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Editorial on the Research Topic

AI-Enabled Data Science for COVID-19

COVID-19 is a pandemic that has swept all over the world. As of this writing, the New York Times
reported that the United States has over 45.4 million cases and 736,000 deaths, and the worldwide
numbers are over 240 million cases and 4.9 million deaths. New variants of SARS-CoV-2 continue to
emerge and can be more infectious, as we witnessed new surges of the Delta variant worldwide in
2021. Therefore, fighting against COVID-19 is a public health topic of paramount importance.

Many COVID-19 related datasets have already been collected, and the rapid advancement of AI
and Data Science has created new software tools for researchers to characterize epidemiological and
biological characteristics of COVID-19. In this Research Topic that started in mid-2020, we have
openly solicited and collected eight articles in this research direction. This Research Topic represents
recent advances in computational approaches to epidemiological modeling, risk analysis, precision
diagnosis, and disease progression of COVID-19.

Two papers studied the spread of COVID-19, and such epidemiological models are useful to help
the authority decide the proper preventive measures such as stay-at-home orders, travel restrictions,
school closure, mask-wearingmandate, and so forth. Li et al. proposed a time-dependent SEIRmodel
that considers the incubation period to mathematically describe the dynamic of the COVID-19
pandemic. The model takes immunity, reinfection, and vaccination into account and can monitor
the trajectories of changing parameters, such as transmission rate, recovery rate, and the basic
reproduction number. Potgieter et al. emphasized the use of mobility data in modeling the COVID-
19 spread through the population. Different mobility data sources were compared to provide insight
on which data provides what type of information and in what situations a particular data source is the
most useful.

Some COVID-19 patients may develop severe pneumonia in both lungs. COVID-19 pneumonia
is a serious illness that can be deadly, so a lot of works have merged that conduct computer-aided
detection of such patients from chest CT or X-ray images, using the deep learning technology for
computer vision. Nguyen et al. raised the concern about the generalizability of such models, given the
heterogeneous factors in training datasets. Their study examined the severity of this problem by
evaluating deep learning classification models trained to identify COVID-19 positive patients on 3D
CT datasets from different countries. The study confirmed that such models cannot easily generalize
to an entirely new dataset distribution never seen before due to factors including patient
demographics and differences in image acquisition or reconstruction; and the best-performing
model for a particular dataset tends to be a model trained on multiple datasets.

Four works studied how to train robust models and/or interpretable models with the electronic
health records (EHRs) of COVID-19 patients to predict symptoms, mortality, and other risk factors.
Such prediction models would help the planning of medical resources to individuals most at-risk
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when healthcare services are under high pressure and would help
improve the healthcare outcomes of COVID-19 patients in time.
To build a cohort-independent robust mortality prediction
model, Bai et al. conducted an international, bi-institutional
study from China and Germany. A random forest model was
applied to 1,352 patients from the Wuhan cohort, which
identified five effective clinical features at admission, including
lymphocyte, neutrophil count, C-reactive protein, lactate
dehydrogenase, and α-hydroxybutyrate dehydrogenase. These
features were also found to be robust over time when patients
are in the hospital, and the model was found to generalize well on
the independent Würzburg cohort. Mamidi et al. developed an
interpretable COVID-19 risk calculator for individuals by
utilizing de-identified electronic health records (EHR) from
UAB-i2b2 COVID-19 repository under the U-BRITE
framework. The generated risk scores are analogous to
commonly used credit scores where higher scores indicate
higher risks for COVID-19 infection. The authors found that
within the 2 weeks before a COVID-19 diagnosis, the most
predictive features were respiratory symptoms and other
chronic conditions; when extending the timeframe to include
all medical conditions across all time, their models also uncovered
several chronic conditions impacting the respiratory,
cardiovascular, central nervous and urinary organ systems.
Snider et al. used SHAP (SHapley Additive exPlanations) to
study the impacts of various attributes of the COVID-19
patients in an XGBoost model, which was applied to a
dataset containing 57,390 individual COVID-19 cases and
2,822 patient deaths in Ontario, Canada. The most
important attributes were found to be age, date of the
positive test, sex, income, dementia and some others.
Jamshidi et al. conducted a comprehensive evaluation of
existing machine learning methods, and created two models

based solely on the age, gender, and medical histories of
23,749 hospital-confirmed COVID-19 patients from
February to September 2020: a symptom prediction model
(SPM) and a mortality prediction model (MPM).

Finally, this Research Topic also included a survey paper by
Abdulkareem and Petersen, who carefully summarized recent
technological tools, artificial intelligence (AI) tools in particular,
that have been used in the detection, diagnosis and
epidemiological predictions, forecasting and social control for
combating COVID-19. The work highlighted areas of successful
applications and underscored issues that need to be addressed to
achieve significant progress in battling COVID-19 and future
pandemics.
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Non-pharmaceutical Interventions
and Vaccination on the COVID-19
Pandemic With Time-Dependent
SEIR Model
Yuexin Li 1, Linqiang Ge 2, Yang Zhou 3, Xuan Cao 4 and Jingyi Zheng 1*
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Science, Columbus State University, Columbus, GA, United States, 3Department of Computer Science and Software
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The outbreak of COVID-19, caused by the SARS-CoV-2 coronavirus, has been declared

a pandemic by the World Health Organization (WHO) in March, 2020 and rapidly

spread to over 210 countries and territories around the world. By December 24, there

are over 77M cumulative confirmed cases with more than 1.72M deaths worldwide.

To mathematically describe the dynamic of the COVID-19 pandemic, we propose a

time-dependent SEIR model considering the incubation period. Furthermore, we take

immunity, reinfection, and vaccination into account and propose the SEVIS model. Unlike

the classic SIR based models with constant parameters, our dynamic models not only

predicts the number of cases, but also monitors the trajectories of changing parameters,

such as transmission rate, recovery rate, and the basic reproduction number. Tracking

these parameters, we observe the significant decrease in the transmission rate in the

U.S. after the authority announced a series of orders aiming to prevent the spread of

the virus, such as closing non-essential businesses and lockdown restrictions. Months

later, as restrictions being gradually lifted, we notice a new surge of infection emerges as

the transmission rates show increasing trends in some states. Using our epidemiology

models, people can track, timely monitor, and predict the COVID-19 pandemic with

precision. To illustrate and validate our model, we use the national level data (the U.S.)

and the state level data (New York and North Dakota), and the resulting relative prediction

errors for the infected group and recovered group are mostly lower than 0.5%. We also

simulate the long-term development of the pandemic based on our proposed models to

explore when the crisis will end under certain conditions.

Keywords: COVID-19, epidemiology, dynamic modeling, reinfection, vaccination, time-dependent SEIR model
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1. INTRODUCTION

On March 11, 2020, the World Health Organization (WHO)
declared that the outbreak of the novel coronavirus (COVID-19)
can be characterized as a pandemic. The COVID-19 outbreak
started in Wuhan, China in December, 2019. By the end of
January, 2020, the confirmed cases in China went up to 11, 791.
Only 1 month later, the number increased nearly seven-fold
to 80, 134 and the COVID-19 cases gradually showed up in
other countries. Starting from March, 2020, the outbreak
spread to more than 100 countries. By the end of 2020, the
pandemic has led to 77.5M confirmed cases and more than
1.72M fatalities worldwide. Figure 1 summarizes the percentage
of global confirmed cases contributed by each country. As of
December 24, the United States, India, and Brazil are the three
countries most impacted by the COVID-19 pandemic. The
trajectories of the confirmed cases in the three countries are
also displayed.

The COVID-19 virus has caused a great disruption to
the human health, social life, developments, and economics.
To stop the spread of COVID-19 virus, governments have
carried out numerous preventive measures such as stay-
at-home orders, travel restrictions, school closure, mask-
wearing mandate, and so forth. The impact on the society
came later in all aspects, including rising unemployment,
protests against restrictions, and psychological anxiety and
stress brought to the public. However, a significant decrease
in the transmission rate occurred, which proved that these
mitigation measures were effective. Months later, many states
in the U.S. have loosened their restrictions and lifted orders
to allow businesses to reopen to the public. Consequently, the
diagnoses of daily confirmed cases have displayed a consequential
increasing trend after the reopen in some states such as
Alabama. By looking at the numbers only, it is difficult to
assess what stage we are at in the COVID-19 pandemic
and when it is going to end. Hence, mathematical models
considering the epidemiological characteristics of COVID-19
become crucial and significant to track and forecast the trend of
the spread.

The classic epidemiology model exhibits compelling results,
especially during the early period of the pandemic. The
compartmental models, which are the simplified versions

of mathematical models for infectious diseases, divide the
population into different compartments between which people

may progress. Different diseases are represented by different
compartmental models (Schmidt, 1981; Sharomi and Gumel,
2011; Gao et al., 2016). The Susceptible-Infectious-Recovered
(SIR) model, as one of the simplest and most classic

compartmental models, characterizes the dynamic changes in
each compartment using ordinary differential equations. There
are three compartments in this model: susceptible (S), infectious
(I), and recovered/deceased (R). The number of individuals in
each compartment varies over time. The deterministic SIR and
its derivatives are widely used to predict infectious deceases like
COVID-19 (Chen et al., 2020; Katul et al., 2020; Toda, 2020).
Besides compartmental models, statistical learning techniques
are also widely used in biomedical fields (Zheng et al., 2018,

2019; Hsieh and Zheng, 2019; Ganyani et al., 2020; Murray,
2020; You et al., 2020). For example, IHME team (Murray, 2020)
employed a statistical model to predict the number of deaths,
the demand of hospital beds, ICU beds and ventilators in a
few months.

In this paper, we develop a time-dependent Susceptible-
Exposed-Infectious-Recovered (SEIR) model with coefficients
estimated by Least Absolute Shrinkage and Selection Operator
(LASSO) regression. This model is inspired by the SIR model
and takes the existence of incubation period (the time from
exposure to development of symptoms) into consideration. The
individuals who have been infected but are not yet infectious
are labeled as exposed (E). Instead of the constant parameters
used in traditional SIR based models, we propose to model
the dynamic with time-dependent parameters. Additionally,
we extend our SEIR model to accommodate other crucial
factors such as immunity, reinfection, and vaccination cases into
account. With the epidemiology models, we aim at answering the
following questions:

• What is the trajectory of transmission rate, incubation rate,
and recovery rate?

• Has the inflection point been reached. If so, when?
• How does the reopen order affect the spread of the pandemic?
• How do reinfection and vaccination affect the pandemic?
• When will the mortality reach the peak?
• How many cases do we expect to have when the pandemic

is over?

The remainder of the paper is organized as follows: we build
the time-dependent SEIR model in section 2. Then we extend
the model to include the vaccinated group as well as analyze the
asymptotic stability of its disease-free equilibrium in section 3. To
validate our model, we perform numerical analysis, prediction,
and model simulation using national level data of the United
States, and the state level data of two selected states, New York
and North Dakota. The results are presented in section 4. Lastly,
we conclude this paper in section 5.

2. THE TIME-DEPENDENT SEIR MODEL

Our proposed SEIR model with time-dependent parameters
describes the transmission dynamic of an epidemic. It is assumed
that there are totally four states in which an individual would
experience: susceptible, exposed, infected, and recovered. In the
susceptible state, the individual does not have the disease but
can be infected by someone infectious through an effective
contact. Once being infected, the individual moves to the
exposed state. The exposed individual is not able to infect others
until the incubation period is over. Eventually, the infected
individual recovers from the disease. Altogether the four groups
of individuals at different states compose the entire population
and we denote the number of individuals in each group at time
t by S(t),E(t), I(t), and R(t). In this model, a person is assumed
to be immune to the virus after recovery and will not return to
the susceptible state. Accordingly, the number of deaths caused
by the disease is also counted in the recovered group R(t) since
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FIGURE 1 | Countries most impacted by COVID-19, updated by 2020-12-24.

neither of the recovered and dead has any more impact on the
spread of the virus.

The differential equations that govern the trajectories of the
four compartments are formulated as:

dS

dt
= −

βtS(t)I(t)

N
, (1)

dE

dt
=

βtS(t)I(t)

N
− σtE(t), (2)

dI

dt
= σtE(t)− γtI(t), (3)

dR

dt
= γtI(t), (4)

with a constant total population N,

N = S(t)+ E(t)+ I(t)+ R(t), (5)

Frontiers in Artificial Intelligence | www.frontiersin.org 3 March 2021 | Volume 4 | Article 6485798

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Li et al. COVID-19 With Interventions and Vaccination

and therefore, we have:

dS

dt
+

dE

dt
+

dI

dt
+

dR

dt
= 0. (6)

Three time-dependent parameters, the transmission rate βt , the
transition rate σt , and the recovery rate γt are introduced in this
model, which are all assumed to vary with respect to time. The
descriptions and empirical ranges are listed in Table 1.

The proportion of susceptible and infected individuals in the

population at time t are S(t)
N and I(t)

N , respectively. Given the
transmission rate βt , which describes the flow of susceptible
becoming exposed to the virus, and the total population N, the

number of newly exposed people is βtS(t)I(t)
N . Later, the exposed

individuals make the transition to the infected state at the
transition rate σt , which is the inverse of the incubation period.
The number of exposed individuals who complete the transition
at time t is σtE(t). Similarly, people recovered at time t is γtI(t),
given the recovery rate γt , which is the number of individuals
recover from the infected state per person per time.

2.1. Discrete Time-Dependent SEIR Model
Since the COVID-19 case report is updated daily, we revise
the differential Equations (1)–(4) into discrete time difference
equations as follows:

S(t + 1)− S(t) = −
βtS(t)I(t)

N
, (7)

E(t + 1)− E(t) =
βtS(t)I(t)

N
− σtE(t), (8)

I(t + 1)− I(t) = σtE(t)− γtI(t), (9)

R(t + 1)− R(t) = γtI(t), (10)

with the four variables satisfying (5) and

S(t + 1)− S(t)+ E(t + 1)− E(t)+

I(t + 1)− I(t)+ R(t + 1)− R(t) = 0.
(11)

Assuming historical data for a certain time period 0 ≤ t ≤ T
is available, i.e., we have {S(t),E(t), I(t),R(t)|0 ≤ t ≤ T}. By
deduction from (7) to (10), we can compute historical values
of the parameter series {βt , σt , γt|0 ≤ t ≤ T − 1} using the
following formulas:

βt =
N(E(t + 1)− E(t)+ I(t + 1)− I(t)+ R(t + 1)− R(t))

S(t)I(t)
,

(12)

σt =
I(t + 1)− I(t)+ R(t + 1)− R(t)

E(t)
, (13)

γt =
R(t + 1)− R(t)

I(t)
. (14)

Now predicting future values of the parameters {βt , σt , γt|t ≥ T}
given historical values can be converted to a regression problem.

2.2. Tracking the Transmission Rate βt,
Transition Rate σt, and Recovery Rate γt
There are several approaches predicting future values of the time-
dependent parameters. For instance, we can use linear models
(e.g., linear regression), nonlinear methods (e.g., spline), or time
series models (e.g., autoregressive model), etc. In this subsection,
we fit the following LASSO regression models:

β̂t+1 = a0 +

I
∑

i=1

aiβt−i, (15)

σ̂t+1 = b0 +

J
∑

j=1

ajσt−j, (16)

γ̂t+1 = c0 +

K
∑

k=1

akγt−k, (17)

where I, J, and K are the orders of the autoregressive process, and
{ai|0 ≤ i ≤ I}, {bj|0 ≤ j ≤ J} and {ck|0 ≤ k ≤ K} are the
regression coefficients.

These coefficients are determined byminimizing the following
loss functions, which are composed of the residual sums of
squares (RSS) and regularization terms:

L(β) =

T−1
∑

t=I+1

(βt − a0 −

I
∑

i=1

aiβt−i)
2 + λβ

I
∑

i=0

|a2i |, (18)

L(σ ) =

T−1
∑

t=J+1

(σt − b0 −

J
∑

j=1

bjσt−j)
2 + λσ

J
∑

j=0

|b2j |, (19)

L(γ ) =

T−1
∑

t=K+1

(γt − c0 −

K
∑

k=1

ckγt−k)
2 + λγ

K
∑

k=0

|c2k|, (20)

λβ , λσ , and λγ are the regularization parameters deciding
the penalty to the flexibility of model, and all regularization
parameters can be optimized by cross-validation.

2.3. Estimating the Exposed Ê(t), Infections

Î(t), and Recovered R̂(t) Groups
Given the historical data {S(t),E(t), I(t),R(t), 0 ≤ t ≤ T}, we first
compute the time-dependent parameter series {βt , σt , γt , 0 ≤ t ≤
T − 1} introduced in section 2.1. Then we predict future values
{β̂t , σ̂t , γ̂t , t ≥ T} using the model built in section 2.2. According
to (8), (9), (10), and (5), we can further predict the number of
cases for the future as follows:

Ê(t + 1) = Ê(t)+
β̂t Ŝ(t)Î(t)

N
− σ̂tÊ(t), t ≥ T + 1, (21)
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TABLE 1 | Model parameters.

Parameter Description Empirical range References

βt Transmission rate (effective contact rate) at a given time 0.5–1.5 day−1 Ngonghala et al., 2020; Read et al., 2020; Shen et al., 2020

σt Transition rate from exposed to infections at a given time 1
5.1 Fairoza Amira et al., 2020; Ngonghala et al., 2020

γt Recovery rate at a given time 1
10 Fairoza Amira et al., 2020; Ngonghala et al., 2020

vt Fraction of susceptible individuals vaccinated at a given time

w Fraction of infections gain immunity after recovery

Î(t + 1) = Î(t)+ σ̂tÊ(t)− γ̂t Î(t), t ≥ T + 1, (22)

R̂(t + 1) = R̂(t)+ γ̂t Î(t), t ≥ T + 1, (23)

Ŝ(t+ 1) = N− Ê(t+ 1)− Î(t+ 1)− R̂(t+ 1), t ≥ T+ 1, (24)

Note that for the special case when estimating
{Ŝ(t), Ê(t), Î(t), R̂(t)|t = T + 1}, i.e., the numbers of cases
at t = T+ 1, we use the true values of {S(t),E(t), I(t),R(t)|t = T}
instead of using the estimated values {Ŝ(t), Ê(t), Î(t), R̂(t)|t = T}
as in the formulas (21), (22), (23), and (24). The detailed steps of
the entire procedure are summarized in Algorithm 1.

Algorithm 1: Tracking discrete time time-dependent SEIR
model

Input: {E(t), I(t),R(t)|0 ≤ t ≤ T}, regularization
parameters λβ , λσ and λγ , orders of autoregressive
process I, J,K, prediction window tw.

Output: {βt , σt , γt|0 ≤ t ≤ T − 1},
{β̂t , σ̂t , γ̂t|T ≤ t ≤ T + tw − 1},
{Ê(t), Î(t), R̂(t)|T + 1 ≤ t ≤ T + tw}.

Compute {βt , σt , γt|0 ≤ t ≤ T − 1} using (12), (13), and
(14);
Train the LASSO regression models using
{βt , σt , γt|0 ≤ t ≤ T − 2} as the predictors and
{βt1 , σt2 , γt3 |I + 1 ≤ t1 ≤ T − 1, J + 1 ≤ t2 ≤
T − 1,K + 1 ≤ t3 ≤ T − 1} as the response;
while T ≤ t ≤ T + tw − 1 do

Predict β̂t , σ̂t and γ̂t using (15), (16), and (17);

Estimate Ê(t + 1), Î(t + 1) and R̂(t + 1) using (21), (22),
and (23), respectively;

3. SEIR VARIATION CONSIDERING
IMMUNITY, REINFECTION, AND
VACCINATION

The human immune system protects the body against
diseases with two parts. The first part, known as the innate

immune response, includes the release of chemicals that cause
inflammation and white blood cells that can destroy infected
cells. It is always ready to take actions as soon as any foreign
invader is detected inside the body. However, this part is not
specific to coronavirus. It will not learn and develop immunity
to the virus. Instead, the second part: the adaptive immune
response produces targeted antibodies that can stick to the virus
and stop the spread to the body. The T cells1 would attack the
cells infected by the virus.

Existing research shows that most COVID-19 patients had an
antibody response at 10 days or later after onset of symptoms (To
et al., 2020). If the adaptive immune response is powerful enough,
it could leave a lasting memory of the infection that will provide
protection in the future. Other findings also suggest that strong
responders (with higher antibody level) are significantly higher
in severe patients, while it is unclear whether the asymptomatic
or mildly symptomatic patients will develop sufficient adaptive
immune response and gain immunity to the disease after
recovery (Tan et al., 2020). In fact, there have been several
reported cases of COVID reinfection in China, Hong kong,
Belgium, the Netherlands, and the U.S. (Tan et al., 2020), and the
reinfection case are indeed increasing. This implies the necessity
of taking reinfection into consideration.

On the other hand, the worldwide endeavor to create a safe
and effective COVID-19 vaccine is beginning to bear fruit. A
wide variety of vaccines has already been authorized around the
globe while many more remain in development. According to
the U.S. CDC, as of December 13, 2020, the Pfizer-BioNTech
COVID-19 vaccine has been authorized and large-scale (Phase
3) clinical trials are in progress or being planned for three other
vaccines in the United States. Currently the supply of COVID-
19 vaccine in the U.S. is limited, but it will increase in the
upcoming weeks and months. Once large quantities are available,
the increasingly large-scale vaccination will have a substantial
impact on the pandemic.

3.1. The Time-Dependent SEVIS Model
To take the factors of immunity, reinfection, and vaccination
into account, we modify the proposed SEIR model by removing
the recovered group R(t) and adding a vaccinated group V(t),
which represents the vaccinated individuals. In this susceptible,
exposed, vaccinated, and infected modeling framework, the
previous assumption for the SEIR model that an infected

1T cells are one of the important white blood cells of the immune system, and play

a central role in the adaptive immune response.
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individual will not become susceptible again after recovery is
no longer employed. Instead, we assume that a fraction of
the infected individuals gain immunity after recovery through
producing antibodies while the rest return to the susceptible
state. The former is counted in the V(t) group along with the
vaccinated individuals since, epidemiologically speaking, both
are immune to the virus and can no longer be infected. The new
SEVIS model is governed by the following differential equations:

dS

dt
= −

βtS(t)I(t)

N
− vtS+ (1− w)γtI(t), (25)

dE

dt
=

βtS(t)I(t)

N
− σtE(t), (26)

dV

dt
= vtS+ wγtI(t), (27)

dI

dt
= σtE(t)− γtI(t), (28)

with a constant total population N,

N = S(t)+ E(t)+ V(t)+ I(t), (29)

and therefore, we have:

dS

dt
+

dE

dt
+

dV

dt
+

dI

dt
= 0. (30)

The parameter settings of the transmission rate βt , the transition
rate σt , and the recovery rate γt remain the same as in the SEIR
model. The vaccination rate vt is low at the beginning of vaccine
administration and gradually increasing as supply is growing.
w ∈ [0, 1] is the fraction of infected cases that become immune
after recovery. In addition, we assume it to be constant in this
model. Hence, the number of infected individuals recover at time
t is γtI(t), and wγtI(t) join the V(t) group while (1−w)γtI(t) fail
to gain immunity and return to the susceptible state S(t).

3.2. Baseline Epidemiological Parameters
In previous studies, the transmission rate, β (as a constant),
ranges from around 0.5 to 1.5 per person per day (Ngonghala
et al., 2020; Read et al., 2020; Shen et al., 2020) and decreases as
time goes. Based on existing literature, the incubation period (the
time from exposure to development of symptoms) of COVID-19
and other coronaviruses ranges from 2 to 14 days. On average,
symptoms show up in the newly exposed person about 5.1 days
after contact (Fairoza Amira et al., 2020; Ngonghala et al., 2020).
Thus, the transition rate, which is the inverse of the incubation
period, is estimated to be 1

5.1 .

3.3. Basic Reproduction Number and
Asymptotic Stability of Disease-Free
Equilibrium
In this subsection we give the closed-form expression for the
time-dependent basic reproduction number of the SEVIS model
using the next generation operator method (Diekmann et al.,

1990; van den Driessche and Watmough, 2002). The basic
reproduction number R0 is defined as the average number of
secondary infections caused by a single infectious individual who
enters an entirely susceptible population. That actually is the
special case where all parameters and compartments are at their
initial state at time t = 0. Since we propose the parameters to be
time-dependent in our model, we revise the basic reproduction
number to a time-dependent version Rt as well. When Rt > 1,
the infection will be able to start spreading in the population and
develop into an epidemic. Generally speaking, it is more difficult
to control the epidemic with the larger the value of the basic
reproduction number.

Let X be the vector of infected classes and Y be the vector of
uninfected classes. For the SEVIS model (25)–(28), we have:

X =

[

E
I

]

,Y =

[

S
V

]

.

Next we define the matrix of new infection terms F , which only
includes the flow from X to Y , and matrix of all other terms V ,
which includes flows within X and flows leaving the system. For
each compartment, in-flow in V is negative and out-flow in V

is positive.

F =

[

βtSI
N
0

]

,V =

[

σtE
−σtE+ γtI

]

.

The next generation matrix is defined as FV−1 where:

F =
∂F

∂X

∣

∣

∣

∣

DFE

,V =
∂V

∂X

∣

∣

∣

∣

DFE

.

The disease-free equilibrium (DFE) of the SEVIS model is given
by: (S∗,E∗,V∗, I∗) = (N, 0, 0, 0), and we have

F =

[

0 βt

0 0

]

,V =

[

σt 0
−σt γt

]

.

Therefore, the next generation matrix is:

FV−1 =

[

βt/γt βt/γt
0 0

]

.

Rt , the basic reproduction number at time t, is given by the
dominant eigenvalue of FV−1:

Rt =
1

2
(
βt

γt
+

√

βt

γt
(
βt

γt
+ 4)). (31)

Similarly, we can obtain the same basic reproduction number
for the time-dependent SEIR model. The DFE is locally
asymptotically stable ifRt < 1, and unstable ifRt > 1.

4. NUMERICAL RESULTS, PREDICTIONS,
AND SIMULATIONS

In this section, we will give the numeric results obtained by
implementing Algorithm 1 on the national level data of the

Frontiers in Artificial Intelligence | www.frontiersin.org 6 March 2021 | Volume 4 | Article 64857911

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Li et al. COVID-19 With Interventions and Vaccination

FIGURE 2 | U.S. COVID-19 map.

FIGURE 3 | Cumulative numbers of COVID-19 confirmed cases, recoveries,

and deaths in the United States.

United States (US) as well as the state level data of a few
representative states.

In spring 2020, the New York Metropolitan Area experienced
the largest COVID-19 outbreaks. As thousands of cases were
being confirmed daily in New York, the state was the epicenter
of the nation’s crisis and on a different scale than the rest

of the country. Though some new batches of hotspots have
emerged across the country during the past months, the state
of New York (NY) is still a region worth studying. On the
other hand, as of December 24, a pack of northern states
close to the Canada-US border have the highest percentages
of cumulative confirmed cases in their populations as shown
in Figure 2. The top one, North Dakota, has 11.94% of its
population infected cumulatively, followed by South Dakota
(10.69%), Wisconsin (8.61%), and some other nearby states. In
this case, as a representative of this particular area, we take North
Dakota (ND) as another example to illustrate our algorithm. We
used the dataset that was collected from the COVID-19 data
repository by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University (Dong et al., 2020) and the
nCov2019 R package (Wu et al., 2020). The dataset contains time
series of the numbers of confirmed cases, recovered cases and
deaths up to December 24, 2020. The starting date of the training
set used for model training varies according to the actual spread
of the pandemic in each of the three regions: US, NY, and ND.
For each region, a different start date of training set is chosen
for model fitting according to the time when a relatively clear
trend emerges.

Figures 3, 4 presents the cumulative numbers of COVID-19

confirmed cases, recoveries and deaths reported in US, NY, and

ND. The data starts at the beginning of the pandemic for US

and ND, but it starts a while after the initial point for NY. The
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FIGURE 4 | Cumulative numbers of COVID-19 confirmed cases, recoveries, and deaths in (A) New York, (B) North Dakota.

reason is that, back when the pandemic first started, a series
of well-recorded numbers of recoveries were not available for
many states, including NY. To obtain complete data on the three
type of cases for computation, a cut-off is made. Therefore, the
starting point of the data we collected for NY is about 2 months
later than the actual date when the first case of COVID-19
was confirmed.

Due to the unavailability of the numbers of the exposed
individuals E(t) in any of these regions, we substitute our model
in section 2.1 with a simplified version as in Chen et al. (2020) that
only includes the other three compartments S(t), I(t), and R(t).
To validate our algorithm, we compare the prediction results
with known data to see how well it performs, or how large
the prediction errors are. Then we implement the algorithm
again to predict how the COVID-19 pandemic will spread in
the future.

At the end of this section, we simulate the long-term
development of the pandemic based on the epidemiology models
proposed in sections 2, 3 by constructing certain conditions and
assigning assumed values to the parameters listed in Table 1.
Based on the results, we discuss what they indicate as well
as what differences we expect to see in reality compared to
the simulation.

4.1. Parameter Tracking and Prediction
First we compute the true values of the transmission rate βt

and the recovery rate γt using (12), (13), and (14). Then
starting from the sixth day in the parameter series, we take
the value of a time-dependent parameter for each day as
a subject for testing and a 5-day window before it as a
corresponding observation used for training, i.e., I,K = 5
in section 2.2. By doing this, we construct the training and
testing sets for model fitting. The R package glmnet is used
to fit the LASSO regression models and choose the optimal
values of λβ and λγ that yield the minimum mean cross-
validated errors.

Figures 5, 6 depict the true values {βt , γt|0 ≤ t ≤ T − 1} and
predicted values {β̂t1 , γ̂t2 |I+1 ≤ t1 ≤ T−1,K+1 ≤ t2 ≤ T−1}

FIGURE 5 | Parameter tracking and prediction for the United States.

of both the transmission rate and the recovery rate of US, NY, and
ND, respectively. The 95% prediction intervals are shown as the
gray bands above and below the curves.

For the U.S. case, there was a sharp decrease in the
transmission rate from mid-March to May, just about 1 week
after the spread of the virus started. This was an evidence
that the social distancing measures and community lockdowns
implemented across the country have effectively and significantly
slowed down the spread of the pandemic. It kept decreasing
for about a month before a surge appeared in July, which is
possibly caused by the nationwide celebration of Independence
Day. In the fall, starting from early September, the transmission
rate slowly rose again with increasingly larger oscillations,
which showed consistency with the surge in the fall that
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FIGURE 6 | Parameters tracking and prediction for (A) New York (B) North Dakota.

pushed the total number of confirmed cases in US past
11M. This could be a result of a series of events prior to
that (e.g., school opening, Halloween), and a prelude to the
upcoming large gathering (e.g., Thanksgiving, Black Friday,
Christmas). We expect this increase in the transmission rate
to continue toward early 2021 and start to gradually decrease
after the vaccination is administrated at a large scale in
U.S. The recovery rate also had an slight increase around
the same time in July but not as large as the one in
the transmission rate. Overall, the recovery rate of U.S. is
relatively steady and does not show any significant increasing or
decreasing trend.

Similar to the US case, the transmission rate of NY started
high and then reduced rapidly in the next few weeks. The trend
maintained stationary for about 3 months until a rise appeared in
late September and kept increasing toward the end. By December,
the transmission rate is nearly as high as when it first started. The
recovery rate of NY also had a large initial value followed by a 2-
month-long decrease, but no clear trend was shown after a small
spike at the beginning of July.

As for the ND case, the recovery rate started with a mild
increase in the first 2 month. Later on, it remained steady just
like the previous two regions. For the transmission rate, the
overall trend is much more stationary compared to the results
of US and NY and no significant change could be observed.
However, the true values of the two parameters of ND have
the greatest oscillations, i.e., the largest ranges of oscillations,
among the three regions. Note the two unusually acute spikes
in the transmission rate respectively in May and December
and one in the recovery rate in December that deviate from
the entire curves. In the absence of any pre or post trend, we
consider these points as outliers in this paper and exclude them
in model training.

4.2. Algorithm Validation and Relative
Percentage Errors
In this section, we use the computed values of the parameters to
estimate the three variables S(t), I(t), and R(t) as in section 2.3.
Instead of directly predicting future values for t > T, we use the
historical data {I(t),R(t)|T − tw ≤ t ≤ T − 1} and the predicted
parameter series {β̂t , γ̂t|T − tw ≤ t ≤ T − 1} to estimate the last
tw days of the entire period of time by which the data is covered,
i.e., predict {Î(t), R̂(t)|T − tw + 1 ≤ t ≤ T}. Moreover, we also
compare the proposed model with the classic SIR model with
constant parameters by replacing the time-dependent parameter
series with their means.

We evaluate the model performance using the relative
percentage errors (RPE) of the prediction for the infected group
I(t) and the recovered group R(t) as follows:

RPEI =
|I(t)− Î(t)|

I(t)
, T − tw + 1 ≤ t ≤ T, (32)

RPER =
|R(t)− R̂(t)|

R(t)
, T − tw + 1 ≤ t ≤ T. (33)

To assess the predictions of the proposed method and compare
with the classic SIR model, we compute the RPE series for the
past week (i.e., tw = 7) for the two models. The RPE series for
US, NY, and ND are displayed in Figures 7, 8 respectively, with
their means summarized in the top-left corner of each figure.
Using the proposed model with time-dependent parameters, the
mean relative percentage errors for I(t) and R(t), i.e., RPEI and
RPER, are 2.35 and 0.39% for US, 0.2 and 0.2% for NY, and 4.67
and 0.09% for ND, respectively. Using the classic SIR model with
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FIGURE 7 | Relative prediction errors for the United States.

FIGURE 8 | Relative prediction errors for (A) New York (B) North Dakota.

constant parameters, RPEI and RPER are 10.18 and 0.62% for US,
3.64 and 0.53% for NY, and 15.84 and 0.3% for ND, respectively.
All errors are significantly larger than the former, which clearly
shows the proposed time-dependent model yields better results
in predicting the spread of the pandemic than the traditional SIR
model with fixed parameters. Details of the model training and
validation process are summarized in Table 2.

4.3. One-Day Prediction for I(t), R(t), and
Basic Reproduction Numbers
Next we implement Algorithm 1 to predict the number of

infected I(t) and recovered individuals R(t) for the future

{Î(t), R̂(t)|T + 1 ≤ t ≤ T + tw}. We reset the prediction

window tw to be 30, as we are to predict the spread of COVID-
19 pandemic in the next 30 days after December 24, 2020. The

results of 1-day prediction for US, NY, and ND are shown in
Figures 9, 10, respectively. For NY, the sharp increase in the
infected group since November is predicted to continue toward
the next year, due to the oscillatory rise in the transmission
rate shown in Figure 6. On the other hand, the growth of the
recovered group remains slow. For ND, the number of infected
will stay low after the small surge was contained in November,
while the rapid growth in the recovered group is expected to
be continuous but might slow down. For US, the prediction
shows that both curves will keep climbing at a high rate, which
indicates that there will still be a long way to go before the
pandemic finally ends. The prediction results are summarized
in Table 3.

To assess the spread of COVID-19, we also obtain the
1-day prediction for the time-dependent basic reproduction
number Rt using (31). The results for the three regions
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TABLE 2 | Modeling training and validation.

Region Start date of training data Size of training set Order Prediction window tw Mean RPEI (%) Mean RPER (%)

United States 2020− 03− 07 287 5 7 2.35 0.39

New York 2020− 04− 28 235 5 7 0.2 0.2

North Dakota 2020− 04− 12 251 5 7 4.67 0.09

FIGURE 9 | One-day prediction of 30 days for the United States.

FIGURE 10 | One-day prediction of 30 days for (A) New York (B) North Dakota.

are presented in Figures 11, 12, with horizontal lines
representing Rt = 1. As discussed in section 3.3, the
virus will decline and gradually die out when Rt < 1.
Otherwise, it will continue to spread. According to the
results shown in Figures 11, 12, only very few points fall
below the horizontal line, while the majority lies above
it. For NY, the surge in fall, 2020 and some scattered
large values agree with the increasing trends in both the
confirmed cases and the transmission rate we see in Figures 4,
6, respectively.

The basic reproduction numbers Rt for each of the next 30
days are estimated to be >1 for all three regions. The means
of predicted values are found to be 2.48 for US, 22.28 for NY
and 1.68 for ND, which suggests the inflection point, where Rt

stabilizes below 1 afterwards, has not been reached yet, especially
for the NY case, where instead of having a decreasing trend, an
increasing Rt actually emerges over time. For US and ND, the
curves gradually approaching the horizontal lines of Rt < 1
indicates that the measures taken to tackle the pandemic are
taking effect, but at this point it is sill too early to relax them.
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TABLE 3 | Prediction results.

Region Total confirmed cases on last day Prediction window tw Î(t) R̂(t) Predicted total confirmed cases

United States 18,829,816 30 9,723,682 15,971,038 25,694,720

New York 891,270 30 1,111,117 153,277 1,264,394

North Dakota 90,947 30 1,760 95,016 96,776

FIGURE 11 | Time-dependent basic reproduction number for the United States.

FIGURE 12 | Time-dependent basic reproduction number for (A) New York (B) North Dakota.

4.4. Simulation Results for the SEIR and
SEVIS Models
We also simulate the long-term development of the COVID-19
pandemic based on SEIR and SEVIS models. March 17, 2020,
the first day in our US data, is chosen as the starting date of the
pandemic in the simulations.

For the SEIR model, we set the transition rate to σt =
1
5.1 according to Table 1. To simulate as close to the reality

as possible, we set the transmission rate βt and the recovery
rate γt to the means of their true value series obtained in

section 4.1. To construct the initial conditions of the system,

we use the initial values I(0) = 311 and R(0) = 27 obtained

from the data as well. In previous studies, the average Infected-
Suspected ratio in China, one of the earliest hot spots of the
global COVID-19 outbreak, was found to be 2.399 (e.g., Fairoza
Amira et al., 2020). In this simulation, due to the lack of data
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FIGURE 13 | Simulation based on the SEIR Model for the U.S.

of the exposed group, we use the same ratio to initialize E(t),
i.e., E(0) = 1

2.399 I(0) ≈ 130. According to the U.S. and
World Population Clock (United States Census Bureau, 2020),
the U.S. population is N = 329, 227, 746. Using (5), we have:
S(0) = N − E(0)− I(0)− R(0) ≈ 329, 227, 278.

With the aforementioned parameter settings and initial
conditions, we simulate the COVID-19 pandemic for the US.
As shown in Figure 13, the number of infected people reaches
a peak in early July, 2020, and the pandemic gradually dies out
in summer 2021. It is important to note that the simulation
is only theoretical and restricted by given conditions. These
conditions can be dramatically different in realty. Moreover, no
mitigation measure of any kind that can possibly prevent or
limit the spread of the virus is considered in the simulation,
such as wearing facial coverings, social distancing, community
lockdowns, and work-from-home policies. Being free of the
influences of such factors indicates that the pandemic might
develop slower in the simulation than in reality. Since many
states of the U.S. are following the strict guidelines set by
CDC, the pandemic is highly likely to end earlier than the
simulation result.

Next, we take immunity, reinfection and vaccination into
account, and simulate the pandemic according to the SEVIS
model proposed in section 3.1. The parameter settings of βt ,
σt , and γt remain the same as in the SEIR simulation. For the
vaccination rate vt , we clarify a starting date of vaccination tv.
Before the vaccination starts, i.e., for t < tv, vt = 0. When
t ≥ tv, vt becomes positive and based on the discussion in
section 3, we assume vt to start at a low value in realty and
exponentially increase as time goes on. Here, we simplify this
process by assuming the mean of {vt|t ≥ tv} to be 1% per day and
assigning it to vt , and let the vaccination start on January 1, 2021.
As for the last parameter w in Table 1, the fraction of infected
cases that become immune after recovery is currently unknown.
In this simulation, we assume w to be 0.5.

Figure 14 shows the simulation result with the vertical dashed
line representing t = tv, (i.e., the first day of 2021). We
notice that the trajectories obtained from the SEVIS model
before the vaccination are nearly identical to the previous SEIR
simulation. Once vaccination begins, the growth of the immunity
group V(t) and the decrease of the infected group I(t) clearly
accelerate. However, different from SEIR model which assumes
no reinfection, the SEVIS model does allow reinfection, which
leads to a longer time for the virus to die out. To speed up the
process, we can employ a larger value for w, i.e., increased flows
from I(t) to V(t) and reduced flows from I(t) to S(t).

5. CONCLUSION

Considering the incubation period of COVID-19, we first
proposed a time-dependent SEIRmodel with the time-dependent
parameters estimated by LASSO regression. The proposed model
is validated using the national level data (the United States)
and state level data (New York and North Dakota). Overall,
our proposed model outperforms the SIR model with smaller
prediction errors. Furthermore, by taking immunity, reinfection,
and vaccination into account, we proposed a time-dependent
SEVIS model without assuming guaranteed immunity after
recovery as in the SEIR model. Simulations are performed using
the proposed two models to predict the spread of COVID-19
pandemic for the United States.

With the daily recorded data in the U.S., our algorithm
predicts that the numbers of the infected and recovered
individuals will keep increasing at a high rate in the short future.
The total number of confirmed cases in the U.S. is estimated to
reach close to 25.7M by late January, 2021, while North Dakota
and New York will face 1.26 and 0.96M total confirmed cases,
respectively. Given the historical transmission and recovery rate
of the COVID-19, the simulation of SEVIS model predicts that
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FIGURE 14 | Simulation based on the SEVIS Model for the U.S.

the pandemic will die down in fall 2021, assuming the mean
vaccination rate to be 1% per day and the probability of gaining
immunity after recovery to be 50%. Note that this prediction
is subject to change with more accurate parameters chosen
according to the real data once vaccination starts.

In addition, it is crucial to understand that neither of the
prediction and simulation takes anymitigationmeasures that can
prevent or limit the growth of the pandemic into consideration,
such as social distancing, facial covering, lockdown restrictions,
and closing non-essential businesses. As a result, the end of
the pandemic in reality is highly likely to come earlier than
the numeric outcome. However, at this point the spread of the
pandemic is still ongoing and has not been contained yet, as the
time-dependent basic reproduction number for US is still steadily
positive. Also, in some particular parts of US (e.g., New York),
a new surge in the transmission rate was detected as the end of
the year 2020 approaches. These all could serve as an alert that it
is too early to relax the measures already implemented to tackle
the pandemic. Fortunately, these measures have been proven
effective by evidences. We expect them to continue taking effect
over time and suggest the necessity of bring in more. Hopefully,

with effort made by people around the world and the upcoming
release of vaccine, we will be able to conquer this global crisis in
no time.

Another limitation of the proposed time-dependent SEVIS
model is that, it assume absolute immunity to the virus
after vaccination, while in reality, the effectiveness of the
vaccine is not 100% guaranteed. For example, as reported
by the BBC news, a single dose of the Moderna vaccine
can provide 80.2% protection. When a second dose is
injected after a period of time, the effectiveness rise to
95.6%. In the future, we would like to extend the model
by factoring in changing effectiveness at different stage of
the vaccination.
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COVID-19 has created enormous suffering, affecting lives, and causing deaths. The

ease with which this type of coronavirus can spread has exposed weaknesses of many

healthcare systems around the world. Since its emergence, many governments, research

communities, commercial enterprises, and other institutions and stakeholders around the

world have been fighting in various ways to curb the spread of the disease. Science and

technology have helped in the implementation of policies of many governments that are

directed toward mitigating the impacts of the pandemic and in diagnosing and providing

care for the disease. Recent technological tools, artificial intelligence (AI) tools in particular,

have also been explored to track the spread of the coronavirus, identify patients with

high mortality risk and diagnose patients for the disease. In this paper, areas where AI

techniques are being used in the detection, diagnosis and epidemiological predictions,

forecasting and social control for combating COVID-19 are discussed, highlighting areas

of successful applications and underscoring issues that need to be addressed to achieve

significant progress in battling COVID-19 and future pandemics. Several AI systems

have been developed for diagnosing COVID-19 using medical imaging modalities such

as chest CT and X-ray images. These AI systems mainly differ in their choices of the

algorithms for image segmentation, classification and disease diagnosis. Other AI-based

systems have focused on predicting mortality rate, long-term patient hospitalization and

patient outcomes for COVID-19. AI has huge potential in the battle against the COVID-19

pandemic but successful practical deployments of these AI-based tools have so far

been limited due to challenges such as limited data accessibility, the need for external

evaluation of AI models, the lack of awareness of AI experts of the regulatory landscape

governing the deployment of AI tools in healthcare, the need for clinicians and other

experts to work with AI experts in a multidisciplinary context and the need to address

public concerns over data collection, privacy, and protection. Having a dedicated team

with expertise in medical data collection, privacy, access and sharing, using federated

learning whereby AI scientists hand over training algorithms to the healthcare institutions

to train models locally, and taking full advantage of biomedical data stored in biobanks

can alleviate some of problems posed by these challenges. Addressing these challenges
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will ultimately accelerate the translation of AI research into practical and useful solutions

for combating pandemics.

Keywords: artificial intelligence, COVID-19, detection, diagnosis, epidemiology, social control, contact tracing,

medical imaging

INTRODUCTION

COVID-19, a type of coronavirus disease caused by Severe

Acute Respiratory Syndrome Corona-Virus 2 (SARS-CoV-2), has

created enormous suffering, affecting lives and causing deaths.
The novel nature of the virus means that humans are only
newly exposed to the virus (Brüssow, 2020; Wan et al., 2020).

First reported in China in December 2019, it was declared by
The World Health Organization (WHO) to be a Public Health

Emergency of International Concern (PHEIC) on January 30,
2020 and a pandemic on March 11, 2020 (Team, 2020; WHO,

2020). It is an infectious disease that spreads in humans mainly

through respiratory droplets produced by an already infected

person through sneezing or talking, or airborne transmission
(Moriyama et al., 2020). The early symptoms of the disease
include persistent high temperature, dry continuous coughing,
loss of taste or smell, and difficulty in breathing (Kooraki et al.,
2020; Wang et al., 2020a). Severe cases of the disease cause death
(Rothan and Byrareddy, 2020; Zhou et al., 2020a).

Due to the ease with which the coronavirus can spread and
grow exponentially within the human population, healthcare
resources and manpower to rapidly control it is limited as the
number of doctors, nurses, and other healthcare workers and
resources that could help control it is finite. Moreover, the disease
has exposed weaknesses of many healthcare systems around the
world. Indeed, the lack of affordable, quick and accurate means
of detecting the disease is one of the most important reasons it
has rapidly spread (Ai et al., 2020).

Since the emergence of COVID-19, many governments,
research communities, commercial enterprises and other
institutions and stakeholders around the world have been
fighting in various ways to curb the spread of the disease (Chen
et al., 2020a; Dong et al., 2020). Science and technology have
helped in the implementation of policies of many governments
that are directed toward mitigating the impacts of the pandemic
and in developing cures and vaccines for the disease. They
also offer unique opportunity to support healthcare workers by
providing them with tools that would save them time, improve
their ability to carry out their job and enhance the management
of healthcare systems developed to combat the pandemic, and
much more. Many resources have been made available to support
the battle against COVID-19, such as datasets (Cheng et al.,
2020; Cohen et al., 2020; Zhao et al., 2020a), computing resource
(Hack and Papka, 2020), and research funding (Casigliani et al.,
2020; Glasziou et al., 2020; Janiaud et al., 2020; Patel et al., 2020;
Prudêncio and Costa, 2020; UKCDR, 2020).

The scope of combating COVID-19 using technology is very
broad and it includes understanding the socio-economic and
medical impacts of the pandemic. From a healthcare perspective,
it includes disease detection, diagnosis, and monitoring (Huang

et al., 2020a; Kong et al., 2020; Thevarajan et al., 2020; Xu et al.,
2020a), epidemiology (Chan et al., 2020; Jin et al., 2020a; Li et al.,
2020a), social control (Jin et al., 2020a; Kandel et al., 2020; Qian
et al., 2020), virology and pathogenesis (Andersen et al., 2020;
Jin et al., 2020a; Lu et al., 2020b; Walls et al., 2020), and drug
discovery (Chen et al., 2020b; Phua et al., 2020). For example,
during the early phase of the outbreak of the pandemic, China
used facial recognition cameras to track infected patients and
drones to disinfect public places and broadcast audio messages to
the public asking them to stay at home (Ruiz Estrada, 2020). As
another example, Taiwan linked its national medical insurance
database with the immigration and custom database in order
to inform the healthcare practitioners of the travel history of
patients (Wang et al., 2020b).

The term artificial intelligence (AI) refers to the study of
developing computer algorithms with human-like intelligence to
accomplish specific tasks. Machine learning (ML) methods are
a set of techniques in AI and includes supervised (Kotsiantis
et al., 2007), unsupervised (Barlow, 1989), semi-supervised (Zhu,
2005; Chapelle et al., 2009), and reinforcement learning (Sutton
and Barto, 1998). Some of these methods and other terms often
encountered in the AI literature are briefly described in Table 1.

The applications of AI can be found in many disciplines and
industries in modern society, and healthcare is not an exemption.
The rapid growth of AI-based techniques and tools in healthcare
are addressing complex problems such as identifying previously
undiscovered relationships in patient phenotypes (Shivade et al.,
2014), optimizing healthcare pathways (Lu and Wang, 2019;
Blasiak et al., 2020), and improving accuracy of medical decision
making (Bennett and Hauser, 2013; Shortliffe and Sepúlveda,
2018).

Advances and accessibility to high-performance scalable
computing equipment have driven the recent popularity of the
use of AI in many real-world applications. This development
has also prompted an expansion of research into novel AI
techniques and algorithms. AI algorithms have the potential to
interpret biomedical and healthcare data particularly for tasks
where conventional statistical methods are less efficient. The
algorithms are even more suitable for datasets of large scale
and high dimensions. These algorithms can therefore be used to
solve problems such as optimizing care pathways, standardizing
clinical diagnosis, identifying relationships in patient phenotypes
and developing predictive models (Johnson et al., 2017). While
AI-based methods can be used to solve many problems in
medicine and healthcare, the success of AI projects, in many
cases, depends on the choice of the AI technique, the quality of
the dataset to be used and the context associated with the way the
dataset is used. For instance, deep learning (DL) algorithms such
as convolutional neural networks (CNN) are particularly suitable
for computer vision problems such as image segmentation (Shen
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TABLE 1 | Some terms and methods commonly used in AI.

General terms

Artificial Intelligence (AI) The concept of developing computer algorithms with human-like intelligence to solve specific

tasks.

Deep Learning (or Deep

Neural Network)

A set of ML algorithms that are based on neural network (NN) that are used for feature learning.

The term “deep” refers to the fact that they have multiple layers between the input and the

output layers.

Machine Learning (ML) A subset of AI and consists of a collection of techniques to achieve AI.

Reinforcement Learning A set of ML algorithms that is based on the interaction between an agent and its environment. In

general, the agent seeks to take actions in the environment by maximizing a cumulative reward.

Supervised Learning A set of ML algorithms for developing mathematical models using data that consists of both the

input and the desired output data.

Unsupervised Learning A set of ML algorithms for finding underlying structures or patterns in datasets using only the

input data.

Convolutional Neural

Network (CNN)

A set of DL algorithms that are particularly efficient in developing AI-based applications involving

images. CNN acts as the backbone of many well-known neural network architectures (such as

U-net) used in image processing.

Random Forests (RF) Method A set of learning algorithms involving several decision trees and whose output is the class that is

the statistical mode (in classification tasks) or statistical mean (in regression tasks) of each of the

decision trees. These algorithms are often used for classification tasks and regression analysis

problems.

Support Vector Machines

(SVM)

A set of supervised learning algorithms that constructs hyperplanes in a high-dimensional

space. These algorithms are often used for classification tasks, regression analysis, and other

problems. In a classification problem, for instance, out of the many hyperplanes, the one that

has the largest distance to the data point of any class is considered the ‘optimal’ classifier.

Reference List of AI Algorithms Mentioned in this Paper

• AlexNet (Russakovsky et al., 2015; Krizhevsky et al., 2017)

• Artificial Neural Networks (ANN) (Hopfield, 1988; Jain et al., 1996)

• Adaptive-Network-based Fuzzy Inference System (ANFIS) (Jang, 1993)

• CNN (LeCun et al., 2015)

• CNN segmentation model (Region Proposal Network structure) (Ren et al., 2016)

• CNN model with Inception (Szegedy et al., 2016)

• Decision Tree (DT) (Breiman et al., 1984)

• Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016)

• Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)

• Gated Recurrent Unit (GRU) recurrent neural network (Cho et al., 2014; Chung et al., 2014)

• k-mean clustering (Kanungo et al., 2002)

• k-nearest neighbor (Cover and Hart, 1967)

• Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (Tibshirani, 1996)

• Logistic regression (Hosmer Jr et al., 2013)

• LSTM (Hochreiter and Schmidhuber, 1997)

• RF (Breiman, 2001; Liaw and Wiener, 2002)

• ResNet (He et al., 2016)

• SVM (Cortes and Vapnik, 1995)

• U-Net (Ronneberger et al., 2015)

et al., 2017). Recent advancement in AI research has led to the
development of tools in medicine and healthcare that are useful
in combating global pandemics. Researchers across several areas
of expertise and industries have therefore explored and exploited
the use of AI in the battle against COVID-19.

There are many ways in which AI can help in the fight against
the COVID-19 pandemic. For example, AI could be used to track
the spread of the virus (Al-Qaness et al., 2020; Bandyopadhyay
and Dutta, 2020; Carrillo-Larco and Castillo-Cara, 2020; Hu
et al., 2020; Jana and Bhaumik, 2020; Huang et al., 2020b; Kavadi

et al., 2020; Sameni, 2020), identify patients with high mortality
risk (Jiang et al., 2020a; Qi et al., 2020; Xu et al., 2020b; Yan
et al., 2020a), diagnose and screen a population for COVID-19
(Ghoshal and Tucker, 2020; Hassanien et al., 2020; Hemdan et al.,
2020; Jin et al., 2020b; Maghdid et al., 2020a; Narin et al., 2020;
Wang et al., 2020c,e; Wu et al., 2020a; Zhang et al., 2021; Xu
et al., 2020c), or reduce the time for diagnosis (Vaishya et al.,
2020a). Many of the AI techniques currently being deployed in
the battle already existed prior to the pandemic. These techniques
include those that can process and understand medical imaging
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data from modalities such as computed tomography (CT) and
X-ray that are being used for detection and diagnosis (Li et al.,
2020b; Wang et al., 2020e; Wynants et al., 2020) and those
involving non-imaging data that are being used for mortality rate
and outcome prediction, prognosis, outbreak prediction, contact
tracing and social control of COVID-19 (John and Shaiba, 2019;
Bandyopadhyay and Dutta, 2020; Chen et al., 2020e; Goh et al.,
2020; Pourhomayoun and Shakibi, 2020; Xu et al., 2020b). Other
AI techniques have also found new application areas due to
COVID-19. For example, in Shi et al. (2020a), argued for the
development of AI-based tools for automated acquisition of
medical images in order to optimize the imaging workflow and
reduce healthcare practitioners’ risk of exposure to the virus by
minimizing or eliminating contact with COVID-19 patients.

Several reviews, such as Albahri et al. (2020), Bansal et al.
(2020), Bragazzi et al. (2020), Bullock et al. (2020), Jamshidi et al.
(2020), Kricka et al. (2020), Kumar et al. (2020), Lalmuanawma
et al. (2020), Martin et al. (2020), Naudé (2020), Nguyen (2020),
Rasheed et al. (2020), Suri et al. (2020), Shi et al. (2020a), Vaishya
et al. (2020b), Zhou et al. (2020b), and Chen et al. (2020c), have
been published to showcase the opportunities AI presents in the
current effort to fight against COVID-19. In this paper, areas
where AI techniques are being used in the detection, diagnosis
and epidemiological predictions, forecasting and social control
for combating COVID-19 are discussed, highlighting areas of
successful applications and underscoring issues that need to be
addressed to achieve significant progress in battling COVID-19
and future pandemics. The paper assumes a basic background
knowledge of AI techniques, the reader is invited to consult
(Raghu and Schmidt, 2020) for further information of these AI
methods. Useful introduction to the epidemiology and clinical
features of COVID-19 can be found in, for example, C Disease
Control (2020).

AI IN COVID-19 DETECTION AND
DIAGNOSIS

Detection and diagnosis of COVID-19 is an important part in
the fight against the virus. Current diagnostic testing methods
are mostly non-invasive methods and they include chest CT and
chest X-ray medical imaging, nucleic acid, serologic, and viral
throat swab testing methods (Fang et al., 2020; Li et al., 2020c;
Lu et al., 2020a; Ozturk et al., 2020; Schwartz, 2020; Zeng et al.,
2020). In order to contain the spread of the pandemic and isolate
the virus, fast and early detection and tracking of infected patients
is crucial and there is clearly the need of innovation in this area
(Ai et al., 2020; Fang et al., 2020). In the subsections that follow,
AI tools that have been developed for the detection and diagnosis
of SARS-CoV-2 and COVID-19 are presented.

Nucleic Acid Amplification-Based
Diagnostics
A type of nucleic acid amplification test (Udugama et al.,
2020), the Reverse Transcription-Polymerase Chain Reaction
(RT-PCR) test, is one of the most widely used standard testing
methods for detecting whether patients have COVID-19 (Ai

et al., 2020). The RT-PCR however suffers from inadequate
sensitivity, as low as 71% as reported in Fang et al. (2020), as
a result of many factors such as low detection efficiency and
complicated sample preparation (Lu et al., 2020a; Wu et al.,
2020a). This low sensitivity issue results in multiple testing of
many patients usually over several days apart in order to obtain a
reliable conclusion.

A ML model was reported in Wu et al. (2020a) that uses
11 key blood indices to distinguish between patients with and
without COVID-19. The model was developed using the random
forest (RF) ML technique and 49 clinical available blood test
parameters (consisting of 24 routine hematological and 25
biochemical parameters) from 169 patients with a total number
of 253 data samples of which 105 samples are from patients
confirmed to have the COVID-19 disease using the RT-PCR test.
The remaining samples consisted of 98 samples from patients
with common pneumonia and 25 samples each from patients
with tuberculosis and lung cancer. The data was divided into
149 training, 33 testing, and 74 validating datasets. The model
achieved accuracy of 96.97% on the testing set and 97.95% for the
cross-validation set. While this model (which could be further
investigated for reliability and also improved further) offers a
promising tool for preliminary assessment of suspected patients
with COVID-19, it so far has not made it to front-line in the fight
against the coronavirus.

Medical Imaging Diagnostics
Medical imaging is one of the main areas in which AI has
found practical applications in medicine and healthcare. Imaging
data obtained using different modalities, such as computed
tomography (CT), magnetic resonance imaging (MRI) and X-
ray, are of high dimension. They contain very rich information
that can be used to develop AI applications. Imaging data can be
used to generate many useful image-derived phenotypes that are
obtained via qualitative and quantitative assessment of structural
changes (that often characterize the structural and functional
properties of an organ), significantly shortening the time for
radiologists to accomplish these tasks (Petersen et al., 2017;
Suinesiaputra et al., 2018; Mauger et al., 2019). Imaging data
can also be combined with non-imaging data from Electronic
Health Record (EHR) or elsewhere for identifying biomarkers
and predicting disease risk factors (Alaa et al., 2019). Faster and
automated reading and interpretation of image workflow can be
achieved using AI-based tools (Petersen et al., 2019; Robinson
et al., 2019; Bai et al., 2020).

Furthermore, segmentation of medical images is useful as
these images are often affected by noise, artifacts, and other
uncertainties associated with imaging. Image segmentation
involves contouring a medical image into biologically relevant
structures, helping to quantify those structures and their
functions and to produce measurements that act as biomarkers
(such as quantities that can be used to diagnose, monitor, or
prognosticate diseases). In particular, AI-based automatic image
segmentation tools are beneficial as they help in eliminating
variability that would have been introduced if segmentation
were manually done. Consequently, the use of these AI-based
technologies has contributed in the fight against COVID-19
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(Bullock et al., 2020). Medical imaging modalities, such as
chest CT and X-ray imaging, have provided significant support
to clinicians in diagnosing COVID-19 (Apostolopoulos and
Mpesiana, 2020; Bernheim et al., 2020; Kanne, 2020). A typical
workflow for diagnosing COVID-19 with medical imaging
modalities involves the following three phases: (i) pre-scan
preparation according to a given protocol; (ii) image acquisition;
and (iii) diagnosis.

AI tools for COVID-19 diagnosis with medical images often
consist of one or a combination of several AI models (or
networks) involving the following two main components: (i)
image segmentation models, and (ii) image classification. Image
segmentation is used to mark and identify the region of interest
(ROI) while an image classification task extracts features from the
ROI and uses those features as a basis for classifying (diagnosing)
the images.

CT Medical Imaging
Chest CT images are being used for early diagnosis of COVID-
19 by identifying ground-glass opacity (GGO) around the
subpleural region (Ai et al., 2020; Chung et al., 2020; Fang
et al., 2020; Kanne, 2020; Wong et al., 2020). In Pan et al.
(2020), the dynamic radiological patterns in chest CT images of
COVID-19 patients was reported with the following four stages
identified: (i) 0–4 days: early stage; (ii) 5–8 days: progressive
stage; (iii) 9–13 days: peak stage; and (iv) 14 days and beyond:
absorption stage. These distinct manifestations of COVID-19
in CT images provide evidence and severity of the disease
that are exploited using AI systems for diagnosing the disease.
Generally, the process of COVID-19 diagnosis with CT images
involves the following steps: (i) image pre-processing, (ii) image
segmentation, (iii) classification, and (iv) model evaluation.

AI tools for COVID-19 diagnosis with CT images involving
lung tissue segmentation are reported in Jin et al. (2020b), Li
et al. (2020b), and Xu et al. (2020c). As an example, the AI
system presented in Jin et al. (2020b) classifies chest CT input
image slices into the following four categories: non-pneumonia,
non-viral community acquired pneumonia (CAP), influenza-
A/B and COVID-19. The predicted class of an image is that
which has the highest probability among the four classes. This
AI system was developed using two main DL algorithms: the U-
Net for performing the lung segmentation task and the ResNet
for performing the classification (diagnosis) task. The ROI in the
image include the lung, lung lobes, bronchopulmonary segments,
and infected lesions. The dataset consists of 10,250 CT scans
from three centers in China and three publicly available external
databases. This multi-center dataset was from 7,917 subjects
consisting of 3,686 scans of COVID-19, 2,886 scans of CAP,
132 scans of influenza-A/B and 3,546 scans of non-pneumonia
subjects. The COVID-19 subjects were all confirmed using the
RT-PCR diagnostic test. The imaging dataset of 10,250 was
divided into a total training dataset of 5,104 and a total testing
dataset of 5,146. As a measure of accuracy, on internal testing
dataset of 3,203 images (out of the 5,146) the AI system achieved
an AUC of 97.17%, a sensitivity of 90.19% and a specificity
of 95.76%. It achieved an AUC of 97.77% on the remaining
(external) dataset of 1,943 images.

As another example, the AI system presented in Xu et al.
(2020c) classifies chest CT input image slices into the following
three categories: influenza-A viral pneumonia (IAVP), COVID-
19 and irrelevant to infection (i.e., cases that do not belong to
the other two categories) cases. The predicted class of an image is
that which has the highest probability that the image belongs to
it. This AI system consists of two main DL algorithms: a three-
dimensional (3D) CNN segmentation model (Region Proposal
Network structure) for performing a lung segmentation task and
a ResNet-based model for performing the image classification
task. The dataset consists of 618 CT scans from three hospitals
in China’s Zhejiang Province of which 110 subjects (219 scans)
were confirmed of COVID-19 using the RT-PCR diagnostic test;
224 subjects (224 scans) had IAVP, and the remaining 175 scans
are healthy subjects. The imaging dataset of 528 (189 COVID-19
cases plus 194 IAVP cases plus 145 healthy cases) were used for
training and validation, and the remaining 90 scans (30 COVID-
19 cases plus 30 IAVP cases plus 30 healthy cases) were used as
a testing dataset. On the testing dataset, the AI system achieved
an f1-score of 83.9% for COVID-19 cases, 84.7% for IAVP cases,
91.5% for healthy cases and an overall accuracy rate of 86.7%.

Several AI systems, such as Ardakani et al. (2020), Chen et al.
(2020d), Gozes et al. (2020), Kang et al. (2020), Li et al. (2020b),
Shi et al. (2020b), Song et al. (2020), Tang et al. (2020) and Wang
et al. (2020c,d), have been developed for diagnosing COVID-
19. Compared to the examples in the two preceding paragraphs,
these AI systems mainly differ in their choices of the algorithm
for image segmentation of the ROI and the algorithm used for
classification or diagnosis. The image segmentation algorithms
used include U-Net, U-Net++, V-Net, and others, and the
image classification algorithms include ResNet and CNN model
with Inception.

In order to address the problem of lack of large datasets of
COVID-19 patients for developing AI-basedmodels, researchers,
such as in Jin et al. (2020b) and Zhao et al. (2020a), have used
different techniques such as data augmentation and transfer
learning, to solve the CT image classification problems for
COVID-19 diagnosis. In Qian et al. (2020), the classification task
was to classify COVID-19 patients into those that will have short-
term and long-term hospital stay. Some AI models, such as Shi
et al. (2020b,c), went further after the image segmentation task
to predict the severity of COVID-19 in patients using algorithms
such as least absolute shrinkage and selection operator (LASSO)
logistic regression model and RF.

X-Ray Medical Imaging
The X-ray technology is a very popular imaging modality in
medical imaging (Wang et al., 2017). The CT and X-ray medical
imaging modalities have been more widely accessible and used
to provide evidence and for COVID-19 diagnosis compared to
other imaging modalities due to their fast acquisition. In fact,
in many healthcare centers and hospitals, X-ray imaging, due
to its accessibility and quickness to obtain, is often the first-
line imaging modality for suspected COVID-19 patients (Bullock
et al., 2020; Shi et al., 2020a). Although the chest X-ray images are
less informative compared to CT images for diagnosing COVID-
19 due to lower sensitivity of chest X-ray images, the popularity
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and availability of X-ray imaging facilities means that it is widely
used for the diagnosis of the disease. As with chest CT imaging,
chest X-ray imaging is being used for diagnosis of COVID-19 by
identifying ground-glass opacity (GGO) around the subpleural
region, and these manifestations of COVID-19 in chest X-ray
images provide evidence and classification of severity of the
disease that are being exploited using AI systems for diagnosing
the disease.

In general, the process of COVID-19 diagnosis with chest
X-ray images using AI tools involves the following steps: (i)
image pre-processing, (ii) image classification, and (iii) model
evaluation. In other words, compared to the AI tool for CT
images, the image segmentation process is absent although some
researchers, such as Hassanien et al. (2020), included classical
computer vision methods (i.e., not AI-based methods, such as
image thresholding) for carrying out the image segmentation step
as well. The AI-based image segmentation part of the process
is particularly difficult in the case of chest X-ray images given
that the ribs are projected onto other tissues on these images
(Chen et al., 2020c) so researchers often skip that step completely.
Classification tasks were binary, multi-class, multi-labeled or
hierarchical classifications (Albahri et al., 2020).

Several AI systems, such as Ghoshal and Tucker (2020),
Hassanien et al. (2020), Hemdan et al. (2020), Maghdid et al.
(2020a), Narin et al. (2020), Wang et al. (2019, 2020d), Zhang
et al. (2021), have been developed for diagnosing COVID-19
using chest X-ray images. These AI systems mainly differ in
their choice of the algorithms used for the image classification
task and often combine several algorithms (often, to achieve a
feature extraction step before a classification process). The image
classification algorithms that are being used include Support
Vector Machines (SVM), CNN, AlexNet, ResNet, and CNN
model with Inception.

The large number of AI techniques available for diagnosing
and classifying a disease means that it can be daunting to
select the most appropriate technique (in terms of accuracy and
computation efficiency) for a given problem given that many of
the researchers have used different (and sometimes conflicting)
evaluation criteria for their adopted techniques (Alsalem et al.,
2018, 2019; Zaidan et al., 2020). In Albahri et al. (2020), carried
out a literature review of AI techniques involving medical images
that are being used for diagnosing COVID-19 in an attempt
to evaluate and establish benchmarking procedures for these
techniques. A detailed description of the proposed methodology
for the evaluation and benchmarking of these AI techniques is
beyond the scope of this paper and the reader is invited to consult
(Albahri et al., 2020) for further information.

Other Tools for Diagnostics
In Schuller et al. (2020), presented a potential computer audition
tool that uses AI-based speech and sound analysis to COVID-
19 diagnosis. The authors surveyed automatic recognition and
monitoring of contextually significant phenomena from speech
or sound, such as dry and wet coughing or sneezing sounds, pain,
speech under cold, and breathing for diagnostic exploitation
using AI techniques such as Generative Adversarial Networks
(GANs) (Pascual et al., 2017).

In Wang et al. (2020f), an AI-based classification model was
proposed that is able to distinguish respiratory pattern from
six other viral infection respiratory patterns using the Gated
Recurrent Unit (GRU) recurrent neural network algorithm with
bi-directional attentionmechanism. Asmeasures of accuracy, the
reported precision, recall, f1-score, and accuracy of the model
were 94.4, 95.1, 94.8, and 94.5%, respectively. Other models that
use respiratory or coughing data for COVID-19 diagnosis can be
found in Brown et al. (2020), Imran et al. (2020), and Jiang et al.
(2020b).

Researchers, such as in Maghdid et al. (2020b), have also
proposed frameworks for using in-built mobile phone sensors
including cameras (to scan CT images, for example), temperature
sensors, and so on, for COVID-19 diagnosis. The computer
audition tools for diagnosing COVID-19, models that use
respiratory or coughing data for COVID-19 diagnosis and other
AI-based computational frameworks that use speech and sound
analysis and in-built mobile sensors, such as Iqbal and Faiz (2020)
have not yet gone beyond the conceptual phase.

AI IN EPIDEMIOLOGY

In the subsections that follow, AI tools that have been developed
for epidemiological predictions, forecasting and social control for
combating COVID-19 are presented.

AI for Prognosis
The ability to forecast possible patient outcomes is vital in the
planning and management of a pandemic such as COVID-
19. In order to improve prognosis and not to overwhelm
healthcare systems, the ability to predict number of patients
at risk of developing acute respiratory distress syndrome and
patients at risk of hospitalization or death can be very important
(Bullock et al., 2020). In the fight against MERS Co-V, for
example, AI-based models have been used to predict prognosis
in patients’ infection (in particular, patients’ recovery) using
patients’ profession (e.g., whether healthcare workers or not), age,
pre-existing healthcare conditions, and disease severity as model
input parameters (John and Shaiba, 2019). Similar AI-based
applications andmethods have been developed for Ebola patients
(Colubri et al., 2016; Riad et al., 2019). These and other similar
tools can help, for example, to assess healthcare preparedness for
a pandemic and to determine treatment methods and resource
allocation during a pandemic, and some of the these algorithms
could be adapted for decision making in the management of
COVID-19 (Bansal et al., 2020).

Epidemiological research is a vast area, and a huge amount
of publications on epidemiological modeling of COVID-19
using well-established classical methods have surfaced since
the beginning of the pandemic (Cooper et al., 2020; Jewell
et al., 2020; Ndairou et al., 2020). Recently, researchers have
proposed several AI-based techniques for predicting mortality
rate, long-term patient hospitalization (Qi et al., 2020) and
patient outcomes for COVID-19 (Jiang et al., 2020a; Yan et al.,
2020a). AI-based techniques that have been used to accomplish
the prediction tasks include artificial neural networks (ANN),
SVM, and XGBoost. For example, in Pourhomayoun and Shakibi
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(2020), using dataset of more than 117,000 confirmed COVID-
19 patients from 76 countries described in Xu et al. (2020b),
the authors used several AI-methods (including SVM, ANN, RF,
Decision Tree (DT), logistic regression, and k-nearest neighbor)
for the prediction of mortality rate of COVID-19 patients using
112 features consisting of 80 features from patients’ doctors notes
and health status and 32 features from patients’ demographic and
physiological data.

AI for Outbreak Forecasting and Control
The development of forecasting models in order to help policy
makers and other stakeholders understand the progression of the
pandemic is one of the first areas where mathematical methods
were applied to tackle the COVID-19 pandemic. It is therefore
not surprising that outbreak forecasting is also one of the first
areas in which AI methods have been applied in the fight
against the COVID-19 pandemic (Rasheed et al., 2020). There
are many existing statistical and dynamic methods for modeling
the spread of infectious diseases and understand the impact of
interventions to curb these diseases, such as mass vaccination
or social distancing, in any given population (Anderson and
May, 1979;May and Anderson, 1979;Mena-Lorcat andHethcote,
1992; Isham and Medley, 1996; Vynnycky and White, 2010;
Siettos and Russo, 2013; Pastor-Satorras et al., 2015). Several
of these methods have been used to understand and forecast
the spread of COVID-19 from available data (Karako et al.,
2020; Sameni, 2020; Wu et al., 2020b; Zhao et al., 2020b). These
methods can be used to determine transmission factors in order
to establish preventive and control measures for the pandemic.

The majority of AI applications developed in the fight
against COVID-19 have focused on predicting national and
local statistics such as the number of confirmed cases, deaths,
and people recovered from COVID-19 (Bullock et al., 2020).
AI models that have been developed for outbreak predictions
include (Al-Qaness et al., 2020; Bandyopadhyay and Dutta,
2020; Carrillo-Larco and Castillo-Cara, 2020; Hu et al., 2020;
Jana and Bhaumik, 2020; Huang et al., 2020b; Kavadi et al.,
2020; Sameni, 2020), and the modeling techniques used for
these models include CNN, long short-term memory (LSTM),
adaptive-network-based fuzzy inference system (ANFIS), partial
derivative regression and non-linear machine learning (PDR-
NML) (Kavadi et al., 2020), SVM and k-mean clustering.

For example, in Carrillo-Larco and Castillo-Cara (2020), a
model based on the k-means clustering algorithm was developed
and used to categorize countries based on the number of
confirmed COVID-19 cases using a dataset that contains features
such as the prevalence of HIV/AIDS, diabetes, and tuberculosis
in 156 countries in addition to data on the number of COVID-
19 related deaths, confirmed cases and recovered cases. In Al-
Qaness et al. (2020), an ANFIS-based model was developed to
estimate and forecast the number of confirmed cases of COVID-
19 10 days ahead using data of previously confirmed cases.
And in Ribeiro et al. (2020), for 10 Brazilian states with a
high daily COVID-19 incidence, a stacked ensemble of learning
algorithms [autoregressive integrated moving average (ARIMA),
cubist regression (CUBIST), RF, ridge regression (RIDGE), SVM]
with a Gaussian process (GP) meta-learner was used to conduct

1, 3, and 6-days ahead time series forecasting of the COVID-19
cumulative confirmed cases, achieving errors in a range of 0.87–
3.51%, 1.02–5.63%, and 0.95–6.90% in 1, 3, and 6-days-ahead
predictions, respectively.

In addition, some of these AI-based models, such as in
Kavadi et al. (2020), have reported prediction accuracies that
are superior to traditional linear regression-based methods.
Researchers, such as in Fong et al. (2020), have also proposed
techniques for comparing these different models that havemostly
been developed using different architectures and trained with
non-identical hyperparameters.

AI for Contact Tracing and Social Control
The implementation of indiscriminate lockdowns in several
countries in an attempt to control the COVID-19 pandemic
have had severe social and economic consequences. Despite
the physical distancing measures in-place when some of the
lockdown restrictions where gradually relaxed, other public
health measures were necessary in order to control the pandemic
(Hellewell et al., 2020; Hope et al., 2020; Park et al., 2020;
Salathé et al., 2020; Kretzschmar et al., 2020a,b), and contact
tracing (whether conventional methods that rely on interviewing
COVID-19 patients or mobile phone application technology)
has been one of the methods that have been adopted in many
parts of the world for this purpose. Contact tracing involves
contact identification, contact listing and contact follow-up
(Kricka et al., 2020).

For contact tracing purposes, mobile applications that have
been deployed to notify every participating user that a person
with COVID-19 was within a certain distance of the user
for more than a specific amount of time include COVIDSafe
(Australia), Ketju (Finland), CoronaApp (Germany), StopCovid
(France), NZ COVID Tracer (New Zealand), TraceTogether
(Singapore), NHS Covid-19 App (United Kingdom), to mention
a few (Lalmuanawma et al., 2020). As far as we know, none of
these digital technologies have been confirmed to use AI-based
models as tools, for example, in identifying those in contact with
a COVID-19 patient [in Lalmuanawma et al. (2020) though, there
is a report that AI tools are being used but this could not be
confirmed in the references provided by the authors]. There are
however promises [see Kricka et al. (2020), for example] that
data gathered through these applications could be exploited for
developing AI-based tools in the future.

In addition, AI techniques have been used to develop
applications for managing and control the spread of the COVID-
19 pandemic. Technologies, such as drones and surveillance
cameras equipped with AI-based models for enforcing social
isolation (Ahmed et al., 2021), have been reported. As for the
impacts of the various social control strategies, the reader is
invited to consult (Chang et al., 2020; Hellewell et al., 2020;
Kissler et al., 2020; Koo et al., 2020) for further information.

DISCUSSION

Promising and encouraging AI-based techniques and
frameworks for the detection, diagnosis, and epidemiological
predictions, forecasting and social control of COVID-19 have
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been proposed in the fight against the disease. For these AI
techniques to gain wide acceptance and use in practical clinical
settings however, there would need to be a framework on
how these models would be incorporated into clinical practice
systems. Importantly, the models, which have been developed
with mostly limited amount of data using different algorithms
and architectures, would need to be trained and validated with
larger amount of data and issues such as overfitting and biasness
should be appropriately addressed. Evaluating and comparing
the performance of AI models is crucial but challenging. This
is partly due to complex relationships amongst the choice of
algorithms, architectures, hyperparameters, and the quality and
amount of data used for these models.

In addition, many (if not the majority) of the proposed
or developed AI-based techniques and models for COVID-
19 diagnosis and epidemiological forecasting have not been
externally evaluated and caution must be exercised in the
interpretation of these results. Indeed, despite the urgency for the
publication of research results during the COVID-19 pandemic,
these models cannot be used in clinical practice in their current
form as critical review and external assessment of the techniques
and models with multi-center datasets should be carried out.

To illustrate the scale of the lack of external evaluation
problem with an example, consider a recent study presented in
Yan et al. (2020b) where the authors have used blood samples
from 485 infected patients in the region of Wuhan, China, to
identify crucial predictive biomarkers of disease mortality using
AI-based tools. In this relatively simple severity and outcome
prediction task, and with a small validation sample size and no
external model evaluation, the authors have used the XGBoost
classifier method to identify three biomarkers [namely, lactic
dehydrogenase (LDH), lymphocyte count and high-sensitivity C-
reactive protein (hs-CRP)] that will allow the prediction of the
mortality of COVID-19 patients more than 10 days in advance
with reportedly more than 90% accuracy. External evaluation
of this result by several other researchers, such as in Barish
et al. (2020), Giacobbe (2020), Quanjel et al. (2020), and Dupuis
et al. (2021), has shown that the results of Yan et al. (2020b)
have limited clinical utility as it was impossible to replicate the
findings and arrive at the same conclusion. If a huge external
evaluation problem exists even for simpler problems (such as
prediction and forecasting problems), one can only imagine
the scale of the problem when using AI-based model for more
complicated problems such as those involving images (computer
vision-related problems).

AI has huge potential in the battle against the COVID-
19 pandemic. Despite several AI approaches and techniques
proposed for the detection, diagnosis and epidemiological
predictions, forecasting, and social control in the combat against
the pandemic, successful practical deployments of these AI-based
tools have so far been limited. There are challenges that have
led to the limited applicability of these AI-based tools. In the
following paragraphs, some of these challenges are discussed with
some suggestions of how some of these obstacles may be tackled
in order to achieve significant progress in battling COVID-19 and
future pandemics using AI techniques.

Data Accessibility
One of the key challenges that AI experts have faced during the
COVID-19 pandemic is the lack of access to sufficiently large
datasets for training and external validation of AI models upon
which deployable and successful applications depend. In order
to tackle this problem for COVID-19 and future pandemics,
healthcare centers would need a dedicated team with expertise
in medical data collection, privacy, access, and sharing. In
short, data governance frameworks and protocols for pandemics
and other emergency times will need to be designed and put
in place.

One of the sources of data that has not been taken full
advantage of so far for developing AI-based applications and
solutions during the COVID-19 pandemic are data from
biobanks. Biobanks provide infrastructure for the collection and
storage of biomedical data, including data related to health
records and lifestyle of participants, with the aim of advancing
scientific research and improving healthcare. They are often
large databases that can store imaging data, text data from
electronic health record (EHR) and lifestyle information, and
numerical data obtained by physical measurements of consented
participants. Several types of biobanks exist around the world
with different population sizes, including genetic banks, blood
banks, and tissue banks. These biobanks contain valuable data
that can provide insights into how the health of a population
develops over years and provide a rich source of data that can
be harnessed to unveil complex relationships amongst variables
[such as environmental (Wright et al., 2002; Hall et al., 2014),
lifestyle choice (Rutten-Jacobs et al., 2018; Said et al., 2018),
and genetics (Arnau-Soler et al., 2019; Wang et al., 2019)]
that are associated with COVID-19. Biobanking is particularly
useful in that it provides a unified data repository with mostly
standardized data collecting protocols. In contrast, the hospital
data are “messy” due to the nature of data collection and
storage across multiple repositories. Examples of biobanks
include the Kaiser Permanente’s Research Program on Genes,
Environment and Health (RPGEH) with 200,000 participants
(Kaiser Permanente, 2020), the UK Biobank with 500,000
participants (Biobank, 2014), China Kadoorie Biobank with
500,000 participants (Chen et al., 2005a, 2011), India’s Chennai
biobank with 500,000 participants (Gajalakshmi et al., 2007), and
Biobank of Vanderbilt University Medical Center (BioVU) with
over 1.4 million participants (Roden et al., 2008). Not all these
biobanks have data of COVID-19 patients. The UK Biobank, one
of the largest biobanks in the world in terms of data volume and
depth including multi-organ imaging, is an example of one that
has been integrated with pre-existing data of COVID-19 patients.
UK Biobank’s data has been used for research related to COVID-
19 [for example, see Armstrong et al. (2020), Atkins et al. (2020),
Grant andMcDonnell (2020), Hastie et al. (2020), Jimenez-Solem
et al. (2020), Kenneth and So (2020), Pereira et al. (2020), Sattar
et al. (2020), Toh and Brody (2020), and Zimmerman and Kalra
(2020)]. Few AI-based applications, such as in Jimenez-Solem
et al. (2020), Kenneth and So (2020), Pereira et al. (2020), Toh
and Brody (2020), and Zimmerman and Kalra (2020), exist that
have used biobanks’ data for their development, and it is likely
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that the use of biobanks’ data for the development of AI solutions
will increase in the near future.

In addition, researchers, such as in Brisimi et al. (2018),
Lee et al. (2018), Rieke et al. (2020), Li et al. (2020d), and
Xu et al. (2020d), have proposed the use of federated learning
(FL) whereby, rather than participating healthcare institutions
hand over healthcare data to AI experts to develop AI models,
AI experts will handover training algorithms to the healthcare
institutions to train their models locally. The AI experts only
get the model or model parameters in return—thus, eliminating
some of the problems of data governance and privacy associated
with data transfer between different parties while giving access
to large amount of data. FL is not without its challenges, such as
lesser accuracy of the final model (Li et al., 2020d), and the reader
is invited to consult (Brisimi et al., 2018; Lee et al., 2018; Li et al.,
2020d; Xu et al., 2020d) for further information of this approach.

External Evaluation
Many of the developed AI-based techniques and models for
COVID-19 diagnosis and epidemiological forecasting have not
been externally evaluated. External model evaluation helps in
assessing the generalisability of the predictions on independent
datasets and ensures that the model has learnt the underlying
features of the process that produces the data rather than
“memorized” the features of a particular set of data. For
illustration, Figure 1 shows the steps in developing models using
AI algorithms, highlighting the model evaluation stage of the
development process.

Many publicly available datasets for COVID-19 diagnosis do
not necessarily generalize to the whole population (i.e., they are
usually for a specific country or regions of a country or a specific
number of hospitals). The implication is that most ML models
based on them will be biased (He and Garcia, 2009), which
can reduce the performance of the models in practical settings
(Chawla et al., 2002) and can promote healthcare inequalities
(Petersen et al., 2019). Many mainstream ML algorithms for
classification problems, including SVM, decision trees, and
nearest neighbor, were developed based on the assumption that
the dataset has balanced class distribution (Chen et al., 2005b;
Almogahed and Kakadiaris, 2015), resulting in significant error
when classifying the minority class. Algorithms that have been
developed to overcome this problem algorithmically or at data
level can be found in Hart (1968), Kubat and Matwin (1997),
Laurikkala (2001), Barandela et al. (2003), Oh (2011), and
Almogahed and Kakadiaris (2015). In addition, it is important
for published research to report the pre-processing, the cleaning
and the feature engineering steps applied to the data used for
developing AI-based solutions.

AI Regulatory Landscape
Recently, frameworks for strong regulatory and ethical
requirements of AI-based clinical utility tools are being
developed but significant hurdles still persist (Petersen et al.,
2019). Many AI experts are unaware of the regulatory landscape
governing the development of AI tools in healthcare and have
not considered this matter in their development. Proof of model
performance is not sufficient. Issues, such as model biasness,

safety, effectiveness, and benefit-versus-harm analysis have
mostly been ignored by developers of many critical AI-based
healthcare technologies.

Collaboration Between AI Experts and
Clinicians
While AI provides the opportunity to reduce the time for disease
diagnosis and improve accuracy, the workload of healthcare
professionals is very high during a pandemic. The impact of this
includes the difficulty for healthcare professionals to be up to date
with the progress being made in areas relevant to their work.
It has also hindered their contribution toward that progress.
The absence and lack of engagement of clinicians to contribute
and review research results during the COVID-19 pandemic has
contributed to the limited impact, reliability and clinical utility
of many of these research findings. The COVID-19 pandemic
has highlighted the importance of domain specific knowledge
in AI. It is not sufficient for clinicians to handover data to AI
experts who understand how to develop and use classical AI
algorithms. Rather, it is important for the clinicians to work with
AI experts to help them understand the context of the solutions
being developed, to help them interpret the results from those
solutions, and to guide them on how those solutions could be
used and integrated into existing clinical healthcare pathways or
workflows. Thus, multidisciplinary research collaborations will
no doubt accelerate the translation of AI research into practical
solutions in healthcare and funding bodies could help in this
by ensuring multidisciplinary collaborations as a condition for
funding. An important lesson that should be learnt in using AI
techniques for combating COVID-19 and future pandemics is
that the applicability of these techniques is limited if AI experts
work in isolation. Important progress in healthcare using AI
technologies can be achieved only in a multi-disciplinary setting
where clinicians, epidemiologists, computer scientists, software
developers, AI experts and others work together to achieve
the common goal of improving healthcare services through
innovative technologies.

Public Engagements Over Privacy
Concerns
While AI-based technologies embedded in digital systems have
played a role in controlling the spread of COVID-19 and the
general management of the disease by many governments across
the world, the concerns of the general public over privacy have
had an impact on the acceptance of many of these technologies
and even other potential applications. Consider, for instance,
the contract tracing mobile applications that many governments
have deployed as a tool for controlling COVID-19, concerns
over the possibility that data gathered through these applications
could be exploited for other purposes has meant that the general
public have been very reluctant in using them (Clark et al.,
2020; Lewis, 2020). It has also meant that tools applicable to one
country (such as China’s use of facial recognition cameras to track
infected patients or the linking of the national medical insurance
database with the immigration and custom database in order to
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FIGURE 1 | Steps in developing models using AI algorithms.

inform the healthcare practitioners in Taiwan of the travel history
of patients) may not be applicable to others.

A framework that will ensure transparency over the legal basis
of data use, that data collection is safe and that there are controls
and mechanisms to protect misuse of data is critical now and in
future. Thus, while it is essential to gather data to address the
challenges posed by a pandemic, the authorities would need to
do work on gaining the trust of the population through effective
engagements with all stakeholders on themechanisms that would
be in place in order to protect privacy and data misuse.

Potential Misuse of AI Applications
One of the dangers of reliance on AI applications during a
pandemic is the potential for misuse. Medical imaging involves
several stages including image acquisition, reconstruction,
and transmission for storage using Digital Imaging and
Communications in Medicine (DICOM) protocol. A cyber-
attack could disrupt the use of the devices such as CT devices
that can be critical for disease diagnosis during a pandemic
(Mahler et al., 2018). With the advent of advanced AI techniques
such as generative adversarial network in medical imaging (Yi
et al., 2019), one can envisage sophisticated scenarios where
AI technologies are used for cyber-attacks that can alter the
output of imaging modalities (for instance, by removing or
adding a tissue to medical images) altering the results of medical
examination, which could lead to fatal consequences. With
increasing cyber-attack activities during COVID-19 (Lallie et al.,
2021; Muthuppalaniappan and Stevenson, 2021), healthcare
providers must be prepared for preventing the occurrence and
also detecting and mitigating the impacts that these type of AI
attacks will cause when they occur.

In addition, while FL can resolve data governance issues,
it does not necessarily guarantee data security on its own as
it may be possible to reconstruct parts of the training dataset

from the weights on decentralized computer nodes (Kaissis
et al., 2020). This possibility can allow attackers to steal sensitive
personal information in the training datasets from the nodes and
even reconstruct medical images with high degree of accuracy
(Fredrikson et al., 2015; Hitaj et al., 2017), leading to patient
confidentiality violations.

Problems associated with data imbalance, variability and
incompleteness resulting from the use of datasets that are
not accurate representation of the population on which AI
models was built for can lead to biased treatment of certain
ethnic, sex, age, and other groups. In many cases, these data
biases are often introduced inadvertently by AI algorithm
developers but unscrupulous individuals can take advantage of
this to exacerbate bias from cultural prejudices and increase
disparities in delivering healthcare services. Moreover, misuse
of AI models can also result when the datasets used for model
training do not take into account future use-case conditions;
for example, radiologists can easily adapt to change in MRI
field strength and breathing motion artifacts but these changes
will affect the performance of AI models unless they have
been specifically allowed for during the training of the models
(Brady and Neri, 2020).

These issues of misuse of AI as highlighted here show that
it is important to provide safeguards to ensure that new AI
solutions during a pandemic are assessed before being deployed
at scale. It is important to emphasize that these challenges posed
by AI are not necessarily associated with the limitations of AI
per se (Rodriguez et al., 2018). Rather, they apply to particular
use-cases and emphasize the importance of understanding the
relationships that AI models use in arriving at their predictions.
As such, guards against spurious predictions must be put in place
in order to limit data misuse.

We finish by noting that, recently, there have been several
promising initiatives from key players (e.g., government bodies,
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commercial institutions, and policy makers) to collect and
manage data in order to address or alleviate some of the problems
highlighted in this paper. We mention a few of them in the
following paragraphs.

In the United Kingdom, NHSX, the government’s unit
responsible for developing and setting national policy on digital,
data and technology for National Health Service (NHS), has
developed the National COVID-19 Chest Imaging Database
(NCCID) in order to collect patient data and facilitate research
and the development and validation of technologies that are
promising for improving COVID-19 care (NHSX, 2021). The
categories of collected data include chest X-ray, CT, and MR
images including those performed in the 3 years preceding
the first COVID-19-related imaging study, routine demographic
data, biochemical and hematological data, and outcome data.

In the EuropeanUnion (EU), SoBigData is a research initiative
under the EU’s Horizon 2020 programme (Grant No. 654024
and 871042) which provides an integrated ecosystem of “big
data” for ethnic-sensitive scientific discoveries in multiple fields
including mathematics, ICT, and human, social, and economic
sciences (SoBigData.eu, 2021). The idea is to promote repeatable
and open science by meeting the data and infrastructural needs
of researchers while also ensuring that users’ data are gathered
for specific application and timebound (e.g., relates to dealing
with the COVID-19 pandemic only and data will be deleted
afterwards), the data cannot be shared without consent, and
the data must be of direct benefit to the users whose data
were gathered. Another initiative in the EU, The Confederation
of Laboratories for Artificial Intelligence (CLAIRE) (CLAIRE,
2021), has warned that it is very likely that our societies will be
confronted with other crises at a scale similar to COVID-19 in the
not-so-far future and have outlined an European approach with
the recommendation that standards and frameworks that would
facilitate the development of efficient management of medical
data that will not erode human dignity must be developed
(Ishmaev et al., 2021).

In the United States, three national institutions namely,
National Center for Advancing Translational Sciences (NCATS),
Clinical and Translational Science Awards (CTSA) Program and
Institutional Development Award Networks for Clinical and
Translational Research (IDeA-CTR), have partnered to form the
National COVID Cohort Collaborative (N3C) in an attempt to
enable collaborators to contribute and use COVID-19 clinical
data for scientific research that will have impact in the battle
against the pandemic (NCATS-US, 2021). As at the time of
writing this paper, the data of more than 950,000 COVID-
19 positive patients are available from N3C for researchers to
examine associations between COVID-19 patient outcomes and
other determinants of health and, at least, 144 projects are already
on-going for this purpose. Interestingly, in addition to patient
data being de-identified for privacy reasons, this cloud-based data
repository consists of synthetic (that is, computationally derived)
data that statistically resemble original patient information but
are not the actual data of the patients, adding another layer of
privacy protection for patients.

The summary of the key messages and the main lessons
learnt on the application of AI-based techniques and frameworks

for the detection, diagnosis and epidemiological predictions,
forecasting and social control of COVID-19 is as follows:

• We recommend that healthcare centers set up dedicated teams
with expertise in medical data collection, privacy, access and
sharing, and data governance frameworks and protocols for
pandemics and other emergency times.

• External model evaluation is important to avoid the problems
associated with model overfitting and biasness, such as
arriving at clinically unusable solutions or introducing
inequalities in health and healthcare. We recommend the
establishment of independent units at national level or
through international collaboration with the goal of assessing
and validating AI applications developed for healthcare during
pandemics before such applications are adopted and scaled up.

• The regulatory landscape (covering issues such as safety,
effectiveness and benefit-versus-harm analysis) governing the
development of AI tools in healthcare need to be accessible
and understandable to AI experts. We recommend that
professional bodies that will oversee certification programmes
for AI experts working in healthcare be introduced to ensure
that, through continuing professional development, these
professionals adhere to common ethical standards and are
aware of the current ethical and social issues related to
their work.

• The COVID-19 pandemic has highlighted the importance
of domain specific knowledge in AI, and multidisciplinary
research collaborations will only accelerate the translation of
AI research into practical and useful solutions in healthcare.
In funding AI projects, we recommend that research fund
awarding bodies should make the collaboration between
AI scientists and domain specific experts a condition for
grant awards.

• In order to gain the trust of the population in terms of
data collection, privacy and protection, we recommend that
all stakeholders work together in the development of a data
use and sharing framework that will ensure effective data
management is in place for the development and advancement
of AI applications in healthcare.

CONCLUSION

In this paper, AI techniques that are being used in the detection,
diagnosis and epidemiological predictions, forecasting and social
control for combating COVID-19 have been discussed. While AI
has huge potential in the battle against COVID-19, the successful
practical deployments of these AI-based tools have so far been
limited due to challenges such as limited data accessibility, need
for external evaluation of AI models, lack of awareness of AI
experts of the regulatory landscape governing the deployment
of AI tools in healthcare, the need for clinicians and other
experts to work with AI experts in a multidisciplinary context
and the need to address public concerns over data collection,
privacy and protection. Overcoming these challenges will lead to
significant progress in battling COVID-19 and future pandemics
using AI techniques.
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Developing an accurate and interpretable model to predict an individual’s risk for
Coronavirus Disease 2019 (COVID-19) is a critical step to efficiently triage testing and
other scarce preventative resources. To aid in this effort, we have developed an
interpretable risk calculator that utilized de-identified electronic health records (EHR)
from the University of Alabama at Birmingham Informatics for Integrating Biology and
the Bedside (UAB-i2b2) COVID-19 repository under the U-BRITE framework. The
generated risk scores are analogous to commonly used credit scores where higher
scores indicate higher risks for COVID-19 infection. By design, these risk scores can
easily be calculated in spreadsheets or even with pen and paper. To predict risk, we
implemented a Credit Scorecard modeling approach on longitudinal EHR data from 7,262
patients enrolled in the UAB Health System who were evaluated and/or tested for COVID-
19 between January and June 2020. In this cohort, 912 patients were positive for COVID-
19. Our workflow considered the timing of symptoms and medical conditions and tested
the effects by applying different variable selection techniques such as LASSO and Elastic-
Net. Within the two weeks before a COVID-19 diagnosis, themost predictive features were
respiratory symptoms such as cough, abnormalities of breathing, pain in the throat and
chest as well as other chronic conditions including nicotine dependence and major
depressive disorder. When extending the timeframe to include all medical conditions
across all time, our models also uncovered several chronic conditions impacting the
respiratory, cardiovascular, central nervous and urinary organ systems. The whole pipeline
of data processing, risk modeling and web-based risk calculator can be applied to any
EHR data following the OMOP common data format. The results can be employed to
generate questionnaires to estimate COVID-19 risk for screening in building entries or to
optimize hospital resources.
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INTRODUCTION

Despite recent progress in the Coronavirus Disease 2019
(COVID-19) vaccines approval and distribution, the pandemic
continues to pose a tremendous burden to our healthcare system.
Global resources to manage this current crisis continued to be in
short supply. It remains critical to quickly and efficiently identify,
screen andmonitor individuals with the highest risks for COVID-
19 so that distribution of therapeutics can be based on individual
risks. Many factors including pre-existing chronic conditions (Liu
et al., 2020), age, sex, ethnicity and racial background, access to
health care, and other social-economic components (Rashedi
et al., 2020) have been shown to affect an individual’s risk for
this disease.

Accordingly, several predictive models that seek to optimize
hospital resource management and clinical decisions have been
developed (Jehi et al., 2020a; Jehi et al., 2020b; Gong et al., 2020;
Liang et al., 2020; Wynants et al., 2020; Zhao et al., 2020). To a
large degree, these informatic tools leverage the vast and rich
health information available from Electronic Health Record
(EHR) data (Jehi et al., 2020b; Oetjens et al., 2020; Osborne
et al., 2020; Vaid et al., 2020; Wang et al., 2021a; Wang et al.,
2021b; Estiri et al., 2021; Halalau et al., 2021; Schwab et al., 2021).
EHR systems contain longitudinal data about patients’
demographics, health history, current and past medications,
hospital admissions, procedures, current and past symptoms
and conditions. Although the primary purpose of EHRs is
clinical, over the last decade researchers have used them to
conduct clinical and epidemiological research. This has been
notable especially during the COVID-19 pandemic where such
research that generated invaluable data about COVID-19 risks,
comorbidities, transmission and outcomes was quickly adapted
for clinical decision making (Daglia et al., 2021). To ensure
interoperability across multiple hospital systems, EHR data
incorporate standard reference terminology and standard
classification systems such as the International Classification of
Diseases (ICD) that organize and classify diseases and procedures
for facile information retrieval (Bowman, 2005). Incorporated
into the Medical Outcomes Partnership (OMOP) common data
model (Blacketer, 2021), these ICD9/ICD10 codes facilitate
systemic analyses of disparate EHR datasets across different
healthcare organizations.

Many of these insights were generated using machine
learning methods, based on multi-dimensional data (Mitchell,
1997). Studies have employed a variety of classification and/or
regression methods including Naive Bayes, Support Vector
Machine, Decision Tree, Random Forest, AdaBoost,
K-nearest-neighbor, Gradient-boosted DT, Logistic
Regression, Artificial Neural Network, and Extremely
Randomized Trees (Alballa and Al-Turaiki, 2021). Among
these, the most popular methods applied to COVID-19 have
been linear regression, XGBoost, and Support Vector Machine
(Alballa and Al-Turaiki, 2021).

To develop a COVD-19 risk model, we chose a Logistic
Regression based Credit Scorecard modeling approach to
estimate the probability of COVID-19 diagnosis given an
individual’s ICD9/ICD10 encoded symptoms and

conditions. Credit Scorecard is a powerful predictive
modeling technique widely adopted by the financial
industry to manage risks and control losses when lending to
individuals or businesses by predicting the probability of
default (Bailey, 2006). The Credit Scorecard model is most
frequently used by scorecard developers not only due to its
high prediction accuracy, but also due to its interpretability,
transparency and ease of implementation. This method has
been implemented previously for EHR data based COVID-19
risk prediction (Jehi et al., 2020a; Jehi et al., 2020b).

Application of feature selection methods that attempt to retain
the subset of features that are most applicable for classification has
been applied to increase interpretability, enhance speed, reduce data
dimensionality and prevent overfitting (Alballa and Al-Turaiki,
2021). While there are many feature selection methods, sparse
feature selection methods such as LASSO (Least Absolute
Shrinkage and Selection Operator) (Tibshirani, 1996) and Elastic-
Net (Zou and Hastie, 2005) provide advantages. LASSO places an
upper bound constraint on the sum of the absolute values of the
model parameters by penalizing the regression coefficients based on
their size and forcing certain coefficients to zero and eventually
excluding them to retain the most useful features (Tibshirani, 1996).
Expanded from LASSO, Elastic-Net adds a quadratic penalty term to
the calculation of coefficients to prevent the “saturation” problem
encountered when a limited number of variables are selected (Zou
and Hastie, 2005). Several COVID-19 risk prediction models
employed LASSO (Gong et al., 2020; Liang et al., 2020; Feng
et al., 2021) and Elastic-Net (Heldt et al., 2021; Hu et al., 2021;
Huang et al., 2021).

The major goals for this analysis were to determine whether
we could: 1) leverage the existing hierarchical structure of the
ICD9/ICD-10 classification system, in an unbiased approach, to
capture patients’ symptoms and conditions and estimate their
possibilities of having a COVID-19 diagnosis, 2) examine the
temporal aspect of EHR (i.e., within a timeframe, for example,
symptoms within 2-weeks of infection/diagnosis). to evaluate
what current symptoms and/or pre-existing conditions affect
COVID-19 risks, 3) apply a Credit Scorecard modeling
approach to develop and validate a predictive model for
COVID-19 risk from retrospective EHR data, and 4) develop a
pipeline requiring minimal manual curation capable of
generating COVID-19 risk models from any EHR data using
the OMOP common data model (Blacketer, 2021). To
demonstrate the latter goal a web application was created to
take answers from individuals and produces a COVID-19 risk
score. We have made the code freely available for anyone wishing
to reproduce and deploy such a model at gitlab.rc.uab.edu/center-
for-computational-genomics-and-data-science/public/covid-19_
risk_predictor.

MATERIALS AND METHODS

Dataset
The UAB Informatics Institute Integrating Biology and the Bedside
(i2b2) COVID-19 Limited Datasets (LDS) contain de-identified EHR
data that are also part of the NIH COVID-19 Data Warehouse
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(NCATS, 2020). Data was made available through the UAB
Biomedical Research Information Technology Enhancement
(U-BRITE) framework. Access to the level-2 i2b2 data was
granted upon self-service pursuant to an IRB exemption. Our
dataset contains longitudinal data of patients in the UAB Health
Systemwho had COVID-19 testing and/or diagnosis from January to
June 2020. Aggregated from six different databases, our dataset was
transformed to adhere to the OMOP Common Data Model Version
5.3.1 (Blacketer, 2021) to enable systemic analyses of EHR data from
disparate sources.

The UAB i2b2 COVID-19 LDS is comprised of 14 tables
corresponding to different domains: PERSON, OBSERVA-
TION_PERIOD, SPECIMEN, DEATH, VISIT_OCCURRENCE,
PROCEDURE_OCCURENCE, DRUG_EXPOSURE, DEVICE_
EXPOSURE, CONDITION_OCCURENCE, MEASUREMENT,
OBSERVATION, LOCATION, CARE_SITE and PROVIDER.
For the purpose of this study, we limit assessment to previous
reported conditions (from CONDITION_OCCURENCE) and
lifestyle/habits (from OBSERVATION).

Data Processing
Data wrangling was performed using Python 3.8.5 with the
Pandas package 1.2.1 and Numpy package 1.19.5. Code for
recreating our process is freely available (see code availability
statement below). The following subsections detail the
information retrieved from the database tables
mentioned above.

Person Table
Demographic information (i.e., age, gender, race, and ethnicity)
for each de-identified individual was extracted from the PERSON
table. Ages were extracted using the “year of birth” values.

Measurement Table
Information about COVID-19 testing was stored in the
Measurement table. We extracted the date, test type and test
result for each person.

COVID-19 positivity was determined by the presence of
either one of the three criteria: positive COVID-19 antibody
test, positive COVID-19 Polymerase Chain Reaction (PCR)
test, or the presence of ICD-10 U07.1 code in the EHR record.
COVID-19 negativity was assigned if the person were tested
for COVID-19 but has never had a positive test nor an ICD-10
U07.1 code.

Condition_Occurence Table
We extracted medical conditions (such as signs and symptoms,
injury, abnormal findings and diagnosis) for each patient from
this table by leveraging the inherent hierarchical structure of the
ICD-10 classification system.

Observation Table
Lifestyle and habits (i.e., BMI, smoking, alcohol and substance
use) were extracted from this table. This table also includes the
current status (i.e., current, former, never or unknown) of habits
for each patient.

Feature Filtering and Extraction
Demographics, lifestyle/habits and conditions (encoded by ICD-
9/ICD-10) are obtained as features in our model. For the purpose
of using the updated version of ICD codes as features, we
converted all ICD-9 codes to ICD-10 codes using a publicly
available converter script (Hanratty, 2019). We used these
converted codes along with the original ICD-10 codes to map
and extract conditions reported in the EHR for each patient.

Before feature extraction, we filtered out all COVID-19 related
ICD-10 codes such as U07.1 (COVID-19, virus identified),
Z86.16 (personal history of COVID-19), J12.82 (pneumonia
due to coronavirus disease 2019), B94.8 (sequelae of COVID-
19), B34.2 (Coronavirus infection, unspecified), and B97.2
(Coronavirus as the cause of diseases classified elsewhere).
Discarding COVID-19-related codes is imperative to prevent
data leakage in our predictive model. Data leakage refers to
the inclusion of information about the target of the prediction
in the features used for making the prediction that should not be
(legitimately) available at the time a prediction is made (Huang
et al., 2000; Nisbet et al., 2009; Kaufman et al., 2012; Filho et al.,
2021).

Temporal Filter for Medical Condition data
For the positive cohort, we used the date of patients’ first
COVID-19 testing or their first assignment of the COVID-
19-related ICD-10 codes (U07.1, U07.2, Z86.16, J12.82, B94.8,
B34.2, or B97.29) as the timestamp to apply a temporal filter for
feature selections. For the negative cohort, we also used the date
of their first COVID-19 testing as the timestamp. We define
temporal filter as a restricted timeframe to study the effect of
conditions for infection (i.e., to assess risk using medical
conditions occurred within 2 weeks before an infection). This
temporal filter is crucial to once again avoid data leakage by
excluding features that may emerge as a result of a COVID-19
infection or diagnosis.

To investigate how the timing of medical events and
conditions may affect the risk for COVID-19, we extracted the
condition data over two distinct time intervals. The first
timeframe only considers the conditions within the 2-week
window prior to the date of diagnosis whereas the second
timeframe retains all condition data before a given patient’s
first COVID-19 test or diagnosis.

Credit Scorecard Model
Variable (Feature) Selections
After extracting patients’ demographic information, lifestyle,
habits and ICD-10 condition codes, we converted them to
features using one-hot encoding. Features with more than
95% missing data or 95% identical values across all
observations were removed. The remaining variables
underwent weight-of-evidence (WoE) transformation, which
standardizes the scale of features and establishes a monotonic
relationship with the outcome variable (Zdravevski et al., 2011).
WoE transformation also handles missing and extreme outliers
while supporting interpretability through enforcing strict linear
relationships (Zdravevski et al., 2011). WoE transformations
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require all continuous or discrete variables to be binned. This
binning process is carried out programmatically based on
conditional inference trees (Hothorn et al., 2006). Missing
values for each feature are placed in their own bin and
eventually assigned their own WoE values. Each level (x) of
the binned values for each feature is then assigned a WoE value

via WoE(x) � ln(P(x|y�1)
P(x|y�0)) where P(x/y) is the conditional

probability of x given y, and y is the binary response
variable. All values of the independent variables, including
missing values, are then replaced with their corresponding
WoE value (Zdravevski et al., 2011; Szepannek, 2020). These
transformed variables were then used in logistic regression to
assign weights for the Scorecard.

For feature selection and regression on these transformed
variables, we tested two regularization approaches, LASSO
(Tibshirani, 1996) and Elastic-Net (Zou and Hastie, 2005),
using a cross-validation-based logistic regression method from
the Python package Scikit-Learn (version 0.23.2). This method
incorporates the use of stratified cross-validation to determine
optimal parameters for LASSO and Elastic-Net. LASSO is a
modification to typical generalized linear modeling techniques
such as logistic regression. Under the constraint the sum of the
absolute value of the model coefficients are less than a constant,
the residual sum of square errors is minimized (Tibshirani,
1996). The application of this constraint results in some
coefficients being 0, making LASSO a simultaneous variable
selection and model fitting technique. Building on LASSO,
Elastic-Net adds a quadratic penalty term to the calculation of
coefficients. Practically, this additional term prevents the
“saturation” (Zou and Hastie, 2005) problem sometimes
experienced with LASSO where an artificially limited number
of variables are selected. Both techniques employ penalty terms
to shrink variable coefficients to eliminate uninformative
features and avoid collinearity.

Collinearity is a major problem in extracting features from
ICD codes since some codes are frequently reported together, or
different providers may use inconsistent and incomplete codes.
Between the two approaches, LASSO is a more stringent variable
selector. For example, in the case of two highly similar features,
LASSO tends to eliminate one of them while Elastic-Net will
shrink the corresponding coefficients and keep both features
(Hastie et al., 2001).

The regularization strength (for both LASSO and Elastic-Net)
parameter and mixing parameter (for Elastic-Net) were selected
using 10-fold stratified cross-validation (CV). This method
creates 10 versions of the model using a fixed set of
parameters, each trained on 90% of the training data with
10% held out in each “fold” for scoring that particular
instance of the model. The stratified variant of CV ensures
that the distribution of classes (here COVID-positive patients
and COVID-negative patients) is identical across the 90%/10%
split of each fold. This process enables the model developer to
assess the predictive capability of the model given the specific set
of parameters being tested. The scores over all folds are averaged
to assign an overall score for the given set of parameters. This
process is repeated for all candidate sets of parameters being
tested. Cross-validation aids in preventing overfitting, i.e., failing
to generalize the pattern from the data, because the model is
judged based on its predictions on hold-out data, which are not
used for training the model.

For scoring candidate sets of parameters, we chose negative log
loss, a probability-based scoring metric, because a Scorecard
model is based on probabilities rather than strict binary
predictions. In particular, negative log loss penalizes
predictions based on how far their probability is from the
correct response (Bishop, 2016). For example, consider a
patient who is in truth COVID-negative. A forecast that a
COVID-positive diagnosis is 51% likely will be penalized less
harshly than a forecast that COVID-positive is 99% likely.

TABLE 1 | Demographics and Clinical Characteristics of the UAB LDS N3C
Cohort.

UAB LDS N3C cohort (n = 7,262)

COVID-19 testing:
COVID-19 results Positive (n � 912) Negative (n � 6,350)
Total COVID tests 1,328 7,596
COVID Tests/Person 1.46 1.20

All medical tests:
All tests 1,951,404 17,395,613
All tests/person 2,139 2,739
Age mean � 52 (10–119) mean � 52 (<1–119)

Gender:
Male (%) 394 (43%) 3,035 (48%)
Female (%) 516 (57%) 3,314 (52%)
Unknown (%) 2 (0%) 1 (0%)

Race:
White (%) 337 (37%) 3,441 (54%)
Black (%) 416 (46%) 2,497 (39%)
Asian (%) 27 (3%) 70 (1%)
Hispanic (%) 28 (3%) 174 (3%)
Others (%) 104 (11%) 168 (3%)

Conditions:
Total conditions 129,091 1,133,396
Unique conditions 9,224 24,101
#Conditions/Person 142 178
#Unique conditions/Person 10 4

Smoking:
Current smoker 81 (9%) 1,602 (25%)
Former smoker 196 (21.5%) 1,625 (26%)
Never smoker 368 (40%) 2,589 (41%)
Unknown 13 (1%) 64 (1%)

Substance use:
Current substance abuse 27 (3%) 895 (14%)
No substance abuse 632 (69%) 4,716 (74%)
Former substance abuse 32 (3.5%) 402 (6%)
Unknown 15 (1.6%) 74 (1%)

Alcohol use:
Current alcohol 273 (30%) 1954 (31%)
Former alcohol 58 (6%) 652 (10%)
No alcohol 379 (41.5%) 3,459 (54.5%)
Unknown 12 (1.3%) 80 (1%)

Weight:
Underweight (BMI < 19) 20 (2%) 271 (4%)
Normal weight (BMI � 20–25) 49 (5%) 563 (9%)
Overweight (BMI � 25–40) 320 (35%) 2,439 (38%)
Obese (BMI > 40) 120 (13%) 773 (12%)
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Conversely, a forecast that a positive diagnosis is 49% likely will
be rewarded less than one that such a diagnosis is 1% likely.

The hyperparameters evaluated for candidate LASSO
models was regularization strength, or the inverse of
lambda referred to in (Tibshirani, 1996). One-hundred
candidate values on a log scale between 1e−4 and 1e4 were
considered. The model with the best score from the technique
described above was considered to have the optimal
hyperparameters. For Elastic-Net, the same set of
regularization strength parameters was considered.
Additionally, Elastic-Net has a mixing parameter that
controls the relative strength of the LASSO-like penalty and
the additional Elastic-Net penalty term. Ten evenly spaced
values between 0 and 1 were considered for this
hyperparameter.

To address the class imbalance between COVID-19 positive
and negative group in the training data, we weighted each
observation inversely proportional to the size of its class.

Likewise, the use of a stratified cross-validation method
reduces the risk of inflating some scoring metrics by the
model preferring to simply predict the dominant class. Using
the above methods, we wanted to compare and contrast four
models to predict the risk for infection. Below are the four
models:

1. LASSO with all conditions/features reported before the
infection/diagnosis

2. Elastic-Net with all conditions/features reported before the
infection/diagnosis

3. LASSO with only conditions/features reported within 2 weeks
of infection/diagnosis

4. Elastic-Net with only conditions/features reported within
2 weeks of infection/diagnosis

Model Evaluations
Data were randomly split into 80% for the train set and 20% for
the test set. The quality of the four models built from two different
time-filtered datasets and two different regularization techniques
were evaluated by plotting the Receiving Operating Characteristic
(ROC) curve and measuring the corresponding Area Under the
ROC Curve (AUC). We also considered other model quality
metrics such as Accuracy (ACC)—the percent of correct
responses—and F-score—the harmonic mean of precision and
recall. We also used the confusion matrices to judge the quality of
our candidate models. Considering that these models are built to
recommend COVID-19 testing, we sought to avoid False
Negative predictions while being more lenient towards False
Positive errors.

Risk Score Scaling Using the Scorecard Method
Coefficients from the resulting logistic regression models were
then combined with the WoE-transformed variables to
establish scores for each feature in the Scorecard. This
scorecard generation was performed using the Scorecard
method implemented in the scorecardpy python package
(version 0.1.9.2). As opposed to pure logistic regression
models, scorecard models allow a strictly linear
combination of scores that can be calculated even on a
piece of paper, without the aid of any technology.
Calculating the probabilities from a logistic regression
model would require inverse transformations of log odds.
We chose the scorecard model for the strict linear
interpretation and corresponding ease of deployment
anywhere.

This method requires users to select target odds and target
points (a baseline number of points corresponding to a baseline
score) along with the points required to double the odds. As these
choices are arbitrary, we used the package defaults, which set the
target odds to 1/19, the corresponding target points to 600, and the
default points required to double the odds to 50. Supplemental
Figure S1 shows an example of a Scorecard distribution calculated
in this manner. Since the final Scorecard model is a linear function
of the predictors (i.e., higher scores indicate higher COVID-19
risks), using scorecards has many benefits such as transparency,
interpretability and facile implementation.

FIGURE 1 | Overview of workflow.
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Building a Web Application to Predict
COVID-19 Risks
Based on the final Scorecard model results, we used the
streamlit package (version 0.77.0) in Python to build an
interface and used interactive indicator plot from plotly to
visualize the risk score. The Python code to build this
application can be found in our gitlab repository at gitlab.
rc.uab.edu/center-for-computational-genomics-and-data-
science/public/covid-19_risk_predictor.

RESULTS

Our dataset was composed of 7,262 patients from within the UAB
Health System who received COVID-19 testing or diagnosis from
January to June 2020. The demographic information of this study
population is shown in Table 1. Among them, 912 patients were
diagnosed with COVID-19 and the remaining 6,350 patients,
were not. On average, patients in the positive group received 13%

more COVID-19 tests (1.45 vs. 1.19 tests/person). While there is
no statistically significant difference in age and gender between
the two groups, African American (46 vs. 39%), Asian (3 vs. 1%)
and Others (11 vs. 3%) ethnicity were overrepresented in the
positive group, a finding which is concordant with other reports
about the racial disparity in COVID-19 (Kullar et al., 2020). In
this UAB Health System dataset, a greater number of patients in
the negative group reported substance abuse (14 vs. 3%) and
current smoking (25 vs. 9%). There was no difference in Body
Mass Index (BMI) between the two groups. Although the
COVID-19 negative group had more reported medical
conditions (178 vs. 142 medical conditions/person), they had
fewer unique medical conditions (4 vs. 10 unique conditions/
person).

The workflow to build the predictive model for COVID-19
diagnosis based on EHR data is summarized in Figure 1. We used
condition data extracted from ICD-9/ICD-10 codes from two
different timeframes to assess how the timing of medical
symptoms and conditions may affect our COVID-19 risk

FIGURE 2 | LASSO vs Elastic-Net model performance on two sets of data Receiver operating characteristic (ROC) curves are shown for the final model for each of
the four assessed techniques (A,B), and the corresponding areas under curves (AUC) are presented in the figure legend. By AUC on hold out data (0.815), the models
built on data filtered by two-week before COVID (non)diagnosis perform the best (B).
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predictions. The first timeframe considers the data reported
within a 2-week window of testing/diagnosis while the second
timeframe retains all condition data prior to a COVID-19 test
or diagnosis. Such condition data suffer from collinearity
issues in that a group of medical conditions tends to be
reported together, and different providers may use
inconsistent codes for the same conditions. To address
these collinearity issues, we utilized two different
regularized regression techniques, LASSO and Elastic-Net.
Applying these two methods on the two data timeframes
yielded four different models with reasonable
discriminatory power, as judged by performance metrics on
testing data. With LASSO, we achieved 0.75 accuracy and 0.84
[CI: 0.81–0.87] AUC for the 2-week data and 0.74 accuracy and
0.80 [CI: 076–0.83] AUC for all-time data (Figure 2; Table 2).
Elastic-Net models also performed with a similar accuracy of
0.76 and AUC of 0.84 [CI: 0.81–0.87] for the 2-week data and
an accuracy of 0.74 and AUC of 0.79 [CI: 0.76–0.83] for the all-
time data (Figure 2; Table 2).

Using LASSO, a more stringent regularization method where
many variables are eliminated through shrinkage, after filtering,
30 out of the 58 features were retained (Supplemental Table S1)
in the 2-week data, and 93 out of 212 features were retained in the
all-time data (Supplemental Table S2). Within two weeks before

a COVID-19 diagnosis, features that predict higher risks for this
disease were cough (R05), abnormalities of breathing (R06), pain
in throat and chest (R07), abnormal findings on diagnostic
imaging of lung (R91), respiratory disorder (J98), disorders of
fluid, electrolyte and acid-base balance (E87), nicotine
dependence (F17), major depressive disorder (F32) and
overweight and obesity (E66) (Supplemental Table S1). The
LASSOmodel on all-time data identified similar features from the
2-week data such as cough (R05), but it also delineated other
important features related to acute respiratory infections such as
fever (R50), pain (R52), acute upper respiratory infections (J06),
respiratory failure (J96), respiratory disorder (J98), pneumonia
(J18), vasomotor and allergic rhinitis (J30), and other disorders of
nose and nasal sinuses (J34). Most notably, the all-time model
uncovered several chronic conditions in other organ systems
besides the respiratory system including neurological disorders
e.g. postviral fatigue syndrome (G93, R41), kidney diseases (I12,
I13, N17), diseases of the heart and circulation including
hypertension and kidney failure (I49, I51, J95) and fibrosis/
cirrhosis of the liver (K74), suggesting that long-term chronic
conditions in other organ systems may increase the risks for
contracting an acute respiratory illness such as COVID-19.

Even though LASSO is an effective method to handle
collinearity issues, it may not work well with multicollinearity
where several features are correlated among each other, as
observed in our condition data. Considering that LASSO may
eliminate important features through the stringent shrinkage
process, we also implemented the Elastic-Net regularization
method as a less stringent variable selector. This approach
retained more features than the LASSO with 43 features
remained for the 2-week data and 179 features for the all-time
data. All features selected from the LASSO method also remained
in the Elastic-Net method. Several new predictive features
emerged from the 2-week data including primary hypertension
(I10) and gastro-esophageal reflux disease (K21). In the all-time
data, many distinct yet similar conditions from the LASSOmodel
also appeared such as acute myocardial infarction (I21),
cardiomyopathy (I42), other cardiac arrhythmias (I49),
cerebral infarction (I63), complications and ill-defined
descriptions of heart disease (I51), peripheral vascular diseases
(I73), and other cerebrovascular diseases (I67), pointing to
vascular disorders. Other medical conditions also emerged
including viral hepatitis (B19), bacterial infection (B96),
thrombocytopenia (D69), epilepsy and recurrent seizures
(G40), although the predictive powers of these variables were low.

Among the four candidate models we generated based on the
UAB-i2b2 data, the LASSO method on the 2-week filtered data
retained the fewest variables while achieving similar performance
with other more complex models (Figures 2, 3; Table 2;
Supplemental Tables S1–S4). For this reason, we believed this
is a superior model and selected it as the model for our web
application. This interactive web application (Figure 4) gathers
participant questionnaire inputs and generates a risk prediction
score of having COVID-19. The Scorecard distribution based on
the logistic regression model can be found in Supplemental
Figure S1. This tool can be used for individuals to check their
risks based on their symptoms or conditions, or for organizations

TABLE 2 | Model metrics Evaluation of four models (LASSO and Elastic-Net with
patient’s conditions information from two timeframes) while training and
testing (i.e., holdout) data set. For each model, the accuracy, F-Score, and AUC
with 95% CI using DeLong’s method (DeLong et al., 1988) are shown. The
accuracy metric indicates the percent of correct predictions. F-score is the
harmonic mean of precision and recall. Area under receiver operating curve
(AUC) is the area under the curve resulting from plotting the true positive
against the false positive rate.

Training metrics

All-Time + LASSO All-Time + Elastic-Net

Accuracy 0.746 Accuracy 0.755
F-Score 0.834 F-Score 0.840
AUC 0.838 AUC 0.840
95% AUC CI [0.82 0.86] 95% AUC CI [0.82 0.86]

2-Week + LASSO 2-Week + Elastic-Net

Accuracy 0.774 Accuracy 0.775
F-Score 0.847 F-Score 0.848
AUC 0.848 AUC 0.848
95% AUC CI [0.83 0.87] 95% AUC CI [0.83 0.87]

Testing Metrics

All-time + LASSO All-time + Elastic-Net

Accuracy 0.741 Accuracy 0.744
F-Score 0.832 F-Score 0.834
AUC 0.796 AUC 0.794
95% AUC CI [0.76 0.83] 95% AUC CI [0.76 0.83]

2-Week + LASSO 2-Week + Elastic-Net

Accuracy 0.753 Accuracy 0.755
F-Score 0.833 F-Score 0.835
AUC 0.837 AUC 0.837
95% AUC CI [0.81 0.87] 95% AUC CI [0.81 0.87]
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FIGURE 3 | Confusion matrices Confusion matrices using training (A–D) and holdout (E–H) data are shown for the final model for each of the four assessed
techniques. Considering that these models are built to recommend COVID-19 testing, we sought to avoid False Negative predictions while being more lenient towards
False Positive errors.
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to build questionnaires to perform COVID-19 screening for
building entries. An example questionnaire from our final
model is provided in Table 3.

DISCUSSION

In this project, we built a data processing and predictive analytics
workflow to predict the risks for COVID-19 diagnosis using
patients’ longitudinal medical conditions encoded by the ICD-9/
ICD-10 classification system. We tested the implications of
applying different time windows and alternative variable

regularization methods to extract the most predictive features
from the condition data.

Although the all-time data model selected more features with
implications about pre-existing chronic medical conditions
increasing the risk of contracting COVID-19, we determined
that it was prone to capturing spurious correlations with distant
historical data and had weaker performance than the 2-week
models (Figures 2, 3; Table 2; Supplemental Tables S1–S4).
With regards to modeling techniques, we found that a more
stringent regularized regression approach such as LASSO
resulted in simpler models and still achieved high
performance as compared to more complex models built

FIGURE 4 | Web application demonstration Four representative snapshots with different scorings from the COVID-19 risk predictor web application are shown.
Scores were calculated based on participant answers to questions related to their symptoms and conditions using the Credit Scorecard method.
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from the Elastic-Net method (Figures 2, 3; Table 2;
Supplemental Tables S1–S4). As simpler models tend to be
more generalizable, more interpretable, and less likely to be
overfit, we consider the LASSO model using the 2-week data
filter the superior model for its parsimony without sacrificing
performance. Many COVID-19 risk prediction studies also
employed LASSO (Alballa and Al-Turaiki, 2021) with a few
other studies used Elastic-Net (Heldt et al., 2021; Hu et al., 2021;
Huang et al., 2021) as feature selection methods. A COVID-19
diagnostic prediction study by (Feng et al., 2021) compared the
performance of four different feature selection methods
including LASSO, Ridge, Decision Tree and AdaBoost also
found LASSO produced the best performance in both the
testing and the validation set.

While our workflow focuses on automatically extracting
predictive features from ICD9/10 codes, the majority of
COVID-19 prediction studies selected features from a wide-
range of additional clinical data components such as chest
computed tomography (CT) scan results, laboratory blood
tests, which includes complete blood count (e.g., leukocyte,
erythrocyte, platelet count, and hematocrit), metabolic factors
(e.g., glucose, sodium, potassium, creatinine, urea, albumin, and
bilirubin), clotting factors (e.g., prothrombin and fibrinogen),
inflammation markers such as C-reactive protein and interleukin
6 (IL-6) (Alballa and Al-Turaiki, 2021). Furthermore, whereas
some studies selected the initial sets of features from EHR data
based on expert opinions (Estiri et al., 2021; Feng et al., 2021;
Schwab et al., 2021) and/or literature review (Joshi et al., 2020;
Schwab et al., 2021), we took an unbiased approach to use ICD9/
10 codes along with demographic information as the initial set of
features. Our data wrangling workflow is limited to the data
available in the OMOP common data model, which facilitates

scaling up the analyses when we have access to more data of the
same format in the future.

Our results showed several COVID-19 predictive features that
overlapped with existing published findings. For example, several
respiratory symptoms such as cough, abnormalities of breath, and
chest pain prioritized by our models—particularly within the 2-
week timeframe—are well-known symptoms of COVID-19 (Fu
et al., 2020; Huang et al., 2020). Other chronic conditions selected
from our models have also been reported to increase COVID-19
risks such as obesity (Popkin et al., 2020), allergic rhinitis (Yang
et al., 2020), cardiovascular diseases (Nishiga et al., 2020) and
kidney diseases (Adapa et al., 2020) while there are still on-going
debates about the role of nicotine and smoking in COVID-19
risks (Polosa and Caci, 2020). Similar to other studies, we found
that major depressive disorder is associated with COVID-19
diagnoses. However, it is unclear whether severe mental health
problems are the cause, the effect, or the confounding factors with
other features associated with COVID-19 (Ettman et al., 2020;
Nami et al., 2020; Skoda et al., 2020).

A major limitation in our predictive modeling pipeline relates
to the fact that our model is based entirely on correlations
between medical conditions and COVID-19 testing/diagnosis.
Therefore, by design, this workflow cannot establish causal
relationships. As examples, there are several medical
conditions associated with lower risks for COVID-19
(Supplemental Tables S1–S4) which may highlight distinct
features in our negative cohort but may not directly affect
COVID-19 risks. This problem, however, is inevitable in
predictive analytic workflows that derive inferences from
retrospective data. Similar to all studies that apply machine
learning methods to model COVID-19 diagnosis, our classifier
is prone to imbalanced class distribution where there the positive

TABLE 3 | Example questionnaire Example questionnaire built using our selected model using the UAB-i2b2 data—the LASSO method on the 2-week filtered data. Base
score is 320 and the risk increases/decreases based on the answers in the questionnaire. Any score between 450 and 696 is considered high risk for infection.
Disclaimer: This questionnaire is intended only as an example output from a model built using our pipeline. It is not itself a diagnostic tool.

Questions Yes No

Do you have chronic kidney disease? 36 −6
Do you have cough? 36 −44
Have you delivered a baby? 35 −2
Are you having acute upper respiratory infections? 30 −6
Do you have fever? 24 −5
Are you having depression, anxiety, problems with cognitive functions or other brain disorders? 17 −4
Are you having pneumonia? 17 −3
Are you having respiratory failure? 16 −3
Are you dependent on nicotine? 14 −4
Do you have allergic rhinitis? 14 −2
Do you have retention of urine? 14 −1
Do you have pain? 14 −1
Do you have hernia? 13 −1
Do you have liver fibrosis/cirrhosis? 13 −1
Do you have disturbances of skin sensation? 12 −2
Are you having anemia? 10 −1
Are you having bacterial infection? 9 −1
Do you have complications from heart disease? 8 −2
Do you have hypotension? 8 −1
Do you have complications of cardiac and vascular prosthetic devices, implants and grafts? 6 0
Are you vitamin D deficient? 2 0
Do you have cardiac arrhythmias? 2 0
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COVID-19 instances are underrepresented in the training data
(Alballa and Al-Turaiki, 2021). However, we addressed this class
imbalance issue by weighing each observation inversely
proportional to the size of its class (see the Methods Variable
(Feature) Selections). Finally; we choose a generalized linear
model approach where we assume linear relationships on a
logistic scale between medical conditions and COVID-19 risks,
and consequently, potential non-linear relationships are not
considered.

Although our workflow is straightforward to implement, there
are substantial trade-offs by using the ICD-9/ICD-10 standard
vocabulary system as opposed to alternative text mining
approaches to extract medical conditions from EHR data. ICD
code accuracy is a major problem in some cases with classification
error rates as high as 80% (O’Malley et al., 2005). The sources of
these errors are wide-ranging including poor communication
between patients and providers, clinician’ mistakes or biases,
transcription/scanning errors, coders’ experience, and
intentional or unintentional biases (e.g., upcoding and
unbundling for higher billing/reimbursement value) (O’Malley
et al., 2005). Inconsistent, incomplete, systemic and random
errors in ICD coding (Cox et al., 2009) introduce noise in the
dataset, which is another limitation of our workflow.

Despite these inherent limitations, our study shows the promising
utility of incorporating the ICD-10 system in an unbiased manner
for novel inferences of EHR data, particularly to study medical
symptoms and conditions that influence the risks for COVID-19.
Future studies can consider incorporating other standard
vocabularies available in EHR data such as Systemized
Nomenclature of Medicine (SNOMED), Current Procedural
Terminology (CPT), Logical Observation Identifiers Names and
Codes (LOINC) as well as adding additional datasets such as patient’
medication uses to further understand the risks and the long-term
consequences of COVID-19.
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Background: Early prediction of symptoms and mortality risks for COVID-19 patients
would improve healthcare outcomes, allow for the appropriate distribution of healthcare
resources, reduce healthcare costs, aid in vaccine prioritization and self-isolation
strategies, and thus reduce the prevalence of the disease. Such publicly accessible
prediction models are lacking, however.

Methods: Based on a comprehensive evaluation of existing machine learning (ML)
methods, we created two models based solely on the age, gender, and medical
histories of 23,749 hospital-confirmed COVID-19 patients from February to September
2020: a symptom prediction model (SPM) and a mortality prediction model (MPM). The
SPM predicts 12 symptom groups for each patient: respiratory distress, consciousness
disorders, chest pain, paresis or paralysis, cough, fever or chill, gastrointestinal symptoms,
sore throat, headache, vertigo, loss of smell or taste, and muscular pain or fatigue. The
MPM predicts the death of COVID-19-positive individuals.

Results: The SPM yielded ROC-AUCs of 0.53–0.78 for symptoms. The most accurate
prediction was for consciousness disorders at a sensitivity of 74% and a specificity of 70%.
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2,440 deaths were observed in the study population. MPM had a ROC-AUC of 0.79 and
could predict mortality with a sensitivity of 75% and a specificity of 70%. About 90% of
deaths occurred in the top 21 percentile of risk groups. To allow patients and clinicians to
use these models easily, we created a freely accessible online interface at www.
aicovid.net.

Conclusion: The ML models predict COVID-19-related symptoms and mortality using
information that is readily available to patients as well as clinicians. Thus, both can rapidly
estimate the severity of the disease, allowing shared and better healthcare decisions with
regard to hospitalization, self-isolation strategy, and COVID-19 vaccine prioritization in the
coming months.

Keywords: COVID-19, artificial intelligence, machine learning, symptom, mortality

INTRODUCTION

The COVID-19 pandemic of the 2019 novel coronavirus (SARS-
CoV-2) started in December 2019 and is spreading rapidly, with
approximately 62.5 million confirmed cases and 1.5 million
deaths by the end of November 2020 (WHO, 2020).

The severity of the disease varies widely between different
patients, ranging from no symptoms to a mild flu-like illness, to
severe respiratory symptoms, and to multi-organ failure leading
to death. Among the symptoms, fever, cough, and respiratory
distress are more prevalent than symptoms such as
consciousness disorders and loss of smell and taste (Tabata
et al., 2020; Jamshidi et al., 2021b). In general, complications are
common among elderly patients and those with pre-existing
conditions. The intensive care unit (ICU) admission rate is
substantially higher for these groups (Abate et al., 2020;
Jamshidi et al., 2021a).

The Center for Disease Control (CDC) and the World Health
Organization (WHO) consider the identification of individuals at
higher risk a top priority. This identification could be used for
numerous solutions to moderate the consequences of the
pandemic for the most vulnerable (CDC COVID-19 Response
Team, 2020) as well as minimize the presence of actively ill
patients in society.

This requires the prediction of the symptoms and mortality
risk for infected individuals. While symptom prediction models
exist for cancer, no such models have been designed for COVID-
19 (Levitsky et al., 2019; Goecks et al., 2020). To make rapid,
evidence-based decisions possible, they will ideally be based on
readily available patient information, i.e., demographic attributes
and past medical history (PMH) as opposed to costly laboratory
tests. Early decision-making is critical for timely triage and
clinical management of patients. For instance, clinical and
laboratory data can only be assessed after presenting the
individual to a health care center, increasing the risk of
unnecessary exposures to the virus and increasing costs (Sun
et al., 2020). These parameters are not available immediately and
are partly subject to human error. Also, factors like genetic
predisposition may increase the models’ accuracy but are not
broadly available.

With the growth of big data in healthcare and the introduction
of electronic health records, artificial intelligence (AI) algorithms
can be integrated into hospital IT systems and have shown
promise as computer-aided diagnosis and prognostic tools. In
the era of COVID-19, AI has played an essential role in the early
diagnosis of infection, the prognosis of hospitalized patients,
contact tracing for spread control, and drug discovery
(Lalmuanawma et al., 2020). AI methods can have a higher
accuracy over classical statistical analyses.

In contrast to the few previously available COVID-19 risk
scales, our mortality prediction model uses a selection of variables
that are in principle accessible to all patients and thus can be used
immediately after diagnosis (Assaf et al., 2020; Pan et al., 2020).
This model not only has a significant benefit in early decision
making in the hospital setting, but because it does not require
clinicians or laboratories, it can serve as a triage tool for patients
in an outpatient setting, in telemedicine, or as a self-assessment
tool. For example, decisions on outpatient vs. inpatient care can
bemade remotely by estimating the most probable symptoms and
severity risks. This lessens the strain on health care resources,
unnecessary costs, and unwanted exposures to infected patients.

Here, we implemented 2ML methods to predict the symptoms
and the mortality of patients with COVID-19. Overall, 23,749
patients were included in the study. The predictors used for the
models were age, sex, and PMHof the patients. Both of these models
achieved predictions with high accuracy. To our knowledge, this is
one of the largest datasets of COVID-19 cases and is the only study
that uses patient-available data for the prediction of COVID-19
symptoms and mortality. Furthermore, this study is the most
extensive study for mortality prediction for COVID-19 using
ML-based on any set of predictors (An et al., 2020; Gao et al.,
2020; Vaid et al., 2020; Yadaw et al., 2020).

We also created an online calculator where each individual can
predict their COVID-19 related symptoms and risk (www.
aicovid.net).

For a standardized representation of the methodology and
results of this analysis an adapted version of the Transparent
Reporting of Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) guideline was followed
(Collins et al., 2015).
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METHODS

Source of Data and Participants
In this cohort study, we used the Hospital Information System
(HIS) of 74 secondary and tertiary care hospitals across Tehran,
Iran. The eligibility criteria were defined as confirmed or
suspected SARS-CoV-2 infections of people aged 18–100 years
registered in the referred HIS. The final database used to design
themodels was obtained by aggregating the 74 hospitals’HIS. The
study included patients referred to any of the hospitals between
February 1, 2020, and September 30, 2020. Patients were followed
up through October 2020 until all the registered patients had the
specific death or survival outcome needed for the mortality
prediction model (MPM). This study was approved by the
Iran University of Medical Sciences Ethics Committee.

Outcome
Symptom Prediction Model
The patients’ symptoms at the time of admission, as recorded in
the HIS, were considered as the outputs of the Symptom
Prediction Model (SPM). All stated symptoms were clustered
in 12 categories to be predicted by the model. The groups are
cough, loss of smell or taste, respiratory distress, vertigo, muscular
pain or fatigue, sore throat, fever or chill, paresis or paralysis,
gastrointestinal problems, headache, chest pain, and
consciousness disorders.

Mortality Prediction Model
Death or survival as per the HIS records was defined as the output
of the mortality prediction model (MPM).

Predictors
The patients’ age, sex, and past medical history (PMH), as
detailed in Table 1, were used as predictors for both models.
The selection of variables as predictors was based on the available
recorded data. All these predictors were recorded in the HIS at the
time of admission.

Missing Data
We only included patients with the required data. Due to the
absence of missing data, there was no imputation of missing
values.

Pre-Processing
Symptoms and predictor variables from the medical histories
with an incidence of less than 0.2% were removed to reduce noise.
This removed past COVID-19 infections, thrombosis, psychiatric
disorders, and organ or bonemarrow transplantation from the set
of predictor variables. The removed symptoms were tachycardia,
seizure, nasal congestion, and skin problems.

Sex, PMH, and symptoms were encoded as binary variables. In
training and test sets, the only continuous predictor, age, was
standardized to zero mean and unit standard deviation.

TABLE 1 | List of predictors. Predictor variables for mortality risk and symptom prediction of COVID-19.

Category Variable Description

Demographic Age In years
Sex Male or female

Past/Current Medical
Conditions

Cancer Current chemotherapy, radiotherapy, immunotherapy, bone marrow or stem cell
transplantation

Liver disorders Chronic hepatitis (type B or C), alcohol-related liver disease, primary biliary cirrhosis, primary
sclerosing cholangitis, hemochromatosis, cirrhosis

Blood disorders Anemia (iron deficiency, thalassemia minor and major, sickle cell disease), coagulopathies
(hemophilia and platelet disorders)

Immune disorders Immune deficiency (acquired immunodeficiency syndrome, treatment with steroids and
immune suppressors), autoimmune disease (rheumatoid arthritis, systemic lupus
erythematosus, ankylosing spondylitis, vasculitis).

Cardiovascular disease Congestive heart failure, cardiovascular events (myocardial infarction, stroke, angina), valvular
heart disease, arrhythmia (e.g. atrial fibrillation)

Kidney disorders Chronic kidney disease (stage 3, 4, and end-stage renal disease)
Respiratory disorders Asthma, chronic obstructive pulmonary disease (emphysema and chronic bronchitis), extrinsic

allergic alveolitis, cystic fibrosis, interstitial lung disease, sarcoidosis, bronchiectasis, pulmonary
hypertension

Neurological disorders Epilepsy, Parkinson’s disease, motor neuron disease, cerebral palsy, dementia, multiple
sclerosis

Endocrine disorders Hyperthyroidism, hypothyroidism, cushing syndrome, pheochromocytoma, thyroiditis,
hyperaldosteronism

Diabetes mellitus Type 1 and type 2 diabetes, maturity onset diabetes of the young, insipidus, gestational
diabetes

Hypertension Primary and secondary
Psychiatric disorders (removed due to low
prevalence)

Bipolar disorder, psychosis, schizophrenia, major depression disorder

Thrombosis (removed due to low
prevalence)

Venous thromboembolism, pulmonary thromboembolism
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Machine Learning Methods
To ensure generalizability, a 5-fold cross-validation algorithm
was employed [Performance evaluation of classification
algorithms by k-fold and leave-one-out cross validation,
(Wong, 2015). All records were randomly separated into five
independent subsets. Four subsets were used as training data,
and one subset was retained as a validation set for model testing.
The cross-validation process was then iterated four more times,
with each of the five subsets being used as validation data exactly
once. Subsequently, model performance metrics were evaluated
for training and validation groups separately in each model
iteration.

By separating deceased and surviving patients separately into
five mortality-stratified subsets first and then combining these
into the final five subsets, we maintained the same proportion of
deceased and surviving patients in each of the final five subsets.

We evaluated several machine learning techniques for both
models: Logistic Regression, Random Forest, Artificial Neural

Network (ANN), K-Nearest Neighbors (KNN), Linear
Discriminant Analysis (LDA), and Naive Bayes.

We took advantage of the Scikit-learn machine learning
library to implement both preprocessing algorithms and
models (Garreta and Moncecchi, 2013).

Symptom Prediction Model
The SPM output predicts symptoms for SARS-CoV-2 positive
patients. Since there are 12 symptom groups, we judged the
models’ overall performance by a single metric, the prevalence-
weighted mean of the twelve ROC-AUCs (Mandrekar, 2010),
in which the ROC-AUCs were weighted by symptom
prevalence.

Mortality Prediction Model
The MPM calculates the probability of death for SARS-CoV-2
positive patients. Each model’s performance was measured in
terms of a ROC-AUC.

RESULTS

Participants
Baseline characteristics of patients and their symptoms are shown
in Table 2. Of all 23,749 confirmed or suspected COVID-19
patients, 2,440 (10.27%) passed away at the end of the study (see
Discussion). A comparison of the characteristics of survived and
deceased patients is shown in Table 3. A comparison of the
characteristics of patients with and without each symptom is
shown in Supplementary Tables S1–S16.

We used statistical hypothesis tests to demonstrate each
predictor variable’s significance to the model outputs. We
employed the F-test (Snedecor, 1957) technique for age, a
continuous variable, and the Chi-square (Snedecor, 1957)
technique for other categorical variables such as sex and PMH.

Model Specification
We evaluated six machine learning methods for both the SPM
and MPM, which are listed, together with the hyperparameters
used in Table 4.

Model Performance
Symptom Prediction Model
The SPM can be considered as 12 separated classifiers; each
predicts the occurrence of a specific symptom. While the
performance of each sub-classifier can be evaluated
separately, the overall performance can be assessed using the
prevalence-weighted mean of the ROC-AUCs, since the
symptoms have different prevalence. The prevalence-
weighted mean ROC-AUC for each method is illustrated in
Figure 1. Although the KNN method provided the highest
weighted mean ROC-AUC for the test data, it was the least
robust method since its performance varied considerably for
different validation folds (note standard deviation bars). The
Random Forest method achieved better overall performance
and robustness. The weighted mean ROC-AUC value of this
method was 0.582 for the test data.

TABLE 2 | Patient characteristics and symptoms. Baseline characteristics,
symptoms, and death outcomes for COVID-19 patients.

Continuous variables

Variable Median (±IQR)

Age 52 (±29)
Categorical/Binary variables
Variable Count (percent)
Sex
Male 12,597 (53.04%)
Female 11,152 (46.96%)
Cardiovascular disease 2,471 (10.4%)
Diabetes 2,068 (8.71%)
Hypertension 2,004 (8.44%)
Respiratory diseases 546 (2.3%)
Cancer 477 (2.01%)
Kidney disorders 416 (1.75%)
Neurological disorders 264 (1.11%)
Immune disorders 178 (0.75%)
Blood disorders 152 (0.64%)
Current pregnancy 139 (0.59%)
Liver disorders 119 (0.5%)
Endocrine disorders 97 (0.41%)
Organ or bone marrow transplant 29 (0.12%)
Mental illnesses 19 (0.08%)
Thrombosis 15 (0.06%)
Past COVID-19 infection 10 (0.04%)
Outcomes
Survived 21,309 (89.73%)
Dead 2,440 (10.27%)
Symptoms
Cough 11,995 (50.51%)
Respiratory distress 10,342 (43.55%)
Muscular pain or fatigue 9,249 (38.94%)
Fever or chill 8,553 (36.01%)
Gastrointestinal problems 2,469 (10.4%)
Headache 1,120 (4.72%)
Chest pain 745 (3.14%)
Consciousness disorders 698 (2.94%)
Loss of smell or taste 659 (2.77%)
Vertigo 501 (2.11%)
Sore throat 157 (0.66%)
Paresis or paralysis 121 (0.51%)
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Moreover, the performance of the SPM can be evaluated for
each symptom separately. The ROC-AUC values for
predicting consciousness disorder, paresis or paralysis, and
chest pain were 0.785, 0.729, and 0.686, respectively. Also, at a

specificity of 70%, the sensitivities were 73%, 50%, and 53%,
respectively.

As shown in Figure 1, the random forest model with a mean
ROC-AUC of 0.8 and 0.79 has the highest efficiency in the

TABLE 3 | Comparison between survived and deceased patient groups. Comparative evaluation of the characteristics of survived and deceased COVID-19 patients.

Continuous variables

Variable Median
in survivors (±IQR)

Median
in deceased (±IQR)

F-test statistics F-test p-value

Age 49 (±27) 70 (±21) 2,039.47 <0.001
Categorical/Binary variables
Variable Count in survivors (percent in survivors) Count in deceased (percent in deceased) Chi2 statistics Chi2 p-value
Sex
Male 11,163 (52.39%) 1,434 (58.77%) 16.82 <0.001
Female 10,146 (47.61%) 1,006 (41.23%) 19 <0.001
Cardiovascular disease 2,039 (9.57%) 432 (17.7%) 139.29 <0.001
Diabetes 1,693 (7.94%) 375 (15.37%) 138.57 <0.001
Hypertension 1,676 (7.87%) 328 (13.44%) 80.71 <0.001
Respiratory disorders 462 (2.17%) 84 (3.44%) 15.47 <0.001
Cancer 343 (1.61%) 134 (5.49%) 164.28 <0.001
Kidney disorders 317 (1.49%) 99 (4.06%) 82.54 <0.001
Neurological disorders 207 (0.97%) 57 (2.34%) 36.68 <0.001
Immune disorders 152 (0.71%) 26 (1.07%) 3.62 0.057
Blood disorders 112 (0.53%) 40 (1.64%) 42.43 <0.001
Current pregnancy 133 (0.62%) 6 (0.25%) 5.35 0.021
Liver disorders 101 (0.47%) 18 (0.74%) 3.04 0.081
Endocrine disorders 88 (0.41%) 9 (0.37%) 0.1 0.747
Organ or bone marrow transplant 25 (0.12%) 4 (0.16%) 0.39 0.533
Psychiatric disorders 16 (0.08%) 3 (0.12%) 0.63 0.428
Thrombosis 13 (0.06%) 2 (0.08%) 0.15 0.696
Past COVID-19 infection 10 (0.05%) 0 (0.0%) 1.15 0.285

TABLE 4 | Machine learning methods and hyperparameters used.

The Mortality Prediction Model

Method Parameter Value(s)

Logistic Regression C 1.0
Random Forest Number of trees 500

Min. Number of samples at a leaf node %0.1 of all samples
Criterion Gini

Artificial Neural Networks Number of layers 3
Output space dimensionality for each layer 32, 16, 1
Activation function for each layer Tanh, tanh, sigmoid

K-Nearest Neighbors K 10
Weight function Distance

Linear Discriminant Analysis Solver SVD
Naive Bayes Interval size of age categories 0.1
The Symptom Prediction Model
Method Parameter Value
Logistic Regression C 1.0
Random Forest Number of trees 200

Min. Number of samples at a leaf node %0.1 of all samples
Criterion Gini

Artificial Neural Network Number of layers 4
Output space’s dimensionality for each layer 32, 32, 32, 12
Activation function for each layer Tanh, tanh, tanh, tanh, sigmoid

K-Nearest Neighbors K 5
Weight function Distance

Linear Discriminant Analysis Solver SVD
Naive Bayes Interval size of age categories 0.1
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training and the validation groups, respectively, followed by the
Neural Network and LDA. In the symptom prediction model, the
ROC-AUC values of all models in addition to the weighted
average of ROC-AUC of different ML methods for each
symptom are shown in Supplementary Figure S1.
Supplementary Figure S2 delineates each method’s
performance for all symptoms as a Radar chart.

Based on the ROC diagram and the information from the
database, the other performance metrics of the other models were
identified. In addition to the ROC-AUC of the risk prediction
model, we calculated the sensitivity and the negative and positive
predictive value (NPV and PPV respectively) for each model. The
detailed results of all six algorithms for both MPM and SPM are
shown in Supplementary Tables S17 and S18.

FIGURE 1 | Prevalence-weighted means ROC-AUCs for different ML models. The models were used to implement the Symptom Prediction Model (SPM). Error
bars denote the standard deviation over different cross-validation folds.

FIGURE 2 | ROC-AUCs of different ML models which were used to implement the MPM. The Random Forest (RF) model outperformed the other approaches.
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The calibration plot of the RF implementation for each
symptom predictor (sub-classifier) is depicted in
Supplementary Figure S3 which shows the calibration plot of
the RF implementation of each symptom.

Mortality Prediction Model
The ROC-AUC values for each method are depicted in Figure 2.
In the MPM classifier, the Random Forest method outperformed
the other methods just as for the SPM. The achieved ROC-AUC
value was 0.79 for the test data.

Supplementary Figure S4 shows ROC diagrams representing
the true-positive rates vs. false-positive rates for each method
used to implement the MPM. The calibration plot of the RF
model is depicted in Supplementary Figure S5. Calibration
indications such as Mean Calibration Error are also shown in
the Supplementary Figure S5 for different methods.

Model Input-Output Correlations
We used the Chi-square test and the F-test to evaluate the extent
to which PMH, sex, or age predict the outputs of the SPM and
MPM. The larger the values of these test values are for each
predictor variable, the more the predictor variable is predictive of
the output of the models. For categorical predictor variables
(i.e., PMH and sex), the Chi-square hypothesis test was used.
To evaluate the predictive value of a categorical variable, we
examined whether it was more common in patients who died
(MPM) or in patients with a particular symptom (SPM). For the
only continuous variable (age), we used the F-test. To find the
impact of age, we examined if the age median was higher in dead
patients (MPM) or patients with a particular symptom (SPM).

For the SPM model, Supplementary Figure S6 shows how
each factor in the PMH was correlated with each symptom using
the Chi-square test. For example, patients with diabetes or
cardiovascular disease were more likely to have consciousness
disorders and chest pain in case of infection with COVID-19. The
effect of age on each symptom is shown in Supplementary Figure
S7 using the F-test. Older patients were more likely to develop
symptoms such as respiratory distress and consciousness disorder
but also less likely to develop symptoms such as muscular pain or
fatigue.

In addition, for the MPM, the impact of each PMH on death is
shown in Supplementary Figure S8. In our analysis, cancer,
cardiovascular disease, and diabetes have the greatest effects on
the risk of death in patients with Covid 19; on the other hand,
pregnancy or being female decreased the chances of death. The
F-test statistic of age in the MPM model is 2,039.47, which
explains the increase in mortality risk from aging.

DeLong’s test shows the statistically significant difference
between AUCs of models. The DeLong tests for the MPM and
SPM predictions are shown through Supplementary Figures
S9–S21.

Validation of the Model for Each Mortality
Peak
For additional validation of our model, we evaluated the
performance of the final random forest for MPM during the

periods with the highest rate of mortality. The data corresponding
to each available mortality peak (april, February, and September
2020) was selected from the validation dataset of each model, and
the outcome (recovery or death of the patient) during each period
was predicted by the model and shown as a ROC diagram
(Figure 3). Despite the variation of the AUC in the mortality
peaks, the weighted average of the AUC values corresponding to
each period was approximately equal to the average model yield
for the entire data. We can conclude that the model continues to
perform equally well during each mortality peak. The cause of the
high yield in april could be explained by the large number of
available samples which would allow the algorithm to learn more
accurately.

DISCUSSION

Our objective in this study was to develop 2 ML models to
predict the mortality and symptoms of COVID-19-positive
patients among the general population using age, gender, and
comorbidities alone. These models can guide the design of
measures to combat the COVID-19 pandemic. The
prediction of vulnerability using the models allows people in
different risk groups to take appropriate actions if they contract
COVID-19. For example, people who fall into the low-risk
group can start isolation sooner when the predicted
symptoms appear and refer to a hospital only if the
symptoms persist. As a result, the risk of disease spread and
the pressure on the health care system from unnecessary
hospital visits, costs, and psychological and physical stress to
the medical staff could be reduced (Emanuel et al., 2020). In
contrast, people who are predicted to be at higher risk are
recommended to seek medical care immediately. Predictions
can speed up the treatment process and ultimately decrease
mortality.

Our study has shown that multiple symptoms have strong
correlations with different medical history factors. Symptoms can
be either amplified or attenuated by health backgrounds; for
instance, hypertension, diabetes, and respiratory and neurological
disorders increased the chances of loss of smell or taste; however,
pregnancy, cancer, higher age, cardiovascular disease, and liver,
immune system, blood, and kidney disorders have attenuated the
appearance of this symptom.

Due to the complexity of the COVID-19 pathogenesis, many
clinical studies revealed contradictory results, for example, the
effectiveness or ineffectiveness of remdisivir (Beigel et al., 2020;
Goldman et al., 2020; Wang et al., 2020). We hypothesize that the
imbalance of mortality risks between the intervention and control
groups could have been a problem in these studies. With the help
of our model, such problems could be partially solved by
equalizing the mortality baseline in different clinical groups.

Our AI models can also be beneficial for COVID-19 vaccine
testing and prioritization strategies. The limited number of
approved vaccines in the first months of the vaccination
process and the potential shortages make vaccine prioritization
inevitable. This prioritization would be more important for
developing countries that do not have the resources to pre-
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order vaccines from multiple companies (Persad et al., 2020).
Having a mortality prediction tool for each individual could be
a valuable tool for governments to decide on vaccines’
allocation.

Limitations
Since our dataset was collected by the HIS, it did not contain
COVID-19 patients that did not refer to a hospital or had no
major symptoms to be identified as infected. This could explain
the high mortality rate in our and other studies (Fumagalli et al.,

2020; Gue et al., 2020; Yadaw et al., 2020). However, for a
systematic study with few confounding variables, uniform data
collection is essential, which can only be realistically ensured with
hospital data.

Also, other variables such as the viral load may be important
but are difficult to measure and are not readily available. We
opted for easily accessible predictor variables to allow the
widespread use of the models.

One way to improve the models is to subgroup-specific factors
in the medical history or specific symptoms further. The main

FIGURE 3 | ROC chart for Prediction of RF models in different timelines. An indicator of model performance on validation dataset in the peak months of COVID-19
outbreak in Iran.
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reason for grouping factors and symptoms was the low prevalence
of certain subsets in the dataset.

In conclusion, we evaluated 15 parameters (Table 1) for
predicting the symptoms and the mortality risk of COVID-19
patients. The ML models trained in this study could help people
quickly determine their mortality risk and the probable symptoms
of the infection. These tools could aid patients, physicians, and
governments with informed and shared decision-making.
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Deep Learning–Based COVID-19
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CT Images: Model Generalizability
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Since the outbreak of the COVID-19 pandemic, worldwide research efforts have focused
on using artificial intelligence (AI) technologies on various medical data of COVID-
19–positive patients in order to identify or classify various aspects of the disease, with
promising reported results. However, concerns have been raised over their generalizability,
given the heterogeneous factors in training datasets. This study aims to examine the
severity of this problem by evaluating deep learning (DL) classification models trained to
identify COVID-19–positive patients on 3D computed tomography (CT) datasets from
different countries. We collected one dataset at UT Southwestern (UTSW) and three
external datasets from different countries: CC-CCII Dataset (China), COVID-CTset (Iran),
and MosMedData (Russia). We divided the data into two classes: COVID-19–positive and
COVID-19–negative patients. We trained nine identical DL-based classification models by
using combinations of datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on a single dataset achieved accuracy/area under the receiver operating
characteristic curve (AUC) values of 0.87/0.826 (UTSW), 0.97/0.988 (CC-CCCI), and 0.86/
0.873 (COVID-CTset) when evaluated on their own dataset. The models trained on multiple
datasets and evaluated on a test set from one of the datasets used for training performed
better. However, the performance dropped close to an AUC of 0.5 (random guess) for all
models when evaluated on a different dataset outside of its training datasets. Including
MosMedData, which only contained positive labels, into the training datasets did not
necessarily help the performance of other datasets. Multiple factors likely contributed to
these results, such as patient demographics and differences in image acquisition or
reconstruction, causing a data shift among different study cohorts.

Keywords: deep learning, generalizability, convolutional neural network, classification, computed tomography,
COVID-19, SARS-CoV-2

INTRODUCTION

Since the outbreak of the 2019 coronavirus disease (COVID-19) in December 2019, the total
worldwide death count due to COVID-19 has exceeded a million (Pérez-Peña, 2020). COVID-19 can
affect multiple organ systems and cause fever, flu-like symptoms, cardiovascular damage, and
pulmonary injury. The most common manifestivation of COVID-19 upon initial presentation is
pneumonia. While some patients are asymptomatic or have mild symptoms, a small percentage of
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patients may develop severe acute respiratory distress syndrome
(ARDS) that requires intubation in the intensive care unit and is
associated with poor prognosis. The mortality rate is over 60%
once they progress to the severe illness stage (Guan et al., 2020).
Since chest CTs are performed for reasons other than pulmonary
symptoms as well, an automated tool that can opportunistically
screen chest CTs for the disease can potentially be used to identify
patients with COVID-19. First, it has been suggested that patients
with COVID-19 when identified in the early stage can be treated
to prevent progression to the later stage of the disease
(McCullough, et al., 2020a; McCullough, et al., 2020b; FLARE,
2020). Second, identification of asymptomatic patients in the
early stage using CT (Ali and Ghonimy, 2020) provides a time
window during which they can isolate themselves to prevent the
spread to others.

Several efforts around the world have been focused on the
identification or categorization of COVID-19–positive patients
according to their various types of medical data. As part of the
effort to understand and control this disease, large COVID-19
datasets of different formats have been curated and publicly
released around the world. One group of studies focuses on
using artificial intelligence (AI) technologies, in particular deep
learning (DL)–based models, to detect COVID-19 through chest
radiography and computed tomography (CT). These studies
found high accuracy rates ranging from 82 to 98% (Wang L.
et al., 2020; Sethy et al., 2020; Narin et al., 2021; Apostolopoulos
andMpesiana, 2020; Hemdan et al., 2020;Wang S. et al., 2020; Xu
et al., 2020; Ozturk et al., 2020; Shibly et al., 2020; Oh et al., 2020;
Jin et al., 2020). The high accuracy rates are promising and
encourage the use of this technology in the clinical setting.

However, the generalizability of these models to other clinical
settings around the world is not clear. The data usually found in
clinical practice are often incomplete and noisy, and they may
have high intra- and inter-study variability among different
environments. This scenario often makes it difficult from a
research perspective to develop algorithms and implement
them in the clinic. Due to various restrictions on sharing
patient data, many algorithms are developed with limited data
that are specific to a clinic or a region. However, differences in
several demographic factors, such as population distribution of
race, ethnicity, and geography, can greatly impact the overall
accuracy and performance of an algorithm in a different clinical
setting (Topol, 2020). In addition, different methods of data
collection by hospitals around the world may also impact an
algorithm’s performance. Because the boom of DL technologies
has happened only within the last several years, the number of
studies testing the robustness and performance of AI algorithms
across various clinical settings is extremely limited (Topol, 2020).
Therefore, there is very little knowledge about how well a model
will perform in a realistic clinical environment over time.

For example, Barish et al. (2021) demonstrated a particular
public model developed by Yan (2020) that predicted mortality
from COVID-19–positive patients—which performed well on an
internal dataset with an accuracy of 0.878—failed to accurately
predict the mortality on an external dataset, with an accuracy of
only around 0.5. Another similar negative study applied Yan
et al.’s model on an external dataset and drew similar conclusions

about the accuracy of its mortality prediction (Quanjel et al.,
2021). A systematic review of 107 studies with 145 prediction
models was conducted, and the studies reported that all models
had a high bias, due to nonrepresentative control datasets and
overly optimistic reported performance (Wynants et al., 2020),
which can additionally lead to unrealistic expectations among
clinicians, policy makers, and patients (Laghi, 2020). Bachtiger
et al. concluded that this boom of DL models for COVID-19
focused far too much on developing novel prediction models
without a comprehensive understanding of its practical
application and biases from the dataset (Bachtiger et al., 2020).
Others have similarly concluded that AI has yet to have any
impact on the prevailing pandemic and that extensive and
comprehensive gathering of diagnostic COVID-19–related data
will be essential to develop useful AI models (Naudé, 2020).

As part of the efforts to collect data, large datasets of 3D
computed tomography (CT) scans with COVID-19–related labels
have been publicly released. This provides an opportunity to
study the generalizability of DL algorithms developed using these
volumetric datasets. In this study, we collected and studied one
internal dataset collected at UT Southwestern (UTSW) and three
large external datasets from around the world: 1) China
Consortium of Chest CT Image Investigation (CC-CCII)
Dataset (China) (Zhang et al., 2020), 2) COVID-CTset (Iran)
(Rahimzadeh et al., 2021), and 3) MosMedData (Russia)
(Morozov et al., 2020). We trained DL-based classification
models on various combinations of datasets and evaluated the
model performance on the held-out test data from each of the
datasets.

METHODS

Data
We collected one internal dataset at UTSW and three large
datasets from around the world that are publicly available—1)
China Consortium of Chest CT Image Investigation (CC-CCII)
Dataset (China), 2) COVID-CTset (Iran), and 3) MosMedDat
(Russia)—which is summarized in Table 1. The UTSW dataset is
composed of three subsets of anonymized imaging data obtained
retrospectively. The study protocol was approved by the
institutional review board and the requirement for informed
consent was waived. The first subset includes patients who
tested positive for severe acute respiratory syndrome
coronavirus 2 on real-time polymerase chain reaction between
March and November 2020 and who had a chest CT scan
performed within the first 7 days of diagnosis. All chest CT
scans were obtained according to the standard clinical
care—common clinical indications were to assess the
worsening respiratory status and to rule out pulmonary
thromboembolism. Chest CT is not obtained as a first-line
modality to diagnose or screen for COVID-19 at UTSW. As
such, the collected dataset had a mixture of contrast-enhanced
CTs and non-contrast CTs. The second and third subsets include
patients who had a chest CT scan obtained as part of the standard
clinical care between March and May 2019, that is, the
pre–COVID-19 pandemic phase. The radiologic reports of
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these studies were screened by a cardiothoracic radiologist with
12 years of clinical experience. The reports were labeled as having
radiologic findings suggestive of infection or not. The
adjudication was based on the presence of radiologic patterns
usually associated with infection, including ground-glass
opacities, consolidation, and nodular pattern, if such findings
were described as fitting a differential diagnosis of infectious
process based on the impression by the primary interpreting
radiologists. These studies were consecutively selected to match
the sex and age distribution of the COVID-19–positive subset and
to represent two control groups with a balanced representation of
chest CT showing findings suggestive of the infection (118) and

findings not related to infection (118). The CC-CCII dataset was
obtained from six different hospitals: 1) Sun Yat-sen Memorial
Hospital and Third Affiliated Hospital of Sun Yat-sen University,
2) The first Affiliated Hospital of Anhui Medical University, 3)
West China Hospital, 4) Nanjing Renmin Hospital, 5) Yichang
Central People’s Hospital, and 6) Renmin Hospital of Wuhan
University. The COVID-CTset dataset was from the Negin
Medical Center, and the MosMedData dataset was from
municipal hospitals in Moscow, Russia.

For consistency in training and testing the models in our study,
we divided all the data into two classes: 1) COVID-19–positive and
2) COVID-19–negative patients. Note that MosMedData does not

TABLE 1 | Summary of data used in the study. These datasets include full volumetric CT scans of the patients.

Dataset Origin Description Available at:

Details #
Patients

# 3D
scans

Label

UTSW UT Southwestern Medical Center CT vendors: Phillips,
Toshiba, GE Medical
Systems

101 101 COVID-19 positive *See footnote1

Image resolution: 512
× 512

118 118 Infection (negative)

Pixel size range:
0.45 mm to 0.83 mm

118 118 Findings Unrelated to Infection
(negative)

Slice thickness range:
0.9–3 mm
Format: DICOM

China Consortium of
Chest CT Image
Investigation (CC-CCII)
Dataset

Sun Yat-sen Memorial Hospital
and Third Affiliated Hospital of Sun
Yat-sen University, Guangzhou,
China

CT vendor:
unreported

929 1544 COVID-19 positive http://ncov-ai.
big.ac.cn/
download

The First Affiliated Hospital of
Anhui Medical University, Anhui,
China

Image resolution:
mostly 512 × 512 (a
few were 128 × 128)

964 1556 Common Pneumonia
(negative)

West China Hospital, Sichuan,
China

Pixel size range:
unreported

849 1078 Normal Lung (negative)

Nanjing Renmin Hospital, Nanjing,
China

Slice thickness range:
1–5 mm

Yichang Central People’s
Hospital, Hubei, China
Renmin Hospital of Wuhan
University, Wuhan, China

COVID-CTset Negin Medical Center, Sari, Iran CT vendor: Siemens 95 281 COVID-19 positive https://github.
com/mr7495/
COVID-CTset

Image resolution: 512
× 512

282 1068 Normal lung (negative)

Pixel size range:
unreported
Slice thickness range:
unreported

MosMedData Municipal hospitals in Moscow,
Russia

CT vendor: Toshiba 254 254 CT-0—not consistent with
pneumonia (can include both
COVID-19 positive and
negative)

https://
mosmed.ai/

Image resolution: 512
× 512

684 684 CT-1—Mild (COVID-19
positive)

Pixel size range:
unreported Slice
thickness: 1 mm

125 125 CT-2—Moderate (COVID-19
positive)

45 45 CT-3—Severe (COVID-19
positive)

2 2 CT-4—Critical (COVID-19
positive)
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have conclusive negative–label patients, as CT-0 might contain both
positive and negative patients. Accordingly, we omitted the CT-0
category from this study. Most scans in this study had a matrix size
of 512 × 512 × n, where n is the variable number of slices. For the
small number of scans that had a reduced matrix size, the images
were linearly interpolated to match the 512 × 512 × n resolution.

Most of the data were available in Hounsfield units (HU) or
CT number (e.g. 0–4095). Some of the data in the CC-CCII
dataset were provided in relative intensity values (e.g., 0–255).
Because the data formatting varied across datasets, we performed
clipping and normalization operations. First, if the data were
displayed in HU, we clipped the minimum number to be −1,000
HU. For evaluation, the data were normalized from 0 to 1 prior to
evaluation by the DL model. For training, multiple normalization
methods were used as part of a data augmentation technique. The
complete data augmentation is further described in the section
Training and Data Augmentation. Figure 1 shows example CTs
of COVID-19–positive patients from each dataset.

For training, validating, and testing the model, the positive
labels of the UTSW dataset were randomly split into 73 train, 8
validation, and 20 test patients and scans (one 3D scan per patient).
The positive labels of the CC-CCII dataset were randomly split into
669 train, 74 validation, and 186 test patients, or 1,110 train, 122
validation, 312 test scans. The positive labels of the COVID-CTset
were randomly split into 68 train, 8 validation, and 19 test patients,
or 201 train, 23 validation, and 57 test scans. The positive labels of
MosMedData were randomly split into 616 train, 69 validation,
and 171 test patients and scans (one 3D scan per patient; CT-0
category was omitted).

For the negative labels, the UTSW dataset was randomly split
into 170 training, 18 validation, and 48 testing patients and scans
(one 3D scan per patient). The CC-CCII dataset was randomly
split into 1,305 train, 145 validation, and 363 test patients, or
1,891 train, 203 validation, and 540 test scans. The COVID-CTset
was randomly split into 259 train, 29 validation, and 72 test
patients, or 770 train, 84 validation, and 214 test scans.

Model Architecture
The model used in this study was a classification style
convolutional neural network (CNN) model (LeCun et al., 1989;

LeCun and Bengio, 1995; LeCun et al., 1998; LeCun et al., 1999),
with specifics shown in Figure 2. The input shape was set to 512 ×
512 × 128. There are five resolution levels of convolutions and four
downsampling operations prior to the flattening operation. The
downsampling size also varied each time and was set as (4,4,4),
(4,4,2), (4,4,2), and (2,2,2), respectively. This converts the data
shape from 512 × 512 × 128 to 4 × 4 × 4. At each resolution level, a
series of operations consisting of convolution, Rectified Linear Unit
activation (ReLU), Group Normalization (Wu and He, 2018), and
DropBlock (Ghiasi et al., 2018) is applied twice, consecutively. The
convolution kernel size varied at each resolution level: (3,3,3),
(5,5,5), (5,5,3), (5,5,3), and (3,3,3). The number of filters, indicated
by red numbers in Figure 2, at each convolution started at eight
and doubled after each downsampling operation. After these
operations, the feature data are flattened into a single vector of
length 8,192. Then, a series of operations consisting of fully
connected calculations, ReLU, Group Normalization, and
Dropout (Srivastava et al., 2014) follows. This is performed a
total of four times, calculating 1,024 features each time. Then, one
more full connection is applied to reduce the data into two outputs,
and a softmax operation is applied.

Training and Data Augmentation
In total, nine models were trained in this study using the training
and validation data outlined in Data and were split into two
categories: 1) single dataset training and 2) multiple dataset
training. We trained three models on a single dataset, one
each on the UTSW, CC-CCII, and the COVID-CTset datasets.
Nomodel was trained onMosMedData by itself, since this dataset
does not have any negative labels. For multiple dataset training,
we trained six models with different combinations of datasets: 1)
UTSW + CC-CCII, 2) UTSW + COVID-CTset, 3) CC-CCII +
COVID-CTset, 4) UTSW + CC-CCII + COVID-CTset, 5) CC-
CCII + COVID-CTset +MosMedData, and 6) UTSW+ CC-CCII
+ COVID-CTset + MosMedData.

Some additional operations were applied to format and
augment the CT data for model training. For CT data with
less than 128 slices, slices of zeros were padded onto the CT
slices until the total data volume had 128 slices. The number of
slices superior and inferior to the CT data was uniformly and

FIGURE 1 | Slice view of example CTs from each dataset. Red arrows show patchy ground-glass opacities with round morphology, which are typical findings in
COVID-19 pneumonia.
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randomly decided at each iteration. For data with more than 128
slices, a random continuous volume of 128 slices was selected.
The data were then normalized in one of two ways: 1) from 0 to 1,

or 2) from 0 to
max data( )

2n , where n is the smallest integer
possible while keeping 2n larger than the maximum value in the
CT volume. The normalization method was randomly chosen
with a 50% chance during each training iteration. An additional
step was applied to decide, at a 50% chance, whether this data
would be fed into the model for training or if additional data
augmentation would be applied. If yes to additional data
augmentation, then the function randomly flipped, transposed,
rotated, or scaled the data. For the flip augmentation, there was a
50% chance that it would individually apply a flip to each axis
(row, column, and slice). For the transpose augmentation, there
was a 50% chance that it would transpose the row and column of
the data (no transpose operation was ever applied using the slice
dimension). For the rotate augmentation, a random integer,
{0,1,2,3}, was generated and multiplied against 90° to
determine the rotation angle, then applied only on the row
and column dimensions. For the scale augmentation, there
was a 50% chance that a scaling factor was applied, and the
scale was a uniform random number from 0 to 1.

Each model was trained for a total of 2,50,000
iterations—which is about 1,029, 83, 544, and 406 epochs for
the UTSW, CC-CCII, COVID-CTSet, and MosMedData,
respectively—using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 1 × 10−5. To prevent overfitting
on the training data, the accuracy was evaluated on the validation
data for every 500 iterations, and the instance of the model with
the highest validation accuracy was saved as the final model for
evaluation. The models were trained using NVIDIA V100 GPUs
with 24 GB of memory.

Evaluation
All nine of the trained models were evaluated on the test data of
each dataset. For volumes with less than 128 slices, zero padding
on the slices was evenly applied in the superior and inferior
directions, to keep the data centered. For volumes greater than
128 slices, a sliding window technique was applied across the

volume, and the model made multiple predictions. The number
of slices in a patch was 128, and the stride size was 32 slices. The
prediction with the highest COVID-19 probability was taken as
the model’s final prediction.

A threshold was selected based on maximizing the prediction
accuracy on the validation data and applied to the testing set. In
the cases where the “optimal” threshold was a trivial value (e.g.,
threshold � 0 for MosMedData, which only has positive
labels), we took the argmax of the output as the prediction
instead. The true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) were counted,
and a normalized confusion matrix was generated for each
dataset. Averaged confusion matrices were calculated with
and without MosMedData. An evenly weighted average was
chosen.

Receiver operating characteristic (ROC) curves were
calculated on the test data by varying the positive predictive
threshold from 0 to 1, at 0.01 intervals. The area under the curve
(AUC) was calculated to determine the overall performance of
each model on each dataset. We additionally used the Bayesian
approximate technique called Monte Carlo dropout (Gal and
Ghahramani, 2016) to additionally estimate the uncertainty on
the AUC. MosMedData was excluded from the ROC and AUC
analyses, since it was missing negative labels.

RESULTS

Each model took about 5 days on average to train on a GPU. For
nine models, this is equivalent to 45 GPU-days of training. Each
model prediction takes an average of 0.53 s, which makes it very
useful for near real-time applications.

The single dataset models’ predictive accuracy TP+TN
TP+TN+FP+FN( )

on the test dataset is displayed in Figure 3. Overall, eachmodel
performed best on the dataset that it was trained on, with an
accuracy as high as 0.97 for the CC-CCII model evaluated on the
CC-CCII data. The model that performed the worst on its own
dataset was COVID-CTset, with an accuracy of 0.86. The UTSW
model had an accuracy of 0.87 on its own dataset. Since the test
data were held out of the training and validation phase, it is a
strong indicator that the model did not overfit to its specific

FIGURE 2 | Schematic of deep learning architecture used in the study. Black numbers represent the feature shape of each layer prior to the flattening operation.
Red numbers represent the number of features at each layer.
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training data. However, the models performed much more poorly
when evaluated on a dataset they had not seen before, which
signifies that the model did not generalize well to the new dataset
type. The worst performance was the COVID-CTset model
evaluated on the UTSW dataset, which had an accuracy of
0.38. All three models had poor performance on the
MosMedData dataset.

Figure 4 shows the confusion matrices of the performance of
models trained on multiple datasets against the test data. The
multiple dataset model that had the best accuracy when evaluated
on the UTSW test set was the UTSW+CC-CCII model, with 0.93
accuracy. When evaluating the CC-CCII test set, the model with
the best accuracy of 0.96 was the UTSW+CC-CCII model. When
evaluating the COVID-CTset, the UTSW + COVID-CTset
performed best, with an accuracy of 0.94. The best multiple
dataset models outperformed their single dataset counterparts
with regards to accuracy. However, these models still had poor
accuracy when evaluated on a test dataset they have not seen
before. For example, the model trained with the UTSW and
COVID-CTset together had improved accuracies to 0.90 and 0.94
when evaluated on the test sets of the UTSW and COVID-CTset
datasets, respectively. However, when evaluated on the CC-CCII
dataset, the accuracy was 0.53. Including MosMedData in the
model training improved the total average performance but did
not improve the performance when evaluating models on the
individual UTSW, CC-CCII, and COVID-CTset datasets.

Figure 5 shows the ROC curves of the single dataset models.
The models, when evaluated on the same dataset that they were
trained on, showed good AUCs (mean ± standard deviation) of
0.826 ± 0.024 (UTSW), 0.988 ± 0.002 (CC-CCII), and 0.873 ±
0.012 (COVID-CTset). The models performed considerably
worse when evaluated on different datasets, with AUCs
ranging from 0.405 to 0.570, which is close to just random

guessing (i.e., AUC � 0.5). The ROC curves of the multiple
dataset models are shown in Figure 6. For each dataset—UTSW,
CC-CCII, and COVID-CTset—the best performing models were
the UTSW + COVID-CTset (AUC � 0.937 ± 0.018), the UTSW +
CC-CCII + COVID-CTset (AUC � 0.989 ± 0.002), and the
UTSW + COVID-CTset (AUC � 0.926 ± 0.010) models,
respectively. Since the test data were held entirely separate
from the model development process, and used only for
evaluation, this shows once again that the models did not
overfit their own training data. Similar to the single dataset
models, the multiple dataset models also performed poorly
when predicting on datasets they had never seen before, with
AUCs ranging from 0.380 to 0.540.

DISCUSSION

In this study, we demonstrate that our DL models can correctly
identify patients that are COVID-19–positive with high accuracy,
but only when the model was trained on the same datasets that it
was tested on. Otherwise, the performance is poor—close to
random guessing—which indicates that the model cannot
easily generalize to an entirely new dataset distribution that it
has never seen before for COVID-19 classification. Several data
augmentation techniques were applied during training to prevent
overfitting on the test set. In addition, the weights of the model
that performed the best on the validation data with regards to
accuracy were used as the final model. Dropout and DropBlock
regularization were added to further prevent the model from
overfitting.

We additionally observed that certain combined dataset
models performed best for particular datasets in detecting
patients who are positive for COVID-19. For example, we

FIGURE 3 |Confusionmatrices on the test data for each of the models trained on a single dataset. Each row represents the datasets that themodel was trained on,
and each column represents the datasets that the model was evaluated on. Note that MosMedData does not have any negative label data. The labeling threshold used
for eachmodel is indicated on the lower left of each confusionmatrix (t � #). The “Average” confusionmatrix is an equally weighted average among each dataset, while the
“Combined” confusion matrix is calculated from all samples from the datasets.
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found that the highest performing model in the dataset from the
UTSW dataset was obtained when the training step combined
UTSW and CC-CCII datasets. This may have occurred due to the
relatively low sample count in the UTSW dataset (73 positive, 170
negative patients for training); therefore, adding data samples
from COVID-CTset improved with DL-model’s AUC from 0.826
to 0.937 on the UTSW dataset. Overall, the best-performing
model for a particular dataset tended to be a multiple dataset
model that included that same dataset in the training. When used
properly, training on multiple datasets allows for having more
training examples for the model to improve its overall feature
extraction capabilities. There are many similarities between
images, such as the texture and edges, which the model can
learn from all the images. For example, it has been shown that
models that pretrain on ImageNet (millions of images) can
perform better on other classification tasks (Xie and
Richmond, 2018). However, adding more data from different
distributions into the training did not always monotonically
improve the model’s performance. For example, adding the
CC-CCII data for training did not improve the model

performance, with the AUC of 0.920 for the UTSW dataset.
Adding MosMedData into the training lowered the performance
of the model on the other three datasets. This is likely because the
original intent of MosMedData was to train a model to categorize
the severity of COVID-19 into five classes and, therefore, lacked
negative labels. Without definitive negative labels, our models
likely learned simply to identify the data source as MosMedData
and compromised some of their learning capacity and
performance to use the relevant imaging features for the
predictions. This does serve as an important lesson in data
collection: datasets from a particular healthcare center or
region should be fully representative of the task at hand to be
used in training. Simply collecting COVID-19–positive patients
from one source and negative patients from a different source is
likely to introduce an uncorrectable bias during training that led
to a poor model performance.

We did include some state-of-the-art modules in our model,
such as Group Normalization (Wu and He, 2018) and DropBlock
(Ghiasi et al., 2018), that allowed for a high performance similar
to other COVID-19 classification studies (Wang Z. et al., 2020;

FIGURE 4 | Confusion matrices on the test data for each of the models trained on multiple datasets. Each row represents the datasets that the model was trained
on, and each column represents the datasets that themodel was evaluated on. The labeling threshold used for eachmodel is indicated on the lower left of each confusion
matrix (t � #). The “Average” confusion matrix is an equally weighted average among each dataset, while the “Combined” confusion matrix is calculated from all samples
from the datasets.
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Ali et al., 2021; Song, 2021). Zech et al. investigated model
generalizability in CT scans and found a similar conclusion,
but a better one than a random guess on the unseen dataset
(Zech et al., 2018). The major difference between this study and
our study, where we only found a performance of around a
random guess on an unseen test dataset, is that we investigated
the generalizability of datasets across different countries around
the world. The other study by Zech investigated datasets only
from the United States, so it is likely that the differences in
protocol, standards, and demographics between the datasets are
much smaller than the dataset that we used. We intend to further
investigate these differences and their impact across both
intranation and internation datasets in a future study.

A potential source of bias may come from the discretization of
data. While CT is typically stored in a 12-bit format, having 4,096
levels of discretization, some of the data in the CC-CCII dataset
were stored in relative intensity values from 0 to 255. While we
were careful with our normalization and data augmentation
techniques, the more inherent coarseness in some of the data

may have affected the model’s generalizability between datasets.
When sharing or collecting datasets, it is of utmost importance to
disclose the data’s exact format, as these can add more variability
outside of the scanning protocol, quality, and demographics of a
particular institution or region.

Between the UTSW dataset, CC-CCII dataset, and the
COVID-CTset dataset, the CC-CCII dataset consistently
yielded models that had the highest accuracy and AUC when
evaluated on its own dataset. The exact reason for this is
unknown, but it may be possible that there was an implicit
bias within the dataset. For example, if one of the
participating hospitals had a very different distribution of
image quality, but also were a large provider of the data, then
the model may have learned to simply distinguish that hospital
specifically instead of the disease. However, the exact breakdown
of where each individual scan originated from is not available. We
will continue to investigate such cases and determine whether
there was some sort of bias that allowed the CC-CCII dataset to
yield models that gave high-accuracy values.

FIGURE 5 | ROC curves on the test data for the models trained on single datasets. Each row represents the datasets that the model was trained on, and each
column represents the datasets that the model was evaluated on. The error band and the error value in the reported AUC represent 1 standard deviation.
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FIGURE 6 | ROC curves on the test data for the models that trained on multiple datasets. Each row represents the datasets that the model was trained on, and
each column represents the datasets that the model was evaluated on. The error band and the error value in the reported AUC represent 1 standard deviation.

Frontiers in Artificial Intelligence | www.frontiersin.org June 2021 | Volume 4 | Article 6948759

Nguyen et al. DL-Based COVID-19 Classification on CT

70

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


In contrast, the COVID-CTset dataset consistently yielded
models that had the poorest performance. One potential reason is
possibly its lack of variability of data to train on. For example, the
UTSW dataset had COVID-19–negative scans that also included
infected patients and the CC-CCII dataset had COVID-
19–negative scans with common pneumonia. This may have
helped the model further distinguish the nuances between
COVID-19–positive and COVID-19–negative patients but with
other presenting diseases. We plan to further identify and
investigate these sources of biases in detail as part of a
future study.

Although this study did not fully explore the possible
techniques to improve robustness and prevent overfitting, it
may serve as a baseline for future model generalization studies
that use medical data for the clinical implementation of COVID-
19–related classification models. We will continue to explore the
limits of model generalization with respect to improving the
algorithm and to the intra- and inter-source data variability,
regarding the identification of COVID-19–positive patients by
their medical data. As a whole, the deep learning models achieved
a high performance on the unseen test set from the same
distribution that they were trained on, which indicates that we
did not have a typical overfitting problem with the training data.
The low performance on datasets that the models had never seen
before may actually be an indicator that the problem is not in the
approach to the initial algorithm development—the problemmay
be the transfer and deployment of the algorithm to a new clinical
setting. Creating a globally generalizable algorithm is a tall order,
when people around the world have vastly different
demographics and data collection protocols. With limited data
and learning time, these AI algorithms are bound to fail when
they encounter a unique data distribution they have never seen
before. These results underscore the limited versatility of AI
algorithms which may hamper the widespread adoption of AI
algorithms for automated diagnosis of radiology images. This is in
contrast to radiologists who in general can easily adapt to new
clinical practices quickly. Perhaps we need to recalibrate our
mindset with regard to the expectation for these AI
algorithms—we should expect that these AI algorithms will
always need to be fine-tuned to the local distribution when
implemented and deployed in a specific clinical setting, then
need to be retuned over time as distributions inevitably shift,
either through demographic shifts or through the advancement of
new treatment technologies. Transfer learning and continuous
learning techniques (Torrey and Shavlik, 2010) are active fields of
research and may become critical components to rapidly transfer,
deploy, and maintain an AI model into the clinic.

AI tools designed for automatic identification of diseases on
CT datasets, such as COVID-19, will only succeed if they can
prove their robustness against a wide array of patient populations,
scan protocols, and image quality. Notwithstanding, they hold the
promise of becoming a powerful resource for identifying diseases,
where time to detection is a critical variable. In the case of
COVID-19, it is well known that many cases are
asymptomatic, of which up to 54% will present abnormalities
on chest CT (Inui et al., 2020). Thus, COVID-19 can be
incidentally found on routine imaging. Timely identification of

incidental cases of COVID-19 on chest CT by AI tools could lead
to adequate prioritization of scans for reporting, resulting in
prompt initiation of disease tracking and control measures.
Moreover, the model architecture developed in this work can
also serve as a template for similar tools tailored for detecting
other clinical conditions.

The deep learning models were capable of identifying
COVID-19–positive patients when the testing data was in the
same dataset as the training data, whether the model was trained
on a single dataset or on multiple datasets. However, we found a
poor performance, close to random guessing, when models were
evaluated on datasets that they had never seen. This is likely due
to different factors, such as patient demographics, image
acquisition methods/protocols, or diagnostic methods,
causing a data shift between different countries’ data. This
lack of generalization for the identification of COVID-
19–positive patients may not necessarily mean that the
models were trained poorly, but rather the distribution of the
training data may be too different from the evaluation data.
Transfer learning and continuous learning may become
imperative tools for tuning and deploying a model in a new
clinical setting.
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Cohort-independent robust mortality prediction model in patients with COVID-19 infection
is not yet established. To build up a reliable, interpretable mortality prediction model with
strong foresight, we have performed an international, bi-institutional study from China
(Wuhan cohort, collected from January to March) and Germany (Würzburg cohort,
collected from March to September). A Random Forest-based machine learning
approach was applied to 1,352 patients from the Wuhan cohort, generating a mortality
prediction model based on their clinical features. The results showed that five clinical
features at admission, including lymphocyte (%), neutrophil count, C-reactive protein,
lactate dehydrogenase, and α-hydroxybutyrate dehydrogenase, could be used for
mortality prediction of COVID-19 patients with more than 91% accuracy and 99%
AUC. Additionally, the time-series analysis revealed that the predictive model based on
these clinical features is very robust over time when patients are in the hospital, indicating
the strong association of these five clinical features with the progression of treatment as
well. Moreover, for different preexisting diseases, this model also demonstrated high
predictive power. Finally, the mortality prediction model has been applied to the
independent Würzburg cohort, resulting in high prediction accuracy (with above 90%
accuracy and 85% AUC) as well, indicating the robustness of the model in different
cohorts. In summary, this study has established themortality prediction model that allowed
early classification of COVID-19 patients, not only at admission but also along the
treatment timeline, not only cohort-independent but also highly interpretable. This
model represents a valuable tool for triaging and optimizing the resources in COVID-19
patients.

Keywords: COVID-19, Wuhan cohort, Würzburg cohort, mortality prediction model, reliability, interpretability,
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INTRODUCTION

The pandemic of coronavirus disease 2019 (COVID-19) has
become a public health emergency of international concern
(Salyer et al., 2021; Sirleaf and Clark, 2021; Watson and
Lilford, 2021). As of July 12, 2021, 187, 796, 841 confirmed
infection cases have been reported by the World Health
Organization, with a global mortality rate of 2.16% (https://
covid19.who.int/). Even worse, the incidence of COVID-19 is
continuously increasing worldwide, and areas already under
control are likely to relapse (Setti et al., 2020). The proportion
of critically ill COVID-19 patients is 18.5% (Epidemiology
Working Group for Ncip Epidemic Response CCfDC,
Prevention, 2020), and this high proportion of severe cases has
put enormous pressure on medical systems, resulting in a serious
shortage of medical resources (Rasmussen et al., 2020; Ammar
et al., 2021; Wahlster et al., 2021).

In recent years, machine learning methods used for large
clinical data analysis have been sprung up (Liang et al., 2020;
Wu et al., 2020; Xiao et al., 2020; Zhu et al., 2020; Gomes and
Serra, 2021; Ikemura et al., 2021; Wang et al., 2021). Yan et al.
used the XGBoost classifier (Chen and Guestrin, 2016) to predict
the outcome of 485 patients using the final samples at discharge,
and they found three blood features that could be used as
predictors, providing important evidence for clinical decision-
making and patient management (Liang et al., 2020). Xiao et al.
have used the HNC-LL score that considered hypertension,
neutrophil count, C-reactive protein (CRP), lymphocyte count,
and lactate dehydrogenase (LDH) to predict the severity of
COVID-19 with AUC higher than 0.82 based on 442 patients
(Xiao et al., 2020). Liang et al. developed a deep learning survival
Cox model for 1,590 patients’ triage, which was based on four
clinical features and six phenotypic characteristics, to ensure
patients at the greatest risk for severe illness receive
appropriate care as early as possible (Liang et al., 2020). Wu
et al. also used the Cox model to investigate the key risk factors
and predicted the mortality rate of 21,392 COVID-19 patients
based on demographic, clinical, and laboratory features and
found that the mortality rate increased with time, especially
for these critically ill patients (Wu et al., 2020).

Unfortunately, although the clinical features of COVID-19
patients have been reported in several recent publications (Gupta
et al., 2020a; Xu et al., 2020), such as decreased lymphocytes and
elevated CRP (Gupta et al., 2020a; Xu et al., 2020), the predictive
powers and interpretations of these clinical features remain
unclear. Additionally, since progression and outcome are
critical for COVID-19 patients (Liang et al., 2020; Risch,
2020), timely monitoring from admission to outcome also has
important clinical significance, making it possible to adjust
treatment regimens in time, but this process is not entirely
clear. Moreover, the foresight of a predictive model, as to how
many days before discharge these features could accurately
predict the patients’ outcome, remains elusive. However, the
association of these clinical features with phenotypic
characteristics is also unclear. The robustness of the mortality
prediction model along the timeline and the predictive power
considering different preexisting diseases also need further

exploration. Therefore, we performed this international, bi-
institutional study to establish a mortality prediction model
with the aim of early triaging and optimizing the resources.

METHODS

Ethical Approval
This study was approved by the Ethics Committee of Union
Hospital, Tongji Medical College, Huazhong University of
Science and Technology. Due to the retrospective nature of
this study, the local institutional review board of the
University of Würzburg waived the requirement for additional
approval. This study was performed in accordance with the
ethical standards laid down in the 1964 Declaration of
Helsinki and its later amendments.

Sample Description
Clinical data were collected from 1,441 COVID-19 patients from
January 28, 2020, to March 29, 2020, at Wuhan Union Hospital
(also called Wuhan cohort), China, for model development.
Moreover, 96 patients with confirmed COVID-19 disease were
collected from the University Hospital of Würzburg (also called
Würzburg cohort), Germany, from March 6, 2020, to September
14, 2020, for independent test.

For the Wuhan cohort, more than 300 clinical features from
hospital laboratory tests were recorded, and most patients have
multiple sets of clinical features during their stay in the hospital.
In addition, physical examinations, such as height, weight,
temperature, sphygmus, systolic/diastolic pressure, respiratory
rate, and heart rate, were performed upon admission of these
COVID-19 patients. For robust analysis, clinical features that
covered less than 30 samples, as well as samples containing fewer
than three clinical features, were discarded (Figure 1A). After
filtering out low-quality records, 1,352 patients and 130 clinical
features were selected for systematic analysis. The average age of
these patients was 58.22 (standard error: 14.90), and 50.52% of
them were male, indicating a balanced gender. The minimal,
maximal, and median duration from admission to discharge of
the 1,352 patients is 0, 55, and 10 days, respectively. Among all of
1,352 COVID-19 patients, 1,221 patients survived and 131 died
(Supplementary Table S1).

Clinical features (Figure 1B) from hospital laboratory tests
were primarily composed of two parts: 101 numerical features,
such as LDH and CRP, and 29 binary features, such as ABO blood
type, Mp-IgM, and Mp-IgG. These clinical features were
considered as candidate biomarkers for COVID19 mortality
prognosis.

Phenotypic characteristics at admission (Figure 1B) were
primarily composed of two parts: numerical and binary
phenotypic characteristics. The numerical phenotypic
characteristics included age, height, weight, temperature,
sphygmus, systolic/diastolic pressure, respiratory rate, heart rate,
and clinical classification. Binary phenotypic characteristics
included records of gender, smoking status, and blood type.

Recent studies have already reported that the outcome of
COVID-19 patients is greatly influenced by whether the
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FIGURE 1 | COVID-19 patients and their clinical feature filtering process, phenotypic characteristics and clinical features used in this study, and the outcome of the
two cohorts. (A) Process of filtering low-quality samples of the two cohorts. Here, 330 features in theWuhan cohort were the union of 1,441 patients’ clinical features and
130 features were the union of the 1,352 patients’ clinical features after filtering. “≥3 features” says that the patients from the Wuhan cohort should contain at least three
clinical features during the hospital stays, and “≥30 patients” says that the clinical features that collected from clinical laboratory should cover at least 30 patients
and thus could be used for subsequent analysis. In the Würzburg cohort, “≥1 feature” says that the patient should contain at least one of the features from these four
clinical features: lymphocyte (%), neutrophil count, LDH, and CRP. (B)Different types of clinical features and phenotypic characteristics used in the two cohorts. We used
clinical features from hospital laboratory tests for developing the prediction model, and these clinical features were also used to test the association with phenotypic
characteristics and other records. (C)Overview of samples used for model development and independent test. Samples of 1,352 COVID-19 patients fromWuhan Union
Hospital (Wuhan cohort, the blue background) were used for building and testing the mortality prediction model, while samples of 81 COVID-19 patients from Germany
(Würzburg cohort, the orange background) were used for independent test of the mortality prediction model. The green number represents the number of patients who
survived from COVID-19, while the red number means the number of patients who died from COVID-19. Note that several patients have more than one preexisting
disease.
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patient has a preexisting disease (Azevedo et al., 2020; Zhou et al.,
2020a; Williamson et al., 2020), such as CHD (Mai et al., 2020),
hypertension (Itoh, 2020), and diabetes (Gupta et al., 2020b).
Here, we divided 1,352 COVID-19 patients into seven groups: s/p
stroke (23 survived and seven died), CHD (89, 11), chronic
obstructive pulmonary disease (COPD) (12, 2), diabetes (155,
21), hypertension (306, 45), malignant tumor (56, 15), and those
without preexisting diseases (767, 60) according to their past
medical history (Figure 1C).

For the 96 patients in the Würzburg cohort, we have filtered
out the patient who has not a single clinical feature among the
four clinical features (lymphocyte (%), neutrophil count, LDH,
and CRP) (Figure 1A). After this process, 81 samples were
retained and utilized for independent test. For these 81
patients, their phenotypic characteristics including systolic
pressure, diastolic pressure, temperature, heart rate, SpO2, age,
and respiratory rate were also used for analysis. The average age
of these patients was 67.15 years (standard error: 15.17), which
was significantly higher than that of patients in theWuhan cohort
(t-test, p � 0.0005). 62.96% of them aremale, 53.67% of them have
respiratory failure, and 41.46% of them need mechanical
ventilation. Among them, 72 survived and nine died from
COVID-19 (Supplementary Table S2).

Severity Classification
According to the diagnosis and treatment of pneumonia infected
by the new novel coronavirus (the trial seventh edition) (National
Health Commission of the People’s Republic of China, 2020), the
patient’s severity classification was divided into three
classifications, general, severe, and critical, according to their
symptoms at admission. In this work, among 1,352 patients from
theWuhan cohort, 896 were in general, 393 were in severe, and 63
were in critical. For the Würzburg cohort, 24 were in general, 35
were in severe, and 22 were in critical. Here, we defined severity
classification as follows: general as 1, severe as 2, and critical as 3.

Clinical Feature Profiling
Using patient samples at admission, all numerical clinical features
were normalized to a range [0, 1]. These normalized data with an
average abundance ≥0.001 were illustrated as boxplots using the
R package “ggplot2”. To illustrate differences between patients
who survived and died, as well as between patients with or
without preexisting diseases, principal coordinate analysis
(PCoA) was performed using all patients’ numerical clinical
features at admission based on the Jaccard coefficient for
distance measurement using the R package “vegan”.

Feature Selection and Development of a
Prediction Model Utilizing Clinical Features
To identify the most important clinical features that reflect
differences among the samples, feature selection was employed
for a deeper understanding of COVID-19 infection. We assessed
the contribution of each clinical feature to facilitate the decisions
of the algorithm. Considering both MeanDecreaseAccuracy and
MeanDecreaseGini, the top five discriminatory clinical features
were selected. Different Random Forest (RF) models were tested

on the top five important clinical features, as well as their different
combinations according to their importance.

To develop a mortality prediction model that is capable of
distinguishing the outcome of COVID-19 patients, RF analysis
was performed by randomForest() function in R (package
“randomForest”). For the sample size larger than 100, we
randomly selected 90% of samples as training set and 10% of
samples as testing set using sample() function with replacement.
In this process, replace parameter was set as true, which specifies
using the Bootstrap method for random sampling. For each
model, based on each training set, the important parameters
ntree (number of decision trees contained in the RF model) and
mtry (variable sampling values for each iteration) were trained
and estimated with the out-of-bag (OOB) value. The importance
was set as true for calculating the importance of each variable in
the model, which was mainly used in conjunction with the
importance() function. The proximity parameters were set as
true for calculating the proximity matrix of the model, which is
mainly used in conjunction with the MDSplot() function to
realize the visualization of random forest. The na.action
parameter specifies the methods for handling the missing
values and was set as na.omi (that is, delete the samples with
missing values of all features). Other parameters were set as
default. A traversal search was performed on all clinical features
to obtain the minimum OOB value. The value of mtry was
determined by the OOB value (that is, the index of the
minimum OOB value). Then, combining the outcome of
COVID-19 patients, the mtry value was iterated to obtain an
optimal ntree. This process was iterated 15,000 times or more to
construct the most accurate model. When the error tree
approaches stable, the minimum number of trees was the best
value for ntree. This trained model was used for predicting the
outcome of the testing set.

Evaluation of Prediction Models
To evaluate the performance of the RF model, we used several
standard statistic parameters: accuracy, precision, sensitivity or
recall, specificity, and F1 scores. Here, we defined the prediction
result: survived-survived as TP and died-died as TN. The
formulas of the parameters mentioned above are defined as
follows:

accuracy � (TP + TN)/(TP + TN + FP + FN), (1)

precision � TP/(TP + FP), (2)

recall � TP/(TP + FN), (3)

specificity � TN/(TN + FP), (4)

F1 � 2* precision*recall/(precision + recall), (5)

where TP, TN, FP, and FN stand for true-positive, true-negative,
false-positive, and false-negative rates, respectively.

Correlation Analysis Between Phenotypic
Characteristics and Clinical Features
To better understand the relationship between phenotypic
characteristics and the mortality rate of patients, we used the
Pearson coefficient to examine the correlation between
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phenotypic characteristics and clinical features. Again, we
organized these correlation values along the timeline to
identify the dynamics of such correlations during treatment
progression.

Evaluation of Prediction Models along the
Timeline
Most patients have multiple sets of clinical features during their
stay in the hospital, allowing for a series of mortality prediction
models along the timeline. Here, we ordered these mortality
prediction models in two directions: from admission forward
to outcome to directly provide day-to-day guidance for clinics
and from outcome backward to admission to evaluate the
robustness and prediction power of the model against the time
of hospital stay.

Development of High-Quality and
Interpretable Binary Decision Tree for
Clinical Diagnosis
Based on the five selected features, we aimed to develop a high-
quality decision tree for clinical diagnosis. To train the RF model,
the dataset was randomly separated into two groups: the training
set (90% of entries) was applied to construct the mortality
prediction model, and the testing set (10% of entries) was
applied to validate the mortality prediction model. For
datasets with a sample size of less than 100, we used 70% of
the dataset for training and 30% for testing to reduce the
contingency error. This process was iterated 15,000 times to
construct the most accurate model. The most discriminative
clinical feature was used as the root node of this binary
decision tree, and the child nodes were hierarchically formed
according to their distinguishing ability until all samples are
completely distinguished. Finally, the decision tree was visualized
by rpart() function in R (package “party”).

Development of a Prediction Model for
Different Preexisting Diseases
Considering the influence of preexisting diseases on the outcome
in COVID-19 patients, we also used the first samples of patients
with preexisting diseases as a training dataset to build the
mortality prediction models: s/p stroke, CHD, COPD,
diabetes, hypertension, malignant tumor, and those without
preexisting diseases. For a dataset with a sample size larger
than 100, we used 90% of the dataset for training and 10% for
validation. For a dataset with a sample size smaller than 100, we
used 70% of the dataset for training and 30% for testing to
validate the model to reduce the contingency error.

Independent Test of theMortality Prediction
Model Using the Würzburg Cohort
To examine the reliability, interpretability, and foresight of our
mortality prediction model developed based on the Wuhan
cohort, 81 samples at admission from the Würzburg cohort

were used for independent test. Pearson coefficient was also
used to evaluate the association between the four clinical
features (lymphocyte (%), neutrophil count, LDH, and CRP)
and phenotypic characteristics (systolic pressure, diastolic
pressure, temperature, heart rate, SpO2, age, and respiratory rate).

RESULTS

In this study, we have recruited two independent cohorts from
China (the Wuhan cohort) and Germany (the Würzburg cohort)
for building and testing a mortality prediction model,
respectively. The Wuhan cohort contained 1,352 COVID-19
patients from Wuhan Union Hospital, and it has been utilized
for establishing a multi-feature and time-series aware machine
learning models. The Würzburg cohort consists of 81 COVID-19
patients and has been used as an independent validation cohort.

Data Resource and General Profiles of
COVID-19 Patients from Wuhan Cohort
1,352 patients were enrolled in the Wuhan cohort, who had more
than three clinical features (such as neutrophil count, CRP,
lymphocyte count, LDH, albumin, direct bilirubin, and
creatine kinase) (Liang et al., 2020; Xiao et al., 2020) and
detailed medicinal records from January 28, 2020, to March
29, 2020. The distribution of the number of patients with
clinical laboratory tests on a daily basis, as well as the total
number of diagnoses for each patient, is shown in Supplementary
Figure S1. Among them, the mortality rates in patients with
preexisting diseases: s/p stroke, coronary heart disease (CHD),
chronic obstructive pulmonary disease (COPD), diabetes,
hypertension, and malignant tumor were 23.33, 11.00, 14.29,
11.93, 12.82, and 21.13%, respectively (Supplementary Figures
S2A,B). These mortality rates were significantly higher (t-test, p <
0.001) than those in patients without preexisting diseases
(mortality rate: 7.26%). PCoA showed that if we used all
clinical features, these patients cannot be clearly separated
(Supplementary Figure S2C). In addition, these patients could
not be separated by whether they had a preexisting disease or not
(Supplementary Figures S2D–J). This highlights the importance
of clinical feature selection and developing the mortality
prediction models to differentiate patients.

Development and Evaluation of Clinical
Feature Selection and Mortality Prediction
Model for Early Prognosis Based on Wuhan
Cohort
We first developed a mortality prediction model based on
patients’ samples at admission, since such prediction is of
paramount importance in clinics (Risch, 2020). This model
took the clinical features and outcomes into consideration,
aiming to optimize the medical resources, as well as
preemptive therapy.

Before developing a mortality prediction model, we divided
the 130 clinical features into two parts: 101 numerical features
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FIGURE 2 | Clinical feature selection and mortality prediction results utilizing the first samples at admission. (A) Clinical feature selection based on 1,352 samples
and 101 numerical features. Features were ranked by MeanDecreasedAccuracy and MeanDecreasedGini according to their importance. Considering both of these
import RF parameters, we selected five important clinical features: lymphocyte (%), neutrophil count, LDH, CRP, and α-HBDH. (B) Comparison of receiver operating
characteristic (ROC) curves and diagnostic performance of all numerical clinical features, subfeature combinations, as well as each selected single feature, using the
first samples at admission (also referred to as admission-day 0). (C) The binary decision tree for predicting the outcome of COVID-19 patients based on the five selected
clinical features at admission (admission-day 0). Annotations: Num: the number of patients in the predictor; T: the number of correctly matched patients; F: the number of
mismatched patients. Here, the Num above the root node indicates the total samples used for building the binary decision tree.
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and 29 binary features. For numerical features, those features
which are identified with the average abundance ≥0.001 are
shown in Supplementary Figure S3. 101 numerical clinical
features with at least 30 samples’ coverage were considered as
the outcome predictors and were used to build the mortality
prediction model. We used 90% of the samples for model training
and 10% for testing to validate the model.

Combined MeanDecreaseAccuracy and MeanDecreaseGini
(Figure 2A), lymphocyte (%), neutrophil count, C-reactive
protein (CRP), lactic acid dehydrogenase (LDH), and
α-hydroxybutyric dehydrogenase (α-HBDH) were selected for
developing an optimized model, where lymphocyte (%) is an
immune disorder indicator (Trowell, 1947), neutrophil count
represents infection (Xie et al., 2020), CRP represents
inflammatory response (Vermeire et al., 2004; Sabrina et al.,
2012), and both LDH and α-HBDH represent tissue lesions
(Sanwald and Kirk, 1966; Kishaba et al., 2014).

We then used these five selected numerical clinical features
(lymphocyte (%), neutrophil count, CRP, LDH, and α-HBDH), as
well as different combinations of the subset of these five clinical
features according to their importance, for prediction
(Figure 2B). Results showed that the performance of these five
clinical features could be comparable to the results predicted by
all numerical features. Considering the F1 score, accuracy, and
AUC, the combination of lymphocyte (%), neutrophil count, and
LDH also showed high performance, especially the performance
of α-HBDH used alone (bold in Figure 2B). Several specified
combinations of three out of these five clinical features, such as
the combination of lymphocyte (%), neutrophil count, and LDH,
also reached more than 91% accuracy and 99% AUC at
admission. However, in clinics, these five features covered
more types of clinical symptoms: lymphocyte (%) is an
immune disorder indicator (Trowell, 1947), neutrophil count
represents infection (Xie et al., 2020), CRP represents
inflammatory response (Vermeire et al., 2004; Sabrina et al.,
2012), and both LDH and α-HBDH represent tissue lesions
(Sanwald and Kirk, 1966; Kishaba et al., 2014). Thus, we
confirmed these five clinical features as credible biomarkers.

To benchmark with other classification algorithms, we also
used FEAST (an expectation–maximization-based unsupervised
learning method) (Shenhav et al., 2019) and JSD
(Jensen–Shannon divergence) methods (Lin, 1991) to predict
the outcome of COVID-19 patients based on all features, the
top five features, and the top three features (Supplementary
Figure S4). Results demonstrated that the RF model was more or
equally credible for constructing the mortality prediction model.
The neural network (Kriegeskorte and Golan, 2019) with two
hidden layers (the first layer has 128 neurons and the second layer
has eight neurons) also illustrated that RF model based on the
combination of lymphocyte (%), neutrophil, LDH, CRP, and
α-HBDH could best predict the outcome of COVID-19 patients
(Supplementary Figure S5). Moreover, all three methods (RF,
FEAST, JSD, and neural network) showed the best distinguishing
power when using the top five clinical features to construct
the model.

We also used the binary clinical features (such as urine occult
blood, blood type, and COVID-19 nucleic acid) to build the

mortality prediction model (Supplementary Figure S6A). Based
on the contribution of each feature, we selected urine protein
(UPRO), urine occult blood (UOB), monospecific antibodies of
blood type (Ab-monospecific-B), ABO blood type (ABO), and
ketones (KET) for further model improvement. Their different
combinations and performance are shown in Supplementary
Figure S6B. Among them, the combination of UPRO, UOB, and
KET (accuracy � 99.61%; AUC � 99.96%) was outstanding from
the others, followed by UPRO, all binary features, and the
combination of these five features.

Finally, we emphasized that all of the above results were based
on the first samples at admission, since it is more important for
the clinical prediction to utilize these samples. It was noticed that
a recently published study used the final samples of COVID-19
patients for predicting their outcome (Yan et al., 2020), and we
also used the final samples in the Wuhan cohort to assess our
model based on five selected features (Supplementary Figure
S7), with results showing high prediction accuracy. Yet, the
prediction accuracy and AUC based on first samples at
admission (Figure 2B) were comparable to those based on
these final samples for the Wuhan cohort. These results
confirmed again that patients with a high mortality rate could
be accurately predicted at admission, which could be used for
prioritizing critically ill patients to potentially reduce the
mortality rate.

Clinical Features Have Profound
Association with Phenotypic
Characteristics in the Wuhan Cohort
Notable correlations were observed between phenotypic
characteristics and clinical features associated with COVID-19
(Figure 3 and Supplementary Figures S8, S9). Among 101
numerical clinical features, many of them have shown
significant correlations with age, respiratory rate, and severity
classification of patients. Expect for lymphocyte (%), neutrophil
count, LDH, CRP, and α-HBDH were positively correlated with
age (p < 0.05) along the timeline. Since the above analyses also
confirmed that these five clinical features are tightly associated
with patient outcomes (Figure 2), these associations partially
verified the fact that elder patients were more likely to die from
COVID-19. LDH, CRP, and α-HBDH were also positively
correlated with respiratory rate and severity classification (p <
0.05) in patients (896 were in general, 392 were in severe, and 63
were in critical), illustrating the importance of these phenotypic
characteristics on outcome in COVID-19 patients. The result also
showed dynamic changes in the associations of these clinical
features with phenotypic characteristics over time, especially for
the five clinical features used for model prediction.

Time-Series Analysis Reveals That the
Mortality Prediction Model Is Very Robust
along the Timeline
Evaluation of the mortality prediction model along the timeline
forward from admission day as the start point: Because these
clinical features are dynamic along the timeline, and in clinics, the
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progression and outcome of patients are critical (Liang et al.,
2020; Risch, 2020). Therefore, we used the admission day of each
patient as the start point and built mortality prediction models
day by day after admission along the timeline. The number of
samples enrolled on a daily basis is shown in Figure 4A from
admission-day 0. We used 90% of the dataset for training and
10% for testing. For datasets with a sample size of less than 100,
we used 70% of the dataset for training and 30% as a test set for
validation. Since the sample number was less than 50 for patients
who stayed in the hospital longer than 40 days, we only used the
dataset from admission-day 0 to admission-day 40 to build the
time-series mortality prediction models. Results confirmed that
our mortality prediction model was very robust over time,

suggesting that according to the prediction outcome of
patients, clinics could adjust the treatment plan at any time,
which could provide higher quality treatment for patients.

Evaluation of the mortality prediction model along the
timeline backward from discharge day as the start point: To
prove the robustness of our mortality prediction model and how
many days in advance it could predict the outcome of COVID-19
patients, we used the discharge day of each patient as the start
point. Prediction accuracies were evaluated backward day by day
(Figure 4B) from discharge-day 0. The mortality prediction
model based on five clinical features also reached more than
91% accuracy and 99% AUC (usually 10 days or more in advance
of the outcome) (Figure 4B), confirming this mortality prediction

FIGURE 3 | Associations between clinical features and phenotypic characteristics based on several representative time points. (A) Based on admission day
(admission-day 0). (B) Based on the third day after admission (admission-day 1). (C) Based on the sixth day after admission (admission-day 2). (D) Based on the ninth
day after admission (admission-day 3). (E)Based on the admission day (admission-day 4). (F)Based on the third day after admission (admission-day 5). (G)Based on the
sixth day after admission (admission-day 6). (H) Based on the ninth day after admission (admission-day 9). Note: *represents a significant correlation between a
phenotypic characteristic and a clinical feature (Pearson correlation: p < 0.05).
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model is very robust over time when patients were in the hospital
and indicating the strong association of these five clinical features
with the progression of treatment.

The Highly Accurate and Interpretable
Binary Decision Tree for Clinical Diagnosis
Tomake the prediction interpretable, we also generated a series of
decision trees (along the timeline) for assisting clinical diagnosis
based on the Wuhan cohort. The decision tree is hierarchically
organized by the distinguishing ability of these five clinical
features based on the first samples at admission (Figure 2C).
LDH could distinguish 87% of samples with more than 96%
accuracy and was used as the root node of this decision tree. The
remaining 13% of samples were differentiated by a combination
of these five clinical features. The binary decision tree of the final
samples at discharge was simpler than that of the first samples at
admission (Supplementary Figure S10E). The decision trees
based on other time points are shown in Supplementary
Figures S10A–D, confirming that using these five clinical
features was more comprehensive and precise. These results

also suggested that the mortality prediction model based on
the admission samples, rather than the discharge samples,
could already provide outcome prediction and clinical
guidance for personalized treatment with high fidelity.

The binary decision tree, either based on samples at admission
or based on discharge, was also highly interpretable for clinical
diagnosis. The elevated LDH was associated with patients’ death:
LDH larger than 445 u/l was a significant risk factor related to
death in cases with severe COVID-19 (Zhou et al., 2020b; Li et al.,
2020), which was consistent with our results. The increased level of
α-HBDHwas also found as a critical risk factor associated with the
severity of COVID-19 patients (Dong et al., 2020). The decreased
amount of lymphocyte (lymphopenia) and neutrophil
(neutrophilia), together with the increased number of CRP and
LDH, showed the immunological response to the virus, followed by
severe virus infection (Frater et al., 2020; Lippi and Plebani, 2020).
In summary, current published clinical evidence could well support
our decision tree.

Prediction Power Considering Different
Preexisting Diseases
For different preexisting diseases, the clinical features that can
accurately mark the COVID-19 patients’ outcomes are generally
different. Previous studies have shown that preexisting disease
increases the risk of COVID-19 mortality rate (Williamson et al.,
2020). We also used the six preexisting diseases to evaluate the
mortality prediction model based on the five selected clinical
features (Supplementary Figure S11).

Out of the five selected clinical features, feature combinations
should be different for each of the different preexisting diseases.
Therefore, for each of the preexisting diseases, we performed feature
importance evaluation before mortality prediction model
evaluation. For patients with s/p stroke (Supplementary Figure
S11A), considering F1 score, accuracy, and AUC, the combination
of LDH, CRP, and α-HBDH showed the highest performance,
followed by the combination of LDH and α-HBDH, then all five
features. The results for patients with CHD are illustrated in
Supplementary Figure S11B. Except for using the five features,
the combination of LDH, CRP, and α-HBDH showed the highest
performance. For patients with COPD, a combination of neutrophil
count, lymphocyte (%), and LDH showed the highest performance
(Supplementary Figure S11C). For patients with diabetes, among
all combinations of clinical features, LDH showed the highest
performance (Supplementary Figure S11D), indicating that
LDH could be used to distinguish the outcome of COVID-19
patients. For patients with hypertension, results indicated that a
combination of neutrophil count, lymphocyte (%), and LDH could
be used as biomarkers for predicting the outcome of COVID-19
patients with hypertension (Supplementary Figure S11E). For
patients with malignant tumor, the combination of all five
features showed the highest performance, followed by the
combination of neutrophil count and lymphocyte (%)
(Supplementary Figure S11F). For patients without preexisting
diseases, results showed that we can use lymphocyte (%), LDH,
CRP, and α-HBDH to accurately predict the outcome of these
patients (Supplementary Figure S11G).

FIGURE 4 | Evaluation of prediction results based on time series with five
selected features. The prediction results were evaluated based on time series
using the admission-day 0 (A) and the discharge-day 0 (B) as start points. The
first y-axis represents the number of samples enrolled, while the second
y-axis represents the estimation scores. The purple bar represents the
number of patients discharged from the hospital on that day, while the red bar
indicates the number of patients admitted to the hospital on that day.
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Evaluation of the Mortality Prediction Model
Using the Independent Würzburg Cohort
The reliability, interpretability, and foresight of our mortality
prediction model were further confirmed in another independent
cohort collected from Germany, the Würzburg cohort, with
samples collected from March to September 2020 (Figure 5).
For the patients in the Würzburg cohort, their duration of stay in
the hospital is usually 5–20 days (Figure 5A). All samples used in
the Würzburg cohort were the patient samples at admission.

We used four clinical features (lymphocyte (%), neutrophil count,
LDH, and CRP), as well as their different combinations to test our

mortality prediction model (Figure 5C). Considering F1 score,
accuracy, and AUC, the combination of LDH, lymphocyte (%),
neutrophil count, and CRP (accuracy � 97.33%; AUC � 85.71%)
showed the highest performance among different combinations.
Other combinations, such as the combination of LDH, lymphocyte
(%), and neutrophil count (accuracy � 93.67%, AUC � 87.83%) and
the combination of LDH and lymphocyte (%) (accuracy � 94.81%,
AUC � 84.25%), also performed well.When only one clinical feature
was used, LDH (accuracy � 91.30%, AUC � 85.56%) showed the
highest performance, which was consistent with the results on the
Wuhan cohort and a previous study (Liang et al., 2020).

FIGURE 5 | Independent test results on theWürzburg cohort utilizing the first samples at admission. (A) The number of patients categorized by their duration of the
hospital stay. (B) The associations between clinical features (LDH, CRP, lymphocyte (%), and neutrophil count) and phenotypic characteristics. (C) Comparison of
receiver operating characteristic (ROC) curves and diagnostic performance of four clinical features, the combinations of a subset of features, as well as each selected
single feature, using the first samples at admission. Note: * represents a significant correlation between a phenotypic characteristic and a clinical feature (Pearson
correlation: p < 0.05).
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From the Pearson correlation analysis (Figure 5B) between these
four clinical features (LDH, lymphocyte (%), neutrophil count, and
CRP) and the phenotypic characteristics (systolic pressure, diastolic
pressure, temperature, heart rate, SpO2, age, and respiratory rate), we
could observe that there was a significantly negative correlation
between lymphocyte (%) and age (p < 0.05), which was consistent
with the general pattern of COVID-19 patients. CRP was
significantly positively correlated with temperature (p < 0.05),
which was consistent with the result in the Wuhan cohort.

Furthermore, as the duration of stay in the hospital of patients
is usually 5–20 days, the strong foresight of the mortality
prediction model has again been validated on the Würzburg
cohort. Furthermore, one male patient aged 54 has a hospital stay
of 93 days before recovery, and our mortality prediction model
has successfully predicted his outcome.

DISCUSSIONS AND CONCLUSION

Our study enrolled two independent cohorts of COVID-19
patients for reliable, interpretable, and universal mortality
model evaluation. Through multiple analyses including RF
analysis, association analysis, time-series analysis, etc., the
mortality prediction model was established, evaluated, and
achieved clinically creditable prediction power on the Wuhan
cohort and Würzburg cohort.

The mortality predictionmodel proposed in this study could help
identify critically ill patients early and provide preferential treatment
for each individual. Firstly, the five important clinical features
(lymphocyte (%), neutrophil count, CRP, LDH, and α-HBDH)
were identified. These five features could reflect several important
aspects of disease development, such as viral infection (Trowell,
1947), coexistence of other infections (Xie et al., 2020), immune
reaction during pneumonia (Sabrina et al., 2012), the severity of
inflammatory response (Vermeire et al., 2004), tissue/cell damage,
and cardiac injury (Sanwald and Kirk, 1966; Kishaba et al., 2014),
which could provide more information to monitor the progression
of patients. Secondly, these five features could be used for predicting
the outcome of COVID-19 patients with high accuracy. Thirdly, the
foresight of the mortality prediction model was strong up to as early
as 40 days or more before discharge. This indicates that our model
could allow resource optimization to be conductedmany days ahead,
and physicians can make a preliminary judgment on the prognosis
of patients according to this model to prompt the choice of clinical
intervention in later stages.

Our mortality prediction model shows superior prediction power
at different time points during the course of the disease. Robust
prediction power at different time points (Figure 4) also suggests that
the mortality prediction model provides important indicators for
disease monitoring, indicating early clinical intervention for clinical
treatment. Our mortality prediction model also shows superior
prediction power for different preexisting diseases of patients,
indicating the robustness of the mortality prediction model. These
results could serve well as the basis for personalized treatment of
COVID-19 patients.

Our finding in the Wuhan cohort (model development) has also
been tested in an independent cohort from Germany (Würzburg

cohort). Although the international aspects such as the ethnicities,
healthcare systems, hygienic measures, local regulations, and
management strategies, as well as their average age (t-test, p �
0.0005), are different in these two cohorts, our mortality prediction
model has also shown the high prediction power in tens of days
ahead of patients’ discharge, underlining the robustness and the
foresight of this model.

The second COVID-19 wave in Europe is ongoing. This
mortality prediction model has been validated at a European
center and might provide a useful instrument for triaging the
patients and optimizing the resources. Because we have a series of
mortality prediction models with constant high accuracy along
with the whole duration of patients’ stay in the hospital, we could
adjust treatment for possibly serious patients on a day-to-day
basis to reduce the mortality rate of patients with COVID-19 as
much as possible. In addition, our study also provides new insight
into the mortality prediction model’s application value in other
infectious disease outbreaks in the future.

In conclusion, this study has established a mortality prediction
model that allowed early classification of COVID-19 towards
personalized treatment in these patients, not only at admission
but also along the treatment timeline. This model may represent a
valuable tool for triaging and optimizing the resources in patients
with COVID-19 infection worldwide.
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Insights Into Co-Morbidity and Other
Risk Factors Related to COVID-19
Within Ontario, Canada
Brett Snider*, Bhumi Patel and Edward McBean

University of Guelph, Guelph, ON, Canada

The worldwide rapid spread of the severe acute respiratory syndrome coronavirus 2 has
affected millions of individuals and caused unprecedented medical challenges by putting
healthcare services under high pressure. Given the global increase in number of cases and
mortalities due to the current COVID-19 pandemic, it is critical to identify predictive features
that assist identification of individuals most at-risk of COVID-19 mortality and thus, enable
planning for effective usage of medical resources. The impact of individual variables in an
XGBoost artificial intelligence model, applied to a dataset containing 57,390 individual
COVID-19 cases and 2,822 patient deaths in Ontario, is explored with the use of SHapley
Additive exPlanations values. The most important variables were found to be: age, date of
the positive test, sex, income, dementia plusmanymore that were considered. The utility of
SHapley Additive exPlanations dependency graphs is used to provide greater
interpretation of the black-box XGBoost mortality prediction model, allowing focus on
the non-linear relationships to improve insights. A “Test-date Dependency” plot indicates
mortality risk dropped substantially over time, as likely a result of the improved treatment
being developed within the medical system. As well, the findings indicate that people of
lower income and people from more ethnically diverse communities, face an increased
mortality risk due to COVID-19 within Ontario. These findings will help guide clinical
decision-making for patients with COVID-19.

Keywords: artificial intelligence, COVID-19, SHAP (shapley additive explanation), XGBoost (extreme gradient
boosting), mortality, co-morbidity

INTRODUCTION

With issues of the second wave of the COVID-19 pandemic ongoing in 2021 and the world in a
continuing crisis, interest continues to escalate to improve the understanding of features
resulting in virus caseload increases. In response, of particular interest are opportunities to
improve modeling prediction capabilities which can provide more accurate information as it
becomes available from the first and second waves of COVID-19. In this regard, until recently,
data security and privacy issues have limited accessibility to alternate and detailed data sources,
but opportunities are opening up and showing real potential. As an example, improved access to
Ministry of Health for Ontario, enabled Snider et al. (2021) to develop powerful artificial
intelligence (AI) models that are now able to predict mortality and recovery of COVID-19
patients with a high degree of accuracy; the models developed were based on data from Ontario
Health Data Platform (February 22, 2020–October 20, 2020), utilizing extensive and detailed
data for 57,390 individual COVID-19 cases.
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AI models in general, and Snider et al. (2021) in particular,
provide dimensions including the ability to uncover and
understand the value of an array of “base” information,
including co-morbidity data, that influence mortality rates
including at the case-by-case level. Findings on the risks of
mortality for individual patients have the potential to influence
many important actions such as helping identify “most at-risk
populations” thus providing insights on hospitalizations/medical
strategies and opportunities to aid delivery of COVID-19
vaccination priority strategies in the future.

The findings and predictions made available from use of
logistic regression and other AI models, have excellent
potential, when caseload data are available. Specifically, the
models of Snider et al. (2021) demonstrated excellent
discrimination with all model’s area under the curve (AUC)
exceeding 0.948, with the greatest being 0.956 for an XGBoost
(Extreme Gradient Boosting) model. Hence, this paper advances
the knowledge inmortality risk of COVID-19 patients in Ontario,
Canada, by calculating and exploring SHapley Additive
exPlanations (SHAP) values of parameters used for the
XGBoost AI model developed by Snider et al. (2021). Most
importantly, these models provide specifics on the causative/
impactful inter-relationships, which allow extraction of
additional information from datasets and exceed the
information provided by logistics models since logistic models
assume a specific type of relationship between input and output,
whereas the machine learning models allow capture of a more
flexible relationship. In order to see the exact form of the
relationship, SHAP dependance plots were made and analyzed
for 4 principal features driving the XGBoost mortality prediction
model. Hence, these provide indications detailing the importance
of the individual variables that can be used to characterize co-
morbidities that can be important indicators as to whom may be
most susceptible to mortality and more likely to be in need of
intensive medical needs, arising from the COVID-19 virus. Also,
the relationships identified using this approach between
parameters such as co-morbidities and other risk factors
associated with COVID-19, and the corresponding impact on
the mortality prediction XGBoost model, provide information
which can be of great value in designing effective non-
pharmaceutical interventions (NPIs) and vaccination schedules.

REVIEW OF TECHNICAL LITERATURE

The impressive predictive capabilities of AI have resulted in AI
models being adopted across a wide range of disciplines. Their
excellent performance in some areas of investigation arises largely
due to the ability of AI models to identify and to model complex
patterns between input variables and the predicted output.
However, the AI model’s complexity often makes it difficult to
identify the relationships between the input variables and the
output, resulting in most advanced AI models being classified as
“black-boxes”.

These so-called black-box models can be very accurate in their
predictions but leave the users wondering how individual factors
contribute to the model’s final prediction. A number of dynamic

and statistical models of COVID-19 outbreaks including SEIR
models (which assign individuals to the susceptible (S),
exposed (E), infected (I), and recovered (R) classes) have
previously been used to study and analyze transmission
(Hellewell et al., 2020; Tuite and Fisman, 2020; Kucharski
at al., 2020). However, these epidemiological models require
values for unknown parameters and rely on many assumptions
(Hu at al., 2020). Interest in understanding how the individual
factors contribute has resulted in a variety of interpretable
machine learning techniques being developed in recent years
to assist in the interpretation of the impact of specific input
variables on the final prediction (Molnar, 2019). This
information is critical in promoting the gaining of trust in
the AI model, as well as providing insights into which variables
are important, and identifying key relationships that influence
the AI models’ final prediction.

AI models have played a major role during the COVID-19
pandemic, through COVID-19 case identification, predicting
transmission scenarios, and identifying the mortality risks of
specific COVID-19 patients (see e.g., Li et al., 2020a; Boulle
et al., 2020; Li et al., 2020b; Dhamodharavadhani et al., 2020).
A significant focus has been placed on ensuring these models are
interpretable, to allow a better understanding of the factors
contributing to the predictions of patients’ outcomes, and to
help inform responses.

Some researchers have selected AI models that are
interpretable by design, such as logistic regression and
decision trees. Yan et al. (2020) used decision trees and
blood samples to interpret and identify mortality
prediction for COVID-19 patients using blood samples.
Fisman et al. (2020) used logistic regression models to
predict mortality risk of COVID-19 patients; their logistic
regression model quantifies the weight of each input variable
to the final prediction, making it straightforward to
determine how the model is calculating the overall
COVID-19 mortality risk. A similar study by Quiroz et al.
(2021) developed a logistic regression model using clinical
and imaging data from two hospitals in Hubei, China, for
automated severity assessment of COVID-19 for individual
patients, obtaining an AUC of 0.950 using a combination of
clinical and imaging features. They interpreted the
importance of features using SHAP values and found
patients in severe conditions had co-morbidities which
included cardiovascular disease, diabetes, hypertension and
cancer which is similar to findings obtained from previous
studies (see e.g., Petrilli et al., 2020; Richardson et al., 2020;
Shi et al., 2020; Siordia, 2020). Thus, interpretable machine
learning techniques help address the most significant
limitation of machine learning i.e., the lack of
transparency due to its’ black box nature, however, there
are trade-offs between the accuracy of predictions and
interpretability with such models (Du et al., 2020).
Overall, interpretable AI algorithms such as logistic
regression and decision trees allow for the user to identify
the weights associated with the model’s input variables, but
these approaches are often less accurate compared to black-
box models (see e.g., Murdoch et al., 2019; Snider et al., 2021).
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For a critical discussion in a clinical context, see the work by
Christodoulou et al. (2019).

Another technique is to apply model agnostic
interpretation methods to black-box models to investigate
the relationship between inputs and the model’s prediction. A
leading agnostic method to interpret black box AI models is
through the use of SHAP values (Molnar, 2019). Barda et al.
(2020) explored their black-box mortality prediction model
for Israel’s COVID-19 patients using SHAP values to
estimate the contribution of individual features to the
overall model predictions. The calculated SHAP values
identified the importance of several demographic attributes
that the model determined important in predicting COVID-
19 mortality (for example, age and cardiovascular disease)
but the model used by Barda et al. (2020) has limited
individual-level data, making it difficult to explore key
relationships between COVID-19 patients and mortality,
such as income level and ethnicity.

MATERIALS AND METHODS

The following sections describe the datasets and models
developed by Snider et al. (2021) to predict mortality risk of
COVID-19 patients in Ontario, Canada. The SHAP value
methodology and application used to explore the black-box
prediction models are then outlined.

Dataset Description
The Ontario Health Data Platform (OHDP) was used in this
research to assemble extensive data regarding COVID-19 patients
within Ontario. The OHDP dataset contains epidemiological and
demographic information, recovery/mortality outcome
information and co-morbidities of individuals residing in
Ontario. The attributes which proved most useful by the AI
models are listed in Table 1. Co-morbidities and age were
collected from patient health records as of January 1, 2020;
hence, diagnosis of additional medical conditions after this
date were excluded. Of the 57,390 cases included in the
dataset, 2,822 patients died of COVID-19 and the remaining
54,568 either recovered from COVID-19 or remained
hospitalized as of January 1, 2021. Several input variables were
derived using 2016 Canadian census data for the designated area
of the individual patients. Canadian census location information
is based on a size of approximately three blocks and hence is able
to capture representation of ethnicity, income level and other
social differences, and can therefore be considered robust. The
census data includes: ethnic concentration (of residential area),
commuter concentration, median income and household size
(these values are unlikely to change significantly between date of
census and start of pandemic). These values were converted into
quintiles (division of the population into five equal-sized groups
according to the distribution of input variables) with 1 being the
lowest quintile, and 5 being the highest. Individuals with
missing data were not included in these analyses. It is noted

TABLE 1 | Characteristics of 57,390 Ontario residents with COVID-19.

Variable Description Range of values

Age Age in years, as of Jan 1, 2020 0–105
Test date Test date Feb–Oct 2020
Sex Indicator variable for sex 26,861 (M � 1, F � 0)
Hypertension Chronic hypertension, as of Jan 1, 2020 15,778 (0,1)
LTC resident LTC resident, as of Jan 1, 2020 5,179 (0,1)
Chronic_dementia Chronic dementia diagnosed, as of Jan 1, 2020 4,746 (0,1)
Chronic_odd Chronic diabetes diagnosed as of Jan 1, 2020 9,002 (0,1)
Ethnic concentration quint. Calculated from Ontario marginalization index, based on census designation. Refers to visible minorities and/or

recent immigrants
(0–5)a

Commuter concentration
quint

% Of people that commute within census designated area - converted to quintiles (0–5)a

Median income quint. Median income within census-designated area - converted to quintiles (0–5)a

Charl Charlson co-morbidity index. Only 2,059 patients with charl above 0. (0–10)
Household size quint. Avg. Household size within census-designated area - converted to quintiles (5 being the highest, 0 � missing DA

info).
(0–5)

CKD Chronic kidney disease. 2,523 (0,1)
Cancer Cancer index 2,995 (0–1)
Chronic_copd Chronic obstructive pulmonary disease 4,030 (0–1)
Chronic_asthma Asthma 9,100 (0–1)
Chronic_chf Congestive heart failure 2,257 (0–1)
Stroke If patient suffered a stroke previous to Jan 1, 2020 1,016 (0–1)
Cardiac ISCH Cardiac ischemia 1,916 (0–1)
Rural Indicator if a patient lives in a rural residence 1,746 (0–1)
Chronic_ra Rheumatoid arthritis 567 (0–1)
Tia Transient Ischemic Attack 722 (0–1)
immuno_comp Immuno-compromised 237 (0–1)
Thala History of Thalassemia 36 (0–1)
Cases recovered 54,568
Cases died 2,822

a(0 referring to missing information).
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that long-term care (LTC) residents in Ontario did not
include census-designated area information and therefore,
data for the LTC residents were represented with a zero value.

Model Development
Snider et al. (2021) compared three black-box machine learning
models which were 1) Artificial Neural Network (Venables and
Ripley, 2002), 2) Random Forest (Wiens and Shenoy, 2018), 3)
Extreme gradient boosting decision tree—XGBoost (Chen et al.,
2021) and one interpretable machine learning model which was
logistic regression (Venables and Ripley, 2002). These models
were adopted because of their high accuracy in binary
classification problems as well as their prevalence/adoption in
previous literature. Prior to model calibration, the dataset was
randomly split into two segments, namely an 80% training dataset
and a 20% testing dataset where each model was calibrated using
the training dataset and assessed for accuracy using the testing
dataset. A grid search approach was used to adjust the hyper-
parameters of the models using a 10-fold cross-validation
technique repeated three times per model and optimized to
produce the maximum area under the receiver operating
characteristic curve (Area Under Curve, or AUC). The
XGBoost model was determined to be the most accurate
model, having an AUC of 0.956. Therefore, this paper explores
the XGBoost model’s relationships between the input variables

and the predicted mortality risk by calculating SHAP values for
each attribute and patient included in the training dataset.
Features such as the public health unit of individual cases
from the same locality/region were excluded when training the
model as such parameters could cause problems if a particular
region has a higher number of patients compared to others.

Shapley Additive Explanation Values
To explore the impact of each variable on the XGBoost’s
mortality model prediction, SHAP values have been used.
SHAP values determine the importance of a feature by
comparing what a model predicts with and without the feature
for each observation within the training data. Specifically, the
SHAP values represent the final AI model’s prediction using the
following equation:

yi� ybase + f(xi1) + f(xi2) + . . . + f(xiN)
The ith sample (or patient) is defined as xi, the N represents the

final feature (or input parameter) for the ith sample (as defined by
xiN ). The predicted value of the AI model is yi and the reference
value, or mean value of the target sample variable, is defined as
ybase. The function f (xij) is the calculated SHAP value of xij. The
SHAP values are calculated using SHAP for XGBoost R package
(Liu and Just, 2020) and present the variable contribution on a

FIGURE 1 | SHAP summary plot for XGBoost model.
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log-odds scale (logarithm of the ratio of high mortality risk to low
mortality risk).

RESULTS AND DISCUSSION

Figure 1 plots the SHAP value for each individual patient within
the training dataset for each input variable. The input variables, as
listed on the y-axis, are ranked frommost important (top) to least
important (bottom) with their mean absolute SHAP value
indicated next to the name in Figure 1. The X axis represents
the SHAP value associated with each variable and patient within
the training dataset (i.e., there is a plotted point for each case
based on the influence that the variable has on the prediction of
that case). The color indicates whether the individual patients’
input variable value was high (purple) or low (yellow). For
example, in Figure 1 a “high” age has a high and “positive”
impact on predicting mortality. The “high” comes from the
purple color and the “positive” impact is shown along the X
axis. Note, a range of SHAP values exists for each input variable
value based on the SHAP values calculated for each observation,
and how they independently contribute to the machine learning
model’s predictions.

Overall, age is unquestionably the most important variable for
the XGBoost model. As a patient’s age increases (approaches
purple), the SHAP value impact increases, with a very high age
being associated with an additional 2.5 increase in log-odds. The
test-date when someone tested positive for COVID-19 also has a
strong impact on overall mortality risk; as the positive test date
increases (i.e., later on during the pandemic), the risk of mortality
decreases.

The impact of the SHAP values are easily identified for binary
variables, such as sex, hypertension, whether or not a patient was

an LTC resident, and dementia. Being a Male (i.e., Sex � 1) has an
additional 0.25 increase in log-odds, which indicates males have
an increased risk of mortality. Similar increases are also identified
with people having hypertension. An “LTC residence”
designation is also associated with a significant increase in
mortality, which is consistent with reported large numbers of
outbreaks and deaths of individuals living in LTC homes. Chronic
dementia is the co-morbidity associated with the largest increase
in mortality.

Age
The impact of a patient’s age on the AI model’s mortality risk
prediction can be further explored using a SHAP dependency
graph. Figure 2 depicts the SHAP values associated with patient
ages within the training dataset. As further explanation of the
results, a patient of <20 years of age is associated with a
significant decrease in mortality risk; alternatively, as age
increases, the risk of mortality increases. The non-linear shape
of this figure, as well as the range of values for similar age
highlight some of the advantages of the more complex AI
models compared to less complex models such as logistic
regression. Specifically, the XGBoost model examined here is
able to identify complex patterns, as well as interaction effects that
are often difficult for regression models (for example, logistic
regression) to identify.

Test Date
Figure 3 depicts the SHAP values associated with the “day the
patient tested positive” for COVID-19. Figure 3 indicates that
residents of Ontario who tested positive for COVID-19 early on
in the pandemic (e.g., April 2020) had an increased risk of
mortality. From the data, mortality risk decreased for those
individuals with later positive-test dates with a substantial
decrease in mortality being associated with more recent

FIGURE 2 | SHAP plot for Age.

FIGURE 3 | SHAP plot for Test Date.
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months (e.g., September and October of 2020). Comparing
positive test rates (% of tests performed that were positive)
over the same time period identifies that “positivity rates
increased during the period of substantial decrease in
mortality” risk (October–December) (Public Health Ontario,
2021). This indicates that the decrease in mortality is unlikely
a result of less severe cases being identified since positivity rates
increased in October, while the associated risk decreased.
Therefore, the decrease in mortality associated with later test
date is considered more likely associated with improved
treatment within the medical system (Robinson, 2021).

Income
The SHAP values for each median income quintile, based on
census designated area, are depicted as box plots in Figure 4 (note
income data were not available for LTC residents and therefore,
LTC resident data were not included in Figure 4). COVID-19
patients who come from a census area with the lowest median
income quintile have a higher risk of mortality. As the median
income increases, Figure 4 shows the risk of COVID-19mortality
decreases.

Ethnicity
Ethnic concentrations were calculated based on 2016 census
data for each designated area using the methodology outlined
in the Ontario Marginalization index (Public Health Ontario,
2018). Specifically, ethnic concentration refers to the
proportion of the population within a designated area who
are recent immigrants or belong to a visible minority. The
ethnic concentration was then segmented into quintiles and
the SHAP values for each quintile are depicted using box plots
in Figure 5. COVID-19 patients from census areas with high

ethnic concentrations experience higher levels of mortality
risk, while patients from neighborhoods with low ethnic
concentrations experience lower levels of mortality risk. The
ethnic and income factor results further highlight that
COVID-19 has a greater impact among marginalized
communities within Ontario, Canada.

CONCLUSION

This paper explored an advanced AI mortality prediction
model for COVID-19 patients within Ontario, Canada.
Specifically, SHAP values were calculated and examined in
order to uncover the relationships identified by the XGBoost
model used by Snider et al. (2021). Several key findings are
identified through this research. First, by examining the
average SHAP value for each variable, key attributes related
to mortality risk are identified (Figure 1). Age and test date are
determined to be the leading factors that influence the
mortality risk of COVID-19 patients in Ontario but also
identified as important were sex, dementia, ethnicity, etc. at
lesser degrees of importance.

SHAP dependency graphs are shown to provide very useful
interpretation of the black-box XGBoost mortality prediction
model. This paper explores four key attributes using SHAP
dependency graphs: patients’ age, test-date, income and ethnic
concentration. The Age SHAP dependency plot highlights the
non-linear relationship between the patients age and risk of
COVID-19 mortality, highlighting the significant increase in
mortality risk associated with older patients with COVID-19
in Ontario. The Test-date dependency plot indicates mortality
risk has dropped substantially within Ontario since the start of

FIGURE 4 | SHAP box-plot for median income. FIGURE 5 | SHAP box-plot for ethnic concentration.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6846096

Snider et al. SHAP Values of COVID-19 Risk-Factors

92

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


the pandemic. The SHAP values for income and ethnic quintiles
suggests people of lower income and higher ethnic concentrations
face an increasedmortality risk due to COVID-19 within Ontario.
Further exploration into these trends will be important as
vaccinations become more widespread around the world, and
with variants of concern becoming more common.

Overall, AI models have and will continue to play a major role
in understanding and combating the COVID-19 pandemic.
However, to build trust in these models and to gain further
insight, a strong emphasis must be placed on ensuring the results
from these models are interpretable. SHAP values are shown to be
a useful tool to “open up” some of the more complex black box AI
models and uncover the key patterns being modeled. The findings
gathered from the model exploration performed in this paper
further adds to the literature regarding mortality risks associated
with COVID-19 patients and will help guide strategic
interventions and vaccination schedules.
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The COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone
across the world. Reduced mobility was essential due to it being the largest impact
possible against the spread of the little understood SARS-CoV-2 virus. To understand the
spread, a comprehension of human mobility patterns is needed. The use of mobility data in
modelling is thus essential to capture the intrinsic spread through the population. It is
necessary to determine to what extent mobility data sources convey the samemessage of
mobility within a region. This paper compares different mobility data sources by
constructing spatial weight matrices at a variety of spatial resolutions and further
compares the results through hierarchical clustering. We consider four methods for
constructing spatial weight matrices representing mobility between spatial units, taking
into account distance between spatial units as well as spatial covariates. This provides
insight for the user into which data provides what type of information and in what situations
a particular data source is most useful.

Keywords: COVID-19, spatial, mobility, spatial weight matrices, principal component analysis, hierarchical
clustering

1 INTRODUCTION

The COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone across
the world. From working from home at all hours, using less public and personal transport, home-
schooling under lock down, to economic strife and anxiety; predicting such changes would have been
near impossible a priori. By far the largest impact, aside from the economic troubles many find
themselves in, is reduced mobility. Daily commuting has been much reduced due to various
lockdown measures internationally. In addition, international flights and cross border travel was
restricted for significant periods of time, even between regions in some countries.

Reduced mobility was essential, however, due to it being the largest impact possible against the
spread of the little understood SARS-CoV-2 virus. Social distancing and stay at home instructions
were understood and implemented internationally. These instructions were seen as the best
protection for the individual, as well as being the means to prevent overload on the hospital
systems, which would otherwise result in inflated death rates. These protection mechanisms are
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formed on an understanding of the basic nature of the spatial
spread of the virus. A virus spreads via a host, whom it relies on to
move amongst other susceptibles. The more movement and
interaction performed by the host, the more the virus is able
to spread. It is thus imperative to incorporate a spatial element
when modelling the spread of the COVID-19 pandemic. Herein,
we focus on modelling the mobility spatially.

Quantifying mobility patterns of people facilitates a more
accurate understanding of the spread of the disease. An
individual’s ability to physically “lock down” and stay at home
was affected by economic inequality, as shown in a US study
(Huang et al., 2021). In South Africa, this economic inequality is
extreme, with the World Bank recognising South Africa, in 2019,
as having the worst inequality in the world1.

While the strict lockdown introduced by the South African
government from March 27, 2020 delayed the first wave, the
mobility was by no means completely reduced due to many living
day-to-day for food. Food parcel queues from food donations
were a large focus during the first half of the pandemic in South
Africa, as the risk of contracting COVID-19 was overridden by
the need for food. Such queues, and the use of public transport
during these times, heightened the transmission risk of COVID-
19 in South Africa, even while lockdown rules were in place. A full
lockdown was therefore not possible, and spatial interaction
continued between individuals from different regions across
South Africa. Modelling regions in isolation will therefore not
capture the influence of this mobility on the spread of COVID-19
in South Africa. The use of mobility data in modelling COVID-19
is thus essential to capture the intrinsic spread through the
population. A common source is mobile phone location data,
which has been utilized previously for epidemiological modelling
(Cummings et al., 2004; Wesolowski et al., 2012; Bengtsson et al.,
2015; Wesolowski et al., 2015; Finger et al., 2016; Ruktanonchai
et al., 2016). However, this data is difficult to obtain due to
increasing privacy concerns worldwide. In addition, there are
often a number of network providers in a region, each with
certain market share. Without data access from all, or at least, the
largest providers, representativeness and mobile phone
penetration will be limited and should be used with caution.
Other sources of mobility data are published by Facebook and
Google. The spatial resolution of these is lower, however. In this
paper we focus on mobile phone and Facebook mobility data,
which has higher spatial resolution than the Google alternative.

It is necessary to determine to what extent different sources of
mobility data, at differing spatial resolutions, convey the same
message of mobility within a region. In this paper we
demonstrate, through the use of principal component analysis
as well as hierarchical clustering, how different sources of spatial
mobility data at various resolutions can lead to different
conclusions with regards to spatial unit connectivity. Spatial
connectivity is an essential first step in spatial modeling,
providing a quantification of the spatial dependency between
spatial units. Herein, we compare the calculation of a number of
spatial weight matrices in quantifying how spatial units relate. We

also discuss the advantages of different sources and how they can
be harnessed when modelling the spread of a virus. We do this by
using principal component analysis in order to condense the
information that can be gained from a spatial weight matrix and
then using hierarchical clustering to identify the strongest spatial
associations and to essentially put on display what type of
relationships the spatial weight matrix is identifying. This is to
the best of our knowledge the first time this exact combination
has been used for this purpose.

The mobility data available for South Africa is presented in
Section 2. The methodology for constructing connectivity
matrices is developed in Section 3, and the results are
presented in Section 4. Section 5 provides a discussion and
Section 6 concludes.

2 DATA

Available mobility data is at different resolutions. For the case of
South Africa, the administrative divisions of the country are
summarised in Table 1. In order of increasing spatial
resolution these are country, province, district municipality,
local municipality, and ward, labelled as administrative levels 0
through 4 respectively. To facilitate the comparison of different
sources of spatial information, it is first necessary to aggregate the
data from each source to the same spatial resolution. Increasing
the resolution of spatial data can be achieved through methods
such as small area estimation or spatial micro-simulation (see e.g.
(Ballas et al., 2005; Pfeffermann, 2013)). These methods are
somewhat involved and require the use of auxiliary
information or assumptions that are unlikely to be true. In
this paper we investigate aggregating down to the lowest
spatial resolution used by our data sources. While this is
relatively straightforward to accomplish, it potentially results
in the loss of information.

Mobility data are used to understand various issues ranging
from epidemic modelling, transport planning and management,
communication network improvement and urban planning
(Asgari et al., 2013; Zhou et al., 2018). Asgari et al. (2013)
indicates that mobility goes far beyond mere geographical
movement of humans, but provides a comprehensive
perspective on human interactions that could be considered
from spatial, temporal, and contextual aspects. Human
mobility is one of the aspects of mobility that gained attention
from the global spread of infectious diseases as with the recent
COVID-19 pandemic. A variety of technologies including

TABLE 1 | South Africa’s administrative boundaries.

Administrative level Spatial unit name Number
of spatial units

0 Country 1
1 Province 9
2 District municipality 52
3 Local municipality 213
4 Ward 4,392

1https://povertydata.worldbank.org/Poverty/Home (Accessed May 2021)
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navigation sensors, wireless technologies, and cellular
communication technologies are used to position humans in
space (Toch et al., 2019). A study by Zhou et al. (2018)
provides a comprehensive overview of the different types of
human mobility patterns data. These include those data types
that capture both the wider (city-wide) and minute (building-
wide or large structure) human movements, for example, cellular
services records (CSRs), surrounding WiFi access point records
(SWAPRs), Global Positioning System locations (GPSLs),
geotagged social media (GTSM), public transport smart card
records (PTSCRs), bluetooth detection records (BDRs), andWiFi
probe request records (WFPRs). The analysis methods range
from data visualisation to statistical analysis methods
(classification and clustering), heuristic logic, graph theory and
optimization techniques.

2.1 South Africa’s Lockdown Levels
To quell the spread and impact of the COVID-19 pandemic, the
South African government instigated one of the strictest
lockdowns in the world. This particular lockdown strategy is
structured around different “levels” of lockdown, each of which
brings different restrictions (with level 5 being the highest and
placing restrictions on nearly all forms of travel to all citizens
except for those classified as essential workers). The various levels
as well as the dates for which they were active are given inTable 2.
Note that for this paper we only consider the lockdown until the
end of Level 3 due to data availability only over this period.

As non-pharmaceutical interventions (such as the lockdown)
are eased the population is allowed to become more mobile.
Naturally this will have an impact on the transmission rate of the
virus and thus this temporal element must be included in some
manner. In this paper we split the data temporally on the date
ranges given in Table 2 up to level 4 and set up a spatial weight
matrix for each level of lockdown to study how mobility patterns
changed. Two mobility data types were available for this research.
The first is freely available data shared by Facebook, and the
second is mobility data made available by a South African cellular
provider for the context of the COVID-19 response in 2020. In
Figure 7we provide the Google mobility data at country level. We

do not use this data in this research as it is only available at
administrative level 1, representing low spatial resolution. It is
however useful for context providing mobility levels in each
various industry sectors. Mobility for residential travel
(i.e., individuals remaining at their place of residence) is the
only type of travel that saw an increase after the country
transitioned into level 5. Grocery and pharmacy travel saw an
initial spike shortly before the country went into level 5 (possibly
attributed to panic-buying). After transitioning to level 5 we see a
drastic decrease in all types of travel, with residential travel
showcases a slightly downward trend while all other forms of
travel have an upward trend. Grocery and pharmacy travel is the
quickest to recover to pre-COVID levels while travel to parks and
travel stations is the slowest to recover (most likely due to this
being for leisure). By the end of the year residential travel is still
higher than before any lockdown interventions. Table 3 provides
the average changes over each level as well.

2.2 Facebook Data for Good
Multiple geographically indexed datasets have been made freely
available for use by Facebook through their “Facebook data for
good” initiative. These datasets serve to aid researchers and
policymakers in understanding the spread of COVID-192.

This paper utilises one of these available datasets, namely the
“Movement rangemaps” dataset. The data indicates the change in
mobility, F(t)

i ∈ (−1, 1) (which can be interpreted as a percentage
(−100, 100)), for a spatial unit i on a given day t over the period
March 1, 2020–February 28, 2021 relative to a 1-week baseline
calculated in February 2020. The daily values for each district
municipality were calculated by determining the number of so-
called “Bing tiles”3 that each inhabitant visited on a given day
(place of residence being determined by the location where users
most often spend their nights). A bing tile is the term used by
Microsoft for a spatial polygon. After incorporating some degree

TABLE 2 | South Africa’s lockdown levels and dates.

Level Date Restrictions

Business as usual March 1, 2020–March 26, 2020 No restrictions
Level 5 March 27, 2020–April 30, 2020 Essential services only otherwise all confined to place of residence. No inter-provincial movement, except for

transportation of goods and exceptional circumstances e.g. funerals. Public and private transport restricted to certain
times of the day with limitations on vehicle capacity

Level 4 May 1, 2020–May 31, 2020 More sectors permitted with restrictions, including mining, and partial e-Commerce allowed. Public places (such as
religious, cultural, recreational facilities) and the tourism sector remain closed and gatherings prohibited. All confined to
place of residence from 8pm to 5am. No local (between metropolitan areas or districts) or inter-provincial movement of
people, except for permitted reasons e.g. returning for alert level 4 operations. All borders remain closed except for
designated ports of entry for restricted home affairs operations and for the transportation of fuel, cargo and goods.
Public and private transport may operate at all times of the day, with limitations on vehicle capacity

Level 3 June 1, 2020–August 17, 2020 More sectors permitted including take away restaurants, e-commerce and delivery services and global business
services. Public places and tourism opened and gatherings and sporting activities permitted but all subject to
restrictions. All confined to place of residence from 11pm to 4am. No inter-provincial movement of people, except for
transportation of goods, exceptional circumstances and other permitted reasons. Public and private transport may
operate at all times of the day, with limitations on vehicle capacity

2https://dataforgood.fb.com/(Accessed May 2021)
3https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
(Accessed May 2021)
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of noise, the average number of tiles visited by the inhabitants was
determined and expressed relative to the baseline. The full
description of how these values were calculated is available in
the Appendix. The spatial resolution for units of this data are
district municipalities, namely at administrative level 2.

Figure 1 shows the aggregated data for district municipalities,
with the average across the district municipalities shown in red.
The figure demonstrates that the average mobility nationally
dropped significantly in late March. This corresponds to when
South Africa entered its first hard lockdown on the March 27,
2020 (see Table 2). The hard lockdown imposed severe
restrictions on travel and constituted a strict stay at home
directive. Only essential workers were allowed to leave their
homes. Furthermore, the average change in mobility is
primarily negative over the entire study period, indicating that
mobility patterns remain more constrained than before the hard
lockdown. The first COVID-19 case was discovered on March 5,
2020 and the lockdown announcement was made a week later on
15 March. This could explain the drop in mobility already seen
from early March.

Notable benefits of using this data are that the data is freely
available and could potentially act as a very representative proxy
for human mobility, as Facebook services are not constrained to
specific mobile network providers. In addition, all the cellular
network providers in South Africa provide a free version of
Facebook called Facebook Zero. Even though it is known that
not all South Africans have a Facebook account, the Facebook
mobility data may provide an acceptable level of
representativeness for mobility within the country since the
population of South Africa is considered significantly young4.
It is also clear that a large amount of the original data was
censored in order to preserve user privacy and thus the data is at a
sparse level of spatial resolution (administrative level 2). The data
is also not specific with regards to the direction of spatial mobility.
Daily observations only indicate whether individuals were more
or less mobile in a district municipality and do not indicate the
spatial units towards which this mobility was directed.

2.3 Mobile Network Data
The growing popularity and widespread use of mobile devices has
led to massive amounts of data being produced at any given point
in time all around the world. Mobile phone data can be collected
either passively by mobile services providers or through the use of

mobile applications. The ease with which such large quantities of
data can be gatheredmakes cellular data attractive for researchers.
Mobile devices operate by sending and receiving information
from cellphone towers. When interacting with a cellphone tower
we say that a phone has “pinged” off a cellphone tower. A mobile
device may ping off a cellphone tower by sending or receiving any
kind of information, be it a phone call, text message or application
notification. The mobile network data obtained for this research
is obtained using the number of users whose mobile devices
pinged off a cellphone tower within one ward (administrative
level 4) on a given day and then later that day pinged off a
cellphone tower in a different ward.

Mobile phone data has been used numerous times in the field
of spatial epidemiology to model the spread of various diseases,
including cholera (Bengtsson et al., 2015; Finger et al., 2016),
dengue (Cummings et al., 2004; Wesolowski et al., 2015) and
malaria (Wesolowski et al., 2012; Ruktanonchai et al., 2016).
Following the outbreak of the COVID-19 pandemic, the
governments of various countries across the world began
collecting cellular device user data in an attempt to aid the
conception and implementation of non-pharmaceutical
interventions (Ekong et al., 2020; Oliver et al., 2020; Peixoto
et al., 2020; Varsavsky et al., 2021). This data has since been used
by researchers to clearly establish a correlation between
population mobility and COVID-19 case numbers (Gao et al.,
2020; Peixoto et al., 2020; Xiong et al., 2020; Zhou et al., 2020).

Limitations of mobile phone data exist. First and foremost of
these is the issue of user privacy. Mobile phone data could
potentially be misused to identify specific individuals and thus
cellular providers are often hesitant to provide researchers with
such data (Grantz et al., 2020; Oliver et al., 2020). Such data is
often aggregated to a low spatial resolution to prevent this as well
as reduce noise, but this comes at the cost of some data specificity.
Another potential drawback of mobile phone data is high
computational cost. For high mobile phone penetration rates,
mobile phone data may consist of a number of entries in the order
of billions. The computational cost of processing such datasets is
prohibitive, potentially preventing analysis.

For this paper, anonymised mobile phone data was obtained
from a local mobile network provider. In South Africa, the mobile
phone penetration level is estimated to be as high as 95%5. The

TABLE 3 | Average changes in population mobility over lockdown levels using the Google mobility data during 2020.

Level Date Retail Grocery and pharmacy Parks Transit stations Workplaces Residential

BAU 2 Feb - 26 Mar −3.49 1.68 −9.39 −5 −0.88 1.71
Level 5 27 Mar - 30 Apr −73.06 −46.09 −46.86 −78.49 −65.89 33
Level 4 1 May - 31 May −50.39 −23.45 −39.39 −61.71 −40.58 23.35
Level 3 1 Jun - 17 Aug −29.53 −10.71 −23.17 −49.72 −28.1 17.17
Level 2 18 Aug onwards −17.76 −3.34 −23.29 −34.65 −19.78 11.35

4Mid-2021 Statistics South Africa Population Report http://www.statssa.gov.za/
publications/P0302/P03022021.pdf (Accessed August 2021)

5See https://www.geopoll.com/blog/mobile-penetration-south-africa/and https://
www.icasa.org.za/uploads/files/State-of-the-ICT-Sector-Report-March-2020.pdf
(Accessed May 2021)
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provider utilised in this paper is one of the largest providers in the
country, with an estimated market share of 42%.

The data provides the number of mobile phone users m(t)
ij

that travelled to ward j fromward i on day t for the period 2March
- May 12, 2020. The data is at administrative level 4, which is the
highest spatial resolution reasonably possible while preserving
some level of privacy of exact user location. To compare
insights gained from this data and the Facebook dataset in
Section 2.2, it would first be necessary to aggregate the mobile
phone data to the same spatial resolution which is administrative
level 2. In South Africa, each ward has a unique 8-digit ID code.
The first three digits of this code indicates the district municipality
that the ward is a part of. For example, the ward ID 9344007
indicates that the ward is part of the district municipality with code
934. In order to aggregate the data to district municipality level, one
could replace the ward IDs of the observations with their district
municipality codes (i.e. only the first three digits), whereupon rows
with identical origin and destination codes would be discarded. The
mobile phone data at administrative level 2 is thus given by

M(t)
I,J � ∑

i∈I,j∈J
m(t)

ij ,

where I and J are district municipalities and i and j are wards as
previously indicated. Transitions contained within a single
district municipality are thus discarded. Analysis revealed that
this caused an average of 26% of daily observations to be
discarded. The retained data is displayed in Figure 2. The
representation differs to that of Figure 3 as the data provides
transitions between regions in this case. We once again notice a
sharp decline in population mobility in late March.

The population of South Africa (mid-2021) is approximately
60.14 million6, and yet the highest total number of inter-district
municipality transitions on any given day was approximately 10
million (seen in Figure 2). It should be noted that the same
individual can be responsible for multiple transitions and that

some individuals could potentially possess multiple cellular
devices. Literature does exist on the use of mobile phone
data to estimate population numbers, see e.g. (Sakarovitch
et al., 2018). Doing so is not within the scope of the research
presented here but would be of value in testing mobile phone
representability. Despite the quality of available hardware7, this
process proved highly computationally expensive due to the number
of comparisons that need to be run on billions of lines of data in
order to create a spatial weight matrix for each day in the time
period.

3 METHODOLOGY

3.1 Literature Review
When a particular phenomenon exhibits evidence of spatial
dependence, this dependency must be taken into account when
modelling to minimise the risk of producing biased results
(Stakhovych and Bijmolt, 2009; Ejigu and Wencheko, 2020).
In the case of an infectious disease that is spread through
physical contact and near proximity, it is clear that locations
that are situated closer together (or rather the inhabitants of
these locations) will play a larger role in determining their
respective infection rates than locations that are farther apart.
To incorporate this fact, spatial models allow spatial units to be
more strongly (or weakly) correlated with one another based on
some select criteria that is deemed suitable for the phenomenon
being modelled. This is achieved through the use of a spatial
weight matrix (sometimes called a “spatial mobility matrix”)
usually denoted by W (Bavaud, 1998; Getis and Aldstadt, 2004;
Aldstadt and Getis, 2006; Stakhovych and Bijmolt, 2009;
Anselin, 2013; Ejigu and Wencheko, 2020).

Definition 1 (Spatial weight matrix). Let S � {1, 2, . . . , n} be a
set of spatial units. A spatial weight matrix (Bavaud, 1998; Getis
and Aldstadt, 2004; Stakhovych and Bijmolt, 2009; Anselin, 2013)
is an n × n matrix W � [wij] satisfying wij ≥ 0 and ∑n

j�1wij �
1 ∀ i ∈ S.

FIGURE 1 | “Facebook for good”movement range maps data (March 1,
2020–February 28, 2021) relative to a baseline calculated in a week of
February 2020.

FIGURE 2 | Number of individual transitions between wards using the
available mobile phone data (March 2, 2020–May 12, 2020).

6Mid-2021 Statistics South Africa Population Report http://www.statssa.gov.za/
publications/P0302/P03022021.pdf (Accessed August 2021)

7All analysis presented here was performed on a desktop computer running Intel
Core i7 with a clock speed of 3.40GHz, a 64-bit operating system and 64 GB of
installed memory
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This matrix is formally defined as an expression of spatial
dependency between spatial units (Bavaud, 1998; Getis and
Aldstadt, 2004; Stakhovych and Bijmolt, 2009; Anselin,
2013). Simply put, the spatial weight matrix is constructed in
such a way so that entry wij quantifies the amount of spatial
influence that spatial unit i exerts on spatial unit j (Bavaud,
1998; Getis and Aldstadt, 2004; Stakhovych and Bijmolt, 2009;
Anselin, 2013).

Such matrices are frequently restricted to being symmetrical to
simplify estimation. However, symmetry is not required and can
result in a less realistic representation of spatial dependency
(Bavaud, 1998; Getis and Aldstadt, 2004; Stakhovych and
Bijmolt, 2009; Anselin, 2013). Another common convention is
that wii � 0 for all i to exclude the possibility of so-called “self-
influence” (Bavaud, 1998; Getis and Aldstadt, 2004; Stakhovych
and Bijmolt, 2009). Non-zero diagonal entries can however be
included and are interpreted as quantifying the resistance that
each spatial unit has against influence from the other spatial units
(Bavaud, 1998; Anselin, 2013). Performing row-standardisation
on the matrix allows the connectivity of different spatial units to
be compared (Bavaud, 1998; Getis and Aldstadt, 2004).

Spatial weight matrices are most commonly used in the fields of
econometrics and spatial statistics (Anselin, 2013). Recently however,
they have become popular in the field of spatial epidemiology and
have been used to model various diseases including dengue, malaria,
foot and mouth disease (Brown et al., 2016; Malik et al., 2016; Brown
et al., 2018; Suryowati et al., 2018) and most recently COVID-19
(Huang et al., 2020; Tagliazucchi et al., 2020). There are relatively few
established guidelines with regards to constructing a spatial weight
matrix (Bavaud, 1998; Aldstadt and Getis, 2006; Stakhovych and
Bijmolt, 2009; Ejigu andWencheko, 2020), however, the construction
of these matrices has seen some advancement, with greater emphasis
being placed on creating matrices that offer an accurate
representation of human mobility. Simpler models rely on
measures such as distance, contiguity or adjacency (Aldstadt and

Getis, 2006; Stakhovych and Bijmolt, 2009; Anselin, 2013; Brown
et al., 2016; Malik et al., 2016; Brown et al., 2018; Suryowati et al.,
2018; Ejigu and Wencheko, 2020; Huang et al., 2020) while more
complex ones are able to use mobile phone data (Huang et al.,
2020) and geostatistical information (Getis and Aldstadt, 2004;
Aldstadt and Getis, 2006). Accurately specifying these matrices
is a non-trivial problem, as discussed in (Ejigu and Wencheko,
2020). Most recently, Ejigu et al. proposed a methodology
through which both distance and covariate information can
be utilized (Ejigu and Wencheko, 2020).

Given the importance of correctly specifying the spatial weight
matrix, and the fact that there are oftenmultiple sources of spatial data
available on hand, it becomes necessary to develop some means of
comparing spatial weight matrices. Specifically, it is necessary to
compare the insights that can be derived from different spatial
weight matrix definitions. In recent years this comparison has been
achieved either through the use of measures of spatial autocorrelation,
such asMoran’s I (Suryowati et al., 2018), or throughmore specialised
methods local to the field of spatial statistics (Gao et al., 2018; Jin et al.,
2020). In this paper, we adapt an idea initially presented by Garrison
and Marble (Garrison and Marble, 1964), whereby principal
component analysis is used to reduce the dimensionality of
candidate spatial weight matrices. We then introduce the use of
hierarchical clustering to derive a clustering solution for the spatial
unit principal scores. This allows for amore informative comparison of
the information provided by these connectivitymatrices, as opposed to
simply comparing their structure visually.

3.2 Spatial weight Matrices
Selecting an optimal spatial weight matrix is often reliant on the
use of a priori information and experience. In this paper the
emphasis is on comparing the implications for different spatial
weight matrices and the varying types of spatial associations that
they represent. We next discuss the spatial weight matrix
construction approaches used in this paper.

FIGURE 3 |Google mobility report data for February 15, 2020–November 20, 2020 (transitions to different levels of lockdown indicated by vertical reference lines).

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 7183516

Potgieter et al. Representative COVID-19 Mobility

102

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


3.2.1 Method 1: Distance Method
The exponential distance definition of a spatial mobility matrix is
used frequently in studies involving spatial correlation, and is a
popular choice in spatial econometrics (Aldstadt and Getis, 2006;
Stakhovych and Bijmolt, 2009; Anselin, 2013; Ejigu and Wencheko,
2020). As previously mentioned however, the concepts of distance,
contiguity and adjacency do not necessarily offer themost accurate or
realistic representation of human mobility. In this paper we include
this model in order to draw comparisons between it and more data-
driven models. The entries of the spatial weight matrix are given by

wij � exp(−dij) (1)

where dij is the Euclidean distance between the centroids of
spatial units i and j. Diagonal entries are set to 0 to remove
the possibility of so-called “self-influence,” and all rows are
standardised to sum to 1 to facilitate comparisons between
different spatial units. Both of these restrictions were
maintained for all matrices in this paper. Under this model,
spatial units are most strongly spatially correlated with the spatial
units that are closest to them geographically. No temporal
component can be incorporated for this method.

3.2.2 Method 2: Mobile Network Method
The mobile network data indicates the number of individuals
that travelled from spatial unit i to spatial unit j on a given day t.
These entries are used to construct the spatial weight matrix as
follows,

w(t)
ij � M(t)

ij . (2)

This model expresses spatial weights as a function of the
amount of flux (both in and out) occurring at a spatial location,
and is sometimes referred to as a spatial interaction matrix
(Bavaud, 1998). Spatial units where more (less) individuals
travelled to other spatial units will thus have a larger (smaller)
effect on other spatial units.

3.2.3 Method 3: Weighted Facebook Data Method
In order to create a spatial mobility matrix using the Facebook
data, we use the same approach of Ejigu et al. (Ejigu and
Wencheko, 2020). This takes into account proximity as well as
covariate information which is spatially dependent. The entries of
the spatial weight matrix are given by

w(t)
ij � exp − α · |F(t)

i − F(t)
j | + (1 − α) · dij( )( ) (3)

where F(t)
i is the mobility of spatial unit i at time t, scaled by

population size (the covariate information), dij is the Euclidean
distance between the centroids of spatial units i and j, and α ∈ (0, 1)
is a control parameter indicating the amount of weight that should
be given to the covariate term. The control parameter α was set to
0.6 in this paper to allow for the covariate data to play a slightly
more prominent role in the estimation process without disregarding
the importance of distance. The parameter captures that we are
making an assumption that the Facebook data can be used to
capture transitions between regions even though it is isolated
location data. The value of 0.6 gives the weighted calculation a

slight nudge towards the Facebook data. Note that if α � 0 then the
model simplifies to the exponential distance model in Eq. 1.

The Facebook mobility data for each district municipality was
scaled using population size in order to account for the fact that
increased mobility in a given district is more (less) influential to
neighbouring districts if the population size is large (small). This was
also done in order to restore some of the variation in the data that was
likely lost when the data was censored to a lower spatial resolution.

3.2.4 Method 4: Scaled Facebook Data Method
An additional final spatial weight matrix was constructed based
on further variation of the exponential distance model. For this
matrix, the rows of the exponential distance matrix are scaled
using the (unscaled) Facebook mobility data. For example, if the
mobility within district municipality i was 20% lower than the
baseline, then the entire row i is multiplied by 0.8. Each entry in
the exponential distance matrix is thus scaled by some number in
(0,2). The entries in the matrix are given by

w(t)
ij � 1 + F(t)

i( ) · exp(−dij). (4)

This construction allows the exponential distance matrix to be
scaled such that the spatial influence of more (less) mobile district
municipalities is increased (decreased). This also renders the
exponential distance matrix non-symmetric, which should
offer a more realistic representation of spatial influence.
Methods three and four are a novel approach to constructing
connectivity matrices from the Facebook mobility data.

3.3 Principal Component Analysis
Principal component analysis (PCA) is a statistical technique that
aims to derive a parsimonious representation of a given dataset by
deriving an orthogonal linear transformation of the data (Friedman
et al., 2001). In standard PCA, the only hyperparameter that needs to
be selected is the number of principal components, which is primarily
dependent on the cumulative proportion of variance in the data that
the user wishes to retain. For this paper, the number of principal
components was chosen such that 75% of the variation in the data
wasmaintained. The full discussion of PCAand its various extensions
is left to the existing literature (see e.g. (Friedman et al., 2001)).

3.4 Hierarchical Clustering
Hierarchical clustering is an unsupervisedmachine learning technique
that allows the user to group together data points in an attempt to
uncover sets of observations that share similar characteristics
(Friedman et al., 2001). This is achieved by procedurally grouping
together those observations that are most similar to each other based
on some selected measure of dissimilarity, referred to as a “linkage”
(Friedman et al., 2001). The number of retained clusters can then be
selected either using some measure of cluster (dis)similarity or a pre-
selected value. We use agglomerative clustering, which additionally
requires the selection of a method through which the dissimilarity of
separate clusters is calculated. A full discussion on hierarchical
clustering may be found in (Friedman et al., 2001).

Herein, we chose the number of clusters to be identical to the
number of principal components. Complete linkage was used to
calculate the difference between clusters at each iteration. Single
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and average linkage displayed a propensity for resulting in clusters that
were very large. This was most likely due to the fact that single linkage
considers the minimum distance between clusters at each iteration,
thus regarding clusters as more similar in general. Complete linkage
considers the maximum distance between clusters and thus considers
clusters to bemore distinct. Average linkage is the average of these two
extremes.

4 RESULTS

Figure 4 shows the 52 district municipalities of South Africa. The
four largest cities in the country are Tshwane, Johannesburg,
Durban and Cape Town, situated in the City of Tshwane, City of
Johannesburg, eThekwini and City of Cape Town district
municipalities respectively as indicated in colour in Figure 4.
These four cities are the focal point of economic activity and
travel in the country, and it is thus logical that they would play a
substantially larger role in the transmission of the virus than other
municipalities.

4.1 Method 1: Distance Method
Figure 5A shows the weights (those >5) for the exponential
distance weight matrix. Since the entries are calculated based only
on the Euclidean distance between the district municipalities (and
no additional information), there are no significantly large
weights present. As temporal information cannot be included,
this method produces only a single spatial weight matrix.

This spatial weight matrix required the largest number of principal
components, namely 14, in order to explain 75%of the variation in the
data. This is most likely due to the lack of any form of auxiliary data or
information that could be used to better describe the relationship of
the district municipalities. The result of hierarchical clustering on the
principal component observations is given in Figure 5B.

4.2 Method 2: Mobile Network Method
Figure 6 shows the spatial weight matrix for every level of
lockdown that the mobile phone data spans at administrative
level 3. This spatial weight matrix identifies very strong spatial
associations over relatively shorter distances (indicated by the
yellow lines). These strong correlations appear to cluster around
the edges of the country, with locations in the centre of the
country displaying less spatial association overall.

We note that there are strong spatial associations that do not
appear to be associated with any of the four major cities in the
country. In particular, we note strong associations in the North-
Western region of the country as well as some spatial associations
across Lesotho (a neighbouring country that is landlocked by South
Africa, shown in Figure 6D). The spatial weight matrices for the
mobile network data were also aggregated to administrative level 2,
shown at Figure 7.While some strong spatial associations can still be
identified around the country’s borders, many previously identified
associations (including several significant associations spanning
across the neighboring country of Lesotho) are now negligible. It
is clear that while this lower spatial resolution does capture some of
the spatial associations present in the data, much information is lost
when aggregating between spatial resolutions.

A notable drawback of data being at such a high spatial
resolution is that it becomes very difficult to cluster locations
in a meaningful way. At administrative level 3 there are 213

FIGURE 4 | South Africa’s district municipality boundaries and locations
of four largest cities.

FIGURE 5 | Method 1 (A) Spatial weights (weights ≤5 not shown), (B) Complete linkage clustering (14 clusters indicated by colours).
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spatial units to consider. In order to explain just 75% of the
variation in this data one requires approximately 70 principal
components. Such a high number of clusters does not lend
itself to easy interpretation and thus it is necessary to aggregate
to a lower spatial resolution to render analysis feasible. When
aggregating to administrative level 2 we find that 20 principal
components are required to retain 75% of the variation present
in the data. This is most likely due to the fact that the mobile
network exhibits far greater daily variation than our data
sources. Figure 8 shows the clustering solution.

4.3 Method 3: Weighted Facebook Data
Method
This matrix construction incorporates both the Facebook
population mobility data and the population size for each
district municipality into the spatial weights for each district
municipality pair. Figure 9 shows the resulting matrix for each
level of lockdown. By allowing both mobility and population size
to play a role in this matrix, the strong spatial association between

the four largest cities in South Africa is identified, despite the
large geographical distance between them. If only Euclidean
distance had been taken into account, this association would
have been missed, as with Method 1. This spatial weight matrix
required nine principal components to explain 75% of the
variation in the data. Figure 10 shows the results of
applying hierarchical clustering to the principal component
observations.

4.4 Method 4: Scaled Facebook Data
Method
This spatial weight matrix was constructed as a potentially more
realistic alternative to the exponential distance matrix. Despite
containing a temporal element (in the form of daily mobility
measurements retrieved from the Facebook data), the results for
this matrix do not show any significant change across the
various levels of lockdown. Figure 11 visualises the spatial
weight matrix. Clustering performed on this matrix was more

FIGURE 6 |Method 2 spatial weight matrix entries (weights ≤5 not shown) (A) Business as usual, (B) Level 5, (C) Level 4, and (D) South Africa at local municipality
level (neighboring country Lesotho in green).
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successful and intuitive. Only seven components were required
to explain 75% of the variation in the data. Figure 11 shows the
clustering solution.

5 DISCUSSION

The results in Section 4 illustrate a number of ways to construct
spatial weight matrices from mobility data. For the standard
exponential distance method (Method 1), it is clear from Figure 5
that the clustering solution on this spatial weight matrix is not
ideal. There are far too many clusters and the clustering solution
reveals no clear interpretation. Although the initial matrix
construction used only the distances between district
municipalities, district municipalities that were located closer
together were not generally clustered together. The entries of
the spatial weight matrix constructed using the mobile network
data (Method 2), shown in Figures 6, 7, reveal strong spatial
associations over relatively short distances. The four focal largest
cities in the country are clearly identified as hubs for high
mobility but there are other regions, particularly those situated
on or near the borders of the country, that showcase highly
concentrated mobility. A possible explanation for these strong
spatial associations being observed far away from cities is the
existence of mining activity in these areas. Given that South
Africa has a very large and widespread mining sector, it seems
only reasonable that any model with a spatial element should
strive to incorporate these associations. The clustering solution
for this spatial weight matrix, shown in Figure 8, is distinct from

the other solutions in this paper in that distance is clearly not a
key role player in deciding which spatial units are clustered
together. Many spatial units that are situated close to one
another in geographical space are not clustered together, and
some spatial units are even placed into their own clusters despite
having many spatial neighbours. It can be argued that this clustering
solution is a more realistic reflection of the amount of travel between
spatial units. The reason for this is that locations being situated closer
together does not always imply that there is a higher degree of travel
between these locations. The strong local connectivities picked up by
this method are useful for epidemiological modelling, for example,
prediction of case number hotspot movement into spatial units of
higher likelihood of mobility.

The four largest cities in SouthAfrica are Tshwane, Johannesburg,
Cape Town and Durban, situated in the City of Tshwane, City of
Johannesburg, eThekwini and City of Cape Town district
municipalities respectively, as shown in Figure 4. The results in
Figure 9 (method 3) show a large spatial association between these
locations prior to the implementation of level 5 lockdown. Under
level 5 restrictions, when the spatial influence of most district
municipalities decreased, the spatial influence between these four
locations becamemore pronounced by comparison. This most likely
indicates that while smaller district municipalities were less active
due to restrictions, these four were comparatively more active and
still saw a sizable amount of travel between them. This seems feasible,
given that these locations are the focal points for economic activity in
the country and thus could not reasonably become “immobile”. As
restrictions were lifted, these spatial weights were still significantly
larger than those for other district municipalities, indicating that,

FIGURE 7 | Method 2 spatial weight matrix entries (weights ≤5 not shown) (A) Business as usual, (B) Level 5, (C) Level 4 at district municipality level.

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 71835110

Potgieter et al. Representative COVID-19 Mobility

106

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


despite restrictions being eased, the spatial influence between
these four places is still significantly stronger than before the
lockdown. It is also apparent that the spatial influence between
less influential district municipalities has not returned to the
level that they were during business as usual (pre-lockdown).
Figure 10 shows that the district municipalities housing the four
largest cities are all either clustered together or in clusters of
their own. Other district municipalities are generally clustered
together based on the distance between them. This clustering
solution indicates that the four largest cities are significantly
different from the locations around them. This spatial weight
matrix is thus able to pinpoint the fact that these locations play a
potentially larger role in spatially-dependent phenomena such
as the spread of a virus. The effect in epidemiological modelling
allows for longer range spatial dependency, for example, spread
of the virus by daily flights between major city hubs. This is not
captured by Method 2.

The clustering results for Method 4, shown in Figure 11, do
not display any significant changes over the various levels of
lockdown. Figure 11 also shows that the clusters that are formed
for this spatial weight matrix are clearly based primarily on
distance, but illustrates that the auxiliary Facebook data aids in
constructing more finite and sensible clusters. Interestingly, we
notice a district municipality that has been classified into a
cluster on its own. When inspecting the results for the other

spatial weight matrices we note that this district municipality
has previously also been identified as its own cluster and was
shown to have strong spatial associations for Method 2. Upon
further inspection we note this district municipality houses
several mines. Similarly to Method 2, this spatial weight
matrix is able to identify location associations that go
unnoticed when relying on simple concepts such as
Euclidean distance. This method may not be useful alone in
epidemiological modelling and should most likely be used in
conjunction with either Method 2 or 3.

This paper shows that different representations of spatial
data can offer a variety of insights and capture different
relationships in the data. For example, the spatial weight
matrix created using Method three data emphasises the
prominent role of focal points in population activity.
However, the spatial weight matrix constructed using
Method four offers a scaled and smoothed way to use
distance to indicate which locations have a higher spatial
influence on one another. These two spatial weight matrices
use the same spatial data (i.e. the Facebook for good data), but
offer vastly different interpretations of spatial influence.
Finally, the interpretations that were able to be made from
the mobile phone data indicates that there are many
potentially strong spatial associations at shorter distances
that can only be identified when inspecting data at a high

FIGURE 8 | Method 2 complete linkage clustering results (20 clusters) (A) Business as usual, (B) Level 5 and (C) Level 4.
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spatial resolution. Table 4 provides a summary of the methods
used in this paper, their strengths and weaknesses, and their
usability based on the results. Each of these representations
can be seen as valid and are complementary with regards to the
insight they offer. Depending on the specific phenomenon
under study, an argument could be made their usability based
on observed patterns from the results, as in the case of a
pandemic such as COVID-19, which affects not only
congregated communities but allows for consequences to be
felt across an entire country.

Understanding mobility during the current pandemic is
essential. Both the reduction in mobility as well as retained
mobility need to be well understood, and depend on reliable
data collection. As shown here, data are collected in different
ways and are also made available in a variety of formats.
Mobility is distributionally different across strata of a
region’s demographics, with more mobile locations likely to
result in higher disease transmission. Higher resolution
mobility data is important to capture these differences in
more detail. Even so, the spatial resolution at district
municipality captures these nuances of the movement under

each lockdown level, and shows that significant movement still
took place due to the vulnerability of a large portion of South
Africa’s population.

The possibility of micro-spatial estimation (small area
estimation) is something to investigate further. Making use of
demographic covariates, transport networks and as well as mobile
network coverage maps could provide connectivity matrices at
higher spatial resolution, ideally at ward level. Estimation at
higher spatial resolution could be done by making use of a
number of lower spatial resolution sources. This allows for
micro-scale modelling of COVID-19 spread and will allow for
privacy while increasing spatial resolution and providing deeper
coverage in a region. Google mobility data is also available8 but
only at provincial level (administration level 1) for South Africa.
This spatial resolution is too low to consider estimation down to
ward level, especially if alternative mobility data is available at
administrative level 2. However, one could also combine mobility

FIGURE 9 | Method 3 spatial weight matrix entries (weights ≤5 not shown) (A) Business as usual, (B) Level 5, (C) Level 4, and (D) Level 3.

8https://www.google.com/covid19/mobility/(Accessed May 2021)
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FIGURE 10 | Method 3 complete linkage clustering results (9 clusters) (A) Business as usual, (B) Level 5, (C) Level 4, and (D) Level 3.

FIGURE 11 | Method 4 (A) Spatial weights (weights ≤5 not shown), (B) Complete linkage clustering (7 clusters indicated by colours).
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data at different spatial resolutions in a way that takes advantage
of the strengths of each dataset.

The computational aspects of dealing with mobility data
should not be overlooked. Spatial weight matrices can
become very large, depending on the number of spatial
regions under consideration. Herein the matrices were not
sparse, meaning that sparse representations could not be
used. Sparse representations could be investigated for high
spatial resolution modelling.

To quantify the similarity between the different spatial weight
matrices, one might consider the use of simple parametric
measures of correlation such as Pearson’s correlation coefficient.
However, given that there are a total of 52 spatial units (at a district
municipality level) and the weights betweenmany spatial unit pairs
are negligible, the spatial weight matrices can be regarded as zero-
inflated. In addition to making no allowance for the spatial nature
of the data, namely the spatial dependency, standard measures of
correlation would also deliver biased results. Future research could
investigate methods for comparison of spatial weight matrices via
appropriate correlation calculations or other techniques.

6 CONCLUSION

COVID-19 spreads spatially and thus the importance of
mobility data for COVID-19 modeling should not be
disregarded. Ideally, the raw data from the mobile network
providers and Facebook, if available, could provide individual
movements, allowing for accurate construction of spatial
weight matrices. This data could be anonymised and shared.
However, instead the methods proposed here can be made use
of. The use of movement data in epidemiology is becoming an
important covariate to include, without which the spread can
only be modelled in isolated regions. Social interactions
between human beings are unavoidable. Simple spatial
weight matrix construction techniques, such as only taking
into account distances, are not always ideal when the spatial
associations being captured are dependent on covariates which are
not only proximity based. This is made clear by the observed poor

performance of Method 1 when it was used as the basis of
clustering. The methods presented herein and the results shown
also enable epidemiological modellers in considering how to
incorporate spatial relationships in models. This is seldom done
due to limited mobility information as well as modelling
complexities it introduces. However, the improved accuracy in
model outcomes will ultimately balance out computational
complexities. The paper provides insights into mobility data
availability, representability as well as construction for use in
spatial modelling. Future research should investigate estimation
to a higher spatial resolution using multiple data sources as well as
the effect of spatial resolution in spatial epidemiological modelling.
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APPENDIX

Facebook for good data calculation.
Let u represent a single individual and Ut,i represent district

municipality i at time t. The total number of Bing tiles visited by
inhabitants of district municipality i is then

total_tiles(Ut,i) � ∑
u∈Ut,i

min(tiles(u), 200).

Note that the maximum number of Bing tiles visited that a
single individual can contribute is restricted to 200. In order
to preserve user privacy, an error term was included by
drawing from a Laplace distribution with parameters 0 and
F
ϵ where F � sensitivity parameter and ϵ � noise parameter as
follows

total_tiles′(Ut,i) � total_tiles(Ut,i) + Laplace 0,
F

ϵ( ).
The average number of tiles per district municipality was then

calculated as

avg_tiles′(Ut,i) � total_tiles′(Ut,i)
|Ut,i| .

The mobility value for each district municipality and for each
day was then finally expressed with respect to the baseline as

F(t)
i � avg_tiles(Ut,i) − baseline_avg_tiles′(i, day_of_the_week(t))

baseline_avg_tiles′(i, day_of_the_week(t)) .

For further details regarding this data see https://research.fb.
com/blog/2020/06/protecting-privacy-in-facebook-mobility-
data-during-the-covid-19-response/.
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