulome, mobilome,
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FIGURE 2 | A phylogenomic tree showing the relationship of E. faecium isolates from this study with African isolates from humans (red), animals (blue), and the
environment (black) obtained from the PATRIC database (https://www.patricbrc.org/).

clonality, and phylogenomics of Enterococcus spp. obtained from
the water environment in Africa.

Tetracycline resistance genes identified in this study included
the tet(M), tet(S), and tet(L). The tet(M) gene was present in the
E. durans isolate and in all the E. faecium and E. faecalis isolates
(Table 1). The tet(M) and tet(S) encode for ribosome protection
proteins and the tet(L) encodes an efflux pump (Tao et al., 2010).
There was a high concordance between the phenotypic AST
and genotypic data with regards to TET resistance. The genetic
context tet(M):tetrLpep:TcpC (or its reverse) was found in 9/10
(90%) of isolates that harboured the tet(M) gene (Table 3). The
TcpC gene encodes a conjugative TcpC which is essential for
efficient conjugative transfer and has previously been associated
with conjugative tetracycline resistance plasmids in Clostridium
perfringens (Bannam et al., 2006). Most of the tet(M) genes were
located on chromosomes except for E. faecalis isolate U84 where
the genetic context was associated with a plasmid. The genes
involved in ribosome protection including tet(M) are typically
found on both plasmids and self-conjugative transposons in
chromosomes (Roberts, 1996) as evidenced in this study. Transfer
of tet(M) in environmental Enterococci is possibly mediated by
the conjugative TcpC.

Resistance to macrolides was associated mainly with the
erm(B) and msr(C) genes. The erm(B) encodes a ribosomal
methylase and is considered to be the most common gene
responsible for resistance to erythromycin in enterococci; the
methylase can also result in resistance to lincosamides, and
streptogramin B (Miller et al., 2015). The rRNA methylases,
erm(A), erm(B), and erm(C) modify specific nucleotides in the
23S rRNA and block macrolide binding (Chancey et al., 2015).
Resistance to macrolides may also be caused by mutations
in the 23S ribosomal RNA gene or be mediated by efflux
pumps (Miller et al., 2015). All isolates that were phenotypically

resistant to erythromycin had the erm(B) gene (Table 1). In
Enterococcus spp. the erm(B) gene is considered the most
widespread erythromycin resistance gene (Zaheer et al., 2020).
The msr(C) gene which encodes an efflux pump was identified
in all the E. faecium isolates which is consistent with earlier
studies that stated that the gene seems to be specific for this
species (Zaheer et al., 2020). The genome of the E. durans
isolate had the efflux pump encoding genes msr(D) and mef(A)
which were unique to this isolate. The macrolide efflux (mef )
genes were initially identified in Streptococcus pyogenes (Sutcliffe
et al., 1996) and S. pneumoniae (Gay and Stephens, 2001)
and have been noted to always occur upstream and to be co-
transcribed with an ATP-binding subunit ABC-transporter gene
msr(D), functioning as a dual efflux pump (Ambrose et al.,
2005). The genes were located on a resistance island consisting
of MGEs (recombinase, IS6) together with chloramphenicol,
aminoglycoside, and trimethoprim resistance genes (Table 3).
There is a possibility that this resistance island is transmissible
within and across sub-species, although its transferability was
not experimentally investigated. Although E. durans strains rarely
cause infection, the occurrence of these resistance genes implies
the importance of these organisms as environmental reservoirs
which could potentially mediate the transfer of these genes to
pathogens of clinical or veterinary importance.

Enterococci are inherently resistant (low-level) to
aminoglycosides, mostly due to the presence of the aac(6′)-
Ii gene. Some isolates, however, exhibit high-level resistance
to gentamicin and streptomycin and are clinically important
(Sanderson et al., 2020). The presence of other acquired
aminoglycoside resistance genes including aac(6′)-Ie–aph(2′′)-
Ia, aph(3′)-IIIa, and ant(6)-Ia confers high-level resistance to
various aminoglycosides (Said et al., 2015). Except for E. durans
isolate E115 none of the aminoglycoside resistance genes were
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FIGURE 3 | Phylogenetic tree based on SNP differences in the core genomes of E. hirae isolates from this study (ENT D76 and ENT U73) and other isolates from
humans (red), animals (blue), environment (black) obtained from the PATRIC database (https://www.patricbrc.org/).

associated with MGEs and most were borne on the chromosome
(Table 3). Isolate E115 had the ant(6)-Ia gene which formed part
of a resistance island that was on a plasmid. The isolate exhibited
high-level resistance to streptomycin (Table 1).

A diversity of virulence genes was identified in the genomes
of the sequenced E. faecalis and E. faecium isolates (Table 4). The
gelE and fsr genes have been shown to occur together in E. faecalis
isolates from healthy and sick animals (Šeputiene et al., 2012).
The fsrABDC operon has been shown to regulate the expression
of the gelE gene and other virulence genes (Hancock and Perego,
2004). The gelE encodes an extracellular zinc endopeptidase
that cleaves a broad range of substrates including collagen and
gelatin. It accentuates the pathogenesis of endocarditis caused
by E. faecalis (Thurlow et al., 2010). The gelE and fsr genes
occurred together in several E. faecalis isolates including IN133

and U84 that had genetic context gelE:fsrC::fsrA (Table 5). Isolates
D21 and IN127 both had genetic context gelE:fsrC::::integrase::::
IS256 suggesting that IS256 plays a role in the transmission of
these virulence genes. The IS256 is prevalent in the genomes
of MDR enterococci and staphylococci where it occurs either
independently or is associated with ARGs or virulence genes
involved in biofilm formation (Hennig and Ziebuhr, 2010; Kim
et al., 2019). Other virulence genes were not associated with
MGEs suggesting that processes like natural transformation may
be important in the transfer of these genes. Generally, the
repertoire of virulence genes revealed in this study point to
the presence of potentially pathogenic Enterococcus spp. in the
investigated water environment.

MLST revealed distinct sequence types that are associated
with clinical, animal, and agricultural sources. For E. faecalis
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FIGURE 4 | Phylogenetic tree showing the relationship of the E. durans isolate (black label) with other isolates obtained from humans (red), animals (blue), and food
sources (green) from the PATRIC database (https://www.patricbrc.org/).

isolates, ST179 was the most common sequence type (n = 2)
a finding similar to other studies (Zaheer et al., 2020). For the
E. faecium isolates, ST94 (n = 2) and ST361 (n = 2) were the
most prevalent sequence types. In the study by Zaheer et al.
(2020) the ST94 was the most abundant ST in the cattle feedlot
catch basin and was found in other sources namely, surface water,
urban wastewater, and from the clinic. This possibly points to the
ubiquitous nature of this sequence type. The ST361 is not one of
the notable E. faecium STs as it has not been implicated in clinical
cases which are mostly attributed to the ST17, ST18 and, ST78
lineages (Palmer et al., 2014). A study from the United Kingdom
used WGS to investigate the prevalence of vancomycin-resistant
E. faecium in 20 WWTPs and reported an E. faecium ST361 from
a WWTP (Gouliouris et al., 2018).

The phylogenomics of E. faecalis and E. faecium isolates
revealed that all isolates were closely related to environmental or

animal isolates, and not clinical isolates (Figures 1, 2). However,
the E. faecalis influent isolate (IN133, ST841) harbored the
cytolysin genes that have been attributed to clinical E. faecalis
isolates intimating pathogenic potential (Zaheer et al., 2020).
Phylogenetic analysis of the E. hirae isolates in this study revealed
a close association with other animal and environmental isolates
(Figure 3). E. hirae is known to inhabit a variety of animals
and plants (Byappanahalli et al., 2012) and has been widely
associated with cattle feces, chicken broilers, and associated
production systems (Rehman et al., 2018; Zaheer et al., 2020). The
E. durans isolate was closely related to animal isolates (Figure 4),
indicating that it may be of animal origin. E. durans isolates are
known to inhabit humans, animals, and insects and occasionally
cause human infections (Byappanahalli et al., 2012). The isolate
investigated in this study lacked virulence determinants and
is most likely a potential reservoir of ARGs. Although a
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small subset of Enterococcus spp. isolates were used, this study
adds to the limited knowledge of the resistome, virulome,
mobilome, and phylogenies in environmental Enterococci in
Africa. Future studies should look to use a larger sample
size and greater diversity of Enterococcus spp. from diverse
geographical locations.

CONCLUSION

This is the first report of genomic diversity of Enterococcus spp.
found in wastewater and associated river water in KwaZulu-
Natal, South Africa. Enterococcus spp. showed a rich repertoire of
ARGs and virulence factors implying that the water environment
is a substantive reservoir of MDR microbes which are potential
pathogens. Genomic analysis of the Enterococci isolates allowed
for the description of the resistome, virulome, and mobilome
as well as the determination of phylogenetic relationships with
animal, agricultural and environmental isolates. Such work
allows a deeper understanding of the potential transmission
dynamics related to the spread of antibiotic resistance in the
water environment.
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The excessive use of antibiotics speeds up the dissemination and aggregation of
antibiotic resistance genes (ARGs) in the environment. The ARGs have been regarded as
a contaminant of serious environmental threats on a global scale. The constant increase
in aquaculture production has led to extensive use of antibiotics as a means to prevent
and treat bacterial infections; there is a universal concern about the environmental
risk of ARGs in the aquaculture environment. In this study, a survey was conducted
to evaluate the abundance and distributions of 10 ARGs, bacterial community, and
environmental factors in sediment samples from aquatic farms distributed in Anhui
(AP1, AP2, and AP3), Fujian (FP1, FP2, and FP3), Guangxi (GP1, GP2, and GP3),
Hainan (HP1, HP2, and HP3), and Shaanxi (SP1, SP2, and SP3) Province in China.
The results showed that the relative abundance of total ARGs was higher in AP1, AP2,
AP3, FP3, GP3, HP1, HP2, and HP3 than that in FP1, FP2, GP1, GP2, SP1, SP2, and
SP3. The sul1 and tetW genes of all sediment samples had the highest abundance.
The class 1 integron (intl1) was detected in all samples, and the result of Pearson
correlation analysis showed that the intl1 has a positive correlation with the sul1, sul2,
sul3, blaOXA, qnrS, tetM, tetQ, and tetW genes. Correlation analysis of the bacterial
community diversity and environmental factors showed that the Ca2+ concentration
has a negative correlation with richness and diversity of the bacterial community in these
samples. Of the identified bacterial community, Proteobacteria, Firmicutes, Chloroflexi,
and Bacteroidota were the predominant phyla in these samples. Redundancy analysis
showed that environmental factors (TN, TP, Cl−, and Ca2+) have a positive correlation
with the bacterial community (AP1, GP1, GP2, GP3, SP1, SP2, and SP3), and the
abundance of ARGs (sul1, tetW, qnrS, and intl1) has a positive correlation with the
bacterial community (AP2, AP3, HP1, HP2, and HP3). Based on the network analysis,
the ARGs (sul1, sul2, blaCMY, blaOXA, qnrS, tetW, tetQ, tetM, and intl1) were found
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to co-occur with bacterial taxa from the phyla Chloroflexi, Euryarchaeota, Firmicutes,
Halobacterota, and Proteobacteria. In conclusion, this study provides an important
reference for understanding the environmental risk associated with aquaculture activities
in China.

Keywords: aquaculture, sediment, antibiotic resistance genes, environmental factors, bacterial community

INTRODUCTION

Antibiotics are extensively used to prevent and control bacterial
infections in medical care, livestock husbandry, and aquaculture
(Kümmerer, 2009; Luo et al., 2010). Some of them are also used
as growth promoters in aquaculture activities (Chen H. et al.,
2018). However, excessive antibiotics and their metabolites would
enter the environment, and they might be further absorbed into
soil particles and eventually accumulated in sediments because
aquatic animals cannot take full advantage of these antibiotics
(Kümmerer, 2009). It is worth noting that the abundance of
antibiotic resistance genes (ARGs) in soil was associated with
the amount of antibiotic residues in the environment (Fahrenfeld
et al., 2014), and the ARGs combining with minerals and humus
from the environment might exist for a long time (Dang et al.,
2017; Hurst et al., 2019; Ma et al., 2019). It is well known that
the ARGs have unique biological characteristics, and they could
spread by horizontal gene transfer among bacteria of different
species and self-amplify among the same species (Guo et al., 2017;
Kumar et al., 2017).

The sediments were regarded as an important plot for
accumulation and transmission of ARGs (Marti et al., 2014).
Shen et al. (2020) reported that several ARGs (sul1, tetG, tetW,
tetX, and intl1 gene) were detected in water and sediment of
aquaculture farms in Jiangsu Province, China. Chen B. et al.
(2018) explored the ARGs in the sediments from bullfrog
farms and confirmed that these identified ARGs were able
to encode resistance to over 10 categories of antibiotics,
such as aminoglycosides, beta-lactams, chloramphenicols,
fluoroquinolones, macrolides, polypeptides, sulfonamides,
and tetracyclines.

There is a universal concern that the presence of ARGs in
sediments is a potential environmental threat (Wang et al.,
2015). The antibiotic-resistant bacteria have constituted a huge
repository of ARGs in sediments (Martínez, 2008). Once these
ARGs have been transferred into the human symbiotic microbes,
they would cause great risks of the ecological environment
and human health (Smillie et al., 2011; Forsberg et al., 2012).
Currently, a study about ARGs in the environment suggested that
the existing forms of ARGs largely determine the ways in which
these genes are acquired and disseminated among bacterial hosts
(Mao et al., 2014). The conception of integron was first proposed
by Stokes in 1989 (Stokes and Hall, 1989). It is a key pathway
for bacteria to acquire ARGs, which influenced the removal
and transfer of ARGs in the bacterial community (Gaze et al.,
2011). As one of the most important mobile genetic materials,
the integron could capture, rearrange, and express mobile gene
cassettes responsible for the spread of ARGs (Zhang X. et al.,
2020) and further accelerate the prevalence and transmission of

ARGs in the environment (Martinez-Freijo et al., 1998; Cambray
et al., 2010).

Previous studies have suggested that the nutrients also
promote directly or indirectly the ARGs propagation (Zhao et al.,
2017; Zhang J. et al., 2020). Furthermore, the long-time input of
nitrogen and phosphorus not only changed the composition of
the bacterial community but also drove the propagation of ARGs
(Pan et al., 2020). Total organic carbon (TOC) and total dissolved
nitrogen (TDN) were potentially important environmental
factors, which affected the abundance and diversity of ARGs
in urban river systems (Zhou et al., 2017). Moreover, some
researches have indicated that bacterial communities shaped
the distribution and abundance of ARGs (Huerta et al., 2013;
Xiong et al., 2015). These findings suggested that the distribution
and prevalence of ARGs are not only related to the use of
antibiotics but also affected by many environmental factors. In
this study, we aimed to (1) evaluate the relative abundance of 10
ARGs in sediment samples from different aquaculture farms; (2)
elucidate the correlation between environmental factors, ARGs
abundance, and bacterial community in different aquaculture
farms; (3) identify the co-occurrence patterns between ARGs
and bacterial taxa.

MATERIALS AND METHODS

Sample Collection
A total of 15 sediment samples were collected from aquaculture
ponds distributed in five Chinese provinces, including Anhui
(Wuwei, Freshwater aquaculture farm), Fujian (Zhangzhou,
Mariculture farm), Guangxi (Qinzhou, Mariculture farm),
Hainan (Haikou, Freshwater aquaculture farm), and Shaanxi
(Heyang, Freshwater aquaculture farm) between September and
October 2019 (Supplementary Figure 1). Three ponds were
selected in every aquaculture farm. These aquaculture ponds
could produce aquatic products with average 4,000 kg or
more per year. Due to the high stocking density, different
antibiotics, including sulfonamides, tetracyclines, beta-lactams,
and quinolones were used for prophylactic purposes on these
farms. No bacterial infections occurred in the sampled ponds in
the past year according to our investigation.

Each pond has an area of approximately 900–1,200 m2 with
a depth of approximately 150–200 cm. The sediments of all
sampled ponds have not been cleaned for at least 1 year to
ensure that the samples meet the requirements. The samples were
collected from water inlets, water outlets, and center areas of each
pond (collected the top 10 cm of the sediment) using the CN-
100 bottom sampler (Ruibin, China), and the samples of each
pond were completely mixed to avoid heterogeneous differences
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caused by single sampling. After mixing, the sample was sealed in
a sterile plastic bag and transported at 4◦C to the laboratory. All
the samples were divided into two parts and stored at −80◦C for
further analysis.

DNA Extraction and Qualitative PCR of
Antibiotic Resistance Genes
The genomic DNA was extracted from 0.25 g lyophilized
sediment samples using the TIANamp Soil DNA kit (Tiangen,
China). All the operations were performed with the product
instructions. The quality of DNA was detected using Ultramicro
nucleic acid analyzer (Allsheng, China). The PCR amplification
was performed to test 10 ARGs (sul1, sul2, sul3, tetM, tetQ, tetW,
qnrB, qnrS, blaOXA, and blaCMY) and class 1 integron integrase
gene (intl1) based on the investigation of antibiotic use in the
aquaculture farms of this study. The primers of target genes
were synthesized by Sangon Biotech (Shanghai, China), and the
primer sequences are shown in Supplementary Tables 1, 2.
The PCR conditions were as follows: pre-denaturation at 95◦C
for 3 min, then 35 cycles of denaturation at 95◦C for 30 s,
annealing at the specified temperature (Supplementary Table 1)
for 30 s, extension at 72◦C for 45 s, and a final extension at
72◦C for 5 min. PCR products were subsequently detected by
agarose gel electrophoresis analysis, and the results are shown in
Supplementary Figure 2.

High-Throughput Sequencing
In order to further analyze the bacterial community composition
in the sediment samples, the high-throughput sequencing of
bacterial community was analyzed with an Illumina Mi Seq
platform at Novogene (Beijing, China). The V3–V4 regions of
bacterial 16S rRNA genes were amplified using the primer pair
341F and 806R. The sequencing analysis was processed using
QIIME software for 16S rRNA datasets described in a previous
literature (Caporaso et al., 2010).

Quantification of Antibiotic Resistance
Genes
PCR products of the target gene were purified with the Universal
DNA Purification Kit (Tiangen, China) and ligated into pGM-
T vector (Tiangen, China). Subsequently, the pGEM-T vector
carrying target gene was transformed into Escherichia coli
DH5α (Tiangen, China), and the positive clones were acquired
after PCR amplification and sequence analysis. Moreover, the
recombinant plasmids with target gene were extracted with
TIANprep Mini Plasmid Kit (Tiangen, China) and searched for
homolog identity with NCBI Blast program. The concentration
of recombinant plasmids was checked by Ultramicro nucleic
acid analyzer (Allsheng, China), and the standard curves of
recombinant plasmids were built with 10-fold serial diluted.
The amplification efficiency of all primers ranged from 91.07 to
106.64% with R2 > 0.99 (Supplementary Table 3). The target
gene copy numbers of the sediment samples were calculated with
the CT values according to a previous study (Yuan et al., 2019).

The real-time quantitative PCR (Q-PCR) was performed on
a LightCycler R© 96 instrument (Roche Ltd., Italy) by utilizing

SYBR R© Green Pro Taq HS Premix (AG, China) according to the
manufacturer’s protocol for further analysis. The 10-µl qPCR
reaction system contained 2× SYBR R© Green Pro Taq HS Premix
(5 µl), 10 µM primer (0.2 µl for each primer, Sangon Biotech,
China), RNase-free water (4.1 µl), and DNA samples or standard
plasmid (0.5 µl). The amplification condition of qPCR was as
follows: initial enzyme activation at 95◦C for 30 s, then 40 cycles
of at 95◦C for 5 s and at 60◦C for 30 s.

Analysis of Environmental Factors
The contents of Ca2+, Mg2+, and Cl− were determined
by ethylene diamine tetraacetic acid (EDTA) volumetric
method (Wang et al., 2020). The concentrations of total
nitrogen (TN) and total phosphorus (TP) were determined
by spectrophotometric method (SEPA, 2002; Trolle et al.,
2009), and the standard curve of TN and TP is shown in
Supplementary Table 4.

Statistical Analysis
Pearson correlation analysis was used to analyze the correlation
between environmental factors (TN, TP, Cl−, Ca2+, and Mg2+)
with the relative abundance of bacterial community and ARGs.
Non-metric multidimensional scaling (NMDS) analysis was used
to evaluate the difference of bacteria between different sampling
sites. Redundancy analysis (RDA) was employed to assess the
effects of environmental factors and ARGs on the bacterial
community. The co-occurrence between abundance of ARGs and
bacterial taxa was analyzed using network analysis based on the
Pearson correlation (Li et al., 2015).

Statistical analysis was performed using SPSS 19.0 (IBM,
Chicago, IL, United States). The RDA, Mantel test, Pearson
correlation, and heatmap were performed in RStudio (v1.2.5019)
with several packages, including vegan and pheatmap packages.
Co-occurrence networks were constructed by Gephi software
(0.9.2; Gephi, WebAtlas, France).

RESULTS

Environmental Factors in the 15
Sediment Samples
To study the effects of environmental factors on bacterial
community in the sediments, the concentrations of five factors
(TN, TP, Cl−, Ca2+, and Mg2+) at different sample sites
were detected (Supplementary Table 5). Among the sampling
sites, TN concentrations ranged from 48.841 ± 0.158 to
193.679 ± 0.45 mg/kg (Figure 1A). The lowest concentration
of TN appeared in the sample of HP3 and the highest in the
sample of GP2. The TP concentrations were relatively lower
in other sampling sites, except GP1 (118.757 ± 0.956 mg/kg),
GP3 (48.064 ± 1.373 mg/kg), and SP1 (48.938 ± 0.323 mg/kg)
(Figure 1B). The concentration of Cl− has a higher correlation
with the aquaculture environment of sampling sites. The Cl−
concentration in the sample sites from mariculture farms was
generally higher than that of other sampling sites (Figure 1C).
The Ca2+ concentration of GP3 and FP2 was the highest
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FIGURE 1 | The TN, TP, Cl-, Ca2+, and Mg2+ concentrations (A–E) in the 15 sediment samples.

(1.632 ± 0.889 g/kg) and lowest (0.0800 ± 0.0346 g/kg),
respectively (Figure 1D). The concentrations of Mg2+ of all
sampling sites were generally lower, with the exception of GP1
(0.720 ± 0.128 g/kg), GP2 (1.377 ± 0.159 g/kg), and GP3
(3.334± 0.703 g/kg) (Figure 1E).

Bacterial Community in the 15 Sediment
Samples
Diversity and Composition of Bacterial Community
With the sequencing of 16S rRNA gene, a total of 61,871
operational taxonomic units (OTUs) were identified from
all the 15 sediment samples (Supplementary Table 6). The
Rank Abundance curves of OTUs were saturated with all

samples (Supplementary Figure 3), which indicated that
the abundance and evenness of bacterial community were
similar. The indices of ACE, Chao1, Shannon, and Simpson
revealed the richness and diversity of the bacterial communities
(Supplementary Table 6). The NMDS analysis based on the OTU
abundance also indicated that there was no obvious geographic
cluster of bacterial communities in different sediment samples
(Supplementary Figure 4).

At the phylum level, four predominant phyla (Proteobacteria,
Firmicutes, Chloroflexi, and Bacteroidota) were detected in
all sediment samples (Figure 2A). The Cyanobacteria has
minor abundance, accounting for 0.30–9.39% of total bacterial
16S rRNA sequence libraries. At the genus level, the 16S
rRNA sequence libraries detected 30 predominant bacterial
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FIGURE 2 | (A) Relative abundance of top 10 phyla in the 15 sediment samples. (B) The heatmap at the genus level of the 15 sediment samples.

genes from the 15 sediment samples. The bacterial community
mainly includes Methanosaeta, Sphingomonas, Sulfurovum,
and Thiobacillus (Figure 2B). In the phylum Proteobacteria,
Dechloromonas, Pseudomonas, Sphingomonas, and Thiobacillus
were the predominant genera of the bacterial community. In the
sediment of FP1, FP2, and FP3, Sulfurovum and Sulfurimonas
have a higher abundance (Supplementary Figure 5).

Effect of Environmental Factors on the Diversity of
the Bacterial Community
The Pearson correlation analysis was used to evaluate the effects
of environmental factors on the bacterial community structure.
The results indicated that there was no significant correlation
between the concentration of TN, TP, Cl−, and Mg2+ with the
richness and the diversity of bacterial community. However, the

Ca2+ concentration had a significantly negative correlation with
the richness and diversity of the bacterial community [OTU
(r = −0.61, p < 0.05), ACE (r = −0.65, p < 0.05), and Chao1
index (r =−0.62, p < 0.05)].

Abundance and Distribution of Antibiotic
Resistance Genes
To analyze the ARGs distribution in different aquaculture farms,
10 tested ARGs and 16S rRNA were investigated. The ARGs
abundance was normalized to 16S rRNA genes to compare
the difference of ARGs in different samples (Chen et al.,
2019). As shown in Figure 3A, the ARGs were classified
into four categories (sulfonamide, tetracycline, beta-lactam, and
fluoroquinolone resistance genes) and integron. The higher
abundance of sulfonamide resistance genes was detected in all
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FIGURE 3 | The abundance of antibiotic resistance genes (ARGs) in the 15 sediment samples. (A) Five categories. (B) 11 kinds.

these samples, but higher abundance of tetracycline resistance
genes was detected in the samples of FP3, HP2, and HP3. The
highest abundance of total ARGs was detected in the samples of
HP (HP1, HP2, and HP3). The beta-lactam resistance genes have
the highest abundance in the samples of FP (FP1, FP2, and FP3).

The distribution of ARGs is shown in Figure 3B. Sul1, sul2,
and tetM genes were the highest abundance in all sediment
samples, while sul3 and qnrS genes were only detected in the
sediments from HP (HP1, HP2, and HP3) and SP (SP1, SP2, and
SP3), respectively. Overall, the ARGs levels in different sample
sites were obviously different, which could be associated with the
different types of antibiotics used in different aquaculture farms.

Correlations Among Bacterial
Community, Antibiotic Resistance
Genes, and Environmental Factors
The RDA analysis was performed to further explore the
correlation between the bacterial communities of the 15 sediment
samples, ARGs abundance, and environmental factors (Figure 4).
The weights for variables making up canonical axes of RDA
are summarized in Supplementary Table 7. We found that the
TN, TP, Cl−, Ca2+, sul1, blaCMY, intl1, qnrS, and tetW have
a significant correlation with the bacterial community in the
15 sediment samples (permutations = 999, p < 0.05), which
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explained 61.82% of overall variation in the bacterial community.
The RDA1 and RDA2 explained 44.36 and 17.46% of the total
variance, respectively. Positive correlation was found between
environmental factors detected in this study and the bacterial
community (AP1, GP1, GP2, GP3, SP1, SP2, and SP3), and the
bacterial community of the sampling sites showed a negative
correlation with ARGs. Moreover, the abundance of ARGs (sul1,
tetW, qnrS, and intl1) has a much higher correlation with the
bacterial community (AP2, AP3, HP1, HP2, and HP3), while
blaCMY has a stronger correlation with the bacteria of FP
(FP1, FP2, and FP3).

Furthermore, the correlation analysis of 10 ARGs showed
that there were significant correlations among multiple ARGs
(Supplementary Figure 6). Similarly, the intl1 gene was
correlated with the sul1, sul2, sul3, blaOXA, qnrS, and tetM,
tetQ, and tetW genes. A Mantel test was also performed to
demonstrate whether there were high correlations between the
total ARGs and intl1. Results showed that a significant correlation
(permutations = 999, r = 0.8013, p < 0.01) was found among the
total ARGs and intl1.

Co-occurrence of Bacterial Community
and Antibiotic Resistance Genes in
Sediment Samples
The co-occurrence patterns between ARGs and bacterial
community were further analyzed with the network analysis
(Figures 5A,B). As shown in Figure 5B, the intl1 gene was found
to co-occur with eight genera of bacteria taxa, followed by sul1
(7), sul2 (6), tetQ (6), tetM (6), qnrS (4), tetW (3), blaCMY (2), and
blaOXA (2).

At the phylum level of the bacterial community, the main
phyla potentially carrying the target ARGs were Chloroflexi,
Euryarchaeota, Firmicutes, Halobacterota, and Proteobacteria
(Figure 5A). There was a significant co-occurrence pattern
in the bacterial taxa of Chloroflexi and eight subtype ARGs
(sul1, sul2, blaOXA, qnrS, tetW, tetQ, tetM, and intl1) and
a significant co-occurrence pattern in the bacterial taxa of
Firmicutes and seven subtype ARGs (sul1, sul2, blaOXA, qnrS,
tetQ, tetM, and intl1) (p < 0.05) (Figure 5B). At the genus
level of the bacterial community, Proteiniclasticum, Leptolinea,
Methanobacterium, and Methanoregula were the main potential
hosts of ARGs (Figure 5B). Among them, the Leptolinea was
found to have the most diverse connections with ARGs, including
sul1, sul2, blaOXA, qnrS, tetW, tetQ, tetM, and intl1 (p < 0.05).
Proteiniclasticum was also detected to carry seven ARGs (sul1,
sul2, blaOXA, qnrS, tetQ, tetM, and intl1) (p < 0.05). In addition,
Sulfurovum and Sulfurivermis have simply co-occurred with the
blaCMY gene encoding resistance.

DISCUSSION

Aquaculture ponds are regarded as a major reservoir for
antibiotic resistant bacteria and ARGs due to the overreliant use
of antibiotics (Boran et al., 2013). However, excessive antibiotics
and their metabolites have been released into the environment
due to the abuse and misuse of antibiotics (Bu et al., 2013; Liu

FIGURE 4 | The redundancy analysis (RDA) of environmental factors,
antibiotic resistance genes (ARGs), and bacterial communities.

and Wong, 2013). Relevant studies have indicated that antibiotic
contamination could lead to the emergence of ARGs in the
environment (Qiao et al., 2018; Yang et al., 2018). In this study, we
explored the correlation between environmental factors, ARGs,
and the bacterial community in different aquatic environments.

Sulfonamides and tetracyclines were used widely in aquatic
farms (Luo et al., 2010), the abundance of sul and tet genes
was significantly correlated with the use of the corresponding
antibiotics (Gao et al., 2012). Generally, the establishment of
ARGs requires selective pressure on antibiotics over a long
period. However, once the selective pressure was established,
the ARGs would persist and difficult to be eliminated even if
the pressure is removed (Pei et al., 2006; Xiao et al., 2016). In
this study, a higher abundance of sul and tet genes in sediment
samples was detected, and it was consistent with previous studies
that sul and tet genes were the dominant ARGs in aquaculture
water environments (Hoa et al., 2008; Tamminen et al., 2011).
Remarkably, the abundance of sul gene was higher than that
of tet gene, except for the sample from FP3. A previous study
also indicated that the sul gene persists longer than the tet gene
(McKinney et al., 2010). The intl1 was one of the mobile genetic
element genes and widely existed in Gram-positive and Gram-
negative bacteria (Zeng et al., 2019), and it was regarded as an
important pollution genetic marker caused by human activity
(Gillings et al., 2015). The abundance of Intl1 gene is a proxy
for anthropogenic pollution among many other factors are that
they are linked to genes conferring resistance to antibiotics, and
intl1 gene was also closely related to multidrug resistance (MDR).
Our study revealed that the abundance of ARGs (sul1, sul2, sul3,
tetW, tetQ, tetM, blaOXA, and qnrS) was significantly correlated
with the abundance of Intl1. It was indicated that intl1 may play
a key role in ARGs proliferation and diffusion from the sediment
of aquaculture farms. Moreover, the previous study indicated that
there were the co-occurrence patterns among many ARGs in pig
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FIGURE 5 | (A) Network plots between antibiotic resistance genes (ARGs) and the phyla of the bacterial community. (B) Network plots between ARGs and the
genera of the bacterial community.

farm wastewater (Yang et al., 2020). Correlation analysis in the
study also showed that there was a significant positive correlation
among the different types of ARGs. The bacteria carrying
multiple ARGs could easily obtain the resistance to antibiotics
(Trudel et al., 2016); therefore, the potential environmental risk
of ARGs should be given attention.

In this study, a significant difference was observed in bacterial
communities among different aquatic farms. The dominant phyla
were Proteobacteria and Firmicutes in all sediment samples.
Similar results were found in pig farms and the sediment of
a shrimp farm (Yang et al., 2020; Zeng et al., 2020). Within
the Proteobacteria phylum, the Sphingomonas was the main
compositions of the genus. It was reported that the genome
of Sphingomonas contains multiple efflux pumps (Jia et al.,
2019), suggesting that Sphingomonas might better exist in the
sediments of aquatic environments. A previous study implied
that the physiochemical properties of the environment may
influence the bacterial community by affecting the nutrient
availability or physiological activity (Li et al., 2019). The present
study found that the bacterial communities from AP1, GP1,
GP2, GP3, SP1, SP2, and SP3 were significantly correlated with
environmental factors. In addition, the concentrations of Mg2+,
Ca2+, and Cl− in the environment influence the composition
of the bacterial community (Xu et al., 2018). It is worth noting
that the Ca2+ has a significant negative correlation with the
richness and diversity of bacterial communities. Interestingly,
the calcium carbonate was widely used in aquaculture farms,
which led to the high accumulation of Ca2+ in the sediments.
Therefore, the excessive use of calcium carbonate might lead to a
decrease in the diversity and richness of bacterial communities in
the environment.

The aquatic environment gradually becomes a reservoir of
antibiotic-resistant bacteria because of the use and abuse of
antibiotics in aquatic farms (Huang et al., 2017). Previous
studies certified that some bacterial taxa from Firmicutes were

the dominant ARGs-carrying bacteria (Zhang et al., 2021).
We also found that the Proteiniclasticum and Soehngenia
from Firmicutes might be the main potential hosts of ARGs,
which have strong co-occurrence with sul1, sul2, blaOXA,
qnrS, tetQ, tetM, and intl1 genes. Similarly, the Anaerolinea
and Leptolinea from Chloroflexi have strong co-occurrence
with ARGs (sul1, sul2, blaOXA, qnrS, tetW, tetQ, tetM, and
intl1). However, the Sulfurovum from Campilobacterota only
has a co-occurrence with blaCMY, and the Campilobacterota
was the dominant phylum in the samples of FP (FP1, FP2,
and FP3). Furthermore, there was a stronger co-occurrence
between tetM gene and six bacterial taxa in these samples.
A previous study revealed the similar results in the soil of
swine feedlots (Li et al., 2019). It is worth noting that the
tetM gene was regarded as a detection tool to track and
monitor ARGs transport in agricultural systems (Cadena et al.,
2018). Our research found that the ARGs have a complex
co-occurrence correlation with the bacterial taxa in sediment,
which indicated that some bacterial taxa could be resistant
to multiple antibiotics in the sediments. Overall, this study
indicated that the ARGs in the sediments of aquaculture
farms have an impact on the environment and bacterial
communities, and we must pay more attention to and take
preventive measures.

CONCLUSION

The present study indicated that the sulfonamides and
tetracycline resistance genes were the predominant ARGs
in the sediments of the investigated aquatic farms. Some
bacterial taxa from the phyla Chloroflexi, Euryarchaeota,
Firmicutes, Halobacterota, and Proteobacteria might be the
main potential hosts of ARGs in these aquatic farms. Moreover,
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the excessive Ca2+ might inhibit the diversity and richness of
bacterial communities.
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Plasmid-mediated dissemination of antibiotic resistance among fecal
Enterobacteriaceae in natural ecosystems may contribute to the persistence of
antibiotic resistance genes in anthropogenically impacted environments. Plasmid
transfer frequencies measured under laboratory conditions might lead to overestimation
of plasmid transfer potential in natural ecosystems. This study assessed differences
in the conjugative transfer of an IncP-1 (pKJK5) plasmid to three natural Escherichia
coli strains carrying extended-spectrum beta-lactamases, by filter mating. Matings
were performed under optimal laboratory conditions (rich LB medium and 37◦C) and
environmentally relevant temperatures (25, 15 and 9◦C) or nutrient regimes mimicking
environmental conditions and limitations (synthetic wastewater and soil extract). Under
optimal nutrient conditions and temperature, two recipients yielded high transfer
frequencies (5 × 10−1) while the conjugation frequency of the third strain was 1000-fold
lower. Decreasing mating temperatures to psychrophilic ranges led to lower transfer
frequencies, albeit all three strains conjugated under all the tested temperatures. Low
nutritive media caused significant decreases in transconjugants (−3 logs for synthetic
wastewater; −6 logs for soil extract), where only one of the strains was able to produce
detectable transconjugants. Collectively, this study highlights that despite less-than-
optimal conditions, fecal organisms may transfer plasmids in the environment, but the
transfer of pKJK5 between microorganisms is limited mainly by low nutrient conditions.

Keywords: horizontal gene transfer, antimicrobial resistance, synthetic wastewater, soil extract agar,
environmental conditions, AMR

INTRODUCTION

Antimicrobial resistance (AMR) is considered as one of the most significant challenges to global
public health (O’Neill, 2016). The spread of antimicrobial resistance genes (ARGs) via horizontal
gene transfer (HGT) between bacteria is a growing concern because it facilitates the dissemination
of resistance across a wide variety of microorganisms. Understanding the dynamics of plasmid
dissemination in the environment is fundamental to contain and mitigate the AMR challenge.
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Horizontal gene transfer (HGT) is an effective ecological
trait that shapes bacterial evolution (Ochman et al., 2000).
Conjugative plasmids are relevant vectors for HGT (Smillie et al.,
2010) and dissemination of AMR (Carattoli, 2013). Gut bacteria
from both animal and human origin comprise an important
source of AMR-conjugative plasmids (Hu et al., 2013; Ceccarelli
et al., 2019). Gut bacteria are released into the environment
through manure application to agricultural soils and wastewater
discharges, ultimately resulting in the introduction of their
ARGs, and plasmids in the environment. Despite having limited
survivability, once introduced in the environment, gut bacteria
might be able to transfer their AMR determinants to the natural
bacterial community. Escherichia coli is widely accepted as
primary indicator of fecal contamination. Although most E. coli
strains cause only mild infections, their presence is indicative of
the potential presence of other more pathogenic organisms which
may be relevant for human health.

Monitoring of environmental HGT remains challenging
mainly due to cultivation bias [only 1% of indigenous bacteria
are estimated to be cultivable (Amann et al., 1995)]. Fluorescently
labeled strains and plasmids comprise a promising methodology
to study horizontal gene transfer in complex environments
by culture independent methods (Sørensen et al., 2005). Due
to donor-recipient incompatibilities and detection limits of
the methodology, the experimental design often require a
compromise to guarantee the detection of transconjugants
(Sørensen et al., 2005; Pinilla-Redondo et al., 2018). As a
result, studies addressing environmental dissemination of AMR
plasmids usually apply conditions that are optimal for bacterial
transmission, namely high bacterial densities, optimal growth
temperatures, and/or high nutrient availability (Bellanger et al.,
2014a; Jacquiod et al., 2017). Although being relevant for specific
scenarios such as mesophilic anaerobic digesters, greenhouses
or wastewater in low latitude countries (Al Qarni et al., 2016;
Fan et al., 2019), these settings do not reflect the usual average
conditions of manured soils, water bodies and wastewater (Abis
and Mara, 2006; Barrios-Hernández et al., 2020; Osińska et al.,
2020). Such discrepancies in the experimental design might
lead to an overestimation of plasmid transfer frequencies and
dissemination potential in the environment. Therefore, better
insights into how environmental parameters affect plasmid
transfer are needed.

The aim of this study was to evaluate in vitro the role of
environmental factors that could potentially hamper conjugative
plasmid transfer from gut bacteria once discharged into the
environment. A conjugative broad host range IncP-1plasmid
(pKJK5) was used as vector. Most importantly, IncP-1 plasmids
have comparatively high conjugation rates and thus allow
for analysis of conjugation frequency also under suboptimal
conjugation conditions. IncP-1 plasmids often carry clinically
relevant ARGs (Rozwandowicz et al., 2018), are abundant in
(waste)water (Pallares-Vega et al., 2021), manure (Binh et al.,
2008), and soil environments (Shintani et al., 2020) and can
potentially disseminate among a wide diversity of phylogenetic
groups (Popowska and Krawczyk-Balska, 2013). Furthermore,
IncP-1 plasmids (i.e., RP4, pB10 and pKJK5) comprise the
predominant plasmids in studies addressing transfer events in

environmental settings (Inoue et al., 2005; Bellanger et al.,
2014b; Klümper et al., 2015; Li et al., 2018). Solid-surface filter
matings were conducted to study HGT between Escherichia
coli strains (as both donor and recipients, with animal E. coli
strains harboring extended spectrum beta-lactamase resistance
genes on known plasmid types as recipients representative
of E. coli introduced with animal manure). The transfer was
evaluated under different (i) donor-to-recipient cell proportions,
(ii) mating temperatures, or (iii) nutritional compositions.
The criteria to select the used conditions was based on the
presumable main abiotic challenges that gut bacteria face when
discharged into the environment, namely nutrient limitations
and close-to psychrophilic conditions. The donor-to-recipient
cell proportions were tested to assess the limit of the system while
aiming for a natural proportion of donor and recipient cells in
the mating. By using the same species and a broad-host-range
plasmid, potential host-vector and interspecies incompatibilities
were discarded as factors. E. coli was chosen as a model system
for bacteria of public health relevance that can potentially move
between anthropogenic related and natural environments, and
it was hypothesized that lower temperatures and lower nutrient
concentrations would limit plasmid transfer.

MATERIALS AND METHODS

Selection and Characterization of Strains
and Plasmids
Three extended-spectrum beta-lactamase (ESBL) carrying E. coli
strains (09.54, 38.27, and 39.62) isolated from fecal samples of
calves or poultry were used as recipients during the mating
experiments (Table 1). These strains were part of a database
from the Dutch national veterinarian institute (Wageningen
Bioveterinary Research, WBVR), studying the prevalence of
ESBLs in plasmids. The strains qualify for this work because
of their species, diverse plasmid content, and because they had
been sequenced under the scope of WBVR projects. A genetically
engineered E. coli strain previously described by Klümper et al.
(2015) was selected as donor for the broad-host-range plasmid of
the incompatibility group IncP-1. The donor strain (E. coli K-12
MG1655:lacIq-pLpp-mCherry-KmR) is commonly used in dual-
labeling fluorescence reporter-gene approaches coupled with
fluorescence-activated cell sorting (Pinilla-Redondo et al., 2018)
due to the conditionally expressible green fluorescent proteins
(GFP) in its IncP-1 plasmid (pKJK5). The IncP-1 plasmid
carries a kanamycin resistance determinant and lacIq repressible
promoter upstream the gfpmut3 gene (Sengeløv et al., 2001; Bahl
et al., 2007; Klümper et al., 2015).

In order to fully characterize the used strains, whole-
genome sequencing using paired-end Illumina was performed,
as previously described by Rozwandowicz et al. (2020). The
annotation of the sequences was performed with Prokka version
1.12 (Seemann, 2014) and the corresponding sequence type a
was conducted with the Multi Locus Sequence Typing online
tool MLST 2.0 (Larsen et al., 2012), using the two available
schemes (Wirth et al., 2006; Jaureguy et al., 2008). For typing
the donor strain and relate the natural recipient strains to
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TABLE 1 | Bacterial strains of E. coli used as donor and recipient of broad-host-range IncP-1 plasmid, and their characteristics.

Agent ST Role Origin Resistance profile Plasmids Source

E. coli MG1655:lacIq-pLpp-mCherry-KmR ST10/ST262 Donor Laboratory
strain

AMPR, SMXR, KANR,
mCherry
pKJK5:KmR

pKJK5 PA1/04/03-gfpmut3
(IncP)

Klümper et al.
(2015)

E. coli 09.54 ST21/ST481 Recipient Veal calf AMPR, CTXR, SMXR, TETR IncK This study

E. coli 38.27 ST10/ST2 Recipient Poultry AMPR, CTXR, SMXR, TETR IncFI, IncH1, IncI1, p0111 This study

E. coli 39.62 ST101/ST88 Recipient Poultry AMPR, CTXR, SMXR, TETR IncFIB/FII
IncK

This study

ST, Sequence type.

the donor, a reference sequence of E. coli MG1665 (accession
number: NC_000913.3) from GenBank was used. In addition, the
existence of plasmid replicons within the strains was analyzed
with PlasmidFinder (Carattoli et al., 2014) applying an identity
cut-off equal or greater than 98%. The annotated sequences
are deposited in GenBank, BioProject PRJNA661180 under the
accession no. JADPVO000000000 (09.54), JADPVP000000000
(38.27) and JADPVQ000000000 (39.62) A core and accessory
genome analysis of the donor and recipient strains was conducted
with Roary version 13.0 (Page et al., 2015) in Galaxy version
21.011. A maximum likelihood tree based on nucleotide sequence
was built with FastTree version 2.1.10 (Price et al., 2010) in Galaxy
and graphic visualization of the core and accessory genome was
achieved with Phandango (Hadfield et al., 2018).

To identify suitable selective conditions for the identification
of transconjugants, the antimicrobial susceptibility profile for
each strain was determined by disc diffusion test, according
to EUCAST guidelines (EUCAST Disk Diffusion Method for
Antimicrobial Susceptibility Testing – version 6.0; available at
https://www.eucast.org/). The results were interpreted based on
the EUCAST-defined Breakpoints tables for interpretation of
MICs and zone diameters (version 8.0) and are summarized in
Table 1 in Supplementary Information. Figure 1 displays this
study’s schematic of the experimental design and procedure.

Culture Media and Growth Curves
Luria-Bertani (LB), synthetic wastewater (SWW), and soil extract
(SE) were used as culture media for the filter matings. Pure
bacterial cultures were prepared and maintained in LB broth
or plates (tryptone 10 g L−1, yeast extract 5 g L−1, sodium
chloride 5 g L−1, and agar 15 g L−1) prior to the experiments,
and for the selection of donor, recipients, and transconjugants
after the matings, the LB plates were enriched with kanamycin
(100 µg mL−1; Sigma Aldrich), tetracycline (16 µg mL−1; Sigma
Aldrich), and both kanamycin and tetracycline (100 and 16 µg
mL−1), respectively.

The SWW aimed to mimic the average conditions and
nutrient proportions of conventional domestic wastewater. The
composition was based on that of Boeije et al. (1999), and
ISO 11733 guideline, and adjusted to a theoretical COD:N:P
concentration and molar ratio close to that of Dutch wastewater
(100:9.1:1.4, Supplementary information Table 2). The SWW
solution contained of 0.07 g L−1 urea, 0.011 g L−1 NH4Cl, 0.015 g
L−1 peptone P (Oxoid, United Kingdom), 0.015 g L−1 Lab Lemco

1https://usegalaxy.eu/

(Oxoid, United Kingdom), 0.05 g L−1 starch, 0.04 g L−1 glycerol
that was sterilized by autoclaving. After sterilization, the mix was
completed with 0.25 g L−1 sodium acetate, 0.12 g L−1 skimmed
milk powder (Sigma Aldrich, NL), 0.05 g L−1 glucose, 0.025 g L−1

FeSO4, 0.005 CaCl2 g L−1, 0.025 g L−1 NaHCO3 and 0.02 g L−1

MgHPO4·3H2O, 0.016 g L−1 L K3PO4·H2O (unless indicated
otherwise, the components were purchased at VWR, NL). These
solutions were separately autoclaved, or filter sterilized prior to
their aseptic addition to the final solution. SWW media was
finally supplemented with the addition of 0.1% (v/v) of trace
metal solution which contained 0.280 g L−1 NaEDTA, 0.180 g
L−1 ZnCl2, 1.144 g L−1 H3BO3, 0.025 g L−1 CoCl2·6H2O,
0.589 g L−1 MnCl2·2H2O, 0.120 g L−1 CuCl2·2H2O, 0.068 g
L−1 NiCl2·6H2O, 0.025 g L−1 Na2MoO4·5H2O, and 0.212 g L−1

KCr(SO4)2·12H2O. The pH was adjusted to 6.8± 0.1 with NaOH
1M to match the values found in wastewater [6.5 – 8.5 (Prot
et al., 2020)]. When needed, agar (15 g L−1) was added for solid
media preparation.

Soil samples for SE medium preparation were collected in the
late fall of 2019, from a local dairy farm (Friesland, Netherlands)
that uses the field for pasture (grassland) and had not been
recently subjected to manure application. In total, 7 kg of sandy
loam soil were collected from the field and homogenized. The
collected soil was air-dried for 3 days and stored in 500 g zip
bags at 4◦C until being used. The SE media was prepared as
described by Musovic et al. (2010). Briefly, 500 g of dried soil was
mixed with 500 mL of demineralized water. Then, the mixture
was shaken horizontally, for 3 h, and left for passive settling of
the particles, for 5 h. After the 5 h, the supernatant was pipetted
and autoclaved (for 15 min, at 121◦C) and stored at 4◦C, up
to one month. The pH values were not adjusted and were kept
at its original values (5.0 – 5.3), and no buffer solutions were
used to maintain the pH in the different culture media because
they could introduce potential nutrients (e.g., phosphate). When
needed, agar was added as aforementioned.

The general chemical compositions of the LB, SWW, and
SE media were determined by ion chromatography (IC), and
inductively coupled plasma (ICP-OES). The determination of the
chemical oxygen demand (COD), and the total nitrogen (TN) was
achieved with commercially available kits (LCK 514 and LCK 338;
Hach). The determination of the total organic carbon (TOC) was
achieved with Shimadzu TOC-LCPH analyzer. The composition
of the different media used is displayed in Table 2.

To quantify the effect of the temperature change in the
growth, an inoculum volume of 0.2% (final volume) of overnight
culture of each strain was transferred to fresh LB, and incubated
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FIGURE 1 | Overview of the procedure to quantify transconjugants. Donors and recipients were grown separately before being mixed, filtered, and incubated for 2 h,
at different temperatures or at different media. In the end, bacteria were recovered, and enumerated, in LB containing antibiotic combinations specific for donors,
recipients, or transconjugants.

at 9, 15, 25, or 37◦C. The Pathogen Modeling Program
(PMP) online model (available at: https://pmp.errc.ars.usda.
gov/default.aspx) was used to predict the incubation time
range to measure bacterial density. To determine the effect of
the nutrient composition, inoculums of 0.2% (final volume)
overnight culture of each strain were transferred to SWW or SE
media, and monitored up to three days. The optical density, at
600 nm (OD600), was measured in a UV-Vis Spectrophotometer
(Shimadzu Corp). Colony forming units (CFUs) were determined
after preparing 10-fold serial dilutions with saline solution (NaCl;
0.85%), plating in LB agar, and incubating at 37◦C, overnight.
Measurements were performed in biological triplicates.

Solid Surface Filter Matings: Standard
Conditions
Conjugation is a process that requires cell proximity and
stable spatial conditions during the mating time (ca 3–5 min).
Although these conditions can occur in the liquid phase, they are
more likely in “surface-like” configurations (Zhong et al., 2010)
occurring in soil grains, sludge flocs or biofilms. Bearing this in
mind, filter mating was chosen to study the plasmid transfer.

The conjugation assays were performed by mixing 150 µL of
fresh culture of the donor and recipient, and vacuum filtered
through mixed-cellulose ester filters (0.45 µm; Millipore) in
a Millipore filtration system. Prior to mixing, the cultures
were grown for approximately 3 h in LB at 37◦C to achieve
a density of ca. 2 × 108 CFU mL−1, as experimentally
defined by the growth curves. After filtration, the mixed
cultures were transferred to plates containing LB and cells
were then incubated at 37◦C. Following the incubation period,
the cells were detached from the filter by vortexing in
1 mL of sterile LB broth, for 5 min. Subsequently, serial
decimal dilutions were prepared in sterile saline solution,
and 100 µL was spread on LB plates containing kanamycin
(donors), tetracycline (recipients) and a combination of both
(transconjugants). The results were observed after a 24-h
incubation period (total counts), at 37◦C, and another 24-h
incubation period (colored colonies), at 4◦C. The incubation
at 4◦C was performed to enhance the visualization of the
GFP protein (Scott et al., 2006) and to count the green
colonies, the plates were observed in a blue-light transilluminator
(Safe Imager 2.0; Invitrogen). To confirm the validity of each
assay, matings with only the donor or the recipient were also
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TABLE 2 | Media composition of the culture media used in the matings with either
Luria-Bertani (LB), synthetic wastewater (SWW) or soil extract (SE) medium.

(mg L−1) LB SWW SE

Compound Mean SD Mean SD Mean SD

TOC 6,820 80 219 1.0 45 -

COD 21,450 2,450 529 37 173 1

TN 2,050 20 48 2 7 0.4

TP 151 1 7.2 0.2 4 0.0

Ca2+ 9 1 3.6 0.0 104 1

K+ 272 2 11.5 0.1 21 9.9

Mg2+ 7 0.1 37.6 0.1 5 0.6

Fe2+/3+ 0 0.0 4.5 0.0 <0.05 -

S 127 0 38 1 67 2

NH4
+ 60 0 6.2 0.0 <0.10 -

NO3
− 4 0.0 <0.10 - 10 0.0

PO4
3− 259 1 >20 - 12 0.0

SO4
2− 96 9 11 0 191 7

Total organic carbon (TOC), chemical oxygen demand (COD), total nitrogen (TN),
total phosphorus (TP).

performed. Each mating was performed in biological triplicates
on alternative days.

Solid Surface Filter Matings: Modified
Conditions
When different proportions of donor-to-recipient ratios (D/R)
were tested, the donor cultures harvested until 108 CFU mL−1

were serially diluted (10 and 100-fold) in LB and 150 µL was
mixed with 150 µL recipient culture to reach the corresponding
ratios D/R of 1:10 and 1:100. A total volume of 200 µL of the
mixtures were then filtered, and the mating and incubation were
performed as aforementioned. The approximate cell density in
the filters was 8.9 × 106 CFU cm−2. The effect of temperature
in transfer frequency was assessed by following the standard
condition procedure, but incubating the filters at 25, 15 and 9◦C
in LB plates pre-conditioned to the corresponding temperatures.
To assess the influence of nutrient availability in the transfer
frequency, matings conducted in SWW and SE media were
compared to standard nutrient-rich media LB. For SWW
matings, donor and recipient cell cultures were pre-adapted
to low nutrient conditions by growing them in SWW media
(1% overnight inoculum) for approximately 4 h with 180 rpm
agitation until a cell density of ca. 2 × 108 CFU mL−1

was achieved. Then, cell cultures were mixed and filtered as
aforementioned in the standard conditions, and filters were
placed in SWW agar plates. Plates were incubated at 37◦C for
2 h. For SE matings, no pre-growth from donor nor recipients
could be obtained in SE broth, as indicated by the corresponding
growth curves (data not shown). Instead, late log phase LB
cultures of both donor and recipients ca. 2× 108 were centrifuged
and washed twice in saline solution, and the pellet was finally
resuspended in 10 mL of SE broth and incubated overnight at
37◦C. Before incubation, an aliquot of the resuspended cells was
serially diluted in saline solution, plated in LB and incubated

overnight at 37◦C. Following the incubation and based on the
cell counts of the suspensions, the cell density of both donor
and recipient SE cultures were adjusted to approximately 2 ×
108 CFU mL−1, mixed in 1:1 ratio and filtered as indicated in the
standard procedure. Filters were then placed on SE media and
incubated at 37◦C for 24 h. In all modified filter matings, cell
recovery and subsequent plating were performed as mentioned
in the standard conditions.

Genetic Characterization of Donor,
Recipient, and Transconjugants
To confirm the strain identity (donor, recipient, and
transconjugants), five to ten isolates per mating were collected
randomly from each of the media containing the antibiotics,
and PCR was performed on the crude cell extracts. Reactions
targeting the 16S rRNA gene, mCherry, and gfpmut3 were
prepared in 25-µL reactions containing PCR buffer (1x),
(Invitrogen, NL) MgCl2 (3.0 mM), (Invitrogen, NL), dNTPs
(0.2 mM) (Promega, NL), forward and reverse primers (0.4 µM;
Supplementary Table 3), Taq polymerase (1.25 U) (Invitrogen,
NL), and 1 µL of DNA. The PCR reactions were carried out in a
T100 Thermal Cycler (BioRad), following similar denaturation
conditions (95◦C for 30 s), but specific annealing and elongation
conditions (57, 55, or 60◦C for 30 s; and 30 – 90 s at 72◦C for
the 16S rRNA, gfpmut3, and mCherry genes, respectively), in
30 cycles. The specificity of the PCR products was confirmed by
visualization in 1.5% agarose gel stained with ethidium bromide.

Data Analysis
One-way analysis of variance (ANOVA) was conducted to
detect differences in the conjugation frequencies, between strains,
temperatures, and culture media. The ANOVA tests were
followed by TukeyHSD post hoc analysis, and homogeneity of
variance was confirmed with Levene’s test. Data normality was
confirmed with Shapiro-Wilk’s method, and when normality
was not achieved, group comparison was performed using the
equivalent non-parametric test (Kruskal-Wallis). A significance
score of p< 0.05 was considered to be statistically relevant. These
analyses were performed with R version 3.5.1 (R Core Team,
2018) and RStudio (Version 1.1.4562). Used software packages
consisted of reshape (Wickham, 2007) and tidyverse (Wickham
et al., 2019), a set of packages designed for data cleaning,
trimming, and visualization; of Rcmdr (Fox, 2005), PMCMRplus
(Thorsten, 2020), and car (Fox and Weisberg, 2019) for ANOVA
and Levene’s test.

RESULTS

Effect of Donor-to-Recipient (D/R) Ratios
Before the temperature and nutrients assays, the D/R ratios were
tested to assess the limit of the system while aiming for a natural
proportion of donor and recipient cells in the mating.

Under optimal conditions and 1:1 D/R ratio (37◦C and
LB, 8.9 × 106 CFU cm−2), two out of three E. coli strains

2https://www.rstudio.com/
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(38.27 and 39.62) yielded high transconjugant numbers (109

CFUs mL−1) and transfer frequency (5 × 10−1) of IncP-1
plasmids. On the other hand, the mating with strain 09.54
produced 106 CFU mL−1 (transfer frequency of 10−3). The
transfer frequency, measured as the transconjugants-to-donors
ratio (T/D), resulted in a slight increase in the 1:10 and 1:100 D/R
proportions in comparison with the 1:1 proportion in all strains
(except for one replicate of strain 09.54; Figure 2). Contrarily,
the transconjugants-to-recipients ratio (T/R) decreased with
the different D/R ratios, approximately −0.7 logs and −1.8
logs in the 1:10 and 1:100 proportions, respectively (strains
38.27 and 39.62). A stronger effect of D/R was observed
for strain 09.54, where the T/R decreased 1–3 logs and 3–
4 logs in the 1:10 and 1:100 proportion, respectively. Similar
results were found for the absolute numbers of transconjugants
(Figure 1 in Supplementary information). No transconjugants
were recovered for one replicate in the mating of the strains

09.54 (1:100; Figure 1). At both 1:10 and 1:100 proportions,
transconjugant numbers reached approximately 103 CFUs mL−1

for at least one of the replicates, which was close to the detection
limit (102 CFUs mL−1).

Role of Temperature on Conjugative
Transfer
Conjugation efficiency among ESBL E. coli strains was assessed at
temperatures ranging from the optimal laboratory (37◦C), room
(25◦C) and relevant environmental (15◦C, 9◦C) conditions.

Overall, lower temperatures significantly reduced the number
of conjugation events (p < 0.01; Figure 3). Both T/D and
T/R decreased with decreasing temperatures, with a more
pronounced reduction in strain 09.54 than in the other two
strains (Figure 3). The highest number of transconjugants
was obtained at 37◦C, and at 25◦C, and the number of

FIGURE 2 | Donor-to-recipient proportions had significant effects on plasmid transfer. Depending on the indicator and strain used, the donor concentration
increased or decreased, the transfer frequency. Relative counts of transconjugant-to-donor (T/D; A) and transconjugant-to-recipient (T/R; B) ratios, after 2-h matings
performed at three donor-to-recipient ratios (1:1, 1:10, 1:100) are shown together with average and standard deviation values (in red). Different colors depict distinct
donor-to-recipient ratios. a,b,c Indicate significantly different groups in the transfer frequency between ratios (Post hoc Tukey test, p < 0.05), and replicates with no
detected transconjugants are highlighted (#).
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transconjugants decreased roughly 1 log (strains 38.27 and
39.62) or 2 logs (strain 09.54), depending on the strain. With
further temperature reduction, lower transconjugant numbers
were observed, and at 9◦C, conjugation still occurred in
all tested strains.

The lowest number of transconjugants was obtained at 9◦C
for strains 38.27 and 39.62. In strain 09.54, the minimum
transconjugant number was already reached at 15◦C and
maintained at 9◦C. However, higher variability among replicates
was noticeable with strain 09.54 (Supplementary Figure 2),
and one replicate did not yield detectable transconjugants
(Supplementary Figure 2).

Role of Nutrient Concentrations on
Conjugative Transfer
Differences in plasmid transfer under diverse nutrient regimes
were assessed by comparing conjugation yields and transfer

frequencies between rich nutrient media (LB) and common
surrogates for natural conditions such as SWW and SE media.

In all tested strains, the decrease in the nutrient concentration
of the media resulted in a substantial decrease in conjugation
events (Figure 4). In comparison with the matings performed
in LB, SWW resulted in the reduction of conjugation
events by roughly 2 logs. In SE, a 4-log reduction was
observed for strain 39.62 (compared to LB; 4), but no
transconjugants were recovered for other strains, despite
several attempts.

The decline in transconjugant numbers was particularly
severe for strain 09.54, which presented the lower number of
transconjugants in LB. Its transconjugants were only recovered
in one out of three matings performed in SWW, and when SE
was used, a further decrease in the number of transconjugants
was observed. While matings with strain 39.62 yielded 1.3 × 103

CFUs mL−1 transconjugants (3 and 6 logs lower than in SWW
and LB, respectively; Supplementary Figure 3), the strains

FIGURE 3 | Lower temperature reduced the number of conjugation events. Relative counts of transconjugant-to-donor (T/D; A) and transconjugant-to-recipient
(T/R; B) after 2h-matings performed, at diverse temperatures (37 – 9◦C), are shown together with average and standard deviation values (in red). Different colors
depict distinct temperatures. a,b,c Indicate significantly different groups in the transfer frequency between temperatures (PostHoc Tukey test, p < 0.05), and
replicates with no detected transconjugants are highlighted (#).
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FIGURE 4 | Decrease in nutrient concentration reduced conjugation events. Relative counts of transconjugant-to-donor (T/D; A) and transconjugant-to-recipient
(T/R; B) after 2h-matings performed, at diverse nutrient conditions (Luria-Bertani, LB; synthetic wastewater, SWW; and soil extract, SE), are shown together with
average and standard deviation values (in red). Different colors depict distinct media. a,b,c Indicate significantly different groups of transfer frequency between culture
media (PostHoc Tukey test, p < 0.05), and replicates with no detected transconjugants are highlighted (#).

09.54 and 38.27 did not produce detectable transconjugants
(Supplementary Figure 3).

DISCUSSION

The effects of temperature and nutrient abundance during
mating of an IncP-1 plasmid were evaluated in three
natural ESBL E. coli recipient strains by monitoring both
total amounts of transconjugants and transfer frequencies.
The results confirmed that psychrophilic temperatures
during mating, as well as nutrient limitation, resulted in
the reduction of transfer events. The decrease in the number of
transconjugants was more prominent with lower nutrients than
with lower temperatures.

Transfer Efficiency Varied Across Strains
Under optimal physiological conditions for the growth of
the three E. coli strains 09.54, 38.27, and 39.62 tested (rich
LB medium, higher mesophilic temperature of 37◦C), the
conjugative transfer of plasmid significantly differed among the
recipients. Two strains showed a high frequency of transfer
(5 × 10−1), while the third (strain 09.54) had 2 logs less.
High frequency of transfer is common among IncP-1 plasmids
(Thomas and Smith, 1987), which are naturally derepressed
(Bradley et al., 1980). Similar transfer frequencies (10−2) have
been described before for the pKJK5 plasmid in soil microcosms
(Musovic et al., 2006). The difference of transfer frequency
among strains from the same species can relate to strain-specific
characteristics or repression of silencing systems that either
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avoid or limit the expression of the new acquire genes in the
recipient cell (Frost and Koraimann, 2010). The plasmid stability
and replication depend heavily on complex coordination and
synchronicity between the vector and host (Novick, 1987). In
the present study, only one bacterial species (E. coli) was used
to minimize potential genetic incompatibilities between donor
and recipients. However, even when the same species are used,
variable transfer frequencies are often reported. For instance,
Dimitriu et al. (2019) observed a difference up to 5 orders of
magnitude in the transfer frequencies of an IncF and IncP-1
among naturally co-occurring E. coli isolates. These significant
differences are likely linked to the genetic diversity within species.
Here, the accessory genes in the used strains corresponded to
roughly 50% of the genomic content (Supplementary Figure 5).
However, which of these accessory traits can be the cause
of variation remains a matter of discussion. Dimitriu et al.
(2019) found no preferential transfer among isolates sharing
serotype or closely related phylogeny. Instead, they proposed that
conjugal transfer was favored by clone-relationship, derived from
similar restriction-modification systems. Contrarily, a recent
study evaluating the transfer of ESBL plasmids among clinical
E. coli isolates could not find such a relationship Benz et al.
(2021).

In addition to host-recipient dynamics, plasmid to plasmid
interactions could also affect the transfer dynamics. The stability
of a newly acquired plasmid can be strongly influenced by the
presence of other plasmids inside the cell (i.e., incompatibility).
Here, we prevented the possible incompatibility issues by using
strains with plasmids belonging to distinct Inc groups. Still,
alternative effects of co-resident plasmids have been proposed
recently. Enhanced transfer frequency of IncP-1 plasmids toward
recipient cells hosting IncF plasmids has been observed (Gama
et al., 2017). Although the mechanism of action is not entirely
clear, the authors suggest that this is not a cooperative process but
rather opportunistic use of the IncF transfer machinery by IncP-1
plasmids (Gama et al., 2017). In our experiments, we observed
that the two strains with higher transfer frequency contained
natural IncF plasmids (among others), whereas 09.54 harbored
an IncK plasmid. However, further analysis would be necessary
to confirm the role of co-existing plasmids in the recipient cell.

Reducing Input of Donors Reduced
Overall Transfer Frequency
A lower D/R proportion resulted in a decreased number of
transconjugants, suggesting that the relative proportion of donors
to recipients can limit HGT.

Receiving environmental compartments typically contain
high cell densities, for instance, activated sludge usually contains
between 109 and 1010 CFU mL−1 (Manti et al., 2008) and topsoil
(the first 10–15 cm) contain between 1014 and 1015 cells/m3

(Bickel and Or, 2020). However, exogenous bacteria that enter
the system (potential donors) might not be as numerous. For
example, assuming a soil density of 1.5, it results in having
108 – 109 cells/g soil, while the manure from cattle and pigs
contains roughly 105 E. coli cells/g (Schmitt et al., 2019), at least a
1,000-fold difference. This means that the proportion of potential

donors is quite small considering the receiving community. This
proportion may depend on multiple factors, including sewage
flows or manure application rates, but it is reasonable to expect
that the potential donors will be a minority in the compartment
to which they were introduced.

During conjugation assays, high cell densities (8.9× 106 CFU
cm−2) would mirror natural systems. Conversely, the use of D/R
ratios lower than 1:1 (i.e., 1:10 and 1:100) would presumably
reflect more accurately the conditions found in anthropogenically
impacted environments. However, to observe differences in
conjugation rates under varied conditions, the number of
donors should be sufficient to produce a detectable amount of
transconjugants with a wide margin from the limit of detection
(3 to 4 logs) in the matings performed under optimal conditions.
Goodman et al. (1993) and Rochelle et al. (1989) observed
that a minimum of 104 CFU cm−2 of donors and recipients
were necessary to observe transconjugants. Here, conjugation
occurred at donor densities as low as 104 CFU cm−2 yielding
a high amount of transconjugants (108) for two of the strains
(38.27 and 39.62), but not for the third one (strain 09.54). For
this last strain, transconjugants were undetectable or close to the
limit of detection with initial donor densities of 104 or 105 CFU
cm−2 (D/R of 1:100 and 1:10, respectively). Considering that
low D/R could prevent the monitoring of conjugation events
for at least one of the strains, the subsequent experiments were
conducted with a D/R ratio of 1:1. Similar cell densities and ratios
have been previously advised to observe changes in conjugal
transfer across a range of (presumably) unfavorable conditions
(Fernandez-Astorga et al., 1992).

Lower Temperature Inhibited Plasmid
Transfer, but not Entirely
The highest number of transconjugants was obtained at 37◦C,
which is also the optimal growth temperature for E. coli. However,
growth of donors and recipients was observed between their
concentrations at the start of the experiment and in the controls
(approximately 1 log, in all strains; Supplementary Figure 2).
Together with growth curve data (data not shown), this suggests
that, at 37◦C, part of the transconjugant numbers originated from
clonal expansion rather than a new transfer event. Conversely,
at other temperatures, the number of transconjugants observed
reflected more accurately the real number of conjugation events,
as the 2-h mating time concurred with the lag phase, and,
consequently, clonal expansion can assume to be negligible.

Fluctuations in temperature are known to greatly affect the
growth and metabolic functions of microorganisms (Trevors
et al., 2012). Yet, the effect of a wide range of temperatures on
conjugative AMR-related plasmids has seldom been addressed
(Bale et al., 1988; Inoue et al., 2005; Banerjee et al., 2016).
Although cold conditions are predominantly found around the
planet (Rodrigues and Tiedje, 2008) and in relevant environments
for AMR spread (Supplementary Table 4), studies addressing the
environmental dissemination of AMR plasmids in microcosms
often used rather warm (>25◦C) settings. Warm temperatures
(25–30◦C) are also common for in vitro studies that focus
on either capturing environmental plasmids or addressing the
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microbial community permissiveness of a given plasmid, because
high conjugation rates are required for detecting a high diversity
of transconjugants (Jacquiod et al., 2017; Li et al., 2020, 2018).

Conjugation occurred at environmental temperatures (i.e.,
15◦C), which are average temperatures found in wastewater and
soil worldwide (Supplementary Table 4), but it also occurred at
9◦C. Typically, most wastewater treatment plants do not operate
at temperatures below 9◦C (because of nitrification failure), but in
some countries, particularly northern countries, they can operate
at temperatures close to 0◦C (Delatolla et al., 2012; Hoang et al.,
2014). The use of different strains emphasized that the effect of
temperature on the transfer frequency is recipient-dependent and
probably not affected just by chromosomally encoded factors, but
also by resident plasmids in the recipient. The different outcomes
observed between strains highlights the difficulty of inferring
results that can be applicable to all putative recipient strains, even
when they belong to the same species.

Lower Nutrient Composition Hindered
Conjugation
A stronger effect on the transfer frequency was observed in
matings performed with lower nutrient concentrations, where
the frequency of conjugation was proportional to the nutrient
richness of the culture media (LB > SWW > SE). In some cases, it
was not possible to recover transconjugants in SE. Some authors
suggest that plasmid transfer is related to cell growth and does
not occur in non-growing cells (Seoane et al., 2011; Kohyama
and Suzuki, 2019), others consider that it happens after cell
division and right before entering a non-growing phase (Headd
and Bradford, 2020). We observed conjugation in SE media for
at least one of the conjugation pairs, despite cell growth was not
observed for either donor or recipients in this media.

Comparatively, the SE and SWW media used in this
study contained 40 to 300-fold (SE), and 20- to 40-fold
(SWW) lower basic nutrients (carbon, nitrogen and phosphorus)
concentrations than the classical nutrient-rich media (LB;
Table 2). Conjugation requires energy and cellular resources
to occur, and thus, one could expect that low nutrient
conditions would hamper plasmid transfer (Goodman et al.,
1993). Interestingly, the effect of nutrient deprivation on
conjugation is seldom documented. Fernandez-Astorga et al.
(1992) addressed the effect of available TOC in liquid media,
finding transconjugants even at 1 mg L−1 of TOC. Inoue et al.
(2005) observed decreasing transconjugants in media with a
decreasing amount of dissolved organic carbon (DOC) (6’636
to 21.6 mg L−1), including LB, synthetic, and real wastewater.
However, in the two aforementioned studies and elsewhere
(Grabow et al., 1975; O’Morchoe et al., 1988; MacDonald et al.,
1992; Headd and Bradford, 2018), donor and recipient cells
were pre-grown in a nutrient-rich media and then subjected
to conjugation in the low nutrient media. Extra energy and
nutrients stored in the cells during this pre-growth phase may
allow bacteria to undergo conjugation in an earlier stage of
the mating, potentially masking the effect of lower nutrition
conditions on conjugation (Curtiss et al., 1969). To bypass this
bias, Goodman et al. (1993) starved donors and recipients in
minimal media (low amount of salts and no carbon source)

prior to the conjugation. They found that, despite the lack of
nutrients, conjugation occurred after the donors were starved
up to 3 or 20 days, when E. coli or Vibrio sp. were the donors,
respectively. In the current study, when addressing conjugal
transfer in low nutrient media, cells were also pre-incubated in
the corresponding low-nutrient media (SWW or SE) to avoid the
influence of intracellular nutrient reservoirs.

Then again, carbon concentration is likely not the only
nutrient that can limit conjugation. In their work, Inoue et al.
(2005) observed that transconjugants and transfer rates were
2.5 logs higher in SWW than in 16-fold diluted LB, while
both contained similar DOC content (410 mg L−1). Possibly,
higher concentration of other nutrients (nitrogen, phosphorus or
specific cations) in the SWW allowed an increase in conjugation
frequencies and/or clonal expansion of the transconjugants. Pre-
growth in media lacking casamino acids delayed pili formation
after nutritional conditions are restored (Curtiss et al., 1969).
As pili formation is protein-dependent, nitrogen-compounds are
required for plasmid transfer. Despite being an essential nutrient,
the role of phosphate or inorganic phosphorus deprivation in
conjugation has not been explored yet. Phosphorus is known
to be a limiting factor of cell growth and metabolism in
oligotrophic environments (Smith and Prairie, 2004). In E. coli,
phosphorus starvation induces a wide range of metabolic changes
including cell surface modification and increase of cell adhesion
characteristics (adhesins and fimbria), which could affect the
interaction between cells and ultimately the conjugation rates.
Finally, the concentration of other micronutrients as divalent
cations might also influence conjugation. Recently, Sakuda et al.
(2018) observed that the addition of divalent cations to low
nutrient media (Ca2+ and Mg2+) increased the conjugation
frequency of IncP-7 plasmids among Pseudomonas strains. Yet,
the molecular mechanisms of this effect remain unclear.

Moreover, in the present study, the pH values of the different
media were not maintained or adjusted, except in SWW. In
SWW, the pH was adjusted to 6.8 close to the ones observed in
wastewater [6.5–8.5 (Prot et al., 2020)] while the pH from SE was
kept at its original value (5.0 – 5.3), which was representative of
Dutch soils of this texture (Römkens and Oenema, 2004). Soil was
kept at ambient pH to maintain solubility of soil nutrients. As
pH can affect bacterial growth, it could have also contributed to
the decrease of transconjugants in this study observed for soil.
Indeed, it has been shown that pH values in this range (5.0 –
5.3) can decrease conjugation (Richaume et al., 1989), but it
only resulted in a maximum of 3-fold reduction (0.5 logs) when
compared to conjugation occurring at neutral pH. In the context
of the present study, it is difficult to discriminate what was the
effective contribution of pH in decreasing plasmid transfer in
SE. However, given the several log decrease in transconjugants,
it is reasonable to say that the lower nutrient content had a more
important contribution in SE.

Extrapolation of the Results and
Limitations of the Study
This study addresses the influence of temperature and nutrient
conditions on a specific system based on E. coli strains and
an IncP-1 broad-host range plasmid. Probably, the impact of
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the factors addressed here would differ per species. Bacteria
better suited to thrive under typical environmental conditions
will most likely be less affected by low temperatures and
nutrient conditions, as observed by a longer ability (+13 days)
for conjugal transfer when using pre-starved Vibrio spp. as
donor instead of E. coli (Goodman et al., 1993). In addition,
the plasmid characteristics (e.g., size, incompatibility group)
obviously determine absolute transfer rates. Thus, further
research addressing other combinations of donors-recipients
will be desirable.

CONCLUSION

When moving from laboratory conditions to environmentally
relevant conditions for soils and WWTPs, both lower
temperature and lower nutrient concentrations showed to reduce
conjugal transfer of an IncP-1 plasmid significantly. The effect
lower nutrient concentrations on the number of transconjugants
was stronger than the effect of lower temperatures. While
nutritional conditions appear critical, the role of single nutrients,
such as nitrogen and phosphorus, is not entirely clear and
deserves further follow-up research. Furthermore, the transfer
potential was recipient-dependent and varied within ESBL E. coli
strains of the same species.

To conclude, although abiotic factors can hamper plasmid
transfer, measurable conjugation between E. coli still occurred
under conditions that mimicked those commonly found in the
wastewater and soil environment (9 – 25◦C). Despite conjugation
being observed between strains of the same species, this study
shows that fecal indicator bacteria were capable of donating an
IncP-1 plasmid in less-than-optimal contexts, and consequently,
can be a source of transferable AMR traits once they reach
the environment.
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The role of wildlife with long-range dispersal such as gulls in the global dissemination of
antimicrobial resistance (AMR) across natural and anthropogenic aquatic environments
remains poorly understood. Antibiotic-resistant bacteria have been detected in resident
and migratory gulls worldwide for more than a decade, suggesting gulls as either
sentinels of AMR pollution from anthropogenic sources or independent reservoirs that
could maintain and disperse AMR across aquatic environments. However, confirming
either of these roles remains challenging and incomplete. In this review, we present
current knowledge on the geographic regions where AMR has been detected in gulls,
the molecular characterization of resistance genes, and the evidence supporting the
capacity of gulls to disperse AMR across regions or countries. We identify several
limitations of current research to assess the role of gulls in the spread of AMR including
most studies not identifying the source of AMR, few studies comparing bacteria isolated
in gulls with other wild or domestic species, and almost no study performing longitudinal
sampling over a large period of time to assess the maintenance and dispersion of AMR
by gulls within and across regions. We suggest future research required to confirm the
role of gulls in the global dispersion of AMR including the standardization of sampling
protocols, longitudinal sampling using advanced satellite tracking, and whole-genome
sequencing typing. Finally, we discuss the public health implications of the spread of
AMR by gulls and potential solutions to limit its spread in aquatic environments.

Keywords: marine birds, One Health, seagulls, wildlife, bacteria, antimicrobial resistance, AMR, ESBL

INTRODUCTION

Antimicrobial resistance (AMR) is a major global health challenge affecting human, animal, and
environmental health (FAO and WHO, 2019; WHO, 2019). Thus, a One Health approach is
required to understand the dynamics of AMR between humans and animals (Salgado-Caxito
et al., 2021). Many studies have reported the presence of antibiotic-resistant bacteria (ARB) in
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wild animals, highlighting their potential role in the spread of
clinically important bacteria to humans and domestic animals
(Wang et al., 2017; Benavides et al., 2018; Dolejska and Literak,
2019). Wildlife such as wild birds, particularly the ones living
in proximity to human settings or agriculture fields, can acquire
AMR from anthropogenic sources when feeding on landfills and
wastewater (Nelson et al., 2008; Wang et al., 2017). Despite
several reports of wild birds carrying ARB (Wang et al.,
2017), their impact on the dissemination of ARB in aquatic
environments remains still poorly understood.

Gulls can impact the spread of ARB of public health concern
by acting either as (i) receivers of ARB or antibiotic-resistant
genes (ARGs) and acting as sentinels of human environmental
pollution to natural ecosystems (Guenther et al., 2011) or as
(ii) reservoirs of ARBs and ARGs, capable of dispersing ARB
or ARGs to different geographic locations and to other species
including humans and domestic animals. In particular, the
migratory capacity of several gull species such as the Franklin’s
gull (Leucophaeus pipixcan), migrating across America from
Canada to Chile, could result in the dissemination of ARB
and ARGs over extensive geographic areas, dispersing AMR
from regions with high levels of AMR to less affected areas
(Báez et al., 2015; Dolejska and Literak, 2019). Gulls are also
present in most urban and rural environments, and their
feces are extensively dispersed in the environment (Bonnedahl
and Järhult, 2014). Several studies have detected ARGs in
gulls (Oravcova et al., 2017; Ahlstrom et al., 2019b; Haenni
et al., 2020). In particular, AMR has been detected in several
species of seagulls, which have large breeding distributions
in urban areas and feed on human waste (Bonnedahl et al.,
2015; Stedt et al., 2015; Ahlstrom et al., 2019a). Thus, gulls
have been suggested as potential reservoirs of ARB and ARGs,
although evidence proving their role as reservoirs has not
been provided (Radhouani et al., 2010; Aberkane et al., 2015;
Merkeviciene et al., 2018).

In this scoping review, we summarized the current knowledge
regarding the global dissemination of ARB and ARGs among
gulls and assess whether there is evidence supporting the
assumption that gulls can act as reservoirs of AMR. In particular,
we aim to provide a comprehensive overview of the geographic
location where ARB and ARGs have been found in gulls, the gull
and bacteria species involved, as well as the antibiotic families
and genes detected. To discuss the public health implications
of gulls, we summarized whether bacteria of critical importance
according to WHO have been detected in gulls. We also assessed
the number of publications that had either identified the origin
of AMR found in gulls or tested and concluded that gulls can
disperse AMR across the landscape or to other species. Based
on this current evidence, we discussed several recommendations
aiming to improve our understanding of the role of gulls in the
dissemination of AMR.

MATERIALS AND METHODS

We performed a scoping review following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR) checklist (Tricco

et al., 2018; Supplementary Table 1). All authors defined research
questions, objectives, search strategy, and inclusion/exclusion
criteria through previous discussions.

Search Strategy
The search was performed in PubMed, Scopus, and Web
of Science databases using three general queries: (antibiotic
resist∗ OR antimicrobial resist∗), (Escherichia OR Klebsiella
OR Staphylococcus OR Enterococcus OR Enterobacter∗ OR
Salmonella OR Pseudomonas), and (bacteria). Each of them was
merged with (marine bird∗ OR aquatic bird∗ OR gull∗ OR Larus).
Details of the search strategy are available as an additional file
(Supplementary Table 2). Visualization, duplicate removal, and
storing collected data were performed in Microsoft Excel.

Eligibility Criteria
We aimed to identify peer-reviewed studies on AMR in different
wild species of gulls (i.e., seagulls) showing the presence
and/or potential transmission of ARB and ARGs. Thus, we
included only studies providing at least one of the following
information: (i) wild gull species where ARB was recovered, (ii)
phenotypic resistance to specific antibiotics in bacteria isolated
from gulls, and/or (iii) ARGs identified in bacteria isolated
from gulls. There were no restrictions related to the year of
publication or geographical location. Any type of reviews or
studies including in vivo experiments, samples of gulls from
rehabilitation centers, or containing previously published data
were excluded. Details of all inclusion and exclusion criteria are
provided in Supplementary Table 3.

Identification and Screening of Articles
After the removal of duplicates, we identified a total of 3,475
articles published from 1964 to January 2021, including 3
additional references that were identified from reading these
papers. Pre-selection by title and abstract reduced to 227 articles
for full-text analysis, and 90 fulfilled the preestablished criteria
and were included in the final analysis (Figure 1). The remaining
140 articles did not fit our inclusion criteria as they did not
include gull samples, did not present AMR information/data,
data from gulls were previously published, the study included
experimental infection, the study was performed on captive gulls
or in rehabilitation centers, the study sampling was conducted
postmortem, or the full text of the article was not available.

Data Extraction

Extracted data were independently performed by three
authors (DZG, MSC, and ZRS) and verified by other authors.
Disagreements were resolved through discussion. The obtained
data were entered into a Microsoft Excel template adapted from
a previous study (Supplementary Table 4; Salgado-Caxito et al.,
2021). This file included the title of the article, authorship, year
of publication, gull species included in the study and whether the
species was migratory or not, the number of sampled individuals,
the bacteria species studied, the number of recovered isolates, the
antimicrobial susceptibility tests performed, the name and family
of the antibiotics tested, and the molecular typing used (i.e., PCR,
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FIGURE 1 | Article search flow diagram.

sequencing, and whole-genome sequencing) when available. To
assess the current knowledge on the role of gulls as reservoirs
of ARB or ARGs, we also specifically extracted from studies (i)
whether the study compared gulls to other animals in the area;
(ii) whether the study identified the origin (e.g., anthropogenic
source) of the ARB or ARGs found; (iii) if gulls were sampled
more than once, particularly in both areas of migration (origin
and destination); (iv) if molecular typing of ARB was performed;
and (iv) if an individual follow-up and sampling of gulls were
performed, along with the method used.

Statistical Analysis
We estimated the proportion of studies filling a given criteria
(e.g., studies identifying the presence of ARGs or the origin of
ARB) using R. 3.1.6 (R Development Core Team).

RESULTS

Geographic Locations and Gull and
Bacteria Species Studied
Our scoping review identified 90 articles published between 1981
and 2020, although only 22% of these studies were published
before 2010. The number of studies published on gulls increased

from 1 in 1981 to 10 per year in 2020 and peaked in 2017 with
12 articles (Figure 2B). Studies were conducted in gulls from all
five continents, but the majority of publications were made in
Europe (58%) followed by North America (19%) (Figure 2A).
Studies were conducted in a total of 31 countries, with high-
income countries such as the United States (17%), Portugal
(12%) and Spain (10%) conducting the highest number of studies
(Figure 2C). In contrast, in middle- and low-income countries,
few publications were conducted (Morocco, 1%; South Africa,
1%; Bangladesh, 1%).

From 100 species of gulls known (IUCN, 2021), ARB or
ARGs were recovered from 23 species. Most gulls studied (74%)
were migratory species. The number of studies per gull species
was highly heterogeneous (Figure 3B). The majority of studies
focused on the herring gull (Larus argentatus, 26%), followed
by the laughing gull (Chroicocephalus ridibundus, 23%) and the
yellow-legged gull (Larus michahellis, 19%) (Figure 3A). These
three species are widely distributed in the northern hemisphere.

Among the 90 studies, 49 ARB species were recovered
from gulls. Most studies focused on Escherichia coli (59%),
Salmonella enterica (23%), Campylobacter jejuni (8%), and
Klebsiella pneumoniae (8%) (Figure 3C). The temporal trend of
publications showed that after 2008, most studies have focused
on E. coli.
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FIGURE 2 | Geographical locations of the AMR studies found in gulls. (A) Number of publications per continents. (B) Number of publications per continent over the
1980–2020 period. (C) Number of publications of AMR in gulls per country in gradient.

Antibiotic Susceptibility in Bacteria From
Gulls
Screening of ARB using selective media supplemented with
antibiotics before antimicrobial susceptibility tests was
performed in 43% of studies. Seventeen percent of studies
performed antibiotic susceptibility tests after isolation in non-
supplemented media. The remaining 40% of the studies did
not present the methodology for recovering isolates. Forty-one
publications had information about the number of positive
individuals, and 68% of those studies were conducted in Europe.
The highest proportion of animals harboring bacteria resistant
to at least one antibiotic (referred as positive animals) was
estimated in one study in Africa (70%) that included less than

50 individuals. The highest proportion of positive gulls was
observed among Larus dominicanus (100%), while Proteus
mirabilis showed the highest proportion of positive individuals
(27.9%) (Table 1). Given the high heterogeneity in susceptibility
methods and antibiotics tested, a comparison of ARB prevalence
across studies, defined as the number of positive individuals
over the total of sampled animals, could not be performed.
Regarding the methodology used to test susceptibility, 68%
of studies confirmed phenotypic resistance using the disk
diffusion method (CLSI, 2018). Overall, resistance to 79
antibiotic agents from 21 families was tested (Supplementary
Table 5), including antibiotics used in human medicine
such as beta-lactams (i.e., penicillin, cephalosporins, and
carbapenems), tetracyclines, fluoroquinolones, sulfonamides,
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FIGURE 3 | Number of publications per gull and bacteria species. (A) Number of publications per gull species. (B) Number of publications per gull species over the
1980–2020 period. (C) Number of publications per bacteria species.

aminoglycosides, nitrofurans, macrolides, monobactam,
polypeptides, glycopeptides, and lincosamides. More than
50% of studies reported at least one bacterial isolate resistant
to tetracycline (58%) and ampicillin (52%), followed by
chloramphenicol (47%), streptomycin (44%), trimethoprim–
sulfamethoxazole (38%), gentamicin (36%), nalidixic acid
(35%), and ciprofloxacin (32%) (Figure 4A). In particular,
broad-spectrum beta-lactams used in human medicine such as

amoxicillin with clavulanic acid and ceftazidime were reported
in 20% of publications.

Among the four antimicrobial-resistant pathogens considered
as a “critical priority” by the WHO (WHO, 2017), all were
tested at least once in the reviewed studies. Third-generation
cephalosporin-resistant Enterobacterales from gulls were
the most reported (41%), followed by carbapenem-resistant
Enterobacterales (10%) (Table 2). Among “high-priority”
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TABLE 1 | AMR bacteria detected in gulls by continent and gull species between 1981 and 2020.

Category Description Publications No. of individuals % of positive animals

No. % Positives* Total

Continent Africa 1 2.4 28 40 70.0

Europe 28 68.3 919 6,375 14.4

North America 5 12.2 50 1,310 3.8

Oceania 3 7.3 57 1,108 5.1

South America 4 9.8 164 832 19.7

Total 41 1,218 9,665 12.6

Gull species Chroicocephalus novaehollandiae 2 4.9 4 1,008 0.4

Chroicocephalus ridibundus 2 4.9 16 1,025 1.6

Larus argentatus 4 9.8 77 343 22.5

Larus audouinii 1 2.4 27 111 24.3

Larus dominicanus 1 2.4 10 10 100.0

Larus hyperboreus 1 2.4 2 15 13.3

Larus michahellis 6 14.6 260 814 31.9

Larus ridibundus 6 14.6 161 2,718 5.9

Leucophaeus pipixcan 1 2.4 91 124 73.4

Larus delawarensis 1 2.4 2 32 6.3

More than one species 16 39.0 568 3,465 16.4

Total 41

Bacteria species Acinetobacter baumannii 1 2.4 2 741 0.3

Campylobacter spp. 2 4.9 26 151 17.2

Enterobacter cloacae 1 2.4 2 15 13.3

Escherichia coli 21 51.2 805 3,395 23.7

Proteus mirabilis 2 4.9 98 351 27.9

Salmonella enterica 9 22.0 130 3,327 3.9

More than one species 5 12.2 155 1,685 9.2

Total 41

*Positive individuals represent an individual where at least one resistant bacteria to any antibiotic researched in the study was obtained.

pathogens, Campylobacter spp. (6%) and Salmonella spp. (8%)
both resistant to fluoroquinolones were the most identified. No
“medium-priority” pathogen has been recovered from gulls.

Molecular Characterization of ARGs in
Gulls
ARGs were reported in 70% of studies conducted in gulls
(Tables 3, 4). Mobile genetic elements (MGE) were identified
in 43% of studies, with 35 studies confirming that ARGs
were inserted on an MGE. Sixteen percent of studies detected
ARGs using PCR alone, or in combination with sequencing
(43%). Only 8% of studies characterized bacteria by whole-
genome sequencing, and one study used a metagenomic
approach (Figure 4B).

Most studies detecting ARGs focused on beta-lactamase
genes including extended-spectrum beta-lactamases (ESBL),
AmpC-type beta-lactamases, and carbapenemases, which were
identified in all continents but Antarctica (Table 3). Among
these beta-lactamases, ESBL were the most identified genes,
evenly distributed across continents, particularly the genotype
blaCTX-M. Studies detected blaCTX-M-14 and blaCTX-M-15 in
Asia, Europe, North and South America, and Oceania. Likewise,
blaCTX-M-55 was reported in all these continents with the
exception of South America. Beta-lactamases blaCMY-2 (AmpC)

were reported in Europe, North America, and Oceania, and
blaOXA-48 (carbapenemase) were reported in Africa, Europe,
North America, and Oceania (Table 3). Of the 15 studies
that found AmpC-type beta-lactamases, 7 identified that they
were inserted on an MGE, 2 identified them on the bacterial
core genome, 2 detected both chromosomal and acquired
AmpC, and 4 studies did not identify the location of the
AmpC gene. Genes conferring resistance to other antibiotics
such as fluoroquinolones, aminoglycosides, sulfonamides along
with trimethoprim, polypeptides, tetracyclines, chloramphenicol,
macrolides, streptogramins, glycopeptides, fosfomycin, and
rifamycin were reported in 59 studies (Table 4). Asia only
reported beta-lactam resistance genes.

Origin of AMR in Gulls
Only 19% of studies suggested a potential origin for the ARB or
ARGs detected among gulls. Landfill (41%), places close to gulls
nesting, and/or resting areas with high human density (29%),
sewage effluents (29%), and contaminated water (6%) were
suspected. Suspicions were based on potential contamination
sources around the sampling area. However, only one study
(Masarikova et al., 2016) carried out sampling to verify whether
the gulls acquired the bacteria from a specific contamination
source, comparing bacteria from gulls to bacteria isolated from
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FIGURE 4 | Antibiotic resistance and molecular method used. (A) Number of publications by family of antibiotic. (B) Number of publications by typing method.

sewage water near their nesting sites. The same AMR phenotypic
profiles were obtained in both sample types, and pulsed-field
gel electrophoresis (PFGE) detected the same AMR profiles in
bacterial clones from wastewater and gulls.

Evidence of Gulls Acting as Reservoirs of
ARB or ARGs
Two studies (2%) tagged gulls in both the origin and final
movement areas to identify whether they were capable of
spreading AMR across the landscape (Palmgren et al., 2006;

Ahlstrom et al., 2019a). Ahlstrom et al. (2019a) sampled
individual gulls at different periods of time obtaining fecal
samples at a landfill and in places where humans and seagulls
gathered. Satellite telemetry was used to monitor individuals
for up to 3 months, and whole-genome sequencing of bacteria
was used to compare E. coli isolates between different locations.
Their results showed that the prevalence and genetic typing
of AMR isolates were highly similar between gulls and a
landfill. Palmgren et al. (2006) ringed gulls and sampled
1,047 individuals for up to 3 years. This study failed to
detect long-term carriage of antibiotic-resistant Salmonella since
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TABLE 2 | ARB of the “Global Priority Pathogens” list of the World Health Organization isolated from gulls reported between 1981 and 2020.

Priority
category

Pathogens Antibiotic resistance No. of
publications

Gull species References

Critical Acinetobacter baumannii Carbapenem-resistant 1% (1/90) C. ridibundus Łopińska et al., 2020

Pseudomonas aeruginosa Carbapenem-resistant 0% (0/90) − −

Enterobacterales* Carbapenem-resistant 10% (9/90) L. glaucescens, L.
argentatus, L.

hyperboreus, C.
novaehollandiae, L.

michahellis, C. genei

Papagiannitsis et al., 2017; Vergara et al., 2017;
Vittecoq et al., 2017; Ahlstrom et al., 2018, 2019a,c;
Barguigua et al., 2019; Mukerji et al., 2019;
Aires-De-sousa et al., 2020

Enterobacterales* Third generation
cephalosporin-resistant

41% (37/90) L. glaucescens, L.
argentatus, L.

hyperboreus, L. fuscus,
L. michahellis, C.

novaehollandiae, L.
glaucescens, C.

ridibundus, L. marinus, L.
canus, L. cachinnans, L.

dominicanus,
Leucophaeus pipixcan,
C. brunnicephalus, L.

atricilla

Poeta et al., 2008; Bonnedahl et al., 2009, 2014; Rose
et al., 2009; Hernandez et al., 2010; Simões et al.,
2010; Veldman et al., 2013; Hasan et al., 2014; Stedt
et al., 2015; Alcalá et al., 2016; Aberkane et al., 2016,
2017; Atterby et al., 2016, 2017; Dolejska et al., 2016;
Liakopoulos et al., 2016; Merkeviciene et al., 2017,
2018; Papagiannitsis et al., 2017; Troxler et al., 2017;
Vergara et al., 2017; Ahlstrom et al., 2018, 2019a,b,
2021; Mukerji et al., 2019, 2020; Ngaiganam et al.,
2019; Aires-De-sousa et al., 2020; Haenni et al., 2020;
Zendri et al., 2020

High Enterococcus faecium Vancomycin-resistant 3% (3/90) Chroicocephalus
novaehollandiae, L.

cachinnans

Radhouani et al., 2010; Bonnedahl et al., 2014;
Oravcova et al., 2017

Staphylococcus aureus Methicillin-resistant 2% (2/90) L. argentatus Merkeviciene et al., 2017; Aires-De-sousa et al., 2020

Staphylococcus aureus Vancomycin-intermediate 0% (0/90) − −

Staphylococcus aureus Vancomycin-resistant 0% (0/90) − −

Helicobacter pylori Clarithromycin-resistant 0% (0/90) − −

Campylobacter spp. Fluoroquinolone-resistant 6% (5/90) L. michahellis,
L. audouinii,

C. ridibundus,
L. dominicanus,

Thalasseus bergii

Merkeviciene et al., 2017; Migura-Garcia et al., 2017;
Moré et al., 2017; Troxler et al., 2017; Antilles et al.,
2021

Salmonella spp. Fluoroquinolone-resistant 8% (7/90) L. michahellis,
L. audouinii, L.

dominicanus, C.
novaehollandiae,

C. ridibundus,
Leucophaeus pipixcan,
Leucophaeus modestus

Fresno et al., 2013; Antilles et al., 2015, 2021; Retamal
et al., 2015; Masarikova et al., 2016; Cummins et al.,
2020; Tardone et al., 2020

Neisseria gonorrhoeae Third generation
cephalosporin-resistant

0% (0/90) − −

Neisseria gonorrhoeae Fluoroquinolone-resistant 0% (0/90) − −

Medium Streptococcus pneumoniae Penicillin-non-susceptible 0% (0/90) − −

Haemophilus influenzae Ampicillin-resistant 0% (0/90) − −

Shigella spp. Fluoroquinolone-resistant 0% (0/90) − −

*Klebsiella pneumoniae, Escherichia coli, Enterobacter spp., Serratia spp., Proteus spp., Providencia spp., and Morganella spp.

all positive individuals were negative during the sampling
2 months later.

DISCUSSION

AMR has been detected in resident and migratory gulls
worldwide for more than a decade (Fenlon, 1981; Tsubokura
et al., 1995; Smith et al., 2002). However, the role of gulls as
reservoirs (i.e., having the capacity to disperse and transmit AMR
to other species) remains unknown. Our review identified 90
studies on AMR in wild gulls. AMR has been widely detected

across all continents including in 23 of 100 species of gulls
(IUCN, 2021), 49 bacteria species with 9 of 13 ARB classified as
critical priority for human health (WHO, 2017), ARGs from 13
classes, and 47 antibiotic types. Our results show that, with the
exception of China, studies in middle- and low-income countries
are rare. Similarly, most studies have focused on a few species
of gulls from Europe (e.g., L. argentatus and C. ridibundus) and
most on E. coli and Salmonella spp. Despite ARB and ARGs
being widely detected in gulls, our analyses showed that the
origin of these AMR remains unknown in 81% of studies, and
only two studies followed gulls across time (for up to 3 years),
but none has been able to prove that gulls were reservoirs
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TABLE 3 | Beta-lactamases genes identified in isolates from gulls reported between 1981 and 2020.

Continent AmpC CP ESBL Othersa References

Africa NR blaOXA−48 NR NR Barguigua et al., 2019

Antarctica NR NR NR NR −

Asia NR NR blaCTX-M-14, blaCTX-M-15, blaCTX-M-55,
blaCTX-M-79

NR Hasan et al., 2014

Europe blaCMY-2,
blaCMY,

blaDHA-1,
blaACT-14,
blaACT-15,
blaACT-23

blaOXA-48,
blaOXA-181,
blaKPC-2,
blaKPC-3,
blaOXA-71,
blaOXA-208,
blaVIM-1,
blaVIM-4

blaCTX-M-15, blaCTX-M-55, blaSHV-2,
blaCTX-M-1, blaCTX-M-14, blaCTX-M-27,
blaCTX-M-9, blaSHV-12, blaPER,
blaCTX-M-32, blaCTX-M, blaTEM-84,
blaCTX-M-2, blaCTX-M-8, blaCTX-M-3,
blaTEM-52C, blaTEM-52, blaCTX-M-14a,
blaPSE-1

blaTEM, blaOXA-1- like,
blaTEM-1, blaSHV,
blaOXA-1, blaOXA-3,
blaOXA-5, blaTEM-1b

Čížek et al., 2007; Dolejska et al., 2007; Poeta et al., 2008;
Bonnedahl et al., 2009, 2010; Dolejská et al., 2009;
Radhouani et al., 2009; Hernandez et al., 2010; Literak
et al., 2010, 2014; Simões et al., 2010; Wallensten et al.,
2011; Veldman et al., 2013; Vredenburg et al., 2014;
Aberkane et al., 2015, 2016, 2017; Antilles et al., 2015;
Stedt et al., 2015; Varela et al., 2015; Carroll et al., 2015;
Masarikova et al., 2016; Alcalá et al., 2016; Atterby et al.,
2017; Merkeviciene et al., 2017, 2018; Vergara et al., 2017;
Vittecoq et al., 2017

North
America

blaampC,
blaCMY-2,
blaCMY-61,
blaDHA-1,
blaCMY

blaKPC-2,
blaOXA-48,
blaOXA-9,
blaCARB-1,
blaCARB-2,

blaCARB

blaCTX-M, blaCTX-M-1, blaCTX-M-14,
blaCTX-M-15, blaCTX-M-27, blaCTX-M-32,
blaCTX-M-3, blaCTX-M-55, blaCTX-M-65,
blaCTX-M-8, blaTEM-141, blaTEM-52,
blaTEM-19, blaTEM-206, blaTEM-214,
blaSHV-12, blaSHV-2, blaSHV-2A,
blaSHV-11, blaSHV-14

blaTEM-1A, blaTEM-1B,
blaTEM-1C, blaTEM-1D,
blaOXA-1, blaOXA-466,
blaampH, blaampC2,
blamrdA, blaampC1,
blaTEM-1, blaSHV-1,
blaTEM

Alroy and Ellis, 2011; Martiny et al., 2011; Bonnedahl et al.,
2014, 2015; Atterby et al., 2016; Ahlstrom et al., 2018,
2019a,b, 2021; Gomez-Alvarez et al., 2019

Oceania blaCMY-2,
blaCMY-13,
blaCMY-42,
blaCMY-60

blaOXA-48,
blaIMP-4,
blaIMP-38

blaCTX-M-15, blaCTX-M-27, blaCTX-M-14,
blaCTX-M-3, blaCTX-M-55, blaCTX-M-11,
blaCTX-M-24

blaTEM-1, blaLAP-2,
blaTEM, blaOXA-1,
blaSHV, blaOXA-1,
blaTEM-1

Dolejska et al., 2016; Papagiannitsis et al., 2017; Mukerji
et al., 2019, 2020; Cummins et al., 2020

South
America

NR NR blaCTX-M-1, blaCTX-M-2, blaCTX-M-14,
blaSHV-2A, blaSHV-2, blaCTX-M-15,
blaCTX-M-22, blaCTX-M-3, blaTEM-40,
blaTEM-198, blaSHV-12

blaTEM-1 Hernandez et al., 2013; Báez et al., 2015; Liakopoulos
et al., 2016

AmpC, cephalosporinases; CP, carbapenemases; NR, not reported.
aCorresponds to beta-lactamases that are not classified as ESBL, AmpC, or CP.

(Palmgren et al., 2006; Ahlstrom et al., 2019a). Therefore, our
review highlights the need to increase surveillance of AMR in
gulls and design innovative studies aiming to assess their role
as reservoirs, which can have major implications for public and
conservation measures to limit the global spread of AMR in
aquatic systems.

The detection of AMR in gulls across all continents, including
critically important antibiotic-resistant pathogens such as ESBL
and carbapenemase-producing E. coli and S. enterica, illustrates
the potential of gulls to participate in the alarming global spread
of AMR (Dolejska et al., 2016; Ahlstrom et al., 2019c; Aires-
De-sousa et al., 2020; Cummins et al., 2020). The migratory
capacity of gulls makes them an ideal host to spread ARB and
ARGs across landscapes and ecosystems. For example, Ahlstrom
et al. (2021) reported that gulls of the Larus genus, including
L. argentatus, can migrate 3,000 km over a week, Larus fuscus can
migrate from Europe to Africa (Kilpi and Saurola, 1984), while
Leucophaeus pipixcan migrates from North to South America
(Hernandez et al., 2013; Barbieri et al., 2016). In contrast, other
gull species such as L. dominicanus are resident but also carry
ESBL-resistant E. coli with ARGs genes such as blaCTX-M and
blaSHV and aminoglycoside-resistant Salmonella enteritidis with
str genes (Liakopoulos et al., 2016; Toro et al., 2016). Although
these species might not necessarily contribute to the long-range
dispersal of AMR, they could participate in local transmission

to other species and humans (Vigo et al., 2011; Retamal et al.,
2015; Toro et al., 2016). Overall, this review highlights that
gulls are at least sentinels of ARB and ARGs spreading in
the environment, calling for future research in species and
countries where AMR has not yet been studied. In particular,
environmental and animal health national and international
authorities should consider gulls in the surveillance of AMR
within the environment.

Although AMR is widely spread among gulls, there are almost
no data on the origin of the observed ARB and ARGs. In fact,
less than 20% of studies included in this review mentioned
potential sources of AMR contamination. Given that AMR
has exponentially increased with antibiotic use in humans and
livestock and several gull species feed on human and agricultural
waste, most studies suspect a human origin including landfills,
places close to gulls nesting, and/or resting areas that have a
high human density, sewage effluents, and contaminated water
(Bonnedahl et al., 2014; Atterby et al., 2016; Mukerji et al.,
2019; Ahlstrom et al., 2021). This is consistent with the overall
assumption that wildlife becomes contaminated with AMR
from anthropogenic sources in studies suggesting transmission
in areas where wildlife lives and feeds (Dolejska and Literak,
2019). However, no study has fully proven the origin of AMR
in gulls, and other environmental factors such as co-selection
with heavy metals and microplastics can also generate AMR
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TABLE 4 | AMR genes identified in isolates from gulls reported between 1981 and 2020.

Continent FQ POLY TET AMG CHL SUL TMP MAC STR GLY FOS RIF References

Africa aac(6′)-Ib-cr,
qnrS1, qnrB1

NR NR NR NR NR NR NR NR NR NR NR Barguigua et al., 2019

Antarctica NR NR NR NR NR NR NR NR NR NR NR NR −

Asia NR NR NR NR NR NR NR NR NR NR NR NR −

Europe aac(6′)-Ib-cr,
qnrB, gyrA,
parC, qnrA1,
qnrS, qnrB1,
qnrS1

mcr-9,
mcr-1,

tetA, tetB, tetG,
tetL, tetM, tetD

aadB, aadA, aadA1,
aadA2, aadA4, aadA5,
rmtB, armA, aphA1,
aacA4, aac(3)II, strA,
strB, aac(6′)-Ib,
aph(30′)-IIIa, ant(6)-Ia,
sat, aac(3)-IV, aac(6′),
aadA1a

catII,
catA,

catA1,
cmlA,

cmlA1,
floR,
cat,

catB3

sul1,
sul2,
sul3

dfr1,
dfr5,
dfr7,

dfrA16,
dfrA1,

dfrA12,
dfrA14,
dfrA17,
dfrA7,
dfrA15

ermB vatE,
vatD

vanA NR NR Čížek et al., 2007; Dolejska et al., 2007;
Gionechetti et al., 2008; Poeta et al., 2008;
Dolejská et al., 2009; Radhouani et al., 2009,
2010, 2011; Bonnedahl et al., 2009, 2010;
Hernandez et al., 2010; Literak et al., 2010,
2014; Simões et al., 2010; Wallensten et al.,
2011; Veldman et al., 2013; Vredenburg et al.,
2014; Aberkane et al., 2015, 2016; Carroll
et al., 2015; Aberkane et al., 2017; Stedt et al.,
2015; Varela et al., 2015; Antilles et al., 2015;
Masarikova et al., 2016; Ruzauskas and
Vaskeviciute, 2016; Alcalá et al., 2016;
Merkeviciene et al., 2017, 2018; Vergara et al.,
2017; Vittecoq et al., 2017; Atterby et al., 2017;
Ngaiganam et al., 2019; Ahlstrom et al., 2019b;
Haenni et al., 2020; Łopińska et al., 2020;
Zendri et al., 2020; Aires-De-sousa et al., 2020

North
America

aac(6′)-Ib-cr,
gyrA, parC,
parE, qnrB4,
qnrS1, oqxB,
qnrA1, qnrB,
qnrA

NR tetA, tetB, tetC,
tetD, tetR

aac3, aac(3)-Iia,
aac(3)-IId, aac(3)-VIa,
aadA, aadA1, aadA2,
aadA2b, aadA5,
ant(2′′)-Ia, aph(3′′)-Ib,
aph(3′)-Ia, aph(6)-Id,
aph(3′), aac(3)-IIa,
aph(3′)-IIa, strA, strB

catA1,
catB3,
catB4,
cmlA1,

floR

sul1,
sul2,
sul3

dfrA1,
dfrA5,
dfrA7,
dfrA8,

dfrA12,
dfrA14,
dfrA15,
dfrA16,
dfrA17,
dfrA5,
dfrA8

ermB,
mphA,
mphE,
ereA

NR NR fosA3,
fosA4,
fosA7

NR Alroy and Ellis, 2011; Martiny et al., 2011;
Bonnedahl et al., 2014, 2015; Atterby et al.,
2016; Ahlstrom et al., 2018, 2019a,c, 2021;
Gomez-Alvarez et al., 2019

Oceania qnrS, qnrB,
qnrS1, qnrB4,
qnrB6

mrc-1 tetA, tetM strA, strB, aac(6′)-Iy,
ant(3′′)-IIa, aph(3′)-Ia,
aac(3)-IId, aph(3′)-IIIa,
aac(6′)aph(2′′)

floR sul2,
sul3

dfrA14 mphA,
ermB

NR vanB fosA7 arr-2 Dolejska et al., 2016; Oravcova et al., 2017;
Papagiannitsis et al., 2017; Mukerji et al., 2019,
2020; Cummins et al., 2020

South
America

NR NR tetA strA, strB NR NR NR NR NR NR NR NR Hernandez et al., 2013; Báez et al., 2015;
Liakopoulos et al., 2016; Toro et al., 2016

FQ, fluoroquinolones; POLY, polypeptides; TET, tetracyclines; AMG, aminoglycosides; CHL, chloramphenicol; SUL, sulfonamides; TMP, trimethoprim; MAC, macrolides; STR, streptogramins; GLY, glycopeptides; FOS,
fosfomycin; RIF, rifamycin; NR, not reported.
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(Gullberg et al., 2014; Dong et al., 2021). In our review, only
one study sampled a potential contamination source to identify
the origin of AMR find in gulls, showing that isolates from
wastewater and gulls had the same macrorestriction profiles
(Masarikova et al., 2016). One possible explanation for the small
number of studies trying to identify the origin of AMR in
gulls could be that no standard sampling protocol or specific
criteria are available to fully determine the origin. Alternatively,
logistical challenges such as collecting both wildlife, domestic
animals, and human environments at the same time could limit
the realization of these studies. Future research could follow
methodologies used by studies performed on bacteria susceptible
to antibiotics and other wildlife. For example, Nelson et al.
(2008) characterized E. coli from gulls, garbage, and sewage by
ribotyping, finding isolates with > 90% similarity in the band
patterns between gulls and sewage. However, this study was
not included in this review because it did not test for ARB
or ARGs. Similarly, other studies have simultaneously sampled
domestic animals and wildlife where contact between species can
be frequent (e.g., small-scale farms) to assess potential cross-
species transmission of ESBL-E. coli (Benavides et al., 2021).
Although challenging, identifying the origin of AMR in gulls is
essential when planning preventive strategies to limit the spread
of AMR in natural ecosystems. Seagulls are characterized by
being ubiquitous in most urban and rural environments, and
many of them are migratory, so it is assumed that gulls may
disperse ARB and ARGs between countries or even continents.
Despite this assumption, only two studies included in this review
performed longitudinal samplings to test the long-term carriage
of ARB or ARGs in gulls (Palmgren et al., 2006; Ahlstrom et al.,
2019a), requiring further research to identify their implication as
reservoirs of AMR.

The detected ARB and ARGs found in gulls have major
implications for both animal and human health. E. coli
was the most common bacterial species reported followed
by Salmonella, similarly to other wildlife species (Vittecoq
et al., 2016). Both bacterial species are important for public
health and are considered a critical priority for human and
animal health (Vittecoq et al., 2016; WHO, 2017). E. coli
and Salmonella spp. can also be found at equilibrium as
commensal bacteria, so the impact of these bacteria of gull’s
health is unknown. Other reported pathogens found in gulls,
such as Campylobacter spp. and Klebsiella pneumoniae, are
considered as zoonotic pathogens and could represent a threat
to human health. Global priority antibiotic-resistant pathogens
for human and animal health were increasingly reported among
gulls after 2008, particularly those considered as “critical”
(WHO, 2017). Broad-spectrum antimicrobial therapies are
commonly used to treat bacterial infections in both humans
and animals (Bush and Jacoby, 2010). The widespread detection
of third-generation cephalosporin-resistant Enterobacterales in
addition to resistance to other important antimicrobials, such
as carbapenems and fluoroquinolones, could compromise the
effective treatment rates representing an important threat to
public and veterinary health.

The higher detection of antibiotic-resistant enterobacteria
could be explained by the relatively easier collection of fecal

samples compared to capturing and sampling gulls to detect
other pathogens (e.g., blood bacteria). Thus, the absence
of other global-priority ARB in current studies such as
Pseudomonas aeruginosa carbapenem-resistant (critical priority),
Staphylococcus aureus vancomycin-intermediate or -resistant
(high priority), and Shigella spp. fluoroquinolone-resistant
(medium priority) could reflect a lack of research and not
necessarily that these bacteria are not circulating among gulls.
In fact, one study using a metagenomic approach found 31
previously undescribed ARGs, while another detected more
than 70 bacterial species and 24 ARGs (Martiny et al., 2011;
Merkeviciene et al., 2017). This review identified a high diversity
of ARGs including those implicated in bacterial infections
of humans and animals such as ESBL and carbapenemases
(Bevan et al., 2017; Li et al., 2019). The presence of ARGs
inserted in MGE could facilitate the spread of these resistance
genes within gulls and between humans and other animals
(Loayza et al., 2020). Our review also shows a wide diversity
of bacterial clones and ARGs found in gulls. Whole-genome
sequencing for bacterial typing was used in 13% of studies
since 2011. Thus, the more widespread use of this technique in
the following years could increase the detection of ARB clones
and ARGs in gulls.

Our review showed that North America and Europe
had the most diverse molecular diversity among ARB,
which could be associated with more available molecular
typing techniques compared to low-income countries. For
example, ESBL- E. coli ST131, previously associated with
nosocomial infections in humans, has been identified in
gulls mainly from the United States (Bonnedahl et al., 2014;
Ahlstrom et al., 2018, 2019a, 2021) and Portugal (Simões
et al., 2010; Vredenburg et al., 2014; Varela et al., 2015).
Despite fewer information available, ST131 has also been
reported in gulls from low- and middle-income countries
(LMICs) such as Bangladesh (Hasan et al., 2014). Future
research should also evaluate the pathogenic potential of
the detected ARB using whole-genome sequencing to detect
virulence factors and other pathogenic genetic material
(e.g., biofilms).

CONCLUSION AND FUTURE
DIRECTIONS

Our review identified an increasing interest in ARB and ARGs
among gulls in the last decade, although there is a considerable
lack of information in LMICs, particularly regarding migratory
species. Despite the widespread detection and high diversity of
ARB and ARGs worldwide, there is no evidence that gulls act as
reservoirs of ARB and ARGs. Furthermore, most of the studies
could not demonstrate whether ARB and ARGs in gulls came
from anthropogenic sources. Finally, we could not compare ARB
or ARGs prevalence across studies due to their heterogeneity in
the results and methodologies to assess AMR.

Knowledge gaps identified in this review can be overcome
by future research. First, the use of whole-genome sequencing
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combined with sampling across different species could help
assessing cross-species transmission between gulls and humans,
domestic animals, or other wild species that do not usually
interact with humans but share nesting sites with gulls
(e.g., penguins). Secondly, future research should identify if
environmental factors such as plastic and heavy metal pollution
are also selecting ARB and ARGs in gulls independently
of contact with humans. Thirdly, the clinical relevance and
conservation implications of the detected ARB for gull’s health
require further investigation. In particular, there is no evidence
that the observed bacteria cause any pathogenicity to the studied
gulls nor complicate treatment of gulls with antibiotics in
rehabilitation centers. Finally, innovative techniques such as
satellite tracking and collaborations across research teams in
different countries where gulls migrate (e.g., Canada to Chile
for the Franklin’s gulls) could help elucidate whether gulls are
spreading ARB and/or ARGs across countries and continents
during their migration.
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Fecal pollution of surface water may introduce bacteria and bacteriophages harboring
antibiotic resistance genes (ARGs) into the aquatic environment. Watercourses
discharging into the marine environment, especially close to designated bathing waters,
may expose recreational users to fecal pollution and therefore may increase the
likelihood that they will be exposed to ARGs. This study compares the bacterial and
bacteriophage ARG profiles of two rivers (River Tolka and Liffey) and two small urban
streams (Elm Park and Trimleston Streams) that discharge close to two marine bathing
waters in Dublin Bay. Despite the potential differences in pollution pressures experienced
by these waterways, microbial source tracking analysis showed that the main source of
pollution in both rivers and streams in the urban environment is human contamination.
All ARGs included in this study, blaTEM, blaSHV , qnrS, and sul1, were present in all four
waterways in both the bacterial and bacteriophage fractions, displaying a similar ARG
profile. We show that nearshore marine bathing waters are strongly influenced by urban
rivers and streams discharging into these, since they shared a similar ARG profile. In
comparison to rivers and streams, the levels of bacterial ARGs were significantly reduced
in the marine environment. In contrast, the bacteriophage ARG levels in freshwater
and the marine were not significantly different. Nearshore marine bathing waters could
therefore be a potential reservoir of bacteriophages carrying ARGs. In addition to being
considered potential additional fecal indicators organism, bacteriophages may also be
viewed as indicators of the spread of antimicrobial resistance.

Keywords: antibiotic resistance genes, microbial source tracking, bacteriophages, fecal pollution, rivers, urban
streams, bathing waters

INTRODUCTION

Microbial antibiotic resistance is a severe threat to public health, resulting in failure to treat a
range of infections, in extended hospital treatment and in increased healthcare costs (Stewardson
et al., 2016; Cassini et al., 2019; Roope et al., 2019; Jit et al., 2020). Furthermore, it is estimated
that multidrug resistant pathogens will lead to 10 million deaths by 2050 (OECD, 2018; WHO,
2019). Initially, the problem was mainly approached from a clinical perspective. However, more
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recently, the importance of the environment as a major
contributor to the spread of antimicrobial resistance in the
human and animal population has become increasingly clear
(Allcock et al., 2017; Leonard et al., 2018; Hernando-Amado
et al., 2020). Successful management strategies and policies to
combat the increase in antimicrobial resistance will therefore
have to be based on a One Health approach, which recognizes the
connectivity between animal, human, and environmental health
(Hernando-Amado et al., 2019; Van Bruggen et al., 2019).

Antibiotic resistance in bacteria may arise from chromosomal
mutations, however, for most types of antimicrobial resistance,
the acquisition of antibiotic resistance genes (ARGs) mediated
by horizontal gene transfer mechanisms is a more common
mechanism (Andersson and Hughes, 2010; Huddleston, 2014;
Baquero et al., 2019). Transduction by bacteriophages is an
important mechanism in spreading ARGs within a microbial
population (Muniesa et al., 2013b; Balcazar, 2014; Brown-Jaque
et al., 2015; Balcázar, 2018; Maganha De et al., 2021). The
importance of bacteriophages in spreading ARGs and virulence
genes, was recently underscored by the discovery of lateral
transduction, which is the basis of genomic hypermobility (Chen
et al., 2018; Chiang et al., 2019).

Environments characterized by high levels of fecal matter
such as sewage, animal slurry, sludge, and effluent of wastewater
treatment plants are hotspots of antibiotic resistant bacteria
and phages harboring ARGs, forming an ideal environment for
horizontal gene transfer to occur (Calero-Cáceres et al., 2014;
Quirós et al., 2014; Ross and Topp, 2015; Calero-Cáceres and
Muniesa, 2016; Guo et al., 2017; Yang et al., 2021; Zieliński et al.,
2021). It has been shown that transfection and transduction of
ARGs from environmental phages conferred resistance to the
recipient bacteria (Battaglioli et al., 2011; Colomer-Lluch et al.,
2011; Gunathilaka et al., 2017; Wang et al., 2018b; Yang et al.,
2021).

The effluent of wastewater treatment plants is an important
route by which ARGs may enter the aquatic environment
(Rizzo et al., 2013; Marti et al., 2014b; Rodriguez-Mozaz et al.,
2015; Lekunberri et al., 2017; Zhou et al., 2020; Nguyen et al.,
2021). Sewerage misconnections and leaking septic tanks may
be a source of untreated sewage entering rivers and other
waterbodies (Kay et al., 2008; Hinojosa et al., 2020; Reynolds et al.,
2021). Furthermore, agricultural land run-off may also negatively
impact water quality and introduce ARGs into waterbodies (Unc
and Goss, 2004; Ballesté et al., 2020). Watercourses discharging
into the marine environment, especially close to designated
bathing waters, may expose the users to fecal pollution and
therefore may increase the likelihood that they will be exposed
to ARGs (Molina et al., 2014; Leonard et al., 2018; Ahmed et al.,
2020; Reynolds et al., 2020; Sala-Comorera et al., 2021b).

This study focuses on the bacterial and bacteriophage ARG
profiles of two rivers entering a large urban environment and
two small, completely urban, streams that discharge close to two
marine bathing waters. We show that the ARG profiles of these
streams and rivers in an urban environment are highly similar
and have a strong impact on nearshore marine bathing waters. In
contrast to bacterial ARGs, ARGs associated with bacteriophages
appear to persist in the nearshore marine environment.

MATERIALS AND METHODS

Site Location
Dublin, the capital of Ireland, is a coastal city on the Irish Sea with
560,000 inhabitants. Near 1,905,000 people live within the greater
Dublin area and around sixty watercourses, ranging from major
rivers to small streams, which discharge into Dublin Bay. Dublin
Bay, which is a UNESCO biosphere, has three designated bathing
waters: Dollymount, Sandymount, and Merrion Strands.

In this study, two rivers (River Liffey and River Tolka), two
streams (Elm Park Stream and Trimleston Stream), and two
bathing waters (Merrion Strand and Sandymount Strand) were
selected (Figure 1 and Supplementary Table 1). The River Liffey
rises in a pristine area near Kippure in the Wicklow Mountains
and flows through agricultural land to reaching Dublin city. The
River Liffey has a 125 km course and it is the main river flowing
into Dublin Bay (Sweeney, 2017). The River Tolka is 33 km long,
and it is the second largest river by flow in Dublin Bay. The river
rises near Culmullin Cross Road and flows through agricultural
and industrial land into the north of Dublin city (Sweeney, 2017).
The Elm Park Stream and the Trimleston Stream catchment
is completely urban areas with a population of 40,000 people.
The length of the streams are 3.8 and 1.7 km, respectively, and
the depth is less than 10 cm. Both streams discharge close to a
designated bathing area in Dublin Bay.

Grab samples were collected at the tidal limit at a depth of 10–
20 cm, every 5 weeks over 15 months (from September 2018 to
November 2019). Bathing water samples were taken during high
tide at Merrion and Sandymount Strands. A total of 85 samples
collected and stored at 4◦C before being processed within 6 h.

Enumeration of Fecal Indicator
Organisms
The levels of Escherichia coli and intestinal enterococci were
determined by membrane filtration. Water samples were filtered
through 0.45 µm pore size nitrocellulose membranes (Thermo
Scientific) and placed on Tryptone Bile X-Glucuronide agar
(Sigma-Aldrich) at 37◦C for 4 h, followed by an incubation
at 44◦C for 18 h to enumerate E. coli (ISO, 2001). Intestinal
enterococci were enumerated by incubating the membrane on
Slanetz and Bartley agar (Oxoid) at 37◦C for 48 h. After
incubation, membranes were transferred into Bile Aesculin agar
at 44◦C for 2 h to confirm positive intestinal enterococci
colonies (ISO, 2000).

Electron Microscopy
River samples (100 ml) were concentrated by ultrafiltration using
100 kDa Amicon Ultra-15 Centrifugal Filter units (Millipore) and
5 µl of the concentrated samples were pipetted onto a 200-mesh
copper grid coated with formvar. Samples were negatively stained
with 5 µl of 2% uranyl acetate stain and incubated for 2 min.
The grids were imaged using a transmission electron microscope
Tecnai G2 (FEI Tecnai) operating at 120 kV. Untreated sewage
(50 ml) collected in the influent of a local wastewater treatment
plant was used as a positive control.
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FIGURE 1 | Location of the sampling sites selected in this study. The sampling stations are indicated by red squares (rivers and streams) and stars (bathing waters).
The inset box shows the location of Dublin Bay in Ireland indicated by a yellow square.

DNA Extraction From the Bacterial
Fraction
DNA of the water samples was extracted after concentrating by
filtering 100 ml through 0.22 µm mixed cellulose ester membrane
filters. The filters were then transferred in 500 µl of GITC buffer
[5 M guanidine thiocyanate, 100 mM EDTA (pH 8), and 0.5%
sarkosyl] and stored at −20◦C. DNA was extracted using the
DNeasy Blood and Tissue kit (Qiagen) with some modifications
as reported previously (Gourmelon et al., 2007). The DNA was
eluted in a final volume of 70 µl.

DNA Extraction From the Bacteriophage
Fraction
DNA of bacteriophages present in water was extracted using
the protocol described by Colomer-Lluch et al. (2011). Briefly,
100 ml of water was passed through 0.22 µm low protein
binding polyethersulfone filters. The filtrate was concentrated
200-fold using 100 kDa Amicon Ultra-15 Centrifugal Filter units
(Millipore), and subjected to chloroform extraction in a 1:1 (v/v)
ratio, followed by a DNAse (100 U/ml) treatment at 37◦C for 1 h
and 10 min at 80◦C. At this point, an aliquot of 10 µl was collected
as a control to ensure the complete removal of free DNA. Phage
particles were subjected to proteinase K digestion (0.2 mg/ml)
for 1 h at 56◦C followed by phenol/chloroform extraction and
ethanol precipitation. The resulting DNA was dissolved into
20 µl water.

Quantification of Gene Target
Primers to amplify the ARGs blaTEM , blaSHV , qnrS, and sul1
and the human (HF183) and ruminant (CF128) microbial source
tracking markers, as well as the cycling conditions are described

in Supplementary Table 2. The MST markers and ARGs were
quantified as previously described (Ballesté et al., 2020; Reynolds
et al., 2020). Standard curves were generated using linearized
cloned standards between 100 and 106 gene copies to quantify
target gene levels in each sample (Ballesté et al., 2020; Reynolds
et al., 2020). The limit of detection of each assay was determined
as the lowest concentration of DNA target detected in 95%
or more of replicates, whereas the limit of quantification was
determined as the lowest concentration of DNA quantified within
0.5 SD of the log10 concentration (Supplementary Table 2;
Blanchard et al., 2012; AFNOR, 2015). All samples and negative
controls were analyzed in duplicate in each 96-well plate. The
absence of non-packaged DNA in the bacteriophage extraction
protocol was verified with 16S rRNA gene amplification by PCR
(AllTaq Master Mix Kit, Qiagen) and ARGs genes by qPCR. Only
negative samples were used for the subsequent analysis. MST
markers and ARGs concentrations were expressed as gene copies
per 100 ml (GC/100 ml). The amplification efficiency of each
reaction was calculated using the E = 10(1/slope)

− 1 equation
(Rutledge, 2003).

Data Analysis
The non-parametric Mann–Whitney paired-test and Kruskal–
Wallis test with Dunn’s post hoc analysis was used to assess
significant differences between microbial source tracking markers
and ARGs between waterbodies. The values of the qPCR targets
were log10 transformed and Spearman correlation was used to
identify relationships between variables. A significance cut-off of
p ≤ 0.05 was used for all analyses. Statistical analysis was carried
out using GraphPad Prism 9.1.0. software (GraphPad Software).
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RESULTS

Fecal Contamination of Rivers, Urban
Streams, and Bathing Waters
All water samples (n = 85) were positive for E. coli and intestinal
enterococci (Figure 2). The River Tolka and the River Liffey,
which flow through agricultural areas before reaching the city,
had similar median levels of fecal indicator organisms as the small
urban Elm Park and Trimleston streams. The fecal indicators
in the latter varied more than three orders of magnitude. In
contrast, the fecal indicator levels were less variable for the River
Liffey during this 15-month period, which had the lowest median
concentration for the fecal indicators. In general, all rivers
and streams received fecal contamination along their course,
independently of the catchment area.

The median fecal indicator levels in Merrion and Sandymount
Strands were similar with individual values varying by up to four
orders of magnitude. Some of the bathing water samples analyzed
exceeded the 90th percentile value for sufficient water quality
parameters for coastal waters (≥500 CFU/100 ml for E. coli and
≥185 CFU/100 ml for intestinal enterococci) according to the
European bathing water quality Directive (EU, 2006).

Fecal Contamination of Rivers and
Streams Is Predominantly Human in
Nature
The Bacteroidales human (HF183) and ruminant (CF128)
markers were deployed to determine the biological origins of
pollution (Figure 3). The River Liffey catchment is larger than
that of the River Tolka and has more agricultural land use.
Therefore, as expected, more River Liffey (80%) than River Tolka
(66%) samples were positive for the ruminant marker. The levels
of the ruminant marker reached values of 5.1 × 105 and 3.4 × 105

GC/100 ml in River Liffey and River Tolka, respectively. In
contrast the marker was only sporadically detected in the Elm
Park stream (40%) and in only one sample in the Trimleston
stream. When the CF128 marker tested positive in Elm Park
stream samples, concentrations up to 2.8 × 105 GC/100 ml were
reported. The presence of this marker in an urban stream is
explained by the run-off from a small pasture grazed by a few
heads of cattle on a private property near the Elm Park stream.
Similar to the streams, the ruminant CF128 marker was present
in 47% of the samples in Merrion Strand and in only one sample
in Sandymount Strand.

The human marker was detected in all river and stream
samples and in nearly 90% of the bathing water samples. HF183
levels in the streams ranged from 2.3 × 103 to 1.7 × 106

GC/100 ml and from 7.6 × 102 to 4.7 × 104 GC/100 ml in river
samples. The median values for rivers and streams differed by
less than one order of magnitude. Variations in HF183 levels
were observed in both beaches ranging from below the limit
of quantification to 6.1 × 104 GC/100 ml for Merrion Strand
and 2.2 × 104 GC/100 ml for Sandymount Strand. The median
concentrations of the marker in marine samples were lower than
those of rivers and streams.

All the rivers and streams were continuously impacted
by human pollution. In contrast, the ruminant marker was
less prevalent in rivers, streams, and bathing waters. Thus,
anthropogenic activities are therefore likely to be the primary
driver of fecal pollution at the sampling stations in the
different watercourses.

Rivers and Urban Streams Have a Similar
ARGs Profile
Bacteriophages may be an important reservoir of ARGs
yet are often overlooked. We therefore wanted to analyze
water samples for ARGs in both bacteria and bacteriophages.
To validate our bacteriophage enrichment procedure, the
concentrate was examined using an electron microscope.
Bacteriophages with morphologies corresponding to families
Myoviridae, Siphoviridae, and Podoviridae (Demuth et al., 1993;
Colomer-Lluch et al., 2011) were present (Figure 4).

The presence of antibiotic resistance genes in the bacterial
and bacteriophage fractions was assessed by selecting four ARGs,
blaTEM , blaSHV , qnrS, and sul1. Bacterial ARGs were found in 73–
100% of the river samples and the percentage of positive samples
was even higher in the stream samples (87–100%). However,
only 20–93% of the bacteriophage fractions from the rivers and
42–100% from the streams contained ARGs (Figure 5). In all
cases the level of ARGs in the bacteriophage fraction was lower
than in the bacterial fraction (Figure 6). The bacteriophage DNA
preparations did not contain 16S rDNA.

The blaTEM and sul1 genes the most prevalent in the bacterial
fraction, while blaTEM was most abundant in the bacteriophage
fraction of the river and stream samples. The blaTEM median
levels ranged from 1.1 × 104 to 4.0 × 104 GC/100 ml in the
bacterial fraction and from 1.7 × 103 to 1.4 × 104 GC/100 ml
in bacteriophage fraction. The sul1 gene was the most abundant
in the bacterial fraction of the River Tolka, River Liffey, and
the Trimleston stream with levels ranging from 3.2 × 104 to
7.6 × 104 GC/100 ml. Interestingly, the levels of sul1 in the
bacteriophage DNA were 10- to 100-fold lower.

The median concentrations for the bacterial blaSHV and
qnrS genes were in the same range (3 log10 GC/100 ml) but
were one order of magnitude lower than blaTEM and sul1. For
the bacteriophage fraction, the median levels for blaSHV and
qnrS genes observed in rivers were in the same range (2 log10
GC/100 ml) as those found in the urban streams. However, the
qnrS gene was more commonly found in the urban streams (47–
64%) in comparison to the largest rivers (20–40%). Interestingly,
an opposite pattern was obtained for blaSHV . Overall, the profiles
of the bacterial ARGs in the urban streams and the largest rivers
were similar, since no statistical differences for the majority of
ARGs were reported between rivers and streams (Kruskal–Wallis,
p > 0.05, Supplementary Table 3).

Spearman correlation analysis was performed to establish the
relationship between the levels of ARGs and the human fecal
marker. Since there was no significant difference between the
ARG profiles of rivers and streams, all samples were treated
as a single dataset. The blaTEM , blaSHV , and qnrS genes in
the bacterial DNA fraction correlated moderately with the
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FIGURE 2 | Levels of the fecal indicators Escherichia coli, intestinal enterococci (I.E.). The dots show the concentration of each sample and the median are indicated
as a horizontal line.

FIGURE 3 | Boxplot representation of the concentrations and percentage of positive samples for the human (HF183) and ruminant (CF128) marker in water samples
from rivers (Tolka and Liffey), streams (Elm Park and Trimleston), and bathing waters (Sandymount and Merrion Strands). In the boxplots the lower hinge represents
25% quantile, upper hinge 75% quantile, and center line the median. The whiskers show the maximum and the lowest value. The percentage of samples above the
quantification limit is indicated, only values above the quantification limit are plotted.

human fecal marker (Spearman correlation, ρ = 0.292–0.335,
p < 0.05, Supplementary Table 4). However, there was no
significant correlation between the human marker and ARGs in
the bacteriophage fraction.

ARGs in Bathing Waters Have an Urban
Profile
The rivers and streams in this study are mostly impacted by
human fecal contamination and have the same ARG profile,
despite their substantial difference in size. We hypothesized that
the discharge of these streams and rivers into Dublin Bay would
affect the nearshore marine environment.

All ARGs present in the streams and rivers were also found
in the two bathing waters. The detection frequency profile of
the ARGs in the rivers, streams, and strands was very similar
(Figure 5). The blaTEM and sul1 genes were the most frequently
detected genes, followed by blaSHV and qnrS. The levels of
individual ARGs in both the bacterial and bacteriophage fractions
in Merrion and Sandymount Strand did not differ significantly
(Mann–Whitney, p > 0.05, Supplementary Table 5), which is
not surprising, considering that these bathing waters are adjacent
to each other. As was observed for the rivers and streams, in
the nearshore marine environment blaTEM and sul1 were the
most abundant ARGs in the bacterial fraction, and blaTEM was
the most abundant in the bacteriophage fraction (Figure 6). The
median level of blaTEM ranged from 2.6 × 103 to 6.3 × 103
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FIGURE 4 | Electron micrographs showing bacteriophages isolated in concentrated water samples from Elm Park Stream (1, 4, 5, 7, 11), River Tolka (2, 8, 10),
Trimleston Stream (6, 9), and raw sewage (3, 12). Images 1–3 show Myoviridae phages, images 4–6 Siphoviridae phages and images 7–9 Podoviridae phages.
Scale bars represent 100 nm, whereas the scale bar in micrograph-11 represents 200 nm.

FIGURE 5 | Frequency of detection (%) for the antibiotic resistance genes in freshwater (River Tolka and Liffey, Elm Park, and Trimleston Streams) and bathing waters
(Merrion and Sandymount Strands).
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FIGURE 6 | Boxplot representation of the ARGs concentrations in the bacterial (B) and bacteriophage (P) fractions in water samples from (A) rivers (Tolka and Liffey),
(B) streams (Elm Park and Trimleston), and (C) bathing waters (Merrion and Sandymount Strands). In the boxplots the lower hinge represents 25% quantile, upper
hinge 75% quantile, and center line the median. The whiskers show the maximum and the lowest value. Only values above the quantification limit are plotted.

Frontiers in Microbiology | www.frontiersin.org 7 July 2021 | Volume 12 | Article 718234107

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-718234 July 20, 2021 Time: 15:28 # 8

Sala-Comorera et al. Aquatic Bacterial and Bacteriophage ARGs

GC/100 ml and from 3.7 × 102 to 4.8 × 103 GC/100 ml for sul1.
As was the case for the rivers and streams, the levels of blaSHV and
qnrS were around 0.5 log10 lower than the two most abundant
genes (Figure 6).

In comparison to the freshwater samples, the median
concentration for bacterial ARGs levels (blaTEM, blaSHV and sul1)
decreased by significantly two and ninefold in marine bathing
waters (Mann–Whitney, p = 0.0001–0.041, Supplementary
Table 5 and Supplementary Figure 1), The qnrS levels did not
change significantly (Mann–Whitney, p = 0.466). In contrast,
there was no significant reduction in ARG levels for the phage
fraction (Mann–Whitney, p = 0.093–0.653, Supplementary
Table 5 and Supplementary Figure 1).

DISCUSSION

The rivers Liffey and Tolka rise outside Dublin and flow through
an agricultural area before entering the city and discharging into
Dublin Bay. In contrast, the two streams included in this study
are completely urban and are therefore experiencing different
pollution pressures than the much larger rivers. Despite these
potential differences in pollution pressures, microbial source
tracking analysis showed that the main source of pollution
in both rivers and streams in the urban environment is
human contamination, which presumably enters the rivers and
streams through for example combined sewer overflows and
sewerage misconnections.

The four clinically relevant ARGs included in this study
blaTEM , blaSHV , qnrS, and sul1, were present in all four
waterways and occurred in both the bacterial as well as in the
bacteriophage fraction. These ARGs selected confer resistance to
the most common antibiotics prescribed in Ireland (HSE, 2019).
Interestingly, the ARG profiles of the four waterways were very
similar, both in terms of the levels of ARGs and the frequency
of detection. This is consistent with the urban environment as
the main fecal impactor on these waterways. In line with this,
a moderate level of correlation between the bacterial blaTEM ,
blaSHV , and qnrS and the HF183 marker was observed, but not
for sul1. In contrast, there was no correlation between the levels
of the four ARGs in bacteriophage fraction and HF183. Partial
correlation between ARGs and indicators of fecal contamination
has been reported previously (Calero-Cáceres et al., 2017).

In the bacterial fraction, the sul1 and blaTEM genes were the
most prevalent followed by blaSHV and qnrS. The blaTEM gene
was the most prominent ARG in the bacteriophage fraction,
followed by sul1, blaSHV , and qnrS. Resistance to β-lactam
antimicrobial agents by blaTEM , blaSHV are widely distributed
in aquatic ecosystems (Colomer-Lluch et al., 2011; Anand et al.,
2016; Calero-Cáceres et al., 2017; Zhang et al., 2019), which
might indicate that they are particularly amenable to propagation
through transduction (Wang et al., 2018a). Sulfonamides are
one of the oldest antimicrobial synthetic or semi-synthetic drug
classes that have been also used for the treatment of animals
(Dasenaki and Thomaidis, 2017) and is an authorized antibiotic
for use in aquaculture in Europe (Santos and Ramos, 2018).
The sul1 gene was the second most abundant and variable in

concentration in the bacteriophage fraction. This high degree
of variability of sul1 in rivers has also been observed in
Mediterranean human-impacted rivers (Calero-Cáceres et al.,
2017; Lekunberri et al., 2017) and rivers in China (Yang et al.,
2018). Sulfonamide resistance is associated with mobile genetic
elements, like class 1 integrons (int1) (Jiang et al., 2019),
which may explain the presence in the bacteriophage fraction.
Resistance to fluoroquinolones have been associated with clinical
Enterobacteriaceae isolates as well as in waterborne bacteria, but
with lower prevalence in rivers (Poirel et al., 2012; Marti and
Balcázar, 2013; Lekunberri et al., 2017).

Aquatic environments are ideally suited for the dispersal
of ARGs (Marti et al., 2014a). Rivers and streams may
therefore have a lasting effect on the presence of ARGs in the
marine environment into which they discharge. In addition, the
discharge of wastewater treatment plants will also add to the
presence of ARG in the marine environment. The ARG profiles of
two bathing waters in Dublin Bay were not significantly different
from those of the rivers and streams, although the concentrations
and frequency of detection were lower. The blaTEM gene is
also the most abundant in the marine environment, which is
consistent with the few marine studies in the Mediterranean Sea
and the Indian Ocean, where blaTEM gene was the most prevalent
and abundant gene in the bacteriophage fraction (Calero-Cáceres
and Balcázar, 2019; Blanco-Picazo et al., 2020).

Interestingly, there was a significant two to ninefold reduction
in median values of the bacterial blaTEM , blaSHV , and sul1
genes, whereas the levels of qnrS did not change significantly.
Freshwater or intestinal bacteria carrying ARGs are likely
to die off rapidly in the marine environment, which would
account for the decrease of three of the four ARGs. Resistance
to fluoroquinolone in marine environments is related to the
intrinsic resistance of marine Vibrionaceae and Shewanellaceae
family species which possess chromosome-encoded Qnr-like
proteins (Poirel et al., 2005; Cattoir et al., 2007). The decrease of
bacterial ARGs in the marine environment was not observed for
bacteriophage ARGs. In general, decay rates of bacteriophages in
seawater are much lower than those of fecally associated bacteria
and therefore persist for prolonged periods of time (Mocé-Llivina
et al., 2005; Calero-Cáceres and Muniesa, 2016; Wu et al., 2020;
Sala-Comorera et al., 2021a).

Once ARGs have been introduced to the phageome, they
may be reintroduced into the bacterial metagenome through
horizontal gene transfer mechanisms (Muniesa et al., 2013a).
Prolonged persistence of bacteriophages carrying ARGs, may
result in transfer of these ARGs to marine microbiota, and
eventually find their way into human consumers of seafood.
In addition, and perhaps more importantly, ARG carrying
bacteriophages may accumulate in filter feeders (e.g., oysters) and
enter the food chain in this manner. Furthermore, recreational
activities taking place in or on the water may expose people
to ARG carrying bacteriophages, which once ingested may
transfer these ARGs to the microbiota in the intestinal tract.
The EU Bathing Water Directive classifies bathing water solely
on the presence of E. coli and intestinal enterococci, with
a view to prevent gastrointestinal and respiratory disease
(EU, 2006). Although the use of bacteriophages as additional
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or alternative indicators for fecal contamination has and is
being discussed, the data presented here make a case for
the inclusion of bacteriophages as indicators for the potential
spread of antimicrobial resistance during recreational use
of bathing waters.
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Controlling antibiotic resistance genes (ARGs) is a worldwide intervention to ensure global 
health. Hospital wastewater is the main pollution source of antibiotic-resistant bacteria 
and ARGs in the environment. Expanding our knowledge on the bacterial composition of 
hospital wastewater could help us to control infections in hospitals and decrease pathogen 
release into the environment. In this study, a high-throughput sequencing-based 
metagenomic approach was applied to investigate the community composition of bacteria 
and ARGs in untreated wastewater from three different types of hospitals [the general 
hospital, traditional Chinese medicine (TCM) hospital, and stomatology hospital]. In total, 
130 phyla and 2,554 genera were identified from the microbiota of the wastewaters, with 
significantly different bacterial community compositions among the three hospitals. Total 
ARG analysis using the Antibiotic Resistance Genes Database (ARDB) and Comprehensive 
Antibiotic Resistance Database (CARD) revealed that the microbiota in the wastewaters 
from the three hospitals harbored different types and percentage of ARGs, and their 
composition was specific to the hospital type based on the correlation analysis between 
species and ARG abundance, some ARGs contributed to different bacterial genera with 
various relationships in different hospitals. In summary, our findings demonstrated a 
widespread occurrence of ARGs and ARG-harboring microbiota in untreated wastewaters 
of different hospitals, suggesting that protection measures should be applied to prevent 
human infections. Concurrently, hospital wastewater should be treated more specifically 
for the removal of pathogens before its discharge into the urban sewage system.

Keywords: metagenomic, antibiotic resistance genes, hospital wastewater, microbiota, bacterial pathogens

INTRODUCTION

Antibiotic resistance poses a serious challenge to the treatment of pathogenic infections. However, 
antibiotic resistance genes (ARGs) are not only the outcome from human clinic settings, but it 
can also come from the interaction with animals, plants, soil, sea, and environmental samples. 
Two-thirds of antibiotics are consumed by animal husbandry (Done et  al., 2015), and some 
were used in crops (Taylor and Reeder, 2020), which increase the ARGs in the environment. 
This may be  relevant to human health interventions on food, water, and sewage. Except for the 
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precision medication in the clinic with antibiotics, the controlling 
of ARGs need the social system’s efforts in the whole world 
(Zinsstag et  al., 2011; Hernando-Amado et  al., 2020). Since the 
COVID-19 outbreak, people from most countries are still being 
newly infected, which is recognized in the microbiology world 
as the concept of all humans sharing “One Health” (Ruckert 
et  al., 2020). As most antibiotic resistance (AR) pathogens are 
released into the natural ecosystems by humans and animals 
(Karkman et  al., 2019), analysis of ARGs in wastewater from 
hospitals, farms, and wastewater treatment plants is essential 
(Karkman et al., 2018; Manyi-Loh et al., 2018; Kayali and Icgen, 
2020). In hospital wastewater, the levels of AR are different 
from those in the natural environment (Rodriguez-Mozaz et al., 
2015). Hospital effluents are a mixture of different compounds, 
including pharmaceuticals, diagnostic agents, disinfectants, and 
metabolites of these compounds. They are highly hazardous 
because of their infection rate and toxicity. These wastewaters 
should be  treated to reduce transmission of antibiotic resistance 
bacteria (ARB) to the ecosystem, which is one type of intervention 
to control resistance (Petrovich et al., 2020). Another intervention 
is controlling antimicrobials use, such as selecting novel 
antimicrobials with limited capacity to ARBs or using fewer 
antimicrobials. Moreover, traditional Chinese medicines (TCMs) 
were used in the treatment of infectious diseases to avoid 
antibiotic resistance (Cai et  al., 2017; Su et  al., 2020).

Some studies have shown a correlation between antibiotics, 
ARGs, and antibiotic-resistant bacteria in hospital wastewaters 
(Lira et  al., 2020; Lutterbeck et  al., 2020; Baraka et  al., 2021). 
There were positive correlations between selected ARGs (sul1, 
sul2, tetQ, and qnrS) and the concentrations of certain antibiotics 
in the wastewaters of five hospitals in Xinjiang, China (Li 
et al., 2016). There were also correlations between antimicrobial 
residues and bacterial populations as well as between the 
prevalence of ARGs and bacterial populations in a wastewater 
treatment plant system of an urban hospital (Varela et  al., 
2014). However, the types and concentrations of antibiotics in 
hospital effluents vary. The categories of drugs administered 
and the duration of administration also vary depending on 
the type of hospital. In addition, the consumption of antibiotics 
was found to be  seasonally dependent in one city, with no 
correlation between the seasonal consumption of antibiotics 
and the total levels of antibiotics in the city’s wastewater (Coutu 
et al., 2013). By examined hospital effluents from four different 
types of hospitals (university hospital, general hospital, pediatric 
hospital, and maternity hospital) and the amount of 
pharmaceuticals in wastewater varied according to their scale 
(Santos et  al., 2013). In fact, antibiotic usage in the treatment 
of different clinical departments should vary. For the treatment 
of odontogenic infections, common antibiotics such as 
amoxicillin, amoxicillin-clavulanic acid, clindamycin, 
azithromycin ciprofloxacin, metronidazole, gentamycin, and 
penicillin are used (Poveda-Roda et  al., 2007). However, for 
the primary health sector, the drugs with high concentrations 
in wastewater were furosemide, ibuprofen, oxytetracycline, and 
ciprofloxacin (Stuer-Lauridsen et  al., 2000). Thus, these factors 
may lead to differences in bacterial populations and ARG 
prevalence in wastewaters.

In this study, we evaluated the wastewaters of three hospitals 
affiliated with Southwest Medical University: Affiliated Hospital 
of Southwest Medical University (A group), Affiliated Hospital 
of TCM (B group), and Affiliated Hospital of Stomatology (C 
group). As drug usage and treatment regimens were dependent 
on the diseases being treated and the specialists at each hospital, 
the bacterial populations were expected to be  affected, which 
would result in a significant difference in the prevalence of 
ARGs in the microbiome. Thus, we  aimed to identify the 
bacterial community composition and prevalence of ARGs in 
the wastewaters from these three hospitals using high-throughput 
sequencing analysis. In addition, we  attempted to determine 
special interventions for the protection against infections and 
the pretreatment of wastewater before its discharge into sewers, 
which may help reduce ARGs.

MATERIALS AND METHODS

Sample Collection
From each hospital (A, B, and C groups), 500 ml wastewater 
was collected on October 12, 21, and 30, 2020, that is total 
nine samples were collected from the outflow of daily medical 
applications and stored in sterile 500 ml glass bottles. Microbial 
samples from the wastewater were collected by filtration using 
filter membranes (0.2 μm in diameter) and stored in sterilized 
centrifuge tubes at −80°C. Then, the filter membranes were 
sent to Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, 
China) for DNA extraction and Illumina HiSeq (pair-end 
library) sequencing.

DNA Extraction and ARG Detection
Total DNA was extracted from the triplet wastewater samples 
of the three groups using filter membranes with the MP Fast 
DNA™ Spin Kit for Soil according to the manufacturer’s 
instructions. The concentration of the extracted DNA was 
determined by spectrophotometry (TBS-380 followed by 
NanoDrop  2000). The DNA extract quality was assessed using 
1% agarose gel electrophoresis.

Genomic DNA was fragmented to 300 bp (average size) 
using Covaris M220 (Gene Company Limited, China), and a 
sequencing library was prepared using NEXTFLEX Rapid 
DNA-Seq Kit (Bioo Scientific, Austin, TX, United  States). 
Sequencing was performed using Illumina MiSeq (Illumina 
Inc., San Diego, CA, United  States) according to the 
manufacturer’s instructions. Sequence data associated with this 
project have been deposited in the National Center for 
Biotechnology Information (NCBI) Short Read Archive database 
(accession no. PRJNA723368).

Sequence Quality Control and Genome 
Assembly
SeqPrep was used to merge paired reads from the 3' and 5' 
ends.1 Low-quality reads (length < 50 bp, quality value < 20, or 

1 https://github.com/jstjohn/SeqPrep
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containing N bases) were removed using Sickle.2 Metagenomics 
data were assembled using MEGAHIT (Li et  al., 2015) with 
succinct de Bruijn graphs.3 A contig with a length of 300 bp 
or more was selected as the final assembling result and used 
for further gene prediction and annotation.

Gene Prediction, Taxonomy, and 
Functional Annotation
Open reading frames (ORFs) from each assembled contig were 
predicted using MetaGene (Noguchi et  al., 2006). Of these 
predicted ORFs, lengths of over 100 bp were retrieved and 
translated into amino acid sequences using the NCBI 
translation table.4

We clustered all predicted genes with 95% sequence identity 
(90% coverage) using CD-HIT (Fu et  al., 2012). Among the 
clusters, the longest sequences were selected as representative 
sequences to construct a non-redundant (NR) gene catalog. 
For all samples, the reads with quality control were mapped 
to the representative sequences with 95% identity using 
SOAPaligner (Li et  al., 2008).5 The gene abundance was 
then evaluated.

Data Analysis
The NCBI NR database was used to align the representative 
sequences of the NR gene catalog for taxonomic annotations, 
with parameter e-values ≤1e-5 using BLASTP (Version 2.2.28+; 
Altschul et al., 1997).6 BLASTP against the evolutionary genealogy 
of genes, Non-supervised Orthologous Groups (eggNOG) 
database (Version 4.5, e-value cutoff of 1e−5), was used for 
annotating a cluster of orthologous groups of proteins (COG; 
Tatusov et  al., 2003; Jensen  et al., 2008). BLASTP against the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
(Xie et  al., 2011; e-value cutoff of 1e-5) was used for KEGG 
annotation.7 BLASTP against the Antibiotic Resistance Genes 
Database (ARDB)8 and Comprehensive Antibiotic Resistance 
Database (CARD)9 was used for antibiotic resistance gene 
annotation (e-value cutoff of 1e-5). The sequence identity was 
≥90%, and the alignment length was ≥30 amino acids. Other 
analyses were performed using Cloud Majorbio.10 Kruskal-Wallis 
H test, FDR correction, and Tukey-Kramer test were used to 
analyze the differences among multiple groups. Hierarchical 
clustering and principal coordinate analysis (PCoA) were also 
performed with a Bray-Curtis distance matrix using the R 
software package. A value of p < 0.05 was considered statistically 
significant. A co-occurrence network was employed to visualize 
the correlation between antibiotic types and microbial taxa. 

2 https://github.com/najoshi/sickle
3 https://github.com/voutcn/megahit
4 http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.
cgi?chapter=tgencodes#SG1
5 https://github.com/ShujiaHuang/SOAPaligner
6 http://blast.ncbi.nlm.nih.gov/Blast.cgi
7 https://www.genome.jp/kegg/
8 http://ardb.cbcb.umd.edu/
9 https://card.mcmaster.ca/
10 https://cloud.majorbio.com/

A connection indicated a strong (ρ > 0.5) and significant (value 
of p < 0.05) Spearman’s correlation.

RESULTS

Overview of Assembly and Annotation
In total, 847, 368, 612 clean reads were generated, with an 
average of 94, 152, 068 reads per sample. The statistical 
information of the contigs is listed in Supplementary Table S1. 
For each DNA dataset, annotation of the protein-coding genes 
was performed using a BLASTP search against the eggNOG 
database. Metagenomic assembly, annotations, and predicted 
ORFs are listed in Supplementary Table S2. The gene sequences 
predicted by the samples were clustered using CD-HIT to 
construct the NR gene catalog, and the base sequences of the 
genes in the non-redundant gene catalog were obtained; details 
are listed in Supplementary Table S3.

Bacterial Community Characteristics in 
Wastewaters From Three Different 
Hospitals
The bacterial community composition in the wastewaters was 
determined by the corresponding species and their taxonomic 
annotation information compared with the NCBI NR database. 
As shown in Figure  1A, there was no difference between the 
three samples of wastewater collected on different days from 
each group at the phylum level, indicating that these samples 
are generally representative of the community abundance of 
bacteria in the wastewater.

In total, 130 phyla and 2,554 genera were identified from 
the microbiota of the wastewaters. When comparing the 
community abundance of bacteria at the phylum level in the 
wastewaters of the different hospitals, Proteobacteria was the 
dominant phylum in the C group (89.35–90.03%), while the 
A and B groups exhibited a relatively low abundance of this 
phylum (53.42–58.00 and 18.07–24.44%, respectively). For the 
B group, Firmicutes were the most abundant phylum (49.58–
53.44%), while the abundance of this phylum was low in both 
A and C groups (14.20–20.44 and 0.87–1.44%, respectively). 
When evaluating data at the genus level, the composition of 
the microbiota was also different between the three groups 
(Figure  1B). The most abundant genus was Acinetobacter 
(7.80–18.87%) in the A group, Streptococcus (6.98–13.78%) in 
the B group, and Arcobacter (14.28–47.90%) in the C group.

There was a significant difference at the phylum and genus 
levels between the hospitals. Samples from the A and B groups 
were from general hospitals that treated similar diseases but used 
different therapeutic regimens and drugs. Thus, these factors 
resulted in similar bacteria in the wastewaters but significantly 
different community compositions. Moreover, comparing samples 
from the A and B groups with the ones from the C group, a 
significant difference in community composition was observed. 
The C group hospital specializes in oral diseases, and the 
pharmaceuticals used for treatments here led to a less diverse 
bacterial community in the wastewater compared with the bacterial 
communities of the two general hospitals.
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To verify the differences in the bacterial community at the 
phylum and genus levels, the Kruskal-Wallis H test was used 
to analyze the main community abundance. The data are shown 
in Figure  2A. A significant number of sequences affiliated with 
Proteobacteria and Firmicutes were found in the wastewaters 
from the three hospitals (p < 0.05; Figure  2A). The mean 
proportions differed significantly for nine genera (p < 0.05; 
Figure  2B); only Bacteroides was not statistically significant. 
Notably, the composition of Bacteroides in the samples from all 

three hospitals was different, contributing 24.05% of the total 
microbiome in the A group, 15.43% in the B group, and 6.86% 
in the C group. According to the cluster tree analysis (Figure 2C), 
the microbiota composition structure was significantly different 
among the three groups, although, the A and B groups were 
more similar to each other compared to the C group. The PCoA 
separated the samples far from the central parallel axis 1 (PC1, 
68.12%), indicating that the gene compositions of the wastewaters 
from these three hospitals also differed significantly (Figure 2D).

A

B

FIGURE 1 | Percent of community abundance of microbiota on Phylum and Genus level in wastewater from hospitals. (A) Percent of community abundance on 
Phylum level; (B) Percent of community abundance on Genus level. A group (A1, A2, and A3): wastewater from Affiliated Hospital of Southwest Medical University, 
B group (B1, B2, and B3): wastewater from Affiliated Traditional Chinese Medicine (TCM) Hospital of Southwest Medical University, C group (C1, C2, and C3): 
wastewater from Hospital of Stomatology Southwest Medical University.
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Occurrence of ARGs in Hospital 
Wastewater Analyzed With ARDB
Using the ARDB, 34 types of ARGs were detected in the wastewaters 
of the three hospitals wastewater. As shown in Figure 3A, ARGs 
associated with bacitracin were the most abundant resistance 
genes in the wastewaters from the A and B groups, while the 
ARGs associated with tetracycline were the most abundant in 
the wastewater of the C group. The community abundance of 
ARGs was significantly different in the PCoA analysis; the points 
of these three groups were located in different quadrants 
(Figure  3B). Depending on the type of ARGs, the diversity of 
ARGs in the C group was markedly lower than that in the 
other two groups. There were 438, 474, and 212 types of ARGs 
in the wastewaters of the A, B, and C groups, respectively.

To verify the community prevalence of general ARGs in 
hospital wastewater, we  used the Kruskal-Wallis H test to 
analyze the composition of general ARGs. Of the 15 main 
composition types of ARGs, six types differed in the wastewaters 
of the three groups (Figure 3C; p < 0.05). Among the antibiotic-
relevant resistant genes, the three most abundant ARGs were 

associated with bacitracin, tetracycline, and tobramycin. The 
pairwise comparison of the three most abundant ARGs indicated 
differences between each two hospitals (Figures  3D–F), with 
the abundance of ARGs for bacitracin being statistically significant 
(p < 0.01). There were no significant differences in the abundance 
of tetracycline resistance genes among the samples from the 
three hospitals. The percentage of ARGs associated with 
tobramycin differed between the A and C groups, while no 
significant difference was observed between the A and B or 
B and C groups.

Occurrence of Total Genes of Bacteria 
Analyzed With Card
The community abundance of bacterial comprehensive antibiotic 
resistance genes in the wastewater analyzed with CARD differed 
between the three groups (Figure  4A). The percentage of AR 
genes were the most prevalent class of genes among the 
wastewaters of the three hospitals, and the composition of 
antibiotic sensitive (AS) genes and antibiotic target (AT) genes 
varied. According to the PCoA of the bacterial community 

A B

C D

FIGURE 2 | Statistical comparison of the relative abundance. (A,B) Microbiota composition difference in Phylum and Genus level; (C,D) Relationship of microbiota 
community between three groups analyzed on cluster tree and principal coordinate analysis (PCoA). Green (bar, line, or circle), A group, samples from Affiliated 
Hospital of Southwest Medical University; Red (bar, line, or triangle), B group, samples from Affiliated TCM Hospital of Southwest Medical University; Blur (bar, line, 
or diamond), C group, samples from Hospital of Stomatology Southwest Medical University. Differences were considered statistically significant at * p < 0.05 level.
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gene class type for the three groups, the points were located 
in different quadrants and far from the central parallel axis 1 
(PC1, 85.79%; Figure  4B).

An in-depth analysis of the various class types was analyzed 
using the Kruskal-Wallis H test. As shown in Figure  4C, 

the proportion of AR, AS, and AT classes in the wastewaters 
from the three hospitals varied (p < 0.05). The differences in 
comprehensive antibiotic resistance genes for each of the 
pairwise comparisons at AR, AS, and AT class are shown 
in Figures  4D–F.

A B

C D

E

F

FIGURE 3 | Community abundance of antibiotic resistance genes (ARGs) and statistical comparison on antibiotic type level. (A) Percentage of community 
abundance on antibiotic type level; (B) PCoA analysis of community on antibiotic type level; (C) The proportions of ARGs in three groups; (D) The composition 
difference of anti-bacitracin genes in pairwise comparison; (E) The composition difference of anti-tetracycline genes in pairwise comparison; and (F) The 
composition difference of anti-tobramycin genes in pairwise comparison. Differences were considered statistically significant at *p < 0.05; **p < 0.01; and ***p < 0.001 
level. A group, samples from Affiliated Hospital of Southwest Medical University; Red triangle, B group, samples from Affiliated TCM Hospital of Southwest Medical 
University; Blur diamond, C group, samples from Hospital of Stomatology Southwest Medical University.
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Correlation Analysis Between Species and 
ARGs Abundance
The possible correlation between ARG types and bacterial 
genera was assessed under antibiotic type level. As shown 
in Figure  5A, Aeromonas contribute 14.50% for tetracycli 
ARG in C hospital wastewater, while Enterococcus, Bacteroides, 
Streptococcus, and Acinetobacter provided tetracycli ARG with 
different relative contributions in A and B groups. For 
bacitracin ARG, several types of bacteria were correlated 
with different relative abundances, while Arcobacter contributed 
with 47.49% in the C group hospital. Enterococcus contributed 
more than 50% for the tobramycin and sisomicin ARG type 
in B and C groups, while it contributed 12.80 and 13.31% 
for tobramycin and sisomicin ARG types in A and B groups, 

respectively; and they were both only 0.85% in C group. 
These results indicated that to reduce one type of ARGs in 
hospital wastewater, different types of bacterial species should 
be  considered.

Then, a network analysis approach was applied to explore 
the correlation between ARG types and microbial taxa on 
antibiotic type level (Figure 5B). There were 10 antibiotic types 
ARGs co-occurring with nine genera of bacteria. Acinetobacter 
was the possible host positively associated with six types of 
ARGs: amikacin, isepamicin, sulforamide, tobramycin, sisomicin, 
and netilmicin. Acidovorax was positively correlated with seven 
types of ARGs: amikacin, tobramycin, sulfonamide, netilmicin, 
sisomicin, dibekacin, and isepamicin. In addition, there were 
positive correlations between six ARGs types and Bacteroides. 

A B

C D

E

F

FIGURE 4 | Community abundance of total ARGs and statistical comparison on class type level. (A) Percentage of community abundance on antibiotic class type 
level; (B) PCoA analysis of community on antibiotic type level; (C) The difference of proportions of ARGs on class level compared in three groups; (D) The 
composition difference of ARGs in pairwise comparison; (E) The composition difference of antibiotic sensitive (AS) genes in pairwise comparison; and (F) The 
composition difference of antibiotic target (AT) genes in pairwise comparison. Differences were considered statistically significant at *p < 0.05; **p < 0.01; and 
***p < 0.001 level.
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Enterococcus and Streptococcus were found to be  host of 
tetracycline and macrolide ARGs.

DISCUSSION

Hospital wastewater contains high concentrations of antibiotics 
and several types of pathogenic bacteria, which are the main 
source of antibiotic-resistant bacteria and ARGs (Hassoun-
Kheir et  al., 2020). In this study, we  attempted to elucidate 
the differences in the composition of bacteria in wastewaters 
from three university-affiliated hospitals in Luzhou city, 
Sichuan Province, PR China, using high-throughput sequencing 
analysis. These three hospitals consisted of one general hospital, 
one general TCM hospital, and one stomatological hospital. 
By comparing the corresponding species and taxonomic 
annotation information with the NCBI NR database, our 
results showed that the community composition of bacteria 

in the wastewaters was different between hospitals at both 
the phyla and genera levels with significantly different 
communities of bacteria in each of them (Figures  1, 2). In 
the wastewater from three comprehensive hospitals with 
general departments, the community compositions of bacteria 
were more similar, Arcobacter, Acinetobacter, and 
Dechloromonas phyla were predominant with different relative 
abundances (Wang et  al., 2018). The bacterial community 
composition of wastewater from the oncological hospital have 
shown a higher difference compared to the general hospital 
(Szekeres et  al., 2017). The cluster tree and PCoA analysis 
for the relationship of community abundance between the 
three groups in this study also were similar to these results. 
The composition of bacteria in the wastewaters of the A 
and B groups was more similar to each other than to that 
of the C group. This may have occurred because both the 
A and B groups covered general medical practice, while the 
C group only focused on stomatology. Herein, relative 

A

B

FIGURE 5 | Correlations between species and corresponding ARGs. (A) Correlation of microbiota genus and ARGs relative antibiotics type; (B) Correlation of 
microbiota genus and comprehensive ARGs on antibiotic type level. The nodes were colored according to ARG types and genus. A connection represents a strong 
Spearman’s correlation coefficient (ρ > 0.5) and significant (value of p < 0.05) correlation. The color of the line indicates positive and negative correlation, red indicates 
positive correlation, and green indicates negative correlation.
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protection should be applied as a measure to avoid the spread 
of infections according to the different bacterial compositions 
in the wastewater of the hospital. For example, Arcobacter 
was the main contributor to the wastewater from the C 
group; thus, more resources and attention should be  focused 
on preventing infections and treating the wastewater specifically 
against Arcobacter. In addition, wastewater pretreatments can 
be  targeted to harmful bacteria considering their properties. 
As Firmicutes live in an anaerobic environment and also 
are associated with high antibiotic and pollutant levels (Li 
et  al., 2011; Bäumlisberger et  al., 2015), monitoring the 
condition of wastewater may control the abundance of bacteria 
of this phylum.

Currently, most wastewaters are treated with sewage processing 
techniques before discharging into the urban sewage, which 
can remove some antibiotics resistance bacteria (Huang et  al., 
2012; Majeed et  al., 2021). Yet, it still contains higher ARGs 
than natural water, and one of the main sources of ARGs is 
hospital effluent (Verlicchi et al., 2010). There were fewer types 
of ARGs in the wastewater from specialized hospitals compared 
with general hospitals (Szekeres et  al., 2017). In this study, 
the ARGs in wastewaters from three hospitals were analyzed 
using the ARDB and CARD. As shown in Figure 3, the diversity 
of the ARGs was the lowest for the C group, however, the 
ARGs types and percentages in the wastewaters were different 
between the three groups. Among the 15 main types of ARGs, 
six types differed in the wastewaters of the three hospitals. 
For the common antibiotics (bacitracin, tetracycline, and 
tobramycin), there were significant differences in the levels of 
bacitracin ARGs among the three groups. In addition, the 
abundance of bacitracin-resistant bacteria in the C group was 
significantly more than that in the other two groups. Thus, 
disinfection and preventive measures used in hospitals that 
specialize in stomatology should target these specific bacteria.

For the total antibiotic resistance gene analysis using the 
CARD, the most common class of genes in wastewater from 
the three hospitals was AR, and together with the other two 
classes, AS and AT, their compositions were varied in three 
groups. This result is consistent with the findings of the 
bacterial community characteristic and ARG type analyses 
(Figures  2D, 3B).

In addition to the correlation between ARG types and 
bacteria genera, the results indicated that the same ARGs 
contributed to different bacterial genera with various relatives 
in the wastewater from three groups. For example, Enterococcus, 
Bacteroides, Streptococcus, and Acinetobacter contributed to 
tetracycli ARGs in A and B groups, while it comes from 
Aeromonas in the C group. This means that even for the 
treatment of the same resistance gene, the unique characteristics 
of species in wastewater should be  considered according to 
different hospitals.

In conclusion, we  used high-throughput sequencing to 
analyze bacterial community composition and ARGs in 
untreated wastewater samples collected from three university-
affiliated hospitals. We  found that significant differences in 
the bacterial community characteristics and ARG composition 
among the three hospitals and they differed between the 

types of hospital. Based on the differences in the bacterial 
communities and ARG compositions between the three types 
of hospitals, our results suggested that targeted prevention 
and control measures against related microbiota should 
be  considered, and hospital wastewaters should be  treated 
more specifically for pathogens that are present in it before 
the discharge into the urban sewage system. However, the 
wastewater samples were collected in the same season, which 
cannot cover the bacteria composition during the rest of 
the year, thus more samples from different seasons may give 
more information. Otherwise, there were no data about the 
antibiotic types in raw hospital wastewater, though it gave 
a negative correlation between the concentrations of antibiotics 
and ARGs (Wang et  al., 2018). Another limitation of this 
study was that there was no physiochemical analysis for the 
raw wastewater, which may be  affected by the seasons or 
other environmental conditions. This should be  considered 
in future studies on hospital wastewater. Moreover, special 
techniques for preventing pathogen infection and release 
need to be  identified according to the medical treatments 
being offered in a hospital.
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The dissemination of antibiotic-resistant priority pathogens beyond hospital settings is 
both a public health and an environmental problem. In this regard, high-risk clones 
exhibiting a multidrug-resistant (MDR) or extensively drug-resistant (XDR) phenotype have 
shown rapid adaptation at the human-animal-environment interface. In this study, we report 
genomic data and the virulence potential of the carbapenemase, São Paulo metallo-β-
lactamase (SPM-1)-producing Pseudomonas aeruginosa strains (Pa19 and Pa151) 
isolated from polluted urban rivers, in Brazil. Bioinformatic analysis revealed a wide 
resistome to clinically relevant antibiotics (carbapenems, aminoglycosides, fosfomycin, 
sulfonamides, phenicols, and fluoroquinolones), biocides (quaternary ammonium 
compounds) and heavy metals (copper), whereas the presence of exotoxin A, alginate, 
quorum sensing, types II, III, and IV secretion systems, colicin, and pyocin encoding 
virulence genes was associated with a highly virulent behavior in the Galleria mellonella 
infection model. These results confirm the spread of healthcare-associated critical-priority 
P. aeruginosa belonging to the MDR sequence type 277 (ST277) clone beyond the hospital, 
highlighting that the presence of these pathogens in environmental water samples can 
have clinical implications for humans and other animals.

Keywords: critical-priority pathogens, aquatic environments, carbapenemase, Galleria mellonella, resistome, 
virulome, genomic surveillance, One Health
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INTRODUCTION

Carbapenem-resistant Pseudomonas aeruginosa are a leading 
cause of hospital-acquired infections and have become a health 
priority (Tacconelli et  al., 2018). Efforts have been made to 
prevent colonization, infection, and decrease mortality. Based 
on that, the WHO proposed a global priority pathogen list 
of multidrug-resistant (MDR) bacteria to drive research, 
discovery, and development of new antibiotics. Along with 
MDR P. aeruginosa, the critical pathogens WHO list included 
Acinetobacter baumannii and bacteria from Enterobacterales 
group (Tacconelli et al., 2018). They were categorized as critical 
priority through the use of multi-criteria, including being 
resistant to a large number of antibiotics, such as carbapenems 
and third generation cephalosporins, the best available options 
for treating MDR pathogens (Babu et  al., 2020). Worryingly, 
carbapenem-resistant P. aeruginosa can cause severe and often 
deadly infections such as bloodstream infections, pneumonia, 
and osteomyelitis (Fernández-Barat et  al., 2017; Pliska, 2020; 
Jean et  al., 2020; Bobrov et  al., 2021; Rosales-Reyes et  al., 
2021). Carbapenem resistance is usually multifactorial, including 
overexpression of efflux pumps (i.e., mexAB-oprM), deficiency 
or repression of the porin gene (oprD), alterations in the 
penicillin-binding proteins (PBPs), and chromosomal 
overexpression of cephalosporinase gene ampC (Van Nguyen 
et al., 2018; Gajdács, 2020; Xu et al., 2020). Moreover, resistance 
may be acquired by the selection of mutations in chromosomal 
genes or horizontal uptake of resistance determinants. However, 
carbapenem resistance has been most associated with production 
of carbapenemases, which include serine β-lactamases and 
metallo-β-lactamases (MβLs) (Polotto et  al., 2012; Lupo et  al., 
2018), whereas high-risk global clones have been associated 
with MDR or extensively drug resistant (XDR) phenotypes. 
Currently, global P. aeruginosa high-risk clones include sequence 
types (STs) ST235, ST111, ST175, ST233, ST244, ST277, ST298, 
ST308, ST357, and ST654 (Del Barrio-Tofiño et al., 2020; Kocsis 
et  al., 2021). Specifically, the ST277 has been sporadically 
reported in Asian, North American, and European countries, 
whereas in Brazil is highly prevalent (Gales et al., 2003; Hopkins 
et  al., 2016; Del Barrio-Tofiño et  al., 2020; Silveira et  al., 2020; 
Kocsis et al., 2021). The success of the Brazilian endemic clone 
ST277 is associated with carbapenem resistance due to production 
of the MβL SPM-1 (Gales et  al., 2003; Cipriano et  al., 2007; 
da Fonseca et  al., 2010; Nascimento et  al., 2016; Silveira et  al., 
2020). Worryingly, SPM-1-producing P. aeruginosa have been 
identified in hospital sewage and hospital wastewater treatment 
plants (Fuentefria et  al., 2009; Miranda et  al., 2015), denoting 
potential to spread throughout the aquatic environment, enabling 
human exposure and transmission. However, although whole 
genome sequencing (WGS) of human SPM-1-positive isolates 
have been performed (Nascimento et  al., 2016; Galetti et  al., 
2019), sequence data from environmental isolates have not 
been provided for comparative genomic studies. Based on WHO 
list priority pathogens criteria, which included pathogen mortality, 
hospital and environment transmissibility and limited treatment 
options, recognition and genomic characterization of critical 
priority pathogens is an essential first step to understanding 

their dynamic of acquisition/dissemination and ultimately to 
development of preventive intervention strategies (Hendriksen 
et  al., 2019). In this study, we  report genomic data and the 
virulence potential of carbapenem-resistant SPM-1-positive 
P. aeruginosa strains isolated from polluted urban rivers, in Brazil.

MATERIALS AND METHODS

Pseudomonas aeruginosa Strains and 
Antimicrobial Susceptibility Profiles
During a Brazilian surveillance study (OneBR project) 
conducted to investigate the burden of antimicrobial resistance 
in impacted aquatic environments, two P. aeruginosa strains 
[Pa19 (ONE609) and Pa151 (ONE610)] were isolated from 
two different locations along the Tietê (TIET-04900; S 23° 
31' 18'', W 46° 37' 52'', S 23° 27' 16'', and W 46° 54' 36'') 
and Pinheiros (PINH-04900; S 23° 31' 52'' and W 46° 44' 
54'') Rivers in São Paulo, Brazil (Turano et  al., 2016). Tietê 
River stretches through São Paulo state from east to west 
for approximately 1,100 km, while Pinheiros River is a tributary 
of the Tietê River that runs 25 km across the city. In this 
study, both strains were subjected to WGS for investigation 
and comparative genomic studies using five public sequences 
from nosocomial SPM-1-positive P. aeruginosa strains, previous 
reported (Silveira et  al., 2014, 2020; Nascimento et  al., 2016; 
Galetti et  al., 2019). Susceptibility profiles were investigated 
by disk-diffusion method (CLSI, 2021).

Whole Genome Sequencing and Genomic 
Analysis
Genomic DNA of Pa19 and Pa151 were extracted using PureLink 
Quick Gel Extraction & PCR Purification Combo Kit (Life 
Technologies, Carlsbad, CA). The Illumina paired-end libraries 
were constructed using a Nextera XT DNA Library Preparation 
Kit (Illumina Inc.), according to the manufacturer’s guidelines. 
Whole genome sequencing was performed using an Illumina 
MiSeq platform with 300-bp read lengths. Reads were de novo 
assembled using SPAdes 3.13,1 and the resulting contigs were 
automatically annotated by NCBI Prokaryotic Genome 
Annotation Pipeline (PGAP) version 3.2.2 Antibiotic resistance 
genes were predicted using ResFinder 4.13 and the Comprehensive 
Antibiotic Resistance Database (CARD).4 Multi-locus Sequence 
Typing prediction was performed using MLST v.2.0.5 Heavy 
metal (HM) resistance genes were manually identified using 
the NCBI database6 and Geneious Prime version 2020.04 
(Biomatters, New  Zealand). Additionally, phage prediction was 
performed by Genome Detective Virus Tool software.7 The 
rmtD gene was detected and aligned by BLASTn 

1 https://github.com/ablab/spades
2 https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
3 https://cge.cbs.dtu.dk/services/ResFinder
4 https://card.mcmaster.ca/analyze/rgi
5 https://cge.cbs.dtu.dk/services/MLST/
6 https://www.ncbi.nlm.nih.gov/Traces/wgs/
7 https://www.genomedetective.com/app/typingtool/virus/
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(Alikhan et al., 2011) against the rmtD1 allele of the P. aeruginosa 
(PA0905 strain), recovered from a human patient (GenBank 
accession number. DQ914960). Genetic context analysis of 
blaSPM-1 and rmtD1 resistance genes of Pa151 were performed 
with BLASTn algorithm and manually curated using Geneious 
Prime version 2020.04 (Biomatters, New  Zealand).

Moreover, virulence genes, efflux systems, and regulators 
were determined through the Virulence Factor Database.8 
Serotype was predicted using Past 1.0.9 SNP-based phylogenetic 
analysis was performed by using Prokka 1.13.410 for pangenome 
annotation, followed by Roary 3.13.011 for core genome analysis. 
SNP-sites tool12 was used for SNPs extraction from the core 
gene alignment; whereas RAxML-NG version 0.9.013 for 
phylogenetic construction and a maximum likelihood tree based 
on SNP alignment. Additionally, comparative genomic analysis 
of P. aeruginosa sequences was performed by BRIG v.0.95 using 
the BLASTn algorithm and Island viewer 4.0.

All genomic analysis were based on comparison of sequences 
of environmental Pa151 (Pinheiros River, GenBank accession 
number: PHSS00000000.1) and Pa19 (Tietê River, GenBank 
accession number: PHST01000000) strains, against publically 
available genome sequences (data obtained by using 300 bp 
paired-end MiSeq sequencing) of clinical SPM-1-producing 
P.  aeruginosa CCBH4851 (catheter tip, GenBank accession 
number CP021380.2), PA1088 (urine, GenBank accession number 
CP015001.1), PA11803 (bloodstream, GenBank accession 
number: CP015003.1), PA12117 (bloodstream, GenBank 
accession number: LVXB00000000.1) and PA7790 (tracheal 
aspirate, GenBank accession number: CP014999.1) strains, 
which were retrieved from NCBI GenBank database.14 For 
SNP-based analysis, the genome of the P. aeruginosa strain 
PAO1 (ST549) was used as reference (GenBank accession 
number: AE004091.2).

Virulence Potential of Carbapenem-
Resistant P. aeruginosa Strains in the 
Galleria mellonella Larvae Model
The virulence potential of P. aeruginosa Pa19 and Pa151 strains 
was evaluated using the Galleria mellonella infection model 
(Tsai et al., 2016). In brief, groups of G. mellonella containing 
10 larvae of nearly 0.25–0.35 g (supplied by the Institute of 
Biomedical Sciences of the University of São Paulo, Brazil) 
were infected with 104 CFU/ml of each strain per larvae, by 
injecting a 10 μl aliquot in PBS, into the body of the larvae 
via the last left proleg, using a sterile ultra-fine needle syringe 
(Fuentes-Castillo et  al., 2019). Survival was monitored every 
hour, for 96 h. Two biological replicates and two experimental 
replicates were performed with a group of 10 larvae per 
strain, in each replicate. SPM-1-producing P. aeruginosa clinical 

8 http://www.mgc.ac.cn/VFs/
9 https://cge.cbs.dtu.dk/services/PAst/
10 https://github.com/tseemann/prokka
11 https://github.com/sanger-pathogens/Roary
12 https://github.com/sanger-pathogens/snp-sites
13 https://github.com/stamatak/standard-RAxML
14 https://www.ncbi.nlm.nih.gov

strain PA1088 was used as comparative control (Toleman 
et al., 2002). Moreover, a control group inoculated with sterile 
PBS was used in each biological and experimental replication 
assay, in order to verify that the larvae would not be  killed 
by physical trauma. Survival curves were plotted using the 
Kaplan-Meier method, whereas statistical analyses were 
performed by the log rank test with p  < 0.05 indicating 
statistical significance (OriginLab Software, Northampton, 
Massachusetts, United  States).

RESULTS

In this study, two carbapenemase (SPM-1)-producing 
P. aeruginosa ST277 (Pa19 and Pa151 strains) isolated from 
impacted urban rivers in São Paulo, Brazil, were sequenced. 
As this clone has been endemic in Brazilian hospitals, being 
also identified in migratory birds (Figure 1), we have additionally 
performed a comparative analysis with publically available 
genomes obtained from ST277 lineages from human infections.

Genome sequencing yielded a total of 968,818 and 473,825 
paired-end reads assembled into 395 and 337 contigs, with 
305 and 299x of coverage, to Pa19 and Pa151 strains, respectively. 
The genome size of Pa19 was calculated at 6,927,007 bp, with 
a GC content of 67.8%, comprising 6,956 total genes, 60 tRNAs, 
three rRNAs, four ncRNAs, and 155 pseudogenes (accession 
number: PHST00000000.1). On the other hand, genome size 
of Pa151 was calculated at 6,799,801 bp, with a GC content 
of 66.9%, comprising 6,747 total genes, 59 tRNAs, three rRNAs, 
four ncRNAs, and 123 pseudogenes (accession number: 
PHSS00000000.1). Genomic information of P. aeruginosa Pa19 
and Pa151 strains are available on the OneBR platform15 under 
ONE609 and ONE610 ID numbers, respectively.

Environmental Pa19 and Pa151 strains displayed a MDR 
profile to ticarcillin-clavulanate, cefepime, ceftazidime, imipenem, 
meropenem, amikacin, gentamicin, nalidixic acid, ciprofloxacin, 
levofloxacin, and trimethoprim-sulfamethoxazole, and genomic 
analysis revealed a wide resistome to β-lactams (blaSPM-1, blaOXA-56, 
blaOXA-396, blaOXA-494, and blaPAO), aminoglycosides [aacA4, aadA7 
and aph(3')-llb], fluoroquinolones [aac(6')lb-cr, and gyrA (T83I) 
and parC (S87L) point mutations], phenicols (cmx), 
sulphonamides (sul1), and fosfomycin (fosA), which was predicted 
in agreement with the phenotype. Additionally, Pa151 strain 
harbored the rmtD1 and catB7 genes related to aminoglycosides 
and chloramphenicol resistance, respectively (Figure  2). On 
the other hand, the crpP gene associated with fluoroquinolone 
resistance, was only identified in the Pa19 genome. Genes 
associated with resistance to heavy metal [copper (pcoABD)], 
and quaternary ammonium compounds (qacE, qacA, and sugE) 
were also identified in both environmental P. aeruginosa strains 
(Figure  2).

Virulome analysis of environmental Pa19 and Pa151 revealed 
a wide virulome. In fact, both lineages carried the quorum 
sensing (lasA, lasB, lasI, and ptxR), alginate (alg cluster), 
siderophore production (pvdA, pvdF, and pvdG), fimbriae (cup 

15 http://onehealthbr.com/
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family), flagellum (flgABCDEFGHIJLMN) synthesis, immunity 
protein (pyo5, imm2), colicin (cea), types II (gspDEF), III 
(exoYST), and IV (vgrD2/vgrD4) secretion systems and exotoxin A 
(toxA) genes; whereas the O2 serotype was identified in both 
Pa19 and Pa151 environmental strains (Figure 2). In this regard, 
in vivo experiments using G. mellonella larvae showed that 
both Pa19 and Pa151 strains killed 100% of the larvae at 24 h 
post-infection, similarly to what was observed with the clinical 
SPM-1-producing P. aeruginosa PA1088 strain isolated from a 
case of urinary tract infection (Figure  3).

Overall comparison of five human and two environmental 
ST277 genomes using BLAST Ring Image Generator (BRIG) 
revealed high nucleotide sequence similarities among 
P. aeruginosa strains, even for aquatic isolates recovered at 
least 13 years after the first clinical isolate (Toleman et  al., 
2002). Furthermore, SNP-based phylogenetic analysis revealed 
that both Pa19 and Pa151 environmental strains were closely 
related (>94% identity) to all human SPM-1-producing 
P. aeruginosa isolates (Supplementary Table S1). However, 
missing regions at position 5.5 Mbp, named as GI-I, in 
environmental Pa151 and clinical PA11803 and PA12117 
genomes, were identified (Figure  4). In this regard, 
we observed genes encoding the following proteins: integrating 
conjugative element protein (pill), type II secretion system 
protein, replicative DNA helicase (dnaB), nucleoid-associated 
protein YejK (yejK), NADH dehydrogenase (ndh), cell division 
protein ZapE (zapE), ParA family protein (parA), plasmid 
stabilization protein ParE (parE), integrating conjugative 
element protein, DNA topoisomerase I  (topA), pyocin S5 
(pyoS5), TetR family transcriptional regulator (tetR), conjugal 

transfer protein TraG (traG), regulatory protein GemA (gemA), 
conjugative coupling factor TraD (traD), his-Xaa-Ser repeat 
protein HxsA (hxsA), his-Xaa-Ser system radical SAM 
maturase HxsB (hxsB), his-Xaa-Ser system radical SAM 
maturase HxsC (hxsC), his-Xaa-Ser system protein HxsD 
(hxsD), chaperone protein ClpB (clpB), and genes encoding 
for membrane proteins, transcriptional regulator, CRISPR-
associated proteins, type II secretion system protein, phage 
tail sheath subtilisin-like, tail fiber protein, phage tail tape 
measure protein, and phage head morphogenesis protein.

Schematic representations of the genetic context 
surrounding blaSPM-1 genes in the environmental P. aeruginosa 
PA151 strain is presented in Figure  5A. The blaSPM-1 was 
flanked by a ~4.8 kbp region composed of the IS91-blaSPM-

1-groEL-IS91 array. The presence of IS elements is related 
to horizontal gene transfer, whereas the groEL encodes for 
a heat-shock chaperon. Additionally, we  also detected the 
traG (encoding a conjugal transfer protein), eexN (encoding 
the entry exclusion protein), traR (transcriptional regulator), 
bcr1 (bicyclomycin resistance), virD2 (gene encoding a 
relaxase), and hypothetical proteins. In Figure 5B is presented 
the genetic context surrounding rmtD1 gene in PA151 strain. 
The rmtD1 was flanked by a ~7.3 kbp region composed of 
the IS91-rmtD1-tgt-groEL-IS91 array. In addition, aacA4, 
blaOXA-56, aadA7, and qacEΔ1 genes were located on a class 1 
integron. Moreover, cmx and sul1 resistance genes, that 
encodes for chloramphenicol and sulphonamide resistance, 
respectively, were also identified along with genes encoding 
hypothetical proteins, transposase, IS110, IS481, and IS3 
mobile elements.

FIGURE 1 | Schematic representation of hypothesis proposed for spread of carbapenemase (SPM-1)-producing Pseudomonas aeruginosa clone ST277 beyond 
the hospital, in Brazil, based on genomic data analyzed in this study.
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DISCUSSION

Carbapenem-resistant P. aeruginosa are critical-priority pathogens 
associated with high mortality and morbidity (Georgescu et al., 
2016; Tacconelli et  al., 2018; Pang et  al., 2019). In this regard, 
one of the major concerns has been the successful expansion 

and rapid spread of high-risk clones. In Brazil, the metallo-
β-lactamase (SPM-1)-producing P. aeruginosa ST277 clone has 
gained significant attention, due to its endemicity status and 
further identification in migratory birds and polluted 
environments (Gales et  al., 2003; Nascimento et  al., 2016; 
Turano et  al., 2016; Martins et  al., 2018).

FIGURE 2 | Heatmap showing the distribution of virulence and resistance genes in environmental and clinical SPM-1-positive P. aeruginosa strains of ST277 clone. 
Virulence genes are listed along with their functions and demarcated by colored squares. Resistome is demarcated by colored squares under genes names grouped 
by their antimicrobial resistance classes. Pseudomonas aeruginosa strains are indicated by colors displaying their source and year of isolation.
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Worryingly, previous studies have also reported the occurrence 
of carbapenemase (KPC-2)-producing Klebsiella pneumoniae 
belonging to the clonal group CG258 and OXA-23-positive 
A. baumannii ST79  in the Tietê River (Oliveira et  al., 2014; 
Turano et  al., 2016), supporting an anthropogenic trend, most 
likely due to hospital wastewater discharge and domestic 
wastewaters effluents (Nascimento et  al., 2017; Bartley et  al., 
2019; Böger et  al., 2021; Popa et  al., 2021). Therefore, aquatic 
environment could play an important role in the widespread 
of critical pathogens (Devarajan et  al., 2017). In fact, polluted 
rivers could be  contributing for colonization of local and 
migratory fauna (Martins et  al., 2018; Narciso et  al., 2020).

In order to elucidate the genomic aspects associate with 
the environmental dissemination of healthcare-associated 
P. aeruginosa ST277, we  performed a comparative genomic 
analysis, extracting clinically relevant information (i.e., resistome, 
virulome, and phylogenomic). Interestingly, although the strains 
were isolated in different years (1997–2012), we  observed that 
clinical and environmental SPM-1-producing P. aeruginosa 
strains share a common resistome and virulome.

Although, oral antibiotics have been successfully used in 
the treatment of bacterial infection, for P. aeruginosa few 
therapeutic options are available, being restricted to some 

fluoroquinolones, including ciprofloxacin, levofloxacin, and 
prulifloxacin, which are given alone or in combinations with 
a second intravenously or inhaled anti-pseudomonal antibiotic 
such as β-lactams (piperacillin/tazobactam, ceftolozane/
tazobactam, ceftazidime, cefepime, or carbapenems) and/or 
aminoglycosides (tobramycin, amikacin, or gentamicin) 
(Tümmler, 2019; Ibrahim et  al., 2020; Nisly et  al., 2020). 
However, under a clinical perspective, even co-resistance to 
carbapenems and aminoglycosides in ST277 have already been 
reported and limited therapeutic options. This resistance profile 
is mediated by blaSPM-1 and rmtD genes, respectively (Doi et al., 
2007). Strikingly, in some ST277, including environmental 
(Pa19) and human (PA7790) lineages, the rmtD gene was not 
found. On the other hand, the rmtD1 identified in the 
environmental Pa151 strain, displayed 100% identity to the 
rmtD1 gene from P. aeruginosa PA0905 strain, recovered from 
a human patient in 2005, in Brazil (Doi et  al., 2007). The 
rmtD1 was subsequently identified in K. pneumoniae and other 
Enterobacterales in Latin America, Europe, and North America 
(Bueno et  al., 2016). Since acquisition of this gene has been 
linked to transposition events (Doi et  al., 2007; Nascimento 
et  al., 2016), most likely genomic plasticity of P. aeruginosa 
has led to the dissemination of rmtD+ and rmtD-ST277 lineages 

FIGURE 3 | Virulent behavior of SPM-1-producing P. aeruginosa isolates. Kaplan-Meier survival curves of Galleria mellonella infected with 104 CFU/larva of 
P. aeruginosa Pa19 strain (dark-blue line), P. aeruginosa Pa151 strain (blue line), and P. aeruginosa PA1088 (orange line). Environmental Pa19 and Pa151 strains, 
and the clinical PA1088 strain killed 100% of larvae at 24 h post-infection. PBS-inoculated control group (light-gray dashed line) presented 100% of survival. 
For each strain, groups containing 10 G. mellonella larvae in each replicate were evaluated in two biological and experimental independent assays.
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(Silveira et  al., 2020). In Brazil, occurrence of rmtD has 
also been documented in Escherichia coli and K. pneumoniae 
(Yamane et  al., 2008; Leigue et  al., 2015).

The blaSPM-1, IS91-blaSPM-1-groEL-IS91 gene array has been 
previously identified within a Tn4371-like integrative and 
conjugative element (ICETn43716061) considered stable in the 
chromosome loci of P. aeruginosa ST277 strains recovered from 
humans and animals (Fonseca et  al., 2015; Nascimento et  al., 
2016). Since ICEs are genetic mobile platforms that play an 
important role during bacterial evolution, they are overlooked 
as vectors in the spread and resistance emergence in many 
bacterial species (Fonseca and Vicente, 2016). Moreover, the 
genetic context of rmtD1 (IS91-rmtD1-tgt-groEL-IS91) identified 
in the environmental strain was similar to previous descriptions, 
where the presence of the rmtD gene in clinical isolates was 
associated to the TnAs3 transposon (Fonseca et  al., 2015; 
Nascimento et  al., 2016).

In human and aquatic P. aeruginosa ST277 isolates the 
resistome was not restricted to antibiotics, and the presence 
of genes conferring tolerance to copper and QAC biocides 
was further detected. Currently, there is a growing concern 
about biocides that pollute aquatic environments, especially 

QACs, since these compounds are widely used in domiciliary 
and hospital settings, as disinfectants, soaps, toothpastes, and 
mouthwash formulations (Zubris et  al., 2017; Fuentes-Castillo 
et  al., 2020). Consequently, ecosystems impacted by HM and 
biocides could favor the selection and persistence of high-risk 
clones harboring a broad resistome (Baker-Austin et  al., 2006; 
Zhao et  al., 2012; Kim et  al., 2018).

Although a limitation of this study was the lack of a known 
highly virulent P. aeruginosa to be  used as a positive control 
in the in vivo assay; we  observed that the virulent behavior 
of environmental strains was identical to clinical strains. Indeed, 
a wide virulome was also predicted in human and environmental 
P. aeruginosa ST277 lineages, denoting a pathogenic potential, 
as demonstrated in the G. mellonella infection model. 
Lipopolysaccharide (LPS) O-antigen, type IV pili, and flagella 
are components of the external cell wall structure of P. aeruginosa 
and play important roles in the early stage of colonization, 
persistence, and bacterial pathogenesis (Hauser, 2011; Behzadi 
et al., 2021). Furthermore, O-antigen is an important virulence 
factor in P. aeruginosa used for the detection of MDR/XDR 
high-risk clones (Del Barrio-Tofiño et  al., 2019). Strikingly, 
among clinical strains were identified the serotypes O5 and 

FIGURE 4 | Circular genome maps of SPM-1-producing P. aeruginosa belonging to ST277. Circular maps were built by BLAST Ring Image Generator (BRIG) using 
seven P. aeruginosa genomes. All genomes were represented as individual rings and compared against the reference genome PA1088 (GenBank accession 
number: CP015001.1). The blaSPM-1 gene is indicated by a black arrow. Furthermore, several genes associated with DNA replication/repair/regulatory/defense and 
membrane proteins were identified in the major genomic island, indicated as GI-I.
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O2. The latter was also identified among environment strains. 
Both serotypes have been associated with acute and chronic 
infections (Lu et  al., 2014; Li et  al., 2018).

Type secretion systems (TSSs) are mechanisms by which 
bacteria translocate a set of toxins into the cytosol of host 
cells and/or to the extracellular medium (Abby et  al., 2016). 
Pseudomonas aeruginosa is known to have five TSSs, of which 
Types I  (T1SS), II (T2SS), and III (T3SS) are involved in 
the virulence of this pathogen. Several studies have linked 
these TSSs with poor outcomes of patients with acute respiratory 
diseases (i.e., pneumonia), with T3SS being one of the most 
clinically relevant virulence determinants (Hauser, 2011; 
McMackin et  al., 2019; Sarges et  al., 2020). In this context, 
we detected ExoTSY exotoxins-encoding genes in both clinical 
and environmental strains. ExoTSY exotoxins are secreted by 
T3SS and reported to be  involved in lung injury, pulmonary-
vascular barrier disruption, and end-organ dysfunction in 
chronic infections, mainly in CF patients; as well as with 
mortality in animal models (Lu et  al., 2014; Sarges et  al., 
2020; Jurado-Martín et  al., 2021). Interestingly, the toxA gene 
(exotoxin A), which is present in the most clinically P. 
aeruginosa strains (Khosravi et  al., 2016) was also identified 
in environmental strains. Exotoxin A has been associated with 
tissue damage related to poor outcomes of burn patients 
(Khosravi et  al., 2016). In fact, the broad virulome harbored 

by P. aeruginosa ST277 seems to be associated with a remarkable 
ability to adapt to different human and non-human conditions 
(Jurado-Martín et  al., 2021).

In brief, from comparative analysis, our data revealed that 
Pa19 and Pa151 environmental strains presented slight variations 
when compared against clinical strains, suggesting a high degree 
of genetic conservation, regardless isolation data and exposition 
to contaminants (antibiotics and biocides residues) present in 
the polluted aquatic environments.

CONCLUSION

In summary, we  report genomic comparative data of 
antimicrobial-resistant P. aeruginosa isolated from aquatic 
environments in Brazil. The presence of SPM-1-producing 
P. aeruginosa ST277  in urban rivers could be  associated with 
hospital effluents, since SNP-based phylogenomics showed high 
nucleotide sequence similarity between clinical and environmental 
genomes. Additionally, wide resistome and virulome have been 
conserved in environmental isolates, denoting that critical 
priority P. aeruginosa of the high-risk ST277 has successfully 
expanded beyond the hospital. Therefore, genomic surveillance 
is essential to rapidly identify and prevent the spread of WHO 
critical priority clones with One Health implications.

A

B

FIGURE 5 | Overall comparison of genetic context of blaSPM-1 and rmtD1 genes carried by clinical and environmental P. aeruginosa strains belonging to ST277. 
(A) The blaSPM-1 was flanked by a ~4.8 kbp region composed of IS91-blaSPM-1-groEL-IS91. (B) The rmtD1 was flanked by a ~7.3 kbp region composed of the IS91-
rmtD1-tgt-groEL-IS91. In addition, aacA4, aadA7, blaOXA-56, qacEΔ1, sul1, and cmx resistance genes were also identified along with genes encoding for hypothetical 
proteins, transposase; as well as IS110, IS481, and IS3 mobile genetics elements.
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Secrets of the Hospital Underbelly: 
Patterns of Abundance of 
Antimicrobial Resistance Genes in 
Hospital Wastewater Vary by Specific 
Antimicrobial and Bacterial Family
Meghan R. Perry 1,2,3*†, Hannah C. Lepper 1†, Luke McNally 4,5, Bryan A. Wee 1, Patrick Munk 6, 
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Frank M. Aarestrup 6, Mark E. J. Woolhouse 1 and Bram A. D. van Bunnik 1*

1 Usher Institute, University of Edinburgh, Edinburgh, United Kingdom, 2 NHS Lothian Infection Service, Edinburgh Clinical 
Infection Research Group, Edinburgh, United Kingdom, 3 Centre for Inflammation Research, University of Edinburgh, 
Edinburgh, United Kingdom, 4 Centre for Synthetic and Systems Biology, School of Biological Sciences, University of 
Edinburgh, Edinburgh, United Kingdom, 5 School of Biological Sciences, Institute of Evolutionary Biology, University of 
Edinburgh, Edinburgh, United Kingdom, 6 National Food Institute, Technical University of Denmark, Kongens Lyngby, 
Denmark, 7 Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom, 8 National Institute for Public Health and the 
Environment (RIVM), Bilthoven, Netherlands

Background: Hospital wastewater is a major source of antimicrobial resistance (AMR) 
outflow into the environment. This study uses metagenomics to study how hospital clinical 
activity impacts antimicrobial resistance genes (ARGs) abundances in hospital wastewater.

Methods: Sewage was collected over a 24-h period from multiple wastewater collection 
points (CPs) representing different specialties within a tertiary hospital site and simultaneously 
from community sewage works. High throughput shotgun sequencing was performed 
using Illumina HiSeq4000. ARG abundances were correlated to hospital antimicrobial 
usage (AMU), data on clinical activity and resistance prevalence in clinical isolates.

Results: Microbiota and ARG composition varied between CPs and overall ARG 
abundance was higher in hospital wastewater than in community influent. ARG and 
microbiota compositions were correlated (Procrustes analysis, p = 0.014). Total antimicrobial 
usage was not associated with higher ARG abundance in wastewater. However, there 
was a small positive association between resistance genes and antimicrobial usage 
matched to ARG phenotype (IRR 1.11, CI 1.06–1.16, p < 0.001). Furthermore, analyzing 
carbapenem and vancomycin resistance separately indicated that counts of ARGs to 
these antimicrobials were positively associated with their increased usage [carbapenem 
rate ratio (RR) 1.91, 95% CI 1.01–3.72, p = 0.07, and vancomycin RR 10.25, CI 2.32–
49.10, p < 0.01]. Overall, ARG abundance within hospital wastewater did not reflect 
resistance patterns in clinical isolates from concurrent hospital inpatients. However, for 
clinical isolates of the family Enterococcaceae and Staphylococcaceae, there was a 
positive relationship with wastewater ARG abundance [odds ratio (OR) 1.62, CI 1.33–2.00, 
p < 0.001, and OR 1.65, CI 1.21–2.30, p = 0.006 respectively].
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INTRODUCTION

In response to the antimicrobial resistance (AMR) crisis, a 
challenge for the research and medical communities is 
understanding the flow of AMR between different environmental 
niches (Woolhouse et  al., 2015) and deciding where to focus 
surveillance and interventions to inform effective policies and 
action (Laxminarayan et  al., 2016). There is an increasing 
interest in the contribution of hospital wastewater to AMR in 
the environment. Sewage treatment does not completely 
eradicate antimicrobial resistance genes (ARGs) and thus ARGs 
can enter the food chain through water and the use of sewage 
sludge in agriculture (Woolhouse and Ward, 2013; Woolhouse 
et  al., 2015). As a complex matrix representing human 
bodily waste the potential of community sewage as a 
surveillance tool to monitor the global epidemiology of 
AMR has recently been explored (Hendriksen et  al., 2019; 
Aarestrup and Woolhouse, 2020).

Hospitals are epidemiologically important nodal points for 
concentrated antimicrobial consumption and are sources of 
resistant pathogens (Versporten et  al., 2018). Secondary care 
surveillance, guided by national and international policies, is 
based on passive reporting of phenotypic and molecular 
laboratory results for specific pathogens or from screening 
samples on specific high risk patients (Tornimbene et al., 2018; 
Department of Health and Social Care, 2019). These methods 
do not represent the full impact of antimicrobial use and 
inpatient activity on AMR carriage within a hospital and thus 
risk of transmission. Nor do they capture all pertinent ARGs. 
As hospital wastewater contains inpatient bodily waste, 
we  hypothesized that it could be  used as a representation of 
hospital inpatient carriage of AMR and as such may be  a 
useful surveillance tool.

Many previous studies have identified key pathogens and 
resistant genes in hospital wastewater and attempts have been 
made to correlate resistance of specific organisms from hospital 
clinical isolates with hospital wastewater isolates with conflicting 
results (Talebi et  al., 2008; Tuméo et  al., 2008; Yang et  al., 
2009; Santoro et  al., 2012; Drieux et  al., 2016; Maheshwari 
et  al., 2016). In this study, we  apply the technique of 
metagenomics to hospital waste water (Hendriksen et  al., 
2019), with cross-sectional sampling of waste water from 
different hospital departments. The use of metagenomics in 

hospital waste water is increasingly applied to understand 
the resistance profile of hospitals (Subirats et  al., 2016; Rowe 
et  al., 2017; Ekwanzala et  al., 2020; Petrovich et  al., 2020; 
Kutilova et  al., 2021). Combining metagenomics and multiple 
sampling sites allowed us to test hypotheses about what factors 
may drive patterns in resistance abundance in hospital waste 
water. We  investigated whether clinical activity, such as 
antimicrobial usage and patient length of stay, impacts resistance 
abundance in hospital waste water. We also tested our hypothesis 
that resistance in hospital patients is correlated with the 
abundance of resistance genes within that department’s 
waste water.

MATERIALS AND METHODS

Sewage Collection and Antibiotic Residue 
Analysis
Sampling was performed in June 2017 on eight wastewater 
collection points (CP) in the Western General Hospital, 
Edinburgh. Each sampling point represented a different clinical 
departments, identified to capture the effluent from the majority 
of the hospital (Supplementary Figure S1). No treatment was 
applied to hospital effluent prior to discharge into the main 
sewerage network. Using composite sampling machines, 100 ml 
of wastewater was sampled every 15 min over a 24-h period 
thus aiming to collect a representative sample of waste from 
the hospital inpatient population. Simultaneously, a 24-h time 
proportional sample was collected at the inflow site to Seafield 
community sewage works (hereafter “Seafield”), which serves 
a population equivalent of 760,000 from Edinburgh and the 
Lothians. Samples were transported from the site on dry ice 
and stored at −80°C. Antibiotic residue analysis was 
performed on 1 L of composite hospital wastewaters and 1 L 
of domestic sewage using LC-MS/MS as previously described 
(Berendsen et  al., 2015; Hendriksen et  al., 2019).

DNA Extraction and Analysis
DNA was extracted from sewage by pelleting using the 
QIAamp Fast DNA Stool mini kit with an optimized protocol 
as previously described (Knudsen et al., 2016) and sequenced 
on the HiSeq4000 platform (Illumina) using 2 × 150 bp 
paired-end sequencing. The concentrations of gDNA in 

Conclusion: We found that the relationship between hospital wastewater ARGs and 
antimicrobial usage or clinical isolate resistance varies by specific antimicrobial and 
bacterial family studied. One explanation, we consider is that relationships observed from 
multiple departments within a single hospital site will be detectable only for ARGs against 
parenteral antimicrobials uniquely used in the hospital setting. Our work highlights that 
using metagenomics to identify the full range of ARGs in hospital wastewater is a useful 
surveillance tool to monitor hospital ARG carriage and outflow and guide environmental 
policy on AMR.

Keywords: antimicrobial resistance, metagenomics, hospital waste water, surveillance, environmental risk, 
resistance dissemination, antibiotic usage
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nanograms per microliter per sample measured by Qubit 
can be  found in Supplementary Table S2. All samples used 
in this analysis met the minimum quality requirements 
genomic DNA biomass used by the sequencing firm BGI 
Genomics. The taxonomic origin of paired reads were 
assigned using Kraken2 (Wood and Salzberg, 2014) to the 
standard database, a database of representative bacterial 
genomes and a database of known vector sequences, UniVec_
Core (downloaded 9th April 2019). Taxonomic assignments 
were summarized at the genus level using kraken-biom 
(Dabdoub, 2019). One sample, CP2, was heavily contaminated 
with Pseudomonas, likely from the Pseudomonas fluorescens 
species group. In CP2 52.9% of reads aligned to Pseudomonas 
genus OTUs, compared to 7.2% on average for other hospital 
sites. We therefore removed results from this site from further 
analysis. We  used KMA version 1.2.12 (Clausen et  al., 2018) 
to assign the paired and singleton reads to a database 
consisting of ResFinder reference genes (Zankari et al., 2012; 
downloaded 5th of September, 2019). KMA uses k-mer 
seeding followed by the Needleman-Wunsch sequence 
alignment algorithm to align the rest of the read from these 
k-mer seeds. ResFinder is a reference database of AMR genes. 
The following flags were used: “-mem_mode -ef -1 t1 -cge 
-nf -shm 1 -t 1.” Reads mapping to the human reference 
genome (GCA_000001405.15) were removed prior to 
submission to public sequence databases according to 
the protocol used in the Human Microbiome Project 
(Sherry, 2011; Human Microbiome Project, 2021).

Data Collection
Data was collected on clinical isolates from the week surrounding 
the hospital wastewater sampling to represent pathogens in 
hospital inpatients. All types of clinical isolate were included 
(including fecal, urine, skin, indwelling plastic, and fluid and 
tissue) but duplicate samples from the same patient within a 
48-h period were excluded. Antimicrobial usage was collated 
from weekly pharmacy issues to each ward over the 3 months 
prior to sampling and presented as defined daily dose per 100 
occupied bed days (DDD/100OBDs). Pharmacy issues for 
prescriptions for outpatient use and for theaters were excluded.

Data Analysis
All statistical analysis and plots were produced using R version 
3.6.0. The abundance of ARGs and bacterial genera were 
calculated as Reads Per Kilobase of transcript per Million 
mapped bacterial reads (RPKM; Munk et al., 2018). This measure 
is frequently used for metagenomic data, and normalizes the 
read hit count with respect to the gene length in base pairs 
and the total number of bacterial reads. Principal coordinate 
analysis (PCoA; e.g., Borcard et  al., 2018) was conducted on 
Bray-Curtis dissimilarity matrices were determined using 
Hellinger transformation of the RPKM. Resistance genes 
from the ResFinder database were grouped into clusters with 
90% sequence homology. The top  50 ARGs were visualized 
using a heatmap and gene-wise and collection point 
dendrograms as previously described (Hendriksen et al., 2019). 

Procrustes analysis was used to test the association between 
the resistome and bacteriome dissimilarities.

Correlation Between Inpatient Activity and 
ARG Abundance
The source of variance in the abundance of ARGs between 
the collection points was investigated using a multilevel Poisson 
model with the dependent variable as counts of ARG reads 
at each collection point aggregated at the 90% homology cluster 
level. We  used an offset term with the log of the average 
gene-length per cluster in the ResFinder database, multiplied 
by the total bacterial reads per collection point. Random effects 
of collection point, 70% sequence homology cluster, and 
observation were included in the model, the latter to model 
the over dispersion inherent to count data (Harrison, 2014).

In the main model, we accounted for co- and cross-resistance 
by fitting both a measure of direct selection for resistance 
(effect of department-level usage of antimicrobials on ARGs 
that confer resistance to those antimicrobials) and indirect 
selection [effect of total department-level antimicrobial usage 
(AMU) on ARG abundance]. In a second set of three models, 
we  tested the association between resistance genes and 
antimicrobial usage of three specific antimicrobials of interest 
chosen to represent parenteral antimicrobials only used in a 
hospital setting (carbapenems, vancomycin) and an antimicrobial 
widely used in both community and hospital (amoxicillin). 
We use a Bonferroni correction on p values of these additional 
tests to account for increased risk of type I  error. We  used 
all antimicrobial resistance phenotypes suggested for any gene 
in a 90% homology cluster from either the ResFinder or 
STARAMR (National Microbiology Laboratory, 2021) databases. 
The average length of stay per department was also used to 
assess the role of clinical activity on sewage resistance abundance 
in the main model. The fixed effects structure of the main 
model was further adjusted using AIC minimizing methods, 
assessing whether any interaction effect should be  included.

To assess the relationship between AMR in clinical isolates 
and ARG abundance in hospital wastewater a binomial 
generalized linear mixed effects model was used including 
random effects for site, the class of the antimicrobial used to 
test the isolates, and for the species of the isolate to control 
for inter-species heterogeneity. Two fixed effects were estimated 
for the log RPKM of all resistance genes in the sewage that 
had the same resistance phenotype as the isolates: one for 
isolates that were urinary or fecal, and a second for all other 
isolate types, due to the different dynamics of inpatient bodily 
waste being represented in the wastewater system. Using separate 
binomial regression models, we  accounted for heterogeneity 
between the taxonomic family of the isolates in the relationship 
between AMR in clinical isolates and sewage ARGs. As some 
families were rarely tested, the sample size was too small for 
this heterogeneity to be  assessed in a single model. Therefore, 
the three most frequently isolated families were assessed 
(Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae), 
with the log RPKM of phenotypically matched resistance genes 
as the only model effect. A Bonferroni correction was used 
to adjust the p values of the effects of these models to account 
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for multiple testing. A similar model was used to evaluate the 
relationship between AMU and AMR in clinical isolates.

Ethics
This study was conducted following approval from NHS Lothian 
Research and Development Committee under the sponsorship 
of University of Edinburgh. There was no direct patient contact 
and therefore the study did not require ethical board approval.

RESULTS

The hospital departments served by the wastewater collection 
points differed by pattern of antimicrobial use (Table  1; 
Supplementary Table S2) and resistance in the 181 clinical 
isolates identified in the week surrounding wastewater sampling 
(Supplementary Figure S3).

Metagenomics of Wastewater
An average read pair count of 38.4 million (range 35.7–39.2 
million) was obtained with an average of 62% (range 52–73%) 
of reads allocated to bacteria from the seven hospital wastewater 
samples and one community sewage sample.1 An average of 
0.25% of reads mapped to ARGs in the seven hospital wastewater 
samples vs. 0.1% from Seafield (Supplementary Table S1).

One thousand, one hundred and fifty-four unique bacterial 
genera were detected across all samples (range 1,151–1,154 
genera per sample; Supplementary Table S2). The top  19 
genera accounted for >70% of bacterial abundance in all samples 
(Figure 1D). The most predominant genera were Pseudomonas 
and Acinetobacter, mainly environmental species such as 
Pseudomonas fluorescens, Acinetobacter johnsonii, likely 
representing bacteria usually present in the hospital pipes. 
When compared with Seafield, there was a difference in diversity 
in the hospital samples with a higher predominance of gut 

1 https://www.ebi.ac.uk/ena/data/view/PRJEB34410

associated bacteria including Faecalibacterium, Bacteroides, 
Bifidobacterium, and Escherichia (Figures  1B,D).

Antimicrobial resistance gene abundance and composition 
varied across different hospital collection points and Seafield 
(Figures  1A,C, 2; Supplementary Figures S4, S6). Apart from 
the wastewater collected at CP4, which represents the acute 
receiving unit with patients directly admitted from the community, 
ARG abundance from hospital wastewater was higher than ARG 
abundance in Seafield (Figure  2; Supplementary Figure S4). 
ARG composition was strongly correlated with bacterial genus 
level composition (Procrustes, p = 0.014; Supplementary Figure S6).

We detected 502 different resistance genes belonging to 10 
different antimicrobial classes (Supplementary Table S3) but 
over 65% of the sample resistomes were composed of the 15 
most abundant genes (Supplementary Figure S6), mainly 
belonging to the aminoglycoside and macrolide antimicrobial 
classes (Figure  1C). Key ARGs of interest to infection control 
including blaOXA, blaIMP, and genes of the vanA cluster 
were identified.

Inpatient Activity and ARG Abundance
No significant relationships were observed between total 
antimicrobial usage or length of stay and the abundance of 
ARGs in sewage (Figure  3; Supplementary Table S5). This 
result indicates there was no evidence for indirect selection 
or for the impact of transmission among hospital patients on 
ARG abundance in sewage when all resistance phenotypes were 
modeled. There was a significant positive effect of increased 
phenotypically-matched antimicrobial usage on resistance gene 
abundance, indicating support for a small role of direct selection 
(IRR 1.11, CI 1.06–1.16, p < 0.001). AIC comparison of fixed 
effect structures for the model indicated that no interaction 
effects improved model fit.

We next analyzed data on the association between carbapenem, 
vancomycin, and amoxicillin usage and ARGs conferring resistance 
to these specific antimicrobials in three separate models (Figure 3A; 
Supplementary Table S5). We  found positive associations that 
were significant between vancomycin ARGs and vancomycin 

TABLE 1 | Demographics of hospital collection points.

Collection 
point

Specialties No. of wards No. of pts Average length of 
stay in days (SD)

Average age in 
years (SD)

DDD per 100 
OBDs

No. of clinical 
isolates

CP1 Cardiology, Urology 3 46 4.9 (0.8) 62.6 (2.2) 123.7 19
CP3 Oncology, Hematology 7 67 3.7 (2.7) 62.1 (1.0) 200.5 27
CP4 Acute receiving unit 5 35 0.9 (0.7) 70.5 (2.3) 325.8 45
CP5 Neuroscience 3 59 3.3 (1.1) 53.5 (2.1) 73.5 8
CP6 Intensive care, Surgery, 

Medicine
3 70 7.6 (2.5) 66.6 (1.7) 223.8 17

CP7 Infectious Diseases, 
Surgery, Medicine

6 105 6.1 (3.2) 63.5 (0.8) 148.1 20

CP8 Respiratory, Medicine for 
the Elderly, Urology, 
Surgical High 
Dependency

6 133 12.8 (9.0) 69.0 (1.0) 116.4 25

SD only represents SD of the average age and length of stay per week. Antimicrobial usage from previous 3 months does not include antibiotics issued for outpatient prescriptions or 
in theaters. Clinical isolates are from inpatients in the week surrounding wastewater collection. pts, patients; DDD, defined daily dose; OBDs, occupied bed days; and SD, standard 
deviation.
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usage (IRR 10.25, CI 2.32–49.10, p < 0.001) and showed a trend 
toward significance between carbapenem ARG abundance and 
carbapenem antimicrobial usage (IRR 1.91, CI 1.01–3.72, p = 0.07). 
No evidence for an association between amoxicillin usage and 
amoxicillin ARGs was identified. We  omitted the observation-
level random effect from vancomycin model due to singular 
model fits, so overdispersion was not accounted for.

Antimicrobial resistance gene abundance at a class level 
within hospital wastewater did not reflect resistance patterns 
in clinical isolates when all the data was analyzed in one 
model (Figure  3B; Supplementary Table S6). There was no 
difference between the relationship of isolates from urine and 
fecal samples with ARG abundance and isolates from other 
sample types, e.g., skin, which we expect to enter the wastewater 
system at different rates via sinks and showers. We  next 
separately modeled the three most frequently isolated taxonomic 
families (Figure  3; Supplementary Table S6). Enterococcaceae 
and Staphylococcaceae had a significant positive association 
with the abundance of ARGs conferring resistance to the same 
antimicrobial class (OR: 1.62, C.I. 1.32–2.00, p < 0.001, and 
OR: 1.65, C.I. 1.21–2.30, p < 0.01, respectively), but there was 
no such relationship for resistance levels in Enterobacteriaceae. 
At an antimicrobial class level, clinical isolate resistance did 
not reflect the antimicrobial usage of that class in the preceding 
3 months (Supplementary Table S5).

Analysis of antibiotic residues reflected the high AMU within 
the hospital compared to the community with an average 
12-fold increased residue concentration in hospital effluent 
(ranging between 4 and 13 μl−1) for the five classes measured 
(Supplementary Figure S7). Our residue data only represents 
the residue levels from the whole hospital and not individual 
collection points and thus could not be  specifically correlated 
with ARG abundance.

DISCUSSION

This study identified that hospital AMU impacts ARG abundances 
in hospital effluent, with implications upstream for infection 
control in the hospital and downstream for AMR in the 
environment. Overall, the distribution of bacterial genera and 
ARGs in our hospital wastewater samples and domestic sewage 
sample is similar to previously described sewage composition 
in European regions (Buelow et al., 2018; Hendriksen et al., 2019).

There was a significant positive relationship between inpatient 
department-level AMU and the abundance of antimicrobial 
resistance phenotype matched ARGs when all data was considered 
together. No relationship was found for total department AMU 
and ARG abundance. This supports a role of direct selection 
from antimicrobial usage in overall patterns of ARGs in hospital 

A B

C D

FIGURE 1 | Hospital wastewater and community sewage resistome and microbiome abundance composition. (A) Principal coordinate analyses (PCoA) of 
resistome based on Bray-Curtis dissimilarity. The percentage of variation explained is noted on the axis labels. (B) Principal coordinate analyses for the microbiome. 
(C) Relative abundance of antimicrobial resistance genes (ARGs) by antimicrobial class. (D) Relative abundance of the 19 most abundant bacterial genera in the 
wastewater and sewage microbiome. CP, collection point within hospital; Seafield, community sewage works; and TB, tuberculosis.
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waste water, but not for indirect selection. Previous studies 
have found a relationship at a country level between antimicrobial 
residues and ARG abundance in sewage from the community 
(Hendriksen et  al., 2019). Indeed, our data shows that the 
hospital antimicrobial residues for ciprofloxacin were around 
9,900 μg/L, well above the estimated minimum selection 
concentration range for Escherichia coli and ciprofloxacin 
resistance of 5–10 μg/L (Kraupner et  al., 2018).

The association between phenotype-matched ARGs and AMU 
was weak. Sewage captures resistance acquired in both the 
community and in the hospital, but drivers of hospital- and 
community-acquired resistance differ. For example, amoxicillin 
is used in both the community and hospitals, and resistance 
is widespread in the United  Kingdom (60% hospital isolates 
resistant to amoxicillin or ampicillin in 2019; European Centre 
for Disease Prevention and Control, 2020), suggesting patients 
be more likely to arrive in hospital with carriage of amoxicillin 
resistance genes. The acquisition of vancomycin or carbapenem 
resistance, on the other hand, is associated with prior use of 
these antibiotics in hospital (Vasilakopoulou et  al., 2020; Zhao 
et  al., 2021), and these antibiotics are solely used parenterally 
in a hospital setting. Factors affecting within-hospital selection 
for and transmission of resistance, such as hospital antimicrobial 

usage, may play a stronger role in patterns of ARGs of vancomycin 
and carbapenems in hospital waste water than the ubiquitously 
used antibiotic amoxicillin. In support of this theory, we found 
a positive relationship between AMU and waste water ARGs 
for vancomycin and carbapenems, but not amoxicillin. Where 
a particular ward or department consumes high levels of 
carbapenem or vancomycin then this work demonstrates that 
there could be high levels of undetected fecal or urinary carriage 
of carbapenem and vancomycin resistance genes. This could 
warrant more stringent isolation of these patients, in fitting 
with concerns about “unsampled transmission chains” in 
carbapenem-resistant Enterobacteriaceae (Cerqueira et al., 2017). 
In addition, if the 70% renal excretion of unchanged meropenem 
(Mouton and van den Anker, 1995) selects for resistant organisms 
in waste water, then procedures for treatment of the bodily 
waste of patients on meropenem may need to be  reconsidered. 
However, it is important to note that we  cannot conclude 
from this study whether selection for resistance may take place 
within patients in the hospital or in hospital waste water and 
whether transfer could be  plasmid mediated. Further studies 
that sample longitudinally from patients and hospital waste 
water would be  required to determine routes and mechanisms 
of selection for resistance in hospitals and wastewater systems.

FIGURE 2 | Heat map of 50 most abundant ARGs. Relative abundance of ARGs (RPKM) were log transformed and both ARGs and CPs were clustered using 
complete-linkage clustering. For ARGs clustering was based on Pearson correlation coefficients, for collection points clustering was based on the BC-dissimilarity 
matrix (Figure 1) which uses all genes.
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Length of stay did not impact ARG abundance in this 
dataset, despite prolonged duration of inpatient stay being a 
risk factor for carriage and infection with resistant 
microorganisms in previous studies (Safdar and Maki, 2002; 
Gupta et  al., 2011; Founou et  al., 2018). This appears not to 
support the theory of transmission of antimicrobial resistant 
organisms among patients and their local environment, including 
from the hospital water system (Kotay et  al., 2017), during 
their inpatient stay. However, as these data were aggregated 
at the department-level there were few observations of length 
of stay, and further research with a greater sample size is 
needed to investigate this relationship.

Metagenomics can capture ARGs carried by a wide variety 
of bacterial genera, which is of benefit as the majority of 
ARGs are carried by non-pathogenic commensal bacteria 
(Sommer et al., 2009). Although, short-read sequencing cannot 
conclusively resolve associations between bacteria and ARGs, 
in our results ARGs are highly correlated with the bacteria 
identified at that collection point (Supplementary Figure S7). 
This can explain why abundance of ARGs for aminoglycosides, 
tetracyclines, and macrolides are higher than expected given 

lower proportions of phenotypic resistance in clinical isolates; 
the composition of bacterial genera within wastewater may 
have intrinsic or high levels of resistance to these antimicrobial 
classes. The potential for transfer of ARGs within the sewage 
network onto and between human pathogens has been 
demonstrated indicating the benefit of obtaining a universal 
view of ARGs (Ludden et  al., 2017).

No quantitative relationship was observed between clinical 
isolates and ARG abundance in hospital wastewater when all 
data was considered together. In addition, there was no 
relationship between AMU in the previous 3 months and 
resistance in clinical isolates. This may be  because clinical 
isolates are not representative enough of carriage of resistance 
in the inpatient population as there is a low rate of culture 
positivity. However, when examined separately, there was a 
positive relationship between resistance in Enterococcaceae or 
Staphylococcaceae, but not Enterobactericeae, and hospital 
wastewater ARG abundance. The literature on these relationships 
is divided (Talebi et  al., 2008; Tuméo et  al., 2008; Yang et  al., 
2009; Zarfel et  al., 2013; Ory et  al., 2016; Hutinel et  al., 2019) 
and future work on antimicrobial usage, specific organisms, 

A BA1 B1

A2

B2

FIGURE 3 | Generalized linear mixed effects models for the relationship between antimicrobial resistance gene abundance, hospital department antibiotic 
consumption rates, and hospital department rates of resistance in clinical isolates. (A) Effect of antimicrobial usage (AMU) measured in defined daily dose per 100 
occupied bed days (DDD/100 OBDs) on ARG abundance. (A1) The main model, with a single coefficient for all resistance phenotypes. (A2) Separate models with 
coefficients for each antimicrobial. (B) Association between antimicrobial resistance gene abundance in the sewage and clinical resistance rates. (B1) Main model, 
with a single coefficient for all clinical isolate taxonomic family, stratified by sample type – urine or fecal samples (All: Urine), and for resistance genes and any other 
sample source (All: Other). (B2) Separate models with coefficients for each isolate taxonomic family.
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isolate types, and ARG abundance in sewage potentially over 
a longer time period is required to interrogate these relationships 
further (Rogues et  al., 2007; Mladenovic-Antic et  al., 2016).

There was a higher abundance of ARGs in all hospital wastewater 
samples, bar one (CP4), which represents acute admissions unit, 
compared to Seafield. The lower abundance in Seafield could 
be  due to dilution, and a decline in the relative abundance of 
AMR-gene carrying human commensal bacteria in the environment 
of sewerage system (Pehrsson et  al., 2016), or possibly lower 
exposure to antimicrobial residues in community waste water. 
Associations between antimicrobial residues in community waste 
water and ARGs have been found (Hendriksen et  al., 2019; Ju 
et al., 2019), and hospital waste water has been previously shown 
to have higher antimicrobial residue levels (Booth et  al., 2020). 
Some studies comparing sewage influent in paired communities 
with and without a hospital have found minimal effect of a 
hospital on community influent (Buelow et  al., 2018; Gouliouris 
et  al., 2019). In other work, comparing resistance in hospital 
and community waste water has indicated some associations 
(Rogues et  al., 2007; Pehrsson et  al., 2016; Ludden et  al., 2017), 
although, not all studies making this comparison have found 
evidence for a relationship (Paulshus et  al., 2019).

Concern has been raised about the impact of hospital wastewater 
on urban influent and effluent and specific water treatments for 
hospital wastewater have been called for. This work highlights 
that physicians could consider prescribing environmentally 
degradable antimicrobials such as beta-lactams over antimicrobials, 
which have persistent residues across environmental niches e.g., 
tetracycline to minimize the impact of antimicrobials on the 
environmental resistome (Wellington et  al., 2013). The ultimate 
effect of environmental ARGs on human disease is an ongoing 
important research question (Bürgmann et  al., 2018).

The use of metagenomics is a key strength of this study, 
allowing quantification of resistance genes to a wide range of 
antibiotics and retrospective investigation if new resistance 
genes emerge. The 24-h composite samplers provide a 
representative sample of the hospital (Chau et al., 2020), although 
hospital staff, outpatients, and visitors will have also contributed 
to the effluent. In addition, some patients will have moved 
around the hospital during the sampling period. Although, 
this study is limited to one hospital site at one time point 
the variation in antimicrobial use and inpatient characteristics 
in each department has allowed us to treat them as discrete 
treatment centers and draw conclusions about factors affecting 
ARG abundance.

There is little doubt that hospital resistant pathogens can 
be  abundant in wastewater systems (Maheshwari et  al., 2016; 
Ludden et  al., 2017; Gouliouris et  al., 2019). However, using 
metagenomic sequencing, we  show that resistance in hospital 
wastewater may quantitatively reflect clinical isolate resistance 
for some bacterial species (Enterococcaceae and 
Staphylococcaceae), although not all. As a surveillance tool this 
novel technique can represent the burden of AMR carriage 
in hospital inpatients and hospital pipes for specific resistance 
genes relating to important parenteral antimicrobials such as 
carbapenems and vancomycin. It may also aid in identification 
of emerging patterns of ARG abundance and novel ARGs, 

and how they may relate to changing patterns of transmission, 
infection control policies, and antimicrobial usage. Further 
longitudinal work evaluating the wastewater from multiple 
hospital sites is needed to establish AMU/ARG relationships, 
optimal collection points and sampling methods to be  able to 
develop this as a surveillance technique.

In conclusion, we  show in a multi-departmental study that 
the relationships between ARG abundance in hospital wastewater 
and hospital AMU or clinical resistance levels may vary by 
antimicrobial type and bacterial species. Our study emphasizes 
in a novel way the ARG burden from the high antimicrobial 
consuming and high resistance carriage environment of the 
hospital and that promoting active antimicrobial stewardship, 
particularly of key parenteral antimicrobials such as carbapenems 
and vancomycin, would impact the burden of environmental 
AMR. Hospital wastewater is an important source of AMR 
into the environment; this should be considered in environmental 
policy to reduce the flow of AMR between different 
environmental reservoirs.
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In cities across the globe, the majority of wastewater – that includes drug resistant and
pathogenic bacteria among other contaminants – is released into streams untreated.
This water is often subsequently used for irrigation of pastures and produce. This use
of wastewater-contaminated streams allows antibiotic-resistant bacteria to potentially
cycle back to humans through agricultural products. In this study, we investigated
the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli
isolated from produce and irrigation water across 17 provinces of Ecuador. A total
of 117 vegetable samples, 119 fruit samples, and 38 irrigation water samples were
analyzed. Results showed that 11% of the samples were positive for E. coli including 11
irrigation water samples (29%), and samples of 13 vegetables (11%), and 11 fruits (9%).
Among the 165 E. coli isolates cultured, 96 (58%) had the ESBL phenotype, and 58% of
ESBL producing E. coli came from irrigation water samples, 11% from vegetables, and
30% from fruits. The blaCTX−M−55, blaCTX−M 65, and blaCTX−M 15 genes were the most
frequently found gene associated with the ESBL phenotype and coincided with the
blaCTX−M alleles associated with human infections in Ecuador. Three isolates had the
mcr-1 gene which is responsible for colistin resistance. This report provides evidence
of the potential role of irrigation water in the growing antimicrobial resistance crisis in
Ecuador.

Keywords: fresh produce, irrigation water, ESBL E. coli, CTX-M, Extended-spectrum beta-lactamase (ESBL)

INTRODUCTION

The rise of antimicrobial resistance (AMR) is one of the most serious biological threats facing
modern society, and the inability to treat bacterial infections is already occurring in many
nosocomial infections (Frieri et al., 2017). The World Health (WHO) has listed extended spectrum
β-lactamase-producing Enterobacteriaceae (ESBL-E) as the most critical antimicrobial resistant
microorganisms, among the “Highest Priority” pathogens due to the increasing prevalence in
humans and livestock (Yassin et al., 2017; Shrivastava et al., 2018; Li et al., 2019; Murray et al., 2021).

Globally, the majority of wastewater produced by urban settlements goes into streams without
prior treatment. Only 20% of produced wastewater receives proper treatment (UNESCO, 2012),
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and the capacity to treat wastewater often depends on the
income level of the country; treatment capacity is 70% of
the generated wastewater in high-income countries, compared
to ∼8% in low-income countries (Sato et al., 2013). This
phenomenon is rising as urban populations grow and developing
countries increasingly install pipes to channel wastewater away
from communities, even before the development of wastewater
treatment plants. The wastewater comes from diverse sources
(e.g., homes, hospitals, and animal processing plants, etc.) and
contains large quantities of antibiotic resistant bacteria (ARB),
often carrying antimicrobial resistance to last-line antimicrobials,
such as carbapenems (Lin et al., 2020).

These antimicrobial resistant bacteria (ARB) can cycle back
to humans when wastewater-contaminated streams are used to
irrigate produce or provide water to food animals (FAO and
WHO, 2008; Leff and Fierer, 2013; Pigłowski, 2019); one recent
example is the finding of New Delhi metallo-β-lactamases–type
carbapenem-resistant Escherichia coli in water, domestic food
animals, and humans (carbapenem, a last-line drug, is used
exclusively in human medicine) (Li et al., 2019; Murray et al.,
2021). Many antibiotic-resistant Enterobacterales, members of
the intestinal microbiome (including E. coli), can survive and
multiply in the environment (Vasco et al., 2015; Guerrero et al.,
2020) and may colonize humans and domestic animals through
the fecal-oral route of transmission. Plasmids and other mobile
genetic elements (MGEs) carrying AMR genes promote the
dissemination of AMR among intestinal bacteria in the intestine
of vertebrates (Bonardi and Pitino, 2019), and this cycle is
fundamentally captured in the One Health concept. Produce
contamination can happen before pre-harvest (i.e., through
contaminated irrigation water or manure fertilization) (Beuchat,
1996; Iwu and Okoh, 2019), as well as post-harvest (i.e., by
washing, handling and processing food) with irrigation water
(Murray et al., 2017).

Wastewater-impacted irrigation water has been identified
as the main source of contamination for fresh produce with
pathogenic microorganisms and ARB (Njage and Buys, 2015;
Gekenidis et al., 2018a). The fecally contaminated produce can
transfer ARB to the consumer especially when the produce is
consumed fresh and uncooked (Pesavento et al., 2014; Araújo
et al., 2017; Hölzel et al., 2018). Besides contributing to the spread
of pathogens, irrigation water may potentially play a leading role
in the dissemination of ARB (Moore et al., 2010; Hong et al., 2013;
Gekenidis et al., 2018b; Vital et al., 2018).

The production of extended-spectrum β-lactamases (ESBL) is
one of the most important mechanisms of antibiotic resistance
in Enterobacteriaceae. ESBL genes can be divided into 4
groups: TEM, SHV, OXA, and CTX-M types (Bush and Jacoby,
2010); CTX-M type is the most prevalent of ESBLs described
(Rossolini et al., 2008; Bevan et al., 2017). Enterobacteriaceae
members are the most common bacterial agents causing
foodborne outbreaks associated with the consumption of fresh
produce (Cooper et al., 2007; Kilonzo-Nthenge et al., 2018;
Al-Kharousi et al., 2019; McDaniel and Jadeja, 2019; Motlagh
and Yang, 2019). Pathogenic E. coli is a key bacterium in
foodborne illnesses, and commensal E. coli is a common
indicator organism of fecal contamination in aquatic systems

(Edberg et al., 2000; Rochelle-Newall et al., 2015; Motlagh and
Yang, 2019). E. coli is also recognized as an important species
in the spread of ARB, mainly due to a high aptitude to
acquire genetic information through horizontal gene transfer
(Grasselli et al., 2008; Hasegawa et al., 2018; Marlène et al., 2020).

In Ecuador, an upper middle-income country, wastewater is
almost entirely released untreated into streams; these streams
often serve as irrigation water for produce and food-animal
agriculture (Ortega-Paredes et al., 2020a,b). There are few studies
about the dissemination of ESBL-E. coli from irrigation water
to produce (Ben Said et al., 2015; Vital et al., 2018); most
of the studies have been carried out in fresh produce from
retail centers and groceries (Bhutani et al., 2015; Faour-Klingbeil
et al., 2016; Ortega-Paredes et al., 2018; Al-Kharousi et al., 2019;
Yang et al., 2019; Colosi et al., 2020; Richter et al., 2020; Song
et al., 2020). The aim of this study was to build upon the
previous literature to understand the relationship between ARB
in irrigation water and ARB on fresh produce obtaining samples
from farms and their irrigation water. The study focused on the
occurrence of extended spectrum β-lactamase producing E. coli
in 17 provinces of Ecuador.

MATERIALS AND METHODS

Study Areas
This study was carried out in the following provinces of Ecuador:
Manabí, Bolívar, Cañar, Loja, Guayas, Pastaza, Tungurahua,
Pichincha, Azuay, Chimborazo, Cotopaxi, Imbabura, Santa
Elena, Los Ríos, Morona Santiago, Orellana, and Zamora
Chinchipe provinces which are mainly agrarian (Figure 1).
The samples correspond to those that are collected as part
of the national surveillance program that aims to monitor
microbiological indicators and pathogens in the food supply
(“Programa Nacional de Vigilancia de Microorganismos de
Higiene y Control de Microorganismos Patógenos, para la
Vigilancia Epidemiológica de Enfermedades Transmitidas por
Alimentos de Origen Agrícola y Pecuario del país – PNVCH”).

Sampling Fresh Produce
Fresh fruits and vegetables (representing 20 types) were obtained
from agricultural farms in 17 provinces of Ecuador, from June to
December 2019 (Figure 1). In total, 274 samples were analyzed
(117 vegetables, 119 fruits were collected from agricultural
farms. Among the vegetables consist of lettuce (Lactuca
sativa, n = 43), onion (Allium cepa, n = 31), garlic (Allium
sativum, n = 21), coriander (Coriandrum sativum, n = 17),
cabbage (Brassica oleracea var. viridis, n = 2), spinach
(Spinacea oleracea, n = 1), pepper (Piper nigrum, n = 1),
tomato (Solanum lycopersicum, n = 1). The fruit samples
correspond to cocoa (Theobroma cacao, n = 1), peach (Prunus
persica, n = 2), strawberry (Fregaria vesca, n = 31), melon
(Cucumis melo var. cantalupensis, n = 7), apple (Malus
domestica, n = 1), banana (Musa paradisiaca, n = 13),
blackberry (Rubus ulmifolius, n = 31), watermelon (Citrullus
lanatus, n = 12), grape (Vitis vinifera, n = 1), and golden berry
(Physalis peruviana, n = 20).
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FIGURE 1 | Map of Ecuador showing the sampling locations. Map of sampling locations of irrigation water, fruits and fresh produce. The circles represent the total
number of samples according to the color assigned to each sample (vegetables: green, fruits: yellow, and irrigation water: blue) collected in each canton (pink).

Isolation of Escherichia coli From
Irrigation Water and Produce
The farmers of each crop indicated the irrigation water they
used, and this water (n = 37) was collected in sterile bottles and
transported to the laboratory at approximately 8◦C and processed
within 10 h. Five hundred milliliters of water were filtered using
a 0.45 µm pore membrane filter (Millipore, United States). The
filter was then incubated in Chromocult R© coliform agar (Merck,
Germany) overnight at 37◦C, the apparent E. coli colonies were
taken and seeded on MacConkey agar (Difco, United States)
supplemented with ceftriaxone (2 mg/L) to identify the lactose
positive colonies (a maximum of five colonies were picked from
each plate) (Richter et al., 2020), colonies of presumptive E. coli
were then tested for β-glucuronidase activity using Chromocult R©

medium (Merck, Germany). All E. coli confirmed isolates from
each sample were kept frozen at −80◦C in Tryptic Soy Broth
medium (Difco, United States) with 15% glycerol.

The vegetable samples were collected aseptically and
refrigerated until analysis (within 12 h). Ten grams of the fresh

produce were weighed and placed in a sterile plastic bag and
incubated with 90 ml of peptone water (Faour-Klingbeil et al.,
2016) for 30 min at room temperature. In the case of fruits such
as watermelon and melon, the surface was swabbed, and the
swab was placed in peptone water (described above). The next
day 100 µl of the liquid was taken and cultured on MacConkey
agar (Difco, United States) supplemented with ceftriaxone (2
mg/L) (Botelho et al., 2015). A maximum of five lactose positive
colonies were selected from each plate sample and placed on
Chromocult coliform agar after 24 h of incubation at 37◦C,
colonies of presumptive E. coli, positive for β-glucuronidase,
were selected for additional analyses (Lange et al., 2013). All
isolates confirmed to be E. coli from each sample were kept frozen
at −80◦C in Tryptic Soy Broth medium (Difco, United States)
with 15% glycerol.

Antimicrobial Susceptibility Testing
Susceptibility tests were performed using the Kirby-Bauer
method on Mueller-Hinton agar (Difco, United States)
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in accordance with Clinical and Laboratory Standards
Institute (CLSI, 2019). Eleven antibiotics were used for
testing and included: Cefazolin, CZ (30 µg); Ampicillin,
AM (10 µg), Gentamicin, GM (10 µg), Imipenem, IPM
(10 µg); Trimethropin-sulfamethoxazole, SXT (1.25/23.75
µg); Ceftazidime, CAZ (30 µg); Cefepime, FEP (30 µg);
Ciprofloxacin, CIP (5 µg); Amoxicillin/Clavulanic acid, AmC
(20/10µg); cefotaxime, CTX (30µg); and Tetracycline TE (30
µg). After 18 h of incubation, the E. coli strains were classified as
susceptible, intermediate, or resistant according to the clinical
interpretation criteria recommended by CLSI. E. coli ATCC
25922 was used as a quality control. To determine the ESBL
phenotype, we carried out a diffusion disk method on Mueller
Hinton agar as before using antibiotic susceptibility discs
(Oxoid, United States) of CTX (30 µg), CAZ (30 µg). Our
criterion to determine ESBL was CTX ≤ 27 mm; CAZ ≤ 22 mm
(CLSI, 2019). Specifically, ESBL production was confirmed by
growth in a medium with discs of ceftazidime (30 mcg) and
ceftazidime+ clavulanic acid (30 mcg+ 10 mcg). An increase of
≥5 mm in zone of inhibition for ceftazidime + clavulanic
acid compared to ceftazidime was confirmed as ESBL
producers (CLSI, 2019).

PCR Amplification for Detection of
β-Lactamase Genes
When samples were positive for ESBL-producing E. coli, one to
five isolates selected per sample for further analysis. A total of
96 isolates were tested for the following resistance genes: blaSHV,
blaTEM, blaCTX−M, and blaOXA (Table 1). Bacterial DNA was
extracted by boiling (Dashti et al., 2009), and PCR amplification
reactions were performed in a volume of 25 µl containing 12.5
µl of 2 × Qiagen Multiplex PCR Master Mix (Qiagen GmbH,
Hilden, Germany), 0.2 µM concentrations of each primer, and
2 µl of DNA template. The cycling parameters were as follows:
an initial denaturation at 95◦C for 15 min; followed by 30
cycles of 94◦C for 30 s, 62◦C for 90 s, and 72◦C for 60 s;
and with a final extension at 72◦C for 10 min. Amplification
products were observed in agarose gel electrophoresis 1.5%,
stained with Ethidium bromide at 100V for 45–60 min. The size
of the amplified products was compared with the commercial
(Invitrogen, United States) 100-bp ladder. The band size (bp)
for each gene was: blaSHV, 237; blaTEM, 445; blaCTX−M, 593; and
blaOXA: 813 (Fang et al., 2008).

DNA Sequencing and Analysis
Genomic DNA was extracted from the eighty isolates (including
isolates of irrigation water, blackberry, strawberry, onion, banana,
and garlic) using the Wizard R© Genomic DNA Purification
(Promega, United States) according to the manufacturer’s
instructions. The whole genome of isolates was sequenced
using Illumina MiSeq. Sequencing was carried out at the
University of Minnesota Mid-Central Research and Outreach
Center (Willmar, Minnesota) using a single 2 × 250-bp dual-
index run on an Illumina MiSeq with Nextera XT libraries to
generate approximately 30- to 50-fold coverage per genome.
Genome assembly of MiSeq reads for each sample was performed

using SPAdes assembler with the careful assembly option
and automated k-mer detection (Bankevich et al., 2012). The
identification of genus and species of the isolates was carried
out using fastANI (Jain et al., 2018) with a percentage greater
than 80% of identification. Acquired AMR genes, plasmid types
were identified using ABRicate tool (version 0.8.13), Resfinder
was the database used for the identification of resistance genes
(Zankari et al., 2012); PlasmidFinder database for plasmid
replicon identification (Carattoli et al., 2014).

Phylogenetic Analysis
Pan-genome analysis was carried out using Roary, core genes
were defined as genes being in at least 99% of isolates analyzed
(Page et al., 2015). A maximum-likelihood phylogenetic tree
with 1,000 bootstrap replicates based on core genomes of
isolates was created using RaxML-NG (Kozlov et al., 2019).
The phylogenetic tree was visualized using iTOL (Letunic and
Bork, 2019). Additionally, multilocus sequence typing (MLST)
(Larsen et al., 2012), based on seven housekeeping genes (adk,
fumC, gyrB, icd, mdh, purA, and recA) and core genome
(cgMLST) (Hansen et al., 2021) were performed using the Center
for Genomic Epidemiology website1. The isolates also were
characterized by Clermont phylogenetic typing by EzClermont
web (Waters et al., 2020).

Sequence Accession Number
Assembled genome contigs have been deposited in the European
Nucleotide Archive (ENA) at EMBL-EBI under the following
accession numbers: SAMN20872921, SAMN20872922,
SAMN20872998, SAMN20873936, SAMN20873938,
SAMN20873941, SAMN20873969, SAMN20873994,
SAMN20874637, SAMN20875987, SAMN20875988,
SAMN20875992, SAMN20875994, SAMN20875998,
SAMN20879008, SAMN20879962, SAMN20879963,
SAMN20879975, SAMN20879976, SAMN20880112,
SAMN20880135, SAMN20880136, SAMN20881008,
SAMN20881023, SAMN20881078, SAMN20881101,
SAMN20881102, SAMN20881103, SAMN20881104,
SAMN20881105, SAMN20881397, SAMN20881398,
SAMN20881399, SAMN20881400, SAMN20882115,
SAMN20882121, SAMN20882132, SAMN20882145,
SAMN20882146, SAMN20882147, SAMN20882148,
SAMN20882149, SAMN20883143, SAMN20883144,
SAMN20883145, SAMN20883146, SAMN20883147,
SAMN20884528, SAMN20884547, SAMN20884549,
SAMN20886717, SAMN20887874, SAMN20887881,
SAMN20887882, SAMN20887901, SAMN20887904,
SAMN20887915, SAMN20887924, SAMN20887927,
SAMN20887932, SAMN20887933, SAMN20888904,
SAMN20888908, SAMN20888911, SAMN20888912,
SAMN20888913, SAMN20888914, SAMN20888915,
SAMN20888916, SAMN20888921, SAMN20888932,
SAMN20888933, SAMN20888934, SAMN20888941,
SAMN20888958, SAMN20888959, SAMN20888960,
SAMN20888962, SAMN20890819, SAMN20891007.

1http://www.genomicepidemiology.org/
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TABLE 1 | Primers used for detection of different β-lactamase genes in the multiplex PCR.

Genes Primer sequence (5′ to 3′) Size (bp) References

blaSHV CTT TAT CGG CCC TCA CTCAA AGG TGC TCA TCA TGG GAA AG 237 Fang et al., 2008

blaTEM CGC CGC ATA CAC TAT TCT CAG AAT GA ACG CTC ACC GGC TCC AGA TTT AT 445 Monstein et al., 2007

blaCTX−M ATG TGC AGY ACC AGT AAR GTK ATG GC TGG GTR AAR TAR GTS ACC AGA AYC AGC GG 593 Boyd et al., 2004

blaOXA ACA CAA TAC ATA TCA ACTTCGC AGT GTG TTT AGA ATG GTG ATC 813 Ouellette et al., 1987

RESULTS

Prevalence of Escherichia coli
In total, 274 samples were collected, including 117 vegetable
samples, 119 fruit samples, and 38 irrigation water samples.
Across all samples, a total of 30 (11%) were positive for E. coli;
11 of the irrigation water samples had E. coli (29%, 11/38),
13 vegetables samples had E. coli (11%, n = 13), and 11 fruits
(9%, n = 11). In total, 165 isolates of E. coli were recovered
from 30 samples.

Antimicrobial Susceptibility Testing
Ninety-six isolates (58% n = 96) showed extended-spectrum beta-
lactamases (ESBL) phenotype according to the CLSI protocols;
58% of E. coli isolates from irrigation water were ESBL-producers,
11% from vegetables, and 30% from fruits. ESBL-E. coli were
isolated from garlic (2 isolates), onion (9 isolates), strawberry (10
isolates), blackberry (4 isolates), banana (14 isolates), and golden
berry (1 isolate).

The rate of resistance was high; more than 80% of recovered
E. coli isolates were resistant to cefazolin, ampicillin, and
cefotaxime. In the case of the E. coli isolates from irrigation
water, 100% of the isolates were resistant to ampicillin and
cefazolin. In addition, these isolates had a high prevalence of
resistance to cefotaxime (96%), tetracycline (79%), and cefepime
(84%) (Table 2).

One hundred percent of the E. coli isolates from vegetables and
fruits were resistant to ampicillin and cefazolin, cefotaxime, and
tetracycline. Ninety-one percent of E.coli isolates from vegetables
were resistant to cefepime. Two ESBL isolates from irrigation
water presented resistance to the critically important class
carbapenems, however no carbapenemase gene was detected.
Additionally, we observed 33 resistance profiles across all of
the extended spectrum beta-lactamase-producing E. coli isolates.
The resistance profiles with the highest number of isolates are
summarized in Table 3. In addition, 94% (90 of 96) of the E. coli
ESBL isolates presented multi-drug resistant (MDR) patterns,
with non-susceptible to at least one antibiotic in three or more
antimicrobial categories (Magiorakos et al., 2012).

Genotypes of Extended-Spectrum
β-Lactamase – Escherichia coli
We obtained high-quality genome sequences of 80 ESBL-E. coli
isolates. MLST analysis using 7 housekeeping genes showed
that 80 isolates were assigned to 37 known STs, whereas 7
isolates represented 7 novel STs. ST10 was shared by 14%
(n = 11) of isolates from three sources, with a different province

of origin: irrigation water (Pichincha), onion (Tungurahua),
banana (Manabí), and strawberry (Tungurahua). ST453 (5%,
n = 4) and ST224 (8%, n = 6) were shared in two
sources and in different provinces of origin of the sample:
ST453 (banana = Manabí, irrigation water = Pichincha),
ST224 (irrigation water = Pichincha and Zamora Chinchipe,
banana = Manabí) (Table 4).

The application of a cgMLST scheme showed 55 cgSTs, from
which only 2, cgST86226 (banana, Manabí, n = 5; irrigation
water Pichincha, n = 1) and cgST135673 (banana Manabí, n = 3;
irrigation water, Zamora Chinchipe n = 1) were isolates from
two different sources. Several isolates belonging to the same ST
(based on 7 genes) were assigned to different cgSTs based on
cgMLST and some of the isolates from the same sample had the
same cgST. Additionally, we constructed a maximum likelihood
tree based on the core genomes to compare the phylogeny of
isolates of E. coli from the irrigation water, vegetables, and fruits
(Figure 2). The phylogenetic analysis showed that all isolates with
the same cgMLST and obtained from different sources differed
in thousands of SNPs indicating that although the isolates were
genetically close, they have been evolving apart for many years
(Table 4 and Figure 2). The genomes of ESBL-E. coli isolates from
irrigation and fresh produce did not cluster apart; instead the
isolates form different sources seemed to share recent common
ancestry (Figure 2).

When ESBL-E.coli isolates were characterized by Clermont
phylogenetic typing, 38% (n = 30) isolates belonged to
phylogroup A: irrigation water (n = 21), strawberry (n = 3), onion
(n = 4), banana (n = 2). In phylogroup B1 accounted for 35%
(n = 28) of isolates: irrigation water (n = 15), banana (n = 7),
strawberry (n = 1), blackberry (n = 4), and onion (n = 1). In
phylogroup D accounted for 14% of the isolates: irrigation water
(n = 4), strawberry (n = 3), garlic (n = 2), onion (n = 1) and banana
(n = 1). Phylogroups B2, E and F accounted for 3% (n = 2), 5%
(n = 4) and 3% (n = 2) of isolates, respectively. Three (4%) isolates
of irrigation water belonged to the cryptic lineage (Figure 2).

Detection of β-Lactamase Genes
Ninety-six E.coli isolates phenotypically identified as ESBL, were
tested by Multiplex PCR for genes encoding SHV, TEM, CTX-M,
and OXA enzymes. The CTX-M gene was detected in 98% (94 of
96) of the isolates, followed by TEM 92% (88 of 96), SHV 28%
(27 of 96), and OXA 1% (1/96). Additionally, combinations of
genes were present: 64% had both CTX-M and TEM; and 26%
had CTX-M, TEM, and SHV.

The presence of AMR genes in the genome sequences of
80 ESBL-E. coli isolates was investigated by Resfinder. Several
ESBL-encoding blaCTX−M gene variants were distributed in
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TABLE 2 | Antibiotic susceptibility profiles of isolates ESBL- E.coli from irrigation water, vegetables, and fruits.

Antimicrobial
categories

Antibiotics Irrigation water n = 56
(frequency/percent)

Vegetables n = 11
(frequency/percent)

Fruits n = 29
(frequency/percent)

R S I/SDD R S I/SDD R S I/SDD

Cephalosporins Cefazolin 56/100 0/0 0/0 11/100 0/0 0/0 29/100 0/0 0/0

Penicillins Ampicillin 56/100 0/0 0/0 11/100 0/0 0/0 29/100 0/0 0/0

Aminoglycosides Gentamicin 17/30 39/70 0/0 7/64 4/36 0/0 15/52 13/45 1/3

Carbapenems Imipenem 2/4 49/88 5/9 0/0 10/91 1/9 0/0 20/69 9/31

Sulfonamides Trimethropin/Sulfamethoxazole 36/64 18/32 2/4 10/91 1/9 0/0 21/72 8/28 0/0

Cephalosporins Ceftazidime 25/45 10/18 21/38 7/64 0/0 4/36 19/66 0/0 10/34

Cephalosporins Cefepime 47/84 2/4 7/13 10/91 0/0 1/9 22/76 0/0 7/24

Fluoroquinolones Ciprofloxacin 36/64 10/18 10/18 7/64 2/18 2/18 15/52 9/31 5/17

Aminopenicillin +
inhibitor of
betalactamase

Amoxicillin/clavulanic acid 17/30 23/41 16/29 6/55 1/9 4/36 22/76 5/17 2/7

Cephalosporins Cefotaxime 54/96 1/2 1/2 11/100 0/0 0/0 29/100 0/0 0/0

Tetracyclines Tetracycline 44/79 12/21 0/0 11/100 0/0 0/0 29/100 0/0 0/0

R, resistant; I, intermediate; S, susceptible; SDD, susceptible-dose dependent in the case of cefepime; n, number of isolates tested.

isolates from irrigation water and fresh produce (Figure 3).
Among the 80 ESBL-E. coli isolates, we identified allelic
variants of blaCTX−M in 77 (96%). The most common allelic
variants were blaCTX−M−55 in 49 isolates (64%) and the second
most common allele was blaCTX−M−65 in 14 isolates (18%)
(Supplementary Table 1).

We found some discrepancies in some ESBL- E.coli isolates
that were positive by PCR for some genes but negative by

TABLE 3 | The sixteen most common resistance profiles for ESBL-E. coli isolated
from water, vegetables, and fruits in Ecuador.

Resistance profiles Produce/Fruits Irrigation
water

Total

CZ-AM-GM-SXT-CAZ-FEP-
CIP-AmC-CTX-TE

14 4 18

CZ-AM-FEP-CTX-TE 1 5 6

CZ-AM-SXT-CAZ-FEP-CIP-
CTX-TE

0 4 4

CZ-AM-SXT-CAZ-FEP-CIP-
AmC-CTX-TE

2 1 3

CZ-AM-GM-SXT-CAZ-FEP-
CIP-CTX-TE

0 4 4

CZ-AM-GM-SXT-FEP-CIP-
CTX-TE

1 4 5

CZ-AM-SXT-FEP-CIP-CTX-TE 0 4 4

CZ-AM-SXT-FEP-CIP-AmC-
CTX-TE

4 2 6

CZ-AM-SXT-CAZ-FEP-CTX-TE 3 0 3

CZ-AM-CAZ-FEP-CTX-TE 1 2 3

CZ-AM-GM-CAZ-CTX-TE 2 0 2

CZ-AM-SXT-FEP-AmC-CTX-TE 2 1 3

CZ-AM-SXT-FEP-CTX-TE 4 0 4

CZ-AM-GM-CAZ-AmC-CTX-TE 4 0 4

CZ-AM-SXT-FEP-AmC-CTX 0 2 2

CZ-AM-SXT-CIP-CTX-TE 0 2 2

CZ, cefazolin; AM, ampicillin; GM, gentamicin; IPM, imipenem; SXT, trimethropin-
sulfamethoxazole; CAZ, ceftazidime; FEP, cefepime; CIP, ciprofloxacin; AmC,
amoxicillin/Clavulanic acid; CTX, cefotaxime; TE, tetracycline.

whole genome sequencing (WGS): 12 isolates for blaTEM gene, 9
isolates for blaSHV genes and blaCTX−M in one gene. Additionally,
2 isolates showed blaSHV and blaTEM using WGS, but were
negative by PCR. The WGS analysis of ESBL-E. coli allowed us to
identify 2 isolates of E. coli from irrigation water and 3 isolates
from banana with the presence of the mcr-1 gene that confers
resistance to colistin.

DISCUSSION

In this study, we found that irrigation water, fruit, and vegetables
were contaminated with ESBL-E. coli and the highest percentage
was found in irrigation water (58%), which confirms the
important and emerging role that irrigation water, contaminated
with wastewater, has in the spread of ARB and ESBL E. coli
and ESBL genes. (Gekenidis et al., 2018a; Vital et al., 2018). The
major ESBL gene was the CTX−M (94 of 96 isolates) followed by
blaSHV 28% (27 of 96), and blaOXA 1% (1of 96). The prevalence
of blaCTX−M type ESBL genes in irrigation water E. coli was
57%, followed by 15% in banana isolates. Additionally the most
abundant allelic variants of blaCTX−M found in vegetables, fruits
and irrigation water (blaCTX−M55, blaCTX−M65, and blaCTX−M15)
(Table 4) are the same alleles found in children and domestic
animals in Ecuador (Salinas et al., 2021), in rivers that cross
cities (Ortega-Paredes et al., 2020a), and in bacteria from human
infections in Ecuador (Cartelle Gestal et al., 2016; Soria Segarra
et al., 2018). The presence of the same blaCTX−M alleles in
isolates from different sources provides strong evidence that
these sources (irrigation water, domestic animals, and humans)
are connected. The allelic variants of blaCTX−M from isolates
obtained from same European country, but from different
(unconnected) sources, animal species or time periods, have been
shown to be different (Day et al., 2019; Ludden et al., 2019).

Our genomic analysis showed that most strains obtained from
irrigation water and produce were genetically different with 3
exceptions (HY1.4.3 and V427.2; HP6.1 and V661.1; HP1.4 and
V662.1), however the number of SNPs between thes strains
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TABLE 4 | Source and genetic characteristics of ESBL- E. coli isolates from different sources in Ecuador.

Relevant antimicrobial resistance genes

Sample (*) Source Location ST cgST CTX-M TEM SHV OXA mcr-1

H505 Irrigation Cañ-La Troncal 937 87149 55 141

H719 Irrigation Chim-Riobamba 617 93239 3

H719 Irrigation Chim-Riobamba new7 143498 15 1 187 1

H726 Irrigation Imb-Ibarra 155 17156 55 141

V662 Banana Man-Portoviejo 10 15007 55 1

V661.1 Banana Man-Portoviejo 847 28793 55

V662 Banana Man-Portoviejo 6598 39050 8, 55 1

V662 Banana Man-Portoviejo 453 86226 8, 55 1

V662 Banana Man-Portoviejo 453 86226 55 1

V662 Banana Man-Portoviejo 453 86226 55 1 12

V663 (3) Banana Man-Portoviejo 224 135673 55 1 1

V661.3 Banana Man-Portoviejo new3 136455 55 1 12

HY1.3.3 Irrigation Pich-Yaruquí 6027 2725 55 1

HY6.5.3 Irrigation Pich-Yaruquí 522 4492 55 1

HP1.2 Irrigation Pich-Yaruquí 10 5994 55,65 141

HP6.4 Irrigation Pich-Yaruquí 100 6271 15

HY8.5.3 Irrigation Pich-Yaruquí 131 9613 12

HY3.4.3 Irrigation Pich-Yaruquí 38 13889 9 1

HY7.5.3 Irrigation Pich-Yaruquí 206 17904 65 1

HP1.4 Irrigation Pich-Yaruquí 752 21656 65

HY4.2.2 Irrigation Pich-Yaruquí 224 29102 55 1

V727 (2) Strawberry Pich-Yaruquí new4 33815 65 12

HP6.2 Irrigation Pich-Yaruquí 1725 34210 55 5

HY3.5 Irrigation Pich-Yaruquí 1706 38416 15 1

HP1.1 Irrigation Pich-Yaruquí 155 40558 65

HP4.3 Irrigation Pich-Yaruquí 7290 43104 8

HP7.2 Irrigation Pich-Yaruquí 10 46675 55 12

HP7.4 Irrigation Pich-Yaruquí 10 46675 55 141 12

HY2.4.2 Irrigation Pich-Yaruquí new2 79725 15

HY4.4.2 Irrigation Pich-Yaruquí 3944 80110 55 1

HP4.4 Irrigation Pich-Yaruquí 117 81681 55 141

HP2.4 Irrigation Pich-Yaruquí 117 82990 55 141

HP6.3 Irrigation Pich-Yaruquí 453 86226 55 141

HY6 (2) Irrigation Pich-Yaruquí 540 96158 15 1

HY1 (2) Irrigation Pich-Yaruquí 540 96158 15 1

HP7 Irrigation Pich-Yaruquí 124 96630 65

HY6 Irrigation Pich-Yaruquí 9580 96650 55 1

HY2.3.3 Irrigation Pich-Yaruquí 10 101136 15 1

HY8.2.2 Irrigation Pich-Yaruquí 9962 116134 1 12

HP6.1 Irrigation Pich-Yaruquí 1725 117316 55

HY4.4 (2) Irrigation Pich-Yaruquí 205 117479 15 1

HP6.5 Irrigation Pich-Yaruquí 10340 117591 3 141

HP2 Irrigation Pich-Yaruquí 57 117853 55 141

HP1.5 Irrigation Pich-Yaruquí 57 117853 55 141

V727.4 Strawberry Pich-Yaruquí new6 119048 65 176 12

V727.5 Strawberry Pich-Yaruquí 4541 119048 65 12

HY6.5 Irrigation Pich-Yaruquí 10 134002 55 1

HY1.3.2 Irrigation Pich-Yaruquí 2973 135505 55, 65 1

HP1.3 Irrigation Pich-Yaruquí 354 137556 55 1

HY4.3.2 Irrigation Pich-Yaruquí 224 138183 55 1

HY1.1.4 Irrigation Pich-Yaruquí new1 138274 1

HY5.2.1 Irrigation Pich-Yaruquí 155 138689 55 1

(Continued)
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TABLE 4 | (Continued)

Relevant antimicrobial resistance genes

Sample (*) Source Location ST cgST CTX-M TEM SHV OXA mcr-1

HY3.5.2 Irrigation Pich-Yaruquí 155 138689 55 1

HY1.4.3 Irrigation Pich-Yaruquí 394 142214 15

HY6.1.2 Irrigation Pich-Yaruquí 69 144487 55 1 1

H579.2 Irrigation Tun-Ambato 206 4018 65

V696 (4) Blackberry Tun-Ambato 5044 32678 55 1

V698 (3) Strawberry Tun-Ambato 10 38518 55 1

V1140 (2) Onion Tun-Ambato 4204 55533 55, 65 1

V1140 Onion Tun-Ambato 4204 55533 55 1

V427.5 Onion Tun-Ambato 58 60063 55 1

V469.5 Onion Tun-Ambato 10 69259 55 1

V1147 (2) Garlic Tun-Ambato 973 118630 3 1

H579.1 Irrigation Tun-Ambato 155 138689 55 1

V427.2 Onion Tun-Ambato 4368 142214 15

H430 Irrigation Zam-Yantzaza 224 135673 55 1 1

*Number of isolates with the same cgST obtained from the same sample. Tun, Tungurahua; Pich, Pichincha; Man, Manabi; Zam, Zamora; Imb, Imbabura; Cañ, Cañar;
Chim, Chimborazo.

FIGURE 2 | Frequency of allelic variants of AMR genes in E. coli from different sources.
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FIGURE 3 | Phylogenetic tree of ESBL-E.coli sequences from irrigation water, fruits, and vegetables. Maximum-likelihood phylogenetic tree of core genomes of 80
ESBL- E.coli isolates from irrigation water, fruits, and vegetables based. Labels show isolate ID assigned based on host ID, origin of isolate is shown by font colors
(irrigation water: blue, onion: brown, banana: yellow, blackberry: purple, strawberry: red, and garlic: green). Background colors in branches indicate the seven
phylogroups identified. Numbers represent bootstrap values using 1000 pseudo-replicates.

ranged from 9,332 to 20,310 suggesting that these strains have
been evolving apart for many years (Table 4). As expected, some
isolates from the same vegetable or fruit showed higher level
of genetic closeness, for instance: V698.3 and V698.4 had 12
SNP; V663.4 and V663.5, 6 SNPs; V696.2 and V696.4, 13 SNPs;
V1147.5 and V1147.1, 2 SNPs). Interstingly, 2 isolates obtaind
from the same irrigation channel 1 month appart (HY3.5.2 and
HY5.2.1) had 24 SNPs, suggesting that this strain was higly
adapted to water. We did not find additional asociation of ESBL-
E.coli clusters with provinces, which may indicate that different
E. coli lineages have been widely distributed in the Ecuadorian
territory (Figure 2).

These findings may indicated that E. coli populations in
the environment are highly diverse (Day et al., 2019; Ludden
et al., 2019) and blaCTX−M-genes are probably diseminating in
the environmet mostly by mobile genetic elements and not so
much by bacterial clones. The plasmids carrying blaCTX−M-genes
disseminate efficiently by conjugation, even between bacteria
belonging to different genera (Cantón et al., 2012). Transposable
elements (such as ISEcp1) are also very active in blaCTX−M-gene
mobilization among different plasmids (Cantón et al., 2012). The
activity of these MGEs conceals the source of origin of these
antimicrobial resistance genes.

The majority of strains isolated from irrigation water and
vegetables belonged to phylogroups A and B1 which are

considered more generalists, found in most warm-blooded
animals and environmental samples (Touchon et al., 2020).
We found that some genetically close E.coli isolates, obtained
from the same vegetable, had 1 or 2 additional antimicrobial
resistance genes which may be a reflection of the dynamic process
of antimicrobial resistance gene-turnover in the environment
(Barrera et al., 2019).

The blaCTX−M type of ESBL gene is of increasing concern
globally (Bevan et al., 2017), and is the predominant ESBL gene
in both community and hospital-acquired infections (Manyahi
et al., 2017; Fils et al., 2021). A troubling feature of blaCTX−M-
bearing plasmids is their ability to capture additional resistance
determinants, including carbapenemase genes (Partridge et al.,
2012; Potron et al., 2013). Further analysis is necessary to
understand whether the plasmids carrying blaCTX−M genes, in
bacteria from irrigation water and produce, are the same as those
circulating in bacterial isolates from human isolates.

In our study fruits, such as bananas, we hypothesize that their
contamination was due to post-harvest processes in which the
food is often washed in contaminated water and reused to wash
several batches of the product. Although it is true, the skin of the
product protects the fruit, the transmission of resistant bacteria
can occur through contact and inadequate consumer hygiene
(Harris et al., 2003; Hong et al., 2013; Kawamura et al., 2017;
Murray et al., 2017; Hölzel et al., 2018).
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We also found a higher prevalence of ARB in vegetables
in farms than in retail markets in Ecuador (Ortega-Paredes
et al., 2018). However, other reports from the Philippines,
Lebanon, and Portugal have documented even higher levels
(Faour-Klingbeil et al., 2016; Araújo et al., 2017; Vital et al., 2018).
In most of the studies, the collection of produce samples has been
carried out in groceries and wholesale markets, which makes it
difficult to analyze sources of contamination (Bhutani et al., 2015;
Yang et al., 2019; Colosi et al., 2020; Richter et al., 2020; Song
et al., 2020). In this study, we collected produce and water from
farms and their respective irrigation systems, which allowed us
to study contamination at the source (i.e., not due to handling,
transport, distribution, and processing). We found that MDR
isolates were more prevalent in irrigation water isolates compared
to fresh produce. Similar results were observed in the Philippines,
where 58% of the E. coli isolates from irrigation water were MDR
(Paraoan et al., 2017). The resistance to these antibiotics was also
observed in E. coli isolates from irrigation water in other studies
(Pignato et al., 2009; Ben Said et al., 2015; Vital et al., 2018).

Our study had some limitations; the number produce
and fruit samples obtained in each location may not be
representative of produce from other agricultural settings in
Ecuador. Additionally, long-read sequencing of plasmids could
not be carried out due to budgetary limitations.

We found evidence that fresh produce constitutes an
important source of ESBL-E. coli and represents a route for
the dissemination of resistance genes through the consumption
of raw products (Rasheed et al., 2014; Hölzel et al., 2018; Al-
Kharousi et al., 2019). We hypothesize that the main source of
ABR contamination is irrigation water used for the cultivation
of produce, which has been suggested by others as well (Pignato
et al., 2009; Gekenidis et al., 2018b). In Ecuador, the lack of
sewage treatment may lead to contamination of the food supply
with ARB, mainly belonging to the Enterobacteriaceae family
(Caicedo-Camposano et al., 2019; Ortega-Paredes et al., 2020a).
Antibiotic resistant E. coli can transfer antibiotic resistance
determinants not only to other strains of E. coli, but also
to other species of potentially pathogenic bacteria within the
gastrointestinal tract (Grasselli et al., 2008; Huddleston, 2014).

CONCLUSION

We found a high prevalence of ESBL-E. coli on produce and
in irrigation water; blaCTX−M was the main ESBL gene in these
isolates. Allelic variants of the blaCTX−M gene found in irrigation
channels and vegetables were the same as those observed in
commensal E. coli from domestic animals, and commensal and

pathogenic E. coli from humans, suggesting connection between
these different sources. This paradigm poses the potential risk of
further spreading ARB that are resistant to last-line antibiotics
such as carbapenems, which are used exclusively in serious
infections in hospitals (Sheu et al., 2019). In this case, resistance
goes full circle, from humans to vegetables and fruits (potentially
meat and dairy), and back to human populations (Murray
et al., 2021). Greater investments are needed to support the
development and installation of wastewater treatment systems
throughout Ecuador, as well as in other low- and middle-
income countries.
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This paper reviews current knowledge on sources, spread and removal mechanisms of
antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment
plants and downstream recipients. Antibiotic is the most important tool to cure bacterial
infections in humans and animals. The over- and misuse of antibiotics have played a
major role in the development, spread, and prevalence of antibiotic resistance (AR) in
the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can
be transferred and spread amongst bacteria via intra- and interspecies horizontal gene
transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing
an enormous variety of pollutants, including antibiotics, and chemicals from different
sources. They contain large and diverse communities of microorganisms and provide
a favorable environment for the spread and reproduction of AR. Existing WWTPs are
not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs,
which therefore remain present in the effluent. Studies have shown that raw and
treated wastewaters carry a higher amount of ARB in comparison to surface water, and
such reports have led to further studies on more advanced treatment processes. This
review summarizes what is known about AR removal efficiencies of different wastewater
treatment methods, and it shows the variations among different methods. Results
vary, but the trend is that conventional activated sludge treatment, with aerobic and/or
anaerobic reactors alone or in series, followed by advanced post treatment methods like
UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated
sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR
levels in biosolids, settled by-product from wastewater treatment, and discusses AR
removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-
points and suggestions for dealing with and preventing further increase of AR in WWTPs
and other aquatic environments, together with a discussion on the use of mathematical
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models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models
already play a role in the analysis and development of WWTPs, but they do not consider
AR and challenges remain before models can be used to reliably study the dynamics
and reduction of AR in such systems.

Keywords: antibiotics, antibiotic resistance genes, antibiotic resistant bacteria, spread mechanisms, wastewater
treatment plants

INTRODUCTION

Antibiotic substances are by far the most powerful tools available
for the treatment of infectious diseases by inhibition of bacterial
cell growth. In addition to being used for the treatment of
infections in human patients and farm animals, antibiotics
are also routinely given to healthy farm animals to promote
growth and proactively prevent disease outbreaks. Antibiotic
resistance (AR) is the ability of bacteria to overcome and resist
exposure to antibiotic substances, this is made possible by
the acquisition of antibiotic resistance genes (ARGs) (Davison
et al., 2000; Wright, 2010). Extensive use of antibiotics since
the successful purification and mass production of penicillin in
the middle of the twentieth century until today has led to an
increase in antibiotic resistance, compromising the effectiveness
of antibiotics (Davies and Davies, 2010).

Antibiotic resistance is a global and challenging issue (Walsh,
2003; Deurenberg and Stobberingh, 2008; Livermore, 2012).
The risk it poses needs to be tackled in a context that
combines environmental, and human health, which focuses on
the mechanisms that drive biological (growth and exchange) and
physiochemical (transport and conversion) spread. Considering
human health issues like AR in a context that combines human,
animal and environmental factors is the essence of the One
Health initiative’s perspective, endorsed by the World Health
Organisation (WHO) (One Health Initiative, 2020) and AR has
large implications for half a dozen of the United Nation’s (UN’s)
sustainable development goals (WHO, 2020). Part of the issue
is to understand how ARGs spread in different environments
[wastewater, wastewater treatment plants (WWTPs), soil, and
receiving aquatic eco-system] to prevent the spread existing and
the development of new ARGs (Brooks et al., 2008).

For more than 100 years, the Activated Sludge Process
has been and still is among the most widespread wastewater
treatment technologies used for the removal of key pollutants
from municipal wastewater (Stensel and Makinia, 2014; van
Loosdrecht and Brdjanovic, 2014). By bacterial uptake and
metabolic conversions of organics and nutrients, cellular growth
provides for an auto-catalytical removal process which is further
enhanced by settling and recirculation of active biomass as
originally proposed by Ardern and Lockett (1914). While
bacterial densities in wastewater are normally in the range
of 105–108 cells per ml (Tchobanoglous et al., 2014), the
enhancement of biomass in modern biological WWTPs increases
the bacterial density in the bioreactors by 3 orders of magnitude
and selection by sedimentation results in dense bacterial
aggregates. Additionally, depending on operating conditions and
temperature, there can be very high material turnover (up to

90%) and much higher specific heterotrophic growth rates (up to
13.2 day−1) in WWTPs bioreactors than in natural water systems.
In WWTP bioreactors, microbial diversity and interactions
are ubiquitous and frequent (Daims et al., 2006; Nielsen and
McMahon, 2014). High abundance, density, diversity, activity,
and interactions in the activated sludge bioreactors would suggest
an increased rate of gene transfer, including horizontal and
vertical exchange of ARG. Mechanisms and rates at which
exchange occur in the microbiome of these systems are now
under intense study, and resistomes (all ARG’s in a microbial
community) of activated sludge systems are currently being
mapped (Manaia et al., 2018).

Established effluent standards set the quality of WWTP
effluents based on environmental effect parameters such as
the chemical and biochemical oxygen demand, the amount of
suspended solids, total nitrogen, number of coliform bacteria, etc.
(Directive 91/271/Eec, 1991). It is not known how, or whether
at all, these parameters indicate the prevalence of antibiotic
resistant bacteria (ARB) and ARGs. Lately, more attention has
been paid to examine detection and elimination techniques for
ARB and ARGs, in addition to removal techniques for other
micropollutants like detergents, pesticides, pharmaceuticals, and
personal care products (Łuczkiewicz et al., 2010; Luo et al.,
2014). Some WWTPs use extra disinfection units at the end
of the biological treatment process, which include chlorination,
UV radiation and ozonation, or quaternary advanced treatment
techniques such as advanced oxidation processes (AOPs) or
membrane filtration. Such unit processes can as this review will
show reduce the number of ARB and possibly also ARGs in the
WWTP effluent but are costly to operate and may not be as
effective as observed in laboratory studies (Auerbach et al., 2007;
Zhang et al., 2015, 2016a; Zhuang et al., 2015). Biological removal
of organic material from wastewater is linked to the fast growth of
microorganisms in the WWTP, and since the biomass builds up
some is continuously discarded as excess biological sludge. ARB
and ARGs that are present in the biomass of the reactor will also
be present in the sludge, therefore further treatment processes of
excess sludge need to be considered. We will in the last part of
section four of this review go through the current knowledge of
how effective the different sludge treatment methods are able in
reducing ARB and ARGs.

This review will present the major groups of antibiotics, the
major groups of mechanisms for antibiotic resistance in bacteria,
and the general bacterial mechanisms for genetic exchange, but
only briefly as other reviews already have covered this in general
(Wright, 2010, 2011; Pazda et al., 2019; Zhu et al., 2021) and in
the context of wastewater treatment. More space is instead given
to go through what is known about which wastewater sources
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show the high occurrence of antibiotic resistance, how antibiotic
resistance persists and spreads through WWTPs, and what
contributes to this persistence. Previous works in the literature
already focused on complete lists of every specific type of ARGs
that have been found in WWTPs (Pazda et al., 2019), and on the
strength and weaknesses of different methods used to measure
and analyze ARB and ARGs content in wastewater (Manaia et al.,
2018). Therefore, this review will focus on documenting what
is known about the removal efficiency of different treatment
processes or technologies, i.e., what are the reported elimination
efficiencies of ARGs and ARB for different treatment technologies
for both wastewater and sludge, and whether the reported
results are consistent. Moreover, in this work special efforts have
been put into gathering and reviewing results from studies of
elimination of ARGs and ARB in different sludge and biosolids
treatment processes, as this has been more or less overlooked in
other reviews (Barancheshme and Munir, 2018; Pazda et al., 2019;
Bairán et al., 2020; Zhu et al., 2021).

In essence, this systematic review aims to describe the
factors that affect the persistence and spread of antibiotic
resistance in wastewater treatment and to evaluate current and
emerging treatment technologies. For completeness this review
documents removal efficiencies for antibiotic substances for
different treatment technologies, but it does not aim to discuss the
pathways and mechanisms for the breakdown of these substances
at length, which has been addressed in a recent review by
Zhu et al. (2021). Additionally, this review will also discuss
how mathematical models can be used to better understand the
dynamics of antibiotic resistance spread in WWTPs. It has been
suggested that mathematical modeling can help to quantify and
simulate the spread of ARGs in WWTPs, but as this review
will show only a few models have been proposed and even
fewer have been sufficiently parameterized and validated. It will
discuss why, and which challenges remain to be tackled before
mathematical models can be used to their full potential. Finally,
this review concludes with future directions and some key points
that should be prioritized for improving the current state of
antibiotic resistance in WWTPs.

ANTIBIOTIC RESISTANCE:
MECHANISMS, SOURCES, AND
TRANSFER

Antibiotics are classified into five major groups, according
to their mode of action (Figure 1): (i) Cell wall synthesis
inhibition (vancomycin, cephlosporins, β–lactams, bacitracin); (ii)
Protein synthesis inhibition (aminoglycosides, chloramphenicol,
tetracycline, linezolid); (iii) Nucleic acid synthesis inhibition
(rifampin, metronidazole, quinolones, fluoroquinolones); (iv)
Antimetabolites (trimethoprim, dapsone, sulphonamide) and; (v)
Cell membrane disintegration (polymyxin, daptomycin). Note
that some sources use a coarser division into only four groups
(Calderón and Sabundayo, 2007; Kapoor et al., 2017) whereas
other use a bit finer division into six (Wanger et al., 2017).

Bacteria have developed four main types of resistance
mechanisms against antibiotics (Figure 1; Zhang et al., 2009;

Wright, 2010): (i) Efflux pumps, which effectively excrete
antibiotics from the cell (Wright, 2011). There are five
efflux protein families: ATP-binding cassette (ABC), multidrug
and toxic compound extrusion (MATE), major facilitators
(MFs), resistance nodulation cell division (RND), and small
multidrug resistance (SMR) (Nishino and Yamaguchi, 2001).
(ii) Inactivation of antibiotics occurs when the activity of the
antibiotic substance is directly hindered by hydrolysis, or by
conversion of functional groups etc. (Wright, 2005; Diaz et al.,
2014). (iii) Target by-pass: strategies for target by-pass includes
creating new pathways to circumvent the originally targeted
enzyme, overproduction of the target compound (Munita and
Arias, 2016), structural changes in the cell wall (Vila et al., 2007),
and prevention of the antibiotic to bind to its target (Wright,
2010). (iv) Target modification: occurs through modification of
the antibiotic targets themselves (Wright, 2010). Multiple types
of resistance mechanisms may simultaneously confer resistance
against the same family of antibiotics (de Sousa Oliveira et al.,
2016). Conversely, one type of resistance mechanism can also
confer resistance against more than one type of antibiotics.

Wastewater from hospitals and wastewater and waste
from animal husbandry together with runoff from manure
amended fields are essential ARB and ARGs sources in aquatic
ecosystems (Marti and Balcazar, 2013). Hospital wastewaters
have especially been shown to contain many ARGs (Zhang
et al., 2009; Rowe et al., 2017). One of the first reports dates
back to the early 1970s, Grabow and Prozesky (1973) studied
the presence of resistant coliforms in hospital wastewater
in Pietermaritzburg in South Africa. They found that 26%
of coliform bacteria in hospital wastewater had transferable
resistance while only 4% of coliform bacteria in municipal
wastewater had transferable resistance (Grabow and Prozesky,
1973). The same trend is seen today. Based on several studies
done in Europe and Asia, the total ARGs and ARB concentrations
in hospital wastewater were 2–9 orders of magnitude higher
than municipal wastewater (Li et al., 2015; Lamba et al.,
2017; Hutinel et al., 2019). Rowe et al. (2017) showed that
the normalized abundance of ARGs in hospital wastewater
samples from the Cambridge University Hospitals was 9-folds
greater than in samples collected from the effluent lagoon of
the University of Cambridge dairy farm and 34-folds greater
than in samples from the River Cam source water, which served
as background samples for the environment. Another detailed
study of wastewater from three different hospitals in Romania
showed the presence of genes encoding for resistance for
tetracyclines, aminoglycosides, chloramphenicol, β-lactams,
sulphonamides, quaternary ammonium, and macrolide-
lincosamide-streptogramin B antibiotics with abundance
levels in as high ranges as 0.01–0.1 copies per 16S rRNA gene
copies measured by qPCR (Szekeres et al., 2017). Moreover, in a
recent review by Hassoun-Kheir et al. (2020), 37 studies on the
occurrence of AR in hospital wastewaters were examined. The
review found that 30 (81%) of the studies reported that hospital
wastewater contains higher amounts of AR than community
wastewater. Furthermore, in a subset of studies where the
impact of hospital wastewater on the dissemination of AR in the
environment was considered, 25 out of 32 (78%) studies held
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FIGURE 1 | Antibiotic action and resistance mechanisms (adapted from Wright, 2010).

that hospital wastewaters had an important role as a source of
AR to the environment.

Apart from the vertical inheritance, antibiotic resistance
can be obtained in two ways, through mutation or by
horizontal gene transfer (HGT) (Jury et al., 2010). The latter
is the most concerning regarding the spread of antibiotic
resistance in WWTPs since ARGs can potentially be transferred
between organisms effectively and much faster than resistance
development through mutations. HGT is a non-reproductive
intra- and inter-species transfer of genetic information by
means of mobile genetic elements (MGE), such as plasmids and
transposons (Barlow, 2009; Huang et al., 2017a). The movement
of genes from chromosomes to and between MGEs are mostly
facilitated by integrons (Mazel, 2006; Davies and Davies, 2010;
Gillings, 2014). There are three different HGT mechanisms
for the spread of MGEs. (i) Conjugation: transfer mechanism
that requires cell-to-cell contact, where a recipient bacterium
acquires genetic material from a donor bacterium, usually in
the form of a plasmid (Madigan et al., 2006; Figure 2). (ii)
Transformation: intra- and inter-species exchange of genetic
information by uptake of, free extracellular suspended DNA,
which can only be received by a competent bacterium. Following
uptake and translocation to the cytoplasm, it is incorporated
into the recipient’s chromosome or into a plasmid (Madigan
et al., 2006; Heuer and Smalla, 2007). Finally; (iii) Transduction:
involves bacteriophages that transport different types of genetic
elements from their host to the receiver (Cano and Colomé, 1988;
Snyder and Champness, 2007; Modi et al., 2013), whereupon
this is incorporated into the genome of the new host by
recombination (Figure 2). There are two types of this mode
of transfer, namely generalized and specialized transductions.

In generalized transduction, only a segment of bacterial DNA
is randomly packed into the bacteriophage head, and bacterial
host DNA becomes a part of the DNA of the phage whereas in
specialized transduction, both phage and specific bacterial DNA
are packed into the head (Chiang et al., 2019). Transduction
may also occur via gene transfer agents (GTAs), which are
DNA carrying structures that resemble bacteriophages, but
which do not self-replicate. Although GTAs exact impact has
not yet been determined, their potential to act as carriers
of resistance in the environment continues their attention
(von Wintersdorff et al., 2016).

OCCURRENCE AND SPREAD OF
ANTIBIOTIC RESISTANCE GENES IN
WASTEWATER TREATMENT PLANTS

Although antibiotic resistance (AR) occurs naturally at low
levels in most ecosystems, the occurrence of ARB and ARGs at
high levels is associated with anthropogenic activities. Table 1
shows an overview of resistance genes found in bacteria from
wastewater effluents and in aquatic ecosystems. ARGs are
frequently detected in WWTPs (Chen and Zhang, 2013; Novo
et al., 2013; Rizzo et al., 2013; Manaia, 2014; Table 1), and studies
have shown that the ARGs found in wastewaters often reside
in clinically relevant pathogenic bacteria (Figueira et al., 2011;
Marti et al., 2013a; Hembach et al., 2017). Samples from three
different stages of a WWTP in Poland showed that approximately
22, 5, and 9% of Enterobacteriaceae strains isolated from (i) the
raw sewage in the primary sedimentation tank, (ii) the aeration
tank, and (iii) from the effluent, respectively, carried the intI
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FIGURE 2 | Antibiotic resistance transport mechanisms (adapted from von Wintersdorff et al., 2016).

integron; and that all strains which carried this integron were
resistant to at least three unrelated antibiotics (Mokracka et al.,
2012). Note that, although a significant fraction of bacteria in the
effluent of this WWTP were still resistant, the above percentages
must be interpreted with care as the total number of culturable
coliform bacteria in the effluent was reduced with a factor of as
much as 103 in the effluent as compared to in the raw sewage
(Mokracka et al., 2012). Many of the Enterobacteriaceae isolated
from a wastewater treatment plant in the study by Amador et al.
(2015) were also found to be resistant, and even multi-resistant.
The isolates showed resistance against β-lactam group antibiotics,
including cefoxitin, amoxicillin, cefotaxime, and non β-lactam
groups antibiotics, including trimethoprim/sulfamethoxazole,
ciprofloxacin, and tetracycline. Other studies (Mokracka et al.,
2012; Szekeres et al., 2017; Karkman et al., 2018) have also shown
that resistance genes against antibiotics, including tetracycline,
methicillin and sulphonamide are present in WWTPs. Based
on a review of many studies, tetracycline (tet) resistance genes
have been found to be one of the most commonly occurring
ARGs in wastewater treatment systems in many countries
(Zhang et al., 2009).

Hospital wastewater is a particular risk as it may contain
not only pathogenic single- and multi-drug resistant (MDR)
bacteria, as detailed in the previous section but also relatively
high concentrations of antibiotic compounds. A high percentage
of administered antibiotics are not metabolized in humans

and are thus excreted into the sewerage (Sabri et al., 2018).
Rodriguez-Mozaz et al. (2015) analyzed a broad range of
antibiotics including β-lactams, lincosamides, macrolides,
quinolones/fluoroquinolones, sulfonamides, tetracyclines,
dihydrofolate reductase inhibitors, and nitroimidazoles and
ARGs released from hospitals and urban wastewaters, their
removal by a WWTP effluent and their influence on a receiving
river. The results show that antibiotics were detected at high
concentrations in downstream river samples with antibiotics
such as ofloxacin reaching concentrations up to 131.0 ng/L
while not being detected upstream of the WWTP discharge.
Moreover, ciprofloxacin and sulfamethoxazole had almost
10-fold higher concentrations in downstream than upstream
of the WWTP discharge. Studies indicate that the presence
of incompletely degraded antibiotic compounds may exert
biological selection pressure for the development of ARGs and
provide a breeding ground in WWTPs for HGT between bacteria
(Zhang et al., 2009; McKinney and Pruden, 2012; Bouki et al.,
2013; Sharma et al., 2014) and propagation of resistance genes
(Davies and Davies, 2010).

During wastewater treatment, antibiotics, other
pharmaceutical residues, and heavy metals present in the
wastewater are in continuous contact with bacteria, leading to
the potential selection pressure for resistance genes (Zhang et al.,
2009; Ding and He, 2010; Bouki et al., 2013). It is difficult to
determine a safe concentration of antibiotics in wastewater as
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TABLE 1 | Overview of antibiotic resistance genes (ARGs) found in influent,
effluent, and activated sludge in wastewater treatment plants (WWTPs) and if their
concentrations increase (↑) or decrease (↓) from influent to effluent [adapted from
Pazda et al. (2019) and shortened to only include studies that have measured
changes in concentration from influent to effluent].

Antibiotics Antibiotic
resistance
genes
(ARGs)

Sample Country References

Influent effluent

activated sludge

β–Lactams ampR + ↓ N.A. Canada Biswal et al., 2014

blaAmpC + + ↑ N.A. Germany Alexander et al., 2015

blaCMY−13 + + ↑ N.A. Sweden Bengtsson-Palme
et al., 2016

blaCTX−M + + ↓ N.A. Canada Neudorf et al., 2017

blaCTX−M + + ↓ N.A. Canada Neudorf et al., 2017

blaCTX−M−1 + + ↑ N.A. Portugal Amador et al., 2015

blaCTX−M−9 + – ↓ + Poland Korzeniewska et al.,
2013

blaCTX−M−12 + + ↑ + Canada Biswal et al., 2014

blaCTX−M−32 + + ↓ N.A. Denmark Laht et al., 2014

blaFOX + + ↑ N.A. Portugal Amador et al., 2015

blaOXA + + ↓ + China Yang et al., 2014

blaOXA + + ↑ N.A. Portugal Amador et al., 2015

blaOXA−10 + + ↓ + China Yang et al., 2014

blaOX A−46 + + ↓ + China Yang et al., 2014

blaOX A−58 + + ↓ N.A. Denmark Laht et al., 2014

blaOX A−58 + + ↓ N.A. Finland Hultman et al., 2018

blaSHV−5 + – ↓ + Poland Korzeniewska et al.,
2013

blaTEM + + ↑ N.A. Canada Biswal et al., 2014

blaTEM + + ↑ N.A. Portugal Amador et al., 2015

blaTEM + + ↑ N.A. Spain Rodriguez-Mozaz
et al., 2015

blaVIM−1 + + ↑ N.A. Germany Alexander et al., 2015

blaVIM-11 + + ↓ + China Yang et al., 2014

Quinolone gyrA + + ↓ + China Xu et al., 2015

parC + + ↓ + China Xu et al., 2015

gnrC + + ↑ + China Xu et al., 2015

gnrD + + ↓ + China Xu et al., 2015

gnrS + + ↑ N.A. Canada Neudorf et al., 2017

gnrS + + ↑ N.A. Spain Rodriguez-Mozaz
et al., 2015

gnrS1 + + ↓ N.A. Canada Biswal et al., 2014

Macrolide ereA + + ↑ N.A. Canada Biswal et al., 2014

ereB + + ↑ N.A. Canada Biswal et al., 2014

ermB + + ↓ + China Yang et al., 2014

ermB + + ↓ N.A. Canada Neudorf et al., 2017

ermB + + ↓ N.A. Germany Alexander et al., 2015

ermB + + ↑ N.A. Spain Rodriguez-Mozaz
et al., 2015

ermF + + ↓ + China Yang et al., 2014

macB + + ↓ + China Yang et al., 2014

mef + + ↓ + China Yang et al., 2014

mph(A) + + ↑ N.A. Canada Biswal et al., 2014

Tetracycline tetA + + ↓ + China Xu et al., 2015

(Continued)

TABLE 1 | (Continued)

Antibiotics Antibiotic
resistance
genes
(ARGs)

Sample Country References

Influent effluent

activated sludge

tetB + + ↓ N.A. Canada Biswal et al., 2014

tetB + + ↓ + China Xu et al., 2015

tetB(P) + + ↑ + Sweden Bengtsson-Palme
et al., 2016

tetC + + ↓ N.A. Denmark Laht et al., 2014

tetE + + ↑ + China Xu et al., 2015

tetG + + ↓ + China Yang et al., 2014

tetM + + ↓ N.A. Finland Hultman et al.,
2018

tetM + + ↓ + China Yang et al., 2014

tetO + + ↓ + China Yang et al., 2014

tetQ + + ↓ + China Yang et al., 2014

tetV + + ↑ + China Yang et al., 2014

tetW + + ↓ + China Yang et al., 2014

tetX + + ↓ + China Yang et al., 2014

tetZ + + ↑ + China Xu et al., 2015

tet32 + + ↓ + China Yang et al., 2014

dfrA3 + + ↑ N.A. Sweden Bengtsson-Palme
et al., 2016

dfrA20 + – ↓ N.A. Canada Biswal et al., 2014

dhfrXV + – ↓ N.A. Canada Biswal et al., 2014

sulI + + ↓ N.A. Canada Neudorf et al., 2017

sulI + + ↑ N.A. Canada Biswal et al., 2014

sulI + + ↓ N.A. Denmark Laht et al., 2014

sulI + + ↓ + China Xu et al., 2015

sulI + + ↑ + China Yang et al., 2014

sulI + – ↓ N.A. United
States

Bergeron et al.,
2015

sulII + + ↑ N.A. Canada Biswal et al., 2014

sulII + + ↓ + China Yang et al., 2014

sulIII + + ↓ + Canada Biswal et al., 2014

Multidrug
efflux pump
genes

mdtF + + ↓ + China Zhang et al., 2011

mdtG + + ↓ + China Zhang et al., 2011

mdtH + + ↓ + China Yang et al., 2014

mdtN + + ↓ + China Yang et al., 2014

mexB + + ↓ + China Yang et al., 2014

mexD + + ↓ + China Yang et al., 2014

mexF + + ↓ + China Yang et al., 2014

N.A., not analyzed; N.D, no difference.

results disagree on whether or not antibiotic concentrations
lower than the minimum inhibitory concentrations (MIC)
cause selection of ARGs. Gullberg et al. (2011) competed for
resistant strains against susceptible strains in monoculture
with different antibiotic concentrations. The result showed
that the resistant strains have a selection advantage even in
subminimal inhibitory concentrations and outperform the
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susceptible strains (Gullberg et al., 2011; Andersson and Hughes,
2014). On the other hand, a recent study by Klümper et al.
(2019) suggests that a diverse bacterial community in a mixed
culture may select against resistance. Resistant and non-resistant
(otherwise isogenic) focal strains (Escherichia coli) cultivated
together with a pig fecal community, exhibited more than one
order of magnitude higher minimal selection concentration for
gentamicin or kanamycin. For the gentamicin resistant focal
strain, reduced growth was observed due to higher fitness
cost for a range of gentamicin concentrations (0–10 µg/ml),
indicating that resource limitations have a stronger impact on
resistant phenotypes (Gómez and Buckling, 2011; Wale et al.,
2017; Klümper et al., 2019). However, at very high gentamicin
concentrations (100 µg/ml) only resistant strains could grow.
The same behavior was observed under intermediate kanamycin
concentrations (0–20 µg/ml), the susceptible strain did again
show improved growth compared to the resistant strain when
co-cultured with the pig fecal community. These findings are in
accordance with results from the study of Galera-Laporta and
Garcia-Ojalvo (2020), where susceptible Bacillus subtilis and
E. coli were cultivated exposed to ampicillin separately and in
mixed culture. Cultivated separately, B. subtilis was able to grow
after a lag phase, while E. coli died. Cultivated in a mixed culture
the two strains displayed reversed reactions to ampicillin. The
protective effect of the community might play a role and further
experimental effort to evaluate the risk of sub-minimal inhibitory
concentrations are required.

Heavy metals and some organic compounds, such as
quaternary ammonium compounds (QAC), monoaromatic
hydrocarbons (MACH), anti-fouling agents and detergents can
increase the selective pressure for ARGs through co-selection
(Schlüter et al., 2007; Tuckfield and McArthur, 2008; Di Cesare
et al., 2016). Two mechanisms for co-selection are normally
distinguished: Co-resistance and cross-resistance. Co-resistance
refers to the presence of resistance against more than one class
of antibiotics in the same bacterial strain. It occurs due to
the physical link between different resistance genes, that are
placed together, for example on a plasmid, where the selection of
resistance to one of the genes leads to resistance to others. Heavy
metal resistance genes (HMRGs), especially against zinc and
copper, have been shown to increase the rate of AR dissemination
by co-resistance (Yazdankhah et al., 2014). Another example is
the co-resistance of qac genes encoding for efflux pumps against
QAC and MACH; the qac genes are typically located on MGEs
(plasmids and transposons), often together with ARGs (Jiao
et al., 2017). In cross-resistance, however, one single resistance
mechanism confers resistance to an entire class of compounds,
antibiotics and/or other toxicants (Baker-Austin et al., 2006). For
example, if two different antimicrobials are present and both
have a common strategy to attack the cell, resistance developed
against one will be effective against both i.e., the resistance gained
for one compound confers resistance for another compound.
An example of cross resistance is multi-drug resistance pumps
that can export both metals and antibiotics (Baker-Austin et al.,
2006). Thus, co-selection is a plausible explanation for the
persistence of some ARGs even when antibiotics are not present
(Zhang et al., 2018) and both co- and cross-resistance have

an important impact on the antibiotic resistance selection in
different environments (Stepanauskas et al., 2005; Knapp et al.,
2017).

ANTIBIOTIC RESISTANCE GENE
REMOVAL IN WASTEWATER
TREATMENT PLANTS

There are many treatment techniques used in WWTPs that
have varying potential to remove organic matter, nitrogen,
phosphorous, pollutants and pathogens from wastewater.
However, the mechanisms and efficacy of these techniques to
remove antibiotics, ARB and ARGs remain mostly unexplored.
This section aims to look at the existing situation for the removal
of ARB and ARGs from wastewater and sludge in WWTPs.

Removal From Wastewater
The operation of redox gradient aerobic, anoxic and anaerobic
activated sludge reactors and their sequence in a WWTP affects
the removal of ARB and ARGs (Christgen et al., 2015; Du
et al., 2015; Szekeres et al., 2017). Du et al. (2015) found
that anoxic and anaerobic treatment reduced the concentration
of ARGs in wastewater, whereas aerobic treatment increased
the concentration. The same has been observed by Pei et al.
(2007) who proposed that the difference is related to lower
growth rates in anaerobic and anoxic compartments compared
to aerobic. However, Christgen et al. (2015) have compared three
different wastewater treatment strategies; anaerobic, aerobic, and
anaerobic–aerobic sequence bioreactors (AAS) in terms of energy
use, treatment performance, and ARG abundance. They reported
an opposite effect that aerobic bioreactors and AAS bioreactors
had higher ARG removal efficiencies than anaerobic bioreactors
alone. The AAS bioreactors showed higher removal of ARGs
(>85%), compared to separate aerobic (83%) and anaerobic
(62%) treatment systems (Christgen et al., 2015). The authors
concluded that even though none of these systems were perfect
for ARG removal aerobic and AAS were superior to anaerobic
bioreactors. Additionally, results suggested that due to lower
energy consumption (32% less) AAS systems were seen to be
a promising treatment alternative. Moreover, temperature also
plays a role in the removal of ARGs showing higher removal at
20◦C than at 4◦C (Pei et al., 2007), and aerobic treatment may
remove more of some types of ARGs than anaerobic at 20◦C.

Membrane bioreactors (MBRs) are potentially much better
at removing ARB and ARGs than traditional activated sludge
reactors. This is because MBRs are better at removing bacteria
in general, due to the extra filtration of the effluent through
the membrane (Pauwels et al., 2006). The previously mentioned
study by Du et al. (2015) reported that the concentration of ARGs
throughout a sequence of treatment steps declined proportionally
more in the final treatment in an MBR than it did in any of the
prior treatment steps in aerobic and anoxic/anaerobic reactors.
The MBR showed more than 5 log10 units gene copies/100 ml
removal of tetG, tetW, tetX, and sulI resistance genes, mostly due
to filtration (pore size 0.1–0.4 µm) (Du et al., 2015; Hiller et al.,
2019). Research by Kappell et al. (2018) has similarly shown the
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effectiveness of anaerobic MBRs with ARG removals of up to
3.6 log10.

Schwermer et al. (2018) investigated the efficiency of
two WWTPs in the removal of ampicillin, sulfamethoxazole,
ciprofloxacin, and tetracycline resistant E. coli. The two WWTPs
employed a biofilm process and a conventional activated
sludge treatment process, respectively. By physical and chemical
treatment strategies in WWTP, the percentage of resistant E. coli
was reduced but full disinfection was not achievable. However,
in both conventional activated sludge and the biofilm processes,
the percentage of cultivable resistant E. coli did not show a
considerable decrease in addition to the physical and chemical
treatment steps. Moreover, the effluents were also subjected to
ultrafiltration (UF) and the total removal effectiveness of E. coli
in both WWTPs with UF was >4.2 log. Although the ability of
DNA to pass through membranes was mentioned by the authors,
they stated that membrane filtration processes can provide an
additional barrier and post-treatment alternative for the effluent
in order to reduce ARB and ARG release by WWTP effluents.
Other membrane filtration processes that can be used as post
treatment methods include microfiltration (MF) and reverse
osmosis (RO). While the effectiveness of MF efficiency against
ARB and ARGs has been studied (Riquelme Breazeal et al., 2013),
the application of RO, alone or combined with other methods,
has yet to be investigated in detail (Schwermer et al., 2018).

Constructed wetlands (CWs) are engineered aquatic systems
with very diverse microbial communities and are used to treat
wastewater by the same biogeochemical processes dominant in
natural wetlands (Doherty et al., 2015; Lv et al., 2017). They
are, however, mostly relevant for cases where the total amount
of wastewater is relatively low, or for wastewater with lower
amounts of organic matter, e.g., urban and agricultural runoff
or post treatment of effluents from conventional treatment
plants, rather than raw sewage (Zhang et al., 2018; Liu et al.,
2019). Their ability to remove ARB and ARGs have brought
CWs to attention. CW’s removal mechanisms are dependent on
different conditions such as phyta and substrate types together
with the physical design of the CW itself (Liu et al., 2019). Li
et al. (2019) investigated removal efficiencies for antibiotic and
ARG in riverine constructed wetlands. Their results showed that
one constructed wetland had 46 and 80% removal efficiency
for antibiotics and ARGs, respectively, while another wetland
had 70 and 88% removal efficiency, respectively. The difference
in efficiencies was associated with antibiotic concentrations in
the influent into both wetlands and the scale of the wetland,
indicating that the presence of sub-inhibitory levels of antibiotics
increases the selective pressure for resistance (Li et al., 2019).
In a different study, Chen et al. (2019) designed four different
hybrid constructed wetlands. Two horizontal sub-surface flow
(HSSF) CWs, one with and one without artificial aeration, and
two vertical sub-surface flow (VSSF) CWs, again one with and
one without artificial aeration. These four CWs were tested for
their ability to remove antibiotics and ARGs. Efficiencies between
87 and 95% for total antibiotic removal, and between 88 and 99%
for total ARG removal, were reported. The authors found that the
hybrid constructed wetlands with artificial aeration compared to
CWs without artificial aeration had higher removal efficiencies

of ARB and ARGs, together with higher removal rates of organic
carbon, ammonia, nitrogen, and phosphorous.

Several recent studies have investigated the removal of
ARGs in WWTPs by chemical disinfection processes, such
as chlorination and advanced oxidation processes (AOPs)
including ozonation and UV. It showed that these processes can
significantly decrease the occurrence of ARGs and pathogenic
microorganisms in WWTP effluents (Luczkiewicz et al., 2011;
Zhuang et al., 2015; Hiller et al., 2019). Zhuang et al. (2015)
reported chlorine disinfection resulted in 1.654–2.28 log10
reduction, and UV irradiation resulted in 0.80–1.21 log10
reduction of ARGs under economically suitable operational
conditions. Although ozonation disinfection achieved 1.68–
2.55 log10 reduction of ARGs, the authors in the same study
advised against the use of this process due to excessive
operational costs. Contrary to this, Alexander et al. (2016)
indicated that even though ozone treatment can reduce the
erythromycin resistance gene (ermB) by 2 orders of magnitude,
ARGs against vancomycin (vanA) and imipemem (blaVIM)
increased within the surviving wastewater bacterial population.
Luczkiewicz et al. (2011) showed that ultrafiltration, ozonation,
and UV irradiation can reduce the amount of fecal coliform
bacteria in wastewater by more than 99%, but there was
a slightly higher percentage of ARGs containing bacteria
among the bacteria surviving disinfection. They found that
of coliforms grown from water samples taken before and
after disinfection, 47–60% of E. coli isolates were resistant
after disinfection compared to 42–50% of isolates before and
that 68–90% of Enterrococus spp. isolates had resistance after
treatment compared to 68–85% before. Recently, using a the
combination of two or more AOPs (like Fenton’s oxidation
reaction, UV/H2O2, solar/H2O2, photo-Fenton process, TiO2
photocatalyst and ionizing radiation) have been shown to be
effective in the removal of refractory organic compounds (like
antibiotics) in secondary effluents (Rizzo et al., 2013; Zhang
et al., 2016b). Karaolia et al. (2014) investigated a solar-
driven Fenton oxidation that may eliminate ARB. Mccullagh
et al. (2007) reported that the utilization of a UV-TiO2
photocatalyst AOP inactivated a diverse array of bacterial, viral,
and protozoal organisms from water and wastewater. While
AOPs represent a potential way to remove antibiotics and
thus prevent antibiotic resistance, they are not widely used
due to their operational costs (Qiao et al., 2018). Table 2
shows different treatment techniques and their effectiveness
in removing different ARGs and pathogens from wastewater
under different conditions. Additionally, Table 3 summarizes
the antibiotic elimination efficiencies in different wastewater
treatment units. Both tables include information on different
treatment techniques categorized in physical, biological, and
chemical processes.

All the studies conducted in the literature together with the
information presented in Tables 2, 3, suggest that the wastewater
to be treated should be analyzed for antibiotics and ARGs, in
addition to the standard wastewater characterization parameters.
The WWTP should be designed using this characterization
specially tailored for the needs of the specific wastewater ensuring
the removal of antibiotics and ARGs to avoid the spread of
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TABLE 2 | Antibiotic resistance gene (ARG) and pathogen elimination efficiencies of different treatment technologies.

Treatment technologies Target ARGs ARG elimination
efficiency

Pathogen elimination
efficiency

References

Physical processes

Membrane separation floR, sulI, and sulII ∼98% 99.9% Ren et al., 2018

Soil aquifer treatment blaTEM and qnrS >2 logs 1.2–6.9 logs Sharma and Kennedy,
2017; Elkayam et al.,
2018

Biological processes

Anaerobic–aerobic seq.
bioreactor (AAS)

Sulfonamide, chloramphenicol, aminoglycoside,
tetracycline, β-lactam resistance genes

>85% Christgen et al., 2015;
Thwaites et al., 2018

Aerobic bioreactor 83% Christgen et al., 2015

Anaerobic bioreactors 62% 18% Christgen et al., 2015;
Zhang et al., 2017

Membrane bioreactor blandM-1, blaCTX-M-15, and blaOXA-48 2.76–3.84 logs 2.7–5.6 logs Cheng and Hong,
2017; Harb and Hong,
2017

sulI, sulII, tetC, tetX, ereA, and int1 0.5–5.6 logs – Zhu et al., 2018

sul1, tetG, tetW, and tetX 5 log/100 ml – Du et al., 2015

ermB, tetO, sulI, and intl1 ≤3.6 log – Kappell et al., 2018

CW-surface flow sulI, sulII, sulIII, tetA, tetB, tetC, tetE, tetH, tetM, tetO,
tetW, qnrB, qnrS, and qepA

77.8% in summer, 59.5% in
winter

0.96–4.46 logs Fang et al., 2017;
Shingare et al., 2019

CW-horizontal subsurface flow intl1, sulI, sulII, dfrA, aac6, tetO, qnrA, blaNMD1,
blaKPC, blaCTX, and ermB

-145.6 to 98.9% 0.7–5.51 logs Yi et al., 2017; Chen
et al., 2019; Shingare
et al., 2019

CW-vertical subsurface flow tet genes and intI1 33.2–99.1% 0.5–2.84 logs Huang et al., 2017b;
Shingare et al., 2019

CW sulI, sulII, tetA, tetC, dfrA1, dfrA12, dfrA13, ermB, and
blaPSE−1

80.2 and 87.5% – Li et al., 2019

Hybrid CWs sulI, sulII, tetG, tetO, ermB, qnrS, qnrD, cmlA, and floR 87.8–99.1% 0.71–4.8 logs Chen et al., 2019;
Shingare et al., 2019

Chemical processes

Chlorination sulI, tetG, and intI1 1.65–2.28 logs ∼3 logs Zhuang et al., 2015;
Furst et al., 2018

sulI, tetX, tetG, and intI1 1.20–1.49 logs – Zhang et al., 2015

tetA, tetB, tetC, sulI, sulII, sulIII, ampC, aph(2’)-Id, katG,
and vanA

Enhancement – Liu et al., 2018

UV sulI, tetG, and intI1 0.80–1.21 logs 30 min, 254 nm,
2.0 ± 0.3 logs

Zhuang et al., 2015;
Sousa et al., 2017

tetW 0.00–1.89 logs – Sullivan et al., 2017

tetX, sulI, tetG, and intI1 0.36–0.58 logs – Zhang et al., 2015

Ozonation tet genes and sul genes <49.2 and <34.5% 30 min, 2.1 ± 0.5 logs Sousa et al., 2017;
Zheng et al., 2017

Photocatalytic oxidation sul1, tetX, and tetG 2.63–3.48 logs (pH = 3.0)
1.55–2.32 logs (pH = 7.0)

2–3 logs Zhang et al., 2016b;
Moreira et al., 2018

Fenton’s oxidation reaction sul1, tetX, and tetG 2.58–3.79 logs (pH = 3.0)
2.26–3.35 logs (pH = 7.0)

<LOQ* Zhang et al., 2016b;
Moreira et al., 2018

*LOQ, Limit of Quantification.

antibiotic resistance in the receiving water body. However, even
though the removal efficiency of disinfection processes is very
high it is not possible to avoid secondary treatment to cut cost,
since the organic matter in the wastewater act as precursors of
disinfection by-products. Additionally, the secondary treatment
also decreases the suspended solids concentration, which is
a key parameter for UV disinfection. As a further treatment
step, membrane filtration systems might be used to remove the
remaining ARG and ARB, and CW can be considered as a post
treatment step for effluents in smaller settings. Finally, MBRs

that combine biological treatment and membrane filtration make
good alternatives for ARB and ARG removal.

Removal From Sludge and Biosolids
Biological wastewater treatment relies on the growth of bacteria
and other microorganisms and subsequent flocculation and
settling of aggregated biomass. At a steady state, excessive
biomass is removed (so called sludge wasting usually done
through the underflow from secondary clarifiers) together with
other solids that are collected in skimmers and primary clarifiers.
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TABLE 3 | Antibiotic elimination efficiencies in different treatment units.

Treatment
technologies

Antibiotics Antibiotic
elimination
efficiency

References

Physical processes

Membrane
separation

SA, ML 5–28% Sahar et al., 2011

Soil aquifer
treatment

SA 68.2–88.9% Qin et al., 2020

ML 90.1% Fang et al., 2017

Biological processes
Anaerobic–aerobic
seq. bioreactor
(AAS)

– – –

Aerobic bioreactor SA >95% Qian et al., 2020

Anaerobic
bioreactors

SA ∼2% Qian et al., 2020

TC, SA >90%, 30–98% Cheng et al., 2020

Membrane
bioreactor

SA 87.4% Song et al., 2017

FQ 81.1%

TC 83.8%

ML 14.3%

CW-surface flow BL, SA, FQ,
TC, ML

–67 to 100% Liu et al., 2019

CW-horizontal
subsurface flow

BL, SA, FQ,
TC, ML

–46 to 100% Liu et al., 2019

CW-vertical
subsurface flow

BL, SA, FQ,
TC, ML

20–100% Liu et al., 2019

Hybrid CWs SA, FQ, TC, ML 43 ± 32% Ávila et al., 2014

Chemical processes

Chlorination BL 97–100% Li and Zhang, 2011

SA 73–100%

FQ 50–74%

TC 39–83%

ML 43–53%

UV-254 nm SA 51% De la Cruz et al.,
2012

FQ 48–65%

ML 0%

SA, FQ >99%, 90 min Michael et al., 2020

Ozonation BL, SA, FQ, ML 100%,
O3 = 14–42 mg

Paucar et al., 2019

TC 86.4–93.6%,
O3 = flow rate
0.5 L/min

Wang et al., 2018

Photocatalytic
oxidation

SA ∼46%, 300 min,
QUV = 42 kj/L

Michael et al., 2020

FQ >99%, 60 min,
QUV = 8 kj/L

SA, FQ, TC 100%, 90–100%,
100%

Palominos et al.,
2008; Kansal et al.,
2014; Espíndola
et al., 2019;
Sandikly et al.,
2019

Fenton’s oxidation
reaction

BL 100%,
H2O2/Fe2+ = 2–
150 µM,
pH = 2–4

Elmolla and
Chaudhuri, 2009

(Continued)

TABLE 3 | (Continued)

Treatment
technologies

Antibiotics Antibiotic
elimination
efficiency

References

SA 74%,
H2O2/Fe2+ = 2.9 µM,
pH = 3–6

Qian et al.,
2020

FQ, ML With citric acid 95%,
H2O2/Fe2+ = 1.75 µM,
pH = 3

Macku’ak et al.,
2015

BL, β-lactam; SA, sulphonamide; FQ, fluoroquinolones; TC, tetracyclines; ML,
macrolides.

Several unit operations reduce water content, stabilize, and
treat the discarded sludge before it is disposed or recycled.
Biosolids from WWTPs are typically applied to agricultural land
as fertilizer, disposed of to landfills, or incinerated (United States
Environmental Protection Agency, 2003; Tchobanoglous et al.,
2014; Collivignarelli et al., 2019).

Unsurprisingly, most of the resistant bacteria and resistance
genes that arrives with the sewage and that grows and propagates
through a treatment plant end up in the settled sludge (Munir
et al., 2011; Calero-Cáceres et al., 2014; Yuan et al., 2019).
Studies examining municipal WWTPs without advanced sludge
treatment in the United States (Munir et al., 2011; Gao et al.,
2012) and in China (Chen and Zhang, 2013; Wen et al., 2016;
Yuan et al., 2019) have shown that although the plants are able to
reduce the abundance of resistance genes and resistant bacteria
in their effluents by 2–4 orders of magnitude, the amount of
resistance genes and resistant bacteria in the biosolids from these
plants are of the same order of magnitude as in the inflow sewage
(around 108–1010 copies of tetW and tetO resistance genes per
100 ml sample and 106–108 CFU of tetracycline resistant bacteria
per 100 ml sample).

Supplementary Table 1 gives an overview of reported levels
of bacteria, resistant bacteria, and resistance genes in biosolids
after sludge treatment at WWTPs around the world. The
table also includes extended information about plant type,
treatment process, sludge sources, and final application of the
biosolids. Conventional sludge treatment methods that simply
thickens and dewaters sludge by gravity thickening, belt pressing,
centrifugation, or other mechanical methods are not effective
at removing resistance genes (Supplementary Table 1). Further
anaerobic or aerobic digestion of the sludge is also in many
cases not enough to substantially reduce the number of resistant
bacteria and genes.

Heat drying, which involves reducing the moisture content
to below 10% by direct or indirect contact with hot gases
(Tchobanoglous et al., 2014), and advanced lime stabilization,
which involves the addition of alkali (lime) to increase pH in
combination with other treatments like pasteurization or heat
drying, are more effective at removing resistance. Heat drying
and advanced lime stabilization reduce the density of bacteria
in biosolids, and thus also the density of resistant bacteria, to
levels similar to and in most cases below what is typical for soil
(Supplementary Table 1). This is due to the high temperatures
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and/or pH that are reached in the processes. The density of
resistance genes is on the other hand in many cases still higher
than what is typical for unfertilized soil. However, it has been
suggested and observed that the genes have lower stability after
treatment as many are trapped within dead microorganisms (Lau
et al., 2017; Murray et al., 2019). In a study that measured the
density of resistance genes in the soil directly after application
of biosolids, the authors found that the abundance of resistance
genes 2 h after application was remarkably low in soil amended
with heat-dried biosolids (Lau et al., 2017). Similar results have
also been found for soil amended with biosolids pasteurized
at more than 70◦C for a period of 30 min in a lab scale
experiment (Burch et al., 2017). It seems that many of the
resistance genes are rapidly destroyed when they come in contact
with soil and moisture.

The N-rich biosolids produced through the N-Viro treatment
used at Thorold, Ontario (Supplementary Table 1) have
particularly low levels of resistance genes. Murray et al. (2019)
found that out of 41 selected genes associated with resistance and
HGT, 38 were below the detection limit and the remaining 3 were
below the quantification limit. The reason is that the pH is so high
that double stranded DNA denatures (Murray et al., 2019).

Pyrolysis is another treatment method that consistently
reduces the density of resistance genes in biosolids to below what
is found in pristine soil in nature. Pyrolysis is not a common
biosolid treatment technique today and has many of the same
disadvantages as incineration. It has high capital and operating
cost, and requires highly skilled operating and maintenance
staff, compared to the simpler dewatering, stabilization, and
heat drying methods (Tchobanoglous et al., 2014; Carey et al.,
2016). It is also energy intensive, but it can potentially be used
as a refinement step in treatment plants that already use heat
drying, as the added energy cost of pyrolysis is reported to
be low compared to the energy already invested in drying the
biosolids (McNamara et al., 2016). The benefit of pyrolysis over
incineration is that more organic content and nutrients remain
in biochar than in incinerated ash, giving biochar a higher
fertilizer potential—biochar has an NKP content of 6-13-0 vs. 0-
6-2 for incinerated ash (Carey et al., 2016). They both, however,
have the risk of containing high levels of heavy metals, which
are concentrated in the product during the production process
(Carey et al., 2016).

From the results combined in Supplementary Table 1, it
is worth noting that the density of remaining resistance genes
after a specific biosolids treatment method can vary with more
than an order of magnitude between facilities (Supplementary
Table 1). This may be due to differences in the sludge loading
or their operation, but also because the methods and protocols
for quantification have different sensitivities and efficiencies for
extracting and measuring the absolute concentration of genes
(Feinstein et al., 2009; Taylor et al., 2019; Yuan et al., 2019).

The trend seen from the numbers in Supplementary Table 1
is that further treatment beyond digestion is needed to reduce
the density of resistant bacteria to levels comparable to or
below what is found in soils. The trend coincides comparatively
well with the grouping of sludge treatment methods used in
the biosolids regulation of the United States (40 CFR Part
503) (United States Environmental Protection Agency, 1994,

2003). Treatment processes are categorized into “processes
to significantly reduce pathogens” (PSRP) and “processes to
further reduce pathogens” (PFRP). PSRP includes the first
set of treatment methods after thickening/dewatering, i.e.,
aerobic digestion, anaerobic digestion, air drying, composting,
and limes stabilization, with specific requirements to process
parameters such as time, temperature, and pH (United States
Environmental Protection Agency, 1994, 2003). PFRP includes
further treatments that use heat or radiation to purposefully
kill pathogens, i.e., heat drying, heat treatment, pasteurization,
beta- or gamma-ray irradiation, and also composting and
thermophilic digestion if the temperature is kept over 55◦C
for a specified number of days (United States Environmental
Protection Agency, 1994, 2003). The PSRP and PFRP grouping
are in the United States are used together with bacteria density
limits (fecal coliforms or Salmonella) to regulate land application
of biosolids. However, the current regulations only require PSRP
treatment or an average fecal coliform density below 2·106

CFU/g for agricultural use (class B biosolids), and there is no
specific mention of either resistant bacteria or resistance genes
(United States Environmental Protection Agency, 1994, 2003).
Similarly, there are currently no specific limits on resistant
bacteria or resistance genes for biosolids in the European Union
(Eur-Lex, 2018; Collivignarelli et al., 2019). The European Union
directive 86/278/EEC (2018), which regulates the application of
biosolids in the EU, does not specify any limits on pathogen
content, but several member states have national regulations with
limit values for indicator bacteria [typically Salmonella and some
type(s) of fecal bacteria] (Collivignarelli et al., 2019).

More and more studies are linking the application of biosolids
to higher levels of resistant bacteria and genes in agricultural
soil (Ross and Topp, 2015; Gondim-Porto et al., 2016; Burch
et al., 2017; Lau et al., 2017; Murray et al., 2019). However,
the resistance levels decrease with time after application (Marti
et al., 2014; Rahube et al., 2014; Ross and Topp, 2015; Burch
et al., 2017; Lau et al., 2017; Murray et al., 2019), and the
current evidence for gene transfer to crops and animals remains
inconclusive (Marti et al., 2013b; Rahube et al., 2014; Lau et al.,
2017; Murray et al., 2019; You et al., 2020). Current regulations in
the US and the EU do include time restrictions from application
to harvesting and/or grazing (United States Environmental
Protection Agency, 1994, 2003; Eur-Lex, 2018; Collivignarelli
et al., 2019). Implementation of limits for the density of resistant
bacteria and resistance genes to the regulations for biosolids
should also be considered. Limits on the density of resistance
genes can be difficult to implement, as measurement methods for
gene amounts have varying sensitivity and accuracy (Feinstein
et al., 2009; Taylor et al., 2019; Yuan et al., 2019). The density
of resistance genes can furthermore be an inconsistent factor
for risk alone because of the difference in stability and transfer
potential between genes in living bacteria, genes in dead bacteria,
and free and adsorbed genes outside of bacteria. Significant risk
reduction can be achieved merely by stricter limits on the general
density of bacteria, e.g., as for biosolids of class A today (Murray
et al., 2019). Treatment operations that consistently reach these
limits are already implemented technologies at many WWTPs.
Stricter limits must, however, be weighed against the implications
they will have for the overall use of biosolids as fertilizer and
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soil improvement. Moreover, limits and regulations for biosolids
must be harmonized with other biological fertilizers such as
manure, which is also known to contain high levels of resistance
(Marti et al., 2013b, 2014; Ross and Topp, 2015; Nõlvak et al.,
2016). Stricter regulations can lead to more incineration and less
reuse, an effect that cannot be disregarded in the context of a
sustainable and circular economy.

MODELING ANTIBIOTIC RESISTANCE IN
WASTEWATER TREATMENT PLANTS

Mathematical models formulated from a mechanistic or holistic
understanding of microbial and biogeochemical interactions in
aquatic systems have advanced our understanding of dynamics in
technical and natural systems (Simon et al., 2002; Benedetti et al.,
2013). Mathematical models describing the processes involved
in the treatment and biodegradation of wastewater have already
successfully been developed and established as standard, well
used tools within the WWTP community (Gernaey et al., 2004;
Solon et al., 2019). Such models are, as mathematical models in
general, functional tools for a priori model and hypothesis testing,
and a posteriori data analysis and performance evaluation. The
standard WWTP models are the so-called activated sludge
models (ASM1, ASM2, ASM2d, ASM3, and variants), which have
been applied for research and process performance evaluations,
as well as for the design of new WWTPs (Henze et al., 2000; Van
Loosdrecht et al., 2015). These models include the major WWTP
processes of biomass growth, carbon oxidation, nitrification,
denitrification, and phosphorus removal. None of the standard
models, however, include the occurrence or spread of antibiotic
resistance among bacteria in WWTPs.

Several mathematical models for the spread of antibiotic
resistance in bacteria populations have been proposed, although
mainly in theoretical, or simplified, environmental settings
(Birkegård et al., 2018). This includes models of the spread of
resistance in axenic cultures of bacteria (Tremblay and Rose,
1985; Imran and Smith, 2007; Svara and Rankin, 2011), and
a few models that include spread through more than a single
strain (Clewlow et al., 1990). There are also models that deal
with the dynamics of antibiotic resistance in relation to antibiotic
concentrations and distinguish the type of resistance mechanism
(Bootsma et al., 2012; Krzyzanski and Rao, 2017); and finally,
models that deal with the spread between hosts of bacteria, i.e.,
in an epidemiological setting (Spicknall et al., 2013; Levin et al.,
2014).

The development of mathematical models that combine
the biodegradation processes and population dynamics of
microorganisms in a WWTP with the presence of antibiotic
compounds, ARGs, and the spread of antibiotic resistance in the
populations through HGT is still in its early stages. Attempts
to combine the use of WWTP and ARG models are few and
limited to early-stage developments. There have, however, been
attempts to combine antibiotic degradation dynamics with the
traditional activated sludge models (ASM-X by Polesel et al.,
2016) to assess degradation kinetics of antibiotics and other
pharmaceuticals in WWTPs. Few examples exist of models that

have been set up to address the effect of antibiotic resistance
in realistic environments that are partly similar to WWTPs
(Hellweger et al., 2011; Hellweger, 2013; Baker et al., 2016). Baker
et al. (2016) modeled the spread of antimicrobial resistance in a
slurry tank that collects and stores fecal and urinary waste from
cows at a dairy farm. Their model includes most processes that
should be considered to capture both population dynamic and
resistance spread, i.e., cellular growth and death processes, HGT,
segregation loss, antibiotic concentration (to capture selection
pressure), slurry inflow and fitness cost. We think that this
model structure with the addition of the treatment processes
from the ASM models can serve as a basis for a model suitable
for a WWTP environment. Baker et al. (2016) parameterized
their model based on their experimental data and data from
the literature and showed through sensitivity analysis that gene
transfer rate is one of the most important parameters for the
spread of resistance. Hellweger et al. (2011) and Hellweger (2013)
used a mathematical model to test if observed concentrations
of antibiotics and densities of tetracycline resistant bacteria in
the Poudre River in Colorado could be explained by different
scenarios for how resistant exogenous bacteria that arrive at
the river grow and exchanges genes with indigenous bacteria.
They showed that the observed data could not be explained by
a scenario with high input of exogenous resistant bacteria to the
river without growth in the river itself; their model suggested
that there has to be the growth of resistant bacteria and thus
maintenance of the resistance gene in the river itself, is most
likely due to soft selection pressure from low concentrations of
tetracycline (Hellweger et al., 2011).

Wastewater treatment plants are highly complex systems
with mixed cultures of microorganisms, and a wide range of
modeling approaches, including individual-based models (IbMs),
are needed to understand the functioning of such plants from
micro to macro scale. Deterministic population-level models,
like the classical ASM models, allow for studying the average
behavior of systems, e.g., the overall dynamics of populations
and concentrations in the plant reactors. However, they may
miss some important individual effects on biological processes
rates in the bacterial community. Population-level models do
not account for individual heterogeneity, local interactions, or
adaptive behavior. IbMs do on the other hand treat bacteria as
single cells, as discrete entities, and might be better suited to
account for the spread of resistance and can potentially overcome
these limitations that arise from population model design. HGT
is a micro-level process. For example, conjugation of resistance
plasmids, as this is a discrete event between individual cells,
happens when an individual donor bacterium and a recipient
bacterium are close enough in space that a pilus from the
donor can attach to the recipient and bring them together
(Seoane et al., 2011). IbM of conjugation mechanism allows
presenting the intrapopulation variability, to capture the changes
that occur during the coupling process (Merkey et al., 2011;
Seoane et al., 2011). Moreover, local variations in population
density, e.g., flocculation, plays a role in the spread of resistance
(Merkey et al., 2011), and the description of actions on the level
of the single organism in the model may thus be needed
to explain the total population development (Breckling, 2002;
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Hellweger et al., 2016). IbMs can determine the relevance of a
specific interaction or location for the overall behavior of the
biofilm Therefore, IbMs can give insights into the emergence
of antibiotic resistance from biofilms to aquatic environments.
Moreover, the combination of different level models, population
and individual, can provide quantitative analysis of the spread of
antibiotic-resistant bacteria.

Although mathematical models can be powerful tools and
the ASM models have been very successful for understanding
and developing treatment processes, mathematical modeling
approaches have so far not yet been able to help improve our
understanding of the conditions that drive maintenance, spread
or extinction of ARGs or ARB in WWTPs. The main weakness
of many of the proposed models of antimicrobial resistance
is the lack of experimental data available to parameterize and
validate the models (Birkegård et al., 2018). Any extensions
of the standard WWTP models to include resistant and non-
resistant bacteria, the presence of ARGs, different mechanisms
for HGT, and concentrations of antibiotics, should include
considerations on how to experimentally measure associated
process rates and concentrations. An integrated AR-WWTP
model designed -with this in mind- can become a promising
tool for theoretical and diagnostic studies of ARG spreading, and
it can be of help in identifying which mechanisms and factors
that are the most important for the spread of resistance under
different circumstances. That is, in evaluating which operational
conditions or parameter values that can minimize spread, and
which parameters are key drivers.

FUTURE DIRECTIONS AND
CONCLUSION

In this review, we assessed the causes and the mechanisms for
the spread of ARGs, together with their occurrence, transfer,
and potential removal in WWTPs. While the issue of antibiotic
resistance could never have completely been prevented, the
current universal problem of resistant bacteria is solely due to
anthropogenic activities. Moreover, the absence of regulations
and strict monitoring regimes have contributed to the escalation
of the occurrence of antibiotic resistance in the environment. The
research shows that neither conventional nor advanced WWTPs
are efficient enough to completely remove ARGs and ARB
from water environments, but that more advanced treatment
methods perform better. Advanced post treatment methods like
UV, ozonation and oxidation of water effluents, and heat drying,
lime stabilization and pyrolysis of biosolids, remove considerably
more ARGs and ARB than activated sludge treatment alone but
are not without disadvantages like more difficult and complex
operation and higher cost. Finally, the following key points are
proposed to improve current WWTPs and provide guidance for
future application:

(i) In order to reduce the threat of antibiotic resistance, it
is advisable to set strict threshold limits for antibiotic
release from point sources like hospitals and animal
husbandries, together with the thresholds for release of

metal residues, biocides, and other pharmaceuticals that
drive co-selection of resistance.

(ii) Plans for implementation of more advanced treatment
processes should consider the economy and ecology of
the whole waterway. It may be more cost effective to
employ smaller scale treatment plants with disinfection
units at point sources than to redesign and rebuild larger
municipal WWTPs.

(iii) Efforts should be made to devise and agree upon standard
methods to measure and report ARB and ARG levels
to make it easier to compare resistance levels between
different countries and at different treatment plants. This
will also make it easier to evaluate removal efficiencies
of treatment methods and to evaluate the performance of
already established treatment plants, which can facilitate
the decision process of operators and regulatory agencies
of whether additional post-treatment steps are necessary.

(iv) Experimental studies should be combined with
mathematical modeling to further examine the
mechanisms for the spread and population growth
of resistant and non-resistant bacteria in wastewater
treatment environments. The effect of different treatment
methods and plant operation strategies on the spread
of resistance genes should be further studied, including
the effect of operating conditions (pH, temperature,
COD, BOD) on HGT.

These approaches can provide a further understanding of the
processes and mechanisms of spread and can therefore help in
the design of WWTPs that are less likely to become breeding
grounds for antibiotic resistance, and which function better
as final barriers.
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